-
Notifications
You must be signed in to change notification settings - Fork 307
/
Copy pathtraining_loop.py
531 lines (484 loc) · 21.7 KB
/
training_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Main training loop."""
import copy
import json
import os
import pickle # TODO remove
import time
import numpy as np
import psutil
import torch
from torch.nn.parallel import DistributedDataParallel
from training_stats import default_collector, report, report0
from physicsnemo.utils.generative.utils import (
InfiniteSampler,
check_ddp_consistency,
construct_class_by_name,
copy_params_and_buffers,
ddp_sync,
format_time,
print_module_summary,
)
from misc import open_url
# # weather related
# from .YParams import YParams
# from .dataset import Era5Dataset, CWBDataset, CWBERA5DatasetV2, ZarrDataset
# ----------------------------------------------------------------------------
def training_loop(
run_dir=".", # Output directory.
dataset=None, # The dataset. Choose from ['cifar10'].
dataset_kwargs={}, # Options for training set.
data_loader_kwargs={}, # Options for torch.utils.data.DataLoader.
network_kwargs={}, # Options for model and preconditioning.
loss_kwargs={}, # Options for loss function.
optimizer_kwargs={}, # Options for optimizer.
augment_kwargs=None, # Options for augmentation pipeline, None = disable.
seed=0, # Global random seed.
batch_size=512, # Total batch size for one training iteration.
batch_gpu=None, # Limit batch size per GPU, None = no limit.
total_kimg=200000, # Training duration, measured in thousands of training images.
ema_halflife_kimg=500, # Half-life of the exponential moving average (EMA) of model weights.
ema_rampup_ratio=0.05, # EMA ramp-up coefficient, None = no rampup.
lr_rampup_kimg=10000, # Learning rate ramp-up duration.
loss_scaling=1, # Loss scaling factor for reducing FP16 under/overflows.
kimg_per_tick=50, # Interval of progress prints.
snapshot_ticks=50, # How often to save network snapshots, None = disable.
state_dump_ticks=500, # How often to dump training state, None = disable.
resume_pkl=None, # Start from the given network snapshot, None = random initialization.
resume_state_dump=None, # Start from the given training state, None = reset training state.
resume_kimg=0, # Start from the given training progress.
cudnn_benchmark=True, # Enable torch.backends.cudnn.benchmark?
# data_type=None,
# data_config=None,
# task=None,
dist=None, # distributed object
logger0=None, # rank 0 logger
):
# Initialize.
start_time = time.time()
device = dist.device
np.random.seed((seed * dist.world_size + dist.rank) % (1 << 31))
torch.manual_seed(np.random.randint(1 << 31))
torch.backends.cudnn.benchmark = cudnn_benchmark
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
# Select batch size per GPU.
batch_gpu_total = batch_size // dist.world_size
logger0.info(f"batch_gpu: {batch_gpu}")
if batch_gpu is None or batch_gpu > batch_gpu_total:
batch_gpu = batch_gpu_total
num_accumulation_rounds = batch_gpu_total // batch_gpu
assert batch_size == batch_gpu * num_accumulation_rounds * dist.world_size
# Load dataset
supported_datasets = ["cifar10", "dfsr"]
if dataset is None:
raise RuntimeError("Please specify the dataset.")
if dataset not in supported_datasets:
raise ValueError(
f'Invalid dataset: "{dataset}".' "Supported datasets: {supported_datasets}."
)
logger0.info(f"Loading {dataset} dataset...")
# Load dataset: cifar10
dataset_obj = construct_class_by_name(
**dataset_kwargs
) # subclass of training.dataset.Dataset
dataset_sampler = InfiniteSampler(
dataset=dataset_obj,
rank=dist.rank,
num_replicas=dist.world_size,
seed=seed,
)
dataset_iterator = iter(
torch.utils.data.DataLoader(
dataset=dataset_obj,
sampler=dataset_sampler,
batch_size=batch_gpu,
**data_loader_kwargs,
)
)
# # Load dataset: weather
# yparams = YParams(data_type + '.yaml', config_name=data_config)
# if data_type == 'era5':
# dataset_obj = Era5Dataset(yparams, yparams.train_data_path, train=True, task=task)
# worker_init_fn = None
# elif data_type == 'cwb':
# dataset_obj = CWBDataset(yparams, yparams.train_data_path, train=True, task=task)
# worker_init_fn = None
# elif data_type == 'era5-cwb-v1':
# #filelist = os.listdir(path=yparams.cwb_data_dir + '/2018')
# #filelist = [name for name in filelist if "2018" in name]
# filelist = []
# for root, dirs, files in os.walk(yparams.cwb_data_dir):
# for file in files:
# if '2022' not in file:
# filelist.append(file)
# dataset_obj = CWBERA5DatasetV2(yparams, filelist=filelist, chans=list(range(20)), train=True, task=task)
# worker_init_fn = dataset_obj.worker_init_fn
# elif data_type == 'era5-cwb-v2':
# dataset_obj = ZarrDataset(yparams, yparams.train_data_path, train=True)
# worker_init_fn = None
# elif data_type == 'era5-cwb-v3':
# dataset_obj = ZarrDataset(yparams, yparams.train_data_path, train=True)
# #worker_init_fn = dataset_obj.worker_init_fn
# worker_init_fn = None
# dataset_sampler = InfiniteSampler(dataset=dataset_obj, rank=dist.get_rank(), num_replicas=dist.get_world_size(), seed=seed)
# dataset_iterator = iter(torch.utils.data.DataLoader(dataset=dataset_obj, sampler=dataset_sampler, batch_size=batch_gpu, worker_init_fn=worker_init_fn, **data_loader_kwargs))
