-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_timing.py
464 lines (341 loc) · 13.6 KB
/
test_timing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
from collections import deque
import functools
import itertools
import multiprocessing
from pathlib import Path
import time
import arrow
import click
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
from scipy import stats
def load_data(file_name):
if file_name[-3:] == 'npy':
with open(file_name, 'rb') as f:
return np.load(f)
try:
with open('{}.npy'.format(file_name[:-3]), 'rb') as f:
return np.load(f)
except FileNotFoundError:
data = sio.loadmat(file_name)
new_data = []
keys = (key[1:] for key in data if key[0] == 'Y')
keys = (0 if key == '' else int(key) for key in keys)
keys = sorted(keys)
for key in keys:
if key == 0:
key = ''
new_data.append(np.array([d[0] for d in data['Y{}'.format(key)]]))
with open('{}.npy'.format(file_name[:-3]), 'wb') as f:
np.save(f, new_data)
return new_data
def get_samples_from_file(file_name):
for data in load_data(file_name):
power_data = np.abs(data) ** 2 # Get magnitude and convert to power
yield power_data
def find_transmissions(samples):
transmissions = []
median = np.median(samples)
std = np.std(samples)
threshold = median + std
above = samples > threshold
above_iter = iter(above)
WINDOW = 100
index = 0
# Find all transmissions
while True:
try:
# Progress to True value (start of signal)
value = False
while not value:
value = next(above_iter)
index += 1
start = index
# Progress until there are no True values for WINDOW samples (end of signal)
buffer = deque([value], maxlen=WINDOW)
while any(buffer) is not False:
buffer.append(next(above_iter))
index += 1
end = index - WINDOW
transmissions.append((start, end))
except StopIteration:
break
# Remove first transmission in case we caught a middle of a transmission
transmissions.pop(0)
return transmissions
def run(samples, sample_file, index, cb):
print("Processing {} - {}".format(sample_file, index))
transmissions = find_transmissions(samples)
return cb(transmissions, sample_file, index)
def process_data(sample_files, cb):
def inputs():
for sample_file in sample_files:
for i, samples in enumerate(get_samples_from_file(sample_file)):
yield samples, sample_file, i, cb
processes = 8
with multiprocessing.Pool(processes=processes) as pool:
return pool.starmap(run, inputs())
def find_transmit_pause_times(transmissions, sample_file, index):
# Find difference between start and end of transmission
# (transmission duration)
tx_durations = np.array([end - start for start, end in transmissions])
# Find difference between end of transmission and start of another transmission
# (pause duration)
starts, ends = zip(*transmissions)
pause_durations = np.array([end - start for start, end in zip(ends, starts[1:])])
# The data coming in is in terms of samples
# The spectrum analyzer samples at 50 MHz which is
# once every 20 ns.
tx_durations = tx_durations * .02 # Convert to μs
pause_durations = pause_durations * .02 # Convert to μs
# Get metadata
sample_file = Path(sample_file)
device = sample_file.stem.split('-')[-2]
pause_duration = int(sample_file.stem.split('-')[-1])
return device, pause_duration, tx_durations.std(), pause_durations.std()
def find_transmit_period(transmissions, sample_file, index, period):
starts = np.array([start for start, _ in transmissions])
