-
Notifications
You must be signed in to change notification settings - Fork 306
/
Copy pathinference.py
301 lines (256 loc) · 11.6 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# ignore_header_test
# ruff: noqa: E402
# © Copyright 2023 HP Development Company, L.P.
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import time
from tqdm import tqdm
try:
import tensorflow as tf
except ImportError:
raise ImportError(
"Mesh Graph Net Datapipe requires the Tensorflow library. Install the "
+ "package at: https://www.tensorflow.org/install"
)
physical_devices = tf.config.list_physical_devices("GPU")
try:
for device_ in physical_devices:
tf.config.experimental.set_memory_growth(device_, True)
except:
# Invalid device or cannot modify virtual devices once initialized.
pass
import hydra
import torch
from graph_dataset import GraphDataset
from omegaconf import DictConfig
from utils import _combine_std, _read_metadata, Stats, cast
from physicsnemo.distributed.manager import DistributedManager
from physicsnemo.launch.logging import (
LaunchLogger,
PythonLogger,
RankZeroLoggingWrapper,
)
from physicsnemo.models.vfgn.graph_network_modules import LearnedSimulator
def Inference(rank_zero_logger, dist, cfg):
"""
Executes the testing phase for a graph-based model, generating and
storing predictions.
"""
rank_zero_logger.info(
"\n\n.......... Start calling model inference with defined data path ........\n\n"
)
# config test dataset
dataset = GraphDataset(
# size=C.num_steps,
mode="rollout",
split=cfg.general.eval_split,
data_path=cfg.data_options.data_path,
batch_size=cfg.train_options.batch_size,
)
rank_zero_logger.info(
f"Initialized inference dataset with mode {dataset.mode}, dataset size {dataset.size}..."
)
metadata = _read_metadata(cfg.data_options.data_path)
acceleration_stats = Stats(
torch.DoubleTensor(cast(metadata["acc_mean"])),
torch.DoubleTensor(
_combine_std(cast(metadata["acc_std"]), cfg.data_options.noise_std)
),
)
velocity_stats = Stats(
torch.DoubleTensor(cast(metadata["vel_mean"])),
torch.DoubleTensor(
_combine_std(cast(metadata["vel_std"]), cfg.data_options.noise_std)
),
)
context_stats = Stats(
torch.DoubleTensor(cast(metadata["context_mean"])),
torch.DoubleTensor(
_combine_std(cast(metadata["context_std"]), cfg.data_options.noise_std)
),
)
normalization_stats = {
"acceleration": acceleration_stats,
"velocity": velocity_stats,
"context": context_stats,
}
model = LearnedSimulator(
num_dimensions=metadata["dim"] * cfg.train_options.pred_len,
num_seq=cfg.train_options.input_seq_len,
boundaries=torch.DoubleTensor(metadata["bounds"]),
num_particle_types=cfg.data_options.NUM_PARTICLE_TYPES,
particle_type_embedding_size=16,
normalization_stats=normalization_stats,
)
rank_zero_logger.info("Initialized model with LearnedSimulator")
loaded = False
example_index = 0
device = torch.device(cfg.general.device if torch.cuda.is_available() else "cpu")
model.setMessagePassingDevices([device])
model.to(device)
with torch.no_grad():
for features, targets in tqdm(dataset):
if loaded is False:
# input feature size is dynamic, so need to forward model in CPU before loading into GPU
global_context = features["step_context"].to(device)
if global_context is None:
global_context_step = None
else:
global_context_step = global_context[:-1]
global_context_step = torch.reshape(global_context_step, [1, -1])
model.inference(
position_sequence=features["position"][
:, 0 : cfg.train_options.input_seq_len
].to(device),
n_particles_per_example=features["n_particles_per_example"].to(
device
),
n_edges_per_example=features["n_edges_per_example"].to(device),
senders=features["senders"].to(device),
receivers=features["receivers"].to(device),
predict_length=cfg.train_options.pred_len,
particle_types=features["particle_type"].to(device),
global_context=global_context_step.to(device),
)
# Loading the pretrained model from model ckpt_path_vfgn
# For provided ckpt with missing keys, ignore
model.load_state_dict(
torch.load(cfg.data_options.ckpt_path_vfgn), strict=False
)
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
rank_zero_logger.info(f"Device: {device}")
rank_zero_logger.info(
f"Loaded model from ckpt path: {cfg.data_options.ckpt_path_vfgn}"
)
# config optimizer
# # todo: check msg passing device
# model.setMessagePassingDevices(["cuda:0"])
# model = model.to(device)
model.eval()
