-
Notifications
You must be signed in to change notification settings - Fork 95
Description
Version
1.0.0
Version
13.1
Which installation method(s) does this occur on?
Pip
Describe the bug.
Failed to launch cuTile kernel: PTX JIT compiler library not found in CUDA 13.1 container with driver 580.82.09 and visible libnvidia-ptxjitcompiler.so.*
Environment
- Host GPU: NVIDIA RTX PRO 6000 Blackwell
- Host OS: Pop!_OS / Ubuntu 22.04–based
- NVIDIA driver (host): 580.82.09 (
nvidia-smi)[1][2] - CUDA toolkit (in container): 13.1.0 (
nvcc --versionreportsCuda compilation tools, release 13.1, V13.1.80)[1] - Container base image:
[nvidia](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html)/cuda:13.1.0-devel-ubuntu22.04
- NVIDIA Container Toolkit: in use (container launched with
--gpus=all --runtime=nvidia)[3] - Python: 3.10 (system Python in container)
- cuTile Python: installed via
pip install cuda-tile(current latest from PyPI)[4] - TileIR / PTX compiler tools: installed via
pip install nvidia-cuda-tileiras[5] - CuPy:
cupy-cuda13xwheel[6] - PyTorch: standard CPU/CUDA wheel (no
+cu131build exists yet; not used in repro)[7]
Dockerfile (core relevant parts)
FROM nvidia/cuda:13.1.0-devel-ubuntu22.04
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential git wget curl ca-certificates \
python3 python3-dev python3-venv python3-pip vim \
&& rm -rf /var/lib/apt/lists/*
ENV CUDA_HOME=/usr/local/cuda
ENV PATH=${CUDA_HOME}/bin:${PATH}
ENV LD_LIBRARY_PATH=${CUDA_HOME}/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:${LD_LIBRARY_PATH}
RUN python3 -m pip install --upgrade pip
# TileIR compiler package
RUN pip install nvidia-cuda-tileiras
# cuTile + CuPy
RUN pip install cuda-tile cupy-cuda13x
WORKDIR /workspace
COPY . /workspaceContainer is run as:
docker run --rm -it \
--gpus=all --ipc=host --ulimit memlock=-1 --runtime=nvidia \
-v /home/jarvis/Documents/Code/cutile:/workspace \
cutile_test \
bashI also tried adding:
-e LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:/usr/local/cuda/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 \
-e LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libnvidia-ptxjitcompiler.so.580.82.09with no behavioral change.
Driver / toolkit checks inside container
nvidia-smiOutput (abridged):
- Driver Version: 580.82.09
- CUDA Version: 13.1
- GPU: NVIDIA RTX PRO 6000 Blackwell
nvcc --versionOutput:
Cuda compilation tools, release 13.1, V13.1.80
PTX JIT library presence
Inside container:
ls -l /usr/lib/x86_64-linux-gnu/libnvidia-ptxjitcompiler.so*Shows:
/usr/lib/x86_64-linux-gnu/libnvidia-ptxjitcompiler.so.580.82.09/usr/lib/x86_64-linux-gnu/libnvidia-ptxjitcompiler.so.590.44.01- a
.so.1symlink pointing at one of these (tried both directions).
I also tried explicitly:
cd /usr/lib/x86_64-linux-gnu
rm -f libnvidia-ptxjitcompiler.so libnvidia-ptxjitcompiler.so.1
ln -s libnvidia-ptxjitcompiler.so.580.82.09 libnvidia-ptxjitcompiler.so.1
ln -s libnvidia-ptxjitcompiler.so.1 libnvidia-ptxjitcompiler.so
ldconfigThen re-running the repro.
