diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 0000000..55009ed --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: c2505eda61830c7fd38f6e8ae0a85121 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..cad11e1 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,2 @@ + +ptm_pose/Resource_Files/ptm_coordinates.csv filter=lfs diff=lfs merge=lfs -text diff --git a/.github/ISSUE_TEMPLATE/bug_report.md b/.github/ISSUE_TEMPLATE/bug_report.md new file mode 100644 index 0000000..76c5d2b --- /dev/null +++ b/.github/ISSUE_TEMPLATE/bug_report.md @@ -0,0 +1,34 @@ +--- +name: Bug report +about: Create a report to help us improve +title: '' +labels: '' +assignees: '' + +--- + +#### Description +A clear and concise description of what the issue is about. + +#### Screenshots +![Downhill Windmills](http://i.giphy.com/KO8AG2EByqkFi.gif) + +#### Files +A list of relevant files for this issue. This will help people navigate the project and offer some clues of where to start. + +#### To Reproduce +Steps to reproduce the behavior: +1. Go to '...' +2. Click on '....' +3. Scroll down to '....' +4. See error + +#### Expected behavior +A clear and concise description of what you expected to happen. + + +#### Tasks +Include specific tasks in the order they need to be done in. Include links to specific lines of code where the task should happen at, if known +- [ ] Task 1 +- [ ] Task 2 +- [ ] Task 3 diff --git a/.github/ISSUE_TEMPLATE/feature_request.md b/.github/ISSUE_TEMPLATE/feature_request.md new file mode 100644 index 0000000..df4910a --- /dev/null +++ b/.github/ISSUE_TEMPLATE/feature_request.md @@ -0,0 +1,26 @@ +--- +name: Feature request +about: Suggest an idea for this project +title: '' +labels: '' +assignees: '' + +--- + +**Is your feature request related to a problem? Please describe.** +A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] + +**Describe the solution you'd like** +A clear and concise description of what you want to happen. + +**Describe alternatives you've considered** +A clear and concise description of any alternative solutions or features you've considered. + +#### Tasks +Include specific tasks in the order they need to be done in. Include links to specific lines of code where the task should happen at. +- [ ] Task 1 +- [ ] Task 2 +- [ ] Task 3 + +**Additional context** +Add any other context or screenshots about the feature request here. diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..21550d8 --- /dev/null +++ b/.gitignore @@ -0,0 +1,141 @@ +# package specific files +ptm_pose/Resource_Files/translator.csv +ptm_pose/Resource_Files/uniprot_to_gene_name.json +ptm_pose/Resource_Files/nonconstitutive_ptm_list.txt +ptm_pose/Resource_Files/background_annotations/ +Test_datasets/ +Testing.ipynb +.pybiomart.sqlite + +#sql lite(pybiomart generates) +*.sqllite + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +pip-wheel-metadata/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +.python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/Dependencies.html b/Dependencies.html new file mode 100644 index 0000000..bad7d12 --- /dev/null +++ b/Dependencies.html @@ -0,0 +1,447 @@ + + + + + + + + + + + + Dependencies — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

Dependencies

+ +
+
+ +
+
+
+ + + + +
+ +
+

Dependencies#

+
    +
  • numpy==1.26.*

  • +
  • pandas==2.2.*

  • +
  • gseapy==1.1.*

  • +
  • tqdm==4.66.*

  • +
  • seaborn==0.13.*

  • +
  • biopython==1.83.*

  • +
  • xlrd==2.0.*

  • +
+
+ + +
+ + + + + + + + +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/Examples/ESRP1_in_Prostate.html b/Examples/ESRP1_in_Prostate.html new file mode 100644 index 0000000..1a4d3b7 --- /dev/null +++ b/Examples/ESRP1_in_Prostate.html @@ -0,0 +1,851 @@ + + + + + + + + + + + + Exploring the role of ESRP1 expression in prostate cancer — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + + + + + + +
+ + + +
+

Exploring the role of ESRP1 expression in prostate cancer#

+

In this notebook, we will explore the role of ESRP1 expression in prostate cancer, where it is commonly amplified and correlated with worsened prognosis. We will obtain splicing quantification across the TCGA-PRAD cohort using data from TCGASpliceSeq, and project PTMs onto the splice events that were identified by SpliceSeq. We will then explore the various ways ESRP1 expression may drive changes through changes to PTM inclusion and +flanking sequences. The analysis here corresponds to Figures 4 and 5 of our manuscript

+

This notebook is divided into the following sections: 1. Load ESRP1 expression data from CBioPortal 2. Project PTMs onto splice events and identify events that are correlated with ESRP1 expression 3. Explore the functional consequence of ESRP1-correlated PTMs

+
+

Load ESRP1 expression data from CBioPortal#

+

While this is not a part of PTM-POSE, in order to explore the role of ESRP1 expression in prostate cancer, we first need to know which patients are express high or low levels of ESRP1. We can do this directly through `CBioPortal’s API <>`__ (which requires the bravado python package). Alternatively, you can choose to download the data from the CBioPortal website, and upload it here.

+
+
[1]:
+
+
+
from bravado.client import SwaggerClient
+import pandas as pd
+
+#initialize swagger client
+cbioportal = SwaggerClient.from_url('https://www.cbioportal.org/api/v2/api-docs',
+                            config={"validate_requests":False,"validate_responses":False,"validate_swagger_spec": False})
+
+for a in dir(cbioportal):
+    cbioportal.__setattr__(a.replace(' ', '_').lower(), cbioportal.__getattr__(a))
+
+# ESRP1 Entrez Gene ID = 54845
+gene_id = 54845
+
+#download rna sequencing data for ESRP1
+study_id = 'prad_tcga_pan_can_atlas_2018'
+expression_data = cbioportal.Molecular_Data.getAllMolecularDataInMolecularProfileUsingGET(molecularProfileId = study_id + '_rna_seq_v2_mrna',
+                                                                    sampleListId = study_id + '_all', entrezGeneId = gene_id).result()
+#extract expression data and normalize by z-score
+sample_id = [samp.sampleId for samp in expression_data]
+rsem = [samp.value for samp in expression_data]
+rsem = pd.Series(rsem, index = sample_id)
+rsem_zscore = (rsem - rsem.mean())/rsem.std()
+
+#extract high and low patients (absolute z-score > 1)
+high_patients = rsem_zscore[rsem_zscore > 1].index
+low_patients = rsem_zscore[rsem_zscore < -1].index
+
+
+
+
+
+

Project PTMs onto splice events and identify events that are correlated with ESRP1 expression#

+
+
[14]:
+
+
+
from ptm_pose import project
+import pandas as pd
+
+#load data from TCGASpliceSeq
+psi_data = pd.read_csv('../../../TCGA/Data/PRAD/TCGA_SpliceSeq/PSI_download_PRAD.txt', sep = '\t')
+splicegraph = pd.read_csv('../../../TCGA/Data/TCGASpliceData.txt', sep = '\t')
+
+#identifying TCGA columns containing patient PSI data
+patient_columns = [col for col in psi_data.columns if 'TCGA' in col]
+
+psi_data, spliced_ptms = project.project_ptms_onto_SpliceSeq(psi_data, splicegraph = splicegraph, extra_cols = patient_columns)
+
+
+
+
+
+
+
+
+Removing ME events from analysis
+Projecting PTMs onto SpliceSeq data
+
+
+
+
+
+
+
+Projecting PTMs onto splice events using hg19 coordinates.: 100%|██████████| 62861/62861 [16:07:33<00:00,  1.08it/s]
+
+
+
+
+
+
+
+PTMs projection successful (76363 identified).
+
+
+
+
+
+

Functional consequence of ESRP1-correlated PTMs#

+
+

Gene Set Enrichment Analysis#

+
+
+

Exon Ontology Analysis#

+
+
+

Protein Interaction Network Analysis#

+
+
+

Flanking sequences that alter protein interactions#

+
+
+
+

Kinases impacted by splicing#

+
+

Known kinase substrates#

+
+
+

Predicted differentially included kinase substrates#

+
+
+

Altered kinase interactions by changed flanking sequences#

+
+
[ ]:
+
+
+

+
+
+
+
+
+
+ + +
+ + + + + + +
+ +
+
+
+ +
+ + + + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/Examples/ESRP1_in_Prostate.ipynb b/Examples/ESRP1_in_Prostate.ipynb new file mode 100644 index 0000000..537cbc3 --- /dev/null +++ b/Examples/ESRP1_in_Prostate.ipynb @@ -0,0 +1,202 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exploring the role of ESRP1 expression in prostate cancer\n", + "\n", + "In this notebook, we will explore the role of ESRP1 expression in prostate cancer, where it is commonly amplified and correlated with worsened prognosis. We will obtain splicing quantification across the TCGA-PRAD cohort using data from [TCGASpliceSeq](https://bioinformatics.mdanderson.org/TCGASpliceSeq/), and project PTMs onto the splice events that were identified by SpliceSeq. We will then explore the various ways ESRP1 expression may drive changes through changes to PTM inclusion and flanking sequences. The analysis here corresponds to Figures 4 and 5 of our [manuscript](https://www.biorxiv.org/content/10.1101/2024.01.10.575062v2)\n", + "\n", + "This notebook is divided into the following sections:\n", + "1. Load ESRP1 expression data from [CBioPortal](https://www.cbioportal.org/)\n", + "2. Project PTMs onto splice events and identify events that are correlated with ESRP1 expression\n", + "3. Explore the functional consequence of ESRP1-correlated PTMs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load ESRP1 expression data from CBioPortal\n", + "\n", + "While this is not a part of PTM-POSE, in order to explore the role of ESRP1 expression in prostate cancer, we first need to know which patients are express high or low levels of ESRP1. We can do this directly through [CBioPortal's API]() (which requires the bravado python package). Alternatively, you can choose to download the data from the [CBioPortal website](https://www.cbioportal.org/), and upload it here." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from bravado.client import SwaggerClient\n", + "import pandas as pd\n", + "\n", + "#initialize swagger client\n", + "cbioportal = SwaggerClient.from_url('https://www.cbioportal.org/api/v2/api-docs',\n", + " config={\"validate_requests\":False,\"validate_responses\":False,\"validate_swagger_spec\": False})\n", + "\n", + "for a in dir(cbioportal):\n", + " cbioportal.__setattr__(a.replace(' ', '_').lower(), cbioportal.__getattr__(a))\n", + "\n", + "# ESRP1 Entrez Gene ID = 54845\n", + "gene_id = 54845\n", + "\n", + "#download rna sequencing data for ESRP1\n", + "study_id = 'prad_tcga_pan_can_atlas_2018'\n", + "expression_data = cbioportal.Molecular_Data.getAllMolecularDataInMolecularProfileUsingGET(molecularProfileId = study_id + '_rna_seq_v2_mrna',\n", + " sampleListId = study_id + '_all', entrezGeneId = gene_id).result()\n", + "#extract expression data and normalize by z-score\n", + "sample_id = [samp.sampleId for samp in expression_data]\n", + "rsem = [samp.value for samp in expression_data]\n", + "rsem = pd.Series(rsem, index = sample_id)\n", + "rsem_zscore = (rsem - rsem.mean())/rsem.std()\n", + "\n", + "#extract high and low patients (absolute z-score > 1)\n", + "high_patients = rsem_zscore[rsem_zscore > 1].index\n", + "low_patients = rsem_zscore[rsem_zscore < -1].index" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Project PTMs onto splice events and identify events that are correlated with ESRP1 expression" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Removing ME events from analysis\n", + "Projecting PTMs onto SpliceSeq data\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Projecting PTMs onto splice events using hg19 coordinates.: 100%|██████████| 62861/62861 [16:07:33<00:00, 1.08it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PTMs projection successful (76363 identified).\n", + "\n" + ] + } + ], + "source": [ + "from ptm_pose import project\n", + "import pandas as pd\n", + "\n", + "#load data from TCGASpliceSeq\n", + "psi_data = pd.read_csv('../../../TCGA/Data/PRAD/TCGA_SpliceSeq/PSI_download_PRAD.txt', sep = '\\t')\n", + "splicegraph = pd.read_csv('../../../TCGA/Data/TCGASpliceData.txt', sep = '\\t')\n", + "\n", + "#identifying TCGA columns containing patient PSI data\n", + "patient_columns = [col for col in psi_data.columns if 'TCGA' in col]\n", + "\n", + "psi_data, spliced_ptms = project.project_ptms_onto_SpliceSeq(psi_data, splicegraph = splicegraph, extra_cols = patient_columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Functional consequence of ESRP1-correlated PTMs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Gene Set Enrichment Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exon Ontology Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Protein Interaction Network Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flanking sequences that alter protein interactions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Kinases impacted by splicing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Known kinase substrates " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Predicted differentially included kinase substrates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Altered kinase interactions by changed flanking sequences" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pose", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Examples/ESRP1_knockdown.html b/Examples/ESRP1_knockdown.html new file mode 100644 index 0000000..0cdc1bf --- /dev/null +++ b/Examples/ESRP1_knockdown.html @@ -0,0 +1,1585 @@ + + + + + + + + + + + + Project PTMs onto ESRP1 knockdown data from MATS (Yang et al, 2016) — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + + + + + + +
+ + + +
+

Project PTMs onto ESRP1 knockdown data from MATS (Yang et al, 2016)#

+

Here is an example of running PTM-POSE on MATS analysis of RNA sequencing data from ESRP1 knockdown experiments performed by Yang et al, 2016

+

First, let’s focus on skipped exon events.

+
+

Phase 1: Load the data and initialize PTM-POSE#

+

To identify differentially included PTMs as a result of ESRP1 knockdown, we need three layers of information for each splice event: 1. Chromosome 2. DNA strand 2. Start and end coordinates of the event (either hg19 or hg38)

+

Optionally, we can also provide: 1. Gene name 2. Event ID 3. Delta PSI for the event 4. Significance of the event

+

With PTM-POSE, we need to indicate where to find this information within the splice data

+
+
[1]:
+
+
+
import pandas as pd
+
+SE_data = pd.read_excel('../../ESRP1_data/Yang2016/esrp1_knockdown_data_Yang2016.xlsx', sheet_name='rMATS ESRP KD', header = 2).iloc[0:179]
+
+
+# required column information
+chromosome_col = 'chr'
+strand_col = 'strand'
+region_start_col = 'exonStart_0base'
+region_end_col = 'exonEnd'
+
+# optional column information (None if nothing is provided and will not be appended to the output)
+gene_col = 'geneSymbol'
+event_id_col = None   #not in the data
+dPSI_col = 'meanDeltaPSI'
+sig_col = 'FDR'
+
+#look at the data
+SE_data[[gene_col, chromosome_col, strand_col, region_start_col, region_end_col, dPSI_col, sig_col]].head()
+
+
+
+
+
[1]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
geneSymbolchrstrandexonStart_0baseexonEndmeanDeltaPSIFDR
0SPAG9chr17-49053223490532620.2270
1ARHGAP17chr16-24950684249509180.4130
2ITGA6chr2+173366499173366629-0.3610
3KRASchr12-2536837025368494-0.0680
4TCIRG1chr11+67817953678181310.3680
+
+
+

The strand can either be provided use ‘+’ and ‘-’ or using 1 and -1 to indicate the forward and reverse strand, the code will convert strand to integer format (-1 or 1) when running.

+

If this is the first time running PTM-POSE, you will need to download ptm_coordinates. If you set save = True, the coordinates will be saved for the future so you do not need to redownload them, but you can also set save = False to avoid saving the coordinates (will take ~60MB of space)

+
+
[3]:
+
+
+
from ptm_pose import pose_config
+pose_config.ptm_coordinates = pose_config.download_ptm_coordinates(save = True)
+
+
+
+
+
+

Phase 2: Project PTMs onto differentially included regions#

+

We can then use the project module of PTM-POSE to identify PTMs that can be found in these regions. This dataset uses the hg19 genome build, so we need to specify this using the ‘coordinate_type’ parameter.

+
+
[2]:
+
+
+
from ptm_pose import project
+
+splice_data, spliced_ptms = project.project_ptms_onto_splice_events(SE_data, chromosome_col = chromosome_col, strand_col = strand_col, region_start_col = region_start_col, region_end_col = region_end_col, gene_col = gene_col, event_id_col = event_id_col, dPSI_col = dPSI_col, sig_col = sig_col, coordinate_type = 'hg19')
+
+
+
+
+
+
+
+
+Translator file not found. Downloading mapping information between UniProt and Gene Names from pybiomart
+
+
+
+
+
+
+
+Projecting PTMs onto splice events using hg19 coordinates.: 100%|██████████| 179/179 [00:03<00:00, 48.82it/s]
+
+
+
+
+
+
+
+PTMs projection successful (475 identified).
+
+
+
+
+
+
+
+
+
+
+
+

From this, there are two outputs: 1. The original splice dataframe with additional PTM information added

+
+
[4]:
+
+
+
splice_data[[gene_col, chromosome_col, strand_col, region_start_col, region_end_col, dPSI_col, sig_col] + ['PTMs', 'Number of PTMs Affected', 'Number of Unique PTM Sites by Position', 'Event Length', 'PTM Density (PTMs/bp)']].head()
+
+
+
+
+
[4]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
geneSymbolchrstrandexonStart_0baseexonEndmeanDeltaPSIFDRPTMsNumber of PTMs AffectedNumber of Unique PTM Sites by PositionEvent LengthPTM Density (PTMs/bp)
0SPAG917-49053223490532620.2270NaN00390.0
1ARHGAP1716-24950684249509180.4130Q68EM7_S575.0 (Phosphorylation)/Q68EM7_S570.0 ...612340.004274
2ITGA62+173366499173366629-0.3610P23229_Ynan (Phosphorylation)/P23229_Tnan (Pho...741300.030769
3KRAS12-2536837025368494-0.0680P01116_C186 (Methylation)/P01116_C180 (Palmito...321240.016129
4TCIRG111+67817953678181310.3680NaN001780.0
+
+
+
    +
  1. New dataframe that has each PTM and additional information about the PTM in its own row

  2. +
+
+
[5]:
+
+
+
spliced_ptms.head()
+
+
+
+
+
[5]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
dPSISignificanceGeneSource of PTMUniProtKB AccessionResiduePTM Position in Canonical IsoformGene Location (hg19)ModificationModification ClassProximity to Region Start (bp)Proximity to Region End (bp)Proximity to Splice Boundary (bp)
00.4130.0ARHGAP17Q68EM7-1_S575Q68EM7S575.024950686.0PhosphoserinePhosphorylation2.0232.02.0
10.4130.0ARHGAP17Q68EM7-1_S570Q68EM7S570.024950701.0PhosphoserinePhosphorylation17.0217.017.0
20.4130.0ARHGAP17Q68EM7-1_S560Q68EM7S560.024950731.0PhosphoserinePhosphorylation47.0187.047.0
30.4130.0ARHGAP17Q68EM7-1_S553Q68EM7S553.024950752.0PhosphoserinePhosphorylation68.0166.068.0
40.4130.0ARHGAP17Q68EM7-1_S547Q68EM7S547.024950770.0PhosphoserinePhosphorylation86.0148.086.0
+
+
+

For MATS data, there is also a built in function for running PTM-POSE on MATS data, including all events:

+
+
+

Phase 3: Identify PTMs with altered flanking sequences as a result of splice events#

+

In addition to differential inclusion of PTMs, some PTMs may experience altered flanking sequences. We can use the project module of PTM-POSE to identify PTMs for which this happens. You will need to provide the same layers of information, plus the genomic coordinates of the regions flanking the spliced region.

+
+
[12]:
+
+
+
from ptm_pose import flanking_sequences
+
+first_flank_start_col = 'firstFlankingES'
+first_flank_end_col='firstFlankingEE'
+second_flank_start_col = 'secondFlankingES'
+second_flank_end_col = 'secondFlankingEE'
+
+flanks = flanking_sequences.get_flanking_changes_from_splice_data(SE_data, chromosome_col = chromosome_col, strand_col = strand_col, first_flank_start_col = first_flank_start_col, first_flank_end_col=first_flank_end_col, second_flank_start_col = second_flank_start_col, second_flank_end_col = second_flank_end_col , spliced_region_start_col = region_start_col, spliced_region_end_col = region_end_col, dPSI_col=dPSI_col, sig_col = sig_col, event_id_col = event_id_col, coordinate_type = 'hg19')
+
+
+
+
+
+
+
+
+c:\Users\Sam\miniconda3\envs\testing_pose\Lib\site-packages\Bio\pairwise2.py:278: BiopythonDeprecationWarning: Bio.pairwise2 has been deprecated, and we intend to remove it in a future release of Biopython. As an alternative, please consider using Bio.Align.PairwiseAligner as a replacement, and contact the Biopython developers if you still need the Bio.pairwise2 module.
+  warnings.warn(
+
+
+
+
[3]:
+
+
+
flanks.head()
+
+
+
+
+
[3]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Event IDSource of PTMResiduePTM Position in Canonical IsoformInclusion SequenceExclusion SequenceRegionTranslation SuccessMatched
03P01116-2_T148;P01116-1_T148T148ETSAKtRQESGETSAKtRQGC*SecondTrueFalse
13P01116-1_K147;P01116-2_K147K147IETSAkTRQESIETSAkTRQGCSecondTrueFalse
08Q9UPQ0-1_S746S746LPNLNsQGVAWLPNLNsQGGFSFirstTrueFalse
18Q9UPQ0-10_S750;Q9UPQ0-6_S596;Q9UPQ0-1_S750S750PSQVDsPSSEKILKVDsPSSEKSecondTrueFalse
011P62847-1_K129KNaNNVGAGkKSVSWNVGAGkKAEGVFirstTrueFalse
+
+
+

We can also do additional comparisons, such as comparing sequence identity and looking for matching elm motifs.

+
+
[ ]:
+
+
+
flanks = flanking_sequences.compare_flanking_sequences(flanks)
+flanks = flanking_sequences.compare_inclusion_motifs(flanks)
+flanks[['Source of PTM','Sequence Identity', 'Altered Positions','Residue Changes', 'Altered Flank Side', 'Motif only in Inclusion', 'Motif only in Exclusion']].head()
+
+
+
+
+
+

Phase 4: Annotate PTMs with functional information#

+

Once we have PTMs impacted by splicing, we can also annotate them with additional information. This can be done using the annotate module of PTM-POSE, and can be used with outputs from either the project module (differentially included PTMs) or the flanking_sequence module (PTMs with altered flanking sequences).

+

Currently, there are functions for appending information from: 1. PhosphoSitePlus (function, biological process, disease association, interactions, and kinase-substrate), 2. PTMsigDB (iKiP db, perturbations) 3. RegPhos (kinase-substrate), 4. PTMcode (inter and intraprotein interactions) 5. PTMInt (interactions) 6. DEPOD (Phosphatase-substrate) 7. ELM (interactions, motifs)

+
+
[3]:
+
+
+
from ptm_pose import annotate
+
+#where to find PhosphoSitePlus data
+psp_regulatory_file = '/PhosphoSitePlus/Regulatory_sites.gz'
+psp_disease_file = '/PhosphoSitePlus/Disease-associated_sites.gz'
+psp_kinase_file = '/Database_Information/PhosphoSitePlus/Kinase_Substrate_Dataset.gz'
+
+#where to find ELM data
+
+#PhosphoSitePlus data (due to licencsing issues, must be downloaded manually from PhosphoSitePlus and the file path provided)
+spliced_ptms = annotate.add_PSP_regulatory_site_data(spliced_ptms, '/PhosphoSitePlus/Regulatory_sites.gz')
+spliced_ptms = annotate.add_PSP_disease_association(spliced_ptms, '/PhosphoSitePlus/Disease-associated_sites.gz')
+spliced_ptms = annotate.add_PSP_kinase_substrate_data(spliced_ptms, '/Database_Information/PhosphoSitePlus/Kinase_Substrate_Dataset.gz')
+
+#ELM interactions (will be faster if file is downloaded manually from ELM and the file path provided)
+spliced_ptms = annotate.add_ELM_interactions(spliced_ptms)
+
+#PTMint interactions
+spliced_ptms = annotate.add_PTMint_data(spliced_ptms)
+
+#PTMcode interactions (will be faster/more reliable if file is downloaded manually from PTMcode and the file path provided)
+ptm_code_interprotein = '/PTMcode2_associations_between_proteins.txt.gz'
+
+#DEPOD phosphatase data
+spliced_ptms = annotate.add_DEPOD_phosphatase_data(spliced_ptms)
+
+#RegPhos data
+spliced_ptms = annotate.add_RegPhos_data(spliced_ptms)
+
+#annotate ptms
+spliced_ptms = annotate.annotate_ptms(spliced_ptms)
+
+
+
+
+
+
+
+
+PhosphoSitePlus regulatory_site information added:
+         ->6 PTMs in dataset found associated with a molecular function
+         ->7 PTMs in dataset found associated with a biological process
+         ->2 PTMs in dataset found associated with a protein interaction
+PhosphoSitePlus disease associations added: 1 PTM sites in dataset found associated with a disease in PhosphoSitePlus
+PhosphoSitePlus kinase-substrate interactions added: 6 phosphorylation sites in dataset found associated with a kinase in PhosphoSitePlus
+ELM interaction instances added: 1 PTMs in dataset found associated with at least one known ELM instance
+PTMInt data added: 2 PTMs in dataset found with PTMInt interaction information
+PTMcode interprotein interactions added: 27 PTMs in dataset found with PTMcode interprotein interaction information
+DEPOD Phosphatase substrates added: 0 PTMs in dataset found with Phosphatase substrate information
+RegPhos kinase-substrate data added: 3 PTMs in dataset found with kinase-substrate information
+
+
+
+
+
+
+
+c:\Users\Sam\miniconda3\envs\testing_pose\Lib\site-packages\ptm_pose\annotate.py:558: DtypeWarning: Columns (4) have mixed types. Specify dtype option on import or set low_memory=False.
+  regphos = pd.read_csv('http://140.138.144.141/~RegPhos/download/RegPhos_Phos_human.txt', sep = '\t')
+
+
+
+
+

Phase 5: Analyze Results#

+

Once we have all of this information, we can start to assess how PTMs are impacted by splicing. Let’s first get an idea for how many PTMs have different annotations associated with them from the various sources

+
+
[6]:
+
+
+
from ptm_pose import analyze
+
+analyze.show_available_annotations(spliced_ptms, figsize = (5,5))
+
+
+
+
+
+
+
+../_images/Examples_ESRP1_knockdown_19_0.png +
+
+

There are several ptms that have previously been annotated with specific functions, let’s take a look at those:

+
+
[10]:
+
+
+
annotations, annotation_counts = analyze.get_ptm_annotations(spliced_ptms, annotation_type = 'Process', database = 'PhosphoSitePlus')
+annotations.head()
+
+
+
+
+
[10]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
GeneUniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassPSP:ON_PROCESS
145CEACAM1P13688S461.0Phosphorylationapoptosis, altered
184YAP1P46937K342.0Ubiquitinationcarcinogenesis, altered
217TSC2P49815S981.0Phosphorylationcarcinogenesis, inhibited; cell growth, inhibi...
395SPHK2Q9NRA0S387.0Phosphorylationcell motility, altered
407SPHK2Q9NRA0T614.0Phosphorylationcell motility, altered
+
+
+
+
[11]:
+
+
+
annotation_counts
+
+
+
+
+
[11]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
PSP:ON_PROCESScount
0cell motility, altered3
1cell growth, induced2
2apoptosis, altered1
3carcinogenesis, altered1
4carcinogenesis, inhibited1
5cell growth, inhibited1
6autophagy, inhibited1
7signaling pathway regulation1
8cytoskeletal reorganization1
9cell adhesion, inhibited1
+
+
+
+
+ + +
+ + + + + + + + +
+ + + + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/Examples/ESRP1_knockdown.ipynb b/Examples/ESRP1_knockdown.ipynb new file mode 100644 index 0000000..7e021b5 --- /dev/null +++ b/Examples/ESRP1_knockdown.ipynb @@ -0,0 +1,1109 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Project PTMs onto ESRP1 knockdown data from MATS (Yang et al, 2016)\n", + "\n", + "Here is an example of running PTM-POSE on MATS analysis of RNA sequencing data from ESRP1 knockdown experiments performed by Yang et al, 2016\n", + "\n", + "First, let's focus on skipped exon events.\n", + "\n", + "## Phase 1: Load the data and initialize PTM-POSE\n", + " To identify differentially included PTMs as a result of ESRP1 knockdown, we need three layers of information for each splice event: \n", + "1. Chromosome\n", + "2. DNA strand\n", + "2. Start and end coordinates of the event (either hg19 or hg38)\n", + "\n", + "Optionally, we can also provide:\n", + "1. Gene name\n", + "2. Event ID\n", + "3. Delta PSI for the event\n", + "4. Significance of the event\n", + "\n", + "With PTM-POSE, we need to indicate where to find this information within the splice data" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geneSymbolchrstrandexonStart_0baseexonEndmeanDeltaPSIFDR
0SPAG9chr17-49053223490532620.2270
1ARHGAP17chr16-24950684249509180.4130
2ITGA6chr2+173366499173366629-0.3610
3KRASchr12-2536837025368494-0.0680
4TCIRG1chr11+67817953678181310.3680
\n", + "
" + ], + "text/plain": [ + " geneSymbol chr strand exonStart_0base exonEnd meanDeltaPSI FDR\n", + "0 SPAG9 chr17 - 49053223 49053262 0.227 0\n", + "1 ARHGAP17 chr16 - 24950684 24950918 0.413 0\n", + "2 ITGA6 chr2 + 173366499 173366629 -0.361 0\n", + "3 KRAS chr12 - 25368370 25368494 -0.068 0\n", + "4 TCIRG1 chr11 + 67817953 67818131 0.368 0" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "SE_data = pd.read_excel('../../ESRP1_data/Yang2016/esrp1_knockdown_data_Yang2016.xlsx', sheet_name='rMATS ESRP KD', header = 2).iloc[0:179]\n", + "\n", + "\n", + "# required column information\n", + "chromosome_col = 'chr'\n", + "strand_col = 'strand'\n", + "region_start_col = 'exonStart_0base'\n", + "region_end_col = 'exonEnd'\n", + "\n", + "# optional column information (None if nothing is provided and will not be appended to the output)\n", + "gene_col = 'geneSymbol'\n", + "event_id_col = None #not in the data\n", + "dPSI_col = 'meanDeltaPSI'\n", + "sig_col = 'FDR'\n", + "\n", + "#look at the data\n", + "SE_data[[gene_col, chromosome_col, strand_col, region_start_col, region_end_col, dPSI_col, sig_col]].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The strand can either be provided use '+' and '-' or using 1 and -1 to indicate the forward and reverse strand, the code will convert strand to integer format (-1 or 1) when running.\n", + "\n", + "If this is the first time running PTM-POSE, you will need to download ptm_coordinates. If you set save = True, the coordinates will be saved for the future so you do not need to redownload them, but you can also set save = False to avoid saving the coordinates (will take ~60MB of space)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from ptm_pose import pose_config\n", + "pose_config.ptm_coordinates = pose_config.download_ptm_coordinates(save = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Phase 2: Project PTMs onto differentially included regions\n", + "\n", + " We can then use the project module of PTM-POSE to identify PTMs that can be found in these regions. This dataset uses the hg19 genome build, so we need to specify this using the 'coordinate_type' parameter." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Translator file not found. Downloading mapping information between UniProt and Gene Names from pybiomart\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Projecting PTMs onto splice events using hg19 coordinates.: 100%|██████████| 179/179 [00:03<00:00, 48.82it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PTMs projection successful (475 identified).\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "from ptm_pose import project\n", + "\n", + "splice_data, spliced_ptms = project.project_ptms_onto_splice_events(SE_data, chromosome_col = chromosome_col, strand_col = strand_col, region_start_col = region_start_col, region_end_col = region_end_col, gene_col = gene_col, event_id_col = event_id_col, dPSI_col = dPSI_col, sig_col = sig_col, coordinate_type = 'hg19')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this, there are two outputs:\n", + "1. The original splice dataframe with additional PTM information added" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geneSymbolchrstrandexonStart_0baseexonEndmeanDeltaPSIFDRPTMsNumber of PTMs AffectedNumber of Unique PTM Sites by PositionEvent LengthPTM Density (PTMs/bp)
0SPAG917-49053223490532620.2270NaN00390.0
1ARHGAP1716-24950684249509180.4130Q68EM7_S575.0 (Phosphorylation)/Q68EM7_S570.0 ...612340.004274
2ITGA62+173366499173366629-0.3610P23229_Ynan (Phosphorylation)/P23229_Tnan (Pho...741300.030769
3KRAS12-2536837025368494-0.0680P01116_C186 (Methylation)/P01116_C180 (Palmito...321240.016129
4TCIRG111+67817953678181310.3680NaN001780.0
\n", + "
" + ], + "text/plain": [ + " geneSymbol chr strand exonStart_0base exonEnd meanDeltaPSI FDR \\\n", + "0 SPAG9 17 - 49053223 49053262 0.227 0 \n", + "1 ARHGAP17 16 - 24950684 24950918 0.413 0 \n", + "2 ITGA6 2 + 173366499 173366629 -0.361 0 \n", + "3 KRAS 12 - 25368370 25368494 -0.068 0 \n", + "4 TCIRG1 11 + 67817953 67818131 0.368 0 \n", + "\n", + " PTMs Number of PTMs Affected \\\n", + "0 NaN 0 \n", + "1 Q68EM7_S575.0 (Phosphorylation)/Q68EM7_S570.0 ... 6 \n", + "2 P23229_Ynan (Phosphorylation)/P23229_Tnan (Pho... 7 \n", + "3 P01116_C186 (Methylation)/P01116_C180 (Palmito... 3 \n", + "4 NaN 0 \n", + "\n", + " Number of Unique PTM Sites by Position Event Length PTM Density (PTMs/bp) \n", + "0 0 39 0.0 \n", + "1 1 234 0.004274 \n", + "2 4 130 0.030769 \n", + "3 2 124 0.016129 \n", + "4 0 178 0.0 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "splice_data[[gene_col, chromosome_col, strand_col, region_start_col, region_end_col, dPSI_col, sig_col] + ['PTMs', 'Number of PTMs Affected', 'Number of Unique PTM Sites by Position', 'Event Length', 'PTM Density (PTMs/bp)']].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. New dataframe that has each PTM and additional information about the PTM in its own row" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
dPSISignificanceGeneSource of PTMUniProtKB AccessionResiduePTM Position in Canonical IsoformGene Location (hg19)ModificationModification ClassProximity to Region Start (bp)Proximity to Region End (bp)Proximity to Splice Boundary (bp)
00.4130.0ARHGAP17Q68EM7-1_S575Q68EM7S575.024950686.0PhosphoserinePhosphorylation2.0232.02.0
10.4130.0ARHGAP17Q68EM7-1_S570Q68EM7S570.024950701.0PhosphoserinePhosphorylation17.0217.017.0
20.4130.0ARHGAP17Q68EM7-1_S560Q68EM7S560.024950731.0PhosphoserinePhosphorylation47.0187.047.0
30.4130.0ARHGAP17Q68EM7-1_S553Q68EM7S553.024950752.0PhosphoserinePhosphorylation68.0166.068.0
40.4130.0ARHGAP17Q68EM7-1_S547Q68EM7S547.024950770.0PhosphoserinePhosphorylation86.0148.086.0
\n", + "
" + ], + "text/plain": [ + " dPSI Significance Gene Source of PTM UniProtKB Accession Residue \\\n", + "0 0.413 0.0 ARHGAP17 Q68EM7-1_S575 Q68EM7 S \n", + "1 0.413 0.0 ARHGAP17 Q68EM7-1_S570 Q68EM7 S \n", + "2 0.413 0.0 ARHGAP17 Q68EM7-1_S560 Q68EM7 S \n", + "3 0.413 0.0 ARHGAP17 Q68EM7-1_S553 Q68EM7 S \n", + "4 0.413 0.0 ARHGAP17 Q68EM7-1_S547 Q68EM7 S \n", + "\n", + " PTM Position in Canonical Isoform Gene Location (hg19) Modification \\\n", + "0 575.0 24950686.0 Phosphoserine \n", + "1 570.0 24950701.0 Phosphoserine \n", + "2 560.0 24950731.0 Phosphoserine \n", + "3 553.0 24950752.0 Phosphoserine \n", + "4 547.0 24950770.0 Phosphoserine \n", + "\n", + " Modification Class Proximity to Region Start (bp) \\\n", + "0 Phosphorylation 2.0 \n", + "1 Phosphorylation 17.0 \n", + "2 Phosphorylation 47.0 \n", + "3 Phosphorylation 68.0 \n", + "4 Phosphorylation 86.0 \n", + "\n", + " Proximity to Region End (bp) Proximity to Splice Boundary (bp) \n", + "0 232.0 2.0 \n", + "1 217.0 17.0 \n", + "2 187.0 47.0 \n", + "3 166.0 68.0 \n", + "4 148.0 86.0 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spliced_ptms.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For MATS data, there is also a built in function for running PTM-POSE on MATS data, including all events: " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Phase 3: Identify PTMs with altered flanking sequences as a result of splice events\n", + "\n", + "In addition to differential inclusion of PTMs, some PTMs may experience altered flanking sequences. We can use the project module of PTM-POSE to identify PTMs for which this happens. You will need to provide the same layers of information, plus the genomic coordinates of the regions flanking the spliced region." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Sam\\miniconda3\\envs\\testing_pose\\Lib\\site-packages\\Bio\\pairwise2.py:278: BiopythonDeprecationWarning: Bio.pairwise2 has been deprecated, and we intend to remove it in a future release of Biopython. As an alternative, please consider using Bio.Align.PairwiseAligner as a replacement, and contact the Biopython developers if you still need the Bio.pairwise2 module.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "from ptm_pose import flanking_sequences\n", + "\n", + "first_flank_start_col = 'firstFlankingES'\n", + "first_flank_end_col='firstFlankingEE'\n", + "second_flank_start_col = 'secondFlankingES'\n", + "second_flank_end_col = 'secondFlankingEE'\n", + "\n", + "flanks = flanking_sequences.get_flanking_changes_from_splice_data(SE_data, chromosome_col = chromosome_col, strand_col = strand_col, first_flank_start_col = first_flank_start_col, first_flank_end_col=first_flank_end_col, second_flank_start_col = second_flank_start_col, second_flank_end_col = second_flank_end_col , spliced_region_start_col = region_start_col, spliced_region_end_col = region_end_col, dPSI_col=dPSI_col, sig_col = sig_col, event_id_col = event_id_col, coordinate_type = 'hg19')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Event IDSource of PTMResiduePTM Position in Canonical IsoformInclusion SequenceExclusion SequenceRegionTranslation SuccessMatched
03P01116-2_T148;P01116-1_T148T148ETSAKtRQESGETSAKtRQGC*SecondTrueFalse
13P01116-1_K147;P01116-2_K147K147IETSAkTRQESIETSAkTRQGCSecondTrueFalse
08Q9UPQ0-1_S746S746LPNLNsQGVAWLPNLNsQGGFSFirstTrueFalse
18Q9UPQ0-10_S750;Q9UPQ0-6_S596;Q9UPQ0-1_S750S750PSQVDsPSSEKILKVDsPSSEKSecondTrueFalse
011P62847-1_K129KNaNNVGAGkKSVSWNVGAGkKAEGVFirstTrueFalse
\n", + "
" + ], + "text/plain": [ + " Event ID Source of PTM Residue \\\n", + "0 3 P01116-2_T148;P01116-1_T148 T \n", + "1 3 P01116-1_K147;P01116-2_K147 K \n", + "0 8 Q9UPQ0-1_S746 S \n", + "1 8 Q9UPQ0-10_S750;Q9UPQ0-6_S596;Q9UPQ0-1_S750 S \n", + "0 11 P62847-1_K129 K \n", + "\n", + " PTM Position in Canonical Isoform Inclusion Sequence Exclusion Sequence \\\n", + "0 148 ETSAKtRQESG ETSAKtRQGC* \n", + "1 147 IETSAkTRQES IETSAkTRQGC \n", + "0 746 LPNLNsQGVAW LPNLNsQGGFS \n", + "1 750 PSQVDsPSSEK ILKVDsPSSEK \n", + "0 NaN NVGAGkKSVSW NVGAGkKAEGV \n", + "\n", + " Region Translation Success Matched \n", + "0 Second True False \n", + "1 Second True False \n", + "0 First True False \n", + "1 Second True False \n", + "0 First True False " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "flanks.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also do additional comparisons, such as comparing sequence identity and looking for matching elm motifs." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "flanks = flanking_sequences.compare_flanking_sequences(flanks)\n", + "flanks = flanking_sequences.compare_inclusion_motifs(flanks)\n", + "flanks[['Source of PTM','Sequence Identity', 'Altered Positions','Residue Changes', 'Altered Flank Side', 'Motif only in Inclusion', 'Motif only in Exclusion']].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Phase 4: Annotate PTMs with functional information\n", + "\n", + "Once we have PTMs impacted by splicing, we can also annotate them with additional information. This can be done using the annotate module of PTM-POSE, and can be used with outputs from either the project module (differentially included PTMs) or the flanking_sequence module (PTMs with altered flanking sequences).\n", + "\n", + "Currently, there are functions for appending information from:\n", + "1. PhosphoSitePlus (function, biological process, disease association, interactions, and kinase-substrate), \n", + "2. PTMsigDB (iKiP db, perturbations)\n", + "3. RegPhos (kinase-substrate), \n", + "4. PTMcode (inter and intraprotein interactions)\n", + "5. PTMInt (interactions)\n", + "6. DEPOD (Phosphatase-substrate)\n", + "7. ELM (interactions, motifs)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PhosphoSitePlus regulatory_site information added:\n", + "\t ->6 PTMs in dataset found associated with a molecular function \n", + "\t ->7 PTMs in dataset found associated with a biological process\n", + "\t ->2 PTMs in dataset found associated with a protein interaction\n", + "PhosphoSitePlus disease associations added: 1 PTM sites in dataset found associated with a disease in PhosphoSitePlus\n", + "PhosphoSitePlus kinase-substrate interactions added: 6 phosphorylation sites in dataset found associated with a kinase in PhosphoSitePlus\n", + "ELM interaction instances added: 1 PTMs in dataset found associated with at least one known ELM instance\n", + "PTMInt data added: 2 PTMs in dataset found with PTMInt interaction information\n", + "PTMcode interprotein interactions added: 27 PTMs in dataset found with PTMcode interprotein interaction information\n", + "DEPOD Phosphatase substrates added: 0 PTMs in dataset found with Phosphatase substrate information\n", + "RegPhos kinase-substrate data added: 3 PTMs in dataset found with kinase-substrate information\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Sam\\miniconda3\\envs\\testing_pose\\Lib\\site-packages\\ptm_pose\\annotate.py:558: DtypeWarning: Columns (4) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " regphos = pd.read_csv('http://140.138.144.141/~RegPhos/download/RegPhos_Phos_human.txt', sep = '\\t')\n" + ] + } + ], + "source": [ + "from ptm_pose import annotate\n", + "\n", + "#where to find PhosphoSitePlus data\n", + "psp_regulatory_file = '/PhosphoSitePlus/Regulatory_sites.gz'\n", + "psp_disease_file = '/PhosphoSitePlus/Disease-associated_sites.gz'\n", + "psp_kinase_file = '/Database_Information/PhosphoSitePlus/Kinase_Substrate_Dataset.gz'\n", + "\n", + "#where to find ELM data\n", + "\n", + "#PhosphoSitePlus data (due to licencsing issues, must be downloaded manually from PhosphoSitePlus and the file path provided)\n", + "spliced_ptms = annotate.add_PSP_regulatory_site_data(spliced_ptms, '/PhosphoSitePlus/Regulatory_sites.gz')\n", + "spliced_ptms = annotate.add_PSP_disease_association(spliced_ptms, '/PhosphoSitePlus/Disease-associated_sites.gz')\n", + "spliced_ptms = annotate.add_PSP_kinase_substrate_data(spliced_ptms, '/Database_Information/PhosphoSitePlus/Kinase_Substrate_Dataset.gz')\n", + "\n", + "#ELM interactions (will be faster if file is downloaded manually from ELM and the file path provided)\n", + "spliced_ptms = annotate.add_ELM_interactions(spliced_ptms)\n", + "\n", + "#PTMint interactions\n", + "spliced_ptms = annotate.add_PTMint_data(spliced_ptms)\n", + "\n", + "#PTMcode interactions (will be faster/more reliable if file is downloaded manually from PTMcode and the file path provided)\n", + "ptm_code_interprotein = '/PTMcode2_associations_between_proteins.txt.gz'\n", + "\n", + "#DEPOD phosphatase data\n", + "spliced_ptms = annotate.add_DEPOD_phosphatase_data(spliced_ptms)\n", + "\n", + "#RegPhos data\n", + "spliced_ptms = annotate.add_RegPhos_data(spliced_ptms)\n", + "\n", + "#annotate ptms\n", + "spliced_ptms = annotate.annotate_ptms(spliced_ptms)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Phase 5: Analyze Results\n", + "\n", + "Once we have all of this information, we can start to assess how PTMs are impacted by splicing. Let's first get an idea for how many PTMs have different annotations associated with them from the various sources" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAHWCAYAAACv7eWRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADjSElEQVR4nOzdd1QU1/s/8PfSlqUXwQVFUCkiTRQ1AaUoBhAJ1mBDECt2Y48Na9TYG5YYQINGBTR+sIuAikaxrA1ERFBjsCOKIoJ7f3/wZX6su1Rx0eR5nTPnuDN37jx3ZlaevXvnLo8xxkAIIYQQQgj57BTqOwBCCCGEEEL+Kyj5JoQQQgghRE4o+SaEEEIIIUROKPkmhBBCCCFETij5JoQQQgghRE4o+SaEEEIIIUROKPkmhBBCCCFETij5JoQQQgghRE4o+SaEEEIIIUROKPkmhBDyn5aUlAQej4eYmJj6DqVaHj9+jN69e0NfXx88Hg+rV6+u75A+m7Jrk5SUVN+hEFJnKPkmhBDy2UVGRoLH40FVVRUPHz6U2u7u7g5bW9t6iOzrM3HiRBw9ehQzZszAjh074O3tXWFZHo/HLQoKCjA2NsZ3333HJbNhYWESZSpa3N3dAQDBwcHg8XjQ0tJCYWGh1PEyMzO5fZYvX/45mv/JzMzMJM6Jjo4O7OzsMHz4cJw/f/6T6l68eDH2799fN4F+orS0NISFhSEnJ6e+QyEfUarvAAghhPx3FBUVYcmSJVi3bl19h/LVOnnyJPz9/TF58uRqle/SpQsGDRoExhiys7OxceNGdOrUCQcPHkTPnj1hbm7OlS0oKEBoaCh69OiBnj17cusbNmzI/VtJSQlv377F//73P/zwww8Sx4qOjoaqqirevXv3ia0s5erqisLCQqioqNRJfWVatWqFSZMmAQBev36N9PR07N27F1u3bsXEiROxcuXKWtW7ePFi9O7dG927d6/DaGsnLS0N8+bNg7u7O8zMzOo7HFIOJd+EEELkplWrVti6dStmzJgBY2Pj+g5Hrt68eQN1dfVPrufJkyfQ0dGpdnlLS0sMHDiQe92jRw/Y29tj9erVOHr0KOzt7bltz549Q2hoKOzt7SX2KY/P58PFxQW7du2SSr537twJX19fxMbG1qxRFVBQUICqqmqd1FVeo0aNpNq3dOlS9O/fH6tWrYKFhQVCQ0Pr/LiEADTshBBCiBz99NNP+PDhA5YsWVJpuZycHPB4PERGRkpt4/F4CAsL416XDZ24ffs2Bg4cCG1tbRgYGGD27NlgjOHBgwfw9/eHlpYWhEIhVqxYIfOYHz58wE8//QShUAh1dXV8//33ePDggVS58+fPw9vbG9ra2lBTU4ObmxtSUlIkypTFlJaWhv79+0NXVxcdOnSotM13795Fnz59oKenBzU1NXzzzTc4ePAgt71s6A5jDBs2bOCGTtSUnZ0dGjRogOzs7BrvW6Z///44fPgwXr58ya1LTU1FZmYm+vfvL1W+uLgY8+bNg4WFBVRVVaGvr48OHTrg+PHjlR5H1pjvsiFKaWlp8PDwgJqaGho1aoRly5bVuj0AIBAIsGPHDujp6WHRokVgjHHbli9fDmdnZ+jr60MgEKBNmzZSzwjweDy8efMGUVFR3LUJDg4GANy7dw+jRo2ClZUVBAIB9PX10adPH6khIdU9T7du3ULv3r2hp6cHVVVVODk54cCBA9z2yMhI9OnTBwDg4eHBxUNj578MlHwTQgiRm6ZNm2LQoEHYunUr/vnnnzqtOyAgAGKxGEuWLEH79u2xcOFCrF69Gl26dEGjRo2wdOlSmJubY/LkyTh16pTU/osWLcLBgwcxbdo0jBs3DsePH4enp6fE2OaTJ0/C1dUVr169wty5c7F48WK8fPkSnTp1woULF6Tq7NOnD96+fYvFixdj2LBhFcb++PFjODs74+jRoxg1ahQWLVqEd+/e4fvvv8e+ffsAlA7B2LFjB4DSoSQ7duzgXtdEXl4e8vLyoK+vX+N9y/Ts2RM8Hg9xcXHcup07d6JFixZo3bq1VPmwsDDMmzcPHh4eWL9+PWbOnIkmTZrg8uXLtTp+Xl4evL294eDggBUrVqBFixaYNm0aDh8+XOs2AYCGhgZ69OiBhw8fIi0tjVu/Zs0aODo6Yv78+Vi8eDGUlJTQp08fiQ9HO3bsAJ/PR8eOHblrM2LECAClH0zOnj2Lvn37Yu3atRg5ciQSEhLg7u6Ot2/fcnVU5zzdvHkT33zzDdLT0zF9+nSsWLEC6urq6N69u8S9Mm7cOAClH3jL4rG2tv6k80PqCCOEEEI+s4iICAaApaamsqysLKakpMTGjRvHbXdzc2M2Njbc6+zsbAaARURESNUFgM2dO5d7PXfuXAaADR8+nFtXUlLCGjduzHg8HluyZAm3Pi8vjwkEAhYUFMStS0xMZABYo0aN2KtXr7j1e/bsYQDYmjVrGGOMicViZmFhwby8vJhYLObKvX37ljVt2pR16dJFKqZ+/fpV6/xMmDCBAWCnT5/m1r1+/Zo1bdqUmZmZsQ8fPki0f/To0dWqFwAbMmQIe/r0KXvy5Ak7f/4869y5MwPAVqxYIVX+6dOnUue3vKCgIKaurs4YY6x3796sc+fOjDHGPnz4wIRCIZs3bx537X755RduPwcHB+br61utmMsruzaJiYncOjc3NwaAbd++nVtXVFTEhEIh69WrV5V1mpqaVhrLqlWrGAD2559/cuvevn0rUeb9+/fM1taWderUSWK9urq6xL1V0f6MMXbu3DmpdlTnPHXu3JnZ2dmxd+/ecevEYjFzdnZmFhYW3Lq9e/dKnTvyZaCeb0IIIXLVrFkzBAYGYsuWLcjNza2zeocOHcr9W1FREU5OTmCMYciQIdx6HR0dWFlZ4e7du1L7Dxo0CJqamtzr3r17w8jICIcOHQIAiEQibljF8+fP8ezZMzx79gxv3rxB586dcerUKYjFYok6R44cWa3YDx06hHbt2kkMTdHQ0MDw4cORk5Mj0QtbU9u2bYOBgQEMDQ3Rvn17pKSk4Mcff8SECRNqXSdQOvQkKSkJjx49wsmTJ/Ho0SOZQ06A0vN+8+ZNZGZmftIxy2hoaEiM2VZRUUG7du1kXtfa1A2UPohZRiAQcP/Oy8tDfn4+OnbsWO2e+/L7FxcX4/nz5zA3N4eOjo5EHVWdpxcvXuDkyZP44Ycf8Pr1a+4efP78Oby8vJCZmSlzNiHyZaHkmxBCiNzNmjULJSUlVY79rokmTZpIvNbW1oaqqioaNGggtT4vL09qfwsLC4nXPB4P5ubm3LjcsoQoKCgIBgYGEsuvv/6KoqIi5OfnS9TRtGnTasV+7949WFlZSa0vGyZw7969atUji7+/P44fP44TJ07g/PnzePbsGVasWAEFhU9LAbp27QpNTU3s3r0b0dHRaNu2rcTMKeXNnz8fL1++hKWlJezs7DBlyhRcu3at1sdu3Lix1Hh3XV1dmde1pgoKCgBA4oNYfHw8vvnmG6iqqkJPTw8GBgYIDw+Xut4VKSwsxJw5c2BiYgI+n48GDRrAwMAAL1++lKijqvN0584dMMYwe/ZsqXtw7ty5AEofyCVfNprthBBCiNw1a9YMAwcOxJYtWzB9+nSp7RU9SPjhw4cK61RUVKzWOgASD9NVV1mv9i+//IJWrVrJLFPWa1qmfI9nfWncuDE8PT3rvF4+n4+ePXsiKioKd+/elXgI9mOurq7IysrCn3/+iWPHjuHXX3/FqlWrsGnTJolvLKqrLq/rx27cuAEA3AeJ06dP4/vvv4erqys2btwIIyMjKCsrIyIiAjt37qxWnWPHjkVERAQmTJiAb7/9Ftra2uDxeOjbt6/EtyVVnaeyspMnT4aXl5fMY1X0AYh8OSj5JoQQUi9mzZqF33//HUuXLpXapqurCwASs2kAn9YDXJWPv+pnjOHOnTvcVHzNmzcHAGhpadV5MmtqaoqMjAyp9bdu3eK2f4n69++P3377DQoKCujbt2+lZfX09DB48GAMHjwYBQUFcHV1RVhYWK2S78+loKAA+/btg4mJCfetQ2xsLFRVVXH06FHw+XyubEREhNT+FX1ojImJQVBQkMRMO+/evZO6v4HKz1OzZs0AAMrKylXeg7WZCYfIBw07IYQQUi+aN2+OgQMHYvPmzXj06JHENi0tLTRo0EBqVpKNGzd+tni2b98uMc43JiYGubm58PHxAQC0adMGzZs3x/Lly7mhCeU9ffq01sfu2rUrLly4gHPnznHr3rx5gy1btsDMzAwtW7asdd2fk4eHBxYsWID169dDKBRWWO758+cSrzU0NGBubo6ioqLPHWK1FRYWIjAwEC9evMDMmTO55FVRURE8Hk/iW5ecnByZv2Sprq4uM6FWVFSU6pVft26d1Dc5VZ0nQ0NDuLu7Y/PmzTKflyh/D5bNKS8rHlK/qOebEEJIvZk5cyZ27NiBjIwM2NjYSGwbOnQolixZgqFDh8LJyQmnTp3C7du3P1ssenp66NChAwYPHozHjx9j9erVMDc356YIVFBQwK+//gofHx/Y2Nhg8ODBaNSoER4+fIjExERoaWnhf//7X62OPX36dOzatQs+Pj4YN24c9PT0EBUVhezsbMTGxn7y+OzPRUFBAbNmzaqyXMuWLeHu7o42bdpAT08PFy9eRExMDMaMGSOHKKU9fPgQv//+O4DS3u60tDTs3bsXjx49wqRJk7gpAgHA19cXK1euhLe3N/r3748nT55gw4YNMDc3lxq33qZNG5w4cQIrV66EsbExmjZtivbt26Nbt27YsWMHtLW10bJlS5w7dw4nTpyQmu6xOudpw4YN6NChA+zs7DBs2DA0a9YMjx8/xrlz5/D333/j6tWrAEp/0EpRURFLly5Ffn4++Hw+OnXqBENDw891Wkk1UfJNCCGk3pibm2PgwIGIioqS2jZnzhw8ffoUMTEx2LNnD3x8fHD48OHPljz89NNPuHbtGn7++We8fv0anTt3xsaNG6GmpsaVcXd3x7lz57je3oKCAgiFQrRv314iYauphg0b4uzZs5g2bRrWrVuHd+/ewd7eHv/73//g6+tbF82rV+PGjcOBAwdw7NgxFBUVwdTUFAsXLsSUKVPqJR6RSITAwEDweDxoamrCxMQEfn5+GDp0KNq1aydRtlOnTti2bRuWLFmCCRMmoGnTpli6dClycnKkku+VK1di+PDhmDVrFgoLCxEUFIT27dtjzZo1UFRURHR0NN69ewcXFxecOHFCatx2dc5Ty5YtcfHiRcybNw+RkZF4/vw5DA0N4ejoiDlz5nDlhEIhNm3ahJ9//hlDhgzBhw8fkJiYSMn3F4DH6uLpBEIIIYQQQkiVvszvsQghhBBCCPkXouSbEEIIIYQQOaHkmxBCCCGEEDmh5JsQQgghhBA5oeSbEEIIIYQQOaHkmxBCCCGEEDmheb4JIaQSYrEY//zzDzQ1Nennmgkh5D+KMYbXr1/D2Nj4k3/0ipJvQgipxD///AMTE5P6DoMQQsgX4MGDB2jcuPEn1UHJNyGEVEJTUxNA6X+4Wlpa9RwNIYSQ+vDq1SuYmJhwfxM+BSXfhBBSibKhJlpaWpR8E0LIf1xdDD+kBy4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkROl+g6AEEK+Bj///DNUVVXrOwxCCCE1NHfu3PoOQQL1fBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYSQf7VTp07Bz88PxsbG4PF42L9/v8T24OBg8Hg8icXb21uqnqFDh0JLSws6OjoYMmQICgoKahwLJd+EkFpLSkoCj8fDy5cvAQCRkZHQ0dGp15gIIYSQj7158wYODg7YsGFDhWW8vb2Rm5vLLbt27ZIqc+vWLRw/fhzx8fE4deoUhg8fXuNYKPkmhFTq3LlzUFRUhK+vb53UV75XQVtbGy4uLjh58qTUNllLWFgYcnJywOPxoKioiIcPH0rUnZubCyUlJfB4POTk5NRJvIQQQr5+Pj4+WLhwIXr06FFhGT6fD6FQyC26urrctoyMDADA2rVr0b59e3To0AHr1q3DH3/8gX/++adGsVDyTQip1LZt2zB27FicOnWqxv/BVCQiIgK5ublISUlBgwYN0K1bN9y9e1eix2H16tXQ0tKSWDd58mSujkaNGmH79u0S9UZFRaFRo0Z1EiMhhJD/lqSkJBgaGsLKygqhoaF4/vw5t+3ChQsAgNatW3PrPD09oaCggPPnz9foOJR8E0IqVFBQgN27dyM0NBS+vr6IjIysk3p1dHQgFApha2uL8PBwFBYW4vjx4xI9Dtra2uDxeBLrNDQ0uDqCgoIQEREhUW9ERASCgoIk1uXl5WHAgAEwMDCAQCCAhYWF1H6EEEL+27y9vbF9+3YkJCRg6dKlSE5Oho+PDz58+AAAePz4sdQ+SkpK0NPTw6NHj2p0LEq+CSEV2rNnD1q0aAErKysMHDgQv/32GxhjdXoMgUAAAHj//n2N9vv++++Rl5eHM2fOAADOnDmDvLw8+Pn5SZSbPXs20tLScPjwYaSnpyM8PBwNGjSosN6ioiK8evVKYiGEEPLv1rdvX3z//fews7ND9+7dER8fj9TUVCQlJdX5sSj5JoRUaNu2bRg4cCCA0l6B/Px8JCcn11n9b9++xaxZs6CoqAg3N7ca7ausrMx9IACA3377DQMHDoSysrJEufv378PR0RFOTk4wMzODp6enVIJe3s8//wxtbW1uMTExqXnDCCGEfNWaNWuGBg0a4M6dOwCAhg0bSpUpKSnBixcvIBQKa1Q3Jd+EEJkyMjJw4cIF9OvXD0Dp12sBAQHYtm3bJ9fdr18/aGhoQFNTE7Gxsdi2bRvs7e1rXE9ISAj27t2LR48eYe/evQgJCZEqExoaij/++AOtWrXC1KlTcfbs2UrrnDFjBvLz87nlwYMHNY6LEELI1+3vv//G8+fPYWRkBABo164dAODKlStcmZMnT0IsFqN9+/Y1qlup7sIkhPybbNu2DSUlJTA2NubWMcbA5/Oxfv16aGtr17ruVatWwdPTE9ra2jAwMKh1PXZ2dmjRogX69esHa2tr2NraQiQSSZTx8fHBvXv3cOjQIRw/fhydO3fG6NGjsXz5cpl18vl88Pn8WsdECCHky1NQUMD1YgNAdnY2RCIR9PT0oKenh3nz5qFXr14QCoXIysrC1KlTYW5uDi8vLwCAlZUVAGDcuHHYunUriouLMWbMGPTt21fi72R1UM83IURKSUkJtm/fjhUrVkAkEnHL1atXYWxsLHPu05oQCoUwNzf/pMS7TEhICJKSkmT2epcxMDBAUFAQfv/9d6xevRpbtmz55OMSQgj5ely8eBGOjo5wdHQEAPz4449wdHTEnDlzoKioiGvXruH777+HpaUlhgwZgjZt2uD06dNSnTGWlpbo3Lkzunbtig4dOtTq7wn1fBNCpMTHxyMvLw9DhgyR6uHu1asXtm3bhpEjR9ZTdJKGDRuGPn36VPjjPnPmzEGbNm1gY2ODoqIixMfHw9raWr5BEkIIqVfu7u6VThhw9OjRatWzbds2aGlpfVIs1PNNCJGybds2bljIx3r16oWLFy/i2rVr9RCZNCUlJTRo0ABKSrL7ElRUVDBjxgzY29vD1dUVioqK+OOPP+QcJSGEEFKKx+p63jBCCPkXefXqFbS1tTF9+nSoqqrWdziEEEJqaO7cuZ9cR9nfgvz8fOr5JoQQQggh5GtByTchhBBCCCFyQsk3IYQQQgghckLJNyGEEEIIIXJCyTchhBBCCCFyQsk3IYQQQgghckLJNyGEEEIIIXJC83wTQkgl6nJuV0IIIV8nmuebEEIIIYSQrxAl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTIiVJ9B0AIIV8Dbe1P258mdSWEEAJQzzchhBBCCCFyQ8k3IYQQQgghckLJNyGEEEIIIXJCyTchhBBCCCFyQsk3IYQQQgghckLJNyGEEEIIIXJCyTchhBBCCCFyQsk3IYQQQgghckLJ939IZGQkdHR06u34ZmZmWL16dZ3UlZSUBB6Ph5cvX8rtmOXl5OSAx+NBJBJVex93d3dMmDChTuMICwtDq1at6qy++r5H/u3MzMzA4/GkltGjR9d3aIQQQuTkq0u+g4ODuT9YKioqMDc3x/z581FSUiKxTdZiZmYGoDQJ4vF4WLJkiVT9vr6+4PF4CAsLk2/D5CAgIAC3b9+u0T6fK3n9VM7OzsjNzYX2//3sYF0mjR/fR/r6+vD29sa1a9e4MiYmJsjNzYWtrW2dHLO2Jk+ejISEBLkes/y50dbWhouLC06ePCnXGL5WqampyM3N5Zbjx48DAPr06VPPkRFCCJGXry75BgBvb2/k5uYiMzMTkyZNQlhYGH755ResWbNG4g8bAERERHCvU1NTuTpMTEwQGRkpUe/Dhw+RkJAAIyMjeTZHbgQCAQwNDes7jDqhoqICoVAIHo/3Weovu8dyc3ORkJAAJSUldOvWjduuqKgIoVAIJSWlz3L86tLQ0IC+vr7cj1v2vkpJSUGDBg3QrVs33L17V2bZ4uJiOUf35TIwMIBQKOSW+Ph4NG/eHG5ubvUdGiGEEDn5KpNvPp8PoVAIU1NThIaGwtPTEwcOHIC2trbEHzYA0NHR4V4bGBhwdXTr1g3Pnj1DSkoKty4qKgrfffedVIK6ceNGWFhYQFVVFQ0bNkTv3r0rjO358+fo168fGjVqBDU1NdjZ2WHXrl0SZWJiYmBnZweBQAB9fX14enrizZs3AEqHU7Rr1w7q6urQ0dGBi4sL7t27x+0bHh6O5s2bQ0VFBVZWVtixY4dE3S9fvsSIESPQsGFDqKqqwtbWFvHx8QCke4ezsrLg7++Phg0bQkNDA23btsWJEye47e7u7rh37x4mTpzI9XSWOXPmDDp27AiBQAATExOMGzeOawMAPHnyBH5+fhAIBGjatCmio6MrPGcAcOPGDSgoKODp06cAgBcvXkBBQQF9+/blyixcuBAdOnTgzlPZsJOkpCQMHjwY+fn5XJzlv7l4+/YtQkJCoKmpiSZNmmDLli2VxgL8/3tMKBSiVatWmD59Oh48eMDFJ2vYSXJyMtq1awc+nw8jIyNMnz4dJSUlFR4jLy8PgwYNgq6uLtTU1ODj44PMzEyJMlu3boWJiQnU1NTQo0cPrFy5UuIayhp28ttvv8HGxoaLY8yYMdy2lStXws7ODurq6jAxMcGoUaNQUFBQ5fn4WNn7ytbWFuHh4SgsLOR6cXk8HsLDw/H9999DXV0dixYtAvBp9y5Q9T1X2fu0svdcfXn//j1+//13hISEfLYPkYQQQr48X2Xy/TGBQID379/XaB8VFRUMGDAAERER3LrIyEiEhIRIlLt48SLGjRuH+fPnIyMjA0eOHIGrq2uF9b579w5t2rTBwYMHcePGDQwfPhyBgYG4cOECACA3Nxf9+vVDSEgI0tPTkZSUhJ49e4IxhpKSEnTv3h1ubm64du0azp07h+HDh3N/mPft24fx48dj0qRJuHHjBkaMGIHBgwcjMTERACAWi+Hj44OUlBT8/vvvSEtLw5IlS6CoqCgz1oKCAnTt2hUJCQm4cuUKvL294efnh/v37wMA4uLi0LhxY8yfP1/i24SsrCx4e3ujV69euHbtGnbv3o0zZ85IJHnBwcF48OABEhMTERMTg40bN+LJkycVnjcbGxvo6+sjOTkZAHD69GmJ10Bpcuvu7i61r7OzM1avXg0tLS0uzsmTJ3PbV6xYAScnJ1y5cgWjRo1CaGgoMjIyKoxF1nn6/fffYW5uXmEv88OHD9G1a1e0bdsWV69eRXh4OLZt24aFCxdWWG9wcDAuXryIAwcO4Ny5c2CMoWvXrlxPcUpKCkaOHInx48dDJBKhS5cuXCJbkfDwcIwePRrDhw/H9evXceDAAZibm3PbFRQUsHbtWty8eRNRUVE4efIkpk6dWu1zIYtAIAAAifdgWFgYevTogevXryMkJOST792q7rnK3qeVvedkKSoqwqtXrySWz2H//v14+fIlgoODP0v9hBBCvlDsKxMUFMT8/f0ZY4yJxWJ2/Phxxufz2eTJk6XKAmD79u2TWu/m5sbGjx/PRCIR09TUZAUFBSw5OZkZGhqy4uJi5uDgwObOncsYYyw2NpZpaWmxV69e1TpmX19fNmnSJMYYY5cuXWIAWE5OjlS558+fMwAsKSlJZj3Ozs5s2LBhEuv69OnDunbtyhhj7OjRo0xBQYFlZGTI3D8iIoJpa2tXGquNjQ1bt24d99rU1JStWrVKosyQIUPY8OHDJdadPn2aKSgosMLCQpaRkcEAsAsXLnDb09PTGQCpusrr2bMnGz16NGOMsQkTJrApU6YwXV1dlp6ezt6/f8/U1NTYsWPHGGOMJSYmMgAsLy+v0raZmpqygQMHcq/FYjEzNDRk4eHhFcYRFBTEFBUVmbq6OlNXV2cAmJGREbt06RJXJjs7mwFgV65cYYwx9tNPPzErKysmFou5Mhs2bGAaGhrsw4cPjLH/f98xxtjt27cZAJaSksKVf/bsGRMIBGzPnj2MMcYCAgKYr6+vRGwDBgyQaOfcuXOZg4MD99rY2JjNnDmzwrZ9bO/evUxfX597XZ17pPz76s2bN2zUqFFMUVGRXb16lds+YcIEiX0+9d6t6p6r7H1a2XtOlrlz5zIAMpZ8BrBaLx/77rvvWLdu3aoVEyGEkPqVn5/PALD8/PxPruur7PmOj4+HhoYGVFVV4ePjg4CAgFo9IOng4AALCwvExMTgt99+Q2BgoNQY3i5dusDU1BTNmjVDYGAgoqOj8fbt2wrr/PDhAxYsWAA7Ozvo6elBQ0MDR48e5XqTHRwc0LlzZ9jZ2aFPnz7YunUr8vLyAAB6enoIDg6Gl5cX/Pz8uDHsZdLT0+Hi4iJxPBcXF6SnpwMARCIRGjduDEtLy2q1v6CgAJMnT4a1tTV0dHSgoaGB9PR0LtaKXL16FZGRkdDQ0OAWLy8viMViZGdnIz09HUpKSmjTpg23T4sWLap8INLNzQ1JSUkASnu5O3XqBFdXVyQlJSE1NRXFxcVS7a8Oe3t77t88Hg9CobDSXngA8PDwgEgkgkgkwoULF+Dl5QUfHx+JIUDlpaen49tvv5UYPuDi4oKCggL8/fffMssrKSmhffv23Dp9fX1YWVlx1zMjIwPt2rWT2O/j1+U9efIE//zzDzp37lxhmRMnTqBz585o1KgRNDU1ERgYiOfPn1d6T8vSr18/aGhoQFNTE7Gxsdi2bZvEeXZycpJq76fcu1Xdc5W9Tyt7z8kyY8YM5Ofnc8uDBw9qdG6q4969ezhx4gSGDh1a53UTQgj5sn2VyXdZYpSZmYnCwkJERUVBXV29VnWFhIRgw4YNiImJkRpyAgCampq4fPkydu3aBSMjI8yZMwcODg4VTnFX9uDntGnTkJiYCJFIBC8vL+4reUVFRRw/fhyHDx9Gy5YtsW7dOlhZWSE7OxtA6YNs586dg7OzM3bv3g1LS0v89ddf1WpL2df/1TV58mTs27cPixcvxunTpyESiWBnZ1flEJ6CggKMGDGCS05FIhGuXr2KzMxMNG/evEYxlOfu7o60tDRkZmYiLS0NHTp0gLu7O5KSkpCcnAwnJyeoqanVuF5lZWWJ1zweD2KxuNJ91NXVYW5uDnNzc7Rt2xa//vor3rx5g61bt9b4+PJS1fXPyclBt27dYG9vj9jYWFy6dAkbNmwAgBoP21q1ahVEIhEePXqER48eISgoSGJ7Td+PVcVe1T1X2fu0qvfcx/h8PrS0tCSWuhYREQFDQ0P4+vrWed2EEEK+bF9l8l2WGDVp0uSTZ5vo378/rl+/DltbW7Rs2VJmGSUlJXh6emLZsmW4du0acnJyKpxaLSUlBf7+/hg4cCAcHBzQrFkzqen9eDweXFxcMG/ePFy5cgUqKirYt28ft93R0REzZszA2bNnYWtri507dwIArK2tJR4QLTteWdz29vb4+++/qz2dYEpKCoKDg9GjRw/Y2dlBKBQiJydHooyKigo+fPggsa5169ZIS0vjktPyi4qKClq0aIGSkhJcunSJ2ycjI6PKObnt7Oygq6uLhQsXolWrVtDQ0IC7uzuSk5ORlJQkc7x3ZXHWJR6PBwUFBRQWFsrcbm1tzY3bLpOSkgJNTU00btxYZvmSkhKcP3+eW/f8+XNkZGRw19PKykpihh4AUq/L09TUhJmZWYVTD166dAlisRgrVqzAN998A0tLS/zzzz8VN7oSQqEQ5ubmEg8xV+ZT792q7jmg8vdpVe85eRKLxYiIiEBQUFC9z5ZDCCFE/v7z//Pr6uoiNzdXqne0THx8PO7evQtXV1fo6uri0KFDEIvFsLKyklm+bBjL2bNnoauri5UrV+Lx48dcknH+/HkkJCRws6qcP38eT58+hbW1NbKzs7FlyxZ8//33MDY2RkZGBjIzMzFo0CAAwJQpU/DDDz/A0dERnp6e+N///oe4uDhuhhI3Nze4urqiV69eWLlyJczNzXHr1i3weDx4e3vLjDUuLg5+fn7g8XiYPXu2VI+wmZkZTp06hb59+4LP56NBgwaYNm0avvnmG4wZMwZDhw6Furo60tLScPz4caxfvx5WVlbw9vbGiBEjEB4eDiUlJUyYMKHK3k0ejwdXV1dER0dzD0za29ujqKgICQkJ+PHHHyvc18zMDAUFBUhISICDgwPU1NRq1UtepqioCI8ePQJQOivJ+vXrUVBQAD8/P5nlR40ahdWrV2Ps2LEYM2YMMjIyMHfuXPz4449QUJD+jGthYQF/f38MGzYMmzdvhqamJqZPn45GjRrB398fADB27Fi4urpi5cqV8PPzw8mTJ3H48OFKZ8YICwvDyJEjYWhoCB8fH7x+/RopKSkYO3YszM3NUVxcjHXr1sHPzw8pKSnYtGlTrc9RTXzqvVvVPVfZ+7Sy91x9OHHiBO7fvy/zmzZCCCH/AZ8+BF2+yj9wWRVU8cBlRco/cHn69Gnm5ubGdHV1mUAgYPb29mz37t0V7vv8+XPm7+/PNDQ0mKGhIZs1axYbNGgQF3NaWhrz8vJiBgYGjM/nM0tLS+4Bx0ePHrHu3bszIyMjpqKiwkxNTdmcOXO4B/YYY2zjxo2sWbNmTFlZmVlaWrLt27dLHX/w4MFMX1+fqaqqMltbWxYfH88Yk36YLjs7m3l4eDCBQMBMTEzY+vXrpc7NuXPnmL29PePz+az87XLhwgXWpUsXpqGhwdTV1Zm9vT1btGgRtz03N5f5+voyPp/PmjRpwrZv3y7z4c2PrVq1igFghw8f5tb5+/szJSUl9vr1a27dxw9cMsbYyJEjmb6+PgPAXT9Zxyx/fWUJCgqSeNBOU1OTtW3blsXExEicO5R74JIxxpKSkljbtm2ZiooKEwqFbNq0aay4uJjb/vG5ffHiBQsMDGTa2tpMIBAwLy8vdvv2bYlYtmzZwho1asQEAgHr3r07W7hwIRMKhdz2jx+4ZIyxTZs2MSsrK6asrMyMjIzY2LFjuW0rV65kRkZG3PG2b99erQdXy6vofVXV9k+5dxmr/J6r7H1a2XuuOsoesqnrBy4JIYR8PerygUseYxXMt0UI+eIMGzYMt27dwunTp+s7lP+MV69e/d8vqeYDqP34b/qflhBCvl5lfwvy8/M/+Vmg//ywE0K+ZMuXL0eXLl2grq6Ow4cPIyoqChs3bqzvsAghhBBSS5R8E/IFu3DhApYtW4bXr1+jWbNmWLt2LU1PRwghhHzFKPkm5Au2Z8+e+g6BEEIIIXXoq5xqkBBCCCGEkK8RJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICc12Qggh1ZCfD3zi7yoQQggh1PNNCCGEEEKIvFDyTQghhBBCiJxQ8k0IIYQQQoicUPJNCCGEEEKInFDyTQghhBBCiJxQ8k0IIYQQQoic0FSDhBBSDdraNd+HsbqPgxBCyNeNer4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvv9lIiMjoaOjU2/HNzMzw+rVq+ukrqSkJPB4PLx8+VJux6yt6sZal8LCwtCqVSu5He9LwOPxsH///voOo8YePnyIgQMHQl9fHwKBAHZ2drh48WJ9h0UIIaQefJHJd3BwMHg8Hng8HlRUVGBubo758+ejpKREYpusxczMDADg7u4OHo+HJUuWSNXv6+sLHo+HsLAw+TZMDgICAnD79u0a7fMlJK+yODs7Izc3F9r/99OCdfnBouw+GjlypNS20aNHg8fjITg4uE6O9TUqe/98vJSUlMjl+BV9sMjNzYWPj49cYqgreXl5cHFxgbKyMg4fPoy0tDSsWLECurq69R0aIYSQevDF/ry8t7c3IiIiUFRUhEOHDmH06NFQVlbGmjVrJBJqIyMjREREwNvbGwCgqKjIbTMxMUFkZCSmT5/OrXv48CESEhJgZGQkv8bIkUAggEAgqO8w6oSKigqEQuFnq9/ExAR//PEHVq1axZ2zd+/eYefOnWjSpMlnO+6XpLi4GMrKyjK3DRs2DPPnz5dYp6RUv/9lfM774XNZunQpTExMEBERwa1r2rRpPUZECCGkPn2RPd8AwOfzIRQKYWpqitDQUHh6euLAgQPQ1taGUCjkFgDQ0dHhXhsYGHB1dOvWDc+ePUNKSgq3LioqCt999x0MDQ0ljrdx40ZYWFhAVVUVDRs2RO/evSuM7fnz5+jXrx8aNWoENTU12NnZYdeuXRJlYmJiYGdnB4FAAH19fXh6euLNmzcASocotGvXDurq6tDR0YGLiwvu3bvH7RseHo7mzZtDRUUFVlZW2LFjh0TdL1++xIgRI9CwYUOoqqrC1tYW8fHxAKR7h7OysuDv74+GDRtCQ0MDbdu2xYkTJ7jt7u7uuHfvHiZOnMj1bpY5c+YMOnbsCIFAABMTE4wbN45rAwA8efIEfn5+EAgEaNq0KaKjoys8ZwBw48YNKCgo4OnTpwCAFy9eQEFBAX379uXKLFy4EB06dODOU9lQjqSkJAwePBj5+flcnOW/uXj79i1CQkKgqamJJk2aYMuWLZXGAgCtW7eGiYkJ4uLiuHVxcXFo0qQJHB0dJcoWFRVh3LhxMDQ0hKqqKjp06IDU1NRK66/q/BUVFWHatGkwMTEBn8+Hubk5tm3bBkB2L//+/fslrs/HUlNT0aVLFzRo0ADa2tpwc3PD5cuXJcrweDyEh4fj+++/h7q6OhYtWlRhfWpqahLvtbL3m7u7OyZMmCBRtnv37hLfFJiZmWHx4sWVXpO///4b/fr1g56eHtTV1eHk5ITz588jMjIS8+bNw9WrV7lrHRkZycVfftjJ9evX0alTJ+59Nnz4cBQUFHDbg4OD0b17dyxfvhxGRkbQ19fH6NGjUVxcXGG769qBAwfg5OSEPn36wNDQEI6Ojti6davcjk8IIeTL8sUm3x8TCAR4//59jfZRUVHBgAEDJHqcIiMjERISIlHu4sWLGDduHObPn4+MjAwcOXIErq6uFdb77t07tGnTBgcPHsSNGzcwfPhwBAYG4sKFCwBKvxrv168fQkJCkJ6ejqSkJPTs2ROMMZSUlKB79+5wc3PDtWvXcO7cOQwfPpxLqvbt24fx48dj0qRJuHHjBkaMGIHBgwcjMTERACAWi+Hj44OUlBT8/vvvSEtLw5IlSyR6/MsrKChA165dkZCQgCtXrsDb2xt+fn64f/8+gNJks3Hjxpg/fz5yc3ORm5sLoDRp9/b2Rq9evXDt2jXs3r0bZ86cwZgxY7i6g4OD8eDBAyQmJiImJgYbN27EkydPKjxvNjY20NfXR3JyMgDg9OnTEq8BIDk5Ge7u7lL7Ojs7Y/Xq1dDS0uLinDx5Mrd9xYoVcHJywpUrVzBq1CiEhoYiIyOjwljKhISESNwfv/32GwYPHixVburUqYiNjUVUVBQuX74Mc3NzeHl54cWLFzLrrc75GzRoEHbt2oW1a9ciPT0dmzdvhoaGRpUxV+T169cICgrCmTNn8Ndff8HCwgJdu3bF69evJcqFhYWhR48euH79utR7oS5Vdk0KCgrg5uaGhw8f4sCBA7h69SqmTp0KsViMgIAATJo0CTY2Nty1DggIkKr/zZs38PLygq6uLlJTU7F3716cOHFC4hwDQGJiIrKyspCYmIioqChERkZyybwsRUVFePXqlcTyKe7evYvw8HBYWFjg6NGjCA0Nxbhx4xAVFfVJ9RJCCPlKsS9QUFAQ8/f3Z4wxJhaL2fHjxxmfz2eTJ0+WKguA7du3T2q9m5sbGz9+PBOJRExTU5MVFBSw5ORkZmhoyIqLi5mDgwObO3cuY4yx2NhYpqWlxV69elXrmH19fdmkSZMYY4xdunSJAWA5OTlS5Z4/f84AsKSkJJn1ODs7s2HDhkms69OnD+vatStjjLGjR48yBQUFlpGRIXP/iIgIpq2tXWmsNjY2bN26ddxrU1NTtmrVKokyQ4YMYcOHD5dYd/r0aaagoMAKCwtZRkYGA8AuXLjAbU9PT2cApOoqr2fPnmz06NGMMcYmTJjApkyZwnR1dVl6ejp7//49U1NTY8eOHWOMMZaYmMgAsLy8vErbZmpqygYOHMi9FovFzNDQkIWHh1cYR9k99uTJE8bn81lOTg7Lyclhqqqq7OnTp8zf358FBQUxxhgrKChgysrKLDo6mtv//fv3zNjYmC1btkxmrNU9f8ePH5cZn6y27tu3j5V/y86dO5c5ODhU2MYPHz4wTU1N9r///Y9bB4BNmDChwn3KuLm5MWVlZaaurs4tP/74I7dt/PjxEuXLny/Gqr4mmzdvZpqamuz58+cyj19R28q/37ds2cJ0dXVZQUEBt/3gwYNMQUGBPXr0iDFWep1NTU1ZSUkJV6ZPnz4sICCgwrbPnTuXAZCx5DOA1WhhjDFlZWX27bffShxj7Nix7JtvvqkwBkIIIV+W/Px8BoDl5+d/cl1f7Jjv+Ph4aGhooLi4GGKxGP3796/VA5IODg6wsLBATEwMEhMTERgYKDVutUuXLjA1NUWzZs3g7e0Nb29v9OjRA2pqajLr/PDhAxYvXow9e/bg4cOHeP/+PYqKirjyDg4O6Ny5M+zs7ODl5YXvvvsOvXv3hq6uLvT09BAcHAwvLy906dIFnp6e+OGHH7gx6Onp6Rg+fLjE8VxcXLBmzRoAgEgkQuPGjWFpaVmt9hcUFCAsLAwHDx5Ebm4uSkpKUFhYyPV8V+Tq1au4du2axFASxhjEYjGys7Nx+/ZtKCkpoU2bNtz2Fi1aVPlApJubGzf8IDk5GYsXL8bt27eRlJSEFy9eoLi4GC4uLtVqW3n29vbcv3k8HoRCYaW98GUMDAzg6+uLyMhIMMbg6+uLBg0aSJTJysqSiktZWRnt2rVDenq6zHqrOn/Xr1+HoqIi3NzcatrUCj1+/BizZs1CUlISnjx5gg8fPuDt27dS19rJyala9Q0YMAAzZ87kXtf0YdfKrolIJIKjoyP09PRqVGd56enpcHBwgLq6OrfOxcUFYrEYGRkZaNiwIYDSb1zKfzNkZGSE69evV1jvjBkz8OOPP3KvX716BRMTk1rHaWRkhJYtW0qss7a2RmxsbK3rJIQQ8vX6YpNvDw8PhIeHQ0VFBcbGxp/0oFdISAg2bNiAtLQ0bmhIeZqamrh8+TKSkpJw7NgxzJkzB2FhYUhNTZWZcPzyyy9Ys2YNVq9eDTs7O6irq2PChAncsBhFRUUcP34cZ8+exbFjx7Bu3TrMnDkT58+fR9OmTREREYFx48bhyJEj2L17N2bNmoXjx4/jm2++qbItNX2YcvLkyTh+/DiWL18Oc3NzCAQC9O7du8ohPAUFBRgxYgTGjRsnta1JkyY1nlGlTNl44czMTKSlpaFDhw64desWkpKSkJeXBycnpwo/9FTm44cGeTwexGJxtfYNCQnhhips2LChxseWparzd+fOnUr3V1BQAGNMYl1V45SDgoLw/PlzrFmzBqampuDz+fj222+lrnX5ZLUy2traMDc3r3VslV0TeT4UXNN7g8/ng8/n19nxXVxcpIZA3b59G6ampnV2DEIIIV+PL3bMt7q6OszNzdGkSZNPnmGhf//+uH79OmxtbaV6oMooKSnB09MTy5Ytw7Vr15CTk4OTJ0/KLJuSkgJ/f38MHDgQDg4OaNasmVQyyuPx4OLignnz5uHKlStQUVHBvn37uO2Ojo6YMWMGzp49C1tbW+zcuRNAaY9Y+QdEy45XFre9vT3+/vvvaie/KSkpCA4ORo8ePWBnZwehUIicnByJMioqKvjw4YPEutatWyMtLQ3m5uZSi4qKClq0aIGSkhJcunSJ2ycjI6PKea7t7Oygq6uLhQsXolWrVtDQ0IC7uzuSk5ORlJQkc7x3ZXHWBW9vb7x//x7FxcXw8vKS2l728Gv561JcXIzU1NQK76eqzp+dnR3EYrHEePfyDAwM8Pr1a4kHNEUiUaXtSElJwbhx49C1a1fY2NiAz+fj2bNn1TgDNWNgYMA9GwCUfhN048aNGtVhb28PkUhU4Zj56lxra2trXL16VeIcpaSkQEFBAVZWVjWK53OaOHEi/vrrLyxevBh37tzBzp07sWXLFowePbq+QyOEEFIPvtjkuy7p6uoiNzcXCQkJMrfHx8dj7dq1EIlEuHfvHrZv3w6xWFzhH3ALCwuuZzs9PR0jRozA48ePue3nz5/H4sWLcfHiRdy/fx9xcXF4+vQprK2tkZ2djRkzZuDcuXO4d+8ejh07hszMTFhbWwMApkyZgsjISISHhyMzMxMrV65EXFwc93Chm5sbXF1d0atXLxw/fhzZ2dk4fPgwjhw5UmGscXFxEIlEuHr1Kvr37y/V62dmZoZTp07h4cOHXLI2bdo0nD17FmPGjIFIJEJmZib+/PNProfYysoK3t7eGDFiBM6fP49Lly5h6NChVfZo8ng8uLq6Ijo6mku07e3tUVRUhISEhEqHYZiZmaGgoAAJCQl49uwZ3r59W+mxqktRURHp6elIS0uT+eCquro6QkNDMWXKFBw5cgRpaWkYNmwY3r59iyFDhsiss6rzZ2ZmhqCgIISEhGD//v3Izs5GUlIS9uzZAwBo37491NTU8NNPPyErKws7d+6s9CFBoPRa79ixA+np6Th//jwGDBjwWXqYO3XqhIMHD+LgwYO4desWQkNDa/zjQv369YNQKET37t2RkpKCu3fvIjY2FufOnQNQen6ys7MhEonw7NkzFBUVSdUxYMAAqKqqIigoCDdu3EBiYiLGjh2LwMBAbsjJl6Bt27bYt28fdu3aBVtbWyxYsACrV6/GgAED6js0Qggh9eA/kXwDpeNVK/q6XUdHB3FxcejUqROsra2xadMm7Nq1CzY2NjLLz5o1C61bt4aXlxfc3d25JKKMlpYWTp06ha5du8LS0hKzZs3CihUr4OPjAzU1Ndy6dQu9evWCpaUlhg8fjtGjR2PEiBEASqdsW7NmDZYvXw4bGxts3rwZEREREj3CsbGxaNu2Lfr164eWLVti6tSpFfYSrly5Erq6unB2doafnx+8vLzQunVriTLz589HTk4Omjdvzk3VaG9vj+TkZNy+fRsdO3aEo6Mj5syZA2NjY26/iIgIGBsbw83NDT179sTw4cOlpnCUxc3NDR8+fODapKCgAFdXV+7bgoo4Oztj5MiRCAgIgIGBAZYtW1blsapLS0sLWlpaFW5fsmQJevXqhcDAQLRu3Rp37tzB0aNHK/yhlOqcv/DwcPTu3RujRo1CixYtMGzYMK4XV09PD7///jsOHTrETWVZ1TMP27ZtQ15eHlq3bo3AwEBuasS6FhISgqCgIAwaNAhubm5o1qwZPDw8alSHiooKjh07BkNDQ3Tt2hV2dnYSs/b06tUL3t7e8PDwgIGBgdRUnkDpVIhHjx7Fixcv0LZtW/Tu3RudO3fG+vXr66Sddalbt264fv063r17h/T0dAwbNqy+QyKEEFJPeOzjwZuEEEI4r169+r9fWc0HUPEHNFnof1dCCPl3KPtbkJ+fX2lnXXX8Z3q+CSGEEEIIqW+UfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCSDXk55fO212ThRBCCPkYJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMiJUn0HQAghXwNt7ZrvQ9MNEkII+Rj1fBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0LIZ/bw4UMMHDgQ+vr6EAgEsLOzw8WLF+s7LEIIIfWAkm9SryIjI6Gjo1NvxzczM8Pq1avrpK6kpCTweDy8fPlSbscsz93dHRMmTKjzej8HV1dX7Ny5U67H3LRpE/z8/OR6TADIy8uDi4sLlJWVcfjwYaSlpWHFihXQ1dWVeyyEEELqHyXfdSA4OBg8Hg88Hg8qKiowNzfH/PnzUVJSIrFN1mJmZgagNHHi8XhYsmSJVP2+vr7g8XgICwuTb8PkICAgALdv367RPp8ref1Uzs7OyM3Nhfb//Q55XX6wCA4ORvfu3SXWxcTEQFVVFStWrAAAxMXFYcGCBXVyvM/pwIEDePz4Mfr27cutMzMz494T6urqaN26Nfbu3cttf/v2LWbMmIHmzZtDVVUVBgYGcHNzw59//smVKXsP8Xg8qKqqomXLlti4cSO3PSQkBJcvX8bp06fl09D/s3TpUpiYmCAiIgLt2rVD06ZN8d1336F58+ZyjYMQQsiXgZLvOuLt7Y3c3FxkZmZi0qRJCAsLwy+//II1a9YgNzeXWwAgIiKCe52amsrVYWJigsjISIl6Hz58iISEBBgZGcmzOXIjEAhgaGhY32HUCRUVFQiFQvB4vM9+rF9//RUDBgxAeHg4Jk2aBADQ09ODpqbmZz/2p1q7di0GDx4MBQXJ/37mz5+P3NxcXLlyBW3btkVAQADOnj0LABg5ciTi4uKwbt063Lp1C0eOHEHv3r3x/PlziTqGDRuG3NxcpKWl4YcffsDo0aOxa9cuAKXXp3///li7dq18Gvp/Dhw4ACcnJ/Tp0weGhoZwdHTE1q1b5RoDIYSQLwcl33WEz+dDKBTC1NQUoaGh8PT0xIEDB6CtrQ2hUMgtAKCjo8O9NjAw4Oro1q0bnj17hpSUFG5dVFQUvvvuO6kEdePGjbCwsICqqioaNmyI3r17Vxjb8+fP0a9fPzRq1Ahqamqws7PjEpIyMTExsLOzg0AggL6+Pjw9PfHmzRsApcMp2rVrB3V1dejo6MDFxQX37t3j9g0PD0fz5s2hoqICKysr7NixQ6Luly9fYsSIEWjYsCFUVVVha2uL+Ph4ANK9w1lZWfD390fDhg2hoaGBtm3b4sSJE9x2d3d33Lt3DxMnTuR6OcucOXMGHTt2hEAggImJCcaNG8e1AQCePHkCPz8/CAQCNG3aFNHR0RWeMwC4ceMGFBQU8PTpUwDAixcvoKCgINFju3DhQnTo0IE7T2XDTpKSkjB48GDk5+dzcZb/5uLt27cICQmBpqYmmjRpgi1btlQaS3nLli3D2LFj8ccff2Dw4MES56b8sBMzMzMsXry40uNMmzYNlpaWUFNTQ7NmzTB79mwUFxdz269evQoPDw9oampCS0sLbdq0kRirXNU5/9jTp09x8uRJmcM/NDU1IRQKYWlpiQ0bNkAgEOB///sfgNIE9qeffkLXrl1hZmaGNm3aYOzYsQgJCZGoQ01NDUKhEM2aNUNYWBgsLCxw4MABbrufnx8OHDiAwsLCKs5y3bl79y7Cw8NhYWGBo0ePIjQ0FOPGjUNUVJTcYiCEEPLloOT7MxEIBHj//n2N9lFRUcGAAQMQERHBrYuMjJRKMC5evIhx48Zh/vz5yMjIwJEjR+Dq6lphve/evUObNm1w8OBB3LhxA8OHD0dgYCAuXLgAAMjNzUW/fv0QEhKC9PR0JCUloWfPnmCMoaSkBN27d4ebmxuuXbuGc+fOYfjw4VzSu2/fPowfPx6TJk3CjRs3MGLECAwePBiJiYkAALFYDB8fH6SkpOD3339HWloalixZAkVFRZmxFhQUoGvXrkhISMCVK1fg7e0NPz8/3L9/H0Dp0IrGjRtzvaRl3yZkZWXB29sbvXr1wrVr17B7926cOXMGY8aM4eoODg7GgwcPkJiYiJiYGGzcuBFPnjyp8LzZ2NhAX18fycnJAIDTp09LvAaA5ORkuLu7S+3r7OyM1atXQ0tLi4tz8uTJ3PYVK1bAyckJV65cwahRoxAaGoqMjIwKYykzbdo0LFiwAPHx8ejRo0eV5as6jqamJiIjI5GWloY1a9Zg69atWLVqFbd9wIABaNy4MVJTU3Hp0iVMnz4dysrKAKp3zj925swZqKmpwdrautK4lZSUoKyszL2HhEIhDh06hNevX1fZ5vI+fh86OTmhpKQE58+fr3CfoqIivHr1SmL5FGKxGK1bt8bixYvh6OiI4cOHY9iwYdi0adMn1UsIIeQrxcgnCwoKYv7+/owxxsRiMTt+/Djj8/ls8uTJUmUBsH379kmtd3NzY+PHj2cikYhpamqygoIClpyczAwNDVlxcTFzcHBgc+fOZYwxFhsby7S0tNirV69qHbOvry+bNGkSY4yxS5cuMQAsJydHqtzz588ZAJaUlCSzHmdnZzZs2DCJdX369GFdu3ZljDF29OhRpqCgwDIyMmTuHxERwbS1tSuN1cbGhq1bt457bWpqylatWiVRZsiQIWz48OES606fPs0UFBRYYWEhy8jIYADYhQsXuO3p6ekMgFRd5fXs2ZONHj2aMcbYhAkT2JQpU5iuri5LT09n79+/Z2pqauzYsWOMMcYSExMZAJaXl1dp20xNTdnAgQO512KxmBkaGrLw8PAK4wgKCmIqKioMAEtISJBZpuwe+pTj/PLLL6xNmzbca01NTRYZGSmzbFXnXJZVq1axZs2aSa0vf02LiorY4sWLGQAWHx/PGGMsOTmZNW7cmCkrKzMnJyc2YcIEdubMmQrbX1JSwnbs2MEAsPXr10uU09XVrbBNjDE2d+5cBkDGks8AVqOFMcaaNGnChgwZInGMjRs3MmNj4wpjIIQQ8mXJz89nAFh+fv4n10U933UkPj4eGhoaUFVVhY+PDwICAmr1gKSDgwMsLCwQExOD3377DYGBgVBSUpIo06VLF5iamqJZs2YIDAxEdHQ03r59W2GdHz58wIIFC2BnZwc9PT1oaGjg6NGjXG+yg4MDOnfuDDs7O/Tp0wdbt25FXl4egNJxxMHBwfDy8oKfnx83hr1Meno6XFxcJI7n4uKC9PR0AIBIJELjxo1haWlZrfYXFBRg8uTJsLa2ho6ODjQ0NJCens7FWpGrV68iMjISGhoa3OLl5QWxWIzs7Gykp6dDSUkJbdq04fZp0aJFlQ9Eurm5ISkpCUBpL3enTp3g6uqKpKQkpKamori4WKr91WFvb8/9m8fjQSgUVtoLX7aPmZkZ5s6di4KCgjo5zu7du+Hi4gKhUAgNDQ3MmjVL4lz/+OOPGDp0KDw9PbFkyRJkZWVx26o657IUFhZCVVVV5rZp06ZBQ0MDampqWLp0KZYsWQJfX18ApbOj3L17FwkJCejduzdu3ryJjh07Sj1gunHjRmhoaEAgEGDYsGGYOHEiQkNDJcoIBIJK3y8zZsxAfn4+tzx48KDCstXh4uIi9a3G7du3YWpq+kn1EkII+TpR8l1HPDw8IBKJkJmZicLCQkRFRUFdXb1WdYWEhGDDhg2IiYmRGnIClA4VuHz5Mnbt2gUjIyPMmTMHDg4OFU5xV/bg57Rp05CYmAiRSAQvLy/u63hFRUUcP34chw8fRsuWLbFu3TpYWVlxCVRERATOnTsHZ2dn7N69G5aWlvjrr7+q1RaBQFCjtk+ePBn79u3D4sWLcfr0aYhEItjZ2VU5hKegoAAjRoyASCTilqtXryIzM/OTZpVwd3dHWloaMjMzkZaWhg4dOsDd3R1JSUlITk6Gk5MT1NTUalxv2dCNMjweD2KxuNJ9GjVqhKSkJDx8+BDe3t7VGoJR2XHOnTuHAQMGoGvXroiPj8eVK1cwc+ZMiXMdFhaGmzdvwtfXFydPnkTLli2xb98+ALU75w0aNOA+2H1sypQpEIlE+Pvvv5GXl4dp06ZJtaVjx46YNm0ajh07hvnz52PBggUS8Q4YMAAikQjZ2dl48+YNVq5cKfVg54sXLySetfgYn8+HlpaWxPIpJk6ciL/++guLFy/GnTt3sHPnTmzZsgWjR4/+pHoJIYR8nSj5riPq6uowNzdHkyZNpHqqa6p///64fv06bG1t0bJlS5lllJSU4OnpiWXLluHatWvIycnByZMnZZZNSUmBv78/Bg4cCAcHBzRr1kxqej8ejwcXFxfMmzcPV65cgYqKCpdkAYCjoyNmzJiBs2fPwtbWlpuj2draWuIB0bLjlcVtb2+Pv//+u9rTCaakpCA4OBg9evSAnZ0dhEIhcnJyJMqoqKjgw4cPEutat26NtLQ0mJubSy0qKipo0aIFSkpKcOnSJW6fjIyMKufktrOzg66uLhYuXIhWrVpBQ0MD7u7uSE5ORlJSkszx3pXF+alMTU2RnJyMR48eVTsBr8jZs2dhamqKmTNnwsnJCRYWFhIP0paxtLTExIkTcezYMfTs2ZN7JqGqcy6Lo6MjHj16JDMBb9CgAczNzas9Y0zLli1RUlKCd+/eceu0tbVhbm6ORo0aSSXdQOk49Xfv3sHR0bHK+utK27ZtsW/fPuzatQu2trZYsGABVq9ejQEDBsgtBkIIIV8OSr6/QLq6usjNzUVCQoLM7fHx8Vi7di1EIhHu3buH7du3QywWw8rKSmZ5CwsLHD9+HGfPnkV6ejpGjBiBx48fc9vPnz+PxYsX4+LFi7h//z7i4uLw9OlTWFtbIzs7GzNmzMC5c+dw7949HDt2DJmZmdwDc1OmTEFkZCTCw8ORmZmJlStXIi4ujnu40M3NDa6urujVqxeOHz+O7OxsHD58GEeOHKkw1ri4OK4XtX///lI9wmZmZjh16hQePnyIZ8+eASgdsnD27FmMGTOG+wbizz//5B7+s7Kygre3N0aMGIHz58/j0qVLGDp0aJU98zweD66uroiOjuYSbXt7exQVFSEhIQFubm4V7mtmZoaCggIkJCTg2bNnlQ51qAkTExMkJSXhyZMn8PLyqvUDgRYWFrh//z7++OMPZGVlYe3atRIfuAoLCzFmzBgkJSXh3r17SElJQWpqKnftqzrnsjg6OqJBgwZSH9iq4u7ujs2bN+PSpUvIycnBoUOH8NNPP8HDw6NGPdOnT59Gs2bN5D7Hdrdu3XD9+nW8e/cO6enpGDZsmFyPTwgh5MtByfcXSkdHp8JhKzo6OoiLi0OnTp1gbW2NTZs2YdeuXbCxsZFZftasWWjdujW8vLzg7u4OoVAo8YMtWlpaOHXqFLp27QpLS0vMmjULK1asgI+PD9TU1HDr1i306tULlpaWGD58OEaPHo0RI0YAALp37441a9Zg+fLlsLGxwebNmxERESHRIxwbG4u2bduiX79+aNmyJaZOnVphj/DKlSuhq6sLZ2dn+Pn5wcvLC61bt5YoM3/+fOTk5KB58+bc8AF7e3skJyfj9u3b6NixIxwdHTFnzhwYGxtz+0VERMDY2Bhubm7o2bMnhg8fXq05xt3c3PDhwweuTQoKCnB1deW+LaiIs7MzRo4ciYCAABgYGGDZsmVVHqu6GjdujKSkJDx79qzWCfj333+PiRMnYsyYMWjVqhXOnj2L2bNnc9sVFRXx/PlzDBo0CJaWlvjhhx/g4+ODefPmAajeOf+YoqIiBg8eXOU0jx/z8vLipt20trbG2LFj4eXlhT179tSonl27dlHiSwghpF7xGGOsvoMghPx3PHr0CDY2Nrh8+bJcHzq8efMmOnXqhNu3b3O/Qlodr169+r/y+QBqNv6b/nclhJB/h7K/Bfn5+Z/8LBD1fBNC5EooFGLbtm1VzmBT13Jzc7F9+/YaJd6EEEJIXaOeb0IIqQT1fBNCCKGeb0IIIYQQQr5ClHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0JINeTnl85eUpOFEEII+Rgl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQUg3a2vUdASGEkH8DSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvkm94/F42L9/f6VlgoOD0b17988Wg7u7OyZMmPDZ6v+vq6vz+6Vcp1OnTsHPzw/GxsbVun8JIYSQMpR8f4WCg4PB4/HA4/GgoqICc3NzzJ8/HyUlJRLbZC1mZmYASpMYHo+HJUuWSNXv6+sLHo+HsLAwubQnNzcXPj4+AICcnBzweDyIRKJPrjcyMpJrt6KiInR1ddG+fXvMnz8f+fn5EmXj4uKwYMGCTz5mffv777+hoqICW1vb+g5FQk3Pb1JSEng8Hl6+fPlJ9Xwub968gYODAzZs2FDfoRBCCPnKKNV3AKR2vL29ERERgaKiIhw6dAijR4+GsrIy1qxZI5FQGxkZISIiAt7e3gAARUVFbpuJiQkiIyMxffp0bt3Dhw+RkJAAIyMjubVFKBR+trq1tLSQkZEBxhhevnyJs2fP4ueff0ZERARSUlJgbGwMANDT0/tsMchTZGQkfvjhB5w6dQrnz59H+/bt6zskAHV3fr+U6+Tj48N9YCSEEEJqgnq+v1J8Ph9CoRCmpqYIDQ2Fp6cnDhw4AG1tbQiFQm4BAB0dHe61gYEBV0e3bt3w7NkzpKSkcOuioqLw3XffwdDQUOJ4GzduhIWFBVRVVdGwYUP07t1bZlyMMRgYGCAmJoZb16pVK4lk/syZM+Dz+Xj79i0AyWEnTZs2BQA4OjqCx+PB3d1dov7ly5fDyMgI+vr6GD16NIqLiys9TzweD0KhEEZGRrC2tsaQIUNw9uxZFBQUYOrUqVy5j4czVNZesViMn3/+GU2bNoVAIICDg4NEez98+IAhQ4Zw262srLBmzRqJuJKSktCuXTuoq6tDR0cHLi4uuHfvHrf9zz//ROvWraGqqopmzZph3rx5KCkpqbStjDFEREQgMDAQ/fv3x7Zt2yS2v3//HmPGjIGRkRFUVVVhamqKn3/+mds3LCwMTZo0AZ/Ph7GxMcaNG8ftm5eXh0GDBkFXVxdqamrw8fFBZmamRP0pKSlwd3eHmpoadHV14eXlhby8PJnnd8eOHXBycoKmpiaEQiH69++PJ0+eACj99sPDwwMAoKurCx6Ph+DgYJn1VBVXZGQkdHR0cPToUVhbW0NDQwPe3t7Izc2t9FwSQgghnwsl3/8SAoEA79+/r9E+KioqGDBgACIiIrh1kZGRCAkJkSh38eJFjBs3DvPnz0dGRgaOHDkCV1dXmXXyeDy4uroiKSkJQGlylJ6ejsLCQty6dQsAkJycjLZt20JNTU1q/wsXLgAATpw4gdzcXMTFxXHbEhMTkZWVhcTERERFRSEyMhKRkZE1ajMAGBoaYsCAAThw4AA+fPggtb2q9v7888/Yvn07Nm3ahJs3b2LixIkYOHAgkpOTAZQm540bN8bevXuRlpaGOXPm4KeffsKePXsAACUlJejevTvc3Nxw7do1nDt3DsOHDwePxwMAnD59GoMGDcL48eORlpaGzZs3IzIyEosWLaq0XYmJiXj79i08PT0xcOBA/PHHH3jz5g23fe3atThw4AD27NmDjIwMREdHc8OQYmNjsWrVKmzevBmZmZnYv38/7OzsuH2Dg4Nx8eJFHDhwAOfOnQNjDF27duU+/IhEInTu3BktW7bEuXPncObMGfj5+ck8vwBQXFyMBQsW4OrVq9i/fz9ycnK4BNvExASxsbEAgIyMDOTm5kp9eKluXADw9u1bLF++HDt27MCpU6dw//59TJ48ucLzWFRUhFevXkkshBBCSJ1h5KsTFBTE/P39GWOMicVidvz4ccbn89nkyZOlygJg+/btk1rv5ubGxo8fz0QiEdPU1GQFBQUsOTmZGRoasuLiYubg4MDmzp3LGGMsNjaWaWlpsVevXlUrvrVr1zIbGxvGGGP79+9n7du3Z/7+/iw8PJwxxpinpyf76aefZMaYnZ3NALArV65ItdnU1JSVlJRw6/r06cMCAgIqjCMiIoJpa2vL3BYeHs4AsMePH0ucj6ra++7dO6ampsbOnj0rsX7IkCGsX79+FcYyevRo1qtXL8YYY8+fP2cAWFJSksyynTt3ZosXL5ZYt2PHDmZkZFRh/Ywx1r9/fzZhwgTutYODA4uIiOBejx07lnXq1ImJxWKpfVesWMEsLS3Z+/fvpbbdvn2bAWApKSncumfPnjGBQMD27NnDGGOsX79+zMXFpcLYyp9fWVJTUxkA9vr1a8YYY4mJiQwAy8vLq7Ce6sQVERHBALA7d+5wZTZs2MAaNmxYYSxz585lAGQs+TLLV/QeI4QQ8u+Rn5/PALD8fNl/C2qCer6/UvHx8dDQ0ICqqip8fHwQEBBQqwckHRwcYGFhgZiYGPz2228IDAyEkpLkowBdunSBqakpmjVrhsDAQERHR3NDRmRxc3NDWloanj59iuTkZLi7u8Pd3R1JSUkoLi7G2bNnpYaTVIeNjY3EmHUjIyNuqEJNMcYAgOttLq+y9t65cwdv375Fly5doKGhwS3bt29HVlYWV8eGDRvQpk0bGBgYQENDA1u2bMH9+/cBlI5bDg4OhpeXF/z8/LBmzRqJYRBXr17F/PnzJeofNmwYcnNzKzzvL1++RFxcHAYOHMitGzhwoMTQk+DgYIhEIlhZWWHcuHE4duwYt61Pnz4oLCxEs2bNMGzYMOzbt48b5pKeng4lJSWJ8eP6+vqwsrJCeno6gP/f811dly5dgp+fH5o0aQJNTU24ubkBAHeOqqM6cQGAmpoamjdvzr2u6r6ZMWMG8vPzueXBgwfVjokQQgipCiXfXykPDw+IRCJkZmaisLAQUVFRUFdXr1VdISEh2LBhA2JiYqSGnACApqYmLl++jF27dsHIyAhz5syBg4OD1EwUZezs7KCnp4fk5GSJ5Ds5ORmpqakoLi6Gs7NzjeNUVlaWeM3j8SAWi2tcD1CauGlpaUFfX19qW2XtLSgoAAAcPHgQIpGIW9LS0rhx33/88QcmT56MIUOG4NixYxCJRBg8eLDEsKCIiAicO3cOzs7O2L17NywtLfHXX38BAAoKCjBv3jyJ+q9fv47MzEyoqqrKbM/OnTvx7t07tG/fHkpKSlBSUsK0adNw5swZ3L59GwDQunVrZGdnY8GCBSgsLMQPP/zAjWU3MTFBRkYGNm7cCIFAgFGjRsHV1bXKMfVlBAJBNc986UwhXl5e0NLSQnR0NFJTU7Fv3z4AqPHQqeqQdd+UffiShc/nQ0tLS2IhhBBC6gol318pdXV1mJubo0mTJlI91TXVv39/XL9+Hba2tmjZsqXMMkpKSvD09MSyZctw7do15OTk4OTJkzLL8ng8dOzYEX/++Sdu3ryJDh06wN7eHkVFRdi8eTOcnJwq/KCgoqICABWOFa4LT548wc6dO9G9e3coKMh+C1TU3pYtW4LP5+P+/fswNzeXWExMTACUPnjo7OyMUaNGwdHREebm5hK94mUcHR0xY8YMnD17Fra2tti5cyeA0iQ5IyNDqn5zc/MK4922bRsmTZokkbBfvXoVHTt2xG+//caV09LSQkBAALZu3Yrdu3cjNjYWL168AFCaQPv5+WHt2rVISkrCuXPncP36dVhbW6OkpATnz5/n6nn+/DkyMjK4+8Xe3h4JCQnVOv+3bt3C8+fPsWTJEnTs2BEtWrSQ6omuzn1Qnbg+l4KCAu48A0B2djZEIlGNeu4JIYT8N9FUgwS6urrIzc2V6iEsEx8fj7t378LV1RW6uro4dOgQxGIxrKysKqzT3d0dkyZNgpOTEzQ0NAAArq6uiI6OxpQpUyrcz9DQEAKBAEeOHEHjxo2hqqoKbW3tWreNMYZHjx5xUw2eO3cOixcvhra2tsw5zqtqr6amJiZPnoyJEydCLBajQ4cOyM/PR0pKCrS0tBAUFAQLCwts374dR48eRdOmTbFjxw6kpqZyM7lkZ2djy5Yt+P7772FsbIyMjAxkZmZi0KBBAIA5c+agW7duaNKkCXr37g0FBQVcvXoVN27cwMKFC6XiFYlEuHz5MqKjo9GiRQuJbf369cP8+fOxcOFCrF27FkZGRnB0dISCggL27t0LoVAIHR0dREZG4sOHD2jfvj3U1NTw+++/QyAQwNTUFPr6+vD398ewYcOwefNmaGpqYvr06WjUqBH8/f0BlA7VsLOzw6hRozBy5EioqKggMTERffr0QYMGDSRiatKkCVRUVLBu3TqMHDkSN27ckJq729TUFDweD/Hx8ejatSsEAgF3H5WxsLCoMq7P5eLFi9yMLADw448/AgCCgoJq9RAwIYSQ/w7q+SYASqcjrKg3WkdHB3FxcejUqROsra2xadMm7Nq1CzY2NhXW5+bmhg8fPkiM7XZ3d5da9zElJSWsXbsWmzdvhrGx8ScnUa9evYKRkREaNWqEb7/9Fps3b0ZQUBCuXLlS4VzmVbV3wYIFmD17Nn7++WdYW1vD29sbBw8e5JLrESNGoGfPnggICED79u3x/PlzjBo1iqtfTU0Nt27dQq9evWBpaYnhw4dj9OjRGDFiBADAy8sL8fHxOHbsGNq2bYtvvvkGq1atgqmpqcx4t23bhpYtW0ol3gDQo0cPPHnyBIcOHYKmpiaWLVsGJycntG3bFjk5OTh06BAUFBSgo6ODrVu3wsXFBfb29jhx4gT+97//ccNyIiIi0KZNG3Tr1g3ffvstGGM4dOgQ94HN0tISx44dw9WrV9GuXTt8++23+PPPP2V+K2NgYIDIyEjs3bsXLVu2xJIlS7B8+XKJMo0aNcK8efMwffp0NGzYEGPGjJHZ9qri+lzc3d3BGJNaKPEmhBBSFR6rbPAjIYT8x7169er/vn3JB2M0/psQQv6Lyv4W5Ofnf/KzQNTzTQghhBBCiJxQ8k0IIYQQQoicUPJNCCGEEEKInFDyTQghhBBCiJxQ8k0IIYQQQoicUPJNCCGEEEKInFDyTQghhBBCiJxQ8k0IIYQQQoicUPJNCCHVkJ9f3xEQQgj5N6DkmxBCCCGEEDmh5JsQQgghhBA5oeSbEEIIIYQQOaHkmxBCCCGEEDmh5JsQQgghhBA5oeSbEEIIIYQQOaHkmxBCqkH7Z+36DoEQQsi/ACXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd9ECo/Hw/79+ystExwcjO7du8slHvLf8jXcW6dOnYKfnx+MjY2r9X4hhBBCylDyXQeCg4PB4/HA4/GgoqICc3NzzJ8/HyUlJRLbZC1mZmYAAHd3d/B4PCxZskSqfl9fX/B4PISFhcmlPbm5ufDx8QEA5OTkgMfjQSQSfXK9kZGR0NHRkViXnp4OExMT9OnTB+/fv//kY8hLRdfV29ubK2NmZobVq1fL3L/svCoqKuLhw4cS23Jzc6GkpAQej4ecnJwKY3B3d8eECROqHXNdXsu6UFE8a9asQWRkZL3EVF1v3ryBg4MDNmzYUN+hEEII+coo1XcA/xbe3t6IiIhAUVERDh06hNGjR0NZWRlr1qyRSKiNjIwQERHBJWmKiorcNhMTE0RGRmL69OncuocPHyIhIQFGRkZya4tQKJTLcVJTU+Hj44MePXpg8+bNUFD4uj4Lll3z8vh8fo3qaNSoEbZv344ZM2Zw66KiotCoUSPcv3+/TuL8HIqLi6GsrPxZ6tbW/vJ/xt3Hx4f7gEoIIYTUxNeV7XzB+Hw+hEIhTE1NERoaCk9PTxw4cADa2toQCoXcAgA6OjrcawMDA66Obt264dmzZ0hJSeHWRUVF4bvvvoOhoaHE8TZu3AgLCwuoqqqiYcOG6N27t8y4GGMwMDBATEwMt65Vq1YSyfyZM2fA5/Px9u1bAJLDTpo2bQoAcHR0BI/Hg7u7u0T9y5cvh5GREfT19TF69GgUFxdX63ydPHkSnTp1wpAhQ7B161Yu8Q4LC0OrVq2wY8cOmJmZQVtbG3379sXr16+5fYuKijBu3DgYGhpCVVUVHTp0QGpqKrfdyckJy5cv5153794dysrKKCgoAAD8/fff4PF4uHPnDoDSHurFixcjJCQEmpqaaNKkCbZs2VJlG8queflFV1e3Wu0vExQUJJXAR0REICgoqEb1AFW3o7Jr+euvv8La2hqqqqpo0aIFNm7cyG0r66HevXs33NzcoKqqiujoaDx//hz9+vVDo0aNoKamBjs7O+zatUsiJrFYjGXLlsHc3Bx8Ph9NmjTBokWLKo3n42EnVV3vpKQk8Hg8JCQkwMnJCWpqanB2dkZGRgZX5urVq/Dw8ICmpia0tLTQpk0bXLx4scbnmBBCCPlUlHx/JgKBoMbDKFRUVDBgwACJZCwyMhIhISES5S5evIhx48Zh/vz5yMjIwJEjR+Dq6iqzTh6PB1dXVyQlJQEA8vLykJ6ejsLCQty6dQsAkJycjLZt20JNTU1q/wsXLgAATpw4gdzcXMTFxXHbEhMTkZWVhcTERERFRSEyMrJawwX27dsHX19fzJo1C0uXLpXanpWVhf379yM+Ph7x8fFITk6W+PZg6tSpiI2NRVRUFC5fvgxzc3N4eXnhxYsXAAA3NzeuvYwxnD59Gjo6Ojhz5gzX3kaNGsHc3Jyrc8WKFXBycsKVK1cwatQohIaGSiRvn8v333+PvLw8LrYzZ84gLy8Pfn5+taqvsnZUdC2jo6MxZ84cLFq0COnp6Vi8eDFmz56NqKgoibqnT5+O8ePHIz09HV5eXnj37h3atGmDgwcP4saNGxg+fDgCAwO54wDAjBkzsGTJEsyePRtpaWnYuXMnGjZsWGk8H6vqepeZOXMmVqxYgYsXL0JJSUnifTNgwAA0btwYqampuHTpEqZPn15hz31RURFevXolsRBCCCF1hpFPFhQUxPz9/RljjInFYnb8+HHG5/PZ5MmTpcoCYPv27ZNa7+bmxsaPH89EIhHT1NRkBQUFLDk5mRkaGrLi4mLm4ODA5s6dyxhjLDY2lmlpabFXr15VK761a9cyGxsbxhhj+/fvZ+3bt2f+/v4sPDycMcaYp6cn++mnn2TGmJ2dzQCwK1euSLXZ1NSUlZSUcOv69OnDAgICKowjIiKCKSoqMkVFRTZ79myZZebOncvU1NQk2jZlyhTWvn17xhhjBQUFTFlZmUVHR3Pb379/z4yNjdmyZcsYY4wdOHCAaWtrs5KSEiYSiZhQKGTjx49n06ZNY4wxNnToUNa/f39uf1NTUzZw4EDutVgsZoaGhtz5kSUoKIgpKioydXV1iWXRokUS9a5atUrm/uXP64QJE9jgwYMZY4wNHjyYTZw4kV25coUBYNnZ2RXGUHbPVLcdFV3L5s2bs507d0qsW7BgAfv2228l9lu9enWFsZTx9fVlkyZNYowx9urVK8bn89nWrVurPAfllX8/Ved6JyYmMgDsxIkTXJmDBw8yAKywsJAxxpimpiaLjIysMn7GSu9BANLLdNn/XVb0niaEEPLvkZ+fzwCw/Pz8T66Ler7rSHx8PDQ0NKCqqgofHx8EBATU6gFJBwcHWFhYICYmBr/99hsCAwOhpCQ5NL9Lly4wNTVFs2bNEBgYiOjoaG7IiCxubm5IS0vD06dPkZycDHd3d7i7uyMpKQnFxcU4e/as1HCS6rCxsZEYs25kZIQnT55Uuo9AIECXLl2wdetWpKenyyxjZmYGTU1NmfVmZWWhuLgYLi4u3HZlZWW0a9eOq69jx454/fo1rly5guTkZLi5uXHtBcCdg/Ls7e25f/N4PAiFwirb4uHhAZFIJLGMHDmy0n1kCQkJwd69e/Ho0SPs3btX6puOmqhpO968eYOsrCwMGTIEGhoa3LJw4UJkZWVJlHVycpJ4/eHDByxYsAB2dnbQ09ODhoYGjh49yo1VT09PR1FRETp37lzr9lTnestqe9mwqrK2//jjjxg6dCg8PT2xZMkSqbaVN2PGDOTn53PLgwcPah0/IYQQ8jFKvutIWSKWmZmJwsJCREVFQV1dvVZ1hYSEYMOGDYiJiZGZiGlqauLy5cvYtWsXjIyMMGfOHDg4OODly5cy6ytLjpKTkyWS7+TkZKSmpqK4uBjOzs41jvPjr+15PB7EYnGl+ygqKmL//v1o3bo1PDw8ZCbgtam3PB0dHTg4OCApKYlrr6urK65cuYLbt28jMzMTbm5un3xMdXV1mJubSyx6enrVjrOMnZ0dWrRogX79+sHa2hq2trY1rqNMTdtRNg5+69atEh8ibty4gb/++kui7Mf38y+//II1a9Zg2rRpSExMhEgkgpeXFzfcSiAQ1LodtVG+7TweDwC4toeFheHmzZvw9fXFyZMn0bJlS+zbt09mPXw+H1paWhILIYQQUlco+a4jZYlYkyZNpHqqa6p///64fv06bG1t0bJlS5lllJSU4OnpiWXLluHatWvIycnByZMnZZbl8Xjo2LEj/vzzT9y8eRMdOnSAvb09ioqKsHnzZjg5OVX4QUFFRQVAaS9nXeHz+YiLi0Pbtm3h4eGBtLS0au/bvHlzqKioSDyUWlxcjNTUVIlz5ebmhsTERJw6dQru7u7Q09ODtbU1Fi1aBCMjI1haWtZZe+pCSEgIkpKSPqnXuyqyrmXDhg1hbGyMu3fvSn2QKHsgsiIpKSnw9/fHwIED4eDggGbNmuH27dvcdgsLCwgEAiQkJFQ7no9V93pXh6WlJSZOnIhjx46hZ8+eUg+61kRBQQH3QQUAsrOzIRKJvugZagghhHwZaKrBL5Curi5yc3MrfCAsPj4ed+/ehaurK3R1dXHo0CGIxWJYWVlVWKe7uzsmTZoEJycnaGhoAABcXV0RHR2NKVOmVLifoaEhBAIBjhw5gsaNG0NVVbVOpoLj8/mIjY1Fnz594OHhgZMnT8LGxqbK/dTV1REaGoopU6ZAT08PTZo0wbJly/D27VsMGTJEor3r1q2DgYEBWrRowa1bv349+vTp88nxA6UP5j169EhinZKSEho0aMC9fvjwodQ81qamplJ1DRs2DH369JGaB70uVXQt582bh3HjxkFbWxve3t4oKirCxYsXkZeXhx9//LHC+sqGR509exa6urpYuXIlHj9+zCXFqqqqmDZtGqZOnQoVFRW4uLjg6dOnuHnzJoYMGVKte6u617syhYWFmDJlCnr37o2mTZvi77//RmpqKnr16lXrc3nx4kV4eHhwr8vOU1BQ0Bc/RzkhhJD6RT3fXygdHZ0Ke6N1dHQQFxeHTp06wdraGps2bcKuXbsqTV7d3Nzw4cMHibHO7u7uUus+pqSkhLVr12Lz5s0wNjaGv79/bZskRUVFBTExMXB2doaHhwdu3LhRrf2WLFmCXr16ITAwEK1bt8adO3dw9OhRiWn+OnbsCLFYLDG8pDrtrYkjR47AyMhIYunQoYNEmeXLl8PR0VFiOXjwoFRdZUn7p35rUpmKruXQoUPx66+/IiIiAnZ2dnBzc0NkZGSVPd+zZs1C69at4eXlBXd3dwiFQqlfppw9ezYmTZqEOXPmwNraGgEBAdw47OreW9W53pVRVFTE8+fPMWjQIFhaWuKHH36Aj48P5s2bV639ZXF3dwdjTGqhxJsQQkhVeIwxVt9BEELIl+rVq1elPfLTAfYz/XdJCCH/RWV/C/Lz8z/5WSDq+SaEEEIIIUROKPkmhBBCCCFETij5JoQQQgghRE4o+SaEEEIIIUROKPkmhBBCCCFETij5JoQQQgghRE4o+SaEEEIIIUROKPkmhJBqyJ+RX98hEEII+Reg5JsQQgghhBA5+Xy/ZU0IIYQQUk1isRjv37+v7zDIf5SysjIUFRXlcixKvgkhhBBSr96/f4/s7GyIxeL6DoX8h+no6EAoFILH433W41DyTQghhJB6wxhDbm4uFBUVYWJiAgUFGhFL5Isxhrdv3+LJkycAACMjo896PEq+CSGEEFJvSkpK8PbtWxgbG0NNTa2+wyH/UQKBAADw5MkTGBoaftYhKPTxkhBCCCH15sOHDwAAFRWVeo6E/NeVffgrLi7+rMeh5JsQQggh9e5zj7MlpCryugdp2AkhhFSHtrbka8bqJw5CCCFfNer5JoQQQgj5wgUHB6N79+71HQapA5R8E0IIIeRf5dy5c1BUVISvr2+9xZCUlAQej4eXL1/WaL+cnBzweDyIRCKJ9WvWrEFkZGSdxVeR5ORkdOrUCXp6elBTU4OFhQWCgoJoDvY6RMk3IYQQQv5Vtm3bhrFjx+LUqVP4559/6jucOqGtrQ0dHZ3Peoy0tDR4e3vDyckJp06dwvXr17Fu3TqoqKhwD8Z+Lp/7IccvCSXfhBBCCPnXKCgowO7duxEaGgpfX1+p3uKyHumEhAQ4OTlBTU0Nzs7OyMjI4MqEhYWhVatW2LFjB8zMzKCtrY2+ffvi9evXXJmioiKMGzcOhoaGUFVVRYcOHZCamgqgtPfaw8MDAKCrqwsej4fg4GAAwJEjR9ChQwfo6OhAX18f3bp1Q1ZWFldv06ZNAQCOjo7g8Xhwd3cHID3spLLjV7edHzt27BiEQiGWLVsGW1tbNG/eHN7e3ti6dSs3FR8AxMbGwsbGBnw+H2ZmZlixYoVEPTweD/v375dYp6Ojw12Lst793bt3w83NDaqqqoiOjgYA/Pbbb1zdRkZGGDNmDFfHy5cvMXToUBgYGEBLSwudOnXC1atXK2zPl4qSb0IIIYT8a+zZswctWrSAlZUVBg4ciN9++w1MxgPSM2fOxIoVK3Dx4kUoKSkhJCREYntWVhb279+P+Ph4xMfHIzk5GUuWLOG2T506FbGxsYiKisLly5dhbm4OLy8vvHjxAiYmJoiNjQUAZGRkIDc3F2vWrAEAvHnzBj/++CMuXryIhIQEKCgooEePHtyve164cAEAcOLECeTm5iIuLk5mOys7fk3aWZ5QKERubi5OnTpVYZlLly7hhx9+QN++fXH9+nWEhYVh9uzZtRoSM336dIwfPx7p6enw8vJCeHg4Ro8ejeHDh+P69es4cOAAzM3NufJ9+vTBkydPcPjwYVy6dAmtW7dG586dpdr8xWOEEEIqlJ+fzwCw/NL5Tf7/QgipE4WFhSwtLY0VFhbWSX3Ozs5s9erVjDHGiouLWYMGDVhiYiK3PTExkQFgJ06c4NYdPHiQAeBimDt3LlNTU2OvXr3iykyZMoW1b9+eMcZYQUEBU1ZWZtHR0dz29+/fM2NjY7Zs2TKJ4+Tl5VUa79OnTxkAdv36dcYYY9nZ2QwAu3LlikS5oKAg5u/vX+PjV9bOj5WUlLDg4GAGgAmFQta9e3e2bt06lp+fz5Xp378/69Kli8R+U6ZMYS1btuReA2D79u2TKKOtrc0iIiIk2lh2ncoYGxuzmTNnyozt9OnTTEtLi717905iffPmzdnmzZtl7lNTld2L3N+CcueitqjnmxBCCCH/ChkZGbhw4QL69esHAFBSUkJAQAC2bdsmVdbe3p77d9nPiZf9vDgAmJmZQVNTU6JM2fasrCwUFxfDxcWF266srIx27dohPT290hgzMzPRr18/NGvWDFpaWjAzMwMA3L9/v9rtrMnxq2pneYqKioiIiMDff/+NZcuWoVGjRli8eDFsbGyQm5sLAEhPT5c4LgC4uLggMzOzxuPCnZycuH8/efIE//zzDzp37iyz7NWrV1FQUAB9fX1oaGhwS3Z2tsSwna8BzfNNCCG19PPPPyMuLg63bt2CQCCAs7Mzli5dCisrq/oOjZD/pG3btqGkpATGxsbcOsYY+Hw+1q9fD+1y8/UrKytz/y77cZWyoR8fby8rU357bfn5+cHU1BRbt26FsbExxGIxbG1tP9tsIlW1U5ZGjRohMDAQgYGBWLBgASwtLbFp0ybMmzevWsfk8XhSQ31kPVCprq7O/bv8mHJZCgoKYGRkhKSkJKltn/tB1LpGPd//ErIebvgYzRFKvgbVuZe/FMnJyRg9ejT++usvHD9+HMXFxfjuu+/w5s2b+g6NkP+ckpISbN++HStWrIBIJOKWq1evwtjYGLt27aqzYzVv3hwqKipISUnh1hUXFyM1NRUtW7YEAKioqACARG/w8+fPkZGRgVmzZqFz586wtrZGXl6eRN2y9qvN8euKrq4ujIyMuP/XrK2tJY4LACkpKbC0tISioiIAwMDAgOspB0p7+9++fVvpcTQ1NWFmZoaEhASZ21u3bo1Hjx5BSUkJ5ubmEkuDBg0+pYly959NvoODg8Hj8cDj8aCiogJzc3PMnz8fJSUlEttkLWVfEbm7u4PH40k8gFHG19cXPB4PYWFhcmlPbm4ufHx8AFQ8R2htREZGSn2iTE9Ph4mJCfr06fNVzftZH9fc3d0dEyZMqHaM1b12tbnGZU/vfykqiqf8vfylO3LkCIKDg2FjYwMHBwdERkbi/v37uHTpUn2HRsh/Tnx8PPLy8jBkyBDY2tpKLL169ZI59KS21NXVERoaiilTpuDIkSNIS0vDsGHD8PbtWwwZMgQAYGpqCh6Ph/j4eDx9+hQFBQXQ1dWFvr4+tmzZgjt37uDkyZP48ccfJeo2NDSEQCDAkSNH8PjxY+Tn59fq+LWxefNmhIaG4tixY8jKysLNmzcxbdo03Lx5E35+fgCASZMmISEhAQsWLMDt27cRFRWF9evXY/LkyVw9nTp1wvr163HlyhVcvHgRI0eOlPomQZawsDCsWLECa9euRWZmJi5fvox169YBADw9PfHtt9+ie/fuOHbsGHJycnD27FnMnDkTFy9erHWb68N/NvkGAG9vb+Tm5iIzMxOTJk1CWFgYfvnlF6xZswa5ubncAgARERHc6/JT+ZiYmEg94fvw4UMkJCRwY6vkQSgUgs/nf/bjpKamomPHjvD29sbu3bu5T+hfi3/TNa8vn/sDl7zu5c+h7I+knp5ePUdCyH/Ptm3b4OnpKTG0pEyvXr1w8eJFXLt2rc6Ot2TJEvTq1QuBgYFo3bo17ty5g6NHj0JXVxdA6dCNefPmYfr06WjYsCHGjBkDBQUF/PHHH7h06RJsbW0xceJE/PLLLxL1KikpYe3atdi8eTOMjY3h7+9fq+PXRrt27VBQUICRI0fCxsYGbm5u+Ouvv7B//364ubkBKO2B3rNnD/744w/Y2tpizpw5mD9/PjeVIgCsWLECJiYm6NixI/r374/JkydDTU2tyuMHBQVh9erV2LhxI2xsbNCtWzdkZmYCKP1W9NChQ3B1dcXgwYNhaWmJvn374t69e2jYsGGt21wvPvmRza9U+aeGy3Tp0oV98803UmUh46ldxhhzc3NjoaGhTF9fn505c4Zbv2jRIubn58ccHBzY3LlzufUbNmxg5ubmjM/nM0NDQ9arVy+ZsYnFYtagQQO2d+9ebp2DgwMTCoXc69OnTzMVFRX25s0bqRgBSCxubm4Sbf7ll1+YUChkenp6bNSoUez9+/cVnqeIiAimra3NGGMsISGBaWhosKlTp0qUmTt3LnNwcGDbt29npqamTEtLiwUEBEg8Jf7u3Ts2duxYZmBgwPh8PnNxcWEXLlzgtrdp04b98ssv3Gt/f3+mpKTEXr9+zRhj7MGDBwwAy8zMZIwxZmpqyhYtWsQGDx7MNDQ0mImJSZVPO9fHNXdzc2Pjx4/nXlcVd0XX7mMfPw1f/qn2Nm3aMIFAwL799lt269Ytxljpdfy47rKnzvPy8tiQIUNYgwYNmKamJvPw8GAikYg7Vtn13bp1KzMzM2M8Ho8xxtjhw4eZi4sL09bWZnp6eszX15fduXNHIs4HDx6wvn37Ml1dXaampsbatGnD/vrrr0rj+fjcX7t2jXl4eDBVVVWmp6fHhg0bxt0XjFXvvq7ue0+W6s528uHDB+br68tcXFyqXTchpO5nOyGktmi2k3ogEAhq3KunoqKCAQMGICIiglsXGRkpNY/mxYsXMW7cOMyfPx8ZGRk4cuQIXF1dZdbJ4/Hg6urKPVSQl5eH9PR0FBYW4tatWwBKx5q2bdtW5ifJyuYITUxMRFZWFhITExEVFYXIyMhqzc25b98++Pr6YtasWVi6dKnU9k+ZDxUA3NzcuPYyxnD69Gno6OjgzJkzXHsbNWokMd/nihUr4OTkhCtXrmDUqFEIDQ2t9McDZPmc17wilcVd3fldK1LRfK4BAQGYNGkS98R6bm4uAgICAFRv3tQ7d+4gNjYWcXFx3FCXquaqLSgogJubGx4+fIgDBw7g6tWrmDp1KsRicaXxlPfmzRt4eXlBV1cXqamp2Lt3L06cOCHxowtA5fd1Td57QOkPV7x69UpiqY7Ro0fjxo0b+OOPP6pVnhBCyH/UJ6fvX6nyvaBisZgdP36c8fl8NnnyZKmyqKQXdPz48UwkEjFNTU1WUFDAkpOTmaGhISsuLpboBY2NjWVaWloSvcGVWbt2LbOxsWGMMbZ//37Wvn175u/vz8LDwxljjHl6erKffvpJZoyVzRFqamrKSkpKuHV9+vRhAQEBFcYRERHBFBUVmaKiIps9e7bMMnUxH+qBAweYtrY2KykpYSKRiAmFQjZ+/Hg2bdo0xhhjQ4cOZf379+f2NzU1ZQMHDuRei8ViZmhoyJ0fWeR9zcuXr27cFV27j1XW811G1ry1Dg4OEvVUZ97UuXPnMmVlZfbkyZNKY/p4rtrNmzczTU1N9vz5c5nlZcXDmOS537JlC9PV1WUFBQUS7VJQUGCPHj1ijFV9X9f0vTd37lypXnlU0fM9evRo1rhxY3b37t1qHYMQ8v9Rzzf5UlDPtxzEx8dDQ0MDqqqq8PHxQUBAQK0ekHRwcICFhQViYmLw22+/ITAwEEpKkrM4dunSBaampmjWrBkCAwMRHR1d6ZO/bm5uSEtLw9OnT5GcnAx3d3e4u7sjKSkJxcXFOHv2LPeTszVhY2PDPY0MSM5bWhGBQIAuXbpg69atFc5f+qnzoXbs2BGvX7/GlStXkJycDDc3N669ALhzUF75uUt5PB6EQmGVbZHnNa9IbeKurprM5wpUf95UU1NTGBgYSOxb1Vy1IpEIjo6OnzT+OT09HQ4ODhLTUbm4uEAsFkt8y1HZfV3T996MGTOQn5/PLQ8ePKiwLGMMY8aMwb59+3Dy5EnuZ6EJIYSQivyn5/n28PBAeHg4VFRUYGxsXO3kSZaQkBBs2LABaWlp3NCB8jQ1NXH58mUkJSXh2LFjmDNnDsLCwpCamipzfko7Ozvo6ekhOTkZycnJWLRoEYRCIZYuXYrU1FQUFxfD2dm5xnHWZt5SRUVF7N+/Hz179oSHhwcSExNhbW39yfWWp6OjAwcHByQlJeHcuXPo0qULXF1dERAQgNu3byMzM5N72ONTjinPa16RzzV37Md1V2c+1+rOm1o++S1T1Vy1Vc3ZWpcqO6c1fe/x+fxqP/A5evRo7Ny5E3/++Sc0NTXx6NEjAIC2trZc208IIeTr8Z/u+VZXV4e5uTmaNGnySUkYAPTv3x/Xr1+Hra1thXNsKikpwdPTE8uWLcO1a9eQk5ODkydPyizL4/HQsWNH/Pnnn7h58yY6dOgAe3t7FBUVYfPmzXBycpKZEAHVmyO0pvh8PuLi4tC2bVt4eHggLS2t2vtWdz5SNzc3JCYm4tSpU3B3d4eenh6sra2xaNEiGBkZwdLS8pPbIe9rXlOf49qVr/vjems7b2p15qq1t7eHSCSSGDteVTwfs7a2xtWrVyXmzU5JSYGCgkKNfsimJu+9mggPD0d+fj7c3d1hZGTELbt37/7kugkhhPw7/aeT77qkq6uL3NzcCieHj4+Px9q1ayESiXDv3j1s374dYrG40gTC3d0du3btQqtWraChoQEFBQW4uroiOjpaqhe4vOrMEVobfD4fsbGxaN++PTw8PHDz5s1q7Vfd+Ujd3d1x9OhRKCkpoUWLFty6qtpbX6q65rXxua4dUDo0KDs7GyKRCM+ePUNRUVGt502tzly1/fr1g1AoRPfu3ZGSkoK7d+8iNjYW586dqzCejw0YMACqqqoICgrCjRs3kJiYiLFjxyIwMLDaU0vV5r1XXYwxmUv5KbcIIYSQ8ij5rkM6OjoV9kbr6OggLi4OnTp1grW1NTZt2oRdu3bBxsamwvrc3Nzw4cMHibHO7u7uUus+Vt05QmtDRUUFMTExcHZ2hoeHB27cuFGt/aozH2nHjh0hFoslEu3qtLc+VXbNa+NzXrtevXrB29sbHh4eMDAwwK5du2o9b2p15qpVUVHBsWPHYGhoiK5du8LOzg5LlizhxmbLiudjampqOHr0KF68eIG2bduid+/e6Ny5M9avX1/tdtfmvUcIIYR8LjzGGKvvIAgh5Ev16tUraGtrIx+AVvkN9F8nIXXi3bt3yM7ORtOmTaGqqlrf4ZD/sMruRe5vQX4+tLS0KqiheqjnmxBCCCGEEDn5T892QgghhJAv0/37wLNn8jtegwZAkyZ1U1dkZCQmTJiAly9f1k2FtZCTk4OmTZviypUraNWq1Vd/HKD0WaEJEyZgwoQJn/U4nxsl34QQQgj5oty/D1hZAe/eye+YqqpARkb1E/Dg4GBERUUBKJ3utEmTJhg0aBB++umnzxil/GVnZ2PmzJlISkrCixcv0KBBA7Rp0wZLly5FixYtYGJigtzcXG6GrKSkJHh4eCAvL0/mdK4VKUviy+jp6XHHcXR0rOtm1SsadkIIIYSQL8qzZ/JNvIHS49W0p93b2xu5ubnIzMzEpEmTEBYWJvXw+desuLgYXbp0QX5+PuLi4pCRkYHdu3fDzs6O69VXVFSEUCj85Ol7y5w4cQK5ubk4evQoCgoK4OPjU6/fIHwOlHwTQgghhNQCn8+HUCiEqakpQkND4enpiQMHDnDbjx49Cmtra2hoaHCJehmxWIz58+ejcePG4PP5aNWqFY4cOcJtf//+PcaMGQMjIyOoqqrC1NQUP//8M7edx+MhPDwcPj4+EAgEaNasGWJiYqRivHv3Ljw8PKCmpgYHBwduutcysbGxsLGxAZ/Ph5mZGVasWMFtu3nzJrKysrBx40Z88803MDU1hYuLCxYuXIhvvvkGQGmPNY/Hg0gkQk5ODjw8PACUTknL4/G4qVfFYjF+/vlnNG3aFAKBAA4ODjLj1dfXh1AohJOTE5YvX47Hjx/j/PnzUuXKH7fMy5cvwePxuB+Oy8vLw4ABA2BgYACBQAALCwtERERI1SVvlHwTQgghhNQBgUDA/crv27dvsXz5cuzYsQOnTp3C/fv3MXnyZK7smjVrsGLFCixfvhzXrl2Dl5cXvv/+e2RmZgIA1q5diwMHDmDPnj3IyMhAdHQ0zMzMJI43e/Zs9OrVC1evXsWAAQPQt29fpKenS5SZOXMmJk+eDJFIBEtLS/Tr1w8lJSUAgEuXLuGHH35A3759cf36dYSFhWH27NmIjIwEABgYGEBBQQExMTHV+vE3ExMTxMbGAgAyMjKQm5uLNWvWAAB+/vlnbN++HZs2bcLNmzcxceJEDBw4EMnJyZWeTwDcOa2p2bNnIy0tDYcPH0Z6ejrCw8Mr/QE5uWGEEEIqlJ+fzwCw/NLJBf//QgipE4WFhSwtLY0VFhZy6y5dkny7yWu5dKn6cQcFBTF/f3/GGGNisZgdP36c8fl8NnnyZBYREcEAsDt37nDlN2zYwBo2bMi9NjY2ZosWLZKos23btmzUqFGMMcbGjh3LOnXqxMRisczjA2AjR46UWNe+fXsWGhrKGGMsOzubAWC//vort/3mzZsMAEtPT2eMMda/f3/WpUsXiTqmTJnCWrZsyb1ev349U1NTY5qamszDw4PNnz+fZWVlcdvLjnPlyhXGGGOJiYkMAMvLy+PKvHv3jqmpqbGzZ89KHGvIkCGsX79+MuvJy8tjPXr0YBoaGuzRo0eMMcZMTU3ZqlWrZJYv2wcAS0xMZIwx5ufnxwYPHizz/Mki614sw/0tyM+vdn0VoZ5vQgipjvyP0m9CyH9efHw8NDQ0oKqqCh8fHwQEBCAsLAxA6Y+ENW/enCtrZGSEJ0+eACidM/qff/6Bi4uLRH0uLi5cz3VwcDBEIhGsrKwwbtw4HDt2TOr43377rdTrj3u+7e3tJWIAwMWRnp4uM4bMzEyup3v06NF49OgRoqOj8e2332Lv3r2wsbHB8ePHq3eSANy5cwdv375Fly5doKGhwS3bt29HVlaWRFlnZ2doaGhAV1cXV69exe7du6v9i8YfCw0NxR9//IFWrVph6tSpOHv2bK3qqWs02wkhhBBCSC14eHggPDwcKioqMDY2lnjoUFlZWaIsj8cDq8EH99atWyM7OxuHDx/GiRMn8MMPP8DT01PmOOnKlI+Dx+MBKB1/XROamprw8/ODn58fFi5cCC8vLyxcuBBdunSp1v4FBQUAgIMHD6JRo0YS2/h8vsTr3bt3o2XLltDX1690thQFhdL+4/LntLi4WKKMj48P7t27h0P/r717j+vx/h8//nhXOp+cOunkkIRUjiMSopzGmBmGZM4NQ8MOojkf5rA57aBsM2fGmjFSIefIYbX0sdJmmTGyHFPX7w+/rq+3SkUKe95vt+t2876u1/W6nq+rKz3fr+t1va4dO9i9ezft2rVj1KhRzJ8/v1hxPyvS8y2EEEII8QRMTEyoVasWjo6OJZrtw9zcHDs7O+Li4rTWx8XFUbduXa1yvXv35osvvmD9+vVs3ryZf/75R91++PBhrf0PHz6Mm5tbseNwc3MrMIbatWujq6tb4D4ajYY6depw8+bNArfr6+sDaI0Rr1u3LgYGBqSnp1OrVi2txcHBQWt/BwcHatasWeQ0hVWrVgXQeoj14YcvHy43cOBAvv32WxYtWsTnn3/+2HrLgvR8CyGEEEKUsZCQEEJDQ6lZsyaenp6Eh4eTkJDAmjVrAPjkk0+wtbXFy8sLHR0dNm7ciI2NjVZSunHjRho3bkzLli1Zs2YNR48e5auvvip2DOPHj6dJkyZ8/PHH9O7dm0OHDvHZZ5+xbNky4EEyGxoaSv/+/albty76+vrExsayatUqJk6cWGCdTk5OaDQaIiMj6dSpE0ZGRpiZmTFhwgTeffddcnNzadmyJZmZmcTFxWFubs7AgQNLfP6MjIx45ZVXmD17NtWrV+fy5ct8+OGHWmWmTJlCo0aNqFevHnfv3iUyMrJEX06eFUm+hRBCCCHK2OjRo8nMzGT8+PFcvnyZunXrsn37dlxcXIAHQz3mzp1LSkoKurq6NGnShB07dqjDLQCmTZvGunXrGDlyJLa2tqxdu1ar57woDRs2ZMOGDUyZMoWPP/4YW1tbwsLC1OkB7e3tcXZ2Ztq0aerUfnmf33333QLrrFatGtOmTWPSpEkMGjSIAQMGEBERwccff0zVqlWZNWsWv/32G5aWljRs2PCpXkq0atUqBg8eTKNGjXB1dWXu3Ll06NBB3a6vr8/kyZNJS0vDyMiIVq1asW7duic+XmnRKCUZgCSEEP8xN27cwMLCgszMTMzNzcs7HCFeOnfu3CE1NZXq1atjaGgIvBhvuCxvGo2GrVu30r179/IO5aVR0LWYpzT/FkjPtxBCCCGeK46ODxLhkr5x8mlUqfLiJN7ixSbJtxBCFMMsi1kYYlh0wZdYqBJa3iGI/xBHR0mGxctJkm8hhBBCiBeMjBp+cclUg0IIIYQQQpQRSb6FEEIIIYQoI5J8CyGEEEIIUUYk+RZCCCGEEKKMSPIthBBCCCFEGZHkWwghhBBCiDIiUw0KIYQQ4rmTnpnOlVtl95adKsZVcLSQicXFsyfJtxBCiGKbNWsWW7Zs4ddff8XIyIgWLVowZ84cXF1dAUhLS6N69eoF7rthwwZ69epVluGKF1R6Zjqun7ly537ZvV/eUM+Q5ODkYifggYGBrF69Ot96f39/du7cibOzM2PHjmXs2LH5yuT9nujo6JCenk61atXUbRkZGTg4OJCTk0NqairOzs5P2iTxnPpPDzvRaDR8//33jy0TGBhI9+7dyySe583UqVPx9PQs7zBeOhEREVhaWpZ3GM+ltLQ0NBoNCQkJ5R2KKERsbCyjRo3i8OHD7N69m+zsbDp06MDNmzcBcHBwICMjQ2uZNm0apqamdOzYsZyjFy+KK7eulGniDXDn/p0S97QHBATku97Xrl1b7P2rVavG119/rbVu9erVWsm4ePmUKPkODAxEo9Gg0WjQ19enVq1ahIWFcf/+fa1tBS1539x8fX3RaDTMnj07X/2dO3dGo9EwderU0mhbkTIyMtQ/BqX5Rz8iIkJtt46ODvb29gwaNIjLly9rbStsSUtLY+rUqWg0GgICAvLVP2/ePDQaDb6+vk8d67P2JF9eivOl6HnwpEl07969OXfu3FMdOyYmBo1Gw/Xr14u9z/P2RbKgePISt/r165dPUKJIO3fuJDAwkHr16uHh4UFERATp6enEx8cDoKuri42NjdaydetW3njjDUxNTcs5eiFKl4GBQb7rvWLFisXef+DAgYSHh2utCw8PZ+DAgaUdqniOlLjnO+9bXkpKCuPHj2fq1KnMmzePxYsXa33zgwcXUN7nY8eOqXU4ODgQERGhVe/FixeJiorC1tb26VpUAjY2NhgYGDyTus3NzcnIyOCPP/7giy++4KeffqJ///707t1b6zw1b96cIUOGaK1zcHAAwNbWlujoaP744w+tuletWoWjo4xLK0p2dvYT7ZeTk0Nubm4pR/N/jIyMsLKyemb1P2v37t17ZnXnJW56ejIi7kWRmZkJQKVKlQrcHh8fT0JCAoMHDy7LsIR4Ibz66qtcu3aNAwcOAHDgwAGuXbtG165dyzky8SyVOPnO+5bn5OTEiBEj8PPzY/v27VhYWGh98wOwtLRUP1etWlWto0uXLly5coW4uDh13erVq+nQoUO+pGTZsmW4uLhgaGiItbU1r7/+eoFxKYpC1apV2bRpk7rO09NTK5k/cOAABgYG3Lp1C9DuYc0bo+jl5VVgr/L8+fOxtbWlcuXKjBo1qsjETqPRYGNjg52dHR07dmT06NHs2bMHQOs86evrY2xsrLVOV1cXACsrKzp06KA1puzgwYNcuXKFzp075zvmqlWrqFevHgYGBtja2hIcHKxuS09Pp1u3bpiammJubs4bb7zBX3/9pbX/7Nmzsba2xszMjMGDB3PnTv5bfl9++SVubm4YGhpSp04dli1b9tjz8ChfX19Gjx7Ne++9R6VKlbCxsdG605F3h+S1117TumMCsG3bNho2bIihoSE1atRg2rRp3L9/X92u0WhYvnw5r776KiYmJsyYMUPtIf7xxx9p0KABhoaGvPLKK5w9e1bdL68He/v27dStWxcDAwPS09O5du0aAwYMoGLFihgbG9OxY0dSUlKABz3PgwYNIjMzU71jkdeOu3fvMmHCBKpVq4aJiQnNmjUjJiYm3/Hy5A3v+eabb3B2dsbCwoI333yTf//9t9jnNa/OXbt24ebmhqmpqfpFOe8Yq1evZtu2bWq8eTH9/vvvvPHGG1haWlKpUiW6detGWlqaWndeD/WMGTOws7NTx/Z+8803NG7cGDMzM2xsbOjbty+XL1/WiuuXX36hS5cumJubY2ZmRqtWrTh//nyh8RR0Byo2NpamTZuq1/WkSZO0fu5FXVOKojB16lQcHR0xMDDAzs6O0aNHF/vcisLl5uYyduxYvL29C71b8dVXX+Hm5kaLFi3KODohnr3IyEhMTU21lpkzZxZ7/woVKvDWW2+xatUq4MHf8bfeeosKFSo8q5DFc+Cpx3wbGRmVuCdMX1+ffv36ad1qiYiIICgoSKvc8ePHGT16NGFhYSQnJ7Nz5058fHwKrFOj0eDj46MmFNeuXSMpKYnbt2/z66+/Ag/+iDdp0gRjY+N8+x89ehSAPXv2kJGRwZYtW9Rt0dHRnD9/nujoaFavXk1ERES+nvuiGBkZkZubq5U0FEdQUJDWsVatWkW/fv3Q19fXKrd8+XJGjRrF0KFDOXPmDNu3b6dWrVrAgz+Q3bp1459//iE2Npbdu3fz22+/0bt3b3X/DRs2MHXqVGbOnMnx48extbXNl1ivWbOGKVOmMGPGDJKSkpg5cyYfffRRgQ+cPM7q1asxMTHhyJEjzJ07l7CwMHbv3g2g3iHJu2uS93n//v0MGDCAMWPGkJiYyMqVK4mIiGDGjBladU+dOpXXXnuNM2fOaF1PISEhLFiwgGPHjlG1alW6du2q9QXq1q1bzJkzhy+//JJffvkFKysrAgMDOX78ONu3b+fQoUMoikKnTp3Izs6mRYsWLFq0SL3DkZGRwYQJEwAIDg7m0KFDrFu3jtOnT9OrVy8CAgLUxL0g58+f5/vvvycyMpLIyEhiY2MLHJr1OLdu3WL+/Pl888037Nu3j/T0dDWmCRMm8MYbb2iNT2zRogXZ2dn4+/tjZmbG/v37iYuLUxP3h3+vo6KiSE5OZvfu3URGRgIP7ix8/PHHnDp1iu+//560tDQCAwPVfS5evIiPjw8GBgbs3buX+Ph4goKCuH//fqHxPOrixYt06tSJJk2acOrUKZYvX85XX33F9OnTtco97pravHkzCxcuZOXKlaSkpPD999/j7u5e6Hm8e/cuN27c0FpEwUaNGsXZs2dZt25dgdtv377Nd999J73e4qXVpk0bEhIStJbhw4eXqI6goCA2btzIpUuX2LhxY75cSLx8nvjerqIoREVFsWvXLt55550S7x8UFESrVq1YvHgx8fHxZGZm0qVLF60eq/T0dExMTOjSpQtmZmY4OTnh5eVVaJ2+vr6sXLkSgH379uHl5YWNjQ0xMTHUqVOHmJgYWrduXeC+eT3zlStXVnvu81SsWJHPPvsMXV1d6tSpQ+fOnYmKimLIkCHFamtKSgorVqxQewlLokuXLgwfPpx9+/bRqFEjNmzYwIEDB9RvyXmmT5/O+PHjGTNmjLquSZMmwIPE6cyZM6SmpqpDWr7++mvq1avHsWPHaNKkCYsWLWLw4MHqH8np06ezZ88erd7v0NBQFixYQI8ePYAHdwvyEuGSjE9r0KABoaGhALi4uPDZZ58RFRVF+/bt1Z9D3l2TPNOmTWPSpEnqcWrUqMHHH3/Me++9p9YF0LdvXwYNGqR+/u2339TY27dvDzxI1Ozt7dVxqPAgkVy2bBkeHh7Ag5/Z9u3biYuLU5PCNWvW4ODgwPfff0+vXr2wsLBQ73DkSU9PJzw8nPT0dOzs7IAHie/OnTsJDw8vtEckNzeXiIgI9fro378/UVFR+b5cPE52djYrVqygZs2awIMvAWFhYQCYmppiZGTE3bt3teL99ttvyc3N5csvv0Sj0QAPvvhYWloSExNDhw4dADAxMeHLL7/U+tL38B+IGjVqsGTJEpo0aUJWVhampqYsXboUCwsL1q1bp/bi1K5dW92noHgetWzZMhwcHPjss8/QaDTUqVOHP//8k4kTJzJlyhR0dB70HzzumkpPT8fGxgY/Pz8qVKiAo6MjTZs2LfSYs2bNYtq0acU44/9twcHBREZGsm/fPuzt7Qsss2nTJm7dusWAAQPKODohyoaJiYna0fWk3N3dqVOnDn369MHNzY369evLQ+cvuRL3fOfdYjE0NKRjx4707t37iR6Q9PDwwMXFhU2bNrFq1Sr69++fb5xn+/btcXJyokaNGvTv3581a9aoQ0YK0rp1axITE/n777+JjY3F19cXX19fYmJiyM7O5uDBg0/0kGK9evXUoSDwYCz2o7fXH5WZmYmpqSnGxsa4urpibW3NmjVrSnzsvFtS4eHhbNy4kdq1a9OgQQOtMpcvX+bPP/+kXbt2BdaRlJSEg4ODmngD1K1bF0tLS5KSktQyzZo109qvefPm6r9v3rzJ+fPnGTx4sNbttenTp3P+/PkStenR+ItzPk+dOkVYWJjWsfPGyj98TTRu3LjA/R9uS6VKlXB1dVXbDg/uxjwcV1JSEnp6elrnpHLlyvn2e9SZM2fIycmhdu3aWrHGxsY+9jw5OztrfTErzjl5lLGxsZp4F7eOU6dO8b///Q8zMzM11kqVKnHnzh2teN3d3fPdbYmPj6dr1644OjpiZmamfrFNT08HICEhgVatWj3V7dOkpCSaN2+ufjEA8Pb2JisrS+tZiMddU7169eL27dvUqFGDIUOGsHXr1sfegZo8eTKZmZnq8vvvvz9x/C8jRVEIDg5m69at7N27t9BpBeHBkJNXX31Va9ihECK/oKAgYmJipNf7P6LEPd9t2rRh+fLl6OvrY2dn91QPRgUFBbF06VISExPVYR8PMzMz48SJE8TExPDzzz8zZcoUpk6dyrFjxwqcZcLd3Z1KlSoRGxtLbGwsM2bMwMbGhjlz5nDs2DF1uEBJPZo8aDSaIh/Iy4tdR0cHW1tbjIyMSnzcPEFBQTRr1oyzZ88W+Iv5NHUXV1ZWFgBffPFFviT94S8mxfEk5zMrK4tp06apve4PMzQ0VP9tYmJSoljyGBkZaSV4TyorKwtdXV3i4+PznZfHzfTwJOekOHUoilJkvI0aNSrwi+HDCdOj5/XmzZv4+/vj7+/PmjVrqFq1Kunp6fj7+6vDVcriuszzuPPn4OBAcnIye/bsYffu3YwcOZJ58+YRGxtb4BcDAwODZ/Yg9stg1KhRfPfdd2zbtg0zMzMuXboEgIWFhdbP/H//+x/79u1jx44d5RWqEM/c3bt31d+BPHp6elSpUgV4MHTu0V5sJyenfPUMGTKEXr16yTS0/xElzpxL4xZLnr59+zJhwgQ8PDyoW7dugWX09PTw8/PDz8+P0NBQLC0t2bt3b4FJmEajoVWrVmzbto1ffvmFli1bYmxszN27d1m5ciWNGzcuNDnL69XLyckplbbp6OiU2nmqV68e9erV4/Tp0/Tt2zffdjMzM5ydnYmKiqJNmzb5tru5ufH777/z+++/q73fiYmJXL9+XT3vbm5uHDlyROv28OHDh9V/W1tbY2dnx2+//Ua/fv1KpV2FqVChQr6fQ8OGDUlOTn7ic3r48GF1hphr165x7tw53NzcCi3v5ubG/fv3OXLkiPqF7erVqyQnJ6vnTF9fP1+cXl5e5OTkcPnyZVq1avVEsT4rBcXbsGFD1q9fj5WVFebm5sWu69dff+Xq1avMnj1bvaaOHz+uVaZBgwasXr2a7OzsApPcguJ5lJubG5s3b0ZRFPXLUVxcHGZmZoUOdSiIkZERXbt2pWvXrowaNYo6depw5swZGjZsWOw6xAPLly8HyHcXMTw8XGvM/6pVq7C3t1eHLglRElWMq2CoZ1jmL9mpYlylRPvs3Lkz3yxtrq6u6rNm8+fPZ/78+Vrbv/nmG1q2bKm17uGEXbz8ynU+r4oVK5KRkVHobenIyEh+++03fHx8qFixIjt27CA3N1edbaEgvr6+jB8/nsaNG6s9jT4+PqxZs4aQkJBC97OyssLIyIidO3dib2+PoaEhFhYWT9fAUrR3716ys7ML/VY8depUhg8fjpWVFR07duTff/8lLi6Od955Bz8/P9zd3enXrx+LFi3i/v37jBw5ktatW6vDNMaMGUNgYCCNGzfG29ubNWvW8Msvv1CjRg31GNOmTWP06NFYWFgQEBDA3bt3OX78ONeuXWPcuHGl1ta8LxLe3t4YGBhQsWJFpkyZQpcuXXB0dOT1119HR0eHU6dOcfbs2XwP3xUkLCyMypUrY21tzQcffECVKlUeO+e1i4sL3bp1Y8iQIaxcuRIzMzMmTZpEtWrV6NatmxpnVlYWUVFReHh4YGxsTO3atenXrx8DBgxgwYIFeHl58ffffxMVFUWDBg0KnKWmrDg7O7Nr1y6Sk5OpXLkyFhYW9OvXj3nz5tGtWzfCwsKwt7fnwoULbNmyhffee6/QBNfR0RF9fX0+/fRThg8fztmzZ/n444+1ygQHB/Ppp5/y5ptvMnnyZCwsLDh8+DBNmzbF1dW1wHgeNXLkSBYtWsQ777xDcHAwycnJhIaGMm7cOHW8d1EiIiLIycmhWbNmGBsb8+2332JkZFRg75MoWlF3U/LMnDmzRLM+CPEwRwtHkoOTn+vXyxc1+cLDs0YV5HG/S56ensX+XRMvnnKfTPdxt1gsLS3ZsmULU6dO5c6dO7i4uLB27Vrq1atX6D6tW7cmJydHq1fG19eXbdu2PXa8t56eHkuWLCEsLIwpU6bQqlUrrenhyltRwykGDhzInTt3WLhwIRMmTKBKlSrqtIwajYZt27bxzjvv4OPjg46ODgEBAXz66afq/r179+b8+fO899573Llzh549ezJixAh27dqllnn77bcxNjZm3rx5hISEYGJigru7e4Gvzn0aCxYsYNy4cXzxxRdUq1aNtLQ0/P39iYyMJCwsjDlz5lChQgXq1KnD22+/Xaw6Z8+ezZgxY0hJScHT05Mffvgh3xjmR4WHhzNmzBi6dOnCvXv38PHxYceOHeqXxRYtWjB8+HB69+7N1atXCQ0NZerUqYSHh6sPwF68eJEqVarwyiuv0KVLl6c+N09jyJAhxMTE0LhxY7KysoiOjsbX15d9+/YxceJEevTowb///ku1atVo167dY3vCq1atSkREBO+//z5LliyhYcOGzJ8/n1dffVUtU7lyZfbu3UtISAitW7dGV1cXT09PvL29C43n0dcoV6tWjR07dhASEoKHhweVKlVi8ODBfPjhh8Vut6WlJbNnz2bcuHHk5OTg7u7ODz/8QOXKlUt2AoUQZcrRwrFEybAQLwqNIl+txEssJiaGNm3acO3aNRlLJ57IjRs3sLCwYBKTMMSw6B1eYqFKaNGFhCihO3fukJqaSvXq1bWe4RGirD3uWsz7W5CZmVmiYZoFeep5voUQQgghhBDFI8m3EEIIIYQQZaTcx3wL8Sz5+vrKQytCCCGEeG5Iz7cQQgghhBBlRJJvIYQQQgghyogk30IIIYQQQpQRSb6FEEIIIYQoI/LApRBCFMPkzMlPPberEKIE0tPhStm94ZIqVcBRXuojnj1JvoUQQgjxfElPB1dXuHOn7I5paAjJycVOwAMDA1m9ejUAFSpUwNHRkQEDBnDu3DnWrFlT6H5OTk6kpaXh6+tLbGwss2bNYtKkSVplOnfuzI4dO9Q3J8OD2bs8PT1ZtGhRseJLS0ujevXqnDx5Ek9Pz2LtI8qGDDsRQgghxPPlypWyTbzhwfFK2NMeEBBARkYGKSkpjB8/nqlTp+Li4kJGRoa6AISHh6ufjx07pu7v4OBARESEVp0XL14kKioKW1vbp26SeD5J8i2EEEII8QQMDAywsbHBycmJESNG4Ofnx86dO7GxsVEXAEtLS/Vz1apV1f27dOnClStXiIuLU9etXr2aDh06YGVl9dhjOzs7M3PmTIKCgjAzM8PR0ZHPP/9c3V69enUAvLy80Gg0+Pr6lmLLxdOQ5FsIIYQQohQYGRlx7969YpfX19enX79+hIeHq+siIiIICgoq1v4LFiygcePGnDx5kpEjRzJixAiSk5MBOHr0KAB79uwhIyODLVu2lKAl4lmS5FsIIYQQ4ikoisKePXvYtWsXbdu2LdG+QUFBbNiwgZs3b7Jv3z4yMzPp0qVLsfbt1KkTI0eOpFatWkycOJEqVaoQHR0NoPawV65cGRsbGypVqlSyRolnRh64FEIIIYR4ApGRkZiampKdnU1ubi59+/ZVH5AsLg8PD1xcXNi0aRPR0dH0798fPb3ipWcNGjRQ/63RaLCxseHy5cslOr4oe5J8CyGEEEI8gTZt2rB8+XL09fWxs7MrdtL8qKCgIJYuXUpiYqI6XKQ4KlSooPVZo9GQm5v7RDGIsiPDToQQQgghnoCJiQm1atXC0dHxiRNvgL59+3LmzBnq169P3bp1SyU2fX19AHJyckqlPlF6pOdbCCGEEKIcVaxYkYyMjHw92U/DysoKIyMjdu7cib29PYaGhlhYWJRa/eLJSc+3EEIIIZ4vVao8eOlNWTI0fHDccmJpaYmJiUmp1aenp8eSJUtYuXIldnZ2dOvWrdTqFk9HoyiKUt5BCCHE8+rGjRtYWFiQmZkpr5cX4hm4c+cOqampVK9eHcOHE255vbwoY4Vei5Tu3wIZdiKEEEKI54+joyTD4qUkw06EEEIIIYQoI5J8CyGEEEIIUUYk+RZCCCGEEKKMSPItykVERASWlpbldnxnZ2cWLVpUKnXFxMSg0Wi4fv16mR0zT3mfR4C0tDQ0Gg0JCQnlGkdZWLp0Kc7OzhgaGtKsWbMSvQxDCCGEAEm+n0pgYCAajQaNRoO+vj61atUiLCyM+/fva20raHF2dgbA19cXjUbD7Nmz89XfuXNnNBpNiV9V+yLo3bs3586dK9E+zyJ5LQ0tWrQgIyNDnT+1NBPix11jLxtfX1/Gjh1b3mEUavPmzYwbN47Q0FBOnDiBh4cH/v7+8ipnIYQQJSLJ91MKCAggIyODlJQUxo8fz9SpU5k3bx6LFy8mIyNDXQDCw8PVz8eOHVPrcHBwICIiQqveixcvEhUVha2tbVk2p8wYGRlhZWVV3mGUCn19fWxsbNBoNM+k/sKuMVG2li5dypAhQxg0aBB169ZlxYoVGBsbs2rVqvIOTQghxAtEku+nZGBggI2NDU5OTowYMQI/Pz+2b9+OhYUFNjY26gIPJtDP+1y1alW1ji5dunDlyhXi4uLUdatXr6ZDhw75EtRly5bh4uKCoaEh1tbWvP7664XGdvXqVfr06UO1atUwNjbG3d2dtWvXapXZtGkT7u7uGBkZUblyZfz8/Lh58ybwYDhF06ZNMTExwdLSEm9vby5cuKDuu3z5cmrWrIm+vj6urq588803WnVfv36dYcOGYW1tjaGhIfXr1ycyMhLI3zt8/vx5unXrhrW1NaampjRp0oQ9e/ao2319fblw4QLvvvuu2hOc58CBA7Rq1QojIyMcHBwYPXq02gaAy5cv07VrV4yMjKhevTpr1qwp9JwBnD17Fh0dHf7++28A/vnnH3R0dHjzzTfVMtOnT6dly5bqecobdhITE8OgQYPIzMxU43z4zsWtW7cICgrCzMwMR0dHPv/888fGAoVfYw/btWsXbm5umJqaqsl6ntzcXMLCwrC3t8fAwABPT0927typbr937x7BwcHY2tpiaGiIk5MTs2bNUrdrNBqWL19Ox44dMTIyokaNGmzatClfnL/99htt2rTB2NgYDw8PDh06pG4r6loMDAwkNjaWxYsXq+ctLS2NnJwcBg8eTPXq1TEyMsLV1ZXFixdrHbeo63Tbtm00bNgQQ0NDatSowbRp057ozkFCQgJ+fn7qZx0dHfz8/LTaKYQQQhRFku9SZmRkxL1790q0j76+Pv369SM8PFxdFxERQVBQkFa548ePM3r0aMLCwkhOTmbnzp34+PgUWu+dO3do1KgRP/74I2fPnmXo0KH0799fHaeakZFBnz59CAoKIikpiZiYGHr06IGiKNy/f5/u3bvTunVrTp8+zaFDhxg6dKia9G7dupUxY8Ywfvx4zp49y7Bhwxg0aBDR0dHAg4SvY8eOxMXF8e2335KYmMjs2bPR1dUtMNasrCw6depEVFQUJ0+eJCAggK5du5Keng7Ali1bsLe3JywsTOtuwvnz5wkICKBnz56cPn2a9evXc+DAAYKDg9W6AwMD+f3334mOjmbTpk0sW7bssUMF6tWrR+XKlYmNjQVg//79Wp8BYmNj8fX1zbdvixYtWLRoEebm5mqcEyZMULcvWLCAxo0bc/LkSUaOHMmIESNITk4uNJaCPHqN3bp1i/nz5/PNN9+wb98+0tPTtY65ePFiFixYwPz58zl9+jT+/v68+uqrpKSkALBkyRK2b9/Ohg0bSE5OZs2aNeqwqDwfffQRPXv25NSpU/Tr148333yTpKQkrTIffPABEyZMICEhgdq1a9OnTx81yS3qWly8eDHNmzdnyJAh6nlzcHAgNzcXe3t7Nm7cSGJiIlOmTOH9999nw4YNAEVep/v372fAgAGMGTOGxMREVq5cSUREBDNmzCj0/N69e5cbN25oLQA5OTlYW1trlbW2tubSpUvF/tkJIYQQKOKJDRw4UOnWrZuiKIqSm5ur7N69WzEwMFAmTJiQryygbN26Nd/61q1bK2PGjFESEhIUMzMzJSsrS4mNjVWsrKyU7OxsxcPDQwkNDVUURVE2b96smJubKzdu3HjimDt37qyMHz9eURRFiY+PVwAlLS0tX7mrV68qgBITE1NgPS1atFCGDBmita5Xr15Kp06dFEVRlF27dik6OjpKcnJygfuHh4crFhYWj421Xr16yqeffqp+dnJyUhYuXKhVZvDgwcrQoUO11u3fv1/R0dFRbt++rSQnJyuAcvToUXV7UlKSAuSr62E9evRQRo0apSiKoowdO1YJCQlRKlasqCQlJSn37t1TjI2NlZ9//llRFEWJjo5WAOXatWuPbZuTk5Py1ltvqZ9zc3MVKysrZfny5YXGUdQ1Fh4ergDK//73P3WfpUuXKtbW1upnOzs7ZcaMGVr1NmnSRBk5cqSiKIryzjvvKG3btlVyc3MLjAFQhg8frrWuWbNmyogRIxRFUZTU1FQFUL788kt1+y+//KIASlJSUqFte/haVJT/+10oyqhRo5SePXsqilL0ddquXTtl5syZWuu++eYbxdbWttD6Q0NDFaDA5eDBg1plQ0JClKZNmxYZsxCicLdv31YSExOV27dva62/fuG68mf8n2W2XL9wvZzOQPkp7v+7/xWFXYuKoiiZmZkKoGRmZj71ceQNl08pMjISU1NTsrOzyc3NpW/fvk/0gKSHhwcuLi5s2rSJ6Oho+vfvj56e9o+nffv2ODk5UaNGDQICAggICOC1117D2Ni4wDpzcnKYOXMmGzZs4OLFi9y7d4+7d++q5T08PGjXrh3u7u74+/vToUMHXn/9dSpWrEilSpUIDAzE39+f9u3b4+fnxxtvvKGOQU9KSmLo0KFax/P29laHBCQkJGBvb0/t2rWL1f6srCymTp3Kjz/+SEZGBvfv3+f27dtqz3dhTp06xenTp7WGkiiKQm5uLqmpqZw7dw49PT0aNWqkbq9Tp06RD0S2bt1aHRISGxvLzJkzOXfuHDExMfzzzz9kZ2fj7e1drLY9rEGDBuq/NRoNNjY2RT6wV9Q1ZmxsTM2aNdXPtra2ap03btzgzz//zBert7c3p06dAh7cGWjfvj2urq4EBATQpUsXOnTooFW+efPm+T4/OrvJw23Lu04uX75MnTp1irwWH2fp0qWsWrWK9PR0bt++zb179/D09AQo8jo9deoUcXFxWj3dOTk53Llzh1u3bhV4/MmTJzNu3Dj1840bN3BwcEBXV5e//vpLq+xff/2lDisTQpSezPRMPnP9jPt3yu7hcj1DPYKTg7FwtChW+cDAQFavXg1AhQoVcHR0ZMCAAZw7d+6xwxudnJxIS0vD19eX2NhYZs2axaRJk7TKdO7cmR07dhAaGvpSTrrwXyfDTp5SmzZtSEhIICUlhdu3b7N69WpMTEyeqK6goCCWLl3Kpk2b8g05ATAzM+PEiROsXbsWW1tbpkyZgoeHR6FT3OU9+Dlx4kSio6NJSEjA399fHbKgq6vL7t27+emnn6hbty6ffvoprq6upKamAg8eED106BAtWrRg/fr11K5dm8OHDxerLUZGRiVq+4QJE9i6dSszZ85k//79JCQk4O7uXuQQnqysLIYNG0ZCQoK6nDp1ipSUFK2EtKR8fX1JTEwkJSWFxMREWrZsia+vLzExMcTGxtK4ceNiJY6PqlChgtZnjUZDbm7uY/cp6horqE5FUYodU8OGDUlNTeXjjz/m9u3bvPHGG499lqAwD8eRN+wjr21FXYuFWbduHRMmTGDw4MH8/PPPJCQkMGjQIK39HnedZmVlMW3aNK3r48yZM6SkpGBoaFjgMQ0MDDA3N9daADw9PYmKilLL5ebmEhUVle+LiRDi6d26cqtME2+A+3fuc+vKrRLtU9AD8S4uLjLhgngsSb6fkomJCbVq1cLR0TFfT3VJ9e3blzNnzlC/fn3q1q1bYBk9PT38/PyYO3cup0+fJi0tjb179xZYNi4ujm7duvHWW2/h4eFBjRo18k3vp9Fo8Pb2Ztq0aZw8eRJ9fX22bt2qbvfy8mLy5MkcPHiQ+vXr89133wHg5uam9YBo3vHy4m7QoAF//PFHsacTjIuLIzAwkNdeew13d3dsbGxIS0vTKqOvr09OTo7WuoYNG5KYmEitWrXyLfr6+tSpU4f79+8THx+v7pOcnFzknNzu7u5UrFiR6dOn4+npiampqdpLERMTU+B478fF+TSe5hozNzfHzs7usT+rvHK9e/fmiy++YP369WzevJl//vlH3f7ol67Dhw/j5uZW7DiKcy0WdN7i4uJo0aIFI0eOxMvLi1q1anH+/Pl89Rd2nTZs2JDk5OQCrw8dnZL99zdq1Ci++OILVq9eTVJSEiNGjODmzZsMGjSoRPUIIV4eBT0Qv3Pnzmcy4cLdu3eZOHEiDg4OGBgYUKtWLb766it1e2xsLE2bNsXAwABbW1smTZqk9XD5zZs3GTBgAKamptja2rJgwYJ87bl79y4TJkygWrVqmJiY0KxZM2JiYkrrdIn/T4adPEcqVqxIRkZGvp7MPJGRkfz222/4+PhQsWJFduzYQW5uLq6urgWWzxvGcvDgQSpWrMgnn3zCX3/9pSZdR44cISoqSv0lP3LkCH///Tdubm6kpqby+eef8+qrr2JnZ0dycjIpKSkMGDAAgJCQEN544w28vLzw8/Pjhx9+YMuWLeoMJa1bt8bHx4eePXvyySefUKtWLX799Vc0Gg0BAQEFxrplyxa6du2KRqPho48+ytcj7OzszL59+3jzzTcxMDCgSpUqTJw4kVdeeYXg4GDefvttTExMSExMZPfu3Xz22WfqUIphw4axfPly9PT0GDt2bJE98xqNBh8fH9asWaM+vNigQQPu3r1LVFSU1rCERzk7O5OVlUVUVBQeHh4YGxs/US95aQkJCSE0NJSaNWvi6elJeHg4CQkJ6m3RTz75BFtbW7y8vNDR0WHjxo3Y2NhoDc3ZuHEjjRs3pmXLlqxZs4ajR49q/adflKKuRXhw3o4cOUJaWhqmpqZUqlQJFxcXvv76a3bt2kX16tX55ptvOHbsGNWrVwco8jqdMmUKXbp0wdHRkddffx0dHR1OnTrF2bNnmT59eonOY8+ePbl58yZTpkzh0qVL6qwxjz6EKYT47zIyMuLq1avFLv/whAt5wwMjIiKYO3duvuEmAwYM4NChQyxZsgQPDw9SU1O5cuUK8KC3vFOnTgQGBvL111/z66+/MmTIEAwNDdV6QkJCiI2NZdu2bVhZWfH+++9z4sQJdRgfQHBwMImJiaxbtw47Ozu2bt1KQEAAZ86cwcXF5anOjfg/0vP9nLG0tCx02IqlpSVbtmyhbdu2uLm5sWLFCtauXUu9evUKLP/hhx/SsGFD/P398fX1xcbGhu7du6vbzc3N2bdvH506daJ27dp8+OGHLFiwgI4dO2JsbMyvv/5Kz549qV27NkOHDmXUqFEMGzYMgO7du7N48WLmz59PvXr1WLlyJeHh4Vo9wps3b6ZJkyb06dOHunXr8t577xXaI/zJJ59QsWJFWrRoQdeuXfH396dhw4ZaZcLCwkhLS6NmzZpqz0GDBg2IjY3l3LlztGrVCi8vL6ZMmYKdnZ26X3h4OHZ2drRu3ZoePXowdOjQYs0x3rp1a3JyctQ26ejo4OPjo94tKEyLFi0YPnw4vXv3pmrVqsydO7fIYz1Lo0ePZty4cYwfPx53d3d27tzJ9u3b1f9IzczMmDt3Lo0bN6ZJkyakpaWxY8cOrZ7hadOmsW7dOho0aMDXX3/N2rVrC707U5CirkV4MPRIV1eXunXrUrVqVdLT0xk2bBg9evSgd+/eNGvWjKtXrzJy5Eh1n6KuU39/fyIjI/n5559p0qQJr7zyCgsXLsTJyemJzmVwcDAXLlzg7t27HDlyhGbNmj1RPUKIl4uiKOzZs4ddu3bRtm3bEu0bFBTEhg0buHnzJvv27SMzM5MuXbpolTl37hwbNmxg1apVvPbaa9SoUYN27drRu3dv4ME0xA4ODnz22WfUqVOH7t27M23aNBYsWEBubi5ZWVl89dVXzJ8/X33Wa/Xq1Vo94+np6YSHh7Nx40ZatWpFzZo1mTBhAi1bttSajU08PY1SksGhQoj/HI1Gw9atW/Mly/8VN27cwMLCgszMTHX8txCi9Ny5c4fU1FSqV6+uPouRcSKDzxsV/R6E0jY0fii2DYs31jowMJBvv/0WQ0NDrQfily1bptWJVtj/ob6+vnh6erJo0SIaNWrE6NGjiY6OpkqVKsyfPx9PT0+6d+/O1KlT2bBhA3379uX27dsF3h3v0aMHFhYWWknyqVOn8PT05MKFC1y7dk39t6Ojo1rGy8uL1q1bs2jRIn788Ue6dOmSrwPw7t279OjRg/Xr1xfrvLzICroW85Tm3wIZdiKEEEII8QTatGnD8uXL0dfXx87O7omf/cqbcCExMVF9/8HDSjqJwZPIyspCV1eX+Pj4fO/kMDU1febH/y+RYSdCCCGEEE+gtCZdKGrCBXd3d3Jzc7Ve9vYwNzc3Dh06pDXTVVxcHGZmZtjb21OzZk0qVKjAkSNH1O3Xrl3TevDdy8uLnJwcLl++nO8BdZlStXRJz7cQ4rFkZJoQQjxbRU244OzszMCBAwkKClIfuLxw4QKXL1/mjTfeYOTIkSxatIh33nmH4OBgkpOTCQ0NZdy4cejo6GBqasrgwYMJCQmhcuXKWFlZ8cEHH2g921O7dm369evHgAEDWLBgAV5eXvz9999ERUXRoEEDOnfuXFan46UnybcQQgghnivGVYzRM9Qr85fsGFcpv5mpinr52/Lly3n//fcZOXIkV69exdHRkffffx+AatWqsWPHDkJCQvDw8KBSpUoMHjyYDz/8UN1/3rx5ZGVl0bVrV8zMzBg/fjyZmZlaxwgPD2f69OmMHz+eixcvUqVKFV555ZV8D4CKpyMPXAohxGPIA5dCPFuFPeSWmZ5Z4pfePA3jKsbFfruleDnJA5dCCCGE+M+ycLSQZFi8lOSBSyGEEEIIIcqIJN9CCCGEEEKUEUm+hRBCCCGEKCOSfAshhBBCCFFGJPkWQgghhBCijEjyLYQQQgghRBmR5FsIIYQQQogyIsm3EEIIIYQQZUResiOEEEKI58/NdLh7peyOZ1AFTBzL7njiP0uSbyGEKI5zFmD60Oc6SrmFIsRL72Y6/OAKuXfK7pg6htA1udgJeGBgIKtXrwZAT0+PSpUq0aBBA/r06UNgYCA6Og8GFzg7O3PhwoV8+8+aNYtJkyaRlpZG9erV1fWVKlWiUaNGzJkzBy8vL3X9L7/8wrRp04iOjubGjRs4OTnx5ptvMmnSJIyNjdVyDx/P0NAQa2trmjZtyvDhw2nbtm3Jz4sodTLsRAghhBDPl7tXyjbxhgfHK2FPe0BAABkZGaSlpfHTTz/Rpk0bxowZQ5cuXbh//75aLiwsjIyMDK3lnXfe0aprz549ZGRksGvXLrKysujYsSPXr18H4PDhwzRr1ox79+7x448/cu7cOWbMmEFERATt27fn3r17WnXlHS85OZmvv/4aS0tL/Pz8mDFjxpOdG1GqpOdbCCGEEOIJGBgYYGNjA0C1atVo2LAhr7zyCu3atSMiIoK3334bADMzM7VcYSpXroyNjQ02NjbMnz8fb29vjhw5QocOHRg8eDBubm5s2bJF7VF3cnKidu3aeHl5sXDhQiZOnKjW9fDxHB0d8fHxwdbWlilTpvD666/j6ur6LE6HKCbp+RZCCCGEKCVt27bFw8ODLVu2PHEdRkZGANy7d4+EhAQSExMZN26cmnjn8fDwwM/Pj7Vr1xZZ55gxY1AUhW3btj1xXKJ0SPIthBBCCFGK6tSpQ1pamvp54sSJmJqaai379+8vcN/r16/z8ccfY2pqStOmTTl37hwAbm5uBZZ3c3NTyzxOpUqVsLKy0opLlA8ZdiKEEEIIUYoURUGj0aifQ0JCCAwM1CpTrVo1rc8tWrRAR0eHmzdvUqNGDdavX4+1tbVWnaUdlygfknwLIYQQQpSipKQkrRlMqlSpQq1atR67z/r166lbty6VK1fG0tJSXV+7dm21zodnP3n4WHllHufq1av8/fffWnGJ8iHDToQQQgghSsnevXs5c+YMPXv2LNF+Dg4O1KxZUyvxBvD09KROnTosXLiQ3NxcrW2nTp1iz5499OnTp8j6Fy9ejI6ODt27dy9RXKL0Sc+3EEIIIcQTuHv3LpcuXSInJ4e//vqLnTt3MmvWLLp06cKAAQPUcv/++y+XLl3S2tfY2Bhzc/Mij6HRaPjqq69o3749PXv2ZPLkydjY2HDkyBHGjx9P8+bNGTt2rNY+ecfLzs4mNTWVb7/9li+//JJZs2YV2QMvnj3p+f4Pi4iIyPcNuyw5OzuzaNGiUqkrJiYGjUajzolaFsd8mK+vb77//J5XPj4+fPfdd+UdRj7F/Rk+jVdeeYXNmzeXWn2zZs2iSZMmmJmZYWVlRffu3UlOTi61+oX4zzKo8uClN2VJx/DBcUtg586d2Nra4uzsTEBAANHR0SxZsoRt27ahq6urlpsyZQq2trZay3vvvVfs47Ro0YLDhw+jq6tLx44dqVWrFpMnT2bgwIHs3r0bAwMDrfJ5x6tVqxb9+/cnMzOTqKgorekIRTlSXnADBw5UAAVQKlSooNSsWVOZNm2akp2drbWtoMXJyUlRFEVp3bq1AiizZs3KV3+nTp0UQAkNDS3bhpWBW7duKX/99VeJ9nFyclIWLlxYKscvzbru3r2rZGRkKLm5uYqiKEp4eLhiYWFRKsccOHCg0q1bN611GzduVAwMDJT58+criqIoV69eVW7cuPEkoZepbdu2KbVr11ZycnLUdU5OTurvhJGRkVK/fn3liy++KPVjh4aGqsfR1dVVnJyclLFjxyr//vuvoiiKEh0drQDKtWvXSv3YeX744QelVq1aWu0vSmZmpgIomcdQlKSHFkVR/P39lfDwcOXs2bNKQkKC0qlTJ8XR0VHJysp6Vk0Q4qVz+/ZtJTExUbl9+7b2hqwLinI1vuyWrAvlcwLEc6PQa1F56G9BZuZTH+elGHYSEBBAeHg4d+/eZceOHYwaNYoKFSqwePFiZs+erZaztbUlPDycgIAAAK1vpQ4ODkRERDBp0iR13cWLF4mKisLW1rbsGlOGjIyM1LlEX3T6+vpFvsCgtHz55ZeMGjWKFStWMGjQIODBFE4vgiVLljBo0KB8c8WGhYUxZMgQbt26xcaNGxkyZAjVqlWjY8eOpXr8evXqsWfPHu7fv09cXBxBQUHcunWLlStXlupxCtOxY0fefvttfvrpJzp37vzU9e3cuVPrc0REBFZWVsTHx+Pj4/PU9Qvxn2biWOxXvQvxInkphp3kvWHKycmJESNG4Ofnx/bt27GwsFDfFpWXmFlaWqqfq1atqtbRpUsXrly5QlxcnLpu9erVdOjQASsrK63jLVu2DBcXFwwNDbG2tub1118vNLarV6/Sp08fqlWrhrGxMe7u7vkmw9+0aRPu7u4YGRlRuXJl/Pz8uHnzJvDgVnzTpk0xMTHB0tISb29vLly4oO67fPlyatasib6+Pq6urnzzzTdadV+/fp1hw4ZhbW2NoaEh9evXJzIyEsg/7OT8+fN069YNa2trTE1NadKkCXv27FG3+/r6cuHCBd599100Go3WdEUHDhygVatWGBkZ4eDgwOjRo9U2AFy+fJmuXbtiZGRE9erVWbNmTaHnDODs2bPo6Ojw999/A/DPP/+go6PDm2++qZaZPn06LVu2VM9T3pCFmJgYBg0aRGZmphrn1KlT1f1u3bpFUFAQZmZmODo68vnnnz82lofNnTuXd955h3Xr1qmJd965eXjYibOzMzNnznzscSZOnEjt2rUxNjamRo0afPTRR2RnZ6vbT506RZs2bTAzM8Pc3JxGjRpx/PhxdXtR5/xRf//9N3v37qVr1675tuW9Da1GjRpMnDiRSpUqsXv3bnX79evXefvtt6latSrm5ua0bduWU6dOadUxffp0rKysMDMz4+2332bSpEl4enpqldHT08PGxgZ7e3t69+5Nv3792L59u1aZ+Ph4GjdujLGxMS1atMg3jONx17yiKEydOhVHR0cMDAyws7Nj9OjR6nZdXV06derEunXrCj1PTyMzMxN4cb6MCSGEKHsvRfL9KCMjI+7du1eiffT19enXrx/h4eHquoiICIKCgrTKHT9+nNGjRxMWFkZycjI7d+58bA/XnTt3aNSoET/++CNnz55l6NCh9O/fn6NHjwKQkZFBnz59CAoKIikpiZiYGHr06IGiKNy/f5/u3bvTunVrTp8+zaFDhxg6dKia9G7dupUxY8Ywfvx4zp49y7Bhwxg0aBDR0dEA5Obm0rFjR+Li4vj2229JTExk9uzZWj3+D8vKyqJTp05ERUVx8uRJAgIC6Nq1K+np6QBs2bIFe3t7wsLCyMjIICMjA3iQtAcEBNCzZ09Onz7N+vXrOXDgAMHBwWrdgYGB/P7770RHR7Np0yaWLVvG5cuXCz1v9erVo3LlysTGxgKwf/9+rc8AsbGx+Pr65tu3RYsWLFq0CHNzczXOCRMmqNsXLFhA48aNOXnyJCNHjmTEiBHFGqc7ceJEPv74YyIjI3nttdeKLF/UcczMzIiIiCAxMZHFixfzxRdfsHDhQnV7v379sLe359ixY8THxzNp0iQqVKgAFO+cP+rAgQMYGxsX+qIGeHDNbN68mWvXrqGvr6+u79WrF5cvX+ann34iPj6ehg0b0q5dO/755x8A1qxZw4wZM5gzZw7x8fE4OjqyfPnyIs9RQb+rH3zwAQsWLOD48ePo6elp/Q4Wdc1v3ryZhQsXsnLlSlJSUvj+++9xd3fXqr9p06aFvtwCHjxAdePGDa2lOHJzcxk7dize3t7Ur1+/WPsIIYT4D3rqgSvl7OHxuLm5ucru3bsVAwMDZcKECfnKAsrWrVvzrW/durUyZswYJSEhQTEzM1OysrKU2NhYxcrKSsnOzlY8PDzUMd+bN29WzM3Nn2p8b+fOnZXx48criqIo8fHxCqCkpaXlK3f16lUFUGJiYgqsp0WLFsqQIUO01vXq1Uvp1KmToiiKsmvXLkVHR0dJTk4ucP/CxkU/rF69esqnn36qfi5ozPTgwYOVoUOHaq3bv3+/oqOjo9y+fVtJTk5WAOXo0aPq9qSkJAV47PjrHj16KKNGjVIURVHGjh2rhISEKBUrVlSSkpKUe/fuKcbGxsrPP/+sKEr+8cKPG/P91ltvqZ9zc3MVKysrZfny5YXGMXDgQEVfX18BlKioqALL5F1DT3OcefPmKY0aNVI/m5mZKREREQWWLeqcF2ThwoVKjRo18q13cnJS9PX1FRMTE0VPT08BlEqVKikpKSlqvebm5sqdO3e09qtZs6aycuVKRVEUpVmzZurPKo+3t7fi4eGhfg4NDdX6fPz4caVKlSrK66+/rijK//0M9+zZo5b58ccfFUBtU1HX/IIFC5TatWsr9+7dK/AcKMqDce86OjqFjvt+eGz6w0tBY74fNnz4cMXJyUn5/fffCz22ECK/x42zFaIsldWY75ei5zsyMhJTU1MMDQ3p2LEjvXv31hpmUFweHh64uLiwadMmVq1aRf/+/dHT0x4W3759e5ycnKhRowb9+/dnzZo13Lp1q9A6c3Jy+Pjjj3F3d6dSpUqYmpqya9cutTfZw8ODdu3a4e7uTq9evfjiiy+4du0a8ODWdWBgIP7+/nTt2pXFixervc3wYGJ9b29vreN5e3uTlJQEQEJCAvb29sWafB8e9HxPmDABNzc3LC0tMTU1JSkpSY21MKdOnSIiIkLrtbn+/v7k5uaSmppKUlISenp6NGrUSN2nTp06Rc600rp1a2JiYoAHvdxt27bFx8eHmJgYjh07RnZ2dr72F0eDBg3Uf2s0GmxsbB7bC5+3j7OzM6GhoWRlZZXKcdavX4+3tzc2NjaYmpry4Ycfap3rcePG8fbbb+Pn58fs2bM5f/68uq2oc16Q27dvY2hY8OwBISEhJCQksHfvXpo1a8bChQvV6ahOnTpFVlYWlStX1jpeamqqGlNycjJNmzbVqvPRzwBnzpzB1NQUIyMjmjZtSvPmzfnss88KPW95z1vknbeirvlevXpx+/ZtatSowZAhQ9i6dSv379/XKm9kZERubi53794t8FxMnjyZzMxMdfn9998LLPew4OBgIiMjiY6Oxt7evsjyQggh/rteiuS7TZs2JCQkkJKSwu3bt1m9ejUmJiZPVFdQUBBLly5l06ZN+YacwIOhAidOnGDt2rXY2toyZcoUPDw8Cp0ebd68eSxevJiJEycSHR1NQkIC/v7+6q12XV1ddu/ezU8//UTdunX59NNPcXV1VROo8PBwDh06RIsWLVi/fj21a9fm8OHDxWpLSR+mnDBhAlu3bmXmzJns37+fhIQE3N3dixzCk5WVxbBhw0hISFCXU6dOkZKSQs2aNUsUw8N8fX1JTEwkJSWFxMREWrZsia+vLzExMcTGxqrjgksqb+hGHo1Gk+/FBY+qVq0aMTExXLx4kYCAAP7999+nOs6hQ4fo168fnTp1IjIykpMnT/LBBx9oneupU6fyyy+/0LlzZ/bu3UvdunXZunUr8GTnvEqVKuoXu4K21apVi1atWrFx40ZGjx5NYmKieixbW1utYyUkJJCcnExISEiR5+Fhrq6uJCQkkJSUxO3bt9m+fbvW65MfPW95Q6yK+vnkcXBwIDk5mWXLlmFkZMTIkSPx8fHRGkv/zz//YGJiUujvh4GBAebm5lpLYRRFITg4mK1bt7J37155c5wQQogivRTJt4mJCbVq1cLR0TFfT3VJ9e3blzNnzlC/fn3q1q1bYBk9PT38/PyYO3cup0+fJi0tjb179xZYNi4ujm7duvHWW2/h4eFBjRo1OHfunFYZjUaDt7c306ZN4+TJk+jr66tJFoCXlxeTJ0/m4MGD1K9fX52j2c3NTesB0bzj5cXdoEED/vjjj3zHK0xcXByBgYG89tpruLu7Y2NjQ1pamlYZfX19cnJytNY1bNiQxMREatWqlW/R19enTp063L9/n/j4eHWf5OTkIudzdnd3p2LFikyfPh1PT09MTU3x9fUlNjaWmJiYAsd7Py7Op+Xk5ERsbCyXLl0qdgJemIMHD+Lk5MQHH3xA48aNcXFx0XqQNk/t2rV59913+fnnn+nRo4f6TEJR57wgXl5eXLp0qdAEPI+DgwO9e/dm8uTJ6rEuXbqEnp5evmNVqfJgTlxXV1eOHTumVc+jn+HBz6VWrVo4OzsXGufjFHXNw4MvnV27dmXJkiXExMRw6NAhzpw5o24/e/Zsga9ofhKjRo3i22+/5bvvvsPMzIxLly5x6dIlbt++XSr1CyGEePm8FMl3aapYsSIZGRlERUUVuD0yMpIlS5aQkJDAhQsX+Prrr8nNzcXV1bXA8i4uLuzevZuDBw+SlJTEsGHD+Ouvv9TtR44cYebMmRw/fpz09HS2bNnC33//jZubG6mpqUyePJlDhw5x4cIFfv75Z1JSUtQH5kJCQoiIiGD58uWkpKTwySefsGXLFvXhwtatW+Pj40PPnj3ZvXs3qamp/PTTT/mmR3s41i1btqi9qH379s3X4+js7My+ffu4ePEiV65cAR48iHjw4EGCg4PVOxDbtm1TH/5zdXUlICCAYcOGceTIEeLj43n77beL7JnXaDT4+PiwZs0aNdFu0KABd+/eJSoqitatWxe6r7OzM1lZWURFRXHlypXHDg0qCQcHB2JiYrh8+TL+/v7FfhjvUS4uLqSnp7Nu3TrOnz/PkiVLtL5w3b59m+DgYGJiYrhw4QJxcXEcO3ZM/dkXdc4L4uXlRZUqVfIlrwUZM2YMP/zwA8ePH8fPz4/mzZvTvXt3fv75Z9LS0jh48CAffPCBOvvKO++8w1dffcXq1atJSUlh+vTpnD59WmtGnNJQ1DUfERHBV199xdmzZ/ntt9/49ttvMTIywsnJSa1j//79dOjQoVTiWb58OZmZmfj6+mq9PGP9+vWlUr8QQoiXjyTfBbC0tCx02IqlpSVbtmyhbdu2uLm5sWLFCtauXUu9evUKLP/hhx/SsGFD/P398fX1xcbGhu7du6vbzc3N2bdvH506daJ27dp8+OGHLFiwgI4dO2JsbMyvv/5Kz549qV27NkOHDmXUqFEMGzYMgO7du7N48WLmz59PvXr1WLlyJeHh4Vo9wps3b6ZJkyb06dOHunXr8t577xXaI/zJJ59QsWJFWrRoQdeuXfH396dhw4ZaZcLCwkhLS6NmzZrqVI0NGjQgNjaWc+fO0apVK7y8vJgyZQp2dnbqfuHh4djZ2dG6dWt69OjB0KFD803hWJDWrVuTk5OjtklHRwcfHx/1bkFhWrRowfDhw+nduzdVq1Zl7ty5RR6ruOzt7YmJieHKlStPnIC/+uqrvPvuuwQHB+Pp6cnBgwf56KOP1O26urpcvXqVAQMGULt2bd544w06duzItGnTgOKd80fp6uoyaNCgIqd5BKhbty4dOnRgypQpaDQaduzYgY+PD4MGDaJ27dq8+eabXLhwQR0y0q9fPyZPnsyECRNo2LAhqampBAYGFjrG/EkVdc1bWlryxRdf4O3tTYMGDdizZw8//PADlStXBh7M3X/w4EGtaSKfhqIoBS6BgYGlUr8QQoiXj0ZRFKW8gxBClI1Lly5Rr149Tpw4odUb/Cy0b98eGxubfHPPl6eJEydy7dq1Es3tfuPGDSwsLMg8BuamD22oI/91ClEa7ty5Q2pqKtWrV9f+wp6dDjlXyi4Q3SpQ4cV7qY9Go2Hr1q1aHXviyRR6LfLQ34LMzMc+C1QcL8UbLoUQxWNjY8NXX31Fenp6qSbft27dYsWKFfj7+6Orq8vatWvZs2eP1ot6ngdWVlaMGzeuvMMQQhQlOx1+cwXlTtkdU2MINZKLnYAHBgayevVq4MGzYPb29vTq1YuwsLBSu+sXExNDmzZt1M9WVla0bNmSefPmUaNGjVI5hih7knwL8R/zLHpH8oamzJgxgzt37uDq6srmzZvx8/Mr9WM9jfHjx5d3CEKI4si5UraJNzw4Xs6VEvV+BwQEEB4eTnZ2NvHx8QwcOBCNRsOcOXNKNbTk5GTMzMxISUlh6NChdO3aldOnTxf60jzxfJMx30KIp2ZkZMSePXu4evUqN2/e5MSJE/To0aO8wxJCiGfKwMAAGxsbHBwc6N69O35+fuodv9zcXGbNmkX16tUxMjLCw8ODTZs2ae2/fft2XFxcMDQ0pE2bNqxevRqNRpNvNjArKytsbW3x8fFhypQpJCYm8r///U/dfuXKFV577TWMjY1xcXFh+/btWvvHxsbStGlTDAwMsLW1ZdKkSVrvQNi0aRPu7u4YGRlRuXJl/Pz8uHnzZimfLZFHkm8hhBBCiKd09uxZDh48qE6jOmvWLL7++mtWrFjBL7/8wrvvvstbb71FbGwsAKmpqbz++ut0796dU6dOMWzYMD744IMij5M3U9jD74WYNm0ab7zxBqdPn6ZTp07069ePf/75B3jwoHmnTp1o0qQJp06dYvny5Xz11VdMnz4dgIyMDPr06UNQUBBJSUnExMTQo0cP5JHAZ0eGnQghhBBCPIG8N2zfv3+fu3fvoqOjw2effcbdu3eZOXMme/bsoXnz5gDUqFGDAwcOsHLlSlq3bs3KlStxdXVl3rx5wINpec+ePcuMGTMKPV5GRgbz58+nWrVqWlMcBwYG0qdPHwBmzpzJkiVLOHr0KAEBASxbtgwHBwc+++wzNBoNderU4c8//2TixIlMmTKFjIwM7t+/T48ePdRngdzd3Z/VKRNI8i2EEEII8UTatGnD8uXLuXnzJgsXLkRPT4+ePXvyyy+/cOvWLdq3b69V/t69e+pLvpKTk2nSpInW9qZNmxZ4HHt7exRF4datW3h4eLB582atF5U1aNBA/beJiQnm5uZcvnwZgKSkJJo3b6713gVvb2+ysrL4448/8PDwoF27dri7u+Pv70+HDh14/fXXqVix4tOdHFEoSb6FEEIIIZ5A3hu2AVatWoWHhwdfffUV9evXB+DHH3+kWrVqWvsYGBiU+Dj79+/H3NwcKysrzMzM8m2vUKGC1meNRpPvJXmF0dXVVV8G+PPPP/Ppp5/ywQcfcOTIEapXr17iWEXRZMy3EEIUR+3MB3N75y1CCPEQHR0d3n//fT788EPq1q2LgYEB6enp1KpVS2txcHAAHgwzyXtLcJ5jx44VWHf16tWpWbNmgYl3Udzc3Dh06JDWGO64uDjMzMywt7cHUF9cN23aNE6ePIm+vr7WW5dF6ZLkWwghhBCiFPTq1QtdXV1WrlzJhAkTePfdd1m9ejXnz5/nxIkTfPrpp+rc4MOGDePXX39l4sSJnDt3jg0bNhAREQGgNUTkaY0cOZLff/+dd955h19//ZVt27YRGhrKuHHj0NHR4ciRI8ycOZPjx4+Tnp7Oli1b+Pvvv3Fzcyu1GIQ2GXYihBBCiOeLbpUHL70p65fs6FZ5qir09PQIDg5m7ty5pKamUrVqVWbNmsVvv/2GpaUlDRs25P333wce9GZv2rSJ8ePHs3jxYpo3b84HH3zAiBEjnmhoSmGqVavGjh07CAkJwcPDg0qVKjF48GA+/PBDAMzNzdm3bx+LFi3ixo0bODk5sWDBAjp27FhqMQht8np5IYR4jNJ8pbAQIj95vfz/mTFjBitWrOD3338v1zj+q+T18kIIIYT476rgWO7J8LO2bNkymjRpQuXKlYmLi2PevHkEBweXd1jiGZPkWwghhBCiHKSkpDB9+nT++ecfHB0dGT9+PJMnTy7vsMQzJsm3EEIIIUQ5WLhwIQsXLizvMEQZk9lOhBBCCCGEKCOSfAshhBCi3Mn8D6K8ldU1KMm3EEIIIcqNrq4u8ODV60KUp1u3bgH53xha2mTMtxBCCCHKjZ6eHsbGxvz9999UqFABHR3pFxRlS1EUbt26xeXLl7G0tFS/ED4rknwLIYQQotxoNBpsbW1JTU3lwoUL5R2O+A+ztLTExsbmmR9Hkm8hhBBClCt9fX1cXFxk6IkoNxUqVHjmPd55JPkWQgghRLnT0dHJ91ZBIV5GMrBKCCGEEEKIMiLJtxBCCCGEEGVEkm8hhBBCCCHKiIz5FkKIx8h76cKNGzfKORIhhBDlJe9vQGm8iEeSbyGEeIyrV68C4ODgUM6RCCGEKG///vsvFhYWT1WHJN9CCPEYlSpVAiA9Pf2p/8MtLzdu3MDBwYHff/8dc3Pz8g7niUgbng8vQxvg5WiHtKFsKYrCv//+i52d3VPXJcm3EEI8Rt7b9iwsLJ77Pw5FMTc3lzY8B6QNz4+XoR3ShrJTWh0w8sClEEIIIYQQZUSSbyGEEEIIIcqIJN9CCPEYBgYGhIaGYmBgUN6hPDFpw/NB2vD8eBnaIW14cWmU0pgzRQghhBBCCFEk6fkWQgghhBCijEjyLYQQQgghRBmR5FsIIYQQQogyIsm3EEIIIYQQZUSSbyGEKMTSpUtxdnbG0NCQZs2acfTo0fIOqVCzZs2iSZMmmJmZYWVlRffu3UlOTtYqc+fOHUaNGkXlypUxNTWlZ8+e/PXXX+UUcdFmz56NRqNh7Nix6roXoQ0XL17krbfeonLlyhgZGeHu7s7x48fV7YqiMGXKFGxtbTEyMsLPz4+UlJRyjDi/nJwcPvroI6pXr46RkRE1a9bk448/5uE5Gp63duzbt4+uXbtiZ2eHRqPh+++/19penHj/+ecf+vXrh7m5OZaWlgwePJisrKznog3Z2dlMnDgRd3d3TExMsLOzY8CAAfz5558vTBseNXz4cDQaDYsWLdJaX95teNYk+RZCiAKsX7+ecePGERoayokTJ/Dw8MDf35/Lly+Xd2gFio2NZdSoURw+fJjdu3eTnZ1Nhw4duHnzplrm3Xff5YcffmDjxo3Exsby559/0qNHj3KMunDHjh1j5cqVNGjQQGv9896Ga9eu4e3tTYUKFfjpp59ITExkwYIFVKxYUS0zd+5clixZwooVKzhy5AgmJib4+/tz586dcoxc25w5c1i+fDmfffYZSUlJzJkzh7lz5/Lpp5+qZZ63dty8eRMPDw+WLl1a4PbixNuvXz9++eUXdu/eTWRkJPv27WPo0KFl1YTHtuHWrVucOHGCjz76iBMnTrBlyxaSk5N59dVXtco9z2142NatWzl8+HCBr2sv7zY8c4oQQoh8mjZtqowaNUr9nJOTo9jZ2SmzZs0qx6iK7/LlywqgxMbGKoqiKNevX1cqVKigbNy4US2TlJSkAMqhQ4fKK8wC/fvvv4qLi4uye/dupXXr1sqYMWMURXkx2jBx4kSlZcuWhW7Pzc1VbGxslHnz5qnrrl+/rhgYGChr164tixCLpXPnzkpQUJDWuh49eij9+vVTFOX5bwegbN26Vf1cnHgTExMVQDl27Jha5qefflI0Go1y8eLFMos9z6NtKMjRo0cVQLlw4YKiKC9OG/744w+lWrVqytmzZxUnJydl4cKF6rbnrQ3PgvR8CyHEI+7du0d8fDx+fn7qOh0dHfz8/Dh06FA5RlZ8mZmZAFSqVAmA+Ph4srOztdpUp04dHB0dn7s2jRo1is6dO2vFCi9GG7Zv307jxo3p1asXVlZWeHl58cUXX6jbU1NTuXTpklYbLCwsaNas2XPTBoAWLVoQFRXFuXPnADh16hQHDhygY8eOwIvTjjzFiffQoUNYWlrSuHFjtYyfnx86OjocOXKkzGMujszMTDQaDZaWlsCL0Ybc3Fz69+9PSEgI9erVy7f9RWjD09Ir7wCEEOJ5c+XKFXJycrC2ttZab21tza+//lpOURVfbm4uY8eOxdvbm/r16wNw6dIl9PX11T/Seaytrbl06VI5RFmwdevWceLECY4dO5Zv24vQht9++43ly5czbtw43n//fY4dO8bo0aPR19dn4MCBapwFXVvPSxsAJk2axI0bN6hTpw66urrk5OQwY8YM+vXrB/DCtCNPceK9dOkSVlZWWtv19PSoVKnSc9mmO3fuMHHiRPr06YO5uTnwYrRhzpw56OnpMXr06AK3vwhteFqSfAshxEtm1KhRnD17lgMHDpR3KCXy+++/M2bMGHbv3o2hoWF5h/NEcnNzady4MTNnzgTAy8uLs2fPsmLFCgYOHFjO0RXfhg0bWLNmDd999x316tUjISGBsWPHYmdn90K142WVnZ3NG2+8gaIoLF++vLzDKbb4+HgWL17MiRMn0Gg05R1OuZFhJ0II8YgqVaqgq6ubbxaNv/76Cxsbm3KKqniCg4OJjIwkOjoae3t7db2NjQ337t3j+vXrWuWfpzbFx8dz+fJlGjZsiJ6eHnp6esTGxrJkyRL09PSwtrZ+7ttga2tL3bp1tda5ubmRnp4OoMb5vF9bISEhTJo0iTfffBN3d3f69+/Pu+++y6xZs4AXpx15ihOvjY1Nvgeq79+/zz///PNctSkv8b5w4QK7d+9We73h+W/D/v37uXz5Mo6Ojurv+IULFxg/fjzOzs7A89+G0iDJtxBCPEJfX59GjRoRFRWlrsvNzSUqKormzZuXY2SFUxSF4OBgtm7dyt69e6levbrW9kaNGlGhQgWtNiUnJ5Oenv7ctKldu3acOXOGhIQEdWncuDH9+vVT//28t8Hb2zvfFI/nzp3DyckJgOrVq2NjY6PVhhs3bnDkyJHnpg3wYGYNHR3tFEFXV5fc3FzgxWlHnuLE27x5c65fv058fLxaZu/eveTm5tKsWbMyj7kgeYl3SkoKe/bsoXLlylrbn/c29O/fn9OnT2v9jtvZ2RESEsKuXbuA578NpaK8n/gUQojn0bp16xQDAwMlIiJCSUxMVIYOHapYWloqly5dKu/QCjRixAjFwsJCiYmJUTIyMtTl1q1bapnhw4crjo6Oyt69e5Xjx48rzZs3V5o3b16OURft4dlOFOX5b8PRo0cVPT09ZcaMGUpKSoqyZs0axdjYWPn222/VMrNnz1YsLS2Vbdu2KadPn1a6deumVK9eXbl9+3Y5Rq5t4MCBSrVq1ZTIyEglNTVV2bJli1KlShXlvffeU8s8b+34999/lZMnTyonT55UAOWTTz5RTp48qc4EUpx4AwICFC8vL+XIkSPKgQMHFBcXF6VPnz7PRRvu3bunvPrqq4q9vb2SkJCg9Xt+9+7dF6INBXl0thNFKf82PGuSfAshRCE+/fRTxdHRUdHX11eaNm2qHD58uLxDKhRQ4BIeHq6WuX37tjJy5EilYsWKirGxsfLaa68pGRkZ5Rd0MTyafL8Ibfjhhx+U+vXrKwYGBkqdOnWUzz//XGt7bm6u8tFHHynW1taKgYGB0q5dOyU5Obmcoi3YjRs3lDFjxiiOjo6KoaGhUqNGDeWDDz7QSvKet3ZER0cX+DswcODAYsd79epVpU+fPoqpqalibm6uDBo0SPn333+fizakpqYW+nseHR39QrShIAUl3+XdhmdNoygPva5KCCGEEEII8czImG8hhBBCCCHKiCTfQgghhBBClBFJvoUQQgghhCgjknwLIYQQQghRRiT5FkIIIYQQooxI8i2EEEIIIUQZkeRbCCGEEEKIMiLJtxBCCCGEEGVEkm8hhBDiBZeWloZGoyEhIaG8Q1H9+uuvvPLKKxgaGuLp6Vne4Qjx3JDkWwghhHhKgYGBaDQaZs+erbX++++/R6PRlFNU5Ss0NBQTExOSk5OJiooqsEzeedNoNOjr61OrVi3CwsK4f/++1raCFmdnZwB8fX0LPPcAnTt3RqPRMHXq1GfYUiFKRpJvIYQQohQYGhoyZ84crl27Vt6hlJp79+498b7nz5+nZcuWODk5Ubly5ULLBQQEkJGRQUpKCuPHj2fq1KnMmzePxYsXk5GRoS4A4eHh6udjx46pdTg4OBAREaFV78WLF4mKisLW1vaJ2yDEsyDJtxBCCFEK/Pz8sLGxYdasWYWWmTp1ar4hGIsWLVJ7ceFBb3D37t2ZOXMm1tbWWFpaqr3BISEhVKpUCXt7e8LDw/PV/+uvv9KiRQsMDQ2pX78+sbGxWtvPnj1Lx44dMTU1xdramv79+3PlyhV1u6+vL8HBwYwdO5YqVarg7+9fYDtyc3MJCwvD3t4eAwMDPD092blzp7pdo9EQHx9PWFhYkT3PBgYG2NjY4OTkxIgRI/Dz82P79u1YWFhgY2OjLgCWlpbq56pVq6p1dOnShStXrhAXF6euW716NR06dMDKykrreMuWLcPFxQVDQ0Osra15/fXXC41NiGdBkm8hhBCiFOjq6jJz5kw+/fRT/vjjj6eqa+/evfz555/s27ePTz75hNDQULp06ULFihU5cuQIw4cPZ9iwYfmOExISwvjx4zl58iTNmzena9euXL16FYDr16/Ttm1bvLy8OH78ODt37uSvv/7ijTfe0Kpj9erV6OvrExcXx4oVKwqMb/HixSxYsID58+dz+vRp/P39efXVV0lJSQEgIyODevXqMX78eDIyMpgwYUKx225kZFTiHnd9fX369eun9YUkIiKCoKAgrXLHjx9n9OjRhIWFkZyczM6dO/Hx8SnRsYR4WpJ8CyGEEKXktddew9PTk9DQ0Keqp1KlSixZsgRXV1eCgoJwdXXl1q1bvP/++7i4uDB58mT09fU5cOCA1n7BwcH07NkTNzc3li9fjoWFBV999RUAn332GV5eXsycOZM6derg5eXFqlWriI6O5ty5c2odLi4uzJ07F1dXV1xdXQuMb/78+UycOJE333wTV1dX5syZg6enJ4sWLQLAxsYGPT09TE1NsbGxwdTUtMg2K4rCnj172LVrF23bti3xOQsKCmLDhg3cvHmTffv2kZmZSZcuXbTKpKenY2JiQpcuXXBycsLLy4vRo0eX+FhCPA298g5ACCGEeJnMmTOHtm3blqi391H16tVDR+f/+sesra2pX7+++llXV5fKlStz+fJlrf2aN2+u/ltPT4/GjRuTlJQEwKlTp4iOji4wET5//jy1a9cGoFGjRo+N7caNG/z55594e3trrff29ubUqVPFbOH/iYyMxNTUlOzsbHJzc+nbt+8TPSDp4eGBi4sLmzZtIjo6mv79+6Onp53mtG/fHicnJ2rUqEFAQAABAQG89tprGBsbl/h4QjwpSb6FEEKIUuTj44O/vz+TJ08mMDBQa5uOjg6Komity87OzldHhQoVtD5rNJoC1+Xm5hY7rqysLLp27cqcOXPybXv4oUQTE5Ni11ka2rRpw/Lly9HX18fOzi5fwlwSQUFBLF26lMTERI4ePZpvu5mZGSdOnCAmJoaff/6ZKVOmMHXqVI4dO4alpeVTtEKI4pNhJ0IIIUQpmz17Nj/88AOHDh3SWl+1alUuXbqklYCX5tzchw8fVv99//594uPjcXNzA6Bhw4b88ssvODs7U6tWLa2lJAm3ubk5dnZ2Wg83AsTFxVG3bt0Sx2xiYkKtWrVwdHR8qsQboG/fvpw5c4b69esXGouenh5+fn7MnTuX06dPk5aWxt69e5/quEKUhPR8CyGEEKXM3d2dfv36sWTJEq31vr6+/P3338ydO5fXX3+dnTt38tNPP2Fubl4qx126dCkuLi64ubmxcOFCrl27pj50OGrUKL744gv69OnDe++9R6VKlfjf//7HunXr+PLLL9HV1S32cUJCQggNDaVmzZp4enoSHh5OQkICa9asKZV2PKmKFSuSkZGR7y5BnsjISH777Td8fHyoWLEiO3bsIDc3t9Cx7UI8C9LzLYQQQjwDYWFh+YaFuLm5sWzZMpYuXYqHhwdHjx59qrHhj5o9ezazZ8/Gw8ODAwcOsH37dqpUqQKg9lbn5OTQoUMH3N3dGTt2LJaWllrjy4tj9OjRjBs3jvHjx+Pu7s7OnTvZvn07Li4updaWJ2VpaVloT76lpSVbtmyhbdu2uLm5sWLFCtauXUu9evXKOErxX6ZRHh18JoQQQgghhHgmpOdbCCGEEEKIMiLJtxBCCCGEEGVEkm8hhBBCCCHKiCTfQgghhBBClBFJvoUQQgghhCgjknwLIYQQQghRRiT5FkIIIYQQooxI8i2EEEIIIUQZkeRbCCGEEEKIMiLJtxBCCCGEEGVEkm8hhBBCCCHKyP8D9ArNd0+4v4QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ptm_pose import analyze\n", + "\n", + "analyze.show_available_annotations(spliced_ptms, figsize = (5,5))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are several ptms that have previously been annotated with specific functions, let's take a look at those:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GeneUniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassPSP:ON_PROCESS
145CEACAM1P13688S461.0Phosphorylationapoptosis, altered
184YAP1P46937K342.0Ubiquitinationcarcinogenesis, altered
217TSC2P49815S981.0Phosphorylationcarcinogenesis, inhibited; cell growth, inhibi...
395SPHK2Q9NRA0S387.0Phosphorylationcell motility, altered
407SPHK2Q9NRA0T614.0Phosphorylationcell motility, altered
\n", + "
" + ], + "text/plain": [ + " Gene UniProtKB Accession Residue PTM Position in Canonical Isoform \\\n", + "145 CEACAM1 P13688 S 461.0 \n", + "184 YAP1 P46937 K 342.0 \n", + "217 TSC2 P49815 S 981.0 \n", + "395 SPHK2 Q9NRA0 S 387.0 \n", + "407 SPHK2 Q9NRA0 T 614.0 \n", + "\n", + " Modification Class PSP:ON_PROCESS \n", + "145 Phosphorylation apoptosis, altered \n", + "184 Ubiquitination carcinogenesis, altered \n", + "217 Phosphorylation carcinogenesis, inhibited; cell growth, inhibi... \n", + "395 Phosphorylation cell motility, altered \n", + "407 Phosphorylation cell motility, altered " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "annotations, annotation_counts = analyze.get_ptm_annotations(spliced_ptms, annotation_type = 'Process', database = 'PhosphoSitePlus')\n", + "annotations.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PSP:ON_PROCESScount
0cell motility, altered3
1cell growth, induced2
2apoptosis, altered1
3carcinogenesis, altered1
4carcinogenesis, inhibited1
5cell growth, inhibited1
6autophagy, inhibited1
7signaling pathway regulation1
8cytoskeletal reorganization1
9cell adhesion, inhibited1
\n", + "
" + ], + "text/plain": [ + " PSP:ON_PROCESS count\n", + "0 cell motility, altered 3\n", + "1 cell growth, induced 2\n", + "2 apoptosis, altered 1\n", + "3 carcinogenesis, altered 1\n", + "4 carcinogenesis, inhibited 1\n", + "5 cell growth, inhibited 1\n", + "6 autophagy, inhibited 1\n", + "7 signaling pathway regulation 1\n", + "8 cytoskeletal reorganization 1\n", + "9 cell adhesion, inhibited 1" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "annotation_counts" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pose", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Examples/Examples.html b/Examples/Examples.html new file mode 100644 index 0000000..4d1d834 --- /dev/null +++ b/Examples/Examples.html @@ -0,0 +1,478 @@ + + + + + + + + + + + + Full Analysis Examples — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