starts -= starts[0] # Make zero relative to first element
# The data coming in is in terms of samples
# The spectrum analyzer samples at 50 MHz which is
# once every 20 ns.
starts = starts * .02 # Convert to μs
# print(starts)
# Convert from μs to periods
periods = starts / period
# print(periods)
# Calculate how many missed periods there are
missing = sorted(set(np.arange(len(periods))) - set(np.around(periods)))
# Calculate offset
offsets = periods - np.around(periods)
offsets *= period # Convert from periods into μs
offsets = offsets[1:] # Remove first value because it is always zero
# print(offsets)
# Get metadata
sample_file = Path(sample_file)
device = sample_file.stem.split('-')[-2]
pause_duration = int(sample_file.stem.split('-')[-1])
return sample_file, device, pause_duration, missing, offsets
@click.group()
def cli():
pass
@cli.command()
@click.argument('sample_files', nargs=-1)
@click.option('--graph/--no-graph', default=False)
def transmit_pause(sample_files, graph):
data = process_data(sample_files, find_transmit_pause_times)
for device_type, d in itertools.groupby(data, lambda x: x[0]):
_, pause_times, tx_std, pause_std = map(np.array, zip(*d))
print(device_type)
print(pause_times)
print(tx_std)
print(pause_std)
fig = plt.figure(figsize=(8,4))
ax1 = fig.add_subplot(211)
ax1.scatter(pause_times, tx_std, marker='x')
ax1.set_ylabel('TX Time Std (μs)')
ax2 = fig.add_subplot(212)
ax2.scatter(pause_times, pause_std, marker='x')
ax2.set_ylabel('Pause Time Std (μs)')
ax2.set_xlabel('Pause Time (μs)')
plt.tight_layout()
plt.savefig('timing-results-{}.pdf'.format(device_type))
@cli.command()
@click.argument('sample_files', nargs=-1)
@click.argument('period_time', type=click.INT)
@click.option('--graph/--no-graph', default=False)
def transmit_period(sample_files, period_time, graph):
data = process_data(sample_files,
functools.partial(find_transmit_period,
period=period_time))
all_missing = [len(d[3]) for d in data]
all_offsets = [d[4] for d in data]
std_dev = np.concatenate(all_offsets).std()
mean = np.concatenate(all_offsets).mean()
print(f"Total missing: {sum(all_missing)} ({all_missing})")
print(f"Std: {std_dev}")
fig = plt.figure(figsize=(8,4))
ax = fig.add_subplot(111)
ax.plot(np.concatenate(all_offsets), '.')
ax.axhline(y=mean + std_dev, color='r')
ax.axhline(y=mean - std_dev, color='r')
ax.set_ylabel('Offset from Transmission Period (μs)')
ax.set_xlabel('Transmission Number')
plt.tight_layout()
plt.savefig(f'offsets_transmission-{period_time}.pdf')
plt.close(fig)
#####################################################
fig = plt.figure(figsize=(8,4))
ax = fig.add_subplot(111)
ax.boxplot(all_offsets)
ax.set_ylabel('Offset from Transmission Period (μs)')
ax.set_xlabel('Experiment Number')
plt.tight_layout()
plt.savefig(f'offsets_experiments-{period_time}.pdf')
plt.close(fig)
#####################################################
fig = plt.figure(figsize=(8,4))
ax = fig.add_subplot(111)
n, bins, patches = ax.hist(np.concatenate(all_offsets),
bins=100,
normed=1,
histtype='step',
cumulative=True)
ax.axvline(x=mean + std_dev, color='r')
ax.axvline(x=mean - std_dev, color='r')
ax.set_ylabel('Probability')
ax.set_xlabel('Offset from Transmission Period (μs)')
plt.tight_layout()
plt.savefig(f'offsets_cdf-{period_time}.pdf')
plt.close(fig)
# for name, device_type, pause_time, missing, offsets in data:
# print(name)
# print(offsets)
def process_wl_samples(samples, name, total_time):
def process_data(data):
if '-' not in data:
return [np.nan, np.nan, np.nan]
return [float(d[:-3]) for d in data.split()]
data = (line.strip() for line in samples) # Take off new lines
data = (process_data(d) for d in data)
ys1, ys2, ys3 = zip(*data)
samples_collected = len(ys1)
xs = np.linspace(0, total_time, num=samples_collected)
fig = plt.figure(figsize=(8,4))
ax1 = fig.add_subplot(311)
ax2 = fig.add_subplot(312)
ax3 = fig.add_subplot(313)
ax1.plot(xs, ys1, '.-')
ax2.plot(xs, ys2)
ax3.plot(xs, ys3)
# ax1.set_xlim(1, 2)
ax1.set_ylabel('Noise (dBm)')
ax2.set_ylabel('Noise (dBm)')
ax3.set_ylabel('Noise (dBm)')
ax3.set_xlabel('Time (s)')
plt.tight_layout()
plt.savefig(f'wl_timing-{name}.png')
plt.savefig(f'wl_timing-{name}.pdf')
plt.close(fig)
@cli.command()
@click.argument('sample_file', nargs=1, type=click.File())
@click.option('--total_time', type=click.FLOAT, default=None)
def test_ap_wl(sample_file, total_time):
process_wl_samples(sample_file, Path(sample_file.name).stem, total_time)
@cli.command()
@click.argument('remote', nargs=1)
@click.argument('name', nargs=1)
def test_ap_wl_remote_timing(remote, name):
import paramiko
import re
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(remote, username='root')
# wl_command = "wl phy_rxiqest -r 1 -s 15"
wl_command = "date -Iseconds >> time.out; wl phy_rxiqest -r 1 -s 15"
command = f"time sh -c 'for i in `seq 1 1000`; do {wl_command} >> data.out; done'"
# Make sure old samples are deleted
print('Removing old data file...')
ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command('rm data.out; rm time.out')
ssh_stdout.read()
print('Collect samples...')
ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command(command)
time_results = ssh_stderr.read().decode().split('\n')[0]
re_result = re.search("(\\d+)m (\\d+.\\d+)s", time_results)
run_time = int(re_result.group(1)) * 60 + float(re_result.group(2))
# Get samples
ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command('cat data.out')
raw_samples = ssh_stdout.read()
samples = raw_samples.decode().split('\n')
print(f'Run time: {run_time} ({run_time / len(samples)})')
# Save samples for later
with open(f'{name}-data.log', 'wb') as f:
f.write(raw_samples)
# Get times
ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command('cat time.out')
raw_times = ssh_stdout.read()
times = raw_times.decode().strip().split('\n')
# Save times for later
with open(f'{name}-times.log', 'wb') as f:
f.write(raw_times)
# Delete samples
ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command('rm data.out; rm time.out')
ssh_stdout.read()
print('Processing samples and times...')
def process_data(data):
if '-' not in data:
return [np.nan, np.nan, np.nan]
return [float(d[:-3]) for d in data.split()]
times = [arrow.get(t) for t in times]
print(f"Date run time: {times[-1] - times[0]}")
data = (line.strip() for line in samples) # Take off new lines
data = (process_data(d) for d in data)
ys1, ys2, ys3 = zip(*data)
samples_collected = len(ys1)
xs = np.linspace(0, run_time, num=samples_collected)
fig = plt.figure(figsize=(8,4))
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
ax1.plot(xs, ys1, '.-')
ax2.plot([t.datetime for t in times])
# ax1.set_xlim(1, 2)
ax1.set_ylabel('Noise (dBm)')
ax2.set_ylabel('Time')
plt.tight_layout()
plt.savefig(f'wl_timing-{name}.png')
plt.savefig(f'wl_timing-{name}.pdf')
plt.close(fig)
@cli.command()
@click.argument('remote', nargs=1)
@click.option('--num_samples', default=1000)
@click.option('--num_runs', default=5)
def test_ap_wl_sample_time(remote, num_samples, num_runs):
import paramiko
import re
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(remote, username='root')
wl_command = "wl phy_rxiqest -r 1 -s 15"
command = f"time sh -c 'for i in `seq 1 {num_samples}`; do {wl_command} >> data.out; done'"
run_results = []
for i in range(num_runs):
print(f"\n############ RUN {i+1}")
# print('Removing old data file...')
ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command('rm data.out')
ssh_stdout.read()
# print('Collect samples...')
ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command(command)
time_results = ssh_stderr.read().decode().split('\n')[0]
re_result = re.search("(\\d+)m (\\d+.\\d+)s", time_results)
run_time = int(re_result.group(1)) * 60 + float(re_result.group(2))
run_results.append(run_time)
print(f'Run time: {run_time} s')
print(f'Time per sample: {run_time / num_samples} s ({run_time}/{num_samples})')
# print('Removing data file...')
ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command('rm data.out')
ssh_stdout.read()
# Give some time to let things settle
time.sleep(1)
run_results = np.array(run_results)
run_results = run_results / num_samples # Convert from total time to time per sample
print("\n\n################ Results (Time per sample)")
print(f"Mean: {run_results.mean() * 1000} ms")
print(f"Median: {np.median(run_results) * 1000} ms")
print(f"Std: {run_results.std() * 1000} ms")
@cli.command()
@click.argument('sample_file', nargs=1, type=click.File())
def test_ap_proc(sample_file):
data = [float(line.strip()) for line in sample_file]
fig = plt.figure(figsize=(8,4))
ax = fig.add_subplot(111)
ax.plot(data)
ax.set_ylabel('Noise (dBm)')
ax.set_xlabel('Time (??)')
plt.tight_layout()
plt.savefig(f'temp.pdf')
plt.close(fig)
if __name__ == '__main__':
cli()