forked from cooelf/DeepUtteranceAggregation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PreProcess.py
194 lines (176 loc) · 7.03 KB
/
PreProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from __future__ import print_function
import cPickle
from collections import defaultdict
import logging
import theano
import gensim
import numpy as np
from random import shuffle
from gensim.models.word2vec import Word2Vec
import codecs
logger = logging.getLogger('relevance_logger')
import argparse
parser = argparse.ArgumentParser(description="The param of the preprocess")
parser.add_argument('--train_dataset', type=str, \
default='', \
help='The location of the train dataset')
parser.add_argument('--valid_dataset', type=str, \
default='', \
help='The location of the valid dataset')
parser.add_argument('--test_dataset', type=str, \
default='', \
help='The location of the test dataset')
parser.add_argument('--pretrained_embedding', type=str, \
default='', \
help='The location of the pretrained embedding dataset')
parser.add_argument('--save_dataset', type=str, \
default='', \
help='The location of the save datasets')
args = parser.parse_args()
def build_multiturn_data(trainfile, validfile, testfile, max_len = 50, isshuffle=False):
revs = []
vocab = defaultdict(float)
total = 1
for file in [trainfile, validfile, testfile]:
rev, vocab, total = bulid_a_multiturn_data(file, vocab, total)
revs.append(rev)
print('Finished the building of %s' %str(file))
logger.info("processed dataset with %d question-answer pairs " %(len(revs)))
logger.info("vocab size: %d" %(len(vocab)))
if isshuffle == True:
shuffle(revs[0])
return revs, vocab, max_len
def bulid_a_multiturn_data(file, vocab, total, max_l=50):
voc = vocab
tot = total
revs = []
with codecs.open(file,'r','utf-8') as f:
for line in f:
line = line.replace("_","")
parts = line.strip().split("\t")
lable = parts[0]
message = ""
words = set()
for i in range(1,len(parts)-1,1):
message += "_t_"
message += parts[i]
words.update(set(parts[i].split()))
response = parts[-1]
data = {"y" : lable, "m":message,"r": response}
revs.append(data)
tot += 1
if tot % 10000 == 0:
print(tot)
# words = set(message.split())
words.update(set(response.split()))
for word in words:
voc[word] += 1
return revs, voc, total
def build_data(trainfile, max_len = 20,isshuffle=False):
revs = []
vocab = defaultdict(float)
total = 1
with codecs.open(trainfile,'r','utf-8') as f:
for line in f:
line = line.replace("_","")
parts = line.strip().split("\t")
topic = parts[0]
topic_r = parts[1]
lable = parts[2]
message = parts[-2]
response = parts[-1]
data = {"y" : lable, "m":message,"r": response,"t":topic,"t2":topic_r}
revs.append(data)
total += 1
words = set(message.split())
words.update(set(response.split()))
for word in words:
vocab[word] += 1
logger.info("processed dataset with %d question-answer pairs " %(len(revs)))
logger.info("vocab size: %d" %(len(vocab)))
if isshuffle == True:
shuffle(revs)
return revs, vocab, max_len
class WordVecs(object):
def __init__(self, fname, vocab, binary, gensim):
if gensim:
word_vecs = self.load_gensim(fname,vocab)
self.k = len(word_vecs.values()[0])
self.W, self.word_idx_map = self.get_W(word_vecs, k=self.k)
def get_W(self, word_vecs, k=200):
"""
Get word matrix. W[i] is the vector for word indexed by i
"""
vocab_size = len(word_vecs)
word_idx_map = dict()
W = np.zeros(shape=(vocab_size+1, k))
W[0] = np.zeros(k)
i = 1
for word in word_vecs:
W[i] = word_vecs[word]
word_idx_map[word] = i
i += 1
return W, word_idx_map
def load_gensim(self, fname, vocab):
fp = open(fname)
info = fp.readline().split()
model = {}
embed_dim = int(info[1])
for line in fp:
line = line.split()
model[line[0]] = np.array(map(float, line[1:]), dtype='float32')
fp.close()
# model = Word2Vec.load(fname)
weights = [[0.] *embed_dim]
word_vecs = {}
total_inside_new_embed = 0
miss= 0
for pair in vocab:
word = pair.encode('utf-8')
if word in model:
# print(word)
total_inside_new_embed += 1
word_vecs[pair] = np.array([w for w in model[word]])
#weights.append([w for w in model[word]])
else:
miss = miss + 1
word_vecs[pair] = np.array([0.] * embed_dim)
#weights.append([0.] * model.vector_size)
print('transfer', total_inside_new_embed, 'words from the embedding file, total', len(vocab), 'candidate')
print('miss word2vec', miss)
return word_vecs
def createtopicvec():
max_topicword = 50
model = Word2Vec.load_word2vec_format(r"\\msra-sandvm-001\v-wuyu\Models\W2V\Ubuntu\word2vec.model")
topicmatrix = np.zeros(shape=(100,max_topicword,100),dtype=theano.config.floatX)
file = open(r"\\msra-sandvm-001\v-wuyu\project\pythonproject\ACL2016\mergedic2.txt")
i = 0
miss = 0
for line in file:
tmp = line.strip().split(' ')
for j in range(min(len(tmp),max_topicword)):
if gensim.utils.to_unicode(tmp[j]) in model.vocab:
topicmatrix[i,j,:] = model[gensim.utils.to_unicode(tmp[j])]
else:
miss = miss+1
i= i+1
print("miss word2vec", miss)
return topicmatrix
def ParseSingleTurn():
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
revs, vocab, max_len = build_data(r"\\msra-sandvm-001\v-wuyu\Data\ubuntu_data\ubuntu_data\train.topic",isshuffle=True)
word2vec = WordVecs(r"\\msra-sandvm-001\v-wuyu\Models\W2V\Ubuntu\word2vec.model", vocab, True, True)
cPickle.dump([revs, word2vec, max_len,createtopicvec()], open("ubuntu_data.test",'wb'))
logger.info("dataset created!")
def ParseMultiTurn():
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', \
level=logging.INFO)
revs, vocab, max_len = build_multiturn_data(args.train_dataset, \
args.valid_dataset, \
args.test_dataset, \
isshuffle=True)
word2vec = WordVecs(args.pretrained_embedding, vocab, True, True)
cPickle.dump([revs, word2vec, max_len], open(args.save_dataset,'wb'))
logger.info("dataset created!")
if __name__=="__main__":
ParseMultiTurn()