Full Analysis Examples

+ +
+
+ +
+

Contents

+
+ +
+
+
+ + + + + + + + + + + + + +
+ + + +
+ + +
+
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/Gallery/GALLERY_HEADER.html b/Gallery/GALLERY_HEADER.html new file mode 100644 index 0000000..3eaae67 --- /dev/null +++ b/Gallery/GALLERY_HEADER.html @@ -0,0 +1,421 @@ + + + + + + + + + + + + Types of Analysis Performed with PTM-POSE — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

Types of Analysis Performed with PTM-POSE

+ +
+
+ +
+
+
+ + + + +
+ +
+

Types of Analysis Performed with PTM-POSE#

+

Below you will find different ways you might choose to analyze the PTMs identified by PTM-POSE:

+
+ + +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/Gallery/gallery_tests.html b/Gallery/gallery_tests.html new file mode 100644 index 0000000..14ec726 --- /dev/null +++ b/Gallery/gallery_tests.html @@ -0,0 +1,2363 @@ + + + + + + + + + + + + Gallery Tests — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + + + + + + +
+ + + + + + +
+ + + + + + +
+ +
+
+
+ +
+ + + + + + +
+
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/Gallery/gallery_tests.ipynb b/Gallery/gallery_tests.ipynb new file mode 100644 index 0000000..c36fd41 --- /dev/null +++ b/Gallery/gallery_tests.ipynb @@ -0,0 +1,2123 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gallery Tests" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inspecting identify PTMs" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "from ptm_pose import plots as pose_plots\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAFzCAYAAABCTGKrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwoklEQVR4nO3dd3xO5//48dedPWURSYgEIUIitholRsUIMWqvNKiWGDWKqhpV1GitUlW5o0p1hSpKrVBbELSNIEbQ+KRGk0oqMs7vD7+cr1uGhMhwv5+Px3nUuc51rvO+bnq/7+s6S6MoioIQQgihxwyKOwAhhBCiuEkyFEIIofckGQohhNB7kgyFEELoPUmGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3jMq7gBEyZGZmclff/2FtbU1Go2muMMRQojnpigK//77Ly4uLhgY5D7+k2QoVH/99Reurq7FHYYQQhS669evU7FixVy3SzIUKmtra+DRP5oyZcoUczRCCPH8kpKScHV1Vb/fciPJUKiypkbLlCkjyVAI8VJ52qkfuYBGCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5KhEEIIvSfJUAghhN6TZCiEEELvSTIUQgih9+TZpCIbm6m/oDG1KO4whNAbsRV7FHcIRary2IfFHUI2MjIUQgih9yQZCiGE0HuSDIUQQug9SYZCCCH0niRDIYQQRW7GjBloNBqdxcnJCYC0tDQmTZqEj48PlpaWuLi4MGjQIP766y+dNvz8/LK10adPn2eKp9CSYUREBBqNhn/++aewmnwmGo2GzZs3F8ux/fz8GDt2bIlpRwghSrJatWoRHx+vLufOnQMgJSWFU6dOMW3aNE6dOkV4eDgXLlygS5cu2doYNmyYThurVq16plgKdGtFUFAQa9eufbSjkRGurq50796dmTNnPtPB9V1ERAStWrXi3r172NraquXh4eEYGxsXX2BCCFEEjIyM1NHg42xsbNi1a5dO2bJly2jUqBFxcXFUqlRJLbewsMixjYIq8Miwffv2xMfHc/nyZWbPns2KFSuYMGHCcwdSkj18WLT3xNjb22NtbV2kxxRCiKJ28eJFXFxcqFy5Mn369OHy5cu51k1MTESj0egMHADWr19P2bJlqVWrFhMmTODff/99plgKnAxNTU1xcnLC1dWVfv360b9/f51pyZMnT9KgQQMsLCxo2rQpMTExOvuvXLmSqlWrYmJigqenJ+vWrdPZPmPGDCpVqoSpqSkuLi6MHj1a3ebu7s6HH35Iv379sLKywsXFhWXLlmWL8fbt23Tr1g0LCwuqVavGli1bdLbv37+fRo0aYWpqirOzM5MnTyY9PV3d7ufnR0hICOPGjaNs2bK89tprBAcHExAQoNNOeno6Tk5OhIaG5vhZff311zRo0ABra2ucnJzo168fCQkJAFy9epVWrVoBYGdnh0ajISgoSD3+49Ok9+7dY9CgQdjZ2WFhYUGHDh24ePGiuj0sLAxbW1t27tyJl5cXVlZW6o8WIYQoiRo3bsxXX33Fzp07Wb16Nbdu3aJp06bcuXMnW90HDx4wefJk+vXrR5kyZdTy/v3788033xAREcG0adP48ccf6d69+zPF89znDM3NzUlLS1PXp06dyqJFi4iMjMTIyIjg4GB126ZNmxgzZgzjx4/n999/Z/jw4bzxxhvs27cPgB9++IFPP/2UVatWcfHiRTZv3oyPj4/O8RYsWEDt2rU5deoUU6ZM4Z133sk2nJ45cya9evXi7NmzdOzYkf79+3P37l0Abt68SceOHWnYsCFnzpxh5cqVrFmzhtmzZ+u0sXbtWoyMjDh06BCrVq1i6NCh7NixQyfBbN++nfv379OrV68cP5uHDx/y4YcfcubMGTZv3syVK1fUhOfq6sqPP/4IQExMDPHx8SxZsiTHdoKCgoiMjGTLli0cOXIERVHo2LGjzueekpLCwoULWbduHQcOHCAuLu6pI/bU1FSSkpJ0FiGEKAodOnSgR48e+Pj40LZtW7Zt2wagnorLkpaWRp8+fcjMzGTFihU624YNG0bbtm3x9vamT58+/PDDD+zevZtTp04VOJ7nehzb8ePH2bBhA23atFHLPvroI1q2bAnA5MmT6dSpEw8ePMDMzIyFCxcSFBTEiBEjABg3bhxHjx5l4cKFtGrViri4OJycnGjbti3GxsZUqlSJRo0a6RyzWbNmTJ48GYDq1atz6NAhPv30U1577TW1TlBQEH379gVgzpw5LFu2jOPHj9O+fXtWrFiBq6sry5cvR6PRUKNGDf766y8mTZrEBx98gIHBo98HHh4ezJ8/X+fYWSPZd999FwCtVkvPnj2xsrLK8fN5/IdAlSpVWLp0KY0aNeL+/ftYWVlhb28PgKOjY7ahf5aLFy+yZcsWDh06RNOmTYFH0wKurq5s3ryZnj17Ao/+wXz++edUrVoVgJCQEGbNmpVjm1nmzp0r53uFECWCpaUlPj4+OrNeaWlp9OrViytXrrB3716dUWFO6tWrh7GxMRcvXqRevXoFOn6BR4Zbt27FysoKMzMzmjRpQosWLXSmKmvXrq3+2dnZGUCdGoyOjqZZs2Y67TVr1ozo6GgAevbsyX///UeVKlUYNmwYmzZt0pm+BGjSpEm29az9c4rB0tISa2trnRiaNGmCRqPRieH+/fvcuHFDLWvQoEG2vg8dOhStVqv2adu2bToJ70mnT58mMDAQNzc3rK2t8fPzAyAuLi7XfZ4UHR2NkZERjRs3VsscHBzw9PTU6beFhYWaCOHRZ5/V59xMmTKFxMREdbl+/Xq+4xJCiMKUmppKdHS0mjeyEuHFixfZvXs3Dg4OT23jjz/+IC0tTW2jIAqcDFu1akVUVBQxMTE8ePCA8PBwHB0d1e2PXwWZlXAyMzOzlWVRFEUtc3V1JSYmhs8++wxzc3NGjBhBixYtdKYDc/Jkm09eianRaNQYHj/e4zE82Y6lpWW24wwaNIjLly9z5MgRvv76a9zd3Xn11VdzjCk5OZl27dphZWXF119/zYkTJ9i0aRNQsAtysmLLqfzxeHPqc277ZjE1NaVMmTI6ixBCFIUJEyawf/9+rly5wrFjx3j99ddJSkpi8ODBpKen8/rrrxMZGcn69evJyMjg1q1b3Lp1S/3+jI2NZdasWURGRnL16lW2b99Oz549qVu3brZBV34UOBlaWlri4eGBm5tbgS//9/Ly4uDBgzplhw8fxsvLS103NzenS5cuLF26lIiICI4cOaLeewJw9OhRnf2PHj1KjRo18h1DzZo1OXz4sE6iOHz4MNbW1lSoUCHPfR0cHOjatStarRatVssbb7yRa93z589z+/Zt5s2bx6uvvkqNGjWyjdRMTEwAyMjIyDPe9PR0jh07ppbduXOHCxcu6HxuQghRmty4cYO+ffvi6elJ9+7dMTEx4ejRo7i5uXHjxg22bNnCjRs3qFOnDs7Ozupy+PBh4NH35549e/D398fT05PRo0fTrl07du/ejaGhYYHjKdJXOE2cOJFevXpRr1492rRpw88//0x4eDi7d+8GHl0VmZGRQePGjbGwsGDdunWYm5vj5uamtnHo0CHmz59P165d2bVrF99//7164jU/RowYweLFixk1ahQhISHExMQwffp0xo0bp54vzMvQoUMJCAggIyODwYMH51qvUqVKmJiYsGzZMt566y1+//13PvzwQ506bm5uaDQatm7dSseOHTE3N892/rFatWoEBgYybNgwVq1ahbW1NZMnT6ZChQoEBgbmu99CCFGSbNy4Mddt7u7uT53ZcnV1Zf/+/YUWT5E+jq1r164sWbKEBQsWUKtWLVatWoVWq1XPpdna2rJ69WqaNWtG7dq12bNnDz///LPOXPH48eM5efIkdevW5cMPP2TRokX4+/vnO4YKFSqwfft2jh8/jq+vL2+99RZDhgzh/fffz9f+bdu2xdnZGX9/f1xcXHKtV65cOcLCwvj++++pWbMm8+bNY+HChdlimTlzJpMnT6Z8+fKEhITk2JZWq6V+/foEBATQpEkTFEVh+/btcmO+EEIUEo3ytPRbgri7uzN27NhifVRZSkoKLi4uhIaGPvP9LCVVUlISNjY2ELJRXu4rRBGSl/u+OFnfa4mJiXleFyFvus+nzMxMbt26xaJFi7CxscnxGXlCCCFKJ0mG+RQXF0flypWpWLEiYWFhGBnJRyeEEC+LUvWNfvXq1WI7dn5O6AohhCid5H2GQggh9J4kQyGEEHqvVE2TiqKR+FEHeRqNEEWqaF8TJ7KTkaEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH35AIakY3N1F9K7ePYCvuxVkX52CghRPGRkaEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhciHAwcO0LlzZ1xcXNBoNGzevFndlpaWxqRJk/Dx8cHS0hIXFxcGDRrEX3/9pda5evUqGo0mx+X7778vhh4JIR5XopLhjBkzqFOnTp51goKC6Nq1a6EeN+uLKioqKs96fn5+jB07tlCPnZsnv3BF8UpOTsbX15fly5dn25aSksKpU6eYNm0ap06dIjw8nAsXLui8ANrV1ZX4+HidZebMmVhaWtKhQ4ei7IoQIgdFdp+hn58fderUYfHixTrlmzdvplu3bvl+V+CSJUsK/b2CWV9UZcuWBSAiIoJWrVpx7949bG1t1Xrh4eEYGxsX6rFnzJjB5s2bsyXi+Ph47OzsCvVY4tl16NAh16RlY2PDrl27dMqWLVtGo0aNiIuLo1KlShgaGuLk5KRTZ9OmTfTu3RsrK6sXFrcQIn9K3U33NjY2hd5mTl9UObG3ty/0Y+cmP/GIkisxMRGNRqPzY+pxJ0+eJCoqis8++6xoAxNC5KhETZNmWbVqFa6urlhYWNCzZ0/++ecfdduT06TJyckMGjQIKysrnJ2dWbRoUbbpzJymHG1tbQkLCwN0p0mvXr1Kq1atALCzs0Oj0RAUFARknyZ1d3dnzpw5BAcHY21tTaVKlfjiiy90jjNp0iSqV6+OhYUFVapUYdq0aaSlpQEQFhbGzJkzOXPmjHr+KCumJ2M+d+4crVu3xtzcHAcHB958803u37+f7XNZuHAhzs7OODg4MHLkSPVYoug8ePCAyZMn069fv1xfhbVmzRq8vLxo2rRpEUcnhMhJiUuGly5d4rvvvuPnn39mx44dREVFMXLkyFzrT5w4kX379rFp0yZ+/fVXIiIiOHny5DMf39XVlR9//BGAmJgY4uPjWbJkSa71Fy1aRIMGDTh9+jQjRozg7bff5vz58+p2a2trwsLC+PPPP1myZAmrV6/m008/BaB3796MHz+eWrVqqeeRevfune0YKSkptG/fHjs7O06cOMH333/P7t27CQkJ0am3b98+YmNj2bdvH2vXriUsLExNrjlJTU0lKSlJZxHPJy0tjT59+pCZmcmKFStyrPPff/+xYcMGhgwZUsTRCSFyU+KS4YMHD1i7di116tShRYsWLFu2jI0bN3Lr1q1sde/fv8+aNWtYuHAhr732Gj4+Pqxdu5aMjIxnPr6hoaE6Hero6IiTk1OeU7MdO3ZkxIgReHh4MGnSJMqWLUtERIS6/f3336dp06a4u7vTuXNnxo8fz3fffQeAubk5VlZWGBkZ4eTkhJOTE+bm5tmOsX79ev777z+++uorvL29ad26NcuXL2fdunX873//U+vZ2dmxfPlyatSoQUBAAJ06dWLPnj25xj537lxsbGzUxdXVtaAfl3hMWloavXr14sqVK+zatSvXUeEPP/xASkoKgwYNKuIIhRC5KXHJsFKlSlSsWFFdb9KkCZmZmcTExGSrGxsby8OHD2nSpIlaZm9vj6enZ5HEClC7dm31zxqNBicnJxISEtSyH374gebNm+Pk5ISVlRXTpk0jLi6uQMeIjo7G19cXS0tLtaxZs2bZPpdatWphaGiorjs7O+vE8qQpU6aQmJioLtevXy9QXOL/ZCXCixcvsnv3bhwcHHKtu2bNGrp06UK5cuWKMEIhRF6K7AKaMmXKkJiYmK38n3/+yfUXNDxKMI//93H5vapUo9Fkq1tY59KevLpUo9GQmZkJwNGjR+nTpw8zZ87E398fGxsbNm7cyKJFiwp0DEVRcux/1vHyE0tOTE1NMTU1LVAs+ur+/ftcunRJXb9y5QpRUVHY29vj4uLC66+/zqlTp9i6dSsZGRnqTIa9vT0mJibqfpcuXeLAgQNs3769yPsghMhdkY0Ma9SoQWRkZLbyEydO6Izk4uLidG5WPnLkCAYGBlSvXj3bvh4eHhgbG3P06FG17N69e1y4cEGnXrly5YiPj1fXL168SEpKSq6xZn15Pc90K8ChQ4dwc3Nj6tSpNGjQgGrVqnHt2rVsx3racWrWrElUVBTJyck6bef2uYjCFxkZSd26dalbty4A48aNo27dunzwwQfcuHGDLVu2cOPGDerUqYOzs7O6HD58WKed0NBQKlSoQLt27YqjG0KIXBRZMhwxYgSxsbGMHDmSM2fOcOHCBT777DPWrFnDxIkT1XpmZmYMHjyYM2fO8NtvvzF69Gh69eqV460GVlZWDBkyhIkTJ7Jnzx5+//13goKCMDDQ7VbWObZTp04RGRnJW2+9lef9gm5ubmg0GrZu3crff/+tc9VmQXh4eBAXF8fGjRuJjY1l6dKlbNq0SaeOu7u7Osq4ffs2qamp2drp37+/+rn8/vvv7Nu3j1GjRjFw4EDKly//TLGJgvHz80NRlGxLWFgY7u7uOW5TFAU/Pz+ddubMmcP169ez/RsVQhSvIvs/0t3dnd9++43Y2FjatWtHw4YN1asde/bsqdbz8PCge/fudOzYkXbt2uHt7Z3rVXkACxYsoEWLFnTp0oW2bdvSvHlz6tevr1Nn0aJFuLq60qJFC/r168eECROwsMj95bUVKlRg5syZTJ48mfLly2e7ajO/AgMDeeeddwgJCaFOnTocPnyYadOm6dTp0aMH7du3p1WrVpQrV45vvvkmWzsWFhbs3LmTu3fv0rBhQ15//XXatGmT49NQhBBCFJxGKezHuZQAuT3tRuQtKSnp0ZWzIRvlTff/n7zpXojSLet7LTExMc/rU2SuRgghhN6TZCiEEELvlbpnk+bH4ze9CyGEEE8jI0MhhBB676UcGYrnk/hRhzxPNJdscsGLEKLgZGQohBBC70kyFEIIofckGQohhNB7kgyFEELoPUmGQggh9J5cTSqysZn6S6l5HFvmws7FHYIQ4iUgI0MhhBB6T5KhEEIIvSfJUAghhN6TZCiEEELvSTIUQgih90p8MtRoNGzevLm4w8iXsLAwbG1tS0w7+iI9PZ3333+fypUrY25uTpUqVZg1axaZmZlqnRkzZlCjRg0sLS2xs7Ojbdu2HDt2rBijFkKUJMWaDG/dusWYMWPw8PDAzMyM8uXL07x5cz7//HNSUlKKM7Qi4+7uzuLFi3XKevfuzYULF4onoFLo448/5vPPP2f58uVER0czf/58FixYwLJly9Q61atXZ/ny5Zw7d46DBw/i7u5Ou3bt+Pvvv4sxciFESVFs9xlevnyZZs2aYWtry5w5c/Dx8SE9PZ0LFy4QGhqKi4sLXbp0Ka7wipW5uTnm5ubFHUapceTIEQIDA+nUqRPw6AfGN998Q2RkpFqnX79+Ovt88sknrFmzhrNnz9KmTZsijVcIUfIU28hwxIgRGBkZERkZSa9evfDy8sLHx4cePXqwbds2OnfOfjN169atCQkJ0Sm7c+cOpqam7N27F4DU1FTeffddXF1dMTU1pVq1aqxZs0atv3//fho1aoSpqSnOzs5MnjyZ9PR0dfsPP/yAj48P5ubmODg40LZtW5KTkzlw4ADGxsbcunVL5/jjx4+nRYsWOfYxNjaWwMBAypcvj5WVFQ0bNmT37t3qdj8/P65du8Y777yDRqNBo9EAOU+Trly5kqpVq2JiYoKnpyfr1q3T2a7RaPjyyy/p1q0bFhYWVKtWjS1btuT28b9Umjdvzp49e9TR9JkzZzh48CAdO3bMsf7Dhw/54osvsLGxwdfXtyhDFUKUUMWSDO/cucOvv/7KyJEjsbS0zLFOVmJ43NChQ9mwYQOpqalq2fr163FxcaFVq1YADBo0iI0bN7J06VKio6P5/PPPsbKyAuDmzZt07NiRhg0bcubMGVauXMmaNWuYPXs2APHx8fTt25fg4GCio6OJiIige/fuKIpCixYtqFKlik4SSk9P5+uvv+aNN97IsQ/379+nY8eO7N69m9OnT+Pv70/nzp2Ji4sDIDw8nIoVKzJr1izi4+OJj4/PsZ1NmzYxZswYxo8fz++//87w4cN544032Ldvn069mTNn0qtXL86ePUvHjh3p378/d+/ezbFNePTDISkpSWcpjSZNmkTfvn2pUaMGxsbG1K1bl7Fjx9K3b1+delu3bsXKygozMzM+/fRTdu3aRdmyZYspaiFESVIsyfDSpUsoioKnp6dOedmyZbGyssLKyopJkyZl269Hjx5oNBp++ukntUyr1RIUFIRGo+HChQt89913hIaG0q1bN6pUqUKbNm3o3bs3ACtWrMDV1ZXly5dTo0YNunbtysyZM1m0aBGZmZnEx8eTnp5O9+7dcXd3x8fHhxEjRqjJdMiQIWi1WvXY27ZtIyUlhV69euXYT19fX4YPH46Pjw/VqlVj9uzZVKlSRR2x2dvbY2hoiLW1NU5OTjg5OeXYzsKFCwkKCmLEiBFUr16dcePG0b17dxYuXKhTLygoiL59++Lh4cGcOXNITk7m+PHjuf49zJ07FxsbG3VxdXXNtW5J9u233/L111+zYcMGTp06xdq1a1m4cCFr167VqdeqVSuioqI4fPgw7du3p1evXiQkJBRT1EKIkqRYL6B5cvR3/PhxoqKiqFWrls7oL4upqSkDBgwgNDQUgKioKM6cOUNQUJC6bmhoSMuWLXM8XnR0NE2aNNE5brNmzbh//z43btzA19eXNm3a4OPjQ8+ePVm9ejX37t1T6wYFBXHp0iWOHj0KQGhoKL169cp1dJucnMy7775LzZo1sbW1xcrKivPnz6sjw/yKjo6mWbNmOmXNmjUjOjpap6x27drqny0tLbG2ts7zy37KlCkkJiaqy/Xr1wsUV0kxceJEJk+eTJ8+ffDx8WHgwIG88847zJ07V6eepaUlHh4evPLKK6xZswYjIyOdKXQhhP4qlgtoPDw80Gg0nD9/Xqe8SpUqAHlePDJ06FDq1KnDjRs3CA0NpU2bNri5uT11PwBFUbIlYEVRgEeJ2dDQkF27dnH48GF+/fVXli1bxtSpUzl27BiVK1fG0dGRzp07o9VqqVKlCtu3byciIiLX402cOJGdO3eycOFCPDw8MDc35/XXX+fhw4d5xpmTnOJ+sszY2DjbPo/fXvAkU1NTTE1NCxxLSZOSkoKBge7vOkNDwzz7Do8+w5x+dAkh9E+xjAwdHBx47bXXWL58OcnJyQXa18fHhwYNGrB69Wo2bNhAcHCwzrbMzEz279+f4741a9bk8OHDagIEOHz4MNbW1lSoUAF4lECaNWvGzJkzOX36NCYmJmzatEmtP3ToUDZu3MiqVauoWrVqthHb43777TeCgoLo1q0bPj4+ODk5cfXqVZ06JiYmZGRk5NlnLy8vDh48qFN2+PBhvLy88txPX3Tu3JmPPvqIbdu2cfXqVTZt2sQnn3xCt27dgEcj9Pfee4+jR49y7do1Tp06xdChQ7lx4wY9e/Ys5uiFECVBsU2TrlixgvT0dBo0aMC3335LdHQ0MTExfP3115w/fx5DQ8Nc9x06dCjz5s0jIyND/cKDR5fUDx48mODgYDZv3syVK1eIiIjgu+++Ax5dwXr9+nVGjRrF+fPn+emnn5g+fTrjxo3DwMCAY8eOMWfOHCIjI4mLiyM8PJy///5bJ+n4+/tjY2PD7Nmzc71wJouHhwfh4eHqdG6/fv2yjVbc3d05cOAAN2/e5Pbt2zm2M3HiRMLCwvj888+5ePEin3zyCeHh4UyYMOGpn7M+WLZsGa+//jojRozAy8uLCRMmMHz4cD788EPg0Sjx/Pnz9OjRg+rVqxMQEMDff//Nb7/9Rq1atYo5eiFESVBs9xlWrVqV06dPM2fOHKZMmcKNGzcwNTWlZs2aTJgwgREjRuS6b9++fRk7diz9+vXDzMxMZ9vKlSt57733GDFiBHfu3KFSpUq89957AFSoUIHt27czceJEfH19sbe3Z8iQIbz//vsAlClThgMHDrB48WKSkpJwc3Nj0aJFdOjQQW3fwMCAoKAg5syZw6BBg/Ls46effkpwcDBNmzalbNmyTJo0KdsVm7NmzWL48OFUrVqV1NRUnVFrlq5du7JkyRIWLFjA6NGjqVy5MlqtFj8/vzyPry+sra1ZvHhxtocXZDEzMyM8PLxogxJClCoaJadv3xLu+vXruLu7c+LECerVq1fkxx82bBj/+9//Xrr7+JKSkrCxsYGQjfJyXyHESyHrey0xMZEyZcrkWq9Uvek+LS2N+Ph4Jk+ezCuvvFLkiTAxMZETJ06wfv16nds7hBBClG6lKhkeOnSIVq1aUb16dX744YciP35gYCDHjx9n+PDhvPbaa0V+fCGEEC9GqUqGfn5+OZ5TKyp53UYhhBCi9Crxr3ASQgghXjRJhkIIIfReqZomFUUj8aMOeV51JYQQLxsZGQohhNB7kgyFEELoPUmGQggh9J4kQyGEEHpPLqAR2dhM/aXAj2OTx6IJIUozGRkKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5KhEEIIvSfJUBSauXPn0rBhQ6ytrXF0dKRr167ExMRkqxcdHU2XLl2wsbHB2tqaV155hbi4uGKIWAghHpFk+P/5+fkxduzYYm+jMNspavv372fkyJEcPXqUXbt2kZ6eTrt27UhOTlbrxMbG0rx5c2rUqEFERARnzpxh2rRpmJmZFWPkQgh9VyqSYVBQEBqNhrfeeivbthEjRqDRaAgKCspXWxEREWg0Gv7555/CDfIZ5BZLeHg4H374YfEE9Rx27NhBUFAQtWrVwtfXF61WS1xcHCdPnlTrTJ06lY4dOzJ//nzq1q1LlSpV6NSpE46OjsUYuRBC35WKZAjg6urKxo0b+e+//9SyBw8e8M0331CpUqVijKzw2dvbY21tXdxhPLfExETgUX8AMjMz2bZtG9WrV8ff3x9HR0caN27M5s2bizFKIYQoRcmwXr16VKpUifDwcLUsPDwcV1dX6tatq5YpisL8+fOpUqUK5ubm+Pr68sMPPwBw9epVWrVqBYCdnV22EWVmZibvvvsu9vb2ODk5MWPGDHVbcHAwAQEBOjGlp6fj5OREaGhojjF//fXXNGjQAGtra5ycnOjXrx8JCQlPjeXJadJ79+4xaNAg7OzssLCwoEOHDly8eFHdHhYWhq2tLTt37sTLywsrKyvat29PfHx8Pj/dwqcoCuPGjaN58+Z4e3sDkJCQwP3795k3bx7t27fn119/pVu3bnTv3p39+/cXW6xCCFFqkiHAG2+8gVarVddDQ0MJDg7WqfP++++j1WpZuXIlf/zxB++88w4DBgxg//79uLq68uOPPwIQExNDfHw8S5YsUfddu3YtlpaWHDt2jPnz5zNr1ix27doFwNChQ9mxY4dOgtm+fTv379+nV69eOcb78OFDPvzwQ86cOcPmzZu5cuWKmvCeFsvjgoKCiIyMZMuWLRw5cgRFUejYsSNpaWlqnZSUFBYuXMi6des4cOAAcXFxTJgwIc/PMzU1laSkJJ2lsISEhHD27Fm++eYbtSwzMxOAwMBA3nnnHerUqcPkyZMJCAjg888/L7RjCyFEQZWqZDhw4EAOHjzI1atXuXbtGocOHWLAgAHq9uTkZD755BNCQ0Px9/enSpUqBAUFMWDAAFatWoWhoaE6Zefo6IiTkxM2Njbq/rVr12b69OlUq1aNQYMG0aBBA/bs2QNA06ZN8fT0ZN26dWp9rVZLz549sbKyyjHe4OBgOnToQJUqVXjllVdYunQpv/zyC/fv339qLFkuXrzIli1b+PLLL3n11Vfx9fVl/fr13Lx5U2d6MS0tjc8//5wGDRpQr149QkJC1NhzM3fuXGxsbNTF1dX1KX8D+TNq1Ci2bNnCvn37qFixolpetmxZjIyMqFmzpk59Ly8vuZpUCFGsSlUyLFu2LJ06dWLt2rVotVo6depE2bJl1e1//vknDx484LXXXsPKykpdvvrqK2JjY5/afu3atXXWnZ2d1WlNeDQ6zBqZJiQksG3btmwj08edPn2awMBA3NzcsLa2xs/PD6BAX/zR0dEYGRnRuHFjtczBwQFPT0+io6PVMgsLC6pWrZpr7DmZMmUKiYmJ6nL9+vV8x5UTRVEICQkhPDycvXv3UrlyZZ3tJiYmNGzYMNvtFhcuXMDNze25ji2EEM+j1L21Ijg4mJCQEAA+++wznW1Z03Dbtm2jQoUKOttMTU2f2raxsbHOukajUdsEGDRoEJMnT+bIkSMcOXIEd3d3Xn311RzbSk5Opl27drRr146vv/6acuXKERcXh7+/Pw8fPnx6R/8/RVFyLddoNHnGntu+WUxNTfP1ueTXyJEj2bBhAz/99BPW1tbcunULABsbG8zNzQGYOHEivXv3pkWLFrRq1YodO3bw888/ExERUWhxCCFEQZW6ZNi+fXs1mfj7++tsq1mzJqampsTFxdGyZcsc9zcxMQEgIyOjwMd2cHCga9euaLVajhw5whtvvJFr3fPnz3P79m3mzZunTj9GRkYWOJaaNWuSnp7OsWPHaNq0KQB37tzhwoULeHl5FbgPL9LKlSsB1BFwFq1Wq54r7datG59//jlz585l9OjReHp68uOPP9K8efMijlYIIf5PqUuGhoaG6vSgoaGhzjZra2smTJjAO++8Q2ZmJs2bNycpKYnDhw9jZWXF4MGDcXNzQ6PRsHXrVjp27Ii5uXmu5/xyMnToUAICAsjIyGDw4MG51qtUqRImJiYsW7aMt956i99//z3bvYP5iaVatWoEBgYybNgwVq1ahbW1NZMnT6ZChQoEBgbmO+6i8LSRaJbg4OA8p5eFEKKolapzhlnKlClDmTJlctz24Ycf8sEHHzB37ly8vLzw9/fn559/Vs9fVahQgZkzZzJ58mTKly+vTrnmV9u2bXF2dsbf3x8XF5dc65UrV46wsDC+//57atasybx581i4cKFOnfzGotVqqV+/PgEBATRp0gRFUdi+fXu2qVEhhBDPRqPk9+e8AB7dwuDi4kJoaCjdu3cv7nAKVVJS0qMrWkM2ypvuhRAvhazvtcTExFwHUVAKp0mLS2ZmJrdu3WLRokXY2NjQpUuX4g5JCCFEIZFkmE9xcXFUrlyZihUrEhYWhpGRfHRCCPGykG/0fHJ3d8/3BSJCCCFKl1J5AY0QQghRmGRkKLJJ/KhDnieahRDiZSMjQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH35GpSkY3N1F/yfBxbbMUeOuuVx+b/lVRCCFESychQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhoUoKCiIrl27lph2itLcuXNp2LAh1tbWODo60rVrV2JiYnKtP3z4cDQaDYsXLy66IIUQIhelOhkePnwYQ0ND2rdvX6jthoWFYWtrW6ht5uTq1atoNBqioqJ0ypcsWUJYWNgLP35h2r9/PyNHjuTo0aPs2rWL9PR02rVrR3Jycra6mzdv5tixY7i4uBRDpEIIkV2pvs8wNDSUUaNG8eWXXxIXF0elSpWKO6RCYWNjU9whFNiOHTt01rVaLY6Ojpw8eZIWLVqo5Tdv3iQkJISdO3fSqVOnog5TCCFyVGpHhsnJyXz33Xe8/fbbBAQEZBtJbdmyhQYNGmBmZkbZsmXp3r27uu3hw4e8++67VKhQAUtLSxo3bkxERAQAERERvPHGGyQmJqLRaNBoNMyYMYNZs2bh4+OTLY769evzwQcf5Bjjjh07aN68Oba2tjg4OBAQEEBsbKy6vXLlygDUrVsXjUaDn58fkH2aNDU1ldGjR+Po6IiZmRnNmzfnxIkT6vaIiAg0Gg179uyhQYMGWFhY0LRp0zynKV+0xMREAOzt7dWyzMxMBg4cyMSJE6lVq1ZxhSaEENmU2mT47bff4unpiaenJwMGDECr1apvot+2bRvdu3enU6dOnD59Wk0SWd544w0OHTrExo0bOXv2LD179qR9+/ZcvHiRpk2bsnjxYsqUKUN8fDzx8fFMmDCB4OBg/vzzT50kdPbsWU6fPk1QUFCOMSYnJzNu3DhOnDjBnj17MDAwoFu3bmRmZgJw/PhxAHbv3k18fDzh4eE5tvPuu+/y448/snbtWk6dOoWHhwf+/v7cvXtXp97UqVNZtGgRkZGRGBkZERwcnOdnmJqaSlJSks5SGBRFYdy4cTRv3hxvb2+1/OOPP8bIyIjRo0cXynGEEKLQKKVU06ZNlcWLFyuKoihpaWlK2bJllV27dimKoihNmjRR+vfvn+N+ly5dUjQajXLz5k2d8jZt2ihTpkxRFEVRtFqtYmNjk23fDh06KG+//ba6PnbsWMXPz09dHzx4sBIYGJhrzAkJCQqgnDt3TlEURbly5YoCKKdPn9ap93g79+/fV4yNjZX169er2x8+fKi4uLgo8+fPVxRFUfbt26cAyu7du9U627ZtUwDlv//+yzWe6dOnK0D2JWSjohm/Jdfl8qfGOsuTRowYobi5uSnXr19XyyIjI5Xy5cvrfO5ubm7Kp59+mmt8QgjxvBITExVASUxMzLNeqRwZxsTEcPz4cfr06QOAkZERvXv3JjQ0FICoqCjatGmT476nTp1CURSqV6+OlZWVuuzfv19nCjMnw4YN45tvvuHBgwekpaWxfv36PEdfsbGx9OvXjypVqlCmTBl1WjQuLi7ffY2NjSUtLY1mzZqpZcbGxjRq1Ijo6GidurVr11b/7OzsDEBCQkKubU+ZMoXExER1uX79er7jys2oUaPYsmUL+/bto2LFimr5b7/9RkJCApUqVcLIyAgjIyOuXbvG+PHjcXd3f+7jCiHE8yiVF9CsWbOG9PR0KlSooJYpioKxsTH37t3D3Nw8130zMzMxNDTk5MmTGBoa6myzsrLK87idO3fG1NSUTZs2YWpqSmpqKj169MizvqurK6tXr8bFxYXMzEy8vb15+DD/D7ZW/v/Ur0ajyVb+ZJmxsbH656xtWVOyOTE1NcXU1DTfsTwtzlGjRrFp0yYiIiLUxJ9l4MCBtG3bVqfM39+fgQMH8sYbbxRKDEII8axKXTJMT0/nq6++YtGiRbRr105nW48ePVi/fj21a9dmz549OX7J1q1bl4yMDBISEnj11VdzPIaJiQkZGRnZyo2MjBg8eDBarRZTU1P69OmDhUXOb3e4c+cO0dHRrFq1Sj3OwYMHsx0HyPFYWTw8PDAxMeHgwYP069cPgLS0NCIjIxk7dmyu+xW1kSNHsmHDBn766Sesra25desW8OjKWHNzcxwcHHBwcNDZx9jYGCcnJzw9PYsjZCGEUJW6ZLh161bu3bvHkCFDst2C8Prrr7NmzRo+/fRT2rRpQ9WqVenTpw/p6en88ssvvPvuu1SvXp3+/fszaNAgFi1aRN26dbl9+zZ79+7Fx8eHjh074u7uzv3799mzZw++vr5YWFioSW/o0KF4eXkBcOjQoVzjtLOzw8HBgS+++AJnZ2fi4uKYPHmyTh1HR0fMzc3ZsWMHFStWxMzMLFufLC0tefvtt5k4cSL29vZUqlSJ+fPnk5KSwpAhQwrjIy0UK1euBFCviM2i1WpzvcBICCFKilJ3znDNmjW0bds2x3vxevToQVRUFGXKlOH7779ny5Yt1KlTh9atW3Ps2DG1nlarZdCgQYwfPx5PT0+6dOnCsWPHcHV1BaBp06a89dZb9O7dm3LlyjF//nx132rVqtG0aVM8PT1p3LhxrnEaGBiwceNGTp48ibe3N++88w4LFizQqWNkZMTSpUtZtWoVLi4uBAYG5tjWvHnz6NGjBwMHDqRevXpcunSJnTt3YmdnV6DP7kVSFCXHJa9EePXq1RI1uhVC6C+NknVSSuSLoijUqFGD4cOHM27cuOIOp1AlJSU9+pERslFe7iuEeClkfa8lJiZSpkyZXOuVumnS4pSQkMC6deu4efOmXPQhhBAvEUmGBVC+fHnKli3LF198UaKmKIUQQjwfSYYFIDPKQgjxcip1F9AIIYQQhU2SoRBCCL0n06Qim8SPOuR51RXI1aNCiJeLjAyFEELoPUmGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhkIIIfSeJEORowMHDtC5c2dcXFzQaDRs3ry5uEMSQogXRpJhISusxFHcCSg5ORlfX1+WL19ebDEIIURRKZHJMCEhgeHDh1OpUiVMTU1xcnLC39+fI0eOFHdohW7GjBnUqVMnW3l8fDwdOnQo+oD+vw4dOjB79my6d+9ebDEIIURRKZFvrejRowdpaWmsXbuWKlWq8L///Y89e/Zw9+7d4g6tyDg5ORV3CEIIoTdK3Mjwn3/+4eDBg3z88ce0atUKNzc3GjVqxJQpU+jUqRNXr15Fo9EQFRWls49GoyEiIgKAiIgINBoNO3fupG7dupibm9O6dWsSEhL45Zdf8PLyokyZMvTt25eUlBS1ndTUVEaPHo2joyNmZmY0b96cEydOAI/ecu/h4cHChQt14v39998xMDAgNjY2x/5MmjSJ6tWrY2FhQZUqVZg2bRppaWkAhIWFMXPmTM6cOYNGo0Gj0RAWFgZknyY9d+4crVu3xtzcHAcHB958803u37+vbg8KCqJr164sXLgQZ2dnHBwcGDlypHosIYQQuStxydDKygorKys2b95Mamrqc7U1Y8YMli9fzuHDh7l+/Tq9evVi8eLFbNiwgW3btrFr1y6WLVum1n/33Xf58ccfWbt2LadOncLDwwN/f3/u3r2LRqMhODgYrVarc4zQ0FBeffVVqlatmmMM1tbWhIWF8eeff7JkyRJWr17Np59+CkDv3r0ZP348tWrVIj4+nvj4eHr37p2tjZSUFNq3b4+dnR0nTpzg+++/Z/fu3YSEhOjU27dvH7Gxsezbt4+1a9cSFhamJtecpKamkpSUpLMIIYReUkqgH374QbGzs1PMzMyUpk2bKlOmTFHOnDmjKIqiXLlyRQGU06dPq/Xv3bunAMq+ffsURVGUffv2KYCye/dutc7cuXMVQImNjVXLhg8frvj7+yuKoij3799XjI2NlfXr16vbHz58qLi4uCjz589XFEVR/vrrL8XQ0FA5duyYur1cuXJKWFiYug+gbNq0Kde+zZ8/X6lfv766Pn36dMXX1zdbvcfb+eKLLxQ7Ozvl/v376vZt27YpBgYGyq1btxRFUZTBgwcrbm5uSnp6ulqnZ8+eSu/evXONZfr06QqQbUlMTMw1FiGEKE0SExNz/F57UokbGcKjc4Z//fUXW7Zswd/fn4iICOrVq5fnKCcntWvXVv9cvnx5dary8bKEhAQAYmNjSUtLo1mzZup2Y2NjGjVqRHR0NADOzs506tSJ0NBQALZu3cqDBw/o2bNnrjH88MMPNG/eHCcnJ6ysrJg2bRpxcXEF6kd0dDS+vr5YWlqqZc2aNSMzM5OYmBi1rFatWhgaGqrrzs7Oav9yMmXKFBITE9Xl+vXrBYpLCCFeFiUyGQKYmZnx2muv8cEHH3D48GGCgoKYPn06BgaPQlYURa2b23kxY2Nj9c8ajUZnPassMzNTpz2NRqNTR1EUnbKhQ4eyceNG/vvvP7RaLb1798bCwiLH4x89epQ+ffrQoUMHtm7dyunTp5k6dSoPHz7M78eQYwxP9iFLXv3LiampKWXKlNFZsty/f5+oqCj13OyVK1eIiooqcCIXQojSoMQmwyfVrFmT5ORkypUrBzy69SDL4xfTPCsPDw9MTEw4ePCgWpaWlkZkZCReXl5qWceOHbG0tGTlypX88ssvBAcH59rmoUOHcHNzY+rUqTRo0IBq1apx7do1nTomJiZkZGTkGVvNmjWJiooiOTlZp20DAwOqV69e0K7mS2RkJHXr1qVu3boAjBs3jrp16/LBBx+8kOMJIURxKnG3Vty5c4eePXsSHBxM7dq1sba2JjIykvnz5xMYGIi5uTmvvPIK8+bNw93dndu3b/P+++8/93EtLS15++23mThxIvb29lSqVIn58+eTkpLCkCFD1HqGhoYEBQUxZcoUPDw8aNKkSa5tenh4EBcXx8aNG2nYsCHbtm1j06ZNOnXc3d3VUVfFihWxtrbG1NRUp07//v2ZPn06gwcPZsaMGfz999+MGjWKgQMHUr58+efue078/Px0Rt9CCPEyK3EjQysrKxo3bsynn35KixYt8Pb2Ztq0aQwbNkx9GkpoaChpaWk0aNCAMWPGMHv27EI59rx58+jRowcDBw6kXr16XLp0iZ07d2JnZ6dTb8iQITx8+DDPUSFAYGAg77zzDiEhIdSpU4fDhw8zbdo0nTo9evSgffv2tGrVinLlyvHNN99ka8fCwoKdO3dy9+5dGjZsyOuvv06bNm3k6TBCCFFINIr8/C+wQ4cO4efnx40bN17YyKw4JCUlYWNjQ2Jios75QyGEKK3y+71W4qZJS7LU1FSuX7/OtGnT6NWr10uVCIUQQp+VuGnSkuybb77B09OTxMRE5s+fX9zhCCGEKCQyTSpUMk0qhHjZ5Pd7TUaGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5KhEEIIvSfJUAghhN6TZCiEEELvlehkGBERgUaj4Z9//nmudtzd3Vm8eHGhxJQXPz8/xo4dW2LaeR4HDhygc+fOuLi4oNFo2Lx5c7HGI4QQL9ILT4ZBQUFoNBo0Gg3GxsZUqVKFCRMmkJyc/KIPrTpx4gRvvvmmul5SvtxzS/bh4eF8+OGHxRPU/5ecnIyvry/Lly8v1jiEEKIoFMmb7tu3b49WqyUtLY3ffvuNoUOHkpyczMqVK4vi8JQrV65IjlNY7O3tizsEOnToQIcOHYo7DCGEKBJFMk1qamqKk5MTrq6u9OvXj/79+7N582a+/vprGjRogLW1NU5OTvTr14+EhIRc2wkLC8PW1patW7fi6emJhYUFr7/+OsnJyaxduxZ3d3fs7OwYNWoUGRkZ6n6PT5O6u7sD0K1bNzQajboOsHLlSqpWrYqJiQmenp6sW7dO3RYcHExAQIBOPOnp6Tg5OREaGppjvHn17+rVq7Rq1QoAOzs7NBoNQUFBQPZp0nv37jFo0CDs7OywsLCgQ4cOXLx4MdvnsnPnTry8vLCysqJ9+/bEx8fn+lkKIYT4P8VyztDc3Jy0tDQePnzIhx9+yJkzZ9i8eTNXrlxRE0JuUlJSWLp0KRs3bmTHjh1ERETQvXt3tm/fzvbt21m3bh1ffPEFP/zwQ477nzhxAgCtVkt8fLy6vmnTJsaMGcP48eP5/fffGT58OG+88Qb79u0DYOjQoezYsUMnwWzfvp379+/Tq1evHI+VV/9cXV358ccfAYiJiSE+Pp4lS5bk2E5QUBCRkZFs2bKFI0eOoCgKHTt2JC0tTedzWbhwIevWrePAgQPExcUxYcKEPD9LIYQQ/5/ygg0ePFgJDAxU148dO6Y4ODgovXr1ylb3+PHjCqD8+++/iqIoyr59+xRAuXfvnqIoiqLVahVAuXTpkrrP8OHDFQsLC3UfRVEUf39/Zfjw4eq6m5ub8umnn6rrgLJp0yadYzdt2lQZNmyYTlnPnj2Vjh07qus1a9ZUPv74Y3W9a9euSlBQkLresmVLZcyYMbl+Fk/rX07tXLhwQQGUQ4cOqdtv376tmJubK999912un8tnn32mlC9fPtdYFEVRHjx4oCQmJqrL9evXFUBJTEzUqZfT5yWEEKVBYmJijt9rTyqSkeHWrVuxsrLCzMyMJk2a0KJFC5YtW8bp06cJDAzEzc0Na2tr/Pz8AIiLi8u1LQsLC6pWraquly9fHnd3d6ysrHTK8ppuzUl0dDTNmjXTKWvWrBnR0dHq+tChQ9FqtQAkJCSwbds2goODc23zWfqXU1xGRkY0btxYLXNwcMDT01Mntic/F2dn56d+BnPnzsXGxkZdXF1d8x2XEEK8TIokGbZq1YqoqChiYmJ48OAB4eHhWFpa0q5dO6ysrPj66685ceIEmzZtAh5NL+bG2NhYZz3rKtUnyzIzMwscp0aj0VlXFEWnbNCgQVy+fJkjR47w9ddf4+7uzquvvppjW8nJyc/UvycpipJr+eOx5fQZ5LZvlilTppCYmKgu169fz3dcQgjxMimSq0ktLS3x8PDQKTt//jy3b99m3rx56ogkMjKyKMLB2NhY5wIbAC8vLw4ePMigQYPUssOHD+Pl5aWuOzg40LVrV7RaLUeOHOGNN97I9Rj56Z+JiQlAtlgeV7NmTdLT0zl27BhNmzYF4M6dO1y4cEEntmdhamqKqalpjtvu37/PpUuX1PUrV64QFRWFvb09lSpVeq7jCiFESVNsN91XqlQJExMTli1bxuXLl9myZUuR3Vvn7u7Onj17uHXrFvfu3QNg4sSJhIWF8fnnn3Px4kU++eQTwsPDs12EMnToUNauXUt0dDSDBw/O9Rj56Z+bmxsajYatW7fy999/c//+/WztVKtWjcDAQIYNG8bBgwc5c+YMAwYMoEKFCgQGBhbCp5GzyMhI6tatS926dQEYN24cdevW5YMPPnhhxxRCiOJSbMmwXLlyhIWF8f3331OzZk3mzZvHwoULi+TYixYtYteuXbi6uqpf9l27dmXJkiUsWLCAWrVqsWrVKrRarXqeL0vbtm1xdnbG398fFxeXXI+Rn/5VqFCBmTNnMnnyZMqXL09ISEiObWm1WurXr09AQABNmjRBURS2b9+ebWq0MPn5+aEoSrYlLCzshR1TCCGKi0Z52okloSMlJQUXFxdCQ0Pp3r17cYdTqJKSkrCxsSExMZEyZcoUdzhCCPHc8vu9ViTnDF8GmZmZ3Lp1i0WLFmFjY0OXLl2KOyQhhBCFRJJhPsXFxVG5cmUqVqxIWFgYRkby0QkhxMtCvtHzyd3d/am3KgghhCidSvQrnIQQQoiiIMlQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5KhEEIIvSfJUAghhN6TZCiEEELvSTIUQgih9yQZCiGE0HuSDEWO5s6dS8OGDbG2tsbR0ZGuXbsSExNT3GEJIcQLUaKSoUajYfPmzcVy7KCgILp27VrsbRRmO89j//79jBw5kqNHj7Jr1y7S09Np164dycnJxRqXEEK8CEWSDIOCgtBoNGg0GoyNjSlfvjyvvfYaoaGhZGZmqvXi4+Pp0KHDC43l6tWraDQaoqKiXuhxnieWJUuWEBYWViwxZdmxYwdBQUHUqlULX19ftFotcXFxnDx5sljjEkKIF6HIRobt27cnPj6eq1ev8ssvv9CqVSvGjBlDQEAA6enpADg5OWFqalpUIZVYNjY22NraFncYOhITEwGwt7cv5kiEEKLwFVkyNDU1xcnJiQoVKlCvXj3ee+89fvrpJ3755Rd1FPT4NGnWqOm7777j1VdfxdzcnIYNG3LhwgVOnDhBgwYNsLKyon379vz99986x9JqtXh5eWFmZkaNGjVYsWKFuq1y5coA1K1bF41Gg5+fn86+CxcuxNnZGQcHB0aOHElaWhoAs2bNwsfHJ1u/6tevzwcffJBjn3fs2EHz5s2xtbXFwcGBgIAAYmNjnxrLk9OkqampjB49GkdHR8zMzGjevDknTpxQt0dERKDRaNizZw8NGjTAwsKCpk2bFto5PkVRGDduHM2bN8fb27tQ2hRCiJKkWM8Ztm7dGl9fX8LDw3OtM336dN5//31OnTqFkZERffv25d1332XJkiX89ttvxMbG6iSj1atXM3XqVD766COio6OZM2cO06ZNY+3atQAcP34cgN27dxMfH69z7H379hEbG8u+fftYu3YtYWFhaqIODg7mzz//1ElCZ8+e5fTp0wQFBeUYe3JyMuPGjePEiRPs2bMHAwMDunXrpk4N5xXL4959911+/PFH1q5dy6lTp/Dw8MDf35+7d+/q1Js6dSqLFi0iMjISIyMjgoODc/1c4VGSTUpK0llyEhISwtmzZ/nmm2/ybE8IIUotpQgMHjxYCQwMzHFb7969FS8vL0VRFAVQNm3apCiKoly5ckUBlC+//FKt+8033yiAsmfPHrVs7ty5iqenp7ru6uqqbNiwQecYH374odKkSROddk+fPp0tRjc3NyU9PV0t69mzp9K7d291vUOHDsrbb7+tro8dO1bx8/PLVz8VRVESEhIUQDl37txTY8lq5/79+4qxsbGyfv16dfvDhw8VFxcXZf78+YqiKMq+ffsUQNm9e7daZ9u2bQqg/Pfff7nGM336dAXItiQmJqp1QkJClIoVKyqXL1/OtR0hhCipEhMTs32v5aTYryZVFAWNRpPr9tq1a6t/Ll++PIDOdGX58uVJSEgA4O+//+b69esMGTIEKysrdZk9e7bO9GRuatWqhaGhobru7Oystg0wbNgwvvnmGx48eEBaWhrr16/Pc/QVGxtLv379qFKlCmXKlFGnRePi4p4ay+NtpKWl0axZM7XM2NiYRo0aER0drVP38c/K2dkZQCf+J02ZMoXExER1uX79urpNURRCQkIIDw9n7969auxCCPEyMiruAKKjo/P8ojU2Nlb/nJU0nyzLmnbM+u/q1atp3LixTjuPJ7n8HOvJtgE6d+6MqakpmzZtwtTUlNTUVHr06JFre507d8bV1ZXVq1fj4uJCZmYm3t7ePHz48KmxZFEURY3lyfIny3L6rB6P/0mmpqa5XrA0cuRINmzYwE8//YS1tTW3bt0CHl3cY25unu/4hRCiNCjWkeHevXs5d+5cngmlIMqXL0+FChW4fPkyHh4eOktWwjUxMQEgIyOjwO0bGRkxePBgtFotWq2WPn36YGFhkWPdO3fuEB0dzfvvv0+bNm3w8vLi3r17OnXyE4uHhwcmJiYcPHhQLUtLSyMyMhIvL68C9yG/Vq5cSWJiIn5+fjg7O6vLt99++8KOKYQQxaXIRoapqancunWLjIwM/ve//7Fjxw7mzp1LQEAAgwYNKrTjzJgxg9GjR1OmTBk6dOhAamoqkZGR3Lt3j3HjxuHo6Ii5uTk7duygYsWKmJmZYWNjk+/2hw4dqiahQ4cO5VrPzs4OBwcHvvjiC5ydnYmLi2Py5Mk6dfITi6WlJW+//TYTJ07E3t6eSpUqMX/+fFJSUhgyZEgBPpmCyRqRCiGEPiiykeGOHTtwdnbG3d2d9u3bs2/fPpYuXcpPP/2UrynM/Bo6dChffvklYWFh+Pj40LJlS8LCwtSRoZGREUuXLmXVqlW4uLgQGBhYoParVatG06ZN8fT0zDYV+zgDAwM2btzIyZMn8fb25p133mHBggU6dfIby7x58+jRowcDBw6kXr16XLp0iZ07d2JnZ1eg2IUQQuRMo8gQoEAURaFGjRoMHz6ccePGFXc4hSopKQkbGxsSExMpU6ZMcYcjhBDPLb/fa8V+AU1pkpCQwLp167h58yZvvPFGcYcjhBCikEgyLIDy5ctTtmxZvvjiC5miFEKIl4gkwwKQGWUhhHg5FftN90IIIURxk2QohBBC70kyFEIIofckGQohhNB7kgyFEELoPUmGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhiJHBw4coHPnzri4uKDRaNi8eXNxhySEEC9MqUuGL/KL+erVq2g0GqKiogCIiIhAo9Hwzz//ABAWFoatre0LOfaTgoKC6Nq1a5EcKyfJycn4+vqyfPnyYotBCCGKSolLhrdu3WLUqFFUqVIFU1NTXF1d6dy5M3v27AEgPj6eDh06ANmT14vWu3dvLly4UKht5taHJUuWEBYWVqjHKogOHTowe/ZsunfvXmwxCCFEUSlRL/e9evUqzZo1w9bWlvnz51O7dm3S0tLYuXMnI0eO5Pz58zg5ORW43YcPH2JiYvLc8Zmbm2Nubv7c7eSHjY1NkRxHCCFECRsZjhgxAo1Gw/Hjx3n99depXr06tWrVYty4cRw9ehTQnSatXLkyAHXr1kWj0eDn5wf83xTj3LlzcXFxoXr16tn2zWJra5vvEdiT06QzZsygTp06rFu3Dnd3d2xsbOjTpw///vuvWmfHjh00b94cW1tbHBwcCAgIIDY2Vt3+tD5kSU1NZfTo0Tg6OmJmZkbz5s05ceKEuj1rSnfPnj00aNAACwsLmjZtSkxMTL76JoQQ+qzEJMO7d++yY8cORo4ciaWlZbbtOZ2rO378OAC7d+8mPj6e8PBwdduePXuIjo5m165dbN269YXFHRsby+bNm9m6dStbt25l//79zJs3T92enJzMuHHjOHHiBHv27MHAwIBu3bqRmZn51D487t133+XHH39k7dq1nDp1Cg8PD/z9/bl7965OvalTp7Jo0SIiIyMxMjIiODg419hTU1NJSkrSWYQQQh+VmGnSS5cuoSgKNWrUyPc+5cqVA8DBwSHb9KmlpSVffvlloUyP5iUzM5OwsDCsra0BGDhwIHv27OGjjz4CoEePHjr116xZg6OjI3/++Sfe3t559iFLcnIyK1euJCwsTD1funr1anbt2sWaNWuYOHGiWvejjz6iZcuWAEyePJlOnTrx4MEDzMzMsrU7d+5cZs6c+ZyfQOmXkZFBWlpacYchhHgGxsbGGBoaPnc7JSYZKooCPJrKLAw+Pj4vPBECuLu7q4kQwNnZmYSEBHU9NjaWadOmcfToUW7fvq2OCOPi4vD29s7XMWJjY0lLS6NZs2ZqmbGxMY0aNSI6Olqnbu3atXViAUhISKBSpUrZ2p0yZQrjxo1T15OSknB1dc1XTC8DRVG4deuWerWwEKJ0srW1xcnJ6bnyR4lJhtWqVUOj0RAdHV0otxTkNNWq0WjUpJvleUcExsbG2Y6RlfAAOnfujKurK6tXr8bFxYXMzEy8vb15+PBhvo+R2w8FRVGylT0eT9a2x+N5nKmpKaampjluu3//PpcuXVLXr1y5QlRUFPb29jkm1tIoKxE6OjpiYWFRaD/EhBBFQ1EUUlJS1AFI1gDgWZSYZGhvb4+/vz+fffYZo0ePzpbM/vnnn2znDbNGfhkZGfk6Rrly5YiPj1fXL168SEpKyvMFnoc7d+4QHR3NqlWrePXVVwE4ePCgTp389MHDwwMTExMOHjxIv379gEdJPDIykrFjx76Q2CMjI2nVqpW6njWCHDx4cLHe8lFYMjIy1ETo4OBQ3OEIIZ5R1hX+CQkJODo6PvOUaYlJhgArVqygadOmNGrUiFmzZlG7dm3S09PZtWsXK1euzDYl6OjoiLm5OTt27KBixYqYmZnleUtC69atWb58Oa+88gqZmZlMmjQp28iuMNnZ2eHg4MAXX3yBs7MzcXFxTJ48ucB9sLS05O2332bixInqyGz+/PmkpKQwZMiQFxK7n59ftlH0yyRrRsDCwqKYIxFCPK+s/4/T0tKeORmWmKtJ4dFtBqdOnaJVq1aMHz8eb29vXnvtNfbs2cPKlSuz1TcyMmLp0qWsWrUKFxcXAgMD82x/0aJFuLq60qJFC/r168eECRNe6JehgYEBGzdu5OTJk3h7e/POO++wYMGCZ+rDvHnz6NGjBwMHDqRevXpcunSJnTt3Ymdn98Li1wcyNSpE6VcY/x9rlJf5578okKSkJGxsbEhMTKRMmTLFHc4L9eDBA65cuULlypVzvNJWCFF65PX/c36/10rUyFAIUXiefMjE+fPneeWVVzAzM6NOnTq5lpU0z/JMYHd3dxYvXqyul7SHzRfWoySzHvxREmIp7UrUOUMhipvBhJ+L9HiZCzsXqH5QUBBr164FHk2x29vbU7t2bfr27UtQUBAGBv/3+zY+Pl5nGn369OlYWloSExODlZVVrmXFyd3dnbFjx+pcGNa7d286duxYfEHxKCGPHTtWb2/D8fPzY//+/cCji/7c3NwICgpi0qRJDBkyRP03mRtFUdR/u8OHD+fzzz/X2T5ixAhWrlxZrBfoychQiFKmffv2xMfHc/XqVX755RdatWrFmDFjCAgIID09Xa3n5OSkc+tMbGwszZs3x83NTb2CNqeygirIbULPwtzcHEdHxxd6DPF0w4YNIz4+npiYGEaPHs3777/PwoULWbJkCfHx8eoCoNVqs5UBuLq6snHjRv777z+17MGDB3zzzTfFfsuWJEMhShlTU1OcnJyoUKEC9erV47333uOnn37il19+0flV/fjUoEaj4eTJk8yaNQuNRsOMGTNyLAO4efMmvXv3Vq+GDgwM5OrVq2q7uT37N7/7LVy4EGdnZxwcHBg5cqR6Za+fnx/Xrl3jnXfeQaPRqBdFPDlNGhsbS2BgIOXLl8fKyoqGDRuye/fufH9+rVu3JiQkRKfszp07mJqasnfv3ny1kZ/nEmdmZvLxxx/j4eGBqakplSpVUp9M9aScpoI3b96c7cKQefPmUb58eaytrRkyZAgPHjzI1pZWq8XLywszMzNq1KjBihUrdLYfP36cunXrYmZmRoMGDTh9+nS++mxhYYGTkxPu7u6EhITQpk0bNm/ejI2NDU5OTuoC/3cT/ONlAPXq1aNSpUo6j50MDw/H1dWVunXr6hzvhx9+wMfHB3NzcxwcHGjbti3Jycn5ivVZSDIU4iXQunVrfH19c322bXx8PLVq1WL8+PHEx8czYcKEHMtSUlJo1aoVVlZWHDhwgIMHD2JlZUX79u11RoBPPvs3v/vt27eP2NhY9u3bx9q1awkLC1MTeHh4OBUrVmTWrFnZRhSPu3//Ph07dmT37t2cPn0af39/OnfuTFxcXL4+q6FDh7JhwwZSU1PVsvXr1+Pi4qJzb+3TPO25xFOmTOHjjz9m2rRp/Pnnn2zYsIHy5cvnu/0nfffdd0yfPp2PPvqIyMhInJ2dsyW61atXM3XqVD766COio6OZM2cO06ZNU6cxk5OTCQgIwNPTk5MnTzJjxgwmTJjwTPGYm5s/00NL3njjDbRarboeGhqa7RnK8fHx9O3bl+DgYKKjo4mIiKB79+4v9HYvOWcoxEuiRo0anD17NsdtTk5OGBkZYWVlpf5St7KyylYWGhqKgYEBX375pToq0Wq12NraEhERQbt27YDsz/7N7352dnYsX74cQ0NDatSoQadOndizZw/Dhg3D3t4eQ0NDrK2t83xVm6+vL76+vur67Nmz2bRpE1u2bMk24stJjx49GDVqFD/99BO9evVSYw0KCirQJfp5PZf433//ZcmSJSxfvpzBgwcDULVqVZo3b57v9p+0ePFigoODGTp0KPCo37t379YZHX744YcsWrRIfQ9p5cqV+fPPP1m1ahWDBw9m/fr1ZGRkEBoaioWFBbVq1eLGjRu8/fbbBer3r7/+ys6dO5/poR8DBw5kypQp6oU7hw4dYuPGjURERKh14uPjSU9Pp3v37ri5uQGPHrH5IsnIUIiXRE6P5yuokydPcunSJaytrbGyssLKygp7e3sePHig8+qxJ5/9m9/9atWqpXNT9JPP8s2P5ORk3n33XWrWrImtrS1WVlacP38+3yNDU1NTBgwYQGhoKABRUVGcOXOGoKCgAsWR13OJo6OjSU1NpU2bNgVqMy/R0dE0adJEp+zx9b///pvr168zZMgQ9e/AysqK2bNnq38H0dHR+Pr66txf/WSbuVmxYgVWVlaYmZnRpUsXBgwYwPTp0wvcj7Jly9KpUyfWrl2LVqulU6dOlC1bVqeOr68vbdq0wcfHh549e7J69Wru3btX4GMVhIwMhXhJREdHq+/HfFaZmZnUr1+f9evXZ9uW9YYVyP7s3/zu97Rn+ebHxIkT2blzJwsXLsTDwwNzc3Nef/31Al3IM3ToUOrUqcONGzcIDQ2lTZs26ggkv/LqS0FfAm5gYPDcz03OOvbq1atp3LixzrasHyDPM83Yv39/pk6diqmpKS4uLs/1pojg4GB1FP/ZZ59l225oaMiuXbs4fPgwv/76K8uWLWPq1KkcO3bsuf+N50ZGhkK8BPbu3cu5c+eyvTKsoOrVq8fFixdxdHTEw8NDZ8nrUYfPut+TTExMnvqs4d9++42goCC6deuGj48PTk5OOhfq5IePjw8NGjRg9erVbNiwIc/3fj6LatWqYW5uzp49e/JVv1y5cvz77786F4g8ed+fl5eX+pLzLI+vly9fngoVKnD58uVsfwdZCaRmzZqcOXNG52rOJ9vMjY2NDR4eHri6uj73K5OyziU/fPgQf3//HOtoNBqaNWvGzJkzOX36NCYmJmzatOm5jpsXSYZClDKpqancunWLmzdvcurUKebMmUNgYCABAQEMGjToudru378/ZcuWJTAwkN9++40rV66wf/9+xowZw40bNwp9vye5u7tz4MABbt68ye3bt3Os4+HhQXh4uDq92a9fvwKPLuHR6HDevHlkZGTQrVu3Au+fFzMzMyZNmsS7777LV199RWxsLEePHmXNmjU51m/cuDEWFha89957XLp0iQ0bNmS7327MmDGEhoYSGhrKhQsXmD59On/88YdOnRkzZjB37lyWLFnChQsXOHfuHFqtlk8++QSAfv36YWBgwJAhQ/jzzz/Zvn07CxcuLNS+54ehoSHR0dFER0fnmFiPHTvGnDlziIyMJC4ujvDwcP7++2+8vLxeWEwyTSrEYwp6E3xx2LFjB87OzhgZGWFnZ4evry9Lly5l8ODBOjfdPwsLCwsOHDjApEmT6N69O//++y8VKlSgTZs2eT7K6ln3e9KsWbMYPnw4VatWJTU1NcdpvU8//ZTg4GCaNm1K2bJlmTRpEklJSQXua9++fRk7diz9+vV7IY/kmzZtGkZGRnzwwQf89ddfODs789Zbb+VY197enq+//pqJEyfyxRdf0LZtW2bMmMGbb76p1unduzexsbFMmjSJBw8e0KNHD95++2127typ1hk6dCgWFhYsWLCAd999F0tLS3x8fNQLXaysrPj555956623qFu3LjVr1uTjjz9+7hmFZ5HXv4syZcpw4MABFi9eTFJSEm5ubixatEh9ufmLIM8mFSp5NqnQJ9evX8fd3Z0TJ05Qr1694g5HPIfCeDapjAyFEHolLS2N+Ph4Jk+ezCuvvCKJUAByzlAIoWcOHTqEm5sbJ0+ezPaMTKG/ZGQohNArL/uLq8WzkZGhEEIIvSfJUOTowIEDdO7cGRcXlxL3LjghhChskgyL0eHDhzE0NKR9+/Y65VnP7DMyMuLmzZs62+Lj4zEyMkKj0ag3GmfVz1rs7Oxo0aKF+v6xZ5GcnIyvry/Lly9/5jaEEKK0kGRYjEJDQxk1ahQHDx7M8bmKLi4ufPXVVzpla9eupUKFCjm2t3v3buLj49m/fz9lypShY8eOXLly5Zli69ChA7Nnz1Yf+CuEEC8zSYbFJDk5me+++463336bgICAHN/uPHjwYJ1XncCj955lPQX/SQ4ODjg5OVG7dm1WrVpFSkoKv/7664sIXwghXiqSDIvJt99+i6enJ56engwYMACtVpvtCrcuXbpw7949Dh48CMDBgwe5e/cunTs//SkpWU+lz+thv6mpqSQlJeksQgihjyQZFpM1a9YwYMAA4NFDa+/fv5/tob7GxsY6r5oJDQ1lwIAB2Z6W/6Tk5GSmTJmCoaEhLVu2zLXe3LlzsbGxURdXV9fn7JUQBePn5/fUd+Ll9Bb4ojx+UXN3d2fx4sXPvH9QUBBdu3YttHjgxf4dlBRyn2ExiImJ4fjx4+pbyY2MjOjduzehoaG0bdtWp+6QIUNo0qQJc+bM4fvvv+fIkSOkp6fn2G7Tpk0xMDAgJSUFZ2dnwsLC8nwh5pQpUxg3bpy6npSUpPcJ8cpik6dXKkSVx+b/tUPw6Isu663lRkZGuLq60r17d2bOnMmCBQuYOXNmnvtfuXKFsLAwZs6cib+/Pzt27NDZPn/+fCZNmkTLli11Xrb6ooSHh+v8uHN3d2fs2LGFmqDatWvHnj17OHToEK+88kqedV/E8QvbjBkzcvx73rVrV7bvD5F/kgyLwZo1a0hPT9e5EEZRFIyNjbO9wNLb25saNWrQt29fvLy88Pb2zvZqlyzffvut+sJTBweHp8ZhamqKqanpc/VFFL327duj1WpJS0vjt99+Y+jQoSQnJ7NgwQKdB0E3bNiQN998k2HDhqllWe8WdHZ2Zt++fdy4cYOKFSuq27VaLZUqVSqyvtjb27/Q9uPi4jhy5AghISGsWbPmqcmwsDx8+FDn5ceFrVatWuzevVun7EV/li87mSYtYunp6Xz11VcsWrSIqKgodTlz5gxubm45vhw1ODiYiIiIp75zzdXVlapVq+YrET7N/fv31djg0YgiKioq328TFy+OqakpTk5OuLq60q9fP/r378/mzZuxsrLCyclJXQwNDbG2ts5WBuDo6Ei7du3UUSY8utXn9u3bdOrUSed4ERERNGrUCEtLS2xtbWnWrBnXrl3LMbYePXowatQodX3s2LFoNBr1VUPp6elYW1urb1p4fJrSz8+Pa9eu8c4776i3CT1u586deHl5YWVlRfv27YmPj3/qZ6XVagkICODtt9/m22+/1Xlf4JPyOv7hw4dp0aIF5ubmuLq6Mnr0aJ223N3dmT17NkFBQdjY2Kg/QJ62X0JCAp07d8bc3JzKlSvn+P9/ToyMjHT+Xp2cnHJNvjt27KB58+bqj+SAgABiY2PV7Vm3ZoWHh9OqVSssLCzw9fXlyJEjuR7/zp07NGrUiC5duvDgwYN8xVzSSTIsYlu3buXevXsMGTIEb29vneX111/P8X1nw4YN4++//2bo0KFFFmdkZCR169albt26AIwbN466devywQcfFFkMIn/Mzc0L/FZ0ePQj6/GrmENDQ+nfv7/Ol2p6ejpdu3alZcuWnD17liNHjvDmm29mS1RZ/Pz8dKZX9+/fT9myZdV7Xk+cOMGDBw9o1qxZtn3Dw8OpWLEis2bNIj4+XifZpaSksHDhQtatW8eBAweIi4tjwoQJefZPURS0Wi0DBgygRo0aVK9ene+++y7X+rkd/9y5c/j7+9O9e3fOnj3Lt99+y8GDB9U3tWdZsGAB3t7enDx5kmnTpuVrv6CgIK5evcrevXv54YcfWLFiBQkJCXn2q6CSk5MZN24cJ06cYM+ePRgYGNCtW7ds74CcOnUqEyZMICoqiurVq9O3b98cT8ncuHGDV199lRo1ahAeHv7SvPVFkmERW7NmDW3bts3x7d89evQgKiqKu3fv6pQbGRlRtmxZjIyKblY76/mNTy453QIiis/x48fZsGEDbdq0KfC+AQEBJCUlceDAAfVWnydnH5KSkkhMTCQgIICqVavi5eXF4MGDc51K9fPz448//uD27dvcu3ePP/74g7Fjx6oJMiIigvr162NlZZVtX3t7+2yj2SxpaWl8/vnnNGjQgHr16hESEvLUt8jv3r2blJQU9U3qAwYMyPXlunkdf8GCBfTr14+xY8dSrVo1mjZtytKlS/nqq690RkWtW7dmwoQJ6tvln7bfhQsX+OWXX/jyyy9p0qQJ9evXZ82aNTpvoc/NuXPnsLKyUpdGjRrlWrdHjx50796datWqUadOHdasWcO5c+f4888/depNmDCBTp06Ub16dWbOnMm1a9e4dOmSTp0LFy7QrFkz2rZty9q1a4v0O+lFe3l6Ukr8/PPPuW6rV6+eentFXg8SrlOnjs52d3d3efCwHtm6dStWVlakp6eTlpZGYGAgy5YtK3A7WVcra7VaLl++TPXq1aldu7ZOHXt7e4KCgvD39+e1116jbdu29OrVC2dn5xzb9Pb2xsHBgf3792NsbIyvry9dunRh6dKlwKNkmNcVzrmxsLCgatWq6rqzs/NTR1Br1qyhd+/e6hd23759mThxIjExMXh6eub72CdPnuTSpUs6U5iKopCZmcmVK1fUt683aNCgQPtduHABIyMjnf1q1KiRr6s2PT092bJli7qe17n/2NhYpk2bxtGjR7l9+7Y6IoyLi8Pb21ut9/jffdbfb0JCAjVq1ADgv//+o3nz5vTt25clS5Y8NcbSRpKhEKVMq1atWLlyJcbGxri4uDz1Vpu8BAcH07hxY37//fdcz0lrtVpGjx7Njh07+Pbbb3n//ffZtWtXjhejaDQaWrRoQUREBCYmJvj5+eHt7U1GRgbnzp3j8OHDz3Sl5pN91Gg0ef4AvHv3Lps3byYtLY2VK1eq5RkZGYSGhvLxxx/n+9iZmZkMHz6c0aNHZ9v2+AjZ0tKyQPvFxMSofSkoExMTPDw88lW3c+fOuLq6snr1alxcXMjMzMTb25uHD3WvZH78M86K6fGpVFNTU9q2bcu2bduYOHGizoVXLwNJhkKUMpaWlvn+InyaWrVqUatWLc6ePUu/fv1yrZd1/njKlCk0adKEDRs25Hplpp+fH1988QUmJibMmjULjUbDq6++ysKFC/nvv/9yPF+YxcTEhIyMjOfu1/r166lYsWK2B8zv2bOHuXPn8tFHH+U4xZfT8evVq8cff/xR4M/8aft5eXmRnp5OZGSkOs0ZExPDP//8U6Dj5OXOnTtER0ezatUqXn31VQD1IR4FZWBgwLp16+jXrx+tW7cmIiICFxeXQou1uMk5QyH03N69e4mPj89xeu7KlStMmTKFI0eOcO3aNX799VcuXLigTg3mJOu84blz59QvYD8/P9avX0+9evUoU6ZMrvu6u7tz4MABbt68ye3bt5+5T2vWrOH111/PdpFacHAw//zzD9u2bcv38SdNmsSRI0cYOXIkUVFRXLx4kS1btuhcNZuTp+3n6elJ+/btGTZsGMeOHePkyZMMHToUc3PzZ+73k+zs7HBwcOCLL77g0qVL7N27V+fe4oIyNDRk/fr1+Pr60rp1a27dulVosRY3GRkK8ZiC3gT/Mnhyeu9xFhYWnD9/nrVr13Lnzh2cnZ0JCQlh+PDhue7j7e1N2bJlcXNzUxNfy5YtycjIeOr5wlmzZjF8+HCqVq1KamrqM50LP3nyJGfOnGH16tXZtllbW9OuXTvWrFlDYGBgvo5fu3Zt9u/fz9SpU3n11VdRFIWqVavSu3fvPOPIz35arZahQ4fSsmVLypcvz+zZs5k2bVqB+5wbAwMDNm7cyOjRo/H29sbT05OlS5fi5+f3zG0aGRnxzTff0Lt3b3WE6OjoWGgxFxeNIldeiP8vKSkJGxsbEhMT8/z1/jJ48OABV65coXLlyi/NpeFC6Ku8/n/O7/eaTJMKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5Kh0Gty/ZgQpV9h/H8syVDopaynbaSkpBRzJEKI55X1//HzPI1J7jMUesnQ0BBbW1v1+ZYWFhbP9FgsIUTxURSFlJQUEhISsLW1VV9R9iwkGQq9lfVWgsJ+ZY4QomjZ2trqvOXkWUgyFHpLo9Hg7OyMo6PjM70PUAhR/IyNjZ9rRJhFkqHQe4aGhoXyP5MQovSSC2iEEELoPUmGQggh9J4kQyGEEHpPzhkKVdaNq0lJScUciRBCFI6s77On3ZgvyVCo7ty5A4Crq2sxRyKEEIXr33//xcbGJtftkgyFyt7eHoC4uLg8/9GUNklJSbi6unL9+vWX5j2NL2OfQPpVmpSWPimKwr///ouLi0ue9SQZCpWBwaNTyDY2NiX6H/ezKlOmzEvXr5exTyD9Kk1KQ5/y8+NeLqARQgih9yQZCiGE0HuSDIXK1NSU6dOnY2pqWtyhFKqXsV8vY59A+lWavGx90ijyQjchhBB6TkaGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKABYsWIFlStXxszMjPr16/Pbb78Vd0h5OnDgAJ07d8bFxQWNRsPmzZt1tiuKwowZM3BxccHc3Bw/Pz/++OMPnTqpqamMGjWKsmXLYmlpSZcuXbhx40YR9kLX3LlzadiwIdbW1jg6OtK1a1diYmJ06pTGfq1cuZLatWurN2c3adKEX375Rd1eGvv0pLlz56LRaBg7dqxaVhr7NWPGDDQajc7y+BvkS2Of8k0Rem/jxo2KsbGxsnr1auXPP/9UxowZo1haWirXrl0r7tBytX37dmXq1KnKjz/+qADKpk2bdLbPmzdPsba2Vn788Ufl3LlzSu/evRVnZ2clKSlJrfPWW28pFSpUUHbt2qWcOnVKadWqleLr66ukp6cXcW8e8ff3V7RarfL7778rUVFRSqdOnZRKlSop9+/fV+uUxn5t2bJF2bZtmxITE6PExMQo7733nmJsbKz8/vvvpbZPjzt+/Lji7u6u1K5dWxkzZoxaXhr7NX36dKVWrVpKfHy8uiQkJKjbS2Of8kuSoVAaNWqkvPXWWzplNWrUUCZPnlxMERXMk8kwMzNTcXJyUubNm6eWPXjwQLGxsVE+//xzRVEU5Z9//lGMjY2VjRs3qnVu3rypGBgYKDt27Ciy2POSkJCgAMr+/fsVRXl5+qUoimJnZ6d8+eWXpb5P//77r1KtWjVl165dSsuWLdVkWFr7NX36dMXX1zfHbaW1T/kl06R67uHDh5w8eZJ27drplLdr147Dhw8XU1TP58qVK9y6dUunT6amprRs2VLt08mTJ0lLS9Op4+Ligre3d4npd2JiIvB/D1B/GfqVkZHBxo0bSU5OpkmTJqW+TyNHjqRTp060bdtWp7w09+vixYu4uLhQuXJl+vTpw+XLl4HS3af8kAd167nbt2+TkZFB+fLldcrLly/PrVu3iimq55MVd059unbtmlrHxMQEOzu7bHVKQr8VRWHcuHE0b94cb29voHT369y5czRp0oQHDx5gZWXFpk2bqFmzpvoFWRr7tHHjRk6dOsWJEyeybSutf1eNGzfmq6++onr16vzvf/9j9uzZNG3alD/++KPU9im/JBkKADQajc66oijZykqbZ+lTSel3SEgIZ8+e5eDBg9m2lcZ+eXp6EhUVxT///MOPP/7I4MGD2b9/v7q9tPXp+vXrjBkzhl9//RUzM7Nc65W2fnXo0EH9s4+PD02aNKFq1aqsXbuWV155BSh9fcovmSbVc2XLlsXQ0DDbr7aEhIRsvwBLi6yr3/Lqk5OTEw8fPuTevXu51ikuo0aNYsuWLezbt4+KFSuq5aW5XyYmJnh4eNCgQQPmzp2Lr68vS5YsKbV9OnnyJAkJCdSvXx8jIyOMjIzYv38/S5cuxcjISI2rtPXrSZaWlvj4+HDx4sVS+3eVX5IM9ZyJiQn169dn165dOuW7du2iadOmxRTV86lcuTJOTk46fXr48CH79+9X+1S/fn2MjY116sTHx/P7778XW78VRSEkJITw8HD27t1L5cqVdbaX1n7lRFEUUlNTS22f2rRpw7lz54iKilKXBg0a0L9/f6KioqhSpUqp7NeTUlNTiY6OxtnZudT+XeVbcVy1I0qWrFsr1qxZo/z555/K2LFjFUtLS+Xq1avFHVqu/v33X+X06dPK6dOnFUD55JNPlNOnT6u3g8ybN0+xsbFRwsPDlXPnzil9+/bN8RLwihUrKrt371ZOnTqltG7dulgvAX/77bcVGxsbJSIiQufS9pSUFLVOaezXlClTlAMHDihXrlxRzp49q7z33nuKgYGB8uuvv5baPuXk8atJFaV09mv8+PFKRESEcvnyZeXo0aNKQECAYm1trX4XlMY+5ZckQ6EoiqJ89tlnipubm2JiYqLUq1dPvZy/pNq3b58CZFsGDx6sKMqjy8CnT5+uODk5KaampkqLFi2Uc+fO6bTx33//KSEhIYq9vb1ibm6uBAQEKHFxccXQm0dy6g+gaLVatU5p7FdwcLD6b6tcuXJKmzZt1ESoKKWzTzl5MhmWxn5l3TdobGysuLi4KN27d1f++OMPdXtp7FN+ySuchBBC6D05ZyiEEELvSTIUQgih9yQZCiGE0HuSDIUQQug9SYZCCCH0niRDIYQQek+SoRBCCL0nyVAIkaOrV6+i0WiIiooq7lBU58+f55VXXsHMzIw6deoUdzjiJSLJUIgSKigoCI1Gw7x583TKN2/eXOLfAPCiTJ8+HUtLS2JiYtizZ0+OdbI+N41Gg7GxMVWqVGHChAkkJyczY8YMdVtuy9WrV9V67du3z9b+/Pnz0Wg0+Pn5veDeiqIkyVCIEszMzIyPP/4421sASrOHDx8+876xsbE0b94cNzc3HBwccq3Xvn174uPjuXz5MrNnz2bFihVMmDCBCRMmEB8fry4VK1Zk1qxZOmWurq4AODs7s2/fPm7cuKHTtlarpVKlSs/cB1EySTIUogRr27YtTk5OzJ07N9c6M2bMyDZluHjxYtzd3dX1oKAgunbtypw5cyhfvjy2trbMnDmT9PR0Jk6ciL29PRUrViQ0NDRb++fPn6dp06aYmZlRq1YtIiIidLb/+eefdOzYESsrK8qXL8/AgQO5ffu2ut3Pz4+QkBDGjRtH2bJlee2113LsR2ZmJrNmzaJixYqYmppSp04dduzYoW7XaDScPHmSWbNmodFomDFjRq6fiampKU5OTri6utKvXz/69+/P5s2bsbKywsnJSV0MDQ2xtrbOVgbg6OhIu3btWLt2rdru4cOHuX37Np06ddI5XkREBI0aNcLS0hJbW1uaNWumvvBWlA6SDIUowQwNDZkzZw7Lli3LNkIpqL179/LXX39x4MABPvnkE2bMmEFAQAB2dnYcO3aMt956i7feeovr16/r7Ddx4kTGjx/P6dOnadq0KV26dOHOnTvAo9fztGzZkjp16hAZGcmOHTv43//+R69evXTaWLt2LUZGRhw6dIhVq1blGN+SJUtYtGgRCxcu5OzZs/j7+9OlSxcuXryoHqtWrVqMHz+e+Ph4JkyYkO++m5ubk5aWVpCPC4Dg4GDCwsLU9dDQUPr374+JiYlalp6eTteuXWnZsiVnz57lyJEjvPnmm3o7lV1aSTIUooTr1q0bderUYfr06c/Vjr29PUuXLsXT05Pg4GA8PT1JSUnhvffeo1q1akyZMgUTExMOHTqks19ISAg9evTAy8uLlStXYmNjw5o1awBYuXIl9erVY86cOdSoUYO6desSGhrKvn37uHDhgtqGh4cH8+fPx9PTkxo1auQY38KFC5k0aRJ9+vTB09OTjz/+mDp16rB48WLg0YtjjYyM1NGdlZVVvvp9/PhxNmzYQJs2bQr8mQUEBJCUlMSBAwdITk7mu+++Izg4WKdOUlISiYmJBAQEULVqVby8vBg8eLBMpZYyRsUdgBDi6T7++GNat27N+PHjn7mNWrVqYWDwf79/y5cvj7e3t7puaGiIg4MDCQkJOvs1adJE/bORkRENGjQgOjoaePTG93379uWYmGJjY6levToADRo0yDO2pKQk/vrrL5o1a6ZT3qxZM86cOZPPHv6frVu3YmVlRXp6OmlpaQQGBrJs2bICt2NsbMyAAQPQarVcvnyZ6tWrU7t2bZ069vb2BAUF4e/vz2uvvUbbtm3p1asXzs7OBT6eKD4yMhSiFGjRogX+/v6899572bYZGBjw5JvYcpoSNDY21lnPutryybLMzMynxpM1BZiZmUnnzp113vgeFRXFxYsXadGihVrf0tLyqW0+3m4WRVGeabqxVatWREVFERMTw4MHDwgPD8fR0bHA7cCjqdLvv/+ezz77LNuoMItWq+XIkSM0bdqUb7/9lurVq3P06NFnOp4oHpIMhSgl5s2bx88//8zhw4d1ysuVK8etW7d0EmJh3hv4+Jd6eno6J0+eVKc669Wrxx9//IG7uzseHh46S34TIECZMmVwcXHh4MGDOuWHDx/Gy8urwDFbWlri4eGBm5tbtoRfULVq1aJWrVr8/vvv9OvXL9d6devWZcqUKRw+fBhvb282bNjwXMcVRUuSoRClhI+PD/3798823efn58fff//N/PnziY2N5bPPPuOXX34ptON+9tlnbNq0ifPnzzNy5Eju3bunjpBGjhzJ3bt36du3L8ePH+fy5cv8+uuvBAcHk5GRUaDjTJw4kY8//phvv/2WmJgYJk+eTFRUFGPGjCm0vjyrvXv3Eh8fj62tbbZtV65cYcqUKRw5coRr167x66+/cuHChWdK4qL4SDIUohT58MMPs02Jenl5sWLFCj777DN8fX05fvx4ga60fJp58+bx8ccf4+vry2+//cZPP/1E2bJlAXBxceHQoUNkZGTg7++Pt7c3Y8aMwcbGRuf8ZH6MHj2a8ePHM378eHx8fNixYwdbtmyhWrVqhdaXZ5V1y0ROLCwsOH/+PD169KB69eq8+eabhISEMHz48KINUjwXjfLk/1lCCCGEnpGRoRBCCL0nyVAIIYTek2QohBBC70kyFEIIofckGQohhNB7kgyFEELoPUmGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3/h+GmvoY4TtqMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.modification_breakdown(spliced_ptms = spliced_ptms, altered_flanks = altered_flanks)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inspecting number of PTMs with annotation information available" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Some annotations in spliced ptms dataframe not found in altered flanks dataframe. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.\n" + ] + } + ], + "source": [ + "\n", + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')\n", + "combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "module 'ptm_pose.analyze' has no attribute 'show_available_annotations'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[3], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mptm_pose\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m plots \u001b[38;5;28;01mas\u001b[39;00m pose_plots\n\u001b[1;32m----> 3\u001b[0m \u001b[43manalyze\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshow_available_annotations\u001b[49m()\n", + "\u001b[1;31mAttributeError\u001b[0m: module 'ptm_pose.analyze' has no attribute 'show_available_annotations'" + ] + } + ], + "source": [ + "analyze.show_available_annotations(spliced_ptms)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inspecting Specific Annotation\n", + "\n", + "Often, we will want to dig deeper into the specific functions, processes, interactions, etc. associated with the proteins in our dataset. First, we can look at the annotations currently available for analysis, based on annotations that have been appended using the annotate module:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Some annotations in spliced ptms dataframe not found in altered flanks dataframe. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
databaseannotation_typecolumn
5CombinedInteractionsCombined:Interactions
8CombinedKinaseCombined:Kinase
1DEPODPhosphataseDEPOD:Phosphatase
2ELMInteractionsELM:Interactions
0PhosphoSitePlusInteractionsPSP:ON_PROT_INTERACT
3PhosphoSitePlusDiseasePSP:Disease_Association
4PhosphoSitePlusProcessPSP:ON_PROCESS
6PhosphoSitePlusFunctionPSP:ON_FUNCTION
7RegPhosKinaseRegPhos:Kinase
\n", + "
" + ], + "text/plain": [ + " database annotation_type column\n", + "5 Combined Interactions Combined:Interactions\n", + "8 Combined Kinase Combined:Kinase\n", + "1 DEPOD Phosphatase DEPOD:Phosphatase\n", + "2 ELM Interactions ELM:Interactions\n", + "0 PhosphoSitePlus Interactions PSP:ON_PROT_INTERACT\n", + "3 PhosphoSitePlus Disease PSP:Disease_Association\n", + "4 PhosphoSitePlus Process PSP:ON_PROCESS\n", + "6 PhosphoSitePlus Function PSP:ON_FUNCTION\n", + "7 RegPhos Kinase RegPhos:Kinase" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from ptm_pose import analyze\n", + "from ptm_pose import plots as pose_plots\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')\n", + "combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks)\n", + "\n", + "annot_categories = analyze.get_annotation_categories(combined_output)\n", + "annot_categories" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This will tell us what database information is available, the types of information from that database, and the column associated with that information. Let's take a closer look at the biological process information from PhosphoSitePlus:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Specific PTMs with annotation:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GeneUniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassPSP:ON_PROCESSdPSISignificanceImpact
0BCAR1P56945Y267.0Phosphorylationcell growth, induced-0.070.0458775672499Excluded
1BCAR1P56945Y287.0Phosphorylationcell growth, induced-0.070.0458775672499Excluded
2BIN1O00499T348.0Phosphorylationsignaling pathway regulation-0.1120.0233903490744Excluded
3CEACAM1P13688S461.0Phosphorylationapoptosis, altered0.5251.73943268451e-09Included
4CTTNQ14247K272.0Acetylationcell motility, inhibited0.090.0355211287599Included
5CTTNQ14247S298.0Phosphorylationcell motility, altered; cytoskeletal reorganiz...0.090.0355211287599Included
6SPHK2Q9NRA0S387.0Phosphorylationcell motility, altered0.2530.0129400018182Included
7SPHK2Q9NRA0T614.0Phosphorylationcell motility, altered0.2530.0129400018182Included
8TSC2P49815S981.0Phosphorylationcarcinogenesis, inhibited; cell growth, inhibi...-0.2194.18472157275e-05Excluded
9YAP1P46937K342.0Ubiquitinationcarcinogenesis, altered-0.188;-0.1610.000211254197372;4.17884655686e-07Excluded
\n", + "
" + ], + "text/plain": [ + " Gene UniProtKB Accession Residue PTM Position in Canonical Isoform \\\n", + "0 BCAR1 P56945 Y 267.0 \n", + "1 BCAR1 P56945 Y 287.0 \n", + "2 BIN1 O00499 T 348.0 \n", + "3 CEACAM1 P13688 S 461.0 \n", + "4 CTTN Q14247 K 272.0 \n", + "5 CTTN Q14247 S 298.0 \n", + "6 SPHK2 Q9NRA0 S 387.0 \n", + "7 SPHK2 Q9NRA0 T 614.0 \n", + "8 TSC2 P49815 S 981.0 \n", + "9 YAP1 P46937 K 342.0 \n", + "\n", + " Modification Class PSP:ON_PROCESS \\\n", + "0 Phosphorylation cell growth, induced \n", + "1 Phosphorylation cell growth, induced \n", + "2 Phosphorylation signaling pathway regulation \n", + "3 Phosphorylation apoptosis, altered \n", + "4 Acetylation cell motility, inhibited \n", + "5 Phosphorylation cell motility, altered; cytoskeletal reorganiz... \n", + "6 Phosphorylation cell motility, altered \n", + "7 Phosphorylation cell motility, altered \n", + "8 Phosphorylation carcinogenesis, inhibited; cell growth, inhibi... \n", + "9 Ubiquitination carcinogenesis, altered \n", + "\n", + " dPSI Significance Impact \n", + "0 -0.07 0.0458775672499 Excluded \n", + "1 -0.07 0.0458775672499 Excluded \n", + "2 -0.112 0.0233903490744 Excluded \n", + "3 0.525 1.73943268451e-09 Included \n", + "4 0.09 0.0355211287599 Included \n", + "5 0.09 0.0355211287599 Included \n", + "6 0.253 0.0129400018182 Included \n", + "7 0.253 0.0129400018182 Included \n", + "8 -0.219 4.18472157275e-05 Excluded \n", + "9 -0.188;-0.161 0.000211254197372;4.17884655686e-07 Excluded " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ptms_with_annotation, annotation_counts = analyze.get_ptm_annotations(spliced_ptms, database = \"PhosphoSitePlus\", annotation_type = 'Process')\n", + "print('Specific PTMs with annotation:')\n", + "ptms_with_annotation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this, we note a total of 9 impacted PTMs from 7 genes that have biological process information available. While we could manually look through to look for common processes, we can also inspect the annotation counts object to see the most common processes, including a breakdown by the type of impact (included [dPSI > 0], excluded [dPSI < 0], or altered flanking sequence):" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of PTMs associated with each annotation:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
All ImpactedIncludedExcludedAltered Flank
PSP:ON_PROCESS
cell motility, altered33.00.00.0
cell growth, induced20.02.00.0
signaling pathway regulation20.02.00.0
apoptosis, altered11.00.00.0
cell motility, inhibited11.00.00.0
cytoskeletal reorganization11.00.00.0
cell adhesion, inhibited11.00.00.0
carcinogenesis, inhibited10.01.00.0
cell growth, inhibited10.01.00.0
autophagy, inhibited10.01.00.0
carcinogenesis, altered10.01.00.0
\n", + "
" + ], + "text/plain": [ + " All Impacted Included Excluded Altered Flank\n", + "PSP:ON_PROCESS \n", + "cell motility, altered 3 3.0 0.0 0.0\n", + "cell growth, induced 2 0.0 2.0 0.0\n", + "signaling pathway regulation 2 0.0 2.0 0.0\n", + "apoptosis, altered 1 1.0 0.0 0.0\n", + "cell motility, inhibited 1 1.0 0.0 0.0\n", + "cytoskeletal reorganization 1 1.0 0.0 0.0\n", + "cell adhesion, inhibited 1 1.0 0.0 0.0\n", + "carcinogenesis, inhibited 1 0.0 1.0 0.0\n", + "cell growth, inhibited 1 0.0 1.0 0.0\n", + "autophagy, inhibited 1 0.0 1.0 0.0\n", + "carcinogenesis, altered 1 0.0 1.0 0.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print('Number of PTMs associated with each annotation:')\n", + "annotation_counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, you may prefer to visualize this information as a figure. Here, we can plot the top 10 most common biological processes for the included, excluded, and altered flanking sequence impacts. Notably, we can plot either the annotations as outputted above (includes directionality of PTM role) or we can collapse this information into similar groups (e.g. \"cell motility, altered\" and \"cell motility, included\" would be grouped as \"cell motility\"). Here, we will plot the full information on the left and the collapsed information on the right:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Collapsed Annotation')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAFCCAYAAAA6zfEwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADkdElEQVR4nOzdd1gUx+P48fcB0jsIWChKE2yIaIKogCUoajQaNXbs0WDvUeyxxu7HroA9iV1jiEYFuyKKFRuCWDB2QRGk7O8PfuzXExAwFMu8nuce3d3Zmdk9bm9uqkKSJAlBEARBEARBEP4zlZLOgCAIgiAIgiB8LkThWhAEQRAEQRAKiShcC4IgCIIgCEIhEYVrQRAEQRAEQSgkonAtCIIgCIIgCIVEFK4FQRAEQRAEoZCIwrUgCIIgCIIgFBJRuBYEQRAEQRCEQiIK14IgCIIgCIJQSEThWhCKQVBQEAqFIsfX8OHDCxRXaGgoCoWC0NBQed/EiRNRKBQFimfo0KEoFAqaN29eoPOKQ1JSEhMnTlS6xoK6f/8+EydOJDIyMtuxD7lfgiAUngsXLtC9e3cqVKiApqYmurq6uLq6MmvWLJ4+fVrg+Pz8/LCxsVHaZ2Njg5+fX+FkuARlfX/Exsbm+xzxfC/Z57taiaYuCF+YwMBAKlWqpLSvbNmyxZ6P1NRU1q9fD0BISAj37t2jXLlyxZ6P3CQlJTFp0iQAvLy8PiiO+/fvM2nSJGxsbHBxcVE61qtXL5o0afIfcykIwodYuXIl/fv3x9HRkREjRuDs7Exqaipnzpxh2bJlnDhxgu3bt5d0Nj9Z4vle8s93UbgWhGJUpUoV3NzcSjob7Ny5k0ePHtGsWTP+/PNPgoOD+fnnn0s6W8WmfPnylC9fvqSzIQhfnBMnTtCvXz8aN27Mjh070NDQkI81btyYYcOGERISUoI5/PSJ53vJP99FtxBB+EgoFAomTpyYbX9RNG2uXr0adXV1AgMDsbS0JDAwEEmSlMJkdT/ZtGkTY8eOpWzZsujr69OoUSOuXbumFNbLy4sqVaoQHh5OvXr10NbWpmLFisyYMYOMjAylsHFxcXTu3BkzMzM0NDRwcnJizpw5crjY2FhKly4NwKRJk+TuM1n34ObNm3Tv3h17e3u0tbUpV64cLVq04OLFi0p5r1WrFgDdu3eX48i6vzk1G2ZkZDBr1iwqVaqEhoYGZmZmdO3albt3737wtQqCoGzatGkoFApWrFihVLDOoq6uzrfffitv5/dzmR/JyckMGzYMFxcXDAwMMDY2xt3dnZ07d2YLq1Ao8Pf3Z/ny5Tg4OKChoYGzszObN29WCpeUlMTw4cPl7i3Gxsa4ubmxadMmpXBnzpzh22+/xdjYGE1NTWrUqMHvv/+eLd2TJ0/i4eGBpqYmZcuWZcyYMaSmphboOsXz/SN4vkuCIBS5wMBACZBOnjwppaamKr2yANKECROynWttbS1169ZN3j506JAESIcOHZL3TZgwQcrvx/nOnTuSioqK1LZtW0mSJGncuHESIIWGhiqFy0rHxsZG6tSpk/Tnn39KmzZtkqysrCR7e3spLS1NDuvp6SmZmJhI9vb20rJly6T9+/dL/fv3lwApODhYDvfw4UOpXLlyUunSpaVly5ZJISEhkr+/vwRI/fr1kyRJkpKTk6WQkBAJkHr27CmdOHFCOnHihHTz5k1JkiQpLCxMGjZsmLRlyxYpLCxM2r59u9SqVStJS0tLunr1qiRJkvTixQv5no8bN06O486dO7nerz59+kiA5O/vL4WEhEjLli2TSpcuLVlaWkqPHj0q8LUKgqAsLS1N0tbWlr766qt8n5Pfz2W3bt0ka2trpXPffXY+f/5c8vPzk9atWycdPHhQCgkJkYYPHy6pqKhk++wCkqWlpeTs7Cxt2rRJ2rVrl9SkSRMJkP744w85XN++fSVtbW1p7ty50qFDh6Q9e/ZIM2bMkBYtWiSHOXjwoKSuri7Vq1dP+u2336SQkBDJz89PAqTAwEA53OXLlyVtbW05zZ07d0o+Pj6SlZWVBEgxMTF53i/xfP84nu+icC0IxSDrQZDTK6uAXVyF68mTJ0uAFBISIkmSJN26dUtSKBRSly5dlMJlpePr66u0//fff5cA6cSJE/I+T09PCZBOnTqlFNbZ2Vny8fGRt0ePHp1juH79+kkKhUK6du2aJEmS9OjRo1zvx7vS0tKkN2/eSPb29tKQIUPk/eHh4dm+vLK8e7+ioqIkQOrfv79SuFOnTkmA9PPPPxf4WgVBUPbgwQMJkH744Yd8hS/I5zI/het3paWlSampqVLPnj2lGjVqKB0DJC0tLenBgwdK4StVqiTZ2dnJ+6pUqSK1atXqvddRqVIlqUaNGkqVKZIkSc2bN5fKlCkjpaenS5IkSe3bt881zfwWrsXz/eN4votuIYJQjNauXUt4eLjSS02t+IY+SJIkNxU2btwYgAoVKuDl5cXWrVtJSEjIds7bTbQA1apVA+D27dtK+y0sLKhdu3a2sG+HO3jwIM7OztnC+fn5IUkSBw8ezPMa0tLSmDZtGs7Ozqirq6Ompoa6ujo3btwgKioqz/NzcujQITkfb6tduzZOTk4cOHBAaX9+rlUQhP+moJ/L/Pjjjz/w8PBAV1cXNTU1SpUqxerVq3N8djRs2BBzc3N5W1VVlfbt23Pz5k25O0Ht2rX566+/GD16NKGhobx+/Vopjps3b3L16lU6deoEZD6/sl6+vr7Ex8fL3TAOHTqUa5r5IZ7vOSuJ57soXAtCMXJycsLNzU3pVZwOHjxITEwMbdu2JSEhgefPn/P8+XPatWtHUlJStn6CACYmJkrbWf0k3/0SeTdcVti3wz158oQyZcpkC5c1Y8qTJ0/yvIahQ4cSEBBAq1at2L17N6dOnSI8PJzq1atny1N+ZaWbW97ezVd+rlUQBGWmpqZoa2sTExOTr/AF/VzmZdu2bbRr145y5cqxfv16Tpw4QXh4OD169CA5OTlbeAsLi1z3ZaW9cOFCRo0axY4dO/D29sbY2JhWrVpx48YNAP79918Ahg8fTqlSpZRe/fv3B+Dx48dynO9LMy/i+Z6zkni+i9lCBOEjoaGhQUpKSrb9Bf0CeZ/Vq1cDMHfuXObOnZvj8b59+xZaeu8yMTEhPj4+2/779+8DmV++eVm/fj1du3Zl2rRpSvsfP36MoaHhB+cLID4+Ptso8/v37+crX4IgvJ+qqioNGzbkr7/+4u7du3nO6FDYn8v169dToUIFfvvtN6UBbzk9dwEePHiQ676svOno6DBp0iQmTZrEv//+K9dit2jRgqtXr8p5HDNmDK1bt84xHUdHRznO96WZF/F8zz1fULzPd1FzLQgfCRsbGy5cuKC07+DBg7x8+bJQ4n/27Bnbt2/Hw8ODQ4cOZXt16tSJ8PBwLl26VCjp5aRhw4ZcuXKFs2fPKu1fu3YtCoUCb29vIPfaE8gcxf/uLAN//vkn9+7dU9r3vjje1aBBAwB5btgs4eHhREVF0bBhwzzjEAQhb2PGjEGSJHr37s2bN2+yHU9NTWX37t1A4X8uFQoF6urqSgXrBw8e5DhbCMCBAwfkmmeA9PR0fvvtN2xtbXP8YWBubo6fnx8dOnTg2rVrJCUl4ejoiL29PefPn8/Wapn10tPTA8Db2zvXNPMinu+5K4nnu6i5FoSPRJcuXQgICGD8+PF4enpy5coVFi9ejIGBQaHEv2HDBpKTkxk4cGCOE/ebmJiwYcMGVq9ezbx58wolzXcNGTKEtWvX0qxZMyZPnoy1tTV//vknS5YsoV+/fjg4OACgp6eHtbU1O3fupGHDhhgbG2NqaoqNjQ3NmzcnKCiISpUqUa1aNSIiIpg9e3a2LztbW1u0tLTYsGEDTk5O6OrqUrZs2RwX7XF0dKRPnz4sWrQIFRUVmjZtSmxsLAEBAVhaWjJkyJAiuR+C8KVxd3dn6dKl9O/fn5o1a9KvXz8qV65Mamoq586dY8WKFVSpUoUWLVoU+ueyefPmbNu2jf79+/P9999z584dpkyZQpkyZeRuHG8zNTWlQYMGBAQEoKOjw5IlS7h69arSdHxfffUVzZs3p1q1ahgZGREVFcW6detwd3dHW1sbgOXLl9O0aVN8fHzw8/OjXLlyPH36lKioKM6ePcsff/wBwLhx49i1axcNGjRg/PjxaGtr87///Y9Xr17leW3i+f6RPd/zPfRREIQPljVbSHh4eK5hUlJSpJEjR0qWlpaSlpaW5OnpKUVGRhbabCEuLi6SmZmZlJKSkmuYr7/+WjI1NZVSUlLkdN6edkqSJCkmJibbKG1PT0+pcuXK2eLLaQT/7du3pY4dO0omJiZSqVKlJEdHR2n27NnyiPks//zzj1SjRg1JQ0NDAuR78OzZM6lnz56SmZmZpK2tLdWtW1c6cuSI5OnpKXl6eirFsWnTJqlSpUpSqVKllEan53S/0tPTpZkzZ0oODg5SqVKlJFNTU6lz587y9E4fcq2CIOQsMjJS6tatm2RlZSWpq6tLOjo6Uo0aNaTx48dLDx8+lMPl93OZ39lCZsyYIdnY2EgaGhqSk5OTtHLlyhyfB4D0008/SUuWLJFsbW2lUqVKSZUqVZI2bNigFG706NGSm5ubZGRkJGloaEgVK1aUhgwZIj1+/Fgp3Pnz56V27dpJZmZmUqlSpSQLCwupQYMG0rJly5TCHTt2TPr6668lDQ0NycLCQhoxYoS0YsWKPGcLEc/3j+v5rpCkd2YWFwRBEARB+IIpFAp++uknFi9eXNJZET5Bos+1IAiCIAiCIBQSUbgWBEEQBEEQhEIiBjQKgiAIgiC8RfSYFf4LUXMtCIIgCIIgCIVEFK4FQRAEQRAEoZCIwrUgCIIgCIIgFBLR51oQillGRgb3799HT09PaaUw4dMkSRKJiYmULVsWFRVRXyEIHxvxzP28fArPXFG4FoRidv/+fSwtLUs6G0Ihu3PnTo5LIguCULLEM/fz9DE/c0XhWhCKmZ6eHpD5YNDX1y/h3Aj/VUJCApaWlvL7KgjCx0U8cz8vn8IzVxSuBaGYZTVL6uvriwf9Z0Q0NwvCx0k8cz9PH/Mz9+PsrCIIgiAIgiAInyBRcy0IgiAIgvCW9PR0UlNTSzobX7xSpUqhqqpa0tkoMFG4FgRBEARB+P9evnzJ3bt3xSqNHwGFQkH58uXR1dUt6awUiChcC4IgCIIgkFljfffuXbS1tSlduvRH3a/3cydJEo8ePeLu3bvY29t/UjXYonAtCIIgCIIApKamIkkSpUuXRktLq6Sz88UrXbo0sbGxpKamflKFazGgURAEQRAE4S2ixvrj8Km+D6JwLQiCIAiCUAAuLi64uLjg7OyMmpqavN2+ffsSy9OECRNwcnLiq6++ynbMz8+PxYsXl0CulM2fP5+HDx+WdDaKnOgWIgglJDIy8pMbpPExSklJQUNDo9jSMzU1xcrKqtjSEwShcOTnmStJEmpqaiQlJZGenp5ruGPHjgFw+/Zt6tWrJ28DvHr1qnAyXECzZs0iKiqK0qVLZ8tDWloaKSkpRZY3SZLyVcs8b9486tSpg46OTr7ifd978DEThWtBKCGenp4lnYXPgoqKChkZGcWWnra2NlFRUaKALQifmPw8c62trVm2bFm+p+G7f/8+6enpREVFsW7dOu7cucPPP/8MQGJiIt999x1bt27l8OHDhISEoKOjw927d9HV1WXy5MlYWFgAsG7dOv755x/S09MxMTFhzJgx8rG3HT9+nCVLlpCeno6enh6jR4+mYsWK9OjRg+TkZBo3bkzNmjUZPny40nnPnz/n33//JSoqihUrVnD79m2SkpKIjY2lUqVK+Pn5MX/+fO7fv4+XlxdDhgwBoG/fvjg4OHD9+nUePXqEp6cnAwcORKFQsGHDBv7++2/S09NRU1NjxIgRVKlSBYALFy6waNEiXr16hSRJ/Pjjj1y/fp379+/Trl071NXVmTBhAo6Oju+9vwqFAnV19Xy9Fx8TUbgWhBLSokULypQpU9LZ+KTduHGDQ4cOsX79epycnIo8vaioKDp37szjx49F4VoQPjH5eeYaGBigq6uLkZERamp5F5GSk5NRUVGhdOnS9OzZk4YNG6KhoYG+vj47duzAx8cHOzs7zp07x/nz59m7dy+2trYsW7aMOXPmEBQUxM6dO3n06BG7d+9GVVWVbdu2sWDBAlatWqWU1uPHj5k4cSKbNm2iUqVK7Nixg4CAAPbt28fu3buxsbFh586dOdYKa2pqoqurS+nSpdHW1ub69evs2rULHR0dmjVrxvLly9mwYQPp6enUq1ePXr16UbFiRUqVKsW9e/f47bffSEtLo127dpw+fZrmzZvTpUsXBg8eTHJyMsePH2fmzJmcOXOGp0+fMmbMGDZu3MjXX39NRkYGz58/x9jYmJCQEH7//XcqV66cr3sbExNTrJUnhUUUrgWhhJiYmFC2bNmSzsYn7fHjxwA4OTnh6upawrkRBOFjlp9nro6ODqqqqpQqVSpfhetSpUrJ/5qamuLr68v27dvp2bMnGzZsYPny5fJCKLVr16ZSpUoAdO3alfnz56Ompsb+/fu5cOECLVq0ACAjIwMVFRU57iwXL16kcuXKVK1aFYC2bdsyfvx4nj59irm5uZyPd8+DzBa+rOtSVVXFy8sLExMTAJydnalcubLcZcbW1pb79+/j6OiIiooK7dq1Q1tbG4A2bdpw4sQJvvvuO65du8bChQt58uQJADdv3qRUqVJcuHCBypUr07BhQzl9PT09ILMmWltbO9/dQj5VonAtCIIgCIJQCHr27EmPHj2wtrbG1NRU7ibxPpIkMWjQIH744Yc8w+bUr/lDZtR4e5yKqqpqtu20tLT3nv/mzRt69+7Nli1bsLOz4+7du3h7e/PmzZsC5+VzJGYLEQRBEARBKAR2dnZYWloyZswYunfvrnQsPDyc6OhoADZt2kSdOnVQKBR88803BAcH8+zZMyBzru1Lly5li7tmzZpcvnyZGzduALBz507KlCmDmZlZkV7T1q1bSUtL4/Xr1+zYsYN69eqRkpJCWlqa3BLw+++/y+Hr1KlDVFQUx48fBzJr4p8+fQqAvr4+L168KNL8fgxE4bqY+Pn50apVK3nby8uLwYMHl1h+3qVQKNixYwcAsbGxKBQKIiMjAQgNDUWhUPD8+fMSy1+WjykvWYKCgjA0NCzpbAiCIAgfgY4dO5Kenk6zZs2U9ru7uzN37lwaN27M/v37mT59OgDff/89rVu3pm3btjRq1IhvvvlGafaRLCYmJixcuBB/f38aNWrE2rVrWbZsWZFfT5UqVfjhhx9o1KgRX3/9Nc2bN0dPT4/hw4fTrFkzOnTooNQVxcjIiO3btzNixAiqVatGjRo1OHr0KAADBw6ke/fuuLi4yGWMz5HoFvKFmThxIjt27Mj2Rx0fH4+RkVGO59SpU4f4+HgMDAyAzMLk4MGDP4oC7seUF0EQBOHLYmlpma2W+ejRo3Tt2jVb32ctLS3+97//5RhP79696d27d57peXt74+3tneOxe/fu5Xre/Pnz5f8PGzYs12MAW7ZsUdp2c3NjzJgx2eLs378//fv3JykpiefPnzNt2jS5L/XXX3+d4w+EXr160atXr1zz+bkQNdcCABYWFrnOFayuro6FhcUnu1JSfqSnp3+SI5IFQfiyiVbRj8eDBw+oX78+ly9fzldBWfh8icJ1PmVkZDBz5kzs7OzQ0NDAysqKX375RT5+79492rdvj5GRESYmJrRs2ZLY2NgPTm/ixIm4uLiwZs0arKys0NXVpV+/fqSnpzNr1iwsLCwwMzNTygNAXFwcLVu2RFdXF319fdq1a8e///4LZNbyTpo0ifPnz6NQKFAoFAQFBQHKD8B3vf0ADA0NpXv37rx48UKOY+LEiUyePFkewfy2mjVrMn78+Hxf9/r163Fzc0NPTw8LCws6duyY62pOueUFMgdbjBw5knLlyqGjo8NXX31FaGiofG5WV449e/bg7OyMhoYGt2/fzvO8rHOtrKzQ1tbmu+++k0dKC4IgfKmyvrPeFR8fT9OmTXM8J6dW0U+5i52FhQWHDx9m165d2Rarad++PStXriyhnH24LVu20Lhx45LOxidHFK7zacyYMcycOZOAgACuXLnCxo0b5alvkpKS8Pb2RldXl8OHD3P06FF0dXVp0qTJfxo5Gx0dzV9//UVISAibNm1izZo1NGvWjLt37xIWFsbMmTMZN24cJ0+eBDJHHLdq1YqnT58SFhbG/v37iY6Olpdjbd++PcOGDaNy5crEx8cTHx9f4KVa69Spw/z589HX15fjGD58OD169ODKlSuEh4fLYS9cuMC5c+fw8/PLd/xv3rxhypQpnD9/nh07dhATE5Pr+bnlBaB79+4cO3aMzZs3c+HCBdq2bUuTJk3kgSCQ+b5Nnz6dVatWcfnyZczMzPI879SpU/To0YP+/fsTGRmJt7c3U6dOfe81paSkkJCQoPQSBEH4EnzpraLCl0kUrvMhMTGRBQsWMGvWLLp164atrS1169aV+w1t3rwZFRUVVq1aRdWqVXFyciIwMJC4uLhstZ4FkZGRwZo1a3B2dqZFixZ4e3tz7do15s+fj6OjI927d8fR0VFO459//uHChQts3LiRmjVr8tVXX7Fu3TrCwsIIDw9HS0sLXV1d1NTUsLCwwMLCAi0trQLlSV1dHQMDAxQKhRyHrq4u5cuXx8fHh8DAQDlsYGAgnp6eVKxYMd/x9+jRg6ZNm1KxYkW+/vprFi5cyF9//cXLly/znZfo6Gg2bdrEH3/8Qb169bC1tWX48OHUrVtXKX+pqaksWbKEOnXq4OjoyIMHD/I8b8GCBfj4+DB69GgcHBwYOHAgPj4+772m6dOnY2BgIL8sLS3zfT8EQfi8iVbR4mkVFYTiJArX+RAVFUVKSorShOhvi4iI4ObNm+jp6aGrq4uuri7GxsYkJyfL0+58CBsbG3nidQBzc3OcnZ1RUVFR2pfVbSIqKgpLS0ulwpuzszOGhoZERUV9cD7yq3fv3mzatInk5GRSU1PZsGEDPXr0KFAc586do2XLllhbW6Onp4eXlxeQ+WDPr7NnzyJJEg4ODvL7oaurS1hYmNL7oa6uTrVq1Qp0XlRUFO7u7krpvbv9rjFjxvDixQv5defOnXxfiyAInzfRKpqpqFtFBaE4idlC8iGv2t2MjAxq1qzJhg0bsh0rXbr0B6f77khjhUKR476sgXiSJOXYvJbb/sLWokULNDQ02L59OxoaGqSkpNCmTZt8n//q1Su++eYbvvnmG9avX0/p0qWJi4vDx8enQF8kGRkZqKqqEhERgaqqqtKxt/vBaWlpKd2X/JwnSVK+85FFQ0Mj12ZRQRC+XFmtoosXL6Zbt24AcssoKLeKZj2rAgMDMTQ0JDQ0lG+++eaD0s1qFdXT08PZ2VluFd27dy8qKio4Ojoyc+ZMQkND+frrr+VW0ZiYGLnyZt26dVSuXJnw8HBq1aql1Cr6Id5ticyiq6srt4rWqlVLvgfvaxVNSUkhJSVF3hZd8YTiJgrX+WBvb4+WlhYHDhzIcQoZV1dXfvvtN8zMzNDX1y+BHGZydnYmLi6OO3fuyA/AK1eu8OLFC5ycnIDMB1h6evp/Sie3ONTU1OjWrRuBgYFoaGjwww8/yEum5sfVq1d5/PgxM2bMkPN/5syZAuelRo0apKen8/DhQ+rVq5fv9PNznrOzs1ybk+XdbUEQhPwoSKvo24qiVVRVVfWDW0WzCr1FpXfv3vTo0YO5c+eiqqrKhg0bmDNnTq7hp0+fzqRJkwot/Xv37smLoBQGY2NjypUr994wVlZWODo6ytv9+vWjdevW+U7jzp079OnTh7/++ivf5wwePJhmzZrlewDjnDlzMDY2LnArxZdAFK7zQVNTk1GjRjFy5EjU1dXx8PDg0aNHXL58mZ49e9KpUydmz55Ny5YtmTx5MuXLlycuLo5t27YxYsQIypcvXyz5bNSoEdWqVaNTp07Mnz+ftLQ0+vfvj6enJ25ubkDmQzUmJobIyEjKly+Pnp5egWtVbWxsePnyJQcOHKB69epoa2vLhehevXrJBfmc5rh8HysrK9TV1Vm0aBE//vgjly5dYsqUKQXOi4ODA506daJr167MmTOHGjVq8PjxYw4ePEjVqlXx9fXNMa78nDdw4EDq1KnDrFmzaNWqFfv27SMkJKRA1ykIggCiVTS/CtoqOmbMGIYOHSpvJyQkfPBYl3v37uHp6cnr168/6PycaGlpERYW9t4Ctr6+Pvv37y+0NIXiJQrX+RQQEICamhrjx4/n/v37lClThh9//BEAbW1tDh8+zKhRo2jdujWJiYmUK1eOhg0bFmtNdtbAkQEDBlC/fn1UVFRo0qQJixYtksO0adOGbdu24e3tzfPnzwkMDCxwv7U6derw448/0r59e548ecKECRPkKfDs7e2pU6cOT5484auvvlI6LzQ0FG9vb2JiYrCxsckWb+nSpQkKCuLnn39m4cKFuLq68uuvv/Ltt98WOC+BgYFMnTqVYcOGce/ePUxMTHB3d8+1YJ0lr/O+/vprVq1aJafTqFEjxo0bl+ePAEEQhHeJVlFlhdUqWphd8Z4+fcrr16+ZPn16gQbn5+bWrVuMGTOGp0+f5ll7/a7bt2/TrVs39uzZg6qqKs2aNWPZsmVUqFCBSZMmceLECRQKBUOGDFEaT/Tbb79x7do1eQBo06ZNWbFiBZaWlsyaNYs///wTKysrpbQOHDjAvHnzSElJoUaNGsyYMQMVFRXWrl3LypUrKVu2LCYmJhgbG//ne/I5EoXrfFJRUWHs2LGMHTs2x+MWFhYEBwfnen7WyOksec0iMnHiRLnAmlscOcVjZWXFzp07c41XQ0Mj2+pLoNyX2MbGRmnby8srW1/jpUuXsnTp0hzj+ffff+nbt2+2Y7GxsdjZ2b33gdKhQwc6dOiQa97ym5dSpUoxadKkXJsG/fz8cvxRkdd5kDmjybsDNd9d8UoQBCEvolVUWVG1ihaGihUr4uzsXGzpJSQkKHXPmDp1Kl999RVdunRhypQpaGho0LJlSxwcHAgMDCQhIYH9+/ejoqLC8+fPSUxMzDONc+fOERoayv79+3n27BleXl507dqVp0+fsmLFCrZs2YKmpiZjx45l9+7d1K5dm2XLlhESEoKKigo+Pj5F3iXoUyUK10KhefjwIevWrePevXt079492/GQkBCmTZuWrflREAThSyVaRf/Ph7aKfo5y6xbSo0cPWrVqRUpKCnv27AEyf2z06dNH7jNvaGiYr8L1mTNnaNKkCerq6pibm+Ph4SHvj4qKokWLFkBmH/+s+crr1q0r/+2JxWVyJwrXQqExNzfH1NSUFStWYGRklO345s2bSyBXgiAIHy/RKvrfW0W/JImJiTx79gwVFRVSUlJQU8u7GKempib3nwfk2bfe12e+UaNGzJ07V2lfQQZHfunEPNdCoZEkiUePHtGxY8eSzoogCILwmXj48CFz587NtVX0SzJ58mR69OjBDz/8wLRp0wCoW7cu69evlwvQz58/VzqnfPnyXLlyBYDr16/LM83UqlWLkJAQ3rx5w8OHDzl+/DiQ2df/+PHj3Lt3D8jsd37//n1cXFw4duwYCQkJvHr1Sgy4fA9Rcy0IJeTJkyeoq6uXdDYK3cuXL0lOTi6WtLIWFyqORZKKMx1BEP5PXq2ixeHWrVvFGs+7fa5/+OEH7O3tiYmJYfbs2WRkZNCqVStOnTpF586diY6OpmHDhqiqqjJ06FClVS1r166NsbExjRo1okqVKtjZ2QGZ0896enrSqFEjbG1t5e42pqamTJ8+nZ49e5KWloaamhqzZ8+matWq9OnTh2bNmlGuXDlq165dKPfkc6SQPmRVDEEQPlhCQgIGBgYlnY0io6KiotQE+bmlp62tTVRUlDy6Puv9fPHiRYnO6CAIQs6yPqN+fn45zlT1Nh0dHTw8PChXrhxqamolNhXfpyQpKYnnz5/j5OSEjo5OocX76tUroqKiKFWqFI6OjmhqagKfxjNX1FwLQgnp06cPFSpUKOlsFKqDBw+yf/9+1q9fL4/sL0pRUVF07ty52NKDzFqdd6etEgTh81SuXDnCwsKKfREZ4dMmCteCUELc3d3laaw+F/fu3WP//v04OTnh6upabOkWd3qCIHw5ypUrJwrDQoGIAY2CIAiCIAiCUEhEzbUgCIIgCJ+9/AwiNzAwID09ndTU1GzTBH4O0tPTC32MStbUfoU9kL24BsYXBVG4LmJ+fn48f/6cHTt2AJnzerq4uDB//vwSzdeHKoz8Zy2D/uzZMwwNDT84nnfvbUmxsbFh8ODBDB48uETzIQiCIORu9+7deYaxtramQYMGPHv2rBhy9HmJiYkp9DgVCoW8OM6nRBSuhRwVVgE4J3Xq1CE+Pv6znjFDEARB+LjkZxC5trY2hoaGmJmZfXarCScmJpKQkECFChXkmTcKQ3JyMjExMYUeL2TWtGfNt/0pEYXrz8CbN28+qfmS1dXVsbCwKOlsCIIgCF+Q/Awiz8jIQJIk9PX10dDQAODOnTs8fvy40PJhamqKpaXle8NYWlpy586dAsft4+PD3LlzqVy5crZjqampJCQkoKmpKU+ZFxoayuLFi3NcXTMnsbGxfP/995w5cybbsbfjLSyfateQT6+uvZhlZGQwc+ZM7Ozs0NDQwMrKil9++UU+fu/ePdq3b4+RkREmJia0bNmS2NjY/5Tm1KlTMTMzQ09Pj169ejF69GhcXFzk435+frRq1Yrp06dTtmxZHBwcALh48SINGjRAS0sLExMT+vTpw8uXL+VjKioq8gMia/nUtm3byvFOnz4dd3d3YmNj8fb2BsDIyAiFQoGfn5/SPRk5ciTGxsZYWFhkW0o3L6GhoSgUCnkVqaCgIAwNDfn7779xcnJCV1eXJk2aEB8fL5+Tnp7O0KFDMTQ0xMTEhJEjR2brD2djY5Otu4qLi4tS/p4/f06fPn0wNzdHU1OTKlWqsGfPHvn48ePHqV+/PlpaWlhaWjJw4EBevXolH3/48CEtWrRAS0uLChUqsGHDhgJduyAIgvDpuHPnDi4uLnh4eBTay8XF5YMKzsKnQ9Rc52HMmDGsXLmSefPmUbduXeLj47l69SqQOXG6t7c39erV4/Dhw6ipqTF16lSaNGnChQsXPqg2ecOGDfzyyy8sWbIEDw8PNm/ezJw5c7I1ZR04cAB9fX3279+PJEkkJSXRpEkTvv76a8LDw3n48CG9evXC39+foKAgqlSpgomJCWFhYbRp04bDhw9jYmLC4cOH5ThDQ0Px9PTE0tKSrVu30qZNG65du4a+vj5aWlpyuODgYIYOHcqpU6c4ceIEfn5+eHh4KK0mVVBJSUn8+uuvrFu3DhUVFTp37szw4cPlwuucOXNYs2YNq1evxtnZmTlz5rB9+3YaNGiQ7zQyMjJo2rQpiYmJrF+/HltbW65cuYKqqiqQ+QPEx8eHKVOmsHr1ah49eoS/vz/+/v4EBgYCmT9s7ty5w8GDB1FXV2fgwIE8fPjwvemmpKSQkpIibyckJBT09giCIAgl4PHjx7x+/ZrWrVtjampaKPFt27aNx48f51l7DXD48GFmzZqFtrY2V69epWnTpsycOROAPXv2MGXKFACqVq3KqlWrlM59u/Z76dKl3Llzh06dOnHq1CkGDBiAoaGh0hSm//77L3379uXu3btoamqyatUqKlWqxPXr1+nYsSOqqqrUq1fvP9+DL4EoXL9HYmIiCxYsYPHixXTr1g0AW1tb6tatC8DmzZtRUVFh1apVKBQKAAIDAzE0NCQ0NJRvvvmmwGkuWrSInj170r17dwDGjx/Pvn375BroLDo6OqxatUouwK9cuZLXr1+zdu1auVlm8eLFtGjRgpkzZ2Jubk79+vUJDQ2lTZs2hIaG0q1bN4KDg7ly5QoODg4cP36cIUOGoKqqirGxMQBmZmbZ+lxXq1aNCRMmAGBvb8/ixYs5cODAfypcp6amsmzZMmxtbQHw9/dn8uTJ8vH58+czZswY2rRpA8CyZcv4+++/C5TGP//8w+nTp4mKipJr+ytWrCgfnz17Nh07dpQHJtrb27Nw4UI8PT1ZunQpcXFx/PXXX5w8eVJeJnb16tV5Ll4yffp0Jk2aVKC8CoIgCB8PU1NTypYtWyJpnz9/nrNnz2JgYEDNmjXx9/dHXV2dESNG8M8//1CuXLkCLXLz008/sW7dOtzc3Gjfvr28f/DgwQQEBFCzZk3Cw8MZPHgwISEhDB48mJ9//pnWrVszcuTIorjEz47oFvIeUVFRpKSk0LBhwxyPR0REcPPmTfT09NDV1UVXVxdjY2OSk5OJjo7+oDSvXbtG7dq1lfa9uw2Zv1LfrhmPioqievXqSv2dPDw8yMjI4Nq1a0DmTB+hoaEAhIWF4e3tTf369QkLCyM8PJzXr1/j4eGRZx6rVaumtF2mTJk8a2/zoq2tLRes343zxYsXxMfH4+7uLh9XU1Mr8AIskZGRlC9fXi5YvysiIoKgoCD5vdTV1cXHx4eMjAxiYmKIiorKlm6lSpXyHPA5ZswYXrx4Ib9Ec6AgCIKQX7Vr16Z06dKoq6vj7OxMXFwc4eHheHl5yYvbZFWI5SUxMZG0tDT5e6xTp07ysYMHD9KzZ09cXFzo3bs3Dx48ADK/G7/77jsAOnfuXJiX9tkSNdfv8XZXiJxkZGRQs2bNHPvdli5d+oPTzaoFz5LTXJvvDhqQJCnbee/G5+XlxaBBg7h58yaXLl2iXr16REdHExYWxvPnz6lZsyZ6enp55u/dEdQKheI/z5uZU5wFnWNURUUl2zmpqany//Pzfvbt25eBAwdmO2ZlZSX/SMntPudGQ0NDHhgjCIIgCAXx9veHqqoq6enp+Trv7e+qrLmo31dWgMyCdFZXyZziEfJH1Fy/h729PVpaWhw4cCDH466urty4cQMzMzPs7OyUXh86zZyjoyOnT59W2pfTqNx3OTs7ExkZqTT47tixY6ioqMg1tVn9rqdOnUr16tXR19fH09OTsLAwub91lqxa8fx+iIuSgYEBZcqU4eTJk/K+tLQ0IiIilMKVLl1aaRBkQkKC0ryb1apV4+7du1y/fj3HdFxdXbl8+XK299LOzg51dXWcnJxIS0tTej+uXbsmD8wUBEEoaVkD3rN4eXl90nPwf+r5Lyq1a9cmLCxMnqYup24h+vr6xMXFkZqayl9//SXvU1NT4+zZswBs2rRJDu/p6cny5cuBzMqmixcvApnfjTt37gRg48aNRXdRnxFRuH4PTU1NRo0axciRI1m7di3R0dGcPHmS1atXA5nNKaamprRs2ZIjR44QExNDWFgYgwYN4u7dux+U5oABA1i9ejXBwcHcuHGDqVOncuHChTx/OXbq1AlNTU26devGpUuXOHToEAMGDKBLly6Ym5sDmb8+69evz/r16/Hy8gIyC5xv3rzhwIED8j7InEhfoVCwZ88eHj16lK3Pd3EbNGgQM2bMYPv27Vy9epX+/ftnK9Q2aNCAdevWceTIES5dukS3bt2UfoF7enpSv3592rRpw/79+4mJieGvv/4iJCQEgFGjRnHixAl++uknIiMjuXHjBrt27WLAgAFA5g+fJk2a0Lt3b06dOkVERAS9evXKs0ZcEARBeL93Z5H62Dx+/Jj79+//51dhTelnZmbGr7/+SuvWrfnqq68YNWpUtjATJkygadOmtGrVChsbG3n/4sWL6dKlC3Xq1MHKykrev2jRIvbv30+1atWoUqUKf/75J5A55mnq1Kl89dVXn9S0vyVJdAvJQ0BAAGpqaowfP5779+9TpkwZfvzxRyCzn/Dhw4cZNWoUrVu3JjExkXLlytGwYUP09fU/KL1OnTpx69Ythg8fTnJyMu3atcPPzy9bbfa7tLW1+fvvvxk0aBC1atVCW1ubNm3aMHfuXKVw3t7ebNu2TS5IKxQK6tWrx549e+SBmgDlypVj0qRJjB49mu7du9O1a1eCgoLydQ1+fn7ExsbK/bsLw7Bhw4iPj8fPzw8VFRV69OjBd999x4sXL+QwY8aM4datWzRv3hwDAwOmTJmSbcWorVu3Mnz4cDp06MCrV6+ws7NjxowZQOYPjbCwMMaOHUu9evWQJAlbW1ulAR+BgYH06tULT09PzM3NmTp1KgEBAYV2nYIgCB+7T21thf/C1NQULS0ttm3bVmhxamlp5TnzSNbYnPr161O/fn15/9s1x76+vvj6+iqd9/ZA/7Zt2ypNt/vo0SMePnzIV199xeXLl7OlaW5uzvbt27Ptd3BwUGqxfXuyASFnCqmgHVuFYte4cWMsLCxYt25dSWclX7y8vPDy8irw/NdfioSEBAwMDAgMDCzwoMyP3fLly1m8eDERERFKUzwVlbNnz1KzZs1iSy8nWe/nixcvPvhHtSBkycjIYPbs2axcuZI7d+5gbm5O3759GTt2LJC5tsLQoUPZt28fKioq1K1blwULFsg1k35+fjx//pwdO3YAmc9jFxeXbGsAvG3q1KksXLiQ169f0759e0xNTQkJCSEyMlIpzq+++opFixahrq5ObGwsFy9eZNCgQZw4cUKpQkdXV5eLFy9SvXp1Hj58iKmpKc+ePcPExIQ2bdrwxx9/AJkzKe3atYtNmzZlm262W7duBAUF4eXlRbVq1eSp4dTV1fnxxx8L9P1SkGdu1iIy1tbWJbqITFHIKlw7OTkV6mIvr169IioqqtDjhZxXf/wUnrmi5vojk5SUxLJly/Dx8UFVVZVNmzbxzz//sH///pLOWr4kJiYSHR2ttDCLIAiCkD9ibYX/vrZCYa8tYGlpWSKFYeHTJfpcf2QUCgV79+6lXr161KxZk927d7N161YaNWpU0lnLFz09Pe7cuYOurm5JZ0UQBOGTkrW2wqxZs+jWrZu8rkKvXr0A5bUVqlatipOTE4GBgcTFxX1wN7y311ZwcHBg/PjxVK1aNVu4rLUVKleuTJUqVdiwYYO8tkKVKlVo0KABixcvZt26dfz777/yGJ+sfGWtrZCRkcGVK1dIS0vj+PHjeHl5ZVtbwcLCQmlSgKy1Fezt7enatStubm65TjQAmTXiBgYG8ksUjIXiJgrXHxktLS3++ecfnj59yqtXrzh79iytW7cu6WwJgiAIRUysrZCzgq6tINYWEEqa6BYiCCXkxIkT8iT9RS0tLQ01taL/uGd9qUZFRRV5WsWZjiAUB7G2Qs4KuraCWFtAKGmicC0IJWTFihXFlpaKisp/XuinIGkV5ype2traeY68F4RPwdtrK2R1BXmbq6srv/32G2ZmZoU2kCtrbYUuXbrI+/K7tkJwcDCvXr2SC975XVth+vTpPHv27KNdW0EQ/itRuBaEEtKiRQvKlClT5OncuHGDQ4cOsX79epycnIo0raioKDp37lwsaWUxNTVVmqtVED5Vb6+toK6ujoeHB48ePeLy5cv07NmTTp06MXv2bFq2bMnkyZMpX748cXFxbNu2jREjRlC+fPkCpzlgwAB69+6Nm5sbderU4bfffuPChQtUrFjxved16tSJCRMm0K1bNyZOnMijR4/eu7bCkCFDAOW1FQYNGiTH9/baCr6+vmhpaX00Y3dKaraQwMBAhgwZQmxsLIaGhkDmzC4mJib069ePdevW4ePjg5mZWaHlLYufnx/ff/89zZs3V9rv5eXFgwcP5Jk7lixZwosXL/j111/ZtWtXgdMJDQ1l8eLFbNmypVDy/bEQhWtBKCEmJiaULVu2yNPJ+lJwcnIqtunqijMtQficiLUVCr62QlG6c+cONWrUICkpqdDi1NbW5ty5c3kWsLdt24arqyu7du2ia9eu2Y6vX78eV1fXAhWuC6NlYMuWLVSpUkXezlr9Ufg/onAtCIIgCB8JFRUVxo4dK89r/S4LCwuCg4NzPf/dAml+ZhEJCAhQWgyrcePG2NnZ5RpnlqpVq3Lw4MH3xu3v74+/v7/Svqw5uPPKB+Sc/9zOLwqPHz8mKSmp0Frjslr3Hj9+/N7C9ePHj4mJiWHFihXMnDkzW+F6586dnD17lk6dOqGvr8/hw4cJDw9nzJgxvHr1ChsbG1auXImuri6VKlWia9eu7N27l549e3Lu3DnWrFlDcnIyrVq1kheFCQgIYMuWLVSsWDHHfvf5cfLkSYYOHcrr168xMjJiw4YNlClThokTJ3L37l2uX7/O3bt3mTZtGj/88IPSuQcPHmTcuHHs3r0bExOTD0r/YyEK14IgCILwhfrU11YoLsXdGrdjxw5atmyJu7s7169f58mTJ0oFzpYtW7JkyRLmzp1L5cqVefPmDT///DN//PEHRkZGzJs3j2XLljF8+HAAjI2N2b59OydPnmTTpk2cOHEChUJBy5YtOXHiBKqqqoSEhHD+/HmePHmCk5MT/fv3zzFv33//PZqamqipqWXrn+/s7MyRI0dQVVVl48aNzJo1i3nz5gEQExPDwYMHuX37Nj4+PkqF6wMHDhAQEPBZFKxBFK6F/yg/q38VpqCgIAYPHszz58+LJb38mDhxIjt27JBXMxMEQfhUZK2tMHXqVFJSUnB0dPyk1lb4XG3dupWpU6eiUCho3rw5u3btonv37rmGv379OpcuXaJJkyYApKamUq9ePfl41pS+4eHhnD59mpo1awLw8uVLoqOjefz4Md999x3q6uqUKVOGBg0a5JrWu91C3vbs2TM6d+7MrVu3SEtLw9raWj7m6+uLmpoatra2St/h58+fZ9iwYRw4cOCzKFiDKFx/UWxsbBg8eDCDBw8utDi3bduWbZqk4iQKtoIgCB8ua20F4ePx77//cvLkSTp16gRkrjhZuXLl9xauJUnCxcUl1/7P2travH79GkmS6N69O1OnTlU6Pm/evFynViyI8ePH06xZM/r27cvJkycZPXq0fCy36RHLlSvHixcvuHz5MvXr1//PefgYiMK18J9krar1qUtNTS3RHwmCIAjCx6uw5tTPTzzbt2+nd+/ezJo1C8gsOFeqVIlHjx4phdPV1eXly5dA5pSKcXFxnD9/nurVq/Pq1SsePHiAra2t0jlubm5MmjSJYcOGYWRkxN27d9HS0sLDwwN/f3+GDRvG06dPOXToED169Cjw9SUkJMiz1qxfvz5f55iamrJ27Vp8fX1Zv349Li4uBU73YyNWaCxiISEh1K1bF0NDQ0xMTGjevLnSSlqxsbEoFAo2b95MnTp10NTUpHLlytkGcYSFhVG7dm00NDQoU6YMo0ePJi0tTT7u5eUlDxzJSmvcuHHyoAQvLy9u377NkCFDUCgUSr9Qt27dSuXKldHQ0MDGxoY5c+Yopb1kyRLs7e3R1NTE3Nyc77//Xindt2vC3xc2P+bOnUvVqlXR0dHB0tKS/v37yw+PdwUFBTFp0iTOnz8vX1PWwJsXL17Qp08feT7YBg0acP78efnciRMn4uLiwpo1a6hYsSIaGhpIkpTneQAzZszA3NwcPT09evbsSXJycoGuURAEQfg0mJqaoq2tTefOnalZs+Z/fnXu3DnPufm3bdtGixYt5G2FQkHTpk2zDeTs0qULffr0oX79+qirqxMcHMzgwYOpXbs23t7eOa7aaWdnx9ChQ/Hy8qJq1aq0a9eOV69eUbt2bXx8fKhWrRp9+/b94Brk4cOHM3jwYOrWrYu2tna+z7OysuKPP/6gU6dO3Lx584PS/piImusi9urVK4YOHUrVqlV59eoV48eP57vvviMyMhIVlf/7bTNixAjmz5+Ps7Mzc+fO5dtvvyUmJgYTExPu3buHr68vfn5+rF27lqtXr9K7d280NTWZOHGiHEdwcDA9e/bk1KlTnDlzhj59+mBtbU3v3r3Ztm0b1atXp0+fPvTu3Vs+JyIignbt2jFx4kTat2/P8ePH6d+/PyYmJvj5+XHmzBkGDhzIunXrqFOnDk+fPuXIkSM5XmtBwuZGRUWFhQsXYmNjQ0xMDP3792fkyJEsWbIkW9j27dtz6dIlQkJC5GZNAwMDJEmiWbNmGBsbs3fvXgwMDFi+fDkNGzbk+vXrcm37zZs3+f3339m6dSuqqqoAeZ73+++/M2HCBP73v/9Rr1491q1bx8KFC987J2xKSgopKSnydkJCQoHuiSAIgvDfxcbG5lngK1WqFJaWliQnJ5ORkYGpqSknTpzgyZMnhZYPExMTTE1Nef36dY7Hd+7cCaB0fPr06UphXr9+jY+PDz4+PvJ25cqV2bt3b7Zw586dAzJbaCGz/3XHjh2Vwr169YrRo0crdePI2v+2P//8M9v+2rVrM3PmTAA8PDy4ceNGtmt6u6wC/zdFrJeXlzxNo5OTE5cvX8527qdIFK6LWJs2bZS2V69ejZmZGVeuXFEaEODv7y+HXbp0KSEhIaxevVouWFpaWrJ48WIUCgWVKlXi/v37jBo1ivHjx8uFdEtLS7nflKOjIxcvXmTevHn07t0bY2NjVFVV0dPTw8LCQk537ty5NGzYUJ7+yMHBgStXrjB79mz8/PyIi4tDR0eH5s2bo6enh7W1NTVq1MjxWgsSNjdv14JXqFCBKVOm0K9fvxwL11mLDKipqSld08GDB7l48SIPHz6U+3j9+uuv7Nixgy1bttCnTx8A3rx5w7p16+Rlg/Nz3vz58+nRo4e8etrUqVP5559/3lt7PX36dCZNmlSg+yAIgiAUrvw8h62trVm2bFm2/flZpj2/3rx5w61btwotvoKKiYkp9DhVVFRQUxNFyiziThSx6OhoAgICOHnyJI8fP5aXoI6Li1MqXLu7u8v/V1NTw83NTe6bFRUVhbu7u1JXDg8PD16+fMndu3fl1em+/vprpTDu7u7MmTOH9PR0uWb2XVFRUbRs2VJpn4eHB/Pnzyc9PZ3GjRtjbW1NxYoVadKkCU2aNOG7777L8dd/QcLm5tChQ0ybNo0rV66QkJBAWloaycnJSkvs5iUiIoKXL19mG3X8+vVrpWYya2truWCd3/OioqLkBR2yuLu7c+jQoVzzM2bMGIYOHSpvJyQk5Gt1LkEQBKHw9OnThwoVKrw3jLa2NoaGhpiZmZXYOJzExEQSEhIoXbr0e7uPfAhJkgpl4OK71NTUch2w+CUShesi1qJFCywtLVm5ciVly5YlIyODKlWq8ObNmzzPzfoA5PRhyOpL/V8/JO+LGzJ/rZ89e5bQ0FD27dvH+PHjmThxIuHh4fJyrB8SNie3b9/G19eXH3/8kSlTpmBsbMzRo0fp2bOn3JyVHxkZGZQpUybHxQfezse7hfX8nldQGhoa4qEjCIJQwtzd3XFzc3tvmIyMDCRJQk9PT17iu7ilpqaSkJBAqVKl8l2p9Ln60MVsSpooXBehJ0+eEBUVxfLly+X5Jo8ePZpj2JMnT8oDCNLS0oiIiJBXtXJ2dmbr1q1KBeHjx4+jp6dHuXLllOJ4N057e3u51lpdXT3b0qfOzs7Z8nT8+HEcHBzk89TU1GjUqBGNGjViwoQJGBoacvDgQXnezLcVJOy7zpw5Q1paGnPmzJG7uvz+++/vPSena3J1deXBgweoqalhY2OTZ7oFOc/JyYmTJ08qrZb17n0XBEEQPk0KhYKMjAyePXuGkZFRkdTy5iVrsoKsltsvlSRJPHr0CIVC8cnN5iUK10XIyMgIExMTVqxYQZkyZYiLi8s2WCDL//73P+zt7XFycmLevHk8e/ZMnganf//+zJ8/nwEDBuDv78+1a9eYMGECQ4cOVRoUeefOHYYOHUrfvn05e/YsixYtUpr5w8bGhsOHD/PDDz+goaGBqakpw4YNo1atWkyZMoX27dtz4sQJFi9eLPdx3rNnD7du3aJ+/foYGRmxd+9eMjIycHR0zHYNBQmbE1tbW9LS0li0aBEtWrTg2LFjOfZ9e1vWwMfIyEjKly+Pnp4ejRo1wt3dnVatWjFz5kwcHR25f/8+e/fupVWrVrnWXOTnvEGDBtGtWzfc3NyoW7cuGzZs4PLly+8d0CgIgiB8GhQKBSoqKiQkJJCYmFgieXj58iWJiYmkpaVlG1D4pVEoFJQvXz7Xrq0fK1G4LkIqKips3ryZgQMHUqVKFRwdHVm4cKE8MvZtM2bMYObMmZw7dw5bW1t27twp97UqV64ce/fuZcSIEVSvXh1jY2N69uzJuHHjlOLo2rUrr1+/pnbt2qiqqjJgwAB58B7A5MmT6du3L7a2tqSkpCBJEq6urvz++++MHz+eKVOmUKZMGSZPnoyfnx+Q2R1i27ZtTJw4keTkZOzt7dm0aROVK1fOdg15hQ0KCqJ79+65NvO4uLgwd+5cZs6cyZgxY6hfvz7Tp09XqiV+V5s2bdi2bRve3t48f/6cwMBA/Pz82Lt3L2PHjqVHjx48evQICwsL6tevj7m5ea5xZa1U9r7z2rdvT3R0NKNGjSI5OZk2bdrQr18//v7771zjFQRBED4dKioqKBSKEuuS8Ndff7F+/XoGDRpEv379SiQPH4tSpUp9cgVrAIX0qXZo+UzExsZSoUIFzp07958mTi/uZcg/xMSJEwkNDc2xT/OXJCEhAQMDA/z8/ArUbeVDXbhwgW3bthEREYGrq2uRpnX27Flq1qxZLGl9LLLezxcvXqCvr1/S2REE4R1Zn9HAwMA8+1x/DJYvX87ixYuZMmVKtko04dN45oqaa6HY/P333yxYsKCksyEIgiAIglBkxAqNQrE5ceIEtWvXLulsCIIgfPSCgoL+0yxFn7KsFXQF4VMlaq5LmI2NTaH06/rSu1oIgiB8Ttq3b4+vr29JZ6NEDB8+nAEDBpR0NgThg4nCtSCUkCdPnqCurl7k6Tx79gxAXpSoKBVHGoLwqUtNTc1zajEtLS20tLSKKUcfF11dXXR1dUs6G4LwwUThWhBKyO7du4stLRUVFTp37lxsaV28ePGLGdAofBkyMjKYPXs2K1eu5M6dO5ibm9O3b1/Gjh3LqFGj2L59O3fv3sXCwoJOnToxfvx4uQA9ceJEduzYwcCBA5k6dSqxsbGkp6fz4sULRo4cyc6dO3nx4gV2dnbMmDGD5s2bExQUxODBg3n+/LlSHMOGDSMgIIBnz57RtGlTVq5cKS/NnZKSwogRI9i8eTMJCQm4ubkxb948atWqJV/Hrl27GDZsGHfv3uXrr7/Gz88PPz8/nj17JndDOX78OKNHjyY8PBxTU1O+++47pk+fLi9oYmNjQ58+fbh58yZ//PEHRkZGjBs3Tml2qnv37jF06FD27duHiooKdevWZcGCBfIg7tDQUEaOHMnly5cpVaoUlStXZuPGjVhbW8vXGhkZmWdYQfgYicK1IJSQ/CzFW1jS0tJQUyv6j/vBgwfZv38/d+7cKfK0BKE4jRkzhpUrVzJv3jzq1q1LfHw8V69eBTJXpw0KCqJs2bJcvHiR3r17o6enx8iRI+Xzb968ye+//87WrVtRVVUlIyODpk2bkpiYyPr167G1teXKlSvvnXYsOjqaHTt2sGfPHp49e0a7du2YMWMGv/zyCwAjR45k69atBAcHY21tzaxZs/Dx8eHmzZsYGxsTGxvL999/z6BBg+jVqxfnzp1j+PDhSmlcvHgRHx8fpkyZwurVq3n06BH+/v74+/sTGBgoh5szZw5Tpkzh559/ZsuWLfTr14/69etTqVIlkpKS8Pb2pl69ehw+fBg1NTWmTp1KkyZNuHDhAioqKrRq1YrevXuzadMm3rx5w+nTp3NcsCUtLS3fYbOkpKSQkpIibyckJOTx7gpC4RKFa0EoIflZivdTc+/ePfbv31/S2RCEQpWYmMiCBQtYvHgx3bp1AzIXvapbty6A0nRpNjY2DBs2jN9++02pcP3mzRvWrVtH6dKlAdi3bx+nT58mKioKBwcHgDwXo8rIyCAoKEiuqe7SpQsHDhzgl19+4dWrVyxdupSgoCCaNm0KwMqVK9m/fz+rV69mxIgRLFu2DEdHR2bPng2Ao6Mjly5dkgvnALNnz6Zjx44MHjwYAHt7exYuXIinpydLly6VlwT39fWlf//+AIwaNYp58+YRGhpKpUqV2Lx5MyoqKqxatUouBAcGBmJoaEhoaChubm68ePGC5s2bY2trC2SufpuThISEfIfNMn36dCZNmvTeMIJQlMRsIYIgCILwHlFRUaSkpNCwYcMcj2/ZsoW6detiYWGBrq4uAQEBxMXFKYWxtraWC9aAvKpsVsE6P2xsbOSCNUCZMmV4+PAhkFmrnZqaioeHh3y8VKlS1K5dWx4Lce3aNaUuIkC2GZwiIiIICgqS+z3r6uri4+NDRkYGMTExcrhq1arJ/1coFFhYWMh5iYiI4ObNm+jp6clxGBsbk5ycTHR0NMbGxvj5+eHj40OLFi1YsGAB8fHxOV5zQcJmGTNmDC9evJBfoiVNKG6icC0IgiAI7/G+gYUnT57khx9+oGnTpuzZs4dz584xduxY3rx5oxQuq79yfuLMzbuDIBUKBRkZGQDyrFPvdpeQJEne9/b/3z7+toyMDPr27UtkZKT8On/+PDdu3JBrjvPKS0ZGBjVr1lSKIzIykuvXr9OxY0cgsyb7xIkT1KlTh99++w0HBwdOnjyZ43UXJCyAhoYG+vr6Si9BKE6FVrj28/OjVatWhRVdvr07H2ZJ5aMweXl5yU1yQs4K6x6Jey0IQl7s7e3R0tLiwIED2Y4dO3YMa2trxo4di5ubG/b29ty+fTvPOKtVq8bdu3e5fv16oeTRzs4OdXV1jh49Ku9LTU3lzJkzcjeKSpUqER4ernTemTNnlLZdXV25fPkydnZ22V75nd3I1dWVGzduYGZmli0OAwMDOVyNGjUYM2YMx48fp0qVKmzcuDHXOAsSVhBKWqH1uV6wYEGhzNf8ueQjP0JDQ/H29lYapS0Ujdzu9bZt2/KcEksQhC+bpqYmo0aNYuTIkairq+Ph4cGjR4/kQmhcXBybN2+mVq1a/Pnnn2zfvj3POD09Palfvz5t2rRh7ty52NnZcfXqVRQKBU2aNClwHnV0dOjXrx8jRozA2NgYKysrZs2aRVJSEj179gSgb9++zJ07l1GjRtGzZ08iIyMJCgoC/q/Ge9SoUXz99df89NNP9O7dGx0dHaKioti/fz+LFi3KV146derE7NmzadmyJZMnT6Z8+fLExcWxbds2RowYQWpqKitWrODbb7+lbNmyXLt2jevXr9O1a9dsccXExOQ7rCB8LAqtcP32r9GS9LHk40uTnp6OQqFAReXT6mlkbGxc0lkQBOETEBAQgJqaGuPHj+f+/fuUKVOGH3/8kZ49ezJkyBD8/f1JSUmhWbNmBAQEMHHixDzj3Lp1K8OHD6dDhw68evVKnorvQ82YMYOMjAy6dOlCYmIibm5u/P333xgZGQFQoUIFtmzZwrBhw1iwYAHu7u6MHTuWfv36oaGhAWTWqIeFhTF27Fjq1auHJEnY2trSvn37fOdDW1ubw4cPM2rUKFq3bk1iYiLlypWjYcOG6Ovr8/r1a65evUpwcDBPnjyhTJky+Pv707dv3xzjym9YQfhYFKgktGXLFqpWrYqWlhYmJiY0atSIV69eAdm7YyQmJtKpUyd0dHQoU6YM8+bNy9YEb2Njw7Rp0+jRowd6enpYWVmxYsUKpTRHjRqFg4MD2traVKxYkYCAAFJTU3PN47v58PLyYuDAgYwcORJjY2MsLCyyPfSuXr1K3bp10dTUxNnZmX/++QeFQsGOHTtyTcfLy0uensjQ0BATExPGjRunVGu+fv163Nzc0NPTw8LCgo4dO8oDPmJjY/H29gbAyMgIhUKBn5+ffG5GRkaueR42bBgtWrSQt+fPn49CoeDPP/+U9zk6OrJ8+XIAwsPDady4MaamphgYGODp6cnZs2flsD169KB58+ZK15eWloaFhQVr1qzJ8fqzlubds2cPzs7OaGhocPv2bd68ecPIkSMpV64cOjo6fPXVV9lWj1y5ciWWlpZoa2vz3XffMXfuXKXa5Jy69gwePBgvL68c8wIffq/f/Zt89uwZXbt2xcjICG1tbZo2bcqNGzeyXffff/+Nk5MTurq6NGnSJM8BNoIgfNpUVFQYO3YssbGxvHnzhtu3bzNmzBgAZs2axePHj0lMTGTz5s1K81NDZvfFrDmb32ZsbMyaNWt4/Pgxr1+/5uLFizRr1gzIfA7mFcfgwYOJjY2VtzU1NVm4cCGPHj0iOTmZo0ePZhvA+O2333Ljxg2Sk5M5dOgQT548oXz58vIsIAC1atVi3759JCYm8vLlS86fP8/PP/8sH4+Njc3WnS4yMlLpe8rCwoLg4GA5L9HR0axYsQJ9fX3Mzc3Zvn079+/fJyUlhdjYWCZNmiRXzrx9rXmFFYSPUb7/OuPj4+nQoQM9evQgKiqK0NBQWrdunWsXjKFDh3Ls2DF27drF/v37OXLkiFKBLsucOXNwc3Pj3Llz9O/fn379+slzh8L/zR965coVFixYIM8zWhDBwcHo6Ohw6tQpZs2axeTJk+XpwjIyMmjVqhXa2tqcOnWKFStWMHbs2HzHq6amxqlTp1i4cCHz5s1j1apV8vE3b94wZcoUzp8/z44dO4iJiZELdZaWlmzduhXIHMEdHx/PggUL8pVnLy8vjhw5Ig8eCQsLw9TUlLCwMAAePHjA9evX8fT0BDJ/6HTr1o0jR45w8uRJ7O3t8fX1JTExEYBevXoREhKiVEDcu3cvL1++pF27drlef1JSEtOnT2fVqlVcvnwZMzMzunfvzrFjx9i8eTMXLlygbdu2NGnSRC6gHjt2jB9//JFBgwYRGRlJ48aNlaaB+lD/5V6/zc/PjzNnzrBr1y5OnDiBJEn4+voq/aBLSkri119/Zd26dRw+fJi4uLhsc8W+LSUlhYSEBKWXIAhCSViyZAnh4eHcunWLdevWMXv2bHl6QUEQCke+u4XEx8eTlpZG69at5VWRqlatmmPYxMREgoOD2bhxozx1UWBgIGXLls0W9n1zZUL+5g/NS7Vq1ZgwYQKQOTBl8eLFHDhwgMaNG7Nv3z6io6MJDQ3FwsICgF9++YXGjRvnGa+lpSXz5s1DoVDg6OjIxYsXmTdvHr179wYya4SzVKxYkYULF1K7dm1evnwpT00EYGZmlq3P9fvyXL9+fRITEzl37hyurq4cOXKE4cOHs23bNgAOHTqEubm5fA8bNGigFPfy5csxMjIiLCyM5s2bU6dOHRwdHVm3bp18XwMDA2nbtu17l6BNTU1lyZIlVK9eHcicCmrTpk3cvXtXfq+HDx9OSEgIgYGBTJs2jUWLFtG0aVO5MOrg4MDx48fZs2dPnvf7ff7Lvc5y48YNdu3axbFjx6hTpw4AGzZswNLSkh07dtC2bVv5upctWyaPnPf392fy5Mm55k3MuSoIwsfixo0bTJ06ladPn2JlZcWwYcPkGnhBEApHvmuuq1evTsOGDalatSpt27Zl5cqVPHv2LMewt27dIjU1VWn+TAMDAxwdHbOFfd9cmZC/+UPz8nYaoDw36LVr17C0tJQL1pB93s/cfP3110rTGrm7u3Pjxg3S09MBOHfuHC1btsTa2ho9PT25W0N+8v++PBsYGODi4kJoaCgXL15ERUWFvn37cv78eRITEwkNDZVrrQEePnzIjz/+iIODAwYGBhgYGPDy5UulfPTq1Utefevhw4f8+eefSgXWnKirqyvl8+zZs0iShIODg9IcqWFhYURHRwOZ9/vd+5vf+/0+/+VeZ4mKikJNTY2vvvpK3mdiYoKjo6M8Tyxk9gF8e0qqt9+bnIg5VwVB+FjMmzeP+/fvk5yczPXr1+W+5IIgFJ58f6JUVVXZv38/x48fZ9++fSxatIixY8dy6tSpbEs4v2++zXe9b67MrPlDJ02ahI+PDwYGBmzevJk5c+bkN9t5ppHTvJ+F4dWrV3zzzTd88803rF+/ntKlSxMXF4ePj0+2+U8LmmfI7BoSGhqKuro6np6eGBkZUblyZY4dO0ZoaKhSfzg/Pz8ePXrE/Pnzsba2RkNDA3d3d6V8dO3aldGjR3PixAlOnDiBjY0N9erVe28etbS0lO5dRkYGqqqqREREZFvCN6sGPD/zrKqoqGTb975+9v/1XueWj7f3v53nnN6b981Qo6GhIQ8WEgRBEATh81agn6sKhQIPDw88PDwYP3481tbWbN++naFDhyqFs7W1pVSpUpw+fRpLS0sgcwnTGzduKNWo5uXt+UOz5Gf+0IKoVKkScXFx/Pvvv5ibmwNkmwc0N+9OYp/Vn1lVVZWrV6/y+PFjZsyYId+Dd+cTzZozNKumuyC8vLxYvXo1ampqNGrUCMic2mnz5s1K/a0Bjhw5wpIlS/D19QXgzp07PH78WCk+ExMTWrVqJU/W37179wLnqUaNGqSnp/Pw4cNcC+aVKlXi9OnTSvvevS+lS5fm0qVLSvsiIyNznTKvsO61s7MzaWlpnDp1Su4W8uTJE65fv57ncruCIAiCIAhQgML1qVOnOHDgAN988w1mZmacOnWKR48e5Vjo0NPTo1u3bvJ8m2ZmZkyYMAEVFZUC1RJ/6PyhBdG4cWNsbW3p1q0bs2bNIjExUS7M55XXO3fuMHToUPr27cvZs2dZtGiRXKtuZWWFuro6ixYt4scff+TSpUtMmTJF6Xxra2sUCgV79uzB19cXLS2t9/ZxfltWv+vdu3czdepUILPA3aZNG0qXLo2zs7Mc1s7OjnXr1uHm5kZCQgIjRozIcXWwXr160bx5c9LT0z9ogIuDgwOdOnWia9euzJkzhxo1avD48WMOHjxI1apV8fX1ZcCAAdSvX5+5c+fSokULDh48yF9//aV0rxs0aMDs2bNZu3Yt7u7urF+/nkuXLlGjRo0c0y2se21vb0/Lli3p3bs3y5cvR09Pj9GjR1OuXDlatmxZ4PshCIIgfDxOnDjBgwcPCjXOtLS0Qu9Wc+3atUKNTyh++f6L0NfX5/Dhw8yfP5+EhASsra2ZM2cOTZs2zTH83Llz+fHHH2nevDn6+vqMHDmSO3fuKE33k5eWLVt+8Pyh+aWqqsqOHTvo1asXtWrVomLFisyePZsWLVrkmdeuXbvy+vVrateujaqqKgMGDKBPnz5AZu1rUFAQP//8MwsXLsTV1ZVff/2Vb7/9Vj6/XLlyTJo0idGjR9O9e3e6du0qT+ifFwMDA2rUqEFcXJxckK5Xrx4ZGRnZWgfWrFlDnz59qFGjBlZWVkybNi3H2S0aNWpEmTJlqFy5co6DT/MjMDCQqVOnMmzYMO7du4eJiQnu7u5yrbmHhwfLli1j0qRJjBs3Dh8fH4YMGcLixYvlOHx8fAgICGDkyJEkJyfTo0cPunbtysWLF3NMszDvdWBgIIMGDaJ58+a8efOG+vXrs3fvXrHQjCAIwifu3al+C4OKiopSl83ClNUSK3x6FFIxLWf46tUrypUrx5w5c+TVoj5Wx44do27duty8eVNp4NrbvLy8cHFxYf78+cWbuSKUlJRE2bJlWbNmDa1bty62dHv37s3Vq1c5cuRIsaVZkhISEjAwMCAwMBA3N7eSzk6hWr58OYsXL2bKlClKM/18zrLezxcvXqCvr1/S2REE4R1Zn9EWLVpQpkyZQov3xo0bHDp0iPXr1xdq18GoqCg6d+5MREQErq6uhRbv5+JTeOYW2RDhc+fOcfXqVWrXrs2LFy/kqco+xub17du3o6uri729PTdv3mTQoEF4eHjkWrD+3GRkZPDgwQPmzJmDgYGBUo1vUfj1119p3LgxOjo6/PXXXwQHB7NkyZIiTVMQBEH4spmYmHxwq2xOssYuOTk5iUKwoKRI59/59ddfuXbtGurq6tSsWZMjR45gampalEl+kMTERLnbiqmpKY0aNSrwjCSfsri4OCpUqED58uUJCgoq8mmZTp8+Lfdvz5qTulevXkWapiAIgiAIQnEoslJUjRo1iIiIKKroC1XXrl3p2rVrgc55d0nvT5mNjc17p5IrbL///nuxpSUIgiAIglCcxMzxglBCimLkem6KYkR7TsQod0EQBOFLJwrXglBCimLkem6KckR7TsQod0EQBOFLJQrXglBCCnvkem6KakR7TrJGuVetWrVI0xEEQRCEj5UoXAtCCSnskeu5ESPaBeHT4+fnx/Pnz9mxYwdQdNO/2tjYMHjwYAYPHgxkLp62fft2WrVqVajpZHn3ugThcyQK14IgCIIgFIsFCxYU6wB6QSgJonAtCIIgCEKxMDAwKOksCEKRUynpDJQULy8vuRnsQ/j5+RVZs9nbYmNjUSgUREZGFnlaH5viuMehoaEoFAqeP39epOkIgvBlycjIYObMmdjZ2aGhoYGVlRW//PKLfPzevXu0b98eIyMjTExMaNmyJbGxsR+cXnR0NC1btsTc3BxdXV1q1arFP//8oxTm4cOHtGjRAi0tLSpUqMCGDRtyjOvx48d89913aGtrY29vz65du5SOX7lyBV9fX3R1dTE3N6dLly5y9zOALVu2ULVqVbS0tDAxMaFRo0a8evUKyP5cT0lJYeDAgZiZmaGpqUndunUJDw+Xj2c9ow8cOICbmxva2trUqVNHzEwkfNQ+icK1jY3NJ7/MuCjEFdyCBQsICgoqtPhy+kFVp04d4uPjRW2KIAiFasyYMcycOZOAgACuXLnCxo0bMTc3ByApKQlvb290dXU5fPgwR48eRVdXlyZNmvDmzZsPSu/ly5f4+vryzz//cO7cOXx8fGjRogVxcXFyGD8/P2JjYzl48CBbtmxhyZIlPHz4MFtckyZNol27dly4cAFfX186derE06dPAYiPj8fT0xMXFxfOnDlDSEgI//77L+3atZOPd+jQgR49ehAVFUVoaCitW7fOtSvIyJEj2bp1K8HBwZw9exY7Ozt8fHzk9LKMHTuWOXPmcObMGdTU1OjRo0eu9yIlJYWEhASllyAUJ9Et5DP05s0b1NXVCz3e9PR0FAoFKirF85usOAq86urqWFhYFHk6giB8ORITE1mwYAGLFy+mW7duANja2lK3bl0ANm/ejIqKCqtWrUKhUAAQGBiIoaEhoaGhfPPNNwVOs3r16lSvXl3enjp1Ktu3b2fXrl34+/tz/fp1/vrrL06ePMlXX30FwOrVq3OcQcjPz48OHToAMG3aNBYtWsTp06dp0qQJS5cuxdXVlWnTpsnh16xZg6WlJdevX+fly5ekpaXRunVrrK2tAXKdPejVq1csXbqUoKAgmjZtCsDKlSvZv38/q1evZsSIEXLYX375BU9PTwBGjx5Ns2bNSE5ORlNTM1u806dPZ9KkSQW6f4JQmIqllPS+5rEGDRrg7++vFP7JkydoaGhw8OBBvLy8uH37NkOGDEGhUMgPIoCtW7dSuXJlNDQ0sLGxybZk+ZIlS7C3t0dTUxNzc3O+//77XPMYEhKCgYEBa9euBQreZCdJErNmzaJixYpoaWlRvXp1tmzZAmR27fD29gbAyMgIhUKBn5+fnG7dunUxNDTExMSE5s2bEx0dnb8b+//Z2NgwdepU/Pz8MDAwoHfv3gAcP36c+vXro6WlhaWlJQMHDpSb5gCePXtG165dMTIyQltbm6ZNm3Ljxg35eFBQEIaGhuzZswdnZ2c0NDS4ffs28fHxNGvWTG5a3LhxY7bWhblz51K1alV0dHSwtLSkf//+vHz5Mlvcf//9N05OTnKtTXx8vBzm7ebDrO4x7768vLyAzL+ZDh06UL58ebS1talatSqbNm1SiissLIwFCxbI58bGxubYopDX35WNjQ3Tpk2jR48e6OnpYWVlVaxzVguC8HGLiooiJSWFhg0b5ng8IiKCmzdvoqenh66uLrq6uhgbG5OcnFzg53+WV69eMXLkSJydnTE0NERXV5erV6/KNddRUVGoqanh5uYmn1OpUiUMDQ2zxVWtWjX5/zo6Oujp6ck13BERERw6dEjOt66uLpUqVQIyu6ZUr16dhg0bUrVqVdq2bcvKlSt59uxZjnmOjo4mNTUVDw8PeV+pUqWoXbs2UVFRueYpawrTnGrdIbPV4MWLF/Lrzp07ud43QSgKxVK4fl/zWK9evdi4cSMpKSly+A0bNlC2bFm8vb3Ztm0b5cuXZ/LkycTHx8uFr4iICNq1a8cPP/zAxYsXmThxIgEBAXI3gjNnzjBw4EAmT57MtWvXCAkJoX79+jnmb/PmzbRr1461a9fStWvXD2qyGzduHIGBgSxdupTLly8zZMgQOnfuTFhYGJaWlmzduhXIXMEuPj6eBQsWAJkPxKFDhxIeHs6BAwdQUVHhu+++K/CCH7Nnz6ZKlSpEREQQEBDAxYsX8fHxoXXr1ly4cIHffvuNo0ePKv2Q8fPz48yZM+zatYsTJ04gSRK+vr6kpqbKYZKSkpg+fTqrVq3i8uXLmJmZ0bVrV+7fv09oaChbt25lxYoV2R5yKioqLFy4kEuXLhEcHMzBgwcZOXKkUpikpCR+/fVX1q1bx+HDh4mLi2P48OE5Xp+lpaX8/sfHx3Pu3DlMTEzk9zQ5OZmaNWuyZ88eLl26RJ8+fejSpQunTp0CMruYuLu707t3bzmOnBY6yevvKsucOXNwc3Pj3Llz9O/fn379+nH16tUc8y6aKAXhy6KlpfXe4xkZGdSsWZPIyEil1/Xr1+nYseMHpTlixAi2bt3KL7/8wpEjR4iMjKRq1aryd1ZWt4y3K6hyU6pUKaVthUIhfydlZGTQokWLbHm/ceMG9evXR1VVlf379/PXX3/h7OzMokWLcHR0JCYmJls6ueVJkqRs+97OU9ax3L4nNTQ00NfXV3oJQnEq8m4heTWPtWnThgEDBrBz5065z1ZgYCB+fn4oFAqMjY1RVVVFT09Pqfl+7ty5NGzYkICAAAAcHBy4cuUKs2fPxs/Pj7i4OHR0dGjevDl6enpYW1tTo0aNbPlbsmQJP//8Mzt37pRrlwvaZPfq1Svmzp3LwYMHcXd3B6BixYocPXqU5cuX4+npibGxMQBmZmZKNQVt2rRRimv16tWYmZlx5coVqlSpku/73KBBA6WCadeuXenYsaPcx9je3p6FCxfi6enJ0qVLuXPnDrt27eLYsWPUqVMHyPxRY2lpyY4dO2jbti0AqampLFmyRG5uvHr1Kv/88w/h4eFyDciqVauwt7dXys/bfZsrVKjAlClT6NevH0uWLJH3p6amsmzZMmxtbQHw9/dn8uTJOV6fqqqq/P4nJyfTqlUr3N3dmThxIgDlypVTuv4BAwYQEhLCH3/8wVdffYWBgQHq6upoa2u/txtIXn9XWXx9fenfvz8Ao0aNYt68eYSGhso1OG8TTZSC8GWxt7dHS0uLAwcO0KtXr2zHXV1d+e233zAzMyu0gt+RI0fw8/Pju+++AzL7YL/d2urk5ERaWhpnzpyhdu3aQGZlT0HHAbm6urJ161ZsbGxQU8u5CKFQKPDw8MDDw4Px48djbW3N9u3bGTp0qFI4Ozs71NXVOXr0qPyjIjU1lTNnzvynCQcEoaQVec11Xs1jGhoadO7cmTVr1gAQGRnJ+fPnlQoyucX7dlMSgIeHBzdu3CA9PZ3GjRtjbW1NxYoV6dKlCxs2bCApKUkp/NatWxk8eDD79u2TC9ZQ8Ca7K1eukJycTOPGjZWaytauXZtnE190dDQdO3akYsWK6OvrU6FCBQClQSj58XZTX9Y1BAUFKeXHx8eHjIwMYmJi5CbCrL53kLmoiaOjo1JznLq6ulJz3LVr11BTU1NajMTOzg4jIyOl9A8dOkTjxo0pV64cenp6dO3alSdPnih1S9HW1pYL1pDZ1JdbM9/bevbsSWJiIhs3bpT7f6enp/PLL79QrVo1TExM0NXVZd++fQW+j3n9XWV5+54oFAosLCxEE6UgCABoamoyatQoRo4cKX8PnDx5ktWrVwPQqVMnTE1NadmyJUeOHCEmJoawsDAGDRrE3bt3PyhNOzs7tm3bJn+HduzYUalm19HRkSZNmtC7d29OnTpFREQEvXr1yrOW/V0//fQTT58+pUOHDpw+fZpbt26xb98+evToQXp6OqdOnWLatGmcOXOGuLg4tm3bxqNHj3Ls262jo0O/fv0YMWIEISEhXLlyhd69e5OUlETPnj0/6D4IwsegyGuu8/PB7dWrFy4uLty9e5c1a9bQsGFDeSBEbnJqNnp7NLKenh5nz54lNDSUffv2MX78eCZOnEh4eLhcc+zi4sLZs2cJDAykVq1aSk1NNWvWzHGaotKlS2fbl/UA+/PPPylXrpzSMQ0NjfdeR4sWLbC0tGTlypWULVuWjIwMqlSpUuAR4zo6Otny1LdvXwYOHJgtrJWVFdevX88xnnfvq5aWltJ2biO+395/+/ZtfH19+fHHH5kyZQrGxsYcPXqUnj17KnU5yanpMa/FBaZOnUpISAinT59GT09P3j9nzhzmzZvH/Pnz5b7egwcPLvB9zOvv6n15f18TZV5/B4IgfF4CAgJQU1Nj/Pjx3L9/nzJlyvDjjz8CmRULhw8fZtSoUbRu3ZrExETKlStHw4YNP7gme968efTo0YM6depgamrKqFGjsnVBCwwMpFevXnh6emJubs7UqVPlVrr8Klu2LMeOHWPUqFH4+PiQkpKCtbU1TZo0QUVFBX19fQ4fPsz8+fNJSEjA2tqaOXPmyAMW3zVjxgwyMjLo0qULiYmJuLm58ffff2ersBGET0mRF67zah6DzJHEbm5urFy5ko0bN7Jo0SKl4+rq6kq1hgDOzs4cPXpUad/x48dxcHBAVVUVADU1NRo1akSjRo2YMGEChoaGHDx4kNatWwOZ3VPmzJmDl5cXqqqqLF68GCh4k13WYL+4uDh5NPO7smbvePs6njx5QlRUFMuXL6devXoA2a7pQ7m6unL58mXs7OxyzXNaWhqnTp2Su4U8efKE69ev51jDkKVSpUqkpaVx7tw5atasCcDNmzeVmhbPnDlDWloac+bMkWuWf//99/98TVu3bmXy5Mn89ddfSjXekNkk2rJlSzp37gxk/ri4ceOG0rXk9Hf0rvz8XQmCIORFRUWFsWPHMnbs2ByPW1hYEBwcnOv5747zCA0NfW96NjY2HDx4UGnfTz/9lC3NPXv2KO3r0qWL0nZOlQnvdh2xt7dn27ZtOebDycmJkJCQXPP57nVpamqycOFCFi5cmGN4Ly+vbHlycXERqzwKH7Ui7xaSV/NYll69ejFjxgzS09PlPmNZbGxsOHz4MPfu3ZMnqh82bBgHDhxgypQpXL9+neDgYBYvXiz3u92zZw8LFy4kMjKS27dvs3btWjIyMnB0dFSK28HBgUOHDsldRKDgTXZ6enoMHz6cIUOGEBwcTHR0NOfOneN///uf/PC0trZGoVCwZ88eHj16xMuXL+WZSFasWMHNmzc5ePBgtj5pH2rUqFGcOHGCn376SR5ssmvXLgYMGABkPhxbtmxJ7969OXr0KOfPn6dz586UK1eOli1b5hpvpUqVaNSoEX369OH06dOcO3eOPn36KNVw29rakpaWxqJFi7h16xbr1q1j2bJl/+l6Ll26RNeuXRk1ahSVK1fmwYMHPHjwQJ4L1c7Ojv3793P8+HGioqLo27cvDx48UIrDxsaGU6dOERsby+PHj3Osac7r70oQBEEQBOF9imW2kICAAIYNG8b48eNxcnKiffv22fqndujQATU1NTp27Jht3srJkycTGxuLra2t3C3D1dWV33//nc2bN1OlShXGjx/P5MmT5b7ahoaGbNu2jQYNGuDk5MSyZcvYtGkTlStXzpY/R0dHDh48yKZNmxg2bJjcZGdlZUXr1q1xcnKiR48evH79Otea7ClTpjB+/HimT5+Ok5MTPj4+7N69W+5DXa5cOSZNmsTo0aMxNzfH398fFRUVNm/eTEREBFWqVGHIkCHMnj37v95uILNPcFhYGDdu3KBevXrUqFGDgIAAeQojyGwirFmzJs2bN8fd3R1Jkti7d2+2Lg/vWrt2Lebm5tSvX5/vvvuO3r17o6enJ79vLi4uzJ07l5kzZ1KlShU2bNjA9OnT/9P1nDlzhqSkJKZOnUqZMmXkV1YrREBAAK6urvj4+ODl5YWFhUW21R2HDx+Oqqoqzs7OlC5dOsf+2Hn9XQmCIAiCILyPQvpI2lbu3LmDjY0N4eHhSoPlhI/f3bt3sbS05J9//sl14KrwfxISEjAwMMDPzw8bG5siT+/ChQts27aNiIiIIv9snT17lpo1axZLWh+LrPfzxYsXYsovQfgIFdUzt6ierV/ic7QgPoVnbomv0Jiamkp8fDyjR4/m66+/Fn9In4CDBw/y8uVLqlatSnx8PCNHjsTGxibXecQFQRAEQRC+FCVeuD527Bje3t44ODjIKxoKH7fU1FR+/vlnbt26hZ6eHnXq1GHDhg15dicRBEEQBEH43JV44TqnkcDCx83HxwcfH5+SzoYgCIIgCMJHp8QL14LwpXry5Ik8RWNRevbsGYDS4kBFpTjSEARB+BCF/cwtqmereI5++kThWhBKyO7du4stLRUVFXkO8KKmra2NqalpsaQlCIKQX0XxzC2qZ6uqqiopKSmFHq9QPEThWhBKSJ8+feSpGovSwYMH2b9/P/369ct1IafCZGpqipWVVZGnIwiCUBD16tXLcZXlDxUXF8eZM2eYMmVKoT7LY2JiCAgIECv7fsJE4VoQSoi7uztubm5Fns69e/fYv38/ZcuWFbPxCILwxbK1tS306U/PnDmDr69voU/FV9Bl6YWPS7EsIiMIgiAIgiAIXwJRuBYEQRAEQRCEQiIK14XIz89PacltLy8vBg8eXGL5+a8KI/+hoaEoFAqeP3+e73PevY85sbGxYf78+fK2QqFgx44duYaPjY1FoVAQGRmZ73zk14dcoyAIgiAInydRuBaKtHBYp04d4uPjMTAwKNR4w8PD6dOnT77DW1paEh8fT5UqVQBRIBYEQRAEoWiIwvUn5s2bNyWdhQJRV1fHwsIChUJRqPGWLl0abW3tfIdXVVXFwsICNTUxhlcQBOFj96m3/ApfNlG4fktGRgYzZ87Ezs4ODQ0NrKys+OWXX+Tj9+7do3379hgZGWFiYkLLli2JjY39T2lOnToVMzMz9PT06NWrF6NHj8bFxUU+ntVFYvr06ZQtWxYHBwcALl68SIMGDdDS0sLExIQ+ffrw8uVL+ZiKigqPHz8GMie6V1FRoW3btnK806dPx93dndjYWLy9vQEwMjJCoVDg5+endE9GjhyJsbExFhYWTJw4sUDX924NcVBQEIaGhvz99984OTmhq6tLkyZNiI+Pz3bur7/+SpkyZTAxMeGnn34iNTVVPvZutxCA+Ph4mjZtipaWFhUqVOCPP/6Qj73dLeR91yxJErNmzaJixYpoaWlRvXp1tmzZopTO3r17cXBwQEtLC29v7//8NyAIgvApy+l5/F9t27aNKVOmFGqcglBcROH6LWPGjGHmzJkEBARw5coVNm7ciLm5OQBJSUl4e3ujq6vL4cOHOXr0qFww/NDa5A0bNvDLL78wc+ZMIiIisLKyYunSpdnCHThwgKioKPbv38+ePXtISkqiSZMmGBkZER4ezh9//ME///yDv78/AFWqVMHExISwsDAADh8+jImJCYcPH5bjDA0NxdPTE0tLS7Zu3QrAtWvXiI+PZ8GCBXK44OBgdHR0OHXqFLNmzWLy5Mns37//g643S1JSEr/++ivr1q3j8OHDxMXFMXz4cKUwhw4dIjo6mkOHDhEcHExQUBBBQUHvjTcgIIA2bdpw/vx5OnfuTIcOHXJc6ep91zxu3DgCAwNZunQply9fZsiQIXTu3Fm+l3fu3KF169b4+voSGRkp/yB6n5SUFBISEpRegiAIQu6MjY3R09Mr6WwIwgcRhev/LzExkQULFjBr1iy6deuGra0tdevWlRfd2Lx5MyoqKqxatYqqVavi5OREYGAgcXFxhIaGflCaixYtomfPnnTv3h0HBwfGjx9P1apVs4XT0dFh1apVVK5cmSpVqrBhwwZev37N2rVrqVKlCg0aNGDx4sWsW7eOf//9F4VCQf369eV8hYaG0q1bNzIyMrhy5QppaWkcP34cLy8vVFVVMTY2BsDMzAwLCwul/tHVqlVjwoQJ2Nvb07VrV9zc3Dhw4MAHXW+W1NRUli1bhpubG66urvj7+2eL08jIiMWLF1OpUiWaN29Os2bN8ky3bdu29OrVCwcHB6ZMmYKbmxuLFi3KFi63a3716hVz585lzZo1+Pj4ULFiRfz8/OjcuTPLly8HYOnSpVSsWJF58+bh6OhIp06dlGr6czJ9+nQMDAzkl6WlZQHuliAIQs5CQkKoW7cuhoaGmJiY0Lx5c6Kjo4H/a63bvHkzderUQVNTk8qVK2f7vgoLC6N27dpoaGhQpkwZRo8eTVpamnzcy8sLf39//P395XTGjRuHJEny8du3bzNkyBAUCoVSF8CtW7dSuXJlNDQ0sLGxYc6cOUppL1myBHt7ezQ1NTE3N+f7779XSvftbiHvCysIHxtRuP7/oqKiSElJoWHDhjkej4iI4ObNm+jp6aGrq4uuri7GxsYkJyfLD7OCunbtGrVr11ba9+42QNWqVVFXV1fKa/Xq1dHR0ZH3eXh4kJGRwbVr14DMB1PWQzQsLAxvb2/q169PWFgY4eHhvH79Gg8PjzzzWK1aNaXtMmXK8PDhw3xfY060tbWxtbV9b5yVK1dGVVW1QOm6u7tn286p5jo3V65cITk5mcaNG8vvsa6uLmvXrpXf46ioKL7++mulL5B3033XmDFjePHihfy6c+dOvvMkCIKQm1evXjF06FDCw8M5cOAAKioqfPfdd2RkZMhhRowYwbBhwzh37hx16tTh22+/5cmTJ0BmV0dfX19q1arF+fPnWbp0KatXr2bq1KlK6QQHB6OmpsapU6dYuHAh8+bNY9WqVUBm943y5cszefJk4uPj5S5+ERERtGvXjh9++IGLFy8yceJEAgIC5BbIM2fOMHDgQCZPnsy1a9cICQmhfv36OV5nQcIKwsdAjO76/7S0tN57PCMjg5o1a7Jhw4Zsx/7LcqrvDvTLqg1429uF6KwwuQ0QzNrv5eXFoEGDuHnzJpcuXaJevXpER0cTFhbG8+fPqVmzZr6a3EqVKpUt/rcf3B8ipzjfve7CSrcgAymz4v/zzz8pV66c0rGsZWhzen/yoqGhIZaxFQSh0LVp00Zpe/Xq1ZiZmXHlyhV0dXUB8Pf3l8MtXbqUkJAQVq9ezciRI1myZAmWlpYsXrwYhUJBpUqVuH//PqNGjWL8+PGoqGTWv1laWjJv3jwUCgWOjo5cvHiRefPm0bt3b4yNjVFVVUVPTw8LCws5L3PnzqVhw4bySoMODg5cuXKF2bNn4+fnR1xcHDo6OjRv3hw9PT2sra2pUaNGjtdZkLCQ2RUvJSVF3hZd8YTiJmqu/z97e3u0tLRy7Xrg6urKjRs3MDMzw87OTun1odPMOTo6cvr0aaV9Z86cyfM8Z2dnIiMjefXqlbzv2LFjqKioyAMes/pdT506lerVq6Ovr4+npydhYWFyf+ssWbXi6enpH3QdH4uTJ09m265UqVKOYXO6ZmdnZzQ0NIiLi8v2Hmd15XB2ds4xHUEQhOIWHR1Nx44dqVixIvr6+lSoUAHILIxmebtlTU1NDTc3N7lFLyoqCnd3d6VKCA8PD16+fMndu3flfTm11t24ceO93xlRUVHZWkc9PDzk8xo3boy1tTUVK1akS5cubNiwgaSkpBzjKkhYEF3xhJInCtf/n6amJqNGjWLkyJFyN4CTJ0+yevVqADp16oSpqSktW7bkyJEjxMTEEBYWxqBBg5QeQgUxYMAAVq9eTXBwMDdu3GDq1KlcuHAhz9rWTp06oampSbdu3bh06RKHDh1iwIABdOnSRR6AmdXvev369Xh5eQGZXTzevHnDgQMH5H0A1tbWKBQK9uzZw6NHj+RZRz41f/zxB2vWrOH69etMmDCB06dPy4M835XTNevp6TF8+HCGDBlCcHAw0dHRnDt3jv/9738EBwcD8OOPPxIdHc3QoUO5du0aGzduzHOgpSAIQlFo0aIFT548YeXKlZw6dYpTp04BeU/ZmvUdk1MraFbr3H+dPvV9cQPo6elx9uxZNm3aRJkyZRg/fjzVq1fPce2BgoQF0RVPKHmicP2WgIAAhg0bxvjx43FycqJ9+/ZyP19tbW0OHz6MlZUVrVu3xsnJiR49evD69Wv09fU/KL1OnToxZswYhg8fjqurKzExMfj5+aGpqfne87S1tfn77795+vQptWrV4vvvv6dhw4YsXrxYKZy3tzfp6elyQVqhUFCvXj0A6tatK4crV64ckyZNYvTo0Zibm+daIM2Jn5+fUkG9JE2aNInNmzdTrVo1goOD2bBhA87OzjmGze2ap0yZwvjx45k+fTpOTk74+Piwe/duuUbIysqKrVu3snv3bqpXr86yZcuYNm1asV2jIAgCwJMnT4iKimLcuHE0bNgQJycnnj17li3c2y1raWlpREREyC16zs7OHD9+XKnQe/z4cfT09JS6xuXUWmdvby+Pi1FXV89Wi+3s7MzRo0eV9h0/fhwHBwf5PDU1NRo1asSsWbO4cOECsbGxHDx4MMfrLUhYDQ0N9PX1lV6CUJwU0od0IhWKTOPGjbGwsGDdunUlnZV88fLywsvLq8DzX3/JEhISMDAwIDAwEDc3tyJPb/ny5SxevJgpU6Ywbty4Ik/vS5P1fr548UJ8iQvFJiMjAzMzM5o2bcqECROIi4tj9OjRhIeHs337dlxcXKhQoQJWVlbMnz8fJycn5s2bx8aNG4mJicHU1JR79+7h4OBA9+7d8ff359q1a/Tq1YuffvpJfqZ7eXkRERFB79696du3L2fPnqV3797MmTOHvn37AvDNN9+gpaXFkiVL0NDQwNTUlLNnz1KrVi0mTpxI+/btOXHiBP369WPJkiX4+fmxZ88ebt26Rf369TEyMmLv3r34+/tz4cIFKleujJeXFy4uLsyfPz/PsHnJ+oz6+flhY2NTaO/BhQsX2LZtGxEREbi6uhZavGfPnqVmzZqFHu/n4lN45ooBjSUoKSmJZcuW4ePjg6qqKps2beKff/75z/NIF5fExESio6PZs2dPSWdFEAThi6KiosLmzZsZOHAgVapUwdHRkYULF2ZrSZwxYwYzZ87k3Llz2NrasnPnTkxNTYHMFry9e/cyYsQIqlevjrGxMT179sz2I7xr1668fv2a2rVro6qqyoABA+jTp498fPLkyfTt2xdbW1tSUlKQJAlXV1d+//13xo8fz5QpUyhTpgyTJ0+Wpy41NDRk27ZtTJw4keTkZOzt7dm0aVOOheWChBWEj4EoXJcghULB3r17mTp1KikpKTg6OrJ161YaNWpU0lnLFz09PdGXTRAEoYQ0atSIK1euKO3LaozOWjnWycnpvYOuPT09sw2sf1epUqWYP39+joucQeaAx/Pnz2fb36ZNm2wzmmSpW7fue9eIePtYXmEF4WMjCtclSEtLi3/++aeksyEIgiAIgiAUElG4FoQSEhsbi7a2dpGn818X/REEQRAEIf9E4VoQSsikSZOKNb3/uviPIAifDhsbmw9a9OpdojuGIBScKFwLQgnp06ePPMVfUTp48CD79++XV1sTBEEQBKHoiMK1IJQQd3f3YpmK7969e5/MDDSCIAiC8KkTVVmCIAiCIAiCUEhEzbUgCIIgCJ+9J0+eoK6uXmjxZa2IGRUVVWhxFkV8QvEThescBAUFMXjwYJ4/f17SWSl2EydOZMeOHURGRhZKfG+vspUfsbGxVKhQgXPnzuHi4pJjmHffn/zk2c/Pj+fPn7Njx44C5T8/CnqNgiAIQvHbvXt3ocepoqJC586diyTeixcvihUaP1GicJ2D9u3b4+vrW9LZKBHDhw9nwIABhRbftm3bKFWqVKHFBx/2/ixYsEBp5LwoEAuCIHxZimIQeVpaGmpqhVuUyhqELhZp+3R9cYXr1NTUPAt7WlpaaGlpFVOOPi66urro6uoWWnzGxsaFFleWD3l/DAwMCj0fgiAIwqejuAaR/1diEPqn76Mf0JiRkcHMmTOxs7NDQ0MDKysrfvnlF/n4qFGjcHBwQFtbm4oVKxIQEEBqaqp8fOLEibi4uLBmzRoqVqyIhoYGkiTx/Plz+vTpg7m5OZqamlSpUoU9e/YAmd0ODA0Ns8Wxbt06bGxsMDAw4IcffiAxMVEOk5KSwsCBAzEzM0NTU5O6desSHh6udC27du3C3t4eLS0tvL29CQ4ORqFQKHU/OX78OPXr10dLSwtLS0sGDhzIq1ev5OM2NjZMmzaNHj16oKenh5WVFStWrFBK5969e7Rv3x4jIyNMTExo2bKlvBQuZM5bWrt2bXR0dDA0NMTDw4Pbt28rXWt+wuaHl5cXgwcPLlD+AW7duoW3tzfa2tpUr16dEydOyMfefX+yLF++HEtLS7S1tWnbtq3SffXz86NVq1by/8PCwliwYAEKhQKFQiHfnytXruDr64uuri7m5uZ06dKFx48fy/G8evWKrl27oqurS5kyZZgzZ06+74UgCIIgCJ+/j75wPWbMGGbOnElAQABXrlxh48aNmJuby8f19PQICgriypUrLFiwgJUrVzJv3jylOG7evMnvv//O1q1biYyMJCMjg6ZNm3L8+HHWr1/PlStXmDFjBqqqqrnmIzo6mh07drBnzx727NlDWFgYM2bMkI+PHDmSrVu3EhwczNmzZ7Gzs8PHx4enT58CmX2Jv//+e1q1akVkZCR9+/Zl7NixSmlcvHgRHx8fWrduzYULF/jtt984evQo/v7+SuHmzJmDm5sb586do3///vTr14+rV68CkJSUhLe3N7q6uhw+fJijR4+iq6tLkyZNePPmDWlpabRq1QpPT08uXLjAiRMn6NOnDwqFIts1FyRsQbwv/1nGjh3L8OHDiYyMxMHBgQ4dOpCWlpZrnFnv8e7duwkJCSEyMpKffvopx7ALFizA3d2d3r17Ex8fT3x8PJaWlsTHx+Pp6YmLiwtnzpwhJCSEf//9l3bt2snnjhgxgkOHDrF9+3b27dtHaGgoERER773elJQUEhISlF6CIAiCIHyePupuIYmJiSxYsIDFixfTrVs3AGxtbalbt64cZty4cfL/bWxsGDZsGL/99hsjR46U979584Z169ZRunRpAPbt28fp06eJiorCwcEBgIoVK743LxkZGQQFBaGnpwdAly5dOHDgAL/88guvXr1i6dKlBAUF0bRpUwBWrlzJ/v37Wb16NSNGjGDZsmU4Ojoye/ZsABwdHbl06ZJSLfzs2bPp2LGjXNNrb2/PwoUL8fT0ZOnSpWhqagLg6+tL//79gcya+3nz5hEaGkqlSpXYvHkzKioqrFq1Si4EBwYGYmhoSGhoKG5ubrx48YLmzZtja2sLgJOTU47XnJCQkO+wBfG+/GcZPnw4zZo1AzJXMqxcuTI3b95UCvO25ORkgoODKV++PACLFi2iWbNmzJkzBwsLC6WwBgYGqKuro62trXRs6dKluLq6Mm3aNHnfmjVrsLS05Pr165QtW5bVq1ezdu1aGjduDKCUZm6mT59e7KsxCoIgCIJQMj7qmuuoqChSUlJo2LBhrmG2bNlC3bp1sbCwQFdXl4CAAOLi4pTCWFtbywVrgMjISMqXLy8XrPPDxsZGLlgDlClThocPHwKZtdqpqal4eHjIx0uVKkXt2rXlKXWuXbtGrVq1lOKsXbu20nZERARBQUFyv2ddXV18fHzIyMggJiZGDletWjX5/wqFAgsLCzkvERER3Lx5Ez09PTkOY2NjkpOTiY6OxtjYGD8/P3x8fGjRogULFiwgPj4+x2suSNiCeF/+cwpTpkwZgGxh3mZlZaVUyHV3dycjI4Nr167lO18REREcOnRI6f5nFeajo6OJjo7mzZs3uLu7y+cYGxvj6Oj43njHjBnDixcv5JcYpCIIgiAIn6+PunCd16C1kydP8sMPP9C0aVP27NnDuXPnGDt2LG/evFEKp6OjU6B4c/LuIEiFQkFGRgaAPAvFu90lJEmS9739/7ePvy0jI4O+ffsSGRkpv86fP8+NGzfkmuO88pKRkUHNmjWV4oiMjOT69et07NgRyKzJPnHiBHXq1OG3337DwcGBkydP5njdBQmbX+/Lf05hsu7bu2HeJ+ucgnRhycjIoEWLFtnu3Y0bN6hfv3629yu/NDQ00NfXV3oJgiAIgvB5+qgL11mD/w4cOJDj8WPHjmFtbc3YsWNxc3PD3t4+X4PtqlWrxt27d7l+/Xqh5NPOzg51dXWOHj0q70tNTeXMmTNyN4pKlSplG+B45swZpW1XV1cuX76MnZ1dtld+J753dXXlxo0bmJmZZYvj7RkzatSowZgxYzh+/DhVqlRh48aNucZZkLAlJS4ujvv378vbJ06cQEVFJdfWCXV1ddLT05X2Zd1/GxubbPdOR0cHOzs7SpUqpfTj4tmzZ4X2dyQIBfH2IN3i9O6g55LKR2F6d+C1kF1h3SNxr4UvwUdduNbU1GTUqFGMHDmStWvXEh0dzcmTJ1m9ejWQWaiNi4tj8+bNREdHs3DhQrZv355nvJ6entSvX582bdqwf/9+YmJi+OuvvwgJCfmgfOro6NCvXz9GjBhBSEgIV65coXfv3iQlJdGzZ08A+vbty9WrVxk1ahTXr1/n999/JygoCPi/2tVRo0Zx4sQJfvrpJ7nGdNeuXQWad7pTp06YmprSsmVLjhw5QkxMDGFhYQwaNIi7d+8SExPDmDFjOHHiBLdv32bfvn1cv349x77UBQlb0jQ1NenWrRvnz5/nyJEjDBw4kHbt2mXrb53FxsaGU6dOERsby+PHj8nIyOCnn37i6dOndOjQgdOnT3Pr1i327dtHjx49SE9PR1dXl549ezJixAgOHDjApUuX8PPzQ0Xlo/4YCZ+pBQsWyM8QkY/8CQ0NzTZDk1A0crvX27ZtY8qUKSWTKUEoJh99qSAgIIBhw4Yxfvx4nJycaN++vdz3tmXLlgwZMgR/f39cXFw4fvw4AQEB+Yp369at1KpViw4dOuDs7MzIkSOz1WQWxIwZM2jTpg1dunTB1dWVmzdv8vfff2NkZARAhQoV2LJlC9u2baNatWosXbpUni1EQ0MDyKxRDwsL48aNG9SrV48aNWoQEBAg9znOD21tbQ4fPoyVlRWtW7fGycmJHj168Pr1a/T19dHW1ubq1au0adMGBwcH+vTpg7+/P3379s0xrveFjY2NRaFQEBoa+sH3rbDY2dnRunVrfH19+eabb6hSpQpLlizJNfzw4cNRVVXF2dmZ0qVLExcXR9myZTl27Bjp6en4+PhQpUoVBg0ahIGBgVyAnj17NvXr1+fbb7+lUaNG1K1bl5o1axbXZQqCzMDAIMcpKb/UfHxp0tPTC9RV7mNhbGysNH5JED5LklBipk6dKpUvX76ks/HBDh06JBkaGkpPnz4t6ax8Ul68eCEBUmBgoHTx4sUif/n7+0uANGXKlJK+9M9S1vv54sWLQo/7jz/+kKpUqSJpampKxsbGUsOGDaWXL19KkiRJ3bp1k1q2bCmHTUhIkDp27Chpa2tLFhYW0ty5cyVPT09p0KBBchhra2vpl19+kbp37y7p6upKlpaW0vLly5XSHDlypGRvby9paWlJFSpUkMaNGye9efNGPj5hwgSpevXq8va7+fD09JQGDBggjRgxQjIyMpLMzc2lCRMmKKURFRUleXh4SBoaGpKTk5O0f/9+CZC2b9+e673w9PSUfvrpJ+mnn36SDAwMJGNjY2ns2LFSRkaGHGbdunVSzZo1JV1dXcnc3Fzq0KGD9O+//0qSJEkxMTESoPTq1q1bvvI8dOhQqXnz5vL2vHnzJEDas2ePvM/BwUFatmyZJEmSdPr0aalRo0aSiYmJpK+vL9WvX1+KiIiQw3bv3l1q1qyZ0vWlpqZK5ubm0urVq3O8/sDAQMnAwEDavXu35OTkJKmqqkq3bt2SUlJSpBEjRkhly5aVtLW1pdq1a0uHDh1SOnfFihVS+fLlJS0tLalVq1bSnDlzJAMDA/n4u++hJEnSoEGDJE9PT6X7//bf0n+512/H8/TpU6lLly6SoaGhpKWlJTVp0kS6fv16tusOCQmRKlWqJOno6Eg+Pj7S/fv3c7xPOSnuZ654ZhetonzmFpaPvub6c7JkyRLCw8O5desW69atY/bs2fIUg5+ikJAQfv75Z7l2XhCEwhMfH0+HDh3o0aMHUVFRhIaG0rp161wH1g4dOpRjx46xa9cu9u/fz5EjRzh79my2cHnNM5+ftQPyEhwcjI6ODqdOnWLWrFlMnjxZXnEuIyODVq1aoa2tzalTp1ixYkW2Of/fF6+amhqnTp1i4cKFzJs3j1WrVsnH37x5w5QpUzh//jw7duwgJiYGPz8/ACwtLdm6dSuQOXtTfHw8CxYsyFeevby8OHLkiFxTHBYWhqmpKWFhYQA8ePCA69ev4+npCWROI9utWzeOHDnCyZMnsbe3x9fXV154rFevXoSEhCjNvrR3715evnz5/9q776gqjreB499LByliwYIIIoioIAIhggqoKIoaa+wFu0ZjrMESDCrG2I36sytYUJPYY+wC9hKwC2IXC0ZFI1jo+/7BYV+udASxzOece453d3Z2di/OnTs784xSXP13vXnzhhkzZrBq1SquXr2KkZERffv25cSJE2zevJlLly7x7bff0qJFC27cuAGkz00aMmQIP/zwAxcuXKBZs2ZKIWAL633udWbe3t6EhYWxa9cuTp06hSRJeHl5KS0G9+bNG+bMmcP69es5evQo0dHRjB07NseyibUFhJL2Uce5/tzcuHEDf39/nj9/TtWqVRkzZgwTJkwo6WIVWuZFdARBKFoxMTGkpKTQoUMHTE1NAbCxsck2bXx8PGvXrmXjxo1y6NKAgAAqV66cJW1ecebzs3ZAXmxtbfn555+B9Inpixcv5vDhwzRr1owDBw5w69YtQkND5TkR06dPl2PH58bExIT58+ejUCiwsrLi8uXLzJ8/n4EDBwLQr18/Oa25uTkLFy7EycmJV69eyWFJAYyMjLIMZcmtzK6ursTHx3P+/Hns7e05duwYY8eOZdu2bQCEhIRQoUIF+R42adJEKe/ly5djaGjIkSNHaN26NS4uLlhZWbF+/Xr5vgYEBPDtt9+iq6ub4/UnJyezZMkS6tatC6SHCN20aRMPHjyQP+uxY8eyb98+AgIC+OWXX1i0aBEtW7aUG6M1atTg5MmT8orEhfU+9zpDxryiEydO4OLiAkBQUBAmJibs2LGDb7/9Vr7uZcuWyVGzhg8fztSpU3Msm1hbQChpouf6A5o/fz6PHj0iISGB69ev4+vri5qa+H0jCEJWdevWpWnTptjY2PDtt9+ycuVKXrx4kW3a27dvk5ycrBQ738DAINsY7HnFmc/P2gF5yXwOUF4XICoqChMTE6XJxu/G/M9J/fr1lcJrOjs7c+PGDXm+zPnz52nbti2mpqbo6enh7u4OkK/y51ZmAwMD7OzsCA0N5fLly6ioqDB48GAuXrxIfHw8oaGhcq81pMfkHzJkCDVq1MDAwAADAwNevXqlVI4BAwYQEBAgp//777+VGqzZ0dDQUCrnuXPnkCSJGjVqKMXnP3LkCLdu3QLS7/e79ze/9zs373OvM0RGRqKmpsbXX38tbytbtixWVlbyGhGQPv8nczjazJ9NdsTaAkJJEy07QSghp06d4vHjx8V+noIspCN8PFRVVTl48CAnT57kwIEDLFq0iEmTJnHmzBmqVaumlFbKJdb+u3KLM5+xdsCUKVPw9PTEwMCAzZs3M3fu3AKVPa91AQoSfz6/Xr9+TfPmzWnevDkbNmyQJyp7enpmWfugoGWG9KEhoaGhaGho4ObmhqGhIbVr1+bEiROEhoYqhZfz9vbm6dOnLFiwAFNTUzQ1NXF2dlYqR+/evRk/fjynTp3i1KlTmJmZ0ahRo1zLqK2trXTv0tLSUFVVJTw8HFVVVaW0GT3g2d3vd/8uVFRUsmzLPCzjXe97r3MqR+btmcuc3WeT07GQHiQgI1CAIJQE0bgWhBKyYsWKD3o+ExOTD3o+4f0pFAoaNGhAgwYNmDx5Mqampmzfvp3Ro0crpatevTrq6uqcPXtW/pzj4uK4ceOGUo9qXjKvHZAhP2sHFETNmjWJjo7m33//pUKFCgBZ1gDIybsLWGWMZ1ZVVeXatWs8e/aMX3/9Vb4H764lkLFeQGEiQ7m7u7N69WrU1NTw8PAA0sO6bt68WWm8NcCxY8dYsmQJXl5eANy/f59nz54p5Ve2bFnatWsnL9TVt2/fApepXr16pKam8uTJkxwb5jVr1uTs2bNK2969L+XLl+fKlStK2y5cuJClUZuhqO51rVq1SElJ4cyZM/KwkNjY2I825Ksg5JdoXAtCCVmxYsUHCeMXGRlJz549cxyvK3yczpw5w+HDh2nevDlGRkacOXOGp0+fZtvo0NPTo0+fPowbN44yZcpgZGTEzz//jIqKSoF6iTOvHfDVV1/x999/52vtgIJo1qwZ1atXp0+fPsyaNYv4+Hi5MZ9XWe/fv8/o0aMZPHgw586dY9GiRXKvetWqVdHQ0GDRokUMGTKEK1euZImnbGpqikKhYPfu3Xh5eaGtrZ3rGOfMMsZd//XXX/j7+wPpDe6OHTtSvnx5atWqJae1sLBg/fr1ODo6EhcXx7hx47JdGXjAgAG0bt2a1NTUQk1ur1GjBj169KB3797MnTuXevXq8ezZM4KDg7GxscHLy4vvv/8eV1dX5s2bR5s2bQgODmbv3r1K97pJkybMnj2bdevW4ezszIYNG7hy5Qr16tXL9rxFda8tLS1p27YtAwcOZPny5ejp6TF+/HiMjY1p27Ztge+HIHwsRONaEEqIlZUV9vb2JV0M4SOlr6/P0aNHWbBgAXFxcZiamjJ37lxatmyZbfp58+YxZMgQWrdujb6+Pj/++CP3799HS0sr3+fMvHZAYmIirVq1wtfXFz8/vyK6qvThLjt27GDAgAF89dVXmJubM3v2bNq0aZNnWXv37s3bt29xcnJCVVWV77//nkGDBgHpva+BgYFMnDiRhQsXYm9vz5w5c/jmm2/k442NjZkyZQrjx4+nb9++9O7dO98L4BgYGFCvXj2io6PlhnSjRo1IS0vL8nRgzZo1DBo0iHr16lG1alV++eWXbKNbeHh4UKlSJWrXrp3t5NP8CAgIwN/fnzFjxvDw4UPKli2Ls7Oz3GveoEEDli1bxpQpU/jpp5/w9PRk1KhRLF68WM7D09MTX19ffvzxRxISEujXrx+9e/fm8uXL2Z6zKO91QEAAP/zwA61btyYpKQlXV1f27NmTY6+5IHwKFFJuA5cEQShycXFxGBgYcOTIEVxdXYv9fOfOncPBwYHw8HDRmC8GGZ/ny5cv0dfXL+niyF6/fo2xsTFz586VV4r9WJ04cYKGDRty8+ZNpYlrmbm7u2NnZ8eCBQs+bOGK0Zs3b6hcuTJr1qyhQ4cOH+y8AwcO5Nq1axw7duyDnbMkZfwfDQgIwNHRsaSLk6fly5ezePFipk2bphS9R0j3sda5mYmea0EQhM/A+fPnuXbtGk5OTrx8+VIOVfYxPl7fvn07urq6WFpacvPmTX744QcaNGiQY8P6c5OWlsbjx4+ZO3cuBgYGSj2+xWHOnDk0a9aMUqVKsXfvXtauXZvrCraCILwf0bh+T97e3vz333/s2LEDKL7eFTMzM0aOHCnPSFcoFGzfvp127doV6XkyvHtdH4u7d+9SrVo1zp8/j52dXUkXB4DQ0FAaN27Mixcv3nsZ6NTU1Fxn6ReGJEmYmpoiSRIJCQlFmvfnSF1dPUvkhU/FnDlziIqKQkNDAwcHB44dO0a5cuVKulhZxMfHy8NWypUrh4eHR4EjknzKoqOjqVatGlWqVCEwMLDYQ7KePXtWHt+eEZN6wIABxXpOQfiSica1kK3ffvst11BHH4uibNiWtFevXvHgwYMiv+9qamosW7YMNTU17ty5U6R5f44UCgVVqlTJ90S3j0W9evUIDw8v6WLkS+/evendu3eBjgkNDS2ewpQAMzOzD1q//vHHHx/sXIIgiMa1kAMDA4OSLsIHJUkSqampJbaoT2pqKg8ePEBHR4fy5csXaRzgN2/ekJycjImJCTo6OkWW7+dIkiSePn3KgwcP5BBvgiAIglAQX/wKjWlpacycORMLCws0NTWpWrUq06dPl/c/fPiQLl26YGhoSNmyZWnbti13794t9Plu3bpF27ZtqVChArq6unz11VccOnRIKc2TJ09o06YN2traVKtWjaCgoGzzevbsGe3bt0dHRwdLS0t27dqltD8iIgIvLy90dXWpUKECvXr1Uoq1umXLFmxsbNDW1qZs2bJ4eHjw+vVrIH1YSOYhJ4mJiYwYMQIjIyO0tLRo2LChUmza0NBQFAoFhw8fxtHRER0dHVxcXAq8gMm+ffto2LAhpUuXpmzZsrRu3Vpeaexdd+/epXHjxgAYGhqiUCjw9vYG0htJs2bNwtzcHG1tberWrcuWLVuylHf//v04OjqiqanJsWPH8jwOYM+ePdSoUQNtbW0aN278Xn8PGZKTk5EkifLly6OtrY2WllaRvTIWU9DU1CzSfD/Hl7a2NuXLl0eSpCIfniMIgiB8Gb74nusJEyawcuVK5s+fT8OGDYmJieHatWtAeo9f48aNadSoEUePHkVNTQ1/f39atGjBpUuX5CD5BfHq1Su8vLzw9/dHS0uLtWvX0qZNG6KioqhatSqQ3rC9f/8+wcHBaGhoMGLEiGyXep0yZQqzZs1i9uzZLFq0iB49enDv3j3KlClDTEwMbm5uDBw4kHnz5vH27Vt8fHzo3LkzwcHBxMTE0K1bN2bNmkX79u2Jj4+XG5fZ+fHHH9m6dStr167F1NSUWbNm4enpyc2bNylTpoycbtKkScydO5fy5cszZMgQ+vXrx4kTJ/J9f16/fs3o0aOxsbHh9evXTJ48mfbt23PhwgVUVJR/C5qYmLB161Y6duxIVFQU+vr6cizZn376iW3btrF06VIsLS05evQoPXv2pHz58kphs3788UfmzJmDubk5pUuXzvO4+/fv06FDB4YMGcLQoUMJCwtjzJgxuV5TYmIiiYmJ8vu4uLgc0xbHynVCwYjPQBA+T8WxKm5KSkqRP/EUq+p+BqQvWFxcnKSpqSmtXLky2/2rV6+WrKyspLS0NHlbYmKipK2tLe3fv1+SJEnq06eP1LZtW3m/m5ub9MMPPxSoHLVq1ZIWLVokSZIkRUVFSYB0+vRpeX9kZKQESPPnz5e3AdJPP/0kv3/16pWkUCikvXv3SpIkSb6+vlLz5s2VznP//n0JkKKioqTw8HAJkO7evZttmTJf16tXryR1dXUpKChI3p+UlCRVrlxZmjVrliRJkhQSEiIB0qFDh+Q0f//9twRIb9++LdD9yOzJkycSIF2+fFmSJEm6c+eOBEjnz59XOu+LFy+U7oWWlpZ08uRJpbz69+8vdevWTem4HTt2FOi4CRMmSNbW1kp/Ez4+PlnKkNnPP/8sAVleR44ckdO8fftWioiIyPNe1a1bV6pbt65kbW0tqaqqyu87d+6c4zGvXr2S/vnnH+nVq1e55l1YkydPlmrWrCk5OTll2denTx/5b7skzZ8/X/r333/zlTa/n0WGly9fSoD08uXL9ymiIAjFJOP/aHG8VFRUii3vwMDAkr51H6VPoc79onuuIyMjSUxMpGnTptnuDw8P5+bNm+jp6SltT0hIyHGoQl5ev37NlClT2L17N48ePSIlJYW3b98SHR0tl0lNTU0pFmfNmjWznaxna2sr/7tUqVLo6enJPdzh4eGEhIRkOynr1q1bNG/enKZNm2JjY4OnpyfNmzenU6dOGBoaZps+OTmZBg0ayNvU1dVxcnIiMjIyxzJVqlQJSB/mktErn5dbt27h6+vL6dOnefbsGWlpaUD67Po6derkK4+IiAgSEhJo1qyZ0vakpKQsK45lvs/5OS4yMpL69esr9W46OzvnWp4JEyYoLVcdFxdX6KXIL1y4AKQPiXF0dJTfl6RZs2YRHR1N+fLlS7ooOVqwYAEeHh4YGRmVdFEEQSghbdq0kb+XisKNGzcICQlhw4YNRbpcu1hV99P3RTeus1uONrO0tDQcHByyHfNc2IbEuHHj2L9/P3PmzMHCwgJtbW06depEUlISgDwsIz+Ppt9dwUqhUMiN0bS0NNq0acPMmTOzHFepUiVUVVU5ePAgJ0+e5MCBAyxatIhJkyZx5swZqlWrppQ+pzJJkpRlW+YyZezLKFN+tGnTBhMTE1auXEnlypVJS0ujTp068v3Jj4zz/f333xgbGyvtyxh/nKFUqVIFOk4qxAx/TU3NLOctSrNnz+bmzZssX74cgP/++w8LCwuuX7/Orl27WLduHZA+Rt/Q0JD169fLP3bmzJnDH3/8QUpKChUrVmT58uXZNvz37dvHxIkTSUlJwdDQkKVLl1KrVi1cXFxISEigadOmuLu7s3DhwhzL6efnR1RUFPHx8Vy7dg17e3smTJjAmDFjuHv3Lu3atWPevHnA/4e0vHDhAg8fPqRdu3bMmjULhULBvHnz2LRpEykpKairq7No0SK+/vprIP2x748//khcXBySJDFt2jQuXrzIo0eP6NSpE1paWgQGBn40YRwFQfhwypYtW+iVMLOTMYfJ2tpaLNAlKPmiG9eWlpZoa2tz+PDhbGN+2tvb8/vvv2NkZFRkqwAdO3YMb29v2rdvD6SPwc48Ic7a2pqUlBTCwsJwcnIC0sdf/ffffwU6j729PVu3bsXMzCzH8WAKhYIGDRrQoEEDJk+ejKmpKdu3b1fqZQWwsLBAQ0OD48eP0717dyB9Al5YWJgcd7soxMbGEhkZyfLly2nUqBEAx48fz/WYjHHvqamp8rZatWqhqalJdHR0lmWJc5Of42rVqpUl9vfp06fzfY7iMHDgQKysrJg1axYGBgasXr2atm3bymPhT506xfr162nZsiX/+9//GDJkCHv27GHjxo1cv36dU6dOoaqqyvr16xk+fDg7d+5Uyv/Jkyf07NmTkJAQbGxsCAoKonPnzly5coWTJ0+iUCg4efJkvkLXhYWFERYWhq6uLvb29owfP569e/eSkpJCtWrVGDJkCDVq1ADSnyQcPHiQ5ORkXF1d+fPPP+ncuTO9evWS/0ZPnz5N//79uXLlCs+fP6d9+/Zs27YNFxcX0tLS+O+//2jbti1r1qxhy5Yt+X76IQiCIAiF9UVHC9HS0sLHx4cff/yRdevWcevWLU6fPs3q1asB6NGjB+XKlaNt27YcO3aMO3fucOTIEX744QcePHhQqHNaWFiwbds2Lly4wMWLF+nevbtSz66VlRUtWrRg4MCBnDlzhvDwcAYMGJBnL/u7hg0bxvPnz+nWrRtnz57l9u3bHDhwgH79+pGamsqZM2f45ZdfCAsLIzo6mm3btvH06dNsH22VKlWKoUOHMm7cOPbt20dERAQDBw7kzZs3RbqsckZElhUrVnDz5k2Cg4OzNPTfZWpqikKhYPfu3Tx9+pRXr16hp6fH2LFjGTVqFGvXruXWrVucP3+e//3vf6xduzbHvPJz3JAhQ7h16xajR48mKiqKjRs3EhgYWGT3oDBKly5Nx44dCQwMRJIkli5dyvDhw+X9zs7OmJmZATBo0CBCQkKQJIkdO3Zw6NAhHBwcsLOzY9asWdy7dy9L/mfOnMHOzk5+RNmjRw8ePHhATExMgcvq6emJgYEBqqqq2Nra0qxZMzQ1NSlVqhRWVlbcvn1bTtunTx/U1dXR0dGhZ8+eclSd8+fP4+bmRp06dRgyZAgREREkJSVx6tQpuTcdQEVFRWmyrSAIgiB8CF90zzWAr68vampqTJ48mUePHlGpUiWGDBkCgI6ODkePHsXHx4cOHToQHx+PsbExTZs2LXRP9vz58+nXrx8uLi6UK1cOHx+fLNEjAgICGDBgAG5ublSoUAF/f398fX0LdJ7KlStz4sQJfHx88PT0JDExEVNTU1q0aIGKigr6+vocPXqUBQsWEBcXh6mpKXPnzqVly5bZ5vfrr7+SlpZGr169iI+Px9HRkf3792c7RjsnGasrhoSE4O7unmW/iooKmzdvZsSIEdSpUwcrKysWLlyYbdoMxsbGTJkyhfHjx9O3b1969+5NYGAg06ZNw8jIiBkzZnD79m1Kly6Nvb09EydOzLWMeR1XtWpVtm7dyqhRo1iyZAlOTk788ssv9OvXL9/3oTiMGDGCdu3aUb16dSpUqJBlbHl2JEnip59+yrPs2Q3/gcJF1dDS0pL/raqqmuV9SkpKjscqFAqSkpLo2LEjoaGhODg4EBcXh4GBQYGGDQmCIAhCcfriG9cqKipMmjSJSZMmZbu/YsWKufZ2vttrmdcqYmZmZgQHByttGzZsWJZz7t69W2lbr169lN5nN/b33aEjlpaWbNu2LdtyWFtbs2/fvhzL+e51aWlpsXDhwhzH1Lq7u2cpk52dndK2u3fvUrp0aerWrZvjeT08PIiIiFDaljmP7FY28/X1zfLjQ6FQMGLECEaMGJHv8ubnOIDWrVvTunVrpW19+/bNMf2HULNmTczMzBg6dCizZs1S2nf69Gnu3buHtbU1q1atokmTJigUCr755ht+++032rVrR5kyZUhOTubKlStZGubOzs7079+fyMhIrK2t2bx5M1WqVKFixYrFek3r16+nS5cuJCcns3HjRsaNG0dCQoK8IA7AokWL5PQuLi4MGDCAkydPKg0LKVOmDPr6+rx8+bJYyysIgiAI8IUPCxE+rIxJcQXp7Rbyb+DAgaSkpNCpUyel7Q0bNmTlypU4Ozvz119/sWTJEiD9B1vPnj1xd3enbt262NnZERISkiXf8uXLs379enr06EHdunVZunTpB1lO2d7eHg8PD2xtbXFzc6NTp07o6+szdepUnJyccHV1VZooamhoyPbt2xk3bhy2trbUq1dPHrM/YsQI+vbtK0+SFARBEITiopAKE/5AEIRCyxjKcOTIEVxdXYH08I537tyhWrVqSkMlCuK7776jUqVKSr34gYGB7Nixg59++glra2ul6CgfM3d3d8aOHZvlCcGHUNDPIuPzfPnyZZFNfP7cZER/WbBgQaGO9/b25r///ssymbioZQxdO3/+/BcXUeZD3OPQ0FAaN27Mixcvsg0vW1wy/o96e3vL80+KwqVLl9i2bRvh4eFFGi3k3LlzODg4FHm+n4tPoc4VPdeC8Il79OgRNWvW5MKFC0UavUX4MpmZmRW6EfyxCA0NRaFQFDjK0pfst99+K9LJ2e7u7lnqIxcXF2JiYjAwMCiy8wjCx+iLH3MtCCUlKipKDl8nSRJqamq8efNGKaxgfhgYGBAeHi6/f/36tfzvb7/9ljZt2nDnzp2iKfQHktfcBUH4WCQlJckhQYtSamoqCoUCFZUP0wf2IRq8GhoaxT5XQxA+BqLnWhBKyKBBg3BwcMDBwYGOHTsSExPD7du3iYyMLNJXRsM6OTm5hK9Y+BDS0tKYOXMmFhYWaGpqUrVqVaZPnw5AkyZNlMI0Qnp8eU1NTYKDg3F3d+fevXuMGjUKhUKhFBFm69at1K5dG01NTczMzJg7d65SPkuWLMHS0hItLS0qVKiQZex/Zvv27cPAwEBe4Ojhw4d06dJFDsfZtm1bpfj/75IkiVmzZmFubo62tjZ169Zly5YtQPrQjsaNGwPp4/AVCgXe3t7yeRs2bEjp0qUpW7YsrVu3LvBqu2ZmZvj7++Pt7Y2BgQEDBw4E4OTJk7i6uqKtrY2JiQkjRoxQ+qH74sULevfujaGhITo6OrRs2ZIbN27I+wMDAyldujS7d++WY+7fu3ePmJgYWrVqhba2NtWqVWPjxo1Zni7MmzcPGxsbSpUqhYmJCd999x2vXr3Kkvf+/fuxtrZGV1eXFi1aKIXT9Pb2pl27dvI9zPj8M78yIjfFxsbSrVs3qlSpgo6ODjY2NmzatEkpryNHjvDbb7/Jx969ezfbJwp5/V2ZmZnJEZn09PSoWrUqK1asKNBnJggfmmhcC0IJadSoER06dKBDhw40b94cHR0d9PT0KF26dJG+dHR0AArcIy58miZMmMDMmTPx9fUlIiKCjRs3UqFCBQAGDBjAxo0bSUxMlNMHBQVRuXJlGjduzLZt26hSpQpTp04lJiZGbnyFh4fTuXNnunbtyuXLl/Hz88PX11ceRhAWFsaIESOYOnUqUVFR7Nu3T55P8K7NmzfTuXNn1q1bR+/evXnz5g2NGzdGV1eXo0ePcvz4cbnxl1OIxZ9++omAgACWLl3K1atXGTVqFD179uTIkSOYmJiwdetWIP3pUExMDL/99huQ/lRn9OjR/PPPPxw+fBgVFRXat29foFVkIX1V1Dp16hAeHo6vry+XL1/G09OTDh06cOnSJX7//XeOHz+u9EPG29ubsLAwdu3axalTp5AkCS8vL6UfvW/evGHGjBmsWrWKq1evYmRkRO/evXn06BGhoaFs3bqVFStW8OTJE6XyqKiosHDhQq5cucLatWsJDg7mxx9/VErz5s0b5syZw/r16zl69CjR0dGMHTs22+szMTGRP/+YmBjOnz9P2bJlleaIODg4sHv3bq5cucKgQYPo1asXZ86cAdKHmDg7OzNw4EA5j+xWfs3r7yrD3LlzcXR05Pz583z33XcMHTqUa9eu5fj5JCYmEhcXp/QShA9JDAsRhBJSvXp1eXJNqVKlUFdXR1tbO8cVNd/HmzdvijxP4eMTHx/Pb7/9xuLFi+nTpw+Q/nfWsGFDADp27Mj333/Pzp076dy5M5AeV9/b2xuFQkGZMmVQVVVFT09P6fH9vHnzaNq0qTxZtkaNGkRERDB79my8vb2Jjo6mVKlStG7dGj09PUxNTbONtb5kyRImTpzIzp075d7lzZs3o6KiwqpVq+Se8oCAAEqXLk1oaCjNmzdXyuP169fMmzeP4OBgnJ2dATA3N+f48eMsX74cNzc3efEgIyMjpYlzHTt2VMpr9erVGBkZERERUaDVO5s0aaLUMO3duzfdu3eXxxhbWlqycOFC3NzcWLp0Kffv32fXrl2cOHFCXuQoKCgIExMTduzYwbfffgukP11asmSJHK702rVrHDp0iH/++QdHR0cAVq1ahaWlpVJ5Mo9trlatGtOmTWPo0KFyZKCMvJctW0b16tUBGD58OFOnTs32+lRVVeXPPyEhgXbt2uHs7Iyfnx+Qvr5A5uv//vvv2bdvH3/++Sdff/01BgYGaGhooKOjk+swkLz+rjJ4eXnx3XffAeDj48P8+fMJDQ2lZs2a2eY7Y8YMpkyZkuN5BaG4iZ5rQRCEz0RkZCSJiYk0bdo02/2ampr07NmTNWvWAMgrxWZuyOSUb4MGDZS2NWjQgBs3bpCamkqzZs0wNTXF3NycXr16ERQUlOUH3datWxk5ciQHDhyQG9aQ3nt58+ZN9PT00NXVRVdXlzJlypCQkJDtkI2IiAgSEhJo1qyZnF5XV1deZTc3t27donv37pibm6Ovr0+1atUAiI6OzvW4d2U0dDNfQ2BgoFJ5PD09SUtL486dO0RGRqKmpsbXX38tH1O2bFmsrKyIjIyUt2loaGBrayu/j4qKQk1NTSlihIWFRZZwpiEhITRr1gxjY2P09PTo3bs3sbGxSsNSdHR05IY1QKVKlbL0gGenf//+xMfHs3HjRnn8d2pqKtOnT8fW1payZcuiq6vLgQMHCnwf8/q7ypD5nigUCipWrJhr2SdMmMDLly/l1/379wtULkF4X6LnWhA+Ug8fPuT58+fvnU9CQgKqqqpyQyInampqSr1348aNo0ePHvk+z927d+nUqRNhYWH5Psbb25tOnTrlO+Sen58f5cqVyzJuWEinra2dZ5oBAwZgZ2fHgwcPWLNmDU2bNsXU1DTXY7JbpTNzFFc9PT3OnTtHaGgoBw4cYPLkyfj5+fHPP//IPcd2dnacO3eOgIAAvvrqKzm/tLQ0HBwcCAoKynLe8uXLZ9mWMYTj77//xtjYWGlf5rjn2WnTpg0mJiasXLmSypUrk5aWRp06dQq8wue7IS3T0tIYPHhwtotPVa1alevXr2ebz7v3VVtbW+l9TpFyM2+/d+8eXl5eDBkyhGnTplGmTBmOHz9O//79lYacqKurK+WhUChyzD+Dv78/+/bt4+zZs+jp6cnb586dy/z581mwYIE81nvkyJEFvo95/V3lVvbchvJoamrm+bcgCMVJNK7f8W6sz/eNz5oTMzMzRo4cKT/OUygUbN++XZ5QUtQ+VJzYdxX0/uUnzmxgYCAjR46UJ8X4+fmxY8eOXBcHKc7rL46/kYcPH+Lm5sbbt2+LJD8tLS1Onz5N2bJlc0xTunRpscDKJ87S0hJtbW0OHz7MgAEDsk1jY2ODo6MjK1euZOPGjUqrXEJ67+m74/Nr1aolL8iT4eTJk9SoUQNVVVUg/ceZh4cHHh4e/Pzzz5QuXZrg4GA6dOgApA9PmTt3Lu7u7qiqqrJ48WIgfbGg33//HSMjo3zFrM2Y7BcdHY2bm1u2aTKid2S+jtjYWCIjI1m+fDmNGjUCyHJNhWVvb8/Vq1exsLDIscwpKSmcOXNGHhYSGxvL9evXsba2zjHfmjVrkpKSwvnz53FwcADg5s2bShMCw8LCSElJYe7cuXLPclEs8rR161amTp3K3r17lXq8AY4dO0bbtm3p2bMnkP7j4saNG0rXkt3f0bvy83clCJ8i0bj+Qvz222959lIUh23btmXpdXhfXbp0wcvLq0DHvHv9xfWjqag8f/6ct2/fMmPGDMzNzd8rr9u3bzNhwgRiY2MLdWzr1q05c+YMqqqqODk58ccff2Bpacno0aMJDQ1FRUWFyZMny1/+kP4D6MqVK8yZMwdIf4y+ZcsWzMzM8PX1ZcuWLZibmyt9Jnv27GHq1KkkJCTg5OTEsmXLUFFRYdmyZcyfPx8TExPKly9PuXLl3ut+fM60tLTw8fHhxx9/RENDgwYNGvD06VOuXr1K//795XQDBgxg+PDh6Ojo0L59e6U8zMzMOHr0KF27dkVTU5Ny5coxZswYvvrqK6ZNm0aXLl04deoUixcvlsf07t69m9u3b+Pq6oqhoSF79uwhLS0NKysrpbxr1KhBSEgI7u7uqKmpsWDBAnr06MHs2bNp27YtU6dOpUqVKkRHR7Nt2zbGjRtHlSpVlPLQ09Nj7NixjBo1irS0NBo2bEhcXBwnT55EV1eXPn36YGpqikKhYPfu3Xh5eaGtrS1HIlmxYgWVKlUiOjqa8ePHF8l99/HxoX79+gwbNoyBAwdSqlQpIiMjOXjwIIsWLcLS0pK2bdsycOBAli9fjp6eHuPHj8fY2Ji2bdvmmG/NmjXx8PBg0KBBLF26FHV1dcaMGaPUw129enVSUlJYtGgRbdq04cSJEyxbtuy9rufKlSv07t0bHx8fateuzePHj4H0BnOZMmWwsLBg69atnDx5EkNDQ+bNm8fjx4+VGtdmZmacOXOGu3fvykN93pXX35UgfKpE4/oLUVJB+7OrUN+XtrZ2vh5/Z/apLlpgbm5OrVq1Psi5/vvvP6WnBYsWLaJRo0YMGTKEcePGoaWlRbdu3ahVqxaLFy/m5cuXXLx4ERUVFV68eMHLly/zPMfZs2fZt28fFy9eJDY2Fmtra7777juePXvGvHnzCA0NRUtLi+HDh/PHH3/QqFEjZs+ezblz51BRUaFevXpZxmgKynx9fVFTU2Py5Mk8evSISpUqMWTIEKU03bp1Y+TIkXTv3j3LKpRTp05l8ODBVK9encTERCRJwt7enj/++IPJkyczbdo0KlWqxNSpU+Wx2qVLl2bbtm34+fmRkJCApaUlmzZtonbt2lnKZ2VlJYf9U1VVZe7cuRw9ehQfHx86dOhAfHw8xsbGNG3aNMee7GnTpmFkZMSMGTO4ffs2pUuXxt7enokTJwLpE+6mTJnC+PHj6du3L7179yYwMJDNmzczYsQI6tSpg5WVFQsXLpTDy70PW1tbjhw5wqRJk2jUqBGSJFG9enW6dOkipwkICOCHH36gdevWJCUl4erqyp49e/LsfFi3bh39+/fH1dWVihUrMmPGDK5evSp/bnZ2dsybN4+ZM2cyYcIEXF1dmTFjBr179y709YSFhfHmzRv8/f3x9/eXt7u5uREaGoqvry937tzB09MTHR0dBg0aRLt27ZTqgLFjx9KnTx9q1arF27dvs421n9fflSB8qj67xnVaWhqzZ89m5cqV3L9/nwoVKjB48GAmTZoEpD9uHz16NAcOHEBFRYWGDRvy22+/FXpJ1Fu3bjF69GhOnz7N69evsba2ZsaMGXh4eMhpnjx5Qv/+/Tl06BAVK1ZUqqwye/bsGe3bt2f//v0YGxszd+5cvvnmG3l/REQEY8eO5ejRo5QqVYrmzZszf/58uSdvy5YtTJkyhZs3b6Kjo0O9evXYuXMnpUqVyjIsIjExkXHjxrF582bi4uJwdHRk/vz5fPXVV8D/L1N76NAhfHx8iIiIwM7OjoCAgCy9Ubl5t4fYzMyMQYMGcfPmTf78808MDQ356aefGDRokNJxt2/fZtSoUZw5cwZLS0uWLVsmRwZ4d1hIhuXLl+Pv709sbCytWrVi5cqV8njPzNefEYM1Iw4rwJ07dzAzM8vzHr9+/ZqhQ4eybds2uQftc5HTsJDvv/+ehg0bkpCQIIfaCg4OZvTo0fJjaENDw3w1rk+ePEn79u3R0NCgUqVKNGnSBIBTp05x6dIl6tevD8Dbt28xNjZGS0uLpk2byj+OMv9/ELKnoqLCpEmT5DovOy9evCAhIUGpNztD/fr1uXjxYpbtHTt2zBJtI0PDhg1zXfjn3X3W1tb8+++/8vuKFSuydu3aHI9/NzSbQqFgxIgR2Y5xzuDr6ytHocjg4eFBRESE0rbMT0/MzMzyfMKXU/ztr776igMHDuR4nKGhoRzXOzve3t7ZNiorVarEnj175PcPHjzgyZMnSkNQRo0axahRo5SO69WrV655t2vXTulaM9/jnMqSoUyZMnkOsatRowanTp1S2pbd/c3t7wqyv99i+JrwsfvsooXkFuO1MPFU8/Lq1Su8vLw4dOgQ58+fx9PTkzZt2ijNmvb29ubu3bsEBwezZcsWlixZku1M5ylTptC5c2cuXbqEl5cXPXr0kCe0xcTE4Obmhp2dHWFhYezbt49///1XDqcVExNDt27d6NevH5GRkYSGhtKhQ4ccvyh+/PFHtm7dytq1azl37hwWFhZ4enpmmUA3adIk5s6dS1hYGGpqavTr169Q9ymz/MQsnTRpEmPHjuXChQvUqFGDbt26kZKSkmOeN2/e5I8//uCvv/5i3759XLhwgWHDhmWbNqcYrHndY0if5BcSEsL27ds5cOAAoaGhSqsjZudTj7kaFxdHbGwsb9++JSEhIV/HqKmpKU04yoirnN0EpoztrVu35sKFC1y4cIGoqCgmTJiQY3qhcJKTk4mOjpaHMWSOQiF8nIKDg9m1axd37tzh5MmTdO3aFTMzsxzjiAuCUPI+q8Z1RozXWbNm0adPHzm+a8bEnszxVG1sbLC2tiYgIIDo6OhCL7dct25dBg8ejI2NDZaWlvj7+2Nubs6uXbsAuH79Onv37mXVqlU4Ozvj4ODA6tWrs52o5u3tTbdu3bCwsOCXX37h9evXnD17FoClS5dib2/PL7/8Qs2aNalXrx5r1qwhJCSE69evExMTQ0pKCh06dMDMzAwbGxu+++47eXntzF6/fs3SpUuZPXs2LVu2pFatWqxcuRJtbW1Wr16tlHb69Om4ublRq1Ytxo8fz8mTJ/PdwMpJRsxSCwsLfHx8KFeuXJb7P3bsWFq1akWNGjWYMmUK9+7d4+bNmznmmZCQwNq1a7Gzs8PV1ZVFixaxefNmeaxgZu/GYK1YsSKqqqp53uNXr16xevVq5syZQ7NmzbCxsWHt2rV5TtqZMWMGBgYG8iu7xRQ+ZmPGjOH777+nX79+8hhVDw8PVqxYITegX7x4oXSMqamp3PsZERFBVFQUkB5ma/v27SQlJfH48WNCQkKA9N7SkJAQOWRWbGwsDx48wMnJicOHD/Py5UtevXrFX3/99UGu+XN14sQJTE1NCQ8Pf+9xucKHkZyczMSJE6lduzbt27enfPnyhIaGFvlcFkEQis5nNSwkrxivmeOpZpZTPNX8eP36NVOmTGH37t08evSIlJQU3r59K/dcZ8Q3zRwXtWbNmkoLG2TIHMuzVKlS6OnpyT3c4eHhhISEZNtYvnXrFs2bN6dp06bY2Njg6elJ8+bN6dSpU5Z4qBnpk5OTlcauqqur4+TkpBRz9d0yVapUCUgf5lK1atX83J5s5SdmaU7nzWnRgKpVqypNfHJ2diYtLY2oqKhcFzHILK97/PbtW5KSkuThKZD+eDSvYTITJkxg9OjR8vu4uLh8N7Bv376dr3RFkce7Y6779etHrVq1uHHjBitXrpQnjx07doxBgwZx7do1bGxsUFNT4+eff1bqBW3YsCHlypXD1tYWe3t7eaKTk5MTnp6e2NraYmVlJfe+GRkZsXTpUtq1a0dycjLq6uqsXLkSe3t7xowZg5OTE1WrVpUXQxEKx93dvUQmNguF5+npiaenZ0kXQxCEAvisGtd5TXIraDzV/Bg3bhz79+9nzpw5WFhYoK2tTadOneRhJhlfZPl5tJ1bLM+0tDTatGnDzJkzsxxXqVIlVFVVOXjwICdPnuTAgQMsWrSISZMmcebMmSzxjXMqU3aP4DOXKXNc2veRn5il73vejGMKMqQgr3t848aNfOeVWWFirpYpUwZtbW0mTJhQqHO+S0tLK9cwfECOw24y5g+oqqoqjaFcuHBhlrQZMa4VCgW///57tvlNmzaNadOmZdneokULWrRokWX70KFDGTp0aK5lFwRBEISPxWfVuM4rxmtB46nmx7Fjx/D29pbDWb169UppAoa1tTUpKSmEhYXh5OQEpK+69e5kvLzY29uzdetWzMzMclweW6FQ0KBBAxo0aMDkyZMxNTVl+/btSr2mkL7Cl4aGBsePH6d79+5A+qPHsLAwpWV0PyXR0dE8evSIypUrA+kT5FRUVKhRo0a26bOLwZrXPbawsEBdXZ3Tp0/LPfcvXrzg+vXrOcbbLSxjY2OOHDlSpIvIvBvSTBAEQRCEovdZNa7zivFa0Hiq+WFhYcG2bdto06YNCoUCX19fpR5WKysrWrRowcCBA1mxYgVqamqMHDmywKHkhg0bxsqVK+nWrRvjxo2jXLly3Lx5k82bN7Ny5UrCwsI4fPgwzZs3x8jIiDNnzvD06dNsFygoVaoUQ4cOZdy4cZQpU4aqVasya9Ys3rx5k230gE+BlpYWffr0Yc6cOcTFxTFixAg6d+6c45CQ7GKw5nWPdXV16d+/P+PGjaNs2bJUqFCBSZMmyREzipqxsXGWFegK482bNwX+MScIgvC5iY2NlRcYKgoZc03eHU75voo6P+HD+6wa15B7jFcdHZ0Cx1PNy/z58+nXrx8uLi6UK1cOHx+fLNEgAgICGDBgAG5ublSoUAF/f/8sIaLyUrlyZU6cOIGPjw+enp4kJiZiampKixYtUFFRQV9fn6NHj7JgwQLi4uIwNTVl7ty5tGzZMtv8fv31V9LS0ujVqxfx8fE4Ojqyf//+bMdo5yRjNcWMRSFKkoWFBR06dMDLy4vnz5/j5eWV60IE2cVgNTMzy/UeA8yePZtXr17xzTffoKenx5gxY/IVgk4QBEEoWcUxIVpFRUVeqbIo6ejoiAWzPmEKScxuEQopNDSU9u3bc/v27QI1yr90cXFxGBgY4O3tLcdXL1WqFA0aNMDY2DjHYT+FldFzXa1atTzHXQvpw2ju3LlDtWrVsiywkp2Mz/Ply5dFNtxMEISik/F/dNCgQVnmIL2P4OBgDh48yNChQ7Mdivo+ypUr916BAz5nn0Kd+9n1XAsfzr59+5g4caJoWAuCIAgfPWdnZ6XIXe/r4cOHHDx4kMqVK4uY8YIS0bgWCu3XX38t6SIIgiAIgiB8VETjWhA+Ug8fPizSaCF5PQ4tV64cz549K3D+7u7uLF68mDp16uQrfWhoKIsXL2bLli35Sn/37l06deokh/kTBEEQhI+ZaFwLQgnJPHPdwMCA1NRUkpOTkSSJhw8f0rRp0/deDTODpqYmZ86cEWOuBUEQBKGYica1IJSQzDPXTU1NadKkiRza6fbt2yQkJNChQ4f3njH+7Nkztm3blu9e6dDQUKZPn06pUqWIiIigdevWzJs3D4Bdu3YxefJkJEmibt26rFu3TunYzL3fixcv5tmzZ/j5+XHq1CkGDBhA6dKllcYm/vvvvwwePJgHDx6gpaXFqlWrqFmzJtevX6d79+6oqqrSqFGj97p+QRAEQfiQRONaEEpIo0aN5JVBy5Yti46ODnp6eqiqqqKnpwekN1YzFsZ5XwVZrfL8+fNERkZiYGBA7dq1GTlyJJqamvzwww8cP34cY2PjAg1ZGTBgAGvXrsXR0ZEuXbrI20eOHImvry8ODg78888/jBw5kn379jFy5EgmTpxIhw4d+PHHHwt0nYIgCIJQkkTjWhBKSPXq1ZVC8amrq6OtrY2amlq+QsAVJ2dnZ7nhX6dOHe7du8eLFy9o2rSpvLBNmTJl8pXXf//9R3JysjxLv0ePHnKPd3BwcLYLJoSHh/P3338D0LNnT4KDg9/7mgRBKDp+fn7s2LGDCxculHRRBOGjIxrXgiBkoampKf9bVVU1y1LxOcncO56YmAiAJEm59pqHh4ejqqqaYz6CIBROYGAgI0eOFCu0CsIHVjzrNguC8NmpX78+wcHBPHz4ECDbYSEGBgbcu3eP5ORkdu/eDYChoSHq6uqcO3cOgE2bNsnp3dzcWL58OQBpaWlcvnwZAHt7e3bu3AnAxo0bi++iBEEQBKGIicZ1IXl7e9OuXTv5vbu7OyNHjiyx8rxLoVCwY8cOID2UmUKhkB/fhYaGolAoPkhvhpmZGQsWLMh3+vyUzc/PDzs7O/n9u59Fdorz8ynoNRbEs2fPePTo0Xu9ChNeLztGRkYsXLiQVq1aUbduXUaNGpUljb+/P02aNKFly5aYm5vL21euXEmvXr1wcXFRWnVs0aJFHDx4EFtbW+rUqSMPBVmwYAH+/v58/fXXckQVQfjS7Nu3j4YNG1K6dGnKli1L69atuXXrFpB9XXnhwgUUCgV3794lNDSUvn378vLlSxQKBQqFAj8/PwBevHhB7969MTQ0REdHh5YtW3Ljxg05n8DAQEqXLs2OHTuoUaMGWlpaNGvWjPv372cp4/r16zEzM8PAwICuXbsSHx+fr/JnOHnyJHZ2dmhpaeHo6MiOHTvk7ytJkrCwsGDOnDlKx1y5cgUVFZUseQnCx0IMC/nE5TTuLSYmJseVE11cXIiJicHAwAAo3keH//zzD6VKlSrSPMeOHcv3339foGO2bduGurq6/N7MzIyRI0d+VD+IMitTpgxaWlps27atSPLT1NTMMwxfRiPc3d0dd3d3eXvmeNStW7emdevWSseFhobK/+7atStdu3bNkrezszNXr17Nsr1ChQps3749y/YaNWooxbWeOnVqrmUXhM/R69evGT16NDY2Nrx+/ZrJkyfTvn37fI1zdnFxYcGCBUyePJmoqCgAdHV1gfQOiRs3brBr1y709fXx8fHBy8uLiIgIuZ588+YN06dPZ+3atWhoaPDdd9/RtWtXTpw4IZ/j1q1b7Nixg927d/PixQs6d+7Mr7/+yvTp0/Msv4qKCvHx8bRp0wYvLy82btzIvXv3lOpkhUJBv379CAgIYOzYsfL2NWvW0KhRI6pXr57ttScmJsrD0iB9uWxB+JBE4/ozVbFixRz3aWho5Lq/KGVMiitKurq68pdEfuV38t3HwtjYmKNHjxbpIjJVqlQpgpIJgvChdOzYUen96tWrMTIyIiIiIs9jNTQ0MDAwQKFQKNX3GY3qEydO4OLiAkBQUBAmJibs2LGDb7/9FoDk5GQWL17M119/DcDatWuxtrbm7NmzODk5AelDuQIDA+XoRr169eLw4cNy4zq38tepU4egoCAUCgUrV65ES0uLWrVq8fDhQwYOHCgf07dvXyZPniyfNzk5mQ0bNjB79uwcr33GjBlMmTIlz3skCMXlix0WkpaWxsyZM7GwsEBTU5OqVavKFQKkr47XpUsXDA0NKVu2LG3btuXu3buFPl/GUIY1a9ZQtWpVdHV1GTp0KKmpqcyaNYuKFStiZGSkVAaA6Oho2rZti66uLvr6+nTu3Jl///0XSO9xnjJlChcvXpQf+wUGBgLKw0LelflxYk6PDqdOnYqNjU2WYx0cHJg8eXK+r/vdIRMKhYJVq1bRvn17dHR0sLS0ZNeuXVmOCw8Px9HRER0dHVxcXOSel8z38l1TpkzByMgIfX19Bg8eTFJSkrwv87AQd3d37t27x6hRo+RrznDy5ElcXV3R1tbGxMSEESNG8Pr1a3n/kydPaNOmDdra2lSrVo2goKB834uCMjY2xsbG5r1ftWvX/mA/pgRBKDq3bt2ie/fumJubo6+vL6+yGh0dXeg8IyMjUVNTkxvNkB4K1MrKSilyj5qamhzhB6BmzZqULl1aKY2ZmZncsAaoVKkST548yXf5o6KisLW1VYqOlNFwz5xnq1atWLNmDQC7d+8mISFB/hGQnQkTJvDy5Uv5ld1wFkEoTl9s43rChAnMnDkTX19fIiIi2LhxIxUqVADSH4c1btwYXV1djh49yvHjx9HV1aVFixZKDbaCunXrFnv37mXfvn1s2rSJNWvW0KpVKx48eMCRI0eYOXMmP/30E6dPnwbSoyy0a9eO58+fc+TIEQ4ePMitW7fkOMFdunRhzJgx1K5dm5iYGGJiYpRiCOdHxqNDfX19OY+xY8fSr18/IiIi+Oeff+S0ly5d4vz583h7exf6HkB6I7hz585cunQJLy8vevTokaWHdtKkScydO5ewsDDU1NTo169frnkePnyYyMhIQkJC2LRpE9u3b8+x52Lbtm1UqVKFqVOnytcMcPnyZTw9PenQoQOXLl3i999/5/jx4wwfPlw+1tvbm7t37xIcHMyWLVtYsmSJ0pdJdhITE4mLi1N6CYIg5KVNmzbExsaycuVKzpw5w5kzZwBISkpCRSX961uSJDl9cnJynnlmTv/u9nej9GQXtSfztsxD7TL2paWl5av8OZ0zu/INGDCAzZs38/btWwICAujSpQs6Ojo5XqOmpib6+vpKL0H4kL7IYSHx8fH89ttvLF68mD59+gDpMYcbNmwIwObNm1FRUWHVqlXyf/yAgABKly5NaGgozZs3L9R509LSWLNmDXp6etSqVYvGjRsTFRXFnj17UFFRwcrKipkzZxIaGkr9+vU5dOgQly5d4s6dO5iYmADpk0dq167NP//8w1dffYWuri5qamqF7pnM6dGhrq4unp6eBAQE8NVXX8n3wM3NTWmiWmF4e3vTrVs3AH755RcWLVrE2bNnadGihZxm+vTpuLm5ATB+/HhatWpFQkJCjvGfNTQ0WLNmDTo6OtSuXZupU6cybtw4pk2bJn8JZShTpoy8UEvma549ezbdu3eXe7gtLS1ZuHAhbm5uLF26lOjoaPbu3cvp06flXp/Vq1djbW2d6/WKR5SCIBRUbGwskZGRLF++XF6l9Pjx4/L+jCF3mefXvDsWW0NDI0sYzVq1apGSksKZM2fkYSGxsbFcv35dqS5LSUkhLCxM7kmOioriv//+o2bNmkVSfkjvDQ8KCiIxMVEO/5l5rkUGLy8vSpUqxdKlS9m7dy9Hjx7NVxkEoaR8kT3XkZGRJCYm0rRp02z3h4eHc/PmTfT09OTxvWXKlCEhIeG9Zie/+witQoUK1KpVS6nxV6FCBbknNDIyEhMTE7lhDekV47uP5orLwIED2bRpEwkJCSQnJxMUFJRnD3J+2Nrayv8uVaoUenp6WXp/M6epVKkSQK49xHXr1lXqyXB2dubVq1cFehwYHh5OYGCg/Jln/MBIS0vjzp078uPU7B6V5kY8ohQEoaAyhiSuWLGCmzdvEhwczOjRo+X9FhYWmJiY4Ofnx/Xr1/n777+ZO3euUh5mZma8evWKw4cP8+zZM968eYOlpSVt27Zl4MCBHD9+nIsXL9KzZ0+MjY1p27atfKy6ujrff/89Z86c4dy5c/Tt25f69etnGbZR2PIDdO/enbS0NAYNGkRkZCT79++XI4Nk7tFWVVXF29ubCRMmYGFhgbOzc4HvpyB8SF9k41pbWzvX/WlpaTg4OHDhwgWl1/Xr1+nevXuhz5vdI7TcHqvltPhGXotyFJU2bdqgqanJ9u3b+euvv0hMTMwyQaUw8nqU+G6ajGt9N01+FOQ+paWlMXjwYKXP/OLFi9y4cYPq1avLjysLeu/FI0pBEApKRUWFzZs3Ex4eTp06dRg1apTSJD51dXU2bdrEtWvXqFu3LjNnzsTf318pDxcXF4YMGUKXLl0oX748s2bNAtKfQjo4ONC6dWucnZ2RJIk9e/Yo1bs6Ojr4+PjQvXt3nJ2d0dbWZvPmzUVWfgB9fX3++usvLly4gJ2dHZMmTZLn9Lz7lLJ///4kJSUVSQePIBS3L3JYiKWlJdra2hw+fJgBAwZk2W9vb8/vv/8uT44rKbVq1SI6Opr79+/LvdcRERG8fPlSfnyX3WO/gsopDzU1Nfr06UNAQACampp07do113FuJenixYu8fftW/uF0+vRpdHV1c4yQkd0129vbc/XqVSwsLLI9xtraOsdHpcXh4cOHRRotJGMyUW5WrVrFsGHD+Pfff+UeeT8/P8qVK8fw4cMJDAzEy8sLIyOj9y7Xu7y9venUqVOWUH/u7u48fvxY/rJdsmQJSUlJLF68WClMYH6FhoYW+lhB+JA8PDyyRAbJPCa5QYMGXLp0Kcf9AEuXLmXp0qVK2wwNDVm3bl2e5+/QoQMdOnTIdp+fn58cNzvDu+FN8yo/pP8AuHjxovw+KCgIdXV1pXj4kD78RU1Njd69e+dZbkEoaV9k41pLSwsfHx9+/PFHNDQ0aNCgAU+fPuXq1av079+fHj16MHv2bNq2bcvUqVOpUqUK0dHRbNu2jXHjxn2wkGYeHh7Y2trSo0cPFixYQEpKCt999x1ubm7y0AQzMzPu3LnDhQsXqFKlCnp6ekpLV+dH5keHGcMrMhrRAwYMkBvymeObfmySkpLo378/P/30E/fu3ePnn39m+PDhWcZbZzAzM+Po0aN07doVTU1NypUrh4+PD/Xr12fYsGEMHDiQUqVKERkZycGDB1m0aBFWVla0aNGCgQMHsmLFCtTU1Bg5cmSeT0IK4+HDh7i7u/PmzZsiyU9bW5tTp07lGev6jz/+wNHRke3bt9O3b98s+wMDA3F0dCxQ4zo1NTXL8uYFtWXLFurUqSO/zxxbWxCET9e6deswNzfH2NiYixcv4uPjQ+fOneV6NTExkfv37+Pr60vnzp3lwAOC8DH7IoeFAPj6+jJmzBgmT56MtbU1Xbp0kcf06ujocPToUapWrUqHDh2wtramX79+vH379oP2ZGeE0zM0NMTV1RUPDw/Mzc35/fff5TQdO3akRYsWNG7cmPLlyystLZ1fOT06hPRefhcXF6ysrJRCN8H/h/R7nxCFRaVp06ZYWlri6upK586dadOmTZZelcymTp3K3bt3qV69ujwxyNbWliNHjnDjxg0aNWpEvXr18PX1lcd8Q/rjVBMTE9zc3OjQoQODBg0qll7c58+f8+bNGzZs2EB4ePh7vTZs2MDbt2+JjY3N9ZzPnj3j9u3bzJw5kz/++CPL/u3btxMWFkanTp3kv4WzZ8/SqFEj7O3t6dixI69evQLSf7xMnToVFxcXQkNDCQgIwMnJCVtbW6VQjr6+vlhbW9OqVas8o67k5PTp07i4uFCvXj2aNGkiR3/x8/NjwIABuLq6Ym5unu0j7eDgYFxcXPK8N4IgFI/Hjx/Ts2dPrK2tGTVqFN9++y0rVqyQ92/atAkrKytevnyp9N0kCB8zhZRTXB5BIP0RXs2aNRk8eHCWySiBgYFMnz5daVUvIW9xcXEYGBjg7e2NmZkZkD6xs0GDBhgbG6Ompsbly5dp0aIF4eHh2Nvbv9f5zp07h4ODA4cPH6ZJkyY5plu+fDm3bt1i5syZmJubExYWRtmyZZWGhbi7u7N48WLq1KlDUlISHh4e7Ny5E0NDQ2bPnk1qairjx4/HzMyMcePGMWzYMCIiIvj555/ZvHkzCoWCtm3bMnHiRFRVVRk2bBgnTpwgNjYWa2trNmzYkOuwEDU1NcLCwpSGdsTFxVGqVClUVVXZuHEj//zzD/Pnz8fPz49jx46xf/9+7t27h6enJzdv3pSPHTp0KL6+vvz1119KPfoJCQncuXOHatWq5RidJrOMz/Ply5diPL0gfIQy/o8GBAQoTUh/X8uXL2fx4sVMmzaNn376qcjyFXL3KdS5X+SwECF/njx5wvr163n48GG2QwT27dvHL7/8IhrWn4nff/+dWbNmyQ3g7du3ZzsnIUNUVBSXLl2icePGQPrQnMzLpmcs8nD48GFOnTqFg4MDAK9eveLWrVs8e/aM9u3bo6GhQaVKlXJt+L87LCSzFy9e0LNnT27fvk1KSgqmpqbyPi8vL9TU1KhevbrS2PiLFy8yZswYDh8+nOdQGUEQBEEoCNG4FnJUoUIFypUrx4oVK+Q4qpkVZOa48HH7999/OXnyJJ06dQLSxzlevXo118a1JEnY29sTHByc7f6McfuSJDFo0KAsK3vOnz+/SKLeTJ48mVatWjF48GBOnz7N+PHj5X05zT8wNjbm5cuXXL16FVdX1/cugyAIgiBkEI1rIUdixFDJK4p45vnJY8uWLQwdOpT58+cD6Z+9mZkZT58+VUqnp6dHfHw8kB7j+969e3IYrdevXxMTE5Ml2kqTJk3o0qUL33//PYaGhjx48ABtbW0aNGjA8OHDGTNmDM+fPyckJKRQYbbi4uLkScYbNmzI1zHlypVj3bp1eHl5sWHDBuzs7Ap8XkEQBEHIjmhcC0IJiY2NRUNDAwADAwNSU1NJTk5GkiT09PTQ1tamZ8+eRXIubW3tXIc//PHHH0ydOlV+r1AoaN26NVu3blVK5+3tjbe3N6VLl+bMmTNs3ryZ7777Tp7IOGvWrCyN6zp16uDj44O7uztpaWno6emxefNmnJyc8PT0xNbWFisrq0L3II8dOxZvb29mzJghrziXH1WrVuXPP/+kU6dO7Ny5M8cQjIIgfB7u3r1bpOFkCzsJW/j8iQmNgvCBZUzGyMzU1JRly5ZRrlw5edvjx4+LLIa2oaEh7u7ulCpVqkjy+5yJCY2C8HnJrs4tKgqFgr///puWLVsWS/5CVp9CnSt6rgWhhBw5cgRdXV0gfRiGmpoaJiYm8jjhjPjiRUFNTa3A8c8FQRA+J5nr3KJSrly5LAveCIJoXAtCCbGzs5N/dWf0luro6OSrt1QQBEEomMx1riAUpy92ERlB+BiJUVolT3wGgiAIwvsQPdeC8BFQV1dHoVDw9OlTypcvXyQh6oSCkySJp0+folAoRPx2QRAEoVBE41oQPgKqqqpUqVKFBw8efBTLyX/JFAoFVapUQVVVtaSLIgiCIHyCRONaED4Surq6WFpakpycXNJF+aKpq6uLhrUgCIJQaKJxLQgfEVVVVdGwEwRBEIRPmJjQKAiCIAiCIAhFRPRcC8IHlhGNIi4uroRLIhSFjM9RRBkRhI+TqHM/L59CnSsa14LwgcXGxgJgYmJSwiURilJ8fHyxrQInCELhiTr38/Qx17micS0IH1iZMmUAiI6O/mgrhg8tLi4OExMT7t+//8kt8iBJEvHx8VSuXLmkiyIIQjZEnftpyul74VOoc0XjWhA+MBWV9KkOBgYGn1xDsrjp6+t/kvdEfGELwsdL1Lmftuy+Fz72OldMaBQEQRAEQRCEIiIa14IgCIIgCIJQRETjWhA+ME1NTX7++Wc0NTVLuigfDXFPBEEoLqJ++TR9yp+bQvqYY5kIgiAIgiAIwidE9FwLgiAIgiAIQhERjWtBEARBEARBKCKicS0IgiAIgiAIRUQ0rgVBEARBEAShiIjGtSAUgyVLllCtWjW0tLRwcHDg2LFjuaY/cuQIDg4OaGlpYW5uzrJlyz5QSYvfjBkz+Oqrr9DT08PIyIh27doRFRWV6zGhoaEoFIosr2vXrn2gUguC8DkoaF0slDw/P78sdX/FihVLulgFIhrXglDEfv/9d0aOHMmkSZM4f/48jRo1omXLlkRHR2eb/s6dO3h5edGoUSPOnz/PxIkTGTFiBFu3bv3AJS8eR44cYdiwYZw+fZqDBw+SkpJC8+bNef36dZ7HRkVFERMTI78sLS0/QIkFQfgcFLQuFj4etWvXVqr7L1++XNJFKhARik8QitjXX3+Nvb09S5culbdZW1vTrl07ZsyYkSW9j48Pu3btIjIyUt42ZMgQLl68yKlTpz5ImT+kp0+fYmRkxJEjR3B1dc02TWhoKI0bN+bFixeULl36wxZQEITPQkHrYuHj4Ofnx44dO7hw4UJJF6XQRM+1IBShpKQkwsPDad68udL25s2bc/LkyWyPOXXqVJb0np6ehIWFkZycXGxlLSkvX74EoEyZMnmmrVevHpUqVaJp06aEhIQUd9EEQfhMFKYuFj4eN27coHLlylSrVo2uXbty+/btki5SgYjGtSAUoWfPnpGamkqFChWUtleoUIHHjx9ne8zjx4+zTZ+SksKzZ8+KrawlQZIkRo8eTcOGDalTp06O6SpVqsSKFSvYunUr27Ztw8rKiqZNm3L06NEPWFpBED5VhamLhY/D119/zbp169i/fz8rV67k8ePHuLi4EBsbW9JFyze1ki6AIHyOFAqF0ntJkrJsyyt9dts/dcOHD+fSpUscP34813RWVlZYWVnJ752dnbl//z5z5szJcSiJIAjCuwpaFwslr2XLlvK/bWxscHZ2pnr16qxdu5bRo0eXYMnyT/RcC0IRKleuHKqqqll6Rp48eZKlByVDxYoVs02vpqZG2bJli62sH9r333/Prl27CAkJoUqVKgU+vn79+ty4caMYSiYIwuemMHWx8HEqVaoUNjY2n1T9LxrXglCENDQ0cHBw4ODBg0rbDx48iIuLS7bHODs7Z0l/4MABHB0dUVdXL7ayfiiSJDF8+HC2bdtGcHAw1apVK1Q+58+fp1KlSkVcOkEQPkeFqYuFj1NiYiKRkZGfVP0vhoUIQhEbPXo0vXr1wtHREWdnZ1asWEF0dDRDhgwBYMKECTx8+JB169YB6ZFBFi9ezOjRoxk4cCCnTp1i9erVbNq0qSQvo8gMGzaMjRs3snPnTvT09OSeJAMDA7S1tYGs92TBggWYmZlRu3ZtkpKS2LBhA1u3bv1swhMKglD88qqLhY/T2LFjadOmDVWrVuXJkyf4+/sTFxdHnz59Srpo+SYa14JQxLp06UJsbCxTp04lJiaGOnXqsGfPHkxNTQGIiYlRirNarVo19uzZw6hRo/jf//5H5cqVWbhwIR07diypSyhSGWGw3N3dlbYHBATg7e0NZL0nSUlJjB07locPH6KtrU3t2rX5+++/8fLy+lDFFgThE5dXXSx8nB48eEC3bt149uwZ5cuXp379+pw+ffqT+txEnGtBEARBEARBKCJizLUgCIIgCIIgFBHRuBYEQRAEQRCEIiIa14IgCIIgCIJQRETjWhAEQRAEQRCKiGhcC4IgCIIgCEIREY1rQRAEQRAEQSgionEtCIIgCIIgCEVENK4FQRAEQRAEoYiIxrUgfCLMzMyoWbMmKSkp8jZHR0dCQ0OL9Dzu7u7s3r27SPPMy86dO7G2tsbOzo7Lly8r7QsMDKR06dLY2dlRp04dWrZsSXR0NAMGDMDOzg47Ozs0NDSoWbOm/D4+Ph4zMzOMjIxITk6W8woODkahUDB27NgPen2CIHx6RJ0r6tzCEo1rQfiEJCYmsnr16pIuRp4yfxnlx7Jly5g6dSoXLlzAxsYmy34PDw8uXLjAlStXqFmzJqNGjWLVqlVcuHCBCxcuULlyZbZs2SK/19PTA6Bq1ars2rVLzmfNmjU4Ojq+38UJgvDFEHWuqHMLQzSuBeETMmXKFKZNm8abN2+y7PP29mbx4sXy+7Fjx+Ln5weAn58f3bp1o3Xr1lhYWNC5c2fOnz9PkyZNMDc3Z/To0Up5HTp0CHd3dywtLRk3bhySJAHw+PFjOnfujJOTE7a2tkyePFk+xszMjOnTp9O4cWP69OmTpXw3b97Ew8MDW1tb7Ozs2LFjBwAjRozg2LFj+Pj44OLikuc9aNasGVFRUXmmA+jXrx9r1qwB4OXLl5w+fZoWLVrI+0+fPo2Dg4PcQ7N06dJ85SsIwpdB1Lmizi0M0bgWhE+Ivb09rq6uzJ8/v8DHhoWFERQURFRUFFFRUYwfP569e/dy+fJlNmzYwPXr1+W0ERERHDx4kIsXLxISEsKff/4JQJ8+fRg+fDhnz57l3LlznD17lu3bt8vHRUdHExwcTFBQUJbz9+jRg86dO3Pp0iX+/PNP+vfvz/3791m4cCGOjo4sXLiQkydP5noNqamp/Pnnnzg4OOTrml1dXbl9+zYPHz5k06ZNfPvtt6iqqsr7Z8yYwZgxY+Qemq5du+YrX0EQvgyizhV1bmGolXQBBEEoGH9/f77++muGDBlSoOM8PT0xMDAAwNbWlrp166KpqYmmpiZWVlbcvn2bGjVqAOkVurq6Ourq6vTs2ZNDhw7RqlUrgoOD+ffff+U8X716xbVr1+T3ffv2RaFQZDl3fHw8Fy5coH///gBYWlrSsGFDjh8/Trdu3fIs+6FDh7CzswPSv+zmzp2b7+vu1asXa9euZceOHQQFBSl9CTVu3Bh/f39u3rxJkyZNaNiwYb7zFQThyyDqXFHnFpRoXAvCJ8bc3Jxu3brh7++vtF1NTY3U1FT5fUJCArq6uvJ7LS0t+d+qqqpZ3uc2Zk+hUJCWloZCoeCff/5BXV0923SZz5dZxiPOd78EsvtSyI6HhwdbtmzJV9p3eXt7Y29vT40aNbC0tFTaN3LkSL755hsOHz7MxIkTqVOnDkuWLCnUeQRB+DyJOrdgRJ0rhoUIwifJ19eXDRs28OjRI3lb9erVOXPmDACxsbHs2bOn0PmvX7+elJQU3r59y8aNG/Hw8EBPT49GjRrx66+/yukePXrEgwcP8sxPX18fOzs71q5dC8CtW7c4ceIEDRo0KHQZ86ty5crMmDGDmTNnZtkXFRWFubk5AwcOZOLEiZw+fbrYyyMIwqdH1Ln5J+pc0XMtCJ+k8uXLM2LECKXJLYMHD6ZTp07Y2NhQvXp1vv7660Lnb29vj4eHBw8fPqRdu3Z06tQJgKCgIEaPHi3PLtfV1WXZsmVUqVIlzzyDgoIYPHgwCxYsQKFQsGrVKkxMTApdxoLo27dvttsXLVpESEgIGhoaqKqqFujRpyAIXw5R5xbMl17nKqSMZweCIAiCIAiCILwXMSxEEARBEARBEIqIaFwLgiAIgiAIQhERjWtB+Ax5eXlx69atPNP5+fmRlJRUqHO8z5K9jx49onHjxjmW493FGXKTsUSxnZ0dtWrV4n//+1+hyiQIglBYos4VMhONa0H4DO3Zs4fq1avnmW7KlCmFrujfR+XKlQkJCSmycmQsw7t//34mTZrEpUuXlPanpaWRlpZW6PwFQRByI+pcUedmJhrXglBMevbsiaOjI7a2trRu3ZonT54AcOPGDRo0aEDdunWxsbHhp59+AuCvv/6Sl6mtU6cOO3fuBHJewhbg1KlTNGrUiLp162JraysfY2ZmxpUrVwCYN28eX331FfXq1cPJyUkOHZWxIIKLiwt2dnY8efKE+Ph4Bg4cKC+1O2TIEJKTk4H0FcS+/vpr7O3t6dGjBwkJCdled7du3di0aRMACxcuRFNTk9evXwPQqFEjjh07xt27dylXrlyO5cg4n4eHBzVq1KBDhw75+iIwMTGhRo0aXL9+HT8/P3r16kWHDh2ws7MjJiaG9evXY2Njg62tLa1ateLhw4fysTNnzsTGxoa6detSv359ebnj9evXy9ft5uYm39eclvFdtWoVtWrVws7ODhsbG/l+C4JQvESdK+rcj6bOlQRBKBZPnz6V/z1jxgxp2LBhkiRJ0ogRI6Tp06fL+2JjYyVJkiRbW1vpxIkTkiRJUmpqqvTixQtJkiTJyclJWr58uSRJknT9+nWpTJkyUnR0tBQbGytVqFBB6ZiMvExNTaXLly9LkiRJT548kc916tQpqXbt2vJ7QIqPj5ffDxw4UFq3bp0kSZKUlpYm9e/fX5o3b54kSZJkb28vBQYGyvmoqKhIf/31V5brXrVqldS3b19JkiTpm2++kZydnaW9e/dK8fHxkqGhoZSUlCTduXNHKlu2bI7l6NOnj+Ts7Cy9efNGSklJkVxcXKSNGzdme58zX+ulS5ckPT096fr169LPP/8sGRsbS//++68kSZJ0+fJlqUKFCtKDBw8kSZIkf39/ycvLS5IkSQoMDJTq168vvXz5UpIkSXr+/LmUkpIiHT9+XPLy8pISEhIkSZKko0ePSra2tvK1BQUFyeV4/vy5JEmSpK+vLz18+FCSJElKSkpSui5BEIqPqHNFnfux1LkizrUgFJOgoCDWr19PYmIib9++pWLFigC4uroybtw4Xr9+jZubGx4eHgA0bdqUkSNH0qlTJ5o3b46dnV2uS9jq6+tTq1YtXFxcAFBRUaFMmTJZynH+/HmmT59ObGwsampqREREkJSUhIaGRpa0O3bs4PTp03Ls0bdv36KhoUFcXBxXrlyhV69eANSvX1+Ou/quZs2aMWXKFFJTU4mMjOSXX37h0KFDpKam4uzsnONKY+/q0KED2traADg5OeU6nrFTp05oaWmho6PDmjVr5FXBWrdujZGREQAhISG0bt0aY2NjAL777jv8/f2RJIndu3czdOhQ9PX1ATA0NARg586dXLx4USl+7dOnT0lKSspxGd8mTZrQu3dv2rRpQ8uWLeXljQVBKF6izhV17sdS54rGtSAUg+PHj7N48WJOnjxJ+fLl2bVrF1OnTgWgY8eOuLi4cPDgQRYvXsyCBQvYs2cP8+bN4+rVq4SEhNCnTx969OghP74r7BK2SUlJdOzYkdDQUBwcHIiLi8PAwCDHil6SJHbs2IG5ubnS9ri4uHyfs2rVqmhqarJhwwYcHR1p2rQpv/76K6mpqfKXWn4UZKngLVu2UKdOnSzbMy8NLEmS0jXk53okSaJfv37yZ5dZTsv4btu2jfDwcEJDQ/Hy8sLf35+uXbvmeS5BEApP1Lmizv2Y6lwx5loQisGLFy/Q19enTJkyJCUlsXz5cnnfjRs3MDIyonfv3syaNUte/vXatWvUrl2b4cOHM3ToUE6fPp3rErYuLi5ERkZy8uRJIH0CyfPnz5XKkZCQQHJysrwq16JFi5T26+np8fLlS/n9N998w6+//ipXqi9evODmzZvo6+tTp04dgoKCADh79iyXL1/O8fo9PDz4+eef8fDwwNDQEFVVVbZt25ZjRf9uOYpD06ZN2bNnD48fPwZg2bJlNG3aFIVCwTfffMPSpUuJi4sD4L///iM1NZU2bdqwbt067t+/D6Tf47CwMCD7ZXxTUlK4desWjo6OjB07lk6dOnH27NlivS5BEESdK+rcj6vOFT3XglAMWrZsyYYNG6hZsyZVqlTBxcWF/fv3A/Dnn38SFBSEhoYGkiSxbNkyACZMmMD169fR0NBAR0dHnqyR2xK227dvZ8yYMcTHx6NQKJg2bRrffPONXA59fX2mTp2Kk5MTVatWVdoHMGbMGJo0aYK2tjYHDhxgwYIF+Pj4YGdnh4qKCurq6sycORMLCwvWrVtH3759mT9/Pvb29rku9dusWTOWLVum9Ph19erVOT7WfLccxaF27drMmDGD5s2bA+kTcVasWAFAr169ePTokfwIVUdHh0OHDuHq6sovv/xC27ZtSU1NJTk5mVatWuHo6JjtMr6pqan07duXFy9eoKamRvny5QkICCiW6xEE4f+JOlfUuR9TnSuWPxcEQRAEQRCEIiKGhQiCIAiCIAhCERGNa0EQBEEQBEEoIqJxLQiCIAiCIAhFRDSuBUEQBEEQBKGIiMa1IAiCIAiCIBQR0bgWBEEQBEEQhCIiGteCIAiCIAiCUERE41oQBEEQBEEQiohoXAuCIAiCIAhCERGNa0EQBEEQBEEoIqJxLQiCIAiCIAhF5P8A1u+IhsparTkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots(ncols = 2, figsize = (6, 3))\n", + "fig.subplots_adjust(wspace = 2)\n", + "pose_plots.plot_annotations(combined_output, ax = ax[0], collapse_on_similar = False, database = 'PhosphoSitePlus', annot_type = 'Process', top_terms = 10)\n", + "ax[0].set_title('Full Annotation')\n", + "pose_plots.plot_annotations(combined_output, ax = ax[1], collapse_on_similar = True, database = 'PhosphoSitePlus', annot_type = 'Process', top_terms = 10)\n", + "ax[1].set_title('Collapsed Annotation')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of note, you can also choose to only show collapsed annotation information for `analyze.get_ptm_annotations()` by setting `collapse_on_similar=True` in the function call, like we have done for the plot on the right." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Annotation Enrichment Analysis\n", + "\n", + "In some cases, you may want to identify PTM-specific annotations that appear more commonly than might be expected based on how often the annotation appears across the entire proteome. We have provided a function to perform this analysis, `analyze.ptm_annotation_enrichment()`. By default, this function will compare the annotations found in your data to the annotations found in the entire proteome (based on ptm_coordinates dataframe), but you can also choose to perform enrichment analysis by significance. Here, we will we perform enrichment analysis using the entire proteome as the background. First, let's look at the available annotations for enrichment analysis:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Some annotations in spliced ptms dataframe not found in altered flanks dataframe. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
databaseannotation_typecolumn
4CombinedInteractionsCombined:Interactions
5CombinedKinaseCombined:Kinase
2DEPODPhosphataseDEPOD:Phosphatase
3ELMInteractionsELM:Interactions
0PhosphoSitePlusProcessPSP:ON_PROCESS
1PhosphoSitePlusInteractionsPSP:ON_PROT_INTERACT
6PhosphoSitePlusDiseasePSP:Disease_Association
8PhosphoSitePlusFunctionPSP:ON_FUNCTION
7RegPhosKinaseRegPhos:Kinase
\n", + "
" + ], + "text/plain": [ + " database annotation_type column\n", + "4 Combined Interactions Combined:Interactions\n", + "5 Combined Kinase Combined:Kinase\n", + "2 DEPOD Phosphatase DEPOD:Phosphatase\n", + "3 ELM Interactions ELM:Interactions\n", + "0 PhosphoSitePlus Process PSP:ON_PROCESS\n", + "1 PhosphoSitePlus Interactions PSP:ON_PROT_INTERACT\n", + "6 PhosphoSitePlus Disease PSP:Disease_Association\n", + "8 PhosphoSitePlus Function PSP:ON_FUNCTION\n", + "7 RegPhos Kinase RegPhos:Kinase" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')\n", + "combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks)\n", + "\n", + "annot_categories = analyze.get_annotation_categories(combined_output)\n", + "annot_categories" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We would like to know if the PTMs have been implicated in any biological processes more than expected by chance. We can perform enrichment analysis on the biological process annotations from PhosphoSitePlus. To maximize the ability of the hypergeometric test to capture these results, we will use the collapsed annotation information (ignores directionality of PTM role):" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using pregenerated background information on all PTMs in the proteome.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Fraction Impactedp-valueAdjusted p-valuePTM
PSP:ON_PROCESS
cell motility5/10780.0525790.420633ABI1_S392;CTTN_K272;CTTN_S298;SPHK2_S387;SPHK2...
cell adhesion2/3240.1224660.489864CTTN_S298;MPZL1_Y241
cell growth4/17930.4271341.000000BCAR1_Y267;BCAR1_Y287;BCAR1_Y306;TSC2_S981
autophagy1/3060.4342150.868429TSC2_S981
cytoskeletal reorganization2/7960.4356370.868429ABI1_S392;CTTN_S298
apoptosis2/11790.6440650.868429CEACAM1_S461;CEACAM1_T457
signaling pathway regulation2/12060.6562080.868429BIN1_T348;TSC2_S981
carcinogenesis2/15010.7680910.868429TSC2_S981;YAP1_K342
\n", + "
" + ], + "text/plain": [ + " Fraction Impacted p-value Adjusted p-value \\\n", + "PSP:ON_PROCESS \n", + "cell motility 5/1078 0.052579 0.420633 \n", + "cell adhesion 2/324 0.122466 0.489864 \n", + "cell growth 4/1793 0.427134 1.000000 \n", + "autophagy 1/306 0.434215 0.868429 \n", + "cytoskeletal reorganization 2/796 0.435637 0.868429 \n", + "apoptosis 2/1179 0.644065 0.868429 \n", + "signaling pathway regulation 2/1206 0.656208 0.868429 \n", + "carcinogenesis 2/1501 0.768091 0.868429 \n", + "\n", + " PTM \n", + "PSP:ON_PROCESS \n", + "cell motility ABI1_S392;CTTN_K272;CTTN_S298;SPHK2_S387;SPHK2... \n", + "cell adhesion CTTN_S298;MPZL1_Y241 \n", + "cell growth BCAR1_Y267;BCAR1_Y287;BCAR1_Y306;TSC2_S981 \n", + "autophagy TSC2_S981 \n", + "cytoskeletal reorganization ABI1_S392;CTTN_S298 \n", + "apoptosis CEACAM1_S461;CEACAM1_T457 \n", + "signaling pathway regulation BIN1_T348;TSC2_S981 \n", + "carcinogenesis TSC2_S981;YAP1_K342 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "enrichment = analyze.annotation_enrichment(combined_output, database = 'PhosphoSitePlus', annotation_type = 'Process', collapse_on_similar=True)\n", + "enrichment" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also plot the annotations and include which annotations are enriched (p-value < 0.05) in the plot:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "print('not yet implemented')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gene Set Enrichment Analysis\n", + "\n", + "In addition to looking at the annotations associated with the PTMs, we can also look at the genes themselves with impacted PTMs. We can perform gene set enrichment analysis using EnrichR module of gseapy to identify if any gene sets are enriched in the PTM dataset, as well as break it down by the type of modication. Here, we will use the `analyze.gene_set_enrichment()` function to perform this analysis. First, let's look at the available gene sets for enrichment analysis:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Some annotations in spliced ptms dataframe not found in altered flanks dataframe. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.\n" + ] + } + ], + "source": [ + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')\n", + "combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "enrichr_results = analyze.gene_set_enrichment(combined = combined_output, gene_sets = ['GO_Biological_Process_2023', 'Reactome_2022'])" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Gene_setTermOverlapP-valueAdjusted P-valueOld P-valueOld Adjusted P-valueOdds RatioCombined ScoreGenesTypeGenes with Differentially Included PTMs onlyGenes with PTM with Altered Flanking Sequence onlyGenes with Both
0GO_Biological_Process_2023Regulation Of Neurogenesis (GO:0050767)5/670.0000180.0116750017.392181189.619722YAP1;APLP2;DOCK7;NUMB;NF2Differentially Included + Altered Flanking Seq...YAP1;APLP2NF2DOCK7;NUMB
1GO_Biological_Process_2023Enzyme-Linked Receptor Protein Signaling Pathw...6/1240.0000310.0116750011.055131114.642865CSF1;FGFR3;FGFR2;PTPRF;BCAR1;MPZL1Differentially Included + Altered Flanking Seq...FGFR2;CSF1;FGFR3MPZL1;BCAR1;PTPRF
2GO_Biological_Process_2023Protein Localization To Cell-Cell Junction (GO...3/150.0000480.0116750052.901596525.813416TJP1;LSR;SCRIBDifferentially Included + Altered Flanking Seq...LSRSCRIB;TJP1
3GO_Biological_Process_2023Regulation Of Cell Migration (GO:0030334)10/4340.0000490.011675005.28057952.425684TJP1;CEACAM1;CSF1;ADAM15;LIMCH1;APLP2;NUMB;ITG...Differentially Included + Altered Flanking Seq...APLP2;CSF1;ITGA6NF2ADAM15;NUMB;LIMCH1;BCAR1;TJP1;CEACAM1
4GO_Biological_Process_2023Integrin-Mediated Signaling Pathway (GO:0007229)5/850.0000580.0116750013.466712131.282293CEACAM1;ADAM15;ITGA6;CD47;BCAR1Differentially Included + Altered Flanking Seq...ITGA6;CD47ADAM15;CEACAM1;BCAR1
\n", + "
" + ], + "text/plain": [ + " Gene_set \\\n", + "0 GO_Biological_Process_2023 \n", + "1 GO_Biological_Process_2023 \n", + "2 GO_Biological_Process_2023 \n", + "3 GO_Biological_Process_2023 \n", + "4 GO_Biological_Process_2023 \n", + "\n", + " Term Overlap P-value \\\n", + "0 Regulation Of Neurogenesis (GO:0050767) 5/67 0.000018 \n", + "1 Enzyme-Linked Receptor Protein Signaling Pathw... 6/124 0.000031 \n", + "2 Protein Localization To Cell-Cell Junction (GO... 3/15 0.000048 \n", + "3 Regulation Of Cell Migration (GO:0030334) 10/434 0.000049 \n", + "4 Integrin-Mediated Signaling Pathway (GO:0007229) 5/85 0.000058 \n", + "\n", + " Adjusted P-value Old P-value Old Adjusted P-value Odds Ratio \\\n", + "0 0.011675 0 0 17.392181 \n", + "1 0.011675 0 0 11.055131 \n", + "2 0.011675 0 0 52.901596 \n", + "3 0.011675 0 0 5.280579 \n", + "4 0.011675 0 0 13.466712 \n", + "\n", + " Combined Score Genes \\\n", + "0 189.619722 YAP1;APLP2;DOCK7;NUMB;NF2 \n", + "1 114.642865 CSF1;FGFR3;FGFR2;PTPRF;BCAR1;MPZL1 \n", + "2 525.813416 TJP1;LSR;SCRIB \n", + "3 52.425684 TJP1;CEACAM1;CSF1;ADAM15;LIMCH1;APLP2;NUMB;ITG... \n", + "4 131.282293 CEACAM1;ADAM15;ITGA6;CD47;BCAR1 \n", + "\n", + " Type \\\n", + "0 Differentially Included + Altered Flanking Seq... \n", + "1 Differentially Included + Altered Flanking Seq... \n", + "2 Differentially Included + Altered Flanking Seq... \n", + "3 Differentially Included + Altered Flanking Seq... \n", + "4 Differentially Included + Altered Flanking Seq... \n", + "\n", + " Genes with Differentially Included PTMs only \\\n", + "0 YAP1;APLP2 \n", + "1 FGFR2;CSF1;FGFR3 \n", + "2 \n", + "3 APLP2;CSF1;ITGA6 \n", + "4 ITGA6;CD47 \n", + "\n", + " Genes with PTM with Altered Flanking Sequence only \\\n", + "0 NF2 \n", + "1 \n", + "2 LSR \n", + "3 NF2 \n", + "4 \n", + "\n", + " Genes with Both \n", + "0 DOCK7;NUMB \n", + "1 MPZL1;BCAR1;PTPRF \n", + "2 SCRIB;TJP1 \n", + "3 ADAM15;NUMB;LIMCH1;BCAR1;TJP1;CEACAM1 \n", + "4 ADAM15;CEACAM1;BCAR1 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "enrichr_results.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result is the standard output of gseapy, with the specific genes in the gene set with differentially include or altered flanking sequence PTM sites listed. We can also plot the output of the gene set enrichment analysis:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoIAAAF0CAYAAAC301iMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3+ElEQVR4nOzdd1QU19sH8O8Cy9KXItKkqAiICthFYi9YsSuKBWti7xp7rxHFJHYR1IiiscZeAjasKKBUQYoCdnov9/3Dl/kx7oKLghh5PufMOeydO/c+c2cXHu6UFTDGGAghhBBCSLUjV9UBEEIIIYSQqkGJICGEEEJINUWJICGEEEJINUWJICGEEEJINUWJICGEEEJINUWJICGEEEJINUWJICGEEEJINUWJICGEEEJINaVQ1QEQQkh1VlhYiPz8/KoOgxDyAxEKhZCXl5epLiWChBBSRTIyMvDy5UvQFzwRQiqSQCBArVq1oKam9vm69BVzhBDy7RUWFuLZs2dQUVGBrq4uBAJBVYdECPkBMMbw9u1bZGVloV69ep+dGaQZQUIIqQL5+flgjEFXVxfKyspVHQ4h5Aeiq6uL2NhY5OfnfzYRpJtFCCGkCtFMICGkopXn9wolgoQQQggh1RSdGiaEkO9IfEYy3uVkVmofNZRUYaKmVal9VCY1NTXcuXMHjRo1qupQPksgEODx48ews7Or6lAIkYoSQUII+U7EZySj/okNyCksqNR+lOQVENZ/vszJ4K1bt7BmzRrcvXsXjDGYmprCxcUFM2bMgKKi4lfF4urqCk1NTbi7u8u8TUZGxlf1WRqBQABlZWXIyclBQUEBdnZ2cHd3lzmJMzMzg7u7O/r27VshMRTr0qULTp48+cVtysLPzw99+/ZFSkpKpfZDvj90apgQQr4T73IyKz0JBICcwgKZZx3Pnj2L7t27w9HREc+ePUNKSgp8fHwQGhqKpKSkSo702/P390dGRgbevn0LBwcHDBo0qMpiKF4qOwkk1RslgoQQQqRijGHatGmYP38+ZsyYgRo1agAArKys4OXlBVNTUwDAw4cP4eDgAE1NTVhbW+Pw4cNcG8uXL0fv3r0xZcoUaGpqwsTEBD4+PgCA33//HYcOHcL27duhpqaGBg0aAAAOHTqEhg0bQl1dHSYmJliyZAnvWYsCgQCBgYGfbR8Arly5AhsbG6irq0NPTw8TJ06Uad+FQiFcXFwQFRWFvLw8bjzc3NxQt25daGtro1u3bnj+/DkAYNCgQYiPj8fQoUOhpqaGX375hWvr7t27aNiwITQ0NODk5ITU1NRyHYditra2OHDgAK+se/fuWL9+PYCPM6VTpkyBiYkJatasiZEjR3J9xcbGQiAQ4ODBgzA3N4empiZcXV2Rn5+P9+/fo3v37khNTYWamhrU1NRw8+ZNxMTEoHPnzhCLxdDW1oaDgwOysrK+KHby/aJEkBBCiFTPnj1DTEwMhg4dWmqdlJQUdOvWDc7Oznj79i127NiB8ePH4/bt21ydS5cuwcHBAe/fv8fq1asxbtw4pKenY9q0aXBxccGkSZOQkZGBkJAQAIC2tjZOnDiBtLQ0nDlzBrt374a3t3epMZTWPgCMGjUKc+fORXp6Op4/f44RI0bItO85OTk4cOAAWrRowZ3+PnjwIDZv3oxTp04hMTERDRo0QK9evVBQUIBjx47BxMQEhw8fRkZGBnbu3Mm15ePjg2vXriE+Ph4vX77Eli1bZIrhUyNGjMDBgwe5169fv8a1a9fg4uICABgzZgw+fPiA4OBgxMTEID8/H1OmTOG1ce7cOTx69AihoaG4evUqDh06BB0dHVy4cAFisZibhWzTpg0WLVoEc3NzvHv3Dq9fv8Zvv/0GBQW6ouxHQ4kgIYQQqd6+fQsAMDIyKrXOuXPnoKuri6lTp0IoFKJdu3YYNmwY9u/fz9Vp0qQJhg4dCnl5eYwYMQJ5eXmIjIwstc3u3bvDwsICAoEAdnZ2GDp0KPz8/EqtX1b7QqEQUVFRePv2LVRVVdG6desy97lNmzbQ1NSEuro6du7cibVr13LrDh48iGnTpqFRo0ZQUlLC2rVr8fLlS9y/f7/MNufPnw89PT1oampiwIABCAgIkCmG4mXFihUAABcXF1y/fh0JCQkAAG9vb7Rp0wbGxsZ4+/Ytjh8/jj///BOamppQVVXFypUr4ePjg8LCQq7t5cuXQ0NDA4aGhujevXuZsQiFQiQlJSE2NhZCoRCtW7f+6mtCyfeHEkFCCCFSFZ8KLk48pHn58iXMzMx4ZXXq1MHLly+51/r6+tzPxTdDFM/YSXPp0iW0bt0aNWrUgFgsxs6dO/Hu3btS65fV/smTJ/H06VNYWlqicePGOHr0aKntAMDNmzeRkpKCnJwcnDhxAgMGDMCTJ0+k7qtIJIKhoSFvXz8Xn6qqapn7XjKG4mXZsmUAAAMDA3Ts2BGHDh0CABw4cAAjR44E8PHUb1FREerUqcMlkM2bN4ecnBxevXr1RbH89ttvMDIyQufOnWFmZobly5ejqKiozNjJfw8lgoQQQqSysLCAmZkZjhw5UmqdWrVqITY2llcWExODWrVqydRHybtjASAvLw/9+/fHzz//jISEBKSmpuKXX3754u9jbtKkCY4fP453795hyZIlGDZsGF6/fv3Z7eTl5dGxY0eYm5vj8uXLACT3NS8vD4mJidy+frovlaH49PDTp08RGRmJAQMGAACMjY0hJyeHxMREXhKZk5NT5oxuMWmx16xZE9u3b0dcXBzOnj2LnTt30o0rPyBKBAkhhEglEAjwxx9/YP369fjjjz/w/v17AEBkZCTGjh2LuLg49OjRA2/evMH27dtRUFCAmzdvwtvbm5up+hw9PT3uhgsAyM3NRU5ODnR0dCASiXDv3r0yrw8sS15eHg4ePIjk5GTIyclBU1MTAGS6zo0xhhs3biA0NJR7XuHw4cPx559/IjQ0FLm5uVi8eDGMjIzQokULbl+io6O/KFZZ9evXD3FxcZgzZw769esHNTU1AB9n+vr27YspU6Zws6evXr2SOXHT09NDeno6dzkAABw9ehTx8fFgjEEsFkNeXp6uEfwBUSJICCGkVL169cKFCxdw7tw51K1bF5qamhg4cCCsrKxgYGAALS0tXLhwAX/99Rd0dHQwYcIE7NixAz/99JNM7Y8bNw4JCQnQ0tLi7u7dtm0bJkyYAA0NDaxZswZDhgz54vi9vb1hbm4OdXV1TJ06Fd7e3tDR0Sm1fuvWraGmpgYNDQ1MmDABv/32G7p27QoAGDlyJKZOnYpevXpBX18fQUFB+Oeff7jkaOHChfjzzz+hpaWFSZMmfXHMxTEUL8WJJgCoqKhgwIABuHTpkkSy7eXlxZ0S1tDQQJs2bT57PWIxS0tLjB07FvXr14empiZu3bqFgIAALhZ7e3uMHTsWTk5OX7xf5PskYF86304IIeSL5eTkICYmBrVr14aSkhKA7/eB0oSQ/xZpv19KQ3O8hBDynTBR00JY//n0FXOEkG+GEkFCCPmOmKhpUZJGCPlm6BpBQgghhJBqihJBQgghhJBqihJBQgghhJBqihJBQgghhJBqihJBQgghhJBqihJBQgghhJBqih4fQwgh35GCtHgU5ryv1D7klXSgoGFSqX1Utfj4eFhbWyMhIQFisVhqnfbt26Nv376YMWNGhfTp5eUFd3d3BAYGVkh7XyIlJQVaWlqIiYmBmZlZubZdvnw5AgMDcerUqa+Oo6yxkOXYkG+HEkFCCPlOFKTF4+X+hmCFOZXaj0BeCbVGPZUpGWzfvj3u3LkDoVAIoVAIGxsbbNq0CVeuXMHatWsBAIWFhcjJyYGqqiq33YULF3Dt2jWsWLECixYtwurVq7l1Dx48QIsWLWBra1tpSZOJiQkyMjK4166urtDU1IS7u/tXtz1mzBh4enoiNDQU9evXL7WemZkZ3N3d0bdv36/us6IsX74cq1ev5n3bRO/evXH48OFvFsOnx6aiJSUlYfbs2fj333+RmZkJXV1d9OnTB1u2bKm0Pv/L6NQwIYR8Jwpz3ld6EggArDCnXLOOGzZsQEZGBpKSktCkSRP07dsXCxcuREZGBjIyMnDhwgWIxWLudUZGBtq0aQPg43fYHjhwAEVFRVx7np6esLKyqvD9+hYyMjJw9OhRaGtrw8PDo1L7KiionK8a7NWrF+9Yfcsk8FsYMWIElJSUEB4ejtTUVFy5cgV2dnZVHdZ3ixJBQgghMlFSUsLYsWORmJiI9+9lSyStrKxgZGSEq1evAvj4HajHjh3DiBEjePU2b94MExMTqKurw8zMDHv37i21vYsXLwIAnjx5AoFAgJ07dwIAUlNTIRQK8e7dO8TGxkIgECAlJQW///47Dh06hO3bt0NNTQ0NGjTg2nv9+jUcHR2hpqaGJk2a4MmTJ2Xuz5EjR6CqqooNGzbgwIEDyM/Pl1pv0KBBiI+Px9ChQ6GmpoZffvkFAPDmzRu4uLjA0NAQhoaGmDFjBnJzcwEAfn5+0NTUxI4dO2BiYgJ7e3sAwNWrV9GiRQtoamqiQYMGOHPmDNdPbm4uJk6cCG1tbdSuXRt///13mfGXx7x582Bqagp1dXVYW1vj2LFj3LriWPfu3QtjY2Po6Ohg3rx5pba1c+dO1KlTB+Hh4bxjA3ycrR0/fjycnZ2hrq4OS0tL+Pn5cdumpKRg0KBB0NTUhJWVFf744w8IBIJS+7p79y5Gjx4NTU1NyMnJoW7duhg1ahS3Pj8/H0uXLkXdunWho6MDJycnJCYmcutDQkLQqlUrqKuro0OHDpg3bx7at28PABKxA8CMGTPg6urKvY6Ojkbv3r2hq6sLU1NTrF69mvtHyMvLC3Z2dli1ahVq1qwJPT09iVnqw4cPw9bWFhoaGjA1NYWXlxe37siRI7CxsYGmpiaaN28Of3//UsdBVpQIEkIIkUlWVhb27t0LU1NT6OjoyLzd6NGjsW/fPgDAyZMn0aJFCxgaGnLrIyMjsXjxYly+fBnp6em4d+8eWrRoIbWtjh07wtfXFwDw77//om7dutxrPz8/WFtbo0aNGrxtpk2bBhcXF0yaNAkZGRkICQnh1h04cADr169HSkoKmjVrhqlTp5a5Lx4eHnBxcYGzszOysrLwzz//SK137NgxmJiY4PDhw8jIyMDOnTvBGIOTkxP09fURFRWFJ0+eICgoiHfaPD09HUFBQQgPD8f169cRHByMQYMGYf369fjw4QN27dqFESNGICIiAgCwZs0a3LlzB0+fPsXjx49x4sSJMuMvD1tbWzx48AApKSlYunQpRowYgZiYGF6sT548wbNnz3Dr1i1s27aNl8AVW7ZsGbZt24abN2+WOhN85MgRTJgwASkpKRgxYgQvsZo6dSoyMzMRFxcHX19fHDx4sMy4f/rpJ8yYMQMHDhxAZGSkxPpFixbh9u3buHXrFpKSkmBhYQFnZ2cAH2dhnZyc0KlTJ7x//x5r164t9Z8SabKzs9GpUyd07NgRCQkJuHnzJo4cOQJPT0+uTkhICJSUlJCQkAAfHx/MmTMH0dHRAIB//vkHU6ZMwZYtW5CSkoIHDx7A1tYWAHD+/HnMmTMHXl5e+PDhAxYsWIDevXvL/E9ZaSgRJIQQUqYFCxZAU1OTm9EpOSMlC2dnZ1y+fBnJycnw9PTE6NGjeevl5eXBGENISAiys7Ohp6cHGxsbqW116NCBlwguXboU169f51537NixXLGNGDECjRs3hoKCAkaNGoWAgIBS64aGhuLu3bsYNWoU1NTU0K9fv3KdHn748CGePXuG3377DSoqKtDR0cHChQvh7e3N1SkqKsL69euhoqICFRUV7Nq1C66urujYsSPk5OTw008/oVevXjh69CgA4NChQ1i4cCEMDQ2hqamJZcuWfTaOc+fOQVNTk1suXboktZ6Liwtq1qwJeXl5ODs7w8rKijcDxRjDunXroKSkhPr166N169a88SssLMSECRNw7do13LhxA0ZGRqXG1LNnT3Ts2BHy8vIYPXo04uLi8P79exQWFsLHxwcrV66EWCyGgYEB5s6dW+b+HT16FL1794a7uzsaNGgAU1NTbowZY9i+fTs2b94MAwMDKCoqYvXq1bh9+zZevHiBO3fu4N27d1i+fDkUFRVhb2+PIUOGfHZMi509exZaWlqYOXMmFBUVYWJigunTp/OOsY6ODubOnQuhUIj27dujdu3a3LWy27dvx/Tp07njXbNmTTRu3BgAsG3bNsydOxdNmjSBnJwc+vfvDysrK5w/f17m+KShRJAQQkiZ1q1bh5SUFLx69QoXL14sNUkrjYaGBnr06IENGzYgMDAQTk5OvPV169bF/v378eeff0JPTw9du3Yt9SaS9u3b4/Hjx0hOToa/vz/69esHfX19hISEfFEiqK+vz/2sqqpa5k0MHh4esLW15WZoRo0ahUuXLiEhIUGmvmJjY5GSkgJtbW0uCRs4cCBev37N1VFXV4empiZvm507d/ISt9OnT3OnMhMTE2FqasrVL/lzaXr27ImUlBRucXR0lFpvy5YtaNCgAcRiMTQ1NfH06VO8e/eOW6+hoQEVFRXutaqqKtLT07nXL168wIEDB7B06VJoaWmVGdOnxwH4OOP47t075Ofnw9jYmFtvYlL2TU4aGhpYvnw5Hj16hOTkZEybNg0jR45EWFgY3r17h8zMTLRt25YbT319fSgqKuLFixdITEyEoaEhhEIh154sY1osNjYWT58+5R2v2bNn49WrV1L3tXh/i8ctLi4O9erVK7XthQsX8toODAyU+f1XGkoECSGEVLrRo0dj48aNcHZ2hqKiosT6wYMHw9fXF69fv4atra3ENYTFdHV1YWVlBXd3d5ibm0NdXR0dO3aEj48PwsPD0bZtW6nbycl93Z+7/Px8HDx4EJGRkdDX14e+vj5cXFxQWFjIu4arrD6NjY1Rs2ZNXhKWmprKSz6lbTN9+nTeNhkZGdixYwcAwNDQEHFxcVz9+Pj4r9rPYrdu3cLy5ctx4MABJCcnIyUlBQ0bNgRjTOY2zMzMcPLkSQwbNkzqKWNZ1KhRA0KhEC9evODKyrOPampqmD17NsRiMUJDQ6GjowMVFRXcu3ePN6bZ2dlo3bo1DA0NkZiYyLv2s2R/ampqAD5eJlEsKSmJ+9nY2BhNmzbltZ2Wlsa7HKEspqamiIqKkrrO2NgYbm5uvLYzMzPx66+/yjwe0lAiSAghpNJ17NgRV65cweLFiyXWRURE4MqVK8jOzoaioiLU1NSgoFD60806dOgAd3d3dOjQgWt769ataNy4canPpdPT08Pz58+/OP4zZ84gLS0Njx49QmBgIAIDAxEUFIQlS5Zg3759UhMkPT097tovAGjevDlMTEywePFipKengzGGuLg4XLhwodR+f/75Z3h6esLX1xeFhYXIzc3FnTt3EBYWBgAYOnQo1q9fj8TERKSkpGDlypVfvI8lpaWlQUFBAbq6uigqKsK+ffvw9OnTcrfTvXt3eHt7Y+DAgbh27Vq5t5eXl8fgwYOxfPlypKWl4dWrV3Bzcytzm7lz5yIwMBB5eXnIy8vD3r17kZmZiaZNm0JOTg6//PILZs+ezSWX79+/h4+PDwCgVatW0NHRwapVq5CXl4d79+5x64CPiamJiQn279+PoqIi+Pr68k7N9urVC69fv8b27duRk5ODwsJCREREyJwI//zzz9i6dSuuX7+OoqIivHnzBo8fPwYATJkyBb/99hsCAgLAGENWVhauXr2Kly9flmdIJVAiSAghpNIJBAJ06tQJNWvWlFiXl5eHJUuWQE9PDzo6Ovj3339LnWUDPiaCaWlp3Gngdu3aISsrq8zTwuPGjUNCQgK0tLTKfWob+HhaeOjQobCysuJmBPX19TFt2jQkJiZy1y2WtHDhQvz555/Q0tLCpEmTIC8vj3/++QcJCQmoX78+xGIxevbsWeoMEAA0btwYhw8fxuLFi6GrqwsjIyMsWbKEu9N48eLFaNasGRo2bAg7O7sKe2Zht27dMGDAADRq1AiGhoYICQmBg4PDF7XVtWtX+Pj4YMiQIbh8+XK5t//jjz8gEolgbGyM9u3bY/DgwVJnlYvl5ubC2dkZOjo60NfXh6enJ06fPs09YHvdunWwt7dHx44doa6ujqZNm3JxCYVCnD59GpcuXYK2tjZ+/fVXjBkzhtf+vn374OnpCbFYjF27dnE3mgAfZwyvXr2Ka9euwczMDDo6Ohg2bBjv1HBZ+vbti82bN2Py5MkQi8Vo3rw5dyd7r169sH79eowfPx5aWlqoXbs2tm7dyns005cQsPLM8xJCCKkQOTk5iImJQe3atbmH+36PD5Qm5Hvj7e2NpUuXlplAVyR3d3ecOnXqi09vVwVpv19KQ98sQggh3wkFDRPUGvWUvmKOkBKePXuG1NRUNG3aFFFRUVizZg0GDRpU1WH9MCgRJISQ74iChgklaYSUkJmZieHDh+PFixcQi8Xo27ev1GtNyZehU8OEEFIFynPqhhBCyqM8v1/oZhFCCCGEkGqKEkFCCCGEkGqKEkFCCCGEkGqKEkFCCCGEkGqKEkFCCCGEkGqKEkFCCPmOxCdn4dHLlEpd4pOzPh9IOdy8eRO1atXiXufk5KBfv37Q1NREixYtAAD//PMPzMzMoKamhlOnTlVo/1/ql19+wfz582Wq6+XlBTs7O+61mZlZle/H8uXLv+qbRGbMmAFXV9cv3t7Ozq7Mb4Ah/w30HEFCCPlOxCdnwWqDL3IKvu4roz5HSUEO4fM7wERL5bN127dvjzt37kBRURFycnIwNjaGo6Mjfv31V+jq6gIA2rRpw/u+0+PHjyMiIgKvX7+GSCQCAMyaNQsrV67EyJEjK2enPmP58uUIDAzkJW87d+6skljMzMzg7u5eYV8H9z3y8/NDhw4doKqqCgDQ1taGi4sL1qxZAw0NDa5ednY2FBQUIBQKAXx8L124cAECgQAqKipISkri1e/ZsyfOnz+PkydP/tDj9y3RjCAhhHwn3mXmVXoSCAA5BUV4l5knc/0NGzYgPT0dKSkpOHr0KBISEtC0aVO8fv1aav2YmBhYWFhwSWBx2Zd8xy8AFBYWgh55+98jFouRkZGBjIwMnDt3Dvv27cPevXu5soyMDLRp0wYbNmzgXl+4cIHb3tjYGD4+PtzrpKQk3Lt3D3p6elWxOz8sSgQJIYTIRCAQwNraGn/99RfEYjE2b94M4OPsj6amJgBg9uzZWLlyJc6ePQs1NTVMnToVampqKCwsROvWraGmpobc3Fzk5+dj6dKlqFu3LnR0dODk5ITExEReX3/++ScaNmwIFRUVZGRkIDo6Gr1794auri5MTU2xevVqFBV9TJyLT92uWrUKNWvWhJ6eHtzd3QEAp06dwtq1a7mY1NTUAACurq6YMWMG1+fw4cNhaGgIDQ0NNG3aFL6+vp8dk/z8fOjp6eH69eu8cisrKxw9evSz25cVd7HDhw/D1tYWGhoaMDU1lXo6NjY2FgKBACkpKVzZp6d+b9y4gUaNGkFNTQ39+/dHeno6r42yxhcA/vzzTxgbG0NHRweLFi367L6V1KhRI7Rp0wZPnjyReZvRo0fD09OTe33gwAEMHjyY94DkmJgYdO7cGWKxGNra2nBwcEBWVsVe+vCjo0SQEEJIuSgoKKBPnz7w8/OTWOfm5oaFCxeiV69eyMjIwB9//IGMjAwAgL+/PzIyMiASibBo0SLcvn0bt27dQlJSEiwsLODs7Mxry9vbG5cvX0ZaWhrk5OTQqVMndOzYEQkJCbh58yaOHDnCSxRCQkKgpKSEhIQE+Pj4YM6cOYiOjkbfvn15MRXH86lOnTohLCwM79+/h7OzMwYOHCiRLH1KKBRixIgRvDju3LmDN2/eoE+fPjKNZ2lxAx+vrZwyZQq2bNmClJQUPHjwALa2tjK1W1JycjKcnJwwZcoUpKSkYPTo0fjrr7+49dnZ2WWO77///otFixbh6NGjSEpKAgA8ffpU5v6DgoJw48YNNGnSROZtunTpghcvXiA8PBwA4OnpidGjR/PqLFq0CObm5nj37h1ev36N3377DQoKdNVbeVAiSAghpNyMjIzw4cOHL9qWMYbt27dj8+bNMDAwgKKiIlavXo3bt2/jxYsXXL158+bB0NAQIpEI58+fh5aWFmbOnAlFRUWYmJhg+vTp8Pb25urr6Ohg7ty5EAqFaN++PWrXro3AwECZ4xo9ejTEYjGEQiHmzp2LoqIiBAcHf3a7sWPH4vjx41yC6eXlhWHDhvFOjZelrLi3b9+O6dOno2PHjpCTk0PNmjXRuHFjmfep2NmzZ2FoaIiff/4ZCgoK6N27Nzp27MhbX9b4Hjp0CC4uLrC3t4eioiKWL1/OXf9XmtTUVGhqakJLSwuDBw/G1KlTy3VzipycHEaOHAlPT0/4+/tDQUEBzZs359URCoVISkpCbGwshEIhWrduDUVFRdkHhtDNIoQQQsovISEB2traX7Ttu3fvkJmZibZt20IgEHDlioqKePHiBYyNjQEAJiYm3LrY2Fg8ffqUOwUNAEVFRVxdANDX1+f1o6qq+tkZvZJtLVmyBEePHsXr168hJyeHtLQ0vHv37rPb1q9fHw0bNsTff/8NZ2dnHD16FFevXpWp38/FHRcXVyE32CQmJsLU1JRXZmpqipycHACfH9/ExES0b9+eWycUCmFgYFBmn2KxmHeq+kuMHj0abdu2xZs3byRmAwHgt99+w/Lly9G5c2cIBAK4urpi6dKlkJOjeS5ZUSJICCGkXAoKCnD69Gn06NHji7bX0dGBiooK7t27Bysrq1LrlfxjbmxsjKZNm+Lu3btf1OfnEgNvb294e3vj0qVLqFevHgQCAbS0tGS+SWXs2LHw8vKCSCSCiYkJmjZt+kVxfsrU1BRRUVGfrVd83WNWVhaXzCUlJUFZWRkAYGhoiLi4ON428fHxqFmzJoDPj++n2+fn53OniCuTubk56tatC29vb8THx0usr1mzJrZv3w7g46nqzp07o1GjRhgwYEClx/ajoJSZEEKIzMLDwzFq1CikpqZi1qxZX9SGnJwcfvnlF8yePZs7Ffz+/XveHaKf6tWrF16/fo3t27cjJycHhYWFiIiIkHqdojR6enqIi4tDYWGh1PVpaWlQVFREjRo1kJeXh5UrVyItLU3mfRoyZAgePXqE9evXS525+lI///wztm7diuvXr6OoqAhv3rzB48ePJerVqFEDJiYm2L9/P4qKiuDr64vz589z63v27ImEhATs2bMHBQUFOHfuHP79919u/efGd+jQoTh06BDu3bvHjU9mZmaF7WdZvLy8cP36dal3Cx89ehTx8fFgjEEsFkNeXp6uESwnSgQJIYSUaf78+VBXV4dYLEb//v2hr6+Phw8fftVjPNatWwd7e3t07NgR6urqaNq0KS5fvlxqfTU1NVy9ehXXrl2DmZkZdHR0MGzYMLx69Uqm/gYNGgQNDQ3UqFGDd/qz2KhRo9CgQQOYmpqiTp06UFZW5p12/hx1dXUMHDgQYWFhcHFxkXm7z+nbty82b96MyZMnQywWo3nz5qXeebtv3z54enpCLBZj165dvJtvtLW1cfr0aWzduhWamprYu3cvL87PjW/nzp2xatUqDBgwAAYGBigqKkLDhg0rbD/LUrduXbRq1UrquoCAAO5udHt7e4wdOxZOTk7fJK4fhYDRw5kIIeSby8nJQUxMDGrXrs09DuN7fKA0kd3KlSsRGBiIEydOVHUopJqT9vulNDR/Sggh3wkTLRWEz+9Qroc9f4kaqoqUBFawt2/fYs+ePbzHyBDyX0CJICGEfEdMtFQoSfuPWbNmDdauXYsRI0agc+fOVR0OIeVCp4YJIaQKlOfUDSGElEd5fr/QzSKEEEIIIdUUJYKEEEIIIdUUJYKEEFKF6OocQkhFK8/vFbpZhBBCqoBQKIRAIMDbt2+hq6vL+6o1Qgj5UowxvH37FgKBAEKh8LP16WYRQgipIhkZGXj58iXNChJCKpRAIECtWrW4rx4ssy4lgoQQUnUKCwuRn59f1WEQQn4gQqEQ8vLyMtWlRJAQQgghpJqim0UIIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqophaoOgBBCSPVRVFSExMREqKurQyAQVHU45AfGGEN6ejoMDQ0hJ0fzXqWhRJAQQsg3k5iYCGNj46oOg1QjL168QK1atao6jO8WJYKEEEK+GXV1dQAf/zhraGhUcTTkR5aWlgZjY2PuPUeko0SQEELIN1N8OlhDQ4MSQfJN0CUIZaOT5oQQQggh1RQlgoQQQggh1RSdGiaEEELIdysoIRXejxOQmp0PTRUhhtoZwdZIXNVh/TBoRpBUiuXLl8POzu67aacihYeHo1WrVlBSUvruYqtKt2/fRqNGjSAUCtG3b99K7cvV1ZXXR/v27TFjxoxK7fNbMDMzg7u7e4W0NWLECKxdu7ZC2irNkydPUKtWLWRmZlZqP6R6yk+Lx8ND/dBx+3X85heN3ffisdE3Gm2330a33XcRn5xV1SH+ECgR/IG4urpCIBBAIBBAQUEBJiYmmDhxIpKTk6s6NJkIBAKcOnWKVzZnzhxcu3btm/Tv7++PHj16QEtLC0pKSmjUqBHc3NxQWFjIq7ds2TKoqqoiIiKi1NhKHouSS7du3WSOpzKTG2ljXZqzZ8+iffv2UFdXh4qKCpo3bw4vLy+JerNmzYKdnR1iYmKkri8WFRWF0aNHo1atWhCJRKhduzaGDh2Khw8fftnOyCgvLw+//fYbmjRpAlVVVYjFYtja2mLx4sVITEys1L4/5eXlBU1NzUprPzg4GOfOncPUqVN55VFRURgzZgxMTEwgEolgZGSETp064dChQygoKODVleW4N2rUCC1atMCWLVsqbV9I9ZSfFo/Xp3pD5+15zKtxmrcuPbcQlyPfosfee3iRnF1FEf44KBH8wXTr1g1JSUmIjY3F3r178c8//2DSpElVHdYXU1NTg46OTqX3c/LkSbRr1w61atWCr68vwsPDMX36dKxZswbOzs5gjHF1o6Oj8dNPP8HU1LTM2IqPRcnl8OHDlb4vFemPP/5Anz590Lp1a9y7dw/BwcFwdnbGL7/8gjlz5vDqRkdHo2PHjqhVq1apSc7Dhw/RtGlTREZGYteuXQgNDcXJkydhZWWF2bNnV9p+5ObmokuXLli7di1cXV1x48YNBAQEYOPGjXj//j3++OOPUrfNy8urtLgqy59//olBgwbxHptx//59NGnSBGFhYdi2bRuePn2Ks2fPYsyYMdi5cydCQkK4uuU57qNHj8aOHTsk/mEi5Gu8u/oL8j+EAWDop3oTWnJpEnVCX2dg/LGgbx/cj4aRH8aoUaNYnz59eGWzZs1i2travLJ9+/YxKysrJhKJmKWlJdu2bRtv/e3bt5mtrS0TiUSsadOm7OTJkwwAe/z4MWOMMU9PTyYWi3nbFNcptmzZMmZra8u9vn//PuvcuTPT0dFhGhoarG3btiwgIIBbb2pqygBwi6mpqdR2CgsL2YoVK5iRkRFTVFRktra27MKFC9z6mJgYBoAdP36ctW/fnikrKzMbGxvm7+9f6rhlZGQwHR0d1r9/f4l1Z86cYQDYkSNHGGOMFyMAtmzZMqltSjsWJfn6+jKhUMhu3LjBlW3atInp6OiwxMRENmrUKIm+YmJiGGOMhYSEsO7duzNVVVVWs2ZNNnz4cPb27VuunXbt2rGpU6eyuXPnMi0tLaanp8eLs7Sx/lR8fDwTCoVs1qxZEut+//13BoDdvXuXG/OSi6enp8Q2RUVFrEGDBqxp06assLBQYn1ycjL388uXL9ngwYOZpqYm09bWZk5OTtz+MyY5vu3atWPTp0+Xuh+MMbZu3TomJyfHHj16JHV9UVERr63JkyezmTNnMh0dHda2bVvGGGN+fn6sefPmTFFRkenr67P58+ez/Px8xtjH94lYLOb26/HjxwwAmzNnDtfuhAkTmLOzM/P19S31fWRqasrWrFnDRo8ezdTU1JixsTHbtWtXqfslTWFhIdPU1GRnz57l7V/9+vVLHfuSYyDrcS+Wm5vLRCIRu3btmkzxpaamMgAsNTW1PLtFqpGc149ZzJ/a7PkWIbcc396LCWafkVg0Fp5jgS9TpLZD7zXZ0IzgD+z58+e4ePEihEIhV7Znzx4sWrQIa9asQVhYGNauXYslS5Zg//79AID09HT07t0bjRo1wqNHj7Bq1SrMnz//q2NJT0/HqFGjcPPmTdy9exf16tVDjx49kJ6eDgB48OABAMDT0xNJSUnc609t3boVbm5u2LRpE4KDg+Ho6AgnJyc8e/aMV2/RokWYM2cOAgMDYWFhgaFDh0qc+ip2+fJlvH//XmKmAwB69+4NCwsLbiYvKSkJDRo0wOzZs5GUlCR1G1kUn/YdMWIEUlNTERQUhEWLFmHPnj0wMDDA1q1bYW9vj/Hjx3OzicbGxkhKSkK7du1gZ2eHhw8f4uLFi3j9+jUGDx7Ma3///v1QVVXFvXv3sHHjRqxcuRJXrlwBIPtY//3338jPz5e6jz///DPU1NRw+PBhLi4NDQ24u7sjKSkJQ4YMkdgmMDAQISEhmD17ttSveyqeRczKykKHDh2gpqaGGzdu4NatW1BTU0O3bt2+eHbu8OHD6NKlCxo3bix1/afPGdu/fz8UFBRw+/Zt7Nq1CwkJCejRoweaN2+OoKAg7NixAx4eHli9ejUAoG3btkhPT8fjx48BANevX0eNGjVw/fp1rk0/Pz+0a9cOrVu3hru7OzQ0NLhjW3KM3dzc0KxZMzx+/BiTJk3CxIkTER4eLvO+BgcHIyUlBc2aNePKAgMDERYWhjlz5pT6VVvFYyDrcS+mqKgIW1tb3Lx5U2q7ubm5SEtL4y2ElCUj4ihYfjqvrDEeoplytETd9NxCHA5M+Fah/ZDoruEfzNmzZ6GmpobCwkLk5OQAADZv3sytX7VqFdzc3NC/f38AQO3atREaGopdu3Zh1KhROHToEAQCAfbs2QMlJSVYW1sjISEB48eP/6q4OnbsyHu9a9cuaGlp4fr16+jVqxd0dXUBfEwG9PX1S21n06ZNmD9/PpydnQEAGzZsgK+vL9zd3bFt2zau3pw5c9CzZ08AwIoVK9CgQQNERUXByspKos3IyEgAQP369aX2aWVlxdXR19eHgoIC1NTUyowT+N+xKGn+/PlYsmQJAGD16tW4evUqJkyYgJCQEIwYMQL9+vUDAIjFYigqKkJFRYXXz44dO9CkSRPeTQD79u2DsbExIiMjYWFhAQCwsbHBsmXLAAD16tXDn3/+iWvXrqFLly4yj3VkZCTEYjEMDAwk1ikqKqJOnTqIjIyEvLw89PX1IRAIIBaLS22zOFmXdgxKOnLkCOTk5LB3714uOfH09ISmpib8/PzQtWvXMrcvbV/at2/PK+vXrx+XHNvY2MDf359bZ25ujo0bN3KvFy1aBGNjY/z5558QCASwsrJCYmIi5s+fj6VLl0IsFsPOzg5+fn5o2rQp/Pz8MHPmTKxYsQLp6enIzMzkYlBUVIRYLIZAIJA6Vj169OAu55g/fz62bNkCPz+/z45bsdjYWMjLy6NmzZq8/QcAS0tLruzNmzeoU6cO93rjxo2YNGmSzMe9JCMjI8TGxkqNZ926dVixYoVMsRMCACwvRbIs9z0s68UiJV/yIeSvIQJgXfmB/aAoEfzBdOjQATt27EBWVhb27t2LyMhI7oLxt2/f4sWLFxg7diwvsSsoKIBY/PFW/IiICNjY2EBJSYlb36JFi6+O682bN1i6dCn+/fdfvH79GoWFhcjKykJ8fLzMbaSlpSExMREODg68cgcHBwQF8a8TsbGx4X4u/oP25s2bMv+YshLXAX5a/iVPpi8+FiVpa2tzPysqKuKvv/6CjY0NTE1NZbpbNCAgAL6+vhIJJvDxGr2SiWBJBgYGePPmTbn3oSzlHZfi8f3cNgEBAYiKipL4WqicnBxER0vOCMjq0363b9+OzMxM/P7777hx4wZvXcnZNAAICwuDvb09rw0HBwdkZGTg5cuXMDExQfv27eHn54dZs2bh5s2bWL16NY4fP45bt24hJSUFenp6MiVzJY9dcbJYnmOXnZ0NkUgkdZxLluno6CAwMBDAxxlqWWdbpR13ZWVlZGVJv4NzwYIFmDVrFve6+Gu/CCmNQFFTouy4+k84zpSQKxcqsW6Ant43iOrHRYngD0ZVVRXm5uYAgN9//x0dOnTAihUrsGrVKhQVFQH4eHq4ZcuWvO3k5eUBSP8l/2mCJCcnJ1GWn59fZlyurq54+/Yt3N3dYWpqCpFIBHt7+y861Sctvk/LSp4OL15XvP+fKk6ewsLC0Lp1a4n14eHhsLYu/3+bJY9FaYpnoT58+IAPHz5AVVW1zPpFRUXo3bs3NmzYILGu5AxOyf0HPo5BaftfGgsLC6SmpiIxMRGGhoa8dXl5eXj+/LnETO/n2gM+jnNZj90pKipC06ZNcejQIYl1xbOZ5VWvXj2J06vF41UyOS/26XEo63NRXN6+fXt4eHggKCgIcnJysLa2Rrt27XD9+nUkJyejXbt2MsX6tceuRo0ayMrKQl5eHhQVFQF83H/g43u5eOzl5eW596eCwv/+FHzJcf/w4QPq1q0rNR6RSASRSCRz/ISoWQ5GevAu7vRwLuTxl5oDcrMk7xBWF4rgXNvuG0f4Y6FrBH9wy5Ytw6ZNm5CYmAg9PT0YGRnh+fPnMDc35y21a9cG8PG0XXBwMHJzc7k2Pn2sh66uLne6q1jxzEJpbt68iWnTpqFHjx5o0KABRCIR3r17x6sjFArLvPNQQ0MDhoaGuHXrFq/c39+/1NO6sujatSu0tbXh5uYmse7MmTN49uwZhg4d+sXtlyY6OhozZ87Enj170KpVK4wcOZL3B19RUVFiPJo0aYKQkBCYmZlJHMPPJZElfW6sAWDAgAFQUFCQOi47d+5EZmZmucbFzs4O1tbWcHNzk5rYpKSkAPi4j8+ePUPNmjUl9rF45rq8hg4diitXrnDX8JWXtbU1/P39ef8A+fv7Q11dHUZGRgD+d52gu7s72rVrB4FAgHbt2sHPz4+7PrCYtGNbUYoTvdDQ/82cNG7cGFZWVti0adNnk8ovOe5Pnz4t9fpLQspLVNMOIoP/TVa46wzAUylJIADY65rCVsfoW4X2Q6JE8AfXvn17NGjQgLumbPny5Vi3bh22bt2KyMhIPHnyBJ6entx1hMOGDUNRUREmTJiAsLAwXLp0CZs2bQLwv5mPli1bQkVFBQsXLkRUVBS8vb3LfG4c8PGaq4MHDyIsLAz37t2Di4sLlJWVeXXMzMxw7do1vHr1qtRnH86dOxcbNmyAj48PIiIi8OuvvyIwMBDTp0//4jFSVVXFrl27cPr0aUyYMAHBwcGIjY2Fh4cHXF1dMXDgQImbMWSRm5uLV69e8Zbi5LewsBAjRoxA165dMXr0aHh6euLp06e8P75mZma4d+8eYmNj8e7dOxQVFWHy5Mn48OEDhg4divv37+P58+e4fPkyxowZU67EQpaxNjExwcaNG+Hu7o5FixYhPDwc0dHR2Lx5M+bNm4fZs2dLzCyXRSAQwNPTE5GRkWjbti3Onz+P58+fIzg4GGvWrEGfPn0AAC4uLqhRowb69OmDmzdvIiYmBtevX8f06dPx8uVLmfsraebMmbC3t0fHjh2xdetWPHr0CDExMbh06RIuXLjAzYiXZtKkSXjx4gWmTp2K8PBwnD59GsuWLcOsWbO4my+KrxP866+/uOsR27Zti0ePHklco2hmZoaMjAxcu3YN7969K/W06pfQ1dVFkyZNeP8wFY99REQEHBwcuH9wQkNDsXPnTrx9+5Ybg/Ie99jYWCQkJKBz584Vtg+E1Oi8E0Lt+kgUqOGigvTZZmuxHnY7DPrGkf2AquZmZVIZSntkyaFDh5iioiKLj4/nXtvZ2TFFRUWmpaXF2rZty06cOMHVv337NrOxsWGKioqsadOmzNvbmwFg4eHhXJ2TJ08yc3NzpqSkxHr16sV2795d5uNjHj16xJo1a8ZEIhGrV68eO3bsGDM1NWVbtmzh6pw5c4aZm5szBQUFmR4fIxQKS318TPGjbhj7+FgSAMzX17fM8btx4wbr1q0bE4vFTFFRkVlbW7NNmzaxgoICXj1bW9tSHxtTTNrjXwAwS0tLxhhjK1asYAYGBuzdu3fcNqdOnWKKiopc7BEREaxVq1ZMWVmZ9/iYyMhI1q9fP6apqcmUlZWZlZUVmzFjBvf4D2mPUunTpw8bNWoU91raWJfm9OnTrE2bNkxVVZUpKSmxpk2bsn379knUE4vFUh8b86mIiAg2cuRIZmhoyBQVFZmpqSkbOnQo79EuSUlJbOTIkaxGjRpMJBKxOnXqsPHjx3OPgSjv42MYYywnJ4etX7+e2draMmVlZSYSiZiVlRWbOXMm99koq62yHh9TbPbs2QwAe/r0KVdma2vLdHV1eY+oYYyxX375heno6Eg8PqbkZ6J4+8+93z61c+dO1qpVK4nyiIgINmrUKFarVi2moKDAxGIxa9u2Ldu1a5fEvsh63NeuXcscHR1ljo0e6UFklZcax6afWsjEBxYyuX2zuUV8cCHrdnEXi0v7UOb29F6TjYCxUq6QJ+T/HTp0CKNHj0ZqaqrELB4h5PuTk5MDS0tLHDlyBPb29pXWT25uLurVq4fDhw9L3MRVmrS0NIjFYqSmpkJDQ/IOUEI+FfQ+AUdiApGcmwUtkQqca9vJdDqY3muyoZtFiIQDBw6gTp06MDIyQlBQEObPn4/BgwdTEkjIf4SSkhIOHDggcR1uRYuLi8OiRYtkTgIJ+RK2OkZ0HWAlokSQSHj16hWWLl2KV69ewcDAAIMGDcKaNWuqOixCSDnIepfy17CwsODuBieE/DfRqWFCCCHfDJ2uI98KvddkQ3cNE0IIIYRUU5QIEkIIIYRUU3SNICGEkG/O3NycewYjIZWhvN+mVF1RIkgIIeSbi4qKouu2SKUqvkaQlI3+HSOEEEIIqaYoESSEEEIIqaYoESSEEEIIqaboGkFCCCGEfLHcN0HIiPDB01RlnMcADGtsBFsjujbvv4JmBKuZ5cuXw87OrqrD+Cp+fn4QCARISUkBAHh5eUFTU7PS+xUIBDh16lSl9/O9iY2NhUAgQGBgIADJ8a9MVXWsK0JVftby8vJgbm6O27dvV2o/f/75J5ycnCq1D/L9yk+LR9LJnkg61hFpAZsgSPLDb37RaLv9Nrrtvov45KyqDpHIgBLBSubq6gqBQACBQAChUIg6depgzpw5yMzM/Kp2v/SPzJw5c3Dt2rWv6vt7+2M8ZMgQREZGVlh7pY1tUlISunfvXmH9fKp9+/bce0XaYmZmVu42GWPYvXs3WrZsCTU1NWhqaqJZs2Zwd3dHVlbl/pLOy8vDxo0bYWtrCxUVFdSoUQMODg7w9PREfn5+pfVbFQm7tD4r4rP2pXbv3g1TU1OJ7wD29fVFr169oKurCyUlJdStWxdDhgzBjRs3ePUKCwuxZcsW2NjYQElJCZqamujevbtEYjl+/Hg8ePAAt27dqvR9It+X/LR4vD7VGzlxV8Dy03nr0nMLcTnyLXrsvUfJ4H8AJYLfQLdu3ZCUlITnz59j9erV2L59O+bMmSO1bmX+gQQANTU16OjoVGof35qysjJq1qxZ6f3o6+tDJBJVWvsnTpxAUlISkpKScP/+fQDA1atXubIHDx6Uu80RI0ZgxowZ6NOnD3x9fREYGIglS5bg9OnTuHz5ckXvAicvLw+Ojo5Yv349JkyYAH9/f9y/fx+TJ0/GH3/8gZCQkErr+3tRlZ+1P/74A+PGjeOVbd++HZ06dYKOjg58fHwQFhaGgwcPonXr1pg5cyZXjzEGZ2dnrFy5EtOmTUNYWBiuX78OY2NjtG/fnpfwikQiDBs2DH/88ce32jXynXh3bSLyP4SVWSf0dQYmHAv+RhGRL8ZIpRo1ahTr06cPr2zcuHFMX1+fMcbYsmXLmK2tLfPw8GC1a9dmAoGAFRUVsbi4OObk5MRUVVWZuro6GzRoEHv16hVjjDFPT08GgLd4enoyxhhLSUlh48ePZ7q6ukxdXZ116NCBBQYGcn0X9/dpfL/99hvT19dn2trabNKkSSwvL6/UffL09GRisbjU9WXFXuz06dOsadOmTCQSMR0dHdavXz9u3cGDB1nTpk2Zmpoa09PTY0OHDmWvX7/m1vv6+jIALDk5WWo8pqamEuNT8q0+b948Vq9ePaasrMxq167NFi9ezO1vWWMLgJ08eZJrJzg4mHXo0IEpKSkxbW1tNn78eJaenv5VY1ssJiaGAWCPHz/myvz8/Fjz5s2ZoqIi09fXZ/Pnz2f5+fmltuHj48MAsFOnTkmsKyoqYikpKdzrffv2MSsrKyYSiZilpSXbtm1bqbF8Ov7SbNiwgcnJybFHjx5JrMvLy2MZGRlcHBs2bGC1a9dmSkpKzMbGhh07doyr+7ljLU3J4yQt1sePHzMALCYmhtfmxYsXmZWVFVNVVWWOjo4sMTGR166Hhweztrbmxn/y5MmMMcn3m6mpKWNM8rNWWFjIVqxYwYyMjJiioiKztbVlFy5c4NYXj/Px48dZ+/btmbKyMrOxsWH+/v5l7u+nAgICmJycHEtNTeXK4uLimFAoZDNnzpS6TVFREffzkSNHGAB25swZiXr9+/dnOjo63PFj7OP7UlFRkWVlZckUX2pqKgPAi4/8t+S8DmQxf2qz51uEvOX67o5MMPsMb9FYeI4Fvkz5fKOVgN5rsqEZwSqgrKzMm/mLiorC0aNHcfz4ce46rL59++LDhw+4fv06rly5gujoaAwZMgTAx1Ohs2fPRoMGDbjZoiFDhoAxhp49e+LVq1c4f/48AgIC0KRJE3Tq1AkfPnwoNR5fX19ER0fD19cX+/fvh5eXF7y8vL5o3xhjZcYOAOfOnUP//v3Rs2dPPH78GNeuXUOzZs249Xl5eVi1ahWCgoJw6tQpxMTEwNXVVeYYHjx4wI3Ly5cv0apVK7Rp04Zbr66uDi8vL4SGhmLr1q3Ys2cPtmzZAqD0sf1UVlYWunXrBi0tLTx48ADHjh3D1atXMWXKFF69ihrbhIQE9OjRA82bN0dQUBB27NgBDw8PrF69utRtDh06BEtLS/Tp00dinUAg4B60umfPHixatAhr1qxBWFgY1q5diyVLlmD//v3ljrNk3507d0bjxo0l1gmFQqiqqgIAFi9eDE9PT+zYsQMhISGYOXMmhg8fjuvXr39x318iKysLmzZtwsGDB3Hjxg3Ex8fzZu137NiByZMnY8KECXjy5AnOnDkDc3NzAOBmaj09Pcucud26dSvc3NywadMmBAcHw9HREU5OTnj27Bmv3qJFizBnzhwEBgbCwsICQ4cORUFBgcz7cuPGDVhYWPAe1nz8+HHk5+dj3rx5UrcRCATcz97e3rCwsEDv3r0l6s2ePRvv37/HlStXuLJmzZohPz+fm8X+VG5uLtLS0ngL+W/LiPCROB1cmvTcQhwOTKjkiMhXqepM9Ef36YzgvXv3mI6ODhs8eDBj7OOsgVAoZG/evOHqXL58mcnLy7P4+HiuLCQkhAFg9+/f57YrOdvAGGPXrl1jGhoaLCcnh1det25dtmvXLqnbjRo1ipmamrKCggKubNCgQWzIkCGl7lNZszKyxG5vb89cXFxKbf9T9+/fZwC42bbyzBJNmzaNmZqa8sb3Uxs3bmRNmzblXksbW8b4M027d+9mWlpavJmRc+fOMTk5OW7280vGttins3ALFy5klpaWvJmbbdu2MTU1NVZYWCi1jfr16zMnJ6fP9mVsbMy8vb15ZatWrWL29vZSY5FlRlBZWZlNmzatzH4zMjKYkpKSxIzX2LFj2dChQ6X2VVkzggBYVFQUV2fbtm1MT0+Pe21oaMgWLVokU5/FPn0fGRoasjVr1vDqNG/enE2aNIkx9r9x3rt3L7e++LMTFhZW5j6XNH36dNaxY0de2S+//MI0NDR4ZX///TdTVVXlluDgYMYYY1ZWVhJnMYp9+PCBAWAbNmzglWtpaTEvLy+p2yxbtkzqDD3N0vx3ufn9wbr6zJNYHA8uZPX2ekgsrmcvVUmcNCMoG3p8zDdw9uxZqKmpoaCgAPn5+ejTpw/vmhpTU1Po6upyr8PCwmBsbAxjY2OuzNraGpqamggLC0Pz5s2l9hMQEICMjAyJ65Kys7MRHR1danwNGjSAvLw899rAwABPnjwp937KGntgYCDGjx9fahuPHz/G8uXLERgYiA8fPnDfFxkfHw9ra2uZY9m9ezc8PDxw+/Zt3vj+/fffcHd3R1RUFDIyMlBQUFDur7oKCwuDra0tN7MFAA4ODigqKkJERAT09PQAVNzYhoWFwd7enjdz4+DggIyMDLx8+RImJiYS2zDGePWlefv2LV68eIGxY8fyjklBQYHMX82kpqbG/Tx8+HDs3LlTpr5DQ0ORk5ODLl268Mrz8vKkziRWJhUVFdStW5d7bWBggDdv3gAA3rx5g8TERHTq1OmL209LS0NiYqLEzRsODg4ICgrildnY2PDiKI7ByspKpr6ys7OhpKQkUf7p8XB0dERgYCASEhLQvn17FBYWytS+tLaUlZVLvflowYIFmDVrFvc6LS2N9/uB/Pe8Va2Nq5mxUtYUAnKhEqUD/v/3Ifk+USL4DXTo0AE7duyAUCiEoaEhhEIhb33JZAIo/Q/45/64FhUVwcDAAH5+fhLryrrL99N4BALBF39ZtyyxKysrl7p9ZmYmunbtiq5du+Kvv/6Crq4u4uPj4ejoiLy8PJnj8PPzw9SpU3H48GHY2tpy5Xfv3oWzszNWrFgBR0dHiMViHDlyBG5ubuXYy7KPRcnyihpbaf0xxiT6K8nCwgJhYWVfzF0cy549e9CyZUveupIJbFmKL2cAwCXU5en73LlzMDIy4q2rqJty5OQ+Xv1SPFaA9BuypB2n4m3Ker+Wl7Rj+GlZyViK15XnPVOjRg2Jfzbq1auH1NRUvHr1Cvr6+gA+JvDm5uZQUOD/GbCwsEBoqOQfcwDcMa1Xrx6v/MOHD7x/tkoSiUSVepMV+faca9thR7g/0vNzP1tXXSiCc227yg+KfDG6RvAbUFVVhbm5OUxNTSX+4EhjbW2N+Ph4vHjxgisLDQ1Famoq6tevDwBQVFSU+A++SZMmePXqFRQUFGBubs5batSoUbE79RWx29jYlPpYjfDwcLx79w7r169HmzZtYGVlxc3MyCoqKgoDBgzAwoUL0b9/f96627dvw9TUFIsWLUKzZs1Qr149xMXF8epIG1tp+xkYGMh7DNDt27chJycHCwuLcsUrC2tra/j7+/MSGn9/f6irq0skUcWGDRuGyMhInD59WmIdYwypqanQ09ODkZERnj9/LvGeqV27tkyxldym+O7tYcOG4erVq3j8+LFE/YKCAmRmZsLa2hoikQjx8fESfVfUjFFxcpKUlMSVlUxcZaGurg4zM7MyHwUjFArLfM9oaGjA0NBQ4jEr/v7+3OeiojRu3Bjh4eG898rAgQMhFAqxYcOGz27v7OyMZ8+e4Z9//pFY5+bmBh0dHd4sbnR0NHJycr75LC6pOrY6RrDXNZWprr2uKWx1pP+OIt8HSgS/Q507d4aNjQ1cXFzw6NEj3L9/HyNHjkS7du24myrMzMwQExODwMBAvHv3Drm5uejcuTPs7e3Rt29fXLp0CbGxsfD398fixYvx8OHDCo2xsLAQgYGBvCU0NFSm2JctW4bDhw9j2bJlCAsLw5MnT7Bx40YAgImJCRQVFfHHH3/g+fPnOHPmDFatWiVzXNnZ2ejduzfs7OwwYcIEvHr1iluAj0lLfHw8jhw5gujoaPz+++84efIkrw1pY/spFxcXKCkpYdSoUXj69Cl8fX0xdepUjBgxgjstXJEmTZqEFy9eYOrUqQgPD8fp06exbNkyzJo1i5v1+tTgwYMxZMgQDB06FOvWrcPDhw8RFxeHs2fPonPnzvD19QXw8bmJ69atw9atWxEZGYknT57A09MTmzdv/uJ4Z8yYAQcHB3Tq1Anbtm1DUFAQnj9/jqNHj6Jly5Z49uwZ1NXVMWfOHMycORP79+9HdHQ0Hj9+jG3btn3VjSolFSeVy5cvR2RkJM6dO1fu2V/g4xi5ubnh999/x7Nnz/Do0SPe5R3FieKrV6+QnJwstY25c+diw4YN8PHxQUREBH799VcEBgZi+vTpX7x/0nTo0AGZmZm8R/SYmJjAzc0NW7duxahRo+Dr64vY2Fg8evQIv//+O4D/zQA7OzujX79+GDVqFDw8PBAbG4vg4GD8/PPPOHPmDPbu3cs7i3Hz5k3UqVOHd2qd/Ph2OwyCtbjs33XWYj3sdhj0jSIiX6wKrkusVqQ9Pqak0m5M+NwjWHJyctiAAQOYpqYm7xEnaWlpbOrUqczQ0JAJhUJmbGzMXFxcuJs3Snt8TEnTp09n7dq1KzVmaY9YQYnHZsjy+Jjjx48zOzs7pqioyGrUqMH69+/PrfP29mZmZmZMJBIxe3t7dubMmTJvVih5A0HxBffSlmJz585lOjo6TE1NjQ0ZMoRt2bKFdwNCaWOLL3x8THnGtlhFPD6GsY+PLNmxYwdr3rw5U1FRYRoaGqxp06Zs69atvMd9HDp0iDseWlparG3btuzEiRNSY5HlZhHGPo7junXrWKNGjbgxcnBwYF5eXlzcRUVFbOvWrczS0pIJhUKmq6vLHB0d2fXr16X29bmbRQoLCxkA9s8//3Blt27d4mJo06YNO3bsmNTHx5R08uRJ9umvx507d3JxGhgYsKlTp3Lrzpw5w8zNzZmCgoJMj48RCoWlPj6m5DFPTk5mAJivr28ZIy3J2dmZ/frrrxLlV65cYd27d2fa2tpMQUGB6enpsb59+7KLFy/y6uXn57NNmzaxBg0aMJFIxDQ0NJijoyO7efOmRJtdu3Zl69atkzk2uoD/xxGf/oF1u7iLiQ8uZHL7ZnOL+OBC1u3iLvYi40OVxkfvNdkIGCtx/oAQQv7DXr16BQMDAzx48ID3SKLq5smTJ+jcuTOioqKgrq5eaf08ffoUnTp1QmRkpMw3F6WlpUEsFiM1NbXcN2mR71PQ+wQciQlEcm4WtEQqcK5t912cDqb3mmzoZhFCyH8eYwxxcXHYtGkT9PT00LBhw6oOqUo1atQIGzduRGxsLBo1alRp/SQmJuLAgQMyJ4Hkx2SrY/RdJH7ky1AiSAj5z0tNTYWlpSXq16+PI0eOSH18SnUzatSoSu+ja9euld4HIaRyUSJICPnP09TUlHpTDyGEkLLRXcOEEEIIIdUUJYKEEEIIIdUUnRomhBDyzZmbm5f6DExCKsKXfkNWdUOJICGEkG8uKiqKHulBKlXx42NI2ejfMUIIIYSQaooSQUIIIYSQaooSQUIIIYSQaoquESSEEEJIueS+CUJGhA+epirjPAZgWGMj2BrR9Xj/RZQIEkIIIUQm+WnxeHdtInIT74Llp0Og2ga/Rdhh551Y2JtqY/cgG5hoqVR1mKQc6NQwIYRUMIFAgFOnTgEAYmNjIRAIEBgYKFP9irJkyRJMmDChQtv81Js3b6Crq4uEhIRK7Yd8H/LT4vH6VG/kxF0By0/nrUvPLcTlyLfosfce4pOzqihC8iUoESSEVCv+/v6Ql5dHt27dKq2PpKQkdO/evdLqf87r16+xdetWLFy4kFf+6tUrTJ8+Hebm5lBSUoKenh5++ukn7Ny5E1lZ/D/e/v7+6NGjB7S0tKCkpIRGjRrBzc0NhYWFXJ2aNWtixIgRWLZsWYXFTr5f765NRP6HsDLrhL7OwIRjwd8oIlIRKBEkhFQr+/btw9SpU3Hr1i3Ex8dXSh/6+voQiUSVVv9zPDw8YG9vDzMzM67s+fPnaNy4MS5fvoy1a9fi8ePHuHr1KmbOnIl//vkHV69e5eqePHkS7dq1Q61ateDr64vw8HBMnz4da9asgbOzMxhjXN3Ro0fj0KFDSE5OrrD4yfcn900QchPvylT3TtwHBCWkVnJEpKJQIkgIqTYyMzNx9OhRTJw4Eb169YKXlxdvvZ+fHwQCAa5du4ZmzZpBRUUFrVu3RkREBK/ejh07ULduXSgqKsLS0hIHDx7krS/rVG9RURHGjx8PCwsLxMXFSdTPy8vDlClTYGBgACUlJZiZmWHdunXl2s8jR47AycmJVzZp0iQoKCjg4cOHGDx4MOrXr49GjRphwIABOHfuHHr37s2N0fjx4+Hk5ITdu3fDzs4OZmZmGDduHPbv34+///4bR48e5dpt1KgR9PX1cfLkSamx5ObmIi0tjbeQ/56MCB+J08GlSc8txOFAulzgv4JuFiGEVBs+Pj6wtLSEpaUlhg8fjqlTp2LJkiUQCAS8eosWLYKbmxt0dXXxyy+/YMyYMbh9+zaAj7Nl06dPh7u7Ozp37oyzZ89i9OjRqFWrFjp06FBm/3l5eRg2bBiio6Nx69Yt1KxZU6LO77//jjNnzuDo0aMwMTHBixcv8OLFC5n3MTk5GU+fPkWzZs24svfv33MzgaqqqlK3Kx6Dy5cv4/3795gzZ45End69e8PCwgKHDx/GkCFDuPIWLVrg5s2bGDNmjMQ269atw4oVK2SOn3yf9hcZ4pLhTIlyQZ4CzOu/lSh/DREA628QGflalAgSQqoNDw8PDB8+HADQrVs3ZGRk4Nq1a+jcuTOv3po1a9CuXTsAwK+//oqePXsiJycHSkpK2LRpE1xdXTFp0iQAwKxZs3D37l1s2rSpzEQwIyMDPXv2RHZ2Nvz8/Er96qv4+HjUq1cPP/30EwQCAUxNTcu1j3FxcWCMwdDQkCuLiooCYwyWlpa8ujVq1EBOTg4AYPLkydiwYQMiIyMBAPXr15favpWVFVenmJGRER4/fiy1/oIFCzBr1izudVpaGoyNjcu1T6TqvVWtjauZsVLWFAJyoRKlA/T0Kj0mUjHo1DAhpFqIiIjA/fv34ezsDABQUFDAkCFDsG/fPom6NjY23M8GBgYAPt4hCwBhYWFwcHDg1XdwcEBYWNkX0Q8dOhQZGRm4fPlymd9/6urqisDAQFhaWmLatGm4fPmybDv4/7KzswEASkpKEus+nfm8f/8+AgMD0aBBA+Tm5vLWlbwO8NPyT9tRVlaWuNmkmEgkgoaGBm8h/z3Ote2gLpTtOlZ1oQjOte0qNyBSYSgRJIRUCx4eHigoKICRkREUFBSgoKCAHTt24MSJExI3OgiFQu7n4qSnqKhIoqyYtOToUz169EBwcDDu3i37gvsmTZogJiYGq1atQnZ2NgYPHoyBAwfKtI/Ax1k+ALx9Mjc3h0AgQHh4OK9unTp1YG5uDmVlZa7MwsICAEpNbMPDw1GvXj1e2YcPH6CrqytzjOS/x1bHCPa6ss1O2+uawlbHqJIjIhWFEkFCyA+voKAABw4cgJubGwIDA7klKCgIpqamOHTokMxt1a9fH7du3eKV+fv7l3oqtdjEiROxfv16ODk54fr162XW1dDQwJAhQ7Bnzx74+Pjg+PHj+PDhg0zx1a1bFxoaGggN/d/pOh0dHXTp0gV//vknMjMzy9y+a9eu0NbWhpubm8S6M2fO4NmzZxg6dCiv/OnTp2jcuLFM8ZH/rt0Og2AtLvuUr7VYD7sdBn2jiEhFoESQEPLDO3v2LJKTkzF27Fg0bNiQtwwcOBAeHh4ytzV37lx4eXlh586dePbsGTZv3owTJ05IvbniU1OnTsXq1avRq1cviWSy2JYtW3DkyBGEh4cjMjISx44dg76+PjQ1NWWKT05ODp07d5Zof/v27SgoKECzZs3g4+ODsLAwRERE4K+//kJ4eDjk5eUBAKqqqti1axdOnz6NCRMmIDg4GLGxsfDw8ICrqysGDhyIwYMHc+1mZWUhICAAXbt2lSk+8t9lrKaF813HoauhhcRpYnWhCF0NLXDBcRyM1bSqKELyRRghhPzgevXqxXr06CF1XUBAAAPAAgICmK+vLwPAkpOTufWPHz9mAFhMTAxXtn37dlanTh0mFAqZhYUFO3DgAK9NAOzkyZOMMcZiYmIYAPb48WNuvZubG1NXV2e3b9+WqL97925mZ2fHVFVVmYaGBuvUqRN79OhRufb34sWLzMjIiBUWFvLKExMT2ZQpU1jt2rWZUChkampqrEWLFuy3335jmZmZvLo3btxg3bp1Y2KxmCkqKjJra2u2adMmVlBQwKvn7e3NLC0tZY4tNTWVAWCpqanl2ifyfQl895L9+uAs+/nWUfbrg7Ms8N3Lqg5JAr3XZCNgrJQrggkhhPwnMcbQqlUrzJgxQ+I0bkVr0aIFZsyYgWHDhslUPy0tDWKxGKmpqXTjCKlU9F6TDZ0aJoSQH4xAIMDu3btRUFBQqf28efMGAwcOrPRkkxBSeWhGkBBCyDdDszTkW6H3mmxoRpAQQgghpJqiRJAQQgghpJqir5gjhBDyzZmbm0NOjuYiSOUp+RB4UjpKBAkhhHxzUVFRdN0WqVTF1wiSstG/Y4QQQggh1RQlgoQQQggh1RQlgoQQQggh1RQlgoQQQggh1RQlggSxsbEQCAQIDAwss1779u0xY8aMbxLT92D58uWws7P7btqpSOHh4WjVqhWUlJS+ODaBQIBTp05VaFz/FX5+fhAIBEhJSZGpvqyfsYry/v171KxZE7GxsZXaz5w5czBt2rRK7YNUrKCEVCw4F4pfjgVhwblQBCWkVnVIpIpRIvgf4erqCoFAAIFAAKFQiDp16mDOnDnIzMz86raNjY2RlJSEhg0bAij9j9yJEyewatWqr+6vLCX3U0FBASYmJpg4cSKSk5Mrtd+KIi05mjNnDq5du/ZN+vf390ePHj2gpaUFJSUlNGrUCG5ubigsLOTVW7ZsGVRVVREREVFqbK6urujbt2+pfSUlJaF79+4VGX6lefnyJRQVFWFlZVXubaX9A9S6dWskJSXJfEeirJ+xirJu3Tr07t0bZmZmvPLjx4+jY8eO0NLSgoqKCiwtLTFmzBg8fvyYVy87OxvLli2DpaUlRCIRatSogYEDByIkJIRXb968efD09ERMTEyl7AepOPHJWXDcfRdtt9/GBt9o7L4Xjw2+0Wi7/TYcd9/Fi+Tsqg6RVBFKBP9DunXrhqSkJDx//hyrV6/G9u3bMWfOnK9uV15eHvr6+lBQKPtpQtra2lBXV//q/j6neD9jY2Oxd+9e/PPPP5g0aVKl91tZ1NTUoKOjU+n9nDx5Eu3atUOtWrXg6+uL8PBwTJ8+HWvWrIGzszNKfptkdHQ0fvrpJ5iamn5xbPr6+hCJRBUVfqXy8vLC4MGDkZWVhdu3b391e4qKitDX14dAIJCpvqyfsYqQnZ0NDw8PjBs3jlc+f/58DBkyBHZ2djhz5gxCQkKwe/du1K1bFwsXLuTq5ebmonPnzti3bx9WrVqFyMhInD9/HoWFhWjZsiXu3r3L1a1Zsya6du2KnTt3Vvp+kS/3IjkbPfbew5XIt0jP5f9TmJ5biCuRb9F9LyWD1RYj/wmjRo1iffr04ZWNGzeO6evrM8YYy8nJYVOnTmW6urpMJBIxBwcHdv/+fa7uhw8f2LBhw1iNGjWYkpISMzc3Z/v27WOMMRYTE8MAsMePH3M/l1xGjRrFGGOsXbt2bPr06Ywxxn799VfWsmVLiTgbNWrEli5dyr3et28fs7KyYiKRiFlaWrJt27aVez9nzZrFtLW1eWWfa/f27dvM1taWiUQi1rRpU3by5EluHxljzNPTk4nFYt42xXWKLVu2jNna2nKv79+/zzp37sx0dHSYhoYGa9u2LQsICODWm5qa8sbN1NRUajuFhYVsxYoVzMjIiCkqKjJbW1t24cIFbn3xMTh+/Dhr3749U1ZWZjY2Nszf37/UccvIyGA6Ojqsf//+EuvOnDnDALAjR44wxpjE8V22bJnUNqUdi5IAsJMnT/JiPnz4MLO3t2cikYhZW1szX19frn5BQQEbM2YMMzMzY0pKSszCwoK5u7vz2vT19WXNmzdnKioqTCwWs9atW7PY2FjevjRp0oSJRCJWu3Zttnz5cpafn19qjIwxVlRUxOrUqcMuXrzI5s+fz0aPHi1R59atW6xt27ZMWVmZaWpqsq5du7IPHz6wUaNGSYxXTEwM8/X1ZQBYcnIyS0lJYUpKSrxjyBhjx48fZyoqKiw9PV2mz9j+/fuZtrY2y8nJ4bXTv39/NmLEiDL38dN+a9SowSu7c+cOA8C2bt1a6hgVW79+PRMIBCwwMJBXp7CwkDVr1oxZW1vz6nt5eTFjY2OZ40tNTWUAWGpqqszbkK/juOsOE8w+89nFcdedqg61QtF7TTY0I/gfpqysjPz8fAAfT9EcP34c+/fvx6NHj2Bubg5HR0d8+PABALBkyRKEhobiwoULCAsLw44dO1CjRg2JNo2NjXH8+HEAQEREBJKSkrB161aJei4uLrh37x6io6O5spCQEDx58gQuLi4AgD179mDRokVYs2YNwsLCsHbtWixZsgT79++XeR+fP3+OixcvQigUcmWfazc9PR29e/dGo0aN8OjRI6xatQrz58+Xuc/SpKenY9SoUbh58ybu3r2LevXqoUePHkhPTwcAPHjwAADg6emJpKQk7vWntm7dCjc3N2zatAnBwcFwdHSEk5MTnj17xqu3aNEizJkzB4GBgbCwsMDQoUNRUFAgtc3Lly/j/fv3UmeIe/fuDQsLCxw+fBjAx1O6DRo0wOzZs5GUlFQhs8rF5s6di9mzZ+Px48do3bo1nJyc8P79ewAfn/Jfq1YtHD16FKGhoVi6dCkWLlyIo0ePAgAKCgrQt29ftGvXDsHBwbhz5w4mTJjAzbpdunQJw4cPx7Rp0xAaGopdu3bBy8sLa9asKTMmX19fZGVloXPnzhgxYgSOHj3KHTMACAwMRKdOndCgQQPcuXMHt27dQu/evVFYWIitW7fC3t4e48ePR1JSEpKSkmBsbMxrXywWo2fPnjh06BCv3NvbG3369IGamhqvvLTP2KBBg1BYWIgzZ85wdd+9e4ezZ89i9OjRMh+DGzduoFmzZryyw4cPQ01NrdSZ9ZIzm97e3ujSpQtsbW15deTk5DBz5kyEhoYiKCiIK2/RogVevHiBuLg4mWMk305QQiruxH2Qqe6duA90zWB1VNWZKJHNp7Mz9+7dYzo6Omzw4MEsIyODCYVCdujQIW59Xl4eMzQ0ZBs3bmSMMda7d2+pMyGM8WcEGWO82Y6SSs4IMsaYjY0NW7lyJfd6wYIFrHnz5txrY2Nj5u3tzWtj1apVzN7evsz9lJeXZ6qqqkxJSYmbMdm8ebPM7e7YsYPp6Oiw7Oxsbv2ePXu+ekbwUwUFBUxdXZ39888/XBlKzJKV1o6hoSFbs2YNr07z5s3ZpEmTGGP/Ox579+7l1oeEhDAALCwsTGos69evl3rMijk5ObH69etzr21tbUudCSz2JTOC69ev59bn5+ezWrVqsQ0bNpTaxqRJk9iAAQMYY4y9f/+eAWB+fn5S67Zp04atXbuWV3bw4EFmYGBQ5n4MGzaMzZgxg3tta2vL9uzZw70eOnQoc3BwKHX7T9/3jEl+Rk6cOMHU1NRYZmYmY+zjTISSkhI7d+4cY0z2z9jEiRNZ9+7dudfu7u6sTp06vBm4z+nTpw8bM2YMr6xbt27MxsaGV+bm5sZUVVW5JSUlhTHGmJKSksT+Fnv06BEDwHx8fLiy4lmX0o5bTk4OS01N5ZYXL17QLM039OvZEJlmA4uXX8+GVHXIFYZmBGVDXzH3H3L27FmoqamhoKAA+fn56NOnD/744w9ER0cjPz8fDg4OXF2hUIgWLVogLCwMADBx4kQMGDAAjx49QteuXdG3b1+0bt36q+JxcXHBvn37sGTJEjDGcPjwYe6i+rdv3+LFixcYO3Ysxo8fz21TUFDw2QvsO3TogB07diArKwt79+5FZGQkpk6dKnO7ERERsLGxgZKSEre+RYsWX7WvAPDmzRssXboU//77L16/fo3CwkJkZWUhPj5e5jbS0tKQmJjIO1YA4ODgwJtlAQAbGxvuZwMDAy6Gsm54YCWuA/y0XNbr2b6Gvb0997OCggKaNWvGvQcBYOfOndi7dy/i4uKQnZ2NvLw87q5lbW1tuLq6wtHREV26dEHnzp0xePBgbt8DAgLw4MED3gxgYWEhcnJykJWVBRUVFYl4UlJScOLECdy6dYsrGz58OPbt28ddQxcYGIhBgwZ91X737NkTCgoKOHPmDJydnXH8+HGoq6uja9eu5Wpn/PjxaN68ORISEmBkZARPT0/uBipZZWdn8977xT5tY8yYMXBycsK9e/cwfPjwUt87JRXXKdmWsrIyACArK0vqNuvWrcOKFStkjp9ULEecRnfLqxLl74p0kFSgJVGuX2QHwLryAyPfDUoE/0OKEyShUAhDQ0PudGlSUhIAyV/0Jf/4d+/eHXFxcTh37hyuXr2KTp06YfLkydi0adMXxzNs2DD8+uuvePToEbKzs/HixQs4OzsD+N+Xfe/ZswctW7bkbScvL19mu6qqqjA3NwcA/P777+jQoQNWrFiBVatWydSutKTn0z9ycnJyEmXFp9lL4+rqirdv38Ld3R2mpqYQiUSwt7dHXl5emdtJU9axKlbydHjxutK+RN3CwgIAEBYWJjXBDw8Ph7V11fxyL4796NGjmDlzJtzc3GBvbw91dXX89ttvuHfvHlfX09MT06ZNw8WLF+Hj44PFixfjypUraNWqFYqKirBixQr0799fog9piQ/w8TRnTk4O773CGENRURFCQ0NhbW3NJTJfQ1FREQMHDoS3tzecnZ3h7e2NIUOGlPvmkMaNG8PW1hYHDhyAo6Mjnjx5gn/++adcbdSoUUPiLvt69erh1q1byM/P595Xmpqa0NTUxMuXL3l1LSwsEBoaKrXt8PBwrr1ixZef6OrqSt1mwYIFmDVrFvc6LS1N4vQ6qTw24gykPrspUW4MoLGU+mKtuZUeE/m+0DWC/yHFCZKpqSkvSTA3N4eioiJv1iM/Px8PHz5E/fr1uTJdXV24urrir7/+gru7O3bv3i21H0VFRQCQeOTIp2rVqoW2bdvi0KFDOHToEDp37gw9PT0AgJ6eHoyMjPD8+XOYm5vzltq1a5drv5ctW4ZNmzYhMTFRpnatrKwQHByM3Nxcro2HDx/y2tTV1UV6ejrv8Tufe8bbzZs3MW3aNPTo0QMNGjSASCTCu3fveHWEQmGZ46ahoQFDQ0PesQI+Pval5LEqr65du0JbWxtubm4S686cOYNnz55h6NChX9y+rEreUVpQUICAgABuBvPmzZto3bo1Jk2ahMaNG8Pc3Jx3jWmxxo0bY8GCBfD390fDhg3h7e0NAGjSpAkiIiIkjru5uTnk5KT/KvPw8MDs2bMRGBjILUFBQejQoQP27dsH4OPMa1mP91FUVPzsZwH4OEN+8eJFhISEwNfXl7tWtrQ2AemfsXHjxsHT0xP79u1D586dy500NW7cWCKRGzp0KDIyMrB9+/bPbu/s7IyrV69KzFAXFRVhy5YtsLa25l0/+PTpUwiFQjRo0EBqeyKRCBoaGryFfDuqFoMhEMr2tAeBUB2qFoMrOSLyvaFE8AegqqqKiRMnYu7cubh48SJCQ0Mxfvx4ZGVlYezYsQCApUuX4vTp04iKikJISAjOnj1bauJhamoKgUCAs2fP4u3bt8jIyCi1bxcXFxw5cgTHjh3D8OHDeeuWL1+OdevWYevWrYiMjMSTJ0/g6emJzZs3l2v/2rdvjwYNGmDt2rUytTts2DAUFRVhwoQJCAsLw6VLl7iZz+LZqZYtW0JFRQULFy5EVFQUvL294eXlVWYc5ubmOHjwIMLCwnDv3j24uLhIzCaZmZnh2rVrePXqVanPPpw7dy42bNgAHx8fRERE4Ndff0VgYCCmT59ernEpSVVVFbt27cLp06cxYcIEBAcHIzY2Fh4eHnB1dcXAgQMxeHD5f8GnpqbykqjAwMAyT4Vv27YNJ0+eRHh4OCZPnozk5GSMGTMGwMfxe/jwIS5duoTIyEgsWbKEd0NNTEwMFixYgDt37iAuLg6XL19GZGQk9z5dunQpDhw4gOXLlyMkJARhYWHcrKE0gYGBePToEcaNG4eGDRvylqFDh+LAgQPIz8/HggUL8ODBA0yaNAnBwcEIDw/Hjh07uCTfzMwM9+7dQ2xsLN69e1fqrGy7du2gp6cHFxcXmJmZoVWrVqWOU1mfMRcXFyQkJGDPnj3c2JWHo6MjQkJCeO8/e3t7zJ49G7Nnz8asWbNw69YtxMXF4e7du/Dw8IBAIOCS6ZkzZ6JFixbo3bs3jh07hvj4eDx48AADBgxAWFgYV7/YzZs30aZNmwqZWSUVT1TTFiLD0t+LvLqGrSCqafv5iuTHUkXXJpJy+tyF+9nZ2Wzq1KmsRo0aUh8fs2rVKla/fn2mrKzMtLW1WZ8+fdjz588ZY5IXsjPG2MqVK5m+vj4TCARSHx9TLDk5mYlEIu4xGZ86dOgQs7OzY4qKikxLS4u1bduWnThxotz7eejQIaaoqMji4+Nlavf27dvMxsaGKSoqsqZNmzJvb28GgIWHh3N1Tp48yczNzZmSkhLr1asX2717d5k3izx69Ig1a9aMiUQiVq9ePXbs2DFmamrKtmzZwtU5c+YMMzc3ZwoKCjI9PkYoFJb6+JiSxyM5OZkB4D2ORZobN26wbt26MbFYzBQVFZm1tTXbtGkTKygo4NWT9WYRfPKYE5R4nBCk3Czi7e3NWrZsyRQVFVn9+vXZtWvXuPZycnKYq6srE4vFTFNTk02cOJH9+uuv3Ni8evWK9e3blxkYGDBFRUVmamrKli5dygoLC7k2Ll68yFq3bs2UlZWZhoYGa9GiBdu9e7fU+KdMmcKsra2lrnvz5g2Tl5dnx48fZ4wx5ufnx1q3bs1EIhHT1NRkjo6O3I0cERERrFWrVkxZWVnq42NKmjt3LgPAe4RSyfH53Ges2IgRI6Q+SkZWrVq1Yjt37pQo9/HxYe3bt2disZgJhUJWq1YtNmzYMHb37l1evczMTLZ48WJmbm7OhEIh09bWZgMGDGBPnjyRaNPCwoIdPnxY5tjoAv5vLy81nr3Yb8OebxGWurzYb8PyUuOrOtQKRe812QgYk+EKYUL+4w4dOoTRo0cjNTWVZi4qQWxsLGrXro3Hjx9/d1+n91/UpUsX1K9fH7///vsXbX/+/HnMmTMHT58+LfW0eUU4d+4c5s6di+DgYJmvh0xLS4NYLEZqaiqdJv6G8tNe4N21X5CbeBcs/3+PTxII1SEybIUanXdBqF6rCiOsePRekw3dLEJ+SAcOHECdOnVgZGSEoKAgzJ8/H4MHD6YkkHzXPnz4gMuXL+Pff//Fn3/++cXt9OjRA8+ePUNCQkKl3piRmZkJT0/Pb/KNKeTrCDWMYdDvHHLfBCEz8iiKcpMhJ9KCqsVgOh1czdGnl/yQXr16haVLl+LVq1cwMDDAoEGDPvvgYUKqWpMmTZCcnIwNGzbA0tLyq9r6mmtOZfUl152SqiWqaUuJH+GhU8OEEEK+GTpdR74Veq/