forked from cooelf/DeepUtteranceAggregation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
560 lines (467 loc) · 23.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
from __future__ import print_function
import cPickle
import numpy as np
import theano
from gensim.models.word2vec import Word2Vec
import theano.tensor as T
from theano.tensor.nnet import conv
import scipy.sparse as sp
from collections import defaultdict, OrderedDict
import sys, re, random, logging, argparse
import datetime
def ortho_weight(ndim):
W = np.random.randn(ndim, ndim)
u, s, v = np.linalg.svd(W)
return u.astype('float32')
# weight initializer, normal by default
def norm_weight(nin, nout=None, scale=0.01, ortho=False):
if nout is None:
nout = nin
if nout == nin and ortho:
W = ortho_weight(nin)
else:
W = scale * np.random.randn(nin, nout)
return W.astype('float32')
def uniform_weight(size,scale=0.1):
return np.random.uniform(size=size,low=-scale, high=scale).astype(theano.config.floatX)
def glorot_uniform(size):
fan_in, fan_out = size
s = np.sqrt(6. / (fan_in + fan_out))
return np.random.uniform(size=size,low=-s, high=s).astype(theano.config.floatX)
def ReLU(x):
y = T.maximum(0.0, x)
return(y)
def kmaxpooling(input,input_shape,k):
sorted_values = T.argsort(input,axis=3)
topmax_indexes = sorted_values[:,:,:,-k:]
# sort indexes so that we keep the correct order within the sentence
topmax_indexes_sorted = T.sort(topmax_indexes)
#given that topmax only gives the index of the third dimension, we need to generate the other 3 dimensions
dim0 = T.arange(0,input_shape[0]).repeat(input_shape[1]*input_shape[2]*k)
dim1 = T.arange(0,input_shape[1]).repeat(k*input_shape[2]).reshape((1,-1)).repeat(input_shape[0],axis=0).flatten()
dim2 = T.arange(0,input_shape[2]).repeat(k).reshape((1,-1)).repeat(input_shape[0]*input_shape[1],axis=0).flatten()
dim3 = topmax_indexes_sorted.flatten()
return input[dim0,dim1,dim2,dim3].reshape((input_shape[0], input_shape[1], input_shape[2], k))
def as_floatX(variable):
if isinstance(variable, float):
return np.cast[theano.config.floatX](variable)
if isinstance(variable, np.ndarray):
return np.cast[theano.config.floatX](variable)
return theano.tensor.cast(variable, theano.config.floatX)
class GRU(object):
def __init__(self, n_in, n_hidden, n_out, activation=T.tanh,inner_activation=T.nnet.sigmoid,
output_type='real',batch_size=200):
self.activation = activation
self.inner_activation = inner_activation
self.output_type = output_type
self.batch_size = batch_size
self.n_hidden = n_hidden
# recurrent weights as a shared variable
self.U_z = theano.shared(ortho_weight(n_hidden),borrow=True)
self.W_z = theano.shared(glorot_uniform((n_in,n_hidden)),borrow=True)
self.b_z = theano.shared(value=np.zeros((n_hidden,),dtype=theano.config.floatX),borrow=True)
self.U_r = theano.shared(ortho_weight(n_hidden),borrow=True)
self.W_r = theano.shared(glorot_uniform((n_in,n_hidden)),borrow=True)
self.b_r = theano.shared(value=np.zeros((n_hidden,),dtype=theano.config.floatX),borrow=True)
self.U_h = theano.shared(ortho_weight(n_hidden),borrow=True)
self.W_h = theano.shared(glorot_uniform((n_in,n_hidden)),borrow=True)
self.b_h = theano.shared(value=np.zeros((n_hidden,),dtype=theano.config.floatX),borrow=True)
self.params = [self.W_z,self.W_h,self.W_r,
self.U_h,self.U_r,self.U_z,
