forked from cooelf/DeepUtteranceAggregation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_word2vec.py
37 lines (29 loc) · 1.1 KB
/
train_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import logging
import os
import sys
import multiprocessing
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
if __name__ == '__main__':
program = os.path.basename(sys.argv[0])
logger = logging.getLogger(program)
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
logging.root.setLevel(level=logging.INFO)
logger.info("running %s" % ' '.join(sys.argv))
# check and process input arguments
if len(sys.argv) < 3:
print("Useing: python train_word2vec_model.py input_text "
"output_gensim_model output_word_vector")
sys.exit(1)
inp, outp = sys.argv[1:3]
sentences = []
for line in open(inp):
texts = line.decode("utf-8").replace("\n","").split("\t")[1:]
for uter in texts:
sentences.append(uter.split())
model = Word2Vec(sentences, size=200, window=5, min_count=0,sg=1,
workers=multiprocessing.cpu_count())
model.wv.save_word2vec_format(outp, binary=False)