Jhu4aJoQQQgippigRJIQQQgippugaQUIIId9cWQ8CJ6QilPbMT8JHiSAhhJBvLioqiq7bIpWq+BpBUjb6d4wQQgghpJqiRJAQQgghpJqiRJAQQgghpJqiRJAQQgghpJqiRJCQb2z58uWf/T5eV1dX9O3b95vEQ75PXl5e0NTULLOOLO8lWfz777+wsrIq912WAwcOxObNm7+6f/LtBCWkYv7ZUPxyLAi/ngtFUEJqVYdEqhglguSLCQSCMhdXV9dvHlNsbCwEAgECAwNLrdO+fXvMmDFDolyWP7wVYc6cObh27Vql90MkTZgwAfLy8jhy5EhVh/JdmTdvHhYtWsQ9zsXLy4v3WdbT00Pv3r0REhLC227p0qVYs2YN0tLSqiJsUg75afF4eKgfOm6/jt/8orH7Xjw2+kaj7fbb6Lb7LuKTs6o6RFJFKBEkXywpKYlb3N3doaGhwSvbunVrVYf4XVJTU4OOjk5Vh1HtZGVlwcfHB3PnzoWHh0dVh/Pd8Pf3x7NnzzBo0CBeefHnOTExEefOnUNmZiZ69uyJvLw8ro6NjQ3MzMxw6NChbx02KYf8tHi8PtUbOm/PY16N07x16bmFuBz5Fj323sOL5OwqipBUJUoEyRfT19fnFrFYDIFAAH19fejp6eGnn37Cnj17ePWfPn0KOTk5REdHA/g4o7hjxw50794dysrKqF27No4dO8bbJiEhAUOGDIGWlhZ0dHTQp08fxMbGfqtdxD///IOmTZtCSUkJderUwYoVK1BQUMCtFwgE2LVrF3r16gUVFRXUr18fd+7cQVRUFNq3bw9VVVXY29tz+wxIns4rLCzErFmzoKmpCR0dHcybNw+ffgU4YwwbN25EnTp1oKysDFtbW/z999/c+uTkZLi4uEBXVxfKysqoV68ePD09AfxvlvTo0aNo06YNlJWV0bx5c0RGRuLBgwdo1qwZ1NTU0K1bN7x9+5Zrs6ioCCtXrkStWrUgEolgZ2eHixcvcuvz8vIwZcoUGBgYQElJCWZmZli3bh23Pj4+Hn369IGamho0NDQwePBgvH79WmIc9u3bBxMTE6ipqWHixIkoLCzExo0boa+vj5o1a2LNmjW8sUhNTcWECRNQs2ZNaGhooGPHjggKCvrssTx27Bisra2xYMEC3L59W+J95OfnhxYtWkBVVRWamppwcHBAXFwcACAoKAgdOnSAuro6NDQ00LRpUzx8+JDb1t/fH23btoWysjKMjY0xbdo0ZGZmcuvNzMywevVqjBw5EmpqajA1NcXp06fx9u1bbowaNWrEa7PYqVOnYGFhASUlJXTp0gUvXryQun83btyAUCjEq1eveOWzZ89G27ZtSx2XI0eOoGvXrlBSUuKVF3+eDQwM0KxZM8ycORNxcXGIiIjg1XNycsLhw4dLbZ9UvXdXf0H+hzAADP1Ub0JLTnIGN/R1BsYf+/zniPx4KBEkFU4gEGDMmDFcIlJs3759aNOmDerWrcuVLVmyBAMGDEBQUBCGDx+OoUOHIiwsDMDHGZwOHTpATU0NN27cwK1bt7iEpeSsRGW5dOkShg8fjmnTpiE0NBS7du2Cl5eXRGKyatUqjBw5EoGBgbCyssKwYcPw888/Y8GCBdwf9ilTppTaj5ubG/bt2wcPDw/cunULHz58wMmTJ3l1Fi9eDE9PT+zYsQMhISGYOXMmhg8fjuvXrwP4OI6hoaG4cOECwsLCsGPHDtSoUYPXxrJly7B48WI8evQICgoKGDp0KObNm4etW7fi5s2biI6OxtKlS7n6W7duhZubGzZt2oTg4GA4OjrCyckJz549AwD8/vvvOHPmDI4ePYqIiAj89ddfMDMzA/Axce3bty8+fPiA69ev48qVK4iOjsaQIUN4MUVHR+PChQu4ePEiDh8+jH379qFnz554+fIlrl+/jg0bNmDx4sW4e/cu127Pnj3x6tUrnD9/HgEBAWjSpAk6deqEDx8+lHk8PTw8MHz4cIjFYvTo0YP3/iwoKEDfvn3Rrl07BAcH486dO5gwYQIEAgEAwMXFBbVq1cKDBw8QEBCAX3/9FUKhEADw5MkTODo6on///ggODoaPjw9u3bolccy3bNkCBwcHPH78GD179sSIESMwcuRIDB8+HI8ePYK5uTlGjhzJ+ycgKysLa9aswf79+3H79m2kpaXB2dlZ6v61bdsWderUwcGDB3n79ddff2H06NGljsuNGzfQrFmzMscuJSUF3t7eAMDtd7EWLVrg/v37yM3NLbMNUjVy3wQiN+ke91qYFYs9taVfGnEn7gNdM1gdMUIqgKenJxOLxdzrxMREJi8vz+7du8cYYywvL4/p6uoyLy8vrg4A9ssvv/DaadmyJZs4cSJjjDEPDw9maWnJioqKuPW5ublMWVmZXbp0SWocMTExDAB7/PhxqbG2a9eOCYVCpqqqyltEIhFvH9q0acPWrl3L2/bgwYPMwMCAtw+LFy/mXt+5c4cBYB4eHlzZ4cOHmZKSEvd62bJlzNbWlnttYGDA1q9fz73Oz89ntWrVYn369GGMMZaRkcGUlJSYv78/L5axY8eyoUOHMsYY6927Nxs9enSZY7J3715eTADYtWvXuLJ169YxS0tL7rWhoSFbs2YNr63mzZuzSZMmMcYYmzp1KuvYsSPv+BS7fPkyk5eXZ/Hx8VxZSEgIA8Du37/PjYOKigpLS0vj6jg6OjIzMzNWWFjIlVlaWrJ169Yxxhi7du0a09DQYDk5Obz+6taty3bt2iV1/xljLDIykgmFQvb27VvGGGMnT55kxsbGXD/v379nAJifn5/U7dXV1Xnv3ZJGjBjBJkyYwCu7efMmk5OTY9nZ2YwxxkxNTdnw4cO59UlJSQwAW7JkCVdW/N5JSkpijH38TAFgd+/e5eqEhYUxANzn6tP30oYNG1j9+vW516dOnWJqamosIyOj1LERi8XswIEDvLLivlVVVZmKigoDwAAwJycnie2DgoIYABYbGyu1/ZycHJaamsotL168YABYampqqTGRivPuxgL2fIuQv2zXZ80Xb2GC2WcklvlnQ6o65AqTmppK7zUZ0IwgqRQGBgbo2bMn9u3bBwA4e/YscnJyJK5Dsre3l3hdPCMYEBCAqKgoqKurQ01NDWpqatDW1kZOTg7vVOuXcHFxQWBgIG9ZuXIlr05AQABWrlzJ9a2mpobx48cjKSkJWVn/u7DaxsaG+1lPTw8A0KhRI15ZTk6O1AvqU1NTkZSUxBsHBQUF3gxNaGgocnJy0KVLF14sBw4c4MZh4sSJOHLkCOzs7DBv3jz4+/tL9CVLnG/evAHw8auZEhMT4eDgwGvDwcGBOz6urq4IDAyEpaUlpk2bhsuXL3P1wsLCYGxsDGNjY67M2toampqa3PbAx1Om6urqvBisra1530FbMq6AgABkZGRAR0eHNxYxMTFlvic8PDzg6OjIzZL26NEDmZmZuHr1KgBAW1sbrq6ucHR0RO/evbF161YkJSVx28+aNQvjxo1D586dsX79el5fAQEB8PLy4sXj6OiIoqIixMTElGv8AXD7Cki+F6ysrCTGsCRXV1dERUVxM6j79u3D4MGDoaqqWurYZGdnS5wWBgB1dXUEBgYiICAAO3fuRN26dbFz506JesrKygDA+0yUtG7dOojFYm4p+Z4glY/lpUiW5b6HZb1YmNd/K7G8xstvHySpUvRdw6TSjBs3DiNGjMCWLVvg6emJIUOGQEVF5bPbFZ+OKyoqQtOmTaVeiK6rq/tVsYnFYpibm/PKatasyXtdVFSEFStWoH///hLbl/zDWfJUWXHs0sq+9AvQi7c7d+4cjIyMeOtEIhEAoHv37oiLi8O5c+dw9epVdOrUCZMnT8amTZvKFeenMRbXK8YY48qaNGmCmJgYXLhwAVevXsXgwYPRuXNn/P3337x6pW3/af/F/UkrK46rqKgIBgYG8PPzk2i7tDu+CwsLceDAAbx69QoKCgq8cg8PD3Tt2hUA4OnpiWnTpuHixYvw8fHB4sWLceXKFbRq1QrLly/HsGHDcO7cOVy4cAHLli3DkSNH0K9fPxQVFeHnn3/GtGnTJPo2MTGRuq/leZ9IG0dpZcDH93Dv3r3h6emJOnXq4Pz581LHqqQaNWogOTlZolxOTo77jFhZWeHVq1cYMmQIbty4watXfEq+tM/kggULMGvWLO51WloaJYPfkEBRU6LsuPpPOM6UkCsXKrFuwP//Q0KqD0oESaXp0aMHVFVVsWPHDly4cEHiDwgA3L17FyNHjuS9bty4MYCPiYaPjw93U8C31qRJE0REREgkjBVJLBbDwMAAd+/e5S7oLygo4K59Az7OpIlEIsTHx6Ndu3altqWrqwtXV1e4urqiTZs2mDt3Li8RLA8NDQ0YGhri1q1bvBsN/P390aJFC169IUOGYMiQIRg4cCC6deuGDx8+wNraGvHx8Xjx4gX3Rz80NBSpqamoX7/+F8UEfDwmxQld8fWIn3P+/Hmkp6fj8ePHkJeX58rDw8Ph4uKC9+/fc3dxN27cGI0bN8aCBQtgb28Pb29vtGrVCgBgYWEBCwsLzJw5E0OHDoWnpyf69euHJk2aICQkpFLeJwUFBXj48CE35hEREUhJSYGVlVWp24wbNw7Ozs6oVasW6tatKzGr+6nGjRsjNFQyIfjUzJkzsXnzZpw8eRL9+vXjyp8+fYpatWpJXJNaTCQScf+wkG9PzXIw0oN3geWnAwByIY+/1ByQmyV5h7C6UATn2nbfOEJS1SgRJJVGXl4erq6uWLBgAczNzSVOAwMf7+Rs1qwZfvrpJxw6dAj379/nHu3h4uKC3377DX369OHuXo2Pj8eJEycwd+5c1KpVq1LjX7p0KXr16gVjY2MMGjQIcnJyCA4OxpMnT7B69eoK62f69OlYv3496tWrh/r162Pz5s1ISUnh1qurq2POnDmYOXMmioqK8NNPPyEtLQ3+/v5QU1PDqFGjsHTpUjRt2hQNGjRAbm4uzp49+1UJFwDMnTsXy5YtQ926dWFnZwdPT08EBgZyM7RbtmyBgYEB7OzsICcnh2PHjkFfXx+ampro3LkzbGxs4OLiAnd3dxQUFGDSpElo167dZ29MKEvnzp1hb2+Pvn37YsOGDbC0tERiYiLOnz+Pvn37Sm3bw8MDPXv2hK2tLa+8QYMGmDFjBv766y84OTlh9+7dcHJygqGhISIiIhAZGYmRI0ciOzsbc+fOxcCBA1G7dm28fPkSDx48wIABAwAA8+fPR6tWrTB58mSMHz8eqqqqCAsLw5UrV/DHH3988b4CH2cMp06dit9//x1CoRBTpkxBq1ateMn4pxwdHSEWi7F69WqJyx1Kq79///7P1tPQ0MC4ceOwbNky9O3bl5uVvHnzJjerSr4/opp2EBm0RE78x8sg3HUG4KmUJBAA7HVNYatjJHUd+XHRNYKkUo0dOxZ5eXkYM2aM1PUrVqzAkSNHYGNjg/379+PQoUOwtrYGAKioqODGjRswMTFB//79Ub9+fYwZMwbZ2dnfZIbQ0dERZ8+exZUrV9C8eXO0atUKmzdvhqmpaYX2M3v2bIwcORKurq6wt7eHuro6b8YF+Hhn8tKlS7Fu3TrUr18fjo6O+Oeff1C7dm0AgKKiIhYsWAAbGxu0bdu2Qh6aPG3aNMyePRuzZ89Go0aNcPHiRZw5cwb16tUD8PF5iBs2bECzZs3QvHlzxMbG4vz585CTk4NAIMCpU6egpaWFtm3bonPnzqhTpw58fHy+KiaBQIDz58+jbdu2GDNmDCwsLODs7IzY2FjuGruSXr9+jXPnznFJ26dt9e/fHx4eHlBRUUF4eDgGDBgACwsLTJgwAVOmTMHPP/8MeXl5vH//HiNHjoSFhQUGDx6M7t27Y8WKFQA+Xvt3/fp1PHv2DG3atEHjxo2xZMkSGBgYfNW+Ah8/A/Pnz8ewYcNgb28PZWXlzx5XOTk5uLq6orCwkDfbXprhw4cjNDRU4rEw0kyfPh1hYWHcY55ycnJw8uRJjB8/XrYdIlWiRuedEGrXR6JADRcV6kqtYy3Ww26HQVLXkR+bgLFPHlhGSAW6ffs22rdvj5cvX0r8oRYIBDh58iR9lRohFWz8+PF4/fo1zpw5I1P9efPmITU1Fbt27SpXP9u2bcPp06d5Nwp9TlpaGsRiMVJTU6vkko/qKj8tHnN9d8ErDUgv+N+jftSFItjrmmJX60EwUdeqwggrHr3XZEOnhkmlyM3NxYsXL7BkyRIMHjxY6mwNIaRipaam4sGDBzh06BBOnz79+Q3+36JFi7Bt2zYUFhbyrqP8HKFQ+NWnv8m3IdQwgXufNRj9PgFHYgKRnJsFLZEKnGvb0engao4SQVIpDh8+jLFjx8LOzo73gFtCSOXp06cP7t+/j59//hldunSReTuxWIyFCxeWu78JEyaUextStWx1jCjxIzx0apgQQsg3Q6fryLdC7zXZ0M0ihBBCCCHVFCWChBBCCCHVFF0jSAgh5JszNzfnfZUgIRXtS7/NqbqhRJAQQsg3FxUVRddtkUpVfI0gKRv9O0YIIYQQUk1RIkgIIYQQUk1RIkgIIYQQUk1RIkgIIYQQUk3RzSKEEELIf0zumyBkRPjgaaoyzmMAhjU2gq0R3RhByo9mBMkPZfny5bCzs+Neu7q6om/fvt88jtjYWAgEAgQGBgIA/Pz8IBAIkJKSwtU5deoUzM3NIS8vjxkzZnzzGAFAIBDg1KlTVdL3f4GXlxc0NTUrpe1P3yMV6f3796hZsyZiY2MrvO2S5syZg2nTplVqH4QvPy0eSSd7IulYR6QFbIIgyQ+/+UWj7fbb6Lb7LuKTs6o6RPIfQ4kg+W68evUKU6dORZ06dSASiWBsbIzevXvj2rVrldZncYJWvOjq6qJ79+4ICgqq0H5at26NpKQk3qMMfv75ZwwcOBAvXrzAqlWrKrS/T32aIBdLSkpC9+7dK7XvikimPj1OxcvixYsrJsgqYGxsjKSkJDRs2LDC2163bh169+4NMzMzXvnx48fRsWNHaGlpQUVFBZaWlhgzZgweP37Mq5ednY1ly5bB0tISIpEINWrUwMCBAxESEsKrN2/ePHh6eiImJqbC94FIyk+Lx+tTvZETdwUsP523Lj23EJcj36LH3nuUDJJyoUSQfBdiY2PRtGlT/Pvvv9i4cSOePHmCixcvokOHDpg8eXKl9x8REYGkpCScO3cOycnJ6NatG1JTU6XWzc/PL3f7ioqK0NfXh0AgAABkZGTgzZs3cHR0hKGhIdTV1b8o7ry8vC/arpi+vj5EItFXtfEtFR+n4uXXX3/9onYKCwsr7WGzsr4/5OXloa+vDwWFir1CJzs7Gx4eHhg3bhyvfP78+RgyZAjs7Oxw5swZhISEYPfu3ahbty4WLlzI1cvNzUXnzp2xb98+rFq1CpGRkTh//jwKCwvRsmVL3L17l6tbs2ZNdO3aFTt37qzQfSDSvbs2EfkfwsqsE/o6AxOOBX+jiMiPgBJB8l2YNGkSBAIB7t+/j4EDB8LCwgINGjTArFmzeH94UlNTMWHCBNSsWRMaGhro2LFjhcze1axZE/r6+mjRogXc3Nzw6tUr3L17lzt9d/ToUbRv3x5KSkr466+/UFRUhJUrV6JWrVoQiUSws7PDxYsXS22/5KlhPz8/LvHr2LEjBAIB/Pz8AAD+/v5o27YtlJWVYWxsjGnTpiEzM5Nrx8zMDKtXr4arqyvEYjHGjx8P4OMfeQsLC6ioqKBOnTpYsmQJl5B4eXlhxYoVCAoK4mbSvLy8AEieGn7y5Ak6duwIZWVl6OjoYMKECcjIyODWF59q37RpEwwMDKCjo4PJkyeXKzkunp08ePAgzMzMIBaL4ezsjPT09M9uW3ycihc1NTUAQHJyMkaOHMnNdHXv3h3Pnj3jtiuelTx79iysra0hEokQFxeHvLw8zJs3D0ZGRlBVVUXLli25Y1HSqVOnYGFhASUlJXTp0gUvXryQ2J99+/Zxs9mMMVy8eBE//fQTNDU1oaOjg169eiE6OprbrrTLB65du4ZmzZpBRUUFrVu3RkREhMxjCwAXLlyAgoIC7O3tubK7d+9i48aN2Lx5MzZv3ow2bdqgdu3aaNeuHRYtWoTz589zdd3d3XHnzh2cPXsWgwcPhqmpKVq0aIHjx4+jfv36GDt2LBhjXH0nJyccPny4XDGS8st9E4TcxLufrwjgTtwHBCVI/0eWkE9RIkiq3IcPH3Dx4kVMnjwZqqqqEuuLTysyxtCzZ0+8evUK58+fR0BAAJo0aYJOnTrhw4cPFRaPsrIyAP7Mzvz58zFt2jSEhYXB0dERW7duhZubGzZt2oTg4GA4OjrCycmJl3yUpuQf9+PHjyMpKQmtW7fGkydP4OjoiP79+yM4OBg+Pj64desWpkyZwtv+t99+Q8OGDREQEIAlS5YAANTV1eHl5YXQ0FBs3boVe/bswZYtWwAAQ4YMwezZs9GgQQNuJm3IkCEScWVlZaFbt27Q0tLCgwcPcOzYMVy9elWif19fX0RHR8PX1xf79++Hl5cXl1jKKjo6GqdOncLZs2dx9uxZXL9+HevXry9XGyW5urri4cOHOHPmDO7cuQPGGHr06ME7hllZWVi3bh327t2LkJAQ1KxZE6NHj8bt27dx5MgRBAcHY9CgQejWrRvvOGZlZWHNmjXYv38/bt++jbS0NDg7O/P6j4qKwtGjR3H8+HEuscvMzMSsWbPw4MEDXLt2DXJycujXr99nZyIXLVoENzc3PHz4EAoKChgzZky5xuLGjRto1qwZr+zw4cNQU1PDpEmTpG5TPFMNAN7e3ujSpQtsbW15deTk5DBz5kyEhoby/vlq0aIFXrx4gbi4OKlt5+bmIi0tjbeQ8suI8JE4HVya9NxCHA5MqOSIyA+DEVLF7t27xwCwEydOlFnv2rVrTENDg+Xk5PDK69aty3bt2sUYY2zZsmXM1taWWzdq1CjWp0+fUtv09fVlAFhycjJjjLF3794xJycnpq6uzl6/fs1iYmIYAObu7s7bztDQkK1Zs4ZX1rx5czZp0iTGGOO2e/z4sdR+kpOTGQDm6+vLbT9ixAg2YcIEXps3b95kcnJyLDs7mzHGmKmpKevbt2+p+1Ns48aNrGnTptzrT8elGAB28uRJxhhju3fvZlpaWiwjI4Nbf+7cOSYnJ8devXrFGPs4nqampqygoICrM2jQIDZkyJBSY/H09GRisZgXi4qKCktLS+PK5s6dy1q2bFlqG8Xjp6qqylvevXvHIiMjGQB2+/Ztrv67d++YsrIyO3r0KBcDABYYGMjViYqKYgKBgCUkJPD66tSpE1uwYAFvu7t373Lrw8LCGAB27949bn+EQiF78+ZNqfEzxtibN28YAPbkyRPGWOnvkatXr3LbnDt3jgHgjr8s+vTpw8aMGcMr69atG7OxseGVubm58cYyJSWFMcaYkpISmz59utS2Hz16xAAwHx8friw1NZUBYH5+flK3WbZsGQMgsaSmpsq8T4QxN78/WFefeRKL48GFrN5eD4nF9eylqg65yhW/N+m9VjZ6fAypcuz/TzOVnJWQJiAgABkZGdDR0eGVZ2dn8065fYlatWoB+DiLU69ePRw7dox312XJGZa0tDQkJibCwcGB14aDg8NXnaYOCAhAVFQUDh06xJUxxlBUVISYmBjUr19fIpZif//9N9zd3REVFYWMjAwUFBSU+3tcw8LCYGtry5uVdXBwQFFRESIiIqCnpwcAaNCgAeTl5bk6BgYGePLkSbn6MjMz410XaWBggDdv3nx2u5s3b/K209LSwu3bt6GgoICWLVty5To6OrC0tERY2P+up1JUVISNjQ33+tGjR2CMwcLCgtdHbm4u7z2moKDAG3MrKytoamoiLCwMLVq0AACYmppCV1eX1050dDSWLFmCu3fv4t27d9xMYHx8fJk3iJSM0cDAAADw5s0bmJiYlDEy/5OdnQ0lJSWJ8k8/X2PGjIGTkxPu3buH4cOH8073lkbaZ7V4Bj0rS/oNCgsWLMCsWbO412lpaTA2Nv78jhCet6q1cTUzVsqaQkAuVKJ0wP9/Xgn5HEoESZWrV68eBAIBwsLCynzUS1FREQwMDKRew/W1d6XevHkTGhoa0NXVlZpASTtl/ekfVsbYZ5PZshQVFeHnn3+W+jiOkknAp7HcvXsXzs7OWLFiBRwdHSEWi3HkyBG4ubmVq/+y4i9ZLhQKJdaV98aLL22jdu3aEse6tATm0/1RVlbmvS4qKoK8vDwCAgJ4iS0A7trDkvF9qmSZtPdH7969YWxsjD179sDQ0BBFRUVo2LDhZ2/wKTk2xX2UZ3xr1KiB5ORkXlm9evVw69Yt5Ofnc+1rampCU1MTL1++5NW1sLBAaKhkYgEA4eHhXHvFii/L+DQRLiYSif5TNyR9r5xr22FHuD/S83M/W1ddKIJzbbvKD4r8EOgaQVLltLW14fh/7d15XE35/wfw161ut7q30qZNCrdFVLKnQYhokF0mFGPJkn1fJmbGLlkmY5lkF0YZ+y5LSIsUkkpNIYREpPX9+8Ov83XcW8qW0ef5eJwH9/P5nM95f845997P/ZzzObm4ICAggDcxolTps/caN26Mhw8fQklJCVKplLfo6up+Ugx16tRBvXr1KjSKpqGhASMjI1y8eJGXfunSJW7U7mM0btwYN2/elGmbVCqFsrJymeuFh4fD1NQUs2fPRtOmTWFubi5zv5aysjKKi4vL3b61tTViY2N5xyA8PBwKCgoyo2bfEmtraxQVFSEiIoJLe/r0Ke7cuVPu8bC3t0dxcTEeP34ss78NDAy4ckVFRYiKiuJeJyYm4vnz57Cysiqz7qdPnyIhIQFz5sxBhw4dUL9+fZnO2Zdib28v05EbMGAAcnNzsXbt2g+u7+7ujlOnTsmMbpeUlMDf3x/W1ta8+wdv3LgBoVCIBg0afJ4GMHLZ6RjDQc+0QmUd9Exhp2P8hSNivhesI8h8E9auXYvi4mJudmJSUhISEhKwevVqbvajs7MzHBwc0KNHDxw/fhxpaWm4dOkS5syZw/ui/hqmTp2KJUuWYPfu3UhMTMSMGTMQGxuL8ePHf3Sd06dPx+XLlzFmzBjExsYiKSkJBw4cgI+PT7nrSaVSpKenIzg4GCkpKVi9ejVCQ0N5ZczMzJCamorY2Fg8efIE+fmyowoeHh5QUVGBp6cnbty4gbNnz8LHxweDBg3iLgt/i8zNzeHm5obhw4fj4sWLuH79OgYOHAhjY2O4ubmVuZ6FhQU8PDwwePBghISEIDU1FZGRkViyZAlvFq1QKISPjw8iIiIQExODIUOGoGXLltxlYXm0tLSgo6ODDRs2IDk5GWfOnOFdHv2SXFxccPPmTV7H08HBAZMnT8bkyZMxadIkXLx4Ef/++y+uXLmCwMBACAQCKCi8/TqYOHEimjdvjm7dumHv3r1IT09HZGQkevfujYSEBK58qQsXLqB169bcJWLmy9ng2BfWmuW/F6019bHBse9Xioj5HrCOIPNNqFOnDmJiYtCuXTtMnjwZDRs2RMeOHXH69Gn8+eefAN5eJjty5AjatGmDoUOHwsLCAu7u7khLS/vqHZVx48ZxX6w2NjY4duwYDhw4wLtkVlm2trY4d+4ckpKS0Lp1a9jb22Pu3LncfWJlcXNzw8SJEzF27Fg0atQIly5d4mYTl+rduzc6d+6Mdu3aQU9PT+7jPtTU1HD8+HE8e/YMzZo1Q58+fdChQwf88ccfH92mryUoKAhNmjRB165d4eDgACLCkSNHZC5By1tv8ODBmDx5MiwtLbl75t69h01NTQ3Tp0/HTz/9BAcHB6iqqiI4OLjcehUUFBAcHIzo6Gg0bNgQEydOxLJlyz5LWz/ExsYGTZs2xZ49e3jpy5cvx86dO3Ht2jV07doV5ubm6Nu3L0pKSnD58mVuNFxFRQVnzpyBp6cnZs2aBalUis6dO0NRURFXrlxBy5YtefXu2rWLe4wR82WZSLRwpNMwdDKygLqQf7ldXShCJyMLHHUZBhOJVhVFyPwXCagidwgzDMMw/xlHjhzBlClTcOPGDW6k70s4fPgwpk6diri4uAo/GPvFixfQ1NRETk5OpSc0Mf9z/el9BKfGIjv/NbREanCv04hdDn4PO9cqhk0WYRiG+c64uroiKSkJ9+/f/6IzdF+9eoWgoKDP/tdRmA+z0zFmHT/ms2AjggzDMMxXw0ZpmK+FnWsVw+4RZBiGYRiGqaZYR5BhGIZhGKaaYjd2MAzDMF+dVCr9ohNZGKayD7qvrlhHkGEYhvnqkpOT2X1bzBdVeo8gUz72c4xhGIZhGKaaYh1BhmEYhmGYaop1BBmGYRiGYaop1hFkGIZhGIappthkEYZhGIb5j7l+PwfBsfeR/boQWmpCuDcyhp0xmxjBVB4bEWQ+ybx589CoUaNvpp7P6fbt22jZsiVUVFQ+OrawsDAIBAI8f/78s8ZWWQKBAPv37/+kOpycnDBhwgTutZmZGVauXPlJdf5XpaWlQSAQIDY2tsLrfI5jUFEFBQWQSqUIDw//otv5448/0L179y+6DYYvPfs1XDZcQZu14VhyNgUbItKx5GwK2qwNh8uGK8jIzqvqEJn/GNYR/A/y8vKCQCCAQCCAkpISateujVGjRiE7O7uqQ6sQeV+IU6ZMwenTp7/K9i9dugRXV1doaWlBRUUFNjY28PPzQ3FxMa+cr68vxGIxEhMTy4zt3WMhFApRt25dTJkyBa9evfoaTalSkZGRGDFiRFWHUSF5eXnQ0tKCtrY28vIq90Xp5eWFHj168NJMTEyQmZmJhg0bVriezMxMdOnSBcDHdSQrY8OGDTA1NYWjoyMv/ezZs+jatSv09PSgoqKCevXqoX///jh//jyvXHFxMfz9/WFrawsVFRXUqFEDXbp0kelYDh8+HJGRkbh48eIXaQfDl5GdB9e/InDyThZe5vM/r17mF+PknSx0+Yt1BpnKYR3B/6jOnTsjMzMTaWlp+Ouvv3Dw4EGMHj26qsP6aBKJBDo6Ol98O6GhoWjbti1q1aqFs2fP4vbt2xg/fjwWLFgAd3d3vPunt1NSUvDDDz/A1NS03NhKj8Xdu3fx+++/Y+3atZgyZcoXb0tV09PTg5qaWlWHUSH79u1Dw4YNYW1tjZCQkE+uT1FREQYGBlBSqvjdNQYGBhCJRJ+87YpYs2YNhg0bxktbu3YtOnToAB0dHezevRsJCQnYtm0bWrVqhYkTJ3LliAju7u749ddfMW7cOCQkJODcuXMwMTGBk5MT70ecSCTCTz/9hDVr1nyVdlV3w/dex61HueWWufUoF8P3Xv9KETHfBWL+czw9PcnNzY2XNmnSJNLW1ualbdq0iaysrEgkEpGlpSUFBATw8sPDw8nOzo5EIhE1adKEQkNDCQBdu3aNiIiCgoJIU1OTt05pmVK+vr5kZ2fHvb569So5OzuTjo4OaWhoUJs2bSg6OprLNzU1JQDcYmpqKree4uJimj9/PhkbG5OysjLZ2dnR0aNHufzU1FQCQPv27SMnJydSVVUlW1tbunTpUpn7LTc3l3R0dKhXr14yeQcOHCAAFBwcTETEixEA+fr6yq1T3rEYNmwYGRgYEBHR2bNnCQCdOnWKmjRpQqqqquTg4EC3b9/mrbN27VqqW7cuCYVCsrCwoK1bt/LyfX19ycTEhJSVlcnQ0JB8fHx4+/TXX3+lAQMGkFgsJkNDQ1q9ejVvfQC0ceNG6tGjB6mqqpJUKqV//vmHVyYsLIyaNWtGysrKZGBgQNOnT6fCwkIuv23btjR+/Hjedv39/XnbWLt2LXXu3JlUVFTIzMyM9uzZw9vGtGnTyNzcnFRVValOnTo0Z84cKigo4PJjY2PJycmJJBIJqaurU+PGjSkyMpLLDw8Pp9atW5OKigrVqlWLfHx8KDc39/3DIsPJyYnWrVtHf/75J7Vr104m/8aNG+Tq6krq6uokkUjohx9+oOTkZPL19ZU5F86ePcudf9euXaPi4mIyNjamP//8k1dndHQ0AaCUlBRu/4SGhnL/f3dp27YtnTt3jpSUlCgzM5NXz6RJk6h169YfbOO721VQUKCcnBwu7d9//yWhUEgTJ06Uu05JSQn3/+DgYAJABw4ckCnXq1cv0tHR4e3zsLAwUlZWptevX1covpycHALAi4/5sNh7z0lj1mESTD7wwUVj1mGKvfe8qkOucuxcqxg2IvgduHv3Lo4dOwahUMilbdy4EbNnz8aCBQuQkJCAhQsXYu7cudiyZQsA4OXLl+jWrRtsbGwQExOD3377DdOnT//kWF6+fAlPT09cuHABV65cgbm5OVxdXfHy5UsAby8nAkBQUBAyMzO51+9btWoV/Pz8sHz5csTFxcHFxQXdu3dHUlISr9zs2bMxZcoUxMbGwsLCAgMGDEBRUZHcOk+cOIGnT5/KHa3r1q0bLCwssGvXLgBvL+M1aNAAkydPRmZmZqVG+FRVVVFYWCgTp5+fH6KioqCkpIShQ4dyeaGhoRg/fjwmT56MGzduYOTIkRgyZAjOnj0LAPj777/h7++P9evXIykpCfv374eNjQ2v/mXLlsHW1hYxMTGYOXMmJk6ciJMnT/LKzJ8/H/369UNcXBxcXV3h4eGBZ8+eAQDu378PV1dXNGvWDNevX8eff/6JwMBA/P777xVuNwDMnTsXvXv3xvXr1zFw4EAMGDAACQkJXL66ujo2b96MW7duYdWqVdi4cSP8/f25fA8PD9SqVQuRkZGIjo7GjBkzuPM6Pj4eLi4u6NWrF+Li4rB7925cvHgRY8eOLTemlJQUXL58Gf369UO/fv1w6dIl3L17l8u/f/8+2rRpAxUVFZw5cwbR0dEYOnQoioqKMGXKFPTr148b9c3MzESrVq149SsoKMDd3R07duzgpe/cuRMODg6oW7euTExXr14FAJw6dQqZmZkICQlBmzZtULduXWzbto0rV1RUhO3bt2PIkCEf2vWc8+fPw8LCgvdXO/bt24fCwkJMmzZN7joCgYAXt4WFBbp16yZTbvLkyXj69Cnv3GratCkKCwu5Nr0vPz8fL1684C1M5QXH3pe5HFyWl/nFCI69/4UjYr4bVd0TZSrP09OTFBUVSSwWk4qKCjeqsGLFCq6MiYkJ7dy5k7feb7/9Rg4ODkRE9Oeff5KOjg7l5eVx+Rs3bvzkEcH3FRUVkbq6Oh08eJBLwzsjI2XVY2RkRAsWLOCVadasGY0ePZqI/jci+Ndff3H5N2/eJACUkJAgN5bFixcTAMrOzpab3717d6pfvz732s7OrsyRwFLvjwhGRESQjo4O9evXj4j4I4KlDh8+TAC4fd+qVSsaPnw4r96+ffuSq6srERH5+fmRhYUFb+TsXaamptS5c2deWv/+/alLly7cawA0Z84c7nVubi4JBAJulHXWrFlkaWnJGxkKCAggiURCxcXFRFSxEUFvb29eHC1atKBRo0bJjZuIaOnSpdSkSRPutbq6Om3evFlu2UGDBtGIESN4aRcuXCAFBQXeefy+WbNmUY8ePbjXbm5uNHv2bO71zJkzqU6dOmXuX3mjvu+OCBIRxcTEkEAgoLS0NCIibpTw3VH4d8/799cvtWTJEt45uH//fpJIJBUa9Sw1fvx4at++PS/N29ubNDQ0eGl///03icVibomLiyMiIisrK5n2lnr27BkBoCVLlvDStbS0yjxu8kZVwUZpKu3soYV0bkN7mWXfur70xx8jZJa/D6yt6pCrHBsRrBg2Ivgf1a5dO8TGxiIiIgI+Pj5wcXGBj48PACArKwsZGRn4+eefIZFIuOX3339HSkoKACAxMZG7EbxU8+bNPzmux48fw9vbGxYWFtDU1ISmpiZyc3ORnp5e4TpevHiBBw8eyNzo7ujoyBtdAgBbW1vu/4aGhlwM5aF37gN8P/3dkZGKOnToECQSCVRUVODg4IA2bdrI3DNVXpwJCQnltrVv377Iy8tD3bp1MXz4cISGhsqMejo4OMi8Lm9ficViqKur82JwcHDgtd/R0RG5ubm4d+9ehffFh+L4+++/8cMPP8DAwAASiQRz587lnRuTJk3CsGHD4OzsjMWLF3PnKwBER0dj8+bNvHPaxcUFJSUlSE1NlRtPcXExtmzZgoEDB3JpAwcOxJYtW7jJQbGxsWjdujVvRL2y7O3tYWVlxY0onzt3Do8fP0a/fv0qVY+XlxeSk5Nx5coVAMCmTZvQr18/iMXiCteRl5fHe1+Xev/cdnFxQWxsLA4fPoxXr17JTJYqz/t1qaqq4vXr13LLzpw5Ezk5OdySkZFR4e0w/2OrmQuTVxdkFvu8/XAtDJJZ2mlV/H3LVG+sI/gfJRaLIZVKYWtri9WrVyM/Px/z588HAJSUlAB4e3k4NjaWW27cuMF9wcjr9LzfQVJQUJBJe/+S5/u8vLwQHR2NlStX4tKlS4iNjYWOjg4KCgoq3UZ58b2f9u6Xd2leafvfZ2FhAQAyHaRSt2/fhrm5eaXjLO2UJyYm4s2bNwgJCUHNmjUrFWd5bTUxMUFiYiICAgKgqqqK0aNHo02bNh88FuXtq9L80hjKOx8+pnMsL44rV67A3d0dXbp0waFDh3Dt2jXMnj2bd27MmzcPN2/exI8//ogzZ87A2toaoaGhAN7ur5EjR/LO6evXryMpKQn16tWTu+3jx4/j/v376N+/P5SUlKCkpAR3d3fcu3cPJ06cAPC2E/M5eHh4YOfOnQDeXl51cXGBrq5upeqoWbMmunXrhqCgIDx+/BhHjhzh3UZQEbq6ujJPEDA3N0dOTg4ePnzIpUkkEkilUpiamvLKWlhY4NatW3LrLn3vvP8+efbsGfT09OSuIxKJoKGhwVuYyhNb9INAqF6hsgKhOsQWlfsRwlRfrCP4nfD19cXy5cvx4MED6Ovrw9jYGHfv3oVUKuUtderUAQBYWVkhLi4O+fn5XB1RUVG8OvX09PDy5Uveo1A+9LiLCxcuYNy4cXB1dUWDBg0gEonw5MkTXhmhUFju6IOGhgaMjIxkHklx6dIl1K9fv9ztl6dTp07Q1taGn5+fTN6BAweQlJSEAQMGVLre0k65qanpR40q1a9f/4NtVVVVRffu3bF69WqEhYXh8uXLiI+P5/JLO/jvvraysqpwDNbW1rh06RKv43/p0iWoq6vD2Ni4wvWUF0d4eDhMTU0xe/ZsNG3aFObm5vj3339l6rCwsMDEiRNx4sQJ9OrVC0FBQQCAxo0b4+bNmzLntFQqhbKystx4AgMD4e7uzus8xsbGwsPDA4GBgQDejpReuHChzI61srJyhUbLfvrpJ8THxyM6Ohp///03PDw8yixbGq+8eocNG4bg4GCsX78e9erVkxkt/hB7e3vcvn2bdyz79OkDoVCIJUuWfHB9d3d3JCUl4eDBgzJ5fn5+0NHRQceOHbm0lJQUvHnzBvb29pWKk6kcUU07iIxaVqysUUuIatp94YiY7wXrCH4nnJyc0KBBAyxcuBDA25GVRYsWYdWqVbhz5w7i4+MRFBSEFStWAHj7pVVSUoIRI0YgISEBx48fx/LlywH8bwSnRYsWUFNTw6xZs5CcnIydO3di8+bN5cYhlUqxbds2JCQkICIiAh4eHjIjLmZmZjh9+jQePnxY5rMPp06diiVLlmD37t1ITEzEjBkzEBsbi/Hjx3/0PhKLxVi/fj3++ecfjBgxAnFxcUhLS0NgYCC8vLzQp0+fSl/K+xymTp2KzZs3Y926dUhKSsKKFSsQEhLCTVDZvHkzAgMDcePGDdy9exfbtm2DqqoqbyQnPDwcS5cuxZ07dxAQEIC9e/dWal+NHj0aGRkZ8PHxwe3bt/HPP//A19cXkyZNgoJCxT8m9u7di02bNuHOnTvw9fXF1atXuckcUqkU6enpCA4ORkpKClavXs2N9gFvL2mOHTsWYWFh+PfffxEeHo7IyEiuQzx9+nRcvnwZY8aMQWxsLJKSknDgwAHuloj3ZWVl4eDBg/D09ETDhg15i6enJw4cOICsrCyMHTsWL168gLu7O6KiopCUlIRt27YhMTERwNvzNS4uDomJiXjy5EmZHcY6deqgVatW+Pnnn1FUVAQ3N7cy91PNmjWhqqqKY8eO4dGjR8jJyeHyXFxcoKmpid9//71Sk0RKtWvXDq9evcLNmze5tNq1a8PPzw+rVq2Cp6cnzp49i7S0NMTExGD16tUA3j4SB3jbEezZsyc8PT0RGBiItLQ0xMXFYeTIkThw4AD++usv3qXqCxcuoG7dumWOyjKfj26HdRBql/9jWKhdH7od1n2liJjvQhXdm8h8Ank3rxMR7dixg5SVlSk9PZ173ahRI1JWViYtLS1q06YNhYSEcOXDw8PJ1taWlJWVqUmTJrRz504CwHu0SWhoKEmlUlJRUaGuXbvShg0byp0sEhMTQ02bNiWRSETm5ua0d+9emUkFBw4cIKlUSkpKShV6fIxQKCzz8THv3myfnZ3NPd6jPOfPn6fOnTuTpqYmKSsrk7W1NS1fvpyKiop45T5mssj7SieLvDtB5dq1awSAUlNTubTyHh8TGhpKLVq0IA0NDRKLxdSyZUve5BNTU1OaP38+9evXj9TU1EhfX59WrlzJiwNyJuhoampSUFAQ9/pzPD4mICCAOnbsSCKRiExNTWnXrl28bU6dOpV0dHRIIpFQ//79yd/fn5uQlJ+fT+7u7txjcoyMjGjs2LG8iSBXr16ljh07kkQiIbFYTLa2tjKTikotX76catSoIXcSSGFhIWlra5Ofnx8REV2/fp06depEampqpK6uTq1bt+Ye+/L48WNum6XnV1mTPQICAggADR48WGab7x+DjRs3komJCSkoKFDbtm15ZefOnUuKior04MEDuW37EHd3d5oxY4ZM+smTJ6lLly6kra1NSkpKpK+vTz169KBjx47xyhUWFtLy5cupQYMGJBKJSENDg1xcXOjChQsydXbq1IkWLVpU4djYDfyfpiAnnR6EuFLqH9p011/ILal/aNODEFcqeJFR1SF+M9i5VjECojLunGeqnR07dmDIkCHIycn5bPdNMV+emZkZJkyYwPvzb1VBIBAgNDRU5q9wMJU3fPhwPHr0CAcOHPio9ePj4+Hs7Izk5GSoq1fsvrKPcePGDXTo0AF37tyBpmbF/s7tixcvoKmpiZycHHa/4CfIf3wdr+7sQUl+NhREWhBb9GOXg9/DzrWKqfhj8ZnvztatW1G3bl0YGxvj+vXrmD59Ovr168c6gQxTRXJychAZGYkdO3bgn3/++eh6bGxssHTpUqSlpck8c/JzevDgAbZu3VrhTiDz+Yhq2rGOH/NZsI5gNfbw4UP88ssvePjwIQwNDdG3b18sWLCgqsNimGrLzc0NV69exciRI3kTMj6Gp6fnZ4qqbJ06dfri22AY5stil4YZhmGYr4ZdrmO+FnauVQybNcwwDMMwDFNNsUvDDMMwzFcnlUor9Wgihqmssv64AMPHOoIMwzDMV5ecnMwu1zFfVOmlYaZ87OcYwzAMwzBMNcU6ggzDMAzDMNUU6wgyDMMwDMNUU6wjyDAMwzAMU02xySIMwzAM8424fj8HO6/dR05eIWqoCTGgkTHsjNmEB+bLYSOCDMN8N+bNm4dGjRpVdRj/OQUFBZBKpQgPD6/UeocOHYK9vT17TMdnUPgiHVE7eqL92nNYFpaCDRHpWHo2BW3WhqPzhitIz35d1SEy3ynWEWSqFS8vLwgEAggEAigpKaF27doYNWoUsrOzeeXMzMywcuVKmfXldTSePXuGCRMmwMzMDMrKyjA0NMSQIUOQnp7+wXiICBs3boSDgwM0NDQgkUjQoEEDjB8/HsnJydi8eTMXb1lLWFiYTDlDQ0P069cPqampn7K7vridO3dCUVER3t7elV5XIBBg//79vLQpU6bg9OnTnym6t5ycnDBhwoRPricsLIx3jPT09NClSxdcv36dV+7SpUtQVFRE586dZepIS0uDQCBAbGwsl/by5Us4OTnBysoKGRkZHxXbhg0bYGpqCkdHRy7t3VglEgns7OywefNm3npdu3aFQCDAzp07P2q7zFuFL9LxaH836GQdwTRd/t+YfplfjBN3suD6VwQysvOqKELme8Y6gky107lzZ2RmZiItLQ1//fUXDh48iNGjR39UXc+ePUPLli1x6tQprF27FsnJydi9ezdSUlLQrFkz3L17t8x1iQg//fQTxo0bB1dXV5w4cQJxcXFYvXo1VFVV8fvvv6N///7IzMzkFgcHBwwfPpyX1qpVKwCAhoYGMjMz8eDBA+zcuROxsbHo3r07iouLP6ptX8OmTZswbdo0BAcH4/XrTx/xkEgk0NHR+QyRfTmJiYnIzMzE4cOHkZ2djc6dOyMnJ4fL37RpE3x8fHDx4sUP/pjIyspCu3btkJubi4sXL8LExOSjYlqzZg2GDRsmkx4UFITMzExcv34d/fv3x5AhQ3D8+HFemSFDhmDNmjUftV3mrSenvFH4LAEAoaf4ArQUXsiUufUoF8P3XpddmWE+FTFMNeLp6Ulubm68tEmTJpG2tjYvzdTUlPz9/WXW9/X1JTs7O+61t7c3icViyszM5JV7/fo1GRsbU+fOncuMZdeuXQSA/vnnH7n5JSUlMmlt27al8ePHy6QHBQWRpqYmL2379u0EgG7fvk1Xr14lZ2dn0tHRIQ0NDWrTpg1FR0fLtM3ExISUlZXJ0NCQfHx8uLz8/HyaOnUqGRkZkZqaGjVv3pzOnj3L5aelpVHXrl2pRo0apKamRtbW1nT48OEy205ElJqaSqqqqvT8+XNq0aIFbdmyRaZMYGAgWVtbk7KyMhkYGNCYMWOI6O3xAcAtpqamXBtKj8+xY8dIJBJRdnY2r04fHx9q06YNERE9efKE3N3dydjYmFRVValhw4a0c+dOrqynpydvOwAoNTWViIhu3rxJXbp0IbFYTDVr1qSBAwdSVlZWme09e/YsAeDFc/HiRQJAx44dIyKi3NxcUldXp9u3b1P//v1p/vz5MvsMAF27do3S09PJ0tKSnJyc6MWLF1yZ/Px8GjNmDBkYGJBIJCJTU1NauHBhmXFFR0eTgoIC5eTk8NIBUGhoKC9NW1ubJk2axEtLS0sjAJSSklLmNt6Vk5NDAGS2V129eXSNUv/Qprv+Qm7Zt7YrCSYfkFk0Zh2m2HvPqzrk/wx2rlUMGxFkqrW7d+/i2LFjEAqFlV63pKQEwcHB8PDwgIGBAS9PVVUVo0ePxvHjx/Hs2TO56+/atQuWlpbo3r273HyBQFDpmN6PAQAKCwvx8uVLeHp64sKFC7hy5QrMzc3h6uqKly9fAgD+/vtv+Pv7Y/369UhKSsL+/fthY2PD1TVkyBCEh4cjODgYcXFx6Nu3Lzp37oykpCQAwJgxY5Cfn4/z588jPj4eS5YsgUQiKTe+TZs24ccff4SmpiYGDhyIwMBAXv6ff/6JMWPGYMSIEYiPj8eBAwcglUoBAJGRkQD+N2JV+vpdzs7OqFGjBvbt28elFRcXY8+ePfDw8AAAvHnzBk2aNMGhQ4dw48YNjBgxAoMGDUJERAQAYNWqVTKjsCYmJsjMzETbtm3RqFEjREVF4dixY3j06BH69etX8QME/jECgN27d8PS0hKWlpYYOHAggoKCQEQy6yUmJsLR0RFWVlY4duwY1NXVubzVq1fjwIED2LNnDxITE7F9+3aYmZmVGcP58+dhYWFR7l/5KN1vz549k3mvmJqaombNmrhw4YLcdfPz8/HixQvewvxPbuIeUOFLXpo9otBUNUWm7Mv8YuyKvf+1QmOqi6ruiTLM1+Tp6UmKiookFotJRUWFG+VZsWIFr5ypqSkpKyuTWCzmLUKhkBtxevjwIQGQO3JIRBQSEkIAKCIiQm6+lZUVde/enZc2fvx4blvGxsYy61R0RDAjI4NatmxJtWrVovz8fJnyRUVFpK6uTgcPHiQiIj8/P7KwsKCCggKZssnJySQQCOj+/fu89A4dOtDMmTOJiMjGxobmzZsnt53yFBcXk4mJCe3fv5+IiLKyskgoFFJSUhJXxsjIiGbPnl1mHZAzYvX+iO24ceOoffv23Ovjx4+TsrIyPXv2rMx6XV1dafLkydxreft87ty51KlTJ15aRkYGAaDExES59b4/IvjkyRPq3r07qaur06NHj4iIqFWrVrRy5UoiIiosLCRdXV06efIkV0fpiKCysjI5OTlRUVGRzHZ8fHyoffv2ckeU5Rk/fjxvH5UCQCoqKiQWi0lRUZEAkLa2Nu8YlbK3ty/z+Pv6+sqMqoKN0nCyTo3ijQbe9RdSir+QBm4ZT+Z/BcosXoeOV3XI/xlsRLBi2IggU+20a9cOsbGxiIiIgI+PD1xcXODj4yNTburUqYiNjeUtlZnUQP8/klPeyN77ebNnz0ZsbCx++eUX5ObmVnhbAJCTkwOJRAKxWAwTExMUFBQgJCQEysrKePz4Mby9vWFhYQFNTU1oamoiNzeXuwetb9++yMvLQ926dTF8+HCEhoaiqKgIABATEwMigoWFBSQSCbecO3cOKSlvRy3GjRuH33//HY6OjvD19UVcXFy5sZ44cQKvXr1Cly5dAAC6urro1KkTNm3aBAB4/PgxHjx4gA4dOlRqH7zPw8MDYWFhePDgAQBgx44dcHV1hZaWFoC3I10LFiyAra0tdHR0IJFIcOLEiQ/emxcdHY2zZ8/y9oeVlRUAcPukLLVq1YJEIoGuri4SEhKwd+9e1KxZE4mJibh69Src3d0BAEpKSujfvz+3T97l5uaGixcv8kY7S3l5eSE2NhaWlpYYN24cTpw4UW48eXl5UFFRkZvn7++P2NhYnDx5Eo0aNYK/vz83KvsuVVXVMu/xnDlzJnJycrjlYye0fK8EyjVk0vap/4B9pIIUhVsyi4F+4dcPkvmusecIMtWOWCzmvsxWr16Ndu3aYf78+fjtt9945XR1dWW+9LS1tbn/6+npoUaNGrh165bc7dy+fRsCgQD16tWTm29ubo7bt2/z0vT09KCnp4eaNWtWul3q6uqIiYmBgoIC9PX1IRaLuTwvLy9kZWVh5cqVMDU1hUgkgoODAwoKCgAAJiYmSExMxMmTJ3Hq1CmMHj0ay5Ytw7lz51BSUgJFRUVER0dDUVGRt83Sy7/Dhg2Di4sLDh8+jBMnTmDRokXw8/OT28EG3l4WfvbsGdTU1Li0kpISXLt2Db/99ht3yfRTNW/eHPXq1UNwcDBGjRqF0NBQBAUFcfl+fn7w9/fHypUrYWNjA7FYjAkTJnD7pSwlJSXo1q0blixZIpNnaGhY7roXLlyAhoYG9PT0eJdjAwMDUVRUBGNjYy6NiCAUCpGdnc11XgFg1qxZsLW1hYeHB4gI/fv35/IaN26M1NRUHD16FKdOnUK/fv3g7OyMv//+W248urq6iI+Pl5tnYGAAqVQKqVSKvXv3wt7eHk2bNoW1tTWv3LNnz6Cnpye3DpFIBJFIVO4+qc4klv3wMm49d3k4H4rYLnFE/mvZGcLqQhHc6zT6yhEy3zs2IshUe76+vli+fDk3alRRCgoK6NevH3bu3ImHDx/y8vLy8rB27Vq4uLjwOo/vGjBgABITE/HPP//Iza8sBQUFSKVS1K1bl9cJBN52PkpnJzdo0AAikQhPnjzhlVFVVUX37t2xevVqhIWF4fLly4iPj4e9vT2Ki4vx+PFjrlNQurx7b6SJiQm8vb0REhKCyZMnY+PGjXLjfPr0Kf755x8EBwfLjLjm5ubi6NGjUFdXh5mZWbmPghEKhRWaEf3TTz9hx44dOHjwIBQUFPDjjz/y9oubmxsGDhwIOzs71K1bl7vvsZSysrLMdho3boybN2/CzMxMZp+8v+/fV6dOHdSrV4/XCSwqKsLWrVvh5+fH2x/Xr1+HqakpduzYIVPPnDlz8Ntvv8HDwwO7du3i5WloaKB///7YuHEjdu/ejX379pV5r6q9vT1u374t917Ed0mlUvTu3RszZ87kpb958wYpKSmwt7cvd31GPlHNRhAZtuBer9TpjRtyOoEA4KBnCjsdY7l5DPOxWEeQqfacnJzQoEEDLFy4sNLrLliwAAYGBujYsSOOHj2KjIwMnD9/Hi4uLigsLERAQECZ67q7u6NPnz5wd3fHr7/+ioiICKSlpeHcuXPYvXu3zOjbp5BKpdi2bRsSEhIQEREBDw8P3qjb5s2bERgYiBs3buDu3bvYtm0bVFVVYWpqCgsLC3h4eGDw4MEICQlBamoqIiMjsWTJEhw5cgQAMGHCBBw/fhypqamIiYnBmTNnUL9+fbmxbNu2DTo6Oujbty8aNmzILba2tujatSs3aWTevHnw8/PD6tWrkZSUhJiYGN5jSko7ig8fPpR5DuS7PDw8EBMTgwULFqBPnz68y6BSqRQnT57EpUuXkJCQgJEjR8p06s3MzLhj8+TJE5SUlGDMmDF49uwZBgwYgKtXr+Lu3bs4ceIEhg4d+lGP6zl06BCys7Px888/8/ZJw4YN0adPH5mJNKVmzJiBRYsWYdCgQVxn0d/fH8HBwbh9+zbu3LmDvXv3wsDAADVq1JBbR7t27fDq1SvcvHnzg3FOnjwZBw8eRFRUFJd25coVboSZ+Ti6zusg1K6PBwIJjinJv4JgramPDY59v3JkTHXAOoIMA2DSpEnYuHFjpe9f0tXVxZUrV9CuXTuMHDkSdevWRb9+/VC3bl1ERkaibt26Za4rEAiwe/durFy5EkeOHEGHDh1gaWmJoUOHwsTEBBcvXvzUZnE2bdqE7Oxs2NvbY9CgQRg3bhzv8nONGjWwceNGODo6wtbWFqdPn8bBgwe5Z/IFBQVh8ODBmDx5MjfTOSIigntuXXFxMcaMGYP69eujc+fOsLS0xNq1a8uMpWfPnlBQkP346d27Nw4dOoRHjx7B09MTK1euxNq1a9GgQQN07dqVN1rn5+eHkydPwsTEpNzRKHNzczRr1gxxcXHcbOFSc+fORePGjeHi4gInJycYGBigR48evDJTpkyBoqIirK2toaenh/T0dBgZGSE8PBzFxcVwcXFBw4YNMX78eGhqaspt14cEBgbC2dkZmpqyf0qsd+/eiI2NRUxMjNx1p06diqVLl8LT0xPbtm2DRCLBkiVL0LRpUzRr1gxpaWk4cuRImXHp6OigV69eckcd32djYwNnZ2f88ssvXNquXbvg4eHBu8zPVI5Qozb0exzEXrNReP7/9+aWUheK0MnIAoc7DoOJRKuMGhjm4wnoQ9cDGIZhmO9afHw8nJ2dkZyczHsUzYdkZWXBysoKUVFRqFOnToXWefHiBTQ1NZGTk1PuI2uqq+tP7yM4NRbZ+a+hJVKDe51G7HLwR2LnWsWwySIMwzDVnI2NDZYuXYq0tDTe8yM/JDU1FWvXrq1wJ5D5MDsdY9bxY74qNiLIMAzDfDVslIb5Wti5VjHsHkGGYRiGYZhqinUEGYZhGIZhqinWEWQYhmEYhqmm2GQRhmEY5quTSqUf9agdhqmokpKSqg7hP4F1BBmGYZivLjk5md3Az3xRpZNFmPKxn2MMwzAMwzDVFOsIMgzDMAzDVFOsI8gwDMMwDFNNsXsEGYZhGOYruX4/Bzuv3UdOXiFqqAkxoJEx7IzZfWxM1WEjgt+gsLAwCAQCPH/+HACwefNm1KhRo8riMTMzw8qVK7+Zer5H+/fvh1QqhaKiIiZMmFDV4VTapx5bJyenr9Lu999b/wVfY98UFBRAKpUiPDy8UusdOnQI9vb2bHZmBRS+SEfUjp5ov/YcloWlYENEOpaeTUGbteHovOEK0rNfV3WITDVV6Y7gw4cP4ePjg7p160IkEsHExATdunXD6dOnv0R8DID+/fvjzp07lVrna3e6Xrx4gdmzZ8PKygoqKiowMDCAs7MzQkJCUJ3/iuGWLVvQvHlziMViqKuro02bNjh06JBMuZEjR6JPnz7IyMjAb7/9VmZ9165dQ9++faGvrw8VFRVYWFhg+PDhlTo/BAIB9u/f/zHN+WZ8yR9HZmZmEAgEEAgEUFNTQ8OGDbF+/fpPrvdjO3QhISHlnhOfw4YNG2BqagpHR0curXQfCAQCSCQS2NnZYfPmzbz1unbtCoFAgJ07d37R+P7rCl+k49H+btDJOoJpuv/w8l7mF+PEnSy4/hWBjOy8KoqQqc4q1RFMS0tDkyZNcObMGSxduhTx8fE4duwY2rVrhzFjxnypGKs9VVVV1KxZs6rDKNPz58/RqlUrbN26FTNnzkRMTAzOnz+P/v37Y9q0acjJyanqEKvElClTMHLkSPTr1w/Xr1/H1atX0bp1a7i5ueGPP/7gyuXm5uLx48dwcXGBkZER1NXV5dZ36NAhtGzZEvn5+dixYwcSEhKwbds2aGpqYu7cuV+rWdXCr7/+iszMTMTFxaFHjx7w9vbG7t275ZYtKCj4orFoa2uXeU58LmvWrMGwYcNk0oOCgpCZmYnr16+jf//+GDJkCI4fP84rM2TIEKxZs+aLxvdf9+SUNwqfJQAg9BRfgJbCC5kytx7lYvje618/OIahSujSpQsZGxtTbm6uTF52djb3fz8/P2rYsCGpqalRrVq1aNSoUfTy5UsuPy0tjbp27Uo1atQgNTU1sra2psOHDxMR0dmzZwkAHTp0iGxtbUkkElHz5s0pLi6OW//Jkyfk7u5OxsbGpKqqSg0bNqSdO3fy4tm7dy81bNiQVFRUSFtbmzp06MCLe9OmTWRlZUUikYgsLS0pICCg3LaXxnXs2DFq1KgRqaioULt27ejRo0d05MgRsrKyInV1dXJ3d6dXr15x65WUlNCSJUuoTp06pKKiQra2trR3715e3YcPHyZzc3NSUVEhJycnCgoKIgDcPg0KCiJNTU2ufHJyMnXv3p1q1qxJYrGYmjZtSidPnuTy27ZtSwB4S6nw8HBq3bo1qaioUK1atcjHx4e3Xx49ekRdu3YlFRUVMjMzo+3bt5OpqSn5+/uXuW9GjRpFYrGY7t+/L5P38uVLKiwsJCKSqef58+c0fPhw0tPTI3V1dWrXrh3FxsZWuJ0zZsygFi1ayGzTxsaGfvnlFyIiunr1Kjk7O5OOjg5paGhQmzZtKDo6mlc+ISGBHB0dSSQSUf369enkyZMEgEJDQ7ky9+7do379+lGNGjVIW1ubunfvTqmpqWXuk8uXLxMAWr16tUzepEmTSCgUUnp6OndevbucPXtWZp1Xr16Rrq4u9ejRQ+72srOzqaSkhOrVq0fLli3j5cXHx5NAIKDk5GQyNTXlbcvU1JQrt3btWqpbty4JhUKysLCgrVu38urx9fUlExMTUlZWJkNDQ/Lx8eHy3j+2mzZtIg0NDTpx4gQREd28eZO6dOlCYrGYatasSQMHDqSsrCyufNu2bWn8+PHc6/z8fJo6dSoZGRmRmpoaNW/enNsv8vaZr68vERFt27aNmjRpQhKJhPT19WnAgAH06NEjrt7Sdd/9vHqfvPPd3Nyc3N3duVjHjBlDEydOJB0dHWrTpg0REYWFhVGzZs1IWVmZDAwMaPr06dy57+npKRNz6flT2X1jampKCxYsoCFDhpBEIiETExNav349b9+NGTOGDAwMSCQSkampKS1cuLDM9kZHR5OCggLl5OTw0t9/DxARaWtr06RJk3hpaWlpBIBSUlLK3Ma7cnJyCIDM9r5Xbx5do9Q/tOmuv5Bb9q3tSoLJB2QWjVmHKfbe86oO+btR3c61j1XhjuDTp09JIBCU+4FSyt/fn86cOUN3796l06dPk6WlJY0aNYrL//HHH6ljx44UFxdHKSkpdPDgQTp37hwR/e+Dun79+nTixAmKi4ujrl27kpmZGRUUFBDR2y/lZcuW0bVr1yglJYVWr15NioqKdOXKFSIievDgASkpKdGKFSsoNTWV4uLiKCAggOuMbtiwgQwNDWnfvn109+5d2rdvH2lra9PmzZvLbFNpXC1btqSLFy9STEwMSaVSatu2LXXq1IliYmLo/PnzpKOjQ4sXL+bWmzVrFllZWdGxY8coJSWFgoKCSCQSUVhYGBERpaenk0gkovHjx9Pt27dp+/btpK+vX25HMDY2ltatW0dxcXF0584dmj17NqmoqNC///7LHatatWrRr7/+SpmZmZSZmUlERHFxcSSRSMjf35/u3LlD4eHhZG9vT15eXlzdXbp0oYYNG9KlS5coKiqKWrVqRaqqqmV2BIuLi0lLS4tGjBjxwfPi3S/YkpIScnR0pG7dulFkZCTduXOHJk+eTDo6OvT06dMKtTM+Pp4AUHJyMreNGzduEABKTEwkIqLTp0/Ttm3b6NatW3Tr1i36+eefSV9fn168eMHFb2lpSR07dqTY2Fi6cOECNW/enPcl+OrVKzI3N6ehQ4dSXFwc3bp1i3766SeytLSk/Px8uW0dN24cSSQSufn3798nAOTv70/5+fmUmJhIAGjfvn2UmZkpd52QkBACQJcuXSp3Hy9YsICsra15aRMnTuQ6K48fPyYAFBQURJmZmfT48WOufqFQSAEBAZSYmEh+fn6kqKhIZ86cIaK3P6w0NDToyJEj9O+//1JERARt2LCB28a7x3bZsmWkra1Nly9fJqK370ddXV2aOXMmJSQkUExMDHXs2JHatWvHrf9+Z+enn36iVq1a0fnz5yk5OZmWLVtGIpGI7ty5Q/n5+bRy5UrS0NDgzu/S93ZgYCAdOXKEUlJS6PLly9SyZUvq0qULV+/HdgRtbGyod+/eXKwSiYSmTp1Kt2/fpoSEBLp37x6pqanR6NGjKSEhgUJDQ0lXV5froD5//pwcHBxo+PDhXMxFRUUftW9MTU1JW1ubAgICKCkpiRYtWkQKCgqUkJDA7X8TExM6f/48paWl0YULF2R+KL/L39+frKysZNLffQ8UFRXR7t27CQBNnz5dpmzNmjXL/Px88+YN5eTkcEtGRka1+nJ+cn4mrxN4119Id9caULM5/nI7g9MP3azqkL8brCNYMRXuCEZERBAACgkJqfRG9uzZQzo6OtxrGxsbmjdvntyypR/UwcHBXNrTp09JVVWVdu/eXeY2XF1dafLkyUT09hcuAEpLS5Nb1sTEROaD8bfffiMHB4cy6y+N69SpU1zaokWLZH4Jjxw5klxcXIiIKDc3l1RUVGS+vH/++WcaMGAAERHNnDmT6tevTyUlJVz+9OnTy+0IymNtbU1r1qzhXsv7Mhs0aJBMh+3ChQukoKBAeXl5XIektENN9Ha0rLTTIs+jR48IAK1YsaLc+N6P6fTp06ShoUFv3rzhlalXrx5vdOND7bS1taVff/2Vez1z5kxq1qxZmesXFRWRuro6HTx4kIiIjh49SkpKSlxnmYhkRgQDAwPJ0tKSd4zy8/NJVVWVjh8/Lnc7nTt3Jjs7uzLj0NTU5H4cZWdnlzkSWGrJkiUEgJ49e1ZmGaK3nS5FRUWKiIggIqKCggLS09PjfUnLG+lp1aoVDR8+nJfWt29fcnV1JaK3o/wWFhbcj7H3lR7bGTNmkKGhIW8Ef+7cudSpUyde+dLOQGmH/d3OTnJyMgkEApkR5g4dOtDMmTOJqGLvCaK3I8IAuI5iZTuChYWF3Aj92rVruVgbNWrEW2fWrFky50hAQABJJBIqLi6WaWOpyu6b0vgGDhzIvS4pKaGaNWvSn3/+SUREPj4+1L59e14s5Rk/fjy1b99eJh0AqaiokFgsJkVFRQJA2tralJSUJFPW3t6+zM90X19fmdHQ6vTlnHVqlExHMMVfSAO3jCfzvwJlFq9D8j9TmMpjHcGKqfA9gvT/N/wLBIIPlj179iw6duwIY2NjqKurY/DgwXj69ClevXoFABg3bhx+//13ODo6wtfXF3FxcTJ1ODg4cP/X1taGpaUlEhISAADFxcVYsGABbG1toaOjA4lEghMnTiA9PR0AYGdnhw4dOsDGxgZ9+/bFxo0bkZ2dDQDIyspCRkYGfv75Z0gkEm75/fffkZKSAgDo0qULl96gQQNeXLa2ttz/9fX1oaamhrp16/LSHj9+DAC4desW3rx5g44dO/K2tXXrVm5bCQkJaNmyJW+/vtt2eV69eoVp06bB2toaNWrUgEQiwe3bt7n2lyU6OhqbN2/mxeLi4oKSkhKkpqYiISEBSkpKaNq0KbeOlZVVuTflV+a8eD+W3Nxc7viVLqmpqdy+qUg7PTw8sGPHDi6WXbt2wcPDg8t//PgxvL29YWFhAU1NTWhqaiI3N5erIzExESYmJjAwMODWad68uUysycnJUFdX5+LU1tbGmzdvuFgri4gqtc+oghNuDA0N8eOPP2LTpk0A3t5X+ObNG/Tt27fc9RISEngTBQDA0dGRe8/17dsXeXl5qFu3LoYPH47Q0FAUFRXxyvv5+WH9+vW4ePEibGxsuPTo6GicPXuWd5ytrKwAQO7+i4mJARHBwsKCt865c+c+uL+vXbsGNzc3mJqaQl1dHU5OTgDwwffG+6ZPnw6JRAJVVVWMGTMGU6dOxciRI7n8d98jwNv95+DgwDumjo6OyM3Nxb1798rcTmX3Tal3P4cEAgEMDAy4zx0vLy/ExsbC0tIS48aNw4kTJ8pta15eHlRUVOTm+fv7IzY2FidPnkSjRo3g7+8PqVQqU05VVRWvX8uf9Tpz5kzk5ORwS0ZGRrnxfG8EyjVk0vap/4B9pIIUhVsyi4F+4dcPkqnWKvwcQXNzcwgEAiQkJKBHjx5llvv333/h6uoKb29v/Pbbb9DW1sbFixfx888/o7Dw7Qk+bNgwuLi44PDhwzhx4gQWLVoEPz8/+Pj4lBtD6Yesn58f/P39sXLlStjY2EAsFmPChAncTduKioo4efIkLl26hBMnTmDNmjWYPXs2IiIioKamBgDYuHEjWrRowatfUVERAPDXX38hL+/t7C2hUMgr8+5rgUAgky8QCLhHKZT+e/jwYRgbG/PKiUQiABX/gn/X1KlTcfz4cSxfvhxSqRSqqqro06fPB29aLykpwciRIzFu3DiZvNq1ayMxMZFrQ0Xp6elBS0uL6zBUVElJCQwNDREWFiaTV9rxrEg7f/rpJ8yYMQMxMTHIy8tDRkYG3N3duXwvLy9kZWVh5cqVMDU1hUgkgoODA1dHRTpkJSUlaNKkCdfhfL/98lhYWODixYsoKCiAsrIyL+/Bgwd48eIFzM3Ny93u+/UBwO3btz/4Q2HYsGEYNGgQ/P39ERQUhP79+3PnfXne3w/v7hsTExMkJibi5MmTOHXqFEaPHo1ly5bh3Llz3HugdevWOHz4MPbs2YMZM2Zw9ZSUlKBbt25YsmSJzDYNDQ1l0kpKSqCoqIjo6GjuPVlKIpGUGf+rV6/QqVMndOrUCdu3b4eenh7S09Ph4uJS6QkdU6dOhZeXF9TU1GBoaCizb8RiMe+1vPOoIj+SKrtvSpX3udO4cWOkpqbi6NGjOHXqFPr16wdnZ2f8/fffcuvS1dVFfHy83DwDAwNIpVJIpVLs3bsX9vb2aNq0KaytrXnlnj17VuZ7QSQScZ931ZHEsh9exq0HFb4EAORDEdsljsh/LTtDWF0ognudRl85Qqa6q3BHUFtbGy4uLggICMC4ceNkPgifP3+OGjVqICoqCkVFRfDz84OCwtsBxz179sjUZ2JiAm9vb3h7e2PmzJnYuHEjryN45coV1K5dGwCQnZ2NO3fucL+UL1y4ADc3NwwcOBDA2w/TpKQk1K9fn1tfIBDA0dERjo6O+OWXX2BqaorQ0FBMmjQJxsbGuHv3Lm/k6F3vd9o+lrW1NUQiEdLT09G2bdsyy7z/KI8rV66UW++FCxfg5eWFnj17Ang76zQtLY1XRllZGcXFxby0xo0b4+bNm3J/0QNA/fr1UVRUhKioKG5ULDExsdxnrikoKKB///7Ytm0bfH19YWRkxMt/9eoVRCIRlJT4p1rjxo3x8OFDKCkpwczM7KPbWatWLbRp0wY7duxAXl4enJ2doa+vz6tj7dq1cHV1BQBkZGTgyZMnXL6VlRXS09Px6NEjbr3IyEiZWHfv3o2aNWtCQ0OjzH3xLnd3d6xevRrr16+X+YGzfPlyCIVC9O7du0J1AUCnTp2gq6uLpUuXIjQ0VCa/9P0HAK6urhCLxfjzzz9x9OhRnD9/nldWKBTKnBv169fHxYsXMXjwYC7t0qVLvPeUqqoqunfvju7du2PMmDGwsrJCfHw8GjduDODtSKqPjw9cXFygqKiIqVOnAni7//bt2wczMzOZ80Aee3t7FBcX4/Hjx2jdurXcMvLO79u3b+PJkydYvHgxTExMAABRUVEf3J48urq6Zb5P5LG2tsa+fft4HcJLly5BXV2d+zwp6z1ZmX1TURoaGujfvz/69++PPn36oHPnznj27Bm0tbVlytrb2+PPP//84I8iqVSK3r17Y+bMmfjnn/89AqV0ZNze3v6zxf89EdVsBJFhC7xJPwUAWKnTGzfkdAIBwEHPFHY6n+f7h2EqqlKPj1m7di2Ki4vRvHlz7Nu3D0lJSUhISMDq1au5UYp69eqhqKgIa9aswd27d7Ft2zasW7eOV8+ECRNw/PhxpKamIiYmBmfOnOF94QBvH99w+vRp3LhxA15eXtDV1eVGIqVSKTfil5CQgJEjR+Lhw4fcuhEREVi4cCGioqKQnp6OkJAQZGVlcduYN28eFi1ahFWrVuHOnTuIj49HUFAQVqxYUekdWB51dXVMmTIFEydOxJYtW5CSkoJr164hICAAW7ZsAQB4e3sjJSUFkyZNQmJiInbu3CnzrK73SaVShISEIDY2FtevX8dPP/0k80BXMzMznD9/Hvfv3+c6PtOnT8fly5cxZswYxMbGIikpCQcOHOA6KpaWlujcuTOGDx+OiIgIREdHY9iwYVBVVS03noULF8LExAQtWrTA1q1bcevWLSQlJWHTpk1o1KgRcnNzZdZxdnaGg4MDevTogePHjyMtLQ2XLl3CnDlzuC/virQTeHt5ODg4GHv37uV+HLy7r7Zt24aEhARERETAw8OD156OHTuiXr168PT0RFxcHMLDwzF79mwA/xvJ8fDwgK6uLtzc3HDhwgWkpqbi3LlzGD9+fJmX/RwcHDB+/HhMnToVfn5+SElJwe3btzFnzhysWrUKfn5+XGelIsRiMf766y8cPnwY3bt3x6lTp5CWloaoqChMmzYN3t7eXFlFRUV4eXlh5syZkEqlMiOIZmZmOH36NB4+fMjdMjF16lRs3rwZ69atQ1JSElasWIGQkBBMmTIFwNvn9gUGBuLGjRvc+1pVVRWmpqYy7T569Ch+/fVX+Pv7AwDGjBmDZ8+eYcCAAbh69Sru3r2LEydOYOjQoTIdI+Dt6KeHhwcGDx6MkJAQpKamIjIyEkuWLMGRI0e4NuTm5uL06dN48uQJXr9+jdq1a0NZWZn77Dlw4MAXf/5eqdGjRyMjIwM+Pj64ffs2/vnnH/j6+mLSpEncD2IzMzNEREQgLS0NT548QUlJSaX3TUX4+/sjODgYt2/fxp07d7B3714YGBiUeYtHu3bt8OrVK9y8efODdU+ePBkHDx7kdbCvXLnCjbQz8uk6r4NQuz4eCCQ4plRPbhlrTX1scCz/Fg6G+SIqe1PhgwcPaMyYMWRqakrKyspkbGxM3bt3593ovmLFCjI0NCRVVVVycXGhrVu38m7QHjt2LNWrV49EIhHp6enRoEGD6MmTJ0T0v5u5Dx48SA0aNCBlZWVq1qwZ77EiT58+JTc3N5JIJFSzZk2aM2cODR48mNzc3IiI6NatW+Ti4kJ6enokEonIwsKCN8GAiGjHjh3UqFEjUlZWJi0tLWrTpk25E2Hk3WQu74Z1X19f3iSBkpISWrVqFVlaWpJQKCQ9PT1ycXHhZkkTER08eJCkUimJRCJq3bo1bdq0qdzJIqmpqdSuXTtSVVUlExMT+uOPP2RuKL98+TL3+J13D/PVq1epY8eOJJFISCwWk62tLS1YsIDLz8zMpB9//JFEIhHVrl2btm7d+sHHxxC9nRU5Y8YMMjc3J2VlZdLX1ydnZ2cKDQ3lblp/v54XL16Qj48PGRkZkVAoJBMTE/Lw8KD09PQKt5Po7WQLkUhEampqvMcUERHFxMRQ06ZNSSQSkbm5Oe3du1cmjtLHxygrK5OVlRUdPHiQe1TQu/tl8ODBpKurSyKRiOrWrUvDhw//4E3IgYGB1LRpU1JVVSU1NTX64Ycf6MCBAzLx4wOTRUpFRkZSr169uHNbKpXSiBEjZG7gT0lJIQC0dOlSmToOHDhAUqmUlJSUKvz4mNDQUGrRogVpaGiQWCymli1b8iZOvb9Pz507R2KxmFatWkVERHfu3KGePXtSjRo1SFVVlaysrGjChAncufH+cS0oKKBffvmFzMzMSCgUkoGBAfXs2ZM3CcXb25t0dHR4j4/ZuXMnmZmZkUgkIgcHBzpw4AABoGvXrhHRx88afpe8c5Co/MfHEBElJiZSy5YtSVVVlff4mMruG3nx2dnZcftgw4YN1KhRIxKLxaShoUEdOnSgmJiYMttDROTu7k4zZszgpUHOpCIioo4dO/JmYo8YMYJGjhxZbv3vqq438Bfk/Evj988iza2zSGHTZG7R3DaLOh9bT/++KH8iGFN51fVcqywB0bf1Zx/CwsLQrl07ZGdnV+mfVWOqr/DwcPzwww9ITk5GvXryf71/68LDw+Hk5IR79+7xLpUzjDzx8fFwdnbmJkVVVFZWFqysrBAVFYU6depUaJ0XL15AU1MTOTk5Fb7V4nty/el9BKfGIjv/NbREanCv04hdDv5Cqvu5VlGf76YUhvmPCg0NhUQigbm5OZKTkzF+/Hg4Ojr+JzuB+fn5yMjIwNy5c9GvXz/WCWQqxMbGBkuXLkVaWhpvxveHpKamYu3atRXuBDKAnY4x6/gx3xTWEWSqvZcvX2LatGnIyMiArq4unJ2d4efnV9VhfZRdu3bh559/RqNGjbBt27aqDof5D/H09Kz0Os2bN5d53BLDMP8t39ylYYZhGOb7xS7XMV8LO9cqplKzhhmGYRiGYZjvB+sIMgzDMAzDVFPsHkGGYRjmq5NKpdwzFhnmS5D33FlGFusIMgzDMF9dcnIyu2+L+aJK7xFkysd+jjEMwzAMw1RTrCPIMAzDMAxTTbGOIMMwDMMwTDXF7hFkGIZhmK/k+v0c7Lx2Hzl5haihJsSARsawM2b3sTFVh40Ifie8vLzQo0ePqg7jq/iabd2/fz+kUikUFRUxYcKEr7LNivpc+2Hz5s1f/O96f61j5uTk9MHj9Dnam5aWBoFAgNjYWABv/0a6QCDA8+fPP6nez2nQoEFYuHDhF91GfHw8atWqhVevXn3R7XwPCl+kI2pHT7Rfew7LwlKwISIdS8+moM3acHTecAXp2a+rOkSmmmIdwU/g5eUFgUAAb29vmbzRo0dDIBDAy8vr6wf2nVu1ahU2b978SXVs2bIFzZs3h1gshrq6Otq0aYNDhw7JlBs5ciT69OmDjIwM/Pbbb+XWuXDhQigqKmLx4sUVikEgEHCLuro6mjZtipCQkI9qz6fo378/7ty589W3+67SjpS85eHDhxWuJyQkhHeczMzMsHLlyi8QMV+rVq2QmZn5zcxQjIuLw+HDh+Hj48NLT05OxtChQ1G7dm2IRCIYGxujQ4cO2LFjB4qKinhlDx06BCcnJ6irq0NNTQ3NmjWTed/Z2NigefPm8Pf3/9JN+k8rfJGOR/u7QSfrCKbp/sPLe5lfjBN3suD6VwQysvOqKEKmOmMdwU9kYmKC4OBg5OX97w385s0b7Nq1C7Vr1/6kuolI5sOZATQ1NT9pRGfKlCkYOXIk+vXrh+vXr+Pq1ato3bo13Nzc8Mcff3DlcnNz8fjxY7i4uMDIyAjq6url1hsUFIRp06Zh06ZNFY4lKCgImZmZiIyMhJ2dHfr27YvLly9/dNsqq7CwEKqqqqhZs+ZX22Z5EhMTkZmZyVsqE5u2tvYHj9OXoKysDAMDAwgEgq++bXn++OMP9O3bl7cvrl69isaNGyMhIQEBAQG4ceMGDh06hKFDh2LdunW4efMmV3bNmjVwc3NDq1atEBERgbi4OLi7u8Pb2xtTpkzhbWvIkCH4888/UVxc/NXa91/z5JQ3Cp8lACD0FF+AlsILmTK3HuVi+N7rXz84ptpjHcFP1LhxY9SuXZs3khMSEgITExPY29vzyubn52PcuHGoWbMmVFRU8MMPPyAyMpLLLx0VOX78OJo2bQqRSIQLFy5g3rx5aNSoEdavXw8TExOoqamhb9++ci9DLV++HIaGhtDR0cGYMWNQWFjI5WVnZ2Pw4MHQ0tKCmpoaunTpgqSkJN76Gzdu5LbRs2dPrFixQqbTdfDgQTRp0gQqKiqoW7cu5s+fz+uwCgQC/PXXX+jZsyfU1NRgbm6OAwcO8Oq4desWXF1dIZFIoK+vj0GDBuHJkydc/t9//w0bGxuoqqpCR0cHzs7O3OWn9y8zllf2fVeuXIGfnx+WLVuGKVOmQCqVon79+liwYAEmTJiASZMmISMjA2FhYdyXaPv27SEQCBAWFia3TgA4d+4c8vLy8Ouvv+LVq1c4f/58mWXfVaNGDRgYGMDKygrr1q2DiooKt6/i4+PRvn17rl0jRoxAbm5umXUdO3YMP/zwA2rUqAEdHR107doVKSkpXH7p5cw9e/bAyckJKioq2L59u8ylUjMzM7kjc6Xu37+P/v37Q0tLCzo6OnBzc0NaWhqXX1xcjEmTJnFxTJs2DRX9k+Y1a9aEgYEBbyl96HDpcZ8/fz5q1qwJDQ0NjBw5EgUFBdz6714adnJywr///ouJEyfKtAEAjh8/jvr160MikaBz587IzMzk5QcFBaF+/fpQUVGBlZUV1q5dW2bc718aLn3PvmvlypUwMzPjXpe2Z+HChdDX10eNGjW499LUqVOhra2NWrVqVeqHBfD2Ibp79+5F9+7duTQigpeXFywsLBAeHo5u3brB3Nwc9vb28PDwwIULF2BrawsAyMjIwOTJkzFhwgQsXLgQ1tbWkEqlmDx5MpYtWwY/Pz9ERERwdbu4uODp06c4d+5cpeKsLvIfxyI/83/7S/g6DRvrBMste/nfZ7h+P+drhcYwAFhH8LMYMmQIgoKCuNebNm3C0KFDZcpNmzYN+/btw5YtWxATEwOpVAoXFxc8e/ZMptyiRYuQkJDAfTgnJydjz549OHjwII4dO4bY2FiMGTOGt97Zs2eRkpKCs2fPYsuWLdi8eTPvUo6XlxeioqJw4MABXL58GUQEV1dXrrMYHh4Ob29vjB8/HrGxsejYsSMWLFjA28bx48cxcOBAjBs3Drdu3cL69euxefNmmXLz589Hv379EBcXB1dXV3h4eHDtzMzMRNu2bdGoUSNERUXh2LFjePToEfr168flDxgwAEOHDkVCQgLCwsLQq1cvuZ2JypQFgF27dkEikWDkyJEyeZMnT0ZhYSH27duHVq1aITExEQCwb98+ZGZmolWrVnLrBIDAwEAMGDAAQqEQAwYMQGBgYJllyyIUCqGkpITCwkK8fv0anTt3hpaWFiIjI7F3716cOnUKY8eOLXP9V69eYdKkSYiMjMTp06ehoKCAnj17yjxdf/r06Rg3bhwSEhLg4uIiU09kZCQ3Gnfv3j20bNkSrVu3BgC8fv0a7dq1g0Qiwfnz53Hx4kWuI1XaIfPz88OmTZsQGBiIixcv4tmzZwgNDa30/pDn9OnTSEhIwNmzZ7Fr1y6EhoZi/vz5csuGhISgVq1a+PXXX7n2lHr9+jWWL1+Obdu24fz580hPT+eNdG3cuBGzZ8/GggULkJCQgIULF2Lu3LnYsmXLZ2lHqTNnzuDBgwc4f/48VqxYgXnz5qFr167Q0tJCREQEvL294e3tjYyMjArXGRcXh+fPn6Np06ZcWmxsLBISEjBlypQy/5pHaUf577//RmFhoczIH/D2VgmJRIJdu3ZxacrKyrCzs8OFCxfk1pufn48XL17wluokN3EPqPAlL80eUWiqmiJT9mV+MXbF3v9aoTHMW8R8NE9PT3Jzc6OsrCwSiUSUmppKaWlppKKiQllZWeTm5kaenp5ERJSbm0tCoZB27NjBrV9QUEBGRka0dOlSIiI6e/YsAaD9+/fztuPr60uKioqUkZHBpR09epQUFBQoMzOTi8XU1JSKioq4Mn379qX+/fsTEdGdO3cIAIWHh3P5T548IVVVVdqzZw8REfXv359+/PFH3rY9PDxIU1OTe926dWtauHAhr8y2bdvI0NCQew2A5syZw73Ozc0lgUBAR48eJSKiuXPnUqdOnXh1ZGRkEABKTEyk6OhoAkBpaWky+7y0rW5ubkREHyz7vs6dO5OdnV2Z+ZqamjRq1CgiIsrOziYAdPbs2XLrzMnJITU1NYqNjSUiomvXrpGamhrl5OSUux4ACg0NJSKiN2/e0G+//UYA6MiRI7RhwwbS0tKi3Nxcrvzhw4dJQUGBHj58SET8/SDP48ePCQDFx8cTEVFqaioBoJUrV/LKBQUF8Y7xu8aNG0empqb0+PFjIiIKDAwkS0tLKikp4crk5+eTqqoqHT9+nIiIDA0NafHixVx+YWEh1apVq9xYS899sVjMWywsLLgynp6epK2tTa9eveLS/vzzT5JIJFRcXExERG3btqXx48dz+aampuTv7y/TXgCUnJzMpQUEBJC+vj732sTEhHbu3Mlb77fffiMHBwci+t++vHbtGi/+7OxsInr7nn3/PPP39ydTU1Nee0xNTbnYiYgsLS2pdevW3OuioiISi8W0a9euMvacrNDQUFJUVOQdo+DgYAJAMTExXNqjR494+zogIICIiLy9vcs8H4iIbG1tqUuXLry0nj17kpeXl9zyvr6+BEBm+dD743uRdWoU3fUX8pYUfyEN3DKezP8KlFm8Dh2v6pC/Gzk5OdXqXPtY7PExn4Guri5+/PFHbNmyBUSEH3/8Ebq6urwyKSkpKCwshKOjI5cmFArRvHlzJCQk8Mq++0u+VO3atVGrVi3utYODA0pKSpCYmAgDAwMAQIMGDaCoqMiVMTQ0RHx8PAAgISEBSkpKaNGiBZevo6MDS0tLbvuJiYno2bMnb7vNmzfnTaKIjo5GZGQkbwSwuLgYb968wevXr6GmpgYA3EgmAG5CxuPHj7k6zp49C4lEItPOlJQUdOrUCR06dICNjQ1cXFzQqVMn9OnTB1paWjLl7ezsKly2Ioio0vd57dy5E3Xr1oWdnR0AoFGjRqhbty6Cg4MxYsSIctcdMGAAFBUVkZeXB01NTSxfvhxdunTBpEmTYGdnB7FYzJV1dHTkjrm+vr5MXSkpKZg7dy6uXLmCJ0+ecCOB6enpaNiwIVdO3vklz4YNGxAYGIjw8HDo6ekBeHvskpOTZe7De/PmDVJSUpCTk4PMzEw4ODhweUpKSmjatGmFLg9fuHCBV7eSEv8jys7OjjvHgLfvg9zcXGRkZMDU1LRC7QIANTU11KtXj3ttaGjInZ9ZWVnIyMjAzz//jOHDh3NlioqKPvtkkAYNGvBG6PT19XnHSlFRETo6OlxsFZGXlweRSCT3PH43TUdHh5v17OTkxLvEXh557xFVVVW8fi1/1uvMmTMxadIk7vWLFy9gYmJSoW19DwTKNWTS9qn/gH2kgnyFWzJ5veW8txnmS2Idwc9k6NCh3GW7gIAAmfzSL8H3P0Dlfai+++VfltJ13l1XKBTKlCntDJT1Jfzu9uXF8v56JSUlmD9/Pnr16iVTl4qKSoViKSkpQbdu3bBkyRKZOgwNDaGoqIiTJ0/i0qVLOHHiBNasWYPZs2cjIiICderU4ZWvTFkAsLCwwMWLF1FQUABlZWVe3oMHD/DixQuYm5vLrFeeTZs24ebNm7xOS0lJCQIDAz/YEfT394ezszM0NDR4kyLK65CWld6tWzeYmJhg48aNMDIyQklJCRo2bCjzBV+R8yssLAw+Pj7YtWsX18EtbVeTJk2wY8cOmXVKO4ufok6dOh81EaiynXd552fpuV56nm7cuJH3wwkA74dWeRQUFGTeO+/er1teHOW9dypCV1cXr1+/5p3jpef07du3uXsXFRUVIZVKAfA73BYWFsjJycGDBw9gZGTEq7ugoAB3795F+/bteenPnj3jdazfJRKJIBKJKhz/90Zi2Q8v49Zzl4fzoYjtEkfkv5adIawuFMG9TqOvHCFT3bF7BD+T0nukCgoK5N53JZVKoaysjIsXL3JphYWFiIqKQv369T9Yf3p6Oh48eMC9vnz5MhQUFGBhYVGh+KytrVFUVMS7yfvp06e4c+cOt30rKytcvXqVt15UVBTvdePGjZGYmAipVCqzlHXv0fsaN26MmzdvwszMTKaO0k6KQCCAo6Mj5s+fj2vXrkFZWbnM+8wqU9bd3R25ublYv369TN7y5cshFArRu3fvCrUDeDuhIyoqCmFhYYiNjeWW8+fPIzIyEjdu3Ch3fQMDA0ilUpmZsdbW1oiNjeVNegkPDy/zmD99+hQJCQmYM2cOOnTogPr16yM7O7vC7XhXcnIyevfujVmzZsl0+Bs3boykpCTUrFlT5thpampCU1MThoaGuHLlCrdOUVERoqOjPyqW912/fp03Q//KlSuQSCS80fJ3KSsrV3o2q76+PoyNjXH37l2ZNsr7cSGPnp4eHj58yOsMlo6+fWmlHb1bt/432mRvbw8rKyssX778g53K3r17Q0lJCX5+fjJ569atw6tXrzBgwABe+o0bN2QmxzFviWo2gsjwfz8oVur0xg05nUAAcNAzhZ2O8dcKjWEAsBHBz0ZRUZG7xCpv1EAsFmPUqFHcbMDatWtj6dKleP36NX7++ecP1q+iogJPT08sX74cL168wLhx49CvXz/usvCHmJubw83NDcOHD8f69euhrq6OGTNmwNjYGG5ubgAAHx8ftGnTBitWrEC3bt1w5swZHD16lDfa8ssvv6Br164wMTFB3759oaCggLi4OMTHx+P333+vUCxjxozBxo0bMWDAAEydOhW6urpITk5GcHAwNm7ciKioKJw+fRqdOnVCzZo1ERERgaysLLkd5oiIiAqXBd5eShw/fjymTp2KgoIC9OjRA4WFhdi+fTtWrVqFlStXVuqyVWBgIJo3b442bdrI3VZgYOBHPWPNw8MDvr6+8PT0xLx585CVlQUfHx8MGjRI7mXh0hm8GzZsgKGhIdLT0zFjxoxKbzcvLw/dunVDo0aNMGLECN4z/AwMDODh4YFly5bBzc0Nv/76K2rVqoX09HSEhIRg6tSpqFWrFsaPH4/FixfD3Nwc9evXx4oVKyr8oOXHjx/jzZs3vDQdHR1ulKygoAA///wz5syZg3///Re+vr4YO3ZsmT9CzMzMcP78ebi7u0MkEsncslGWefPmYdy4cdDQ0ECXLl2Qn5+PqKgoZGdn8y5zlsXJyQlZWVlYunQp+vTpg2PHjuHo0aPQ0NCo0PY/hZ6eHho3boyLFy9ynUKBQICgoCB07NgRjo6OmDlzJurXr4/CwkKcP38eWVlZ3OdW6WfTlClToKKigkGDBkEoFOKff/7BrFmzMHnyZN5IaVpaGu7fvw9nZ+cv3rb/Kl3ndXi0vxv+zc7AMaV6QJHsUw2sNfWxwbFvFUTHVHdsRPAz0tDQKPeDfvHixejduzcGDRqExo0bIzk5GcePH6/Q/WxSqRS9evWCq6srOnXqhIYNG5b7OAt5goKC0KRJE3Tt2hUODg4gIhw5coT7knV0dMS6deuwYsUK2NnZ4dixY5g4cSLvkq+LiwsOHTqEkydPolmzZmjZsiVWrFhRqfuzjIyMEB4ejuLiYri4uKBhw4YYP348NDU1oaCgAA0NDZw/fx6urq6wsLDAnDlz4Ofnhy5dusjUVZmypVauXIm1a9ciODgYNjY2aNKkCc6dO4f9+/fLPIC3PAUFBdi+fXuZI4i9e/fG9u3bK3zv1bvU1NRw/PhxPHv2DM2aNUOfPn3QoUMH3nMO36WgoIDg4GBER0ejYcOGmDhxIpYtW1bp7T569Ai3b9/GmTNnYGRkBENDQ24pjev8+fOoXbs2evXqhfr162Po0KHIy8vjzv3Jkydj8ODB8PLygoODA9TV1WXuPS2LpaUlb5uGhoa80cQOHTrA3Nwcbdq0Qb9+/dCtWzfMmzevzPp+/fVXpKWloV69epW6dD1s2DD89ddf2Lx5M2xsbNC2bVts3ry5wiOC9evXx9q1axEQEAA7OztcvXpV7izcL2XEiBEyl+9btmyJ6OhoWFpaYsyYMbC2tkarVq2wa9cu+Pv7Y9SoUVzZiRMnIjQ0FBcuXEDTpk3RsGFD7Ny5E3/++SeWL1/Oq3fXrl3o1KlTpT4DqhuhRm3o9ziIvWaj8Py9Z8OqC0XoZGSBwx2HwUTycfc2M8ynEFBF7uBmqtS8efOwf//+r3Zp6V3Dhw/H7du3y3w0BMN8LV5eXnj+/Dn2799f1aF88968eQNLS0sEBwfzJu58bvn5+TA3N8euXbt4E+HK8+LFC2hqaiInJ+erjJB+a64/vY/g1Fhk57+GlkgN7nUascvBX0h1P9cqil0aZniWL1+Ojh07QiwW4+jRo9iyZUulRx4ZhqlaKioq2Lp1K+8h7V/Cv//+i9mzZ1e4E8gAdjrGrOPHfFNYR5DhuXr1KpYuXYqXL1+ibt26WL16NYYNG1bVYTEMU0lt27b94tuwsLCo8IQ1hmG+TezSMMMwDPPVsMt1zNfCzrWKYZNFGIZhGIZhqil2aZhhGIb5akovQlW3vznMfH2l5xi78Fk+1hFkGIZhvpqXL9/+hY3q9GfmmKr18uXLz/7nIb8n7B5BhmEY5qspKSnBgwcPoK6uLvOnAUv/DnFGRsZ3c08Xa1PVISK8fPkSRkZGFf7LV9URGxFkGIZhvhoFBYUy/yRgqQ89nP+/iLWparCRwA9jXWSGYRiGYZhqinUEGYZhGIZhqinWEWQYhmG+CSKRCL6+vhCJRFUdymfD2sR869hkEYZhGIZhmGqKjQgyDMMwDMNUU6wjyDAMwzAMU02xjiDDMAzDMEw1xTqCDMMwDMMw1RTrCDIMwzDfhLVr16JOnTpQUVFBkyZNcOHChaoOSa5FixahWbNmUFdXR82aNdGjRw8kJibyynh5eUEgEPCWli1b8srk5+fDx8cHurq6EIvF6N69O+7du/c1mwIAmDdvnkysBgYGXD4RYd68eTAyMoKqqiqcnJxw8+ZNXh3fSluYymMdQYZhGKbK7d69GxMmTMDs2bNx7do1tG7dGl26dEF6enpVhybj3LlzGDNmDK5cuYKTJ0+iqKgInTp1wqtXr3jlOnfujMzMTG45cuQIL3/ChAkIDQ1FcHAwLl68iNzcXHTt2hXFxcVfszkAgAYNGvBijY+P5/KWLl2KFStW4I8//kBkZCQMDAzQsWNH7u9Gf2ttYSqJGIZhGKaKNW/enLy9vXlpVlZWNGPGjCqKqOIeP35MAOjcuXNcmqenJ7m5uZW5zvPnz0koFFJwcDCXdv/+fVJQUKBjx459yXBl+Pr6kp2dndy8kpISMjAwoMWLF3Npb968IU1NTVq3bh0RfVttYSqPjQgyDMMwVaqgoADR0dHo1KkTL71Tp064dOlSFUVVcTk5OQAAbW1tXnpYWBhq1qwJCwsLDB8+HI8fP+byoqOjUVhYyGuzkZERGjZsWCVtTkpKgpGREerUqQN3d3fcvXsXAJCamoqHDx/y4hSJRGjbti0X57fWFqZyWEeQYRiGqVJPnjxBcXEx9PX1een6+vp4+PBhFUVVMUSESZMm4YcffkDDhg259C5dumDHjh04c+YM/Pz8EBkZifbt2yM/Px8A8PDhQygrK0NLS4tXX1W0uUWLFti6dSuOHz+OjRs34uHDh2jVqhWePn3KxVLesfmW2sJUnlJVB8AwDMMwACAQCHiviUgm7VszduxYxMXF4eLFi7z0/v37c/9v2LAhmjZtClNTUxw+fBi9evUqs76qaHOXLl24/9vY2MDBwQH16tXDli1buAkuH3Ns/gvHj2EjggzDMEwV09XVhaKioszo0ePHj2VGor4lPj4+OHDgAM6ePYtatWqVW9bQ0BCmpqZISkoCABgYGKCgoADZ2dm8ct9Cm8ViMWxsbJCUlMTNHi7v2HzLbWE+jHUEGYZhmCqlrKyMJk2a4OTJk7z0kydPolWrVlUUVdmICGPHjkVISAjOnDmDOnXqfHCdp0+fIiMjA4aGhgCAJk2aQCgU8tqcmZmJGzduVHmb8/PzkZCQAENDQ9SpUwcGBga8OAsKCnDu3Dkuzm+5LUwFVOVMFYZhGIYhIgoODiahUEiBgYF069YtmjBhAonFYkpLS6vq0GSMGjWKNDU1KSwsjDIzM7nl9evXRET08uVLmjx5Ml26dIlSU1Pp7Nmz5ODgQMbGxvTixQuuHm9vb6pVqxadOnWKYmJiqH379mRnZ0dFRUVftT2TJ0+msLAwunv3Ll25coW6du1K6urq3L5fvHgxaWpqUkhICMXHx9OAAQPI0NDwm2wLU3msI8gwDMN8EwICAsjU1JSUlZWpcePGvMexfEsAyF2CgoKIiOj169fUqVMn0tPTI6FQSLVr1yZPT09KT0/n1ZOXl0djx44lbW1tUlVVpa5du8qU+Rr69+9PhoaGJBQKycjIiHr16kU3b97k8ktKSsjX15cMDAxIJBJRmzZtKD4+nlfHt9IWpvIERERVOSLJMAzDMAzDVA12jyDDMAzDMEw1xTqCDMMwDMMw1RTrCDIMwzAMw1RTrCPIMAzDMAxTTbGOIMMwDMMwTDXFOoIMwzAMwzDVFOsIMgzDMAzDVFOsI8gwDMNUyrx58yAQCOQuv//++2fbjpmZGcaOHVvh8mlpaRAIBPj777/LLbd582ZezDVq1EDTpk2xbdu2Cm/r1atXWLBgAezs7KCmpgY1NTU0adIEAQEByMvLq3A9n0ogEGD58uXllqnofvmcoqKiIBAIEBYWVm65jIwMDB06FHXq1IGKigoMDQ3h7OyM7du3f51AGShVdQAMwzDMf4+qqirOnDkjk25iYvLZthEaGgotLa3PVt/7jh07Bk1NTTx9+hRr1qzB4MGDIRQK4e7uXu56T58+RYcOHXD37l1MmDABrVu3hoKCAiIiIrBw4UI8efIEvr6+XyzuyjI0NMTly5dhYWFR1aHwZGdno0WLFtDW1sa8efNgamqKe/fu4cyZMzh27BgGDhxY1SFWC6wjyDAMw1SagoICWrZs+UXqzsvLg6qqKuzt7b9I/aWaNGkCXV1dAEC7du1gYmKCoKCgD3YEx4wZgzt37uDy5cuws7Pj0jt06AAfHx9ER0d/0bgrSyQSfbFj9Sn+/vtvZGZm4sqVK6hduzaXPnDgQJSUlHyVGN68eQMVFZWvsq1vFbs0zDAMw3wRAoEAS5cuha+vL/T19aGrq4shQ4bg1atXXJnSy7SXL19Gx44dIRaLMWXKFADyLw1fvnwZnTp1goaGBtTV1dGiRQucPHmSV+bNmzcYO3YstLS0YGhoiClTpqCoqKjcWNXU1CCVSpGenl5uufT0dOzduxfe3t68TmApdXV1ODk58cr37dsXNWrUgJqaGtq3b4+oqCjeOqXt9PPzQ61atSCRSDB48GC8efMGsbGxcHR0hFgsRrNmzRAfHy+zzaKiIkybNg16enpQV1eHl5cXXr58yeXLuzRcus0//vgDpqam0NTURI8ePZCVlcWr+/nz5xg9ejQMDQ0hEonQpEkTnDhxQiaG33//HQYGBpBIJOjVqxceP35c7n4srVtBQQE1a9aUyVNQ4HdP7t+/j8GDB0NfXx+qqqqwsrLCqlWruPySkhIsXLgQderUgUgkgrm5OVauXMmrY968eZBIJLh69SocHBygoqKCNWvWAAASEhLg5uYGTU1NiMVi/Pjjj0hJSflgG74HbESQYRiG+SjyOleKiooQCATc6z/++AOtW7fGli1bkJiYiGnTpkFfXx+LFy/mrefh4YERI0Zg1qxZUFVVlbu98PBwtG/fHi1btsRff/2FGjVqICoqSqbzNnv2bLi5uWHPnj0IDw/H/PnzIZVK4e3tXWZbSkpKcO/evQ+OQp4/fx4lJSVwdXUttxwAvHz5Em3btgURISAgABKJBEuXLoWTkxOioqJgZWXFlf3nn39ga2uLDRs24O7du5g0aRJEIhGuXLmCSZMmQV9fH9OnT0ffvn1x69YtXkdpzZo1aNy4MbZs2YLU1FTMmDEDb968QXBwcLnxHThwAElJSQgICMCTJ08wYcIE+Pj4cOsVFBSgY8eOePToERYsWABjY2Ns374dP/74I2JiYmBjYwPg7TGeO3cupkyZAmdnZ5w4cQIjRoz44P5p0qQJSkpK4OHhgSlTpqBZs2ZQUpLtljx9+hQODg4AgAULFqBu3bpISkriddSmTp2KlStXYtasWWjdujVOnjyJiRMn4uXLl5g7dy5XrqCgAB4eHpg4cSIWLVoELS0t3L17F61atULDhg2xefNmKCgoYMGCBejQoQMSExMhEok+2Jb/NGIYhmGYSvD19SUAcpezZ89y5QBQs2bNeOt6eHhQvXr1uNdBQUEEgJYuXSqzHVNTUxozZgz3ulWrVmRtbU1FRUVy40pNTSUA1LdvX166o6MjdejQQWabDx8+pMLCQnr48CFNnjyZRCIRhYeHl9v2xYsXEwC6fft2ueWIiFatWkUCgYBu3LjBpb18+ZK0tbXJ09OT104TExPKz8/n0nr37k0A6OjRo1zawYMHCQDFxsZyaQCoTp06vH3y119/kUAgoISEBN5+2bt3L2+btWrVojdv3nBps2fPJqFQSMXFxUREtGnTJlJSUqKbN2/y2tW8eXNuHxcVFZGRkRENGjSIV2bAgAEy54M8U6dOJQUFBQJAqqqq1LFjR9qyZQuVlJRwZWbNmkUikYhSU1Pl1pGVlUVCoZCmTp3KSx8xYgSJxWJ6+fIlEf3vvN2zZw+v3ODBg6lOnTqUl5fHpT1+/JjEYjEFBASUG//3gF0aZhiGYSpNVVUVkZGRMkuTJk145Tp16sR7bW1tjXv37snU96ERttevX+PKlSvw9PSEoqJiuWUruk0DAwMIhUIYGBjAz88Pq1atQqtWrcqtm4gAgDfqWZYLFy6gQYMGaNCgAZcmkUjQrVs3XLhwgVe2TZs2UFZW5l5bWFhAQUEB7du356UBb2favqtbt268fdKrVy8QEa5evVpufG3btuWNdllbW6OwsJC7rHvixAnY2NjAwsICRUVF3NKhQwdERkYCAO7du4cHDx6gZ8+evLr79OlT7rZLLV26FMnJyfD390eXLl1w9epVeHp6YvDgwVyZ06dPo3379jAzM5NbR0REBAoLC9G/f39e+oABA/Dq1Stcu3aNl/7+uXbixAm4ublBSUmJa6OWlhbs7Oy4dn7P2KVhhmEYptIUFBTQtGnTD5arUaMG77WysjLy8/Nlysm7T+xd2dnZKCkpgZGR0Udt882bNzLlTp06BQ0NDWRkZMDX1xfjxo2Dg4MDbG1ty6y7Vq1aAN7e+/ehWbjZ2dkwMDCQSTcwMMCzZ88+GLOqqiqvc1j6//fb8v6+09LSglAoRGZmZrnxydvmu/U/efIE165dg1AolFm3tONZuo33Y9DX1y932++qU6cOJkyYgAkTJiA3Nxd9+/bF9u3bMXXqVNja2uLp06do2LBhmetnZ2cDgMy+Ln397r5WU1ODWCzmlXvy5AlWrlwpc08hgDJvU/iesI4gwzAMU+U+NMJWo0YNKCgo4MGDB59tm3Z2dtDV1UWzZs3QvHlzWFlZYfr06Th69GiZ67Rt2xYKCgo4evQonJ2dy61fW1sbt2/flkl/+PAhtLW1Pzn+Uu9PzMjOzkZhYSEMDQ0/qV5tbW3Y2toiMDCwzDKl23g/hkePHn3UNiUSCUaPHo1jx44hISEBtra20NHRKfe4l+7LR48ewdjYmEt/+PAhLx+Qf55pa2vjxx9/xOjRo2Xy1NXVP6od/yXs0jDDMAzzzROLxXBwcMDWrVtRXFz82euvVasWJkyYgGPHjslcSnyXiYkJ+vbti3Xr1smdwZubm4tz584BAH744QfcuHEDt27d4vJfvXqFQ4cOoXXr1p8t9oMHD/L2SUhICAQCAZo1a/ZJ9To7O+Pu3bswMjJC06ZNZRbg7X4zNDREaGgob92KPLw6KyuLu9T+rjt37gD434ies7Mzzpw5U+aM7ubNm0MoFGLPnj289N27d0MsFqNx48YfbOeNGzdgb28v00ZLS8sPtuO/jo0IMgzDMJVWUlKCK1euyKTr6emhXr16X2SbixcvRvv27eHs7IzRo0dDS0sLMTEx0NXVxdChQz+5/kmTJmH16tVYsmRJuTNuAwICkJCQgNatW2P8+PFo06YNACA6Ohpr1qzBsGHD0LZtWwwZMgT+/v7o2rUrfv/9d27WcF5eHmbMmPHJ8ZbKz89Hjx49MHr0aKSmpmL69Ono06cP6tev/0n1Dh48GOvXr4eTkxOmTJkCCwsLPH/+HNeuXUNBQQEWLVoERUVFzJgxA+PHj4e+vj46duyI48eP4/z58x+sf8uWLdi2bRsGDRoEe3t7EBHCw8OxZMkSNGnSBD/88AMAYOLEidi6dSvatGmDuXPnom7durh79y7u3LmDJUuWQFdXF+PGjcPy5cshEong6OiI06dPY/369Zg/f77MpeD3zZ8/H82aNYOLiwtGjBgBfX19PHz4EOfOnUPr1q0xYMCAT9qP3zrWEWQYhmEqLS8vj3ukx7s8PT2xefPmL7LNH374AWFhYZgzZw68vLygqKiIBg0afLY/a6etrY1x48Zh8eLFSElJKbNDq6Ojg0uXLsHf3x+7d+/GsmXLAAD169eHj48PxowZA+DtZcVz585h8uTJGDVqFAoLC9GiRQuEhYXxHh3zqXx8fJCVlYWBAweioKAAPXv2xB9//PHJ9YpEIpw5cwbz5s3DggULkJmZCV1dXdjb2/Muo/r4+OD58+cICAjA2rVr4ezsjPXr16Nr167l1u/q6op///0XW7ZswW+//YaSkhLUrl0bU6ZMwaRJk7j7EHV0dBAeHo6ZM2di2rRpeP36NczMzHgxLF26FFpaWti4cSMWLVqE2rVrw8/PDxMnTvxgO6VSKa5evYo5c+Zg9OjRyM3NhaGhIdq0aVPu/aLfCwHJG5dlGIZhGIZhvnvsHkGGYRiGYZhqinUEGYZhGIZhqinWEWQYhmEYhqmmWEeQYRiGYRimmmIdQYZhGIZhmGqKdQQZhmEYhmGqKdYRZBiGYRiGqaZYR5BhGIZhGKaaYh1BhmEYhmGYaop1BBmGYRiGYaop1hFkGIZhGIapplhHkGEYhmEYppr6P8aC3VQZ+4hRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ptm_pose import plots as pose_plots\n", + "\n", + "pose_plots.plot_EnrichR_pies(enrichr_results, top_terms = 10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Protein Interaction Networks" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PhosphoSitePlus regulatory site data found and added\n", + "Combined kinase-substrate data found and added\n", + "PTMInt data found and added\n", + "ELM data found and added\n" + ] + } + ], + "source": [ + "interaction_graph, network_data = analyze.get_interaction_network(spliced_ptms, node_type = 'Gene')\n", + "network_stats = analyze.get_interaction_stats(interaction_graph)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Modified GeneInteracting GeneResidueTypeSourcedPSIRegulation Change
0ADAM15HCKY735;Y715REGULATESPSP/RegPhos0.181;-0.052+;-
1ADAM15LCKY715REGULATESPSP/RegPhos0.181;-0.052+;-
2ADAM15SRCY735;Y715REGULATESPSP/RegPhos0.181;-0.052+;-
3BCAR1SRCY267;Y287REGULATESPSP/RegPhos-0.07-
4BIN1MAPTT348INDUCESPhosphoSitePlus;PTMInt-0.112-
\n", + "
" + ], + "text/plain": [ + " Modified Gene Interacting Gene Residue Type \\\n", + "0 ADAM15 HCK Y735;Y715 REGULATES \n", + "1 ADAM15 LCK Y715 REGULATES \n", + "2 ADAM15 SRC Y735;Y715 REGULATES \n", + "3 BCAR1 SRC Y267;Y287 REGULATES \n", + "4 BIN1 MAPT T348 INDUCES \n", + "\n", + " Source dPSI Regulation Change \n", + "0 PSP/RegPhos 0.181;-0.052 +;- \n", + "1 PSP/RegPhos 0.181;-0.052 +;- \n", + "2 PSP/RegPhos 0.181;-0.052 +;- \n", + "3 PSP/RegPhos -0.07 - \n", + "4 PhosphoSitePlus;PTMInt -0.112 - " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "network_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import importlib\n", + "importlib.reload(analyze)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Decreased interaction likelihoods: AKT1, YWHAE, YWHAZ\n", + "Number of interactions: 3 (Rank: 2)\n", + "Centrality measures - \t Degree = 0.2 (Rank: 2)\n", + " \t Betweenness = 0.028571428571428574 (Rank: 3)\n", + " \t Closeness = 0.2 (Rank: 3)\n" + ] + } + ], + "source": [ + "analyze.summarize_protein_network(protein = 'TSC2', interaction_graph = interaction_graph, network_data = network_data, network_stats = network_stats)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAIMCAYAAAAkUd+LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0+UlEQVR4nO3deXjU1aHG8Xcm+0IgLGEzgiwCIqtWDAIJVApYUUGrsolrW6/Ig7W9Xu3GtVdtq10Uxbb6FBAK1gVwBVxYVHABFQGDgJAAkTX7vszMuX/EpAQCQpjM78zM9/M8Pi1h5jdvZoZ555zfzDkuY4wRAABwlNvpAAAAgEIGAMAKFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtEOh0AZ88Yo6qqKqdjIJwZI+XlyVVWJpOQILVpI7lcTqcKOzExMXJxvwctCjkEHDhwQMXFxU7HQBhyFxer5SuvqPWiRYrev7/+59WpqcqfOlVFV18tX1KSgwnDS1JSkjp37ux0DDSRi6Uzg5vH49GuXbvUpk0bJfHChwByv/22oiZNksrLJUmuY15KTN0oLT5eNUuWyDd6tBMRw0pxcbHy8vLUs2dPRUYy1gpGPGpBzuPxSJJatGih2NhYh9MgbKxaJU2YUDtV3ch7+vpyrqhQ9IQJ0htvSGPGBDhkeDHGKC8vTx6Ph0IOUnyoK0QE4rxRdna2rrvuupP+/ebNm/XJJ5/4/XaXL1+uI0eOSJJWrlypZcuWNflYP/nJT/wVK3wVFkrXXltbxD7fqS/r89Ve7tpra693CsXFxRo/frwyMjJ0ySWX6LXXXjvpZW+++WZt27ZNmzdv1tNPP33mv8O3Lr300hN+1rNnT2VkZOiiiy46ZYZjHfscbcyhQ4f029/+tsk5TwfnjoMfb6PgN5s3b1ZpaakuueSS77ysz+eT23167weXL1+uHj16KCUlRWPHjj2rjH//+9+bfN0zyRzSFiyonaY+3bNdPl/t5Z97Tpo586QXW7hwocaOHau77rpLxhgVFRV956EHDhyogQMHnmbw09OyZUutXbtWhw4d0qhRozR+/Pj6vzvZc+DY52hjOnTooP/93//1a06EHl5dQoQxRtXV1X7777s+WpCRkaFZs2Zp+PDh+q//+i9J0tNPP63HH39c48aNkyQ9/PDDSk9P14gRI7R161ZJ0uDBgzVjxgxNnz5dW7du1ciRIzV06FDNmDGj/ve46667NHz4cKWnp+vTTz/VypUrdcstt+j+++/X/Pnz9eSTT0qSHnvsMaWlpWno0KH69NNP64//05/+VEOGDNEjjzxyQu6LL75YkjR79mxNmTJFY8eO1YgRI1T+7XnQhx56SEOHDlV6eroyMzM1e/ZsTZ8+XePGjdOXX37Z6O9077331o/qNm/eLEm65ZZbNHz4cI0YMULZ2dmqrKzU1KlTNWrUKF111VUqLi7W119/raFDhyojI0M//vGPm/zYB5Qx0pw5TbvuE0+cssTj4+P1ySef6PDhw3K5XGrVqpUk6YILLtD06dN18cUXa9GiRQ2us3btWv385z+XJL355ptKS0tTenq6Fi9eLGOM7r77bo0cOVKjR49WTk6OpNrnZVpammbMmCGv13vSPB06dFBlZaWys7M1fPhw/ehHP9Jjjz2md999V5deeqmGDBmiefPmKSsrq8FztLHH+tjZpcb+7QASI+SQUVNToz/+8Y9+O97999+v6OjoU15m4sSJ+utf/6phw4apqKhId955p0pLSzVjxgxt3bpVO3bs0Lp163To0CHdeeedWrZsmQoKCjRr1iz16NFDFRUVWr16tVwulyZOnKhdu3YpMzNTkZGRev/99yXVjkjGjh2rn//857rwwgs1f/58SbVTgK+++qrWr1+vffv26fbbb9c777yjwsJC3X///UpNTdWgQYN0//33nzR/r1699Jvf/Ea//OUv9c4776hLly7atGmT1q9fL5fLJd+307HnnnuuFixYcNLf6Xe/+53i4+O1ZcsW/eEPf9D8+fO1fft2ffjhh/XHmTt3rkaNGqVbb71VL7/8sv7xj38oOTlZkydP1owZM+pvy3p5edLu3Wd+PWNqr5efX/uVqEZMmzZNBw8e1JgxYxQfH68FCxaoZ8+e2rdvnz744AMlJCRo6NChmjRp0gnX9fl8uv/++7V+/XolJibK5/PpjTfeUHJystasWaNPP/1Uv//97/WrX/1Kq1at0oYNG7Rr165Tzrjs2LFDycnJkmq/yfDuu+8qOjpaQ4YM0RtvvKGWLVvq0ksv1Y033tjgOfrkk0+e8Fgff6rn+H87LVu2PPP7FCGHQkaTDRo0SJJ0zjnnqPC484Pbt2/Xhg0blJGRIUmKiIiQJCUnJ6tHjx6Sas9J/+xnP1N5ebmysrJ04MABffXVVxo+fHj9cU42RZydna0BAwbI7Xara9eu9dObycnJ6tKliyQpLi7utPKnpqaqoKBAFRUVuuyyy+rPxdXd9ve+971T/k5/+tOftGrVKrndbkVERCgqKkozZ87UrbfeqpYtW+r//u//lJmZqY0bN+q5555TTU2Nhg8frp/85Cd66KGHdNNNN+nyyy/XTTfddMq8VigtPbvrl5SctJAjIyP1wAMP6IEHHtCaNWv0m9/8RkuWLNF5552n1q1bS6p9c5Sbm3vCdY8eParU1FQlJiZKqn3sMjMztWzZMr333nsyxig1NVXZ2dnq37+/XC6Xzj///EaLsKioSBkZGXK73XrqqackSQMGDKh/g+rz+dS2bVtJteebDxw40OD6jT3Wxzv+3w6FDIlCDhlRUVGnHA025Xjf5dgPkRhjFBUVVT8F2Lt3b6Wnp+vZZ5+VVDuClxoW7Ny5c3X33Xfriiuu0MSJE2WMUZ8+fbRmzZr6EcXxx63TtWtXbd68WT6fT/v27auf3jyTD7Ycn793797697//Xf+zulFrXebGfqe8vDy9/vrr+uijj7R161bNnDlTXq9XP/rRjzR58mQ9/PDDWrp0qXr37q20tDRNmzat/roej0e///3vJdVOy06dOtX+c9TfFl6TtWhx0r/au3evOnbsqOjoaKWkpNTf/9nZ2SooKFBCQoL2799fX4bHateunXJyclRWVqaEhAT5fD717t1b119/vX79619L+s/jtW3bNhljtHv37kbPU9edQ66TnZ3d4HFxu93Kzc1Vy5YttWvXLnXq1OmE5/7xj/U333zT4DaOf+4BEoUcMlwu13dOMTe3tLQ03XTTTdq0aZMWLlyonj17Kj09XW63W6NHj9YDDzzQ4PLjx4/XPffco2effbb+61vjx4/XihUrNGzYMEVHR+vFF1/UuHHjNGvWLI0ZM0YdOnSQVHt+7+qrr64f0T7xxBNnnX/AgAEaNGiQ0tLSFBcXV3+uuk7//v1P+J3+53/+R+3bt9fIkSPrP7FbUlKiq6++Wj6fTy6XS88//7xat26tH//4x5o3b56k2vPOpaWlevLJJ1VVVaWxY8faX8ZS7ei2e3dpz57T/1CXVLtqV7du0rcj3cZs2bJF119/ff3MRt39n5qaqpkzZ2r79u2aNWtW/czEsdxutx566CGNGjVK8fHxuuOOOzRp0iStXr1aI0eOlCRNnTpVt912m0aPHq20tDQNHjxYbU4yWj+Vhx9+WD/84Q8lSTNmzFBcXFyD5+isWbNOeKz79u17xreD8MPCIEGusrJSWVlZOu+88/geMgLj8cele+4580L+619P+Snrk7n44ou1adOmM75euOG1IPgFwVtyAFaZPl2Kj5dOd0TvdtdePhjOkQMOopABnJlWraSXX64d9X5XKbvdtZdburT2ek3A6BjhgkIGcObGjKldDjMurrZwj/8wXd3P4uKkN9+UfvADZ3ICQYRCBtA0Y8ZIOTm154a7dWv4d9261f78m28oY+A08SlrAE3XqlXtB7Xuvrt20Y+SktqvNrVuzX7IwBmikAGcPZer9itRTfgaEYBaTFnjtLHb0+nJzs7WW2+95ffj1q3DHapC4fk1e/Zs9evXT5dddpluv/3207rO6TxfZs2apYqKiibnQnCgkOE3Z/KCeSZrNx/7gjl27FhNmDChSfmks9vt6XQ1VyGfjaBZK/sUguH5JUmPPPKI1q9fr8OHD2v9+vXfmel0ni9//etfv3MpWAQ/CjnENGVnp2NfKE73hSwUdnuaPHmyxowZo6uuukpPPfWUxowZo4kTJ0qS5s+frxtvvFFXXHGFhg0bVr9T0JQpU5SRkaFhw4Zp3759kk7cZejpp5/Wv//9b2VkZDRYmvHY7CtXrtTs2bMlSX369NGUKVM0aNAgLVy4UJL09ddf6/LLL1d6erp+8YtfNPgd9uzZozFjxigjI0P33HOPJDV6X65du1ZXXnmlrrrqqvrjBgsbnl+NPS6ff/65Lr74Yl111VW6+uqrGyyxebwLL7xQOTk5ysjI0L333qtx48apqKhI48ePV3p6uq6//npVV1ef8HyZP3++hg8frqFDh2r16tX190dpaanmz5+viRMn6oc//KG+973vnbCONoIb55BDTGMl9F2uu+66+qX9tm/fftrL/AX7bk99+/bVL3/5S02bNk0ej0erVq3ShAkTtHPnTkm1yzG++eabevvtt/WHP/xBc+bM0TPPPKP4+Hi9+uqr+vvf/67f/e53J+wy1KlTJ6Wmpuqxxx47rfvx0KFDevrpp+uX45w2bZp+8Ytf6NFHH9WgQYNOeJN03333ae7cuerevbvuvvtubdq0SX379j3hvpSk4uJirVu3LiCb1+8pLNOOvFL1apOobq0Szvp4Tj6/pMYfl1/96ldavHhx/RKqJ+P1erVhwwbdcMMNkqQrrrhCf/rTn/Too4/qhz/8oX7605/qd7/7nZYsWaI777yz/vmSm5urJUuW6L333lNFRYXGjx+vUaNGNTh2q1at9M9//lPPPPOMXnrpJc1swupnsBOFjCYL9t2e+vfvL0nq3Llzg/9fUFAgSbroooskSZdccon+/Oc/y+v16r777tPmzZtVVVWlvn37NrrL0MmcbEOBbt26KSkpqcHPc3Jy6u/f44+5Y8cO3XbbbZJq183+/ve/r4SEhBPuS6l2RiAQZSxJO/JKVeHxaUdeqV8K2cnnl9T443LkyBGdf/75kv7z/Dje/fffrz/+8Y/6wQ9+oIEDB0r6z45hu3fv1h133FH/s/Xr19c/X6Xa2Y/MzMz69bePHj160vslNTVVH3/88UnzI/hQyCGmKTs+RUb+52nQp0+f075eKO321FhZfv7555JqV4rq0aOHNm/erMOHD+v999/Xq6++qqVLlza6y1BjeaXassjMzJSk+in2k2VOTU3VF198oQEDBsjn8zW433r16qXHHntMXbp0kTFGXq9X99xzzwn3pXTqwvG3Xm0S60fI/uDk8+v426/Tvn177dq1Sz169NBnn32mq6+++oTLPPLII7ryyisb/KwuV48ePbRx40ZddNFF2rhxo3r27Nng9rt166b+/fvr9ddfl8vlqv+9TnW/IHRwDjnEREdHn/F/x28t11RpaWl68cUXNW3atAY7I40cOVKPPvroCZcfP368fvGLX2jixIkNdnuqrKzUsGHDNGrUKOXn59fvpFO3VaHUcLenyZMnN2mq/rtUV1dr7Nix+u1vf6v77rtPvXv31sGDBzV69Gi98847khruMjRy5Eg9//zz6tevnz799FNdd911KikpqT/e5Zdfrg8//FBjx47Vjh07Tnnbf/zjHzVr1ixlZGSc8CbrD3/4g376059q1KhRGj16tA4cONDofRlo3VolaFz39n4ZHTcmkM+vk3nwwQc1adIkjR8/XomJiae1Temx7rjjDr3++uv1571vvPHGBs+XmJgY3XjjjfW/17333ntGx0dwY7enIMcOL81j/vz59ecrgTo1NTWKioqSz+fTqFGjtGTJEnXs2NHpWJJ4LQgFjJAB4DR9/PHHSk9P15AhQ3T55ZdbU8YIDYyQgxzvigFIvBaEAkbIAABYgEIGAMACFDIAABagkHHaQmHx/2NdeumlfjkOAPgDC4PAbzZv3qzS0lJdcskl33nZ4xe7OJXly5erR48eSklJ0dixY8825lmr+xxkoFbAAhAeKOQQU11dLUmKioqqLwyv1yuv1yu3291gVa6TXbZuGcJTycjI0MCBA/Xpp5+qX79+mjt3rp5++mnl5+frjTfe0IoVK/Twww9r1apVMsboqaeeUr9+/TR48GANHTpURUVF+u///m/NnDlTVVVVGjx4sJ588kkZYzRjxgxt2bJFbrdbf/7zn7Vy5Up9+eWXuvzyy9WrV6/67wc/9thjevnll+VyuTRnzhxddNFFGjx4sC655BJ9/vnnuuaaa05YVGPBggWaM2eOLrjgApWVlUmScnNzdfvtt6u4uFidOnXSggUL5Ha7G+RYtmyZfvaznykuLk47d+7USy+9pN/85jfatm2bIiMjNW/ePJ1zzjmaMmWKvvnmG3k8Hi1evFgdOnTQtddeq+LiYhlj9NZbb6m0tPSE2/vkk080a9YsxcbGKj09XQ8++ODZPxkABBeDoFZRUWEyMzNNRUWFMcaY2bNnm9mzZ5vS0tL6y6xbt87Mnj3bvPLKKw2u+9BDD5nZs2ebgoKC+p99+OGHJ72trKwsc+211xpjjElPTzfr1q0zxhhz2WWXmcLCQjNv3jwzZ84cY4wxW7ZsMTfddJMxxpiDBw+aa665xhhjTNeuXc2uXbuMMcaUl5cbn89njDFmwoQJZufOnWb58uVm5syZ9bfp9XrN9OnTzdatW40xpv42Dh48aIYPH268Xq/Jysoy3//+940xxpx33nkmOzvbeL1e079//wb5PR6PGTBggKmsrDR5eXmmRYsWxhhj7r33XvPuu+8aY4x57LHHzIsvvnjSHM8++6wxxpjXXnvN/PrXvzbGGLNp0yZz1113GWOMKSsrM8YY88orr5gHHnjAfP311/X3Wd3v2tjt/epXvzKvvfZa/W0BZ+r41wIEH0bIaLJg21yibiOImJgYxcTEqHv37pKkzMxMffzxx3rwwQdVUVGhadOmqaysrNEcdZsEZGZmatmyZXrvvfdkjFFqamqjm090795d6enpuvnmm9W5c2c9+OCDjd7eXXfdpUceeUQvvPBC/baPAMILhRxi6qZoj11j97LLLtOll156Qrn9/Oc/P+GydYVzOoJtc4m6jSCqq6tVVlam3bt312edMGFCfQHX1NRoxYoVJ+Q4Nn/v3r11/fXX69e//nX9dRrbfKKqqkp33XWX3G63fvzjH2v9+vWN3p7H49Hjjz+u6upqXXTRRRQyEIYo5BATHR19ws8iIiIaPS98sss2VVpamm666SZt2rRJCxcurF/8v24/2QceeKDB5cePH6977rlHzz77bIPF/1esWKFhw4YpOjpaL774Yv3i/2PGjFGHDh0kNdxcwuVy6YknnvjOfBEREZo1a5aGDh2q3r1714+kf/nLX+qOO+7Qb3/7W0m1Gzs0luP47KtXr67fJm/q1Km68cYb6zefqNs1a+/evbrtttvk8/mUlJSkwYMHq2/fvifc3gcffKClS5eqrKxMN998cxMfAQDBjKUzgxzL5QGQeC0IBXwPGQAAC1DIAABYgEIOEZx5AMIbrwHBjw91Bbm6hT5KSkpYOQoIYyUlJZLUYPEfBBceuSAXGRmppKQk5eXlKS8vz+k4AByUlJREIQcxPmUdAowxqq6uZsoKCGMul0vR0dHMlAUxChkAAAvwoS4AACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAEJxKS6VZs6QhQ6TrrpO2b3c60VlxGWOM0yEAADgjPp80apT0wQeS1ytFREiJidKWLdK55zqdrkkYIQMAgs/27dK6dbVlLNX+b2mptGSJs7nOAoUMAAg+1dVn9vMgQCEDAIJP375S9+4yERGSJONySS6XNH68w8GajkIGAASf6GjpnXfkGjpUio2Vq2tX6ZVXpIEDnU7WZHyoCwAQtEpKSlRQUKBzzjlHbndwjzGDOz0AIKzt3LlT8+bNczqGXzBCBgAErerqahUXF6tt27ZORzlrFDIAABZgyhoAELQ+++wzbdy40ekYfhHpdAAAAJrq6NGj8ng8TsfwC6asAQCwAFPWAABYgEIGAAStxx9/XJ999pnTMfyCQgYABCVjjC666CK1b9/e6Sh+ERLnkHPLq3WkvErntYpXXGSE03EAADhjQT9CNsZofU6+vsor1ZbDxU7HAQAESGVlpfbt26eamhqno/hF0BeyJMVH1f4aCdGMjgEgXBw8eFDz5s1TSUmJ01H8IiSmrD0+nw4XFGn1m6/riiuuUJs2bZyOBABoZjU1NSosLFTr1q0VERH8A7KQWBgk0u1WSlKi3G63KisrnY4DAAiAqKgotWvXzukYfhMSI2QAQPjZsWOHDh8+rBEjRjgdxS9C4hzysYqKirRq1Sp5vV6nowAAmlF+fr5ycnKcjuE3IVfIFRUVyszMVH5+vtNRAADNKC0tTZMnT3Y6ht+E5JS11+sNiRP8AIDwEXIjZEmKiIhQRUWFvvzyS6ejAACayYIFC7RmzRqnY/hNSBayJG3dulWvvfaaKioqnI4CAGgGffv2VWpqqtMx/CYkp6yl2mnriooKJSYmOh0FAIDvFLIj5IiICCUmJsrj8ejo0aNOxwEA+JHX69W+fftCau2JkC3kOitWrNCSJUvk8/mcjgIA8JPS0lLNmzcvpL72FLJT1nUKCgrk8XhCajUXAAh3Xq9XBQUFatGihWJiYpyO4xchX8h1jDGqrq4OmQcOABBaQn7Kus7zzz+v119/3ekYAAA/yMnJ0VtvvRVSpyPDppAHDx6s733ve07HAAD4QVFRkXbv3i2Xy+V0FL8JmynrYxljQupBBIBwU+31yRijmMjQWZUxbEbIUu2HAJYsWaLPP//c6SgAgCYqq/Zoxe4jenP3EeVXVDsdx2/CqpAjIiLUrl07FgsBgCBWWuOV1xgZScXVHqfj+E1YTlkDAIKXMUa7Csrk8Rn1ap2oCHdonIIMy0KurKzU22+/rbS0NLVt29bpOAAAhNeUdZ2IiAgdPHiQPZMBANYIyxGyZM8nrXPLq1TjM+qQEGNFHgCAM8JyhCxJLpdL1dXV2rBhg7xeryMZ8soq9d7+fH34TYG+KQ2dBdIBAGcu0ukATiooKNDatWt1zjnn6Nxzzw3obb/66quqckUq4vxBkiTGxgAQ3sJ2yrpOZWWlYmNjm/12ysrKtG7dOg0dOlStWrXSV199Ja/Xq47deqrGZ5QSH82UNQCEsbCdsq4TGxsrn8+nrKwsvx+7qqpK+/fvlyRFRUVpz5499R8k6927t/r27avWcdFqz/ljAAh7YV/IkrRlyxYtXLhQRUVFZ30sY0z9Yufr1q3TCy+8IJ/Pp+joaN11113q1q3bWd8GACD0hP2UtST5fD4dOXJEHTp0OKvjeDwe/eMf/1BaWpoGDRqkkpISGWOUlJTkp6QAgFDFCFmS2+1Whw4dZIxRSUnJGV334MGDWrVqlYwxioyMVL9+/ZSSkiJJatGiBWUMADgtFPIx1q5dq2effVYez6nXRi0uLq4/F1xaWqrdu3eroqJCkjR8+HB17ty52bMCAEILU9bHKCgoUO6RI+q5fbu0f780cKA0fLikhguJzJ07Vx07dtSECRNUd/fxoSwAwNmgkI/l9UoTJkivvSbjcslljDR7tnJuu00vvviibr/9drVo0UKHDx9Wq1atFBMT43RiAECIoJCP9cIL0g03nPDjqq1btXr/fl122WWcEwYANIuwXqnrBFlZUkRE7Uj5GDGHDmncuHEOhQIAhAM+1HWsfv1OKGNFREi9ejmTBwAQNijkY40bJ91993/+HBEh/f3vUmqqc5kAAGGBc8jHycnJUftDhxR16JB0wQUSK2sBAAKAEfIxPB6PFi1apPWlpdKVV1LGAICAYYR8nLy8PMXExCgxMdHpKACAMEIhAwBgAaasv3XgwAH94x//UHFxsdNRAABhiEL+lsvlUkpKClPVAABHMGUNAIAFGCFL2rNnj/bt2+d0DABAGGPpTEmffPKJXC6Xzj33XKejAADCFFPWqt1asbKyUnFxcU5HAQCEqbAv5OrqakVHRzsdAwAQ5sL6HHJFRYX+/Oc/a/v27U5HAQCEubAu5IiICI0cOVKpbB4BAHBY2E9ZAwBgg7AdIefk5GjNmjXyeDxORwEAIHwLOTc3V7t27VJERITTUQAACO8pa2OMXC6X0zEAAAjPEXJubq48Hg9lDACwRtgVsjFGzz//vFasWOF0FAAA6oXllPXRo0fldrvVpk0bp6MAACApTAsZAADbhNWUdWlpqebNm6ejR486HQUAgAbCqpArKysVExOjxMREp6MAANAAU9YAAFggbEbIhw4dUk5Ojnj/AQCwUdgU8ieffKLXX3/d6RgAADQqbKasfT6fSktLlZSU5HQUAABOEBaF7PV6WbMaAGC1kJ+y9vl8euqpp/TZZ585HQUAgJMKi0K++OKL1alTJ6ejAABwUmExZQ0AgO1CeoR8NL9Qa957X1VVVU5HAQDglCKdDtBc8iuq9f6RcvnadFW5x6eYGKcTAQBwciE7Qi6p9kgul9yRkaoO3V8TABAiQnaEnJoUp/IaryLdLqXERzsdBwCAU+JDXQAAWIC5XAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgIPjU10pEjks/ndBIA8BsKGcHlueekli2l9u2lzp2lDz90OhEA+IXLGGOcDgGclo0bpSFDpLqnrNstJSVJe/ZIycnOZgOAs8QIGcFj7draEq7j80mFhdIXXziVCAD8hkJG8GjZsvHzxq1aBTwKAPgbhYzgceONUrduUkRE7X8ul3TVVdKAAU4nA4CzxjlkBJXKAwd04J57dI6k6EsukWbOlKKinI4FAGct0ukAwJkocLm0fMgQ3XrrrYpmqhpACGGEjKBjjJHL5XI6BgD4FeeQEVQ8Hg9lDCAkUcgIGsXFxfr973+vrKwsp6MAgN9RyAgakZGRuvzyy9W+fXunowCA33EOGQAACzBCRlAwxuijjz5SYWGh01EAoFlQyAgKxcXFWr16tfLy8pyOAgDNgilrBA2v1yuXyyW3m/eRAEIPhYygwHePAYQ6hhqwntfr1Zw5c7R9+3anowBAs6GQYT2Px6MLL7xQrVu3djoKADQbpqwBALAAI2RYb+fOnSopKXE6BgA0KwoZVvN4PHrhhRf01VdfOR0FAJoVU9awXkVFhVwul2JjY52OAgDNhkIGAMACTFnDai+88IK2bNnidAwAaHYUMqzl8/kUFxenmJgYp6MAQLNjyhoAAAswQoa1Dh8+rKqqKqdjAEBAUMiwkjFGS5Ys0erVq52OAgABwZQ1rGSMUX5+vtxut5KTk52OAwDNjkIGAMACTFnDSmvXrtUXX3zhdAwACJhIpwMAjSkqKlJUVJTTMQAgYJiyBgDAAkxZwzplZWXy+XxOxwCAgKKQYZ2lS5fqpZdecjoGAAQUU9awTk5OjowxSk1NdToKAAQMhQwAgAWYsoZVtm3bpq1btzodAwACjkKGVbKysvT11187HQMAAo4pa1jHGCOXy+V0DAAIKEbIsIbX65UkyhhAWGKlLlihuKpG73x9QN6qSl0zsKei3LxXBBBeeNWDFQ6VVkmR0YpISFJhZY3TcQAg4ChkWKGlalRycL+STLXaxEU7HQcAAo5ChhW+2Zulve+t1GVdUuTmHDKAMEQhwwp5eXnq1KmT4uLinI4CAI7ga0+whsfjUWQknzMEEJ4oZDjO6/XK7XbzdScAYY0pazjuo48+0lNPPSXeGwIIZ8wPwnFdu3ZVbGwsI2QAYY0pawAALMCUNRx16NAhffzxx/XLZgJAuKKQ4aht27bp/fffl5ulMgGEOV4F4ag9e/aoW7dunD8GEPYoZDimvLxcBw8eVLdu3ZyOAgCOo5DhmKysLEmikAFAFDIctGfPHrVt21ZJSUlORwEAx1HIcEzd+WMAAIUMh+Tn56uwsJBCBoBvUchwxJ49e+RyudS1a1enowCAFVipC47wer06cuSIOnbs6HQUALAChQwAgAWYskbAHThwQIsWLVJJSYnTUQDAGhQyAs7n8ykyMlLx8fFORwEAazBlDQCABRghI6BqamqUlZXF7k4AcBwKGQG1d+9ePffcc8rPz3c6CgBYhUJGQO3evVstWrRQ27ZtnY4CAFahkBFQWVlZbLeIsGKMUW55tcprOE2DU6OQETClpaU6fPgwy2UirHxdUKb39ufpneyjqvH6nI7TZDVenw6UVgb172C7SKcDIHzs2bNHEtstIrxUf1tgXp9RdY1HURHRDidqmg/25aqg2qu2cdEacW4bp+OEJEbICJisrCylpKQoMTHR6ShAwPRu00IDUpLUvjJPC/75rKqqqpyOdMZKS0t1ODdXkuTlm7LNhhEyAsIYo927d6tv375ORwECKsLtUvfkBLXydVT1BRcoOjq4RshlZWV67rnnVG2k7199nXq0T3Y6UshihIyAyMvLU0lJCdPVCFtt2rRRRkaGXC6X8vPzFQxrMpWVlWnBggWqqKjQ1BuuV79zUhQXFeF0rJBFISMg4uPjdcUVV6hLly5ORwEcVVJSor/97W/6/PPPnY5ySnUj4/Lyck2fPp2vKgYAS2cCQIBt375dPXr0UFRUlNNRGlVeXq7nnntOpaWlmj59utq1a+d0pLDACBnNzuv16q233lJeXp7TUQAr9OnTR1FRUSosLNT+/fudjtNAeXm5Fi5cqJKSEso4wChkNLuioiJ9+eWXqqysdDoKYJV3331XK1eutOZ8ckVFhRYuXKji4mLK2AFMWSMg6p5mrNAF/EdlZaW8Xq8SEhKcjlJfxoWFhZo+fbrat2/vdKSwwwgZza6yslIul4syBo4TGxurhIQEVVZWatWqVaqpqXEkR2VlZX0Z33TTTZSxQyhkNKuqqio9+uij2rZtm9NRAGsVFBQoMzPTkV3Qji/jDh06BDwDarEwCJpVdna2fD6fOnXq5HQUwFodO3bU3XffrcjISBljAjabVFlZqUWLFik/P58ytgAjZDSrPXv2qFWrVkpOZnUf4FQiIyPl8/n06quvatOmTc1+e1VVVfrXv/6lvLw8TZs2TR07dmz228SpUchoVnv27GG7ReA0uVwuxcbGNvvymnVlfPToUU2bNo0ZLEswZY1mU1xcrNzcXGVkZDgdBQgKLpdLY8aMqf9zVVWVYmJi/HobdWV85MgRytgyjJDRPLKydPRf/1JyXp7OO+88p9MAQeezzz7T3LlzVVFR4bdjVldXa/HixTp8+LCmTp2qzp07++3YOHuMkOF/TzwhzZql7sZopiR17izdd5/TqYCg0rNnT1VXVys2NtYvx6sr40OHDmnq1Kk655xz/HJc+A8Lg8C/tm2T+veXjn9abdwoXXyxM5mAIHfo0CGlpKTI7W7apGZNTY0WL16sAwcOaOrUqUpNTfVzQvgDU9bwr23bTixjSdqyJfBZgBBQVlamf/7zn9q4cWOTrl9TU6MlS5bom2++0ZQpUyhjizFlDb+q7tBBjX4+lG0XgSZJSEjQ5MmTm1SkdWWck5OjKVOm6Nxzz22GhPAXRsjwm7y8PD2zbZs+/3Zq2lf3VafJk6VRoxxMBgS3rl27KiIiQrm5udq1a9dpXaempkbPP/+8cnJyNHnyZPYiDwKMkOEXO3fu1NKlS5WYmKjUN9+UPv5YmxcvVmmHDhrxpz9JfA8ZOGsbNmzQ4cOH1aNHj1N+t9/j8ejf//639u3bpylTpqhr166BC4kmo5BxVowxev/997VmzRr16tVL11xzTe2nQq+8UkejorRz506NoIwBvxg3bpy8Xu9plfHevXs1efJkyjiIMGWNs7Jy5UqtWbNG6enpuuGGGxp8RaNdu3YqKCiQx+NxMCEQOqKiohQbG6uysjItX778hD3GPR6PXnjhBWVnZ2vSpEmsARBkGCGjSeoWwB88eLC6deumXr16nXCZtm3byhijvLw8tnMD/KiiokLffPONivLyFLt+vXTggDwDB+qFAwe0Z88eTZo0Sd26dXM6Js4QhYwztnv3bm3YsEGTJk1S+/btT1q27dq1kyQdPXqUQgb8qG3btrrz9tvlHjdOWrNGxu1WpM+nDqNH65K5c9W9e3enI6IJKGScsbi4OMXFxcnr9Soy8uRPobi4OCUkJOjo0aMBTAeEB/fixTJr18olyeXzSZJGvvOOXH5a2QuBxzlknJaqqiqtXr1aHo9HnTp10nXXXXdai95fccUV6tOnTwASAmEmO1uu494Qu4yR9u93KBDOFiNkfKe8vDw9//zzKi4uVp8+fc5o39QLLrigGZMBYax/f6mmpv6PRpIrOlrq2dO5TDgrjJBxSjt37tQzzzwjY4zuuOOOM97EPD8/X++//758306pAfCTiROln/yk/o+uyEiZBQtUEBHhYCicDQoZjTLG6L333tOSJUvUpUsX3X777Wrbtu0ZH6eoqEgbNmxQSUlJM6QEwpjLJf3tb9IXX0grVkhZWdrcq5eefvppFRcXO50OTcBuTzhBVVWVXnnlFW3fvl3p6elKT08/5UIEp1L39Grq9QGc2iuvvKKamhpdd911qqmp0c6dO9W3b1+nY6EJKGQ0UFxcrEWLFqmoqEgTJkxQ7969nY4E4BS2b98uj8ejfv36Nfj5V199pZSUFLVu3dqhZDhTfKgLDSQkJKhTp066/vrrmzRF3Zhly5YpIiJCV111lV+OB+A/GvsWg9fr1bvvvqsePXpozJgxDqRCU1DIkDFGH3zwgbp3765OnTrpmmuu8evxIyIidOjQIb8eE0Ctffv2KTk5WS1atKj/WUREhG6++WbFxcU5mAxnig91QV6vVzt27ND+Zvr+Ytu2bZWbmyvOjgD+t2jRIn355Zcn/DwhIUFut1sHDhzQkiVLVF1d7UA6nAlGyGEsLy9PHo9H7du31y233KKIZvq6RLt27VRTU6OioiK1atWqWW4DCFd33nnndy7S4/V65fV6A5QITcUIOUzt2rVLzzzzjN555x1JarYylhquaQ3Av5KTkxUfH3/Sv+/UqZOmTp2quLg4VVRUsCaAxSjkMFP3/eLFixerS5cuuvbaa5v9Nlu2bKmoqCjl5uY2+20B4aSwsFBvvvnmaX3P3+fzacGCBXr77bcDkAxNwZR1mKj2+rTlcKGydn6lzHVrNGLECGVkZATk+8Eul0tt2rRhhAz4WUVFhfbu3auhQ4d+52XdbrdGjBihlJSUACRDU/A95DCxI69UX+bWvos+z5RqUO/Arne7dOlSFRYW6tZbbw3o7QI4kdfr1c6dO9n4xTJMWYeJ1nFRckmKdrt0Qc/A75WakpLCh0oAS2RmZurll19WQUGB01FwDEbIYaTG55NbLkW4A7+MpTGG5TMBP1u/fr0yMzN1xx13nNH1jDHKz89XmzZtmikZmoJzyGEkyu3chEhdGVPMgP907txZkZFn/jJe97kOY4zWrVunTp066fzzz2+GhDgTTFkjIIwxeuKJJ7Rp0yanowAho2vXrhoyZEiTr2+M0ZEjR/gGhCWYskbAfPjhhzr33HPVuXNnp6MAIeHgwYOKjY1VcnJyk49x7KxVTU2NoqKi/BUPZ4gRMgImLS2NMgb86LXXXtMHH3xwVseoK+Ndu3Zpzpw5Kiws9EMyNAUjZARMYWGh9u7dqwEDBjgdBQgJRUVFcrlcSkpKOutjlZeXa8Omz+TpfL6iI9waltpa0RGM2QKJexsBs3//fi1fvlyVlZVORwFCQsuWLf1SxpIUHx+vrv0GqdzjVWFVjfIr2Ywi0ChkBAxrWgP+4/F49Oabb/p1a9NzWsSqXXy0OiXGql3cqTesgP9RyAiYuu888olO4OxVV1dr7969Ki8v99sxYyMjNDy1jS7tnOzIegXhju8hI2CioqKUnJzMCBnwg/j4eN15551Ox4AfMUJGQLVr144RMgA0gkJGQLVt25YRMuAHX331lf7yl7+oqqrK6SjwEwoZAdWuXTsVFhaquppPcAJnIzk5WQMGDFB0dLTTUeAnnENGQLVt21aSlJeXp44dOzqcBghe7du3V/v27Z2OAT9ihIyAateunUaPHq2EhASnowBBLS8vj9M/IYaVugAgCC1btkyFhYW65ZZbnI4CP6GQEXA5OTkqKSlRnz59nI4CBK2SkhLV1NSodevWTkeBn3AOGQG3detW7du3j0IGzkKLFi2cjgA/Y4SMgCuvrFJelVftEmIUGxnhdBwgKK1Zs0ZdunRRt27dnI4CP2GEjID7/GiZDpdXqWVMpL7ftZ3TcYCglJ2d7beNJWAHChkBZ1Q7KcPcDNB0fJgr9DBljYCr9vp0sLRSKQkximPKGgAk8T1kOCA6wq0uLeMpY6CJjh49qr/85S9+3XoRzqOQASDIxMTEaODAgUpMTHQ6CvyIKWsAACzACBkAgkxxcTHT1SGIQgaAILN582YtXLjQ6RjwM6asASDIlJeXq7S0VCkpKU5HgR9RyAAAWIApawAIMhs3btTWrVudjgE/o5ABIMjk5OTo4MGDTseAnzFlDQCABRghA0AQqfb69HV+mQora5yOAj9jcwkACCKbDxcqp6RKbhlddX5HuV0upyPBTxghA0AQiY2sHUfFREaIKg4tnEMGgCDiM0Z5FdVKio5STCRjqlBCIQMAYAHeXgEAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAF/h+XKg07LF/53wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.plot_interaction_network(interaction_graph, network_data, network_stats = network_stats)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUEAAAEmCAYAAAD8/yLTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoAUlEQVR4nO3de1xN+f4/8NdWKezaRaiU26Sdu2jkcgYRueeMMU2UXGfcwhiDEMatIzPjMi4jupiZEOM6MSRTTGMcwo5jGjJHMqO+GJRKRa3fH36tYyvpvi/r9Xw81uNhr/1Zn/VZPc68zmftvfbnLRMEQQARkUTV0vQAiIg0iSFIRJLGECQiSWMIEpGkMQSJSNIYgkQkaQxBIpI0hiARSZqhpgegqwoLC3H37l2YmppCJpNpejhE9BJBEPDkyRPY2NigVq3S53oMwQq6e/cu7OzsND0MIirFnTt3YGtrW2obhmAFmZqaAnjxRzYzM9PwaIjoZZmZmbCzsxP/Oy0NQ7CCim6BzczMGIJEWqosH1XxixEikjSGIBFJGkOQiCSNIUhEksYQJCJJYwgSkaQxBIlI0vicYCUFBgbCxMRE08OockuXLtX0EIhqBGeCRCRpDEEikjSGIBFJGkOQiCRNq0Lw7NmzMDAwwMCBA4u9l5+fj6CgIHTs2BF169aFpaUlevbsibCwMDx79gwymazUbdy4cQCgts/Q0BBNmzbFnDlzkJeXV8NXS0TaQKu+HQ4NDYWfnx927NiB1NRUNG3aFMCLAHR3d0diYiJWrFiBnj17wszMDOfOncPnn38OJycnpKWlif1ERkZiyZIluH79urivTp064r/DwsIwcOBAPHv2DImJiRg/fjzq1auHFStW1NzFEpFW0JoQzM7Oxt69e3HhwgWkp6cjPDwcS5YsAQCsX78eZ86cQUJCApycnMRjWrZsiVGjRiE/Px/16tUT9ysUCshkMlhZWZV4LnNzc/E9Ozs7DB8+HJcuXarGqyMibaU1t8ORkZFQKpVQKpXw9vZGWFgYBEEAAERERMDNzU0tAIsYGRmpBWB53bhxA7GxsXBxcSm1XV5eHjIzM9U2ItJ9WhOCISEh8Pb2BgAMHDgQWVlZOHXqFAAgOTkZjo6OVXYuLy8vyOVymJiYQKlUom3btvD39y/1mMDAQCgUCnHj0vpE+kErQvD69es4f/48PvjgAwCAoaEhPD09ERoaCuBF0ZSqLGa0bt06qFQqJCYmIioqCjdu3ICPj0+px/j7+yMjI0Pc7ty5U2XjISLN0YrPBENCQvD8+XM0adJE3CcIAoyMjPDo0SM4ODggKSmpys5nZWUFe3t7AIBSqcSTJ0/g5eWFlStXivtfZWxsDGNj4yobAxFpB43PBJ8/f45vvvkGX3zxBVQqlbglJiaiWbNmiIiIwOjRoxETE4PLly+XeHx2dnalxmBgYAAAePr0aaX6ISLdo/GZYFRUFB49eoSJEydCoVCovffee+8hJCQE586dw9GjR9GvXz+sWLEC//jHP2BqaoqEhASsWbMGISEh6NSpU5nP+fjxY6Snp6OwsBDJyclYvnw5HBwc0Lp16yq+OiLSdhoPwZCQELi5uRULQAAYOXIkVq9ejWvXruHkyZNYt24dtm3bhrlz56Ju3bpo3bo1Zs6ciXbt2pXrnOPHjwcA8TGaXr16YfXq1TA01Pifg4hqmEwoeg6FyiUzMxMKhQILFizgUlpEWqbov8+MjIw3lsTV+GeCRESaxJlgBZXn/2mIqGZxJkhEVEYMQSKSNIYgEUkaQ5CIJI0PxlUSq80R6TbOBIlI0hiCRCRpDEEikjSNh+C4ceMgk8kwZcqUYu9NmzZNrUhSkdIKMqWkpKgVU7KwsECvXr1w+vRpAChzQSYikgaNhyDwos7Hnj171Jayys3Nxe7du8ViSy8rKsgUHx+P1NTUEvuMiYlBWloaTp8+DTMzMwwePBi3bt1CWlqauK1fvx5mZmZq+zZs2FBt10lE2kcrQrBz585o2rQpDhw4IO47cOAA7OzsitUVKSrINHXqVAwdOhTh4eEl9tmgQQNYWVmhQ4cO2LZtG3JychAdHQ0rKytxe7kg08v7iEg6tCIEgRfLW4WFhYmvQ0NDMWHChGLtSivI9Dp169YFADx79qzC42OhJSL9pDUh6OPjg/j4eKSkpOD27dv45ZdfxMJLLyutIFNJsrOz4e/vDwMDA/Tu3bvC42OhJSL9pDUPS1taWmLIkCHYuXMnBEHAkCFDYGlpqdamqCBT0W3zywWZ3Nzc1Nr26NEDtWrVQk5ODqytrREeHo727dtXeHz+/v6YM2eO+DozM5NBSKQHtCYEAWDChAmYMWMGAGDz5s3F3n9TQSYLCwtxf2RkJNq0aQNzc3M0aNCg0mNjoSUi/aQ1t8PAi9vb/Px85Ofnw93dXe29shRkepmdnR3eeuutKglAItJfWjUTNDAwEEtrFlWAK1KWgkxFs0giorLSqpkgAJiZmZW4EuybCjKpVCpcunSpJoZIRHqEy+tXEAstEWkvLq9PRFRGDEEikjTeDlcQq80RaS/eDhMRlRFDkIgkjSFIRJKmVQ9L66TA0YCxkaZHUfWWHdT0CIhqBGeCRCRpDEEikjSGIBFJmtaGYFEBpqKtQYMGGDhwIK5cuSK2kclkOHTokNprExMT3L59W62vESNGqBVQOnPmDIYNGwYbG5tifRCRtGhtCAIvltYqKoB06tQpGBoaYujQoaUeI5PJsGTJklLbZGdno2PHjti0aVNVDpeIdJBWh6CxsbFYAKlTp06YP38+7ty5g/v377/2GD8/P3z33Xe4evXqa9sMGjQIK1euxLvvvlsdwyYiHaLVIfiyrKwsREREwN7evtSFUnv06IGhQ4fC39+/BkdHRLpKq58TjIqKglwuB/DiFtba2hpRUVGoVav07A4MDESHDh3w888/45133qmSseTl5SEvL098zWpzRPpBq2eCrq6u4jL6//73vzFgwAAMGjSo2Bcfr2rTpg3Gjh2L+fPnV9lYWG2OSD9pdQjWq1cP9vb2sLe3R9euXRESEoLs7Gxs3779jcd+9tlnuHz5cpV98+vv74+MjAxxu3PnTpX0S0SapdW3w6+SyWSoVasWnj59+sa2dnZ2mDFjBhYuXIi33nqr0udmtTki/aTVM8G8vDykp6cjPT0dSUlJ8PPzQ1ZWFoYNG1am4/39/XH37l3ExMSo7c/KyhJvswHg1q1bUKlUSE1NrepLICItp9UhePz4cVhbW8Pa2houLi64cOEC9u3bhz59+pTp+Pr162P+/PnIzc1V25+QkAAnJyc4OTkBAObMmQMnJ6c3Pl9IRPqHK0tXkLhy7YIhMOMqMkRahStLExGVEUOQiCRNp74d1kr+uwAWWiLSWZwJEpGkMQSJSNIYgkQkaQxBIpI0fjFSWaw2R6TTOBMkIkljCBKRpDEEiUjSqjUEy1IxThAEBAcHw8XFBXK5HObm5nB2dsb69euRk5Oj1t+ff/6J2rVrw9HRscTzvXwuuVyOjh07Ijw8XK1Nbm4uxo0bh/bt28PQ0BAjRoyo6ssmIh1S7TPBN1WM8/HxwezZs+Hh4YHY2FioVCoEBATg8OHDiI6OVusrPDwc77//PnJycvDLL7+UeL6wsDCkpaUhMTERnp6eGD9+PE6cOCG+X1BQgDp16mDmzJlwc3OrnosmIp1R7d8OF1WMAwArKyvMnz8fvXr1wv379xEbG4uIiAgcOnQIHh4e4jHNmzfH8OHD1ep4CIKAsLAwbNmyBba2tggJCUHPnj2Lnc/c3Fw838KFC/HFF18gOjoa7u7uAF6sVr1161YAwC+//ILHjx9X16UTkQ6o0UdkXq0YFxERAaVSqRaARWQyGRQKhfg6NjYWOTk5cHNzg62tLVxcXLBhwwaYmpqWeK6CggLs378fDx8+hJFR5R9hYaElIv1U7SFYWsW45ORkKJXKMvUTEhKCDz74AAYGBmjbti3s7e0RGRmJSZMmqbXz8vKCgYEBcnNzUVBQgPr16xdrUxGBgYH47LPPKt0PEWmXav9MsLSKcYIgQCaTvbGPx48f48CBA/D29hb3eXt7IzQ0tFjbdevWQaVS4eTJk+jUqRPWrVsHe3v7Sl8HCy0R6adqnwkWVYwr0qVLFygUCmzfvh0ODg5ISkp6Yx+7du1Cbm4uXFxcxH2CIKCwsBC//fYb2rRpI+63srISK9Tt27cPTk5OcHZ2VmtTESy0RKSfavw5wZcrxo0ePRo3btzA4cOHi7UTBAEZGRkAXtwKf/LJJ+KMUqVSITExEa6uriXOBovY29tj5MiR8Pf3r7brISLdVu0zwaKKcQDw6NEjbNq0SawY17t3bxw8eBBeXl4ICAhA//790bBhQ1y9ehXr1q2Dn58fmjdvjkuXLiEiIqLY84FeXl5YtGgRAgMDX/vlxyeffIKOHTsiISEBzs7OAIDffvsN+fn5ePjwIZ48eSJWnevUqVO1/R2ISDtVewgWVYwDAFNTUzg6OqpVjNu1axeCg4MRGhqKlStXwtDQEK1atcLYsWPh7u6OefPmoU2bNiU+ID1ixAhMnToVP/zwA959990Sz9++fXu4ublhyZIlOHbsGABg8ODBuH37ttimqOoca04RSQ+rzVUQq80RaS9WmyMiKiOGIBFJGhdVrSxWmyPSaZwJEpGkMQSJSNIYgkQkafxMsJICAwNhYmKi6WFUuaVLl2p6CEQ1gjNBIpI0hiARSRpDkIgkTedCcNy4caUWR7p8+TJGjRqFxo0bw8TEBA4ODpg8eTJu3LgBAEhJSYFMJhMXTQCAJ0+eoE+fPnB0dOQ6gUQSo3MhWJqoqCh069YNeXl5iIiIQFJSEr799lsoFAoEBASUeMz9+/fh6uqKrKwsxMfHw87OroZHTUSapDffDufk5GD8+PEYPHgwDh7834//W7RoARcXlxILKt25cwf9+/eHtbU1jhw58tp6JUSkv/RmJnjixAk8ePAA8+bNK/F9c3NztdfXr19Hz5494ejoiOPHjzMAiSRKb2aCycnJAPDawuyvGjt2LHr06IH9+/fDwMDgje1ZbY5IP+nNTLC8yyJ6eHggPj4e+/fvL1P7wMBAKBQKceNnh0T6QW9C0MHBAQDw+++/l6n9woULsXTpUowZMwaRkZFvbM9qc0T6SW9uhwcMGABLS0sEBQWpfTFS5PHjx8U+F1y8eDEMDQ0xZswYFBYWwsvL67X9s9ockX7SyRDMyMhQe84PAOrXr48dO3Zg1KhRGD58OGbOnAl7e3s8ePAAe/fuRWpqKvbs2VOsrwULFsDAwAA+Pj4oLCzEmDFjaugqiEgb6GQIxsXFicWRivj6+iI8PBxnz55FYGAgRo8ejczMTNjZ2aFv375YuXLla/v79NNPYWBgAF9fXxQWFsLHx6e6L4GItAQLLVVQUSGXBQsWcBUZIi3DQktERGXEECQiSePtcAWVZ7pNRDWLt8NERGXEECQiSWMIEpGk6eRzgtqEhZaIdBtngkQkaQxBIpI0hiARSRpDkIgkTSdC8HUV5uLi4iCTycT6IYIgIDg4GC4uLpDL5TA3N4ezszPWr1+PnJwcAMCyZcvQqVMntX5+/vlnmJubw8/Pr9yLsxKRbtOJECwrHx8fzJ49Gx4eHoiNjYVKpUJAQAAOHz6M6OjoEo85evQo3N3dMWvWLHz11VeQyWQ1PGoi0iS9eURm7969iIiIwKFDh+Dh4SHub968OYYPH15iTZBdu3Zh/PjxWLt2LWbOnFmTwyUiLaE3IRgREQGlUqkWgEVkMhkUCoXavs2bN2POnDkICQmBt7f3G/tnoSUi/aQzIRgVFQW5XK62r6CgQPx3cnIylEplmfpKSkrCjBkzyhyAwIuHoj/77LOyD5iIdILOfCbo6uoKlUqltu3YsUN8XxCEMn+eZ2tri86dOyMoKAhpaWllOoaFloj0k87MBOvVqwd7e3u1fX/++af4bwcHByQlJZWpL1NTU8TExGDAgAHo06cPYmNjYWNjU+oxLLREpJ90Zib4JqNHj8aNGzdw+PDhYu8JgoCMjAy1fRYWFoiJiYGFhQX69OmDv/76q6aGSkRaRG9C8P3334enpye8vLwQGBiIhIQE3L59G1FRUXBzc0NsbGyxYxQKBaKjo2FpaYk+ffqozSyJSBr0JgRlMhl27dqFL7/8EgcPHkTv3r3RoUMHLFu2DB4eHnB3dy/xODMzM5w4cQKNGzdGnz59+FkfkcRwef0KYrU5Iu3F5fWJiMqIIUhEksbb4QpitTki7cXbYSKiMmIIEpGkMQSJSNJ05mdz2kpfq83pOz4CREU4EyQiSWMIEpGkMQSJSNJ0LgTv3buHjz76CE2bNoWxsTGsrKzg7u6OX3/9FcCL5fRlMhlkMhnq1KkDR0dHrF27tlgBpcuXL2PUqFFo3LgxTExM4ODggMmTJ+PGjRuauCwi0hCdC8GRI0ciMTERO3fuxI0bN3DkyBH06dMHDx8+FNssX74caWlpSEpKwty5c7Fw4UIEBweL70dFRaFbt27Iy8tDREQEkpKS8O2330KhUCAgIEATl0VEGqJT3w4/fvwY8fHxiIuLQ+/evQEAzZo1Q9euXdXamZqawsrKCgAwadIkbN26FdHR0fjoo4+Qk5OD8ePHY/DgwTh48KB4TIsWLeDi4iKW7yQiadCpmaBcLodcLsehQ4fUih69jiAIiIuLQ1JSEoyMjAAAJ06cwIMHDzBv3rwSjzE3Ny9xf15eHjIzM9U2ItJ9OhWChoaGCA8Px86dO2Fubo6ePXti4cKFuHLlilq7+fPnQy6Xw9jYGK6urhAEQSypmZycDABwdHQs17kDAwOhUCjEzc7Ormouiog0SqdCEHjxmeDdu3dx5MgRuLu7Iy4uDp07d0Z4eLjY5tNPP4VKpcLp06fh6uqKRYsWoUePHgBQ7AuSsmKhJSL9pHMhCAAmJibo378/lixZgrNnz2LcuHFqvwCwtLSEvb09unfvjv3792PdunWIiYkB8KIgEwD8/vvv5TqnsbExzMzM1DYi0n06GYKvatOmDbKzs0t8z8LCAn5+fpg7dy4EQcCAAQNgaWmJoKCgEtvzixEiadGpEPz777/Rt29ffPfdd7hy5Qpu3bqFffv2ISgoCB4eHq89bvr06bh+/Tr279+PevXqYceOHTh69CiGDx+OmJgYpKSkICEhAfPmzcOUKVNq8IqISNN0KgTlcjlcXFywbt069OrVC+3atUNAQAAmT56MTZs2vfa4hg0bwsfHB8uWLUNhYSE8PDxw9uxZGBkZYfTo0XB0dISXlxcyMjKwcuXKGrwiItI0rixdQfpeaEnfcRUZ/caVpYmIyoghSESSxtvhCmKhJSLtxdthIqIyYggSkaQxBIlI0nRqKS2tFDgaMDbS9CiI/mfZwTe3IRFngkQkaQxBIpI0hiARSRpDkIgkTStCsKg63Ou2cePGAQBiY2Ph6uqK+vXro27dumjVqhV8fX3x/PlzsS9BEBAcHAwXFxfI5XKYm5vD2dkZ69evR05ODgBg+/bteOedd2BhYQELCwu4ubnh/Pnzmrh0ItIwrQjBtLQ0cVu/fj3MzMzU9m3YsAHXrl3DoEGD8Pbbb+PMmTO4evUqvvrqKxgZGaGwsFDsy8fHB7Nnz4aHhwdiY2OhUqkQEBCAw4cPIzo6GgAQFxcHLy8vxMbG4tdff0XTpk0xYMAA/PXXX5r6ExCRhmjdz+bCw8Mxe/bsYoubrl+/Hhs2bMCtW7dee+zevXvh6emJQ4cOFVtfUBAE8ac0ryooKICFhQU2bdqEsWPHlmmc4s9yFgyBGR+RIW3CR2T082dzVlZWSEtLw5kzZ17bJiIiAkqlssQFVmUyWYkBCAA5OTl49uwZ6tev/9q+WW2OSD/pTAiOGjUKXl5e6N27N6ytrfHPf/4TmzZtUguj5ORkKJXKcve9YMECNGnSBG5ubq9tw2pzRPpJZ0LQwMAAYWFh+PPPPxEUFAQbGxusWrUKbdu2RVpaGoAXt7wymaxc/QYFBWH37t04cOBAqYujstockX7SmRAs0qRJE/j4+GDz5s347bffkJubi6+//hrAi0pySUlJZe7r888/x+rVqxEdHY0OHTqU2pbV5oj0k86F4MssLCxgbW0tVpobPXo0bty4gcOHDxdrKwgCMjIyxNdr167FihUrcPz4cTg7O9fYmIlIu+hMCG7btg1Tp05FdHQ0/vjjD1y7dg3z58/HtWvXMGzYMADA+++/D09PT3h5eSEwMBAJCQm4ffs2oqKi4ObmhtjYWAAvboEXL16M0NBQNG/eHOnp6UhPT0dWVpYmL5GINEBnVpHp2rUr4uPjMWXKFNy9exdyuRxt27bFoUOH0Lt3bwAvvgHetWsXgoODERoaipUrV8LQ0BCtWrXC2LFj4e7uDgDYsmUL8vPz8d5776mdY+nSpVi2bFlNXxoRaZDWPSeoK/icIGktPieon88JEhFVB525HdZa/rsAflNMpLM4EyQiSWMIEpGkMQSJSNIYgkQkafxipLJYbY60DR+RKRfOBIlI0hiCRCRpDEEikrQKheDZs2dhYGCAgQMHqu1PSUlRK5BkamqKtm3bYvr06UhOTi5XXy/3Z2hoWKz+R1paGgwNDSGTyZCSkiLunzVrFrp06QJjY2N06tTptX2+uh0/frz8fwgi0nkVCsHQ0FD4+fkhPj4eqampxd6PiYlBWloaEhMTsXr1aiQlJaFjx444depUufsCABsbG3zzzTdq+3bu3IkmTZoUaysIAiZMmABPT89Sr6FojEVb3759S21PRPqp3CGYnZ2NvXv3YurUqRg6dCjCw8OLtWnQoAGsrKzQsmVLeHh4ICYmBi4uLpg4cSIKCgrK1RcA+Pr6IiwsTG1feHg4fH19i7XduHEjpk+fjpYtW5Z6HUVjLNpq16795osnIr1T7hCMjIyEUqmEUqmEt7c3wsLC8KaFaGrVqoVZs2bh9u3buHjxYrn7Gj58OB49eoT4+HgAQHx8PB4+fCiuI1gRw4cPR6NGjdCzZ098//33b2zPQktE+qncIRgSEgJvb28AwMCBA5GVlVXibe6rHB0dAUDt87uy9mVkZARvb2+EhoYCeHEL7e3tDSOj8j+fJ5fL8eWXX+L777/HsWPH0K9fP3h6euK7774r9TgWWiLST+UKwevXr+P8+fP44IMPAACGhobw9PQUw6k0RTO8okJI5e1r4sSJ2LdvH9LT07Fv3z5MmDChPEMXWVpa4uOPP0bXrl3h7OyM5cuXY9q0aQgKCir1OBZaItJP5frFSEhICJ4/f672hYQgCDAyMsKjR49KPbaoAFKLFi3K1JeFhYXa8e3atYOjoyO8vLzQunVrtGvXDiqVqjzDf61u3bphx44dpbYxNjaGsbFxlZyPiLRHmWeCz58/xzfffIMvvvgCKpVK3BITE9GsWTNERES89tjCwkJs3LgRLVq0gJOTU4X7mjBhAuLi4io8C3ydy5cvw9raukr7JCLdUOaZYFRUFB49eoSJEydCoVCovffee+8hJCQEQ4cOBQD8/fffSE9PR05ODv7zn/9g/fr1OH/+PI4ePQoDAwMcOnTojX3NmDGj2BgmT56MUaNGwdzc/LXjvHnzJrKyspCeno6nT5+Ks8U2bdqgdu3a2LlzJ4yMjODk5IRatWrhhx9+wMaNG7FmzZqy/imISI+UOQRDQkLg5uZWLLQAYOTIkVi9ejUePnwIAHBzcwMA1K1bF82aNYOrqyuCg4Nhb29f5r4uXbqE+vXrqw/W0BCWlpaljnPSpEk4ffq0+NrJyQkAcOvWLTRv3hwAsHLlSty+fRsGBgZwcHAQv2ghIulhoaUKYqEl0lpcRYaFloiIyoohSESSxkVVK4vV5oh0GmeCRCRpDEEikjSGIBFJGj8TrCwWWiKqOdXw+A9ngkQkaQxBIpI0hiARSZpWhWB6ejr8/PzQsmVLGBsbw87ODsOGDcOpU6dKLI708ta8efNS3+/Tpw8AiO3OnTundu7Zs2eLbYhIOrTmi5GUlBT07NkT5ubmCAoKQocOHfDs2TOcOHECkydPRlpamth21qxZyMzMVKs78uzZM3Gl6bNnz2LkyJG4fv26+LvBl2uImJiYYP78+WoLLRCRNGlNCE6bNg0ymQznz59HvXr1xP1t27bFhAkT1JbPqlOnDvLy8mBlZVViX0WrzzRq1KjEZbc++ugjbN26FceOHcPgwYOr9DqISLdoxe3ww4cPcfz4cUyfPl0tAIuUtn5gRTRv3hxTpkyBv78/CgsLq7RvItItWhGCN2/ehCAIYjGmmrB48WLcunWr1BWxX8Zqc0T6SStC8NUiTDWhYcOGmDt3LpYsWYL8/Pw3tme1OSL9pBUh2KpVK8hkMrEYU02ZM2cOnj59ii1btryxLavNEeknrQjB+vXrw93dHZs3b0Z2dnax9x8/flwt55XL5QgICMCqVaveeHtrbGwMMzMztY2IdJ9WhCAAbNmyBQUFBejatSv279+P5ORkJCUlYePGjejevXu1nffDDz+EQqHA7t27q+0cRKS9tCYEW7RogUuXLsHV1RWffPIJ2rVrh/79++PUqVPYunVrtZ3XyMgIK1asQG5ubrWdg4i0FwstVRALLRFpQBlXkWGhJSKiMmIIEpGkac3P5nQWCy0R6TTOBIlI0hiCRCRpDEEikjSGIBFJGkOQiCSNIUhEksYQJCJJYwgSkaQxBIlI0viLkQoqWneCy+wTaZ+i/y7Lsj4MQ7CC/v77bwDgMvtEWuzJkydQKBSltmEIVlBRWc/U1NQ3/pF1TWZmJuzs7HDnzh29XEFbn6+P1/aCIAh48uQJbGxs3tgvQ7CCatV68XGqQqHQu/+xFdH3MgL6fH28NpR5csIvRohI0hiCRCRpDMEKMjY2xtKlS2FsbKzpoVQ5fb42QL+vj9dWfqwxQkSSxpkgEUkaQ5CIJI0hSESSxhAkIkljCFbAli1b0KJFC5iYmKBLly74+eefNT2kKnHmzBkMGzYMNjY2kMlkOHTokKaHVGUCAwPx9ttvw9TUFI0aNcKIESNw/fp1TQ+rymzduhUdOnQQHyTu3r07fvzxR00Pq1oEBgZCJpNh9uzZVdIfQ7CcIiMjMXv2bCxatAiXL1/GO++8g0GDBiE1NVXTQ6u07OxsdOzYEZs2bdL0UKrc6dOnMX36dJw7dw4nT57E8+fPMWDAAGRnZ2t6aFXC1tYW//rXv5CQkICEhAT07dsXHh4euHbtmqaHVqUuXLiA4OBgdOjQoeo6FahcunbtKkyZMkVtn6Ojo7BgwQINjah6ABAOHjyo6WFUm3v37gkAhNOnT2t6KNXGwsJC2LFjh6aHUWWePHkitGrVSjh58qTQu3dvYdasWVXSL2eC5ZCfn4+LFy9iwIABavsHDBiAs2fPamhUVBEZGRkA/rcQhj4pKCjAnj17kJ2dje7du2t6OFVm+vTpGDJkCNzc3Kq0Xy6gUA4PHjxAQUEBGjdurLa/cePGSE9P19CoqLwEQcCcOXPwj3/8A+3atdP0cKrM1atX0b17d+Tm5kIul+PgwYNo06aNpodVJfbs2YNLly7hwoULVd43Q7ACZDKZ2mtBEIrtI+01Y8YMXLlyBfHx8ZoeSpVSKpVQqVR4/Pgx9u/fD19fX5w+fVrng/DOnTuYNWsWoqOjYWJiUuX9MwTLwdLSEgYGBsVmfffu3Ss2OyTt5OfnhyNHjuDMmTOwtbXV9HCqVO3atWFvbw8AcHZ2xoULF7BhwwZs27ZNwyOrnIsXL+LevXvo0qWLuK+goABnzpzBpk2bkJeXBwMDgwr3z88Ey6F27dro0qULTp48qbb/5MmT6NGjh4ZGRWUhCAJmzJiBAwcO4KeffkKLFi00PaRqJwgC8vLyND2MSuvXrx+uXr0KlUolbs7OzhgzZgxUKlWlAhDgTLDc5syZAx8fHzg7O6N79+4IDg5GamoqpkyZoumhVVpWVhZu3rwpvr516xZUKhXq16+Ppk2banBklTd9+nTs2rULhw8fhqmpqTibVygUqFOnjoZHV3kLFy7EoEGDYGdnhydPnmDPnj2Ii4vD8ePHNT20SjM1NS322W29evXQoEGDqvlMt0q+Y5aYzZs3C82aNRNq164tdO7cWW8es4iNjRUAFNt8fX01PbRKK+m6AAhhYWGaHlqVmDBhgvi/yYYNGwr9+vUToqOjNT2salOVj8hwKS0ikjR+JkhEksYQJCJJYwgSkaQxBIlI0hiCRCRpDEEikjSGIBFJGkOQiCSNIUg6Y9y4cZDJZJDJZDAyMkLjxo3Rv39/hIaGorCwUNPDIx3FECSdMnDgQKSlpSElJQU//vgjXF1dMWvWLAwdOhTPnz+vtvPm5+dXW9+kWQxB0inGxsawsrJCkyZN0LlzZyxcuBCHDx/Gjz/+iPDwcAAvVo3+8MMP0ahRI5iZmaFv375ITExU62flypVo1KgRTE1NMWnSJCxYsACdOnUS3x83bhxGjBiBwMBA2NjYwMHBAQDw119/wdPTExYWFmjQoAE8PDyQkpKi1ndYWBhat24NExMTODo6YsuWLdX5J6FKYgiSzuvbty86duyIAwcOQBAEDBkyBOnp6Th27BguXryIzp07o1+/fnj48CEAICIiAqtWrcKaNWtw8eJFNG3aFFu3bi3W76lTp5CUlISTJ08iKioKOTk5cHV1hVwux5kzZxAfHw+5XI6BAweKM8Xt27dj0aJFWLVqFZKSkrB69WoEBARg586dNfo3oXKokmUYiGqAr6+v4OHhUeJ7np6eQuvWrYVTp04JZmZmQm5urtr7b731lrBt2zZBEATBxcVFmD59utr7PXv2FDp27Kh2rsaNGwt5eXnivpCQEEGpVAqFhYXivry8PKFOnTrCiRMnBEEQBDs7O2HXrl1qfa9YsULo3r17ua+XagbXEyS9IPz/EgcXL15EVlYWGjRooPb+06dP8ccffwAArl+/jmnTpqm937VrV/z0009q+9q3b4/atWuLry9evIibN2/C1NRUrV1ubi7++OMP3L9/H3fu3MHEiRMxefJk8f3nz59DoVBUyXVS1WMIkl5ISkpCixYtUFhYCGtra8TFxRVrY25uLv67pDoxr6pXr57a68LCQnTp0gURERHF2jZs2BC5ubkAXtwSu7i4qL1f2dWPqfowBEnn/fTTT7h69So+/vhj2NraIj09HYaGhmjevHmJ7ZVKJc6fPw8fHx9xX0JCwhvP07lzZ0RGRopfuLxKoVCgSZMm+O9//4sxY8ZU+HqoZjEESafk5eUhPT0dBQUF+L//+z8cP34cgYGBGDp0KMaOHYtatWqhe/fuGDFiBNasWQOlUom7d+/i2LFjGDFiBJydneHn54fJkyfD2dkZPXr0QGRkJK5cuYKWLVuWeu4xY8Zg7dq18PDwwPLly2Fra4vU1FQcOHAAn376KWxtbbFs2TLMnDkTZmZmGDRoEPLy8pCQkIBHjx5hzpw5NfRXonLR9IeSRGXl6+srLotvaGgoNGzYUHBzcxNCQ0OFgoICsV1mZqbg5+cn2NjYCEZGRoKdnZ0wZswYITU1VWyzfPlywdLSUpDL5cKECROEmTNnCt26dVM7V0lfwqSlpQljx44VLC0tBWNjY6Fly5bC5MmThYyMDLFNRESE0KlTJ6F27dqChYWF0KtXL+HAgQPV80ehSuPy+kQA+vfvDysrK3z77beaHgrVMN4Ok+Tk5OTg66+/hru7OwwMDLB7927ExMQUK6VK0sCZIEnO06dPMWzYMFy6dAl5eXlQKpVYvHgx3n33XU0PjTSAIUhEksafzRGRpDEEiUjSGIJEJGkMQSKSNIYgEUkaQ5CIJI0hSESSxhAkIkljCBKRpP0/GEhu/e3sRtEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ptm_pose import plots as pose_plots\n", + "\n", + "network_stats = analyze.get_interaction_stats(interaction_graph)\n", + "pose_plots.plot_network_centrality(network_stats, network_data, top_N = 10, modified_color = 'coral', interacting_color = 'grey')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## KSTAR Analysis\n", + "\n", + "While we provide functions for performing enrichment of known kinase substrates from databases like PhosphoSitePlus, RegPhos, and PTMsigDB, these resources are limited by the overall number of validated substrates (<5%). For this purpose, we have adapted a previously developed algorithm called KSTAR (Kinase Substrate to Activity Relationships) for use with spliced PTM data, which harnesses kinase-substrate predictions to expand the overall number of phosphorylation sites that can be used as evidence. This particularly important as you may find many of the spliced PTMs in your dataset are less well studied and may not have any annotated kinases.\n", + "\n", + "In order to perform KSTAR analysis, you will first need to download KSTAR networks from the following [figshare](https://figshare.com/articles/dataset/NETWORKS/14944305?file=28768155).\n", + "\n", + "Once you have downloaded the networks, all you need is your PTM data." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "kstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = '../../../../Database_Information/NETWORKS/NetworKIN/', phospho_type = 'Y')\n", + "kstar_enrichment.run_kstar_enrichment()\n", + "kstar_enrichment.return_enriched_kinases()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also run the same analysis for serine/threonine kinases:" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['PRKG2', 'MAPK14', 'PRKCH', 'PRKCG', 'PRKD1', 'PRKCE', 'ROCK1',\n", + " 'TTK'], dtype=object)" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = '../../../../Database_Information/NETWORKS/NetworKIN/', phospho_type = 'ST')\n", + "kstar_enrichment.run_kstar_enrichment()\n", + "kstar_enrichment.return_enriched_kinases()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Flanking Sequence Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Location of altered flanks" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "from ptm_pose import flanking_sequences as fs\n", + "import pandas as pd\n", + "\n", + "# Load altered flank data\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassInclusion SequenceExclusion SequenceSequence IdentityAltered PositionsResidue ChangeAltered Flank Side
0P01116T148PhosphorylationETSAKtRQESGETSAKtRQGC*NaNNaNNaNNaN
1P01116K147AcetylationIETSAkTRQESIETSAkTRQGC0.818182[4.0, 5.0][E->G, S->C]C-term only
2P01116K147UbiquitinationIETSAkTRQESIETSAkTRQGC0.818182[4.0, 5.0][E->G, S->C]C-term only
3Q9UPQ0S746PhosphorylationLPNLNsQGVAWLPNLNsQGGFS0.727273[3.0, 4.0, 5.0][V->G, A->F, W->S]C-term only
4Q9UPQ0S750PhosphorylationPSQVDsPSSEKILKVDsPSSEK0.727273[-5.0, -4.0, -3.0][P->I, S->L, Q->K]N-term only
\n", + "