loaded = True
initial_positions = features["position"][
:, : cfg.train_options.input_seq_len
].to(device)
global_context = features["step_context"].to(device)
rank_zero_logger.info(
f"\n Read global_context shape: {global_context.shape}"
)
rank_zero_logger.info(
f"\n Initial_positions shape: {initial_positions.shape}"
)
# num_steps = ground_truth_positions.shape[1]
num_steps = global_context.shape[0] - cfg.train_options.input_seq_len
rank_zero_logger.info(f"\n Start prediction for {num_steps} steps...... ")
current_positions = initial_positions
updated_predictions = []
start_time = time.time()
rank_zero_logger.info(f"Start time: {start_time}\n")
for step in range(num_steps):
rank_zero_logger.info(f"start predictiong step: {step}")
if global_context is None:
global_context_step = None
rank_zero_logger.info("global_context_step is None")
else:
read_step_context = global_context[
: step + cfg.train_options.input_seq_len
]
zero_pad = torch.zeros(
[global_context.shape[0] - read_step_context.shape[0] - 1, 1],
dtype=features["step_context"].dtype,
).to(device)
global_context_step = torch.cat([read_step_context, zero_pad], 0)
global_context_step = torch.reshape(global_context_step, [1, -1])
predict_positions = model.inference(
position_sequence=current_positions.to(device),
n_particles_per_example=features["n_particles_per_example"].to(
device
),
n_edges_per_example=features["n_edges_per_example"].to(device),
senders=features["senders"].to(device),
receivers=features["receivers"].to(device),
predict_length=cfg.train_options.pred_len,
particle_types=features["particle_type"].to(device),
global_context=global_context_step.to(device),
)
# kinematic_mask = (
# get_kinematic_mask(features["particle_type"])
# .to(torch.bool)
# .to(device)
# )
predict_positions = predict_positions[:, 0].squeeze(1)
# todo: implement the masking for predicted results for different particle types
# kinematic_mask = torch.repeat_interleave(
# kinematic_mask, repeats=predict_positions.shape[-1]
# )
# kinematic_mask = torch.reshape(
# kinematic_mask, [-1, predict_positions.shape[-1]]
# )
# next_position = torch.where(
# kinematic_mask, positions_ground_truth, predict_positions
# )
next_position = predict_positions
updated_predictions.append(next_position)
current_positions = torch.cat(
[current_positions[:, 1:], next_position.unsqueeze(1)], axis=1
)
updated_predictions = torch.stack(updated_predictions)
rank_zero_logger.info(
f"\n\n finished running all stages, initial_positions shape: {initial_positions.shape},\n"
f"\n updated_predictions shape: {updated_predictions.shape}"
)
initial_positions_list = initial_positions.cpu().numpy().tolist()
updated_predictions_list = updated_predictions.cpu().numpy().tolist()
particle_types_list = features["particle_type"].cpu().numpy().tolist()
global_context_list = global_context.cpu().numpy().tolist()
rollout_op = {
"initial_positions": initial_positions_list,
"predicted_rollout": updated_predictions_list,
"particle_types": particle_types_list,
"global_context": global_context_list,
}
# Add a leading axis, since Estimator's predict method insists that all
# tensors have a shared leading batch axis fo the same dims.
# rollout_op = tree.map_structure(lambda x: x.numpy(), rollout_op)
rollout_op["metadata"] = metadata
filename = f"rollout_{cfg.general.eval_split}_{example_index}.json"
filename = os.path.join(cfg.data_options.output_path, filename)
if not os.path.exists(cfg.data_options.output_path):
os.makedirs(cfg.data_options.output_path)
with open(filename, "w") as file_object:
json.dump(rollout_op, file_object)
example_index += 1
rank_zero_logger.info(f"prediction time: {time.time()-start_time}\n")
@hydra.main(version_base=None, config_path="conf", config_name="config")
def main(cfg: DictConfig) -> None:
"""
Triggers the train or test phase based on the configuration.
"""
# initialize distributed manager
DistributedManager.initialize()
dist = DistributedManager()
rank_zero_logger = RankZeroLoggingWrapper(logger, dist) # Rank 0 logger
if cfg.general.mode == "rollout":
Inference(rank_zero_logger, dist, cfg)
else:
raise NotImplementedError("Mode not implemented ")
if __name__ == "__main__":
# tf.disable_v2_behavior()
LaunchLogger.initialize() # PhysicsNeMo launch logger
logger = PythonLogger("main") # General python logger
logger.file_logging()
main()