self.b_h,self.b_r,self.b_z]
def __call__(self, input,input_lm=None, return_list = False, return_list_except_last = False, Init_input =None,check_gate = False):
# activation function
if Init_input == None:
init = theano.shared(value=np.zeros((self.batch_size,self.n_hidden),
dtype=theano.config.floatX),borrow=True)
else:
init = Init_input
if check_gate:
self.h_l, _ = theano.scan(self.step3,
sequences=[input.dimshuffle(1,0,2),T.addbroadcast(input_lm.dimshuffle(1,0,'x'), -1)],
outputs_info=[init, theano.shared(value=np.zeros((self.batch_size,self.n_hidden),
dtype=theano.config.floatX),borrow=True)])
return [self.h_l[0][:,-1,:], self.h_l[1]]
if input_lm == None:
self.h_l, _ = theano.scan(self.step2,
sequences=input.dimshuffle(1,0,2),
outputs_info=init)
else:
self.h_l, _ = theano.scan(self.step,
sequences=[input.dimshuffle(1,0,2),T.addbroadcast(input_lm.dimshuffle(1,0,'x'), -1)],
outputs_info=init)
self.h_l = self.h_l.dimshuffle(1,0,2)
if return_list == True:
return self.h_l
if return_list_except_last == True:
return self.h_l[:,-1,:], self.h_l[:,:-1,:]
return self.h_l[:,-1,:]
def step2(self,x_t, h_tm1):
x_z = T.dot(x_t, self.W_z) + self.b_z
x_r = T.dot(x_t, self.W_r) + self.b_r
x_h = T.dot(x_t, self.W_h) + self.b_h
z = self.inner_activation(x_z + T.dot(h_tm1, self.U_z))
r = self.inner_activation(x_r + T.dot(h_tm1, self.U_r))
hh = self.activation(x_h + T.dot(r * h_tm1, self.U_h))
h = z * h_tm1 + (1 - z) * hh
return h
def step3(self,x_t,mask, h_tm1, gate_tm1):
#h_tm1 = mask * h_tm1
x_z = T.dot(x_t, self.W_z) + self.b_z
x_r = T.dot(x_t, self.W_r) + self.b_r
x_h = T.dot(x_t, self.W_h) + self.b_h
z = self.inner_activation(x_z + T.dot(h_tm1, self.U_z))
r = self.inner_activation(x_r + T.dot(h_tm1, self.U_r))
hh = self.activation(x_h + T.dot(r * h_tm1, self.U_h))
h = z * h_tm1 + (1 - z) * hh
h = mask * h + (1-mask) * h_tm1
return [h,r]
def step(self,x_t,mask, h_tm1):
#h_tm1 = mask * h_tm1
x_z = T.dot(x_t, self.W_z) + self.b_z
x_r = T.dot(x_t, self.W_r) + self.b_r
x_h = T.dot(x_t, self.W_h) + self.b_h
z = self.inner_activation(x_z + T.dot(h_tm1, self.U_z))
r = self.inner_activation(x_r + T.dot(h_tm1, self.U_r))
hh = self.activation(x_h + T.dot(r * h_tm1, self.U_h))
h = z * h_tm1 + (1 - z) * hh
h = mask * h + (1-mask) * h_tm1
return h
class SGRU(object):
def __init__(self, n_in, n_hidden, n_out, activation=T.tanh,inner_activation=T.nnet.sigmoid,
output_type='real',batch_size=200):
self.activation = activation
self.inner_activation = inner_activation
self.output_type = output_type
self.batch_size = batch_size
self.n_hidden = n_hidden
# recurrent weights as a shared variable
self.U_z = theano.shared(ortho_weight(n_hidden),borrow=True)
self.W_z = theano.shared(glorot_uniform((n_in*2,n_hidden)),borrow=True)
self.b_z = theano.shared(value=np.zeros((n_hidden,),dtype=theano.config.floatX),borrow=True)
self.U_r = theano.shared(ortho_weight(n_hidden),borrow=True)
self.W_r = theano.shared(glorot_uniform((n_in*2,n_hidden)),borrow=True)
self.b_r = theano.shared(value=np.zeros((n_hidden,),dtype=theano.config.floatX),borrow=True)
self.U_h = theano.shared(ortho_weight(n_hidden),borrow=True)
self.W_h = theano.shared(glorot_uniform((n_in*2,n_hidden)),borrow=True)
self.b_h = theano.shared(value=np.zeros((n_hidden,),dtype=theano.config.floatX),borrow=True)
self.params = [self.W_z,self.W_h,self.W_r,