# img_in_channels = len(yparams.in_channels) #noise + low-res input
# if yparams.add_grid:
# img_in_channels = img_in_channels + yparams.N_grid_channels
# img_out_channels = len(yparams.out_channels)
# if use_mean_input: #add it to the args and store_true in yaml file
# img_in_channels = img_in_channels + yparams.N_grid_channels + img_out_channels
# Construct network.
logger0.info("Constructing network...")
interface_kwargs = dict(
img_resolution=dataset_obj.resolution,
img_channels=dataset_obj.num_channels,
label_dim=dataset_obj.label_dim,
) # cifar10
# interface_kwargs = dict(img_resolution=yparams.crop_size_x, img_channels=img_out_channels, img_in_channels=img_in_channels, img_out_channels=img_out_channels, label_dim=0) #weather
if network_kwargs.class_name == "physicsnemo.models.diffusion.VEPrecond_dfsr_cond":
# Load dataset scaling parameters to compute physics-informed conditioning variable (PDE residual w.r.t. vorticity)
interface_kwargs["dataset_mean"] = dataset_obj.stat["mean"]
interface_kwargs["dataset_scale"] = dataset_obj.stat["scale"]
net = construct_class_by_name(
**network_kwargs, **interface_kwargs
) # subclass of torch.nn.Module
net.train().requires_grad_(True).to(device)
# net = torch.compile(net)
# Distributed data parallel
if dist.world_size > 1:
ddp = DistributedDataParallel(
net,
device_ids=[dist.local_rank],
broadcast_buffers=dist.broadcast_buffers,
output_device=dist.device,
find_unused_parameters=dist.find_unused_parameters,
) # broadcast_buffers=True for weather data
else:
ddp = net
if (
not network_kwargs.class_name
== "physicsnemo.models.diffusion.VEPrecond_dfsr_cond"
):
if dist.rank == 0:
with torch.no_grad():
images = torch.zeros(
[
batch_gpu,
net.img_channels,
net.img_resolution,
net.img_resolution,
],
device=device,
)
# img_clean = torch.zeros([batch_gpu, img_out_channels, net.img_resolution, net.img_resolution], device=device)
# img_lr = torch.zeros([batch_gpu, img_in_channels, net.img_resolution, net.img_resolution], device=device)
sigma = torch.ones([batch_gpu], device=device)
labels = torch.zeros([batch_gpu, net.label_dim], device=device)
# print_module_summary(net, [img_clean, img_lr, sigma, labels], max_nesting=2)
print_module_summary(net, [images, sigma, labels], max_nesting=2)
# import pdb; pdb.set_trace()
# breakpoint()
# params = net.parameters()
# print('************************************')
# print('dist.get_rank()', dist.get_rank())
# print('net.parameters()', net.parameters())
# for idx, param in enumerate(net.parameters()):
# if idx == 230:
# print(f"Parameter {idx}: {param.stride()}")
# print(f"Parameter {idx}: {param.shape}")
# break
# print('************************************')
# Setup optimizer.
logger0.info("Setting up optimizer...")
loss_fn = construct_class_by_name(**loss_kwargs) # training.loss.(VP|VE|EDM)Loss
optimizer = construct_class_by_name(
params=net.parameters(), **optimizer_kwargs
) # subclass of torch.optim.Optimizer
augment_pipe = (
construct_class_by_name(**augment_kwargs)
if augment_kwargs is not None
else None
) # training.augment.AugmentPipe
ema = copy.deepcopy(net).eval().requires_grad_(False)
# # Import autoresume module
# #print('os.environ', print(os.environ))
# # sys.path.append(os.environ.get('SUBMIT_SCRIPTS', '.'))
# SUBMIT_SCRIPTS = '/lustre/fsw/adlr/adlr-others/gpeled/adlr-utils/release/cluster-interface/latest'
# sys.path.append(SUBMIT_SCRIPTS)
# #sync autoresums across gpus ...
# AutoResume = None
# try:
# from userlib.auto_resume import AutoResume
# AutoResume.init()
# except ImportError:
# print('AutoResume not imported')
# Resume training from previous snapshot.
if resume_pkl is not None:
logger0.info(f'Loading network weights from "{resume_pkl}"...')
