-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy pathmodel_manager.py
237 lines (193 loc) · 7.06 KB
/
model_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import json
import copy
from logging import info, warning
import torch
from modules import paths_internal
from datastructures import ModelConfig, ModelConfigEncoder
ONNX_MODEL_DIR = os.path.join(paths_internal.models_path, "Unet-onnx")
if not os.path.exists(ONNX_MODEL_DIR):
os.makedirs(ONNX_MODEL_DIR)
TRT_MODEL_DIR = os.path.join(paths_internal.models_path, "Unet-trt")
if not os.path.exists(TRT_MODEL_DIR):
os.makedirs(TRT_MODEL_DIR)
LORA_MODEL_DIR = os.path.join(paths_internal.models_path, "Lora")
NVIDIA_CACHE_URL = ""
MODEL_FILE = os.path.join(TRT_MODEL_DIR, "model.json")
def get_cc():
cc_major = torch.cuda.get_device_properties(0).major
cc_minor = torch.cuda.get_device_properties(0).minor
return cc_major, cc_minor
cc_major, cc_minor = get_cc()
class ModelManager:
def __init__(self, model_file=MODEL_FILE) -> None:
self.all_models = {}
self.model_file = model_file
self.cc = "cc{}{}".format(cc_major, cc_minor)
if not os.path.exists(model_file):
warning("Model file does not exist. Creating new one.")
else:
self.all_models = self.read_json()
self.update()
@staticmethod
def get_onnx_path(model_name):
onnx_filename = f"{model_name}.onnx"
onnx_path = os.path.join(ONNX_MODEL_DIR, onnx_filename)
return onnx_filename, onnx_path
def get_trt_path(self, model_name, model_hash, profile, static_shape):
profile_hash = []
n_profiles = 1 if static_shape else 3
for k, v in profile.items():
dim_hash = []
for i in range(n_profiles):
dim_hash.append("x".join([str(x) for x in v[i]]))
profile_hash.append(k + "=" + "+".join(dim_hash))
profile_hash = "-".join(profile_hash)
trt_filename = (
"_".join([model_name, model_hash, self.cc, profile_hash]) + ".trt"
)
trt_path = os.path.join(TRT_MODEL_DIR, trt_filename)
return trt_filename, trt_path
def get_weights_map_path(self, model_name: str):
return os.path.join(TRT_MODEL_DIR, f"{model_name}_weights_map.json")
def update(self):
trt_engines = [
trt_file
for trt_file in os.listdir(TRT_MODEL_DIR)
if trt_file.endswith(".trt")
]
tmp_all_models = copy.deepcopy(self.all_models)
for cc, base_models in tmp_all_models.items():
for base_model, models in base_models.items():
tmp_config_list = {}
for model_config in models:
if model_config["filepath"] not in trt_engines:
info(
"Model config outdated. {} was not found".format(
model_config["filepath"]
)
)
continue
tmp_config_list[model_config["filepath"]] = model_config
tmp_config_list = list(tmp_config_list.values())
if len(tmp_config_list) == 0:
self.all_models[cc].pop(base_model)
else:
self.all_models[cc][base_model] = models
self.write_json()
def __del__(self):
self.update()
def add_entry(
self,
model_name,
model_hash,
profile,
static_shapes,
fp32,
inpaint,
refit,
vram,
unet_hidden_dim,
lora,
):
config = ModelConfig(
profile, static_shapes, fp32, inpaint, refit, lora, vram, unet_hidden_dim
)
trt_name, trt_path = self.get_trt_path(
model_name, model_hash, profile, static_shapes
)
base_model_name = f"{model_name}" # _{model_hash}
if self.cc not in self.all_models:
self.all_models[self.cc] = {}
if base_model_name not in self.all_models[self.cc]:
self.all_models[self.cc][base_model_name] = []
self.all_models[self.cc][base_model_name].append(
{
"filepath": trt_name,
"config": config,
}
)
self.write_json()
def add_lora_entry(
self, base_model, lora_name, trt_lora_path, fp32, inpaint, vram, unet_hidden_dim
):
config = ModelConfig(
[[], [], []], False, fp32, inpaint, True, True, vram, unet_hidden_dim
)
self.all_models[self.cc][lora_name] = [
{
"filepath": trt_lora_path,
"base_model": base_model,
"config": config,
}
]
self.write_json()
def write_json(self):
with open(self.model_file, "w") as f:
json.dump(self.all_models, f, indent=4, cls=ModelConfigEncoder)
def read_json(self, encode_config=True):
with open(self.model_file, "r") as f:
out = json.load(f)
if not encode_config:
return out
for cc, models in out.items():
for base_model, configs in models.items():
for i in range(len(configs)):
out[cc][base_model][i]["config"] = ModelConfig(
**configs[i]["config"]
)
return out
def available_models(self):
available = self.all_models.get(self.cc, {})
return available
def available_loras(self):
available = {}
for p in os.listdir(TRT_MODEL_DIR):
if not p.endswith(".lora"):
continue
available[os.path.splitext(p)[0]] = os.path.join(TRT_MODEL_DIR, p)
return available
def get_timing_cache(self):
current_dir = os.path.dirname(os.path.abspath(__file__))
cache = os.path.join(
current_dir,
"timing_caches",
"timing_cache_{}_{}.cache".format(
"win" if os.name == "nt" else "linux", self.cc
),
)
return cache
def get_valid_models_from_dict(self, base_model: str, feed_dict: dict):
valid_models = []
distances = []
idx = []
models = self.available_models()
for i, model in enumerate(models[base_model]):
valid, distance = model["config"].is_compatible_from_dict(feed_dict)
if valid:
valid_models.append(model)
distances.append(distance)
idx.append(i)
return valid_models, distances, idx
def get_valid_models(
self,
base_model: str,
width: int,
height: int,
batch_size: int,
max_embedding: int,
):
valid_models = []
distances = []
idx = []
models = self.available_models()
for i, model in enumerate(models[base_model]):
valid, distance = model["config"].is_compatible(
width, height, batch_size, max_embedding
)
if valid:
valid_models.append(model)
distances.append(distance)
idx.append(i)
return valid_models, distances, idx
modelmanager = ModelManager()