LD_LIBRARY_PATH inside container:
echo $LD_LIBRARY_PATH
# /usr/local/cuda/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64
# (also tried prefixing /usr/lib/x86_64-linux-gnu)cuTile installation status
Inside container:
python3 - << 'EOF'
import cuda.tile as ct
import inspect, os, pkgutil
print("cuda.tile module:", ct)
spec = pkgutil.get_loader("cuda.tile")
print("loader:", spec)
print("file:", inspect.getfile(ct))
print("contents of package dir:")
print(os.listdir(os.path.dirname(inspect.getfile(ct))))
EOFOutput (abridged):
cuda.tile module: <module 'cuda.tile' from '/usr/local/lib/python3.10/dist-packages/cuda/tile/__init__.py'>- Package dir contains
_cext.cpython-310-x86_64-linux-gnu.soand the other expected cuTile Python files, so the compiled extension is present and imports successfully.[4]
Repro 1: official quickstart
From NVIDIA/cutile-python repo cloned into /workspace/cutile-python:[8][9]
cd /workspace/cutile-python/samples/quickstart
python3 VectorAdd_quickstart.pyResult:
Traceback (most recent call last):
File "VectorAdd_quickstart.py", line 60, in <module>
test()
File "VectorAdd_quickstart.py", line 42, in test
ct.launch(cp.cuda.get_current_stream(),
RuntimeError: Failed to launch cuTile kernel: PTX JIT compiler library not found
This matches the cuTile docs’ recommended launch pattern (ct.launch(cp.cuda.get_current_stream(), grid, tile_kernel, ...)).[9][10]
Repro 2: minimal custom kernel
Minimal script:
import cuda.tile as ct
import cupy as cp
TILE_SIZE = 16
@ct.kernel
def vadd(a, b, c):
pid = ct.bid(0)
a_tile = ct.load(a, index=(pid,), shape=(TILE_SIZE,))
b_tile = ct.load(b, index=(pid,), shape=(TILE_SIZE,))
ct.store(c, index=(pid,), tile=a_tile + b_tile)
def main():
n = 1024
a = cp.arange(n, dtype=cp.float32)
b = cp.arange(n, dtype=cp.float32)
c = cp.zeros_like(a)
grid = (ct.cdiv(n, TILE_SIZE), 1, 1)
ct.launch(cp.cuda.get_current_stream(), grid, vadd, (a, b, c))
cp.cuda.get_current_stream().synchronize()
print("OK", c[:5])
if __name__ == "__main__":
main()Running python3 test.py in the same container yields the same error:
RuntimeError: Failed to launch cuTile kernel: PTX JIT compiler library not found
What has already been tried
- Verified driver and toolkit compatibility (CUDA 13.1 + R580 driver, which meets published requirements).[2][11][1]
- Confirmed PTX JIT libraries exist and are accessible in the container (
libnvidia-ptxjitcompiler.so.*present, with symlinks andldconfig).[12] - Ensured
/usr/lib/x86_64-linux-gnuis onLD_LIBRARY_PATHinside the container. - Tried
LD_PRELOADwithlibnvidia-ptxjitcompiler.so.580.82.09when launching the container. - Verified that cuTile’s Python extension
_cext.cpython-310-x86_64-linux-gnu.sois present and imports without error. - Reproduced the same error using:
- The official
VectorAdd_quickstart.pysample.[9] - A minimal custom kernel using the documented
ct.launchAPI.[10][13]
- The official
Despite all of the above, any attempt to launch a cuTile kernel fails with:
RuntimeError: Failed to launch cuTile kernel: PTX JIT compiler library not found
Expected vs actual behavior
-
Expected:
With a CUDA‑13.1‑compatible driver, visible PTX JIT libraries, and the documented cuTile Python installation, the quickstart sample and minimal kernels should compile and run successfully in a container environment. -
Actual:
cuTile kernel launches consistently fail at runtime withPTX JIT compiler library not found, even though:- The PTX JIT shared objects are present and on the library path.
- The GPU and CUDA context are otherwise working.
- cuTile’s own compiled extension is installed and importable.
What would be helpful
- Confirmation whether cuTile Python currently supports CUDA 13.1 + driver 580.82.09 in containerized environments, or whether a newer driver (e.g., 590.x) is required for PTX Compiler API usage.[14][1]
- Guidance on any additional environment variables or configuration settings that cuTile expects to locate the PTX JIT library (beyond standard CUDA/driver setup).[15][16]
- If this is a known issue, a pointer to a
cuda-tilebuild / wheel or workaround that is known to work with 13.1 in containers.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Minimum reproducible example
import cuda.tile as ct
import cupy as cp
TILE_SIZE = 16
@ct.kernel
def vadd(a, b, c):
pid = ct.bid(0)
a_tile = ct.load(a, index=(pid,), shape=(TILE_SIZE,))
b_tile = ct.load(b, index=(pid,), shape=(TILE_SIZE,))
ct.store(c, index=(pid,), tile=a_tile + b_tile)
def main():
n = 1024
a = cp.arange(n, dtype=cp.float32)
b = cp.arange(n, dtype=cp.float32)
c = cp.zeros_like(a)
