diff --git a/docs/examples/use_cases/pytorch/efficientnet/image_classification/dali.py b/docs/examples/use_cases/pytorch/efficientnet/image_classification/dali.py index d97a383005..9faf8de083 100644 --- a/docs/examples/use_cases/pytorch/efficientnet/image_classification/dali.py +++ b/docs/examples/use_cases/pytorch/efficientnet/image_classification/dali.py @@ -20,7 +20,7 @@ from nvidia.dali.auto_aug import auto_augment, trivial_augment -def resnet_processing_training( +def efficientnet_processing_training( jpegs_input, interpolation, image_size, @@ -100,7 +100,7 @@ def training_pipe( random_shuffle=True, pad_last_batch=True, ) - outputs = resnet_processing_training( + outputs = efficientnet_processing_training( jpegs, interpolation, image_size, @@ -123,7 +123,7 @@ def training_pipe_external_source( ): filepaths = fn.external_source(name="images", no_copy=True) jpegs = fn.io.file.read(filepaths) - outputs = resnet_processing_training( + outputs = efficientnet_processing_training( jpegs, interpolation, image_size, @@ -134,7 +134,7 @@ def training_pipe_external_source( return outputs -def resnet_processing_validation( +def efficientnet_processing_validation( jpegs, interpolation, image_size, image_crop, output_layout ): """ @@ -178,7 +178,7 @@ def validation_pipe( random_shuffle=False, pad_last_batch=True, ) - outputs = resnet_processing_validation( + outputs = efficientnet_processing_validation( jpegs, interpolation, image_size, image_crop, output_layout ) return outputs, label @@ -190,7 +190,7 @@ def validation_pipe_external_source( ): filepaths = fn.external_source(name="images", no_copy=True) jpegs = fn.io.file.read(filepaths) - outputs = resnet_processing_validation( + outputs = efficientnet_processing_validation( jpegs, interpolation, image_size, image_crop, output_layout ) return outputs diff --git a/docs/examples/use_cases/pytorch/efficientnet/image_classification/dataloaders.py b/docs/examples/use_cases/pytorch/efficientnet/image_classification/dataloaders.py index e3890a5d95..8dbf4c5029 100644 --- a/docs/examples/use_cases/pytorch/efficientnet/image_classification/dataloaders.py +++ b/docs/examples/use_cases/pytorch/efficientnet/image_classification/dataloaders.py @@ -88,7 +88,7 @@ def load_jpeg_from_file(path, cuda=True): class DALIWrapper(object): - + @staticmethod def gen_wrapper(loader, num_classes, one_hot, memory_format): for data in loader: if memory_format == torch.channels_last: