-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy pathtrain_diagnostic_precip.py
84 lines (68 loc) · 2.58 KB
/
train_diagnostic_precip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hydra
from omegaconf import OmegaConf
from physicsnemo.launch.logging import LaunchLogger
from physicsnemo.launch.logging.mlflow import initialize_mlflow
from diagnostic import data, distribute, loss, models, precip, train
@hydra.main(
version_base=None, config_path="config", config_name="diagnostic_precip.yaml"
)
def main(cfg):
train_diagnostic(**OmegaConf.to_container(cfg))
def train_diagnostic(**cfg):
"""Top-level training function: setup everything and train model."""
# setup model
model = models.setup_model(**cfg["model"])
(model, dist_manager) = distribute.distribute_model(model)
# setup datapipes
(train_specs, valid_specs) = data.data_source_specs(
cfg["sources"]["state_params"], cfg["sources"]["diag_params"]
)
(train_datapipe, valid_datapipe) = data.setup_datapipes(
train_specs,
valid_specs,
**cfg["datapipe"],
dist_manager=dist_manager,
)
# setup MLFlow logging
mlflow_cfg = cfg.get("logging", {}).get("mlflow", {})
if mlflow_cfg.pop("use_mlflow", False):
initialize_mlflow(**mlflow_cfg)
LaunchLogger.initialize(use_mlflow=True)
# setup loss
loss_func = loss.GeometricL2Loss(
lat_indices_used=train_datapipe.crop_window[0]
) # TODO: this should be configurable
loss_func.to(device=dist_manager.device)
# conversion from datapipe format to (input, target) tuples
batch_conv = data.batch_converter(
*train_specs, train_datapipe, diag_norm=precip.PrecipNorm()
)
# setup training loop
trainer = train.Trainer(
model,
dist_manager=dist_manager,
loss=loss_func,
train_datapipe=train_datapipe,
valid_datapipe=valid_datapipe,
input_output_from_batch_data=batch_conv,
**cfg["training"],
)
# train model
trainer.fit()
if __name__ == "__main__":
main()