grid = (ct.cdiv(n, TILE_SIZE), 1, 1)
ct.launch(cp.cuda.get_current_stream(), grid, vadd, (a, b, c))
cp.cuda.get_current_stream().synchronize()
print("OK", c[:5])
if __name__ == "__main__":
main()Relevant log output
Traceback (most recent call last):
File "VectorAdd_quickstart.py", line 60, in <module>
test()
File "VectorAdd_quickstart.py", line 42, in test
ct.launch(cp.cuda.get_current_stream(),
RuntimeError: Failed to launch cuTile kernel: PTX JIT compiler library not foundFull env printout
root@263d4f5fc18a:/workspace/cutile-python# ./print_env.sh
<details><summary>Click here to see environment details</summary><pre>
**git***
commit 3912ddac97ddee2e4c733fe6d4c972a46deef1ea (HEAD -> main, tag: v1.0.1, origin/main, origin/HEAD)
Author: Jay Gu <[email protected]>
Date: Wed Dec 17 14:44:34 2025 -0800
Add release notes for v1.0.1
Signed-off-by: Jay Gu <[email protected]>
**git submodules***
***OS Information***
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=22.04
DISTRIB_CODENAME=jammy
DISTRIB_DESCRIPTION="Ubuntu 22.04.5 LTS"
PRETTY_NAME="Ubuntu 22.04.5 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.5 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy
ID=ubuntu
ID_LIKE=debian
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
UBUNTU_CODENAME=jammy
Linux 263d4f5fc18a 6.17.4-76061704-generic #202510191616~1762410050~22.04~898873a SMP PREEMPT_DYNAMIC Thu N x86_64 x86_64 x86_64 GNU/Linux
***GPU Information***
Sun Dec 28 12:07:44 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.82.09 Driver Version: 580.82.09 CUDA Version: 13.1 |
+-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA RTX PRO 6000 Blac... Off | 00000000:02:00.0 Off | Off |
| 30% 23C P8 13W / 600W | 714MiB / 97887MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
***CPU***
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 24
On-line CPU(s) list: 0-23
Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM) Ultra 9 285K
CPU family: 6
Model: 198
Thread(s) per core: 1
Core(s) per socket: 24
Socket(s): 1
Stepping: 2
CPU max MHz: 5800.0000
CPU min MHz: 800.0000
BogoMIPS: 7372.80
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdt_a rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni lam wbnoinvd dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid bus_lock_detect movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 768 KiB (20 instances)
L1i cache: 1.3 MiB (20 instances)
L2 cache: 40 MiB (12 instances)
L3 cache: 36 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-23
Vulnerability Gather data sampling: Not affected
Vulnerability Ghostwrite: Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Old microcode: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; PBRSB-eIBRS Not affected; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsa: Not affected
Vulnerability Tsx async abort: Not affected
Vulnerability Vmscape: Mitigation; IBPB before exit to userspace
***CMake***
***g++***
/usr/bin/g++
g++ (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
***nvcc***
/usr/local/cuda/bin/nvcc
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Fri_Nov__7_07:23:37_PM_PST_2025
Cuda compilation tools, release 13.1, V13.1.80
Build cuda_13.1.r13.1/compiler.36836380_0
***Python***
***Environment Variables***
PATH : /root/.local/bin:/usr/local/cuda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
LD_LIBRARY_PATH : /usr/lib/x86_64-linux-gnu:/usr/local/cuda/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NUMBAPRO_NVVM :
NUMBAPRO_LIBDEVICE :
CONDA_PREFIX :
PYTHON_PATH :
conda not found
***pip packages***
/usr/local/bin/pip
Package Version
------------------------ ---------
cuda-tile 1.0.1
cupy-cuda13x 13.6.0
fastrlock 0.8.3
filelock 3.20.1
fsspec 2025.12.0
Jinja2 3.1.6
MarkupSafe 3.0.3
mpmath 1.3.0
networkx 3.4.2
numpy 2.2.6
nvidia-cublas-cu12 12.8.4.1
nvidia-cuda-cupti-cu12 12.8.90
nvidia-cuda-nvrtc-cu12 12.8.93
nvidia-cuda-runtime-cu12 12.8.90
nvidia-cuda-tileiras 13.1.80
nvidia-cudnn-cu12 9.10.2.21
nvidia-cufft-cu12 11.3.3.83
nvidia-cufile-cu12 1.13.1.3
nvidia-curand-cu12 10.3.9.90
nvidia-cusolver-cu12 11.7.3.90
nvidia-cusparse-cu12 12.5.8.93
nvidia-cusparselt-cu12 0.7.1
nvidia-nccl-cu12 2.27.5
nvidia-nvjitlink-cu12 12.8.93
nvidia-nvshmem-cu12 3.3.20
nvidia-nvtx-cu12 12.8.90
pillow 12.0.0
pip 25.3
setuptools 59.6.0
sympy 1.14.0
torch 2.9.1
torchvision 0.24.1
triton 3.5.1
typing_extensions 4.15.0
wheel 0.37.1
</pre></details>Other/Misc.
No response
Contributing Guidelines
- I agree to follow cuTile Python's contributing guidelines
- I have searched the open bugs and have found no duplicates for this bug report