|
| 1 | +# NVIDIA FLARE Examples |
| 2 | + |
| 3 | +[NVIDIA FLARE](https://nvidia.github.io/NVFlare) provides several examples to help you get started using federated learning for your own applications. |
| 4 | + |
| 5 | +The provided examples cover different aspects of [NVIDIA FLARE](https://nvidia.github.io/NVFlare), such as using the provided [Controllers](https://nvidia.github.io/NVFlare/programming_guide/controllers.html) for "scatter and gather" or "cyclic weight transfer" workflows and example [Executors](https://nvidia.github.io/NVFlare/apidocs/nvflare.apis.html?#module-nvflare.apis.executor) to implement your own training and validation pipelines. Some examples use the provided "task data" and "task result" [Filters](https://nvidia.github.io/NVFlare/apidocs/nvflare.apis.html?#module-nvflare.apis.filter) for homomorphic encryption and decryption or differential privacy. Furthermore, we show how to use different components for FL algorithms such as [FedAvg](https://arxiv.org/abs/1602.05629), [FedProx](https://arxiv.org/abs/1812.06127), and [FedOpt](https://arxiv.org/abs/2003.00295). We also provide domain-specific examples for deep learning and medical image analysis. |
| 6 | + |
| 7 | +> **_NOTE:_** To run examples, please follow the instructions for [Installation](https://nvidia.github.io/NVFlare/installation.html) and any additional steps specified in the example readmes. |
| 8 | +
|
| 9 | +## 1. Hello World Examples |
| 10 | +### 1.1 Workflows |
| 11 | +* [Hello Scatter and Gather](./hello-numpy-sag/README.md) |
| 12 | + * Example using "[ScatterAndGather](https://nvidia.github.io/NVFlare/apidocs/nvflare.app_common.workflows.html?#module-nvflare.app_common.workflows.scatter_and_gather)" controller workflow. |
| 13 | +* [Hello Cross-Site Validation](./hello-numpy-cross-val/README.md) |
| 14 | + * Example using [CrossSiteModelEval](https://nvidia.github.io/NVFlare/apidocs/nvflare.app_common.workflows.html#nvflare.app_common.workflows.cross_site_model_eval.CrossSiteModelEval) controller workflow. |
| 15 | +* [Hello Cyclic Weight Transfer](./hello-cyclic/README.md) |
| 16 | + * Example using [CyclicController](https://nvidia.github.io/NVFlare/apidocs/nvflare.app_common.workflows.html?#module-nvflare.app_common.workflows.cyclic_ctl) controller workflow to implement [Cyclic Weight Transfer](https://pubmed.ncbi.nlm.nih.gov/29617797/). |
| 17 | +### 1.2 Deep Learning |
| 18 | +* [Hello PyTorch](./hello-pt/README.md) |
| 19 | + * Example using [NVIDIA FLARE](https://nvidia.github.io/NVFlare) an image classifier using [FedAvg]([FedAvg](https://arxiv.org/abs/1602.05629)) and [PyTorch](https://pytorch.org/) as the deep learning training framework. |
| 20 | +* [Hello TensorFlow](./hello-tf2/README.md) |
| 21 | + * Example of using [NVIDIA FLARE](https://nvidia.github.io/NVFlare) an image classifier using [FedAvg]([FedAvg](https://arxiv.org/abs/1602.05629)) and [TensorFlow](https://tensorflow.org/) as the deep learning training framework. |
| 22 | + |
| 23 | +## 2. FL algorithms |
| 24 | +* [Federated Learning with CIFAR-10](./cifar10/README.md) |
| 25 | + * Includes examples of using [FedAvg](https://arxiv.org/abs/1602.05629), [FedProx](https://arxiv.org/abs/1812.06127), [FedOpt](https://arxiv.org/abs/2003.00295), and [homomorphic encryption](https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption/). |
| 26 | + |
| 27 | +## 3. Medical Image Analysis |
| 28 | +* [Hello MONAI](./hello-monai/README.md) |
| 29 | + * Example using [NVIDIA FLARE](https://nvidia.github.io/NVFlare) to train a medical image analysis model using [FedAvg]([FedAvg](https://arxiv.org/abs/1602.05629)) and [MONAI](https://monai.io/) |
| 30 | +* [Federated Learning with Differential Privacy for BraTS18 segmentation](./brats18/README.md) |
| 31 | + * Illustrates the use of differential privacy for training brain tumor segmentation models using federated learning. |
| 32 | +* [Federated Learning for Prostate Segmentation from Multi-source Data](./prostate/README.md) |
| 33 | + * Example of training a multi-institutional prostate segmentation model using [FedAvg](https://arxiv.org/abs/1602.05629) and [FedProx](https://arxiv.org/abs/1812.06127). |
0 commit comments