" + ], + "text/plain": [ + " UniProtKB Accession Residue PTM Position in Canonical Isoform \\\n", + "0 P01116 T 148 \n", + "1 P01116 K 147 \n", + "2 P01116 K 147 \n", + "3 Q9UPQ0 S 746 \n", + "4 Q9UPQ0 S 750 \n", + "\n", + " Modification Class Inclusion Sequence Exclusion Sequence Sequence Identity \\\n", + "0 Phosphorylation ETSAKtRQESG ETSAKtRQGC* NaN \n", + "1 Acetylation IETSAkTRQES IETSAkTRQGC 0.818182 \n", + "2 Ubiquitination IETSAkTRQES IETSAkTRQGC 0.818182 \n", + "3 Phosphorylation LPNLNsQGVAW LPNLNsQGGFS 0.727273 \n", + "4 Phosphorylation PSQVDsPSSEK ILKVDsPSSEK 0.727273 \n", + "\n", + " Altered Positions Residue Change Altered Flank Side \n", + "0 NaN NaN NaN \n", + "1 [4.0, 5.0] [E->G, S->C] C-term only \n", + "2 [4.0, 5.0] [E->G, S->C] C-term only \n", + "3 [3.0, 4.0, 5.0] [V->G, A->F, W->S] C-term only \n", + "4 [-5.0, -4.0, -3.0] [P->I, S->L, Q->K] N-term only " + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "altered_flanks = fs.compare_flanking_sequences(altered_flanks)\n", + "altered_flanks[['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'Inclusion Sequence', 'Exclusion Sequence', 'Sequence Identity', 'Altered Positions', 'Residue Change', 'Altered Flank Side']].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note, we only calculate these metrics for cases where altered flanking sequences do not cause a stop codon to be introduced, as this is harder to interpret (such as for the first PTM in the list). The above table will indicate the positions in the flanking sequence that are altered, how similar the altered flanking sequence is to the original flanking sequence, and the specific residue change that takes place. We can also plot some of this information to get a better sense of the distribution of altered flanking sequences:" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "importlib.reload(pose_plots)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Sam\\OneDrive\\Documents\\GradSchool\\Research\\Splicing\\PTM_POSE\\ptm_pose\\plots.py:391: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.\n", + " ax[0].set_xticklabels(['N-term\\nonly', 'C-term\\nonly'])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAElCAYAAAAPyi6bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/x0lEQVR4nO3dd1hUx/s28HuRpnSQqrigWLDEjhVBYzf2RI09lkTR2BKNNaCxG0usMRYw9uRribEQFRW7YkejoAYUETSi0lnavH/447xuFnQXdxfE+3Nde2V39sw8c/CEhzllRiaEECAiInqNQVF3gIiIih8mByIiUsHkQEREKpgciIhIhV6TQ0xMDF6+fAkAUCgUWLp0KVasWIHs7Gx9doOIiN7CUJ/BevTogQ0bNsDa2hqTJ0/G0aNHYWRkhMjISKxYsUKfXSEiojeQ6fNWVhsbGzx//hwymQwuLi44d+4czM3NUbNmTcTFxemrG0RE9BZ6HTkYGBggMzMTERERsLS0hFwuhxACKSkp+uwGERG9hV6Tg4+PD3r16oWEhAR0794dAHDv3j04ODjosxtqyc3NxePHj2FhYQGZTFbU3SEiemdCCCQnJ8PFxQUGBm++5KzX5LBhwwb8+OOPMDIywqRJkwAAkZGRGDNmjD67oZbHjx/D1dW1qLtBRKR1MTExKF++/Bu30es1h/dJYmIirK2tERMTA0tLy6LuDhHRO0tKSoKrqytevnwJKyurN26rl5HD8uXL37pNcRs95J1KsrS0ZHKgYm/mzJlF3QXSM39//0LXVedUuV6Sw7hx41C5cmWUK1cO+Q1UZDJZsUsOREQfMr08BDdy5Ei8ePECZcqUwejRo3H48GEcP35ceh07dkyj9gICAiCTyZReTk5O0vdCCAQEBMDFxQWlS5eGr68vbt26pe3dIiIqsfSSHFatWoVHjx5h4MCBWLduHcqXL4+xY8fi+vXrhW6zRo0aiIuLk17h4eHSdwsXLsSSJUuwcuVKhIWFwcnJCW3atEFycrI2doeIqMTT2/QZxsbG6NWrF4KDg3HlyhUYGRmhfv36CA0NLVR7hoaGcHJykl729vYAXo0ali1bhmnTpqFHjx6oWbMmNm3ahLS0NGzbtk2bu0REVGLpfeK9w4cP45tvvkFgYCD69u2LqlWrFqqdu3fvwsXFBe7u7ujTpw/++ecfAEBUVBTi4+PRtm1baVsTExP4+Pjg7NmzBbanUCiQlJSk9CIi+lDpJTncv38fM2bMgFwux6xZs9CmTRtER0fj119/VbpWoK5GjRrh119/xV9//YV169YhPj4eTZs2RUJCAuLj4wEAjo6OSnUcHR2l7/Izb948WFlZSS8+40BEHzK93K1UuXJlVKtWDaNHj5ZGCsePH1fapkuXLmq316FDB+l9rVq10KRJE1SqVAmbNm1C48aNAajeqiWEeOPtW1OmTMGECROkz3n3AxcGbyv88LzLbYVExZFekkOFChWQnp6O1atX5/u9TCbTKDn8l5mZGWrVqoW7d++iW7duAID4+Hg4OztL2zx9+lRlNPE6ExMTmJiYFLoPREQliV6SQ3R0tE7bVygUuH37Nry9veHu7g4nJyccOXIEdevWBQBkZmYiNDQUCxYs0Gk/iIhKCr1cc6hVq5ZW2/v2228RGhqKqKgoXLhwAZ9++imSkpIwaNAgyGQyjBs3DnPnzsWePXtw8+ZNDB48GGXKlEHfvn212g8iopLqvRw5PHr0CJ9//jmePXsGe3t7NG7cGOfPn4dcLgcATJo0Cenp6fDz88OLFy/QqFEjHD58GBYWFlrtBxFRSaWX5KDtKa937Njx1ngBAQEICAjQalwiog+FXpKDQqFQuhMoP0uWLNFHV4iISA16SQ5CCLx48UIfoYiISAv0khxMTU0RGBioj1BERKQFep8+g4iIij+9JIcKFSroIwwREWmJXpJDWFgYpk+fjq5du2LWrFnIysrSR1giIiokvSSHCRMmYPfu3ahSpQq2b9+OKVOm6CMsEREVkl6Sw59//ong4GAsWrQIBw4cwN69e/URloiICkkvySEpKUm67lCxYkXe1kpEVMzp5VZWAEhOToYQAgCQm5ur9BkALC0t9dUVIiJ6C70kh5SUFFhbW0ufhRDS57x1FnJycvTRFSIiUoNekkNUVJQ+whARkZboJTnkzZZKRETvBz4hTUREKpgciIhIBZMDERGp0HlyaNy4sfR+5syZug5HRERaoPPkEBERgezsbADA4sWLdR2OiIi0QOd3K/n6+qJOnTqoUqUK0tPT0aNHj3y32717t667QkREatJ5ctixYwd27dqFqKgoHDhwALVr19Z1SCIiekc6Tw4mJibo27cvAODFixfw9/fXdUgiInpHeptbCQB+/PFHJCcn48CBA3j06BHKly+Pjh07cl4lIqJiRq/J4dq1a2jXrh1sbGzg7u6O6OhojB07FsHBwahbt64+u0JERG+g1+ccxowZg6lTp+LOnTs4dOgQbt++jenTp2PMmDH67AYREb2FXpPDzZs3MXr0aKUyPz8/3Lx5U5/dICKit9BrcnBycsL58+eVyi5evAgnJyd9doOIiN5Cr9ccpk6dig4dOmDAgAFwc3NDdHQ0tm7dihUrVuizG0RE9BZ6HTn0798fBw4cQFZWFo4fP46srCzs27cPAwYM0Gc3iIjoLfQ6cgAAb29veHt76zssERFpgLOyEhGRCiYHIiJSweRAREQqSnRyWL16Ndzd3WFqaor69evj1KlTRd0lIqL3gt6Tw7x58/QSZ+fOnRg3bhymTZuGq1evwtvbGx06dMDDhw/1Ep+I6H2ml+Tw4MED6f2iRYuk9z4+PjqLuWTJEgwdOhTDhg2Dp6cnli1bBldXV6xZs0ZnMYmISgq93Mravn17vHjxAvXr14dCocCZM2fQoEEDhIeH6yReZmYmLl++jMmTJyuVt23bFmfPns23jkKhgEKhkD4nJiYCAJKSkjSOn5GRoXEder8V5jjRJh5zH57CHHN5dYQQb99Y6EliYqI4cuSIKF26tPj444+Fra2tMDIyEgsWLBARERFajRUbGysAiDNnziiVz5kzR1SpUiXfOv7+/gIAX3zxxVeJf8XExLz196heRg5bt26Fl5cXWrduDRMTExw9ehRZWVmws7NDamoqevfujatXr2o9rkwmU/oshFApyzNlyhRMmDBB+pybm4vnz5/Dzs6uwDqkLCkpCa6uroiJieEaHaRzPN40J4RAcnIyXFxc3rqtXpJDSEgIFixYgNjYWKSlpWHBggXw9vaGoaEhZs6ciZkzZ2o1XtmyZVGqVCnEx8crlT99+hSOjo751jExMYGJiYlSmbW1tVb79aGwtLTk/6ykNzzeNGNlZaXWdnq5IL1x40bcuHEDDx8+hLGxMVJTUzF58mQkJyeje/fuCAoK0mo8Y2Nj1K9fH0eOHFEqP3LkCJo2barVWEREJZFeb2U1MzODoaEhZs2ahZMnT8Lc3BwjR47EhQsXtB5rwoQJWL9+PTZu3Ijbt29j/PjxePjwIUaMGKH1WEREJY3eJ97buHGj0ue2bduibdu2Wo/Tu3dvJCQkYNasWYiLi0PNmjVx8OBByOVyrceiV0xMTODv769yeo5IF3i86ZZMCHXuadKNzMxMGBsbF1V4IiIqQJEmByIiKp5K9NxKRERUOEwORESkgsmBiIhUMDl8gAYPHgyZTIb58+crle/du/eNT4MHBASgTp06Ou4dlVTx8fH4+uuvUbFiRZiYmMDV1RWdO3dGSEhIvttHR0dDJpPh2rVr+u0oAWBy+GCZmppiwYIFePHihd5jZ2Vl6T0mFa3o6GjUr18fx44dw8KFCxEeHo7g4GC0bNkSo0aN0nl8HnOaY3L4QLVu3RpOTk5qr68RFBSEmTNn4vr165DJZJDJZNKT7YmJifjyyy/h4OAAS0tLtGrVCtevX5fq5o04Nm7cKP3VmDfP1dq1a/HJJ5+gTJky8PT0xLlz53Dv3j34+vrCzMwMTZo0wf3793XxIyA98vPzg0wmw8WLF/Hpp5+iSpUqqFGjBiZMmIDz58/nW8fd3R0AULduXchkMvj6+krfBQYGwtPTE6ampqhWrRpWr14tfZc34vjtt9/g6+sLU1NTbNmyBYMHD0a3bt0wd+5cODo6wtraGjNnzkR2djYmTpwIW1tblC9fXuVZrA/Wu81/Su+jQYMGia5du4rdu3cLU1NTaYbGPXv2iIIOibS0NPHNN9+IGjVqiLi4OBEXFyfS0tJEbm6uaNasmejcubMICwsTkZGR4ptvvhF2dnYiISFBCPFqxlszMzPRrl07ceXKFXH9+nWRm5srAIhy5cqJnTt3ioiICNGtWzfh5uYmWrVqJYKDg8Xff/8tGjduLNq3b6+3nw1pX0JCgpDJZGLu3Lka1bt48aIAII4ePSri4uKk4+mXX34Rzs7OYteuXeKff/4Ru3btEra2tiIoKEgIIURUVJQAINzc3KRtYmNjxaBBg4SFhYUYNWqUuHPnjtiwYYMAINq1ayfmzJkjIiMjxQ8//CCMjIzEw4cPtf5zeN8wOXyA8pKDEEI0btxYDBkyRAjx5uQgxKtf8rVr11YqCwkJEZaWliIjI0OpvFKlSmLt2rVSPSMjI/H06VOlbQCI6dOnS5/PnTsnAIgNGzZIZdu3bxempqYa7yMVHxcuXBAAxO7duzWql/dL/urVq0rlrq6uYtu2bUplP/zwg2jSpIlSvWXLliltM2jQICGXy0VOTo5UVrVqVeHt7S19zs7OFmZmZmL79u0a9bUk4mmlD9yCBQuwadMm/P3330rl5ubm0utN81FdvnwZKSkpsLOzU6oTFRWldDpILpfD3t5epf5HH30kvc+bMbdWrVpKZRkZGUW+mA4Vnvi/52zfdLPDiBEjlI6fgvz777+IiYnB0KFDlbafPXu2yunHBg0aqNSvUaMGDAz+/689R0dHpeOtVKlSsLOzw9OnT9Xev5JK73MrUfHSokULtGvXDlOnTsXgwYOl8tfvEHnTdMi5ublwdnbGiRMnVL57fcpzMzOzfOsbGRlJ7/N+eeRXlpub+6bdoGKscuXKkMlkuH37Nrp165bvNrNmzcK333771rbyjoN169ahUaNGSt+VKlVK6XN+x9zrxxbw6vjKr4zHG5MDAZg/fz7q1KmDKlWqSGUeHh4q2xkbGyMnJ0eprF69eoiPj4ehoSHc3Nx03VV6D9na2qJdu3ZYtWoVxowZo/JL++XLl3BwcICDg4NSed68a68fc46OjihXrhz++ecf9OvXT/ed/4DxtBKhVq1a6NevH1asWPHG7dzc3BAVFYVr167h2bNnUCgUaN26NZo0aYJu3brhr7/+QnR0NM6ePYvp06fj0qVLetoDKu5Wr16NnJwceHl5YdeuXbh79y5u376N5cuXo0mTJvnWcXBwQOnSpREcHIwnT55I67oHBARg3rx5+OmnnxAZGYnw8HAEBgZiyZIl+tylEo/JgQAAP/zww1sXHe/Zsyfat2+Pli1bwt7eHtu3b4dMJsPBgwfRokULDBkyBFWqVEGfPn0QHR1d4Kp79OFxd3fHlStX0LJlS3zzzTeoWbMm2rRpg5CQEKxZsybfOoaGhli+fDnWrl0LFxcXdO3aFQAwbNgwrF+/HkFBQahVqxZ8fHwQFBQk3fpK2sFZWYmISAVHDkREpILJgYiIVDA5EBGRCiYHIiJSweRAOsMpvkmfeLxpF5MDERGpYHIgIiIVTA5UIIVCgTFjxsDBwQGmpqZo3rw5wsLCAAAnTpyATCZDSEgIGjRogDJlyqBp06aIiIjIt62TJ0/CyMgI8fHxSuXffPMNWrRoofN9oeKPx1vxwuRABZo0aRJ27dqFTZs24cqVK/Dw8EC7du3w/PlzaZtp06Zh8eLFuHTpEgwNDTFkyJB822rRogUqVqyIzZs3S2XZ2dnYsmULvvjiC53vCxV/PN6KmaKdMZyKq5SUFGFkZCS2bt0qlWVmZgoXFxexcOFCcfz4cWkhljwHDhwQAER6eroQQnX9hwULFghPT0/p8969e4W5ublISUnR/Q5RscbjrfjhyIHydf/+fWRlZaFZs2ZSmZGREby8vHD79m2p7PX1GJydnQGgwLnwBw8ejHv37knLQm7cuBG9evUqcDpv+nDweCt+OGU35UsUsECL+L+1n/NosvaCg4MDOnfujMDAQFSsWBEHDx7Mdx0I+vDweCt+OHKgfHl4eMDY2BinT5+WyrKysnDp0iV4enoWut1hw4Zhx44dWLt2LSpVqqT0lyJ9uHi8FT9MDpQvMzMzjBw5EhMnTkRwcDD+/vtvDB8+HGlpaRg6dGih223Xrh2srKwwe/ZsXhgkCY+34ofJgQo0f/589OzZEwMGDEC9evVw7949/PXXX7CxsSl0mwYGBhg8eDBycnIwcOBALfaW3nc83ooXrudAejd8+HA8efIE+/btK+qu0AeAx1vh8II06U1iYiLCwsKwdetW/PHHH0XdHSrheLy9GyYH0puuXbvi4sWL+Oqrr9CmTZui7g6VcDze3g1PKxERkQpekCYiIhVMDkREpILJgYiIVDA5EBGRCiYHIiJSweRAJUKNGjWwf//+Ion9559/ws3NDebm5ti7d6/G9U+cOAFra2ut90tT1tbWRTYx3dy5c/H5558XSWzKH5MDvRNfX18sW7asyGPeunULn3zyiV77kWfChAmYNWsWUlJS0K1btwK3mzVrFmQyGQ4dOvTG9oriZ/o2QUFBKFWqFMzNzWFhYQEPDw8sXbpUa+1PnToV27dv11p79O6YHIjeUVRUlNI6A/kRQiAwMBC2trbYsGGDTvuTnZ2tk3Zr1aqFlJQUJCcn49dff8W0adNw7NgxncSiosfkQDpz6dIlNGvWDNbW1qhevbrKX4bbt29H7dq1YWlpCblcjqCgIADA1atX0bx5c9ja2sLe3h6ff/45EhISALxaA/jUqVP47rvvYG5ujg4dOgAA3NzclE7pbNmyBZ6enrC2tkbz5s1x9epV6TtfX19MmTIF7dq1g7m5OerVq4fw8PAC9+PJkyfo1asX7O3tUaFCBUybNg3Z2dlISEiAubk5cnJy0LRpU5ibm0OhUOTbRkhICGJjY7F27Vrs27cP//77b77bFbR/KSkpGD16NCpUqAAHBwcMHDgQiYmJAIDo6GjIZDIEBgbCw8MD5cqVAwBcuXIFLVu2hK2tLTw8PLBu3TopTm5uLmbMmAFHR0e4uLhg1apVBe5/fpo2bYoaNWrg8uXLUtnb4k2fPl0p3uunsQICApRGXffu3UO7du1ga2uLSpUqKY2kgoKCUKdOHfzwww9wcHCAo6NjsRtplQhFtgYdlQg+Pj5i6dKlKuUvXrwQdnZ2Yvny5SIzM1OcOHFCmJmZidOnTwshhNi3b5+wtbUVISEhIicnRzx58kRcuXJFCCHEtWvXxKlTp0RmZqaIj48X3t7eYtiwYW+MKZfLxZ49e4QQQpw8eVKYm5uL0NBQkZmZKZYuXSrs7e3Fy5cvpfouLi7iypUrIisrSwwfPlz4+PgUuI+tWrUSffv2FcnJySI6OlpUr15dzJkzR/oegLh69eobf059+vQR3bt3F7m5ucLNzU0sXrxY+u748ePCysrqjfv32Wefic8//1y8ePFCpKSkiD59+oj+/fsLIYSIiooSAES3bt3EixcvRGpqqoiLixO2trZi586dIjs7W4SHhwtnZ2dpmc0NGzaI8uXLi9u3b4vU1FQxePBgYWBgII4fP55v/wMDA6UlOHNzc0VoaKgwNTUVe/fuFUKIt8Zbv369cHNzExERESItLU0MGTJEKZ6/v7/o2rWrEEKIrKwsUbVqVTFx4kSRnp4url+/LpydnaUlRAMDA4WhoaFYuHChyMzMFMePHxelSpUS9+7de+O/AWmGyYHeSUHJYcuWLaJatWpKZcOHDxfDhw8XQgjRvn17MXPmTLVi7NmzR3h4eLwx5uvJYdiwYWLEiBFK31epUkX65eLj4yO+++476bvTp08Lc3PzfGM/evRIABBxcXFS2datW0XlypWlz29LDs+fPxcmJibSL9Lp06eL6tWrS9+/LTk8ffpUGBgYiISEBKksMjJSGBkZiezsbCk5vN6HhQsXim7duin1Y+rUqWLIkCFCiFcJb8GCBdJ38fHxAsAbk4OBgYGwsrISxsbGAoCYPn26yM3NVTveokWLlPbp9XivJ4fTp08LS0tLoVAopO3nzJkj2rRpI/XF0dFRKZaHh4f43//+l2/fqXB4Wol04tGjR3Bzc1Mqq1ixIh49egQAePDgASpXrpxv3Xv37qFr165wcXGBpaUl+vfvj2fPnr1TbHd3dyk2ADg5OUnvzczMkJKSUmBbpqamStu/vh/q2LJlCywtLdGxY0cAwMCBA/H3339Laxu/TXR0NHJzc1GxYkVYW1vD2toaDRs2hIGBAeLj46XtKlSooFTn4MGD0vbW1tZYvnw54uLiAACPHz+GXC6Xtnd0dISJickb+1GrVi28fPkSycnJmDFjBkJCQqTrG+rEc3V1ldqyt7eHqalpvnEePXoEFxcXGBsbS2X//Zm//u8BvPo3TE5OfmP/STNMDqQT5cuXR3R0tFJZVFQUypcvDwCQy+W4d+9evnVHjBiBcuXK4e+//0ZSUhK2bNkirTEMvFrARdPY0dHRUmxN9yMjIwNPnjzJdz/UsWHDBiQmJsLV1RVOTk7w9vaGTCYr8ML0f/fP1dUVBgYGePz4MV6+fCm9MjIypOsL/63n6uqK7t27K22fnJyMgwcPAgBcXFzw4MEDafunT58WeL3kv4yNjTFz5kykp6dj9erVaseLiYmR2vj333+RkZGRb/vly5fH48ePkZWVJZVp+jOnd8fkQO8sOzsbGRkZ0kuhUKBjx454+vQpVq9ejezsbJw6dQrbtm2TVuP66quv8NNPPyE0NBS5ubl4+vSpdNE4KSkJFhYWsLS0RExMDBYtWqQUz9HREffv3y+wP/3798fWrVtx5swZZGdnY8WKFUhISJD+ctdEuXLl0LJlS3z77bdITU3Fw4cPMXfuXAwaNEit+pcvX8b169dx5MgRXLt2TXqtXbsWO3bsQGpqqkqd/+6fk5MTunXrhtGjR0sjqPj4eOzZs6fAuAMGDMCxY8ewa9cuZGVlISsrC9euXUNYWBgA4PPPP8eqVasQERGB9PR0TJky5a1J93UymQzTpk3D3LlzkZaWpla81atX4969e0hPT8fUqVMLjOfl5QVHR0d8//33UCgUuHnzJlauXKn2z5y0g8mB3tnEiRNRunRp6VW1alXY2Njg0KFD2LJlC+zs7PDll19izZo1aN68OQCgW7duWLJkCUaNGgUrKys0bNhQumNoyZIl2L9/PywtLdG1a1f07NlTKd64ceNw9OhRWFtb5/tsg4+PD1asWIGhQ4fCzs4OO3bswKFDhwr9oNm2bduQnp4OuVyOZs2aoVOnTpg0aZJadTds2ABfX1+0aNECTk5O0mvw4MGwsLDAzp07Verkt39BQUHS6SRLS0t4e3sr3Sn0X+XKlcNff/2FtWvXwtnZGY6Ojhg1ahSSkpIAAEOGDEH//v3h7e2NihUrom7durCwsNDo59KjRw/Y2tpi5cqVasXr06cPmjZtikqVKqFOnTowNTXN91SWkZER9u/fj8uXL8PJyQldunTBhAkT0LdvX436R++G6zkQkd49fvwY5cqVQ0xMDE8XFVMcORCRzmVnZ2Pv3r3IysrCixcvMH78eDRu3JiJoRhjciAinRNCYP78+bCzs0PFihWRnJyMbdu2FXW36A14WomIiFRw5EBERCqYHIiISAWTAxERqWByICIiFUwORESkgsmBiIhUMDkQEZEKJgciIlLB5EBERCqYHIiISAWTAxERqWByICIiFUwORESkgsmBiIhUMDkQEZEKJgciIlJhWNQdKK5yc3Px+PFjWFhYQCaTFXV3iIjemRACycnJcHFxgYHBm8cGTA4FePz4MVxdXYu6G0REWhcTE/PW9buZHApgYWEB4NUP0dLSsoh7Q0T07pKSkuDq6ir9fnsTJocC5J1KsrS0ZHIgohJFnVPlvCBNREQqmByIiEgFTysRERUTM2fO1Em7/v7+GtfhyIGIiFQwORARkQomByIiUsHkQEREKtS6ID1r1iy1Gvv+++/fqTNERFQ8qJUcrl69Kr3Pzs5GcHAwKleuDLlcjocPHyIyMhIdOnTQWSeJiEi/1EoOe/bskd5/+eWXWLlyJb766iupbN26dQgLC9N+74qR4nSLGRGRrml8zeH333/H8OHDlcqGDBmC33//XWudIiKioqVxcihbtiyCg4OVyg4fPgw7OzutdYqIiIqWxk9Iz58/Hz169EDr1q0hl8vx4MEDhISEYPPmzbroHxERFQGNRw49e/ZEeHg4GjduDCEEGjdujOvXr+PTTz/VRf+IiKgIFGpupcqVK2P69Ona7gsRERUTGo8csrKy4O/vDw8PD1hZWQEAgoODsWrVKq13joiIiobGyWHSpEk4ffo0fv75Z2nBCE9PT6xdu1brnSMioqKh8Wml33//HeHh4bCxsZEWqM57GI6IqKTQ1bNNwPvxfJPGIwchBMqUKaNUlpKSotaapERE9H7QODm0bNkSM2bMUCpbsGAB2rRpo7VOERFR0dI4OSxduhSnTp2Cvb09kpKSUK5cORw9ehQLFy7URf/eat68eZDJZBg3bpxUJoRAQEAAXFxcULp0afj6+uLWrVtF0j8ioveRxtcc7O3tce7cOYSFheHBgwdwdXVFw4YNpesP+hQWFoZffvkFH330kVL5woULsWTJEgQFBaFKlSqYPXs22rRpg4iICJ7+IiJSQ6F/ozds2BCffvopGjVqVCSJISUlBf369cO6detgY2MjlQshsGzZMkybNg09evRAzZo1sWnTJqSlpWHbtm167ycR0ftI45FDy5YtpVtYX2diYgJXV1f06tULrVu31krn3mTUqFHo1KkTWrdujdmzZ0vlUVFRiI+PR9u2bZX65uPjg7NnzyrNJktERPnT+E9+Ly8vhIeHo3r16mjfvj2qV6+Omzdvonr16pDJZOjRo8cbH4iLiYnBy5cvAQAKhQJLly7FihUrkJ2drXYfduzYgStXrmDevHkq38XHxwMAHB0dlcodHR2l7/KjUCiQlJSk9CIi+lBpPHK4dOkSDhw4AC8vL6ls0KBBmDx5MkJCQtCrVy/4+flh1KhR+dbv0aMHNmzYAGtra0yePBlHjx6FkZERIiMjsWLFirfGj4mJwdixY3H48GGYmpoWuN1/RzdCiHxHPHnmzZun0/uaiYjeJxqPHC5duoR69eopldWtW1da7KdVq1aIjY0tsP69e/dQq1YtAMDOnTuxf/9+HDlyBP/73//Uin/58mU8ffoU9evXh6GhIQwNDREaGorly5fD0NBQGjH8d5Tw9OlTldHE66ZMmYLExETpFRMTo1Z/iIhKIo2TQ/Xq1TF//nzk5uYCAHJzc7FgwQJUr14dABAbGwtra+uCAxoYIDMzEzdu3IClpSXkcjlsbW2RkpKiVvyPP/4Y4eHhuHbtmvRq0KAB+vXrh2vXrqFixYpwcnLCkSNHpDqZmZkIDQ1F06ZNC2zXxMQElpaWSi8iog+VxqeVNmzYgC5dumDJkiVwdnZGfHw8bGxssHfvXgBAdHQ05s6dW2B9Hx8f9OrVCwkJCejevTuAV6MJBwcHteJbWFigZs2aSmVmZmaws7OTyseNG4e5c+eicuXKqFy5MubOnYsyZcqgb9++mu4uEdEHSePkUL16ddy5cwfnzp1DXFwcXFxc0LhxYxgavmqqefPmaN68eYH1N2zYgB9//BFGRkaYOHEiACAyMhJjxowp5C6omjRpEtLT0+Hn54cXL16gUaNGOHz4MJ9xICJSU6HWczA0NIS3t3ehAtrY2GDOnDlKZZ06dSpUW3lOnDih9FkmkyEgIAABAQHv1C4R0YdK42sOsbGxGDJkCGrXro2KFSsqvdTB9SCIiIo/jUcO/fv3R5kyZfDdd9/BzMxM44CTJk3CjRs38PPPP0tLi3p6emLSpEkF3v5KRET6pXFyuHz5Mp49ewZjY+NCBeR6EERExZ/Gp5Vq1KiBuLi4QgfkehBERMWfxiOHHj16oHPnzvj6669VHirr0qXLW+vnrQfx+hTfXA+CiKh40Tg5rF69GgBUnmWQyWRqJYelS5eiS5cuSutBVKhQAX/++aemXSEiIh3RODlERUW9U8DitB4EERHlr1DPOWhDw4YN0bBhw6IKT0TvGV1OjOnv76+ztt9XGicHhUKBJUuW4MSJE3j27BmEENJ3V65ceWv9gtaDAIBjx45p2h0iItIBjc/lTJgwAVu2bEHHjh0RERGBQYMGIS0tDV27dlWrfrdu3dC1a1fp5eXlhYiICDRp0kTjzhMRkW5oPHLYu3cvzpw5Azc3N/j7+2Ps2LFo27Yt/Pz81BqajR07VqWsT58+mDJliqZdISIiHdF45JCamgo3NzcAgKmpKTIyMuDp6YnLly8XuhO1atXCmTNnCl2fiIi0S+ORQ+XKlXH9+nXUrl0btWrVwtKlS2FtbY2yZcuqVf/GjRtKn9PS0rB582ZUqlRJ064QEZGOaJwc5s6dKy3MM3fuXPTt2xfJyclYu3atWvXr1KkDmUwmXcg2MzNDvXr1sGnTJk27QkREOqJxcnj9SeaGDRvi7t27GtXPW0GOiIiKr0I955CamorIyEgkJycrlbdo0UIrnSIioqKlcXL47bffMGzYMGRmZqJ06dJSuUwmw/Pnz/Ot4+7uXuCzDa/7559/NO0OERHpgMbJYdKkSVi1ahUGDBigdp1ly5ZJ7//++2+sW7cOI0aMgFwux4MHD/DLL79g6NChmnaFiIh0ROPkkJiYiP79+2tU5/UH5GbPno3g4GBUqVJF6fv+/fvzWYfXcKoAIipKGj/n0L9/f/z++++FDhgZGQm5XK5UJpfLERkZWeg2iYhIu9QaOXTv3l26ZpCdnY1169Zh2bJlcHJyUtpu9+7db22rcePGGDlyJBYtWgQ7Ozs8e/YMkydPRqNGjQrRfSIi0gW1kkOdOnWUPtevX7/QATdu3IjPP/8cDg4O0hPWzZo1w7Zt2wrdJhERaZdayUGb56jLlSuHkydPIiYmBnFxcXBxcUH58uW11j4REb07ta85HD9+HKNHj873u6+//honTpzQKLCrqyu8vLyYGIiIiiG171ZatGhRgcmhU6dOWLRoEXx9ffP9vnnz5jh9+jQAoG7dugU+86DOehBERKR7aieH69evo23btvl+17p16zc+p+Dn5ye9HzdunPq9IyKiIqF2ckhMTFRa9e11ubm5SEpKKrBu3759pfeDBg3SoHtERFQU1L7m4O7ujgsXLuT73cWLF1WeXSjIxo0bcfPmTQCQpv6uX78+wsPD1e0K5s2bh4YNG8LCwgIODg7o1q0bIiIilLYRQiAgIAAuLi4oXbo0fH19cevWLbVjEBF9yNRODoMHD8bIkSMRHR2tVB4dHY1Ro0ZhyJAharUze/ZsODo6AgC+++47tGvXDl27dsWYMWPU7nRoaChGjRqF8+fP48iRI8jOzkbbtm2RmpoqbbNw4UIsWbIEK1euRFhYGJycnNCmTRuVyQKJiEiV2qeVxo8fj7CwMHh6esLLywvlypVDbGwsLl68iO7du2P8+PFqtfPs2TPY29sjIyMD586dwx9//AFDQ0Ol+ZfeJjg4WOlzYGAgHBwccPnyZbRo0QJCCCxbtgzTpk1Djx49AACbNm2Co6Mjtm3bhq+++krtWEREHyK1Rw4GBgbYsWMHgoOD0bx5c5ibm6NZs2YIDg7Gtm3b1Jp1FQBsbGxw9+5dHDp0CPXr14eJiQmysrLeaZ2HxMREAICtrS0AICoqCvHx8UoX0E1MTODj44OzZ8/m24ZCoUBSUpLSi4joQ6XxxHs+Pj7w8fEpdMCxY8dKT1znrf52+vRpeHp6Fqo9IQQmTJiA5s2bo2bNmgCA+Ph4AJBOX+VxdHTEgwcP8m1n3rx5Op3srrjjRH+kKR4zJVuhFvt5FxMmTEDnzp1RqlQpVKxYEQBQoUIFrFu3rlDtjR49Gjdu3JCeo3jdf0czQogCRzhTpkzBhAkTpM9JSUlwdXUtVJ+IiN53Gs/Kqg3u7u6Ii4vDzp07AbyaUsPd3V3jdr7++mvs27cPx48fV3rSOm9CwLwRRJ6nT5+qjCbymJiYwNLSUulFRPSh0ntyuHPnDjw9PdG7d2/pwbmQkBAMGzZM7TaEEBg9ejR2796NY8eOqSQWd3d3ODk54ciRI1JZZmYmQkND0bRpU+3sCBFRCaZWcmjcuLH0/l3PM/r5+WHs2LF49OgRjIyMAAC+vr75nhYqyKhRo7BlyxZs27YNFhYWiI+PR3x8PNLT0wG8Op00btw4zJ07F3v27MHNmzcxePBglClTRumBPCIiyp9a1xwiIiKQnZ0NQ0NDLF68+J0uFl27dg1Hjx4F8P+vCVhaWmr0/MGaNWsAQGUup8DAQAwePBjAq+VM09PT4efnhxcvXqBRo0Y4fPgwLCwsCt13IqIPhVrJwdfXF3Xq1EGVKlWQnp4uPTvwX+os9uPo6Ijo6GjpYjTwanU4TWZnLWgaj9fJZDIEBAQgICBA7XaJiOgVtZLDjh07sGvXLkRFReHAgQOoXbt2oQOOHDkSPXv2xKxZs5CTk4PDhw9jxowZBc74SkRE+qdWcjAxMZHO1b948eKdTiuNGTMGhoaGmDJlCnJycjBu3DiMGjUKnTt3LnSbRESkXRrfrfTjjz8iOTkZO3bswI8//ogdO3Zo9DRxQkICRowYgZs3byIlJQUhISG4c+cOKleurGlXiIhIRzRODteuXYOHhwcCAgIQEhKCmTNnonLlyrh69eob612+fBlyuRwODg5wdnbGuXPnsGbNGlStWhUPHjzAsWPHCr0TRESkXRo/IT1mzBhMnToVY8eOlcpWrFiBMWPG4NSpUwXW+/bbb9GnTx8MGjQI69evx6effgoXFxeEhoaibt26hes9ERHphMbJ4ebNmzh+/LhSmZ+fH77//vs31gsPD8eRI0dgaGiIOXPm4KeffsKlS5fg7OysaReIiEjHND6t5OTkhPPnzyuVXbx4UZqyoiCZmZkwNHyVi0qXLg0rKysmBiKiYkrjkcPUqVPRoUMHDBgwAG5uboiOjsbWrVuxYsWKN9bLzMzE8uXLpc8KhULpMwCNFvwhIiLd0Tg59O/fH3K5HJs3b5YmvNu3bx9atGjxxnqNGzfGnj17pM9eXl5Kn2UyGZMDEVExUagpu729veHt7a1RnRMnThQmFBERFYEimbKbiIiKNyYHIiJSweRAREQqmByIiEhFoS5Iz5s3D1OmTNF2X+gDwsXpiYo3tUcODx48kN4vWrRIeu/j46PdHhERUZFTOzm0b98eTk5O6NSpExQKBc6cOQOFQoHw8HBd9o+IiIqA2snh9u3biIyMxPjx4yGEgL+/P1xcXJCSkoKFCxciMjJSl/0kIiI9Uvuaw9atW+Hl5YXWrVvDxMQER48eRVZWFuzs7JCamorevXu/ddpuItIdXV3H4TWcD5PaI4eQkBD07NkTdnZ2SEtLw4IFCxAWFgZDQ0PMnDmTiYGIqARROzls3LgRN27cwMOHD2FsbIzU1FRMnjwZycnJ6N69O4KCgnTYTSIi0ieNn3MwMzODoaEhZs2ahZMnT8Lc3BwjR47EhQsXdNE/IiIqAoV6zmHjxo1Kn9u2bYu2bdtqpUNERFT0CvWEdPfu3aX3T5480VpniIioeHjn6TOMjY210Q8iIipGOLcSERGpKNHJYfXq1XB3d4epqSnq16+PU6dOFXWXiIjeCyU2OezcuRPjxo3DtGnTcPXqVXh7e6NDhw54+PBhUXeNiKjYK7HJYcmSJRg6dCiGDRsGT09PLFu2DK6urlizZk1Rd42IqNgrkckhMzMTly9fVrm9tm3btjh79mwR9YqI6P1RqOccirtnz54hJycHjo6OSuWOjo6Ij4/Pt45CoYBCoZA+JyYmAgCSkpIAABkZGTrpa177/6WreAXFLOnxPgQ8Rt/veLqMmRcv779CiLdXEiVQbGysACDOnj2rVD579mxRtWrVfOv4+/sLAHzxxRdfJf4VExPz1t+jJXLkULZsWZQqVUpllPD06VOV0USeKVOmYMKECdLn3NxcPH/+HHZ2dpDJZGrHTkpKgqurK2JiYmBpaVm4HdBASY9XFDEZ7/2OVxQx35d4QggkJyfDxcXlrduWyORgbGyM+vXr48iRI0pPcx85cgRdu3bNt46JiQlMTEyUyqytrQvdB0tLS739j/AhxCuKmIz3fscripjvQzwrKyu1tiuRyQEAJkyYgAEDBqBBgwZo0qQJfvnlFzx8+BAjRowo6q4RERV7JTY59O7dGwkJCZg1axbi4uJQs2ZNHDx4EHK5vKi7RkRU7JXY5AAAfn5+8PPz02tMExMT+Pv7q5yiYrz3Jybjvd/xiiJmSYwnE0Kde5qIiOhDUiIfgiMionfD5EBERCqYHIiISAWTAxERqWBy0CE3NzfIZDKl1+TJk/USW6FQoE6dOpDJZLh27ZrO4nTp0gUVKlSAqakpnJ2dMWDAADx+/FgnsaKjozF06FC4u7ujdOnSqFSpEvz9/ZGZmamTeAAwZ84cNG3aFGXKlHmnhyILos81R06ePInOnTvDxcUFMpkMe/fu1VksAJg3bx4aNmwICwsLODg4oFu3boiIiNBZvDVr1uCjjz6SHgxr0qQJDh06pLN4/zVv3jzIZDKMGzdOZzECAgJUfqc4OTnpJBaTg47lPWeR95o+fbpe4k6aNEmtR+TfVcuWLfHbb78hIiICu3btwv379/Hpp5/qJNadO3eQm5uLtWvX4tatW1i6dCl+/vlnTJ06VSfxgFcz/H722WcYOXKk1tvW95ojqampqF27NlauXKmT9v8rNDQUo0aNwvnz53HkyBFkZ2ejbdu2SE1N1Um88uXLY/78+bh06RIuXbqEVq1aoWvXrrh165ZO4r0uLCwMv/zyCz766COdx6pRo4bS75Tw8HDdBHr3ae6oIHK5XCxdulTvcQ8ePCiqVasmbt26JQCIq1ev6i32H3/8IWQymcjMzNRLvIULFwp3d3edxwkMDBRWVlZabdPLy0uMGDFCqaxatWpi8uTJWo2THwBiz549Oo/zuqdPnwoAIjQ0VG8xbWxsxPr163UaIzk5WVSuXFkcOXJE+Pj4iLFjx+oslr+/v6hdu7bO2n8dRw46tmDBAtjZ2aFOnTqYM2eOTk+BAMCTJ08wfPhwbN68GWXKlNFprP96/vw5tm7diqZNm8LIyEgvMRMTE2Fra6uXWNr0Ia45kjcNvj7+vXJycrBjxw6kpqaiSZMmOo01atQodOrUCa1bt9ZpnDx3796Fi4sL3N3d0adPH/zzzz86iVOin5AuamPHjkW9evVgY2ODixcvYsqUKYiKisL69et1Ek8IgcGDB2PEiBFo0KABoqOjdRLnv7777jusXLkSaWlpaNy4Mfbv36+XuPfv38eKFSuwePFivcTTpsKsOfI+E0JgwoQJaN68OWrWrKmzOOHh4WjSpAkyMjJgbm6OPXv2oHr16jqLt2PHDly5cgVhYWE6i/G6Ro0a4ddff0WVKlXw5MkTzJ49G02bNsWtW7dgZ2en3WB6GZ+UIOqs+xAWFpZv3f/9738CgHj27JlOYv7000+iadOmIjs7WwghRFRUVKFOK2m6j//++6+IiIgQhw8fFs2aNRMdO3YUubm5OosnxKs1Ozw8PMTQoUM12rfCxtP2aaXCrDmiTdDzaSU/Pz8hl8vVWkfgXSgUCnH37l0RFhYmJk+eLMqWLStu3bqlk1gPHz4UDg4O4tq1a1KZrk8r/VdKSopwdHQUixcv1nrbnD5DQ8+ePcOzZ8/euI2bmxtMTU1VymNjY1G+fHmcP38ejRo10nrMPn364M8//1RafyInJwelSpVCv379sGnTJq3Gy28fHz16BFdXV5w9e1bt4bym8R4/foyWLVuiUaNGCAoKgoGBZmdHC7N/QUFBGDduHF6+fKlRrIJkZmaiTJky+P3335WmlR87diyuXbuG0NBQrcQpiEwmw549e9CtWzedxgGAr7/+Gnv37sXJkyfh7u6u83iva926NSpVqoS1a9dqve29e/eie/fuKFWqlFSWk5MDmUwGAwMDKBQKpe90pU2bNvDw8MCaNWu02i5PK2mobNmyKFu2bKHqXr16FQDg7Oysk5jLly/H7Nmzpc+PHz9Gu3btsHPnTo2S0bvsY97fGq8vuarNeLGxsWjZsiXq16+PwMBAjRODpvF0pTBrjrxvhBD4+uuvsWfPHpw4cULviSGvD5oci5r4+OOPVe4U+uKLL1CtWjV89913ekkMCoUCt2/fhre3t9bbZnLQkXPnzuH8+fNo2bIlrKysEBYWhvHjx0vPBejCf9s1NzcHAFSqVAnly5fXeryLFy/i4sWLaN68OWxsbPDPP//g+++/R6VKlXRyEfDx48fw9fVFhQoV8OOPP+Lff/+VvtPVvd4PHz7E8+fP8fDhQ+Tk5EjPjHh4eEg/38LS95ojKSkpuHfvnvQ5KioK165dg62trU6OyVGjRmHbtm34448/YGFhIV1LsbKyQunSpbUeb+rUqejQoQNcXV2RnJyMHTt24MSJEwgODtZ6LACwsLBQuX5iZmYGOzs7nV1X+fbbb9G5c2dUqFABT58+xezZs5GUlIRBgwZpP5jWT1SREEKIy5cvi0aNGgkrKythamoqqlatKvz9/UVqaqre+lDYaw7qunHjhmjZsqWwtbUVJiYmws3NTYwYMUI8evRIJ/ECAwMLvEagK4MGDco33vHjx7XS/qpVq4RcLhfGxsaiXr16Or3N8/jx4/nuy6BBg3QSr6B/q8DAQJ3EGzJkiPSztLe3Fx9//LE4fPiwTmIVRNfXHHr37i2cnZ2FkZGRcHFxET169NDZNRVecyAiIhV8zoGIiFQwORARkQomByIiUsHkQEREKpgciIhIBZMDERGpYHIgIiIVTA703unQoQNWr15d4Pd504YXR0FBQahTp06h6586dUonT7sT/ReTA+mUr68vTExMYG5uDhsbG/j4+Lzz9MaHDh2Cn58fAODEiRMqy3f269dPZ2sinDhxAjKZDObm5rCwsIBcLseUKVOQm5ur9VjR0dGQyWRKk/15e3vj0aNHWo8FAIMHD37nJS5lMhnKlCkDc3NzODo6ok+fPnjy5Ak6dOgAc3NzmJubw9jYGIaGhtLnvGlIfH19IZPJcPToUaU2Fy1apPPlN0kVkwPp3IIFC5CSkoK4uDjUq1dPLzOB6pKVlRVSUlKQnJyM4OBgBAUFISgoqKi7VWycPXsWKSkpCA8PR1xcHMaPH49Dhw4hJSUFKSkpmDp1Kj755BPpc0pKilS3atWqCAwMVGovKCgI1apV0/dufPCYHEhvTE1NMXToUDx+/BgJCQl48uQJevXqBXt7e1SoUAHTpk1DdnY2gFerynXv3h22trawtrZG/fr18eDBAwCv/sJctmwZEhIS0KFDByQmJkp/gZ46dUrl1M2b4uSNPNavXw9XV1fY2dlh0qRJau+Tp6cnmjdvjsuXL0tl9+/fR+fOnWFvbw+5XI7Zs2cXOLJYsmQJKleuDAsLC1SqVElpfWcvLy8Ar9ZGNjc3x9atW5VGSrt370alSpWU2rtw4QKsra2RkZEBADh69Ci8vLxgbW2NGjVqYN++ffn2Y/ny5di6dStWr14Nc3Nz1KhRAwCQnJyML7/8Es7OznB2dsaIESPUXgPawcEBn332mUZrHPfp0weHDh2SVo27cOEChBAazSpM2sHkQHqTlpaG9evXQy6Xw87ODn379oWRkRGioqJw6tQp7N27FwsXLgQA/Pjjj8jOzsajR4+QkJCADRs2wMLCQqk9Ozs7HDp0SPpLPiUlJd+pi98UB3j1CzA8PBx3797F6dOnsWrVKpw4cUKtfQoPD8fJkydRpUoVAEB6ejo+/vhjtGrVCrGxsTh16hR27Nih8tdwHrlcjmPHjiEpKQnr16/HxIkTcebMGQCvZr0FXq2RkZKSgn79+inV/eSTT/Dy5UtpewDYvHkzPvvsM5iamuLGjRv47LPPMH/+fDx//hxr167FgAEDEBERodKPMWPGoF+/fvDz80NKSgpu3boF4NX6Evfu3cPNmzcRHh6OO3fuYPz48Wr9bOLj4/Hbb7+hXr16am0PANbW1mjfvj22b98OANi4cSO++OILteuT9jA5kM5NmTIF1tbWqFixIu7cuYN9+/YhNjYWx44dw+LFi2Fubg65XI5p06ZJp2eMjIyQkJCAu3fvolSpUqhTp06h1h5+Wxzg1Zz/8+bNg6mpKTw9PdG0aVOlkcB/JSYmwtraGqVLl8ZHH32ETp06SddA9u/fDxsbG4wfPx7GxsaoUKECxo4di23btuXbVs+ePeHq6gqZTIaWLVuiXbt2aicmY2Nj9O7dG5s3bwYAZGVlYefOnRg4cCAAYO3atRg8eDBatWoFAwMDNG/eHJ988gl+++03tdrPzc3Ftm3bMG/ePNjZ2aFs2bKYO3cufv311zdeY/H29oaNjQ28vLxQqVIlLF26VK14eb744gsEBgYiPT0du3btwoABAzSqT9rB9RxI5+bNm6dyMfHChQswNTVVWoehYsWK0sXWiRMnIiMjA7169UJiYiJ69+6N+fPna7wOwKNHj94YBwAsLS1RpkwZ6bOZmRmSk5MLbNPKygovX75ETk4ONm7ciIULFyItLQ1WVlaIjo7GzZs3lS6S5+bmwtXVNd+2tm7disWLFyMqKgpCCKSlpWm0KM7AgQPRsWNH/PTTTwgODoaFhQWaN28O4NUF7WPHjimNWrKzs2FpaalW2//++y8UCgXc3NyksooVK0KhUODZs2dwcHDIt96pU6fe6Y6sjz/+GMOGDcMPP/yAJk2a6GytDnozjhyoSJQvXx4ZGRl48uSJVBYVFSXdpmlubo4FCxYgIiIC586dQ0hISL63r75tJbi3xXkXpUqVwvDhw1G9enUEBAQAAFxdXVG/fn28fPlSeiUlJUmnaV738OFDDBo0CAsXLsS///6Lly9fomPHjtJqeuqscte4cWOULVsW+/fvx+bNm9G/f39pmVhXV1eMHTtWqS8pKSkFLif533j29vYwNjZGdHS0VBYVFQUTExOdrqRnYGCAgQMHYv78+TylVISYHKhIlCtXDi1btsS3336L1NRUPHz4EHPnzpVWtNq/fz8iIyORm5sLS0tLGBkZwdBQdaDr6OiI5ORkpVXhNImjDTNmzMDPP/+M2NhYfPLJJ3jy5AlWr16NjIwM5OTkICIiIt9TRSkpKRBCwMHBAQYGBjh48CAOHz4sfW9vbw8DAwPcv3//jfEHDBiAlStX4sCBA9IpJQD46quvEBgYiOPHjyMnJwcKhQLnzp3D7du3823H0dER//zzj/TZwMAAffv2xbRp0/D8+XMkJCRg2rRpGDBgQKGWZ9XE+PHjcfjwYXTu3FmncahgTA5UZLZt24b09HTI5XI0a9YMnTp1ku4UunfvHtq3bw8LCwtUr14dTZo0wciRI1XaqFq1KoYOHQpPT09YW1vj9OnTGsXRhgYNGqBFixaYM2cOzM3NcfToUYSEhMDNzU268J63RObrqlevjmnTpqFVq1aws7PDzp070aVLF+n70qVLw9/fHx06dIC1tXWB1y0GDBiA0NBQ1K1bFx4eHlJ53bp1sX37dkyfPh329vYoV64cZsyYUeCaysOGDUNsbCxsbGzw0UcfAQB++uknuLm5oXr16qhRowY8PDywZMmSd/lxqcXW1hatW7eGkZGRzmNR/rgSHBERqeDIgYiIVDA5EBGRCiYHIiJSweRAREQqmByIiEgFkwMREalgciAiIhVMDkREpILJgYiIVDA5EBGRCiYHIiJSweRAREQq/h99f2K9DIfQRQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ptm_pose import plots as pose_plots\n", + "\n", + "pose_plots.location_of_altered_flanking_residues(altered_flanks)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can even create the same plot for specific modification types or residues, as well as label the specific residue changes that occur:" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Sam\\OneDrive\\Documents\\GradSchool\\Research\\Splicing\\PTM_POSE\\ptm_pose\\plots.py:437: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.\n", + " ax[0].set_xticklabels(['N-term\\nonly', 'C-term\\nonly'])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAElCAYAAADjk4nIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA990lEQVR4nO3dfVyN9/8H8NdJd3SqU+m+41QKhbmJFkplJjdD2DATzc2GRrQxZGvMXe7HsEZqc5dtbmZuGlLuxiQhQ4lSukOoTnS6+/z+8Ov6OrpxzumcivN+Ph7nsa7PuT7X+33l2rvrXOe6Ph8eY4yBEEKI2tBo7AQIIYQ0LCr8hBCiZqjwE0KImqHCTwghakbhwp+ZmYmnT58CACQSCdauXYsNGzagvLxcWbkRQghRAU1FOw4fPhzh4eEQCASYO3cuTpw4AS0tLaSkpGDDhg3KzJEQQogS8RS9ndPIyAiPHz8Gj8eDlZUVzp8/Dz6fjw4dOiAnJ0fZeRJCCFEShc/4NTQ0UFpaiuTkZBgYGEAkEoExBrFYrMz8CCGEKJnChd/T0xMjR45Efn4+hg0bBgBITU2FmZmZ0pJTlcrKSmRnZ0NfXx88Hq+x0yGEkHpjjKGoqAhWVlbQ0Kj761uFC394eDhWrVoFLS0tzJkzBwCQkpKCGTNmKLrJBpOdnQ2hUNjYaRBCiNJlZmbCxsamznUUvsb/JisoKIBAIEBmZiYMDAwaOx1CCKm3wsJCCIVCPH36FIaGhnWuK/cZ//r161+7TlM/66+6vGNgYCB34V+4cKEqUiJNWEhISGOnQIjMZLl8LXfhnzlzJhwdHWFtbY2aPizweLwmX/gJIUSdyV34p06dit9//x2Ojo749NNPMWTIEGhpaakiN0IIISog95O7GzduxP379zFu3Dhs2bIFNjY2CAwMxNWrV1WRHyGEECVTaMgGbW1tjBw5EtHR0bh8+TK0tLTg4uKCU6dOybWdZcuWoXv37tDX14eZmRl8fX2RnJxcZ5+4uDjweLxqr1u3bimyK4QQonYUvp0TAI4dO4Zt27bh+PHjGDNmDNq2bStX/1OnTiEgIADdu3dHeXk5goOD0a9fP9y4cQN6enp19q16cKyKqampQvtACCHqRu7Cf+fOHURGRuLXX3+FUCjEp59+ii1btkBfX1/u4NHR0VLLERERMDMzQ0JCAnr37l1nXzMzMwgEArljEkKIupO78Ds6OqJdu3b44osvuDP82NhYqXWGDBmiUDIFBQUAAGNj49eu26VLF5SUlMDZ2RkLFiyAt7d3retKJBJIJBJuubCwUKH8CCHkbSB34W/VqhWeP3+OTZs21fg+j8dTqPAzxhAUFAR3d3d06NCh1vUsLS3x888/w8XFBRKJBNu3b8d7772HuLi4Wj8lLFu2jO6/J4SQ/9dkntwNCAjA4cOHcfbs2dc+bvyqwYMHg8fj4eDBgzW+X9MZv1AoREFBAT3ARV6LHuAib4LCwkIYGhrKVNfkvqunY8eOCidWm+nTp+PgwYOIjY2Vu+gDgJubG27fvl3r+zo6OtxTuoo8rUsIIW8TuS/1pKenKy04YwzTp0/H/v37ERcXBzs7O4W2k5iYCEtLS6XlRQghbzO5C78yhzEOCAjArl278Oeff0JfXx+5ubkAAENDQzRv3hwAMG/ePGRlZeHXX38FAKxbtw62trZo3749SktLsWPHDuzduxd79+5VWl6EEPI2k7vwSyQSBAUF1bnOmjVrZNrW5s2bAQBeXl5S7REREfD39wcA5OTkICMjg3uvtLQUX331FbKystC8eXO0b98ehw8fxsCBA2XfCUIIUWNyF37GGJ48eaKU4LJ8rxwZGSm1PGfOHG78f0IIIfKTu/Dr6uoiIiJCFbkQQghpAPUasoEQonp0C7H6UfUtxHLfztmqVStV5EEIIaSByF344+PjsWDBAgwdOhSLFi1CWVmZKvIihBCiInIX/qCgIOzbtw9t2rTB7t27MW/ePFXkRQghREXkLvx//fUXoqOjsXLlShw+fBgHDhxQQVqEEEJURe7CX1hYyF3nt7e3V9qtnYQQQhqGQnf1FBUVcffgV1ZWSi0DoLFwCCGkCZO78IvFYqkJUBhj3DJjDDweDxUVFcrKjxBCiJLJXfjT0tJUkQchhJAGInfhF4lEqsiDEEJIA5H7y11CCCFvNir8hBCiZqjwE0KImpGr8Lu5uXE/08BRhBDyZpKr8CcnJ6O8vBwAsHr1apUkRAghRLXkuqvHy8sLnTt3Rps2bfD8+XMMHz68xvX27dunlOQIIYQon1yFPyoqCnv37kVaWhoOHz6MTp06qSovQgghKiJX4dfR0cGYMWMAAE+ePFH5ZAGEEEKUT+EZuFatWoWioiIcPnwY9+/fh42NDQYOHEjj9BBCSBOncOG/cuUKfHx8YGRkBDs7O6SnpyMwMBDR0dHo0qWLMnMkhBCiRArfxz9jxgzMnz8ft27dwtGjR3Hz5k0sWLAAM2bMUGZ+hBBClEzhwn/9+nV88cUXUm3Tpk3D9evX650UIYQQ1VG48FtYWODChQtSbRcvXoSFhUW9kyKEEKI6Cl/jnz9/PgYMGAA/Pz/Y2toiPT0dO3fuxIYNG5SZHyGEECVT+Ix/7NixOHz4MMrKyhAbG4uysjIcPHgQfn5+ysyPEEKIkil8xg8AHh4e8PDwUFYuhBBCGgCNzkkIIWqGCj8hhKgZKvyEEKJmmkTh37RpE+zs7KCrqwsXFxecOXOmzvVPnToFFxcX6Orqwt7eHj/99FMDZUoIIW++ehX+ZcuW1TuBPXv2YObMmQgODkZiYiI8PDwwYMAAZGRk1Lh+WloaBg4cCA8PDyQmJmL+/PmYMWMG9u7dW+9cCCFEHchd+O/du8f9vHLlSu5nT09PhRJYs2YNJk6ciEmTJsHJyQnr1q2DUCjE5s2ba1z/p59+QqtWrbBu3To4OTlh0qRJmDBhAlatWqVQfEIIUTdy387Zv39/PHnyBC4uLpBIJDh37hy6deuGpKQkuYOXlpYiISEBc+fOlWrv168f/vnnnxr7nD9/Hv369ZNq8/HxQXh4OMrKyqClpVWtj0QigUQi4ZYLCgoAAIWFhXLnXFJSIncf8mZT5DhRJjrm1I8ix1xVH8bY61dmCigoKGDHjx9nzZs3Z++99x4zNjZmWlpaLDQ0lCUnJ8u8naysLAaAnTt3Tqp9yZIlrE2bNjX2cXR0ZEuWLJFqO3fuHAPAsrOza+wTEhLCANCLXvSi11v/yszMfG3tlfuMf+fOnXB1dUXfvn2ho6ODEydOoKysDCYmJiguLsaoUaOQmJgo1zZ5PJ7UMmOsWtvr1q+pvcq8efMQFBTELVdWVuLx48cwMTGpMw75n8LCQgiFQmRmZtKcC0Tl6HiTH2MMRUVFsLKyeu26chf+mJgYhIaGIisrC8+ePUNoaCg8PDygqamJhQsXYuHChTJvq2XLlmjWrBlyc3Ol2h88eABzc/Ma+1hYWNS4vqamJkxMTGrso6OjAx0dHak2gUAgc57kfwwMDOh/RNJg6HiTj6GhoUzryf3l7rZt23Dt2jVkZGRAW1sbxcXFmDt3LoqKijBs2DBERkbKvC1tbW24uLjg+PHjUu3Hjx9Hz549a+zTo0ePausfO3YM3bp1q/H6PiGEkFfIci2+NgKBQOrnv//+m02ZMkWubURFRTEtLS0WHh7Obty4wWbOnMn09PRYeno6Y4yxuXPnMj8/P279u3fvshYtWrBZs2axGzdusPDwcKalpcX++OOP+uwKeY2CggIGgBUUFDR2KkQN0PGmWvUapG3btm1Sy/369at2x83rjBo1Cvn5+Vi0aBFycnLQoUMHHDlyBCKRCACQk5MjdU+/nZ0djhw5glmzZmHjxo2wsrLC+vXrMWLEiPrsCnkNHR0dhISEVLtkRogq0PGmWjzGZLn35/VKS0uhra2tjE0RQghRIaUVfkIIIW+GJjFWDyGEkIZDhZ8QQtQMFX5CCFEzVPjfMv7+/uDxeFi+fLlU+4EDB+p8Svm7775D586dVZwdeVvl5uZi+vTpsLe3h46ODoRCIQYPHoyYmJga109PTwePx8OVK1caNlECgAr/W0lXVxehoaF48uRJg8cuKytr8JikcaWnp8PFxQUnT57EihUrkJSUhOjoaHh7eyMgIEDl8emYkx8V/rdQ3759YWFhIfN8CZGRkVi4cCGuXr0KHo8HHo/HPYFdUFCAzz77DGZmZjAwMECfPn1w9epVrm/VJ4Vt27ZxZ3vs/8daCgsLwwcffIAWLVrAyckJ58+fR2pqKry8vKCnp4cePXrgzp07qvgVkAY0bdo08Hg8XLx4ER9++CHatGmD9u3bIygoCBcuXKixj52dHQCgS5cu4PF48PLy4t6LiIiAk5MTdHV10a5dO2zatIl7r+qTwm+//QYvLy/o6upix44d8Pf3h6+vL5YuXQpzc3MIBAIsXLgQ5eXlmD17NoyNjWFjY1Pt2SO11aiPjxGlGz9+PBs6dCjbt28f09XV5Ubq279/P6vtn/vZs2fsyy+/ZO3bt2c5OTksJyeHPXv2jFVWVrJevXqxwYMHs/j4eJaSksK+/PJLZmJiwvLz8xljL0Y+1dPTYz4+Puzy5cvs6tWrrLKykgFg1tbWbM+ePSw5OZn5+voyW1tb1qdPHxYdHc1u3LjB3NzcWP/+/Rvsd0OULz8/n/F4PLZ06VK5+l28eJEBYCdOnGA5OTnc8fTzzz8zS0tLtnfvXnb37l22d+9eZmxszCIjIxljjKWlpTEAzNbWllsnKyuLjR8/nunr67OAgAB269YtFh4ezgAwHx8ftmTJEpaSksK+//57pqWlxTIyMpT+e3jTUOF/y1QVfsYYc3NzYxMmTGCM1V34GXtRwDt16iTVFhMTwwwMDFhJSYlUe+vWrVlYWBjXT0tLiz148EBqHQBswYIF3PL58+cZABYeHs617d69m+nq6sq9j6Tp+PfffxkAtm/fPrn6VRXwxMREqXahUMh27dol1fb999+zHj16SPVbt26d1Drjx49nIpGIVVRUcG1t27ZlHh4e3HJ5eTnT09Nju3fvlivXtxFd6nmLhYaG4pdffsGNGzek2vl8PveaMmVKrf0TEhIgFothYmIi1SctLU3qEo1IJIKpqWm1/u+88w73c9Voqx07dpRqKykpafSJToji2GuGRAeAKVOmSB0/tXn48CEyMzMxceJEqfUXL15c7ZJgt27dqvVv3749NDT+V9LMzc2ljrdmzZrBxMQEDx48kHn/3lb1GquHNG29e/eGj48P5s+fD39/f6795Tsp6hrytrKyEpaWloiLi6v23svDWuvp6dXY/+XRUqsKQ01tlZWVde0GacIcHR3B4/Fw8+ZN+Pr61rjOokWL8NVXX712W1XHwZYtW/Duu+9KvdesWTOp5ZqOuVdH5+XxeDW20fFGhf+tt3z5cnTu3Blt2rTh2hwcHKqtp62tjYqKCqm2rl27Ijc3F5qamrC1tVV1quQNZGxsDB8fH2zcuBEzZsyoVpCfPn0KMzMzmJmZSbVXjev18jFnbm4Oa2tr3L17F5988onqk1djdKnnLdexY0d88skn2LBhQ53r2draIi0tDVeuXMGjR48gkUjQt29f9OjRA76+vvj777+Rnp6Of/75BwsWLMClS5caaA9IU7dp0yZUVFTA1dUVe/fuxe3bt3Hz5k2sX78ePXr0qLGPmZkZmjdvjujoaOTl5XHzYH/33XdYtmwZfvjhB6SkpCApKQkRERFYs2ZNQ+7SW48Kvxr4/vvvXzsB84gRI9C/f394e3vD1NQUu3fvBo/Hw5EjR9C7d29MmDABbdq0wejRo5Genl7rDGlE/djZ2eHy5cvw9vbGl19+iQ4dOuD9999HTEwMNm/eXGMfTU1NrF+/HmFhYbCyssLQoUMBAJMmTcLWrVsRGRmJjh07wtPTE5GRkdztn0Q5aHROQghRM3TGTwghaoYKPyGEqBkq/IQQomao8BNCiJqhwk8UQsM4k4ZEx5tyUeEnhBA1Q4WfEELUDBV+NSWRSDBjxgyYmZlBV1cX7u7uiI+PBwDExcWBx+MhJiYG3bp1Q4sWLdCzZ08kJyfXuK3Tp09DS0sLubm5Uu1ffvklevfurfJ9IU0fHW9NCxV+NTVnzhzs3bsXv/zyCy5fvgwHBwf4+Pjg8ePH3DrBwcFYvXo1Ll26BE1NTUyYMKHGbfXu3Rv29vbYvn0711ZeXo4dO3bg008/Vfm+kKaPjrcmpnFHhSaNQSwWMy0tLbZz506urbS0lFlZWbEVK1aw2NhYbpKMKocPH2YA2PPnzxlj1cfvDw0NZU5OTtzygQMHGJ/PZ2KxWPU7RJo0Ot6aHjrjV0N37txBWVkZevXqxbVpaWnB1dUVN2/e5NpeHk/f0tISAGody9zf3x+pqancVHvbtm3DyJEjax2ymagPOt6aHhqWWQ2xWibPYP8/V24VecbONzMzw+DBgxEREQF7e3scOXKkxnH8ifqh463poTN+NeTg4ABtbW2cPXuWaysrK8OlS5fg5OSk8HYnTZqEqKgohIWFoXXr1lJneER90fHW9FDhV0N6enqYOnUqZs+ejejoaNy4cQOTJ0/Gs2fPMHHiRIW36+PjA0NDQyxevJi+ZCMcOt6aHir8amr58uUYMWIE/Pz80LVrV6SmpuLvv/+GkZGRwtvU0NCAv78/KioqMG7cOCVmS950dLw1LTQeP1GqyZMnIy8vDwcPHmzsVIgaoONNMfTlLlGKgoICxMfHY+fOnfjzzz8bOx3ylqPjrX6o8BOlGDp0KC5evIjPP/8c77//fmOnQ95ydLzVD13qIYQQNUNf7hJCiJqhwk8IIWqGCj8hhKgZKvyEEKJmqPATQoiaocJPmrz27dvj0KFDjRL7r7/+gq2tLfh8Pg4cOCB3/7i4OAgEAqXnJS+BQNBog5gtXboUH3/8caPEJjWjwk9q5eXlhXXr1jV6zP/++w8ffPBBg+ZRJSgoCIsWLYJYLIavr2+t6y1atAg8Hg9Hjx6tc3uN8Tt9ncjISDRr1gx8Ph/6+vpwcHDA2rVrlbb9+fPnY/fu3UrbHqk/KvyE1CEtLU1qnPiaMMYQEREBY2NjhIeHqzSf8vJylWy3Y8eOEIvFKCoqwq+//org4GCcPHlSJbFI46PCTxRy6dIl9OrVCwKBAM7OztXO6Hbv3o1OnTrBwMAAIpEIkZGRAIDExES4u7vD2NgYpqam+Pjjj5Gfnw/gxZypZ86cwddffw0+n48BAwYAAGxtbaUus+zYsQNOTk4QCARwd3dHYmIi956XlxfmzZsHHx8f8Pl8dO3aFUlJSbXuR15eHkaOHAlTU1O0atUKwcHBKC8vR35+Pvh8PioqKtCzZ0/w+XxIJJIatxETE4OsrCyEhYXh4MGDePjwYY3r1bZ/YrEYX3zxBVq1agUzMzOMGzcOBQUFAID09HTweDxERETAwcEB1tbWAIDLly/D29sbxsbGcHBwwJYtW7g4lZWV+Oabb2Bubg4rKyts3Lix1v2vSc+ePdG+fXskJCRwba+Lt2DBAql4L19a+u6776Q+LaWmpsLHxwfGxsZo3bq11CegyMhIdO7cGd9//z3MzMxgbm7e5D4hvRUabe4v0uR5enqytWvXVmt/8uQJMzExYevXr2elpaUsLi6O6enpsbNnzzLGGDt48CAzNjZmMTExrKKiguXl5bHLly8zxhi7cuUKO3PmDCstLWW5ubnMw8ODTZo0qc6YIpGI7d+/nzHG2OnTpxmfz2enTp1ipaWlbO3atczU1JQ9ffqU629lZcUuX77MysrK2OTJk5mnp2et+9inTx82ZswYVlRUxNLT05mzszNbsmQJ9z4AlpiYWOfvafTo0WzYsGGssrKS2drastWrV3PvxcbGMkNDwzr376OPPmIff/wxe/LkCROLxWz06NFs7NixjDHG0tLSGADm6+vLnjx5woqLi1lOTg4zNjZme/bsYeXl5SwpKYlZWlpyUxeGh4czGxsbdvPmTVZcXMz8/f2ZhoYGi42NrTH/iIgIblrDyspKdurUKaarq8sOHDjAGGOvjbd161Zma2vLkpOT2bNnz9iECROk4oWEhLChQ4cyxhgrKytjbdu2ZbNnz2bPnz9nV69eZZaWlty0jBEREUxTU5OtWLGClZaWstjYWNasWTOWmppa578BkQ8VflKr2gr/jh07WLt27aTaJk+ezCZPnswYY6x///5s4cKFMsXYv38/c3BwqDPmy4V/0qRJbMqUKVLvt2nThiscnp6e7Ouvv+beO3v2LOPz+TXGvn//PgPAcnJyuLadO3cyR0dHbvl1hf/x48dMR0eHK5ILFixgzs7O3PuvK/wPHjxgGhoaLD8/n2tLSUlhWlparLy8nCv8L+ewYsUK5uvrK5XH/Pnz2YQJExhjL/6YhYaGcu/l5uYyAHUWfg0NDWZoaMi0tbUZALZgwQJWWVkpc7yVK1dK7dPL8V4u/GfPnmUGBgZMIpFw6y9ZsoS9//77XC7m5uZSsRwcHNgff/xRY+5EMXSph8jt/v37sLW1lWqzt7fH/fv3AQD37t2Do6NjjX1TU1MxdOhQWFlZwcDAAGPHjsWjR4/qFdvOzo6LDQAWFhbcz3p6ehCLxbVuS1dXV2r9l/dDFjt27ICBgQEGDhwIABg3bhxu3LjBzQX7Ounp6aisrIS9vT0EAgEEAgG6d+8ODQ0N5Obmcuu1atVKqs+RI0e49QUCAdavX4+cnBwAQHZ2NkQiEbe+ubk5dHR06syjY8eOePr0KYqKivDNN98gJiaG+z5BlnhCoZDblqmpKXR1dWuMc//+fVhZWUFbW5tre/V3/vK/B/Di37CoqKjO/Il8qPATudnY2CA9PV2qLS0tDTY2NgAAkUiE1NTUGvtOmTIF1tbWuHHjBgoLC7Fjxw5uTlbgxeQa8sZOT0/nYsu7HyUlJcjLy6txP2QRHh6OgoICCIVCWFhYwMPDAzwer9YveV/dP6FQCA0NDWRnZ+Pp06fcq6SkhLue/2o/oVCIYcOGSa1fVFSEI0eOAACsrKxw7949bv0HDx7U+v3Eq7S1tbFw4UI8f/4cmzZtkjleZmYmt42HDx+ipKSkxu3b2NggOzsbZWVlXJu8v3NSf1T4SZ3Ky8tRUlLCvSQSCQYOHIgHDx5g06ZNKC8vx5kzZ7Br1y5uFqTPP/8cP/zwA06dOoXKyko8ePCA+wK2sLAQ+vr6MDAwQGZmJlauXCkVz9zcHHfu3Kk1n7Fjx2Lnzp04d+4cysvLsWHDBuTn53Nn3PKwtraGt7c3vvrqKxQXFyMjIwNLly7F+PHjZeqfkJCAq1ev4vjx47hy5Qr3CgsLQ1RUFIqLi6v1eXX/LCws4Ovriy+++IL75JObm4v9+/fXGtfPzw8nT57E3r17UVZWhrKyMly5cgXx8fEAgI8//hgbN25EcnIynj9/jnnz5r32D+rLeDwegoODsXTpUjx79kymeJs2bUJqaiqeP3+O+fPn1xrP1dUV5ubm+PbbbyGRSHD9+nX8+OOPMv/OiXJQ4Sd1mj17Npo3b8692rZtCyMjIxw9ehQ7duyAiYkJPvvsM2zevBnu7u4AAF9fX6xZswYBAQEwNDRE9+7duTtr1qxZg0OHDsHAwABDhw7FiBEjpOLNnDkTJ06cgEAgqPHefU9PT2zYsAETJ06EiYkJoqKicPToUYUfktq1axeeP38OkUiEXr16YdCgQZgzZ45MfcPDw+Hl5YXevXvDwsKCe/n7+0NfXx979uyp1qem/YuMjOQu8RgYGMDDw0PqjppXWVtb4++//0ZYWBgsLS1hbm6OgIAAFBYWAgAmTJiAsWPHwsPDA/b29ujSpQv09fXl+r0MHz4cxsbG+PHHH2WKN3r0aPTs2ROtW7dG586doaurW+PlJS0tLRw6dAgJCQmwsLDAkCFDEBQUhDFjxsiVH6kfGo+fEKJU2dnZsLa2RmZmJl3CaaLojJ8QUi/l5eU4cOAAysrK8OTJE8yaNQtubm5U9JswKvyEkHphjGH58uUwMTGBvb09ioqKsGvXrsZOi9SBLvUQQoiaoTN+QghRM1T4CSFEzVDhJ4QQNUOFnxBC1AwVfkIIUTNU+AkhRM1Q4SeEEDVDhZ8QQtQMFX5CCFEzVPgJIUTNUOEnhBA1Q4WfEELUDBV+QghRM1T4CSFEzVDhJ4QQNUOFnxBC1IxmYyfQGCorK5GdnQ19fX3weLzGTocQQuqNMYaioiJYWVlBQ6Puc3q1LPzZ2dkQCoWNnQYhhCidLJPcq2Xh19fXB/DiF2RgYNDI2RBCSP0VFhZCKBRy9a0ualn4qy7vGBgYUOEnhLxVZLl8TV/uEkKImqHCTwghakYtL/W8auHChSrbdkhIiMq2TQghiqAzfkIIUTNU+AkhRM1Q4SeEEDVDhZ8QQtSMTF/uLlq0SKaNffvtt/VKhhBCiOrJVPgTExO5n8vLyxEdHQ1HR0eIRCJkZGQgJSUFAwYMUFmShBBClEemwr9//37u588++ww//vgjPv/8c65ty5YtiI+PV352hBBClE7ua/y///47Jk+eLNU2YcIE/P7770pLihBCiOrIXfhbtmyJ6OhoqbZjx47BxMREaUkRQghRHbmf3F2+fDmGDx+Ovn37QiQS4d69e4iJicH27dtVkR8hhBAlk/uMf8SIEUhKSoKbmxsYY3Bzc8PVq1fx4YcfqiI/QgghSqbQWD2Ojo5YsGCBsnMhhBDSAOQ+4y8rK0NISAgcHBxgaGgIAIiOjsbGjRuVnhwhhBDlk7vwz5kzB2fPnsVPP/3EDfjv5OSEsLAwpSdHCCFE+eS+1PP7778jKSkJRkZG3IS+VQ9yEUIIafrkPuNnjKFFixZSbWKxWKZ5HgkhhDQ+uQu/t7c3vvnmG6m20NBQvP/++0pLihBCiOrIfaln7dq1GDJkCExNTVFYWAhra2u0atUKf/31lyryI4QQomRyF35TU1OcP38e8fHxuHfvHoRCIbp3785d7yeEENK0KTznbvfu3dG9e3dl5kIIIaQByF34vb29uds4X6ajowOhUIiRI0eib9++SkmOEEKI8sl9fcbV1RVJSUlwdnZG//794ezsjOvXr8PZ2Rk8Hg/Dhw+v82GuzMxMPH36FAAgkUiwdu1abNiwAeXl5QrvBCGEENnJfcZ/6dIlHD58GK6urlzb+PHjMXfuXMTExGDkyJGYNm0aAgICauw/fPhwhIeHQyAQYO7cuThx4gS0tLSQkpKCDRs2KL4nhBBCZMJjjDF5OhgaGiI/Px+amv/7m1FeXg5jY2MUFhaCMQZ9fX2IxeIa+xsZGeHx48fg8XiwsrLC+fPnwefz0aFDB+Tk5NRvb2RUWFgIQ0NDFBQUwMDAAAsXLlRZrJCQEJVtmxBCqrxa1+oi96UeZ2dnLF++HJWVlQCAyspKhIaGwtnZGQCQlZUFgUBQe0ANDZSWluLatWswMDCASCSCsbFxrX8oCCGEKJfcl3rCw8MxZMgQrFmzBpaWlsjNzYWRkREOHDgAAEhPT8fSpUtr7e/p6YmRI0ciPz8fw4YNAwCkpqbCzMxMsT0ghBAiF7kLv7OzM27duoXz588jJycHVlZWcHNz4y79uLu7w93dvdb+4eHhWLVqFbS0tDB79mwAQEpKCmbMmKHgLhBCCJGHQvfxa2pqwsPDQ6GARkZGWLJkiVTboEGD5NrGsmXLsG/fPty6dQvNmzdHz549ERoairZt2yqUEyGEqBO5r/FnZWVhwoQJ6NSpE+zt7aVeslDGeP6nTp1CQEAALly4gOPHj6O8vBz9+vVDcXGxvLtDCCFqR+4z/rFjx6JFixb4+uuvoaenJ3fAOXPm4Nq1a/jpp5+46RqdnJwwZ86cWm8BfdWrk71HRETAzMwMCQkJ6N27t9w5EUKIOpG78CckJODRo0fQ1tZWKKAqxvMvKCgAABgbGyu8DUIIURdyF/727dsjJycHIpFIoYDKHs+fMYagoCC4u7ujQ4cONa4jkUggkUi45cLCQoViEULI20Duwj98+HAMHjwY06dPh7m5udR7Q4YMeW3/qvH8V6xYwbXVZzz/L774AteuXcPZs2drXWfZsmUqfUhLXvTAGCGNT1X/H9b2/2BDx6uL3IV/06ZNAFDtXn0ejydT4VfmeP7Tp0/HwYMHcfr0adjY2NS63rx58xAUFMQtFxYWQigUyh2PEELeBnIX/rS0tHoFVMZ4/owxTJ8+Hfv370dcXBzs7OzqXF9HRwc6Ojr1ypsQQt4WCo/HX1/1Gc8/ICAAu3btwp9//gl9fX3k5uYCeDGOUPPmzZWZJiGEvHXkLvwSiQRr1qxBXFwcHj16hJfHeLt8+fJr+9c2nj8AnDx5UqYcNm/eDADw8vKSao+IiIC/v79M2yCEEHUld+EPCgpCXFwcPvvsMwQHB2PJkiXYvHkzPv74Y5n6+/r6Si3n5ORg+/btchVsOQcUJYQQ8hK5C/+BAwdw7tw52NraIiQkBIGBgejXrx+mTZsm07fLgYGB1dpGjx6NefPmyZsKIYQQBcg9ZENxcTFsbW0BALq6uigpKYGTkxMSEhIUTqJjx444d+6cwv0JIYTITu4zfkdHR1y9ehWdOnVCx44dsXbtWggEArRs2VKm/teuXZNafvbsGbZv347WrVvLmwohhBAFyF34ly5dyk2asnTpUowZMwZFRUUICwuTqX/nzp3B4/G46/R6enro2rUrfvnlF3lTIYQQogC5C//LT9h2794dt2/flqt/1cxdhBBCGodC9/EXFxcjJSUFRUVFUu00MiYhhDR9chf+3377DZMmTUJpaanUw1I8Hg+PHz+usY+dnV2t9+6/7O7du/KmQwghRE5yF/45c+Zg48aN8PPzk7nPunXruJ9v3LiBLVu2YMqUKRCJRLh37x5+/vlnTJw4Ud5UCCGEKEDuwl9QUICxY8fK1Wfo0KHcz4sXL0Z0dDTatGkj9f7YsWPpXn5CCGkAct/HP3bsWPz+++8KB0xJSak2lr9IJEJKSorC2ySEECI7mc74hw0bxl2jLy8vx5YtW7Bu3TpYWFhIrbdv377XbsvNzQ1Tp07FypUrYWJigkePHmHu3Ll49913FUifEEKIvGQq/J07d5ZadnFxUTjgtm3b8PHHH8PMzIx78rdXr17YtWuXwtskhBAiO5kKvzJndbK2tsbp06eRmZmJnJwcWFlZ1TmJCiGEEOWS+Rp/bGwsvvjiixrfmz59OuLi4uQKLBQK4erqSkWfEEIamMx39axcubLWwj9o0CCsXLmy2vj4Vdzd3bk5cbt06VLrPf2yjOdPCCGkfmQu/FevXkW/fv1qfK9v37513oc/bdo07ueZM2fKnh0hhBClk7nwFxQU1DoBSmVlJQoLC2vtO2bMGO7n8ePHy5EeIYQQZZP5Gr+dnR3+/fffGt+7ePFitXvza7Nt2zZcv34dALjhnV1cXJCUlCRrKoQQQupB5sLv7++PqVOnIj09Xao9PT0dAQEBmDBhgkzbWbx4MczNzQEAX3/9NXx8fDB06FDMmDFD9qwJIYQoTOZLPbNmzUJ8fDycnJzg6uoKa2trZGVl4eLFixg2bBhmzZol03YePXoEU1NTlJSU4Pz58/jzzz+hqakpNZ4PIYQQ1ZH5jF9DQwNRUVGIjo6Gu7s7+Hw+evXqhejoaOzatUum0TcBwMjICLdv38bRo0fh4uICHR0dlJWV0Tj9hBDSQOQepM3T0xOenp4KBwwMDOSeBK6adevs2bNwcnJSeJuEEEJkp9BELPURFBSEwYMHo1mzZrC3twcAtGrVClu2bGnoVAghRC3JPTqnMtjZ2SEnJwd79uwB8GIYBzs7u8ZIhRBC1E6DF/5bt27ByckJo0aN4h76iomJwaRJkxo6FUIIUUsyFX43Nzfu54ULF9Yr4LRp0xAYGIj79+9DS0sLAODl5cUN6UAIIUS1ZLrGn5ycjPLycmhqamL16tX1Gq3zypUrOHHiBABwdwIZGBhUm7idKE99/1jXpbZjQVUxlTlS7Jukof8N3/Z46k6mwu/l5YXOnTujTZs2eP78OYYPH17jerJMxGJubo709HTui13gxaxcNEonIYQ0DJkKf1RUFPbu3Yu0tDQcPnwYnTp1Ujjg1KlTMWLECCxatAgVFRU4duwYvvnmm1pH/iSEEKJcMhV+HR0dbqC1J0+e1Ouj04wZM6CpqYl58+ahoqICM2fOREBAAAYPHqzwNgkhhMhO7rt6Vq1ahaKiIkRFRWHVqlWIioqqc2TOV+Xn52PKlCm4fv06xGIxYmJicOvWLTg6OsqbCiGEEAXIXfivXLkCBwcHfPfdd4iJicHChQvh6OiIxMTEOvslJCRAJBLBzMwMlpaWOH/+PDZv3oy2bdvi3r17OHnypMI7QQghRHZyP7k7Y8YMzJ8/H4GBgVzbhg0bMGPGDJw5c6bWfl999RVGjx6N8ePHY+vWrfjwww9hZWWFU6dOoUuXLoplTwghRG5yF/7r168jNjZWqm3atGn49ttv6+yXlJSE48ePQ1NTE0uWLMEPP/yAS5cuwdLSUt4UCCGE1IPcl3osLCxw4cIFqbaLFy/CwsKizn6lpaXQ1Hzxd6Z58+YwNDSkok8IIY1A7jP++fPnY8CAAfDz84OtrS3S09Oxc+dObNiwoc5+paWlWL9+PbcskUiklgHQZCyEENIA5C78Y8eOhUgkwvbt2xEbGwsbGxscPHgQvXv3rrOfm5sb9u/fzy27urpKLfN4PCr8hBDSABQaltnDwwMeHh5y9YmLi1MkFCGEECVrlGGZCSGENB4q/IQQomao8BNCiJqhwk8IIWpGocK/bNkyZedBCCGkgchc+O/du8f9vHLlSu5nT09P5WZECCFEpWQu/P3794eFhQUGDRoEiUSCc+fOQSKRICkpSZX5EUIIUTKZC//NmzeRkpKCWbNmgTGGkJAQWFlZQSwWY8WKFUhJSVFlnoQQQpRE5sK/c+dO5OXloW/fvtDR0cGJEyeQm5sLXV1dFBcXY9SoUarMkxBCiJLIXPhjYmIwYsQImJiY4NmzZwgNDUV8fDw0NTWxcOHC147HTwghpGmQufBv27YN165dQ0ZGBrS1tVFcXIy5c+eiqKgIw4YNQ2RkpArTJIQQoixy386pp6cHTU1NLFq0CKdPnwafz8fUqVPx77//qiI/QgghSqbQIG3btm2TWu7Xrx/69eunlIQIIYSolkIPcA0bNoz7OS8vT2nJEEIIUb16D9mgra2tjDwIIYQ0EBqrhxBC1MwbW/g3bdoEOzs76OrqwsXFBWfOnGnslAgh5I3wRhb+PXv2YObMmQgODkZiYiI8PDwwYMAAZGRkNHZqhBDS5L2RhX/NmjWYOHEiJk2aBCcnJ6xbtw5CoRCbN29u7NQIIaTJe+MKf2lpKRISEqrdPtqvXz/8888/jZQVIYS8ORS6j78xPXr0CBUVFTA3N5dqNzc3R25ubo19JBIJJBIJt1xQUAAAKCwsBACUlJSoKNv/xXjZ2x5PlTFri/e2e9uPGXU4RlUdr+q/jLHXd2JvmKysLAaA/fPPP1LtixcvZm3btq2xT0hICANAL3rRi15v/SszM/O1dfSNO+Nv2bIlmjVrVu3s/sGDB9U+BVSZN28egoKCuOXKyko8fvwYJiYm4PF4MscuLCyEUChEZmYmDAwMFNsBOTR0vMaISfHe7HiNEZPi1YwxhqKiIlhZWb123Teu8Gtra8PFxQXHjx+XeoL4+PHjGDp0aI19dHR0oKOjI9UmEAgUzsHAwKDB/qdqjHiNEZPivdnxGiMmxavO0NBQpvXeuMIPAEFBQfDz80O3bt3Qo0cP/Pzzz8jIyMCUKVMaOzVCCGny3sjCP2rUKOTn52PRokXIyclBhw4dcOTIEYhEosZOjRBCmrw3svADwLRp0zBt2rQGjamjo4OQkJBql43elniNEZPivdnxGiMmxas/HmOy3PtDCCHkbfHGPcBFCCGkfqjwE0KImqHCTwghaoYKPyGEqBkq/AqytbUFj8eTes2dO7dBYkskEnTu3Bk8Hg9XrlxRWZwhQ4agVatW0NXVhaWlJfz8/JCdna2SWOnp6Zg4cSLs7OzQvHlztG7dGiEhISgtLVVJPABYsmQJevbsiRYtWtTrgb66NNS8EadPn8bgwYNhZWUFHo+HAwcOqCROlWXLlqF79+7Q19eHmZkZfH19kZycrLJ4mzdvxjvvvMM91NSjRw8cPXpUZfFetWzZMvB4PMycOVNlMb777rtqNcXCwkIlsajw10PVcwRVrwULFjRI3Dlz5sj0WHZ9eXt747fffkNycjL27t2LO3fu4MMPP1RJrFu3bqGyshJhYWH477//sHbtWvz000+YP3++SuIBL0Z6/eijjzB16lSVbL8h540oLi5Gp06d8OOPPyp92zU5deoUAgICcOHCBRw/fhzl5eXo168fiouLVRLPxsYGy5cvx6VLl3Dp0iX06dMHQ4cOxX///aeSeC+Lj4/Hzz//jHfeeUflsdq3by9VU5KSklQTqP7DpqknkUjE1q5d2+Bxjxw5wtq1a8f+++8/BoAlJiY2WOw///yT8Xg8Vlpa2iDxVqxYwezs7FQeJyIighkaGip9u66urmzKlClSbe3atWNz585VeqyXAWD79+9XaYxXPXjwgAFgp06darCYRkZGbOvWrSqNUVRUxBwdHdnx48eZp6cnCwwMVFmskJAQ1qlTJ5Vt/2V0xl8PoaGhMDExQefOnbFkyRKVXpYAgLy8PEyePBnbt29HixYtVBrrVY8fP8bOnTvRs2dPaGlpNUjMgoICGBsbN0gsZVO3eSOqhjpviH+viooKREVFobi4GD169FBprICAAAwaNAh9+/ZVaZwqt2/fhpWVFezs7DB69GjcvXtXJXHe2Cd3G1tgYCC6du0KIyMjXLx4EfPmzUNaWhq2bt2qkniMMfj7+2PKlCno1q0b0tPTVRLnVV9//TV+/PFHPHv2DG5ubjh06FCDxL1z5w42bNiA1atXN0g8ZVNk3og3FWMMQUFBcHd3R4cOHVQWJykpCT169EBJSQn4fD72798PZ2dnlcWLiorC5cuXER8fr7IYL3v33Xfx66+/ok2bNsjLy8PixYvRs2dP/PfffzAxMVFusAb5XPGGkGXc/vj4+Br7/vHHHwwAe/TokUpi/vDDD6xnz56svLycMcZYWlqaQpd65N3Hhw8fsuTkZHbs2DHWq1cvNnDgQFZZWamyeIy9mHPBwcGBTZw4Ua59UzSeKi71KDJvhLKggS/1TJs2jYlEIpnGga8PiUTCbt++zeLj49ncuXNZy5Yt2X///aeSWBkZGczMzIxduXKFa1P1pZ5XicViZm5uzlavXq30bdOQDS959OgRHj16VOc6tra20NXVrdaelZUFGxsbXLhwAe+++67SY44ePRp//fWX1PwBFRUVaNasGT755BP88ssvSo1X0z7ev38fQqEQ//zzj8wfseWNl52dDW9vb7z77ruIjIyEhoZ8VyMV2b/IyEjMnDkTT58+lStWXUpLS9GiRQv8/vvvUsOHBwYG4sqVKzh16pTSYr2Kx+Nh//798PX1VVmMKtOnT8eBAwdw+vRp2NnZqTzey/r27YvWrVsjLCxM6ds+cOAAhg0bhmbNmnFtFRUV4PF40NDQgEQikXpPVd5//304ODgofT5xutTzkpYtW6Jly5YK9U1MTAQAWFpaqiTm+vXrsXjxYm45OzsbPj4+2LNnj1x/aOqzj1XnCC9PY6nMeFlZWfD29oaLiwsiIiLkLvryxlMlReaNeJMwxjB9+nTs378fcXFxDV70q3KQ51iUx3vvvVftjppPP/0U7dq1w9dff90gRV8ikeDmzZvw8PBQ+rap8Cvg/PnzuHDhAry9vWFoaIj4+HjMmjWLu+9dFV7dLp/PBwC0bt0aNjY2So938eJFXLx4Ee7u7jAyMsLdu3fx7bffonXr1ir5Qi07OxteXl5o1aoVVq1ahYcPH3Lvqepe5oyMDDx+/BgZGRmoqKjgnolwcHDgfr/10ZDzRojFYqSmpnLLaWlpuHLlCoyNjVVyTAYEBGDXrl34888/oa+vz31vYWhoiObNmys93vz58zFgwAAIhUIUFRUhKioKcXFxiI6OVnosANDX16/2fYWenh5MTExU9j3GV199hcGDB6NVq1Z48OABFi9ejMLCQowfP175wZR+8UgNJCQksHfffZcZGhoyXV1d1rZtWxYSEsKKi4sbLAdFr/HL6tq1a8zb25sZGxszHR0dZmtry6ZMmcLu37+vkngRERG1XpNXlfHjx9cYLzY2VmkxNm7cyEQiEdPW1mZdu3ZV2e2OsbGxNe7L+PHjVRKvtn+riIgIlcSbMGEC93s0NTVl7733Hjt27JhKYtVG1df4R40axSwtLZmWlhazsrJiw4cPV9l3GHSNnxBC1Azdx08IIWqGCj8hhKgZKvyEEKJmqPATQoiaocJPCCFqhgo/IYSoGSr8hBCiZqjwkyZlwIAB2LRpU63vVw0N3RRFRkaic+fOCvc/c+aMSp7CJuRVVPiJwry8vKCjowM+nw8jIyN4enrWewjbo0ePYtq0aQCAuLi4alMifvLJJyobzz4uLg48Hg98Ph/6+voQiUSYN28eKisrlR4rPT0dPB5PamA4Dw8P3L9/X+mxAMDf37/e0wbyeDy0aNECfD4f5ubmGD16NPLy8jBgwADw+Xzw+Xxoa2tDU1OTW64a+sLLyws8Hg8nTpyQ2ubKlStVPqUhqY4KP6mX0NBQiMVi5OTkoGvXrg0yIqQqGRoaQiwWo6ioCNHR0YiMjERkZGRjp9Vk/PPPPxCLxUhKSkJOTg5mzZqFo0ePQiwWQywWY/78+fjggw+4ZbFYzPVt27YtIiIipLYXGRmJdu3aNfRuqD0q/EQpdHV1MXHiRGRnZyM/Px95eXkYOXIkTE1N0apVKwQHB6O8vBzAi9m8hg0bBmNjYwgEAri4uODevXsAXpwZrlu3Dvn5+RgwYAAKCgq4M8czZ85Uu5xSV5yqTwxbt26FUCiEiYkJ5syZI/M+OTk5wd3dHQkJCVzbnTt3MHjwYJiamkIkEmHx4sW1fiJYs2YNHB0doa+vj9atW0vNh+vq6grgxVyyfD4fO3fulPqEs2/fPrRu3Vpqe//++y8EAgFKSkoAACdOnICrqysEAgHat2+PgwcP1pjH+vXrsXPnTmzatAl8Ph/t27cHABQVFeGzzz6DpaUlLC0tMWXKFJnnzDUzM8NHH30k15ywo0ePxtGjR7nZuv79918wxuQaXZYoBxV+ohTPnj3D1q1bIRKJYGJigjFjxkBLSwtpaWk4c+YMDhw4gBUrVgAAVq1ahfLycty/fx/5+fkIDw+Hvr6+1PZMTExw9OhR7gxcLBbXODxtXXGAF8UtKSkJt2/fxtmzZ7Fx40bExcXJtE9JSUk4ffo02rRpAwB4/vw53nvvPfTp0wdZWVk4c+YMoqKiqp3FVhGJRDh58iQKCwuxdetWzJ49G+fOnQPwYvRT4MUcB2KxGJ988olU3w8++ABPnz7l1geA7du346OPPoKuri6uXbuGjz76CMuXL8fjx48RFhYGPz8/JCcnV8tjxowZ+OSTTzBt2jSIxWJugvLAwECkpqbi+vXrSEpKwq1btzBr1iyZfje5ubn47bff0LVrV5nWBwCBQID+/ftj9+7dAIBt27bh008/lbk/UR4q/KRe5s2bB4FAAHt7e9y6dQsHDx5EVlYWTp48idWrV4PP50MkEiE4OJi7ZKKlpYX8/Hzcvn0bzZo1Q+fOnRWaq/V1cYAXY7YvW7YMurq6cHJyQs+ePaXO4F9VUFAAgUCA5s2b45133sGgQYO47xwOHToEIyMjzJo1C9ra2mjVqhUCAwOxa9euGrc1YsQICIVC8Hg8eHt7w8fHR+Y/Otra2hg1ahS2b98OACgrK8OePXswbtw4AEBYWBj8/f3Rp08faGhowN3dHR988AF+++03mbZfWVmJXbt2YdmyZTAxMUHLli2xdOlS/Prrr3V+p+Hh4QEjIyO4urqidevWWLt2rUzxqnz66aeIiIjA8+fPsXfvXvj5+cnVnygHjcdP6mXZsmXVvpj7999/oaurKzWOvr29PffF5ezZs1FSUoKRI0eioKAAo0aNwvLly+Uex/3+/ft1xgEAAwMDqYnp9fT0UFRUVOs2DQ0N8fTpU1RUVGDbtm1YsWIFnj17BkNDQ6Snp+P69etSXzhXVlZCKBTWuK2dO3di9erVSEtLA2MMz549k2vCknHjxmHgwIH44YcfEB0dDX19fbi7uwN48eXwyZMnpT5tlJeXw8DAQKZtP3z4EBKJBLa2tlybvb09JBIJHj16BDMzsxr7nTlzpl53Lr333nuYNGkSvv/+e/To0UNlcy2QutEZP1E6GxsblJSUIC8vj2tLS0vjblXk8/kIDQ1FcnIyzp8/j5iYmBpv4XzdDFyvi1MfzZo1w+TJk+Hs7IzvvvsOACAUCuHi4oKnT59yr8LCQu7SycsyMjIwfvx4rFixAg8fPsTTp08xcOBAbhYzWWYXc3NzQ8uWLXHo0CFs374dY8eO5abeFAqFCAwMlMpFLBbXOkXfq/FMTU2hra2N9PR0ri0tLQ06OjoqncFMQ0MD48aNw/Lly+kyTyOiwk+UztraGt7e3vjqq69QXFyMjIwMLF26lJtJ6NChQ0hJSUFlZSUMDAygpaUFTc3qHz7Nzc1RVFQkNRuXPHGU4ZtvvsFPP/2ErKwsfPDBB8jLy8OmTZtQUlKCiooKJCcn13j5RiwWgzEGMzMzaGho4MiRIzh27Bj3vqmpKTQ0NHDnzp064/v5+eHHH3/E4cOHucs8APD5558jIiICsbGxqKiogEQiwfnz53Hz5s0at2Nubo67d+9yyxoaGhgzZgyCg4Px+PFj5OfnIzg4GH5+fgpNeSmPWbNm4dixYxg8eLBK45DaUeEnKrFr1y48f/4cIpEIvXr1wqBBg7g7alJTU9G/f3/o6+vD2dkZPXr0wNSpU6tto23btpg4cSKcnJwgEAhw9uxZueIoQ7du3dC7d28sWbIEfD4fJ06cQExMDGxtbbkvsaumHXyZs7MzgoOD0adPH5iYmGDPnj0YMmQI937z5s0REhKCAQMGQCAQ1Po9gZ+fH06dOoUuXbrAwcGBa+/SpQt2796NBQsWwNTUFNbW1vjmm29qnYN20qRJyMrKgpGREd555x0AwA8//ABbW1s4Ozujffv2cHBwwJo1a+rz65KJsbEx+vbtCy0tLZXHIjWjGbgIIUTN0Bk/IYSoGSr8hBCiZqjwE0KImqHCTwghaoYKPyGEqBkq/IQQomao8BNCiJqhwk8IIWqGCj8hhKgZKvyEEKJmqPATQoiaocJPCCFq5v8AEb/PUxWu6y8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.location_of_altered_flanking_residues(altered_flanks, modification_class='Acetylation')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want to dig deeper, we can look at the specific changes that occurring, although this is only recommended with a selected subset of PTMs, such as those that may have a functional impact:" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbMAAAEOCAYAAAADufksAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABD6klEQVR4nO3deXxMZ///8ddkj4RMJEQkkknIIuuIJXYhKbHv1FpL6a3y7UJvrWprqRvd7m6o9q5QShprKUpLlSq101gTNEIlSCIrWWd+f+RnamSbWCLTfp6Ph8fDnOs653OdyWTec65zMkeh1Wq1CCGEEEbM5EkPQAghhHhYEmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuiZPekBiEdLoVA86SEIIcQjZch3e0iY/Q3FxcVVW63AwECpJ/VqdM1/Qr2p+6ZVW70P2r9brfUMJdOMQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKNndGGmUqk4deoUAHl5efTt25enn36aESNG4OrqilqtxtfXl1GjRnH79m29dd966y1MTU25fPmy3vK9e/fSpk0b1Go1fn5+tGvXjuvXr5c7hsTERBwdHXWPL1++jI+PDx9//DEAL7zwAiqVCoVCoRvr/b766isUCgVbtmzRLRs0aBBqtVr3z8TEhM2bN1ftCRJC/KNlJmeyuNenxEbFEBsVw74vfjF43ewb2Wx+41tio2KImbSKX7+sfN383Hw2TltPbFQMqyas4OK+C1Wqt+n1jcRGxbB64krid583eN37Ge39zLKysujTpw++vr4sXryYcePG8dprrxEVFUVBQQHh4eEsXLiQadNK7ruj0WhYvnw5HTt2ZPny5cycOROAoqIi+vfvz86dO2nWrBkA58+fx8bGxqBxnDlzhh49ejBnzhxGjx4NlITStGnTaN++fZnrXL16lc8//5zWrVvrLV+3bp3u/0eOHCEyMpJu3bpV7YkRQvzjuaob0WduvzLbCvMLMbc0L7Nt+3+20SkqjPpeTgBcOZ5Uaa0z20+jCvWg2cAQtFot+Tn5VazXmfpe9SkuKib51LVK65XH6I7MAG7evEnnzp1p3bo1S5YswcREfzcsLCxo27at3hHYDz/8gJOTEx988AHLli1Do9EAkJ2dTXZ2Ns7Ozrq+Pj4+2NraVjqOw4cP07VrVz7++GNdkAF07NgRV1fXctebOHEiH374IZaWluX2iY6OZuTIkRX2EUKIqvrxnR18P3drqaDKSsnC0tZSF2QAjZq5Vbo9cytzUs4mk5uei0KhwKq2VRXr1QfA1MwUV3WjB90t4zwyGzx4MBMmTGD+/PlltmdmZrJ7924WLFigW7Z06VLGjRtHSEgI9vb27Nq1i6eeegp7e3uef/55vLy86NChA23atGHo0KF4e3tXOIbs7GzCw8NZu3ZtlY6ePvvsM/z9/QkNDS23T15eHjExMezdu7fCbeXn55Ofn19hHyHEP8/VE1eIjYoBwLuzD80GhujaerzVi4w/b3FqSxwHlu3HvaWK4L5qctNysHEs+RCfm5bDlpnfkZuey6joZzC3KvvICsCvmz+5aTmsn7IWMyszus/ogX2julWq9ygY5ZFZz549Wbt2LVeuXNFbvmDBAoKCgnBycsLV1ZXOnTsDkJqayo8//siwYcMAGD9+PEuXLtWt99FHH3Hq1CmGDBlCfHw8zZo1Y9++fRWOoVatWnTu3JlFixZRUFBg0Lj/+OMP/ve//zFnzpwK+61fvx4vLy8CAwMr7Dd//nzs7Oz0/gkhhKu6EUMXDmPowmE4qByIjYrh+7e36tqVLvYE9VXjGuzKmR2nyUzOwMbRlpyb2QDYONgydOEwbOraoNVoK6xlYmZC6Og2jF4+hvYTO+jO1VWl3qNglEdm//73v/H39ycsLIzdu3fj5lZyKHz3nFlSUhIdOnRgyZIlTJo0iZUrV1JUVIRarQaguLiYtLQ00tLScHBwAMDd3Z0xY8YwZswYbGxsWLNmTbnnvABMTU1Zt24dQ4YMYcCAAaxfv77SKcEDBw5w7do1mjZtCkBKSgrjx49n7ty5TJgwQddv6dKljB8/vtLnYfr06UyZMkVvmQSaEOJebs3dcWvurnucsCeeU1vjMLc2J6BnIG3GtUOhUABQkFvA9fjrOHmXTDVqijWVbj8rJRMbB1tMzU2ppbTBJdiV3nP6GlbvdgE3Em5Q36s+miIN107/iWvwg001GmWYAUybNg0TExNdoN3Lzc2NTz/9lOeee44xY8YQHR3NunXriIyM1PUZNGgQq1atYty4cfzyyy9ERkaiUCi4c+cOZ8+eZcCAAZWOwdzcnDVr1jB06FD69evHxo0bsbKyKrf/8OHDGT58uO5xWFgYr7zyCr169dIt++OPPzh06BDffvttpfUtLS3lnJoQopR7pxnre9Wn84vhuraC2wV0e707tZS1Sq0XOaMHP320k7ysPEzMTHAJcq1wihHg5oWbfPfmZswsS+IkfEqEXnuF9V7vwU8f7iQvO4/iomJaDmtV5X29y2jDDOCVV17BxMSETp060alTJ722Pn368OGHH/LJJ59w48YNIiL0n+BRo0bx1ltvMXbsWJYsWcKLL76ItbU1hYWFREZGMnnyZIPGcDfQnn76afr27cumTZuYOnUqmzZtIiUlhYiICGxtbblwwbDLVaOjoxk4cCB16tQx7EkQQoh72Dnb8fyW/yu33b97QLlttevXpu+8/lWq17h9Exq3b/Lg9eZXrV55FFqttuIJUWFUFAoFcXFx1VYvMDBQ6km9Gl3zn1Bv6r5p1Vbvg/bvVms9gPfbvVNpH6O8AEQIIYS4l1FPMz5uffr0ISlJ/28j7O3tS52jE0II8WRJmFVAvkpKCCGMg0wzCiGEMHoSZkIIIYyehJkQQgijJ2EmhBDC6EmYCSGEMHoSZkIIIYyehJkQQgijJ2EmhBDC6EmYCSGEMHoSZkIIIYyehJkQQgijJ7eA+Zu5ewdXIYT4uzAkpuSLhv+G/u73bpJ6xlvvSdSU+4sZdz1DyTSjEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIo/dEw0ylUnHq1Cm9ZWFhYWzZsgWAWbNmoVAo+Pbbb3XtWq0WDw8PHB0ddcuKioqYM2cOvr6++Pv74+vry8SJE8nIyCAxMVGv710KhYKcnBwA5s2bh4+PDyYmJrralZkzZw4BAQEEBwfj6+vLv//9bwDOnDmDWq3W/VOpVNStW7fU+rNnz0ahUOjtv1arZdasWXh7exMQEEBYWJhBYxFC1EzfPL+a3PRc3eO4Lb9zcOVvBq2bfSObzW98S2xUDDGTVvHrl79Uqfbqf33NwRUHqrTO/qX7+Gp0NLFRMayfurbS/jvmf0/y6WsAHF59iE2vbwRAU6xhxdjlBtXMup7F2hdjiY1azaoJK0g5l1ylMd9V428B07x5c5YuXUq/fv0A2LVrF46OjmRnZ+v6jB8/nvT0dA4cOIC9vT0ajYb169eTnp6OiUnleR0eHs7QoUMZP368QWNav349O3bs4PDhw1hbW1NUVMTp06cB8PPz48SJE7q+UVFRpe4xduzYMX777Tfc3Nz0ln/yySfExcVx6tQpLCwsSE5+sB+qEKJm8ArzJmFPPOr+zQBI+Dmezi+F69oL8wsxtzQvc93t/9lGp6gw6ns5AXDleJLBdbOuZ1HHqQ5JRy8TOrqNXltFNQHaP9eRxu2aGFTH2b8hyWeScfZvyM2LN3TLUy+l4uh5zwFHQRGm5qZl3m/x+LqjNB/aAs+2jdEUaSgqKDSo9v1q/DRjp06dSEhI0L2xR0dHM27cOF37hQsXWLt2LcuWLcPe3h4AExMTBg8ejKenp0E1QkNDady4scFjSkpKwtHRESsrKwDMzMwIDg4u1S8/P5/Vq1frhWR+fj6TJ09m8eLFpX6w7733Hu+88w4WFhYAODs7GzwmIUTN4x3mQ8KeeADysvPIy7qDvau9rv3Hd3bw/dytpYIqKyULS1tLXZABNGqm/+G3Igk/n8evmz92DZXcunpLr+3CngTWvbyG3787ScHt/AfZLR1nP2fdkVlxfjFKFyVZKVkkn76Gs19DXb/MPzOIjYrhwPL9ZF3P0tuGmZU5f/5+lbzsPEzMTLCoZflAY6nxYaZQKBg5ciQrVqwgIyODw4cP07VrV137sWPH8PLyKnMq8a6MjAy9qT+1Wv1QYxo2bBgJCQl4enoyevRooqOjuXPnTql+GzZswMPDQ6/eW2+9xciRI/Hw8NDrm5WVxc2bN9m4cSOtW7emdevWxMbGVjiO/Px8srKy9P4JIWqO2vVrU1xYzO2M21zcd4HGHbz02nu81Ys2Y9ty+VAia174hoMrfyMvK4/ctBxsHG0ByE3LITYqhujhX1KYZ9hRS9LRy7i3UuH7VFPid5/Xa2va1Y++8/phYmrClre+Y8eC77l+PkXXvu/zvcRGxfDLkj2V1nH0rEdaYhq56bnYONrQoKkzyWeukXwmmYb+f4WZg4cjQz8dRgPfBvzy2R42Td+oC/mWw1qh0WiJ+dfXrJ+yltu3cssrV6EaP80IMGbMGLp27YqtrS1DhgzB1NS0SusrlUq9qT+gzMNdQzVo0IC4uDgOHjzIr7/+yuLFi/n00085ePCg7qgKSo4i7z0qO3DgAIcPH2bBggWltllYWEhBQQF37tzht99+IykpiTZt2uDv709AQECZ45g/fz6zZ89+4P0QQjx+Xh29uLjvAhf2JtC4XWNio2Ko41SH7m/2BEDpYk9QXzUmZiac2XEaVSsVNo625NwsOZVi42DL0IXDiI2KQavRVlov+0Y2Ny/c5NtpG9BqtRTmFXLlWBLFhcVETH0KBw9HzK0t8A1viqm5KUdjj5B48A+cfBoAVZtmVJgosKpjxaX9F2nQ1BlnP2eOrTtG6sUbnP3xDD8v3E1Qn2CadvVDYaJAFeqBmYUZR2IPc2prHF6dvLGoZUGn58Po9HwYp7bGcTT2CB3+1anKz7NRhJmrqytubm7Mnj2b/fv367WFhISQkJBAWloaDg4O1TYmU1NT2rZtS9u2bXnhhRdwcnLi1KlThISEAHD58mX279/P2rV/nUTds2cP586d0x2VXb16lW7duvHll1/SvXt3bG1tGTlyJABubm60a9eOI0eOlBtm06dPZ8qUKXrL7OzsHsfuCiEekFeYD9tmb0FTVExQXzVBfdW6toQ98ZzaGoe5tTkBPQNpM66d7oN2QW4B1+Ov4+RdMtWoKdYYVC/+5/N0fjEcr07eQMlFGq1GtdZNb6YnpXNs7VHSL6fh1cmbQR8Owaq21QPvn7OfM8fXHaP3232o08COmxduYG5tQdj/ddH1ycvO4/j6Y1w+lIhrsCtdXgzHrqESgIw/b2HnrERhoqCWfS3SL6c90DiMIswA5s6dy7Fjx2jSpAmJiYm65U2aNGHgwIGMHz+e5cuXo1Qq0Wq1rFy5knbt2lX5KM4QR44cwd7eXnee7dy5cxQWFtKoUSNdn2XLltG/f3+USqVu2WuvvcZrr72me6xSqdiyZYsurIYNG8b27dt5/vnnuXXrFocOHdLrfz9LS0ssLR9sflkIUT3qONVBU6yhcfvSRzsFtwvo9np3ailrlWqLnNGDnz7aSV5WybkklyBXzK3Kv3DjroSf4+m7oL/usVtzd+J3nyd0VGugZNoyoGcADXwfzTn5Bn4N+X3TSewblVy1bWZhRl0v/Su487LyqN+kPqGjWmNiqn92K+lYEnGbv8PM0hxTc1MiZ3R/oHE88TCLiIjAzOyvYdy9qOJ+LVq0oEWLFmW2RUdHM3fuXEJDQzEzM0Or1dKxY0f69OlDRkZGpWOYP38+ixYt4ubNm4wZMwYrKyuOHz9OvXr1yuyflpZGVFQUGRkZWFtbY2pqyurVq3X9tVoty5cvZ9myZZXWvte8efMYO3YsixcvBkqOvO4e6QkhjNfwz0eWudy/e9mzLlByvq3vvP7ltpfn6cXD9R437eqn97iiC0najm9f5XpeHb3w6vjXucD+7w4s1UfpokTpoixz/aDewQT1Ln0BXVU90TC79wirLLNmzSpzuUqlIjU1VffY3Nyc2bNnl3n+SKlU6vW9S6v9a+55+vTpTJ8+3bBBA926daNbt27ltisUikr3DUrvv6OjI999953B4xBCCFGixl/NKIQQQlTmiU8z1mR9+vQhKUn/7z/s7e3ZvXv3ExqREEKIskiYVWDz5s1PeghCCCEMINOMQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoKbT33gtFGL27d6kVQoi/C0NiSr5o+G8oLi6u2moFBgZKPalXo2sGBgYydd+0aqv3Qft3pd4TINOMQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKNXI8NMpVLh6+uLWq3Gx8eHBQsWAJCYmIiZmRlqtZrg4GBatGjB7t27AcjMzGTkyJEEBAQQFBREQEAAq1evBuCnn34iNDQUPz8/AgICmDFjRqn742i1WsLDw3F0dKx0fLNmzeKVV17RPV6xYgUqlYqzZ8+SmJhIWFgYdnZ2tGjRQm+9uLg4OnbsiK+vL4GBgUycOJH8/Hxd+8qVKwkODiYgIIDw8HCSkpIe7AkUQpQrPzefjdPWExsVw6oJK7i470KV1v9lyR7WTVljcP9vnl9Nbnqu7nHclt85uPI3g9Zd+vQXxEbFEBsVw8Zp6wxa52H2L/tGNpvf+JbYqBhiJq3i1y9/qbD/jvnfk3z6GgCHVx9i0+sbAdAUa1gxdnml9bRaLV+Njqa4qFi37Nf//cK5nWcNHvNdNfZ+ZuvWrSMgIIBr167h5+dHly5dqF+/PkqlkhMnTgCwadMmhgwZwo0bN3jjjTdwcnIiLi4OhUJBdnY2KSkpANjb2xMTE4Onpyd5eXlEREQQExPD8OHDdfUWLlyISqXi5MmTVRrnxx9/zOLFi9mzZw/u7u6kp6czd+5cMjMzmTlzpl5fKysrFi5cSFBQEMXFxQwfPpwPPviA119/nXPnzvHqq69y/PhxnJyc+Oqrr5g0aRJbt259uCdSCKHnzPbTqEI9aDYwBK1WS35Ovl57YX4h5pbm5a6fcjYZ81oW3Mm8g7WddaX1vMK8SdgTj7p/MwASfo6n80vhBtWztLFk6MJhhuyWzsPs3/b/bKNTVBj1vZwAuHK84g/Uzv4NST6TjLN/Q25evKFbnnopFUfPvw4MigqKMDU3LXXzYIVCgVtzd5IOX8ajjScAlw5couWIUMN3+P+rkUdm92rYsCE+Pj5cvny5VNtTTz1FamoqaWlpJCUl4eLionuyateujZeXFwDNmjXD07PkibKyskKtVnPp0iXddhISEvjmm2947bXXqjS2mTNnsmzZMvbu3Yu7uzsAdevWpX379tjY2JTq7+XlRVBQEACmpqa0bNlSN45Tp06hVqtxcip5EfXq1Yvvv/+etLS0Ko1JCFExcytzUs4mk5uei0KhwKq2lV77j+/s4Pu5W8t8I78ef5363k74dPYlYW+8QfW8w3xI2FPSNy87j7ysO9i72htU70E86P5lpWRhaWupCzKARs3cKqzl7OesOzIrzi9G6aIkKyWL5NPXcPZrqOuX+WcGsVExHFi+n6zrWXrb8O7sQ/ye80BJCNZpUAeLWhZV3u8ae2R217lz50hNTSUsLIzc3Fy9tpiYGNzc3HB0dOSll15i0KBBrF69mtatWxMZGUmvXr1KbS8lJYV169axbds2ADQaDRMmTGDRokWYm5f/aex+y5cvp169ehw4cAClUlnl/crNzeXLL7/knXfeAUCtVnP06FEuXLhAkyZNWLFiBVqtlsuXL+Pg4FDmNvLz8/WmKYUQlfPr5k9uWg7rp6zFzMqM7jN6YN+orq69x1u9yPjzFqe2xHFg2X7cW6oI7qvGqo4V8bvP4xPui4O7A9vmbCWod3Cl9WrXr01xYTG3M27zx4FLNO7gpddeUb383Hxio2IAULoq6fZa98e2f7lpOdg42gKQm5bDlpnfkZuey6joZzC3Kvu90dGzHmmJaeSm52LjaEODps4kn7lG8plkmg1opuvn4OHI0E+HkXjoD375bA9F+UX4Rfrj1cmbhoEu7PrvTjRFGuJ/Po93Z59K97EsNTbMBg0ahEKh4Pz583z44YfUq1eP3NxcMjIyUKvVALi4uLB582YAOnfuTFJSEnv27GH//v0899xz9OvXj0WLFum2mZWVRe/evZk2bRohISEAvP/++3Ts2BG1Wk1iYqLB42vVqhXHjx9ny5YtjBw5skr7VlhYyNChQ+natSt9+/YFoEmTJnz22WeMGjWK4uJievXqhZ2dXYUBO3/+fGbPnl2l2kL805mYmRA6ug2ho9uQdOwysVEx2DeqSx2nOnR/sycAShd7gvqqMTEz4cyO06haqbCq04A/DlzixvnrAKQlpho+1djRi4v7LnBhbwKN2zUmNirGoHoPMs34oPtn42hLzs1sAGwcbBm6cBixUTFoNdpyaylMFFjVseLS/os0aOqMs58zx9YdI/XiDc7+eIafF+4mqE8wTbv6oTBRoAr1wMzCjCOxhzm1NQ6vTt4oFApc1Y24cuIKl/ZfZMgnQ6u0v3fV2DC7e85s586d9O7dmy5dulC7dm29c2b3s7GxoUePHvTo0YNevXrRtWtXXZhlZ2cTGRlJnz59mDJlim6dvXv38vvvv7NixQqKioq4desWKpWK48ePY29vX2YdAD8/P959912eeuopNBoNo0ePNmi/CgsLGTJkCM7Oznz88cd6bQMGDGDAgAFAyRHkvHnzaNy4cbnbmj59ut6+ANjZ2Rk0DiH+qbJSMrFxsMXU3JRaShtcgl3pPaevrj1hTzyntsZhbm1OQM9A2oxrh0Kh4EbCdVzVjejy/893ndl+mgu/JBDYK6jSml5hPmybvQVNUTFBfdUE9VVXWq+69w+gILeA6/HXcfIumWrUFGsqrefs58zxdcfo/XYf6jSw4+aFG5hbWxD2f110ffKy8zi+/hiXDyXiGuxKlxfDsWuo1LV7d/bhQPQ+aterjUUtywfa7xobZndFREQwadIk3njjjVJv/vf64YcfaNmypS6Ajh49qguCnJwcIiMj6datG2+++abeelu2bNH9PzExkRYtWhh8hBYQEMCuXbuIiIiguLiYsWPHVti/qKiIp59+mrp16/LFF1+UesEmJyfj7OxMcXExr776KpMnT6ZWrVrlbs/S0hJLywf7wQvxT3Xzwk2+e3MzZpYlb3/hUyL02gtuF9Dt9e7UUur/7sX/dJ5GIX+dQ3Jr4caOedsNCrM6TnXQFGto3L5Jqbby6gF604yAQUdpD7p/AJEzevDTRzvJy8rDxMwElyDXcqcY72rg15DfN53UTWWaWZhR16uuXp+8rDzqN6lP6KjWmJiWvlTDJciF9KR0Ok4Kq3T/ylPjwwzgzTffpEmTJhVeDBEXF8fUqVPRarWYmJjg7OzM119/DZRccXjo0CFyc3PZuLHk0tHBgwczY8aMhx6bn5+fXqCNGjWKxo0bk5+fT2ZmJq6urowaNYr58+cTGxvLhg0bCAoKolmzkvnkdu3a6Y4ex44dS1JSEgUFBfTo0YN58+Y99PiEEPoat29SZqjc5d89oMzl7Z/rqPfY1rE2A/872OC6wz8v+3REefUAxn8z0eDt3/Wg+wcl5/f6zutfpXpeHb3w6vjXecD+7w4s1UfpokTpoix3GwqFguc2Pl+luverkWF2/5GRvb29LshSU1PLXGfq1KlMnTq1zLYZM2YYFFwqlarc7d9r1qxZeo+bNm3Kn3/+qXt89erVMtcbMWIEI0aMKHe727dvr7S2EEKI0mr8pflCCCFEZWrkkVlNcOLECcaMGVNq+TPPPMPLL79c/QMSQghRLgmzcqjV6nKvmhRCCFGzyDSjEEIIo1elI7MuXbpU3omSL/YVQgghqkuVwuznn3/G3d2dnj17Vumrn4QQQojHqUphtmDBApYvX87atWsZMWIE48aNIyCg/L9ZEEIIIapDlc6ZTZs2jTNnzvDtt9+SnZ1Nu3btaNWqFUuWLCErK6vyDQghhBCPwQNdANKmTRv+97//kZyczOTJk4mOjqZhw4YSaEIIIZ6Ih7qa8dixY+zZs4ezZ88SEBAg59GEEEI8EVUOs2vXrjFv3jy8vb0ZNGgQdevW5eDBg/z2229YW1d+KwQhhBDiUavSBSA9evRg9+7ddO3alffee4+ePXtiZiZ/dy2EEOLJqlISbd++HWdnZ5KSkpg9e3a5N4Y8duzYIxmcEEIIYYgqhdnMmTMf1ziEEEKIB6bQarXl3xP7PklJSbi6umJiIt+CVVM9zB1qhRCiJjIkpqp0ZObh4UFycjL169d/4EGJxy8uLq7aagUGBko9qVflmlP3Tau2eh+0f1fqGXE9Q1XpEKsKB3FCCCFEtZH5QiGEEEavytfVf/nll9ja2lbY54UXXnjgAQkhhBBVVeUwW7JkCaampuW2KxQKCTMhhBDVqsphduTIEbkARAghRI1SpXNmctm3EEKImkiuZhRCCGH0qhRmr7zyCtOnT8fFxYX69eszfPhwUlNTH9fYhBBCCINU+cjsm2++oWfPngwbNowff/yRSZMmPa6xCSGEEAap0gUgGzZsYOnSpTz99NMAjBgxgnbt2lFcXFzhFY5CCCHE41SlI7MrV67QoUMH3eNWrVphZmbGtWvXHvnAhBBCCENVKcyKi4uxsLDQW2ZmZkZRUdEjHZQQQghRFVWaZtRqtYwZMwZLS0vdsry8PP71r39hY2OjW7Zhw4ZHN0IhhBCiElU6MnvmmWeoX78+dnZ2un8jR46kYcOGesselkqlwtfXF7VajY+PDwsWLAAgMTERMzMz1Go1wcHBtGjRgt27dwOQmZnJyJEjCQgIICgoiICAAFavXg3ATz/9RGhoKH5+fgQEBDBjxoxSf2ag1WoJDw/H0dGx0vHNmjWLV155Rfd4xYoVqFQqzp49S2JiImFhYdjZ2dGiRQu99f744w+aN2+OWq0mMDCQwYMHc+vWLV37wYMHUavVeHt7Ex4eTnJy8oM9gUIYkfzcfDZOW09sVAyrJqzg4r4LVVr/lyV7WDdljcH9v3l+NbnpubrHcVt+5+DK3wxad+nTXxAbFUNsVAwbp60zaJ2H2b/sG9lsfuNbYqNiiJm0il+//KXC/jvmf0/y6ZLTPodXH2LT6xsB0BRrWDF2eaX1tFotX42OprioWLfs1//9wrmdZytcLzM5k8W9PiU2KobVE1dy/VxKpbXuio2KoeB2AZpiDZtnfMvp708ZvO69qnRktmzZsgcq8iDWrVtHQEAA165dw8/Pjy5dulC/fn2USiUnTpwAYNOmTQwZMoQbN27wxhtv4OTkRFxcHAqFguzsbFJSSp5Qe3t7YmJi8PT0JC8vj4iICGJiYhg+fLiu3sKFC1GpVJw8ebJK4/z4449ZvHgxe/bswd3dnfT0dObOnUtmZmapm5k2bNiQffv2YW1tDcBLL73E22+/zX//+1+0Wi0jRozgyy+/JCwsjPfff58pU6YQExPzEM+iEDXfme2nUYV60GxgCFqtlvycfL32wvxCzC3Ny10/5Wwy5rUsuJN5B2s760rreYV5k7AnHnX/ZgAk/BxP55fCDapnaWPJ0IXDDNktnYfZv+3/2UanqDDqezkBcOV4UoW1nP0bknwmGWf/hty8eEO3PPVSKo6ef31QLyoowtTctNQXYSgUCtyau5N0+DIebTwBuHTgEi1HhFa6n67qRvSZ248/4/7k0NcH6T23r0H7eNeP7+3AJcgF/+4BldYqS43/1vyGDRvi4+PD5cuXS7U99dRTpKamkpaWRlJSEi4uLrofTu3atfHy8gKgWbNmeHqW/GCsrKxQq9VcunRJt52EhAS++eYbXnvttSqNbebMmSxbtoy9e/fi7u4OQN26dWnfvr3etOtdlpaWuiArLi4mJydHd6PTI0eOYGlpSVhYGADPPfcc3377LYWFhVUakxDGxtzKnJSzyeSm56JQKLCqbaXX/uM7O/h+7tYy38ivx1+nvrcTPp19Sdgbb1A97zAfEvaU9M3LziMv6w72rvYG1XsQD7p/WSlZWNpa6oIMoFEztwprOfs5647MivOLUbooyUrJIvn0NZz9Gur6Zf6ZQWxUDAeW7yfrepbeNrw7+xC/5zxQEoJ1GtTBopb+tRIVyc/JQ4v+zNf+L/fx3RubuLT/IppiTal19n62B5u6tjQf2tLgOver8nczVrdz586RmppKWFgYubm5em0xMTG4ubnh6OjISy+9xKBBg1i9ejWtW7cmMjKSXr16ldpeSkoK69atY9u2bQBoNBomTJjAokWLMDev+JPDvZYvX069evU4cOAASqXS4PUKCgpo1aoVly9fJjg4mM2bNwMld/G+G4hQEsa1a9cmOTkZN7eyX8D5+fnk5+eX2SaEsfDr5k9uWg7rp6zFzMqM7jN6YN+orq69x1u9yPjzFqe2xHFg2X7cW6oI7qvGqo4V8bvP4xPui4O7A9vmbCWod3Cl9WrXr01xYTG3M27zx4FLNO7gpddeUb383Hxio0pmS5SuSrq91v2x7V9uWg42jiV3KMlNy2HLzO/ITc9lVPQzmFuV/V7l6FmPtMQ0ctNzsXG0oUFTZ5LPXCP5TDLNBjTT9XPwcGTop8NIPPQHv3y2h6L8Ivwi/fHq5E3DQBd2/XcnmiIN8T+fx7uzT6X7CHD1xBVWTVhJxrUMhnw8VK+t0+TO5KRmc/r70xz55jANA1xQD1Bj61gbgAt74xn+xSiD6pSnxh6ZDRo0iKZNm+Ln58cLL7xAvXr1AMjIyECtVqNWq9mwYYMuDDp37kxSUhJz5sxBqVTy3HPPMXnyZL1tZmVl0bt3b6ZNm0ZISAgA77//Ph07dkStVldpfK1atSIjI4MtW7ZUaT0LCwtOnDjB9evX8fHxYcmSJbq2+w/5K/v6sPnz5+udq3wU5yuFqG4mZiaEjm7D6OVjaD+xg+6c1Pdvb9X1UbrYE9RXjWuwK2d2nCYzOQOAPw5c4tcv9rF5xiaun0/hTuYdg2p6dfTi4r4LxO8+j3UdK4Pr3Z1mHLpwmEFB9jD7Z+NoS87NbABsHGwZunAYNnVt0GrKf19QmCiwqmPFpf0XadDUueRI7UwyqRdvcPbHM8RGxXD2hzO6vqpQD4L6BKPRaDi1teSO4wqFAld1I66cuMKl/Rdp3K6xQfvpqm7EiP+Nos0zbbhy/AqxUTGse/mvc5m2jrUJ7BVE43aNSdhznpsXburaIl/vwXdvfEt+7oN/OK+xR2Z3z5nt3LmT3r1706VLF2rXrq13zux+NjY29OjRgx49etCrVy+6du3KokWLAMjOziYyMpI+ffowZcoU3Tp79+7l999/Z8WKFRQVFXHr1i1UKhXHjx/H3t6+zDoAfn5+vPvuuzz11FNoNBpGjx5dpf2zsLBg7NixTJgwgWnTpuHm5kZiYqKuPTs7m+zsbJydncvdxvTp0/X2BZBAE0YnKyUTGwdbTM1NqaW0wSXYld5z/jrfkrAnnlNb4zC3NiegZyBtxrVDoVBwI+E6rupGdPn/57vObD/NhV8SCOwVVGlNrzAfts3egqaomKC+aoL6qiutV937B1CQW8D1+Os4eZdMNZY1RXc/Zz9njq87Ru+3+1CngR03L9zA3NqCsP/rouuTl53H8fXHuHwoEddgV7q8GI5dQ6Wu3buzDwei91G7Xm0salmWUaV8wQOasXriSoZ/MQpTs5Iv00g6epmTG09QXFSMX6Q/o78aq2sDaBjoQvOhLfnuzU0MeHcQJmZVP86qsWF2V0REBJMmTeKNN97g448/LrffDz/8QMuWLXUBdPToURo3LvlEkZOTQ2RkJN26dePNN9/UW+/eI6vExERatGihFyoVCQgIYNeuXURERFBcXMzYsWMr7J+UlISDgwM2NjZoNBrWrFlDUFDJL17z5s3Jy8vj559/JiwsjM8//5x+/fpVOPVpaWmp92cSQhijmxdu8t2bmzGzLHk7Cp8SoddecLuAbq93p5aylt7y+J/O0yjkryl4txZu7Ji33aAwq+NUB02xhsbtm5RqK68eoDfNCBh0MciD7h9A5Iwe/PTRTvKy8jAxM8ElyLXcKca7Gvg15PdNJ3VTmWYWZtT1qqvXJy8rj/pN6hM6qjUmpqWDwyXIhfSkdDpOCqt0/+5namaKqpUHCT/H4xvRFIA7mXfo9H+dqeNUp9z1fCOaknktgx/f32HwUe+9anyYAbz55ps0adKEtLS0cvvExcUxdepUtFotJiYmODs78/XXXwMlVxweOnSI3NxcNm4suVR18ODBzJgx46HH5ufnpxdoo0aNonHjxuTn55OZmYmrqyujRo1i/vz5nDp1SneRiUajISQkhE8++QQAExMTvv76a/71r39x584dXFxcdOMX4u+scfsmZYbKXeVd3db+uY56j20dazPwv4MNrjv885FVqgcw/puJBm//rgfdPyg5v9d3Xv8q1fPq6IVXx7/OA/Z/d2CpPkoXJUoXZbnbUCgUPLfxeYNr2jnb0WduP93jDv/qpNfu08W33HXv/UAQOrqNwTXvVyPD7P4jI3t7e12Qlfct/VOnTmXq1Kllts2YMcOg4FKpVAbdBWDWrFl6j5s2bcqff/6pe3z16tUy17s7BVqeNm3aVPlPA4QQQtTgC0CEEEIIQ9XII7Oa4MSJE4wZM6bU8meeeYaXX365+gckhBCiXBJm5VCr1eVeNSmEEKJmkWlGIYQQRk/CTAghhNGTMBNCCGH0JMyEEEIYPQkzIYQQRk/CTAghhNGTMBNCCGH0JMyEEEIYPQkzIYQQRk/CTAghhNGTMBNCCGH0FFqttvx7cAuj8zB3xBVCiJrIkJiSLxr+G5q6b1q11fqg/bt/+3pxcXHVVi8wMPBvXe9J1JR6xl3PUDLNKIQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6TzTMVCoVp06d0lsWFhbGli1bAJg1axYKhYJvv/1W167VavHw8MDR0VG3rKioiDlz5uDr64u/vz++vr5MnDiRjIwMEhMT9frepVAoyMnJAWDevHn4+PhgYmKiq12ZOXPmEBAQQHBwML6+vvz73/8G4MyZM6jVat0/lUpF3bp19fbZ19dX1x4bG6tru3HjBpGRkXh5eREQEMC+ffsMGoshMpMzWdzrU2KjYoiZtIpbV28ZtN6VY0n8vHC3wXXyc/PZOG09sVExrJqwgov7Lhi87tfjvzK4773ji41azTeTV7Nl5mbysvKqtO7dffvz96vETFpFfm5+lccghHjyavz9zJo3b87SpUvp168fALt27cLR0ZHs7Gxdn/Hjx5Oens6BAwewt7dHo9Gwfv160tPTMTGpPK/Dw8MZOnQo48ePN2hM69evZ8eOHRw+fBhra2uKioo4ffo0AH5+fpw4cULXNyoqqtQNM9etW0dAQECp7b722mu0bt2a7du3c/jwYQYNGsTFixcxM3s0PyZXdSP6zO1H/M/nObzqIF1fjQSgqKAIU3PTR3JjzzPbT6MK9aDZwBC0Wi35OfrhUJhfiLml+UPXAbiTdYe9n+1h4AeDsapjxZntp9n14Y/0nNlb18eQfbt54QY/f/oT/d8diKWN5SMZmxCietX4acZOnTqRkJBAcnIyANHR0YwbN07XfuHCBdauXcuyZcuwt7cHwMTEhMGDB+Pp6WlQjdDQUBo3bmzwmJKSknB0dMTKygoAMzMzgoODS/XLz89n9erVBofkmjVrmDx5MgAtW7bEycnpkR6d3eXo6Uj2jb8+DGT+mUFsVAwHlu8n63rWQ23b3MqclLPJ5KbnolAosKptpdf+4zs7+H7uVq4cT3qoOgCXfr1I06eaYlWnpIZfpD/Jp66hKdbo+lS2b1nJmexYsJ1ec/pSy97mocckhHgyanyYKRQKRo4cyYoVK8jIyODw4cN07dpV137s2DG8vLzKnEq8KyMjQ2/qT61WP9SYhg0bRkJCAp6enowePZro6Gju3LlTqt+GDRvw8PAoVW/EiBEEBgby7LPPcvPmTQDS0tLQaDTUq1dP10+lUpGUVP6bfn5+PllZWXr/DHH15FXquv019eng4cjQT4fRwLcBv3y2h03TN5KwJ96gbd3Pr5s/dd3qsn7KWlb/62tuXUnXa+/xVi/ajG3L5UOJrHnhGw6u/K1KU4P3yk3LxbZ+bb1lteracCfjtu5xZfuWdPQyzv4NsXO2e6AxCCFqhhofZgBjxozhq6++YtWqVQwZMgRTU9Mqra9UKjlx4oTev4fRoEED4uLiWLVqFYGBgSxevJi2bdtSUFCg1y86OrrUUdnevXs5efIkx44dw8HBgWeeeUbXdv9UmFarrXAc8+fPx87OTu9fRa6euEJsVAx/HLhEfm4+sVExnP3hTEltEwWqUA+C+gSj0Wg4tfXBbotuYmZC6Og2jF4+hvYTOxAbFUNsVAzfv71V10fpYk9QXzWuwa6c2XGazOSMB6pl42BDzs0cvWV3Mm9zePUhg/ctoGcg2TeyHnh/hRA1Q40/Zwbg6uqKm5sbs2fPZv/+/XptISEhJCQkkJaWhoODQ7WNydTUlLZt29K2bVteeOEFnJycOHXqFCEhIQBcvnyZ/fv3s3btWr313NzcADA3N+ell17C29sbQDf2mzdv6o7OLl++rOtflunTpzNlyhS9ZRUF2t1zZvfLy87j+PpjXD6UiGuwK11eDMeuobLiJ6AcWSmZ2DjYYmpuSi2lDS7BrvSe01fXnrAnnlNb4zC3NiegZyBtxrV74HN1nm0bs+GVdfhF+mNV24qzP5zBJciVsP/rYvi+KRT0nNmbtS/GUrt+bdxbqh5oLEKIJ8sowgxg7ty5HDt2jCZNmpCYmKhb3qRJEwYOHMj48eNZvnw5SqUSrVbLypUradeuXZWP4gxx5MgR7O3tdefZzp07R2FhIY0aNdL1WbZsGf3790epVOqW5ebmUlhYqFsWExNDs2bNdO2DBw9m0aJFzJo1i8OHD5OSkkL79u3LHYelpSWWlg9/wUJeVh71m9QndFRrTEwf7mD95oWbfPfmZswsS15a4VMi9NoLbhfQ7fXu1FLWKrVuQW4Ba18subrTxsGGHm/1qrCWtZ017Z/ryLevbaDwTgHmVhb0f2+gXh9D9s3cypw+/+nH+qlr6TmzF46e9crsJ4SouZ54mEVEROhdrXf3oor7tWjRghYtWpTZFh0dzdy5cwkNDcXMzAytVkvHjh3p06cPGRkZlY5h/vz5LFq0iJs3bzJmzBisrKw4fvy43vmre6WlpREVFUVGRgbW1taYmpqyevVqXX+tVsvy5ctZtmyZ3nrXr19n4MCBFBcXo9Vq8fT0ZMWKFbr2d955h1GjRuHl5YWFhQUrV658ZFcy2jnblXlUBqB0UaJ0UZbZ1ijEjUYh5R8d3q9x+yY0bt+k3Hb/7qWv4rxr3DcTDK5zl3sLd9xbuHM74zYbpq4lKzmTek3q69oN3TdbR1ue+WpslesLIWqGJxpm9x5hlWXWrFllLlepVKSmpuoem5ubM3v2bGbPnl2qr1Kp1Ot7173no6ZPn8706dMNGzTQrVs3unXrVm67QqEoc988PT05fvx4ues5OTnxww8/GDwO8ZdaylqMXPpM5R2FEH9LRnEBiBBCCFGRJz7NWJP16dOn1KXx9vb27N5t+DdiCCGEePwkzCqwefPmJz0EIYQQBpBpRiGEEEZPwkwIIYTRkzATQghh9CTMhBBCGD0JMyGEEEZPwkwIIYTRkzATQghh9CTMhBBCGD0JMyGEEEZPwkwIIYTRkzATQghh9BTae++FIozeg961WQghaipDYkq+aPhvaOq+adVW64P270q9R1wvLi6u2uoFBgZWa70nUVPqGXc9Q8k0oxBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKNnNN+ar1AoyM7OxtbWVrdMpVKxZcsWAgIC2Lt3L6+++ip37tyhoKAAe3t7NmzYgJOTEwDLly/ngw8+oKioiMLCQgYOHMjbb7+NhYUFAC+88AKbN2/m8uXLxMXFERAQUOF4CgsLmTp1Krt27cLMzIzCwkKeffZZpkyZouuj1WqJiIjg5MmTpKam6pZ//fXXvPvuu5iYmKBQKJg3bx7du3cHID8/n6lTp7Jjxw4sLCxo1qwZX3/99QM/b/m5+WybvYWC2wUU5RfS+pm2NG7fxKB1lz79BbaOtQHw6uhFyJAWla5TXFjMupfXAHD9fApOPg0A6LdgAJa2lo+0XmZyJqsmrMDRsx5ajYYGfg1pO74d5pbmlY4TYPt/ttFiWEscPesBsHriSoZ/MarS9f78/Sr7l+5DU6xFq9USMrg53mE+BtdM/SMVU3NT6jWuR8QrXQ1aTwhRMaMJs4oUFRXRv39/du7cSbNmzQA4f/48NjY2AHzxxRd8+OGHbNu2DQ8PD27fvs2oUaMYM2YMq1evBmDQoEFMmzaN9u3bG1Tzk08+ISUlhZMnT2JmZkZeXh4XL17U67Nw4UJUKhUnT57ULUtPT+f555/n/PnzODs7s2/fPgYMGMCNGzcAeO211zAxMSE+Ph6FQkFycvJDPTdntp9GFepBs4EhaLVa8nPy9doL8wvLffO3tLFk6MJhVapnam6qW+fr8V+VWv9R13NVN6LP3H5otVr2f7mPA0t/pePzYQbVexB3Mu+wZ/HP9H9nINZ21hQXFZNyNkWvT2U1I1/vjqNnPda9vIbUS6k4ejo+svEJ8U/1twiz7OxssrOzcXZ21i3z8fnrk/Lbb7/N559/joeHBwC1atXiiy++oFGjRly4cIEmTZrQsWPHKtVMSkqiQYMGmJmVPIVWVlb4+/vr2hMSEvjmm29Yvnw5mzZt0i3XaDRotVpycnIAyMjIwNXVFYDc3FyWLVvG1atXdTfZvHefHoS5lTlXjieRm56LTV0brGpb6bX/+M4OFCYKAnoG0qiZ20PVMsTjqqdQKAh9pg0rxizXC7OTG45z5XgSTbv606SjF2YWD/eSv7T/Ir4RTbG2swbA1MwUl0AXvT6G1NQUayi4UwDIvXGFeBT+FmFmb2/P888/j5eXFx06dKBNmzYMHToUb29vbty4wdWrV2nTpo3eOg4ODnh5eXH8+HGaNDFs2u1eEydOJDIykl27dtG2bVvCw8MZPHgwpqamaDQaJkyYwKJFizA31/+E7ujoyJIlSwgJCaFu3brcuXOHnTt3AnDx4kUcHByYO3cuO3fuxNramlmzZhEeHl7mGPLz88nPzy+z7S6/bv7kpuWwfspazKzM6D6jB/aN6urae7zVi4w/b3FqSxwHlu3HvaWK4L5qrOpYkZ+bT2xUDABtx7d7JOHzOOuZWZhRXFist6zFsFYE9Azi7I9n2DhtPY4ejqgHNNM9B9vnfY+5VcnPKC0xrdIauWm5KF2VAPzx2yUOfX0QCxsL+r8zsEo1c1NzcG/loZviFEI8HKMPs7tHMB999BEvv/wyu3fvZteuXTRr1owdO3bg7e1d7rqG3Iq7PP7+/ly8eJF9+/axf/9+Zs6cycqVK9m6dSvvv/8+HTt2RK1Wk5iYqLdeVlYWixcv5siRI/j4+PDdd98xaNAgzpw5Q2FhIZcuXcLPz48FCxZw8uRJIiIiOHPmDPXqlX7Tmz9/PrNnz65wnCZmJoSObkPo6DYkHbtMbFQM9o3qUsepDt3f7AmA0sWeoL5qTMxMOLPjNKpWKqzqNHigab/7JR29zIFl+6ulXnFhMaamJrpA7DOvH9Z1rLGqY4VfpD+m5qYcX3eUek3q64Ll7pQflJwzq4ytoy05N0uOqj1ae+LR2pMvB39e5Zq29Wqzeca3FOUXYWZp9L+GQjxxRvNbVK9ePVJTU/UuAElNTaV+/fq6x+7u7owZM4YxY8ZgY2PDmjVr+OSTT3BxceHAgQP06NFD1zctLY0LFy7ozrE9CAsLC7p06UKXLl149tlncXZ2Jj09nb179/L777+zYsUKioqKuHXrFiqViuPHj7Nr1y7s7Ox006C9e/dm3LhxXLlyBXd3d0xMTBgxYgQAwcHBeHh4cPr0acLCwkrVnz59ut4FJwB2dnZ6j7NSMrFxsMXU3JRaShtcgl3pPaevrj1hTzyntsZhbm1OQM9A2oxrp/uA8Ci4NXfHrbl7tdQ7uOIATTp503FSJ92y6+dSOL7+GLlpufg+1ZTh/xv1UOfQPNp4svHV9fg+1ZRaylpoijRY1bHSC2FDalrVtqJJBy9ObY1DPeDBX4NCiBJGE2bdunXjs88+45133gFgxYoVeHt7U69ePXJycvjll1+IjIxEoVBw584dzp49y4ABAwCYMWMGU6dOpWnTproLQCZOnEifPn0eaIoRYO/evXh5eenOaR09epS6deuiVCrZsmWLrl9iYiItWrTQHaF5enpy7Ngxbty4Qf369Tlw4AAajQYXFxcsLCwIDw9nx44d9OjRg8uXL/PHH3/onf+7l6WlJZaWFV8hePPCTb57c7Pu03/4lAi99oLbBXR7vTu1lLUe6Hmoqkdd7+qJK6x54ZuSqxmbOtP2Wf0LeHLTc2k5MhQHd4dHUs/azpqOk8LY8tZmoGRm4P6rLg2t6Rfpz9oXYwnur36kHyCE+CcymjD76KOPeOmllwgKCsLExARnZ2diY2OBkunCJUuW8OKLL2JtbU1hYSGRkZFMnjwZgEmTJmFubk7v3r0pLi6moKCAAQMGMHfuXN32J0+ezKZNm0hJSSEiIgJbW1suXLhQ7niSkpJ46aWXyMvLw8LCAltbWzZt2oSJScV/uhcSEsL06dMJCwvD3Nwcc3Nz1qxZo/sTgSVLljBu3DheffVVTE1N+eKLLx7qIpDG7ZtUeCm+f/fy/wRh5NJnHrhuees/ynp2znY8v+X/Kuzj2bZxuW2RM3roPTbksnwA12BXhnzy9EPXtKptxajoh3uOhRAljCbMHBwcWLmy7HMatWvX1rtisCzPPvsszz77bLntixYtYtGiRQaPZ+TIkYwcObLSfiqVSu9vzABefPFFXnzxxTL7e3p68vPPPxs8DiGEEPINIEIIIf4GjObI7Elp0aIFRUVFesv8/f1ZtWrVExqREEKI+0mYVeLIkSNPeghCCCEqIdOMQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEML4acU/Xl5ennbmzJnavLw8qSf1amRNqSf1KqPQarXaJx2o4snKysrCzs6OzMxM6tSpI/WkXo2rKfWkXmVkmlEIIYTRkzATQghh9CTMhBBCGD0JM4GlpSUzZ87E0tJS6km9GllT6km9ysgFIEIIIYyeHJkJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJVCoVvr6+qNVq1Go1sbGx1VJ39uzZKBQKTp069VjrdO3alaCgINRqNR06dODEiROPrVZeXh79+vXD29sbtVpNZGQkiYmJj60ewAsvvIBKpXokz+W9rwU/Pz9mz56te124ubmhVCp1j9977z2WL1+OQqHgo48+0ttOp06dUCgU5OTkPNR4HuW+GeJJ/Pyq8/V5r+r6/YNqeo95bF+UJYyGu7u7Ni4urlprHj16VBsZGal1c3N77LVv3bql+//GjRu1zZo1e2y17ty5o926datWo9FotVqt9tNPP9U+9dRTj62eVqvV7tmzR3vlypVH8nO8dxtJSUlaOzs77cmTJ7VarVa7bNky7cCBA/X6L1u2TBsSEqINCgrSLUtISNC2bNlSC2izs7MfajyPct8M8SR+ftX5+ryrOn//tNrqeY+RIzNR7fLz85k8eTKLFy9GoVA89npKpVL3/8zMTExMHt/L3srKih49euj2q3Xr1ly6dOmx1QPo2LEjrq6uj3y7jRo1wtvbm/j4+Ar7eXh44ODgwOHDhwGIjo5m7Nixj2QMj2vfyvMkfn7V+fqE6v/9qy5mT3oAomYYMWIEGo2G0NBQ5s+fT7169R5brbfeeouRI0fi4eHx2Grcb/To0ezevRuA7du3V1vdTz75hN69e1dbvUcpLi6Oc+fOERwcXGnfcePGER0dTUhICGvXruXw4cM8//zz1TDKx6u6fn7V+fp8Er9/8PjfY+TITLB3715OnjzJsWPHcHBw4JlnnnlstQ4cOPBE3uhWrFjBlStXmDt3Lv/+97+rpea8efNISEjgP//5T7XUe1QGDRqEWq3mueeeIzo6Gi8vr0rXGThwINu2bWPjxo20atVK72jDWFXnz6+6Xp9P6vevWt5jHuskpqiRvvrqK21wcLA2ODhYGx0drdd27do1ra2t7WOrN2/ePK2zs7PW3d1d6+7urjU1NdU2bNhQu23btsdS7/7902q1WisrK21qaupjrffee+9pmzdvrnc+5HHW02ofzXmJirZR3jmzu8uee+45raOjo3bnzp1arVb7SM6ZGTKux+Fx/vwq86hfn/eaP3/+Y//9q8zjeI/RarVaCbN/uJycHL1f2A8++EDboUOHaqv/uN+kMjMztX/++afu8YYNG7QuLi66E/yPwwcffKANCQnRpqenP7YaZXnSYRYfH6997733dM+tsYZZdf78nsTr817V8bxW13uMnDP7h7t+/ToDBw6kuLgYrVaLp6cnK1aseNLDemQyMzMZOHAgd+7cwcTEhHr16rFly5bHduL76tWrTJ06FU9PTzp37gyUfMnqwYMHH0s9gMmTJ7Np0yZSUlKIiIjA1taWCxcuPLZ65fHy8uKVV155pNus7n2r7p9fdb8+n4Tqeo+RLxoWQghh9OQCECGEEEZPwkwIIYTRkzATQghh9CTMhBBCGD0JMyGEEEZPwkwIIYTRkzATQghh9CTMhBBCGD0JMyGEEEZPwkwIIYTR+39KiHRYmdTqAAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.alterations_matrix(altered_flanks.head(10))" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "importlib.reload(analyze)" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [], + "source": [ + "altered_flanks = analyze.compare_inclusion_motifs(altered_flanks)" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [], + "source": [ + "sh2_motif_changes = analyze.identify_change_to_specific_motif(altered_flanks, elm_motif_name = '14-3-3', modification_class = 'Phosphorylation', residues = ['S','T'])" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GeneUniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassInclusion SequenceExclusion SequenceMotif only in InclusionMotif only in ExclusionAltered PositionsResidue Change
22MLPHQ9BV36S337PhosphorylationRGRASsESQDLRGRASsESQGSLIG_14-3-3_CanoR_1NaN[4.0, 5.0][D->G, L->S]
23MLPHQ9BV36S339PhosphorylationRASSEsQDL*ARASSEsQGSRCLIG_14-3-3_CanoR_1NaNNaNNaN
50CEACAM1P13688T457PhosphorylationLHFGKtGRGKRLHFGKtGRLRTNaNLIG_14-3-3_CterR_2[3.0, 4.0, 5.0][G->L, K->R, R->T]
67ENAHQ8N8S7S512PhosphorylationKSPVIsRTGFSKSPVIsRTKIHLIG_14-3-3_CterR_2NaN[3.0, 4.0, 5.0][G->K, F->I, S->H]
93LMO7Q8WWI1-3S356PhosphorylationADGTFsRTLSKADGTFsRE*VHLIG_14-3-3_CterR_2NaNNaNNaN
129MAP3K7O43318T403PhosphorylationRIAATtGLFQARIAATtGQRTALIG_14-3-3_CanoR_1NaN[2.0, 3.0, 4.0][L->Q, F->R, Q->T]
141LMO7Q8WWI1-3T354PhosphorylationTEADGtFSR*STEADGtFSRE*LIG_14-3-3_CterR_2NaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " Gene UniProtKB Accession Residue PTM Position in Canonical Isoform \\\n", + "22 MLPH Q9BV36 S 337 \n", + "23 MLPH Q9BV36 S 339 \n", + "50 CEACAM1 P13688 T 457 \n", + "67 ENAH Q8N8S7 S 512 \n", + "93 LMO7 Q8WWI1-3 S 356 \n", + "129 MAP3K7 O43318 T 403 \n", + "141 LMO7 Q8WWI1-3 T 354 \n", + "\n", + " Modification Class Inclusion Sequence Exclusion Sequence \\\n", + "22 Phosphorylation RGRASsESQDL RGRASsESQGS \n", + "23 Phosphorylation RASSEsQDL*A RASSEsQGSRC \n", + "50 Phosphorylation LHFGKtGRGKR LHFGKtGRLRT \n", + "67 Phosphorylation KSPVIsRTGFS KSPVIsRTKIH \n", + "93 Phosphorylation ADGTFsRTLSK ADGTFsRE*VH \n", + "129 Phosphorylation RIAATtGLFQA RIAATtGQRTA \n", + "141 Phosphorylation TEADGtFSR*S TEADGtFSRE* \n", + "\n", + " Motif only in Inclusion Motif only in Exclusion Altered Positions \\\n", + "22 LIG_14-3-3_CanoR_1 NaN [4.0, 5.0] \n", + "23 LIG_14-3-3_CanoR_1 NaN NaN \n", + "50 NaN LIG_14-3-3_CterR_2 [3.0, 4.0, 5.0] \n", + "67 LIG_14-3-3_CterR_2 NaN [3.0, 4.0, 5.0] \n", + "93 LIG_14-3-3_CterR_2 NaN NaN \n", + "129 LIG_14-3-3_CanoR_1 NaN [2.0, 3.0, 4.0] \n", + "141 LIG_14-3-3_CterR_2 NaN NaN \n", + "\n", + " Residue Change \n", + "22 [D->G, L->S] \n", + "23 NaN \n", + "50 [G->L, K->R, R->T] \n", + "67 [G->K, F->I, S->H] \n", + "93 NaN \n", + "129 [L->Q, F->R, Q->T] \n", + "141 NaN " + ] + }, + "execution_count": 127, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sh2_motif_changes" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAEOCAYAAAAZhRmiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsdElEQVR4nO3deVhU9f4H8PewCBgCylIqAu6AAgOi5IYoqLhkXnEjRRFuuZGWmjev29XLFcssb1nZTUYlBQkBUzIqQ1wSU2MRc9cIXFNRdobt/P7w58mRxWEbkPN+Pc88D/Ndzud7mBnenkWQCYIggIiISEK0mnoBREREmsbwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkR6epF0BNRyaTNfUSiIgalLq/t4XhJ3Hp6ekaq+Xg4KDRek1Rk/VYry41Fx9bqrF6Gwe936LrqYunPYmISHIYfkREJDkMPyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSH4UdERJLD8CMiIslp0vArKyvD2rVrYWtri169esHW1hZvvPEGUlNToaOjA7lcLj4GDBigMjchIQEymQw7d+6stN1PP/0UvXv3hp2dHezs7ODr64vMzEyx/+rVq9DS0kJwcLDKvO3bt0Mmk2HTpk0q7UOGDIFMJkN+fj4AYN26dejZsye0tLQQFxdX4z6ePn1a3AcrKyuYmJiIzzds2CCOu3v3Ll588UVMnDhRbEtMTETr1q1Vvg9FRUUAgIMHD6q0d+jQAS4uLjWuhYieDzfOXEfUwt2IDIrA7vnhuJR4Ue258f85gHvX7taqXs6tHOxbsRcAkJ15HzsDdyDvz7xnzjseegw7ZigQGRSOfcv3orysXO16n439BJFBEQh/4yvcuXBbrXlJ235GZFAEvpy45f/rRuDCT+fVmvs0nTrNaiCBgYHIzs5GUlIS2rZti4qKCkRHR8PIyAgmJiZITU2tdm5oaCg8PDwQGhqK6dOni+2rV6/GDz/8gPj4eFhaWkIQBCQkJOD27duwsrICACgUCgwZMgQKhQLLly+HTCYT57u4uGDbtm146623AABXrlwRA+cxT09PTJkyBYGBgc/cR1dXV3E/tm/fjri4OOzZs6fSuHnz5mH06NHIy1N9w9nb2+P06dOVxnt5eal8f8aOHYuhQ4c+cz1E1LwV5RTh8GeJ+Nt7PjAwNkB5WTlun1cNh1JlKXT1dBu8dt6feTiw9luMXv0K2li0UavWoNnu6DqwG354Lx5/nMxAlwFd1aplKe+EccHjcSP9Bk7u/AWvBL8q9lVXs/+sgeg/ayCOhx7Di7YvoevAbrXcw7802ZHflStXEBUVhW3btqFt27aPFqOlhUmTJkFLq+ZlPXz4EAcOHEBERAR+++03XL16FQBQUFCA999/H6GhobC0tAQAyGQyeHp6ol+/fgCA8vJy7NixA5s3b4ahoSEOHTqksu3OnTvD1NQUp06dAvAoKGfNmqUyxs3NDV27qvcCq2PXrl148cUXMWTIkDrNv3nzJhISEuDn59dgayKipnHt+FXYetnBwNgAAKCto42ODh1VxqTFpCB26R5cOHgeZSVlDVK3OLcY+1fsxfAlI9DOqp3YfuXwZex5+2uc2Z+GkkJltfOVBUoIglDrusr8YghQnXd86zHsX/ENrh2/ioryilpvUx1NFn7Jycno3r07zMzMqux/+PChymm9GTNmiH27du3CiBEj8NJLL2HatGlQKBQAgN9++w2tWrWCvb19tXXj4+PRsWNH9OrVC4GBgQgNDa00JiAgAAqFAuXl5YiKioKvr28997Z6N2/exIcffoj169dX2X/x4kW4uLigb9+++Oyzz6ocs2PHDowaNQoWFhbV1lEqlcjNzVV5EFHzU3C/AIZmhgCA309cQ2RQBGL/Ea0yxtW3H0atGIuinCLELo3Gof/+hAdZ2fWq++elOzAwaY0XbV9SabcbYY9X142HlrYW4lbtx/frv8Odi38diR774gi2Tv4flPlK2Lh1Vrve9dQs7Hr9K3wXfAD9/VUvaw2ZPxRD3xqGu1fvYs/bX+PY/44i/96zT8PWRrO94eXxac/Hj7CwMLEvNDQUAQEBAB6dOt2+fTvKyx+da37yFGZVnpw7ffp0fPvtt3jw4IHKGB8fHxw4cACxsbHo168fTExMGnDPVL3++ut4//33YWhoWKnPxcUF169fR3JyMmJjY7FlyxZ8/fXXlcZt27btmadgQ0JCYGxsrPIgoubH0MwQ+Xcf3V/Q+eUumLLZF/ev3UNkUAQigyJQlPvoMoy+kT7svXuh5zBbZP76B26cuVGvulau1jBqb4yfQ49hz9tfIzIoAvd/vwcA0DVoBVtPO9iNtMfdK3eR8cvv4rxBs93h/1UAZJBBmVesdj1LeSdM+9IP/Wf2R1ZKFiKDIrDn7b9+vhmatYHDWEd0HdgVlw9fxN0rtbuO+SxNds3PxcUFly9fxv3792Fqaqr2vNTUVKSnp+ONN94Qg+7evXuIj4/HkCFDoFQqce7cuSqP/v78808cOHAAp06dQkhICACgtLQU4eHhmD9/vjjOwMAAo0aNwty5c7F79+567mnNkpKSxODKz89HUVERRo4cie+//x5GRkbiOEtLS/j6+uLo0aOYPHmy2H7kyBEUFhZi5MiRNdZZtmwZFi1apNLGACRqfjr374LYf0TDdrgdWpu0RkVZBfSN9DFl819noO5cuI2U6GQU3C+A7XA7vPalX4NcAxy6YBi+WRYLuxH26DWqNwAgOzMbyVG/IvuP++g+pAcmfjQZ+m30Vebp6OnAaYIcpyJOYcg8j1rVdJrgjPA3vsJr//ODto42ACDz1z+QFpuK8rJy2Hv3wowds8S+htJk4detWzf4+PiIR24mJiYQBAFfffUVBg4cWO28rVu3YvHixSqnCTdv3ozQ0FCMGTMGS5Ysweuvv46oqCh06NABAHDgwAGYmpri6NGjGD9+vEqgxcXFYdWqVSrhBwCLFy9Gt27dMGzYsAbec1XZ2X+dqnj6hphbt27hxRdfhJaWFvLy8hAXF1fpCE+hUMDf3x/a2jW/MfT09KCnp9fwO0BEDcrA2ADucz0Qt2ofgEdns1wmu6qMKcguQN/pbjC1rvrA4Yf3voeu/qMwHL16LF5o94JatbW0tTDmX69gz1uRaGPRBlZ9rFFwPx+9x/TGS7bta5zbpX9X/PzlMQwIGCjWVoe2jjZs+nXG5cRLsPWyA/Dopp8hbw6F0YtGz5hdd016t6dCoUBwcDDc3Nygo6MDQRDg7u4OR0dH8Zrfk5KSkhAeHo7Dhw+rtE+dOhX/+Mc/cOfOHaxduxbm5uYYMWIEysvLIZPJ4OzsjPXr10OhUOC9995Tmevt7Y2AgAAkJyertHfv3h1Lliypct0hISH49NNPcffuXfj7+0NfXx8pKSkwNzev/zflCdHR0fj888+ho6ODsrIyTJo0SeXmm7y8PERHRyMtLa1B6xJR07J0ssTkj6dW21/THZXey0fXup5xe2OMCx4PAGjVuhVe+99fN891craqdt6AwEHi11raWpi5Y1a1Y6urBwCD56je7NdzmG2N85+sW1cyoS6351CLIJPJkJ6errF6Dg4OGq3XFDVZj/XqUnPxsaUaq7dx0Pstut4HA9979iA04xteiIiIGkuTnvZsacaNG6fym2QAoG3btpX+LyERETUthl8D2rdvX1MvgYiI1MDTnkREJDkMPyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSH4UdERJIjEwRBaOpFUNOQyWRNvQQiogalbqTpNPI6qJlLT0/XWC0HBweN1muKmqzHenWpufjYUo3V2zjo/RZdT1087UlERJLD8CMiIslh+BERkeQw/IiISHIYfkREJDkMPyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUlOiww/Gxsb2NraQi6Xi49z586J7WVlZeJYV1dXJCYmqsyfMWMGjIyMUFhYWGm7Z8+eVWnz8PBAXFxcjevZsmULHB0d4eTkBFtbW0ybNq3atUZGRop969atQ8+ePaGlpVWpxj//+U/Y2dnByckJ/fr1Q0JCglrfGyJq3m6cuY6ohbsRGRSB3fPDcSnxotpz4/9zAPeu3QUAJGw6iKTtx9Wem3MrB5+N/QSRQRGIDIpAVkqmWvOykjORuPmQ2nWUBUrELo1GZFAEdr0ehqvHrqg9d2fgDvHrMmUZIoMi1J77NJ06z2zm9uzZg969e1dqVyqVCA0NxezZs6ucl5ubi/3798PBwQFRUVGYOXNmvdZx+vRpfPDBBzh58iTatWsHQRCQkpKi1lo9PT0xZcoUBAYGVuobPHgwVq5cCQMDA6SlpcHDwwO3bt2Cvr5+vdZLRE2nKKcIhz9LxN/e84GBsQHKy8px+/xtlTGlylLo6unWuJ2kbT8DkKG//4Ba1beUd8K44PGV2stKyqCtqw2ZTFar7VXlXPxvsHHrDGcfFwiCAGW+UqVfnf1rCC3yyK8ma9aswb///e9KR3WPhYeHw8vLC4sXL0ZoaGi962VlZcHY2BhGRkYAAJlMBhcXF7Xmurm5oWvXrlX2jRo1CgYGBgAABwcHlJeX4969e/VeLxE1nWvHr8LWyw4Gxo8+29o62ujo0FFlTFpMCmKX7sGFg+dRVlJWaRupsal4eP0hhi4c1mDryrnxEJFBEUjafhy5d3LrtS1dfV3cPn8LBdkFkMlk0G+j+g/2H9/7Ht8Ff6v2kWddtdgjv4kTJ6ocBZ08eRIA4OLiAnd3d3z00UdYvnx5pXmhoaFYu3YtvLy8MHfuXFy6dAk9evSodrtXrtR8yD5y5Ehs3LgRnTp1wpAhQzBo0CBMmzYNbdu2FcdMmzYNFRUVcHNzQ0hICMzNzWu1r9u2bUPXrl1haWlZ7RilUgmlUlltPxE1vYL7BTCxNAEA/H7iGk7u/AWtXmiFv73nI45x9e2H3mMccf7Hc4hdGg2zzmaQT3BG207tAAAXfjyHiZsm1+ko7Xpqlngqcfz6CdAz1AMAmHY2w5RPfJFx8ncc/fwwypRlsPfuhe5DetS0uSrZj+yFgvv5iF4UBR19HYxaPlpcOwCMXjUWD288wNm4dCRtOw7rvjZwelUOfSN9KAuU4voEQajXkWiLPfLbs2cPUlNTxUerVq3EvuDgYGzatAn3799XmZOeno5bt25hxIgR0NXVhZ+fHxQKRY3bdXV1rXEdrVu3xtGjR3HgwAEMGDAAMTExcHR0RHZ2NgDgyJEjSEtLQ3JyMkxNTWt9mvWnn37CmjVrsHv37hrHhYSEwNjYWOVBRM2LoZkh8u/mAwA6v9wFUzb74v61e+J1uKLcIgCAvpE+7L17oecwW2T++gdunLkhbmPkslH4PiQeeX/m1bq+pbwTpmz2xZTNvjgRloTIoAic/+EcAECmJYONW2c4jnNCRUUFzn6bXqd91NLRgtuM/pix3R+D3hgs7tt3//5WHGPSsS0cX5XD0skS577/DTm3HgIA9F7QE9c38cPJdar/WIs98qtJly5d4Ovri+DgYJX2rVu3Ij8/XzzVWFpaioqKCgQHB0NHp+7fKplMBmdnZzg7O+PNN9+Evb09EhMTMWHCBFhZWQEAdHV18dZbb6kcZT7L4cOHMWvWLOzfvx89e/asceyyZcuwaNEilTYGIFHz0rl/F8T+Ixq2w+3Q2qQ1KsoqoG+kjymbfcUxdy7cRkp0MgruF8B2uB1e+9JP5RpZ205t4bnIC/uWx2LSf6egVWu9Oq1lyDwP8evivGKkRCfjj5MZsHSyxLCFnjDuYFKn7ebezsELpobQ1tVGa5MX0NHJEq+sfVXsv3z4Es5+mw5dA130HuOA/gEDG+Ra49MkGX4AsHLlStjb20NX99GbRqlUYteuXThx4gRsbW3Fca6urjhw4ADGjRtXpzoXLlxASUkJHB0dATy6Bnj37l106dIFBQUFKC0thYmJCQAgIiICzs7Oam33yJEj8PPzwzfffAMnJ6dnjtfT04OeXt0+BESkGQbGBnCf64G4VfsA/P89ApNVzy4VZBeg73Q3mFqbVrsdS6dOcJnUB/tX7sPf3vOBlk79TvIV5xbDopsF3PxehpZ2/bZ198pd7F+5Dzp6j+LHc5GXSn9JYQlG/nMUWpu0rledZ2mx4ff0tblPPvlEpd/c3BwLFizAqlWrAAB79+6FtbW1SvABgJ+fH7Zu3Vrn8CssLMTbb7+N27dvw8DAAIIgYP369ZDL5bh27Rp8fHxQXl4OQRDQpUsXhIWFiXNDQkLw6aef4u7du/D394e+vj5SUlJgbm6OwMBAKJVKzJo1Sxz/1VdfwcHBoU7rJKLmwdLJEpM/nlptf5cBVd8EBwDey0eLX9uN6AW7Eb3Urmvc3rjKOz0BwKSjCUw6mlTZ18nFCp1crNSu03VQN3Qd1K3a/l6jKt/5/tj00L8uC+no6agcEddWiwy/jIwMtdpXrlyJlStXis+nTJlSac7ChQuxcOHCarf79P8RfJqLiwsOHz5cZV+XLl0q/beHJy1btgzLli2rsu/y5cs11iUiouq12BteiIiIqtMij/yawpw5c3DixIlK7UlJSeL/xyMiouaB4ddAtmzZ0tRLICIiNfG0JxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSU6vf7Tls2DC1xiUkJNRpMURERJpQq/BLTEyEtbU1xowZI/4FdCIioudNrcJv/fr12L59O6KiojBt2jQEBASgd+/q/+ouERFRc1Sra35Lly7FuXPnsHfvXuTl5WHgwIHo168ftmzZgtzc3MZaIxERUYOq0w0v/fv3x5dffolbt25h/vz5UCgU6NChAwOQiIieC/W62zM5ORmHDx/G+fPn0bt3b14HJCKi50Ktw+/mzZtYt24devTogYkTJ6Jdu3b45ZdfcOLECRgYGDTGGomIiBpUrW54GT16NA4dOoQRI0Zgw4YNGDNmDHR0arUJIiKiJler5IqPj0f79u2RmZmJNWvWYM2aNVWOS05ObpDFERERNYZahd/q1asbax1EREQaIxMEQVB3cGZmJiwtLaGlxd+K1hLIZLKmXgIRUYNSN9JqdeTXuXNn3Lp1CxYWFnVaFDU/6enpGqvl4OCg0XpNUZP1WK+513RwcMDiY0s1Vm/joPc1Wk9dtTqEq8VBIhERUbPF85dERCQ5tf5/Clu3boWhoWGNYxYsWFDnBRERETW2Woffli1boK2tXW2/TCZj+BERUbNW6/A7ffo0b3ghIqLnWq2u+fHWeCIiagl4tycREUlOrcJvyZIlWLZsGTp27AgLCwu89tpruHfvXmOtjYiIqFHU+shv9+7dGDNmDHx9ffHjjz9i7ty5jbU2IiKiRlGrG15iYmIQGhqKqVOnAgCmTZuGgQMHory8vMY7QImIiJqTWh35ZWVlYfDgweLzfv36QUdHBzdv3mzwhRERETWWWoVfeXk5WrVqpdKmo6ODsrKyBl0UERFRY6rVaU9BEODv7w89PT2xrbi4GHPmzMELL7wgtsXExDTcComIiBpYrcJv5syZldqmT5/eYIshIiLShFqF37Zt2xprHURERBrDv+pARESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSnxYafjY0NLCwsUFpaKrYlJCRAJpNhyZIlSExMhKura6V5GRkZ0NHRgVwuh5OTE1xdXXHo0CEAwPbt2zFx4kSV8dVt50lZWVkYN24cHB0d4eDgALlcjoSEBABAbGwsHB0dIZfL0atXLyxfvlz8o8FJSUmQy+Vi3+zZs6FUKgEABw8eFPvkcjk6dOgAFxeXun/DiEhycm7l4LOxn+DrBbsRGRSOw58lolRZ+uyJ/69MWYZD//0JkUER2D0/HN/+az+UBUq16u5bsbfW6z3/4zmEv/EVds8LR+zSPbWe/6Ra/YaX542VlRX27dsHHx8fAIBCoXhmUAGAiYkJUlNTAQDffPMNJk+ejD///LPO65g3bx68vLywcOFCAMC9e/dQWFgIAPDy8sKrr74KLS0tlJSUYNCgQXBzc8O4cePg5OSEU6dOQVdXFxUVFZg4cSK++OILLFiwAF5eXuIaAWDs2LEYOnRonddIRNJkKe+EccHjIQgCjm89hqTQn+E+z0PsL1WWQldPt8q5J3Ykoa1VOwxd6AkAuHv1LirKK+q1nprqndp1EtO+9IO2rjaKc4vrVafFHvkBQEBAABQKBQAgJycHJ06cgLe3d622MXz4cNy7dw/379+v8zoyMzPRqVMn8bmZmRmsrKwAAG3atIGW1qOXobi4GEqlUnzeunVr6Oo+ehOUlJSgqKhI7HvSzZs3kZCQAD8/vzqvkYikTSaTwW1mf1w5dkWlPS0mBbFL9+DCwfMoK1H9Cz5/nMqA03i5+Ny8qzkMjAzqtY6a6pWVlOHWuZuoKK+AvpF+veq06PBzd3fHtWvXcOPGDURERGDSpEm1/qO7ERERsLKygpmZGYDKpxv//ve/P3Mb7777LmbOnIlBgwZh8eLFOHLkiEr/8ePH4ejoCAsLC3h6emLMmDFiX0ZGBuRyOczMzGBkZIQ33nij0vZ37NiBUaNGwcLCoto1KJVK5ObmqjyIiJ6k00oH5aXlKm2uvv0wasVYFOUUIXZpNA799yc8yMoG8Ogv/chkMgBA3Op9CPPfjsxf/6jXGmqqN2bVWCR//StCp36JpO3H61WnRYcfAPj5+WHHjh1QKBQICAhQa87Dhw/FcIuJicG+ffvEvsenGx8/tm7d+szt+fr6IjMzE4sWLQIAvPrqq9iwYYPYP2DAAJw5cwZZWVk4deoUjh49KvbZ2NggNTUVt2/fhlKprPLPRW3btg2BgYE1riEkJATGxsYqDyKiJ5WXlkNbWwuRQRGIDIpAUW4RAEDfSB/23r3Qc5gtMn/9AzfO3ADw6Gjx8T0KY9eMQ7fB3VBarP41QwAoyi1Su96Lti9h3H/GIyD877iemoXszLqfkWvR1/wAwN/fHy4uLujRowe6d++u1pwnr/k1lLZt22LChAmYMGEC+vbti3Xr1uGdd95RGWNubo4xY8YgKioK7u7uKn2GhoaYOnUqdu3ahalTp4rtR44cQWFhIUaOHFlj/WXLlonh+xgDkIie9EtYEroN6QH3uUPEtjsXbiMlOhkF9wtgO9wOr33pJ16Ts+5rg7TYVMgnOAMAKsqFWtc0MDLAlM2+atV7kJWNtp3aQVtXG/qG+hDqcXmxxYdfhw4dEBISAltb2yZbw/79++Hp6YnWrVtDEASkpKSga9euAICLFy+ie/fu0NLSQl5eHuLi4sS/m3j16lVYWVlBV1cXJSUliImJgaOjo8q2FQoF/P39n3k6V09PT+WPEBMRAcD11Cx8vWA3hIoKvGTXHgP+PkilvyC7AH2nu8HU2rTS3Jdn9seRzw9j9/xw6OjpwMDYAM4+zmrVvZF2HVELIwEANm426Pua2zPrHf40EYUPCyGTyWDpZAlTm8pj1NXiww8AZs2aVWX7mTNnYGlpKT7v37+/yunIhnLkyBEsXboUOjo6EAQBPXv2xObNmwEAUVFRCA8Ph66uLsrLyzFx4kTxOmJiYiI++ugjaGtro6ysDMOGDcPKlSvF7ebl5SE6OhppaWkNvmYiavmM2xtjXtybNY7pMqBrtX06ejoY9pZnnerO3R9U63rj10+oda3qtNjwy8jIqLL9X//6l/h1SUlJlWPu3btXZbu/vz/8/f1V2jw8PHD69Oka17Jhw4ZqQ3XFihVYsWJFlX2BgYE1Xstr06YN8vLyaqxNRESVtfgbXoiIiJ7WYo/8NC01NbXSUSEAzJw5E2+//bbmF0RERNVi+DUQuVze4HeIEhFR4+BpTyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSH4UdERJLD8CMiIsmRCYIgNPUiqGnIZLKmXgIRUYNSN9J0Gnkd1Mylp6drrJaDg4NG6zVFTdZ7/ustPrZUY/UAYOOg9zVasynqafpzrw6e9iQiIslh+BERkeQw/IiISHIYfkREJDkMPyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSnWYefjY0NLCwsUFpaKrYlJCRAJpNhyZIlYptCoYBMJsOxY8dU5vv7+8PS0hJyuRx2dnaYPXu2uK0RI0bA0dERcrkcgwcPRmpqqjjPw8MDcXFxAICKigrMnTsXHh4eyMvLw4IFCyCXy8WHvr4+Pv7442r34fE4e3t76OjoiM+nTJkijhEEAZ6enjAzM1OZ+8svv0Aul6NHjx7w9PTErVu3xL6a1k9EDSfnVg72rdhb63llyjIc/OAHRAZFIHz2TlxMuKB2vc/GfoLIoAhEBkUgKyVTrXlZyZn4YsLniAyKwO554ci5laP2vMigcOyeH4641ftQnFus1rzc27niGj8e/hEigyIQvThKrbnNgU5TL+BZrKyssG/fPvj4+AB4FHSurq4qY0JDQ+Hh4YHQ0FAMGjRIpe/dd99FUFAQiouLMXToUGzZsgVvvvkmvv76a5iYmAAA9u7di4CAACQnJ6vMLS0thZ+fHwoLCxEfH18p6G7fvo3OnTtj8uTJ1a7/cShlZGTA1dW1ypDavHkzbGxskJaWJrYJgoBp06Zh69at8PDwwAcffIBFixYhIiICANRaPxE1rlJlKXT1dKvsO7H9OMy6msNryQiUFCrx9Zu7YdbVHKbWps/crqW8E8YFj6/UXlZSBm1dbchksirn9RxmC4+goTj/wzmkxiRjyPyhNdYpyi3Ckc8Pw2fjJOgb6eNc/G/46aMfMWb1K8+safSSEaZs9gUA7AzcIX79vGjWR34AEBAQAIVCAQDIycnBiRMn4O3tLfZfuHABv//+O3bu3InY2Fjk5eVVuR19fX0MHjwYFy9eBAAxOB5vV0tL9VtRWFiIcePGQVdXFzExMdDX16+0zbCwMIwcORIvvfRSnffv8uXL2L17N959912V9tOnT0NPTw8eHh4AgNmzZ2Pv3r3ikeuz1v80pVKJ3NxclQcR1U9aTApil+7BhYPnUVZSptKXcSoDTq/KAQCtWuvBcbwcl9Q8+qtOzo2HiAyKQNL248i9U/1nWJmvhCA8e3vXfr4Ku+F20Dd69PPN3rsXbp29iYryilrXfN40+/Bzd3fHtWvXcOPGDURERGDSpEnQ1tYW+0NDQ+Hn54eOHTti6NCh2L17d5XbefDgAb7//nv06dNHbJsxYwY6deqEFStWYMeOHSrj582bh3bt2iEsLAw6OlUfICsUCgQGBtZ53yoqKvD666/j008/ha6u6r8eMzMzYW1tLT5v06YN2rRpo3Lqs6b1Py0kJATGxsYqDyKqH1fffhi1YiyKcooQuzQah/77Ex5kZQMAZDJApvXX0ZKRhRHy7+Wrtd3rqVniKUVlvlJsN+1shimf+OIl25dw9PPD+GZZLC4fviT2X0y4gLBZ23Eq4iRcJvWpatMqCu4XwNCijUpb63YvoOhhodo1n1fNPvwAwM/PDzt27IBCoUBAQIDYXlpaiq+++kpsCwwMRGhoqMrc9evXw9nZGZ6envDx8YG/v7/YFxYWhqysLAQHB+Odd95Rmeft7Y2EhASkp6dXuaaff/4Zubm5GD16dJ3364MPPoC7uzvkcnmV/U+fZhCe+qdcTet/2rJly5CTk6PyIKLaKcotEkOpKLcIAKBvpA97717oOcwWmb/+gRtnbojjhYq/PrN5d/NgaGaoVh1LeSdM2eyLKZt9cSIsCZFBETj/wzkAjwLVxq0zHMc5oaKiAme//etnVM9htvBTzER39+7Izrj/zDovmL6A/LuqgVyUU4hT4SfVrvm8avbX/IBHN664uLigR48e6N69u9geFxeHhw8fYuTIkQAehcPNmzdx9uxZ9O7dG8Bf1/xqMnPmTMyZMwf379+Hqemj8/FTp07FmDFjMGLECMTHx1cKqNDQUMycOVPlKLS2jhw5gjNnziAsLAxlZWV48OABbGxskJKSAisrK2RkZIhj8/LykJeXh/bt26u1/qfp6elBT0+vzmslIsDAyEDl2tadC7eREp2MgvsFsB1uh9e+9BOvAVr1sUb6/jQ4vipHSWEJ0vefgffy2v9jecg8D/Hr4rxipEQn44+TGbB0ssSwhZ4w7mCiMl4mk6Hf9Jexb/le2Lh1rnHbXQZ0RcySPbD37gX9Nvo4/8M5dHS0hMebw2pV83n0XIRfhw4dEBISAltbW5X20NBQbNq0CXPmzBHblixZAoVCgQ8//LDa7eXm5iI/Px8dOnQAAMTGxsLU1BTt2rVTGefr6wstLS2MHDkS8fHxcHZ2BgDk5+djz549+PXXX+u1X4/vKAX+uiHmceD16dMHxcXFSExMhIeHB7744guMHz8eurq6aq+fiBrGjbTriFoYCQCwcbNB39fcAAAF2QXoO92typtYXp41AIc2/YRzP4Qj+49seC0ejnZW9fuMFucWw6KbBdz8XoaWdvUn7lq3bQ1Dc0PcPHsTHXp3qHacgbEBBs12x953Y1BaVAJd/Vb42wafOtV83jwX4QcAs2bNUnmenZ2NhISESte6/Pz84OXlhfXr11e7rZycHPj4+KCoqAhaWlowNzdHXFxclXdQTZkyBTKZDCNHjsR3332HPn36IDIyEs7OzipHoQ1NS0sLO3fuxJw5c1BUVISOHTti586dtV4/EdWPcXtjzN1f9dmjLgO6VjtPV08XI/7x6Oa8lOhkXP35CnoM7alWvaru9AQAk44mMOloUmVfJxcrdHKxEp+PXTPumbUAwNrVGtau1ih8WIiYxVHIvZUD824WatV8bHroTLVqNScy4ekLSSQZMpms2muajcHBwUGj9ZqiJus9//UWH1uqsXoAsHHQ+xqt2RT1NPkaPr7k9Swt5xiWiIhITc/Nac/mbu3atYiJianUHh0dja5dqz81QkREmsfwayCrVq3CqlWrmnoZRESkBp72JCIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSH4UdERJLD8CMiIslh+BERkeQw/IiISHIYfkREJD0CUS0UFxcLq1evFoqLi1tkvaaoyXrPd72mqMl69ScTBEFo6gCm50dubi6MjY2Rk5MDIyOjFlevKWqy3vNdrylqsl798bQnERFJDsOPiIgkh+FHRESSw/CjWtHT08Pq1auhp6fXIus1RU3We77rNUVN1qs/3vBCRESSwyM/IiKSHIYfERFJDsOPiIgkh+FHRESSw/CjWrGxsYGtrS3kcjnkcjkiIyM1UnfNmjWQyWQ4e/Zso9caMWIEHB0dIZfLMXjwYKSmpjZareLiYowfPx49evSAXC6Ht7c3MjIyGq0eACxYsAA2NjYN8v188v1gb2+PNWvWiO8NKysrmJiYiM83bNiA7du3QyaTYdOmTSrbGTJkCGQyGfLz8+u1nobcN3U0xeunyffnkzT1GdTYz5hG+8Vp1CJZW1sL6enpGq3566+/Ct7e3oKVlZVGaj948ED8OjY2VnB2dm60WkVFRcK3334rVFRUCIIgCJ988okwfPjwRqsnCIJw+PBhISsrq0Feyye3kZmZKRgbGwtpaWmCIAjCtm3bBB8fH5Xx27ZtE1xcXARHR0ex7fLly0Lfvn0FAEJeXl691tOQ+6aOpnj9NPn+fEyTn0FNvXY88qNmTalUYv78+fjss88gk8k0UtPExET8OicnB1pajfcx0dfXx+jRo8V9e/nll3Ht2rVGqwcA7u7usLS0bPDtdurUCT169MClS5dqHNe5c2eYmpri1KlTAACFQoFZs2Y1yBoaa9+q0xSvnybfn0DTfAY1QaepF0DPn2nTpqGiogJubm4ICQmBubl5o9VatWoVpk+fjs6dOzdajarMmDEDhw4dAgDEx8drrO7HH3+MV155RWP1GlJ6ejouXLgAJyenZ44NCAiAQqGAi4sLoqKicOrUKcybN08Dq2xcmnr9NPn+bIrPoCZ+xvDIj2rlyJEjSEtLQ3JyMkxNTTFz5sxGq5WUlNRkPxTDwsKQlZWF4OBgvPPOOxqpuW7dOly+fBn/+c9/NFKvoUycOBFyuRyzZ8+GQqFA9+7dnznHx8cHBw4cQGxsLPr166dyNPO80uTrp6n3Z1N8BjX2M6bRT6zSc23Hjh2Ck5OT4OTkJCgUCpW+mzdvCoaGho1Wb926dUL79u0Fa2trwdraWtDW1hY6dOggHDhwoNFqPr2PgiAI+vr6wr179xq13oYNG4Q+ffqoXM9pzHqC0DDXVmraRnXX/B63zZ49WzAzMxMOHjwoCILQINf81FlXY2jM1+9ZGvr9+aSQkBCNfAar0xg/Yx5j+JHa8vPzVT7cGzduFAYPHqyx+pr4gZaTkyPcuHFDfB4TEyN07NhRvKGhMWzcuFFwcXERsrOzG61GVZo6/C5duiRs2LBB/N4+r+GnydevKd6fT2rs76smf8bwmh+p7c6dO/Dx8UF5eTkEQUCXLl0QFhbW1MtqUDk5OfDx8UFRURG0tLRgbm6OuLi4RrvQf/36dSxevBhdunTB0KFDATz6pb6//PJLo9QDgPnz5+Obb77B7du34eXlBUNDQ1y5cqXR6lWne/fuWLJkSYNuU9P7punXT9PvT03T5M8Y/mJrIiKSHN7wQkREksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJ+T8o0PCFI05TwwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.alterations_matrix(sh2_motif_changes)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot Event" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pose", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/General_Instructions.html b/General_Instructions.html new file mode 100644 index 0000000..b13f2dd --- /dev/null +++ b/General_Instructions.html @@ -0,0 +1,757 @@ + + + + + + + + + + + + Running PTM-POSE — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + + + + + + +
+ +
+

Running PTM-POSE#

+

PTM-POSE is an easily implementable tool to project PTM sites onto splice event data generated from RNA sequencing data and is compatible with any splice event quantification tool that outputs genomic coordinates of different splice events (MATS, SpliceSeq, etc.). PTM-POSE harnesses PTMs that have been mapped to their genomic location by a sister package, [ExonPTMapper](NaegleLab/ExonPTMapper). It also contains functions for annotating these PTMs with information from various databases, like PhosphoSitePlus and ELM.

+
+

Formatting Data#

+

To run PTM-POSE, you first need to process your data such that each row corresponds to a unique splice event with the genomic location of that splice event (chromosome, strand, and the bounds of the spliced region). Strand can be indicated using either ‘+’/’-’ or 1/-1. If desired, you can also provide a delta PSI and significance value which will be included in the final PTM dataframe. Any additional columns will be kept. At a minimum, the dataframe should look something like this (optional but recommended parameters indicated):

+
+ + + + + + + + + + + + + + + + + + + + + + +

event id +(optional)

Gene name +(recommended)

chromosome

strand

region start

region end

dPSI +(optional)

significance +(optional)

first_event

CSTN1

1

-1

9797555

9797612

0.362

0.032

+
+

PTM-POSE allows you to assess two potential impacts of splicing on PTMs:

+
+
Differential inclusion

lost or gained from the isoform as a result of a splice event

+
+
Altered flanking sequences

the PTM site is present in both isoforms, but the adjacent residues around a PTM are changed in one isoform such that its linear motif that drives many protein interactions is unique

+
+
+
+
+

Identifying differentially included PTMs#

+

Once the data is in the correct format, simply run the project_ptms_onto_splice_events() function, indicating the column names corresponding each data element. By default, PTM-POSE assumes the provided coordinates are in hg38 coordinates, but you can use older coordinate systems with the coordinate_type parameter. If you have saved ptm_coordinates locally, you can set this parameter to None.

+
from ptm-pose import project
+
+my_splice_data_annotated, spliced_ptms = project.project_ptms_onto_splice_events(my_splice_data,
+        ptm_coordinates,
+        chromosome_col = 'chromosome',
+        strand_col = 'strand',
+        region_start_col = 'region start',
+        region_end_col =  'region end',
+        event_id_col = 'event id',
+        gene_col = 'Gene name',
+        dPSI_col='dPSI',
+        coordinate_type = 'hg19')
+
+
+
+
+

Altered Flanking Sequences#

+

In addition to the previously mentioned columns, we will need to know the location of the flanking exonic regions next to the spliced region. Make sure your dataframe contains the following information prior to running flanking sequence analysis:

+
+ + + + + + + + + + + + + + + +
+

event id +(optional)

+
+
+

first event

+
+
+

Gene name +(recommended)

+
+
+

CSTN1

+
+
+

chromosome

+
+
+

1

+
+
+

strand

+
+
+

-1

+
+
+

region start

+
+
+

9797555

+
+
+

region end

+
+
+

9797612

+
+
+

first flank start

+
+
+

9687655

+
+
+

first flank end

+
+
+

9688446

+
+
+

second flank start

+
+
+

9811223

+
+
+

second flank end

+
+
+

9811745

+
+
+

dPSI +(recommended)

+
+
+

0.362

+
+
+

significance +(recommended)

+
+
+

0.032

+
+
+
+

Then, as with differentially included PTMs, you only need to run get_flanking_changes_from_splice_data() function:

+
from ptm-pose import project
+
+altered_flanks = project.get_flanking_changes_from_splice_data(my_splice_data,
+        ptm_coordinates,
+        chromosome_col = 'chromosome',
+        strand_col = 'strand',
+        region_start_col = 'region_start',
+        region_end_col =  'region_end',
+        first_flank_start_col = 'first_flank_start',
+        first_flank_end_col = 'first_flank_end',
+        second_flank_start_col = 'second_flank_start',
+        second_flank_end_col = 'second_flank_start',
+        event_id_col = 'event_id',
+        gene_col = 'Gene name',
+        dPSI_col='dPSI',
+        coordinate_type = 'hg19')
+
+
+
+
+

Combining outputs#

+

In some cases you may wish to work with a combined file that indicates both differential inclusion and altered flanking sequence events. This can be done quickly by running:

+
from ptm_pose import analyze
+combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks)
+
+
+
+
+

Annotating PTMs with Functional Information#

+

Beyond projecting PTMs onto your data, we have also provided additional functions for appending information on the function, relationships, and interactions of each post-translational modification that have been recorded in various databases. These annotations include information from:

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Database

Annotation types

PTM-POSE function

PhosphoSitePlus

    +
  • Function

  • +
  • Biological Process

  • +
  • interactions

  • +
+
annotate.add_PSP_regulatory_site_data(spliced_ptms, file = "/path/to/file/Regulatory_sites.gz")
+
+
+
    +
  • Kinase substrates

  • +
+
annotate.add_PSP_kinase_substrate_data(spliced_ptms, file = "/path/to/file/Kinase_Substrate_Dataset.gz"
+
+
+

DEPOD

    +
  • Phosphatase substrates

  • +
+
annotate.add_DEPOD_data(spliced_ptms, file = "/path/to/file/")
+
+
+

RegPhos

    +
  • Kinase substrates

  • +
+
annotate.add_RegPhos_data(spliced_ptms, file = "/path/to/file/")
+
+
+

ELM

    +
  • Interactions

  • +
+
annotate.add_PTMcode_interprotein(spliced_ptms, file = "/path/to/file/")
+
+
+
    +
  • Linear motifs

  • +
+
annotate.add_PTMcode_intraprotein(spliced_ptms, file = "/path/to/file/")
+
+
+

PTMcode

    +
  • Interactions

  • +
+
annotate.add_PTMcode_interprotein(spliced_ptms, file = "/path/to/file/")
+
+
+
    +
  • Intraprotein contacts

  • +
+
annotate.add_PTMcode_intraprotein(spliced_ptms, file = "/path/to/file/")
+
+
+
+
+

Rather than running each function individually, you can also use the master function annotate_ptms() to annotate with all desired information at once.

+

We are continuing to work on adding functions to append more contextual information for individual PTMs. If you have suggestions for what information you would like to be added, please let us know!

+
+
+

Downstream Analysis#

+

PTM-POSE also provides functions in the annotate module for annotating the above outputs with functional information from various databases: PhosphoSitePlus, RegPhos, PTMcode, PTMInt, ELM, DEPOD. You can then identify PTMs with specific functions, interaction, etc. with the analyze module. See an example on a real dataset [here](Examples/ESRP1_knockdown).

+
+
+ + +
+ + + + + + + + +
+ + + + + + +
+
+ + +
+ + +
+
+
+ + + + + +
+
+ + \ No newline at end of file diff --git a/Overview.html b/Overview.html new file mode 100644 index 0000000..825875b --- /dev/null +++ b/Overview.html @@ -0,0 +1,440 @@ + + + + + + + + + + + + Overview — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

Overview

+ +
+
+ +
+
+
+ + + + +
+ +
+

Overview#

+

PTM-POSE is an easily implementable tool to project PTM sites onto splice event data generated from RNA sequencing data and is compatible with any splice event quantification tool that outputs genomic coordinates of different splice events (MATS, SpliceSeq, etc.). PTM-POSE harnesses PTMs that have been mapped to their genomic location by a sister package, ExonPTMapper. It also contains functions for annotating these PTMs with information from various databases, like PhosphoSitePlus and ELM.

+

For more details about PTM projection and how it can be used to understand the impacts of splicing on cell signaling and other processes, see our pre-print: https://www.biorxiv.org/content/10.1101/2024.01.10.575062v2

+
+ + +
+ + + + + + + + +
+ + + + +
+
+ + +
+ + +
+
+
+ + + + + +
+
+ + \ No newline at end of file diff --git a/PTM_POSE.html b/PTM_POSE.html new file mode 100644 index 0000000..2ded8fa --- /dev/null +++ b/PTM_POSE.html @@ -0,0 +1,1805 @@ + + + + + + + + + + + + PTM-POSE Reference — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

PTM-POSE Reference

+ +
+ +
+
+ + + + +
+ +
+

PTM-POSE Reference#

+
+

Configuration#

+
+
+ptm_pose.pose_config.download_ptm_coordinates(save=False, max_retries=5, delay=10)[source]#
+

Download ptm_coordinates dataframe from GitHub Large File Storage (LFS). By default, this will not save the file locally due the larger size (do not want to force users to download but highly encourage), but an option to save the file is provided if desired

+
+
Parameters:
+
+
savebool, optional

Whether to save the file locally into Resource Files directory. The default is False.

+
+
max_retriesint, optional

Number of times to attempt to download the file. The default is 5.

+
+
delayint, optional

Time to wait between download attempts. The default is 10.

+
+
+
+
+
+ +
+
+

PTM Projection#

+
+
+ptm_pose.project.project_ptms_onto_MATS(ptm_coordinates=None, SE_events=None, fiveASS_events=None, threeASS_events=None, RI_events=None, MXE_events=None, coordinate_type='hg38', identify_flanking_sequences=False, dPSI_col='meanDeltaPSI', sig_col='FDR', separate_modification_types=False, PROCESSES=1)[source]#
+

Given splice quantification from the MATS algorithm, annotate with PTMs that are found in the differentially included regions.

+
+
Parameters:
+
+
ptm_coordinates: pandas.DataFrame

dataframe containing PTM information, including chromosome, strand, and genomic location of PTMs

+
+
SE_events: pandas.DataFrame

dataframe containing skipped exon event information from MATS

+
+
fiveASS_events: pandas.DataFrame

dataframe containing 5’ alternative splice site event information from MATS

+
+
threeASS_events: pandas.DataFrame

dataframe containing 3’ alternative splice site event information from MATS

+
+
RI_events: pandas.DataFrame

dataframe containing retained intron event information from MATS

+
+
MXE_events: pandas.DataFrame

dataframe containing mutually exclusive exon event information from MATS

+
+
coordinate_type: str

indicates the coordinate system used for the start and end positions. Either hg38 or hg19. Default is ‘hg38’.

+
+
identify_flanking_sequences: bool

Indicate whether to look for altered flanking sequences from spliced events, in addition to those directly in the spliced region. Default is False. (not yet active)

+
+
PROCESSES: int

Number of processes to use for multiprocessing. Default is 1.

+
+
+
+
+
+ +
+
+ptm_pose.project.project_ptms_onto_splice_events(splice_data, ptm_coordinates=None, annotate_original_df=True, chromosome_col='chr', strand_col='strand', region_start_col='exonStart_0base', region_end_col='exonEnd', dPSI_col=None, sig_col=None, event_id_col=None, gene_col=None, extra_cols=None, separate_modification_types=False, coordinate_type='hg38', taskbar_label=None, PROCESSES=1)[source]#
+

Given splice event quantification data, project PTMs onto the regions impacted by the splice events. Assumes that the splice event data will have chromosome, strand, and genomic start/end positions for the regions of interest, and each row of the splice_event_data corresponds to a unique region.

+

Parameters

+
+
splice_data: pandas.DataFrame

dataframe containing splice event information, including chromosome, strand, and genomic location of regions of interest

+
+
ptm_coordinates: pandas.DataFrame

dataframe containing PTM information, including chromosome, strand, and genomic location of PTMs. If none, it will pull from the config file.

+
+
chromosome_col: str

column name in splice_data that contains chromosome information. Default is ‘chr’. Expects it to be a str with only the chromosome number: ‘Y’, ‘1’, ‘2’, etc.

+
+
strand_col: str

column name in splice_data that contains strand information. Default is ‘strand’. Expects it to be a str with ‘+’ or ‘-’, or integers as 1 or -1. Will convert to integers automatically if string format is provided.

+
+
region_start_col: str

column name in splice_data that contains the start position of the region of interest. Default is ‘exonStart_0base’.

+
+
region_end_col: str

column name in splice_data that contains the end position of the region of interest. Default is ‘exonEnd’.

+
+
event_id_col: str

column name in splice_data that contains the unique identifier for the splice event. If provided, will be used to annotate the ptm information with the specific splice event ID. Default is None.

+
+
gene_col: str

column name in splice_data that contains the gene name. If provided, will be used to make sure the projected PTMs stem from the same gene (some cases where genomic coordiantes overlap between distinct genes). Default is None.

+
+
dPSI_col: str

column name in splice_data that contains the delta PSI value for the splice event. Default is None, which will not include this information in the output

+
+
sig_col: str

column name in splice_data that contains the significance value for the splice event. Default is None, which will not include this information in the output.

+
+
extra_cols: list

list of additional columns to include in the output dataframe. Default is None, which will not include any additional columns.

+
+
coordinate_type: str

indicates the coordinate system used for the start and end positions. Either hg38 or hg19. Default is ‘hg38’.

+
+
separate_modification_types: bool

Indicate whether to store PTM sites with multiple modification types as multiple rows. For example, if a site at K100 was both an acetylation and methylation site, these will be separated into unique rows with the same site number but different modification types. Default is True.

+
+
taskbar_label: str

Label to display in the tqdm progress bar. Default is None, which will automatically state “Projecting PTMs onto regions using —– coordinates”.

+
+
PROCESSES: int

Number of processes to use for multiprocessing. Default is 1 (single processing)

+
+
+
+
Returns:
+
+
spliced_ptm_info: pandas.DataFrame

Contains the PTMs identified across the different splice events

+
+
splice_data: pandas.DataFrame

dataframe containing the original splice data with an additional column ‘PTMs’ that contains the PTMs found in the region of interest, in the format of ‘SiteNumber(ModificationType)’. If no PTMs are found, the value will be np.nan.

+
+
+
+
+
+ +
+
+

Flanking Sequences#

+
+
+ptm_pose.flanking_sequences.extract_region_from_splicegraph(splicegraph, region_id)[source]#
+

Given a region id and the splicegraph from SpliceSeq, extract the chromosome, strand, and start and stop locations of that exon. Start and stop are forced to be in ascending order, which is not necessarily true from the splice graph (i.e. start > stop for negative strand exons). This is done to make the region extraction consistent with the rest of the codebase.

+
+
Parameters:
+
+
spliceseqpandas.DataFrame

SpliceSeq splicegraph dataframe, with region_id as index

+
+
region_idstr

Region ID to extract information from, in the format of ‘GeneName_ExonNumber’

+
+
+
+
Returns:
+
+
list

List containing the chromosome, strand (1 for forward, -1 for negative), start, and stop locations of the region

+
+
+
+
+
+ +
+
+ptm_pose.flanking_sequences.get_flanking_changes(ptm_coordinates, chromosome, strand, first_flank_region, spliced_region, second_flank_region, gene=None, dPSI=None, sig=None, event_id=None, flank_size=5, coordinate_type='hg38', lowercase_mod=True, order_by='Coordinates')[source]#
+

Currently has been tested with MATS splicing events.

+

Given flanking and spliced regions associated with a splice event, identify PTMs that have potential to have an altered flanking sequence depending on whether spliced region is included or excluded (if PTM is close to splice boundary). For these PTMs, extract the flanking sequences associated with the inclusion and exclusion cases and translate into amino acid sequences. If the PTM is not associated with a codon that codes for the expected amino acid, the PTM will be excluded from the results.

+
+
Parameters:
+
+
ptm_coordinatespandas.DataFrame

DataFrame containing PTM coordinate information for identify PTMs in the flanking regions

+
+
chromosomestr

Chromosome associated with the splice event

+
+
strandint

Strand associated with the splice event (1 for forward, -1 for negative)

+
+
first_flank_regionlist

List containing the start and stop locations of the first flanking region (first is currently defined based on location the genome not coding sequence)

+
+
spliced_regionlist

List containing the start and stop locations of the spliced region

+
+
second_flank_regionlist

List containing the start and stop locations of the second flanking region (second is currently defined based on location the genome not coding sequence)

+
+
event_idstr, optional

Event ID associated with the splice event, by default None

+
+
flank_sizeint, optional

Number of amino acids to include flanking the PTM, by default 7

+
+
coordinate_typestr, optional

Coordinate system used for the regions, by default ‘hg38’. Other options is hg19.

+
+
lowercase_modbool, optional

Whether to lowercase the amino acid associated with the PTM in returned flanking sequences, by default True

+
+
order_bystr, optional

Whether the first, spliced and second regions are defined by their genomic coordinates (first has smallest coordinate, spliced next, then second), or if they are defined by their translation (first the first when translated, etc.)

+
+
+
+
Returns:
+
+
pandas.DataFrame

DataFrame containing the PTMs associated with the flanking regions and the amino acid sequences of the flanking regions in the inclusion and exclusion cases

+
+
+
+
+
+ +
+
+ptm_pose.flanking_sequences.get_flanking_changes_from_splice_data(splice_data, ptm_coordinates=None, chromosome_col=None, strand_col=None, first_flank_start_col=None, first_flank_end_col=None, spliced_region_start_col=None, spliced_region_end_col=None, second_flank_start_col=None, second_flank_end_col=None, dPSI_col=None, sig_col=None, event_id_col=None, gene_col=None, flank_size=5, coordinate_type='hg38', lowercase_mod=True)[source]#
+

Given a DataFrame containing information about splice events, extract the flanking sequences associated with the PTMs in the flanking regions if there is potential for this to be altered. The DataFrame should contain columns for the chromosome, strand, start and stop locations of the first flanking region, spliced region, and second flanking region. The DataFrame should also contain a column for the event ID associated with the splice event. If the DataFrame does not contain the necessary columns, the function will raise an error.

+
+
Parameters:
+
+
splice_datapandas.DataFrame

DataFrame containing information about splice events

+
+
ptm_coordinatespandas.DataFrame

DataFrame containing PTM coordinate information for identify PTMs in the flanking regions

+
+
chromosome_colstr, optional

Column name indicating chromosome, by default None

+
+
strand_colstr, optional

Column name indicating strand, by default None

+
+
first_flank_start_colstr, optional

Column name indicating start location of the first flanking region, by default None

+
+
first_flank_end_colstr, optional

Column name indicating end location of the first flanking region, by default None

+
+
spliced_region_start_colstr, optional

Column name indicating start location of the spliced region, by default None

+
+
spliced_region_end_colstr, optional

Column name indicating end location of the spliced region, by default None

+
+
second_flank_start_colstr, optional

Column name indicating start location of the second flanking region, by default None

+
+
second_flank_end_colstr, optional

Column name indicating end location of the second flanking region, by default None

+
+
event_id_colstr, optional

Column name indicating event ID, by default None

+
+
flank_sizeint, optional

Number of amino acids to include flanking the PTM, by default 7

+
+
coordinate_typestr, optional

Coordinate system used for the regions, by default ‘hg38’. Other options is hg19.

+
+
lowercase_modbool, optional

Whether to lowercase the amino acid associated with the PTM in returned flanking sequences, by default True

+
+
+
+
Returns:
+
+
list

List containing DataFrames with the PTMs associated with the flanking regions and the amino acid sequences of the flanking regions in the inclusion and exclusion cases

+
+
+
+
+
+ +
+
+ptm_pose.flanking_sequences.get_flanking_changes_from_splicegraph(psi_data, splicegraph, ptm_coordinates=None, dPSI_col=None, sig_col=None, event_id_col=None, extra_cols=None, gene_col='symbol', flank_size=5, coordinate_type='hg19')[source]#
+

Given a DataFrame containing information about splice events obtained from SpliceSeq and the corresponding splicegraph, extract the flanking sequences of PTMs that are nearby the splice boundary (potential for flanking sequence to be altered). Coordinate information of individual exons should be found in splicegraph. You can also provide columns with specific psi or significance information. Extra cols not in these categories can be provided with extra_cols parameter.

+
+
Parameters:
+
+
psi_datapandas.DataFrame

DataFrame containing information about splice events obtained from SpliceSeq

+
+
splicegraphpandas.DataFrame

DataFrame containing information about individual exons and their coordinates

+
+
ptm_coordinatespandas.DataFrame

DataFrame containing PTM coordinate information for identify PTMs in the flanking regions

+
+
dPSI_colstr, optional

Column name indicating delta PSI value, by default None

+
+
sig_colstr, optional

Column name indicating significance of the event, by default None

+
+
event_id_colstr, optional

Column name indicating event ID, by default None

+
+
extra_colslist, optional

List of column names for additional information to add to the results, by default None

+
+
gene_colstr, optional

Column name indicating gene symbol of spliced gene, by default ‘symbol’

+
+
flank_sizeint, optional

Number of amino acids to include flanking the PTM, by default 5

+
+
coordinate_typestr, optional

Coordinate system used for the regions, by default ‘hg19’. Other options is hg38.

+
+
+
+
Returns:
+
+
altered_flankspandas.DataFrame

DataFrame containing the PTMs associated with the flanking regions that are altered, and the flanking sequences that arise depending on whether the flanking sequence is included or not

+
+
+
+
+
+ +
+
+ptm_pose.flanking_sequences.get_flanking_sequence(ptm_loc, seq, ptm_residue, flank_size=5, lowercase_mod=True, full_flanking_seq=False)[source]#
+

Given a PTM location in a sequence of DNA, extract the flanking sequence around the PTM location and translate into the amino acid sequence. If the sequence is not the correct length, the function will attempt to extract the flanking sequence with spaces to account for missing parts if full_flanking_seq is not True. If the sequence is still not the correct length, the function will raise an error. Any unrecognized codons that are found in the sequence and are not in the standard codon table, including stop codons, will be translated as ‘X’ (unknown) or ‘*’ (stop codon).

+
+
Parameters:
+
+
ptm_locint

Location of the first base pair associated with PTM in the DNA sequence

+
+
seqstr

DNA sequence containing the PTM

+
+
ptm_residuestr

Amino acid residue associated with the PTM

+
+
flank_sizeint, optional

Number of amino acids to include flanking the PTM, by default 5

+
+
lowercase_modbool, optional

Whether to lowercase the amino acid associated with the PTM, by default True

+
+
full_flanking_seqbool, optional

Whether to require the flanking sequence to be the correct length, by default False

+
+
+
+
Returns:
+
+
str

Amino acid sequence of the flanking sequence around the PTM if translation was successful, otherwise np.nan

+
+
+
+
+
+ +
+
+ptm_pose.flanking_sequences.get_ptm_locs_in_spliced_sequences(ptm_loc_in_flank, first_flank_seq, spliced_seq, second_flank_seq, strand, which_flank='First', order_by='Coordinates')[source]#
+

Given the location of a PTM in a flanking sequence, extract the location of the PTM in the Inclusion Flanking Sequence and the Exclusion Flanking Sequence associated with a given splice event. Inclusion Flanking Sequence will include the skipped exon region, retained intron, or longer alternative splice site depending on event type. The PTM location should be associated with where the PTM is located relative to spliced region (before = ‘First’, after = ‘Second’).

+
+
Parameters:
+
+
ptm_loc_in_flankint

Location of the PTM in the flanking sequence it is found (either first or second)

+
+
first_flank_seqstr

Flanking exon sequence before the spliced region

+
+
spliced_seqstr

Spliced region sequence

+
+
second_flank_seqstr

Flanking exon sequence after the spliced region

+
+
which_flankstr, optional

Which flank the PTM is associated with, by default ‘First’

+
+
order_bystr, optional

Whether the first, spliced and second regions are defined by their genomic coordinates (first has smallest coordinate, spliced next, then second), or if they are defined by their translation (first the first when translated, etc.)

+
+
+
+
Returns:
+
+
tuple

Tuple containing the PTM location in the Inclusion Flanking Sequence and the Exclusion Flanking Sequence

+
+
+
+
+
+ +
+
+ptm_pose.flanking_sequences.get_ptms_in_splicegraph_flank(gene_name, chromosome, strand, flank_region_start, flank_region_end, coordinate_type='hg19', which_flank='First', flank_size=5)[source]#
+
+ +
+
+ptm_pose.flanking_sequences.get_spliceseq_event_regions(gene_name, from_exon, spliced_exons, to_exon, splicegraph)[source]#
+

Given all exons associated with a splicegraph event, obtain the coordinates associated with the flanking exons and the spliced region. The spliced region is defined as the exons that are associated with psi values, while flanking regions include the “from” and “to” exons that indicate the adjacent, unspliced exons.

+
+
Parameters:
+
+
gene_namestr

Gene name associated with the splice event

+
+
from_exonint

Exon number associated with the first flanking exon

+
+
spliced_exonsstr

Exon numbers associated with the spliced region, separated by colons for each unique exon

+
+
to_exonint

Exon number associated with the second flanking exon

+
+
splicegraphpandas.DataFrame

DataFrame containing information about individual exons and their coordinates

+
+
+
+
Returns:
+
+
tuple

Tuple containing the genomic coordinates of the first flanking region, spliced regions, and second flanking region

+
+
+
+
+
+ +
+
+ptm_pose.flanking_sequences.get_spliceseq_flank_loc(ptm, strand, from_region_coords, to_region_coords, coordinate_type='hg19')[source]#
+

Given ptm information for identifying flanking sequences from splicegraph information, extract the relative location of the ptm in the flanking region (where it is located in translation of the flanking region).

+
+
Parameters:
+
+
ptmpandas.Series

Series containing PTM information

+
+
strandint

Strand associated with the splice event (1 for forward, -1 for negative)

+
+
from_region_coordslist

List containing the chromosome, strand, start, and stop locations of the first flanking region

+
+
to_region_coordslist

List containing the chromosome, strand, start, and stop locations of the second flanking region

+
+
+
+
Returns:
+
+
int

Relative location of the PTM in the flanking region

+
+
+
+
+
+ +
+
+ptm_pose.flanking_sequences.translate_flanking_sequence(seq, flank_size=7, full_flanking_seq=True, lowercase_mod=True, first_flank_length=None, stop_codon_symbol='*', unknown_codon_symbol='X')[source]#
+

Given a DNA sequence, translate the sequence into an amino acid sequence. If the sequence is not the correct length, the function will attempt to extract the flanking sequence with spaces to account for missing parts if full_flanking_seq is not True. If the sequence is still not the correct length, the function will raise an error. Any unrecognized codons that are found in the sequence and are not in the standard codon table, including stop codons, will be translated as ‘X’ (unknown) or ‘*’ (stop codon).

+
+
Parameters:
+
+
seqstr

DNA sequence to translate

+
+
flank_sizeint, optional

Number of amino acids to include flanking the PTM, by default 7

+
+
full_flanking_seqbool, optional

Whether to require the flanking sequence to be the correct length, by default True

+
+
lowercase_modbool, optional

Whether to lowercase the amino acid associated with the PTM, by default True

+
+
first_flank_lengthint, optional

Length of the flanking sequence in front of the PTM, by default None. If full_flanking_seq is False and sequence is not the correct length, this is required.

+
+
stop_codon_symbolstr, optional

Symbol to use for stop codons, by default ‘*’

+
+
unknown_codon_symbolstr, optional

Symbol to use for unknown codons, by default ‘X’

+
+
+
+
Returns:
+
+
str

Amino acid sequence of the flanking sequence if translation was successful, otherwise np.nan

+
+
+
+
+
+ +
+
+

Annotating PTMs#

+
+
+ptm_pose.annotate.add_ELM_interactions(spliced_ptms, file=None, report_success=True)[source]#
+

Given a spliced ptms dataframe from the project module, add ELM interaction data to the dataframe

+
+ +
+
+ptm_pose.annotate.add_PSP_disease_association(spliced_ptms, file='Disease-associated_sites.gz', report_success=True)[source]#
+

Process disease asociation data from PhosphoSitePlus (Disease-associated_sites.gz), and add to spliced_ptms dataframe from project_ptms_onto_splice_events() function

+
+
Parameters:
+
+
file: str

Path to the PhosphoSitePlus Kinase_Substrate_Dataset.gz file. Should be downloaded from PhosphoSitePlus in the zipped format

+
+
+
+
Returns:
+
+
spliced_ptms: pandas.DataFrame

Contains the PTMs identified across the different splice events with an additional column indicating the kinases known to phosphorylate that site (not relevant to non-phosphorylation PTMs)

+
+
+
+
+
+ +
+
+ptm_pose.annotate.add_PSP_kinase_substrate_data(spliced_ptms, file='Kinase_Substrate_Dataset.gz', report_success=True)[source]#
+

Add kinase substrate data from PhosphoSitePlus (Kinase_Substrate_Dataset.gz) to spliced_ptms dataframe from project_ptms_onto_splice_events() function

+
+
Parameters:
+
+
file: str

Path to the PhosphoSitePlus Kinase_Substrate_Dataset.gz file. Should be downloaded from PhosphoSitePlus in the zipped format

+
+
+
+
Returns:
+
+
spliced_ptms: pandas.DataFrame

Contains the PTMs identified across the different splice events with an additional column indicating the kinases known to phosphorylate that site (not relevant to non-phosphorylation PTMs)

+
+
+
+
+
+ +
+
+ptm_pose.annotate.add_PSP_regulatory_site_data(spliced_ptms, file='Regulatory_sites.gz', report_success=True)[source]#
+

Add functional information from PhosphoSitePlus (Regulatory_sites.gz) to spliced_ptms dataframe from project_ptms_onto_splice_events() function

+
+
Parameters:
+
+
file: str

Path to the PhosphoSitePlus Regulatory_sites.gz file. Should be downloaded from PhosphoSitePlus in the zipped format

+
+
+
+
Returns:
+
+
spliced_ptms: pandas.DataFrame

Contains the PTMs identified across the different splice events with additional columns for regulatory site information, including domains, biological process, functions, and protein interactions associated with the PTMs

+
+
+
+
+
+ +
+
+ptm_pose.annotate.add_PTMInt_data(spliced_ptms, file=None, report_success=True)[source]#
+

Given spliced_ptms data from project module, add PTMInt interaction data, which will include the protein that is being interacted with, whether it enchances or inhibits binding, and the localization of the interaction. This will be added as a new column labeled PTMInt:Interactions and each entry will be formatted like ‘Protein->Effect|Localization’. If multiple interactions, they will be separated by a semicolon

+
+ +
+
+ptm_pose.annotate.add_annotation(spliced_ptms, database='PhosphoSitePlus', annotation_type='Function', file=None, check_existing=False)[source]#
+

Given a desired database and annotation type, add the corresponding annotation data to the spliced ptm dataframe

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe containing PTM data

+
+
database: str

Database to extract annotation data from. Options include ‘PhosphoSitePlus’, ‘PTMcode’, ‘PTMInt’, ‘RegPhos’, ‘DEPOD’

+
+
annotation_type: str

Type of annotation to extract. Options include ‘Function’, ‘Process’, ‘Interactions’, ‘Disease’, ‘Kinase’, ‘Phosphatase’, but depend on the specific database (run analyze.get_annotation_categories())

+
+
file: str

File path to annotation data. If None, will download from online source, except for PhosphoSitePlus (due to licensing restrictions)

+
+
+
+
+
+ +
+
+ptm_pose.annotate.add_custom_annotation(spliced_ptms, annotation_data, source_name, annotation_type, annotation_col, accession_col='UniProtKB Accession', residue_col='Residue', position_col='PTM Position in Canonical Isoform')[source]#
+

Add custom annotation data to spliced_ptms or altered flanking sequence dataframes

+
+
Parameters:
+
+
annotation_data: pandas.DataFrame

Dataframe containing the annotation data to be added to the spliced_ptms dataframe. Must contain columns for UniProtKB Accession, Residue, PTM Position in Canonical Isoform, and the annotation data to be added

+
+
source_name: str

Name of the source of the annotation data, will be used to label the columns in the spliced_ptms dataframe

+
+
annotation_type: str

Type of annotation data being added, will be used to label the columns in the spliced_ptms dataframe

+
+
annotation_col: str

Column name in the annotation data that contains the annotation data to be added to the spliced_ptms dataframe

+
+
+
+
Returns:
+
+
spliced_ptms: pandas.DataFrame

Contains the PTMs identified across the different splice events with an additional column for the custom annotation data

+
+
+
+
+
+ +
+
+ptm_pose.annotate.annotate_ptms(spliced_ptms, psp_regulatory_site_file=None, psp_ks_file=None, psp_disease_file=None, elm_interactions=False, elm_motifs=False, PTMint=False, PTMcode_interprotein=False, DEPOD=False, RegPhos=False, ptmsigdb_file=None, interactions_to_combine=['PTMcode', 'PhosphoSitePlus', 'RegPhos', 'PTMInt'], kinases_to_combine=['PhosphoSitePlus', 'RegPhos'], combine_similar=True)[source]#
+

Given spliced ptm data, add annotations from various databases. The annotations that can be added are the following: +- PhosphoSitePlus

+
+
    +
  • regulatory site data (file must be provided)

  • +
  • kinase-substrate data (file must be provided)

  • +
  • disease association data (file must be provided)

  • +
+
+
    +
  • +
    ELM
      +
    • interaction data (can be downloaded automatically or provided as a file)

    • +
    • motif matches (elm class data can be downloaded automatically or provided as a file)

    • +
    +
    +
    +
  • +
  • +
    PTMInt
      +
    • interaction data (will be downloaded automatically)

    • +
    +
    +
    +
  • +
  • +
    PTMcode
      +
    • intraprotein interactions (can be downloaded automatically or provided as a file)

    • +
    • interprotein interactions (can be downloaded automatically or provided as a file)

    • +
    +
    +
    +
  • +
  • +
    DEPOD
      +
    • phosphatase-substrate data (will be downloaded automatically)

    • +
    +
    +
    +
  • +
  • +
    RegPhos
      +
    • kinase-substrate data (will be downloaded automatically)

    • +
    +
    +
    +
  • +
+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Spliced PTM data from project module

+
+
psp_regulatory_site_file: str

File path to PhosphoSitePlus regulatory site data

+
+
psp_ks_file: str

File path to PhosphoSitePlus kinase-substrate data

+
+
psp_disease_file: str

File path to PhosphoSitePlus disease association data

+
+
elm_interactions: bool or str

If True, download ELM interaction data automatically. If str, provide file path to ELM interaction data

+
+
elm_motifs: bool or str

If True, download ELM motif data automatically. If str, provide file path to ELM motif data

+
+
PTMint: bool

If True, download PTMInt data automatically

+
+
PTMcode_intraprotein: bool or str

If True, download PTMcode intraprotein data automatically. If str, provide file path to PTMcode intraprotein data

+
+
PTMcode_interprotein: bool or str

If True, download PTMcode interprotein data automatically. If str, provide file path to PTMcode interprotein data

+
+
DEPOD: bool

If True, download DEPOD data automatically

+
+
RegPhos: bool

If True, download RegPhos data automatically

+
+
ptmsigdb_file: str

File path to PTMsigDB data

+
+
interactions_to_combine: list

List of databases to combine interaction data from. Default is [‘PTMcode’, ‘PhosphoSitePlus’, ‘RegPhos’, ‘PTMInt’]

+
+
kinases_to_combine: list

List of databases to combine kinase-substrate data from. Default is [‘PhosphoSitePlus’, ‘RegPhos’]

+
+
combine_similar: bool

Whether to combine annotations of similar information (kinase, interactions, etc) from multiple databases into another column labeled as ‘Combined’. Default is True

+
+
+
+
+
+ +
+
+ptm_pose.annotate.check_file(fname, expected_extension='.tsv')[source]#
+

Given a file name, check if the file exists and has the expected extension. If the file does not exist or has the wrong extension, raise an error.

+
+
Parameters:
+
+
fname: str

File name to check

+
+
expected_extension: str

Expected file extension. Default is ‘.tsv’

+
+
+
+
+
+ +
+
+ptm_pose.annotate.combine_KS_data(spliced_ptms, ks_databases=['PhosphoSitePlus', 'RegPhos'], regphos_conversion={'ABL1(ABL)': 'ABL1', 'CDC2': 'CDK1', 'CK2A1': 'CSNK2A1', 'ERK1(MAPK3)': 'MAPK3', 'ERK2(MAPK1)': 'MAPK1', 'JNK2(MAPK9)': 'MAPK9', 'PKACA': 'PRKACA'})[source]#
+

Given spliced ptm information, combine kinase-substrate data from multiple databases (currently support PhosphoSitePlus and RegPhos), assuming that the kinase data from these resources has already been added to the spliced ptm data. The combined kinase data will be added as a new column labeled ‘Combined:Kinase’

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Spliced PTM data from project module

+
+
ks_databases: list

List of databases to combine kinase data from. Currently support PhosphoSitePlus and RegPhos

+
+
regphos_conversion: dict

Allows conversion of RegPhos names to matching names in PhosphoSitePlus.

+
+
+
+
Returns:
+
+
splicde_ptms: pd.DataFrame

Spliced PTM data with combined kinase data added

+
+
+
+
+
+ +
+
+ptm_pose.annotate.combine_interaction_data(spliced_ptms, interaction_databases=['PhosphoSitePlus', 'PTMcode', 'PTMInt', 'RegPhos', 'DEPOD', 'ELM'], include_enzyme_interactions=True)[source]#
+

Given annotated spliced ptm data, extract interaction data from various databases and combine into a single dataframe. This will include the interacting protein, the type of interaction, and the source of the interaction data

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe containing PTM data and associated interaction annotations from various databases

+
+
interaction_databases: list

List of databases to extract interaction data from. Options include ‘PhosphoSitePlus’, ‘PTMcode’, ‘PTMInt’, ‘RegPhos’, ‘DEPOD’. These should already have annotation columns in the spliced_ptms dataframe, otherwise they will be ignored. For kinase-substrate interactions, if combined column is present, will use that instead of individual databases

+
+
include_enzyme_interactions: bool

If True, will include kinase-substrate and phosphatase interactions in the output dataframe

+
+
+
+
Returns:
+
+
interact_data: list

List of dataframes containing PTMs and their interacting proteins, the type of influence the PTM has on the interaction (DISRUPTS, INDUCES, or REGULATES), and the source of the interaction data

+
+
+
+
+
+ +
+
+ptm_pose.annotate.convert_PSP_label_to_UniProt(label)[source]#
+

Given a label for an interacting protein from PhosphoSitePlus, convert to UniProtKB accession. Required as PhosphoSitePlus interactions are recorded in various ways that aren’t necessarily consistent with other databases (i.e. not always gene name)

+
+
Parameters:
+
+
label: str

Label for interacting protein from PhosphoSitePlus

+
+
+
+
+
+ +
+
+ptm_pose.annotate.extract_positions_from_DEPOD(x)[source]#
+

Given string object consisting of multiple modifications in the form of ‘Residue-Position’ separated by ‘, ‘, extract the residue and position. Ignore any excess details in the string.

+
+ +
+
+ptm_pose.annotate.unify_interaction_data(spliced_ptms, interaction_col, name_dict={})[source]#
+

Given spliced ptm data and a column containing interaction data, extract the interacting protein, type of interaction, and convert to UniProtKB accession. This will be added as a new column labeled ‘Interacting ID’

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe containing PTM data

+
+
interaction_col: str

column containing interaction information from a specific database

+
+
name_dict: dict

dictionary to convert names within given database to UniProt IDs. For cases when name is not necessarily one of the gene names listed in UniProt

+
+
+
+
Returns:
+
+
interact: pd.DataFrame

Contains PTMs and their interacting proteins, the type of influence the PTM has on the interaction (DISRUPTS, INDUCES, or REGULATES)

+
+
+
+
+
+ +
+
+

Analysis#

+
+
+ptm_pose.analyze.annotation_enrichment(spliced_ptms, database='PhosphoSitePlus', annotation_type='Function', background_type='pregenerated', collapse_on_similar=False, mod_class=None, alpha=None, min_dPSI=None, annotation_file=None, save_background=False)[source]#
+

In progress, needs to be tested

+

Given spliced ptm information (differential inclusion, altered flanking sequences, or both), calculate the enrichment of specific annotations in the dataset using a hypergeometric test. Background data can be provided/constructed in a few ways:

+
    +
  1. Use preconstructed background data for the annotation of interest, which considers the entire proteome present in the ptm_coordinates dataframe. While this is the default, it may not be the most accurate representation of your data, so you may alternative decide to use the other options which will be more specific to your context.

  2. +
  3. Use the alpha and min_dPSI parameter to construct a foreground that only includes significantly spliced PTMs, and use the entire provided spliced_ptms dataframe as the background. This will allow you to compare the enrichment of specific annotations in the significantly spliced PTMs compared to the entire dataset. Will do this automatically if alpha or min_dPSI is provided.

  4. +
+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe with PTMs projected onto splicing events and with annotations appended from various databases

+
+
database: str

database from which PTMs are pulled. Options include ‘PhosphoSitePlus’, ‘ELM’, ‘PTMInt’, ‘PTMcode’, ‘DEPOD’, ‘RegPhos’, ‘PTMsigDB’. Default is ‘PhosphoSitePlus’.

+
+
annotation_type: str

Type of annotation to pull from spliced_ptms dataframe. Available information depends on the selected database. Default is ‘Function’.

+
+
background_type: str

how to construct the background data. Options include ‘pregenerated’ (default) and ‘significance’. If ‘significance’ is selected, the alpha and min_dPSI parameters must be provided. Otherwise, will use whole proteome in the ptm_coordinates dataframe as the background.

+
+
collapse_on_similar: bool

Whether to collapse similar annotations (for example, increasing and decreasing functions) into a single category. Default is False.

+
+
mod_class: str

modification class to subset, if any

+
+
alpha: float

significance threshold to use to subset foreground PTMs. Default is None.

+
+
min_dPSI: float

minimum delta PSI value to use to subset foreground PTMs. Default is None.

+
+
annotation_file: str

file to use to annotate custom background data. Default is None.

+
+
save_background: bool

Whether to save the background data constructed from the ptm_coordinates dataframe into Resource_Files within package. Default is False.

+
+
+
+
+
+ +
+
+ptm_pose.analyze.combine_outputs(spliced_ptms, altered_flanks, mod_class=None, include_stop_codon_introduction=False, remove_conflicting=True)[source]#
+

Given the spliced_ptms (differentially included) and altered_flanks (altered flanking sequences) dataframes obtained from project and flanking_sequences modules, combine the two into a single dataframe that categorizes each PTM by the impact on the PTM site

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe with PTMs projected onto splicing events and with annotations appended from various databases

+
+
altered_flanks: pd.DataFrame

Dataframe with PTMs associated with altered flanking sequences and with annotations appended from various databases

+
+
mod_class: str

modification class to subset, if any

+
+
include_stop_codon_introduction: bool

Whether to include PTMs that introduce stop codons in the altered flanks. Default is False.

+
+
remove_conflicting: bool

Whether to remove PTMs that are both included and excluded across different splicing events. Default is True.

+
+
+
+
+
+ +
+
+ptm_pose.analyze.compare_inclusion_motifs(flanking_sequences, elm_classes=None)[source]#
+

Given a DataFrame containing flanking sequences with changes and a DataFrame containing ELM class information, identify motifs that are found in the inclusion and exclusion events, identifying motifs unique to each case. This does not take into account the position of the motif in the sequence or additional information that might validate any potential interaction (i.e. structural information that would indicate whether the motif is accessible or not). ELM class information can be downloaded from the download page of elm (http://elm.eu.org/elms/elms_index.tsv).

+
+
Parameters:
+
+
flanking_sequences: pandas.DataFrame

DataFrame containing flanking sequences with changes, obtained from get_flanking_changes_from_splice_data()

+
+
elm_classes: pandas.DataFrame

DataFrame containing ELM class information (ELMIdentifier, Regex, etc.), downloaded directly from ELM (http://elm.eu.org/elms/elms_index.tsv). Recommended to download this file and input it manually, but will download from ELM otherwise

+
+
+
+
Returns:
+
+
flanking_sequences: pandas.DataFrame

DataFrame containing flanking sequences with changes and motifs found in the inclusion and exclusion events

+
+
+
+
+
+ +
+
+ptm_pose.analyze.edit_sequence_for_kinase_library(seq)[source]#
+

Convert flanking sequence to version accepted by kinase library (modified residue denoted by asterick)

+
+ +
+
+ptm_pose.analyze.findAlteredPositions(seq1, seq2, flank_size=5)[source]#
+

Given two sequences, identify the location of positions that have changed

+
+
Parameters:
+
+
seq1, seq2: str

sequences to compare (order does not matter)

+
+
flank_size: int

size of the flanking sequences (default is 5). This is used to make sure the provided sequences are the correct length

+
+
+
+
Returns:
+
+
altered_positions: list

list of positions that have changed

+
+
residue_change: list

list of residues that have changed associated with that position

+
+
flank_side: str

indicates which side of the flanking sequence the change has occurred (N-term, C-term, or Both)

+
+
+
+
+
+ +
+
+ptm_pose.analyze.find_motifs(seq, elm_classes)[source]#
+

Given a sequence and a dataframe containinn ELM class information, identify motifs that can be found in the provided sequence using the RegEx expression provided by ELM (PTMs not considered). This does not take into account the position of the motif in the sequence or additional information that might validate any potential interaction (i.e. structural information that would indicate whether the motif is accessible or not). ELM class information can be downloaded from the download page of elm (http://elm.eu.org/elms/elms_index.tsv).

+
+
Parameters:
+
+
seq: str

sequence to search for motifs

+
+
elm_classes: pandas.DataFrame

DataFrame containing ELM class information (ELMIdentifier, Regex, etc.), downloaded directly from ELM (http://elm.eu.org/elms/elms_index.tsv)

+
+
+
+
+
+ +
+
+ptm_pose.analyze.gene_set_enrichment(spliced_ptms=None, altered_flanks=None, combined=None, alpha=0.05, min_dPSI=None, gene_sets=['KEGG_2021_Human', 'GO_Biological_Process_2023', 'GO_Cellular_Component_2023', 'GO_Molecular_Function_2023', 'Reactome_2022'], background=None, return_sig_only=True, max_retries=5, delay=10)[source]#
+

Given spliced_ptms and/or altered_flanks dataframes (or the dataframes combined from combine_outputs()), perform gene set enrichment analysis using the enrichr API

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe with differentially included PTMs projected onto splicing events and with annotations appended from various databases. Default is None (will not be considered in analysis). If combined dataframe is provided, this dataframe will be ignored.

+
+
altered_flanks: pd.DataFrame

Dataframe with PTMs associated with altered flanking sequences and with annotations appended from various databases. Default is None (will not be considered). If combined dataframe is provided, this dataframe will be ignored.

+
+
combined: pd.DataFrame

Combined dataframe with spliced_ptms and altered_flanks dataframes. Default is None. If provided, spliced_ptms and altered_flanks dataframes will be ignored.

+
+
gene_sets: list

List of gene sets to use in enrichment analysis. Default is [‘KEGG_2021_Human’, ‘GO_Biological_Process_2023’, ‘GO_Cellular_Component_2023’, ‘GO_Molecular_Function_2023’,’Reactome_2022’]. Look at gseapy and enrichr documentation for other available gene sets

+
+
background: list

List of genes to use as background in enrichment analysis. Default is None (all genes in the gene set database will be used).

+
+
return_sig_only: bool

Whether to return only significantly enriched gene sets. Default is True.

+
+
max_retries: int

Number of times to retry downloading gene set enrichment data from enrichr API. Default is 5.

+
+
delay: int

Number of seconds to wait between retries. Default is 10.

+
+
+
+
Returns:
+
+
results: pd.DataFrame

Dataframe with gene set enrichment results from enrichr API

+
+
+
+
+
+ +
+
+ptm_pose.analyze.getSequenceIdentity(seq1, seq2)[source]#
+

Given two flanking sequences, calculate the sequence identity between them using Biopython and parameters definded by Pillman et al. BMC Bioinformatics 2011

+
+
Parameters:
+
+
seq1, seq2: str

flanking sequence

+
+
+
+
Returns:
+
+
normalized_score: float

normalized score of sequence similarity between flanking sequences (calculated similarity/max possible similarity)

+
+
+
+
+
+ +
+
+ptm_pose.analyze.get_annotation_categories(spliced_ptms)[source]#
+

Given spliced ptm information, return the available annotation categories that have been appended to dataframe

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

PTMs projected onto splicing events and with annotations appended from various databases

+
+
+
+
Returns:
+
+
annot_categories: pd.DataFrame

Dataframe that indicates the available databases, annotations from each database, and column associated with that annotation

+
+
+
+
+
+ +
+
+ptm_pose.analyze.get_annotation_col(spliced_ptms, annotation_type='Function', database='PhosphoSitePlus')[source]#
+

Given the database of interest and annotation type, return the annotation column that will be found in a annotated spliced_ptm dataframe

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe with PTM annotations added from annotate module

+
+
annotation_type: str

Type of annotation to pull from spliced_ptms dataframe. Available information depends on the selected database. Default is ‘Function’.

+
+
database: str

database from which PTMs are pulled. Options include ‘PhosphoSitePlus’, ‘ELM’, ‘PTMInt’, ‘PTMcode’, ‘DEPOD’, and ‘RegPhos’. Default is ‘PhosphoSitePlus’.

+
+
+
+
Returns:
+
+
annotation_col: str

Column name in spliced_ptms dataframe that contains the requested annotation

+
+
+
+
+
+ +
+
+ptm_pose.analyze.get_enrichment_inputs(spliced_ptms, annotation_type='Function', database='PhosphoSitePlus', background_type='pregenerated', background=None, collapse_on_similar=False, mod_class=None, alpha=0.05, min_dPSI=0, annotation_file=None, save_background=False)[source]#
+

Given the spliced ptms, altered_flanks, or combined PTMs dataframe, identify the number of PTMs corresponding to specific annotations in the foreground (PTMs impacted by splicing) and the background (all PTMs in the proteome or all PTMs in dataset not impacted by splicing). This information can be used to calculate the enrichment of specific annotations among PTMs impacted by splicing. Several options are provided for constructing the background data: pregenerated (based on entire proteome in the ptm_coordinates dataframe) or significance (foreground PTMs are extracted from provided spliced PTMs based on significance and minimum delta PSI)

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame
+
+
+
+
+ +
+
+ptm_pose.analyze.get_modification_counts(ptms)[source]#
+

Given PTM data (either spliced ptms, altered flanks, or combined data), return the counts of each modification class

+
+
Parameters:
+
+
ptms: pd.DataFrame

Dataframe with PTMs projected onto splicing events or with altered flanking sequences

+
+
+
+
Returns:
+
+
modification_counts: pd.Series

Series with the counts of each modification class

+
+
+
+
+
+ +
+
+ptm_pose.analyze.get_ptm_annotations(spliced_ptms, annotation_type='Function', database='PhosphoSitePlus', mod_class=None, collapse_on_similar=False, dPSI_col=None, sig_col=None)[source]#
+

Given spliced ptm information obtained from project and annotate modules, grab PTMs in spliced ptms associated with specific PTM modules

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

PTMs projected onto splicing events and with annotations appended from various databases

+
+
annotation_type: str

Type of annotation to pull from spliced_ptms dataframe. Available information depends on the selected database. Default is ‘Function’.

+
+
database: str

database from which PTMs are pulled. Options include ‘PhosphoSitePlus’, ‘ELM’, or ‘PTMInt’. ELM and PTMInt data will automatically be downloaded, but due to download restrictions, PhosphoSitePlus data must be manually downloaded and annotated in the spliced_ptms data using functions from the annotate module. Default is ‘PhosphoSitePlus’.

+
+
mod_class: str

modification class to subset

+
+
+
+
+
+ +
+
+ptm_pose.analyze.simplify_annotation(annotation, sep=',')[source]#
+

Given an annotation, remove additional information such as whether or not a function is increasing or decreasing. For example, ‘cell growth, induced’ would be simplified to ‘cell growth’

+
+
Parameters:
+
+
annotation: str

Annotation to simplify

+
+
sep: str

Separator that splits the core annotation from additional detail. Default is ‘,’. Assumes the first element is the core annotation.

+
+
+
+
Returns:
+
+
annotation: str

Simplified annotation

+
+
+
+
+
+ +
+
+

Plotting#

+
+
+ptm_pose.analyze.annotation_enrichment(spliced_ptms, database='PhosphoSitePlus', annotation_type='Function', background_type='pregenerated', collapse_on_similar=False, mod_class=None, alpha=None, min_dPSI=None, annotation_file=None, save_background=False)[source]#
+

In progress, needs to be tested

+

Given spliced ptm information (differential inclusion, altered flanking sequences, or both), calculate the enrichment of specific annotations in the dataset using a hypergeometric test. Background data can be provided/constructed in a few ways:

+
    +
  1. Use preconstructed background data for the annotation of interest, which considers the entire proteome present in the ptm_coordinates dataframe. While this is the default, it may not be the most accurate representation of your data, so you may alternative decide to use the other options which will be more specific to your context.

  2. +
  3. Use the alpha and min_dPSI parameter to construct a foreground that only includes significantly spliced PTMs, and use the entire provided spliced_ptms dataframe as the background. This will allow you to compare the enrichment of specific annotations in the significantly spliced PTMs compared to the entire dataset. Will do this automatically if alpha or min_dPSI is provided.

  4. +
+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe with PTMs projected onto splicing events and with annotations appended from various databases

+
+
database: str

database from which PTMs are pulled. Options include ‘PhosphoSitePlus’, ‘ELM’, ‘PTMInt’, ‘PTMcode’, ‘DEPOD’, ‘RegPhos’, ‘PTMsigDB’. Default is ‘PhosphoSitePlus’.

+
+
annotation_type: str

Type of annotation to pull from spliced_ptms dataframe. Available information depends on the selected database. Default is ‘Function’.

+
+
background_type: str

how to construct the background data. Options include ‘pregenerated’ (default) and ‘significance’. If ‘significance’ is selected, the alpha and min_dPSI parameters must be provided. Otherwise, will use whole proteome in the ptm_coordinates dataframe as the background.

+
+
collapse_on_similar: bool

Whether to collapse similar annotations (for example, increasing and decreasing functions) into a single category. Default is False.

+
+
mod_class: str

modification class to subset, if any

+
+
alpha: float

significance threshold to use to subset foreground PTMs. Default is None.

+
+
min_dPSI: float

minimum delta PSI value to use to subset foreground PTMs. Default is None.

+
+
annotation_file: str

file to use to annotate custom background data. Default is None.

+
+
save_background: bool

Whether to save the background data constructed from the ptm_coordinates dataframe into Resource_Files within package. Default is False.

+
+
+
+
+
+ +
+
+ptm_pose.analyze.combine_outputs(spliced_ptms, altered_flanks, mod_class=None, include_stop_codon_introduction=False, remove_conflicting=True)[source]#
+

Given the spliced_ptms (differentially included) and altered_flanks (altered flanking sequences) dataframes obtained from project and flanking_sequences modules, combine the two into a single dataframe that categorizes each PTM by the impact on the PTM site

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe with PTMs projected onto splicing events and with annotations appended from various databases

+
+
altered_flanks: pd.DataFrame

Dataframe with PTMs associated with altered flanking sequences and with annotations appended from various databases

+
+
mod_class: str

modification class to subset, if any

+
+
include_stop_codon_introduction: bool

Whether to include PTMs that introduce stop codons in the altered flanks. Default is False.

+
+
remove_conflicting: bool

Whether to remove PTMs that are both included and excluded across different splicing events. Default is True.

+
+
+
+
+
+ +
+
+ptm_pose.analyze.compare_inclusion_motifs(flanking_sequences, elm_classes=None)[source]#
+

Given a DataFrame containing flanking sequences with changes and a DataFrame containing ELM class information, identify motifs that are found in the inclusion and exclusion events, identifying motifs unique to each case. This does not take into account the position of the motif in the sequence or additional information that might validate any potential interaction (i.e. structural information that would indicate whether the motif is accessible or not). ELM class information can be downloaded from the download page of elm (http://elm.eu.org/elms/elms_index.tsv).

+
+
Parameters:
+
+
flanking_sequences: pandas.DataFrame

DataFrame containing flanking sequences with changes, obtained from get_flanking_changes_from_splice_data()

+
+
elm_classes: pandas.DataFrame

DataFrame containing ELM class information (ELMIdentifier, Regex, etc.), downloaded directly from ELM (http://elm.eu.org/elms/elms_index.tsv). Recommended to download this file and input it manually, but will download from ELM otherwise

+
+
+
+
Returns:
+
+
flanking_sequences: pandas.DataFrame

DataFrame containing flanking sequences with changes and motifs found in the inclusion and exclusion events

+
+
+
+
+
+ +
+
+ptm_pose.analyze.edit_sequence_for_kinase_library(seq)[source]#
+

Convert flanking sequence to version accepted by kinase library (modified residue denoted by asterick)

+
+ +
+
+ptm_pose.analyze.findAlteredPositions(seq1, seq2, flank_size=5)[source]#
+

Given two sequences, identify the location of positions that have changed

+
+
Parameters:
+
+
seq1, seq2: str

sequences to compare (order does not matter)

+
+
flank_size: int

size of the flanking sequences (default is 5). This is used to make sure the provided sequences are the correct length

+
+
+
+
Returns:
+
+
altered_positions: list

list of positions that have changed

+
+
residue_change: list

list of residues that have changed associated with that position

+
+
flank_side: str

indicates which side of the flanking sequence the change has occurred (N-term, C-term, or Both)

+
+
+
+
+
+ +
+
+ptm_pose.analyze.find_motifs(seq, elm_classes)[source]#
+

Given a sequence and a dataframe containinn ELM class information, identify motifs that can be found in the provided sequence using the RegEx expression provided by ELM (PTMs not considered). This does not take into account the position of the motif in the sequence or additional information that might validate any potential interaction (i.e. structural information that would indicate whether the motif is accessible or not). ELM class information can be downloaded from the download page of elm (http://elm.eu.org/elms/elms_index.tsv).

+
+
Parameters:
+
+
seq: str

sequence to search for motifs

+
+
elm_classes: pandas.DataFrame

DataFrame containing ELM class information (ELMIdentifier, Regex, etc.), downloaded directly from ELM (http://elm.eu.org/elms/elms_index.tsv)

+
+
+
+
+
+ +
+
+ptm_pose.analyze.gene_set_enrichment(spliced_ptms=None, altered_flanks=None, combined=None, alpha=0.05, min_dPSI=None, gene_sets=['KEGG_2021_Human', 'GO_Biological_Process_2023', 'GO_Cellular_Component_2023', 'GO_Molecular_Function_2023', 'Reactome_2022'], background=None, return_sig_only=True, max_retries=5, delay=10)[source]#
+

Given spliced_ptms and/or altered_flanks dataframes (or the dataframes combined from combine_outputs()), perform gene set enrichment analysis using the enrichr API

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe with differentially included PTMs projected onto splicing events and with annotations appended from various databases. Default is None (will not be considered in analysis). If combined dataframe is provided, this dataframe will be ignored.

+
+
altered_flanks: pd.DataFrame

Dataframe with PTMs associated with altered flanking sequences and with annotations appended from various databases. Default is None (will not be considered). If combined dataframe is provided, this dataframe will be ignored.

+
+
combined: pd.DataFrame

Combined dataframe with spliced_ptms and altered_flanks dataframes. Default is None. If provided, spliced_ptms and altered_flanks dataframes will be ignored.

+
+
gene_sets: list

List of gene sets to use in enrichment analysis. Default is [‘KEGG_2021_Human’, ‘GO_Biological_Process_2023’, ‘GO_Cellular_Component_2023’, ‘GO_Molecular_Function_2023’,’Reactome_2022’]. Look at gseapy and enrichr documentation for other available gene sets

+
+
background: list

List of genes to use as background in enrichment analysis. Default is None (all genes in the gene set database will be used).

+
+
return_sig_only: bool

Whether to return only significantly enriched gene sets. Default is True.

+
+
max_retries: int

Number of times to retry downloading gene set enrichment data from enrichr API. Default is 5.

+
+
delay: int

Number of seconds to wait between retries. Default is 10.

+
+
+
+
Returns:
+
+
results: pd.DataFrame

Dataframe with gene set enrichment results from enrichr API

+
+
+
+
+
+ +
+
+ptm_pose.analyze.getSequenceIdentity(seq1, seq2)[source]#
+

Given two flanking sequences, calculate the sequence identity between them using Biopython and parameters definded by Pillman et al. BMC Bioinformatics 2011

+
+
Parameters:
+
+
seq1, seq2: str

flanking sequence

+
+
+
+
Returns:
+
+
normalized_score: float

normalized score of sequence similarity between flanking sequences (calculated similarity/max possible similarity)

+
+
+
+
+
+ +
+
+ptm_pose.analyze.get_annotation_categories(spliced_ptms)[source]#
+

Given spliced ptm information, return the available annotation categories that have been appended to dataframe

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

PTMs projected onto splicing events and with annotations appended from various databases

+
+
+
+
Returns:
+
+
annot_categories: pd.DataFrame

Dataframe that indicates the available databases, annotations from each database, and column associated with that annotation

+
+
+
+
+
+ +
+
+ptm_pose.analyze.get_annotation_col(spliced_ptms, annotation_type='Function', database='PhosphoSitePlus')[source]#
+

Given the database of interest and annotation type, return the annotation column that will be found in a annotated spliced_ptm dataframe

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

Dataframe with PTM annotations added from annotate module

+
+
annotation_type: str

Type of annotation to pull from spliced_ptms dataframe. Available information depends on the selected database. Default is ‘Function’.

+
+
database: str

database from which PTMs are pulled. Options include ‘PhosphoSitePlus’, ‘ELM’, ‘PTMInt’, ‘PTMcode’, ‘DEPOD’, and ‘RegPhos’. Default is ‘PhosphoSitePlus’.

+
+
+
+
Returns:
+
+
annotation_col: str

Column name in spliced_ptms dataframe that contains the requested annotation

+
+
+
+
+
+ +
+
+ptm_pose.analyze.get_enrichment_inputs(spliced_ptms, annotation_type='Function', database='PhosphoSitePlus', background_type='pregenerated', background=None, collapse_on_similar=False, mod_class=None, alpha=0.05, min_dPSI=0, annotation_file=None, save_background=False)[source]#
+

Given the spliced ptms, altered_flanks, or combined PTMs dataframe, identify the number of PTMs corresponding to specific annotations in the foreground (PTMs impacted by splicing) and the background (all PTMs in the proteome or all PTMs in dataset not impacted by splicing). This information can be used to calculate the enrichment of specific annotations among PTMs impacted by splicing. Several options are provided for constructing the background data: pregenerated (based on entire proteome in the ptm_coordinates dataframe) or significance (foreground PTMs are extracted from provided spliced PTMs based on significance and minimum delta PSI)

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame
+
+
+
+
+ +
+
+ptm_pose.analyze.get_modification_counts(ptms)[source]#
+

Given PTM data (either spliced ptms, altered flanks, or combined data), return the counts of each modification class

+
+
Parameters:
+
+
ptms: pd.DataFrame

Dataframe with PTMs projected onto splicing events or with altered flanking sequences

+
+
+
+
Returns:
+
+
modification_counts: pd.Series

Series with the counts of each modification class

+
+
+
+
+
+ +
+
+ptm_pose.analyze.get_ptm_annotations(spliced_ptms, annotation_type='Function', database='PhosphoSitePlus', mod_class=None, collapse_on_similar=False, dPSI_col=None, sig_col=None)[source]#
+

Given spliced ptm information obtained from project and annotate modules, grab PTMs in spliced ptms associated with specific PTM modules

+
+
Parameters:
+
+
spliced_ptms: pd.DataFrame

PTMs projected onto splicing events and with annotations appended from various databases

+
+
annotation_type: str

Type of annotation to pull from spliced_ptms dataframe. Available information depends on the selected database. Default is ‘Function’.

+
+
database: str

database from which PTMs are pulled. Options include ‘PhosphoSitePlus’, ‘ELM’, or ‘PTMInt’. ELM and PTMInt data will automatically be downloaded, but due to download restrictions, PhosphoSitePlus data must be manually downloaded and annotated in the spliced_ptms data using functions from the annotate module. Default is ‘PhosphoSitePlus’.

+
+
mod_class: str

modification class to subset

+
+
+
+
+
+ +
+
+ptm_pose.analyze.simplify_annotation(annotation, sep=',')[source]#
+

Given an annotation, remove additional information such as whether or not a function is increasing or decreasing. For example, ‘cell growth, induced’ would be simplified to ‘cell growth’

+
+
Parameters:
+
+
annotation: str

Annotation to simplify

+
+
sep: str

Separator that splits the core annotation from additional detail. Default is ‘,’. Assumes the first element is the core annotation.

+
+
+
+
Returns:
+
+
annotation: str

Simplified annotation

+
+
+
+
+
+ +
+
+ + +
+ + + + + + + + +
+ + + + + + +
+
+ + +
+ + +
+
+
+ + + + + +
+
+ + \ No newline at end of file diff --git a/_downloads/02dcfcce63f8e4e5b8b2c21533f7b5ce/gallery_output_python.zip b/_downloads/02dcfcce63f8e4e5b8b2c21533f7b5ce/gallery_output_python.zip new file mode 100644 index 0000000..82ef61a Binary files /dev/null and b/_downloads/02dcfcce63f8e4e5b8b2c21533f7b5ce/gallery_output_python.zip differ diff --git a/_downloads/1354711f7d4daf458cdf704b7dd3ffd0/plot_location_altered_flanks.py b/_downloads/1354711f7d4daf458cdf704b7dd3ffd0/plot_location_altered_flanks.py new file mode 100644 index 0000000..24758b2 --- /dev/null +++ b/_downloads/1354711f7d4daf458cdf704b7dd3ffd0/plot_location_altered_flanks.py @@ -0,0 +1,33 @@ +r""" +Probing where and how PTM flanking sequences are altered +=============================================================== + +In order to understand how PTMs may be altered due to splicing events, it is useful to identify the flanking sequences of the PTMs and how they may be altered due to nearby splice events (as identified by flanking sequence module). Once we have, this information we can analyze and visualize where the alterations in the flanking sequences occur. First, we need to compare the flanking sequences of PTMs based on whether an exonic region is included or excluded using the `compare_flanking_sequences` function in PTM-POSE. +""" + +from ptm_pose import analyze +import pandas as pd + +# Load altered flank data +altered_flanks = pd.read_csv('altered_flanks.csv') + +altered_flanks = analyze.compare_flanking_sequences(altered_flanks) +print('Comparison of flanking sequences:') +altered_flanks[['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'Inclusion Flanking Sequence', 'Exclusion Flanking Sequence', 'Sequence Identity', 'Altered Positions', 'Residue Change', 'Altered Flank Side']].head() + +# %% +# Note, we only calculate these metrics for cases where altered flanking sequences do not cause a stop codon to be introduced, as this is harder to interpret (such as for the first PTM in the list). The above table will indicate the positions in the flanking sequence that are altered, how similar the altered flanking sequence is to the original flanking sequence, and the specific residue change that takes place. We can also plot some of this information to get a better sense of the distribution of altered flanking sequences: + +from ptm_pose import plots as pose_plots + +pose_plots.location_of_altered_flanking_residues(altered_flanks) + +# %% +# We can even create the same plot for specific modification types or residues, as well as label the specific residue changes that occur: + +pose_plots.location_of_altered_flanking_residues(altered_flanks, modification_class='Acetylation') + +# %% +# If we want to dig deeper, we can look at the specific changes that occurring, although this is only recommended with a selected subset of PTMs, such as those that may have a functional impact: + +pose_plots.alterations_matrix(altered_flanks.head(10)) \ No newline at end of file diff --git a/_downloads/1e098ef6f0f0862c0080ba779c7f1021/plot_protein_interactions.zip b/_downloads/1e098ef6f0f0862c0080ba779c7f1021/plot_protein_interactions.zip new file mode 100644 index 0000000..33d7752 Binary files /dev/null and b/_downloads/1e098ef6f0f0862c0080ba779c7f1021/plot_protein_interactions.zip differ diff --git a/_downloads/2fac90768ae778bd04232bead899c02b/plot_kstar_enrichment.zip b/_downloads/2fac90768ae778bd04232bead899c02b/plot_kstar_enrichment.zip new file mode 100644 index 0000000..a03d158 Binary files /dev/null and b/_downloads/2fac90768ae778bd04232bead899c02b/plot_kstar_enrichment.zip differ diff --git a/_downloads/643461d8e6e564395410a19d93658d40/plot_protein_interactions.py b/_downloads/643461d8e6e564395410a19d93658d40/plot_protein_interactions.py new file mode 100644 index 0000000..76e1549 --- /dev/null +++ b/_downloads/643461d8e6e564395410a19d93658d40/plot_protein_interactions.py @@ -0,0 +1,40 @@ +r""" +Identify protein interactions that may be impacted by splicing of PTMs +============================================================================================================= + +Post translational modifications (PTMs) often facilitate protein interactions, either through direct binding of domains specific to that particular modification (e.g. SH2 domains binding to phosphorylated tyrosines) or through allosteric effects that change the conformation of the protein to either enhance or disrupt interactions. We provide functions to annotate spliced PTMs with relevant protein interactions and to identify key PTMs that may disrupt protein interaction networks. + +Currently, we provide functions to process and analyze protein interaction data from PhosphoSitePlus, PTMInt, and PTMcode. We can also include enzyme-specific interactions (such as kinase substrate interactions through PhosphoSitePlus and RegPhos). First, we need to annotate the spliced PTMs with protein interactions (see rest of documentation for how to do this). Then, we can process the interactions across the different databases using the protein_interactions class to identify key PTMs that may disrupt protein interaction networks. +""" + +from ptm_pose import analyze +import pandas as pd + +# Load spliced ptm and altered flank data +spliced_ptms = pd.read_csv('spliced_ptms.csv') + +interactions = analyze.protein_interactions(spliced_ptms) +interactions.get_interaction_network() + +interactions.network_data.head() + +# %% +# We can also calculate interaction stats to identify proteins that are most impacted or relevant to spliced PTMs and the protein interaction network +interactions.get_interaction_stats() + +interactions.network_stats.head() + +# %% +# If we want to focus on a specific protein, we can summarize information about a single protein in the network. In this case, let's look at TSC2, which loses pS981 upon ESRP1 knockdown + +interactions.summarize_protein_network(protein = 'TSC2') + +# %% +# We can also visualize the network... + +interactions.plot_interaction_network(interacting_node_size = 10) + +# %% +# ...and the centrality of proteins in the network + +interactions.plot_network_centrality(centrality_measure='Degree') \ No newline at end of file diff --git a/_downloads/6e17a5145b7988a1f7bc96b622dcc3fd/plot_num_annotations.zip b/_downloads/6e17a5145b7988a1f7bc96b622dcc3fd/plot_num_annotations.zip new file mode 100644 index 0000000..ceda11a Binary files /dev/null and b/_downloads/6e17a5145b7988a1f7bc96b622dcc3fd/plot_num_annotations.zip differ diff --git a/_downloads/757993bb023a0f14e8ac8ed8f73e11f7/plot_location_altered_flanks.ipynb b/_downloads/757993bb023a0f14e8ac8ed8f73e11f7/plot_location_altered_flanks.ipynb new file mode 100644 index 0000000..340b991 --- /dev/null +++ b/_downloads/757993bb023a0f14e8ac8ed8f73e11f7/plot_location_altered_flanks.ipynb @@ -0,0 +1,97 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# Probing where and how PTM flanking sequences are altered\n\nIn order to understand how PTMs may be altered due to splicing events, it is useful to identify the flanking sequences of the PTMs and how they may be altered due to nearby splice events (as identified by flanking sequence module). Once we have, this information we can analyze and visualize where the alterations in the flanking sequences occur. First, we need to compare the flanking sequences of PTMs based on whether an exonic region is included or excluded using the `compare_flanking_sequences` function in PTM-POSE.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from ptm_pose import analyze\nimport pandas as pd\n\n# Load altered flank data\naltered_flanks = pd.read_csv('altered_flanks.csv')\n\naltered_flanks = analyze.compare_flanking_sequences(altered_flanks)\nprint('Comparison of flanking sequences:')\naltered_flanks[['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'Inclusion Flanking Sequence', 'Exclusion Flanking Sequence', 'Sequence Identity', 'Altered Positions', 'Residue Change', 'Altered Flank Side']].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note, we only calculate these metrics for cases where altered flanking sequences do not cause a stop codon to be introduced, as this is harder to interpret (such as for the first PTM in the list). The above table will indicate the positions in the flanking sequence that are altered, how similar the altered flanking sequence is to the original flanking sequence, and the specific residue change that takes place. We can also plot some of this information to get a better sense of the distribution of altered flanking sequences:\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from ptm_pose import plots as pose_plots\n\npose_plots.location_of_altered_flanking_residues(altered_flanks)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can even create the same plot for specific modification types or residues, as well as label the specific residue changes that occur:\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pose_plots.location_of_altered_flanking_residues(altered_flanks, modification_class='Acetylation')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want to dig deeper, we can look at the specific changes that occurring, although this is only recommended with a selected subset of PTMs, such as those that may have a functional impact:\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pose_plots.alterations_matrix(altered_flanks.head(10))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/_downloads/7da54a35d780da3bf4abe8912892df9f/plot_kstar_enrichment.ipynb b/_downloads/7da54a35d780da3bf4abe8912892df9f/plot_kstar_enrichment.ipynb new file mode 100644 index 0000000..8108319 --- /dev/null +++ b/_downloads/7da54a35d780da3bf4abe8912892df9f/plot_kstar_enrichment.ipynb @@ -0,0 +1,61 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# Identify kinases with enriched substrates in differentially included exons, using an adapted version of KSTAR\n\nGiven that phosphorlaiton are one of the most commonly impacted modifications, there is potential for kinases targeting these sites to be indirectly impacted by alternative splicing through changes in the availability of their substrates. While we provide functions for performing enrichment of known kinase substrates from databases like PhosphoSitePlus, RegPhos, and PTMsigDB, these resources are limited by the overall number of validated substrates (<5%). For this purpose, we have adapted a previously developed algorithm called KSTAR (Kinase Substrate to Activity Relationships) for use with spliced PTM data, which harnesses kinase-substrate predictions to expand the overall number of phosphorylation sites that can be used as evidence. This particularly important as you may find many of the spliced PTMs in your dataset are less well studied and may not have any annotated kinases.\n\nIn order to perform KSTAR analysis, you will first need to download KSTAR networks from the following [figshare](https://figshare.com/articles/dataset/NETWORKS/14944305?file=28768155).\n\nOnce you have downloaded the networks, all you need is your PTM data. You will need to run analysis for tyrosine kinases (Y) and serine/threonine kinases (ST)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from ptm_pose import analyze\nimport pandas as pd\n\n# Load spliced ptm and altered flank data\nspliced_ptms = pd.read_csv('spliced_ptms.csv')\n\n#perform kstar enrichment for tyrosine phosphorylation, denoted by \"Y\"\nnetwork_dir = './NetworKIN/'\nkstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = network_dir, phospho_type = 'Y')\nkstar_enrichment.run_kstar_enrichment()\nkstar_enrichment.return_enriched_kinases()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also run the same analysis for serine/threonine kinases:\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "kstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = network_dir, phospho_type = 'ST')\nkstar_enrichment.run_kstar_enrichment()\nkstar_enrichment.return_enriched_kinases()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/_downloads/9ad6cad50401e959f04005b43fc3b87d/plot_num_annotations.ipynb b/_downloads/9ad6cad50401e959f04005b43fc3b87d/plot_num_annotations.ipynb new file mode 100644 index 0000000..ccbbde7 --- /dev/null +++ b/_downloads/9ad6cad50401e959f04005b43fc3b87d/plot_num_annotations.ipynb @@ -0,0 +1,79 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# Inspecting number of PTMs with annotation information available\n\nAs described in Running PTM-POSE section, PTM-POSE provides various options for annotating functional information for PTMs, coming from various databases. However, PTM functional information is inherently sparse, and so most annotations will only provide information on a handful of PTMs. For this reason, it can be useful to probe how many PTMsTo better understand the types of annotations that are available, as well as the number of PTMs that have an annotation of that type. This can be done using the `analyze` function in PTM-POSE.\n\nNote: This examples assumes that you have already run the PTM-POSE pipeline and have at annotated PTMs with at least one layer of information.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from ptm_pose import analyze\nfrom ptm_pose import plots as pose_plots\nimport pandas as pd\n\n# Load spliced ptm and altered flank data\nspliced_ptms = pd.read_csv('spliced_ptms.csv')\naltered_flanks = pd.read_csv('altered_flanks.csv')\n\npose_plots.show_available_annotations(spliced_ptms)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can, see there are only a few PTMs from each annotation that have \navailable information, with the most being 9 PTMs out of the 184 differentially \nincluded sites having been associated with a biological process. While this this \nshould be taken into consideration when analyzing these annotations, we can glean \nsome useful information and identify potentially interesting proteins/sites to dig \ndeeper into. Let's look at the PTMs that have been associated with a biological\nprocess: \n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "ptms_with_annotation, annotation_counts = analyze.get_ptm_annotations(spliced_ptms, database = \"PhosphoSitePlus\", annotation_type = 'Process')\nprint('Specific PTMs with annotation:')\nptms_with_annotation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also look at the number of PTMs associated with each annotation:\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "print('Number of PTMs associated with each annotation:')\nannotation_counts" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/_downloads/cda7315d1d4ad94f7fd5a63eca0d7736/plot_location_altered_flanks.zip b/_downloads/cda7315d1d4ad94f7fd5a63eca0d7736/plot_location_altered_flanks.zip new file mode 100644 index 0000000..3ec6a45 Binary files /dev/null and b/_downloads/cda7315d1d4ad94f7fd5a63eca0d7736/plot_location_altered_flanks.zip differ diff --git a/_downloads/d7ba2ab4359e032650cecbc8fd52a0df/plot_protein_interactions.ipynb b/_downloads/d7ba2ab4359e032650cecbc8fd52a0df/plot_protein_interactions.ipynb new file mode 100644 index 0000000..8739927 --- /dev/null +++ b/_downloads/d7ba2ab4359e032650cecbc8fd52a0df/plot_protein_interactions.ipynb @@ -0,0 +1,115 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# Identify protein interactions that may be impacted by splicing of PTMs\n\nPost translational modifications (PTMs) often facilitate protein interactions, either through direct binding of domains specific to that particular modification (e.g. SH2 domains binding to phosphorylated tyrosines) or through allosteric effects that change the conformation of the protein to either enhance or disrupt interactions. We provide functions to annotate spliced PTMs with relevant protein interactions and to identify key PTMs that may disrupt protein interaction networks.\n\nCurrently, we provide functions to process and analyze protein interaction data from PhosphoSitePlus, PTMInt, and PTMcode. We can also include enzyme-specific interactions (such as kinase substrate interactions through PhosphoSitePlus and RegPhos). First, we need to annotate the spliced PTMs with protein interactions (see rest of documentation for how to do this). Then, we can process the interactions across the different databases using the protein_interactions class to identify key PTMs that may disrupt protein interaction networks.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from ptm_pose import analyze\nimport pandas as pd\n\n# Load spliced ptm and altered flank data\nspliced_ptms = pd.read_csv('spliced_ptms.csv')\n\ninteractions = analyze.protein_interactions(spliced_ptms)\ninteractions.get_interaction_network()\n\ninteractions.network_data.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also calculate interaction stats to identify proteins that are most impacted or relevant to spliced PTMs and the protein interaction network\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "interactions.get_interaction_stats()\n\ninteractions.network_stats.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want to focus on a specific protein, we can summarize information about a single protein in the network. In this case, let's look at TSC2, which loses pS981 upon ESRP1 knockdown\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "interactions.summarize_protein_network(protein = 'TSC2')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also visualize the network...\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "interactions.plot_interaction_network(interacting_node_size = 10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "...and the centrality of proteins in the network\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "interactions.plot_network_centrality(centrality_measure='Degree')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/_downloads/dcc9f7e0931a78b5dfbf87c9c1fbdbbc/plot_kstar_enrichment.py b/_downloads/dcc9f7e0931a78b5dfbf87c9c1fbdbbc/plot_kstar_enrichment.py new file mode 100644 index 0000000..a2d2ba3 --- /dev/null +++ b/_downloads/dcc9f7e0931a78b5dfbf87c9c1fbdbbc/plot_kstar_enrichment.py @@ -0,0 +1,28 @@ +r""" +Identify kinases with enriched substrates in differentially included exons, using an adapted version of KSTAR +============================================================================================================= + +Given that phosphorlaiton are one of the most commonly impacted modifications, there is potential for kinases targeting these sites to be indirectly impacted by alternative splicing through changes in the availability of their substrates. While we provide functions for performing enrichment of known kinase substrates from databases like PhosphoSitePlus, RegPhos, and PTMsigDB, these resources are limited by the overall number of validated substrates (<5%). For this purpose, we have adapted a previously developed algorithm called KSTAR (Kinase Substrate to Activity Relationships) for use with spliced PTM data, which harnesses kinase-substrate predictions to expand the overall number of phosphorylation sites that can be used as evidence. This particularly important as you may find many of the spliced PTMs in your dataset are less well studied and may not have any annotated kinases. + +In order to perform KSTAR analysis, you will first need to download KSTAR networks from the following [figshare](https://figshare.com/articles/dataset/NETWORKS/14944305?file=28768155). + +Once you have downloaded the networks, all you need is your PTM data. You will need to run analysis for tyrosine kinases (Y) and serine/threonine kinases (ST) +""" + +from ptm_pose import analyze +import pandas as pd + +# Load spliced ptm and altered flank data +spliced_ptms = pd.read_csv('spliced_ptms.csv') + +#perform kstar enrichment for tyrosine phosphorylation, denoted by "Y" +network_dir = './NetworKIN/' +kstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = network_dir, phospho_type = 'Y') +kstar_enrichment.run_kstar_enrichment() +kstar_enrichment.return_enriched_kinases() + +# %% +# You can also run the same analysis for serine/threonine kinases: +kstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = network_dir, phospho_type = 'ST') +kstar_enrichment.run_kstar_enrichment() +kstar_enrichment.return_enriched_kinases() \ No newline at end of file diff --git a/_downloads/e1092134af8eb464d8fde3e8d25f8278/gallery_output_jupyter.zip b/_downloads/e1092134af8eb464d8fde3e8d25f8278/gallery_output_jupyter.zip new file mode 100644 index 0000000..b0531aa Binary files /dev/null and b/_downloads/e1092134af8eb464d8fde3e8d25f8278/gallery_output_jupyter.zip differ diff --git a/_downloads/ed462b3909c30ff28d2f9a8f088ee885/plot_num_annotations.py b/_downloads/ed462b3909c30ff28d2f9a8f088ee885/plot_num_annotations.py new file mode 100644 index 0000000..c580491 --- /dev/null +++ b/_downloads/ed462b3909c30ff28d2f9a8f088ee885/plot_num_annotations.py @@ -0,0 +1,41 @@ +r""" +Inspecting number of PTMs with annotation information available +=============================================================== + +As described in Running PTM-POSE section, PTM-POSE provides various options for annotating functional information for PTMs, coming from various databases. However, PTM functional information is inherently sparse, and so most annotations will only provide information on a handful of PTMs. For this reason, it can be useful to probe how many PTMsTo better understand the types of annotations that are available, as well as the number of PTMs that have an annotation of that type. This can be done using the `analyze` function in PTM-POSE. + +Note: This examples assumes that you have already run the PTM-POSE pipeline and have at annotated PTMs with at least one layer of information. +""" + + +from ptm_pose import analyze +from ptm_pose import plots as pose_plots +import pandas as pd + +# Load spliced ptm and altered flank data +spliced_ptms = pd.read_csv('spliced_ptms.csv') +altered_flanks = pd.read_csv('altered_flanks.csv') + +pose_plots.show_available_annotations(spliced_ptms) + + + + +# %% +# As you can, see there are only a few PTMs from each annotation that have +# available information, with the most being 9 PTMs out of the 184 differentially +# included sites having been associated with a biological process. While this this +# should be taken into consideration when analyzing these annotations, we can glean +# some useful information and identify potentially interesting proteins/sites to dig +# deeper into. Let's look at the PTMs that have been associated with a biological +# process: +ptms_with_annotation, annotation_counts = analyze.get_ptm_annotations(spliced_ptms, database = "PhosphoSitePlus", annotation_type = 'Process') +print('Specific PTMs with annotation:') +ptms_with_annotation + +# %% +# We can also look at the number of PTMs associated with each annotation: +print('Number of PTMs associated with each annotation:') +annotation_counts + + diff --git a/_images/Examples_ESRP1_knockdown_19_0.png b/_images/Examples_ESRP1_knockdown_19_0.png new file mode 100644 index 0000000..849c436 Binary files /dev/null and b/_images/Examples_ESRP1_knockdown_19_0.png differ diff --git a/_images/Gallery_gallery_tests_14_1.png b/_images/Gallery_gallery_tests_14_1.png new file mode 100644 index 0000000..2180b29 Binary files /dev/null and b/_images/Gallery_gallery_tests_14_1.png differ diff --git a/_images/Gallery_gallery_tests_27_0.png b/_images/Gallery_gallery_tests_27_0.png new file mode 100644 index 0000000..7366ff4 Binary files /dev/null and b/_images/Gallery_gallery_tests_27_0.png differ diff --git a/_images/Gallery_gallery_tests_34_0.png b/_images/Gallery_gallery_tests_34_0.png new file mode 100644 index 0000000..b65ea2e Binary files /dev/null and b/_images/Gallery_gallery_tests_34_0.png differ diff --git a/_images/Gallery_gallery_tests_35_0.png b/_images/Gallery_gallery_tests_35_0.png new file mode 100644 index 0000000..6212b4c Binary files /dev/null and b/_images/Gallery_gallery_tests_35_0.png differ diff --git a/_images/Gallery_gallery_tests_3_0.png b/_images/Gallery_gallery_tests_3_0.png new file mode 100644 index 0000000..f9d9a88 Binary files /dev/null and b/_images/Gallery_gallery_tests_3_0.png differ diff --git a/_images/Gallery_gallery_tests_47_1.png b/_images/Gallery_gallery_tests_47_1.png new file mode 100644 index 0000000..283a170 Binary files /dev/null and b/_images/Gallery_gallery_tests_47_1.png differ diff --git a/_images/Gallery_gallery_tests_49_1.png b/_images/Gallery_gallery_tests_49_1.png new file mode 100644 index 0000000..1de2a7b Binary files /dev/null and b/_images/Gallery_gallery_tests_49_1.png differ diff --git a/_images/Gallery_gallery_tests_51_0.png b/_images/Gallery_gallery_tests_51_0.png new file mode 100644 index 0000000..30e2ce9 Binary files /dev/null and b/_images/Gallery_gallery_tests_51_0.png differ diff --git a/_images/Gallery_gallery_tests_56_0.png b/_images/Gallery_gallery_tests_56_0.png new file mode 100644 index 0000000..f418cd7 Binary files /dev/null and b/_images/Gallery_gallery_tests_56_0.png differ diff --git a/_images/sphx_glr_plot_kstar_enrichment_thumb.png b/_images/sphx_glr_plot_kstar_enrichment_thumb.png new file mode 100644 index 0000000..8a5fed5 Binary files /dev/null and b/_images/sphx_glr_plot_kstar_enrichment_thumb.png differ diff --git a/_images/sphx_glr_plot_location_altered_flanks_001.png b/_images/sphx_glr_plot_location_altered_flanks_001.png new file mode 100644 index 0000000..da56841 Binary files /dev/null and b/_images/sphx_glr_plot_location_altered_flanks_001.png differ diff --git a/_images/sphx_glr_plot_location_altered_flanks_002.png b/_images/sphx_glr_plot_location_altered_flanks_002.png new file mode 100644 index 0000000..f562f2d Binary files /dev/null and b/_images/sphx_glr_plot_location_altered_flanks_002.png differ diff --git a/_images/sphx_glr_plot_location_altered_flanks_003.png b/_images/sphx_glr_plot_location_altered_flanks_003.png new file mode 100644 index 0000000..2e76274 Binary files /dev/null and b/_images/sphx_glr_plot_location_altered_flanks_003.png differ diff --git a/_images/sphx_glr_plot_location_altered_flanks_thumb.png b/_images/sphx_glr_plot_location_altered_flanks_thumb.png new file mode 100644 index 0000000..eb3c937 Binary files /dev/null and b/_images/sphx_glr_plot_location_altered_flanks_thumb.png differ diff --git a/_images/sphx_glr_plot_num_annotations_001.png b/_images/sphx_glr_plot_num_annotations_001.png new file mode 100644 index 0000000..e549957 Binary files /dev/null and b/_images/sphx_glr_plot_num_annotations_001.png differ diff --git a/_images/sphx_glr_plot_num_annotations_thumb.png b/_images/sphx_glr_plot_num_annotations_thumb.png new file mode 100644 index 0000000..9d32831 Binary files /dev/null and b/_images/sphx_glr_plot_num_annotations_thumb.png differ diff --git a/_images/sphx_glr_plot_protein_interactions_001.png b/_images/sphx_glr_plot_protein_interactions_001.png new file mode 100644 index 0000000..f74e0ae Binary files /dev/null and b/_images/sphx_glr_plot_protein_interactions_001.png differ diff --git a/_images/sphx_glr_plot_protein_interactions_002.png b/_images/sphx_glr_plot_protein_interactions_002.png new file mode 100644 index 0000000..73b2b83 Binary files /dev/null and b/_images/sphx_glr_plot_protein_interactions_002.png differ diff --git a/_images/sphx_glr_plot_protein_interactions_thumb.png b/_images/sphx_glr_plot_protein_interactions_thumb.png new file mode 100644 index 0000000..4119c25 Binary files /dev/null and b/_images/sphx_glr_plot_protein_interactions_thumb.png differ diff --git a/_modules/index.html b/_modules/index.html new file mode 100644 index 0000000..ea6f054 --- /dev/null +++ b/_modules/index.html @@ -0,0 +1,374 @@ + + + + + + + + + + + Overview: module code — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + + + + + + + + +
+ +
+
+
+ +
+ + + + +
+
+ + +
+ + +
+
+
+ + + + + +
+
+ + \ No newline at end of file diff --git a/_modules/ptm_pose/analyze.html b/_modules/ptm_pose/analyze.html new file mode 100644 index 0000000..b09db58 --- /dev/null +++ b/_modules/ptm_pose/analyze.html @@ -0,0 +1,1697 @@ + + + + + + + + + + + ptm_pose.analyze — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for ptm_pose.analyze

+import numpy as np
+import pandas as pd
+import pickle
+
+import os
+import time
+
+#plotting 
+import matplotlib.pyplot as plt
+import matplotlib.lines as mlines
+import seaborn as sns
+from ptm_pose import plots as pose_plots
+
+#analysis packages
+from Bio.Align import PairwiseAligner
+import gseapy as gp
+import networkx as nx
+import re
+
+
+#custom stat functions
+from ptm_pose import stat_utils, pose_config, annotate, helpers
+
+package_dir = os.path.dirname(os.path.abspath(__file__))
+
+
[docs]def get_modification_counts(ptms): + """ + Given PTM data (either spliced ptms, altered flanks, or combined data), return the counts of each modification class + + Parameters + ---------- + ptms: pd.DataFrame + Dataframe with PTMs projected onto splicing events or with altered flanking sequences + + Returns + ------- + modification_counts: pd.Series + Series with the counts of each modification class + """ + ptms['Modification Class'] = ptms['Modification Class'].apply(lambda x: x.split(';')) + ptms = ptms.explode('Modification Class') + modification_counts = ptms.groupby('Modification Class').size() + modification_counts = modification_counts.sort_values(ascending = True) + return modification_counts
+ +
[docs]def get_annotation_col(spliced_ptms, annotation_type = 'Function', database = 'PhosphoSitePlus'): + """ + Given the database of interest and annotation type, return the annotation column that will be found in a annotated spliced_ptm dataframe + + Parameters + ---------- + spliced_ptms: pd.DataFrame + Dataframe with PTM annotations added from annotate module + annotation_type: str + Type of annotation to pull from spliced_ptms dataframe. Available information depends on the selected database. Default is 'Function'. + database: str + database from which PTMs are pulled. Options include 'PhosphoSitePlus', 'ELM', 'PTMInt', 'PTMcode', 'DEPOD', and 'RegPhos'. Default is 'PhosphoSitePlus'. + + Returns + ------- + annotation_col: str + Column name in spliced_ptms dataframe that contains the requested annotation + """ + if database == 'Combined': + if f'Combined:{annotation_type}' not in spliced_ptms.columns: + raise ValueError(f'Requested annotation data has not yet been added to spliced_ptms dataframe. Please run the annotate.{pose_config.annotation_function_dict[database]} function to append this information.') + return f'Combined:{annotation_type}' + elif annotation_type in pose_config.annotation_col_dict[database].keys(): + annotation_col = pose_config.annotation_col_dict[database][annotation_type] + if annotation_col not in spliced_ptms.columns: + raise ValueError(f'Requested annotation data has not yet been added to spliced_ptms dataframe. Please run the annotate.{pose_config.annotation_function_dict[database][annotation_type]} function to append this information.') + return annotation_col + else: + raise ValueError(f"Invalid annotation type for {database}. Available annotation data for {database} includes: {', '.join(pose_config.annotation_col_dict[database].keys())}")
+ + +
[docs]def combine_outputs(spliced_ptms, altered_flanks, mod_class = None, include_stop_codon_introduction = False, remove_conflicting = True): + """ + Given the spliced_ptms (differentially included) and altered_flanks (altered flanking sequences) dataframes obtained from project and flanking_sequences modules, combine the two into a single dataframe that categorizes each PTM by the impact on the PTM site + + Parameters + ---------- + spliced_ptms: pd.DataFrame + Dataframe with PTMs projected onto splicing events and with annotations appended from various databases + altered_flanks: pd.DataFrame + Dataframe with PTMs associated with altered flanking sequences and with annotations appended from various databases + mod_class: str + modification class to subset, if any + include_stop_codon_introduction: bool + Whether to include PTMs that introduce stop codons in the altered flanks. Default is False. + remove_conflicting: bool + Whether to remove PTMs that are both included and excluded across different splicing events. Default is True. + """ + #process differentially included PTMs and altered flanking sequences + if mod_class is not None: + spliced_ptms = get_modification_class_data(spliced_ptms, mod_class) + altered_flanks = get_modification_class_data(altered_flanks, mod_class) + + #extract specific direction of splicing change and add to dataframe + spliced_ptms['Impact'] = spliced_ptms['dPSI'].apply(lambda x: 'Included' if x > 0 else 'Excluded') + + #restrict altered flanks to those that are changed and are not disrupted by stop codons + if altered_flanks['Stop Codon Introduced'].dtypes != bool: + altered_flanks['Stop Codon Introduced'] = altered_flanks['Stop Codon Introduced'].astype(bool) + if include_stop_codon_introduction: + altered_flanks['Impact'] = altered_flanks['Stop Codon Introduced'].apply(lambda x: 'Stop Codon Introduced' if x else 'Altered Flank') + else: + altered_flanks = altered_flanks[~altered_flanks['Stop Codon Introduced']].copy() + altered_flanks['Impact'] = 'Altered Flank' + + #identify annotations that are found in both datasets + annotation_columns_in_spliced_ptms = [col for col in spliced_ptms.columns if ':' in col] + annotation_columns_in_altered_flanks = [col for col in altered_flanks.columns if ':' in col] + annotation_columns = list(set(annotation_columns_in_spliced_ptms).intersection(annotation_columns_in_altered_flanks)) + if len(annotation_columns) != annotation_columns_in_spliced_ptms: + annotation_columns_only_in_spliced = list(set(annotation_columns_in_spliced_ptms) - set(annotation_columns_in_altered_flanks)) + annotation_columns_only_in_altered = list(set(annotation_columns_in_altered_flanks) - set(annotation_columns_in_spliced_ptms)) + if len(annotation_columns_only_in_spliced) > 0: + print(f'Warning: some annotations in spliced ptms dataframe not found in altered flanks dataframe: {", ".join(annotation_columns_only_in_spliced)}. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.') + if len(annotation_columns_only_in_altered) > 0: + print(f'Warning: some annotations in altered flanks dataframe not found in spliced ptms dataframe: {", ".join(annotation_columns_only_in_altered)}. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.') + + #check if dPSI or sig columns are in both dataframes + sig_cols = [] + if 'dPSI' in spliced_ptms.columns and 'dPSI' in altered_flanks.columns: + sig_cols.append('dPSI') + if 'Significance' in spliced_ptms.columns and 'Significance' in altered_flanks.columns: + sig_cols.append('Significance') + + shared_columns = ['Impact', 'Gene', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class'] + sig_cols + annotation_columns + combined = pd.concat([spliced_ptms[shared_columns], altered_flanks[shared_columns]]) + combined = combined.groupby([col for col in combined.columns if col != 'Impact'], as_index = False, dropna = False)['Impact'].apply(lambda x: ';'.join(set(x))) + + #remove ptms that are both included and excluded across different events + if remove_conflicting: + combined = combined[~((combined['Impact'].str.contains('Included')) & (combined['Impact'].str.contains('Excluded')))] + + return combined
+ +
[docs]def simplify_annotation(annotation, sep = ','): + """ + Given an annotation, remove additional information such as whether or not a function is increasing or decreasing. For example, 'cell growth, induced' would be simplified to 'cell growth' + + Parameters + ---------- + annotation: str + Annotation to simplify + sep: str + Separator that splits the core annotation from additional detail. Default is ','. Assumes the first element is the core annotation. + + Returns + ------- + annotation: str + Simplified annotation + """ + annotation = annotation.split(sep)[0].strip(' ') if annotation == annotation else annotation + return annotation
+ +def collapse_annotations(annotations, database = 'PhosphoSitePlus', annotation_type = 'Function'): + sep_dict = {'PhosphoSitePlus':{'Function':',', 'Process':',','Interactions':'(', 'Disease':'->', 'Perturbation':'->'}, 'ELM': {'Interactions': ' ', 'Motif Match': ' '}, 'PTMInt':{'Interactions':'->'}, 'PTMcode':{'Interactions':'_', 'Intraprotein':' '}, 'RegPhos':{'Kinase':' '}, 'DEPOD':{'Phosphatase':' '}, 'Combined':{'Kinase':' ', 'Interactions':'->'}, 'PTMsigDB': {'WikiPathway':'->', 'NetPath':'->','mSigDB':'->', 'Perturbation (DIA2)':'->', 'Perturbation (DIA)': '->', 'Perturbation (PRM)':'->','Kinase':'->'}} + + if annotation_type == 'Kinase' and database != 'PTMsigDB': + collapsed = annotations + else: + sep = sep_dict[database][annotation_type] + collapsed = [] + for annot in annotations: + if annot == annot: + collapsed.append(simplify_annotation(annot, sep = sep)) + else: + collapsed.append(annot) + return collapsed + + +def get_modification_class_data(spliced_ptms, mod_class): + #check if specific modification class was provided and subset data by modification if so + if mod_class in spliced_ptms['Modification Class'].values: + ptms_of_interest = spliced_ptms[spliced_ptms['Modification Class'].str.contains(mod_class)].copy() + else: + ptms_of_interest['Modification Class'] = ptms_of_interest['Modification Class'].apply(lambda x: x.split(';') if x == x else np.nan) + ptms_of_interest = ptms_of_interest.explode('Modification Class').dropna(subset = 'Modification Class') + available_ptms = ptms_of_interest['Modification Class'].unique() + raise ValueError(f"Requested modification class not present in the data. The available modifications include {', '.join(available_ptms)}") + + return ptms_of_interest + +
[docs]def get_ptm_annotations(spliced_ptms, annotation_type = 'Function', database = 'PhosphoSitePlus', mod_class = None, collapse_on_similar = False, dPSI_col = None, sig_col = None): + """ + Given spliced ptm information obtained from project and annotate modules, grab PTMs in spliced ptms associated with specific PTM modules + + Parameters + ---------- + spliced_ptms: pd.DataFrame + PTMs projected onto splicing events and with annotations appended from various databases + annotation_type: str + Type of annotation to pull from spliced_ptms dataframe. Available information depends on the selected database. Default is 'Function'. + database: str + database from which PTMs are pulled. Options include 'PhosphoSitePlus', 'ELM', or 'PTMInt'. ELM and PTMInt data will automatically be downloaded, but due to download restrictions, PhosphoSitePlus data must be manually downloaded and annotated in the spliced_ptms data using functions from the annotate module. Default is 'PhosphoSitePlus'. + mod_class: str + modification class to subset + """ + #check to make sure requested annotation is available + if database != 'Combined': + annotation_col = get_annotation_col(spliced_ptms, database = database, annotation_type = annotation_type) + else: + annotation_col = f'Combined:{annotation_type}' + + + #check if specific modification class was provided and subset data by modification if so + if mod_class is not None: + ptms_of_interest = get_modification_class_data(spliced_ptms, mod_class) + else: + ptms_of_interest = spliced_ptms.copy() + + #extract relevant annotation and remove PTMs without an annotation + optional_cols = [col for col in ptms_of_interest.columns if col in ['Impact', 'dPSI', 'Significance'] or col == dPSI_col or col == sig_col ] + annotations = ptms_of_interest[['Gene', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class'] + [annotation_col] + optional_cols].copy() + annotations = annotations.dropna(subset = annotation_col).drop_duplicates() + + if annotations.empty: + print("No PTMs with associated annotation") + return None, None + + #combine repeat entries for same PTM (with multiple impacts) + annotations = annotations.groupby(['Gene', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform'], as_index = False).agg(lambda x: ';'.join(set([str(i) for i in x if i == i]))) + + #separate distinct modification annotations in unique rows + annotations_exploded = annotations.copy() + annotations_exploded[annotation_col] = annotations_exploded[annotation_col].apply(lambda x: x.split(';') if isinstance(x, str) else np.nan) + annotations_exploded = annotations_exploded.explode(annotation_col) + annotations_exploded[annotation_col] = annotations_exploded[annotation_col].apply(lambda x: x.strip() if isinstance(x, str) else np.nan) + + #if desired collapse similar annotations (for example, same function but increasing or decreasing) + if collapse_on_similar: + annotations_exploded[annotation_col] = collapse_annotations(annotations_exploded[annotation_col].values, database = database, annotation_type = annotation_type) + annotations_exploded.drop_duplicates(inplace = True) + annotations = annotations_exploded.groupby([col for col in annotations_exploded.columns if col != annotation_col], as_index = False, dropna = False)[annotation_col].apply(lambda x: ';'.join(set(x))) + + #get the number of annotations found + annotation_counts = annotations_exploded.drop_duplicates(subset = ['Gene', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform'] + [annotation_col])[annotation_col].value_counts() + + #additional_counts + sub_counts = [] + if 'Impact' in annotations_exploded.columns: + for imp in ['Included', 'Excluded', 'Altered Flank']: + tmp_annotations = annotations_exploded[annotations_exploded['Impact'] == imp].copy() + tmp_annotations = tmp_annotations.drop_duplicates(subset = ['Gene', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform'] + [annotation_col]) + sub_counts.append(tmp_annotations[annotation_col].value_counts()) + + annotation_counts = pd.concat([annotation_counts] + sub_counts, axis = 1) + annotation_counts.columns = ['All Impacted', 'Included', 'Excluded', 'Altered Flank'] + annotation_counts = annotation_counts.replace(np.nan, 0) + + #combine repeat entries for same PTM (with multiple impacts) + annotations = annotations.groupby(['Gene', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform'], as_index = False).agg(lambda x: ';'.join(set([str(i) for i in x if i == i]))) + + return annotations, annotation_counts
+ +
[docs]def get_annotation_categories(spliced_ptms): + """ + Given spliced ptm information, return the available annotation categories that have been appended to dataframe + + Parameters + ---------- + spliced_ptms: pd.DataFrame + PTMs projected onto splicing events and with annotations appended from various databases + + Returns + ------- + annot_categories: pd.DataFrame + Dataframe that indicates the available databases, annotations from each database, and column associated with that annotation + """ + database_list = [] + type_list = [] + column_list = [] + #get available phosphositeplus annotations + for col in spliced_ptms.columns: + if ':' in col: + database = col.split(':')[0] if 'PSP' not in col else 'PhosphoSitePlus' + if database != 'Combined' and database != 'Unnamed': + col_dict = pose_config.annotation_col_dict[database] + + #flip through annotation types in col_dict and add the one that matches the column + for key, value in col_dict.items(): + if value == col: + type_list.append(key) + database_list.append(database) + column_list.append(col) + elif database == 'Combined': + type_list.append(col.split(':')[1]) + database_list.append('Combined') + column_list.append(col) + else: + continue + + if len(type_list) > 0: + annot_categories = pd.DataFrame({'database':database_list, 'annotation_type':type_list, 'column': column_list}).sort_values(by = 'database') + return annot_categories + else: + print('No annotation information found. Please run functions from annotate module to append annotation information') + return None
+ + +def construct_background(file = None, annotation_type = 'Function', database = 'PhosphoSitePlus', modification = None, collapse_on_similar = False, save = False): + ptm_coordinates = pose_config.ptm_coordinates.copy() + ptm_coordinates = ptm_coordinates.rename({'Gene name':'Gene'}, axis = 1) + if modification is not None: + ptm_coordinates = ptm_coordinates[ptm_coordinates['Modification Class'].str.contains(modification)].copy() + if ptm_coordinates.empty: + raise ValueError(f'No PTMs found with modification class {modification}. Please provide a valid modification class. Examples include Phosphorylation, Glycosylation, Ubiquitination, etc.') + + + if database == 'PhosphoSitePlus': + if file is None: + raise ValueError('Please provide PhosphoSitePlus source file to construct the background dataframe') + elif annotation_type in ['Function', 'Process', 'Interactions']: + ptm_coordinates = annotate.add_PSP_regulatory_site_data(ptm_coordinates, file = file, report_success=False) + elif annotation_type == 'Kinase': + ptm_coordinates = annotate.add_PSP_kinase_substrate_data(ptm_coordinates, file = file, report_success=False) + elif annotation_type == 'Disease': + ptm_coordinates = annotate.add_PSP_disease_association(ptm_coordinates, file = file, report_success=False) + elif annotation_type == 'Perturbation': + ptm_coordinates = annotate.add_PTMsigDB_data(ptm_coordinates, file = file, report_success=False) + if database == 'ELM': + if annotation_type == 'Interactions': + ptm_coordinates = annotate.add_ELM_interactions(ptm_coordinates, file = file, report_success = False) + elif annotation_type == 'Motif Match': + ptm_coordinates = annotate.add_ELM_matched_motifs(ptm_coordinates, file = file, report_success = False) + if database == 'PTMInt': + ptm_coordinates = annotate.add_PTMInt_data(ptm_coordinates, file = file, report_success=False) + if database == 'PTMcode': + if annotation_type == 'Intraprotein': + ptm_coordinates = annotate.add_PTMcode_intraprotein(ptm_coordinates, file = file, report_success=False) + elif annotation_type == 'Interactions': + ptm_coordinates = annotate.add_PTMcode_interprotein(ptm_coordinates, file = file, report_success=False) + if database == 'RegPhos': + ptm_coordinates = annotate.add_RegPhos_data(ptm_coordinates, file = file, report_success=False) + if database == 'DEPOD': + ptm_coordinates = annotate.add_DEPOD_phosphatase_data(ptm_coordinates, report_success=False) + if database == 'PTMsigDB': + ptm_coordinates = annotate.add_PTMsigDB_data(ptm_coordinates, file = file, report_success=False) + if database == 'Combined': + raise ValueError('Combined information is not supported for constructing background data from entire proteome at this time. Please provide a specific database to construct background data.') + + + _, annotation_counts = get_ptm_annotations(ptm_coordinates, annotation_type = annotation_type, database = database, collapse_on_similar = collapse_on_similar) + if save: + package_dir = os.path.dirname(os.path.abspath(__file__)) + if collapse_on_similar and modification is not None: + annotation_counts.to_csv(package_dir + f'/Resource_Files/background_annotations/{database}_{annotation_type}_{modification}_collapsed.csv') + elif collapse_on_similar: + annotation_counts.to_csv(package_dir + f'/Resource_Files/background_annotations/{database}_{annotation_type}_collapsed.csv') + elif modification is not None: + annotation_counts.to_csv(package_dir + f'/Resource_Files/background_annotations/{database}_{annotation_type}_{modification}.csv') + else: + annotation_counts.to_csv(package_dir + f'/Resource_Files/background_annotations/{database}_{annotation_type}.csv') + + return annotation_counts + + + + +
[docs]def get_enrichment_inputs(spliced_ptms, annotation_type = 'Function', database = 'PhosphoSitePlus', background_type = 'pregenerated', background = None, collapse_on_similar = False, mod_class = None, alpha = 0.05, min_dPSI = 0, annotation_file = None, save_background = False): + """ + Given the spliced ptms, altered_flanks, or combined PTMs dataframe, identify the number of PTMs corresponding to specific annotations in the foreground (PTMs impacted by splicing) and the background (all PTMs in the proteome or all PTMs in dataset not impacted by splicing). This information can be used to calculate the enrichment of specific annotations among PTMs impacted by splicing. Several options are provided for constructing the background data: pregenerated (based on entire proteome in the ptm_coordinates dataframe) or significance (foreground PTMs are extracted from provided spliced PTMs based on significance and minimum delta PSI) + + Parameters + ---------- + spliced_ptms: pd.DataFrame + + """ + if background_type == 'pregenerated': + print('Using pregenerated background information on all PTMs in the proteome.') + #first look for pregenerated background data + try: + background_annotation_count = pose_config.download_background(annotation_type = annotation_type, database = database, mod_class = mod_class, collapsed=collapse_on_similar) + except: + if annotation_file is None: + print('Note: To avoid having to constructing background each time (which is slower), you can choose to set save_background = True to save the background data to Resource Files in package directory.') + background_annotation_count = construct_background(file = annotation_file, annotation_type = annotation_type, database = database, collapse_on_similar = collapse_on_similar, save = save_background) + + if mod_class is None: + background_size = pose_config.ptm_coordinates.drop_duplicates(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform']).shape[0] + else: + background_size = pose_config.ptm_coordinates[pose_config.ptm_coordinates['Modification Class'].str.contains(mod_class)].drop_duplicates(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform']).shape[0] + + elif background_type == 'significance': + if 'Significance' not in spliced_ptms.columns or 'dPSI' not in spliced_ptms.columns: + raise ValueError('Significance and dPSI columns must be present in spliced_ptms dataframe to construct a background based on significance (these columns must be provided during projection).') + + background = spliced_ptms.copy() + #restrict sample to significantly spliced ptms + spliced_ptms = spliced_ptms[(spliced_ptms['Significance'] <= alpha) & (spliced_ptms['dPSI'].abs() >= min_dPSI)].copy() + + + #check to make sure there are significant PTMs in the data and that there is a difference in the number of significant and background PTMs + if spliced_ptms.shape[0] == 0: + raise ValueError('No significantly spliced PTMs found in the data') + elif spliced_ptms.shape[0] == background.shape[0]: + raise ValueError(f'The foreground and background PTM sets are the same size when considering significance. Please provide a different background set with the background_ptms parameter, or make sure spliced_ptms also includes non-significant PTMs. Instead using pregenerated background sets of the whole proteome.') + else: + if mod_class is not None: + background = get_modification_class_data(background, mod_class) + + #get background counts + background_size = background.shape[0] + _, background_annotation_count = get_ptm_annotations(background, annotation_type = annotation_type, database = database, collapse_on_similar = collapse_on_similar) + #elif background is not None: #if custom background is provided + # print('Using the provided custom background') + # if isinstance(background, list) or isinstance(background, np.ndarray): + # #from list of PTM strings, separate into uniprot id, residue, and position + # uniprot_id = [ptm.split('_')[0] for ptm in background] + # residue = [ptm.split('_')[1][0] for ptm in background] + # position = [int(ptm.split('_')[1][1:]) for ptm in background] + # background = pd.DataFrame({'UniProtKB Accession':uniprot_id, 'Residue':residue, 'PTM Position in Canonical Isoform':position, 'Modification Class':mod_class}) + # if isinstance(background, pd.DataFrame): + # #check to make sure ptm data has key columns to identify ptms + # if 'UniProtKB Accession' not in background.columns or 'Residue' not in background.columns or 'PTM Position in Canonical Isoform' not in background.columns or #'Modification Class' not in background.columns: + # raise ValueError('Background dataframe must have UniProtKB Accession, Residue, PTM Position in Canonical Isoform, and Modification Class columns to identify PTMs') + + # #restrict to specific modification class + # if mod_class is not None and 'Modification Class' in background.columns: + # background = get_modification_class_data(background, mod_class) + # elif mod_class is not None: + # raise ValueError('Custom background dataframe must have a Modification Class column to subset by modification class.') + # else: + # raise ValueError('Custom backgrounds must be provided as a list/array of PTMs in the form of "P00533_Y1068" (Uniprot ID followed by site number) or as a custom background dataframe with UniProtKB Accession, Residue, PTM Position in Canonical Isoform, and Modification Class columns.') + + # background = annotate.add_annotation(background, annotation_type = annotation_type, database = database, check_existing = True, file = annotation_file) + # background_size = background.drop_duplicates(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform']).shape[0] + + #get background counts + # _, background_annotation_count = get_ptm_annotations(background, annotation_type = annotation_type, database = database, collapse_on_similar = collapse_on_similar) + #elif background_type == 'custom': + # raise ValueError('Please provide a custom background dataframe or list of PTMs to use as the background if wanting to use custom background data.') + else: + raise ValueError('Invalid background type. Must be pregenerated (default) or significance') + + #get counts + foreground_size = spliced_ptms.shape[0] + annotation_details, foreground_annotation_count = get_ptm_annotations(spliced_ptms, annotation_type = annotation_type, database = database, collapse_on_similar=collapse_on_similar) + + #process annotation details into usable format + if annotation_details is None: + print('No PTMs with requested annotation type, so could not perform enrichment analysis') + return np.repeat(None, 5) + else: + annotation_col = get_annotation_col(spliced_ptms, database = database, annotation_type = annotation_type) + annotation_details[annotation_col] = annotation_details[annotation_col].str.split(';') + annotation_details = annotation_details.explode(annotation_col) + annotation_details[annotation_col] = annotation_details[annotation_col].str.strip() + annotation_details['PTM'] = annotation_details['Gene'] + '_' + annotation_details['Residue'] + annotation_details['PTM Position in Canonical Isoform'].astype(int).astype(str) + annotation_details = annotation_details.groupby(annotation_col)['PTM'].agg(';'.join) + + return foreground_annotation_count, foreground_size, background_annotation_count, background_size, annotation_details
+ + +
[docs]def annotation_enrichment(spliced_ptms, database = 'PhosphoSitePlus', annotation_type = 'Function', background_type = 'pregenerated', collapse_on_similar = False, mod_class = None, alpha = None, min_dPSI = None, annotation_file = None, save_background = False):# + """ + In progress, needs to be tested + + Given spliced ptm information (differential inclusion, altered flanking sequences, or both), calculate the enrichment of specific annotations in the dataset using a hypergeometric test. Background data can be provided/constructed in a few ways: + + 1. Use preconstructed background data for the annotation of interest, which considers the entire proteome present in the ptm_coordinates dataframe. While this is the default, it may not be the most accurate representation of your data, so you may alternative decide to use the other options which will be more specific to your context. + 2. Use the alpha and min_dPSI parameter to construct a foreground that only includes significantly spliced PTMs, and use the entire provided spliced_ptms dataframe as the background. This will allow you to compare the enrichment of specific annotations in the significantly spliced PTMs compared to the entire dataset. Will do this automatically if alpha or min_dPSI is provided. + + Parameters + ---------- + spliced_ptms: pd.DataFrame + Dataframe with PTMs projected onto splicing events and with annotations appended from various databases + database: str + database from which PTMs are pulled. Options include 'PhosphoSitePlus', 'ELM', 'PTMInt', 'PTMcode', 'DEPOD', 'RegPhos', 'PTMsigDB'. Default is 'PhosphoSitePlus'. + annotation_type: str + Type of annotation to pull from spliced_ptms dataframe. Available information depends on the selected database. Default is 'Function'. + background_type: str + how to construct the background data. Options include 'pregenerated' (default) and 'significance'. If 'significance' is selected, the alpha and min_dPSI parameters must be provided. Otherwise, will use whole proteome in the ptm_coordinates dataframe as the background. + collapse_on_similar: bool + Whether to collapse similar annotations (for example, increasing and decreasing functions) into a single category. Default is False. + mod_class: str + modification class to subset, if any + alpha: float + significance threshold to use to subset foreground PTMs. Default is None. + min_dPSI: float + minimum delta PSI value to use to subset foreground PTMs. Default is None. + annotation_file: str + file to use to annotate custom background data. Default is None. + save_background: bool + Whether to save the background data constructed from the ptm_coordinates dataframe into Resource_Files within package. Default is False. + """ + foreground_annotation_count, foreground_size, background_annotations, background_size, annotation_details = get_enrichment_inputs(spliced_ptms, background_type = background_type, annotation_type = annotation_type, database = database, collapse_on_similar = collapse_on_similar, mod_class = mod_class, alpha = alpha, min_dPSI = min_dPSI, annotation_file = annotation_file, save_background = save_background) + + + if foreground_annotation_count is not None: + #iterate through all annotations and calculate enrichment with a hypergeometric test + results = pd.DataFrame(columns = ['Fraction Impacted', 'p-value'], index = foreground_annotation_count.index) + for i, n in background_annotations.items(): + #number of PTMs in the foreground with the annotation + if i in foreground_annotation_count.index.values: + if foreground_annotation_count.shape[1] == 1: + k = foreground_annotation_count.loc[i, 'count'] + elif foreground_annotation_count.shape[1] > 1: + k = foreground_annotation_count.loc[i, 'All Impacted'] + + p = stat_utils.getEnrichment(background_size, n, foreground_size, k, fishers = False) + results.loc[i, 'Fraction Impacted'] = f"{k}/{n}" + results.loc[i, 'p-value'] = p + + results = results.sort_values('p-value') + results['Adjusted p-value'] = stat_utils.adjustP(results['p-value'].values) + results = pd.concat([results, annotation_details], axis = 1) + else: + results = None + + return results
+ + +
[docs]def gene_set_enrichment(spliced_ptms = None, altered_flanks = None, combined = None, alpha = 0.05, min_dPSI = None, gene_sets = ['KEGG_2021_Human', 'GO_Biological_Process_2023', 'GO_Cellular_Component_2023', 'GO_Molecular_Function_2023','Reactome_2022'], background = None, return_sig_only = True, max_retries = 5, delay = 10): + """ + Given spliced_ptms and/or altered_flanks dataframes (or the dataframes combined from combine_outputs()), perform gene set enrichment analysis using the enrichr API + + Parameters + ---------- + spliced_ptms: pd.DataFrame + Dataframe with differentially included PTMs projected onto splicing events and with annotations appended from various databases. Default is None (will not be considered in analysis). If combined dataframe is provided, this dataframe will be ignored. + altered_flanks: pd.DataFrame + Dataframe with PTMs associated with altered flanking sequences and with annotations appended from various databases. Default is None (will not be considered). If combined dataframe is provided, this dataframe will be ignored. + combined: pd.DataFrame + Combined dataframe with spliced_ptms and altered_flanks dataframes. Default is None. If provided, spliced_ptms and altered_flanks dataframes will be ignored. + gene_sets: list + List of gene sets to use in enrichment analysis. Default is ['KEGG_2021_Human', 'GO_Biological_Process_2023', 'GO_Cellular_Component_2023', 'GO_Molecular_Function_2023','Reactome_2022']. Look at gseapy and enrichr documentation for other available gene sets + background: list + List of genes to use as background in enrichment analysis. Default is None (all genes in the gene set database will be used). + return_sig_only: bool + Whether to return only significantly enriched gene sets. Default is True. + max_retries: int + Number of times to retry downloading gene set enrichment data from enrichr API. Default is 5. + delay: int + Number of seconds to wait between retries. Default is 10. + + Returns + ------- + results: pd.DataFrame + Dataframe with gene set enrichment results from enrichr API + + """ + if combined is not None: + if spliced_ptms is not None or altered_flanks is not None: + print('If combined dataframe is provided, you do not need to include spliced_ptms or altered_flanks dataframes. Ignoring these inputs.') + + foreground = combined.copy() + type = 'Differentially Included + Altered Flanking Sequences' + + #isolate the type of impact on the gene + combined_on_gene = combined.groupby('Gene')['Impact'].apply(lambda x: ';'.join(set(x))) + included = combined_on_gene.str.contains('Included') + excluded = combined_on_gene.str.contains('Excluded') + differential = included | excluded + altered_flank = combined_on_gene.str.contains('Altered Flank') + + altered_flank_only = altered_flank & ~differential + differential_only = differential & ~altered_flank + both = differential & altered_flank + + altered_flank_only = combined_on_gene[altered_flank_only].index.tolist() + differential_only = combined_on_gene[differential_only].index.tolist() + both = combined_on_gene[both].index.tolist() + elif spliced_ptms is not None and altered_flanks is not None: + #gene information (total and spliced genes) + combined = combine_outputs(spliced_ptms, altered_flanks) + foreground = combined.copy() + type = 'Differentially Included + Altered Flanking Sequences' + + #isolate the type of impact on the gene + combined_on_gene = combined.groupby('Gene')['Impact'].apply(lambda x: ';'.join(set(x))) + included = combined_on_gene.str.contains('Included') + excluded = combined_on_gene.str.contains('Excluded') + differential = included | excluded + altered_flank = combined_on_gene.str.contains('Altered Flank') + + altered_flank_only = altered_flank & ~differential + differential_only = differential & ~altered_flank + both = differential & altered_flank + + altered_flank_only = combined_on_gene[altered_flank_only].index.tolist() + differential_only = combined_on_gene[differential_only].index.tolist() + both = combined_on_gene[both].index.tolist() + elif spliced_ptms is not None: + foreground = spliced_ptms.copy() + type = 'Differentially Included' + + #isolate the type of impact on the gene + altered_flank_only = [] + differential_only = spliced_ptms['Gene'].unique().tolist() + both = [] + elif altered_flanks is not None: + foreground = altered_flanks.copy() + type = 'Altered Flanking Sequences' + + #isolate the type of impact on the gene + altered_flank_only = altered_flanks['Gene'].unique().tolist() + differential_only = [] + both = [] + else: + raise ValueError('No dataframes provided. Please provide spliced_ptms, altered_flanks, or the combined dataframe.') + + #restrict to significant ptms, if available + if 'Significance' in combined.columns and (min_dPSI is not None and 'dPSI' in foreground.columns): + foreground = combined[combined['Significance'] <= alpha].copy() + foreground = foreground[foreground['dPSI'].abs() >= min_dPSI] + elif 'Significance' in combined.columns: + foreground = combined[combined['Significance'] <= alpha].copy() + elif min_dPSI is not None and 'dPSI' in combined.columns: + foreground = combined[combined['dPSI'].abs() >= min_dPSI].copy() + else: + print('Significance column not found and min_dPSI not provided. All PTMs in dataframe will be considered as the foreground') + + foreground = foreground['Gene'].unique().tolist() + + #construct background + if isinstance(background, list): + pass + elif isinstance(background, np.ndarray): + background = list(background) + elif background == 'Significance' and 'Significance' in foreground.columns: + background = combined.copy() + background = background['Gene'].unique().tolist() + + + + #perform gene set enrichment analysis and save data + for i in range(max_retries): + try: + enr = gp.enrichr(foreground, background = background, gene_sets = gene_sets, organism='human') + break + except: + time.sleep(delay) + else: + raise Exception('Failed to run enrichr analysis after ' + str(max_retries) + ' attempts. Please try again later.') + + results = enr.results.copy() + results['Type'] = type + + #indicate the genes in each gene set associated with each type of impact + results['Genes with Differentially Included PTMs only'] = results['Genes'].apply(lambda x: ';'.join(set(x.split(';')) & (set(differential_only)))) + results['Genes with PTM with Altered Flanking Sequence only'] = results['Genes'].apply(lambda x: ';'.join(set(x.split(';')) & (set(altered_flank_only)))) + results['Genes with Both'] = results['Genes'].apply(lambda x: ';'.join(set(x.split(';')) & (set(both)))) + + if return_sig_only: + return results[results['Adjusted P-value'] <= 0.05] + else: + return results
+ +def compare_flanking_sequences(altered_flanks, flank_size = 5): + sequence_identity_list = [] + altered_positions_list = [] + residue_change_list = [] + flank_side_list = [] + for i, row in altered_flanks.iterrows(): + #if there is sequence info for both and does not introduce stop codons, compare sequence identity + if not row['Stop Codon Introduced'] and row['Inclusion Flanking Sequence'] == row['Inclusion Flanking Sequence'] and row['Exclusion Flanking Sequence'] == row['Exclusion Flanking Sequence']: + #compare sequence identity + sequence_identity = getSequenceIdentity(row['Inclusion Flanking Sequence'], row['Exclusion Flanking Sequence']) + #identify where flanking sequence changes + altered_positions, residue_change, flank_side = findAlteredPositions(row['Inclusion Flanking Sequence'], row['Exclusion Flanking Sequence'], flank_size = flank_size) + else: + sequence_identity = np.nan + altered_positions = np.nan + residue_change = np.nan + flank_side = np.nan + + + + #add to lists + sequence_identity_list.append(sequence_identity) + altered_positions_list.append(altered_positions) + residue_change_list.append(residue_change) + flank_side_list.append(flank_side) + + altered_flanks['Sequence Identity'] = sequence_identity_list + altered_flanks['Altered Positions'] = altered_positions_list + altered_flanks['Residue Change'] = residue_change_list + altered_flanks['Altered Flank Side'] = flank_side_list + return altered_flanks + + + +
[docs]def compare_inclusion_motifs(flanking_sequences, elm_classes = None): + """ + Given a DataFrame containing flanking sequences with changes and a DataFrame containing ELM class information, identify motifs that are found in the inclusion and exclusion events, identifying motifs unique to each case. This does not take into account the position of the motif in the sequence or additional information that might validate any potential interaction (i.e. structural information that would indicate whether the motif is accessible or not). ELM class information can be downloaded from the download page of elm (http://elm.eu.org/elms/elms_index.tsv). + + Parameters + ---------- + flanking_sequences: pandas.DataFrame + DataFrame containing flanking sequences with changes, obtained from get_flanking_changes_from_splice_data() + elm_classes: pandas.DataFrame + DataFrame containing ELM class information (ELMIdentifier, Regex, etc.), downloaded directly from ELM (http://elm.eu.org/elms/elms_index.tsv). Recommended to download this file and input it manually, but will download from ELM otherwise + + Returns + ------- + flanking_sequences: pandas.DataFrame + DataFrame containing flanking sequences with changes and motifs found in the inclusion and exclusion events + + """ + if elm_classes is None: + elm_classes = pd.read_csv('http://elm.eu.org/elms/elms_index.tsv', sep = '\t', header = 5) + + + + only_in_inclusion = [] + only_in_exclusion = [] + + for _, row in flanking_sequences.iterrows(): + #check if there is a stop codon introduced and both flanking sequences are present + if not row['Stop Codon Introduced'] and row['Inclusion Flanking Sequence'] == row['Inclusion Flanking Sequence'] and row['Exclusion Flanking Sequence'] == row['Exclusion Flanking Sequence']: + #get elm motifs that match inclusion or Exclusion Flanking Sequences + inclusion_matches = find_motifs(row['Inclusion Flanking Sequence'], elm_classes) + exclusion_matches = find_motifs(row['Exclusion Flanking Sequence'], elm_classes) + + #get motifs that are unique to each case + only_in_inclusion.append(';'.join(set(inclusion_matches) - set(exclusion_matches))) + only_in_exclusion.append(';'.join(set(exclusion_matches) - set(inclusion_matches))) + else: + only_in_inclusion.append(np.nan) + only_in_exclusion.append(np.nan) + + #save data + flanking_sequences["Motif only in Inclusion"] = only_in_inclusion + flanking_sequences["Motif only in Exclusion"] = only_in_exclusion + return flanking_sequences
+ +def identify_change_to_specific_motif(altered_flanks, elm_motif_name, elm_classes = None, modification_class = None, residues = None, dPSI_col = None): + if 'Altered Positions' not in altered_flanks.columns: + altered_flanks = compare_flanking_sequences(altered_flanks) + + #grab elm motifs that match inclusion or Exclusion Flanking Sequences + if 'Motif only in Inclusion' not in altered_flanks.columns: + altered_flanks = compare_inclusion_motifs(altered_flanks, elm_classes = elm_classes) + + #grab only needed info + motif_data = altered_flanks.dropna(subset = ['Inclusion Flanking Sequence', 'Exclusion Flanking Sequence'], how = 'all').copy() + cols_to_keep = ['Gene', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'Inclusion Flanking Sequence', 'Exclusion Flanking Sequence', 'Motif only in Inclusion', 'Motif only in Exclusion', 'Altered Positions', 'Residue Change'] + if dPSI_col is not None: + cols_to_keep.append(dPSI_col) + + #go through motif data and identify motifs matching elm motif of interest + motif_data = motif_data[cols_to_keep] + for i, row in motif_data.iterrows(): + if row['Motif only in Inclusion'] == row['Motif only in Inclusion']: + if elm_motif_name in row['Motif only in Inclusion']: + motif_data.loc[i, 'Motif only in Inclusion'] = ';'.join([motif for motif in row['Motif only in Inclusion'].split(';') if elm_motif_name in motif]) + else: + motif_data.loc[i, 'Motif only in Inclusion'] = np.nan + + if row['Motif only in Exclusion'] == row['Motif only in Exclusion']: + if elm_motif_name in row['Motif only in Exclusion']: + motif_data.loc[i, 'Motif only in Exclusion'] = ';'.join([motif for motif in row['Motif only in Exclusion'].split(';') if elm_motif_name in motif]) + else: + motif_data.loc[i, 'Motif only in Exclusion'] = np.nan + + #restrict to events that are specific modification types or residues (for example, SH2 domain motifs should be phosphotyrosine) + motif_data = motif_data.dropna(subset = ['Motif only in Inclusion', 'Motif only in Exclusion'], how = 'all') + if modification_class is not None: + motif_data = motif_data[motif_data['Modification Class'].str.contains(modification_class)] + + if residues is not None and isinstance(residues, str): + motif_data = motif_data[motif_data['Residue'] == residues] + elif residues is not None and isinstance(residues, list): + motif_data = motif_data[motif_data['Residue'].isin(residues)] + elif residues is not None: + raise ValueError('residues parameter must be a string or list of strings') + + return motif_data + + + + + +
[docs]def findAlteredPositions(seq1, seq2, flank_size = 5): + """ + Given two sequences, identify the location of positions that have changed + + Parameters + ---------- + seq1, seq2: str + sequences to compare (order does not matter) + flank_size: int + size of the flanking sequences (default is 5). This is used to make sure the provided sequences are the correct length + + Returns + ------- + altered_positions: list + list of positions that have changed + residue_change: list + list of residues that have changed associated with that position + flank_side: str + indicates which side of the flanking sequence the change has occurred (N-term, C-term, or Both) + """ + desired_seq_size = flank_size*2+1 + altered_positions = [] + residue_change = [] + flank_side = [] + seq_size = len(seq1) + flank_size = (seq_size -1)/2 + if seq_size == len(seq2) and seq_size == desired_seq_size: + for i in range(seq_size): + if seq1[i] != seq2[i]: + altered_positions.append(i-(flank_size)) + residue_change.append(f'{seq1[i]}->{seq2[i]}') + #check to see which side flanking sequence + altered_positions = np.array(altered_positions) + n_term = any(altered_positions < 0) + c_term = any(altered_positions > 0) + if n_term and c_term: + flank_side = 'Both' + elif n_term: + flank_side = 'N-term only' + elif c_term: + flank_side = 'C-term only' + else: + flank_side = 'Unclear' + return altered_positions, residue_change, flank_side + else: + return np.nan, np.nan, np.nan
+ +
[docs]def getSequenceIdentity(seq1, seq2): + """ + Given two flanking sequences, calculate the sequence identity between them using Biopython and parameters definded by Pillman et al. BMC Bioinformatics 2011 + + Parameters + ---------- + seq1, seq2: str + flanking sequence + + Returns + ------- + normalized_score: float + normalized score of sequence similarity between flanking sequences (calculated similarity/max possible similarity) + """ + #make pairwise aligner object + aligner = PairwiseAligner() + #set parameters, with match score of 10 and mismatch score of -2 + aligner.mode = 'global' + aligner.match_score = 10 + aligner.mismatch_score = -2 + #calculate sequence alignment score between two sequences + actual_similarity = aligner.align(seq1, seq2)[0].score + #calculate sequence alignment score between the same sequence + control_similarity = aligner.align(seq1, seq1)[0].score + #normalize score + normalized_score = actual_similarity/control_similarity + return normalized_score
+ +
[docs]def find_motifs(seq, elm_classes): + """ + Given a sequence and a dataframe containinn ELM class information, identify motifs that can be found in the provided sequence using the RegEx expression provided by ELM (PTMs not considered). This does not take into account the position of the motif in the sequence or additional information that might validate any potential interaction (i.e. structural information that would indicate whether the motif is accessible or not). ELM class information can be downloaded from the download page of elm (http://elm.eu.org/elms/elms_index.tsv). + + Parameters + ---------- + seq: str + sequence to search for motifs + elm_classes: pandas.DataFrame + DataFrame containing ELM class information (ELMIdentifier, Regex, etc.), downloaded directly from ELM (http://elm.eu.org/elms/elms_index.tsv) + """ + matches = [] + for j, elm_row in elm_classes.iterrows(): + reg_ex = elm_row['Regex'] + if re.search(reg_ex, seq) is not None: + matches.append(elm_row['ELMIdentifier']) + + return matches
+ + +class protein_interactions: + def __init__(self, spliced_ptms): + self.spliced_ptms = spliced_ptms + + + def get_interaction_network(self, node_type = 'Gene'): + if node_type not in ['Gene', 'PTM']: + raise ValueError("node_type parameter (which dictates whether to consider interactions at PTM or gene level) can be either Gene or PTM") + + #extract interaction information in provided data + interactions = annotate.combine_interaction_data(self.spliced_ptms) + interactions['Residue'] = interactions['Residue'] + interactions['PTM Position in Canonical Isoform'].astype(int).astype(str) + interactions = interactions.drop(columns = ['PTM Position in Canonical Isoform']) + + #add regulation change information + if 'dPSI' in self.spliced_ptms.columns: + interactions['Regulation Change'] = interactions.apply(lambda x: '+' if x['Type'] != 'DISRUPTS' and x['dPSI'] > 0 else '+' if x['Type'] == 'DISRUPTS' and x['dPSI'] < 0 else '-', axis = 1) + grouping_cols = ['Residue', 'Type', 'Source', 'dPSI', 'Regulation Change'] + interactions['dPSI'] = interactions['dPSI'].apply(str) + else: + grouping_cols = ['Residue', 'Type', 'Source'] + + #extract gene_specific network information + if node_type == 'Gene': + network_data = interactions.groupby(['Modified Gene', 'Interacting Gene'], as_index = False)[grouping_cols].agg(helpers.join_unique_entries) + #generate network with all possible PTM-associated interactions + interaction_graph = nx.from_pandas_edgelist(network_data, source = 'Modified Gene', target = 'Interacting Gene') + else: + interactions['Spliced PTM'] = interactions['Modified Gene'] + '_' + interactions['Residue'] + network_data = interactions.groupby(['Spliced PTM', 'Interacting Gene'], as_index = False)[grouping_cols].agg(helpers.join_unique_entries) + network_data = network_data.drop(columns = ['Residue']) + + #generate network with all possible PTM-associated interactions + interaction_graph = nx.from_pandas_edgelist(network_data, source = 'Spliced PTM', target = 'Interacting Gene') + + self.network_data = network_data + self.interaction_graph = interaction_graph + + + def get_interaction_stats(self): + """ + Given the networkx interaction graph, calculate various network centrality measures to identify the most relevant PTMs or genes in the network + """ + #calculate network centrality measures + degree_centrality = nx.degree_centrality(self.interaction_graph) + closeness_centrality = nx.closeness_centrality(self.interaction_graph) + betweenness_centrality = nx.betweenness_centrality(self.interaction_graph) + network_stats = pd.DataFrame({'Degree': dict(self.interaction_graph.degree()), 'Degree Centrality':degree_centrality, 'Closeness':closeness_centrality,'Betweenness':betweenness_centrality}) + self.network_stats = network_stats + + def get_protein_interaction_network(self, protein): + """ + Given a specific protein, return the network data for that protein + + Parameters + ---------- + protein: str + Gene name of the protein of interest + + Returns + ------- + protein_network: pd.DataFrame + Dataframe containing network data for the protein of interest + """ + if not hasattr(self, 'network_data'): + self.get_interaction_network() + + if protein not in self.network_data['Modified Gene'].unique(): + print(f'{protein} is not found in the network data. Please provide a valid gene name.') + return None + + protein_network = self.network_data[self.network_data['Modified Gene'] == protein] + protein_network = protein_network.drop(columns = ['Modified Gene']) + protein_network = protein_network.rename(columns = {'Residue': 'Spliced PTMs facilitating Interacting'}) + return protein_network + + def summarize_protein_network(self, protein): + """ + Given a protein of interest, summarize the network data for that protein + """ + if not hasattr(self, 'network_data'): + self.get_interaction_network() + + if not hasattr(self, 'network_stats'): + self.get_interaction_stats() + + protein_network = self.network_data[self.network_data['Modified Gene'] == protein] + increased_interactions = protein_network.loc[protein_network['Regulation Change'] == '+', 'Interacting Gene'].values + decreased_interactions = protein_network.loc[protein_network['Regulation Change'] == '-', 'Interacting Gene'].values + ambiguous_interactions = protein_network.loc[protein_network['Regulation Change'].str.contains(';'), 'Interacting Gene'].values + + #print interactions + if len(increased_interactions) > 0: + print(f"Increased interaction likelihoods: {', '.join(increased_interactions)}") + if len(decreased_interactions) > 0: + print(f"Decreased interaction likelihoods: {', '.join(decreased_interactions)}") + if len(ambiguous_interactions) > 0: + print(f"Ambiguous interaction impact: {', '.join(ambiguous_interactions)}") + + network_ranks = self.network_stats.rank(ascending = False).astype(int) + print(f'Number of interactions: {self.network_stats.loc[protein, "Degree"]} (Rank: {network_ranks.loc[protein, "Degree"]})') + print(f'Centrality measures - \t Degree = {self.network_stats.loc[protein, "Degree Centrality"]} (Rank: {network_ranks.loc[protein, "Degree Centrality"]})') + print(f' \t Betweenness = {self.network_stats.loc[protein, "Betweenness"]} (Rank: {network_ranks.loc[protein, "Betweenness"]})') + print(f' \t Closeness = {self.network_stats.loc[protein, "Closeness"]} (Rank: {network_ranks.loc[protein, "Closeness"]})') + + def plot_interaction_network(self, modified_color = 'red', modified_node_size = 10, interacting_color = 'lightblue', interacting_node_size = 1, edgecolor = 'gray', seed = 200, ax = None, proteins_to_label = None, labelcolor = 'black'): + """ + Given the interactiong graph and network data outputted from analyze.get_interaction_network, plot the interaction network, signifying which proteins or ptms are altered by splicing and the specific regulation change that occurs. by default, will only label proteins + + Parameters + ---------- + interaction_graph: nx.Graph + NetworkX graph object representing the interaction network, created from analyze.get_interaction_network + network_data: pd.DataFrame + Dataframe containing details about specifici protein interactions (including which protein contains the spliced PTMs) + network_stats: pd.DataFrame + Dataframe containing network statistics for each protein in the interaction network, obtained from analyze.get_interaction_stats(). Default is None, which will not label any proteins in the network. + """ + if not hasattr(self, 'interaction_graph'): + self.get_interaction_network() + + if not hasattr(self, 'network_stats'): + self.get_interaction_stats() + + pose_plots.plot_interaction_network(self.interaction_graph, self.network_data, self.network_stats, modified_color = modified_color, modified_node_size = modified_node_size, interacting_color = interacting_color, interacting_node_size = interacting_node_size, edgecolor = edgecolor, seed = seed, ax = ax, proteins_to_label = proteins_to_label, labelcolor = labelcolor) + + def plot_network_centrality(self, centrality_measure = 'Degree', top_N = 10, modified_color = 'red', interacting_color = 'black', ax = None): + if not hasattr(self, 'interaction_graph'): + self.get_interaction_network() + if not hasattr(self, 'network_stats'): + self.get_interaction_stats() + + pose_plots.plot_network_centrality(self.network_stats, self.network_data, centrality_measure=centrality_measure,top_N = top_N, modified_color = modified_color, interacting_color = interacting_color, ax = ax) + +
[docs]def edit_sequence_for_kinase_library(seq): + """ + Convert flanking sequence to version accepted by kinase library (modified residue denoted by asterick) + """ + if seq == seq: + seq = seq.replace('t','t*') + seq = seq.replace('s','s*') + seq = seq.replace('y','y*') + else: + return np.nan + return seq
+ + +class KL_flank_analysis: + def __init__(self, altered_flanks, odir): + self.altered_flanks = altered_flanks + self.odir = odir + + def identify_sequences_of_interest(self): + self.sequences_of_interest = self.altered_flanks[(~self.altered_flanks['Matched']) & (~self.altered_flanks['Stop Codon Introduced']) & (self.altered_flanks['Modification Class'].str.contains('Phosphorylation'))].copy() + + + def process_data_for_kinase_library(self): + """ + Extract flanking sequence information for + """ + #restrict to events with changed flanking sequences, no introduced stop codons, and phosphorylation modifications + if not hasattr(self, 'sequences_of_interest'): + self.identify_sequences_of_interest() + + #generate files to input into Kinase Library (inclusion first then exclusion) + inclusion_sequences = self.sequences_of_interest[['PTM', 'Inclusion Flanking Sequence']].drop_duplicates() + inclusion_sequences['Inclusion Flanking Sequence'] = inclusion_sequences['Inclusion Flanking Sequence'].apply(edit_sequence_for_kinase_library) + inclusion_sequences = inclusion_sequences.dropna(subset = 'Inclusion Flanking Sequence') + #write sequences to text file + with open(self.odir + 'inclusion_sequences_input.txt', 'w') as f: + for _, row in inclusion_sequences.iterrows(): + f.write(row['Inclusion Flanking Sequence']+'\n') + + exclusion_sequences = self.sequences_of_interest[['PTM', 'Exclusion Flanking Sequence']].drop_duplicates() + exclusion_sequences['Exclusion Flanking Sequence'] = exclusion_sequences['Exclusion Flanking Sequence'].apply(edit_sequence_for_kinase_library) + exclusion_sequences = exclusion_sequences.dropna(subset = 'Exclusion Flanking Sequence') + #write sequences to text file + with open(self.odir + 'exclusion_sequences_input.txt', 'w') as f: + for _, row in exclusion_sequences.iterrows(): + f.write(row['Exclusion Flanking Sequence']+'\n') + + print('Input files for Kinase Library generated. Please run upload the file to the "score sites" tab of Kinase Library (https://kinase-library.mit.edu/sites) and download the full results.') + + def format_sequences_to_match_output(self, sequence_type = 'Inclusion'): + if not hasattr(self, 'sequences_of_interest'): + self.identify_sequences_of_interest() + + sequences = self.sequences_of_interest[['Region ID','PTM', f'{sequence_type} Flanking Sequence']].drop_duplicates().copy() + sequences = sequences.dropna(subset = 'Inclusion Flanking Sequence') + sequences['Label'] = sequences['Region ID'] + ';' + sequences['PTM'] + sequences[f'{sequence_type} Flanking Sequence'] = sequences[f'{sequence_type} Flanking Sequence'].apply(lambda x: x.upper().replace(' ', '_')+'_') + return sequences + + def process_kinase_library_output(self, scores, sequence_type = 'Inclusion'): + """ + Process output from Kinase Library to connect kinase library scores back to the PTMs in the altered flanks dataframe + + Parameters + ---------- + altered_flanks: pd.DataFrame + Dataframe with PTMs associated with altered flanking sequences + scores: pd.DataFrame + Dataframe with kinase library scores for flanking sequences (loaded from downloaded .tsv outputs from kinase library) + flanking_sequence_col: str + Column in altered_flanks dataframe that contains the flanking sequence to match with the kinase library scores. Default is 'Inclusion Flanking Sequence'. Can also be 'Exclusion Flanking Sequence' + + Returns + ------- + percentiles_y: pd.DataFrame + Dataframe with kinase library scores for tyrosine sites + percentiles_st: pd.DataFrame + Dataframe with kinase library scores for serine/threonine sites + + """ + #restrict to events with changed flanking sequences, no introduced stop codons, and phosphorylation modifications + if not hasattr(self, 'sequences_of_interest'): + self.identify_sequences_of_interest() + + sequences = self.format_sequences_to_match_output(sequence_type = sequence_type) + + + sequences = sequences.merge(scores, left_on = f'{sequence_type} Flanking Sequence', right_on = 'sequence', how = 'left') + #split info into tyrosine vs. serine/threonine + sequences_y = sequences[sequences['Label'].str.contains('_Y')] + sequences_st = sequences[(sequences['Label'].str.contains('_S')) | (sequences['Label'].str.contains('_T'))] + + #pivot table to get scores for each kinase + percentiles_y = sequences_y.pivot_table(index = 'Label', columns = 'kinase', values = 'site_percentile') + percentiles_st = sequences_st.pivot_table(index = 'Label', columns = 'kinase', values = 'site_percentile') + + return percentiles_y, percentiles_st + + def get_kinase_library_differences(self, inclusion_scores_file, exclusion_scores_file): + """ + Given altered flanking sequences and kinase library scores for inclusion and Exclusion Flanking Sequences, calculate the difference in kinase library site percentiles between the two + + Parameters + ---------- + altered_flanks: pd.DataFrame + Dataframe with PTMs associated with altered flanking sequences + inclusion_scores: pd.DataFrame + Dataframe with kinase library scores for Inclusion Flanking Sequences (loaded from downloaded .tsv outputs from kinase library) + exclusion_scores: pd.DataFrame + Dataframe with kinase library scores for Exclusion Flanking Sequences (loaded from downloaded .tsv outputs from kinase library) + + Returns + ------- + percentiles_diff_y: pd.DataFrame + Dataframe with the difference in kinase library scores for tyrosine sites + percentiles_diff_st: pd.DataFrame + Dataframe with the difference in kinase library scores for serine/threonine sites + """ + inclusion_scores = pd.read_csv(inclusion_scores_file, sep = '\t') + inclusion_percentiles_y, inclusion_percentiles_st = self.process_kinase_library_output(inclusion_scores, sequence_type = 'Inclusion') + exclusion_scores = pd.read_csv(exclusion_scores_file, sep = '\t') + exclusion_percentiles_y, exclusion_percentiles_st = self.process_kinase_library_output(exclusion_scores, sequence_type = 'Exclusion') + + #calculate the difference in percentiles + labels= list(set(inclusion_percentiles_y.index).intersection(exclusion_percentiles_y.index)) + percentiles_diff_y = inclusion_percentiles_y.loc[labels].copy() + percentiles_diff_y = percentiles_diff_y[exclusion_percentiles_y.columns] + for i, row in percentiles_diff_y.iterrows(): + percentiles_diff_y.loc[i] = row - exclusion_percentiles_y.loc[i] + + labels= list(set(inclusion_percentiles_st.index).intersection(exclusion_percentiles_st.index)) + percentiles_diff_st = inclusion_percentiles_st.loc[labels].copy() + percentiles_diff_st = percentiles_diff_st[exclusion_percentiles_st.columns] + for i, row in percentiles_diff_st.iterrows(): + percentiles_diff_st.loc[i] = row - exclusion_percentiles_st.loc[i] + + #save all data + self.inclusion_percentiles = {} + self.inclusion_percentiles['Y'] = inclusion_percentiles_y + self.inclusion_percentiles['ST'] = inclusion_percentiles_st + + self.exclusion_percentiles = {} + self.exclusion_percentiles['Y'] = exclusion_percentiles_y + self.exclusion_percentiles['ST'] = exclusion_percentiles_st + + self.percentile_difference = {} + self.percentile_difference['Y'] = percentiles_diff_y + self.percentile_difference['ST'] = percentiles_diff_st + + +#def process_data_for_exon_ontology(odir, spliced_ptms = None, altered_flanks = None): +# pass + + + + + +class kstar_enrichment: + def __init__(self, significant_ptms, network_dir, background_ptms = None, phospho_type = 'Y'): + """ + Given spliced ptm or PTMs with altered flanks and a single kstar network, get enrichment for each kinase in the network using a hypergeometric. Assumes the data has already been reduced to the modification of interest (phosphotyrosine or phoshoserine/threonine) + + Parameters + ---------- + network_dir : dict + dictionary of networks with kinase-substrate information + spliced_ptms : pandas dataframe + all PTMs of interest + background_ptms: pd.DataFrame + PTMs to consider as the background for enrichment purposes, which should overlap with the spliced ptms information provided (an example might be all identified events, whether or not they are significant). If not provided, will use all ptms in the phosphoproteome. + phospho_type : str + type of phosphorylation event to extract. Can either by phosphotyrosine ('Y') or phosphoserine/threonine ('ST'). Default is 'Y'. + + """ + #process ptms to only include specific phosphorylation data needed + self.significant_ptms = self.process_ptms(significant_ptms, phospho_type = phospho_type) + if background_ptms is not None: + self.background_ptms = self.process_ptms(background_ptms, phospho_type=phospho_type) + else: + background_ptms = pose_config.ptm_coordinates.copy() + self.background_ptms = self.process_ptms(background_ptms, phospho_type = phospho_type) + + #check if file exists and whether a pickle has been generated: if not, load each network file individually + if not os.path.exists(network_dir): + raise ValueError('Network directory not found') + elif os.path.exists(f"{network_dir}/*.p"): + networks = pickle.load(open(f"{network_dir}/network_{phospho_type}.p", "rb" ) ) + else: + network_directory = network_dir + f'/{phospho_type}/INDIVIDUAL_NETWORKS/' + networks = {} + for file in os.listdir(network_directory): + if file.endswith('.tsv'): + #get the value of the network number + file_noext = file.strip(".tsv").split('_') + key_name = 'nkin'+str(file_noext[1]) + #print("Debug: key name is %s"%(key_name)) + networks[key_name] = pd.read_csv(f"{network_directory}{file}", sep='\t') + + #save info + self.networks = networks + self.phospho_type = phospho_type + self.median_enrichment = None + + def process_ptms(self, ptms, phospho_type = 'Y'): + """ + Given ptm information, restrict data to include only the phosphorylation type of interest and add a PTM column for matching information from KSTAR + + Parameters + ---------- + ptms: pd.DataFrame + ptm information containing modification type and ptm locatin information, such as the output from projection or altered flanking sequence analysis + phospho_type: str + type of phosphorylation event to extract. Can either by phosphotyrosine ('Y') or phosphoserine/threonine ('ST') + + Returns + ptms: pd.DataFrame + trimmed dataframe containing only modifications of interest and new 'PTM' column + """ + + #restrict to ptms to phosphorylation type of interest + if phospho_type == 'Y': + ptms = ptms[ptms['Modification'].str.contains('Phosphotyrosine')].copy() + elif phospho_type == 'ST': + ptms = ptms[(ptms["Modification"].str.contains('Phosphoserine')) | (ptms['Modification'].str.contains('Phosphothreonine'))].copy() + + #construct PTM column that matches KSTAR information + ptms['PTM'] = ptms['UniProtKB Accession'] + '_' + ptms['Residue'] + ptms['PTM Position in Canonical Isoform'].astype(int).astype(str) + + #filter out any PTMs that come from alternative isoforms + ptms = ptms[~ptms['UniProtKB Accession'].str.contains('-')] + return ptms + + + def get_enrichment_single_network(self, network_key): + """ + in progress + """ + network = self.networks[network_key] + network['PTM'] = network['KSTAR_ACCESSION'] + '_' + network['KSTAR_SITE'] + + #add network information to all significant data + sig_ptms = self.significant_ptms[['PTM']].drop_duplicates() + sig_ptms_kstar = sig_ptms.merge(network[['KSTAR_KINASE','PTM']], on = 'PTM') + + #repeat for background data + bg_ptms = self.background_ptms[['PTM']].drop_duplicates() + bg_ptms_kstar = bg_ptms.merge(network[['KSTAR_KINASE','PTM']], on = 'PTM') + + results = pd.DataFrame(np.nan, index = sig_ptms_kstar['KSTAR_KINASE'].unique(), columns = ['k','n','M','N','p']) + for kinase in sig_ptms_kstar['KSTAR_KINASE'].unique(): + #get numbers for a hypergeometric test to look for enrichment of kinase substrates + k = sig_ptms_kstar.loc[sig_ptms_kstar['KSTAR_KINASE'] == kinase, 'PTM'].nunique() + n = bg_ptms_kstar.loc[bg_ptms_kstar['KSTAR_KINASE'] == kinase, 'PTM'].nunique() + M = bg_ptms['PTM'].nunique() + N = sig_ptms_kstar['PTM'].nunique() + + #run hypergeometric test + results.loc[kinase,'p'] = stat_utils.hypergeom(M,n,N,k) + results.loc[kinase, 'M'] = M + results.loc[kinase, 'N'] = N + results.loc[kinase, 'k'] = k + results.loc[kinase, 'n'] = n + + return results + + def get_enrichment_all_networks(self): + """ + Given prostate data and a dictionary of kstar networks, get enrichment for each kinase in each network in the prostate data. Assumes the prostate data has already been reduced to the modification of interest (phosphotyrosine or phoshoserine/threonine) + + Parameters + ---------- + networks : dict + dictionary of kstar networks + prostate : pandas dataframe + all PTMs identified in tCGA prostate data, regardless of significance (reduced to only include mods of interest) + sig_prostate : pandas dataframe + significant PTMs identified in tCGA prostate data, p < 0.05 and effect size > 0.25 (reduced to only include mods of interest) + """ + results = {} + for network in self.networks: + results[network] = self.get_enrichment_single_network(network_key=network) + return results + + def extract_enrichment(self, results): + """ + Given a dictionary of results from get_enrichment_all_networks, extract the p-values for each network and kinase, and then calculate the median p-value across all networks for each kinase + + Parameters + ---------- + results : dict + dictionary of results from get_enrichment_all_networks + """ + enrichment = pd.DataFrame(index = results['nkin0'].index, columns = results.keys()) + for network in results: + enrichment[network] = results[network]['p'] + enrichment['median'] = enrichment.median(axis = 1) + return enrichment + + def run_kstar_enrichment(self): + """ + Run full kstar analysis to generate substrate enrichment across each of the 50 KSTAR networks and calculate the median p-value for each kinase across all networks + """ + results = self.get_enrichment_all_networks() + enrichment = self.extract_enrichment(results) + self.enrichment_all = enrichment + self.median_enrichment = enrichment['median'] + + def return_enriched_kinases(self, alpha = 0.05): + """ + Return kinases with a median p-value less than the provided alpha value (substrates are enriched among the significant PTMs) + + Parameters + ---------- + alpha : float + significance threshold to use to subset kinases. Default is 0.05. + """ + if self.median_enrichment is None: + self.run_kstar_enrichment() + return self.median_enrichment[self.median_enrichment < alpha].index.values + + + +
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+
+ + +
+ + +
+
+
+ + + + + +
+
+ + \ No newline at end of file diff --git a/_modules/ptm_pose/annotate.html b/_modules/ptm_pose/annotate.html new file mode 100644 index 0000000..44337f8 --- /dev/null +++ b/_modules/ptm_pose/annotate.html @@ -0,0 +1,1739 @@ + + + + + + + + + + + ptm_pose.annotate — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for ptm_pose.annotate

+import pandas as pd
+import numpy as np
+import re
+import os
+
+from ptm_pose import pose_config, helpers
+
+
+#dictionaries for converting modification codes to modification names in PhosphoSitePlus data
+mod_shorthand_dict = {'p': 'Phosphorylation', 'ca':'Caspase Cleavage', 'hy':'Hydroxylation', 'sn':'S-Nitrosylation', 'ng':'Glycosylation', 'ub': 'Ubiquitination', 'pa': "Palmitoylation",'ne':'Neddylation','sc':'Succinylation', 'sm': 'Sumoylation', 'ga': 'Glycosylation', 'gl': 'Glycosylation', 'ac': 'Acetylation', 'me':'Methylation', 'm1':'Methylation', 'm2': 'Dimethylation', 'm3':'Trimethylation'}
+residue_dict = {'P': 'proline', 'Y':'tyrosine', 'S':'serine', 'T':'threonine', 'H':'histidine', 'D':'aspartic acid', 'I':'isoleucine', 'K':'lysine', 'R':'arginine', 'G':'glycine', 'N':'asparagine', 'M':'methionine'}
+annotation_col_dict = {'PhosphoSitePlus':{'Function':'PSP:ON_FUNCTION', 'Process':'PSP:ON_PROCESS', 'Interactions':'PSP:ON_PROT_INTERACT', 'Disease':'PSP:Disease_Association', 'Kinase':'PSP:Kinase','Perturbation':'PTMsigDB:PSP-PERT'},
+                        'ELM':{'Interactions':'ELM:Interactions', 'Motif Match':'ELM:Motif Matches'},
+                        'PTMcode':{'Intraprotein':'PTMcode:Intraprotein_Interactions', 'Interactions':'PTMcode:Interprotein_Interactions'},
+                        'PTMInt':{'Interactions':'PTMInt:Interactions'},
+                        'RegPhos':{'Kinase':'RegPhos:Kinase'},
+                        'DEPOD':{'Phosphatase':'DEPOD:Phosphatase'},
+                        'PTMsigDB': {'WikiPathway':'PTMsigDB:PATH-WP', 'NetPath':'PTMsigDB:PATH-NP','mSigDB':'PTMsigDB:PATH-BI', 'Pertubation (DIA2)':'PTMsigDB:PERT-P100-DIA2', 'Perturbation (DIA)': 'PTMsigDB:PERT-P100-DIA', 'Perturbation (PRM)':'PTMsigDB:PERT-P100-PRM', 'Kinase':'PTMsigDB:Kinase-iKiP'}}
+
+
+
+
[docs]def add_custom_annotation(spliced_ptms, annotation_data, source_name, annotation_type, annotation_col, accession_col = 'UniProtKB Accession', residue_col = 'Residue', position_col = 'PTM Position in Canonical Isoform'): + """ + Add custom annotation data to spliced_ptms or altered flanking sequence dataframes + + Parameters + ---------- + annotation_data: pandas.DataFrame + Dataframe containing the annotation data to be added to the spliced_ptms dataframe. Must contain columns for UniProtKB Accession, Residue, PTM Position in Canonical Isoform, and the annotation data to be added + source_name: str + Name of the source of the annotation data, will be used to label the columns in the spliced_ptms dataframe + annotation_type: str + Type of annotation data being added, will be used to label the columns in the spliced_ptms dataframe + annotation_col: str + Column name in the annotation data that contains the annotation data to be added to the spliced_ptms dataframe + + + Returns + ------- + spliced_ptms: pandas.DataFrame + Contains the PTMs identified across the different splice events with an additional column for the custom annotation data + """ + #check if annotation data contains the annotation col + if isinstance(annotation_col, str): + if annotation_col not in annotation_data.columns: + raise ValueError(f'Could not find column indicated to contain {annotation_col} in annotation data. Please either change the name of your annotation data column with this information or indicate the correct column name with the annotation_col parameter') + else: + #make annotation col name based on source and annotation type + annotation_col_name = source_name + ':' + annotation_type + annotation_data = annotation_data.rename(columns = {annotation_col: annotation_col_name}) + else: + raise ValueError('annotation_col must be a string indicating column with annotation data to be added to the spliced_ptms dataframe') + + #check to make sure annotation data has the necessary columns + if not all([x in annotation_data.columns for x in [accession_col, residue_col, position_col]]): + raise ValueError(f'Could not find columns containing ptm information: {accession_col}, {residue_col}, and {position_col}. Please either change the name of your annotation data columns containing this information or indicate the correct column names with the accession_col, residue_col, and position_col parameters') + + #if splice data already has the annotation columns, remove them + if annotation_col_name in spliced_ptms.columns: + spliced_ptms = spliced_ptms.drop(columns = [annotation_col_name]) + + #add to splice data + original_data_size = spliced_ptms.shape[0] + spliced_ptms = spliced_ptms.merge(annotation_data, how = 'left', left_on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform'], right_on = [accession_col, residue_col, position_col]) + if spliced_ptms.shape[0] != original_data_size: + raise RuntimeError('Dataframe size has changed, check for duplicates in spliced ptms or annotation dataframe') + + #report the number of PTMs identified + num_ptms_with_custom_data = spliced_ptms.dropna(subset = annotation_col).groupby(['UniProtKB Accession', 'Residue']).size().shape[0] + print(f"{source_name} {annotation_type} data added: {num_ptms_with_custom_data} PTMs in dataset found with {source_name} {annotation_type} information") + + return spliced_ptms
+ +
[docs]def add_PSP_regulatory_site_data(spliced_ptms, file = 'Regulatory_sites.gz', report_success = True): + """ + Add functional information from PhosphoSitePlus (Regulatory_sites.gz) to spliced_ptms dataframe from project_ptms_onto_splice_events() function + + Parameters + ---------- + file: str + Path to the PhosphoSitePlus Regulatory_sites.gz file. Should be downloaded from PhosphoSitePlus in the zipped format + + Returns + ------- + spliced_ptms: pandas.DataFrame + Contains the PTMs identified across the different splice events with additional columns for regulatory site information, including domains, biological process, functions, and protein interactions associated with the PTMs + """ + #check to make sure file exists + check_file(file, expected_extension='.gz') + + #read in the kinase substrate data and add to spliced ptm info + regulatory_site_data = pd.read_csv(file, sep = '\t', header = 2, on_bad_lines='skip',compression = 'gzip') + regulatory_site_data = regulatory_site_data.rename(columns = {'ACC_ID':'UniProtKB Accession'}) + #drop extra modification information that is not needed + regulatory_site_data['Residue'] = regulatory_site_data['MOD_RSD'].apply(lambda x: x.split('-')[0][0]) + regulatory_site_data['PTM Position in Canonical Isoform'] = regulatory_site_data['MOD_RSD'].apply(lambda x: int(x.split('-')[0][1:])) + #add modification type + regulatory_site_data['Modification Class'] = regulatory_site_data['MOD_RSD'].apply(lambda x: mod_shorthand_dict[x.split('-')[1]]) + + #restrict to human data + regulatory_site_data = regulatory_site_data[regulatory_site_data['ORGANISM'] == 'human'] + regulatory_site_data = regulatory_site_data[['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'ON_PROCESS', 'ON_PROT_INTERACT', 'ON_OTHER_INTERACT', 'ON_FUNCTION']].drop_duplicates() + + #group like modifications into a single column + regulatory_site_data = regulatory_site_data.groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).agg(lambda x: '; '.join([y for y in x if y == y])).reset_index() + regulatory_site_data = regulatory_site_data.replace('', np.nan) + + #add 'PSP:' in front of each column + regulatory_site_data.columns = ['PSP:' + x if x not in ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class'] else x for x in regulatory_site_data.columns] + + #if splice data already has the annotation columns, remove them + if 'PSP:ON_FUNCTION' in spliced_ptms.columns: + spliced_ptms = spliced_ptms.drop(columns = ['PSP:ON_FUNCTION', 'PSP:ON_PROCESS', 'PSP:ON_PROT_INTERACT', 'PSP:ON_OTHER_INTERACT']) + + #explode dataframe on modifications + if spliced_ptms['Modification Class'].str.contains(';').any(): + spliced_ptms['Modification Class'] = spliced_ptms['Modification Class'].str.split(';') + spliced_ptms = spliced_ptms.explode('Modification Class').reset_index(drop = True) + + #merge with spliced_ptm info + original_data_size = spliced_ptms.shape[0] + spliced_ptms = spliced_ptms.merge(regulatory_site_data, how = 'left', on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']) + if spliced_ptms.shape[0] != original_data_size: + raise RuntimeError('Dataset size changed upon merge, please make sure there are no duplicates in spliced ptms data') + + + #report the number of ptms with motif data + if report_success: + num_ptms_with_known_function = spliced_ptms.dropna(subset = 'PSP:ON_FUNCTION').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + num_ptms_with_known_process = spliced_ptms.dropna(subset = 'PSP:ON_PROCESS').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + num_ptms_with_known_interaction = spliced_ptms.dropna(subset = 'PSP:ON_PROT_INTERACT').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + print(f"PhosphoSitePlus regulatory_site information added:\n\t ->{num_ptms_with_known_function} PTMs in dataset found associated with a molecular function \n\t ->{num_ptms_with_known_process} PTMs in dataset found associated with a biological process\n\t ->{num_ptms_with_known_interaction} PTMs in dataset found associated with a protein interaction") + return spliced_ptms
+ +
[docs]def add_PSP_kinase_substrate_data(spliced_ptms, file = 'Kinase_Substrate_Dataset.gz', report_success = True): + """ + Add kinase substrate data from PhosphoSitePlus (Kinase_Substrate_Dataset.gz) to spliced_ptms dataframe from project_ptms_onto_splice_events() function + + Parameters + ---------- + file: str + Path to the PhosphoSitePlus Kinase_Substrate_Dataset.gz file. Should be downloaded from PhosphoSitePlus in the zipped format + + Returns + ------- + spliced_ptms: pandas.DataFrame + Contains the PTMs identified across the different splice events with an additional column indicating the kinases known to phosphorylate that site (not relevant to non-phosphorylation PTMs) + + """ + #check to make sure provided file exists + check_file(file, expected_extension='.gz') + + #load data + ks_dataset = pd.read_csv(file, sep = '\t', header = 2, on_bad_lines='skip',compression = 'gzip', encoding = "cp1252") + #restrict to human data + ks_dataset = ks_dataset[ks_dataset['KIN_ORGANISM'] == 'human'] + ks_dataset = ks_dataset[ks_dataset['SUB_ORGANISM'] == 'human'] + + ks_dataset = ks_dataset[['GENE', 'SUB_ACC_ID', 'SUB_MOD_RSD']].groupby(['SUB_ACC_ID', 'SUB_MOD_RSD']).agg(';'.join).reset_index() + ks_dataset.columns = ['UniProtKB Accession', 'Residue', 'PSP:Kinase'] + + #separate residue and position + ks_dataset['PTM Position in Canonical Isoform'] = ks_dataset['Residue'].apply(lambda x: int(x[1:])) + ks_dataset['Residue'] = ks_dataset['Residue'].apply(lambda x: x[0]) + + + #if splice data already has the annotation columns, remove them + if 'PSP:Kinase' in spliced_ptms.columns: + spliced_ptms = spliced_ptms.drop(columns = ['PSP:Kinase']) + + original_data_size = spliced_ptms.shape[0] + spliced_ptms = spliced_ptms.merge(ks_dataset, how = 'left', on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform']) + if spliced_ptms.shape[0] != original_data_size: + raise RuntimeError('Dataset size changed upon merge, please make sure there are no duplicates in spliced ptms data') + + + #report the number of ptms with kinase substrate information + if report_success: + num_ptms_with_KS = spliced_ptms.dropna(subset = 'PSP:Kinase').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + print(f"PhosphoSitePlus kinase-substrate interactions added: {num_ptms_with_KS} phosphorylation sites in dataset found associated with a kinase in PhosphoSitePlus") + return spliced_ptms
+ +
[docs]def add_PSP_disease_association(spliced_ptms, file = 'Disease-associated_sites.gz', report_success = True): + """ + Process disease asociation data from PhosphoSitePlus (Disease-associated_sites.gz), and add to spliced_ptms dataframe from project_ptms_onto_splice_events() function + + Parameters + ---------- + file: str + Path to the PhosphoSitePlus Kinase_Substrate_Dataset.gz file. Should be downloaded from PhosphoSitePlus in the zipped format + + Returns + ------- + spliced_ptms: pandas.DataFrame + Contains the PTMs identified across the different splice events with an additional column indicating the kinases known to phosphorylate that site (not relevant to non-phosphorylation PTMs) + + """ + #check to make sure provided file exists + check_file(file, expected_extension='.gz') + + #load data + disease_associated_sites = pd.read_csv(file, sep = '\t', header = 2, on_bad_lines='skip',compression = 'gzip') + disease_associated_sites = disease_associated_sites[disease_associated_sites['ORGANISM'] == 'human'] + + #removes sites without a specific disease annotation + disease_associated_sites = disease_associated_sites.dropna(subset = ['DISEASE']) + + #drop extra modification information that is not needed + #drop extra modification information that is not needed + disease_associated_sites['Residue'] = disease_associated_sites['MOD_RSD'].apply(lambda x: x.split('-')[0][0]) + disease_associated_sites['PTM Position in Canonical Isoform'] = disease_associated_sites['MOD_RSD'].apply(lambda x: int(x.split('-')[0][1:])) + #add modification type + disease_associated_sites['Modification Class'] = disease_associated_sites['MOD_RSD'].apply(lambda x: mod_shorthand_dict[x.split('-')[1]]) + #if phosphorylation, add specific residue + disease_associated_sites['Modification Class'] = disease_associated_sites.apply(lambda x: x['Modification Class'] + residue_dict[x['Residue'][0]] if x['Modification Class'] == 'Phospho' else x['Modification Class'], axis = 1) + #change O-GalNac occurring on N to N-glycosylation + disease_associated_sites['Modification Class'] = disease_associated_sites.apply(lambda x: 'N-Glycosylation' if x['Modification Class'] == 'O-Glycosylation' and x['Residue'][0] == 'N' else x['Modification Class'], axis = 1) + + + #combine disease and alteration + disease_associated_sites['ALTERATION'] = disease_associated_sites.apply(lambda x: x['DISEASE']+'->'+x['ALTERATION'] if x['ALTERATION'] == x['ALTERATION'] else x['DISEASE'], axis = 1) + #grab only necessary columns and rename + disease_associated_sites = disease_associated_sites[['ACC_ID', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'ALTERATION']] + disease_associated_sites.columns = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'PSP:Disease_Association'] + + #aggregate multiple disease associations + disease_associated_sites = disease_associated_sites.groupby(['UniProtKB Accession', 'Residue','PTM Position in Canonical Isoform', 'Modification Class']).agg(';'.join).reset_index() + + #if splice data already has the annotation columns, remove them + if 'PSP:Disease_Association' in spliced_ptms.columns: + spliced_ptms = spliced_ptms.drop(columns = ['PSP:Disease_Association']) + + #explode dataframe on modifications + if spliced_ptms['Modification Class'].str.contains(';').any(): + spliced_ptms['Modification Class'] = spliced_ptms['Modification Class'].str.split(';') + spliced_ptms = spliced_ptms.explode('Modification Class').reset_index(drop = True) + + + #merge with spliced_ptm info + original_data_size = spliced_ptms.shape[0] + spliced_ptms = spliced_ptms.merge(disease_associated_sites, how = 'left', on = ['UniProtKB Accession', 'Residue','PTM Position in Canonical Isoform', 'Modification Class']) + if spliced_ptms.shape[0] != original_data_size: + raise RuntimeError('Dataset size changed upon merge, please make sure there are no duplicates in spliced ptms data') + + # + #report the number of ptms with motif data + if report_success: + num_ptms_with_disease = spliced_ptms.dropna(subset = 'PSP:Disease_Association').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + print(f"PhosphoSitePlus disease associations added: {num_ptms_with_disease} PTM sites in dataset found associated with a disease in PhosphoSitePlus") + + + return spliced_ptms
+ + +
[docs]def add_ELM_interactions(spliced_ptms, file = None, report_success =True): + """ + Given a spliced ptms dataframe from the project module, add ELM interaction data to the dataframe + """ + #load data + if file is None: + elm_interactions = pd.read_csv('http://elm.eu.org/interactions/as_tsv', sep = '\t', header = 0) + else: + check_file(file, expected_extension='.tsv') + elm_interactions = pd.read_csv(file, sep = '\t', header = 0) + + elm_interactions = elm_interactions[(elm_interactions['taxonomyElm'] == '9606(Homo sapiens)') & (elm_interactions['taxonomyDomain'] == '9606(Homo sapiens)')] + + elm_list = [] + elm_type = [] + elm_interactor = [] + for i, row in spliced_ptms.iterrows(): + #grab ptm location from residue column (gives residue and position (S981), so need to remove residue and convert to int) + ptm_loc = int(row['PTM Position in Canonical Isoform']) if row['PTM Position in Canonical Isoform'] == row['PTM Position in Canonical Isoform'] and row['PTM Position in Canonical Isoform'] != 'none' else None + + #if data does not have position information, move to the next + if ptm_loc is None: + elm_list.append(np.nan) + elm_type.append(np.nan) + elm_interactor.append(np.nan) + continue + + #find if any of the linear motifs match ptm loc + protein_match = row['UniProtKB Accession'] == elm_interactions['interactorElm'] + region_match = (ptm_loc >= elm_interactions['StartElm']) & (ptm_loc <=elm_interactions['StopElm']) + elm_subset_motif = elm_interactions[protein_match & region_match] + #if any interactions were found, record and continue to the next (assumes a single ptm won't be found as both a SLiM and domain) + if elm_subset_motif.shape[0] > 0: + elm_list.append(';'.join(elm_subset_motif['Elm'].values)) + elm_type.append('SLiM') + elm_interactor.append(';'.join(elm_subset_motif['interactorDomain'].values)) + continue + + + #domain + protein_match = row['UniProtKB Accession'] == elm_interactions['interactorDomain'] + region_match = (ptm_loc >= elm_interactions['StartDomain']) & (ptm_loc <=elm_interactions['StopDomain']) + elm_subset_domain = elm_interactions[protein_match & region_match] + #if any interactions were found, record and continue to the next (assumes a single ptm won't be found as both a SLiM and domain) + if elm_subset_domain.shape[0] > 0: + elm_list.append(';'.join(elm_subset_domain['Elm'].values)) + elm_type.append('Domain') + elm_interactor.append(';'.join(elm_subset_domain['interactorElm'].values)) + continue + + #if no interactions wer found, record as np.nan + elm_list.append(np.nan) + elm_type.append(np.nan) + elm_interactor.append(np.nan) + + spliced_ptms['ELM:Interactions'] = elm_interactor + spliced_ptms['ELM:Location of PTM for Interaction'] = elm_type + spliced_ptms['ELM:Motifs Associated with Interactions'] = elm_list + + #report the number of ptms with motif data + if report_success: + num_ptms_with_ELM_instance = spliced_ptms.dropna(subset = 'ELM:Interactions').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform']).size().shape[0] + print(f"ELM interaction instances added: {num_ptms_with_ELM_instance} PTMs in dataset found associated with at least one known ELM instance") + return spliced_ptms
+ + +def add_ELM_matched_motifs(spliced_ptms, flank_size = 7, file = None, report_success = True): + if file is None: + elm_classes = pd.read_csv('http://elm.eu.org/elms/elms_index.tsv', sep = '\t', header = 5) + else: + check_file(file, expected_extension='.tsv') + elm_classes = pd.read_csv(file, sep = '\t', header = 5) + + ptm_coordinates = pose_config.ptm_coordinates.copy() + #create corresponding label for ptm_coordinate data + ptm_coordinates['PTM Label'] = ptm_coordinates['UniProtKB Accession'] + '_' + ptm_coordinates['Residue'] + ptm_coordinates['PTM Position in Canonical Isoform'].apply(lambda x: int(float(x)) if x == x else np.nan).astype(str) + + match_list = [] + for i, row in spliced_ptms.iterrows(): + matches = [] + #grab ptm information + #grab flanking sequence for the ptm + loc = int(row["PTM Position in Canonical Isoform"]) if row['PTM Position in Canonical Isoform'] == row['PTM Position in Canonical Isoform'] else np.nan + ptm = row['UniProtKB Accession'] + '_' + row['Residue'] + str(loc) + + + if ptm in ptm_coordinates['PTM Label'].values: + ptm_flanking_seq = ptm_coordinates.loc[ptm_coordinates['PTM Label'] == ptm, 'Expected Flanking Sequence'].values[0] + #make sure flanking sequence is present + if isinstance(ptm_flanking_seq, str): + + #default flanking sequence is 10, if requested flanking sequence is different, then adjust + if flank_size > 10: + raise ValueError('Flanking size must be equal to or less than 10') + elif flank_size < 10: + ptm_flanking_seq = ptm_flanking_seq[10-flank_size:10+flank_size] + + for j, elm_row in elm_classes.iterrows(): + reg_ex = elm_row['Regex'] + if re.search(reg_ex, ptm_flanking_seq) is not None: + matches.append(elm_row['ELMIdentifier']) + + match_list.append(';'.join(matches)) + else: + match_list.append(np.nan) + else: + #print(f'PTM {ptm} not found in PTM info file') + match_list.append(np.nan) + + spliced_ptms['ELM:Motif Matches'] = match_list + + #report the number of ptms with motif data + if report_success: + num_ptms_with_matched_motif = spliced_ptms.dropna(subset = 'ELM:Motif Matches').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform']).size().shape[0] + print(f"ELM Class motif matches found: {num_ptms_with_matched_motif} PTMs in dataset found with at least one matched motif") + return spliced_ptms + +
[docs]def add_PTMInt_data(spliced_ptms, file = None, report_success = True): + """ + Given spliced_ptms data from project module, add PTMInt interaction data, which will include the protein that is being interacted with, whether it enchances or inhibits binding, and the localization of the interaction. This will be added as a new column labeled PTMInt:Interactions and each entry will be formatted like 'Protein->Effect|Localization'. If multiple interactions, they will be separated by a semicolon + """ + #load file + if file is None: + PTMint = pd.read_csv('https://ptmint.sjtu.edu.cn/data/PTM%20experimental%20evidence.csv') + else: + check_file(file, expected_extension='.csv') + PTMint = pd.read_csv(file) + + PTMint = PTMint.rename(columns={'Uniprot':'UniProtKB Accession', 'AA':'Residue', 'Site':'PTM Position in Canonical Isoform'}) + #PTMint['Site'] = PTMint['AA'] + PTMint['Site'].astype(str) + PTMint['PTMInt:Interaction'] = PTMint['Int_gene']+'->'+PTMint['Effect'] + PTMint = PTMint[['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'PTMInt:Interaction']] + #PTMint['PTM Position in Canonical Isoform'] = PTMint['PTM Position in Canonical Isoform'].astype(str) + + #aggregate PTMint data on the same PTMs + PTMint = PTMint.groupby(['UniProtKB Accession','Residue','PTM Position in Canonical Isoform'], as_index = False).agg(';'.join) + + #if splice data already has the annotation columns, remove them + if 'PTMInt:Interaction' in spliced_ptms.columns: + spliced_ptms = spliced_ptms.drop(columns = ['PTMInt:Interaction']) + + #add to splice data + original_data_size = spliced_ptms.shape[0] + spliced_ptms = spliced_ptms.merge(PTMint[['UniProtKB Accession','Residue','PTM Position in Canonical Isoform', 'PTMInt:Interaction']], on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform'], how = 'left') + if spliced_ptms.shape[0] != original_data_size: + raise RuntimeError('Dataframe size has changed, check for duplicates in spliced ptms dataframe') + + #report the number of PTMs identified + if report_success: + num_ptms_with_PTMInt_data = spliced_ptms.dropna(subset = 'PTMInt:Interaction').groupby(['UniProtKB Accession', 'Residue']).size().shape[0] + print(f"PTMInt data added: {num_ptms_with_PTMInt_data} PTMs in dataset found with PTMInt interaction information") + + return spliced_ptms
+ #delete source PTMint data + #os.remove(pdir + './Data/PTM_experimental_evidence.csv') + +#def add_PTMcode_intraprotein(spliced_ptms, fname = None, report_success = True): +# #load ptmcode info +# if fname is None: +# ptmcode = pd.read_csv('https://ptmcode.embl.de/data/PTMcode2_associations_within_proteins.txt.gz', sep = '\t', header = 2, compression='gzip') +# else: +# check_file(fname, expected_extension = '.gz') +# ptmcode = pd.read_csv(fname, sep = '\t', header = 2, compression = 'gzip') +# +# #grab humn data +# ptmcode = ptmcode[ptmcode['Species'] == 'Homo sapiens'] +# +# #add gene name to data +# translator = pd.DataFrame(pose_config.uniprot_to_genename, index = ['Gene']).T +# translator['Gene'] = translator['Gene'].apply(lambda x: x.split(' ')) +# translator = translator.explode('Gene') +# translator = translator.reset_index() +# translator.columns = ['UniProtKB/Swiss-Prot ID', 'Gene name'] +# +# #add uniprot ID information +# ptmcode = ptmcode.merge(translator.dropna().drop_duplicates(), left_on = '## Protein', right_on = 'Gene name', how = 'left') +# +# #convert modification names to match annotation data +# convert_dict = {'Adp ribosylation': 'ADP Ribosylation', 'Glutamine deamidation':'Deamidation'} +# new_mod_names = [] +# failed_mod = [] +# mod_list = ptmcode['PTM1'].unique() +# for mod in mod_list: +# mod = mod.capitalize() +# if 'glycosylation' in mod: #if glycosylation, group into one gorup +# new_mod_names.append('Glycosylation') +# elif mod in pose_config.modification_conversion['Modification Class'].values: #if already in modification class data, keep +# new_mod_names.append(mod) +# elif mod in convert_dict.keys(): +# new_mod_names.append(convert_dict[mod]) +# else: +# try: +# new_mod = pose_config.modification_conversion[pose_config.modification_conversion['Modification'] == mod].values[0][0] +# new_mod_names.append(new_mod) +# except: +# failed_mod.append(mod) +# new_mod_names.append(mod) +# conversion_df = pd.DataFrame({'PTM1':mod_list, 'Modification Class':new_mod_names}) +# +# #add new modification labels to data +# ptmcode = ptmcode.merge(conversion_df, on = 'PTM1', how = 'left') +# +# #groupby by PTM1 and rename to match column names in annotation data +# ptmcode = ptmcode[['UniProtKB/Swiss-Prot ID', 'Modification Class', 'Residue1', 'Residue2']].dropna(subset = 'UniProtKB/Swiss-Prot ID') +# ptmcode = ptmcode.groupby(['UniProtKB/Swiss-Prot ID', 'Modification Class', 'Residue1'])['Residue2'].agg(';'.join).reset_index() +# ptmcode = ptmcode.rename(columns = {'UniProtKB/Swiss-Prot ID':'UniProtKB Accession', 'Residue1':'Residue', 'Residue2':'PTMcode:Intraprotein_Interactions'}) +# +# #separate residue information into separate columns, one for amino acid and one for position +# ptmcode['PTM Position in Canonical Isoform'] = ptmcode['Residue'].apply(lambda x: int(x[1:])) +# ptmcode['Residue'] = ptmcode['Residue'].apply(lambda x: x[0]) +# +# #if splice data already has the annotation columns, remove them +# if 'PTMcode:Intraprotein_Interactions' in spliced_ptms.columns: +# spliced_ptms = spliced_ptms.drop(columns = ['PTMcode:Intraprotein_Interactions']) +# +# #explode dataframe on modifications +# if spliced_ptms['Modification Class'].str.contains(';').any(): +# spliced_ptms['Modification Class'] = spliced_ptms['Modification Class'].str.split(';') +# spliced_ptms = spliced_ptms.explode('Modification Class').reset_index(drop = True) +# +# #add to splice data +# original_data_size = spliced_ptms.shape[0] +# spliced_ptms = spliced_ptms.merge(ptmcode, how = 'left', on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']) +# if spliced_ptms.shape[0] != original_data_size: +# raise RuntimeError('Dataframe size has changed, check for duplicates in spliced ptms dataframe') +# +# #report the number of PTMs identified +# if report_success: +# num_ptms_with_PTMcode_data = spliced_ptms.dropna(subset = 'PTMcode:Intraprotein_Interactions').groupby(['UniProtKB Accession', 'Residue']).size().shape[0] +# print(f"PTMcode intraprotein interactions added: {num_ptms_with_PTMcode_data} PTMs in dataset found with PTMcode intraprotein interaction information") +# +# return spliced_ptms + +def extract_ids_PTMcode(df, col = '## Protein1'): + + #add gene name to data + name_to_uniprot = pd.DataFrame(pose_config.uniprot_to_genename, index = ['Gene']).T + name_to_uniprot['Gene'] = name_to_uniprot['Gene'].apply(lambda x: x.split(' ') if x == x else np.nan) + name_to_uniprot = name_to_uniprot.explode('Gene') + name_to_uniprot = name_to_uniprot.reset_index() + name_to_uniprot.columns = ['UniProtKB/Swiss-Prot ID', 'Gene name'] + name_to_uniprot = name_to_uniprot.drop_duplicates(subset = 'Gene name', keep = False) + + #protein name is provided as either ensemble gene id or gene name check for both + df = df.merge(pose_config.translator[['Gene stable ID']].reset_index().dropna().drop_duplicates(), left_on = col, right_on = 'Gene stable ID', how = 'left') + df = df.rename(columns = {'index': 'From_ID'}) + df = df.merge(name_to_uniprot, left_on = col, right_on = 'Gene name', how = 'left') + df = df.rename(columns = {'UniProtKB/Swiss-Prot ID': 'From_Name'}) + + #grab unique id from 'From_ID' and 'From_Name' column, if available + uniprot_ids = df['From_Name'].combine_first(df['From_ID']) + return uniprot_ids.values + +def add_PTMcode_interprotein(spliced_ptms, fname = None, report_success = True): + if fname is None: + ptmcode = pd.read_csv('https://ptmcode.embl.de/data/PTMcode2_associations_between_proteins.txt.gz', sep = '\t', header = 2, compression = 'gzip') + else: + check_file(fname, expected_extension = '.gz') + ptmcode = pd.read_csv(fname, sep = '\t', header = 2, compression='gzip') + + #grab human interactions + ptmcode = ptmcode[ptmcode['Species'] == 'Homo sapiens'] + #ignore intraprotein interactions + ptmcode = ptmcode[ptmcode['## Protein1'] != ptmcode['Protein2']] + + #get uniprot id for primary protein and interacting protein + ptmcode['UniProtKB Accession'] = extract_ids_PTMcode(ptmcode, '## Protein1') + ptmcode['Interacting Protein'] = extract_ids_PTMcode(ptmcode, 'Protein2') + + ptmcode = ptmcode.dropna(subset = ['UniProtKB Accession', 'Interacting Protein']) + #remove duplicate proteins (some entries have different ids but are actually the same protein) + ptmcode = ptmcode[ptmcode['UniProtKB Accession'] != ptmcode['Interacting Protein']] + + #aggregate interactions + ptmcode['Interacting Residue'] = ptmcode['Interacting Protein'] + '_' + ptmcode['Residue2'] + + + #convert modification names + convert_dict = {'Adp ribosylation': 'ADP Ribosylation', 'Glutamine deamidation':'Deamidation'} + new_mod_names = [] + failed_mod = [] + mod_list = ptmcode['PTM1'].unique() + for mod in mod_list: + mod = mod.capitalize() + if 'glycosylation' in mod: + new_mod_names.append('Glycosylation') + elif mod in pose_config.modification_conversion['Modification Class'].values: + new_mod_names.append(mod) + elif mod in convert_dict.keys(): + new_mod_names.append(convert_dict[mod]) + else: + try: + new_mod = pose_config.modification_conversion[pose_config.modification_conversion['Modification'] == mod].values[0][0] + new_mod_names.append(new_mod) + except: + failed_mod.append(mod) + new_mod_names.append(mod) + conversion_df = pd.DataFrame({'PTM1':mod_list, 'Modification Class':new_mod_names}) + + ptmcode = ptmcode.merge(conversion_df, on = 'PTM1', how = 'left') + + + ptmcode = ptmcode.rename(columns = {'Residue1':'Residue'}) + ptmcode = ptmcode.groupby(['UniProtKB Accession', 'Residue', 'Modification Class'])['Interacting Residue'].agg(';'.join).reset_index() + ptmcode = ptmcode.rename(columns = {'UniProtKB/Swiss-Prot ID':'UniProtKB Accession', 'Residue1':'Residue', 'Interacting Residue':'PTMcode:Interprotein_Interactions'}) + + #separate residue information into separate columns, one for amino acid and one for position + ptmcode['PTM Position in Canonical Isoform'] = ptmcode['Residue'].apply(lambda x: float(x[1:])) + ptmcode['Residue'] = ptmcode['Residue'].apply(lambda x: x[0]) + + #if splice data already has the annotation columns, remove them + if 'PTMcode:Interprotein_Interactions' in spliced_ptms.columns: + spliced_ptms = spliced_ptms.drop(columns = ['PTMcode:Interprotein_Interactions']) + + #explode dataframe on modifications + if spliced_ptms['Modification Class'].str.contains(';').any(): + spliced_ptms['Modification Class'] = spliced_ptms['Modification Class'].str.split(';') + spliced_ptms = spliced_ptms.explode('Modification Class').reset_index(drop = True) + + #add to splice data + original_data_size = spliced_ptms.shape[0] + spliced_ptms = spliced_ptms.merge(ptmcode, how = 'left', on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']) + if spliced_ptms.shape[0] != original_data_size: + raise RuntimeError('Dataframe size has changed, check for duplicates in spliced ptms dataframe') + + #report the number of PTMs identified + if report_success: + num_ptms_with_PTMcode_data = spliced_ptms.dropna(subset = 'PTMcode:Interprotein_Interactions').groupby(['UniProtKB Accession', 'Residue']).size().shape[0] + print(f"PTMcode interprotein interactions added: {num_ptms_with_PTMcode_data} PTMs in dataset found with PTMcode interprotein interaction information") + + return spliced_ptms + +
[docs]def extract_positions_from_DEPOD(x): + """ + Given string object consisting of multiple modifications in the form of 'Residue-Position' separated by ', ', extract the residue and position. Ignore any excess details in the string. + """ + x = x.split('[')[0].split(', ') + #for each residue in list, find location of 'Ser', 'Thr' and 'Tyr' in the string (should either have '-' or a number immediately after it) + new_x = [] + for item in x: + #determine type of modification + if 'Ser' in item: + loc = [match.start() for match in re.finditer('Ser', item)] + res = 'S' + elif 'Thr' in item: + loc = [match.start() for match in re.finditer('Thr', item)] + res = 'T' + elif 'Tyr' in item: + loc = [match.start() for match in re.finditer('Tyr', item)] + res = 'Y' + elif 'His' in item: + loc = [match.start() for match in re.finditer('His', item)] + res = 'H' + else: + loc = -1 + + #check if multiple locations were found, if so grab last entry + if loc == -1: + item = np.nan + make_string = False + elif len(loc) > 1: + make_string = True + loc = loc[-1] + else: + loc = loc[0] + make_string = True + + #find integer + if make_string: + if '-' in item[loc:]: + item = item.split('-') + item = res + item[1].strip() + else: + item = item[loc+3:] + item = res + item + + new_x.append(item) + + return new_x
+ +def add_DEPOD_phosphatase_data(spliced_ptms, report_success = True): + + #download data + depod1 = pd.read_excel('https://depod.bioss.uni-freiburg.de/download/PPase_protSubtrates_201903.xls', sheet_name='PSprots') + depod2 = pd.read_excel('https://depod.bioss.uni-freiburg.de/download/PPase_protSubtrates_newPairs_201903.xls', sheet_name = 'newPSprots') + depod = pd.concat([depod1, depod2]) + + #remove any rows with missing sit information + depod = depod.dropna(subset = 'Dephosphosites') + + #remove excess annotations that make parsing difficult + depod['Dephosphosites'] = depod['Dephosphosites'].apply(lambda x: x.split('[')[0]) + depod['Dephosphosites'] = depod['Dephosphosites'].apply(lambda x: x.split('(')[0]) + depod['Dephosphosites'] = depod['Dephosphosites'].apply(lambda x: x.split(';')[0]) + depod['Dephosphosites'] = depod['Dephosphosites'].apply(lambda x: x.split('in')[0]) + depod['Dephosphosites'] = depod['Dephosphosites'].str.replace('in ref.', '') + + #separate individual sites + depod['Dephosphosites'] = depod['Dephosphosites'].str.split(',') + depod = depod.explode('Dephosphosites') + depod = depod[(~depod['Dephosphosites'].str.contains('Isoform')) & (~depod['Dephosphosites'].str.contains('isoform'))] + + #process dephosphosite strings to extract residue and position and explode so that each phosphosite is its own row + depod['Dephosphosites'] = depod['Dephosphosites'].apply(extract_positions_from_DEPOD) + depod = depod.explode('Dephosphosites') + + #separate multiple substrate accessions into their own rows (many of these link back to the same ID, but will keep just in case) + depod['Substrate accession numbers'] = depod['Substrate accession numbers'].str.split(' ') + depod = depod.explode('Substrate accession numbers') + depod = depod.dropna(subset = ['Substrate accession numbers']) + + #extract only needed information and add phosphorylation as modification type + #extract only needed information and add phosphorylation as modification type + depod['Residue'] = depod['Dephosphosites'].apply(lambda x: x[0] if x == x else np.nan) + depod['PTM Position in Canonical Isoform'] = depod['Dephosphosites'].apply(lambda x: int(x[1:]) if x == x else np.nan) + depod = depod.rename({'Substrate accession numbers': 'UniProtKB Accession', 'Phosphatase entry names':'DEPOD:Phosphatase'}, axis = 1) + depod = depod[['DEPOD:Phosphatase', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform']] + depod['Modification Class'] = 'Phosphorylation' + + #combine on the same PTM + depod = depod.drop_duplicates() + depod = depod.groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class'], as_index = False)['DEPOD:Phosphatase'].agg(';'.join) + + #if splice data already has the annotation columns, remove them + if 'DEPOD:Phosphatase' in spliced_ptms.columns: + spliced_ptms = spliced_ptms.drop(columns = ['DEPOD:Phosphatase']) + + #explode dataframe on modifications + if spliced_ptms['Modification Class'].str.contains(';').any(): + spliced_ptms['Modification Class'] = spliced_ptms['Modification Class'].str.split(';') + spliced_ptms = spliced_ptms.explode('Modification Class').reset_index(drop = True) + + #add to splice data + original_data_size = spliced_ptms.shape[0] + spliced_ptms = spliced_ptms.merge(depod, how = 'left', on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']) + if spliced_ptms.shape[0] != original_data_size: + raise RuntimeError('Dataframe size has changed, check for duplicates in spliced ptms dataframe') + + #report the number of PTMs identified + if report_success: + num_ptms_with_PTMcode_data = spliced_ptms.dropna(subset = 'DEPOD:Phosphatase').groupby(['UniProtKB Accession', 'Residue']).size().shape[0] + print(f"DEPOD Phosphatase substrates added: {num_ptms_with_PTMcode_data} PTMs in dataset found with Phosphatase substrate information") + + return spliced_ptms + +def add_RegPhos_data(spliced_ptms, file = None, report_success = True): + if file is None: + regphos = pd.read_csv('http://140.138.144.141/~RegPhos/download/RegPhos_Phos_human.txt', sep = '\t', dtype = {'position':int, 'description':str,'catalytic kinase':str, 'reference':'str'}) + else: + check_file(file, expected_extension = '.txt') + regphos = pd.read_csv(file, sep = '\t') + + regphos = regphos.dropna(subset = 'catalytic kinase') + #regphos['Residue'] = regphos['code'] + regphos['position'].astype(str) + regphos = regphos.rename(columns = {'code': 'Residue', 'position':'PTM Position in Canonical Isoform', 'AC': 'UniProtKB Accession', 'catalytic kinase': 'RegPhos:Kinase'}) + regphos['Modification Class'] = 'Phosphorylation' + regphos = regphos[['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'RegPhos:Kinase']].dropna() + regphos = regphos.groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).agg(';'.join).reset_index() + + #if splice data already has the annotation columns, remove them + if 'RegPhos:Kinase' in spliced_ptms.columns: + spliced_ptms = spliced_ptms.drop(columns = ['RegPhos:Kinase']) + + #explode dataframe on modifications + if spliced_ptms['Modification Class'].str.contains(';').any(): + spliced_ptms['Modification Class'] = spliced_ptms['Modification Class'].str.split(';') + spliced_ptms = spliced_ptms.explode('Modification Class').reset_index(drop = True) + + #add to splice data + original_data_size = spliced_ptms.shape[0] + spliced_ptms = spliced_ptms.merge(regphos, how = 'left', on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']) + if spliced_ptms.shape[0] != original_data_size: + raise RuntimeError('Dataframe size has changed, check for duplicates in spliced ptms dataframe') + + #report the number of PTMs identified + if report_success: + num_ptms_with_regphos_data = spliced_ptms.dropna(subset = 'RegPhos:Kinase').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform']).size().shape[0] + print(f"RegPhos kinase-substrate data added: {num_ptms_with_regphos_data} PTMs in dataset found with kinase-substrate information") + + return spliced_ptms + + +def add_PTMsigDB_data(spliced_ptms, file = None, report_success = True): + #if file is None: + # ptmsigdb = pd.read_excel('https://proteomics.broadapps.org/ptmsigdb/_w_8b062d9e/appff37efd164a676afcc8e6e42e6058e01/session/a2b28c4ed29deadd6779fdd26aec33c1/download/download.xlsx?w=8b062d9e', sheet_name = 'human') + #else: + check_file(file, expected_extension = '.xlsx') + ptmsigdb = pd.read_excel(file, sheet_name = 'human') + + + ptmsigdb['UniProtKB Accession'] = ptmsigdb['site.uniprot'].str.split(';').str[0] + ptmsigdb['Residue'] = ptmsigdb['site.uniprot'].str.split(';').str[1].str[0] + ptmsigdb['PTM Position in Canonical Isoform'] = ptmsigdb['site.uniprot'].apply(lambda x: int(x.split(';')[1].split('-')[0][1:])) + + #filter out excess information in some of the site.ptm column, then convert to modification class details + ptmsigdb['site.ptm'] = ptmsigdb['site.ptm'].apply(lambda x: x.split(';')[1].split('-')[1] if ';' in x else x) + ptmsigdb['Modification Class'] = ptmsigdb['site.ptm'].map(mod_shorthand_dict) + + #combine signature and direction for annotation column + ptmsigdb['Signature'] = ptmsigdb['signature'] +'->'+ ptmsigdb['site.direction'] + + #drop unneeded columns + ptmsigdb = ptmsigdb[['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'Signature', 'category']] + ptmsigdb['Signature'] = ptmsigdb.apply(lambda x: x['Signature'].replace(x['category'] + '_', ''), axis = 1) + ptmsigdb['category'] = 'PTMsigDB:' + ptmsigdb['category'] + ptmsigdb = ptmsigdb.drop_duplicates() + + #convert to pivot table with each category being a separate column + ptmsigdb = ptmsigdb.pivot_table(index = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class'], columns = 'category', values = 'Signature', aggfunc=';'.join).reset_index() + + #remove psp data if it is already in spliced ptms + if 'PSP:Kinase' in spliced_ptms.columns: + ptmsigdb = ptmsigdb.drop(columns = 'PTMsigDB:KINASE-PSP') + + if 'PSP:Disease_Association' in spliced_ptms.columns: + ptmsigdb = ptmsigdb.drop(columns = 'PTMsigDB:DISEASE-PSP') + + + #if splice data already has the annotation columns, remove them + if 'PTMsigDB:PATH-BI' in spliced_ptms.columns: + cols_in_data = [col for col in spliced_ptms.columns if 'PTMsigDB' in col] + spliced_ptms = spliced_ptms.drop(columns = cols_in_data) + + + #explode dataframe on modifications + if spliced_ptms['Modification Class'].str.contains(';').any(): + spliced_ptms['Modification Class'] = spliced_ptms['Modification Class'].str.split(';') + spliced_ptms = spliced_ptms.explode('Modification Class').reset_index(drop = True) + + #merge with spliced_ptm info + original_data_size = spliced_ptms.shape[0] + spliced_ptms = spliced_ptms.merge(ptmsigdb, how = 'left', on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']) + if spliced_ptms.shape[0] != original_data_size: + raise RuntimeError('Dataset size changed upon merge, please make sure there are no duplicates in spliced ptms data') + + + #report the number of ptms with motif data + if report_success: + num_ptms_with_ikip = spliced_ptms.dropna(subset = 'PTMsigDB:KINASE-iKiP').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + num_ptms_with_path_bi = spliced_ptms.dropna(subset = 'PTMsigDB:PATH-BI').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + num_ptms_with_path_np= spliced_ptms.dropna(subset = 'PTMsigDB:PATH-NP').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + num_ptms_with_path_wp = spliced_ptms.dropna(subset = 'PTMsigDB:PATH-WP').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + num_ptms_with_dia_pert = spliced_ptms.dropna(subset = 'PTMsigDB:PERT-P100-DIA').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + num_ptms_with_dia2_pert = spliced_ptms.dropna(subset = 'PTMsigDB:PERT-P100-DIA2').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + num_ptms_with_prm_pert = spliced_ptms.dropna(subset = 'PTMsigDB:PERT-P100-PRM').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + num_ptms_with_psp_pert = spliced_ptms.dropna(subset = 'PTMsigDB:PERT-PSP').groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']).size().shape[0] + print(f"PTMsigDB added:\n\t ->{num_ptms_with_ikip} PTMs associated with kinases in iKiP\n\t ->{num_ptms_with_path_wp} PTMs associated with molecular pathway signatures from WikiPathways\n\t ->{num_ptms_with_path_np} PTMs associated with molecular pathway signatures from NetPath\n\t ->{num_ptms_with_psp_pert} PTMs with PhosphoSitePlus perturbations\n\t ->{num_ptms_with_dia_pert} with perturbations in LINCS P1000 DIA dataset \n\t ->{num_ptms_with_dia2_pert} with perturbations in LINCS P1000 DIA2 dataset\n\t ->{num_ptms_with_prm_pert} with perturbations in LINCS P1000 PRM dataset") + return spliced_ptms + + + +######### Functions for combining annotations from multiple sources ######## + +
[docs]def convert_PSP_label_to_UniProt(label): + """ + Given a label for an interacting protein from PhosphoSitePlus, convert to UniProtKB accession. Required as PhosphoSitePlus interactions are recorded in various ways that aren't necessarily consistent with other databases (i.e. not always gene name) + + Parameters + ---------- + label: str + Label for interacting protein from PhosphoSitePlus + """ + if not hasattr(pose_config, 'genename_to_uniprot'): + #using uniprot to gene name dict, construct dict to go the other direction (gene name to uniprot id) + pose_config.genename_to_uniprot = pose_config.flip_uniprot_dict(pose_config.uniprot_to_genename) + + + #remove isoform label if present + if label in pose_config.genename_to_uniprot: #if PSP name is gene name found in uniprot + return pose_config.genename_to_uniprot[label] + elif label.upper() in pose_config.genename_to_uniprot: + return pose_config.genename_to_uniprot[label.upper()] + elif label.split(' ')[0].upper() in pose_config.genename_to_uniprot: + return pose_config.genename_to_uniprot[label.split(' ')[0].upper()] + elif label.replace('-', '').upper() in pose_config.genename_to_uniprot: + return pose_config.genename_to_uniprot[label.replace('-', '').upper()] + elif label in pose_config.psp_name_dict: # if PSP name is not gene name, but is in conversion dictionary + return pose_config.psp_name_dict[label] + else: #otherwise note that gene was missed + return np.nan
+ #missed_genes.append(gene) + +def extract_interaction_details(interaction, column = "PSP:ON_PROT_INTERACT"): + + interaction_types = {'PTMcode:Interprotein_Interactions':'INDUCES', 'PSP:Kinase':'REGULATES', 'DEPOD:Phosphatase':'REGULATES', 'RegPhos:Kinase':'REGULATES', 'Combined:Kinase':'REGULATES', 'ELM:Interactions':'UNCLEAR'} + if column == 'PSP:ON_PROT_INTERACT': + type = interaction.split('(')[1].split(')')[0] + protein = interaction.split('(')[0].strip(' ') + elif column == 'PTMInt:Interaction': + ptmint_type_conversion = {'Inhibit':'DISRUPTS', 'Enhance':"INDUCES"} + type = ptmint_type_conversion[interaction.split('->')[1]] + protein = interaction.split('->')[0] + elif column == 'PTMcode:Interprotein_Interactions': + type = 'INDUCES' + protein = interaction.split('_')[0] + else: + type = interaction_types[column] + protein = interaction + + return type, protein + +
[docs]def unify_interaction_data(spliced_ptms, interaction_col, name_dict = {}): + """ + Given spliced ptm data and a column containing interaction data, extract the interacting protein, type of interaction, and convert to UniProtKB accession. This will be added as a new column labeled 'Interacting ID' + + Parameters + ---------- + spliced_ptms: pd.DataFrame + Dataframe containing PTM data + interaction_col: str + column containing interaction information from a specific database + name_dict: dict + dictionary to convert names within given database to UniProt IDs. For cases when name is not necessarily one of the gene names listed in UniProt + + Returns + ------- + interact: pd.DataFrame + Contains PTMs and their interacting proteins, the type of influence the PTM has on the interaction (DISRUPTS, INDUCES, or REGULATES) + """ + if not hasattr(pose_config, 'genename_to_uniprot'): + #using uniprot to gene name dict, construct dict to go the other direction (gene name to uniprot id) + pose_config.genename_to_uniprot = pose_config.flip_uniprot_dict(pose_config.uniprot_to_genename) + + #extract PSP data from annotated PTMs, separate cases in which single PTM has multipe interactions + data_cols = [col for col in spliced_ptms.columns if col in ['Significance', 'dPSI']] + interact = spliced_ptms.dropna(subset = interaction_col)[['Gene', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class',interaction_col] + data_cols] + if interact.empty: + print(f"No PTMs associated with {interaction_col}") + return interact + + interact[interaction_col] = interact[interaction_col].apply(lambda x: x.split(';')) + interact = interact.explode(interaction_col) + + #extract protein and type of interaction (currently for phosphosite plus) + type = [] + protein = [] + for i, row in interact.iterrows(): + processed = extract_interaction_details(row[interaction_col], interaction_col) + type.append(processed[0]) + protein.append(processed[1]) + interact['Type'] = type + interact['Interacting Protein'] = protein + + + #convert interacting protein to uniprot id for databases that are not reported in uniprot ids + if interaction_col not in ['PTMcode:Interprotein_Interactions', 'ELM:Interactions']: + interacting_id = [] + missed_genes = [] + for gene in interact['Interacting Protein']: + #remove isoform label if present + if gene in pose_config.genename_to_uniprot: #if PSP name is gene name found in uniprot + interacting_id.append(pose_config.genename_to_uniprot[gene]) + elif gene.upper() in pose_config.genename_to_uniprot: + interacting_id.append(pose_config.genename_to_uniprot[gene.upper()]) + elif gene.split(' ')[0].upper() in pose_config.genename_to_uniprot: + interacting_id.append(pose_config.genename_to_uniprot[gene.split(' ')[0].upper()]) + elif gene.replace('-', '').upper() in pose_config.genename_to_uniprot: + interacting_id.append(pose_config.genename_to_uniprot[gene.replace('-', '').upper()]) + elif gene in name_dict: # if PSP name is not gene name, but is in conversion dictionary + interacting_id.append(name_dict[gene]) + else: #otherwise note that gene was missed + interacting_id.append(np.nan) + missed_genes.append(gene) + + #save information + interact['Interacting ID'] = interacting_id + interact = interact.dropna(subset = 'Interacting ID') + + + #check if there multiple in one row + if interact['Interacting ID'].str.contains(';').any(): + interact['Interacting ID'] = interact['Interacting ID'].apply(lambda x: x.split(';')) + interact = interact.explode('Interacting ID') + else: + interact['Interacting ID'] = interact['Interacting Protein'] + + + interact['Interacting ID'] = interact['Interacting ID'].apply(lambda x: x.split(' ')[0] if x == x else np.nan) + interact = interact.explode('Interacting ID') + interact = interact.dropna(subset = 'Interacting ID') + interact = interact.drop(columns = interaction_col).drop_duplicates() + + return interact
+ +
[docs]def add_annotation(spliced_ptms, database = 'PhosphoSitePlus', annotation_type = 'Function', file = None, check_existing = False): + """ + Given a desired database and annotation type, add the corresponding annotation data to the spliced ptm dataframe + + Parameters + ---------- + spliced_ptms: pd.DataFrame + Dataframe containing PTM data + database: str + Database to extract annotation data from. Options include 'PhosphoSitePlus', 'PTMcode', 'PTMInt', 'RegPhos', 'DEPOD' + annotation_type: str + Type of annotation to extract. Options include 'Function', 'Process', 'Interactions', 'Disease', 'Kinase', 'Phosphatase', but depend on the specific database (run analyze.get_annotation_categories()) + file: str + File path to annotation data. If None, will download from online source, except for PhosphoSitePlus (due to licensing restrictions) + """ + if check_existing: + annot_col = annotation_col_dict[database][annotation_type] + if annot_col in spliced_ptms.columns: + print(f"Annotation data for {database} {annotation_type} already present in provided dataframe, skipping. If you would like to update annotation data, set check_existing = False") + return spliced_ptms + + if database == "PhosphoSitePlus": + if annotation_type in ['Function', 'Process', 'Interactions']: + check_file(file, expected_extension='.gz') + spliced_ptms = add_PSP_regulatory_site_data(spliced_ptms, file = file) + elif annotation_type == 'Disease': + check_file(file, expected_extension='.gz') + spliced_ptms = add_PSP_disease_association(spliced_ptms, file = file) + elif annotation_type == 'Kinase': + check_file(file, expected_extension='.gz') + spliced_ptms = add_PSP_kinase_substrate_data(spliced_ptms, file = file) + else: + raise ValueError(f"Annotation type {annotation_type} not recognized for PhosphoSitePlus") + elif database == 'PTMcode': + #if annotation_type == 'Intraprotein': + # if file is not None: + # check_file(file, expected_extension='.gz') + # spliced_ptms = add_PTMcode_intraprotein(spliced_ptms, file = file) + # else: + # spliced_ptms = add_PTMcode_intraprotein(spliced_ptms) + if annotation_type == 'Interactions': + if file is not None: + check_file(file, expected_extension='.gz') + spliced_ptms = add_PTMcode_interprotein(spliced_ptms, file = file) + else: + spliced_ptms = add_PTMcode_interprotein(spliced_ptms) + else: + raise ValueError(f"Annotation type {annotation_type} not recognized for PTMcode") + elif database == 'PTMInt': + if annotation_type == 'Interactions': + if file is not None: + check_file(file, expected_extension='.csv') + spliced_ptms = add_PTMInt_data(spliced_ptms, file = file) + else: + spliced_ptms = add_PTMInt_data(spliced_ptms) + else: + raise ValueError(f"Annotation type {annotation_type} not recognized for PTMInt") + elif database == 'RegPhos': + if annotation_type == 'Kinase': + if file is not None: + check_file(file, expected_extension='.txt') + spliced_ptms = add_RegPhos_data(spliced_ptms, file = file) + else: + spliced_ptms = add_RegPhos_data(spliced_ptms) + else: + raise ValueError(f"Annotation type {annotation_type} not recognized for RegPhos") + elif database == 'DEPOD': + if annotation_type == 'Phosphatase': + spliced_ptms = add_DEPOD_phosphatase_data(spliced_ptms, file = file) + else: + raise ValueError(f"Annotation type {annotation_type} not recognized for RegPhos") + elif database == 'Combined': + if annotation_type == 'Kinase': + if 'PSP:Kinase' not in spliced_ptms.columns: + raise ValueError("PhosphoSitePlus kinase data not found in spliced PTM dataframe, please annotate with this first") + if 'RegPhos:Kinase' not in spliced_ptms.columns: + spliced_ptms = add_RegPhos_data(spliced_ptms) + spliced_ptms = combine_KS_data(spliced_ptms) + elif annotation_type == 'Interactions': + spliced_ptms = combine_interaction_data(spliced_ptms) + else: + raise ValueError(f"Database {database} not recognized") + + return spliced_ptms
+ + +
[docs]def combine_interaction_data(spliced_ptms, interaction_databases = ['PhosphoSitePlus', 'PTMcode', 'PTMInt', 'RegPhos', 'DEPOD', 'ELM'], include_enzyme_interactions = True): + """ + Given annotated spliced ptm data, extract interaction data from various databases and combine into a single dataframe. This will include the interacting protein, the type of interaction, and the source of the interaction data + + Parameters + ---------- + spliced_ptms: pd.DataFrame + Dataframe containing PTM data and associated interaction annotations from various databases + interaction_databases: list + List of databases to extract interaction data from. Options include 'PhosphoSitePlus', 'PTMcode', 'PTMInt', 'RegPhos', 'DEPOD'. These should already have annotation columns in the spliced_ptms dataframe, otherwise they will be ignored. For kinase-substrate interactions, if combined column is present, will use that instead of individual databases + include_enzyme_interactions: bool + If True, will include kinase-substrate and phosphatase interactions in the output dataframe + + Returns + ------- + interact_data: list + List of dataframes containing PTMs and their interacting proteins, the type of influence the PTM has on the interaction (DISRUPTS, INDUCES, or REGULATES), and the source of the interaction data + + """ + interact_data = [] + combined_added = False + for database in interaction_databases: + if database == 'PhosphoSitePlus' and 'PSP:ON_PROT_INTERACT' in spliced_ptms.columns: + if not spliced_ptms['PSP:ON_PROT_INTERACT'].isna().all(): + print('PhosphoSitePlus regulatory site data found and added') + interact = unify_interaction_data(spliced_ptms, 'PSP:ON_PROT_INTERACT', pose_config.psp_name_dict) + interact['Source'] = database + interact_data.append(interact) + + + if database == 'PTMcode' and 'PTMcode:Interprotein_Interactions' in spliced_ptms.columns: + if not spliced_ptms['PTMcode:Interprotein_Interactions'].isna().all(): + print('PTMcode data found and added') + interact = unify_interaction_data(spliced_ptms, 'PTMcode:Interprotein_Interactions') + interact['Source'] = database + interact_data.append(interact) + if database == 'PTMInt' and 'PTMInt:Interaction' in spliced_ptms.columns: + if not spliced_ptms['PTMInt:Interaction'].isna().all(): + print('PTMInt data found and added') + interact = unify_interaction_data(spliced_ptms, 'PTMInt:Interaction') + interact['Source'] = database + interact_data.append(interact) + if database == 'ELM' and 'ELM:Interactions' in spliced_ptms.columns: + if not spliced_ptms['ELM:Interactions'].isna().all(): + print('ELM data found and added') + interact = unify_interaction_data(spliced_ptms, 'ELM:Interactions') + interact['Source'] = database + interact_data.append(interact) + + if include_enzyme_interactions: + #dictionary to convert kinase names to gene names + ks_genes_to_uniprot = {'ABL1(ABL)':'P00519', 'ACK':'Q07912', 'AURC':'Q9UQB9', 'ERK1(MAPK3)':'P27361','ERK2(MAPK1)':'P28482', 'ERK5(MAPK7)':'Q13164','JNK1(MAPK8)':'P45983', 'CK1A':'P48729', 'JNK2(MAPK9)':'P45984', 'JNK3(MAPK10)':'P53779', 'P38A(MAPK14)':'Q16539','P38B(MAPK11)':'Q15759', 'P38G(MAPK12)':'P53778','P70S6K' :'Q9UBS0', 'PAK':'Q13153', 'PKCZ':'Q05513', 'CK2A':'P19784', 'ABL2':'P42684', 'AMPKA1':'Q13131', 'AMPKA2':'Q13131', 'AURB':'Q96GD4', 'CAMK1A':'Q14012', 'CDC42BP':'Q9Y5S2','CK1D':'P48730','CK1E':'P49674','CK2B':'P67870','DMPK1':'Q09013', 'DNAPK':'P78527','DSDNA KINASE':'P78527', 'EG3 KINASE':'P49840','ERK3(MAPK6)':'Q16659','GSK3':'P49840', 'MRCKA':'Q5VT25', 'P38D(MAPK13)':'O15264','P70S6KB':'Q9UBS0','PDKC':'P78527','PKCH':'P24723','PKCI':'P41743','PKCT':'Q04759','PKD3':'O94806','PKG1':'Q13976','PKG2':'Q13237','SMMLCK':'Q15746'} + if 'Combined:Kinase' in spliced_ptms.columns and not combined_added: + if not spliced_ptms['Combined:Kinase'].isna().all(): + print('Combined kinase-substrate data found and added') + interact = unify_interaction_data(spliced_ptms, 'Combined:Kinase', ks_genes_to_uniprot) + interact['Source'] = 'PSP/RegPhos' + interact_data.append(interact) + combined_added = True + elif 'Combined:Kinase' not in spliced_ptms.columns: + if 'RegPhos:Kinase' in spliced_ptms.columns and database == 'RegPhos': + if not spliced_ptms['RegPhos:Kinase'].isna().all(): + print('RegPhos kinase-substrate data found and added') + interact = unify_interaction_data(spliced_ptms, 'RegPhos:Kinase', ks_genes_to_uniprot) + interact['Source'] = database + interact_data.append(interact) + if 'PSP:Kinase' in spliced_ptms.columns and database == 'PhosphoSitePlus': + if not spliced_ptms['PSP:Kinase'].isna().all(): + print('PhosphoSitePlus kinase-substrate data found and added') + interact = unify_interaction_data(spliced_ptms, 'PSP:Kinase', ks_genes_to_uniprot) + interact['Source'] = database + interact_data.append(interact) + + if database == 'DEPOD' and 'DEPOD:Phosphatase' in spliced_ptms.columns: + if not spliced_ptms['DEPOD:Phosphatase'].isna().all(): + print('DEPOD phosphatase-substrate data found and added') + interact = unify_interaction_data(spliced_ptms, 'DEPOD:Phosphatase') + interact['Source'] = database + interact_data.append(interact) + + if len(interact_data) > 0: + interact_data = pd.concat(interact_data) + extra_cols = [col for col in interact_data.columns if col in ['dPSI', 'Significance']] + interact_data = interact_data.groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Interacting ID', 'Type']+extra_cols, dropna = False, as_index = False)['Source'].apply(helpers.join_unique_entries) + + #convert uniprot ids back to gene names for interpretability + ptm_gene = [] + interacting_gene = [] + for i, row in interact_data.iterrows(): + ptm_gene.append(pose_config.uniprot_to_genename[row['UniProtKB Accession'].split('-')[0]].split(' ')[0]) if row['UniProtKB Accession'].split('-')[0] in pose_config.uniprot_to_genename else ptm_gene.append(row['UniProtKB Accession']) + interacting_gene.append(pose_config.uniprot_to_genename[row['Interacting ID'].split('-')[0]].split(' ')[0]) if row['Interacting ID'].split('-')[0] in pose_config.uniprot_to_genename else interacting_gene.append(row['Interacting ID']) + interact_data['Modified Gene'] = ptm_gene + interact_data["Interacting Gene"] = interacting_gene + + + return interact_data.drop_duplicates() + else: + return pd.DataFrame()
+ + + +
[docs]def combine_KS_data(spliced_ptms, ks_databases = ['PhosphoSitePlus', 'RegPhos'], regphos_conversion = {'ERK1(MAPK3)':'MAPK3', 'ERK2(MAPK1)':'MAPK1', 'JNK2(MAPK9)':'MAPK9','CDC2':'CDK1', 'CK2A1':'CSNK2A1', 'PKACA':'PRKACA', 'ABL1(ABL)':'ABL1'}): + """ + Given spliced ptm information, combine kinase-substrate data from multiple databases (currently support PhosphoSitePlus and RegPhos), assuming that the kinase data from these resources has already been added to the spliced ptm data. The combined kinase data will be added as a new column labeled 'Combined:Kinase' + + Parameters + ---------- + spliced_ptms: pd.DataFrame + Spliced PTM data from project module + ks_databases: list + List of databases to combine kinase data from. Currently support PhosphoSitePlus and RegPhos + regphos_conversion: dict + Allows conversion of RegPhos names to matching names in PhosphoSitePlus. + + Returns + ------- + splicde_ptms: pd.DataFrame + Spliced PTM data with combined kinase data added + + """ + if not hasattr(pose_config, 'genename_to_uniprot'): + pose_config.genename_to_uniprot = pose_config.flip_uniprot_dict(pose_config.uniprot_to_genename) + + ks_data = [] + for i, row in spliced_ptms.iterrows(): + combined = [] + for db in ks_databases: + if db == 'PhosphoSitePlus': + psp = row['PSP:Kinase'].split(';') if row['PSP:Kinase'] == row['PSP:Kinase'] else [] + #convert PSP names to a common name (first gene name provided by uniprot) + psp = [pose_config.uniprot_to_genename[pose_config.genename_to_uniprot[kin]].split(' ')[0] if kin in pose_config.genename_to_uniprot else kin for kin in psp] + combined += psp + elif db == 'RegPhos': + regphos = row['RegPhos:Kinase'].split(';') if row['RegPhos:Kinase'] == row['RegPhos:Kinase'] else [] + for i, rp in enumerate(regphos): + if rp in pose_config.genename_to_uniprot: + regphos[i] = pose_config.uniprot_to_genename[pose_config.genename_to_uniprot[rp]].split(' ')[0] + elif rp.split('(')[0] in pose_config.genename_to_uniprot: + regphos[i] = pose_config.uniprot_to_genename[pose_config.genename_to_uniprot[rp.split('(')[0]]].split(' ')[0] + elif rp.upper() in regphos_conversion: + regphos[i] = regphos_conversion[rp.upper()] + else: + regphos[i] = rp.upper() + combined += regphos + + + if len(combined) > 0: + ks_data.append(';'.join(set(combined))) + else: + ks_data.append(np.nan) + + spliced_ptms['Combined:Kinase'] = ks_data + return spliced_ptms
+ + +
[docs]def check_file(fname, expected_extension = '.tsv'): + """ + Given a file name, check if the file exists and has the expected extension. If the file does not exist or has the wrong extension, raise an error. + + Parameters + ---------- + fname: str + File name to check + expected_extension: str + Expected file extension. Default is '.tsv' + """ + if fname is None: + raise ValueError('Annotation file path must be provided') + if not os.path.exists(fname): + raise ValueError(f'File {fname} not found') + + if not fname.endswith(expected_extension): + raise ValueError(f'File {fname} does not have the expected extension ({expected_extension})')
+ + + + + +
[docs]def annotate_ptms(spliced_ptms, psp_regulatory_site_file = None, psp_ks_file = None, psp_disease_file = None, elm_interactions = False, elm_motifs = False, PTMint = False, PTMcode_interprotein = False, DEPOD = False, RegPhos = False, ptmsigdb_file = None, interactions_to_combine = ['PTMcode', 'PhosphoSitePlus', 'RegPhos', 'PTMInt'], kinases_to_combine = ['PhosphoSitePlus', 'RegPhos'], combine_similar = True): + """ + Given spliced ptm data, add annotations from various databases. The annotations that can be added are the following: + - PhosphoSitePlus + - regulatory site data (file must be provided) + - kinase-substrate data (file must be provided) + - disease association data (file must be provided) + - ELM + - interaction data (can be downloaded automatically or provided as a file) + - motif matches (elm class data can be downloaded automatically or provided as a file) + - PTMInt + - interaction data (will be downloaded automatically) + - PTMcode + - intraprotein interactions (can be downloaded automatically or provided as a file) + - interprotein interactions (can be downloaded automatically or provided as a file) + - DEPOD + - phosphatase-substrate data (will be downloaded automatically) + - RegPhos + - kinase-substrate data (will be downloaded automatically) + + Parameters + ---------- + spliced_ptms: pd.DataFrame + Spliced PTM data from project module + psp_regulatory_site_file: str + File path to PhosphoSitePlus regulatory site data + psp_ks_file: str + File path to PhosphoSitePlus kinase-substrate data + psp_disease_file: str + File path to PhosphoSitePlus disease association data + elm_interactions: bool or str + If True, download ELM interaction data automatically. If str, provide file path to ELM interaction data + elm_motifs: bool or str + If True, download ELM motif data automatically. If str, provide file path to ELM motif data + PTMint: bool + If True, download PTMInt data automatically + PTMcode_intraprotein: bool or str + If True, download PTMcode intraprotein data automatically. If str, provide file path to PTMcode intraprotein data + PTMcode_interprotein: bool or str + If True, download PTMcode interprotein data automatically. If str, provide file path to PTMcode interprotein data + DEPOD: bool + If True, download DEPOD data automatically + RegPhos: bool + If True, download RegPhos data automatically + ptmsigdb_file: str + File path to PTMsigDB data + interactions_to_combine: list + List of databases to combine interaction data from. Default is ['PTMcode', 'PhosphoSitePlus', 'RegPhos', 'PTMInt'] + kinases_to_combine: list + List of databases to combine kinase-substrate data from. Default is ['PhosphoSitePlus', 'RegPhos'] + combine_similar: bool + Whether to combine annotations of similar information (kinase, interactions, etc) from multiple databases into another column labeled as 'Combined'. Default is True + """ + if psp_regulatory_site_file is not None: + try: + check_file(psp_regulatory_site_file, expected_extension='.gz') + spliced_ptms = add_PSP_regulatory_site_data(spliced_ptms, file = psp_regulatory_site_file) + except Exception as e: + raise RuntimeError(f'Error adding PhosphoSitePlus regulatory site data. Error message: {e}') + if psp_ks_file is not None: + try: + check_file(psp_ks_file, expected_extension='.gz') + spliced_ptms = add_PSP_kinase_substrate_data(spliced_ptms, file = psp_ks_file) + except Exception as e: + raise RuntimeError(f'Error adding PhosphoSitePlus kinase-substrate data. Error message: {e}') + if psp_disease_file is not None: + try: + check_file(psp_disease_file, expected_extension='.gz') + spliced_ptms = add_PSP_disease_association(spliced_ptms, file = psp_disease_file) + except Exception as e: + raise RuntimeError(f'Error adding PhosphoSitePlus disease association data. Error message: {e}') + if elm_interactions: + try: + if isinstance(elm_interactions, bool): + spliced_ptms = add_ELM_interactions(spliced_ptms) + elif isinstance(elm_interactions, str): + check_file(elm_interactions, expected_extension='.tsv') + spliced_ptms = add_ELM_interactions(spliced_ptms, file = elm_interactions) + else: + raise ValueError('elm_interactions must be either a boolean (download elm data automatically, slower) or a string (path to elm data tsv file, faster)') + except Exception as e: + raise RuntimeError(f'Error adding ELM interaction data. Error message: {e}') + if elm_motifs: + try: + if isinstance(elm_motifs, bool): + spliced_ptms = add_ELM_matched_motifs(spliced_ptms) + elif isinstance(elm_motifs, str): + check_file(elm_motifs, expected_extension='.tsv') + spliced_ptms = add_ELM_matched_motifs(spliced_ptms, file = elm_motifs) + else: + raise ValueError('elm_interactions must be either a boolean (download elm data automatically, slower) or a string (path to elm data tsv file, faster)') + except Exception as e: + raise RuntimeError(f'Error adding ELM motif matches. Error message: {e}') + if PTMint: + try: + if isinstance(PTMint, bool): + spliced_ptms = add_PTMInt_data(spliced_ptms) + elif isinstance(PTMint, str): + check_file(PTMint, expected_extension='.csv') + spliced_ptms = add_PTMInt_data(spliced_ptms, file = PTMint) + else: + raise ValueError('PTMint must be either a boolean (download PTMInt data automatically, slower) or a string (path to PTMInt data csv file, faster)') + except Exception as e: + raise RuntimeError(f'Error adding PTMInt interaction data. Error message: {e}') + #if PTMcode_intraprotein: + # try: + # if isinstance(PTMcode_intraprotein, bool): + # spliced_ptms = add_PTMcode_intraprotein(spliced_ptms) + # elif isinstance(PTMcode_intraprotein, str): + # check_file(PTMcode_intraprotein, expected_extension='.gz') + # spliced_ptms = add_PTMcode_intraprotein(spliced_ptms, fname = PTMcode_intraprotein) + # else: + # raise ValueError('PTMcode_intraprotein must be either a boolean (download PTMcode data automatically, slower) or a string (path to PTMcode data file, faster)') + # except Exception as e: + # print(f'Error adding PTMcode intraprotein interaction data. Error message: {e}') + if PTMcode_interprotein: + try: + if isinstance(PTMcode_interprotein, bool): + spliced_ptms = add_PTMcode_interprotein(spliced_ptms) + elif isinstance(PTMcode_interprotein, str): + check_file(PTMcode_interprotein, expected_extension='.gz') + spliced_ptms = add_PTMcode_interprotein(spliced_ptms, fname = PTMcode_interprotein) + else: + raise ValueError('PTMcode_interprotein must be either a boolean (download PTMcode data automatically, slower) or a string (path to PTMcode data file, faster)') + except Exception as e: + raise RuntimeError(f'Error adding PTMcode interprotein interaction data. Error message: {e}') + if DEPOD: + try: + spliced_ptms = add_DEPOD_phosphatase_data(spliced_ptms) + except Exception as e: + raise RuntimeError(f'Error adding DEPOD phosphatase data. Error message: {e}') + if RegPhos: + try: + if isinstance(RegPhos, str): + check_file(RegPhos, expected_extension='.txt') + spliced_ptms = add_RegPhos_data(spliced_ptms, file = RegPhos) + else: + spliced_ptms = add_RegPhos_data(spliced_ptms) + except Exception as e: + raise RuntimeError(f'Error adding RegPhos kinase substrate data data. Error message: {e}') + if ptmsigdb_file is not None: + try: + spliced_ptms = add_PTMsigDB_data(spliced_ptms, file = ptmsigdb_file) + except Exception as e: + raise RuntimeError(f'Error adding PTMsigDB data. Error message: {e}') + + if combine_similar: + interaction_cols = ['PTMcode:Interprotein_Interactions', 'PSP:ON_PROT_INTERACT', 'PSP:Kinase', 'PTMInt:Interaction', 'RegPhos:Kinase', 'DEPOD:Phosphatase'] + if set(interaction_cols).intersection(spliced_ptms.columns) != 0: + print('\nCombining interaction data from multiple databases') + interact = combine_interaction_data(spliced_ptms, interaction_databases = interactions_to_combine) + if not interact.empty: + interact['Combined:Interactions'] = interact['Interacting Gene']+'->'+interact['Type'] + interact = interact.groupby(['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform'], dropna = False, as_index = False)['Combined:Interactions'].apply(lambda x: ';'.join(np.unique(x))) + if 'Combined:Interactions' in spliced_ptms.columns: + spliced_ptms = spliced_ptms.drop(columns = ['Combined:Interactions']) + + spliced_ptms = spliced_ptms.merge(interact, how = 'left', on = ['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform']) + else: + spliced_ptms['Combined:Interactions'] = np.nan + + #check for what kinase data is available + spliced_ptms = combine_KS_data(spliced_ptms, ks_databases=kinases_to_combine) #add combined kinase column + + + return spliced_ptms
+ + +
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+
+ + +
+ + +
+
+
+ + + + + +
+
+ + \ No newline at end of file diff --git a/_modules/ptm_pose/flanking_sequences.html b/_modules/ptm_pose/flanking_sequences.html new file mode 100644 index 0000000..11f09d3 --- /dev/null +++ b/_modules/ptm_pose/flanking_sequences.html @@ -0,0 +1,1043 @@ + + + + + + + + + + + ptm_pose.flanking_sequences — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for ptm_pose.flanking_sequences

+#biopython packages
+from Bio.Data import CodonTable
+
+#standard packages
+import numpy as np
+import pandas as pd
+import re
+
+import tqdm
+import warnings
+
+#PTM pose functions
+from ptm_pose import database_interfacing as di
+from ptm_pose import project
+from ptm_pose import pose_config
+
+
+
+# Get the standard codon table
+codon_table = CodonTable.unambiguous_dna_by_name["Standard"]
+
+
+
[docs]def translate_flanking_sequence(seq, flank_size = 7, full_flanking_seq = True, lowercase_mod = True, first_flank_length = None, stop_codon_symbol = '*', unknown_codon_symbol = 'X'): + """ + Given a DNA sequence, translate the sequence into an amino acid sequence. If the sequence is not the correct length, the function will attempt to extract the flanking sequence with spaces to account for missing parts if full_flanking_seq is not True. If the sequence is still not the correct length, the function will raise an error. Any unrecognized codons that are found in the sequence and are not in the standard codon table, including stop codons, will be translated as 'X' (unknown) or '*' (stop codon). + + Parameters + ---------- + seq : str + DNA sequence to translate + flank_size : int, optional + Number of amino acids to include flanking the PTM, by default 7 + full_flanking_seq : bool, optional + Whether to require the flanking sequence to be the correct length, by default True + lowercase_mod : bool, optional + Whether to lowercase the amino acid associated with the PTM, by default True + first_flank_length : int, optional + Length of the flanking sequence in front of the PTM, by default None. If full_flanking_seq is False and sequence is not the correct length, this is required. + stop_codon_symbol : str, optional + Symbol to use for stop codons, by default '*' + unknown_codon_symbol : str, optional + Symbol to use for unknown codons, by default 'X' + + Returns + ------- + str + Amino acid sequence of the flanking sequence if translation was successful, otherwise np.nan + """ + aa_seq = '' + if len(seq) == flank_size*2*3+3: + for i in range(0, len(seq), 3): + if seq[i:i+3] in codon_table.forward_table.keys(): + aa = codon_table.forward_table[seq[i:i+3]] + elif seq[i:i+3] in codon_table.stop_codons: + aa = stop_codon_symbol + else: + aa = unknown_codon_symbol + + if i/3 == flank_size and lowercase_mod: + aa = aa.lower() + aa_seq += aa + elif len(seq) % 3 == 0 and not full_flanking_seq: + for i in range(0, len(seq), 3): + if seq[i:i+3] in codon_table.forward_table.keys(): + aa = codon_table.forward_table[seq[i:i+3]] + elif seq[i:i+3] in codon_table.stop_codons: + aa = '*' + else: + aa = 'X' + + if lowercase_mod and i/3 == first_flank_length: + aa = aa.lower() + aa_seq += aa + elif len(seq) % 3 == 0 and full_flanking_seq: + raise ValueError('Provided sequence length does not match indicated flank size. Fix sequence or set full_flanking_seq = False, which requires indicating the length of the flanking sequence in front of the PTM.') + elif len(seq) % 3 != 0: + raise ValueError('Provided sequence is not a multiple of 3') + else: + raise ValueError('Unknown error with flanking sequence') + return aa_seq
+ +
[docs]def get_ptm_locs_in_spliced_sequences(ptm_loc_in_flank, first_flank_seq, spliced_seq, second_flank_seq, strand, which_flank = 'First', order_by = 'Coordinates'): + """ + Given the location of a PTM in a flanking sequence, extract the location of the PTM in the Inclusion Flanking Sequence and the Exclusion Flanking Sequence associated with a given splice event. Inclusion Flanking Sequence will include the skipped exon region, retained intron, or longer alternative splice site depending on event type. The PTM location should be associated with where the PTM is located relative to spliced region (before = 'First', after = 'Second'). + + Parameters + ---------- + ptm_loc_in_flank : int + Location of the PTM in the flanking sequence it is found (either first or second) + first_flank_seq : str + Flanking exon sequence before the spliced region + spliced_seq : str + Spliced region sequence + second_flank_seq : str + Flanking exon sequence after the spliced region + which_flank : str, optional + Which flank the PTM is associated with, by default 'First' + order_by : str, optional + Whether the first, spliced and second regions are defined by their genomic coordinates (first has smallest coordinate, spliced next, then second), or if they are defined by their translation (first the first when translated, etc.) + + Returns + ------- + tuple + Tuple containing the PTM location in the Inclusion Flanking Sequence and the Exclusion Flanking Sequence + """ + if order_by == 'Translation': + if which_flank == 'First': + inclusion_ptm_loc, exclusion_ptm_loc = ptm_loc_in_flank, ptm_loc_in_flank + elif which_flank == 'Second': + inclusion_ptm_loc = ptm_loc_in_flank+len(spliced_seq)+len(first_flank_seq) + exclusion_ptm_loc = ptm_loc_in_flank+len(first_flank_seq) + + elif order_by == 'Coordinates': + #grab codon associated with ptm in sequence + if (which_flank == 'First' and strand == 1) or (which_flank == 'Second' and strand == -1): + inclusion_ptm_loc, exclusion_ptm_loc = ptm_loc_in_flank, ptm_loc_in_flank + elif (strand == -1 and which_flank == 'First'): + inclusion_ptm_loc = ptm_loc_in_flank+len(spliced_seq)+len(second_flank_seq) + exclusion_ptm_loc = ptm_loc_in_flank+len(second_flank_seq) + elif (strand == 1 and which_flank == 'Second'): + inclusion_ptm_loc = ptm_loc_in_flank+len(spliced_seq)+len(first_flank_seq) + exclusion_ptm_loc = ptm_loc_in_flank+len(first_flank_seq) + else: + raise ValueError('Unknown order_by value, must be either Coordinates (first, spliced and second regions are determined by genomic coordinates) or Translation (first, spliced and second regions are determined by translation') + + return int(inclusion_ptm_loc), int(exclusion_ptm_loc)
+ + +
[docs]def get_flanking_sequence(ptm_loc, seq, ptm_residue, flank_size = 5, lowercase_mod = True, full_flanking_seq = False): + """ + Given a PTM location in a sequence of DNA, extract the flanking sequence around the PTM location and translate into the amino acid sequence. If the sequence is not the correct length, the function will attempt to extract the flanking sequence with spaces to account for missing parts if full_flanking_seq is not True. If the sequence is still not the correct length, the function will raise an error. Any unrecognized codons that are found in the sequence and are not in the standard codon table, including stop codons, will be translated as 'X' (unknown) or '*' (stop codon). + + Parameters + ---------- + ptm_loc : int + Location of the first base pair associated with PTM in the DNA sequence + seq : str + DNA sequence containing the PTM + ptm_residue : str + Amino acid residue associated with the PTM + flank_size : int, optional + Number of amino acids to include flanking the PTM, by default 5 + lowercase_mod : bool, optional + Whether to lowercase the amino acid associated with the PTM, by default True + full_flanking_seq : bool, optional + Whether to require the flanking sequence to be the correct length, by default False + + Returns + ------- + str + Amino acid sequence of the flanking sequence around the PTM if translation was successful, otherwise np.nan + """ + ptm_codon = seq[ptm_loc:ptm_loc+3] + #check if ptm codon codes for amino acid and then extract flanking sequence + if ptm_codon in codon_table.forward_table.keys(): + if codon_table.forward_table[ptm_codon] == ptm_residue: + if len(seq) != 3*(flank_size*2+1): + if full_flanking_seq: + raise ValueError('Flanking sequence is not the correct length, please fix or set full_flanking_seq to False') + else: + #check where issue is, at start or end of sequence + enough_at_start = ptm_loc >= flank_size*3 + enough_at_end = len(seq) - ptm_loc >= flank_size*3+3 + #extract length with amino acids and add cushion for missing parts + front_length = flank_size*3 if enough_at_start else ptm_loc + start_cushion = (flank_size*3 - ptm_loc)*' ' if not enough_at_start else '' + end_length = flank_size*3 + 3 if enough_at_end else len(seq) - ptm_loc + end_cushion = (flank_size*3 - (len(seq) - ptm_loc))*' ' if not enough_at_end else '' + #reconstruct sequence with spaces to account for missing ends + flanking_seq_bp = start_cushion + seq[ptm_loc-front_length:ptm_loc+end_length] + end_cushion + else: + flanking_seq_bp = seq[ptm_loc-(flank_size*3):ptm_loc+(flank_size*3)+3] + flanking_seq_aa = translate_flanking_sequence(flanking_seq_bp, flank_size = flank_size, lowercase_mod=lowercase_mod, full_flanking_seq = full_flanking_seq) + else: + flanking_seq_aa = np.nan + else: + flanking_seq_aa = np.nan + + return flanking_seq_aa
+ +
[docs]def extract_region_from_splicegraph(splicegraph, region_id): + """ + Given a region id and the splicegraph from SpliceSeq, extract the chromosome, strand, and start and stop locations of that exon. Start and stop are forced to be in ascending order, which is not necessarily true from the splice graph (i.e. start > stop for negative strand exons). This is done to make the region extraction consistent with the rest of the codebase. + + Parameters + ---------- + spliceseq : pandas.DataFrame + SpliceSeq splicegraph dataframe, with region_id as index + region_id : str + Region ID to extract information from, in the format of 'GeneName_ExonNumber' + + Returns + ------- + list + List containing the chromosome, strand (1 for forward, -1 for negative), start, and stop locations of the region + """ + region_info = splicegraph.loc[region_id] + + #check to see how many regions correspond to id, if multiple, default to first entry + if isinstance(region_info, pd.DataFrame): + region_info = region_info.iloc[0] + print(f'Warning: {region_id} has multiple entries in splicegraph. Defaulting to first entry.') + + strand = project.convert_strand_symbol(region_info['Strand']) + if strand == 1: + return [region_info['Chromosome'], strand,region_info['Chr_Start'], region_info['Chr_Stop']] + else: + return [region_info['Chromosome'], strand,region_info['Chr_Stop'], region_info['Chr_Start']]
+ + +
[docs]def get_spliceseq_event_regions(gene_name, from_exon, spliced_exons, to_exon, splicegraph): + """ + Given all exons associated with a splicegraph event, obtain the coordinates associated with the flanking exons and the spliced region. The spliced region is defined as the exons that are associated with psi values, while flanking regions include the "from" and "to" exons that indicate the adjacent, unspliced exons. + + Parameters + ---------- + gene_name : str + Gene name associated with the splice event + from_exon : int + Exon number associated with the first flanking exon + spliced_exons : str + Exon numbers associated with the spliced region, separated by colons for each unique exon + to_exon : int + Exon number associated with the second flanking exon + splicegraph : pandas.DataFrame + DataFrame containing information about individual exons and their coordinates + + Returns + ------- + tuple + Tuple containing the genomic coordinates of the first flanking region, spliced regions, and second flanking region + """ + first_exon_region = extract_region_from_splicegraph(splicegraph, region_id = gene_name+'_'+str(from_exon)) + spliced_regions = [extract_region_from_splicegraph(splicegraph, gene_name+'_'+exon) if '.' in exon else extract_region_from_splicegraph(splicegraph, gene_name+'_'+exon+'.0') for exon in spliced_exons.split(':')] + second_exon_region = extract_region_from_splicegraph(splicegraph, region_id = gene_name+'_'+str(to_exon)) + return first_exon_region, spliced_regions, second_exon_region
+ + + + + +
[docs]def get_flanking_changes(ptm_coordinates, chromosome, strand, first_flank_region, spliced_region, second_flank_region, gene = None, dPSI = None, sig = None, event_id = None, flank_size = 5, coordinate_type = 'hg38', lowercase_mod = True, order_by = 'Coordinates'): + """ + Currently has been tested with MATS splicing events. + + Given flanking and spliced regions associated with a splice event, identify PTMs that have potential to have an altered flanking sequence depending on whether spliced region is included or excluded (if PTM is close to splice boundary). For these PTMs, extract the flanking sequences associated with the inclusion and exclusion cases and translate into amino acid sequences. If the PTM is not associated with a codon that codes for the expected amino acid, the PTM will be excluded from the results. + + Parameters + ---------- + ptm_coordinates : pandas.DataFrame + DataFrame containing PTM coordinate information for identify PTMs in the flanking regions + chromosome : str + Chromosome associated with the splice event + strand : int + Strand associated with the splice event (1 for forward, -1 for negative) + first_flank_region : list + List containing the start and stop locations of the first flanking region (first is currently defined based on location the genome not coding sequence) + spliced_region : list + List containing the start and stop locations of the spliced region + second_flank_region : list + List containing the start and stop locations of the second flanking region (second is currently defined based on location the genome not coding sequence) + event_id : str, optional + Event ID associated with the splice event, by default None + flank_size : int, optional + Number of amino acids to include flanking the PTM, by default 7 + coordinate_type : str, optional + Coordinate system used for the regions, by default 'hg38'. Other options is hg19. + lowercase_mod : bool, optional + Whether to lowercase the amino acid associated with the PTM in returned flanking sequences, by default True + order_by : str, optional + Whether the first, spliced and second regions are defined by their genomic coordinates (first has smallest coordinate, spliced next, then second), or if they are defined by their translation (first the first when translated, etc.) + + + Returns + ------- + pandas.DataFrame + DataFrame containing the PTMs associated with the flanking regions and the amino acid sequences of the flanking regions in the inclusion and exclusion cases + """ + strand = project.convert_strand_symbol(strand) + #check first flank for ptms + ptms_in_region_first_flank = project.find_ptms_in_region(ptm_coordinates, chromosome, strand, first_flank_region[0], first_flank_region[1], gene = gene, coordinate_type = coordinate_type) + if not ptms_in_region_first_flank.empty: + ptms_in_region_first_flank = ptms_in_region_first_flank[ptms_in_region_first_flank['Proximity to Region End (bp)'] < flank_size*3] + ptms_in_region_first_flank['Region'] = 'First' + #check second flank for ptms + ptms_in_region_second_flank = project.find_ptms_in_region(ptm_coordinates, chromosome, strand, second_flank_region[0], second_flank_region[1], gene = gene, coordinate_type = coordinate_type) + if not ptms_in_region_second_flank.empty: + ptms_in_region_second_flank = ptms_in_region_second_flank[ptms_in_region_second_flank['Proximity to Region Start (bp)'] < flank_size*3] + ptms_in_region_second_flank['Region'] = 'Second' + + #combine + ptms_in_region = pd.concat([ptms_in_region_first_flank, ptms_in_region_second_flank]) + + + if ptms_in_region.empty: + return pd.DataFrame() + else: + + #add chromosome/strand info to region info for ensembl query + first_flank_region_query = [chromosome, strand] + first_flank_region + spliced_region_query = [chromosome, strand] + spliced_region + second_flank_region_query = [chromosome, strand] + second_flank_region + regions_list = [first_flank_region_query, spliced_region_query, second_flank_region_query] + + #get dna sequences associated with regions + first_flank_seq, spliced_seq, second_flank_seq = di.get_region_sequences_from_list(regions_list, coordinate_type = coordinate_type) + + #combine sequences for inclusion and exclusion cases + if strand == 1: + inclusion_seq = first_flank_seq + spliced_seq + second_flank_seq + exclusion_seq = first_flank_seq + second_flank_seq + else: + inclusion_seq = second_flank_seq + spliced_seq + first_flank_seq + exclusion_seq = second_flank_seq + first_flank_seq + + #go through all ptms in region within range of splice boundary and grab flanking sequences + translate_success_list = [] + inclusion_seq_list = [] + exclusion_seq_list = [] + flank_region_list = [] + for i, ptm in ptms_in_region.iterrows(): + ptm_loc = ptm[f'Gene Location ({coordinate_type})'] + flank_region = ptm['Region'] + flank_region_loc = ptm['Region'] + flank_region = first_flank_region if flank_region_loc == 'First' else second_flank_region + #grab ptm loc based on which strand ptm is on + if strand == 1: + relative_ptm_loc = int(ptm_loc - flank_region[0]) + else: + relative_ptm_loc = int(flank_region[1] - ptm_loc) + + + #grab where ptm is located in both the inclusion and exclusion event + inclusion_ptm_loc, exclusion_ptm_loc = get_ptm_locs_in_spliced_sequences(relative_ptm_loc, first_flank_seq, spliced_seq, second_flank_seq,strand = strand, which_flank = flank_region_loc, order_by = order_by) + + #grab codon associated with ptm in sequence + ptm_codon_inclusion = inclusion_seq[inclusion_ptm_loc:inclusion_ptm_loc+3] + ptm_codon_exclusion = exclusion_seq[exclusion_ptm_loc:exclusion_ptm_loc+3] + + + #check if ptm codon codes for amino acid and then extract flanking sequence + correct_seq = False + if ptm_codon_inclusion in codon_table.forward_table.keys() and ptm_codon_exclusion in codon_table.forward_table.keys(): + if codon_table.forward_table[ptm_codon_inclusion] == ptm['Residue'] and codon_table.forward_table[ptm_codon_exclusion] == ptm['Residue'] and exclusion_ptm_loc-(flank_size*3) >= 0 and len(exclusion_seq) >= exclusion_ptm_loc+(flank_size*3)+3: + inclusion_flanking_seq = inclusion_seq[inclusion_ptm_loc-(flank_size*3):inclusion_ptm_loc+(flank_size*3)+3] + exclusion_flanking_seq = exclusion_seq[exclusion_ptm_loc-(flank_size*3):exclusion_ptm_loc+(flank_size*3)+3] + correct_seq = True + + + #check to make sure ptm matches expected residue + if correct_seq: + translate_success_list.append(True) + + #translate flanking sequences + inclusion_aa = translate_flanking_sequence(inclusion_flanking_seq, flank_size = flank_size, lowercase_mod=lowercase_mod) + exclusion_aa = translate_flanking_sequence(exclusion_flanking_seq, flank_size = flank_size, lowercase_mod=lowercase_mod) + + #append to lists + inclusion_seq_list.append(inclusion_aa) + exclusion_seq_list.append(exclusion_aa) + flank_region_list.append(flank_region_loc) + else: + translate_success_list.append(False) + inclusion_seq_list.append(np.nan) + exclusion_seq_list.append(np.nan) + flank_region_list.append(flank_region_loc) + + #grab useful info from ptm dataframe + if gene is not None: + ptms_in_region = ptms_in_region[['Source of PTM', 'Gene', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']].reset_index(drop = True) + else: + ptms_in_region = ptms_in_region[['Source of PTM', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class']].reset_index(drop = True) + #add flanking sequence information to ptm dataframe + ptms_in_region['Inclusion Flanking Sequence'] = inclusion_seq_list + ptms_in_region['Exclusion Flanking Sequence'] = exclusion_seq_list + ptms_in_region['Region'] = flank_region_list + ptms_in_region['Translation Success'] = translate_success_list + + if event_id is not None: + ptms_in_region.insert(0, 'Event ID', event_id) + if dPSI is not None: + ptms_in_region['dPSI'] = dPSI + if sig is not None: + ptms_in_region['Significance'] = sig + + return ptms_in_region
+ + +
[docs]def get_flanking_changes_from_splice_data(splice_data, ptm_coordinates = None, chromosome_col = None, strand_col = None, first_flank_start_col = None, first_flank_end_col = None, spliced_region_start_col = None, spliced_region_end_col = None, second_flank_start_col = None, second_flank_end_col = None, dPSI_col = None, sig_col = None, event_id_col = None, gene_col = None, flank_size = 5, coordinate_type = 'hg38', lowercase_mod = True): + """ + Given a DataFrame containing information about splice events, extract the flanking sequences associated with the PTMs in the flanking regions if there is potential for this to be altered. The DataFrame should contain columns for the chromosome, strand, start and stop locations of the first flanking region, spliced region, and second flanking region. The DataFrame should also contain a column for the event ID associated with the splice event. If the DataFrame does not contain the necessary columns, the function will raise an error. + + Parameters + ---------- + splice_data : pandas.DataFrame + DataFrame containing information about splice events + ptm_coordinates : pandas.DataFrame + DataFrame containing PTM coordinate information for identify PTMs in the flanking regions + chromosome_col : str, optional + Column name indicating chromosome, by default None + strand_col : str, optional + Column name indicating strand, by default None + first_flank_start_col : str, optional + Column name indicating start location of the first flanking region, by default None + first_flank_end_col : str, optional + Column name indicating end location of the first flanking region, by default None + spliced_region_start_col : str, optional + Column name indicating start location of the spliced region, by default None + spliced_region_end_col : str, optional + Column name indicating end location of the spliced region, by default None + second_flank_start_col : str, optional + Column name indicating start location of the second flanking region, by default None + second_flank_end_col : str, optional + Column name indicating end location of the second flanking region, by default None + event_id_col : str, optional + Column name indicating event ID, by default None + flank_size : int, optional + Number of amino acids to include flanking the PTM, by default 7 + coordinate_type : str, optional + Coordinate system used for the regions, by default 'hg38'. Other options is hg19. + lowercase_mod : bool, optional + Whether to lowercase the amino acid associated with the PTM in returned flanking sequences, by default True + + Returns + ------- + list + List containing DataFrames with the PTMs associated with the flanking regions and the amino acid sequences of the flanking regions in the inclusion and exclusion cases + """ + #load ptm data from config if not provided + if ptm_coordinates is None and pose_config.ptm_coordinates is not None: + ptm_coordinates = pose_config.ptm_coordinates + elif ptm_coordinates is None: + raise ValueError('ptm_coordinates dataframe not provided and not found in the resource files. Please provide the ptm_coordinates dataframe with config.download_ptm_coordinates() or download the file manually. To avoid needing to download this file each time, run pose_config.download_ptm_coordinates(save = True) to save the file locally within the package directory (will take ~63MB of storage space)') + + #check to make sure all required columns are provided + if chromosome_col is None and strand_col is None and first_flank_start_col is None and first_flank_end_col is None and spliced_region_start_col is None and spliced_region_end_col is None and second_flank_start_col is None and second_flank_end_col is None: + raise ValueError('Please provide column names for chromosome, strand, first flank start, first flank end, spliced region start, spliced region end, second flank start, and second flank end.') + + #if chromosome is labeled with 'chr', remove + if splice_data[chromosome_col].str.contains('chr').any(): + splice_data['chr'] = splice_data['chr'].str.strip('chr') + + + results = [] + for i, event in tqdm.tqdm(splice_data.iterrows(), total = splice_data.shape[0], desc = 'Finding flanking sequences for PTMs nearby splice junctions'): + if event_id_col is None: + event_id = i + else: + event_id = event[event_id_col] + + #get gene info + chromosome = event[chromosome_col] + strand = event[strand_col] + gene = event[gene_col] if gene_col is not None else None + dPSI = event[dPSI_col] if dPSI_col is not None else None + sig = event[sig_col] if sig_col is not None else None + + #extract region inof + first_flank_region = [event[first_flank_start_col], event[first_flank_end_col]] + spliced_region = [event[spliced_region_start_col], event[spliced_region_end_col]] + second_flank_region = [event[second_flank_start_col], event[second_flank_end_col]] + + #get flanking changes + ptm_flanks = get_flanking_changes(ptm_coordinates, chromosome, strand, first_flank_region, spliced_region, second_flank_region, gene = gene, sig = sig, dPSI = dPSI, event_id = event_id, flank_size = flank_size, coordinate_type = coordinate_type, lowercase_mod=lowercase_mod) + + #append to results + results.append(ptm_flanks) + + results = pd.concat(results) + #combine and remove any failed translation attempts + if not results.empty: + results = results[results['Translation Success']] + + #do some quick comparison of flanking sequences + if not results.empty: + #find flanking sequences that have changed and only keep those + results['Matched'] = results['Inclusion Flanking Sequence'] == results['Exclusion Flanking Sequence'] + results = results[~results['Matched']] + results = results.drop(columns=['Matched']) + results['Stop Codon Introduced'] = (results['Inclusion Flanking Sequence'].str.contains(r'\*')) | (results['Exclusion Flanking Sequence'].str.contains(r'\*')) + + print(f'{results.shape[0]} PTMs found with potential for altered flanking sequences.') + else: + print('No PTMs found with potential for altered flanking sequences.') + return results
+ + +
[docs]def get_spliceseq_flank_loc(ptm, strand, from_region_coords, to_region_coords, coordinate_type = 'hg19'): + """ + Given ptm information for identifying flanking sequences from splicegraph information, extract the relative location of the ptm in the flanking region (where it is located in translation of the flanking region). + + Parameters + ---------- + ptm : pandas.Series + Series containing PTM information + strand : int + Strand associated with the splice event (1 for forward, -1 for negative) + from_region_coords : list + List containing the chromosome, strand, start, and stop locations of the first flanking region + to_region_coords : list + List containing the chromosome, strand, start, and stop locations of the second flanking region + + Returns + ------- + int + Relative location of the PTM in the flanking region + """ + if strand == 1 and ptm['Which Flank'] == 'First': + return ptm[f'Gene Location ({coordinate_type})'] - from_region_coords[-2] + elif strand == 1 and ptm['Which Flank'] == 'Second': + return ptm[f'Gene Location ({coordinate_type})'] - to_region_coords[-2] + elif strand == -1 and ptm['Which Flank'] == 'First': + return from_region_coords[-1] - ptm[f'Gene Location ({coordinate_type})'] + else: + return to_region_coords[-1] - ptm[f'Gene Location ({coordinate_type})']
+ +
[docs]def get_ptms_in_splicegraph_flank(gene_name, chromosome, strand, flank_region_start, flank_region_end, coordinate_type = 'hg19', which_flank = 'First', flank_size = 5): + """ + + """ + #check for ptms in first flank region + flank_ptms = project.find_ptms_in_region(ptm_coordinates = pose_config.ptm_coordinates, chromosome = chromosome, strand = strand, start = flank_region_start, end = flank_region_end, coordinate_type = coordinate_type, gene = gene_name) + if not flank_ptms.empty and which_flank == 'First': #if ptms found region, grab those close enough to splice boundary to have impacted flanking sequence + flank_ptms = flank_ptms[flank_ptms['Proximity to Region End (bp)'] < flank_size*3] + flank_ptms['Which Flank'] = 'First' + elif not flank_ptms.empty and which_flank == 'Second': #if ptms found region, grab those close enough to splice boundary to have impacted flanking sequence + flank_ptms = flank_ptms[flank_ptms['Proximity to Region Start (bp)'] < flank_size*3] + flank_ptms['Which Flank'] = 'Second' + + return flank_ptms
+ +def get_flank_changes_from_splicegraph_single_event(event_row, splicegraph, event_id_col = None, dPSI_col = None, sig_col = None, extra_cols = None, flank_size = 5, coordinate_type = 'hg19'): + region_id = event_row[event_id_col] if event_id_col is not None else None + dPSI = event_row[dPSI_col] if dPSI_col is not None else None + sig = event_row[sig_col] if sig_col is not None else None + + #get region info + from_region_coords, spliced_region_coords, to_region_coords = get_spliceseq_event_regions(gene_name = event_row['symbol'], from_exon = event_row['from_exon'], spliced_exons = event_row['exons'], to_exon = event_row['to_exon'], splicegraph = splicegraph) + chromosome = from_region_coords[0] + strand = from_region_coords[1] + + from_flank_ptms = get_ptms_in_splicegraph_flank(event_row['symbol'], chromosome, strand, from_region_coords[-2], from_region_coords[-1], coordinate_type = coordinate_type, which_flank = 'First', flank_size = flank_size) + to_flank_ptms = get_ptms_in_splicegraph_flank(event_row['symbol'], chromosome, strand, to_region_coords[-2], to_region_coords[-1], coordinate_type = coordinate_type, which_flank = 'Second', flank_size = flank_size) + ptms_of_interest = pd.concat([from_flank_ptms, to_flank_ptms]).reset_index() + + + #if any ptms found for event that could have altered flanking sequences extract sequence information + if not ptms_of_interest.empty: + #add additional context from splice data, if indicated + if event_id_col is not None: + ptms_of_interest['Region ID'] = region_id + + if dPSI_col is not None: + ptms_of_interest['dPSI'] = dPSI + + if sig_col is not None: + ptms_of_interest['Significance'] = sig + + if extra_cols is not None: + for col in extra_cols: + ptms_of_interest[col] = event_row[col] + + + region_list = [from_region_coords] + spliced_region_coords + [to_region_coords] + seqs = di.get_region_sequences_from_list(region_list, coordinate_type = 'hg19') + from_sequence = seqs[0] + to_sequence = seqs[-1] + spliced_sequence = ''.join(seqs[1:-1]) #combine all sequences from spliced region (may be multiple exons) + + inclusion_sequence = seqs[0] + ''.join(seqs[1:-1]) + seqs[-1] #combine sequences if spliced region is included + exclusion_sequence = seqs[0] + seqs[-1] #combine sequences if spliced region is excluded + + #initialize columns for flanking sequences + ptms_of_interest['Inclusion Flanking Sequence'] = '' + ptms_of_interest['Exclusion Flanking Sequence'] = '' + for i, ptm in ptms_of_interest.iterrows(): + ptm_loc_in_flank = get_spliceseq_flank_loc(ptm, strand, from_region_coords, to_region_coords) + #grab where ptm is located in both the inclusion and exclusion event + inclusion_ptm_loc, exclusion_ptm_loc = get_ptm_locs_in_spliced_sequences(ptm_loc_in_flank, from_sequence, spliced_sequence, to_sequence, strand = strand, which_flank = ptm['Which Flank'], order_by = 'Translation') + + #extract expected flanking sequence based on location in sequence + inclusion_flank = get_flanking_sequence(inclusion_ptm_loc, inclusion_sequence, ptm_residue = ptm['Residue'], flank_size = flank_size, full_flanking_seq = False) + exclusion_flank = get_flanking_sequence(exclusion_ptm_loc, exclusion_sequence, ptm_residue = ptm['Residue'], flank_size = flank_size, full_flanking_seq = False) + + #add to dataframe + ptms_of_interest.loc[i, 'Inclusion Flanking Sequence'] = inclusion_flank + ptms_of_interest.loc[i, 'Exclusion Flanking Sequence'] = exclusion_flank + + #trim the expected flanking sequence + #ptms_of_interest['Expected Flanking Sequence'] = ptms_of_interest['Expected Flanking Sequence'].apply(lambda x: x[int((len(x)-1)/2-flank_size):int((len(x)-1)/2+flank_size+1)] if x == x else np.nan) + #find flanking sequences that have changed and only keep those + ptms_of_interest['Matched'] = ptms_of_interest['Inclusion Flanking Sequence'] == ptms_of_interest['Exclusion Flanking Sequence'] + ptms_of_interest = ptms_of_interest[~ptms_of_interest['Matched']] + ptms_of_interest = ptms_of_interest.drop(columns=['Matched']) + ptms_of_interest['Stop Codon Introduced'] = (ptms_of_interest['Inclusion Flanking Sequence'].str.contains(r'\*')) | (ptms_of_interest['Exclusion Flanking Sequence'].str.contains(r'\*')) + + + return ptms_of_interest + +
[docs]def get_flanking_changes_from_splicegraph(psi_data, splicegraph, ptm_coordinates = None, dPSI_col = None, sig_col = None, event_id_col = None, extra_cols = None, gene_col = 'symbol', flank_size = 5, coordinate_type = 'hg19'): + """ + Given a DataFrame containing information about splice events obtained from SpliceSeq and the corresponding splicegraph, extract the flanking sequences of PTMs that are nearby the splice boundary (potential for flanking sequence to be altered). Coordinate information of individual exons should be found in splicegraph. You can also provide columns with specific psi or significance information. Extra cols not in these categories can be provided with extra_cols parameter. + + Parameters + ---------- + psi_data : pandas.DataFrame + DataFrame containing information about splice events obtained from SpliceSeq + splicegraph : pandas.DataFrame + DataFrame containing information about individual exons and their coordinates + ptm_coordinates : pandas.DataFrame + DataFrame containing PTM coordinate information for identify PTMs in the flanking regions + dPSI_col : str, optional + Column name indicating delta PSI value, by default None + sig_col : str, optional + Column name indicating significance of the event, by default None + event_id_col : str, optional + Column name indicating event ID, by default None + extra_cols : list, optional + List of column names for additional information to add to the results, by default None + gene_col : str, optional + Column name indicating gene symbol of spliced gene, by default 'symbol' + flank_size : int, optional + Number of amino acids to include flanking the PTM, by default 5 + coordinate_type : str, optional + Coordinate system used for the regions, by default 'hg19'. Other options is hg38. + + Returns + ------- + altered_flanks : pandas.DataFrame + DataFrame containing the PTMs associated with the flanking regions that are altered, and the flanking sequences that arise depending on whether the flanking sequence is included or not + """ + #load ptm data from config if not provided + if ptm_coordinates is None and pose_config.ptm_coordinates is not None: + ptm_coordinates = pose_config.ptm_coordinates.copy() + elif ptm_coordinates is None: + raise ValueError('ptm_coordinates dataframe not provided and not found in the resource files. Please provide the ptm_coordinates dataframe with config.download_ptm_coordinates() or download the file manually. To avoid needing to download this file each time, run pose_config.download_ptm_coordinates(save = True) to save the file locally within the package directory (will take ~63MB of storage space)') + + #load spliceseq + splicegraph['Region ID'] = splicegraph['Symbol'] + '_' + splicegraph['Exon'].astype(str) + splicegraph.index = splicegraph['Region ID'].values + + data_for_flanks = psi_data.drop_duplicates().copy() + + #extract relevant columns + relevant_columns = ['as_id', 'splice_type', 'symbol', 'from_exon', 'exons', 'to_exon'] + if event_id_col is not None: + relevant_columns.append(event_id_col) + if dPSI_col is not None: + relevant_columns.append(dPSI_col) + if sig_col is not None: + relevant_columns.append(sig_col) + if extra_cols is not None: + relevant_columns.extend(extra_cols) + + data_for_flanks = data_for_flanks[relevant_columns].drop_duplicates() + data_for_flanks = data_for_flanks.dropna(subset = ['from_exon', 'to_exon']) + data_for_flanks['from_region_id'] = data_for_flanks[gene_col]+'_'+data_for_flanks['from_exon'].astype(str) + data_for_flanks['to_region_id'] = data_for_flanks['symbol']+'_'+data_for_flanks['to_exon'].astype(str) + + #get coordinates for the different regions + altered_flanks = [] + for i, row in tqdm.tqdm(data_for_flanks.iterrows(), total = data_for_flanks.shape[0], desc = 'Finding flanking changes for splicegraph events'): + single_event_altered_flanks = get_flank_changes_from_splicegraph_single_event(row, splicegraph, event_id_col = event_id_col, dPSI_col = dPSI_col, sig_col = sig_col, extra_cols = extra_cols, flank_size = flank_size, coordinate_type = coordinate_type) + + altered_flanks.append(single_event_altered_flanks) + + altered_flanks = pd.concat(altered_flanks) + return altered_flanks
+ + + + + + +
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+
+ + +
+ + +
+
+
+ + + + + +
+
+ + \ No newline at end of file diff --git a/_modules/ptm_pose/pose_config.html b/_modules/ptm_pose/pose_config.html new file mode 100644 index 0000000..3c41651 --- /dev/null +++ b/_modules/ptm_pose/pose_config.html @@ -0,0 +1,489 @@ + + + + + + + + + + + ptm_pose.pose_config — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for ptm_pose.pose_config

+import pandas as pd
+import numpy as np
+
+#base python packages
+import os
+import time
+
+
+from ptm_pose import database_interfacing as di
+
+#identify package directory
+package_dir = os.path.dirname(os.path.abspath(__file__))
+resource_dir = package_dir + '/Resource_Files/'
+
+#download modification conversion file (allows for conversion between modificaiton subtypes and clases)
+modification_conversion = pd.read_csv(resource_dir + 'modification_conversion.csv')
+
+#load ptm_coordinates dataframe, if present
+if os.path.isfile(resource_dir + 'ptm_coordinates.csv'):
+    ptm_coordinates = pd.read_csv(resource_dir + 'ptm_coordinates.csv',index_col = 0, dtype = {'Chromosome/scaffold name': str, 'PTM Position in Canonical Isoform': int})
+else:
+    print('ptm_coordinates file not found. Please run download_ptm_coordinates() to download the file from GitHub LFS. Set save = True to save the file locally and avoid downloading in the future.')
+    ptm_coordinates = None
+
+
[docs]def download_ptm_coordinates(save = False, max_retries = 5, delay = 10): + """ + Download ptm_coordinates dataframe from GitHub Large File Storage (LFS). By default, this will not save the file locally due the larger size (do not want to force users to download but highly encourage), but an option to save the file is provided if desired + + Parameters + ---------- + save : bool, optional + Whether to save the file locally into Resource Files directory. The default is False. + max_retries : int, optional + Number of times to attempt to download the file. The default is 5. + delay : int, optional + Time to wait between download attempts. The default is 10. + + """ + for i in range(max_retries): + try: + ptm_coordinates = pd.read_csv('https://github.com/NaegleLab/PTM-POSE/raw/main/PTM_POSE/Resource_Files/ptm_coordinates.csv?download=', index_col = 0, dtype = {'Chromosome/scaffold name': str, 'PTM Position in Canonical Isoform': str}) + break + except: + time.sleep(delay) + else: + raise Exception('Failed to download ptm_coordinates file after ' + str(max_retries) + ' attempts. Please try again.') + + + + if save: + ptm_coordinates.to_csv(resource_dir + 'ptm_coordinates.csv') + + return ptm_coordinates
+ +def download_translator(save = False): + uniprot_to_genename, uniprot_to_geneid = di.get_uniprot_to_gene() + translator = pd.DataFrame({'Gene stable ID': uniprot_to_geneid, 'Gene name':uniprot_to_genename}) + if save: + translator.to_csv(resource_dir + 'translator.csv') + return translator, uniprot_to_genename, uniprot_to_geneid + +#load uniprot translator dataframe, process if need be +if os.path.isfile(resource_dir + 'translator.csv'): + translator = pd.read_csv(resource_dir + 'translator.csv', index_col=0) + uniprot_to_genename = translator['Gene name'].to_dict() + uniprot_to_geneid = translator['Gene stable ID'].to_dict() + + #replace empty strings with np.nan + translator = translator.replace('', np.nan) +else: + print('Downloading mapping information between UniProt and Gene Names from UniProt. To permanently save the translator file, run download_translator(save = True)') + translator, uniprot_to_genename, uniprot_to_geneid = download_translator() + + +#additional information + +#dictionary to associate annotation column names with different annotation types +annotation_col_dict = {'PhosphoSitePlus':{'Function':'PSP:ON_FUNCTION', 'Process':'PSP:ON_PROCESS', 'Interactions':'PSP:ON_PROT_INTERACT', 'Disease':'PSP:Disease_Association', 'Kinase':'PSP:Kinase','Perturbation':'PTMsigDB:PERT-PSP'}, + 'ELM':{'Interactions':'ELM:Interactions', 'Motif Match':'ELM:Motif Matches'}, + 'PTMcode':{'Intraprotein':'PTMcode:Intraprotein_Interactions', 'Interactions':'PTMcode:Interprotein_Interactions'}, + 'PTMInt':{'Interactions':'PTMInt:Interaction'}, + 'RegPhos':{'Kinase':'RegPhos:Kinase'}, + 'DEPOD':{'Phosphatase':'DEPOD:Phosphatase'}, + 'PTMsigDB': {'WikiPathway':'PTMsigDB:PATH-WP', 'NetPath':'PTMsigDB:PATH-NP','mSigDB':'PTMsigDB:PATH-BI', 'Perturbation (DIA2)':'PTMsigDB:PERT-P100-DIA2', 'Perturbation (DIA)': 'PTMsigDB:PERT-P100-DIA', 'Perturbation (PRM)':'PTMsigDB:PERT-P100-PRM','Kinase':'PTMsigDB:KINASE-iKiP'}} + +annotation_function_dict = {'PhosphoSitePlus': {'Function':'add_PSP_regulatory_site_data', 'Process':'add_PSP_regulatory_site_data', 'Disease':'add_PSP_disease_association', 'Kinase':'add_PSP_kinase_substrate_data', 'Interactions': 'add_PSP_regulatory_site_data()', 'Perturbation':'add_PTMsigDB_data'}, + 'ELM': {'Interactions':'add_ELM_interactions()', 'Motif Match':'add_ELM_motif_matches'}, + 'PTMcode': {'Intraprotein': 'add_PTMcode_intraprotein', 'Interactions':'add_PTMcode_interprotein'}, + 'PTMInt': {'Interactions':'add_PTMInt_data'}, + 'RegPhos': {'Kinase': 'add_RegPhos_data'}, + 'DEPOD': {'Phosphatase':'add_DEPOD_data'}, + 'PTMsigDB':{'WikiPathway':'add_PTMsigDB_data', 'NetPath':'add_PTMsigDB_data','mSigDB':'add_PTMsigDB_data', 'Perturbation (DIA2)':'add_PTMsigDB_data', 'Perturbation (DIA)': 'add_PTMsigDB_data', 'Perturbation (PRM)':'add_PTMsigDB_data','Kinase':'add_PTMsigDB_data'}} + + + +#manually curated dictionary to convert phosphositeplus names that are not standard gene names to UniProt IDs +psp_name_dict = {'Actinfilin':'Q6TDP4','14-3-3 zeta':'P63104','14-3-3 epsilon':'P62258','14-3-3 sigma':'P31947','P130Cas':'P56945','ENaC-beta':'P51168','ENaC-alpha':'P37088','14-3-3 eta':'Q04917','14-3-3 beta':'P31946', '14-3-3 gamma':'P61981', '14-3-3 theta':'P27348','Securin':'O95997','GPIbA':'P07359','occludin':'Q16625','ER-beta':'Q92731','53BP1': 'Q12888','4E-T':'Q9NRA8','53BP2':'Q13625','AP-2 beta':'Q92481','APAF':'O14727','Bcl-xL':'Q07817','C/EBP-epsilon':'Q15744','CREB':'P16220','Calmodulin':'P0DP23','Cortactin':'Q14247','DNAPK':'P78527', 'Diaphanous-1':'O60610', 'ER-alpha':'P03372', 'Exportin-1':'O14980', 'Ezrin':'P15311', 'H3':'Q6NXT2','HSP70':'P0DMV8;P0DMV9','IKKG':'Q9Y6K9', 'Ig-beta':'P40259','Ku80':'P13010','LC8':'Q96FJ2', 'MRLC2V':'P10916', 'Merlin':'P35240','NFkB-p105':'P19838', 'Rb':'P06400', 'RhoGDI alpha':'P52565', 'Rhodopsin':'P08100', 'SHP-1':'P29350', 'SHP-2':'Q06124','SLP76':'Q13094','SMRT':'Q9Y618','SRC-3':'Q9Y6Q9','STI1':'Q9BPY8','Vinculin':'P18206','beclin 1':'Q14457','claspin':'Q9HAW4', 'gp130':'P40189','leupaxin':'O60711','p14ARF':'Q8N726','rubicon':'Q92622','snRNP A':'P09661','snRNP B1':'P08579','snRNP C':'P09234','syntenin':'O00560;Q9H190','talin 1':'Q9Y490', 'ubiquitin':'P0CG47', '4E-BP1':'Q13541', 'ALK2':'Q04771', 'AMPKA1':'Q13131','AurA':'O14965','AurB':'Q96GD4', 'AurC':'Q9UQB9', 'C/EBP-beta':'P17676', 'CAMK1A':'Q14012', 'CHD-3 iso3':'Q12873', 'CK1A':'P48729', 'CK2B':'P67870', 'DAT':'Q01959', 'DJ-1':'Q99497', 'DOR-1':'P41143', 'DYN1':'Q05193','Desmoplakin':'P15924', 'Exportin-4':'Q9C0E2', 'FBPase':'P09467', 'FBPase 2':'O60825', 'G-alpha':'P63096', 'G-alpha 13':'Q14344', 'G-alpha i1':'P63096', 'G-beta 1':'P62873', 'G-beta 2':'P62879', 'G6PI':'P06744', 'GM130':'Q08379', 'GR':'P04150', 'H4':'P62805', 'HP1 alpha':'P45973', 'IkB-alpha':'P25963', 'IkB-beta':'Q15653', 'PPAR-gamma':'P37231', 'Claudin-1':'O95832', 'Claudin-2':'P57739', 'Cofilin-1':'P23528', 'K14':'P02533', 'K18':'P05783', 'K5':'P13647','K8':'P05787','Ku70':'P12956', 'Moesin':'P26038','N-WASP':'O00401','Nur77':'P22736','P38A':'Q16539','P38B':'Q15759', 'P70S6KB':'P23443','PGC-1 alpha':'Q9UBK2','PKHF1':'Q96S99','P38G':'P53778','PKCI':'P41743','PKCZ':'Q05513', 'PKG1':'Q13976', 'PTP-PEST':'Q05209','Plectin-1':'Q15149','RFA2':'P15927','SERCA2':'P16615','SH2-B-beta':'Q9NRF2', 'SNAP-alpha':'P54920', 'SPT16':'Q9BXB7', 'SPT6':'Q7KZ85','STEP':'P54829','STLK3':'Q9UEW8', 'Snail1':'O95863', 'Snail2':'O43623', 'Stargazin':'P62955','Survivin':'O15392','TARP':'P09693','TK':'P04183','TOM20':'Q15388','TR-alpha':'P10827','Titin':'Q8WZ42','Vimentin':'P08670','WASP':'P42768','ZAP':'Q7Z2W4', 'Zyxin':'Q15942', 'cIAP1':'Q13490','caveolin-1':'Q03135', 'coronin 2A':'Q92828', 'desmin':'P17661','eIF2-alpha':'Q9BY44', 'eIF2-beta':'P20042', 'eIF3-alpha':'O75822', 'eIF3-eta':'P55884', 'eIF3-zeta':'O15371', 'eNOS':'P29474', 'emerin':'P50402', 'epsin 1':'Q9Y6I3', 'glutaminase':'O94925','hnRNP A1':'P09651', 'hnRNP A2/B1':'P22626', 'hnRNP A3':'P51991','hnRNP D0':'Q14103', 'hnRNP E2':'Q15366','hnRNP P2':'P35637','hnRNP U':'Q00839', 'kindlin-2':'Q96AC1', 'kindlin-3':'Q86UX7','lamin A/C':'P02545', 'mucolipin 1':'Q9GZU1','nNOS':'Q8WY41','p21Cip1':'P38936', 'p27Kip1':'P46527','p47phox':'P14598','p90RSK':'Q15418','palladin':'Q8WX93','polybromo 1':'Q86U86', 'syndecan-4':'P31431', 'tensin 1 iso1':'Q9HBL0', 'utrophin':'P46939','DKFZp686L1814':'Q6MZP7', 'EB1':'Q15691', 'EB2':'Q15555', 'G-alpha i3':'P08754','HSP20':'O14558','HSP40':'P25685', 'Hic-5':'O43294', 'Ig-alpha':'P11912', 'LC3A':'Q9H492', 'LC3B':'Q9GZQ8', 'LC3C':'Q9BXW4','NFkB-p100':'Q00653','NFkB-p65':'Q04206','Pnk1':'Q96T60', 'RPT2':'P62191','EB3':'Q9UPY8'} + + +def download_background(annotation_type = 'Function', database = 'PhosphoSitePlus', mod_class = None, collapsed = False): + if mod_class is None: + fname = f'{database}_{annotation_type}_collapsed.csv' if collapsed else f'{database}_{annotation_type}.csv' + else: + fname = f'{database}_{annotation_type}_{mod_class}.csv' + + if os.path.exists(resource_dir + '/background_annotations/'+fname): + background = pd.read_csv(resource_dir + '/background_annotations/'+fname,index_col = 0).squeeze() + return background + else: + raise FileNotFoundError(f"Specific background file for {annotation_type} in {database} does not exist. Please construct the background with `analyze.construct_background()`") + +def flip_uniprot_dict(uniprot_dict): + """ + Given one of the uniprot id to gene name or gene id dictionaries, flip the dictionary so that the gene name or id is the key and the uniprot id is the value + """ + uniprot_dict = pd.DataFrame(uniprot_dict, index = ['Gene']).T.reset_index() + uniprot_dict['Gene'] = uniprot_dict['Gene'].str.split(' ') + uniprot_dict = uniprot_dict.explode('Gene') + uniprot_dict = uniprot_dict.set_index('Gene')['index'].to_dict() + return uniprot_dict +
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+
+ + +
+ + +
+
+
+ + + + + +
+
+ + \ No newline at end of file diff --git a/_modules/ptm_pose/project.html b/_modules/ptm_pose/project.html new file mode 100644 index 0000000..e345eb1 --- /dev/null +++ b/_modules/ptm_pose/project.html @@ -0,0 +1,1040 @@ + + + + + + + + + + + ptm_pose.project — PTM-POSE + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for ptm_pose.project