if dist.rank != 0:
torch.distributed.barrier() # rank 0 goes first
with open_url(resume_pkl, verbose=(dist.rank == 0)) as f:
data = pickle.load(f)
if dist.rank == 0:
torch.distributed.barrier() # other ranks follow
copy_params_and_buffers(
src_module=data["ema"], dst_module=net, require_all=False
)
copy_params_and_buffers(
src_module=data["ema"], dst_module=ema, require_all=False
)
del data # conserve memory
if resume_state_dump:
logger0.info(f'Loading training state from "{resume_state_dump}"...')
data = torch.load(resume_state_dump, map_location=torch.device("cpu"))
copy_params_and_buffers(
src_module=data["net"], dst_module=net, require_all=True
)
optimizer.load_state_dict(data["optimizer_state"])
del data # conserve memory
# #check num params per gpu
# with open(f"params_{dist.get_rank()}.txt", "w") as fo:
# logger0.info(net.parameters())
# for param in net.parameters():
# logger0.info(param.size())
# #fo.write(f"{name}\t{param.size()}\n")
# import pdb; pdb.set_trace()
# Train.
logger0.info(f"Training for {total_kimg} kimg...")
cur_nimg = resume_kimg * 1000
cur_tick = 0
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - start_time
# dist.update_progress(cur_nimg // 1000, total_kimg) # TODO check if needed
stats_jsonl = None
while True:
# Accumulate gradients.
optimizer.zero_grad()
for round_idx in range(num_accumulation_rounds):
with ddp_sync(ddp, (round_idx == num_accumulation_rounds - 1)):
# # Fetch training data: weather
# img_clean, img_lr, labels = next(dataset_iterator)
# logger0.info(img_clean.shape)
# logger0.info('max-clean', torch.max(img_clean))
# logger0.info('min-clean', torch.min(img_clean))
# logger0.info('mean-clean', torch.mean(img_clean))
# logger0.info('std-clean', torch.std(img_clean))
# logger0.info(img_lr.shape)
# logger0.info('max-lr', torch.max(img_lr))
# logger0.info('min-lr', torch.min(img_lr))
# logger0.info('mean-lr', torch.mean(img_lr))
# logger0.info('std-lr', torch.std(img_lr))
# import pdb; pdb.set_trace()
# # Normalization: weather (normalized already in the dataset)
# img_clean = img_clean.to(device).to(torch.float32).contiguous() #[-4.5, +4.5]
# img_lr = img_lr.to(device).to(torch.float32).contiguous()
# labels = labels.to(device).contiguous()
# Fetch training data: cifar10
images, labels = next(dataset_iterator)
# Normalization: cifar10 (normalized already in the dataset)
# images = images.to(device).to(torch.float32) / 127.5 - 1
images = (
images.to(device).to(torch.float32)
if dataset == "dfsr"
else images.to(device).to(torch.float32) / 127.5 - 1
)
labels = labels.to(device)
# loss = loss_fn(net=ddp, img_clean=img_clean, img_lr=img_lr, labels=labels, augment_pipe=augment_pipe)
loss = loss_fn(
net=ddp, images=images, labels=labels, augment_pipe=augment_pipe
)
report("Loss/loss", loss)
loss.sum().mul(loss_scaling / batch_gpu_total).backward()
if dataset == "dfsr":
loss_sample = (
loss.sum()
.mul(loss_scaling / batch_gpu_total)
.detach()
.cpu()
.numpy()
)
# Update weights.
for g in optimizer.param_groups:
g["lr"] = optimizer_kwargs["lr"] * min(
cur_nimg / max(lr_rampup_kimg * 1000, 1e-8), 1
)
for param in net.parameters():
if param.grad is not None:
torch.nan_to_num(
param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad
)
optimizer.step()
# Update EMA.
ema_halflife_nimg = ema_halflife_kimg * 1000
if ema_rampup_ratio is not None:
ema_halflife_nimg = min(ema_halflife_nimg, cur_nimg * ema_rampup_ratio)
ema_beta = 0.5 ** (batch_size / max(ema_halflife_nimg, 1e-8))
for p_ema, p_net in zip(ema.parameters(), net.parameters()):
p_ema.copy_(p_net.detach().lerp(p_ema, ema_beta))