self.U_h,self.U_r,self.U_z,
self.b_h,self.b_r,self.b_z,]
def __call__(self, input,input_lm=None, return_list = False, return_list_except_last = False, Init_input =None,check_gate = False):
# activation function
if Init_input == None:
init = theano.shared(value=np.zeros((self.batch_size,self.n_hidden),
dtype=theano.config.floatX),borrow=True)
else:
init = Init_input
if check_gate:
self.h_l, _ = theano.scan(self.step3,
sequences=[input.dimshuffle(1,0,2),T.addbroadcast(input_lm.dimshuffle(1,0,'x'), -1)],
outputs_info=[init, theano.shared(value=np.zeros((self.batch_size,self.n_hidden),
dtype=theano.config.floatX),borrow=True)])
return [self.h_l[0][:,-1,:], self.h_l[1]]
if input_lm == None:
self.h_l, _ = theano.scan(self.step2,
sequences=input.dimshuffle(1,0,2),
outputs_info=init)
else:
self.h_l, _ = theano.scan(self.step,
sequences=[input.dimshuffle(1,0,2),T.addbroadcast(input_lm.dimshuffle(1,0,'x'), -1)],
outputs_info=init,)
self.h_l = self.h_l.dimshuffle(1,0,2)
if return_list == True:
return self.h_l
if return_list_except_last == True:
return self.h_l[:,-1,:], self.h_l[:,:-1,:]
return self.h_l[:,-1,:]
def step2(self,x_t, h_tm1):
x_z = T.dot(x_t, self.W_z) + self.b_z
x_r = T.dot(x_t, self.W_r) + self.b_r
x_h = T.dot(x_t, self.W_h) + self.b_h
z = self.inner_activation(x_z + T.dot(h_tm1, self.U_z))
r = self.inner_activation(x_r + T.dot(h_tm1, self.U_r))
hh = self.activation(x_h + T.dot(r * h_tm1, self.U_h))
h = z * h_tm1 + (1 - z) * hh
return h
def step3(self,x_t,mask, h_tm1, gate_tm1):
#h_tm1 = mask * h_tm1
x_z = T.dot(x_t, self.W_z) + self.b_z
x_r = T.dot(x_t, self.W_r) + self.b_r
x_h = T.dot(x_t, self.W_h) + self.b_h
z = self.inner_activation(x_z + T.dot(h_tm1, self.U_z))
r = self.inner_activation(x_r + T.dot(h_tm1, self.U_r))
hh = self.activation(x_h + T.dot(r * h_tm1, self.U_h))
h = z * h_tm1 + (1 - z) * hh
h = mask * h + (1-mask) * h_tm1
return [h,r]
def step(self,x_t,mask, h_tm1):
x_z = T.dot(x_t, self.W_z) + self.b_z
x_r = T.dot(x_t, self.W_r) + self.b_r
x_h = T.dot(x_t, self.W_h) + self.b_h
z = self.inner_activation(x_z + T.dot(h_tm1, self.U_z))
r = self.inner_activation(x_r + T.dot(h_tm1, self.U_r))
hh = self.activation(x_h + T.dot(r * h_tm1, self.U_h))
h = z * h_tm1 + (1 - z) * hh
h = mask * h + (1-mask) * h_tm1
return h
class WordVecs(object):
def __init__(self, fname, vocab, binary, gensim):
if gensim:
word_vecs = self.load_gensim(fname,vocab)
self.k = len(word_vecs.values()[0])
self.W, self.word_idx_map = self.get_W(word_vecs, k=self.k)
def get_W(self, word_vecs, k=200):
"""
Get word matrix. W[i] is the vector for word indexed by i
"""
vocab_size = len(word_vecs)
word_idx_map = dict()
W = np.zeros(shape=(vocab_size+1, k))
W[0] = np.zeros(k)
i = 1
for word in word_vecs:
W[i] = word_vecs[word]
word_idx_map[word] = i
i += 1
return W, word_idx_map
def load_gensim(self, fname, vocab):
fp = open(fname)
info = fp.readline().split()
model = {}
embed_dim = int(info[1])
for line in fp:
line = line.split()
model[line[0]] = np.array(map(float, line[1:]), dtype='float32')
fp.close()
# model = Word2Vec.load(fname)
weights = [[0.] *embed_dim]
word_vecs = {}
total_inside_new_embed = 0
miss= 0
for pair in vocab:
word = pair.encode('utf-8')
if word in model:
# print(word)
total_inside_new_embed += 1
word_vecs[pair] = np.array([w for w in model[word]])
