-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy patheval_diagnostic_precip.py
130 lines (106 loc) · 4.08 KB
/
eval_diagnostic_precip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import hydra
import numpy as np
from omegaconf import OmegaConf
import torch
from diagnostic import data, distribute, loss, models, precip, train
@hydra.main(
version_base=None, config_path="config", config_name="diagnostic_precip.yaml"
)
def main(cfg):
test_diagnostic(**OmegaConf.to_container(cfg))
def test_diagnostic(**cfg):
# setup model
model = models.setup_model(**cfg["model"])
(model, dist_manager) = distribute.distribute_model(model)
# setup datapipes
(train_specs, valid_specs) = data.data_source_specs(
cfg["sources"]["state_params"],
cfg["sources"]["diag_params"],
valid_dir="out_of_sample",
)
cfg["datapipe"]["num_samples_per_year_valid"] = cfg["datapipe"][
"num_samples_per_year_train"
] # validate on entire year
(train_datapipe, valid_datapipe) = data.setup_datapipes(
train_specs,
valid_specs,
**cfg["datapipe"],
dist_manager=dist_manager,
)
# create callback for tracking error
mean = valid_specs[1].mu
std = valid_specs[1].sd
rmse_callback = RMSECallback(device=dist_manager.device, mean=mean, std=std)
# setup loss
loss_func = loss.GeometricL2Loss(
lat_indices_used=train_datapipe.crop_window[0]
) # TODO: this should be configurable
loss_func = loss_func.to(device=dist_manager.device)
# conversion from datapipe format to (input, target) tuples
batch_conv = data.batch_converter(
*train_specs, train_datapipe, diag_norm=precip.PrecipNorm()
)
# setup trainer to produce test samples
trainer = train.Trainer(
model,
dist_manager=dist_manager,
loss=loss_func,
train_datapipe=train_datapipe,
valid_datapipe=valid_datapipe,
input_output_from_batch_data=batch_conv,
validation_callbacks=[rmse_callback],
**cfg["training"],
)
# evaluate model
trainer.validate_on_epoch()
# save results
rmse = rmse_callback.value().cpu().numpy()
os.makedirs("./results", exist_ok=True)
np.save("./results/rmse.npy", rmse) # TODO: should be configurable
class RMSECallback:
"""Callable that keeps track of RMS error.
Can be used in `Trainer.validation_callbacks`.
"""
def __init__(self, device, mean=None, std=None):
self.mse = None
self.n_samples = 0
self.mean = None if mean is None else torch.from_numpy(mean).to(device=device)
self.std = None if std is None else torch.from_numpy(std).to(device=device)
def __call__(self, outvar_true, outvar_pred, **kwargs):
# reverse normalization
if self.mean is not None:
outvar_true = outvar_true * self.std + self.mean
outvar_pred = outvar_pred * self.std + self.mean
# compute squared difference
sqr_diff = torch.square(outvar_true - outvar_pred)
batch_size = sqr_diff.shape[0]
avg_axes = tuple(range(sqr_diff.ndim - 2))
sqr_diff = torch.mean(sqr_diff, axis=avg_axes)
# accumulate MSE
if self.mse is None:
self.mse = sqr_diff
else:
old_weight = self.n_samples / (self.n_samples + batch_size)
new_weight = 1 - old_weight
self.mse = old_weight * self.mse + new_weight * sqr_diff
self.n_samples += batch_size
def value(self):
return torch.sqrt(self.mse)
if __name__ == "__main__":
main()