# Perform maintenance tasks once per tick.
cur_nimg += batch_size
# done = cur_nimg >= total_kimg * 1000
if dataset == "dfsr":
done = cur_nimg >= total_kimg
if cur_nimg / batch_size % 500 == 0:
logger0.info(
"Progress in training iterations: loss: {}, iter: {}, cur_nimg: {}, \
cur_tick: {}, dist.rank: {}, nimg: {}/{}".format(
loss_sample,
cur_nimg / batch_size,
cur_nimg,
cur_tick,
dist.rank,
cur_nimg,
total_kimg,
)
)
else:
done = cur_nimg >= total_kimg * 1000
if (
(not done)
and (cur_tick != 0)
and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000)
):
continue
# Print status line, accumulating the same information in training_stats.
tick_end_time = time.time()
fields = []
fields += [f"tick {report0('Progress/tick', cur_tick):<5d}"]
fields += [f"kimg {report0('Progress/kimg', cur_nimg / 1e3):<9.1f}"]
fields += [
f"time {format_time(report0('Timing/total_sec', tick_end_time - start_time)):<12s}"
]
fields += [
f"sec/tick {report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"
]
fields += [
f"sec/kimg {report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"
]
fields += [
f"maintenance {report0('Timing/maintenance_sec', maintenance_time):<6.1f}"
]
fields += [
f"cpumem {report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}"
]
fields += [
f"gpumem {report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}"
]
fields += [
f"reserved {report0('Resources/peak_gpu_mem_reserved_gb', torch.cuda.max_memory_reserved(device) / 2**30):<6.2f}"
]
torch.cuda.reset_peak_memory_stats()
logger0.info(" ".join(fields))
# ckpt_dir = run_dir
# print('AutoResume.termination_requested()', AutoResume.termination_requested())
# print('AutoResume', AutoResume)
# if AutoResume.termination_requested():
# AutoResume.request_resume()
# print("Training terminated. Returning")
# done = True
# #print('dist.get_rank()', dist.get_rank())
# #with open(os.path.join(os.path.split(ckpt_dir)[0],'resume.txt'), "w") as f:
# with open(os.path.join(ckpt_dir,'resume.txt'), "w") as f:
# f.write(os.path.join(ckpt_dir, f'training-state-{cur_nimg//1000:06d}.pt'))
# print(os.path.join(ckpt_dir, f'training-state-{cur_nimg//1000:06d}.pt'))
# f.close()
# #return 0
# dist.print0('*********************************************')
# dist.print0('dist.should_stop()', dist.should_stop())
# dist.print0('done', done)
# dist.print0('*********************************************')
# Check for abort. # TODO: check if needed!
# if (not done) and dist.should_stop():
# done = True
# logger0.info()
# logger0.info("Aborting...")
# Save network snapshot.
if (snapshot_ticks is not None) and (done or cur_tick % snapshot_ticks == 0):
if dataset == "dfsr":
logger0.info("Saving network snapshot.")
data = dict(
ema=ema,
loss_fn=loss_fn,
augment_pipe=augment_pipe,
dataset_kwargs=dict(dataset_kwargs),
)
for key, value in data.items():
if isinstance(value, torch.nn.Module):
value = copy.deepcopy(value).eval().requires_grad_(False)
if dist.world_size > 1:
check_ddp_consistency(value)
data[key] = value.cpu()
del value # conserve memory
if dist.rank == 0:
with open(
os.path.join(run_dir, f"network-snapshot-{cur_nimg//1000:06d}.pkl"),
"wb",
) as f:
pickle.dump(data, f)
del data # conserve memory
# Save full dump of the training state.
if dataset == "dfsr":
save_full_dump = (
(state_dump_ticks is not None)
and (done or cur_tick % state_dump_ticks == 0)
and dist.rank == 0
)
else:
save_full_dump = (
(state_dump_ticks is not None)
and (done or cur_tick % state_dump_ticks == 0)
and cur_tick != 0
and dist.rank == 0
)
if save_full_dump:
# if (state_dump_ticks is not None) and (done or cur_tick % state_dump_ticks == 0) and dist.get_rank() == 0:
logger0.info("Saving full dump of the training state.")
torch.save(
dict(net=net, optimizer_state=optimizer.state_dict()),
os.path.join(run_dir, f"training-state-{cur_nimg//1000:06d}.pt"),
)
# Update logs.
default_collector.update()
if dist.rank == 0:
if stats_jsonl is None:
stats_jsonl = open(os.path.join(run_dir, "stats.jsonl"), "at")
stats_jsonl.write(
json.dumps(
dict(
default_collector.as_dict(),
timestamp=time.time(),
)
)
+ "\n"
)
stats_jsonl.flush()
# dist.update_progress(cur_nimg // 1000, total_kimg) # TODO check if needed
# Update state.
cur_tick += 1
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - tick_end_time
if done:
break
# Done.
if not dataset == "dfsr":
logger0.info()
logger0.info("Exiting...")