#weights.append([w for w in model[word]])
else:
miss = miss + 1
word_vecs[pair] = np.array([0.] * embed_dim)
#weights.append([0.] * model.vector_size)
print('transfer', total_inside_new_embed, 'words from the embedding file, total', len(vocab), 'candidate')
print('miss word2vec', miss)
return word_vecs
class LogisticRegression(object):
def __init__(self,input,n_in,n_out,rng):
self.W = theano.shared( np.asarray(
rng.uniform(
low=-np.sqrt(6. / (n_in + n_out)),
high=np.sqrt(6. / (n_in + n_out)),
size=(n_in, n_out)
),
dtype=theano.config.floatX
))
self.b = theano.shared(value=np.zeros(n_out,dtype=theano.config.floatX),borrow=True,name='b')
self.predict_prob = T.nnet.softmax(T.dot(input,self.W)+self.b)
self.predict_y = T.argmax(self.predict_prob,axis=1)
self.params=[self.W,self.b]
def negative_log_likelihood(self, y):
#return - T.mean(y * T.log(self.predict_prob) + (1 - y) * T.log(1 - self.predict_prob))
return -T.mean(T.log(self.predict_prob)[T.arange(y.shape[0]), y])
def errors(self,y):
if y.dtype.startswith('int'):
return T.mean(T.neq(self.predict_y,y))
else:
raise NotImplementedError
class Adam(object):
def Adam(self,cost, params, lr=0.0002, b1=0.1, b2=0.001, e=1e-8):
updates = []
grads = T.grad(cost, params)
i = theano.shared(as_floatX(0.))
i_t = i + 1.
fix1 = 1. - (1. - b1)**i_t
fix2 = 1. - (1. - b2)**i_t
lr_t = lr * (T.sqrt(fix2) / fix1)
for p, g in zip(params, grads):
m = theano.shared(p.get_value() * 0.)
v = theano.shared(p.get_value() * 0.)
m_t = (b1 * g) + ((1. - b1) * m)
v_t = (b2 * T.sqr(g)) + ((1. - b2) * v)
g_t = m_t / (T.sqrt(v_t) + e)
p_t = p - (lr_t * g_t)
updates.append((m, m_t))
updates.append((v, v_t))
updates.append((p, p_t))
updates.append((i, i_t))
return updates
class ConvSim(object):
def __init__(self, rng, n_in, n_out, W=None, b=None, session_size=50, \
activation=T.tanh,hidden_size=100, batch_size=200):
self.W = theano.shared(value=ortho_weight(hidden_size), borrow=True)
self.activation = activation
self.conv_layer = LeNetConvPoolLayer2(rng,filter_shape=(8,2,3,3),
image_shape=(batch_size,2,session_size,\
session_size)
,poolsize=(3,3),non_linear='relu')
self.hidden_layer = HiddenLayer2(rng,2048,n_out)
self.params = [self.W,] + self.conv_layer.params + self.hidden_layer.params
def Get_M2(self,input_l,input_r):
return T.batched_dot(T.dot(input_l,self.W),input_r.dimshuffle(0,2,1))
def __call__(self, origin_l,origin_r,input_l,input_r):
channel_1 = T.batched_dot(origin_l,origin_r.dimshuffle(0,2,1))
channel_2 = T.batched_dot(T.dot(input_l,self.W),input_r.dimshuffle(0,2,1))
input = T.stack([channel_1,channel_2],axis=1)
mlp_in = T.flatten(self.conv_layer(input),2)
return self.hidden_layer(mlp_in)
class HiddenLayer2(object):
def __init__(self, rng, n_in, n_out, W=None, b=None,
activation=T.tanh):
"""
Typical hidden layer of a MLP: units are fully-connected and have
sigmoidal activation function. Weight matrix W is of shape (n_in,n_out)
and the bias vector b is of shape (n_out,).
NOTE : The nonlinearity used here is tanh
Hidden unit activation is given by: tanh(dot(input,W) + b)
:type rng: np.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dmatrix
:param input: a symbolic tensor of shape (n_examples, n_in)
:type n_in: int
:param n_in: dimensionality of input
:type n_out: int
:param n_out: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden
layer
"""
# end-snippet-1
# `W` is initialized with `W_values` which is uniformely sampled
# from sqrt(-6./(n_in+n_hidden)) and sqrt(6./(n_in+n_hidden))
# for tanh activation function
# the output of uniform if converted using asarray to dtype
# theano.config.floatX so that the code is runable on GPU
# Note : optimal initialization of weights is dependent on the
# activation function used (among other things).
# For example, results presented in [Xavier10] suggest that you
# should use 4 times larger initial weights for sigmoid
# compared to tanh
# We have no info for other function, so we use the same as
# tanh.
if W is None:
W_values = np.asarray(
rng.uniform(
low=-np.sqrt(6. / (n_in + n_out)),
high=np.sqrt(6. / (n_in + n_out)),
size=(n_in, n_out)
),
dtype=theano.config.floatX
)
if activation == theano.tensor.nnet.sigmoid:
W_values *= 4
W = theano.shared(value=W_values, name='W', borrow=True)
if b is None:
b_values = np.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b', borrow=True)
self.W = W
self.b = b
self.activation = activation
self.params = [self.W, self.b]
def __call__(self, input):
lin_output = T.dot(input, self.W) + self.b
return self.activation(lin_output)
class LeNetConvPoolLayer2(object):
"""
Pool Layer of a convolutional network
"""
def __init__(self, rng, filter_shape, image_shape, poolsize=(2, 2), non_linear="tanh"):
"""
Allocate a LeNetConvPoolLayer with shared variable internal parameters.
:type rng: np.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dtensor4
:param input: symbolic image tensor, of shape image_shape
:type filter_shape: tuple or list of length 4
:param filter_shape: (number of filters, num input feature maps,
filter height,filter width)
:type image_shape: tuple or list of length 4
:param image_shape: (batch size, num input feature maps,
image height, image width)
:type poolsize: tuple or list of length 2
:param poolsize: the downsampling (pooling) factor (#rows,#cols)
"""
print('image shape', image_shape)
print('filter shape', filter_shape)
assert image_shape[1] == filter_shape[1]
self.filter_shape = filter_shape
self.image_shape = image_shape
self.poolsize = poolsize
self.non_linear = non_linear
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = np.prod(filter_shape[1:])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) /np.prod(poolsize))
# initialize weights with random weights
if self.non_linear=="none" or self.non_linear=="relu":
self.W = theano.shared(np.asarray(rng.uniform(low=-0.01,high=0.01,size=filter_shape),
dtype=theano.config.floatX),borrow=True,name="W_conv")
else:
W_bound = np.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(np.asarray(rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX),borrow=True,name="W_conv")
b_values =np.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True, name="b_conv")
self.params = [self.W, self.b]
# convolve input feature maps with filters
def __call__(self, input):
conv_out = conv.conv2d(input=input, filters=self.W,filter_shape=self.filter_shape, image_shape=self.image_shape)
if self.non_linear=="tanh":
conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.output = theano.tensor.signal.pool.pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True,mode="max")
elif self.non_linear=="relu":
conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.output =theano.tensor.signal.pool.pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True,mode="max")
else:
pooled_out = theano.tensor.signal.pool.pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True,mode="max")
self.output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
return self.output
def predict(self, new_data, batch_size):
"""
predict for new data
"""
img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
if self.non_linear=="tanh":
conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = theano.tensor.signal.pool.pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
if self.non_linear=="relu":
conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = theano.tensor.signal.pool.pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
else:
pooled_out = theano.tensor.signal.pool.pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
return output
class self_attention():
def __init__(self, n_in):
self.W_p = theano.shared(ortho_weight(n_in), borrow=True)
self.W_phat = theano.shared(ortho_weight(n_in), borrow=True)
self.U_s = theano.shared(glorot_uniform((n_in,1)), borrow=True)
self.params = [self.W_p,self.U_s,self.W_phat]
def __call__(self, input, input_lm):
self.s_a, _ = theano.scan(self.self_attention, \
sequences=input.dimshuffle(1,0,2), \
outputs_info=None, \
non_sequences=[input.dimshuffle(1,0,2), \
input_lm.dimshuffle(1,0)])
self.s_a = self.s_a.dimshuffle(1,0,2)
return self.s_a
def self_attention(self, x_t, x_all, x_mask_all):
final = T.dot(T.tanh(T.dot(x_all,self.W_p) + T.dot(x_t,self.W_phat)),self.U_s)
weight = (T.exp(T.max(final,2)) * x_mask_all).dimshuffle(1,0)
weight2 = weight / T.sum(weight,1)[:,None]
final2 = T.sum(x_all.dimshuffle(1,0,2)*weight[:,:,None],1)
return final2