+import numpy as np
+import pandas as pd
+
+import multiprocessing
+import datetime
+
+from ptm_pose import pose_config
+from ptm_pose import flanking_sequences as fs
+
+from tqdm import tqdm
+
+def find_ptms_in_region(ptm_coordinates, chromosome, strand, start, end, gene = None, coordinate_type = 'hg38'):
+    """
+    Given an genomic region in either hg38 or hg19 coordinates (such as the region encoding an exon of interest), identify PTMs that are mapped to that region. If so, return the exon number. If none are found, return np.nan.
+    
+    Parameters
+    ----------
+    chromosome: str
+        chromosome where region is located
+    strand: int
+        DNA strand for region is found on (1 for forward, -1 for reverse)
+    start: int
+        start position of region on the chromosome/strand (should always be less than end)
+    end: int
+        end position of region on the chromosome/strand (should always be greater than start)
+    coordinate_type: str
+        indicates the coordinate system used for the start and end positions. Either hg38 or hg19. Default is 'hg38'.
+    
+    Returns
+    -------
+    ptms_in_region: pandas.DataFrame
+        dataframe containing all PTMs found in the region. If no PTMs are found, returns np.nan.
+        
+    """
+    #restrict to PTMs on the same chromosome and strand
+    ptms_in_region = ptm_coordinates[(ptm_coordinates['Chromosome/scaffold name'] == chromosome) & (ptm_coordinates['Strand'] == strand)].copy()
+
+    if coordinate_type in ['hg19','hg38']:
+        loc_col = f'Gene Location ({coordinate_type})'
+    else:
+        raise ValueError('Coordinate type must be hg38 or hg19')
+
+    #check to make sure the start value is less than the end coordinate. If it is not, treat the end coordinate as the start and the start coordinate as the end
+    if start < end:
+        ptms_in_region = ptms_in_region[(ptms_in_region[loc_col] >= start) & (ptms_in_region[loc_col] <= end)]
+    else:
+        ptms_in_region = ptms_in_region[(ptms_in_region[loc_col] <= start) & (ptms_in_region[loc_col] >= end)]
+    
+
+    #extract only PTM information from dataframe and return that and list (if not ptms, return empty dataframe)
+    if not ptms_in_region.empty:
+        #grab uniprot id and residue
+        ptms_in_region = ptms_in_region[['Source of PTM', 'UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', loc_col, 'Modification', 'Modification Class']]
+        #check if ptm is associated with the same gene (if info is provided). if not, do not add
+        if gene is not None:
+            for i, row in ptms_in_region.iterrows():
+                if ';' in row['UniProtKB Accession']:
+                    uni_ids = row['UniProtKB Accession'].split(';')
+                    remove = True
+                    for uni in uni_ids:
+                        if gene in pose_config.uniprot_to_genename[uni.split('-')[0]].split(' '):
+                            remove = False
+                            break
+
+                    if remove:
+                        ptms_in_region.drop(i)
+                else:
+                    if gene not in pose_config.uniprot_to_genename[row['UniProtKB Accession'].split('-')[0]].split(' '):
+                        ptms_in_region = ptms_in_region.drop(i)
+
+            #make sure ptms still are present after filtering
+            if ptms_in_region.empty:
+                return pd.DataFrame()
+            else:
+                ptms_in_region.insert(0, 'Gene', gene)
+        
+        #calculate proximity to region start and end
+        ptms_in_region['Proximity to Region Start (bp)'] = (ptms_in_region[loc_col] - start).abs()
+        ptms_in_region['Proximity to Region End (bp)'] = (ptms_in_region[loc_col] - end).abs()
+        ptms_in_region['Proximity to Splice Boundary (bp)'] = ptms_in_region.apply(lambda x: min(x['Proximity to Region Start (bp)'], x['Proximity to Region End (bp)']), axis = 1)
+
+
+        return ptms_in_region
+    else:
+        return pd.DataFrame()
+    
+def convert_strand_symbol(strand):
+    """
+    Given DNA strand information, make sure the strand information is in integer format (1 for forward, -1 for reverse). This is intended to convert from string format ('+' or '-') to integer format (1 or -1), but will return the input if it is already in integer format.
+
+    Parameters
+    ----------
+    strand: str or int
+        DNA strand information, either as a string ('+' or '-') or an integer (1 or -1)
+
+    Returns
+    -------
+    int
+        DNA strand information as an integer (1 for forward, -1 for reverse)
+    """
+    if isinstance(strand, str):
+        if strand == '+' or strand == '1':
+            return 1
+        elif strand == '-' or strand == '-1':
+            return -1
+    else:
+        return strand
+
+def find_ptms_in_many_regions(region_data, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', region_start_col = 'exonStart_0base', region_end_col = 'exonEnd', gene_col = None, dPSI_col = None, sig_col = None, event_id_col = None, extra_cols = None, annotate_original_df = True, coordinate_type = 'hg38', separate_modification_types = False, taskbar_label = None):
+    """
+    Given a dataframe with a unique region in each row, project PTMs onto the regions. Assumes that the region data will have chromosome, strand, and genomic start/end positions, and each row corresponds to a unique region.
+
+    Parameters
+    ----------
+    ptm_coordinates: pandas.DataFrame
+        dataframe containing PTM information, including chromosome, strand, and genomic location of PTMs
+    region_data: pandas.DataFrame
+        dataframe containing region information, including chromosome, strand, and genomic location of regions of interest
+    chromosome_col: str
+        column name in splice_data that contains chromosome information. Default is 'chr'. Expects it to be a str with only the chromosome number: 'Y', '1', '2', etc.
+    strand_col: str
+        column name in splice_data that contains strand information. Default is 'strand'. Expects it to be a str with '+' or '-', or integers as 1 or -1. Will convert to integers automatically if string format is provided.
+    region_start_col: str
+        column name in splice_data that contains the start position of the region of interest. Default is 'exonStart_0base'.
+    region_end_col: str
+        column name in splice_data that contains the end position of the region of interest. Default is 'exonEnd'.
+    gene_col: str
+        column name in splice_data that contains the gene name. If provided, will be used to make sure the projected PTMs stem from the same gene (some cases where genomic coordiantes overlap between distinct genes). Default is None.
+    event_id_col: str
+        column name in splice_data that contains the unique identifier for the splice event. If provided, will be used to annotate the ptm information with the specific splice event ID. Default is None.
+    coordinate_type: str
+        indicates the coordinate system used for the start and end positions. Either hg38 or hg19. Default is 'hg38'.
+    separate_modification_types: bool
+        Indicate whether to store PTM sites with  multiple modification types as multiple rows. For example, if a site at K100 was both an acetylation and methylation site, these will be separated into unique rows with the same site number but different modification types. Default is True.
+    taskbar_label: str
+        Label to display in the tqdm progress bar. Default is None, which will automatically state "Projecting PTMs onto regions using ----- coordinates".
+    
+    
+
+    Returns
+    -------
+    spliced_ptm_info: pandas.DataFrame
+        Contains the PTMs identified across the different splice events
+    splice_data: pandas.DataFrame
+        dataframe containing the original splice data with an additional column 'PTMs' that contains the PTMs found in the region of interest, in the format of 'SiteNumber(ModificationType)'. If no PTMs are found, the value will be np.nan.
+    """
+    if taskbar_label is None:
+        taskbar_label = 'Projecting PTMs onto regions using ' + coordinate_type + ' coordinates.'
+
+    if region_data[chromosome_col].str.contains('chr').any():
+        region_data[chromosome_col] = region_data[chromosome_col].str.strip('chr')
+    
+
+    spliced_ptm_info = []
+    spliced_ptms_list = []
+    num_ptms_affected = []
+    num_unique_ptm_sites = []
+
+    #copy
+    region_data = region_data.copy()
+
+    #iterate through each row of the splice data and find PTMs in the region
+    for index, row in tqdm(region_data.iterrows(), total = len(region_data), desc = taskbar_label):
+        #grab region information from row
+        chromosome = row[chromosome_col]
+        strand = convert_strand_symbol(row[strand_col])
+        start = row[region_start_col]
+        end = row[region_end_col]
+        #only provide these if column is given
+        gene = row[gene_col] if gene_col is not None else None
+
+        #project ptms onto region
+        ptms_in_region = find_ptms_in_region(ptm_coordinates, chromosome, strand, start, end, gene = gene, coordinate_type = coordinate_type)
+        
+        extra_info = {}
+
+
+        #add additional context from splice data, if indicated
+        extra_info = {}
+        if event_id_col is not None:
+            extra_info['Region ID'] = row[event_id_col]
+            
+        if dPSI_col is not None:
+            extra_info['dPSI'] = row[dPSI_col]
+        
+        if sig_col is not None:
+            extra_info['Significance'] = row[sig_col]
+        
+        if extra_cols is not None:
+            for col in extra_cols:
+                extra_info[col] = row[col]
+
+        #add extra info to ptms_in_region
+        ptms_in_region = pd.concat([pd.DataFrame(extra_info, index = ptms_in_region.index), ptms_in_region], axis = 1)
+
+        #if desired, add ptm information to the original splice event dataframe
+        if annotate_original_df:
+            if not ptms_in_region.empty:
+            #split and separate unique modification types
+                if separate_modification_types:
+                    ptms_in_region['Modification Class'] = ptms_in_region['Modification Class'].str.split(';')
+                    ptms_in_region = ptms_in_region.explode('Modification Class')
+
+                ptms_info = ptms_in_region.apply(lambda x: x['UniProtKB Accession'] + '_' + x['Residue'] + str(x['PTM Position in Canonical Isoform']) + ' (' + x['Modification Class'] + ')', axis = 1)
+                ptms_str = '/'.join(ptms_info.values)
+                spliced_ptms_list.append(ptms_str)
+                num_ptms_affected.append(ptms_in_region.shape[0])
+                num_unique_ptm_sites.append(ptms_in_region.groupby(['UniProtKB Accession', 'Residue']).size().shape[0])
+            else:
+                spliced_ptms_list.append(np.nan)
+                num_ptms_affected.append(0)
+                num_unique_ptm_sites.append(0)
+
+        spliced_ptm_info.append(ptms_in_region.copy())
+
+    #combine all PTM information 
+    spliced_ptm_info = pd.concat(spliced_ptm_info, ignore_index = True)
+
+    #convert ptm position to float
+    if spliced_ptm_info.shape[0] > 0:
+        spliced_ptm_info['PTM Position in Canonical Isoform'] = spliced_ptm_info['PTM Position in Canonical Isoform'].astype(float)
+            
+    #add ptm info to original splice event dataframe
+    if annotate_original_df:
+        region_data['PTMs'] = spliced_ptms_list
+        region_data['Number of PTMs Affected'] = num_ptms_affected
+        region_data['Number of Unique PTM Sites by Position'] = num_unique_ptm_sites
+        region_data['Event Length'] = (region_data[region_end_col] - region_data[region_start_col]).abs()
+        region_data['PTM Density (PTMs/bp)'] = region_data['Number of Unique PTM Sites by Position']/(region_data[region_end_col] - region_data[region_start_col]).abs()
+
+    return region_data, spliced_ptm_info
+    
+
[docs]def project_ptms_onto_splice_events(splice_data, ptm_coordinates = None, annotate_original_df = True, chromosome_col = 'chr', strand_col = 'strand', region_start_col = 'exonStart_0base', region_end_col = 'exonEnd', dPSI_col = None, sig_col = None, event_id_col = None, gene_col = None, extra_cols = None, separate_modification_types = False, coordinate_type = 'hg38', taskbar_label = None, PROCESSES = 1): + """ + Given splice event quantification data, project PTMs onto the regions impacted by the splice events. Assumes that the splice event data will have chromosome, strand, and genomic start/end positions for the regions of interest, and each row of the splice_event_data corresponds to a unique region. + + Parameters + + splice_data: pandas.DataFrame + dataframe containing splice event information, including chromosome, strand, and genomic location of regions of interest + ptm_coordinates: pandas.DataFrame + dataframe containing PTM information, including chromosome, strand, and genomic location of PTMs. If none, it will pull from the config file. + chromosome_col: str + column name in splice_data that contains chromosome information. Default is 'chr'. Expects it to be a str with only the chromosome number: 'Y', '1', '2', etc. + strand_col: str + column name in splice_data that contains strand information. Default is 'strand'. Expects it to be a str with '+' or '-', or integers as 1 or -1. Will convert to integers automatically if string format is provided. + region_start_col: str + column name in splice_data that contains the start position of the region of interest. Default is 'exonStart_0base'. + region_end_col: str + column name in splice_data that contains the end position of the region of interest. Default is 'exonEnd'. + event_id_col: str + column name in splice_data that contains the unique identifier for the splice event. If provided, will be used to annotate the ptm information with the specific splice event ID. Default is None. + gene_col: str + column name in splice_data that contains the gene name. If provided, will be used to make sure the projected PTMs stem from the same gene (some cases where genomic coordiantes overlap between distinct genes). Default is None. + dPSI_col: str + column name in splice_data that contains the delta PSI value for the splice event. Default is None, which will not include this information in the output + sig_col: str + column name in splice_data that contains the significance value for the splice event. Default is None, which will not include this information in the output. + extra_cols: list + list of additional columns to include in the output dataframe. Default is None, which will not include any additional columns. + coordinate_type: str + indicates the coordinate system used for the start and end positions. Either hg38 or hg19. Default is 'hg38'. + separate_modification_types: bool + Indicate whether to store PTM sites with multiple modification types as multiple rows. For example, if a site at K100 was both an acetylation and methylation site, these will be separated into unique rows with the same site number but different modification types. Default is True. + taskbar_label: str + Label to display in the tqdm progress bar. Default is None, which will automatically state "Projecting PTMs onto regions using ----- coordinates". + PROCESSES: int + Number of processes to use for multiprocessing. Default is 1 (single processing) + + Returns + ------- + spliced_ptm_info: pandas.DataFrame + Contains the PTMs identified across the different splice events + splice_data: pandas.DataFrame + dataframe containing the original splice data with an additional column 'PTMs' that contains the PTMs found in the region of interest, in the format of 'SiteNumber(ModificationType)'. If no PTMs are found, the value will be np.nan. + """ + #load ptm data from config if not provided + if ptm_coordinates is None and pose_config.ptm_coordinates is not None: + ptm_coordinates = pose_config.ptm_coordinates + elif ptm_coordinates is None: + raise ValueError('ptm_coordinates dataframe not provided and not found in the resource files. Please provide the ptm_coordinates dataframe with pose_config.download_ptm_coordinates() or download the file manually. To avoid needing to download this file each time, run pose_config.download_ptm_coordinates(save = True) to save the file locally within the package directory (will take ~63MB of storage space)') + + if taskbar_label is None: + taskbar_label = 'Projecting PTMs onto splice events using ' + coordinate_type + ' coordinates.' + + + + #copy + splice_data = splice_data.copy() + + #check columns to make sure they are present and correct data type + check_columns(splice_data, chromosome_col=chromosome_col, strand_col=strand_col, region_start_col=region_start_col, region_end_col=region_end_col, dPSI_col=dPSI_col, sig_col=sig_col, event_id_col=event_id_col, gene_col=gene_col, extra_cols=extra_cols) + + if PROCESSES == 1: + splice_data, spliced_ptm_info = find_ptms_in_many_regions(splice_data, ptm_coordinates, chromosome_col = chromosome_col, strand_col = strand_col, region_start_col = region_start_col, region_end_col = region_end_col, dPSI_col = dPSI_col, sig_col = sig_col, event_id_col = event_id_col, gene_col = gene_col, extra_cols = extra_cols, annotate_original_df = annotate_original_df, coordinate_type = coordinate_type,taskbar_label = taskbar_label, separate_modification_types=separate_modification_types) + elif PROCESSES > 1: + #check num_cpus available, if greater than number of cores - 1 (to avoid freezing machine), then set to PROCESSES to 1 less than total number of cores + num_cores = multiprocessing.cpu_count() + if PROCESSES > num_cores - 1: + PROCESSES = num_cores - 1 + + #split dataframe into chunks equal to PROCESSES + splice_data_split = np.array_split(splice_data, PROCESSES) + pool = multiprocessing.Pool(PROCESSES) + #run with multiprocessing + results = pool.starmap(find_ptms_in_many_regions, [(splice_data_split[i], ptm_coordinates, chromosome_col, strand_col, region_start_col, region_end_col, gene_col, dPSI_col, sig_col, event_id_col, extra_cols, annotate_original_df, coordinate_type, separate_modification_types, taskbar_label) for i in range(PROCESSES)]) + + splice_data = pd.concat([res[0] for res in results]) + spliced_ptm_info = pd.concat([res[1] for res in results]) + + #raise ValueError('Multiprocessing not yet functional. Please set PROCESSES = 1.') + + print(f'PTMs projection successful ({spliced_ptm_info.shape[0]} identified).\n') + + return splice_data, spliced_ptm_info
+ + + +
[docs]def project_ptms_onto_MATS(ptm_coordinates = None, SE_events = None, fiveASS_events = None, threeASS_events = None, RI_events = None, MXE_events = None, coordinate_type = 'hg38', identify_flanking_sequences = False, dPSI_col = 'meanDeltaPSI', sig_col = 'FDR', separate_modification_types = False, PROCESSES = 1): + """ + Given splice quantification from the MATS algorithm, annotate with PTMs that are found in the differentially included regions. + + Parameters + ---------- + ptm_coordinates: pandas.DataFrame + dataframe containing PTM information, including chromosome, strand, and genomic location of PTMs + SE_events: pandas.DataFrame + dataframe containing skipped exon event information from MATS + fiveASS_events: pandas.DataFrame + dataframe containing 5' alternative splice site event information from MATS + threeASS_events: pandas.DataFrame + dataframe containing 3' alternative splice site event information from MATS + RI_events: pandas.DataFrame + dataframe containing retained intron event information from MATS + MXE_events: pandas.DataFrame + dataframe containing mutually exclusive exon event information from MATS + coordinate_type: str + indicates the coordinate system used for the start and end positions. Either hg38 or hg19. Default is 'hg38'. + identify_flanking_sequences: bool + Indicate whether to look for altered flanking sequences from spliced events, in addition to those directly in the spliced region. Default is False. (not yet active) + PROCESSES: int + Number of processes to use for multiprocessing. Default is 1. + """ + print(f'Projecting PTMs onto MATS splice events using {coordinate_type} coordinates.') + #reformat chromosome name format + spliced_events = {} + + spliced_flanks = [] + spliced_ptms = [] + if SE_events is not None: + if SE_events['chr'].str.contains('chr').any(): + SE_events['chr'] = SE_events['chr'].apply(lambda x: x[3:]) + + SE_events['AS ID'] = "SE_" + SE_events.index.astype(str) + + #check to make sure there is enough information to do multiprocessing if that is desired + if PROCESSES*4 > SE_events.shape[0]: + SE_processes = 1 + else: + SE_processes = PROCESSES + + spliced_events['SE'], SE_ptms = project_ptms_onto_splice_events(SE_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', region_start_col = 'exonStart_0base', region_end_col = 'exonEnd', dPSI_col=dPSI_col, sig_col = sig_col, gene_col = 'geneSymbol', event_id_col = 'AS ID', coordinate_type=coordinate_type, taskbar_label = "Skipped Exon events", separate_modification_types=separate_modification_types, PROCESSES = SE_processes) + SE_ptms['Event Type'] = 'SE' + spliced_ptms.append(SE_ptms) + + if identify_flanking_sequences: + print('Identifying flanking sequences for skipped exon events.') + SE_flanks = fs.get_flanking_changes_from_splice_data(SE_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', spliced_region_start_col = 'exonStart_0base', spliced_region_end_col = 'exonEnd', first_flank_start_col = 'firstFlankingES', first_flank_end_col = 'firstFlankingEE', second_flank_start_col = 'secondFlankingES', second_flank_end_col = 'secondFlankingEE', dPSI_col=dPSI_col, sig_col = sig_col, gene_col = 'geneSymbol', event_id_col = 'AS ID', coordinate_type=coordinate_type) + SE_flanks['Event Type'] = 'SE' + spliced_flanks.append(SE_flanks) + + else: + print('Skipped exon event data (SE_events) not provided, skipping') + + if fiveASS_events is not None: + if fiveASS_events['chr'].str.contains('chr').any(): + fiveASS_events['chr'] = fiveASS_events['chr'].apply(lambda x: x[3:]) + + #set the relevent start and end regions of the spliced out region, which are different depending on the strand + region_start = [] + region_end = [] + first_flank_start = [] + first_flank_end = [] + second_flank_end = [] + second_flank_start = [] + for i, row in fiveASS_events.iterrows(): + strand = row['strand'] + if strand == '+': + region_start.append(row['shortEE']) + region_end.append(row['longExonEnd']) + if identify_flanking_sequences: + first_flank_start.append(row['shortES']) + first_flank_end.append(row['shortEE']) + second_flank_start.append(row['flankingES']) + second_flank_end.append(row['flankingEE']) + else: + region_start.append(row['longExonStart_0base']) + region_end.append(row['shortES']) + if identify_flanking_sequences: + second_flank_start.append(row['shortES']) + second_flank_end.append(row['shortEE']) + first_flank_start.append(row['flankingES']) + first_flank_end.append(row['flankingEE']) + + fiveASS_events['event_start'] = region_start + fiveASS_events['event_end'] = region_end + if identify_flanking_sequences: + fiveASS_events['first_flank_start'] = first_flank_start + fiveASS_events['first_flank_end'] = first_flank_end + fiveASS_events['second_flank_start'] = second_flank_start + fiveASS_events['second_flank_end'] = second_flank_end + + + #set specific as id + + fiveASS_events['AS ID'] = "5ASS_" + fiveASS_events.index.astype(str) + + #check to make sure there is enough information to do multiprocessing if that is desired + if PROCESSES*4 > fiveASS_events.shape[0]: + fiveASS_processes = 1 + else: + fiveASS_processes = PROCESSES + + #identify PTMs found within spliced regions + spliced_events['5ASS'], fiveASS_ptms = project_ptms_onto_splice_events(fiveASS_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', region_start_col = 'event_start', region_end_col = 'event_end', event_id_col = 'AS ID', dPSI_col=dPSI_col, sig_col = sig_col, gene_col = 'geneSymbol', coordinate_type=coordinate_type, taskbar_label = "5' ASS events", separate_modification_types=separate_modification_types, PROCESSES = fiveASS_processes) + fiveASS_ptms['Event Type'] = '5ASS' + spliced_ptms.append(fiveASS_ptms) + + #identify ptms with altered flanking sequences + if identify_flanking_sequences: + print("Identifying flanking sequences for 5'ASS events.") + fiveASS_flanks = fs.get_flanking_changes_from_splice_data(fiveASS_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', spliced_region_start_col = 'event_start', spliced_region_end_col = 'event_end', first_flank_start_col = 'first_flank_start', first_flank_end_col = 'first_flank_end', second_flank_start_col = 'second_flank_start', second_flank_end_col = 'second_flank_end',dPSI_col=dPSI_col, sig_col = sig_col, gene_col = 'geneSymbol', event_id_col = 'AS ID',coordinate_type=coordinate_type) + fiveASS_flanks['Event Type'] = '5ASS' + spliced_flanks.append(fiveASS_flanks) + else: + print("5' ASS event data (fiveASS_events) not provided, skipping.") + + if threeASS_events is not None: + + if RI_events['chr'].str.contains('chr').any(): + RI_events['chr'] = RI_events['chr'].apply(lambda x: x[3:]) + + if threeASS_events['chr'].str.contains('chr').any(): + threeASS_events['chr'] = threeASS_events['chr'].apply(lambda x: x[3:]) + + #set the relevent start and end regions of the spliced out region, which are different depending on the strand + region_start = [] + region_end = [] + first_flank_start = [] + first_flank_end = [] + second_flank_end = [] + second_flank_start = [] + for i, row in threeASS_events.iterrows(): + strand = row['strand'] + if strand == '+': + region_start.append(row['longExonStart_0base']) + region_end.append(row['shortES']) + if identify_flanking_sequences: + second_flank_start.append(row['flankingES']) + second_flank_end.append(row['flankingEE']) + first_flank_start.append(row['shortES']) + first_flank_end.append(row['shortEE']) + else: + region_start.append(row['shortEE']) + region_end.append(row['longExonEnd']) + if identify_flanking_sequences: + second_flank_start.append(row['flankingES']) + second_flank_end.append(row['flankingEE']) + first_flank_start.append(row['shortES']) + first_flank_end.append(row['shortEE']) + + + #save region info + threeASS_events['event_start'] = region_start + threeASS_events['event_end'] = region_end + if identify_flanking_sequences: + threeASS_events['first_flank_start'] = first_flank_start + threeASS_events['first_flank_end'] = first_flank_end + threeASS_events['second_flank_start'] = second_flank_start + threeASS_events['second_flank_end'] = second_flank_end + + #add event ids + threeASS_events['AS ID'] = "3ASS_" + threeASS_events.index.astype(str) + + #check to make sure there is enough information to do multiprocessing if that is desired + if PROCESSES*4 > threeASS_events.shape[0]: + threeASS_processes = 1 + else: + threeASS_processes = PROCESSES + + spliced_events['3ASS'], threeASS_ptms = project_ptms_onto_splice_events(threeASS_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', region_start_col = 'event_start', region_end_col = 'event_end', event_id_col = 'AS ID', dPSI_col=dPSI_col, sig_col = sig_col, gene_col = 'geneSymbol', coordinate_type=coordinate_type, taskbar_label = "3' ASS events", separate_modification_types=separate_modification_types, PROCESSES = threeASS_processes) + threeASS_ptms['Event Type'] = '3ASS' + spliced_ptms.append(threeASS_ptms) + + #identify ptms with altered flanking sequences + if identify_flanking_sequences: + print("Identifying flanking sequences for 3' ASS events.") + threeASS_flanks = fs.get_flanking_changes_from_splice_data(threeASS_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', spliced_region_start_col = 'event_start', spliced_region_end_col = 'event_end', first_flank_start_col = 'first_flank_start', first_flank_end_col = 'first_flank_end', second_flank_start_col = 'second_flank_start', second_flank_end_col = 'second_flank_end', dPSI_col=dPSI_col, sig_col = dPSI_col, gene_col = 'geneSymbol', event_id_col = 'AS ID', coordinate_type=coordinate_type) + threeASS_flanks['Event Type'] = '3ASS' + spliced_flanks.append(threeASS_flanks) + + + else: + print("3' ASS event data (threeASS_events) not provided, skipping") + + if RI_events is not None: + + if RI_events['chr'].str.contains('chr').any(): + RI_events['chr'] = RI_events['chr'].apply(lambda x: x[3:]) + + #add event id + RI_events['AS ID'] = "RI_" + RI_events.index.astype(str) + + #check to make sure there is enough information to do multiprocessing if that is desired + if PROCESSES*4 > RI_events.shape[0]: + RI_processes = 1 + else: + RI_processes = PROCESSES + + spliced_events['RI'], RI_ptms = project_ptms_onto_splice_events(RI_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', region_start_col = 'upstreamEE', region_end_col = 'downstreamES', event_id_col = 'AS ID', dPSI_col=dPSI_col, sig_col = sig_col, gene_col = 'geneSymbol', coordinate_type=coordinate_type, taskbar_label = 'Retained Intron Events', separate_modification_types=separate_modification_types, PROCESSES = RI_processes) + RI_ptms['Event Type'] = 'RI' + spliced_ptms.append(RI_ptms) + + #identify ptms with altered flanking sequences + if identify_flanking_sequences: + print('Identifying flanking sequences for retained intron events.') + RI_flanks = fs.get_flanking_changes_from_splice_data(RI_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', spliced_region_start_col = 'upstreamEE', spliced_region_end_col = 'downstreamES', first_flank_start_col = 'upstreamES', first_flank_end_col = 'upstreamEE', second_flank_start_col = 'downstreamES', second_flank_end_col = 'downstreamEE', dPSI_col=dPSI_col, sig_col = sig_col, gene_col = 'geneSymbol', event_id_col = 'AS ID', coordinate_type=coordinate_type) + RI_flanks['Event Type'] = 'RI' + spliced_flanks.append(RI_flanks) + + if MXE_events is not None: + if MXE_events['chr'].str.contains('chr').any(): + MXE_events['chr'] = MXE_events['chr'].apply(lambda x: x[3:]) + + #check to make sure there is enough information to do multiprocessing if that is desired + if PROCESSES*4 > MXE_events.shape[0]: + MXE_processes = 1 + else: + MXE_processes = PROCESSES + + #add AS ID + MXE_events['AS ID'] = "MXE_" + MXE_events.index.astype(str) + + mxe_ptms = [] + #first mxe exon + spliced_events['MXE_Exon1'], MXE_Exon1_ptms = project_ptms_onto_splice_events(MXE_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', region_start_col = '1stExonStart_0base', region_end_col = '1stExonEnd', event_id_col = 'AS ID', dPSI_col=dPSI_col, sig_col = sig_col, gene_col = 'geneSymbol', coordinate_type=coordinate_type, taskbar_label = 'MXE, First Exon', separate_modification_types=separate_modification_types, PROCESSES = MXE_processes) + MXE_Exon1_ptms['Event Type'] = 'MXE (First Exon)' + mxe_ptms.append(MXE_Exon1_ptms) + + #second mxe exon + spliced_events['MXE_Exon2'], MXE_Exon2_ptms = project_ptms_onto_splice_events(MXE_events, ptm_coordinates, chromosome_col = 'chr', strand_col = 'strand', region_start_col = '2ndExonStart_0base', region_end_col = '2ndExonEnd', event_id_col = 'AS ID', dPSI_col=dPSI_col, sig_col = sig_col, gene_col = 'geneSymbol', coordinate_type=coordinate_type, taskbar_label = 'MXE, Second Exon', separate_modification_types=separate_modification_types, PROCESSES = MXE_processes) + MXE_Exon2_ptms['Event Type'] = 'MXE (Second Exon)' + mxe_ptms.append(MXE_Exon2_ptms) + + #combine mxe ptms, and then drop any PTMs that were found in both MXE's + mxe_ptms = pd.concat([MXE_Exon1_ptms, MXE_Exon2_ptms]) + mxe_ptms = mxe_ptms.drop_duplicates(subset = ['UniProtKB Accession', 'Source of PTM', 'Residue', 'PTM Position in Canonical Isoform', 'Modification', 'Modification Class', 'dPSI', 'Significance', 'Gene'], keep = False) + mxe_ptms['dPSI'] = mxe_ptms.apply(lambda x: x['dPSI']* -1 if x['Event Type'] == 'MXE (Second Exon)' else x['dPSI'], axis = 1) + + #add mxe ptms to spliced_ptms + spliced_ptms.append(mxe_ptms) + + spliced_ptms = pd.concat(spliced_ptms) + if identify_flanking_sequences: + spliced_flanks = pd.concat(spliced_flanks) + return spliced_events, spliced_ptms, spliced_flanks + else: + return spliced_events, spliced_ptms
+ +#def project_ptms_onto_MAJIQ_dPSI(majiq_data, ptm_coordinates = None, coordinate_type = 'hg38', identify_flanking_sequences = False, dPSI_col = 'dPSI', sig_col = 'FDR', separate_modification_types = False, PROCESSES = 1): +# print('in progress') +# pass + +def add_splicegraph_info(psi_data, splicegraph, purpose = 'inclusion'): + psi_data = psi_data[psi_data['splice_type'] != 'ME'].copy() + + if purpose == 'inclusion': + #split exons into individual exons + psi_data['Individual exon'] = psi_data['exons'].apply(lambda x: x.split(':')) + psi_data = psi_data.explode('Individual exon').drop_duplicates() + psi_data['Individual exon'] = psi_data['Individual exon'].astype(float) + + #add gene location information to psi data from spliceseq + psi_data = psi_data.merge(splicegraph, left_on = ['symbol', 'Individual exon'], right_on = ['Symbol', 'Exon'], how = 'left') + psi_data = psi_data.rename(columns = {'Chr_Start': 'spliced_region_start', 'Chr_Stop': 'spliced_region_end'}) + return psi_data + elif purpose == 'flanking': + print('Not yet active. Please check back later.') + else: + raise ValueError('Purpose must be either inclusion or flanking. Please provide the correct purpose for the splicegraph information.') + +def project_ptms_onto_SpliceSeq(psi_data, splicegraph, gene_col ='symbol', dPSI_col = None, sig_col = None, extra_cols = None, coordinate_type = 'hg19', separate_modification_types = False, identify_flanking_sequences = False, flank_size = 5, PROCESSES = 1): + #remove ME events from this analysis + print('Removing ME events from analysis') + psi_data = psi_data[psi_data['splice_type'] != 'ME'].copy() + + #split exons into individual exons + psi_data['Individual exon'] = psi_data['exons'].apply(lambda x: x.split(':')) + psi_data = psi_data.explode('Individual exon').drop_duplicates() + psi_data['Individual exon'] = psi_data['Individual exon'].astype(float) + + #add gene location information to psi data from spliceseq + + spliced_data = psi_data.merge(splicegraph, left_on = ['symbol', 'Individual exon'], right_on = ['Symbol', 'Exon'], how = 'left') + spliced_data = spliced_data.rename(columns = {'Chr_Start': 'spliced_region_start', 'Chr_Stop': 'spliced_region_end'}) + + print('Projecting PTMs onto SpliceSeq data') + spliced_data, spliced_ptms = project_ptms_onto_splice_events(spliced_data, chromosome_col = 'Chromosome', strand_col = 'Strand', gene_col = 'symbol', region_start_col = 'spliced_region_start', region_end_col = 'spliced_region_end', event_id_col = 'as_id',dPSI_col = dPSI_col, sig_col = sig_col, extra_cols = extra_cols, separate_modification_types = separate_modification_types, coordinate_type = coordinate_type, PROCESSES = PROCESSES) + + ## add code for extracting flanking sequences (to do) + if identify_flanking_sequences: + altered_flanks = fs.get_flanking_changes_from_splicegraph(psi_data, splicegraph, dPSI_col = dPSI_col, sig_col = sig_col, extra_cols = extra_cols, gene_col = gene_col, coordinate_type=coordinate_type, flank_size = flank_size) + + return spliced_data, spliced_ptms, altered_flanks + else: + return spliced_data, spliced_ptms + + +#def project_ptms_onto_TCGA_SpliceSeq(tcga_cancer = 'PRAD'): +# """ +# In progress. Will download and process TCGA SpliceSeq data for a specific cancer type, and project PTMs onto the spliced regions. +# """ +# print('Not yet active. Please check back later.') +# pass + + +def check_columns(splice_data, chromosome_col = None, strand_col = None, region_start_col = None, region_end_col = None, first_flank_start_col = None, first_flank_end_col = None, second_flank_start_col = None, second_flank_end_col = None, gene_col = None, dPSI_col = None, sig_col = None, event_id_col = None, extra_cols = None): + """ + Function to quickly check if the provided column names exist in the dataset and if they are the correct type of data + """ + expected_cols = [chromosome_col, strand_col, region_start_col, region_end_col, first_flank_start_col, first_flank_end_col, second_flank_start_col, second_flank_end_col, gene_col, dPSI_col, sig_col, event_id_col] + expected_dtypes = [[str, object], [str,int, object], [int,float], [int,float], [int,float], [int,float], [int,float], [int,float], [str, object], float, float, None] + + #remove cols with None and the corresponding dtype entry + expected_dtypes = [dtype for col, dtype in zip(expected_cols, expected_dtypes) if col is not None] + expected_cols = [col for col in expected_cols if col is not None] + + #add extra columns to the expected columns list + if extra_cols is not None: + expected_cols += extra_cols + expected_dtypes += [None]*len(extra_cols) #extra columns do not have dtype requirement + + + #check to make sure columns exist in the dataframe + if not all([x in splice_data.columns for x in expected_cols]): + raise ValueError('Not all expected columns are present in the splice data. Please check the column names and provide the correct names for the following columns: {}'.format([x for x in expected_cols if x not in splice_data.columns])) + + #check to make sure columns are the correct data type + for col, data_type in zip(expected_cols, expected_dtypes): + if data_type is None: + continue + elif isinstance(data_type, list): + if splice_data[col].dtype not in data_type: + #try converting to the expected data type + try: + splice_data[col] = splice_data[col].astype(data_type[0]) + except: + raise ValueError('Column {} is not the expected data type. Expected data type is one of {}, but found data type {}'.format(col, data_type, splice_data[col].dtype)) + else: + if splice_data[col].dtype != data_type: + #try converting to the expected data type + try: + splice_data[col] = splice_data[col].astype(data_type) + except: + raise ValueError('Column {} is not the expected data type. Expected data type is {}, but found data type {}'.format(col, data_type, splice_data[col].dtype)) + + + + + + +
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+
+ + +
+ + +
+
+
+ + + + + +
+
+ + \ No newline at end of file diff --git a/_sources/Dependencies.rst b/_sources/Dependencies.rst new file mode 100644 index 0000000..2158d62 --- /dev/null +++ b/_sources/Dependencies.rst @@ -0,0 +1,10 @@ +Dependencies +============================================= +* numpy==1.26.* +* pandas==2.2.* +* gseapy==1.1.* +* tqdm==4.66.* +* seaborn==0.13.* +* biopython==1.83.* +* xlrd==2.0.* + diff --git a/_sources/Examples/ESRP1_in_Prostate.ipynb b/_sources/Examples/ESRP1_in_Prostate.ipynb new file mode 100644 index 0000000..537cbc3 --- /dev/null +++ b/_sources/Examples/ESRP1_in_Prostate.ipynb @@ -0,0 +1,202 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exploring the role of ESRP1 expression in prostate cancer\n", + "\n", + "In this notebook, we will explore the role of ESRP1 expression in prostate cancer, where it is commonly amplified and correlated with worsened prognosis. We will obtain splicing quantification across the TCGA-PRAD cohort using data from [TCGASpliceSeq](https://bioinformatics.mdanderson.org/TCGASpliceSeq/), and project PTMs onto the splice events that were identified by SpliceSeq. We will then explore the various ways ESRP1 expression may drive changes through changes to PTM inclusion and flanking sequences. The analysis here corresponds to Figures 4 and 5 of our [manuscript](https://www.biorxiv.org/content/10.1101/2024.01.10.575062v2)\n", + "\n", + "This notebook is divided into the following sections:\n", + "1. Load ESRP1 expression data from [CBioPortal](https://www.cbioportal.org/)\n", + "2. Project PTMs onto splice events and identify events that are correlated with ESRP1 expression\n", + "3. Explore the functional consequence of ESRP1-correlated PTMs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load ESRP1 expression data from CBioPortal\n", + "\n", + "While this is not a part of PTM-POSE, in order to explore the role of ESRP1 expression in prostate cancer, we first need to know which patients are express high or low levels of ESRP1. We can do this directly through [CBioPortal's API]() (which requires the bravado python package). Alternatively, you can choose to download the data from the [CBioPortal website](https://www.cbioportal.org/), and upload it here." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from bravado.client import SwaggerClient\n", + "import pandas as pd\n", + "\n", + "#initialize swagger client\n", + "cbioportal = SwaggerClient.from_url('https://www.cbioportal.org/api/v2/api-docs',\n", + " config={\"validate_requests\":False,\"validate_responses\":False,\"validate_swagger_spec\": False})\n", + "\n", + "for a in dir(cbioportal):\n", + " cbioportal.__setattr__(a.replace(' ', '_').lower(), cbioportal.__getattr__(a))\n", + "\n", + "# ESRP1 Entrez Gene ID = 54845\n", + "gene_id = 54845\n", + "\n", + "#download rna sequencing data for ESRP1\n", + "study_id = 'prad_tcga_pan_can_atlas_2018'\n", + "expression_data = cbioportal.Molecular_Data.getAllMolecularDataInMolecularProfileUsingGET(molecularProfileId = study_id + '_rna_seq_v2_mrna',\n", + " sampleListId = study_id + '_all', entrezGeneId = gene_id).result()\n", + "#extract expression data and normalize by z-score\n", + "sample_id = [samp.sampleId for samp in expression_data]\n", + "rsem = [samp.value for samp in expression_data]\n", + "rsem = pd.Series(rsem, index = sample_id)\n", + "rsem_zscore = (rsem - rsem.mean())/rsem.std()\n", + "\n", + "#extract high and low patients (absolute z-score > 1)\n", + "high_patients = rsem_zscore[rsem_zscore > 1].index\n", + "low_patients = rsem_zscore[rsem_zscore < -1].index" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Project PTMs onto splice events and identify events that are correlated with ESRP1 expression" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Removing ME events from analysis\n", + "Projecting PTMs onto SpliceSeq data\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Projecting PTMs onto splice events using hg19 coordinates.: 100%|██████████| 62861/62861 [16:07:33<00:00, 1.08it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PTMs projection successful (76363 identified).\n", + "\n" + ] + } + ], + "source": [ + "from ptm_pose import project\n", + "import pandas as pd\n", + "\n", + "#load data from TCGASpliceSeq\n", + "psi_data = pd.read_csv('../../../TCGA/Data/PRAD/TCGA_SpliceSeq/PSI_download_PRAD.txt', sep = '\\t')\n", + "splicegraph = pd.read_csv('../../../TCGA/Data/TCGASpliceData.txt', sep = '\\t')\n", + "\n", + "#identifying TCGA columns containing patient PSI data\n", + "patient_columns = [col for col in psi_data.columns if 'TCGA' in col]\n", + "\n", + "psi_data, spliced_ptms = project.project_ptms_onto_SpliceSeq(psi_data, splicegraph = splicegraph, extra_cols = patient_columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Functional consequence of ESRP1-correlated PTMs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Gene Set Enrichment Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exon Ontology Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Protein Interaction Network Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flanking sequences that alter protein interactions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Kinases impacted by splicing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Known kinase substrates " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Predicted differentially included kinase substrates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Altered kinase interactions by changed flanking sequences" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pose", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/Examples/ESRP1_knockdown.ipynb b/_sources/Examples/ESRP1_knockdown.ipynb new file mode 100644 index 0000000..7e021b5 --- /dev/null +++ b/_sources/Examples/ESRP1_knockdown.ipynb @@ -0,0 +1,1109 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Project PTMs onto ESRP1 knockdown data from MATS (Yang et al, 2016)\n", + "\n", + "Here is an example of running PTM-POSE on MATS analysis of RNA sequencing data from ESRP1 knockdown experiments performed by Yang et al, 2016\n", + "\n", + "First, let's focus on skipped exon events.\n", + "\n", + "## Phase 1: Load the data and initialize PTM-POSE\n", + " To identify differentially included PTMs as a result of ESRP1 knockdown, we need three layers of information for each splice event: \n", + "1. Chromosome\n", + "2. DNA strand\n", + "2. Start and end coordinates of the event (either hg19 or hg38)\n", + "\n", + "Optionally, we can also provide:\n", + "1. Gene name\n", + "2. Event ID\n", + "3. Delta PSI for the event\n", + "4. Significance of the event\n", + "\n", + "With PTM-POSE, we need to indicate where to find this information within the splice data" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geneSymbolchrstrandexonStart_0baseexonEndmeanDeltaPSIFDR
0SPAG9chr17-49053223490532620.2270
1ARHGAP17chr16-24950684249509180.4130
2ITGA6chr2+173366499173366629-0.3610
3KRASchr12-2536837025368494-0.0680
4TCIRG1chr11+67817953678181310.3680
\n", + "
" + ], + "text/plain": [ + " geneSymbol chr strand exonStart_0base exonEnd meanDeltaPSI FDR\n", + "0 SPAG9 chr17 - 49053223 49053262 0.227 0\n", + "1 ARHGAP17 chr16 - 24950684 24950918 0.413 0\n", + "2 ITGA6 chr2 + 173366499 173366629 -0.361 0\n", + "3 KRAS chr12 - 25368370 25368494 -0.068 0\n", + "4 TCIRG1 chr11 + 67817953 67818131 0.368 0" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "SE_data = pd.read_excel('../../ESRP1_data/Yang2016/esrp1_knockdown_data_Yang2016.xlsx', sheet_name='rMATS ESRP KD', header = 2).iloc[0:179]\n", + "\n", + "\n", + "# required column information\n", + "chromosome_col = 'chr'\n", + "strand_col = 'strand'\n", + "region_start_col = 'exonStart_0base'\n", + "region_end_col = 'exonEnd'\n", + "\n", + "# optional column information (None if nothing is provided and will not be appended to the output)\n", + "gene_col = 'geneSymbol'\n", + "event_id_col = None #not in the data\n", + "dPSI_col = 'meanDeltaPSI'\n", + "sig_col = 'FDR'\n", + "\n", + "#look at the data\n", + "SE_data[[gene_col, chromosome_col, strand_col, region_start_col, region_end_col, dPSI_col, sig_col]].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The strand can either be provided use '+' and '-' or using 1 and -1 to indicate the forward and reverse strand, the code will convert strand to integer format (-1 or 1) when running.\n", + "\n", + "If this is the first time running PTM-POSE, you will need to download ptm_coordinates. If you set save = True, the coordinates will be saved for the future so you do not need to redownload them, but you can also set save = False to avoid saving the coordinates (will take ~60MB of space)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from ptm_pose import pose_config\n", + "pose_config.ptm_coordinates = pose_config.download_ptm_coordinates(save = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Phase 2: Project PTMs onto differentially included regions\n", + "\n", + " We can then use the project module of PTM-POSE to identify PTMs that can be found in these regions. This dataset uses the hg19 genome build, so we need to specify this using the 'coordinate_type' parameter." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Translator file not found. Downloading mapping information between UniProt and Gene Names from pybiomart\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Projecting PTMs onto splice events using hg19 coordinates.: 100%|██████████| 179/179 [00:03<00:00, 48.82it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PTMs projection successful (475 identified).\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "from ptm_pose import project\n", + "\n", + "splice_data, spliced_ptms = project.project_ptms_onto_splice_events(SE_data, chromosome_col = chromosome_col, strand_col = strand_col, region_start_col = region_start_col, region_end_col = region_end_col, gene_col = gene_col, event_id_col = event_id_col, dPSI_col = dPSI_col, sig_col = sig_col, coordinate_type = 'hg19')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this, there are two outputs:\n", + "1. The original splice dataframe with additional PTM information added" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geneSymbolchrstrandexonStart_0baseexonEndmeanDeltaPSIFDRPTMsNumber of PTMs AffectedNumber of Unique PTM Sites by PositionEvent LengthPTM Density (PTMs/bp)
0SPAG917-49053223490532620.2270NaN00390.0
1ARHGAP1716-24950684249509180.4130Q68EM7_S575.0 (Phosphorylation)/Q68EM7_S570.0 ...612340.004274
2ITGA62+173366499173366629-0.3610P23229_Ynan (Phosphorylation)/P23229_Tnan (Pho...741300.030769
3KRAS12-2536837025368494-0.0680P01116_C186 (Methylation)/P01116_C180 (Palmito...321240.016129
4TCIRG111+67817953678181310.3680NaN001780.0
\n", + "
" + ], + "text/plain": [ + " geneSymbol chr strand exonStart_0base exonEnd meanDeltaPSI FDR \\\n", + "0 SPAG9 17 - 49053223 49053262 0.227 0 \n", + "1 ARHGAP17 16 - 24950684 24950918 0.413 0 \n", + "2 ITGA6 2 + 173366499 173366629 -0.361 0 \n", + "3 KRAS 12 - 25368370 25368494 -0.068 0 \n", + "4 TCIRG1 11 + 67817953 67818131 0.368 0 \n", + "\n", + " PTMs Number of PTMs Affected \\\n", + "0 NaN 0 \n", + "1 Q68EM7_S575.0 (Phosphorylation)/Q68EM7_S570.0 ... 6 \n", + "2 P23229_Ynan (Phosphorylation)/P23229_Tnan (Pho... 7 \n", + "3 P01116_C186 (Methylation)/P01116_C180 (Palmito... 3 \n", + "4 NaN 0 \n", + "\n", + " Number of Unique PTM Sites by Position Event Length PTM Density (PTMs/bp) \n", + "0 0 39 0.0 \n", + "1 1 234 0.004274 \n", + "2 4 130 0.030769 \n", + "3 2 124 0.016129 \n", + "4 0 178 0.0 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "splice_data[[gene_col, chromosome_col, strand_col, region_start_col, region_end_col, dPSI_col, sig_col] + ['PTMs', 'Number of PTMs Affected', 'Number of Unique PTM Sites by Position', 'Event Length', 'PTM Density (PTMs/bp)']].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. New dataframe that has each PTM and additional information about the PTM in its own row" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
dPSISignificanceGeneSource of PTMUniProtKB AccessionResiduePTM Position in Canonical IsoformGene Location (hg19)ModificationModification ClassProximity to Region Start (bp)Proximity to Region End (bp)Proximity to Splice Boundary (bp)
00.4130.0ARHGAP17Q68EM7-1_S575Q68EM7S575.024950686.0PhosphoserinePhosphorylation2.0232.02.0
10.4130.0ARHGAP17Q68EM7-1_S570Q68EM7S570.024950701.0PhosphoserinePhosphorylation17.0217.017.0
20.4130.0ARHGAP17Q68EM7-1_S560Q68EM7S560.024950731.0PhosphoserinePhosphorylation47.0187.047.0
30.4130.0ARHGAP17Q68EM7-1_S553Q68EM7S553.024950752.0PhosphoserinePhosphorylation68.0166.068.0
40.4130.0ARHGAP17Q68EM7-1_S547Q68EM7S547.024950770.0PhosphoserinePhosphorylation86.0148.086.0
\n", + "
" + ], + "text/plain": [ + " dPSI Significance Gene Source of PTM UniProtKB Accession Residue \\\n", + "0 0.413 0.0 ARHGAP17 Q68EM7-1_S575 Q68EM7 S \n", + "1 0.413 0.0 ARHGAP17 Q68EM7-1_S570 Q68EM7 S \n", + "2 0.413 0.0 ARHGAP17 Q68EM7-1_S560 Q68EM7 S \n", + "3 0.413 0.0 ARHGAP17 Q68EM7-1_S553 Q68EM7 S \n", + "4 0.413 0.0 ARHGAP17 Q68EM7-1_S547 Q68EM7 S \n", + "\n", + " PTM Position in Canonical Isoform Gene Location (hg19) Modification \\\n", + "0 575.0 24950686.0 Phosphoserine \n", + "1 570.0 24950701.0 Phosphoserine \n", + "2 560.0 24950731.0 Phosphoserine \n", + "3 553.0 24950752.0 Phosphoserine \n", + "4 547.0 24950770.0 Phosphoserine \n", + "\n", + " Modification Class Proximity to Region Start (bp) \\\n", + "0 Phosphorylation 2.0 \n", + "1 Phosphorylation 17.0 \n", + "2 Phosphorylation 47.0 \n", + "3 Phosphorylation 68.0 \n", + "4 Phosphorylation 86.0 \n", + "\n", + " Proximity to Region End (bp) Proximity to Splice Boundary (bp) \n", + "0 232.0 2.0 \n", + "1 217.0 17.0 \n", + "2 187.0 47.0 \n", + "3 166.0 68.0 \n", + "4 148.0 86.0 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spliced_ptms.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For MATS data, there is also a built in function for running PTM-POSE on MATS data, including all events: " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Phase 3: Identify PTMs with altered flanking sequences as a result of splice events\n", + "\n", + "In addition to differential inclusion of PTMs, some PTMs may experience altered flanking sequences. We can use the project module of PTM-POSE to identify PTMs for which this happens. You will need to provide the same layers of information, plus the genomic coordinates of the regions flanking the spliced region." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Sam\\miniconda3\\envs\\testing_pose\\Lib\\site-packages\\Bio\\pairwise2.py:278: BiopythonDeprecationWarning: Bio.pairwise2 has been deprecated, and we intend to remove it in a future release of Biopython. As an alternative, please consider using Bio.Align.PairwiseAligner as a replacement, and contact the Biopython developers if you still need the Bio.pairwise2 module.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "from ptm_pose import flanking_sequences\n", + "\n", + "first_flank_start_col = 'firstFlankingES'\n", + "first_flank_end_col='firstFlankingEE'\n", + "second_flank_start_col = 'secondFlankingES'\n", + "second_flank_end_col = 'secondFlankingEE'\n", + "\n", + "flanks = flanking_sequences.get_flanking_changes_from_splice_data(SE_data, chromosome_col = chromosome_col, strand_col = strand_col, first_flank_start_col = first_flank_start_col, first_flank_end_col=first_flank_end_col, second_flank_start_col = second_flank_start_col, second_flank_end_col = second_flank_end_col , spliced_region_start_col = region_start_col, spliced_region_end_col = region_end_col, dPSI_col=dPSI_col, sig_col = sig_col, event_id_col = event_id_col, coordinate_type = 'hg19')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Event IDSource of PTMResiduePTM Position in Canonical IsoformInclusion SequenceExclusion SequenceRegionTranslation SuccessMatched
03P01116-2_T148;P01116-1_T148T148ETSAKtRQESGETSAKtRQGC*SecondTrueFalse
13P01116-1_K147;P01116-2_K147K147IETSAkTRQESIETSAkTRQGCSecondTrueFalse
08Q9UPQ0-1_S746S746LPNLNsQGVAWLPNLNsQGGFSFirstTrueFalse
18Q9UPQ0-10_S750;Q9UPQ0-6_S596;Q9UPQ0-1_S750S750PSQVDsPSSEKILKVDsPSSEKSecondTrueFalse
011P62847-1_K129KNaNNVGAGkKSVSWNVGAGkKAEGVFirstTrueFalse
\n", + "
" + ], + "text/plain": [ + " Event ID Source of PTM Residue \\\n", + "0 3 P01116-2_T148;P01116-1_T148 T \n", + "1 3 P01116-1_K147;P01116-2_K147 K \n", + "0 8 Q9UPQ0-1_S746 S \n", + "1 8 Q9UPQ0-10_S750;Q9UPQ0-6_S596;Q9UPQ0-1_S750 S \n", + "0 11 P62847-1_K129 K \n", + "\n", + " PTM Position in Canonical Isoform Inclusion Sequence Exclusion Sequence \\\n", + "0 148 ETSAKtRQESG ETSAKtRQGC* \n", + "1 147 IETSAkTRQES IETSAkTRQGC \n", + "0 746 LPNLNsQGVAW LPNLNsQGGFS \n", + "1 750 PSQVDsPSSEK ILKVDsPSSEK \n", + "0 NaN NVGAGkKSVSW NVGAGkKAEGV \n", + "\n", + " Region Translation Success Matched \n", + "0 Second True False \n", + "1 Second True False \n", + "0 First True False \n", + "1 Second True False \n", + "0 First True False " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "flanks.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also do additional comparisons, such as comparing sequence identity and looking for matching elm motifs." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "flanks = flanking_sequences.compare_flanking_sequences(flanks)\n", + "flanks = flanking_sequences.compare_inclusion_motifs(flanks)\n", + "flanks[['Source of PTM','Sequence Identity', 'Altered Positions','Residue Changes', 'Altered Flank Side', 'Motif only in Inclusion', 'Motif only in Exclusion']].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Phase 4: Annotate PTMs with functional information\n", + "\n", + "Once we have PTMs impacted by splicing, we can also annotate them with additional information. This can be done using the annotate module of PTM-POSE, and can be used with outputs from either the project module (differentially included PTMs) or the flanking_sequence module (PTMs with altered flanking sequences).\n", + "\n", + "Currently, there are functions for appending information from:\n", + "1. PhosphoSitePlus (function, biological process, disease association, interactions, and kinase-substrate), \n", + "2. PTMsigDB (iKiP db, perturbations)\n", + "3. RegPhos (kinase-substrate), \n", + "4. PTMcode (inter and intraprotein interactions)\n", + "5. PTMInt (interactions)\n", + "6. DEPOD (Phosphatase-substrate)\n", + "7. ELM (interactions, motifs)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PhosphoSitePlus regulatory_site information added:\n", + "\t ->6 PTMs in dataset found associated with a molecular function \n", + "\t ->7 PTMs in dataset found associated with a biological process\n", + "\t ->2 PTMs in dataset found associated with a protein interaction\n", + "PhosphoSitePlus disease associations added: 1 PTM sites in dataset found associated with a disease in PhosphoSitePlus\n", + "PhosphoSitePlus kinase-substrate interactions added: 6 phosphorylation sites in dataset found associated with a kinase in PhosphoSitePlus\n", + "ELM interaction instances added: 1 PTMs in dataset found associated with at least one known ELM instance\n", + "PTMInt data added: 2 PTMs in dataset found with PTMInt interaction information\n", + "PTMcode interprotein interactions added: 27 PTMs in dataset found with PTMcode interprotein interaction information\n", + "DEPOD Phosphatase substrates added: 0 PTMs in dataset found with Phosphatase substrate information\n", + "RegPhos kinase-substrate data added: 3 PTMs in dataset found with kinase-substrate information\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Sam\\miniconda3\\envs\\testing_pose\\Lib\\site-packages\\ptm_pose\\annotate.py:558: DtypeWarning: Columns (4) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " regphos = pd.read_csv('http://140.138.144.141/~RegPhos/download/RegPhos_Phos_human.txt', sep = '\\t')\n" + ] + } + ], + "source": [ + "from ptm_pose import annotate\n", + "\n", + "#where to find PhosphoSitePlus data\n", + "psp_regulatory_file = '/PhosphoSitePlus/Regulatory_sites.gz'\n", + "psp_disease_file = '/PhosphoSitePlus/Disease-associated_sites.gz'\n", + "psp_kinase_file = '/Database_Information/PhosphoSitePlus/Kinase_Substrate_Dataset.gz'\n", + "\n", + "#where to find ELM data\n", + "\n", + "#PhosphoSitePlus data (due to licencsing issues, must be downloaded manually from PhosphoSitePlus and the file path provided)\n", + "spliced_ptms = annotate.add_PSP_regulatory_site_data(spliced_ptms, '/PhosphoSitePlus/Regulatory_sites.gz')\n", + "spliced_ptms = annotate.add_PSP_disease_association(spliced_ptms, '/PhosphoSitePlus/Disease-associated_sites.gz')\n", + "spliced_ptms = annotate.add_PSP_kinase_substrate_data(spliced_ptms, '/Database_Information/PhosphoSitePlus/Kinase_Substrate_Dataset.gz')\n", + "\n", + "#ELM interactions (will be faster if file is downloaded manually from ELM and the file path provided)\n", + "spliced_ptms = annotate.add_ELM_interactions(spliced_ptms)\n", + "\n", + "#PTMint interactions\n", + "spliced_ptms = annotate.add_PTMint_data(spliced_ptms)\n", + "\n", + "#PTMcode interactions (will be faster/more reliable if file is downloaded manually from PTMcode and the file path provided)\n", + "ptm_code_interprotein = '/PTMcode2_associations_between_proteins.txt.gz'\n", + "\n", + "#DEPOD phosphatase data\n", + "spliced_ptms = annotate.add_DEPOD_phosphatase_data(spliced_ptms)\n", + "\n", + "#RegPhos data\n", + "spliced_ptms = annotate.add_RegPhos_data(spliced_ptms)\n", + "\n", + "#annotate ptms\n", + "spliced_ptms = annotate.annotate_ptms(spliced_ptms)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Phase 5: Analyze Results\n", + "\n", + "Once we have all of this information, we can start to assess how PTMs are impacted by splicing. Let's first get an idea for how many PTMs have different annotations associated with them from the various sources" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAHWCAYAAACv7eWRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADjSElEQVR4nOzdd1QU1/s/8PfSlqUXwQVFUCkiTRQ1AaUoBhAJ1mBDECt2Y48Na9TYG5YYQINGBTR+sIuAikaxrA1ERFBjsCOKIoJ7f3/wZX6su1Rx0eR5nTPnuDN37jx3ZlaevXvnLo8xxkAIIYQQQgj57BTqOwBCCCGEEEL+Kyj5JoQQQgghRE4o+SaEEEIIIUROKPkmhBBCCCFETij5JoQQQgghRE4o+SaEEEIIIUROKPkmhBBCCCFETij5JoQQQgghRE4o+SaEEEIIIUROKPkmhBDyn5aUlAQej4eYmJj6DqVaHj9+jN69e0NfXx88Hg+rV6+u75A+m7Jrk5SUVN+hEFJnKPkmhBDy2UVGRoLH40FVVRUPHz6U2u7u7g5bW9t6iOzrM3HiRBw9ehQzZszAjh074O3tXWFZHo/HLQoKCjA2NsZ3333HJbNhYWESZSpa3N3dAQDBwcHg8XjQ0tJCYWGh1PEyMzO5fZYvX/45mv/JzMzMJM6Jjo4O7OzsMHz4cJw/f/6T6l68eDH2799fN4F+orS0NISFhSEnJ6e+QyEfUarvAAghhPx3FBUVYcmSJVi3bl19h/LVOnnyJPz9/TF58uRqle/SpQsGDRoExhiys7OxceNGdOrUCQcPHkTPnj1hbm7OlS0oKEBoaCh69OiBnj17cusbNmzI/VtJSQlv377F//73P/zwww8Sx4qOjoaqqirevXv3ia0s5erqisLCQqioqNRJfWVatWqFSZMmAQBev36N9PR07N27F1u3bsXEiROxcuXKWtW7ePFi9O7dG927d6/DaGsnLS0N8+bNg7u7O8zMzOo7HFIOJd+EEELkplWrVti6dStmzJgBY2Pj+g5Hrt68eQN1dfVPrufJkyfQ0dGpdnlLS0sMHDiQe92jRw/Y29tj9erVOHr0KOzt7bltz549Q2hoKOzt7SX2KY/P58PFxQW7du2SSr537twJX19fxMbG1qxRFVBQUICqqmqd1FVeo0aNpNq3dOlS9O/fH6tWrYKFhQVCQ0Pr/LiEADTshBBCiBz99NNP+PDhA5YsWVJpuZycHPB4PERGRkpt4/F4CAsL416XDZ24ffs2Bg4cCG1tbRgYGGD27NlgjOHBgwfw9/eHlpYWhEIhVqxYIfOYHz58wE8//QShUAh1dXV8//33ePDggVS58+fPw9vbG9ra2lBTU4ObmxtSUlIkypTFlJaWhv79+0NXVxcdOnSotM13795Fnz59oKenBzU1NXzzzTc4ePAgt71s6A5jDBs2bOCGTtSUnZ0dGjRogOzs7BrvW6Z///44fPgwXr58ya1LTU1FZmYm+vfvL1W+uLgY8+bNg4WFBVRVVaGvr48OHTrg+PHjlR5H1pjvsiFKaWlp8PDwgJqaGho1aoRly5bVuj0AIBAIsGPHDujp6WHRokVgjHHbli9fDmdnZ+jr60MgEKBNmzZSzwjweDy8efMGUVFR3LUJDg4GANy7dw+jRo2ClZUVBAIB9PX10adPH6khIdU9T7du3ULv3r2hp6cHVVVVODk54cCBA9z2yMhI9OnTBwDg4eHBxUNj578MlHwTQgiRm6ZNm2LQoEHYunUr/vnnnzqtOyAgAGKxGEuWLEH79u2xcOFCrF69Gl26dEGjRo2wdOlSmJubY/LkyTh16pTU/osWLcLBgwcxbdo0jBs3DsePH4enp6fE2OaTJ0/C1dUVr169wty5c7F48WK8fPkSnTp1woULF6Tq7NOnD96+fYvFixdj2LBhFcb++PFjODs74+jRoxg1ahQWLVqEd+/e4fvvv8e+ffsAlA7B2LFjB4DSoSQ7duzgXtdEXl4e8vLyoK+vX+N9y/Ts2RM8Hg9xcXHcup07d6JFixZo3bq1VPmwsDDMmzcPHh4eWL9+PWbOnIkmTZrg8uXLtTp+Xl4evL294eDggBUrVqBFixaYNm0aDh8+XOs2AYCGhgZ69OiBhw8fIi0tjVu/Zs0aODo6Yv78+Vi8eDGUlJTQp08fiQ9HO3bsAJ/PR8eOHblrM2LECAClH0zOnj2Lvn37Yu3atRg5ciQSEhLg7u6Ot2/fcnVU5zzdvHkT33zzDdLT0zF9+nSsWLEC6urq6N69u8S9Mm7cOAClH3jL4rG2tv6k80PqCCOEEEI+s4iICAaApaamsqysLKakpMTGjRvHbXdzc2M2Njbc6+zsbAaARURESNUFgM2dO5d7PXfuXAaADR8+nFtXUlLCGjduzHg8HluyZAm3Pi8vjwkEAhYUFMStS0xMZABYo0aN2KtXr7j1e/bsYQDYmjVrGGOMicViZmFhwby8vJhYLObKvX37ljVt2pR16dJFKqZ+/fpV6/xMmDCBAWCnT5/m1r1+/Zo1bdqUmZmZsQ8fPki0f/To0dWqFwAbMmQIe/r0KXvy5Ak7f/4869y5MwPAVqxYIVX+6dOnUue3vKCgIKaurs4YY6x3796sc+fOjDHGPnz4wIRCIZs3bx537X755RduPwcHB+br61utmMsruzaJiYncOjc3NwaAbd++nVtXVFTEhEIh69WrV5V1mpqaVhrLqlWrGAD2559/cuvevn0rUeb9+/fM1taWderUSWK9urq6xL1V0f6MMXbu3DmpdlTnPHXu3JnZ2dmxd+/ecevEYjFzdnZmFhYW3Lq9e/dKnTvyZaCeb0IIIXLVrFkzBAYGYsuWLcjNza2zeocOHcr9W1FREU5OTmCMYciQIdx6HR0dWFlZ4e7du1L7Dxo0CJqamtzr3r17w8jICIcOHQIAiEQibljF8+fP8ezZMzx79gxv3rxB586dcerUKYjFYok6R44cWa3YDx06hHbt2kkMTdHQ0MDw4cORk5Mj0QtbU9u2bYOBgQEMDQ3Rvn17pKSk4Mcff8SECRNqXSdQOvQkKSkJjx49wsmTJ/Ho0SOZQ06A0vN+8+ZNZGZmftIxy2hoaEiM2VZRUUG7du1kXtfa1A2UPohZRiAQcP/Oy8tDfn4+OnbsWO2e+/L7FxcX4/nz5zA3N4eOjo5EHVWdpxcvXuDkyZP44Ycf8Pr1a+4efP78Oby8vJCZmSlzNiHyZaHkmxBCiNzNmjULJSUlVY79rokmTZpIvNbW1oaqqioaNGggtT4vL09qfwsLC4nXPB4P5ubm3LjcsoQoKCgIBgYGEsuvv/6KoqIi5OfnS9TRtGnTasV+7949WFlZSa0vGyZw7969atUji7+/P44fP44TJ07g/PnzePbsGVasWAEFhU9LAbp27QpNTU3s3r0b0dHRaNu2rcTMKeXNnz8fL1++hKWlJezs7DBlyhRcu3at1sdu3Lix1Hh3XV1dmde1pgoKCgBA4oNYfHw8vvnmG6iqqkJPTw8GBgYIDw+Xut4VKSwsxJw5c2BiYgI+n48GDRrAwMAAL1++lKijqvN0584dMMYwe/ZsqXtw7ty5AEofyCVfNprthBBCiNw1a9YMAwcOxJYtWzB9+nSp7RU9SPjhw4cK61RUVKzWOgASD9NVV1mv9i+//IJWrVrJLFPWa1qmfI9nfWncuDE8PT3rvF4+n4+ePXsiKioKd+/elXgI9mOurq7IysrCn3/+iWPHjuHXX3/FqlWrsGnTJolvLKqrLq/rx27cuAEA3AeJ06dP4/vvv4erqys2btwIIyMjKCsrIyIiAjt37qxWnWPHjkVERAQmTJiAb7/9Ftra2uDxeOjbt6/EtyVVnaeyspMnT4aXl5fMY1X0AYh8OSj5JoQQUi9mzZqF33//HUuXLpXapqurCwASs2kAn9YDXJWPv+pnjOHOnTvcVHzNmzcHAGhpadV5MmtqaoqMjAyp9bdu3eK2f4n69++P3377DQoKCujbt2+lZfX09DB48GAMHjwYBQUFcHV1RVhYWK2S78+loKAA+/btg4mJCfetQ2xsLFRVVXH06FHw+XyubEREhNT+FX1ojImJQVBQkMRMO+/evZO6v4HKz1OzZs0AAMrKylXeg7WZCYfIBw07IYQQUi+aN2+OgQMHYvPmzXj06JHENi0tLTRo0EBqVpKNGzd+tni2b98uMc43JiYGubm58PHxAQC0adMGzZs3x/Lly7mhCeU9ffq01sfu2rUrLly4gHPnznHr3rx5gy1btsDMzAwtW7asdd2fk4eHBxYsWID169dDKBRWWO758+cSrzU0NGBubo6ioqLPHWK1FRYWIjAwEC9evMDMmTO55FVRURE8Hk/iW5ecnByZv2Sprq4uM6FWVFSU6pVft26d1Dc5VZ0nQ0NDuLu7Y/PmzTKflyh/D5bNKS8rHlK/qOebEEJIvZk5cyZ27NiBjIwM2NjYSGwbOnQolixZgqFDh8LJyQmnTp3C7du3P1ssenp66NChAwYPHozHjx9j9erVMDc356YIVFBQwK+//gofHx/Y2Nhg8ODBaNSoER4+fIjExERoaWnhf//7X62OPX36dOzatQs+Pj4YN24c9PT0EBUVhezsbMTGxn7y+OzPRUFBAbNmzaqyXMuWLeHu7o42bdpAT08PFy9eRExMDMaMGSOHKKU9fPgQv//+O4DS3u60tDTs3bsXjx49wqRJk7gpAgHA19cXK1euhLe3N/r3748nT55gw4YNMDc3lxq33qZNG5w4cQIrV66EsbExmjZtivbt26Nbt27YsWMHtLW10bJlS5w7dw4nTpyQmu6xOudpw4YN6NChA+zs7DBs2DA0a9YMjx8/xrlz5/D333/j6tWrAEp/0EpRURFLly5Ffn4++Hw+OnXqBENDw891Wkk1UfJNCCGk3pibm2PgwIGIioqS2jZnzhw8ffoUMTEx2LNnD3x8fHD48OHPljz89NNPuHbtGn7++We8fv0anTt3xsaNG6GmpsaVcXd3x7lz57je3oKCAgiFQrRv314iYauphg0b4uzZs5g2bRrWrVuHd+/ewd7eHv/73//g6+tbF82rV+PGjcOBAwdw7NgxFBUVwdTUFAsXLsSUKVPqJR6RSITAwEDweDxoamrCxMQEfn5+GDp0KNq1aydRtlOnTti2bRuWLFmCCRMmoGnTpli6dClycnKkku+VK1di+PDhmDVrFgoLCxEUFIT27dtjzZo1UFRURHR0NN69ewcXFxecOHFCatx2dc5Ty5YtcfHiRcybNw+RkZF4/vw5DA0N4ejoiDlz5nDlhEIhNm3ahJ9//hlDhgzBhw8fkJiYSMn3F4DH6uLpBEIIIYQQQkiVvszvsQghhBBCCPkXouSbEEIIIYQQOaHkmxBCCCGEEDmh5JsQQgghhBA5oeSbEEIIIYQQOaHkmxBCCCGEEDmheb4JIaQSYrEY//zzDzQ1Nennmgkh5D+KMYbXr1/D2Nj4k3/0ipJvQgipxD///AMTE5P6DoMQQsgX4MGDB2jcuPEn1UHJNyGEVEJTUxNA6X+4Wlpa9RwNIYSQ+vDq1SuYmJhwfxM+BSXfhBBSibKhJlpaWpR8E0LIf1xdDD+kBy4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkROl+g6AEEK+Bj///DNUVVXrOwxCCCE1NHfu3PoOQQL1fBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYSQf7VTp07Bz88PxsbG4PF42L9/v8T24OBg8Hg8icXb21uqnqFDh0JLSws6OjoYMmQICgoKahwLJd+EkFpLSkoCj8fDy5cvAQCRkZHQ0dGp15gIIYSQj7158wYODg7YsGFDhWW8vb2Rm5vLLbt27ZIqc+vWLRw/fhzx8fE4deoUhg8fXuNYKPkmhFTq3LlzUFRUhK+vb53UV75XQVtbGy4uLjh58qTUNllLWFgYcnJywOPxoKioiIcPH0rUnZubCyUlJfB4POTk5NRJvIQQQr5+Pj4+WLhwIXr06FFhGT6fD6FQyC26urrctoyMDADA2rVr0b59e3To0AHr1q3DH3/8gX/++adGsVDyTQip1LZt2zB27FicOnWqxv/BVCQiIgK5ublISUlBgwYN0K1bN9y9e1eix2H16tXQ0tKSWDd58mSujkaNGmH79u0S9UZFRaFRo0Z1EiMhhJD/lqSkJBgaGsLKygqhoaF4/vw5t+3ChQsAgNatW3PrPD09oaCggPPnz9foOJR8E0IqVFBQgN27dyM0NBS+vr6IjIysk3p1dHQgFApha2uL8PBwFBYW4vjx4xI9Dtra2uDxeBLrNDQ0uDqCgoIQEREhUW9ERASCgoIk1uXl5WHAgAEwMDCAQCCAhYWF1H6EEEL+27y9vbF9+3YkJCRg6dKlSE5Oho+PDz58+AAAePz4sdQ+SkpK0NPTw6NHj2p0LEq+CSEV2rNnD1q0aAErKysMHDgQv/32GxhjdXoMgUAAAHj//n2N9vv++++Rl5eHM2fOAADOnDmDvLw8+Pn5SZSbPXs20tLScPjwYaSnpyM8PBwNGjSosN6ioiK8evVKYiGEEPLv1rdvX3z//fews7ND9+7dER8fj9TUVCQlJdX5sSj5JoRUaNu2bRg4cCCA0l6B/Px8JCcn11n9b9++xaxZs6CoqAg3N7ca7ausrMx9IACA3377DQMHDoSysrJEufv378PR0RFOTk4wMzODp6enVIJe3s8//wxtbW1uMTExqXnDCCGEfNWaNWuGBg0a4M6dOwCAhg0bSpUpKSnBixcvIBQKa1Q3Jd+EEJkyMjJw4cIF9OvXD0Dp12sBAQHYtm3bJ9fdr18/aGhoQFNTE7Gxsdi2bRvs7e1rXE9ISAj27t2LR48eYe/evQgJCZEqExoaij/++AOtWrXC1KlTcfbs2UrrnDFjBvLz87nlwYMHNY6LEELI1+3vv//G8+fPYWRkBABo164dAODKlStcmZMnT0IsFqN9+/Y1qlup7sIkhPybbNu2DSUlJTA2NubWMcbA5/Oxfv16aGtr17ruVatWwdPTE9ra2jAwMKh1PXZ2dmjRogX69esHa2tr2NraQiQSSZTx8fHBvXv3cOjQIRw/fhydO3fG6NGjsXz5cpl18vl88Pn8WsdECCHky1NQUMD1YgNAdnY2RCIR9PT0oKenh3nz5qFXr14QCoXIysrC1KlTYW5uDi8vLwCAlZUVAGDcuHHYunUriouLMWbMGPTt21fi72R1UM83IURKSUkJtm/fjhUrVkAkEnHL1atXYWxsLHPu05oQCoUwNzf/pMS7TEhICJKSkmT2epcxMDBAUFAQfv/9d6xevRpbtmz55OMSQgj5ely8eBGOjo5wdHQEAPz4449wdHTEnDlzoKioiGvXruH777+HpaUlhgwZgjZt2uD06dNSnTGWlpbo3Lkzunbtig4dOtTq7wn1fBNCpMTHxyMvLw9DhgyR6uHu1asXtm3bhpEjR9ZTdJKGDRuGPn36VPjjPnPmzEGbNm1gY2ODoqIixMfHw9raWr5BEkIIqVfu7u6VThhw9OjRatWzbds2aGlpfVIs1PNNCJGybds2bljIx3r16oWLFy/i2rVr9RCZNCUlJTRo0ABKSrL7ElRUVDBjxgzY29vD1dUVioqK+OOPP+QcJSGEEFKKx+p63jBCCPkXefXqFbS1tTF9+nSoqqrWdziEEEJqaO7cuZ9cR9nfgvz8fOr5JoQQQggh5GtByTchhBBCCCFyQsk3IYQQQgghckLJNyGEEEIIIXJCyTchhBBCCCFyQsk3IYQQQgghckLJNyGEEEIIIXJC83wTQkgl6nJuV0IIIV8nmuebEEIIIYSQrxAl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTIiVJ9B0AIIV8Dbe1P258mdSWEEAJQzzchhBBCCCFyQ8k3IYQQQgghckLJNyGEEEIIIXJCyTchhBBCCCFyQsk3IYQQQgghckLJNyGEEEIIIXJCyTchhBBCCCFyQsk3IYQQQgghckLJ939IZGQkdHR06u34ZmZmWL16dZ3UlZSUBB6Ph5cvX8rtmOXl5OSAx+NBJBJVex93d3dMmDChTuMICwtDq1at6qy++r5H/u3MzMzA4/GkltGjR9d3aIQQQuTkq0u+g4ODuT9YKioqMDc3x/z581FSUiKxTdZiZmYGoDQJ4vF4WLJkiVT9vr6+4PF4CAsLk2/D5CAgIAC3b9+u0T6fK3n9VM7OzsjNzYX2//3sYF0mjR/fR/r6+vD29sa1a9e4MiYmJsjNzYWtrW2dHLO2Jk+ejISEBLkes/y50dbWhouLC06ePCnXGL5WqampyM3N5Zbjx48DAPr06VPPkRFCCJGXry75BgBvb2/k5uYiMzMTkyZNQlhYGH755ResWbNG4g8bAERERHCvU1NTuTpMTEwQGRkpUe/Dhw+RkJAAIyMjeTZHbgQCAQwNDes7jDqhoqICoVAIHo/3Weovu8dyc3ORkJAAJSUldOvWjduuqKgIoVAIJSWlz3L86tLQ0IC+vr7cj1v2vkpJSUGDBg3QrVs33L17V2bZ4uJiOUf35TIwMIBQKOSW+Ph4NG/eHG5ubvUdGiGEEDn5KpNvPp8PoVAIU1NThIaGwtPTEwcOHIC2trbEHzYA0NHR4V4bGBhwdXTr1g3Pnj1DSkoKty4qKgrfffedVIK6ceNGWFhYQFVVFQ0bNkTv3r0rjO358+fo168fGjVqBDU1NdjZ2WHXrl0SZWJiYmBnZweBQAB9fX14enrizZs3AEqHU7Rr1w7q6urQ0dGBi4sL7t27x+0bHh6O5s2bQ0VFBVZWVtixY4dE3S9fvsSIESPQsGFDqKqqwtbWFvHx8QCke4ezsrLg7++Phg0bQkNDA23btsWJEye47e7u7rh37x4mTpzI9XSWOXPmDDp27AiBQAATExOMGzeOawMAPHnyBH5+fhAIBGjatCmio6MrPGcAcOPGDSgoKODp06cAgBcvXkBBQQF9+/blyixcuBAdOnTgzlPZsJOkpCQMHjwY+fn5XJzlv7l4+/YtQkJCoKmpiSZNmmDLli2VxgL8/3tMKBSiVatWmD59Oh48eMDFJ2vYSXJyMtq1awc+nw8jIyNMnz4dJSUlFR4jLy8PgwYNgq6uLtTU1ODj44PMzEyJMlu3boWJiQnU1NTQo0cPrFy5UuIayhp28ttvv8HGxoaLY8yYMdy2lStXws7ODurq6jAxMcGoUaNQUFBQ5fn4WNn7ytbWFuHh4SgsLOR6cXk8HsLDw/H9999DXV0dixYtAvBp9y5Q9T1X2fu0svdcfXn//j1+//13hISEfLYPkYQQQr48X2Xy/TGBQID379/XaB8VFRUMGDAAERER3LrIyEiEhIRIlLt48SLGjRuH+fPnIyMjA0eOHIGrq2uF9b579w5t2rTBwYMHcePGDQwfPhyBgYG4cOECACA3Nxf9+vVDSEgI0tPTkZSUhJ49e4IxhpKSEnTv3h1ubm64du0azp07h+HDh3N/mPft24fx48dj0qRJuHHjBkaMGIHBgwcjMTERACAWi+Hj44OUlBT8/vvvSEtLw5IlS6CoqCgz1oKCAnTt2hUJCQm4cuUKvL294efnh/v37wMA4uLi0LhxY8yfP1/i24SsrCx4e3ujV69euHbtGnbv3o0zZ85IJHnBwcF48OABEhMTERMTg40bN+LJkycVnjcbGxvo6+sjOTkZAHD69GmJ10Bpcuvu7i61r7OzM1avXg0tLS0uzsmTJ3PbV6xYAScnJ1y5cgWjRo1CaGgoMjIyKoxF1nn6/fffYW5uXmEv88OHD9G1a1e0bdsWV69eRXh4OLZt24aFCxdWWG9wcDAuXryIAwcO4Ny5c2CMoWvXrlxPcUpKCkaOHInx48dDJBKhS5cuXCJbkfDwcIwePRrDhw/H9evXceDAAZibm3PbFRQUsHbtWty8eRNRUVE4efIkpk6dWu1zIYtAIAAAifdgWFgYevTogevXryMkJOST792q7rnK3qeVvedkKSoqwqtXrySWz2H//v14+fIlgoODP0v9hBBCvlDsKxMUFMT8/f0ZY4yJxWJ2/Phxxufz2eTJk6XKAmD79u2TWu/m5sbGjx/PRCIR09TUZAUFBSw5OZkZGhqy4uJi5uDgwObOncsYYyw2NpZpaWmxV69e1TpmX19fNmnSJMYYY5cuXWIAWE5OjlS558+fMwAsKSlJZj3Ozs5s2LBhEuv69OnDunbtyhhj7OjRo0xBQYFlZGTI3D8iIoJpa2tXGquNjQ1bt24d99rU1JStWrVKosyQIUPY8OHDJdadPn2aKSgosMLCQpaRkcEAsAsXLnDb09PTGQCpusrr2bMnGz16NGOMsQkTJrApU6YwXV1dlp6ezt6/f8/U1NTYsWPHGGOMJSYmMgAsLy+v0raZmpqygQMHcq/FYjEzNDRk4eHhFcYRFBTEFBUVmbq6OlNXV2cAmJGREbt06RJXJjs7mwFgV65cYYwx9tNPPzErKysmFou5Mhs2bGAaGhrsw4cPjLH/f98xxtjt27cZAJaSksKVf/bsGRMIBGzPnj2MMcYCAgKYr6+vRGwDBgyQaOfcuXOZg4MD99rY2JjNnDmzwrZ9bO/evUxfX597XZ17pPz76s2bN2zUqFFMUVGRXb16lds+YcIEiX0+9d6t6p6r7H1a2XtOlrlz5zIAMpZ8BrBaLx/77rvvWLdu3aoVEyGEkPqVn5/PALD8/PxPruur7PmOj4+HhoYGVFVV4ePjg4CAgFo9IOng4AALCwvExMTgt99+Q2BgoNQY3i5dusDU1BTNmjVDYGAgoqOj8fbt2wrr/PDhAxYsWAA7Ozvo6elBQ0MDR48e5XqTHRwc0LlzZ9jZ2aFPnz7YunUr8vLyAAB6enoIDg6Gl5cX/Pz8uDHsZdLT0+Hi4iJxPBcXF6SnpwMARCIRGjduDEtLy2q1v6CgAJMnT4a1tTV0dHSgoaGB9PR0LtaKXL16FZGRkdDQ0OAWLy8viMViZGdnIz09HUpKSmjTpg23T4sWLap8INLNzQ1JSUkASnu5O3XqBFdXVyQlJSE1NRXFxcVS7a8Oe3t77t88Hg9CobDSXngA8PDwgEgkgkgkwoULF+Dl5QUfHx+JIUDlpaen49tvv5UYPuDi4oKCggL8/fffMssrKSmhffv23Dp9fX1YWVlx1zMjIwPt2rWT2O/j1+U9efIE//zzDzp37lxhmRMnTqBz585o1KgRNDU1ERgYiOfPn1d6T8vSr18/aGhoQFNTE7Gxsdi2bZvEeXZycpJq76fcu1Xdc5W9Tyt7z8kyY8YM5Ofnc8uDBw9qdG6q4969ezhx4gSGDh1a53UTQgj5sn2VyXdZYpSZmYnCwkJERUVBXV29VnWFhIRgw4YNiImJkRpyAgCampq4fPkydu3aBSMjI8yZMwcODg4VTnFX9uDntGnTkJiYCJFIBC8vL+4reUVFRRw/fhyHDx9Gy5YtsW7dOlhZWSE7OxtA6YNs586dg7OzM3bv3g1LS0v89ddf1WpL2df/1TV58mTs27cPixcvxunTpyESiWBnZ1flEJ6CggKMGDGCS05FIhGuXr2KzMxMNG/evEYxlOfu7o60tDRkZmYiLS0NHTp0gLu7O5KSkpCcnAwnJyeoqanVuF5lZWWJ1zweD2KxuNJ91NXVYW5uDnNzc7Rt2xa//vor3rx5g61bt9b4+PJS1fXPyclBt27dYG9vj9jYWFy6dAkbNmwAgBoP21q1ahVEIhEePXqER48eISgoSGJ7Td+PVcVe1T1X2fu0qvfcx/h8PrS0tCSWuhYREQFDQ0P4+vrWed2EEEK+bF9l8l2WGDVp0uSTZ5vo378/rl+/DltbW7Rs2VJmGSUlJXh6emLZsmW4du0acnJyKpxaLSUlBf7+/hg4cCAcHBzQrFkzqen9eDweXFxcMG/ePFy5cgUqKirYt28ft93R0REzZszA2bNnYWtri507dwIArK2tJR4QLTteWdz29vb4+++/qz2dYEpKCoKDg9GjRw/Y2dlBKBQiJydHooyKigo+fPggsa5169ZIS0vjktPyi4qKClq0aIGSkhJcunSJ2ycjI6PKObnt7Oygq6uLhQsXolWrVtDQ0IC7uzuSk5ORlJQkc7x3ZXHWJR6PBwUFBRQWFsrcbm1tzY3bLpOSkgJNTU00btxYZvmSkhKcP3+eW/f8+XNkZGRw19PKykpihh4AUq/L09TUhJmZWYVTD166dAlisRgrVqzAN998A0tLS/zzzz8VN7oSQqEQ5ubmEg8xV+ZT792q7jmg8vdpVe85eRKLxYiIiEBQUFC9z5ZDCCFE/v7z//Pr6uoiNzdXqne0THx8PO7evQtXV1fo6uri0KFDEIvFsLKyklm+bBjL2bNnoauri5UrV+Lx48dcknH+/HkkJCRws6qcP38eT58+hbW1NbKzs7FlyxZ8//33MDY2RkZGBjIzMzFo0CAAwJQpU/DDDz/A0dERnp6e+N///oe4uDhuhhI3Nze4urqiV69eWLlyJczNzXHr1i3weDx4e3vLjDUuLg5+fn7g8XiYPXu2VI+wmZkZTp06hb59+4LP56NBgwaYNm0avvnmG4wZMwZDhw6Furo60tLScPz4caxfvx5WVlbw9vbGiBEjEB4eDiUlJUyYMKHK3k0ejwdXV1dER0dzD0za29ujqKgICQkJ+PHHHyvc18zMDAUFBUhISICDgwPU1NRq1UtepqioCI8ePQJQOivJ+vXrUVBQAD8/P5nlR40ahdWrV2Ps2LEYM2YMMjIyMHfuXPz4449QUJD+jGthYQF/f38MGzYMmzdvhqamJqZPn45GjRrB398fADB27Fi4urpi5cqV8PPzw8mTJ3H48OFKZ8YICwvDyJEjYWhoCB8fH7x+/RopKSkYO3YszM3NUVxcjHXr1sHPzw8pKSnYtGlTrc9RTXzqvVvVPVfZ+7Sy91x9OHHiBO7fvy/zmzZCCCH/AZ8+BF2+yj9wWRVU8cBlRco/cHn69Gnm5ubGdHV1mUAgYPb29mz37t0V7vv8+XPm7+/PNDQ0mKGhIZs1axYbNGgQF3NaWhrz8vJiBgYGjM/nM0tLS+4Bx0ePHrHu3bszIyMjpqKiwkxNTdmcOXO4B/YYY2zjxo2sWbNmTFlZmVlaWrLt27dLHX/w4MFMX1+fqaqqMltbWxYfH88Yk36YLjs7m3l4eDCBQMBMTEzY+vXrpc7NuXPnmL29PePz+az87XLhwgXWpUsXpqGhwdTV1Zm9vT1btGgRtz03N5f5+voyPp/PmjRpwrZv3y7z4c2PrVq1igFghw8f5tb5+/szJSUl9vr1a27dxw9cMsbYyJEjmb6+PgPAXT9Zxyx/fWUJCgqSeNBOU1OTtW3blsXExEicO5R74JIxxpKSkljbtm2ZiooKEwqFbNq0aay4uJjb/vG5ffHiBQsMDGTa2tpMIBAwLy8vdvv2bYlYtmzZwho1asQEAgHr3r07W7hwIRMKhdz2jx+4ZIyxTZs2MSsrK6asrMyMjIzY2LFjuW0rV65kRkZG3PG2b99erQdXy6vofVXV9k+5dxmr/J6r7H1a2XuuOsoesqnrBy4JIYR8PerygUseYxXMt0UI+eIMGzYMt27dwunTp+s7lP+MV69e/d8vqeYDqP34b/qflhBCvl5lfwvy8/M/+Vmg//ywE0K+ZMuXL0eXLl2grq6Ow4cPIyoqChs3bqzvsAghhBBSS5R8E/IFu3DhApYtW4bXr1+jWbNmWLt2LU1PRwghhHzFKPkm5Au2Z8+e+g6BEEIIIXXoq5xqkBBCCCGEkK8RJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICc12Qggh1ZCfD3zi7yoQQggh1PNNCCGEEEKIvFDyTQghhBBCiJxQ8k0IIYQQQoicUPJNCCGEEEKInFDyTQghhBBCiJxQ8k0IIYQQQoic0FSDhBBSDdraNd+HsbqPgxBCyNeNer4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvv9lIiMjoaOjU2/HNzMzw+rVq+ukrqSkJPB4PLx8+VJux6yt6sZal8LCwtCqVSu5He9LwOPxsH///voOo8YePnyIgQMHQl9fHwKBAHZ2drh48WJ9h0UIIaQefJHJd3BwMHg8Hng8HlRUVGBubo758+ejpKREYpusxczMDADg7u4OHo+HJUuWSNXv6+sLHo+HsLAw+TZMDgICAnD79u0a7fMlJK+yODs7Izc3F9r/99OCdfnBouw+GjlypNS20aNHg8fjITg4uE6O9TUqe/98vJSUlMjl+BV9sMjNzYWPj49cYqgreXl5cHFxgbKyMg4fPoy0tDSsWLECurq69R0aIYSQevDF/ry8t7c3IiIiUFRUhEOHDmH06NFQVlbGmjVrJBJqIyMjREREwNvbGwCgqKjIbTMxMUFkZCSmT5/OrXv48CESEhJgZGQkv8bIkUAggEAgqO8w6oSKigqEQuFnq9/ExAR//PEHVq1axZ2zd+/eYefOnWjSpMlnO+6XpLi4GMrKyjK3DRs2DPPnz5dYp6RUv/9lfM774XNZunQpTExMEBERwa1r2rRpPUZECCGkPn2RPd8AwOfzIRQKYWpqitDQUHh6euLAgQPQ1taGUCjkFgDQ0dHhXhsYGHB1dOvWDc+ePUNKSgq3LioqCt999x0MDQ0ljrdx40ZYWFhAVVUVDRs2RO/evSuM7fnz5+jXrx8aNWoENTU12NnZYdeuXRJlYmJiYGdnB4FAAH19fXh6euLNmzcASocotGvXDurq6tDR0YGLiwvu3bvH7RseHo7mzZtDRUUFVlZW2LFjh0TdL1++xIgRI9CwYUOoqqrC1tYW8fHxAKR7h7OysuDv74+GDRtCQ0MDbdu2xYkTJ7jt7u7uuHfvHiZOnMj1bpY5c+YMOnbsCIFAABMTE4wbN45rAwA8efIEfn5+EAgEaNq0KaKjoys8ZwBw48YNKCgo4OnTpwCAFy9eQEFBAX379uXKLFy4EB06dODOU9lQjqSkJAwePBj5+flcnOW/uXj79i1CQkKgqamJJk2aYMuWLZXGAgCtW7eGiYkJ4uLiuHVxcXFo0qQJHB0dJcoWFRVh3LhxMDQ0hKqqKjp06IDU1NRK66/q/BUVFWHatGkwMTEBn8+Hubk5tm3bBkB2L//+/fslrs/HUlNT0aVLFzRo0ADa2tpwc3PD5cuXJcrweDyEh4fj+++/h7q6OhYtWlRhfWpqahLvtbL3m7u7OyZMmCBRtnv37hLfFJiZmWHx4sWVXpO///4b/fr1g56eHtTV1eHk5ITz588jMjIS8+bNw9WrV7lrHRkZycVfftjJ9evX0alTJ+59Nnz4cBQUFHDbg4OD0b17dyxfvhxGRkbQ19fH6NGjUVxcXGG769qBAwfg5OSEPn36wNDQEI6Ojti6davcjk8IIeTL8sUm3x8TCAR4//59jfZRUVHBgAEDJHqcIiMjERISIlHu4sWLGDduHObPn4+MjAwcOXIErq6uFdb77t07tGnTBgcPHsSNGzcwfPhwBAYG4sKFCwBKvxrv168fQkJCkJ6ejqSkJPTs2ROMMZSUlKB79+5wc3PDtWvXcO7cOQwfPpxLqvbt24fx48dj0qRJuHHjBkaMGIHBgwcjMTERACAWi+Hj44OUlBT8/vvvSEtLw5IlSyR6/MsrKChA165dkZCQgCtXrsDb2xt+fn64f/8+gNJks3Hjxpg/fz5yc3ORm5sLoDRp9/b2Rq9evXDt2jXs3r0bZ86cwZgxY7i6g4OD8eDBAyQmJiImJgYbN27EkydPKjxvNjY20NfXR3JyMgDg9OnTEq8BIDk5Ge7u7lL7Ojs7Y/Xq1dDS0uLinDx5Mrd9xYoVcHJywpUrVzBq1CiEhoYiIyOjwljKhISESNwfv/32GwYPHixVburUqYiNjUVUVBQuX74Mc3NzeHl54cWLFzLrrc75GzRoEHbt2oW1a9ciPT0dmzdvhoaGRpUxV+T169cICgrCmTNn8Ndff8HCwgJdu3bF69evJcqFhYWhR48euH79utR7oS5Vdk0KCgrg5uaGhw8f4sCBA7h69SqmTp0KsViMgIAATJo0CTY2Nty1DggIkKr/zZs38PLygq6uLlJTU7F3716cOHFC4hwDQGJiIrKyspCYmIioqChERkZyybwsRUVFePXqlcTyKe7evYvw8HBYWFjg6NGjCA0Nxbhx4xAVFfVJ9RJCCPlKsS9QUFAQ8/f3Z4wxJhaL2fHjxxmfz2eTJ0+WKguA7du3T2q9m5sbGz9+PBOJRExTU5MVFBSw5ORkZmhoyIqLi5mDgwObO3cuY4yx2NhYpqWlxV69elXrmH19fdmkSZMYY4xdunSJAWA5OTlS5Z4/f84AsKSkJJn1ODs7s2HDhkms69OnD+vatStjjLGjR48yBQUFlpGRIXP/iIgIpq2tXWmsNjY2bN26ddxrU1NTtmrVKokyQ4YMYcOHD5dYd/r0aaagoMAKCwtZRkYGA8AuXLjAbU9PT2cApOoqr2fPnmz06NGMMcYmTJjApkyZwnR1dVl6ejp7//49U1NTY8eOHWOMMZaYmMgAsLy8vErbZmpqygYOHMi9FovFzNDQkIWHh1cYR9k99uTJE8bn81lOTg7Lyclhqqqq7OnTp8zf358FBQUxxhgrKChgysrKLDo6mtv//fv3zNjYmC1btkxmrNU9f8ePH5cZn6y27tu3j5V/y86dO5c5ODhU2MYPHz4wTU1N9r///Y9bB4BNmDChwn3KuLm5MWVlZaaurs4tP/74I7dt/PjxEuXLny/Gqr4mmzdvZpqamuz58+cyj19R28q/37ds2cJ0dXVZQUEBt/3gwYNMQUGBPXr0iDFWep1NTU1ZSUkJV6ZPnz4sICCgwrbPnTuXAZCx5DOA1WhhjDFlZWX27bffShxj7Nix7JtvvqkwBkIIIV+W/Px8BoDl5+d/cl1f7Jjv+Ph4aGhooLi4GGKxGP3796/VA5IODg6wsLBATEwMEhMTERgYKDVutUuXLjA1NUWzZs3g7e0Nb29v9OjRA2pqajLr/PDhAxYvXow9e/bg4cOHeP/+PYqKirjyDg4O6Ny5M+zs7ODl5YXvvvsOvXv3hq6uLvT09BAcHAwvLy906dIFnp6e+OGHH7gx6Onp6Rg+fLjE8VxcXLBmzRoAgEgkQuPGjWFpaVmt9hcUFCAsLAwHDx5Ebm4uSkpKUFhYyPV8V+Tq1au4du2axFASxhjEYjGys7Nx+/ZtKCkpoU2bNtz2Fi1aVPlApJubGzf8IDk5GYsXL8bt27eRlJSEFy9eoLi4GC4uLtVqW3n29vbcv3k8HoRCYaW98GUMDAzg6+uLyMhIMMbg6+uLBg0aSJTJysqSiktZWRnt2rVDenq6zHqrOn/Xr1+HoqIi3NzcatrUCj1+/BizZs1CUlISnjx5gg8fPuDt27dS19rJyala9Q0YMAAzZ87kXtf0YdfKrolIJIKjoyP09PRqVGd56enpcHBwgLq6OrfOxcUFYrEYGRkZaNiwIYDSb1zKfzNkZGSE69evV1jvjBkz8OOPP3KvX716BRMTk1rHaWRkhJYtW0qss7a2RmxsbK3rJIQQ8vX6YpNvDw8PhIeHQ0VFBcbGxp/0oFdISAg2bNiAtLQ0bmhIeZqamrh8+TKSkpJw7NgxzJkzB2FhYUhNTZWZcPzyyy9Ys2YNVq9eDTs7O6irq2PChAncsBhFRUUcP34cZ8+exbFjx7Bu3TrMnDkT58+fR9OmTREREYFx48bhyJEj2L17N2bNmoXjx4/jm2++qbItNX2YcvLkyTh+/DiWL18Oc3NzCAQC9O7du8ohPAUFBRgxYgTGjRsnta1JkyY1nlGlTNl44czMTKSlpaFDhw64desWkpKSkJeXBycnpwo/9FTm44cGeTwexGJxtfYNCQnhhips2LChxseWparzd+fOnUr3V1BQAGNMYl1V45SDgoLw/PlzrFmzBqampuDz+fj222+lrnX5ZLUy2traMDc3r3VslV0TeT4UXNN7g8/ng8/n19nxXVxcpIZA3b59G6ampnV2DEIIIV+PL3bMt7q6OszNzdGkSZNPnmGhf//+uH79OmxtbaV6oMooKSnB09MTy5Ytw7Vr15CTk4OTJ0/KLJuSkgJ/f38MHDgQDg4OaNasmVQyyuPx4OLignnz5uHKlStQUVHBvn37uO2Ojo6YMWMGzp49C1tbW+zcuRNAaY9Y+QdEy45XFre9vT3+/vvvaie/KSkpCA4ORo8ePWBnZwehUIicnByJMioqKvjw4YPEutatWyMtLQ3m5uZSi4qKClq0aIGSkhJcunSJ2ycjI6PKea7t7Oygq6uLhQsXolWrVtDQ0IC7uzuSk5ORlJQkc7x3ZXHWBW9vb7x//x7FxcXw8vKS2l728Gv561JcXIzU1NQK76eqzp+dnR3EYrHEePfyDAwM8Pr1a4kHNEUiUaXtSElJwbhx49C1a1fY2NiAz+fj2bNn1TgDNWNgYMA9GwCUfhN048aNGtVhb28PkUhU4Zj56lxra2trXL16VeIcpaSkQEFBAVZWVjWK53OaOHEi/vrrLyxevBh37tzBzp07sWXLFowePbq+QyOEEFIPvtjkuy7p6uoiNzcXCQkJMrfHx8dj7dq1EIlEuHfvHrZv3w6xWFzhH3ALCwuuZzs9PR0jRozA48ePue3nz5/H4sWLcfHiRdy/fx9xcXF4+vQprK2tkZ2djRkzZuDcuXO4d+8ejh07hszMTFhbWwMApkyZgsjISISHhyMzMxMrV65EXFwc93Chm5sbXF1d0atXLxw/fhzZ2dk4fPgwjhw5UmGscXFxEIlEuHr1Kvr37y/V62dmZoZTp07h4cOHXLI2bdo0nD17FmPGjIFIJEJmZib+/PNProfYysoK3t7eGDFiBM6fP49Lly5h6NChVfZo8ng8uLq6Ijo6mku07e3tUVRUhISEhEqHYZiZmaGgoAAJCQl49uwZ3r59W+mxqktRURHp6elIS0uT+eCquro6QkNDMWXKFBw5cgRpaWkYNmwY3r59iyFDhsiss6rzZ2ZmhqCgIISEhGD//v3Izs5GUlIS9uzZAwBo37491NTU8NNPPyErKws7d+6s9CFBoPRa79ixA+np6Th//jwGDBjwWXqYO3XqhIMHD+LgwYO4desWQkNDa/zjQv369YNQKET37t2RkpKCu3fvIjY2FufOnQNQen6ys7MhEonw7NkzFBUVSdUxYMAAqKqqIigoCDdu3EBiYiLGjh2LwMBAbsjJl6Bt27bYt28fdu3aBVtbWyxYsACrV6/GgAED6js0Qggh9eA/kXwDpeNVK/q6XUdHB3FxcejUqROsra2xadMm7Nq1CzY2NjLLz5o1C61bt4aXlxfc3d25JKKMlpYWTp06ha5du8LS0hKzZs3CihUr4OPjAzU1Ndy6dQu9evWCpaUlhg8fjtGjR2PEiBEASqdsW7NmDZYvXw4bGxts3rwZEREREj3CsbGxaNu2Lfr164eWLVti6tSpFfYSrly5Erq6unB2doafnx+8vLzQunVriTLz589HTk4Omjdvzk3VaG9vj+TkZNy+fRsdO3aEo6Mj5syZA2NjY26/iIgIGBsbw83NDT179sTw4cOlpnCUxc3NDR8+fODapKCgAFdXV+7bgoo4Oztj5MiRCAgIgIGBAZYtW1blsapLS0sLWlpaFW5fsmQJevXqhcDAQLRu3Rp37tzB0aNHK/yhlOqcv/DwcPTu3RujRo1CixYtMGzYMK4XV09PD7///jsOHTrETWVZ1TMP27ZtQ15eHlq3bo3AwEBuasS6FhISgqCgIAwaNAhubm5o1qwZPDw8alSHiooKjh07BkNDQ3Tt2hV2dnYSs/b06tUL3t7e8PDwgIGBgdRUnkDpVIhHjx7Fixcv0LZtW/Tu3RudO3fG+vXr66Sddalbt264fv063r17h/T0dAwbNqy+QyKEEFJPeOzjwZuEEEI4r169+r9fWc0HUPEHNFnof1dCCPl3KPtbkJ+fX2lnXXX8Z3q+CSGEEEIIqW+UfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCSDXk55fO212ThRBCCPkYJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMiJUn0HQAghXwNt7ZrvQ9MNEkII+Rj1fBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0LIZ/bw4UMMHDgQ+vr6EAgEsLOzw8WLF+s7LEIIIfWAkm9SryIjI6Gjo1NvxzczM8Pq1avrpK6kpCTweDy8fPlSbscsz93dHRMmTKjzej8HV1dX7Ny5U67H3LRpE/z8/OR6TADIy8uDi4sLlJWVcfjwYaSlpWHFihXQ1dWVeyyEEELqHyXfdSA4OBg8Hg88Hg8qKiowNzfH/PnzUVJSIrFN1mJmZgagNHHi8XhYsmSJVP2+vr7g8XgICwuTb8PkICAgALdv367RPp8ref1Uzs7OyM3Nhfb//Q55XX6wCA4ORvfu3SXWxcTEQFVVFStWrAAAxMXFYcGCBXVyvM/pwIEDePz4Mfr27cutMzMz494T6urqaN26Nfbu3cttf/v2LWbMmIHmzZtDVVUVBgYGcHNzw59//smVKXsP8Xg8qKqqomXLlti4cSO3PSQkBJcvX8bp06fl09D/s3TpUpiYmCAiIgLt2rVD06ZN8d1336F58+ZyjYMQQsiXgZLvOuLt7Y3c3FxkZmZi0qRJCAsLwy+//II1a9YgNzeXWwAgIiKCe52amsrVYWJigsjISIl6Hz58iISEBBgZGcmzOXIjEAhgaGhY32HUCRUVFQiFQvB4vM9+rF9//RUDBgxAeHg4Jk2aBADQ09ODpqbmZz/2p1q7di0GDx4MBQXJ/37mz5+P3NxcXLlyBW3btkVAQADOnj0LABg5ciTi4uKwbt063Lp1C0eOHEHv3r3x/PlziTqGDRuG3NxcpKWl4YcffsDo0aOxa9cuAKXXp3///li7dq18Gvp/Dhw4ACcnJ/Tp0weGhoZwdHTE1q1b5RoDIYSQLwcl33WEz+dDKBTC1NQUoaGh8PT0xIEDB6CtrQ2hUMgtAKCjo8O9NjAw4Oro1q0bnj17hpSUFG5dVFQUvvvuO6kEdePGjbCwsICqqioaNmyI3r17Vxjb8+fP0a9fPzRq1Ahqamqws7PjEpIyMTExsLOzg0AggL6+Pjw9PfHmzRsApcMp2rVrB3V1dejo6MDFxQX37t3j9g0PD0fz5s2hoqICKysr7NixQ6Luly9fYsSIEWjYsCFUVVVha2uL+Ph4ANK9w1lZWfD390fDhg2hoaGBtm3b4sSJE9x2d3d33Lt3DxMnTuR6OcucOXMGHTt2hEAggImJCcaNG8e1AQCePHkCPz8/CAQCNG3aFNHR0RWeMwC4ceMGFBQU8PTpUwDAixcvoKCgINFju3DhQnTo0IE7T2XDTpKSkjB48GDk5+dzcZb/5uLt27cICQmBpqYmmjRpgi1btlQaS3nLli3D2LFj8ccff2Dw4MES56b8sBMzMzMsXry40uNMmzYNlpaWUFNTQ7NmzTB79mwUFxdz269evQoPDw9oampCS0sLbdq0kRirXNU5/9jTp09x8uRJmcM/NDU1IRQKYWlpiQ0bNkAgEOB///sfgNIE9qeffkLXrl1hZmaGNm3aYOzYsQgJCZGoQ01NDUKhEM2aNUNYWBgsLCxw4MABbrufnx8OHDiAwsLCKs5y3bl79y7Cw8NhYWGBo0ePIjQ0FOPGjUNUVJTcYiCEEPLloOT7MxEIBHj//n2N9lFRUcGAAQMQERHBrYuMjJRKMC5evIhx48Zh/vz5yMjIwJEjR+Dq6lphve/evUObNm1w8OBB3LhxA8OHD0dgYCAuXLgAAMjNzUW/fv0QEhKC9PR0JCUloWfPnmCMoaSkBN27d4ebmxuuXbuGc+fOYfjw4VzSu2/fPowfPx6TJk3CjRs3MGLECAwePBiJiYkAALFYDB8fH6SkpOD3339HWloalixZAkVFRZmxFhQUoGvXrkhISMCVK1fg7e0NPz8/3L9/H0Dp0IrGjRtzvaRl3yZkZWXB29sbvXr1wrVr17B7926cOXMGY8aM4eoODg7GgwcPkJiYiJiYGGzcuBFPnjyp8LzZ2NhAX18fycnJAIDTp09LvAaA5ORkuLu7S+3r7OyM1atXQ0tLi4tz8uTJ3PYVK1bAyckJV65cwahRoxAaGoqMjIwKYykzbdo0LFiwAPHx8ejRo0eV5as6jqamJiIjI5GWloY1a9Zg69atWLVqFbd9wIABaNy4MVJTU3Hp0iVMnz4dysrKAKp3zj925swZqKmpwdrautK4lZSUoKyszL2HhEIhDh06hNevX1fZ5vI+fh86OTmhpKQE58+fr3CfoqIivHr1SmL5FGKxGK1bt8bixYvh6OiI4cOHY9iwYdi0adMn1UsIIeQrxcgnCwoKYv7+/owxxsRiMTt+/Djj8/ls8uTJUmUBsH379kmtd3NzY+PHj2cikYhpamqygoIClpyczAwNDVlxcTFzcHBgc+fOZYwxFhsby7S0tNirV69qHbOvry+bNGkSY4yxS5cuMQAsJydHqtzz588ZAJaUlCSzHmdnZzZs2DCJdX369GFdu3ZljDF29OhRpqCgwDIyMmTuHxERwbS1tSuN1cbGhq1bt457bWpqylatWiVRZsiQIWz48OES606fPs0UFBRYYWEhy8jIYADYhQsXuO3p6ekMgFRd5fXs2ZONHj2aMcbYhAkT2JQpU5iuri5LT09n79+/Z2pqauzYsWOMMcYSExMZAJaXl1dp20xNTdnAgQO512KxmBkaGrLw8PAK4wgKCmIqKioMAEtISJBZpuwe+pTj/PLLL6xNmzbca01NTRYZGSmzbFXnXJZVq1axZs2aSa0vf02LiorY4sWLGQAWHx/PGGMsOTmZNW7cmCkrKzMnJyc2YcIEdubMmQrbX1JSwnbs2MEAsPXr10uU09XVrbBNjDE2d+5cBkDGks8AVqOFMcaaNGnChgwZInGMjRs3MmNj4wpjIIQQ8mXJz89nAFh+fv4n10U933UkPj4eGhoaUFVVhY+PDwICAmr1gKSDgwMsLCwQExOD3377DYGBgVBSUpIo06VLF5iamqJZs2YIDAxEdHQ03r59W2GdHz58wIIFC2BnZwc9PT1oaGjg6NGjXG+yg4MDOnfuDDs7O/Tp0wdbt25FXl4egNJxxMHBwfDy8oKfnx83hr1Meno6XFxcJI7n4uKC9PR0AIBIJELjxo1haWlZrfYXFBRg8uTJsLa2ho6ODjQ0NJCens7FWpGrV68iMjISGhoa3OLl5QWxWIzs7Gykp6dDSUkJbdq04fZp0aJFlQ9Eurm5ISkpCUBpL3enTp3g6uqKpKQkpKamori4WKr91WFvb8/9m8fjQSgUVtoLX7aPmZkZ5s6di4KCgjo5zu7du+Hi4gKhUAgNDQ3MmjVL4lz/+OOPGDp0KDw9PbFkyRJkZWVx26o657IUFhZCVVVV5rZp06ZBQ0MDampqWLp0KZYsWQJfX18ApbOj3L17FwkJCejduzdu3ryJjh07Sj1gunHjRmhoaEAgEGDYsGGYOHEiQkNDJcoIBIJK3y8zZsxAfn4+tzx48KDCstXh4uIi9a3G7du3YWpq+kn1EkII+TpR8l1HPDw8IBKJkJmZicLCQkRFRUFdXb1WdYWEhGDDhg2IiYmRGnIClA4VuHz5Mnbt2gUjIyPMmTMHDg4OFU5xV/bg57Rp05CYmAiRSAQvLy/u63hFRUUcP34chw8fRsuWLbFu3TpYWVlxCVRERATOnTsHZ2dn7N69G5aWlvjrr7+q1RaBQFCjtk+ePBn79u3D4sWLcfr0aYhEItjZ2VU5hKegoAAjRoyASCTilqtXryIzM/OTZpVwd3dHWloaMjMzkZaWhg4dOsDd3R1JSUlITk6Gk5MT1NTUalxv2dCNMjweD2KxuNJ9GjVqhKSkJDx8+BDe3t7VGoJR2XHOnTuHAQMGoGvXroiPj8eVK1cwc+ZMiXMdFhaGmzdvwtfXFydPnkTLli2xb98+ALU75w0aNOA+2H1sypQpEIlE+Pvvv5GXl4dp06ZJtaVjx46YNm0ajh07hvnz52PBggUS8Q4YMAAikQjZ2dl48+YNVq5cKfVg54sXLySetfgYn8+HlpaWxPIpJk6ciL/++guLFy/GnTt3sHPnTmzZsgWjR4/+pHoJIYR8nSj5riPq6uowNzdHkyZNpHqqa6p///64fv06bG1t0bJlS5lllJSU4OnpiWXLluHatWvIycnByZMnZZZNSUmBv78/Bg4cCAcHBzRr1kxqej8ejwcXFxfMmzcPV65cgYqKCpdkAYCjoyNmzJiBs2fPwtbWlpuj2draWuIB0bLjlcVtb2+Pv//+u9rTCaakpCA4OBg9evSAnZ0dhEIhcnJyJMqoqKjgw4cPEutat26NtLQ0mJubSy0qKipo0aIFSkpKcOnSJW6fjIyMKufktrOzg66uLhYuXIhWrVpBQ0MD7u7uSE5ORlJSkszx3pXF+alMTU2RnJyMR48eVTsBr8jZs2dhamqKmTNnwsnJCRYWFhIP0paxtLTExIkTcezYMfTs2ZN7JqGqcy6Lo6MjHj16JDMBb9CgAczNzas9Y0zLli1RUlKCd+/eceu0tbVhbm6ORo0aSSXdQOk49Xfv3sHR0bHK+utK27ZtsW/fPuzatQu2trZYsGABVq9ejQEDBsgtBkIIIV8OSr6/QLq6usjNzUVCQoLM7fHx8Vi7di1EIhHu3buH7du3QywWw8rKSmZ5CwsLHD9+HGfPnkV6ejpGjBiBx48fc9vPnz+PxYsX4+LFi7h//z7i4uLw9OlTWFtbIzs7GzNmzMC5c+dw7949HDt2DJmZmdwDc1OmTEFkZCTCw8ORmZmJlStXIi4ujnu40M3NDa6urujVqxeOHz+O7OxsHD58GEeOHKkw1ri4OK4XtX///lI9wmZmZjh16hQePnyIZ8+eASgdsnD27FmMGTOG+wbizz//5B7+s7Kygre3N0aMGIHz58/j0qVLGDp0aJU98zweD66uroiOjuYSbXt7exQVFSEhIQFubm4V7mtmZoaCggIkJCTg2bNnlQ51qAkTExMkJSXhyZMn8PLyqvUDgRYWFrh//z7++OMPZGVlYe3atRIfuAoLCzFmzBgkJSXh3r17SElJQWpqKnftqzrnsjg6OqJBgwZSH9iq4u7ujs2bN+PSpUvIycnBoUOH8NNPP8HDw6NGPdOnT59Gs2bN5D7Hdrdu3XD9+nW8e/cO6enpGDZsmFyPTwgh5MtByfcXSkdHp8JhKzo6OoiLi0OnTp1gbW2NTZs2YdeuXbCxsZFZftasWWjdujW8vLzg7u4OoVAo8YMtWlpaOHXqFLp27QpLS0vMmjULK1asgI+PD9TU1HDr1i306tULlpaWGD58OEaPHo0RI0YAALp37441a9Zg+fLlsLGxwebNmxERESHRIxwbG4u2bduiX79+aNmyJaZOnVphj/DKlSuhq6sLZ2dn+Pn5wcvLC61bt5YoM3/+fOTk5KB58+bc8AF7e3skJyfj9u3b6NixIxwdHTFnzhwYGxtz+0VERMDY2Bhubm7o2bMnhg8fXq05xt3c3PDhwweuTQoKCnB1deW+LaiIs7MzRo4ciYCAABgYGGDZsmVVHqu6GjdujKSkJDx79qzWCfj333+PiRMnYsyYMWjVqhXOnj2L2bNnc9sVFRXx/PlzDBo0CJaWlvjhhx/g4+ODefPmAajeOf+YoqIiBg8eXOU0jx/z8vLipt20trbG2LFj4eXlhT179tSonl27dlHiSwghpF7xGGOsvoMghPx3PHr0CDY2Nrh8+bJcHzq8efMmOnXqhNu3b3O/Qlodr169+r/y+QBqNv6b/nclhJB/h7K/Bfn5+Z/8LBD1fBNC5EooFGLbtm1VzmBT13Jzc7F9+/YaJd6EEEJIXaOeb0IIqQT1fBNCCKGeb0IIIYQQQr5ClHwTQgghhBAiJ5R8E0IIIYQQIieUfBNCCCGEECInlHwTQgghhBAiJ5R8E0JINeTnl85eUpOFEEII+Rgl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQUg3a2vUdASGEkH8DSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvgkhhBBCCJETSr4JIYQQQgiRE0q+CSGEEEIIkRNKvkm94/F42L9/f6VlgoOD0b17988Wg7u7OyZMmPDZ6v+vq6vz+6Vcp1OnTsHPzw/GxsbVun8JIYSQMpR8f4WCg4PB4/HA4/GgoqICc3NzzJ8/HyUlJRLbZC1mZmYASpMYHo+HJUuWSNXv6+sLHo+HsLAwubQnNzcXPj4+AICcnBzweDyIRKJPrjcyMpJrt6KiInR1ddG+fXvMnz8f+fn5EmXj4uKwYMGCTz5mffv777+hoqICW1vb+g5FQk3Pb1JSEng8Hl6+fPlJ9Xwub968gYODAzZs2FDfoRBCCPnKKNV3AKR2vL29ERERgaKiIhw6dAijR4+GsrIy1qxZI5FQGxkZISIiAt7e3gAARUVFbpuJiQkiIyMxffp0bt3Dhw+RkJAAIyMjubVFKBR+trq1tLSQkZEBxhhevnyJs2fP4ueff0ZERARSUlJgbGwMANDT0/tsMchTZGQkfvjhB5w6dQrnz59H+/bt6zskAHV3fr+U6+Tj48N9YCSEEEJqgnq+v1J8Ph9CoRCmpqYIDQ2Fp6cnDhw4AG1tbQiFQm4BAB0dHe61gYEBV0e3bt3w7NkzpKSkcOuioqLw3XffwdDQUOJ4GzduhIWFBVRVVdGwYUP07t1bZlyMMRgYGCAmJoZb16pVK4lk/syZM+Dz+Xj79i0AyWEnTZs2BQA4OjqCx+PB3d1dov7ly5fDyMgI+vr6GD16NIqLiys9TzweD0KhEEZGRrC2tsaQIUNw9uxZFBQUYOrUqVy5j4czVNZesViMn3/+GU2bNoVAIICDg4NEez98+IAhQ4Zw262srLBmzRqJuJKSktCuXTuoq6tDR0cHLi4uuHfvHrf9zz//ROvWraGqqopmzZph3rx5KCkpqbStjDFEREQgMDAQ/fv3x7Zt2yS2v3//HmPGjIGRkRFUVVVhamqKn3/+mds3LCwMTZo0AZ/Ph7GxMcaNG8ftm5eXh0GDBkFXVxdqamrw8fFBZmamRP0pKSlwd3eHmpoadHV14eXlhby8PJnnd8eOHXBycoKmpiaEQiH69++PJ0+eACj99sPDwwMAoKurCx6Ph+DgYJn1VBVXZGQkdHR0cPToUVhbW0NDQwPe3t7Izc2t9FwSQgghnwsl3/8SAoEA79+/r9E+KioqGDBgACIiIrh1kZGRCAkJkSh38eJFjBs3DvPnz0dGRgaOHDkCV1dXmXXyeDy4uroiKSkJQGlylJ6ejsLCQty6dQsAkJycjLZt20JNTU1q/wsXLgAATpw4gdzcXMTFxXHbEhMTkZWVhcTERERFRSEyMhKRkZE1ajMAGBoaYsCAAThw4AA+fPggtb2q9v7888/Yvn07Nm3ahJs3b2LixIkYOHAgkpOTAZQm540bN8bevXuRlpaGOXPm4KeffsKePXsAACUlJejevTvc3Nxw7do1nDt3DsOHDwePxwMAnD59GoMGDcL48eORlpaGzZs3IzIyEosWLaq0XYmJiXj79i08PT0xcOBA/PHHH3jz5g23fe3atThw4AD27NmDjIwMREdHc8OQYmNjsWrVKmzevBmZmZnYv38/7OzsuH2Dg4Nx8eJFHDhwAOfOnQNjDF27duU+/IhEInTu3BktW7bEuXPncObMGfj5+ck8vwBQXFyMBQsW4OrVq9i/fz9ycnK4BNvExASxsbEAgIyMDOTm5kp9eKluXADw9u1bLF++HDt27MCpU6dw//59TJ48ucLzWFRUhFevXkkshBBCSJ1h5KsTFBTE/P39GWOMicVidvz4ccbn89nkyZOlygJg+/btk1rv5ubGxo8fz0QiEdPU1GQFBQUsOTmZGRoasuLiYubg4MDmzp3LGGMsNjaWaWlpsVevXlUrvrVr1zIbGxvGGGP79+9n7du3Z/7+/iw8PJwxxpinpyf76aefZMaYnZ3NALArV65ItdnU1JSVlJRw6/r06cMCAgIqjCMiIoJpa2vL3BYeHs4AsMePH0ucj6ra++7dO6ampsbOnj0rsX7IkCGsX79+FcYyevRo1qtXL8YYY8+fP2cAWFJSksyynTt3ZosXL5ZYt2PHDmZkZFRh/Ywx1r9/fzZhwgTutYODA4uIiOBejx07lnXq1ImJxWKpfVesWMEsLS3Z+/fvpbbdvn2bAWApKSncumfPnjGBQMD27NnDGGOsX79+zMXFpcLYyp9fWVJTUxkA9vr1a8YYY4mJiQwAy8vLq7Ce6sQVERHBALA7d+5wZTZs2MAaNmxYYSxz585lAGQs+TLLV/QeI4QQ8u+Rn5/PALD8fNl/C2qCer6/UvHx8dDQ0ICqqip8fHwQEBBQqwckHRwcYGFhgZiYGPz2228IDAyEkpLkowBdunSBqakpmjVrhsDAQERHR3NDRmRxc3NDWloanj59iuTkZLi7u8Pd3R1JSUkoLi7G2bNnpYaTVIeNjY3EmHUjIyNuqEJNMcYAgOttLq+y9t65cwdv375Fly5doKGhwS3bt29HVlYWV8eGDRvQpk0bGBgYQENDA1u2bMH9+/cBlI5bDg4OhpeXF/z8/LBmzRqJYRBXr17F/PnzJeofNmwYcnNzKzzvL1++RFxcHAYOHMitGzhwoMTQk+DgYIhEIlhZWWHcuHE4duwYt61Pnz4oLCxEs2bNMGzYMOzbt48b5pKeng4lJSWJ8eP6+vqwsrJCeno6gP/f811dly5dgp+fH5o0aQJNTU24ubkBAHeOqqM6cQGAmpoamjdvzr2u6r6ZMWMG8vPzueXBgwfVjokQQgipCiXfXykPDw+IRCJkZmaisLAQUVFRUFdXr1VdISEh2LBhA2JiYqSGnACApqYmLl++jF27dsHIyAhz5syBg4OD1EwUZezs7KCnp4fk5GSJ5Ds5ORmpqakoLi6Gs7NzjeNUVlaWeM3j8SAWi2tcD1CauGlpaUFfX19qW2XtLSgoAAAcPHgQIpGIW9LS0rhx33/88QcmT56MIUOG4NixYxCJRBg8eLDEsKCIiAicO3cOzs7O2L17NywtLfHXX38BAAoKCjBv3jyJ+q9fv47MzEyoqqrKbM/OnTvx7t07tG/fHkpKSlBSUsK0adNw5swZ3L59GwDQunVrZGdnY8GCBSgsLMQPP/zAjWU3MTFBRkYGNm7cCIFAgFGjRsHV1bXKMfVlBAJBNc986UwhXl5e0NLSQnR0NFJTU7Fv3z4AqPHQqeqQdd+UffiShc/nQ0tLS2IhhBBC6gol318pdXV1mJubo0mTJlI91TXVv39/XL9+Hba2tmjZsqXMMkpKSvD09MSyZctw7do15OTk4OTJkzLL8ng8dOzYEX/++Sdu3ryJDh06wN7eHkVFRdi8eTOcnJwq/KCgoqICABWOFa4LT548wc6dO9G9e3coKMh+C1TU3pYtW4LP5+P+/fswNzeXWExMTACUPnjo7OyMUaNGwdHREebm5hK94mUcHR0xY8YMnD17Fra2tti5cyeA0iQ5IyNDqn5zc/MK4922bRsmTZokkbBfvXoVHTt2xG+//caV09LSQkBAALZu3Yrdu3cjNjYWL168AFCaQPv5+WHt2rVISkrCuXPncP36dVhbW6OkpATnz5/n6nn+/DkyMjK4+8Xe3h4JCQnVOv+3bt3C8+fPsWTJEnTs2BEtWrSQ6omuzn1Qnbg+l4KCAu48A0B2djZEIlGNeu4JIYT8N9FUgwS6urrIzc2V6iEsEx8fj7t378LV1RW6uro4dOgQxGIxrKysKqzT3d0dkyZNgpOTEzQ0NAAArq6uiI6OxpQpUyrcz9DQEAKBAEeOHEHjxo2hqqoKbW3tWreNMYZHjx5xUw2eO3cOixcvhra2tsw5zqtqr6amJiZPnoyJEydCLBajQ4cOyM/PR0pKCrS0tBAUFAQLCwts374dR48eRdOmTbFjxw6kpqZyM7lkZ2djy5Yt+P7772FsbIyMjAxkZmZi0KBBAIA5c+agW7duaNKkCXr37g0FBQVcvXoVN27cwMKFC6XiFYlEuHz5MqKjo9GiRQuJbf369cP8+fOxcOFCrF27FkZGRnB0dISCggL27t0LoVAIHR0dREZG4sOHD2jfvj3U1NTw+++/QyAQwNTUFPr6+vD398ewYcOwefNmaGpqYvr06WjUqBH8/f0BlA7VsLOzw6hRozBy5EioqKggMTERffr0QYMGDSRiatKkCVRUVLBu3TqMHDkSN27ckJq729TUFDweD/Hx8ejatSsEAgF3H5WxsLCoMq7P5eLFi9yMLADw448/AgCCgoJq9RAwIYSQ/w7q+SYASqcjrKg3WkdHB3FxcejUqROsra2xadMm7Nq1CzY2NhXW5+bmhg8fPkiM7XZ3d5da9zElJSWsXbsWmzdvhrGx8ScnUa9evYKRkREaNWqEb7/9Fps3b0ZQUBCuXLlS4VzmVbV3wYIFmD17Nn7++WdYW1vD29sbBw8e5JLrESNGoGfPnggICED79u3x/PlzjBo1iqtfTU0Nt27dQq9evWBpaYnhw4dj9OjRGDFiBADAy8sL8fHxOHbsGNq2bYtvvvkGq1atgqmpqcx4t23bhpYtW0ol3gDQo0cPPHnyBIcOHYKmpiaWLVsGJycntG3bFjk5OTh06BAUFBSgo6ODrVu3wsXFBfb29jhx4gT+97//ccNyIiIi0KZNG3Tr1g3ffvstGGM4dOgQ94HN0tISx44dw9WrV9GuXTt8++23+PPPP2V+K2NgYIDIyEjs3bsXLVu2xJIlS7B8+XKJMo0aNcK8efMwffp0NGzYEGPGjJHZ9qri+lzc3d3BGJNaKPEmhBBSFR6rbPAjIYT8x7169er/vn3JB2M0/psQQv6Lyv4W5Ofnf/KzQNTzTQghhBBCiJxQ8k0IIYQQQoicUPJNCCGEEEKInFDyTQghhBBCiJxQ8k0IIYQQQoicUPJNCCGEEEKInFDyTQghhBBCiJxQ8k0IIYQQQoicUPJNCCHVkJ9f3xEQQgj5N6DkmxBCCCGEEDmh5JsQQgghhBA5oeSbEEIIIYQQOaHkmxBCCCGEEDmh5JsQQgghhBA5oeSbEEIIIYQQOaHkmxBCqkH7Z+36DoEQQsi/ACXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd+EEEIIIYTICSXfhBBCCCGEyAkl34QQQgghhMgJJd9ECo/Hw/79+ystExwcjO7du8slHvLf8jXcW6dOnYKfnx+MjY2r9X4hhBBCylDyXQeCg4PB4/HA4/GgoqICc3NzzJ8/HyUlJRLbZC1mZmYAAHd3d/B4PCxZskSqfl9fX/B4PISFhcmlPbm5ufDx8QEA5OTkgMfjQSQSfXK9kZGR0NHRkViXnp4OExMT9OnTB+/fv//kY8hLRdfV29ubK2NmZobVq1fL3L/svCoqKuLhw4cS23Jzc6GkpAQej4ecnJwKY3B3d8eECROqHXNdXsu6UFE8a9asQWRkZL3EVF1v3ryBg4MDNmzYUN+hEEII+coo1XcA/xbe3t6IiIhAUVERDh06hNGjR0NZWRlr1qyRSKiNjIwQERHBJWmKiorcNhMTE0RGRmL69OncuocPHyIhIQFGRkZya4tQKJTLcVJTU+Hj44MePXpg8+bNUFD4uj4Lll3z8vh8fo3qaNSoEbZv344ZM2Zw66KiotCoUSPcv3+/TuL8HIqLi6GsrPxZ6tbW/vJ/xt3Hx4f7gEoIIYTUxNeV7XzB+Hw+hEIhTE1NERoaCk9PTxw4cADa2toQCoXcAgA6OjrcawMDA66Obt264dmzZ0hJSeHWRUVF4bvvvoOhoaHE8TZu3AgLCwuoqqqiYcOG6N27t8y4GGMwMDBATEwMt65Vq1YSyfyZM2fA5/Px9u1bAJLDTpo2bQoAcHR0BI/Hg7u7u0T9y5cvh5GREfT19TF69GgUFxdX63ydPHkSnTp1wpAhQ7B161Yu8Q4LC0OrVq2wY8cOmJmZQVtbG3379sXr16+5fYuKijBu3DgYGhpCVVUVHTp0QGpqKrfdyckJy5cv5153794dysrKKCgoAAD8/fff4PF4uHPnDoDSHurFixcjJCQEmpqaaNKkCbZs2VJlG8queflFV1e3Wu0vExQUJJXAR0REICgoqEb1AFW3o7Jr+euvv8La2hqqqqpo0aIFNm7cyG0r66HevXs33NzcoKqqiujoaDx//hz9+vVDo0aNoKamBjs7O+zatUsiJrFYjGXLlsHc3Bx8Ph9NmjTBokWLKo3n42EnVV3vpKQk8Hg8JCQkwMnJCWpqanB2dkZGRgZX5urVq/Dw8ICmpia0tLTQpk0bXLx4scbnmBBCCPlUlHx/JgKBoMbDKFRUVDBgwACJZCwyMhIhISES5S5evIhx48Zh/vz5yMjIwJEjR+Dq6iqzTh6PB1dXVyQlJQEA8vLykJ6ejsLCQty6dQsAkJycjLZt20JNTU1q/wsXLgAATpw4gdzcXMTFxXHbEhMTkZWVhcTERERFRSEyMrJawwX27dsHX19fzJo1C0uXLpXanpWVhf379yM+Ph7x8fFITk6W+PZg6tSpiI2NRVRUFC5fvgxzc3N4eXnhxYsXAAA3NzeuvYwxnD59Gjo6Ojhz5gzX3kaNGsHc3Jyrc8WKFXBycsKVK1cwatQohIaGSiRvn8v333+PvLw8LrYzZ84gLy8Pfn5+taqvsnZUdC2jo6MxZ84cLFq0COnp6Vi8eDFmz56NqKgoibqnT5+O8ePHIz09HV5eXnj37h3atGmDgwcP4saNGxg+fDgCAwO54wDAjBkzsGTJEsyePRtpaWnYuXMnGjZsWGk8H6vqepeZOXMmVqxYgYsXL0JJSUnifTNgwAA0btwYqampuHTpEqZPn15hz31RURFevXolsRBCCCF1hpFPFhQUxPz9/RljjInFYnb8+HHG5/PZ5MmTpcoCYPv27ZNa7+bmxsaPH89EIhHT1NRkBQUFLDk5mRkaGrLi4mLm4ODA5s6dyxhjLDY2lmlpabFXr15VK761a9cyGxsbxhhj+/fvZ+3bt2f+/v4sPDycMcaYp6cn++mnn2TGmJ2dzQCwK1euSLXZ1NSUlZSUcOv69OnDAgICKowjIiKCKSoqMkVFRTZ79myZZebOncvU1NQk2jZlyhTWvn17xhhjBQUFTFlZmUVHR3Pb379/z4yNjdmyZcsYY4wdOHCAaWtrs5KSEiYSiZhQKGTjx49n06ZNY4wxNnToUNa/f39uf1NTUzZw4EDutVgsZoaGhtz5kSUoKIgpKioydXV1iWXRokUS9a5atUrm/uXP64QJE9jgwYMZY4wNHjyYTZw4kV25coUBYNnZ2RXGUHbPVLcdFV3L5s2bs507d0qsW7BgAfv2228l9lu9enWFsZTx9fVlkyZNYowx9urVK8bn89nWrVurPAfllX8/Ved6JyYmMgDsxIkTXJmDBw8yAKywsJAxxpimpiaLjIysMn7GSu9BANLLdNn/XVb0niaEEPLvkZ+fzwCw/Pz8T66Ler7rSHx8PDQ0NKCqqgofHx8EBATU6gFJBwcHWFhYICYmBr/99hsCAwOhpCQ5NL9Lly4wNTVFs2bNEBgYiOjoaG7IiCxubm5IS0vD06dPkZycDHd3d7i7uyMpKQnFxcU4e/as1HCS6rCxsZEYs25kZIQnT55Uuo9AIECXLl2wdetWpKenyyxjZmYGTU1NmfVmZWWhuLgYLi4u3HZlZWW0a9eOq69jx454/fo1rly5guTkZLi5uXHtBcCdg/Ls7e25f/N4PAiFwirb4uHhAZFIJLGMHDmy0n1kCQkJwd69e/Ho0SPs3btX6puOmqhpO968eYOsrCwMGTIEGhoa3LJw4UJkZWVJlHVycpJ4/eHDByxYsAB2dnbQ09ODhoYGjh49yo1VT09PR1FRETp37lzr9lTnestqe9mwqrK2//jjjxg6dCg8PT2xZMkSqbaVN2PGDOTn53PLgwcPah0/IYQQ8jFKvutIWSKWmZmJwsJCREVFQV1dvVZ1hYSEYMOGDYiJiZGZiGlqauLy5cvYtWsXjIyMMGfOHDg4OODly5cy6ytLjpKTkyWS7+TkZKSmpqK4uBjOzs41jvPjr+15PB7EYnGl+ygqKmL//v1o3bo1PDw8ZCbgtam3PB0dHTg4OCApKYlrr6urK65cuYLbt28jMzMTbm5un3xMdXV1mJubSyx6enrVjrOMnZ0dWrRogX79+sHa2hq2trY1rqNMTdtRNg5+69atEh8ibty4gb/++kui7Mf38y+//II1a9Zg2rRpSExMhEgkgpeXFzfcSiAQ1LodtVG+7TweDwC4toeFheHmzZvw9fXFyZMn0bJlS+zbt09mPXw+H1paWhILIYQQUlco+a4jZYlYkyZNpHqqa6p///64fv06bG1t0bJlS5lllJSU4OnpiWXLluHatWvIycnByZMnZZbl8Xjo2LEj/vzzT9y8eRMdOnSAvb09ioqKsHnzZjg5OVX4QUFFRQVAaS9nXeHz+YiLi0Pbtm3h4eGBtLS0au/bvHlzqKioSDyUWlxcjNTUVIlz5ebmhsTERJw6dQru7u7Q09ODtbU1Fi1aBCMjI1haWtZZe+pCSEgIkpKSPqnXuyqyrmXDhg1hbGyMu3fvSn2QKHsgsiIpKSnw9/fHwIED4eDggGbNmuH27dvcdgsLCwgEAiQkJFQ7no9V93pXh6WlJSZOnIhjx46hZ8+eUg+61kRBQQH3QQUAsrOzIRKJvugZagghhHwZaKrBL5Curi5yc3MrfCAsPj4ed+/ehaurK3R1dXHo0CGIxWJYWVlVWKe7uzsmTZoEJycnaGhoAABcXV0RHR2NKVOmVLifoaEhBAIBjhw5gsaNG0NVVbVOpoLj8/mIjY1Fnz594OHhgZMnT8LGxqbK/dTV1REaGoopU6ZAT08PTZo0wbJly/D27VsMGTJEor3r1q2DgYEBWrRowa1bv349+vTp88nxA6UP5j169EhinZKSEho0aMC9fvjwodQ81qamplJ1DRs2DH369JGaB70uVXQt582bh3HjxkFbWxve3t4oKirCxYsXkZeXhx9//LHC+sqGR509exa6urpYuXIlHj9+zCXFqqqqmDZtGqZOnQoVFRW4uLjg6dOnuHnzJoYMGVKte6u617syhYWFmDJlCnr37o2mTZvi77//RmpqKnr16lXrc3nx4kV4eHhwr8vOU1BQ0Bc/RzkhhJD6RT3fXygdHZ0Ke6N1dHQQFxeHTp06wdraGps2bcKuXbsqTV7d3Nzw4cMHibHO7u7uUus+pqSkhLVr12Lz5s0wNjaGv79/bZskRUVFBTExMXB2doaHhwdu3LhRrf2WLFmCXr16ITAwEK1bt8adO3dw9OhRiWn+OnbsCLFYLDG8pDrtrYkjR47AyMhIYunQoYNEmeXLl8PR0VFiOXjwoFRdZUn7p35rUpmKruXQoUPx66+/IiIiAnZ2dnBzc0NkZGSVPd+zZs1C69at4eXlBXd3dwiFQqlfppw9ezYmTZqEOXPmwNraGgEBAdw47OreW9W53pVRVFTE8+fPMWjQIFhaWuKHH36Aj48P5s2bV639ZXF3dwdjTGqhxJsQQkhVeIwxVt9BEELIl+rVq1elPfLTAfYz/XdJCCH/RWV/C/Lz8z/5WSDq+SaEEEIIIUROKPkmhBBCCCFETij5JoQQQgghRE4o+SaEEEIIIUROKPkmhBBCCCFETij5JoQQQgghRE4o+SaEEEIIIUROKPkmhJBqyJ+RX98hEEII+Reg5JsQQgghhBA5+Xy/ZU0IIYQQUk1isRjv37+v7zDIf5SysjIUFRXlcixKvgkhhBBSr96/f4/s7GyIxeL6DoX8h+no6EAoFILH433W41DyTQghhJB6wxhDbm4uFBUVYWJiAgUFGhFL5Isxhrdv3+LJkycAACMjo896PEq+CSGEEFJvSkpK8PbtWxgbG0NNTa2+wyH/UQKBAADw5MkTGBoaftYhKPTxkhBCCCH15sOHDwAAFRWVeo6E/NeVffgrLi7+rMeh5JsQQggh9e5zj7MlpCryugdp2AkhhFSHtrbka8bqJw5CCCFfNer5JoQQQgj5wgUHB6N79+71HQapA5R8E0IIIeRf5dy5c1BUVISvr2+9xZCUlAQej4eXL1/WaL+cnBzweDyIRCKJ9WvWrEFkZGSdxVeR5ORkdOrUCXp6elBTU4OFhQWCgoJoDvY6RMk3IYQQQv5Vtm3bhrFjx+LUqVP4559/6jucOqGtrQ0dHZ3Peoy0tDR4e3vDyckJp06dwvXr17Fu3TqoqKhwD8Z+Lp/7IccvCSXfhBBCCPnXKCgowO7duxEaGgpfX1+p3uKyHumEhAQ4OTlBTU0Nzs7OyMjI4MqEhYWhVatW2LFjB8zMzKCtrY2+ffvi9evXXJmioiKMGzcOhoaGUFVVRYcOHZCamgqgtPfaw8MDAKCrqwsej4fg4GAAwJEjR9ChQwfo6OhAX18f3bp1Q1ZWFldv06ZNAQCOjo7g8Xhwd3cHID3spLLjV7edHzt27BiEQiGWLVsGW1tbNG/eHN7e3ti6dSs3FR8AxMbGwsbGBnw+H2ZmZlixYoVEPTweD/v375dYp6Ojw12Lst793bt3w83NDaqqqoiOjgYA/Pbbb1zdRkZGGDNmDFfHy5cvMXToUBgYGEBLSwudOnXC1atXK2zPl4qSb0IIIYT8a+zZswctWrSAlZUVBg4ciN9++w1MxgPSM2fOxIoVK3Dx4kUoKSkhJCREYntWVhb279+P+Ph4xMfHIzk5GUuWLOG2T506FbGxsYiKisLly5dhbm4OLy8vvHjxAiYmJoiNjQUAZGRkIDc3F2vWrAEAvHnzBj/++CMuXryIhIQEKCgooEePHtyve164cAEAcOLECeTm5iIuLk5mOys7fk3aWZ5QKERubi5OnTpVYZlLly7hhx9+QN++fXH9+nWEhYVh9uzZtRoSM336dIwfPx7p6enw8vJCeHg4Ro8ejeHDh+P69es4cOAAzM3NufJ9+vTBkydPcPjwYVy6dAmtW7dG586dpdr8xWOEEEIqlJ+fzwCw/NL5Tf7/QgipE4WFhSwtLY0VFhbWSX3Ozs5s9erVjDHGiouLWYMGDVhiYiK3PTExkQFgJ06c4NYdPHiQAeBimDt3LlNTU2OvXr3iykyZMoW1b9+eMcZYQUEBU1ZWZtHR0dz29+/fM2NjY7Zs2TKJ4+Tl5VUa79OnTxkAdv36dcYYY9nZ2QwAu3LlikS5oKAg5u/vX+PjV9bOj5WUlLDg4GAGgAmFQta9e3e2bt06lp+fz5Xp378/69Kli8R+U6ZMYS1btuReA2D79u2TKKOtrc0iIiIk2lh2ncoYGxuzmTNnyozt9OnTTEtLi717905iffPmzdnmzZtl7lNTld2L3N+CcueitqjnmxBCCCH/ChkZGbhw4QL69esHAFBSUkJAQAC2bdsmVdbe3p77d9nPiZf9vDgAmJmZQVNTU6JM2fasrCwUFxfDxcWF266srIx27dohPT290hgzMzPRr18/NGvWDFpaWjAzMwMA3L9/v9rtrMnxq2pneYqKioiIiMDff/+NZcuWoVGjRli8eDFsbGyQm5sLAEhPT5c4LgC4uLggMzOzxuPCnZycuH8/efIE//zzDzp37iyz7NWrV1FQUAB9fX1oaGhwS3Z2tsSwna8BzfNNCCG19PPPPyMuLg63bt2CQCCAs7Mzli5dCisrq/oOjZD/pG3btqGkpATGxsbcOsYY+Hw+1q9fD+1y8/UrKytz/y77cZWyoR8fby8rU357bfn5+cHU1BRbt26FsbExxGIxbG1tP9tsIlW1U5ZGjRohMDAQgYGBWLBgASwtLbFp0ybMmzevWsfk8XhSQ31kPVCprq7O/bv8mHJZCgoKYGRkhKSkJKltn/tB1LpGPd//ErIebvgYzRFKvgbVuZe/FMnJyRg9ejT++usvHD9+HMXFxfjuu+/w5s2b+g6NkP+ckpISbN++HStWrIBIJOKWq1evwtjYGLt27aqzYzVv3hwqKipISUnh1hUXFyM1NRUtW7YEAKioqACARG/w8+fPkZGRgVmzZqFz586wtrZGXl6eRN2y9qvN8euKrq4ujIyMuP/XrK2tJY4LACkpKbC0tISioiIAwMDAgOspB0p7+9++fVvpcTQ1NWFmZoaEhASZ21u3bo1Hjx5BSUkJ5ubmEkuDBg0+pYly959NvoODg8Hj8cDj8aCiogJzc3PMnz8fJSUlEttkLWVfEbm7u4PH40k8gFHG19cXPB4PYWFhcmlPbm4ufHx8AFQ8R2htREZGSn2iTE9Ph4mJCfr06fNVzftZH9fc3d0dEyZMqHaM1b12tbnGZU/vfykqiqf8vfylO3LkCIKDg2FjYwMHBwdERkbi/v37uHTpUn2HRsh/Tnx8PPLy8jBkyBDY2tpKLL169ZI59KS21NXVERoaiilTpuDIkSNIS0vDsGHD8PbtWwwZMgQAYGpqCh6Ph/j4eDx9+hQFBQXQ1dWFvr4+tmzZgjt37uDkyZP48ccfJeo2NDSEQCDAkSNH8PjxY+Tn59fq+LWxefNmhIaG4tixY8jKysLNmzcxbdo03Lx5E35+fgCASZMmISEhAQsWLMDt27cRFRWF9evXY/LkyVw9nTp1wvr163HlyhVcvHgRI0eOlPomQZawsDCsWLECa9euRWZmJi5fvox169YBADw9PfHtt9+ie/fuOHbsGHJycnD27FnMnDkTFy9erHWb68N/NvkGAG9vb+Tm5iIzMxOTJk1CWFgYfvnlF6xZswa5ubncAgARERHc6/JT+ZiYmEg94fvw4UMkJCRwY6vkQSgUgs/nf/bjpKamomPHjvD29sbu3bu5T+hfi3/TNa8vn/sDl7zu5c+h7I+knp5ePUdCyH/Ptm3b4OnpKTG0pEyvXr1w8eJFXLt2rc6Ot2TJEvTq1QuBgYFo3bo17ty5g6NHj0JXVxdA6dCNefPmYfr06WjYsCHGjBkDBQUF/PHHH7h06RJsbW0xceJE/PLLLxL1KikpYe3atdi8eTOMjY3h7+9fq+PXRrt27VBQUICRI0fCxsYGbm5u+Ouvv7B//364ubkBKO2B3rNnD/744w/Y2tpizpw5mD9/PjeVIgCsWLECJiYm6NixI/r374/JkydDTU2tyuMHBQVh9erV2LhxI2xsbNCtWzdkZmYCKP1W9NChQ3B1dcXgwYNhaWmJvn374t69e2jYsGGt21wvPvmRza9U+aeGy3Tp0oV98803UmUh46ldxhhzc3NjoaGhTF9fn505c4Zbv2jRIubn58ccHBzY3LlzufUbNmxg5ubmjM/nM0NDQ9arVy+ZsYnFYtagQQO2d+9ebp2DgwMTCoXc69OnTzMVFRX25s0bqRgBSCxubm4Sbf7ll1+YUChkenp6bNSoUez9+/cVnqeIiAimra3NGGMsISGBaWhosKlTp0qUmTt3LnNwcGDbt29npqamTEtLiwUEBEg8Jf7u3Ts2duxYZmBgwPh8PnNxcWEXLlzgtrdp04b98ssv3Gt/f3+mpKTEXr9+zRhj7MGDBwwAy8zMZIwxZmpqyhYtWsQGDx7MNDQ0mImJSZVPO9fHNXdzc2Pjx4/nXlcVd0XX7mMfPw1f/qn2Nm3aMIFAwL799lt269Ytxljpdfy47rKnzvPy8tiQIUNYgwYNmKamJvPw8GAikYg7Vtn13bp1KzMzM2M8Ho8xxtjhw4eZi4sL09bWZnp6eszX15fduXNHIs4HDx6wvn37Ml1dXaampsbatGnD/vrrr0rj+fjcX7t2jXl4eDBVVVWmp6fHhg0bxt0XjFXvvq7ue0+W6s528uHDB+br68tcXFyqXTchpO5nOyGktmi2k3ogEAhq3KunoqKCAQMGICIiglsXGRkpNY/mxYsXMW7cOMyfPx8ZGRk4cuQIXF1dZdbJ4/Hg6urKPVSQl5eH9PR0FBYW4tatWwBKx5q2bdtW5ifJyuYITUxMRFZWFhITExEVFYXIyMhqzc25b98++Pr6YtasWVi6dKnU9k+ZDxUA3NzcuPYyxnD69Gno6OjgzJkzXHsbNWokMd/nihUr4OTkhCtXrmDUqFEIDQ2t9McDZPmc17wilcVd3fldK1LRfK4BAQGYNGkS98R6bm4uAgICAFRv3tQ7d+4gNjYWcXFx3FCXquaqLSgogJubGx4+fIgDBw7g6tWrmDp1KsRicaXxlPfmzRt4eXlBV1cXqamp2Lt3L06cOCHxowtA5fd1Td57QOkPV7x69UpiqY7Ro0fjxo0b+OOPP6pVnhBCyH/UJ6fvX6nyvaBisZgdP36c8fl8NnnyZKmyqKQXdPz48UwkEjFNTU1WUFDAkpOTmaGhISsuLpboBY2NjWVaWloSvcGVWbt2LbOxsWGMMbZ//37Wvn175u/vz8LDwxljjHl6erKffvpJZoyVzRFqamrKSkpKuHV9+vRhAQEBFcYRERHBFBUVmaKiIps9e7bMMnUxH+qBAweYtrY2KykpYSKRiAmFQjZ+/Hg2bdo0xhhjQ4cOZf379+f2NzU1ZQMHDuRei8ViZmhoyJ0fWeR9zcuXr27cFV27j1XW811G1ry1Dg4OEvVUZ97UuXPnMmVlZfbkyZNKY/p4rtrNmzczTU1N9vz5c5nlZcXDmOS537JlC9PV1WUFBQUS7VJQUGCPHj1ijFV9X9f0vTd37lypXnlU0fM9evRo1rhxY3b37t1qHYMQ8v9Rzzf5UlDPtxzEx8dDQ0MDqqqq8PHxQUBAQK0ekHRwcICFhQViYmLw22+/ITAwEEpKkrM4dunSBaampmjWrBkCAwMRHR1d6ZO/bm5uSEtLw9OnT5GcnAx3d3e4u7sjKSkJxcXFOHv2LPeTszVhY2PDPY0MSM5bWhGBQIAuXbpg69atFc5f+qnzoXbs2BGvX7/GlStXkJycDDc3N669ALhzUF75uUt5PB6EQmGVbZHnNa9IbeKurprM5wpUf95UU1NTGBgYSOxb1Vy1IpEIjo6OnzT+OT09HQ4ODhLTUbm4uEAsFkt8y1HZfV3T996MGTOQn5/PLQ8ePKiwLGMMY8aMwb59+3Dy5EnuZ6EJIYSQivyn5/n28PBAeHg4VFRUYGxsXO3kSZaQkBBs2LABaWlp3NCB8jQ1NXH58mUkJSXh2LFjmDNnDsLCwpCamipzfko7Ozvo6ekhOTkZycnJWLRoEYRCIZYuXYrU1FQUFxfD2dm5xnHWZt5SRUVF7N+/Hz179oSHhwcSExNhbW39yfWWp6OjAwcHByQlJeHcuXPo0qULXF1dERAQgNu3byMzM5N72ONTjinPa16RzzV37Md1V2c+1+rOm1o++S1T1Vy1Vc3ZWpcqO6c1fe/x+fxqP/A5evRo7Ny5E3/++Sc0NTXx6NEjAIC2trZc208IIeTr8Z/u+VZXV4e5uTmaNGnySUkYAPTv3x/Xr1+Hra1thXNsKikpwdPTE8uWLcO1a9eQk5ODkydPyizL4/HQsWNH/Pnnn7h58yY6dOgAe3t7FBUVYfPmzXBycpKZEAHVmyO0pvh8PuLi4tC2bVt4eHggLS2t2vtWdz5SNzc3JCYm4tSpU3B3d4eenh6sra2xaNEiGBkZwdLS8pPbIe9rXlOf49qVr/vjems7b2p15qq1t7eHSCSSGDteVTwfs7a2xtWrVyXmzU5JSYGCgkKNfsimJu+9mggPD0d+fj7c3d1hZGTELbt37/7kugkhhPw7/aeT77qkq6uL3NzcCieHj4+Px9q1ayESiXDv3j1s374dYrG40gTC3d0du3btQqtWraChoQEFBQW4uroiOjpaqhe4vOrMEVobfD4fsbGxaN++PTw8PHDz5s1q7Vfd+Ujd3d1x9OhRKCkpoUWLFty6qtpbX6q65rXxua4dUDo0KDs7GyKRCM+ePUNRUVGt502tzly1/fr1g1AoRPfu3ZGSkoK7d+8iNjYW586dqzCejw0YMACqqqoICgrCjRs3kJiYiLFjxyIwMLDaU0vV5r1XXYwxmUv5KbcIIYSQ8ij5rkM6OjoV9kbr6OggLi4OnTp1grW1NTZt2oRdu3bBxsamwvrc3Nzw4cMHibHO7u7uUus+Vt05QmtDRUUFMTExcHZ2hoeHB27cuFGt/aozH2nHjh0hFoslEu3qtLc+VXbNa+NzXrtevXrB29sbHh4eMDAwwK5du2o9b2p15qpVUVHBsWPHYGhoiK5du8LOzg5LlizhxmbLiudjampqOHr0KF68eIG2bduid+/e6Ny5M9avX1/tdtfmvUcIIYR8LjzGGKvvIAgh5Ev16tUraGtrIx+AVvkN9F8nIXXi3bt3yM7ORtOmTaGqqlrf4ZD/sMruRe5vQX4+tLS0KqiheqjnmxBCCCGEEDn5T892QgghhJAv0/37wLNn8jtegwZAkyZ1U1dkZCQmTJiAly9f1k2FtZCTk4OmTZviypUraNWq1Vd/HKD0WaEJEyZgwoQJn/U4nxsl34QQQgj5oty/D1hZAe/eye+YqqpARkb1E/Dg4GBERUUBKJ3utEmTJhg0aBB++umnzxil/GVnZ2PmzJlISkrCixcv0KBBA7Rp0wZLly5FixYtYGJigtzcXG6GrKSkJHh4eCAvL0/mdK4VKUviy+jp6XHHcXR0rOtm1SsadkIIIYSQL8qzZ/JNvIHS49W0p93b2xu5ubnIzMzEpEmTEBYWJvXw+desuLgYXbp0QX5+PuLi4pCRkYHdu3fDzs6O69VXVFSEUCj85Ol7y5w4cQK5ubk4evQoCgoK4OPjU6/fIHwOlHwTQgghhNQCn8+HUCiEqakpQkND4enpiQMHDnDbjx49Cmtra2hoaHCJehmxWIz58+ejcePG4PP5aNWqFY4cOcJtf//+PcaMGQMjIyOoqqrC1NQUP//8M7edx+MhPDwcPj4+EAgEaNasGWJiYqRivHv3Ljw8PKCmpgYHBwduutcysbGxsLGxAZ/Ph5mZGVasWMFtu3nzJrKysrBx40Z88803MDU1hYuLCxYuXIhvvvkGQGmPNY/Hg0gkQk5ODjw8PACUTknL4/G4qVfFYjF+/vlnNG3aFAKBAA4ODjLj1dfXh1AohJOTE5YvX47Hjx/j/PnzUuXKH7fMy5cvwePxuB+Oy8vLw4ABA2BgYACBQAALCwtERERI1SVvlHwTQgghhNQBgUDA/crv27dvsXz5cuzYsQOnTp3C/fv3MXnyZK7smjVrsGLFCixfvhzXrl2Dl5cXvv/+e2RmZgIA1q5diwMHDmDPnj3IyMhAdHQ0zMzMJI43e/Zs9OrVC1evXsWAAQPQt29fpKenS5SZOXMmJk+eDJFIBEtLS/Tr1w8lJSUAgEuXLuGHH35A3759cf36dYSFhWH27NmIjIwEABgYGEBBQQExMTHV+vE3ExMTxMbGAgAyMjKQm5uLNWvWAAB+/vlnbN++HZs2bcLNmzcxceJEDBw4EMnJyZWeTwDcOa2p2bNnIy0tDYcPH0Z6ejrCw8Mr/QE5uWGEEEIqlJ+fzwCw/NLJBf//QgipE4WFhSwtLY0VFhZy6y5dkny7yWu5dKn6cQcFBTF/f3/GGGNisZgdP36c8fl8NnnyZBYREcEAsDt37nDlN2zYwBo2bMi9NjY2ZosWLZKos23btmzUqFGMMcbGjh3LOnXqxMRisczjA2AjR46UWNe+fXsWGhrKGGMsOzubAWC//vort/3mzZsMAEtPT2eMMda/f3/WpUsXiTqmTJnCWrZsyb1ev349U1NTY5qamszDw4PNnz+fZWVlcdvLjnPlyhXGGGOJiYkMAMvLy+PKvHv3jqmpqbGzZ89KHGvIkCGsX79+MuvJy8tjPXr0YBoaGuzRo0eMMcZMTU3ZqlWrZJYv2wcAS0xMZIwx5ufnxwYPHizz/Mki614sw/0tyM+vdn0VoZ5vQgipjvyP0m9CyH9efHw8NDQ0oKqqCh8fHwQEBCAsLAxA6Y+ENW/enCtrZGSEJ0+eACidM/qff/6Bi4uLRH0uLi5cz3VwcDBEIhGsrKwwbtw4HDt2TOr43377rdTrj3u+7e3tJWIAwMWRnp4uM4bMzEyup3v06NF49OgRoqOj8e2332Lv3r2wsbHB8ePHq3eSANy5cwdv375Fly5doKGhwS3bt29HVlaWRFlnZ2doaGhAV1cXV69exe7du6v9i8YfCw0NxR9//IFWrVph6tSpOHv2bK3qqWs02wkhhBBCSC14eHggPDwcKioqMDY2lnjoUFlZWaIsj8cDq8EH99atWyM7OxuHDx/GiRMn8MMPP8DT01PmOOnKlI+Dx+MBKB1/XROamprw8/ODn58fFi5cCC8vLyxcuBBdunSp1v4FBQUAgIMHD6JRo0YS2/h8vsTr3bt3o2XLltDX1690thQFhdL+4/LntLi4WKKMj48P7t27h0P/r717j+vx/h8//nhXOp+cOunkkIRUjiMSopzGmBmGZM4NQ8MOojkf5rA57aBsM2fGmjFSIefIYbX0sdJmmTGyHFPX7w+/rq+3SkUKe95vt+t2876u1/W6nq+rKz3fr+t1va4dO9i9ezft2rVj1KhRzJ8/v1hxPyvS8y2EEEII8QRMTEyoVasWjo6OJZrtw9zcHDs7O+Li4rTWx8XFUbduXa1yvXv35osvvmD9+vVs3ryZf/75R91++PBhrf0PHz6Mm5tbseNwc3MrMIbatWujq6tb4D4ajYY6depw8+bNArfr6+sDaI0Rr1u3LgYGBqSnp1OrVi2txcHBQWt/BwcHatasWeQ0hVWrVgXQeoj14YcvHy43cOBAvv32WxYtWsTnn3/+2HrLgvR8CyGEEEKUsZCQEEJDQ6lZsyaenp6Eh4eTkJDAmjVrAPjkk0+wtbXFy8sLHR0dNm7ciI2NjVZSunHjRho3bkzLli1Zs2YNR48e5auvvip2DOPHj6dJkyZ8/PHH9O7dm0OHDvHZZ5+xbNky4EEyGxoaSv/+/albty76+vrExsayatUqJk6cWGCdTk5OaDQaIiMj6dSpE0ZGRpiZmTFhwgTeffddcnNzadmyJZmZmcTFxWFubs7AgQNLfP6MjIx45ZVXmD17NtWrV+fy5ct8+OGHWmWmTJlCo0aNqFevHnfv3iUyMrJEX06eFUm+hRBCCCHK2OjRo8nMzGT8+PFcvnyZunXrsn37dlxcXIAHQz3mzp1LSkoKurq6NGnShB07dqjDLQCmTZvGunXrGDlyJLa2tqxdu1ar57woDRs2ZMOGDUyZMoWPP/4YW1tbwsLC1OkB7e3tcXZ2Ztq0aerUfnmf33333QLrrFatGtOmTWPSpEkMGjSIAQMGEBERwccff0zVqlWZNWsWv/32G5aWljRs2PCpXkq0atUqBg8eTKNGjXB1dWXu3Ll06NBB3a6vr8/kyZNJS0vDyMiIVq1asW7duic+XmnRKCUZgCSEEP8xN27cwMLCgszMTMzNzcs7HCFeOnfu3CE1NZXq1atjaGgIvBhvuCxvGo2GrVu30r179/IO5aVR0LWYpzT/FkjPtxBCCCGeK46ODxLhkr5x8mlUqfLiJN7ixSbJtxBCFMMsi1kYYlh0wZdYqBJa3iGI/xBHR0mGxctJkm8hhBBCiBeMjBp+cclUg0IIIYQQQpQRSb6FEEIIIYQoI5J8CyGEEEIIUUYk+RZCCCGEEKKMSPIthBBCCCFEGZHkWwghhBBCiDIiUw0KIYQQ4rmTnpnOlVtl95adKsZVcLSQicXFsyfJtxBCiGKbNWsWW7Zs4ddff8XIyIgWLVowZ84cXF1dAUhLS6N69eoF7rthwwZ69epVluGKF1R6Zjqun7ly537ZvV/eUM+Q5ODkYifggYGBrF69Ot96f39/du7cibOzM2PHjmXs2LH5yuT9nujo6JCenk61atXUbRkZGTg4OJCTk0NqairOzs5P2iTxnPpPDzvRaDR8//33jy0TGBhI9+7dyySe583UqVPx9PQs7zBeOhEREVhaWpZ3GM+ltLQ0NBoNCQkJ5R2KKERsbCyjRo3i8OHD7N69m+zsbDp06MDNmzcBcHBwICMjQ2uZNm0apqamdOzYsZyjFy+KK7eulGniDXDn/p0S97QHBATku97Xrl1b7P2rVavG119/rbVu9erVWsm4ePmUKPkODAxEo9Gg0WjQ19enVq1ahIWFcf/+fa1tBS1539x8fX3RaDTMnj07X/2dO3dGo9EwderU0mhbkTIyMtQ/BqX5Rz8iIkJtt46ODvb29gwaNIjLly9rbStsSUtLY+rUqWg0GgICAvLVP2/ePDQaDb6+vk8d67P2JF9eivOl6HnwpEl07969OXfu3FMdOyYmBo1Gw/Xr14u9z/P2RbKgePISt/r165dPUKJIO3fuJDAwkHr16uHh4UFERATp6enEx8cDoKuri42NjdaydetW3njjDUxNTcs5eiFKl4GBQb7rvWLFisXef+DAgYSHh2utCw8PZ+DAgaUdqniOlLjnO+9bXkpKCuPHj2fq1KnMmzePxYsXa33zgwcXUN7nY8eOqXU4ODgQERGhVe/FixeJiorC1tb26VpUAjY2NhgYGDyTus3NzcnIyOCPP/7giy++4KeffqJ///707t1b6zw1b96cIUOGaK1zcHAAwNbWlujoaP744w+tuletWoWjo4xLK0p2dvYT7ZeTk0Nubm4pR/N/jIyMsLKyemb1P2v37t17ZnXnJW56ejIi7kWRmZkJQKVKlQrcHh8fT0JCAoMHDy7LsIR4Ibz66qtcu3aNAwcOAHDgwAGuXbtG165dyzky8SyVOPnO+5bn5OTEiBEj8PPzY/v27VhYWGh98wOwtLRUP1etWlWto0uXLly5coW4uDh13erVq+nQoUO+pGTZsmW4uLhgaGiItbU1r7/+eoFxKYpC1apV2bRpk7rO09NTK5k/cOAABgYG3Lp1C9DuYc0bo+jl5VVgr/L8+fOxtbWlcuXKjBo1qsjETqPRYGNjg52dHR07dmT06NHs2bMHQOs86evrY2xsrLVOV1cXACsrKzp06KA1puzgwYNcuXKFzp075zvmqlWrqFevHgYGBtja2hIcHKxuS09Pp1u3bpiammJubs4bb7zBX3/9pbX/7Nmzsba2xszMjMGDB3PnTv5bfl9++SVubm4YGhpSp04dli1b9tjz8ChfX19Gjx7Ne++9R6VKlbCxsdG605F3h+S1117TumMCsG3bNho2bIihoSE1atRg2rRp3L9/X92u0WhYvnw5r776KiYmJsyYMUPtIf7xxx9p0KABhoaGvPLKK5w9e1bdL68He/v27dStWxcDAwPS09O5du0aAwYMoGLFihgbG9OxY0dSUlKABz3PgwYNIjMzU71jkdeOu3fvMmHCBKpVq4aJiQnNmjUjJiYm3/Hy5A3v+eabb3B2dsbCwoI333yTf//9t9jnNa/OXbt24ebmhqmpqfpFOe8Yq1evZtu2bWq8eTH9/vvvvPHGG1haWlKpUiW6detGWlqaWndeD/WMGTOws7NTx/Z+8803NG7cGDMzM2xsbOjbty+XL1/WiuuXX36hS5cumJubY2ZmRqtWrTh//nyh8RR0Byo2NpamTZuq1/WkSZO0fu5FXVOKojB16lQcHR0xMDDAzs6O0aNHF/vcisLl5uYyduxYvL29C71b8dVXX+Hm5kaLFi3KODohnr3IyEhMTU21lpkzZxZ7/woVKvDWW2+xatUq4MHf8bfeeosKFSo8q5DFc+Cpx3wbGRmVuCdMX1+ffv36ad1qiYiIICgoSKvc8ePHGT16NGFhYSQnJ7Nz5058fHwKrFOj0eDj46MmFNeuXSMpKYnbt2/z66+/Ag/+iDdp0gRjY+N8+x89ehSAPXv2kJGRwZYtW9Rt0dHRnD9/nujoaFavXk1ERES+nvuiGBkZkZubq5U0FEdQUJDWsVatWkW/fv3Q19fXKrd8+XJGjRrF0KFDOXPmDNu3b6dWrVrAgz+Q3bp1459//iE2Npbdu3fz22+/0bt3b3X/DRs2MHXqVGbOnMnx48extbXNl1ivWbOGKVOmMGPGDJKSkpg5cyYfffRRgQ+cPM7q1asxMTHhyJEjzJ07l7CwMHbv3g2g3iHJu2uS93n//v0MGDCAMWPGkJiYyMqVK4mIiGDGjBladU+dOpXXXnuNM2fOaF1PISEhLFiwgGPHjlG1alW6du2q9QXq1q1bzJkzhy+//JJffvkFKysrAgMDOX78ONu3b+fQoUMoikKnTp3Izs6mRYsWLFq0SL3DkZGRwYQJEwAIDg7m0KFDrFu3jtOnT9OrVy8CAgLUxL0g58+f5/vvvycyMpLIyEhiY2MLHJr1OLdu3WL+/Pl888037Nu3j/T0dDWmCRMm8MYbb2iNT2zRogXZ2dn4+/tjZmbG/v37iYuLUxP3h3+vo6KiSE5OZvfu3URGRgIP7ix8/PHHnDp1iu+//560tDQCAwPVfS5evIiPjw8GBgbs3buX+Ph4goKCuH//fqHxPOrixYt06tSJJk2acOrUKZYvX85XX33F9OnTtco97pravHkzCxcuZOXKlaSkpPD999/j7u5e6Hm8e/cuN27c0FpEwUaNGsXZs2dZt25dgdtv377Nd999J73e4qXVpk0bEhIStJbhw4eXqI6goCA2btzIpUuX2LhxY75cSLx8nvjerqIoREVFsWvXLt55550S7x8UFESrVq1YvHgx8fHxZGZm0qVLF60eq/T0dExMTOjSpQtmZmY4OTnh5eVVaJ2+vr6sXLkSgH379uHl5YWNjQ0xMTHUqVOHmJgYWrduXeC+eT3zlStXVnvu81SsWJHPPvsMXV1d6tSpQ+fOnYmKimLIkCHFamtKSgorVqxQewlLokuXLgwfPpx9+/bRqFEjNmzYwIEDB9RvyXmmT5/O+PHjGTNmjLquSZMmwIPE6cyZM6SmpqpDWr7++mvq1avHsWPHaNKkCYsWLWLw4MHqH8np06ezZ88erd7v0NBQFixYQI8ePYAHdwvyEuGSjE9r0KABoaGhALi4uPDZZ58RFRVF+/bt1Z9D3l2TPNOmTWPSpEnqcWrUqMHHH3/Me++9p9YF0LdvXwYNGqR+/u2339TY27dvDzxI1Ozt7dVxqPAgkVy2bBkeHh7Ag5/Z9u3biYuLU5PCNWvW4ODgwPfff0+vXr2wsLBQ73DkSU9PJzw8nPT0dOzs7IAHie/OnTsJDw8vtEckNzeXiIgI9fro378/UVFR+b5cPE52djYrVqygZs2awIMvAWFhYQCYmppiZGTE3bt3teL99ttvyc3N5csvv0Sj0QAPvvhYWloSExNDhw4dADAxMeHLL7/U+tL38B+IGjVqsGTJEpo0aUJWVhampqYsXboUCwsL1q1bp/bi1K5dW92noHgetWzZMhwcHPjss8/QaDTUqVOHP//8k4kTJzJlyhR0dB70HzzumkpPT8fGxgY/Pz8qVKiAo6MjTZs2LfSYs2bNYtq0acU44/9twcHBREZGsm/fPuzt7Qsss2nTJm7dusWAAQPKODohyoaJiYna0fWk3N3dqVOnDn369MHNzY369evLQ+cvuRL3fOfdYjE0NKRjx4707t37iR6Q9PDwwMXFhU2bNrFq1Sr69++fb5xn+/btcXJyokaNGvTv3581a9aoQ0YK0rp1axITE/n777+JjY3F19cXX19fYmJiyM7O5uDBg0/0kGK9evXUoSDwYCz2o7fXH5WZmYmpqSnGxsa4urpibW3NmjVrSnzsvFtS4eHhbNy4kdq1a9OgQQOtMpcvX+bPP/+kXbt2BdaRlJSEg4ODmngD1K1bF0tLS5KSktQyzZo109qvefPm6r9v3rzJ+fPnGTx4sNbttenTp3P+/PkStenR+ItzPk+dOkVYWJjWsfPGyj98TTRu3LjA/R9uS6VKlXB1dVXbDg/uxjwcV1JSEnp6elrnpHLlyvn2e9SZM2fIycmhdu3aWrHGxsY+9jw5OztrfTErzjl5lLGxsZp4F7eOU6dO8b///Q8zMzM11kqVKnHnzh2teN3d3fPdbYmPj6dr1644OjpiZmamfrFNT08HICEhgVatWj3V7dOkpCSaN2+ufjEA8Pb2JisrS+tZiMddU7169eL27dvUqFGDIUOGsHXr1sfegZo8eTKZmZnq8vvvvz9x/C8jRVEIDg5m69at7N27t9BpBeHBkJNXX31Va9ihECK/oKAgYmJipNf7P6LEPd9t2rRh+fLl6OvrY2dn91QPRgUFBbF06VISExPVYR8PMzMz48SJE8TExPDzzz8zZcoUpk6dyrFjxwqcZcLd3Z1KlSoRGxtLbGwsM2bMwMbGhjlz5nDs2DF1uEBJPZo8aDSaIh/Iy4tdR0cHW1tbjIyMSnzcPEFBQTRr1oyzZ88W+Iv5NHUXV1ZWFgBffPFFviT94S8mxfEk5zMrK4tp06apve4PMzQ0VP9tYmJSoljyGBkZaSV4TyorKwtdXV3i4+PznZfHzfTwJOekOHUoilJkvI0aNSrwi+HDCdOj5/XmzZv4+/vj7+/PmjVrqFq1Kunp6fj7+6vDVcriuszzuPPn4OBAcnIye/bsYffu3YwcOZJ58+YRGxtb4BcDAwODZ/Yg9stg1KhRfPfdd2zbtg0zMzMuXboEgIWFhdbP/H//+x/79u1jx44d5RWqEM/c3bt31d+BPHp6elSpUgV4MHTu0V5sJyenfPUMGTKEXr16yTS0/xElzpxL4xZLnr59+zJhwgQ8PDyoW7dugWX09PTw8/PDz8+P0NBQLC0t2bt3b4FJmEajoVWrVmzbto1ffvmFli1bYmxszN27d1m5ciWNGzcuNDnL69XLyckplbbp6OiU2nmqV68e9erV4/Tp0/Tt2zffdjMzM5ydnYmKiqJNmzb5tru5ufH777/z+++/q73fiYmJXL9+XT3vbm5uHDlyROv28OHDh9V/W1tbY2dnx2+//Ua/fv1KpV2FqVChQr6fQ8OGDUlOTn7ic3r48GF1hphr165x7tw53NzcCi3v5ubG/fv3OXLkiPqF7erVqyQnJ6vnTF9fP1+cXl5e5OTkcPnyZVq1avVEsT4rBcXbsGFD1q9fj5WVFebm5sWu69dff+Xq1avMnj1bvaaOHz+uVaZBgwasXr2a7OzsApPcguJ5lJubG5s3b0ZRFPXLUVxcHGZmZoUOdSiIkZERXbt2pWvXrowaNYo6depw5swZGjZsWOw6xAPLly8HyHcXMTw8XGvM/6pVq7C3t1eHLglRElWMq2CoZ1jmL9mpYlylRPvs3Lkz3yxtrq6u6rNm8+fPZ/78+Vrbv/nmG1q2bKm17uGEXbz8ynU+r4oVK5KRkVHobenIyEh+++03fHx8qFixIjt27CA3N1edbaEgvr6+jB8/nsaNG6s9jT4+PqxZs4aQkJBC97OyssLIyIidO3dib2+PoaEhFhYWT9fAUrR3716ys7ML/VY8depUhg8fjpWVFR07duTff/8lLi6Od955Bz8/P9zd3enXrx+LFi3i/v37jBw5ktatW6vDNMaMGUNgYCCNGzfG29ubNWvW8Msvv1CjRg31GNOmTWP06NFYWFgQEBDA3bt3OX78ONeuXWPcuHGl1ta8LxLe3t4YGBhQsWJFpkyZQpcuXXB0dOT1119HR0eHU6dOcfbs2XwP3xUkLCyMypUrY21tzQcffECVKlUeO+e1i4sL3bp1Y8iQIaxcuRIzMzMmTZpEtWrV6NatmxpnVlYWUVFReHh4YGxsTO3atenXrx8DBgxgwYIFeHl58ffffxMVFUWDBg0KnKWmrDg7O7Nr1y6Sk5OpXLkyFhYW9OvXj3nz5tGtWzfCwsKwt7fnwoULbNmyhffee6/QBNfR0RF9fX0+/fRThg8fztmzZ/n444+1ygQHB/Ppp5/y5ptvMnnyZCwsLDh8+DBNmzbF1dW1wHgeNXLkSBYtWsQ777xDcHAwycnJhIaGMm7cOHW8d1EiIiLIycmhWbNmGBsb8+2332JkZFRg75MoWlF3U/LMnDmzRLM+CPEwRwtHkoOTn+vXyxc1+cLDs0YV5HG/S56ensX+XRMvnnKfTPdxt1gsLS3ZsmULU6dO5c6dO7i4uLB27Vrq1atX6D6tW7cmJydHq1fG19eXbdu2PXa8t56eHkuWLCEsLIwpU6bQqlUrrenhyltRwykGDhzInTt3WLhwIRMmTKBKlSrqtIwajYZt27bxzjvv4OPjg46ODgEBAXz66afq/r179+b8+fO899573Llzh549ezJixAh27dqllnn77bcxNjZm3rx5hISEYGJigru7e4Gvzn0aCxYsYNy4cXzxxRdUq1aNtLQ0/P39iYyMJCwsjDlz5lChQgXq1KnD22+/Xaw6Z8+ezZgxY0hJScHT05Mffvgh3xjmR4WHhzNmzBi6dOnCvXv38PHxYceOHeqXxRYtWjB8+HB69+7N1atXCQ0NZerUqYSHh6sPwF68eJEqVarwyiuv0KVLl6c+N09jyJAhxMTE0LhxY7KysoiOjsbX15d9+/YxceJEevTowb///ku1atVo167dY3vCq1atSkREBO+//z5LliyhYcOGzJ8/n1dffVUtU7lyZfbu3UtISAitW7dGV1cXT09PvL29C43n0dcoV6tWjR07dhASEoKHhweVKlVi8ODBfPjhh8Vut6WlJbNnz2bcuHHk5OTg7u7ODz/8QOXKlUt2AoUQZcrRwrFEybAQLwqNIl+txEssJiaGNm3acO3aNRlLJ57IjRs3sLCwYBKTMMSw6B1eYqFKaNGFhCihO3fukJqaSvXq1bWe4RGirD3uWsz7W5CZmVmiYZoFeep5voUQQgghhBDFI8m3EEIIIYQQZaTcx3wL8Sz5+vrKQytCCCGEeG5Iz7cQQgghhBBlRJJvIYQQQgghyogk30IIIYQQQpQRSb6FEEIIIYQoI/LApRBCFMPkzMlPPberEKIE0tPhStm94ZIqVcBRXuojnj1JvoUQQgjxfElPB1dXuHOn7I5paAjJycVOwAMDA1m9ejUAFSpUwNHRkQEDBnDu3DnWrFlT6H5OTk6kpaXh6+tLbGwss2bNYtKkSVplOnfuzI4dO9Q3J8OD2bs8PT1ZtGhRseJLS0ujevXqnDx5Ek9Pz2LtI8qGDDsRQgghxPPlypWyTbzhwfFK2NMeEBBARkYGKSkpjB8/nqlTp+Li4kJGRoa6AISHh6ufjx07pu7v4OBARESEVp0XL14kKioKW1vbp26SeD5J8i2EEEII8QQMDAywsbHBycmJESNG4Ofnx86dO7GxsVEXAEtLS/Vz1apV1f27dOnClStXiIuLU9etXr2aDh06YGVl9dhjOzs7M3PmTIKCgjAzM8PR0ZHPP/9c3V69enUAvLy80Gg0+Pr6lmLLxdOQ5FsIIYQQohQYGRlx7969YpfX19enX79+hIeHq+siIiIICgoq1v4LFiygcePGnDx5kpEjRzJixAiSk5MBOHr0KAB79uwhIyODLVu2lKAl4lmS5FsIIYQQ4ikoisKePXvYtWsXbdu2LdG+QUFBbNiwgZs3b7Jv3z4yMzPp0qVLsfbt1KkTI0eOpFatWkycOJEqVaoQHR0NoPawV65cGRsbGypVqlSyRolnRh64FEIIIYR4ApGRkZiampKdnU1ubi59+/ZVH5AsLg8PD1xcXNi0aRPR0dH0798fPb3ipWcNGjRQ/63RaLCxseHy5cslOr4oe5J8CyGEEEI8gTZt2rB8+XL09fWxs7MrdtL8qKCgIJYuXUpiYqI6XKQ4KlSooPVZo9GQm5v7RDGIsiPDToQQQgghnoCJiQm1atXC0dHxiRNvgL59+3LmzBnq169P3bp1SyU2fX19AHJyckqlPlF6pOdbCCGEEKIcVaxYkYyMjHw92U/DysoKIyMjdu7cib29PYaGhlhYWJRa/eLJSc+3EEIIIZ4vVao8eOlNWTI0fHDccmJpaYmJiUmp1aenp8eSJUtYuXIldnZ2dOvWrdTqFk9HoyiKUt5BCCHE8+rGjRtYWFiQmZkpr5cX4hm4c+cOqampVK9eHcOHE255vbwoY4Vei5Tu3wIZdiKEEEKI54+joyTD4qUkw06EEEIIIYQoI5J8CyGEEEIIUUYk+RZCCCGEEKKMSPItykVERASWlpbldnxnZ2cWLVpUKnXFxMSg0Wi4fv16mR0zT3mfR4C0tDQ0Gg0JCQnlGkdZWLp0Kc7OzhgaGtKsWbMSvQxDCCGEAEm+n0pgYCAajQaNRoO+vj61atUiLCyM+/fva20raHF2dgbA19cXjUbD7Nmz89XfuXNnNBpNiV9V+yLo3bs3586dK9E+zyJ5LQ0tWrQgIyNDnT+1NBPix11jLxtfX1/Gjh1b3mEUavPmzYwbN47Q0FBOnDiBh4cH/v7+8ipnIYQQJSLJ91MKCAggIyODlJQUxo8fz9SpU5k3bx6LFy8mIyNDXQDCw8PVz8eOHVPrcHBwICIiQqveixcvEhUVha2tbVk2p8wYGRlhZWVV3mGUCn19fWxsbNBoNM+k/sKuMVG2li5dypAhQxg0aBB169ZlxYoVGBsbs2rVqvIOTQghxAtEku+nZGBggI2NDU5OTowYMQI/Pz+2b9+OhYUFNjY26gIPJtDP+1y1alW1ji5dunDlyhXi4uLUdatXr6ZDhw75EtRly5bh4uKCoaEh1tbWvP7664XGdvXqVfr06UO1atUwNjbG3d2dtWvXapXZtGkT7u7uGBkZUblyZfz8/Lh58ybwYDhF06ZNMTExwdLSEm9vby5cuKDuu3z5cmrWrIm+vj6urq588803WnVfv36dYcOGYW1tjaGhIfXr1ycyMhLI3zt8/vx5unXrhrW1NaampjRp0oQ9e/ao2319fblw4QLvvvuu2hOc58CBA7Rq1QojIyMcHBwYPXq02gaAy5cv07VrV4yMjKhevTpr1qwp9JwBnD17Fh0dHf7++28A/vnnH3R0dHjzzTfVMtOnT6dly5bqecobdhITE8OgQYPIzMxU43z4zsWtW7cICgrCzMwMR0dHPv/888fGAoVfYw/btWsXbm5umJqaqsl6ntzcXMLCwrC3t8fAwABPT0927typbr937x7BwcHY2tpiaGiIk5MTs2bNUrdrNBqWL19Ox44dMTIyokaNGmzatClfnL/99htt2rTB2NgYDw8PDh06pG4r6loMDAwkNjaWxYsXq+ctLS2NnJwcBg8eTPXq1TEyMsLV1ZXFixdrHbeo63Tbtm00bNgQQ0NDatSowbRp057ozkFCQgJ+fn7qZx0dHfz8/LTaKYQQQhRFku9SZmRkxL1790q0j76+Pv369SM8PFxdFxERQVBQkFa548ePM3r0aMLCwkhOTmbnzp34+PgUWu+dO3do1KgRP/74I2fPnmXo0KH0799fHaeakZFBnz59CAoKIikpiZiYGHr06IGiKNy/f5/u3bvTunVrTp8+zaFDhxg6dKia9G7dupUxY8Ywfvx4zp49y7Bhwxg0aBDR0dHAg4SvY8eOxMXF8e2335KYmMjs2bPR1dUtMNasrCw6depEVFQUJ0+eJCAggK5du5Keng7Ali1bsLe3JywsTOtuwvnz5wkICKBnz56cPn2a9evXc+DAAYKDg9W6AwMD+f3334mOjmbTpk0sW7bssUMF6tWrR+XKlYmNjQVg//79Wp8BYmNj8fX1zbdvixYtWLRoEebm5mqcEyZMULcvWLCAxo0bc/LkSUaOHMmIESNITk4uNJaCPHqN3bp1i/nz5/PNN9+wb98+0tPTtY65ePFiFixYwPz58zl9+jT+/v68+uqrpKSkALBkyRK2b9/Ohg0bSE5OZs2aNeqwqDwfffQRPXv25NSpU/Tr148333yTpKQkrTIffPABEyZMICEhgdq1a9OnTx81yS3qWly8eDHNmzdnyJAh6nlzcHAgNzcXe3t7Nm7cSGJiIlOmTOH9999nw4YNAEVep/v372fAgAGMGTOGxMREVq5cSUREBDNmzCj0/N69e5cbN25oLQA5OTlYW1trlbW2tubSpUvF/tkJIYQQKOKJDRw4UOnWrZuiKIqSm5ur7N69WzEwMFAmTJiQryygbN26Nd/61q1bK2PGjFESEhIUMzMzJSsrS4mNjVWsrKyU7OxsxcPDQwkNDVUURVE2b96smJubKzdu3HjimDt37qyMHz9eURRFiY+PVwAlLS0tX7mrV68qgBITE1NgPS1atFCGDBmita5Xr15Kp06dFEVRlF27dik6OjpKcnJygfuHh4crFhYWj421Xr16yqeffqp+dnJyUhYuXKhVZvDgwcrQoUO11u3fv1/R0dFRbt++rSQnJyuAcvToUXV7UlKSAuSr62E9evRQRo0apSiKoowdO1YJCQlRKlasqCQlJSn37t1TjI2NlZ9//llRFEWJjo5WAOXatWuPbZuTk5Py1ltvqZ9zc3MVKysrZfny5YXGUdQ1Fh4ergDK//73P3WfpUuXKtbW1upnOzs7ZcaMGVr1NmnSRBk5cqSiKIryzjvvKG3btlVyc3MLjAFQhg8frrWuWbNmyogRIxRFUZTU1FQFUL788kt1+y+//KIASlJSUqFte/haVJT/+10oyqhRo5SePXsqilL0ddquXTtl5syZWuu++eYbxdbWttD6Q0NDFaDA5eDBg1plQ0JClKZNmxYZsxCicLdv31YSExOV27dva62/fuG68mf8n2W2XL9wvZzOQPkp7v+7/xWFXYuKoiiZmZkKoGRmZj71ceQNl08pMjISU1NTsrOzyc3NpW/fvk/0gKSHhwcuLi5s2rSJ6Oho+vfvj56e9o+nffv2ODk5UaNGDQICAggICOC1117D2Ni4wDpzcnKYOXMmGzZs4OLFi9y7d4+7d++q5T08PGjXrh3u7u74+/vToUMHXn/9dSpWrEilSpUIDAzE39+f9u3b4+fnxxtvvKGOQU9KSmLo0KFax/P29laHBCQkJGBvb0/t2rWL1f6srCymTp3Kjz/+SEZGBvfv3+f27dtqz3dhTp06xenTp7WGkiiKQm5uLqmpqZw7dw49PT0aNWqkbq9Tp06RD0S2bt1aHRISGxvLzJkzOXfuHDExMfzzzz9kZ2fj7e1drLY9rEGDBuq/NRoNNjY2RT6wV9Q1ZmxsTM2aNdXPtra2ap03btzgzz//zBert7c3p06dAh7cGWjfvj2urq4EBATQpUsXOnTooFW+efPm+T4/OrvJw23Lu04uX75MnTp1irwWH2fp0qWsWrWK9PR0bt++zb179/D09AQo8jo9deoUcXFxWj3dOTk53Llzh1u3bhV4/MmTJzNu3Dj1840bN3BwcEBXV5e//vpLq+xff/2lDisTQpSezPRMPnP9jPt3yu7hcj1DPYKTg7FwtChW+cDAQFavXg1AhQoVcHR0ZMCAAZw7d+6xwxudnJxIS0vD19eX2NhYZs2axaRJk7TKdO7cmR07dhAaGvpSTrrwXyfDTp5SmzZtSEhIICUlhdu3b7N69WpMTEyeqK6goCCWLl3Kpk2b8g05ATAzM+PEiROsXbsWW1tbpkyZgoeHR6FT3OU9+Dlx4kSio6NJSEjA399fHbKgq6vL7t27+emnn6hbty6ffvoprq6upKamAg8eED106BAtWrRg/fr11K5dm8OHDxerLUZGRiVq+4QJE9i6dSszZ85k//79JCQk4O7uXuQQnqysLIYNG0ZCQoK6nDp1ipSUFK2EtKR8fX1JTEwkJSWFxMREWrZsia+vLzExMcTGxtK4ceNiJY6PqlChgtZnjUZDbm7uY/cp6horqE5FUYodU8OGDUlNTeXjjz/m9u3bvPHGG499lqAwD8eRN+wjr21FXYuFWbduHRMmTGDw4MH8/PPPJCQkMGjQIK39HnedZmVlMW3aNK3r48yZM6SkpGBoaFjgMQ0MDDA3N9daADw9PYmKilLL5ebmEhUVle+LiRDi6d26cqtME2+A+3fuc+vKrRLtU9AD8S4uLjLhgngsSb6fkomJCbVq1cLR0TFfT3VJ9e3blzNnzlC/fn3q1q1bYBk9PT38/PyYO3cup0+fJi0tjb179xZYNi4ujm7duvHWW2/h4eFBjRo18k3vp9Fo8Pb2Ztq0aZw8eRJ9fX22bt2qbvfy8mLy5MkcPHiQ+vXr89133wHg5uam9YBo3vHy4m7QoAF//PFHsacTjIuLIzAwkNdeew13d3dsbGxIS0vTKqOvr09OTo7WuoYNG5KYmEitWrXyLfr6+tSpU4f79+8THx+v7pOcnFzknNzu7u5UrFiR6dOn4+npiampqdpLERMTU+B478fF+TSe5hozNzfHzs7usT+rvHK9e/fmiy++YP369WzevJl//vlH3f7ol67Dhw/j5uZW7DiKcy0WdN7i4uJo0aIFI0eOxMvLi1q1anH+/Pl89Rd2nTZs2JDk5OQCrw8dnZL99zdq1Ci++OILVq9eTVJSEiNGjODmzZsMGjSoRPUIIV4eBT0Qv3Pnzmcy4cLdu3eZOHEiDg4OGBgYUKtWLb766it1e2xsLE2bNsXAwABbW1smTZqk9XD5zZs3GTBgAKamptja2rJgwYJ87bl79y4TJkygWrVqmJiY0KxZM2JiYkrrdIn/T4adPEcqVqxIRkZGvp7MPJGRkfz222/4+PhQsWJFduzYQW5uLq6urgWWzxvGcvDgQSpWrMgnn3zCX3/9pSZdR44cISoqSv0lP3LkCH///Tdubm6kpqby+eef8+qrr2JnZ0dycjIpKSkMGDAAgJCQEN544w28vLzw8/Pjhx9+YMuWLeoMJa1bt8bHx4eePXvyySefUKtWLX799Vc0Gg0BAQEFxrplyxa6du2KRqPho48+ytcj7OzszL59+3jzzTcxMDCgSpUqTJw4kVdeeYXg4GDefvttTExMSExMZPfu3Xz22WfqUIphw4axfPly9PT0GDt2bJE98xqNBh8fH9asWaM+vNigQQPu3r1LVFSU1rCERzk7O5OVlUVUVBQeHh4YGxs/US95aQkJCSE0NJSaNWvi6elJeHg4CQkJ6m3RTz75BFtbW7y8vNDR0WHjxo3Y2NhoDc3ZuHEjjRs3pmXLlqxZs4ajR49q/adflKKuRXhw3o4cOUJaWhqmpqZUqlQJFxcXvv76a3bt2kX16tX55ptvOHbsGNWrVwco8jqdMmUKXbp0wdHRkddffx0dHR1OnTrF2bNnmT59eonOY8+ePbl58yZTpkzh0qVL6qwxjz6EKYT47zIyMuLq1avFLv/whAt5wwMjIiKYO3duvuEmAwYM4NChQyxZsgQPDw9SU1O5cuUK8KC3vFOnTgQGBvL111/z66+/MmTIEAwNDdV6QkJCiI2NZdu2bVhZWfH+++9z4sQJdRgfQHBwMImJiaxbtw47Ozu2bt1KQEAAZ86cwcXF5anOjfg/0vP9nLG0tCx02IqlpSVbtmyhbdu2uLm5sWLFCtauXUu9evUKLP/hhx/SsGFD/P398fX1xcbGhu7du6vbzc3N2bdvH506daJ27dp8+OGHLFiwgI4dO2JsbMyvv/5Kz549qV27NkOHDmXUqFEMGzYMgO7du7N48WLmz59PvXr1WLlyJeHh4Vo9wps3b6ZJkyb06dOHunXr8t577xXaI/zJJ59QsWJFWrRoQdeuXfH396dhw4ZaZcLCwkhLS6NmzZpqz0GDBg2IjY3l3LlztGrVCi8vL6ZMmYKdnZ26X3h4OHZ2drRu3ZoePXowdOjQYs0x3rp1a3JyctQ26ejo4OPjo94tKEyLFi0YPnw4vXv3pmrVqsydO7fIYz1Lo0ePZty4cYwfPx53d3d27tzJ9u3b1f9IzczMmDt3Lo0bN6ZJkyakpaWxY8cOrZ7hadOmsW7dOho0aMDXX3/N2rVrC707U5CirkV4MPRIV1eXunXrUrVqVdLT0xk2bBg9evSgd+/eNGvWjKtXrzJy5Eh1n6KuU39/fyIjI/n5559p0qQJr7zyCgsXLsTJyemJzmVwcDAXLlzg7t27HDlyhGbNmj1RPUKIl4uiKOzZs4ddu3bRtm3bEu0bFBTEhg0buHnzJvv27SMzM5MuXbpolTl37hwbNmxg1apVvPbaa9SoUYN27drRu3dv4ME0xA4ODnz22WfUqVOH7t27M23aNBYsWEBubi5ZWVl89dVXzJ8/X33Wa/Xq1Vo94+np6YSHh7Nx40ZatWpFzZo1mTBhAi1bttSajU08PY1SksGhQoj/HI1Gw9atW/Mly/8VN27cwMLCgszMTHX8txCi9Ny5c4fU1FSqV6+uPouRcSKDzxsV/R6E0jY0fii2DYs31jowMJBvv/0WQ0NDrQfily1bptWJVtj/ob6+vnh6erJo0SIaNWrE6NGjiY6OpkqVKsyfPx9PT0+6d+/O1KlT2bBhA3379uX27dsF3h3v0aMHFhYWWknyqVOn8PT05MKFC1y7dk39t6Ojo1rGy8uL1q1bs2jRIn788Ue6dOmSrwPw7t279OjRg/Xr1xfrvLzICroW85Tm3wIZdiKEEEII8QTatGnD8uXL0dfXx87O7omf/cqbcCExMVF9/8HDSjqJwZPIyspCV1eX+Pj4fO/kMDU1febH/y+RYSdCCCGEEE+gtCZdKGrCBXd3d3Jzc7Ve9vYwNzc3Dh06pDXTVVxcHGZmZtjb21OzZk0qVKjAkSNH1O3Xrl3TevDdy8uLnJwcLl++nO8BdZlStXRJz7cQ4rFkZJoQQjxbRU244OzszMCBAwkKClIfuLxw4QKXL1/mjTfeYOTIkSxatIh33nmH4OBgkpOTCQ0NZdy4cejo6GBqasrgwYMJCQmhcuXKWFlZ8cEHH2g921O7dm369evHgAEDWLBgAV5eXvz9999ERUXRoEEDOnfuXFan46UnybcQQgghnivGVYzRM9Qr85fsGFcpv5mpinr52/Lly3n//fcZOXIkV69exdHRkffffx+AatWqsWPHDkJCQvDw8KBSpUoMHjyYDz/8UN1/3rx5ZGVl0bVrV8zMzBg/fjyZmZlaxwgPD2f69OmMHz+eixcvUqVKFV555ZV8D4CKpyMPXAohxGPIA5dCPFuFPeSWmZ5Z4pfePA3jKsbFfruleDnJA5dCCCGE+M+ycLSQZFi8lOSBSyGEEEIIIcqIJN9CCCGEEEKUEUm+hRBCCCGEKCOSfAshhBBCCFFGJPkWQgghhBCijEjyLYQQQgghRBmR5FsIIYQQQogyIsm3EEIIIYQQZUResiOEEEKI58/NdLh7peyOZ1AFTBzL7njiP0uSbyGEKI5zFmD60Oc6SrmFIsRL72Y6/OAKuXfK7pg6htA1udgJeGBgIKtXrwZAT0+PSpUq0aBBA/r06UNgYCA6Og8GFzg7O3PhwoV8+8+aNYtJkyaRlpZG9erV1fWVKlWiUaNGzJkzBy8vL3X9L7/8wrRp04iOjubGjRs4OTnx5ptvMmnSJIyNjdVyDx/P0NAQa2trmjZtyvDhw2nbtm3Jz4sodTLsRAghhBDPl7tXyjbxhgfHK2FPe0BAABkZGaSlpfHTTz/Rpk0bxowZQ5cuXbh//75aLiwsjIyMDK3lnXfe0aprz549ZGRksGvXLrKysujYsSPXr18H4PDhwzRr1ox79+7x448/cu7cOWbMmEFERATt27fn3r17WnXlHS85OZmvv/4aS0tL/Pz8mDFjxpOdG1GqpOdbCCGEEOIJGBgYYGNjA0C1atVo2LAhr7zyCu3atSMiIoK3334bADMzM7VcYSpXroyNjQ02NjbMnz8fb29vjhw5QocOHRg8eDBubm5s2bJF7VF3cnKidu3aeHl5sXDhQiZOnKjW9fDxHB0d8fHxwdbWlilTpvD666/j6ur6LE6HKCbp+RZCCCGEKCVt27bFw8ODLVu2PHEdRkZGANy7d4+EhAQSExMZN26cmnjn8fDwwM/Pj7Vr1xZZ55gxY1AUhW3btj1xXKJ0SPIthBBCCFGK6tSpQ1pamvp54sSJmJqaai379+8vcN/r16/z8ccfY2pqStOmTTl37hwAbm5uBZZ3c3NTyzxOpUqVsLKy0opLlA8ZdiKEEEIIUYoURUGj0aifQ0JCCAwM1CpTrVo1rc8tWrRAR0eHmzdvUqNGDdavX4+1tbVWnaUdlygfknwLIYQQQpSipKQkrRlMqlSpQq1atR67z/r166lbty6VK1fG0tJSXV+7dm21zodnP3n4WHllHufq1av8/fffWnGJ8iHDToQQQgghSsnevXs5c+YMPXv2LNF+Dg4O1KxZUyvxBvD09KROnTosXLiQ3NxcrW2nTp1iz5499OnTp8j6Fy9ejI6ODt27dy9RXKL0Sc+3EEIIIcQTuHv3LpcuXSInJ4e//vqLnTt3MmvWLLp06cKAAQPUcv/++y+XLl3S2tfY2Bhzc/Mij6HRaPjqq69o3749PXv2ZPLkydjY2HDkyBHGjx9P8+bNGTt2rNY+ecfLzs4mNTWVb7/9li+//JJZs2YV2QMvnj3p+f4Pi4iIyPcNuyw5OzuzaNGiUqkrJiYGjUajzolaFsd8mK+vb77//J5XPj4+fPfdd+UdRj7F/Rk+jVdeeYXNmzeXWn2zZs2iSZMmmJmZYWVlRffu3UlOTi61+oX4zzKo8uClN2VJx/DBcUtg586d2Nra4uzsTEBAANHR0SxZsoRt27ahq6urlpsyZQq2trZay3vvvVfs47Ro0YLDhw+jq6tLx44dqVWrFpMnT2bgwIHs3r0bAwMDrfJ5x6tVqxb9+/cnMzOTqKgorekIRTlSXnADBw5UAAVQKlSooNSsWVOZNm2akp2drbWtoMXJyUlRFEVp3bq1AiizZs3KV3+nTp0UQAkNDS3bhpWBW7duKX/99VeJ9nFyclIWLlxYKscvzbru3r2rZGRkKLm5uYqiKEp4eLhiYWFRKsccOHCg0q1bN611GzduVAwMDJT58+criqIoV69eVW7cuPEkoZepbdu2KbVr11ZycnLUdU5OTurvhJGRkVK/fn3liy++KPVjh4aGqsfR1dVVnJyclLFjxyr//vuvoiiKEh0drQDKtWvXSv3YeX744QelVq1aWu0vSmZmpgIomcdQlKSHFkVR/P39lfDwcOXs2bNKQkKC0qlTJ8XR0VHJysp6Vk0Q4qVz+/ZtJTExUbl9+7b2hqwLinI1vuyWrAvlcwLEc6PQa1F56G9BZuZTH+elGHYSEBBAeHg4d+/eZceOHYwaNYoKFSqwePFiZs+erZaztbUlPDycgIAAAK1vpQ4ODkRERDBp0iR13cWLF4mKisLW1rbsGlOGjIyM1LlEX3T6+vpFvsCgtHz55ZeMGjWKFStWMGjQIODBFE4vgiVLljBo0KB8c8WGhYUxZMgQbt26xcaNGxkyZAjVqlWjY8eOpXr8evXqsWfPHu7fv09cXBxBQUHcunWLlStXlupxCtOxY0fefvttfvrpJzp37vzU9e3cuVPrc0REBFZWVsTHx+Pj4/PU9Qvxn2biWOxXvQvxInkphp3kvWHKycmJESNG4Ofnx/bt27GwsFDfFpWXmFlaWqqfq1atqtbRpUsXrly5QlxcnLpu9erVdOjQASsrK63jLVu2DBcXFwwNDbG2tub1118vNLarV6/Sp08fqlWrhrGxMe7u7vkmw9+0aRPu7u4YGRlRuXJl/Pz8uHnzJvDgVnzTpk0xMTHB0tISb29vLly4oO67fPlyatasib6+Pq6urnzzzTdadV+/fp1hw4ZhbW2NoaEh9evXJzIyEsg/7OT8+fN069YNa2trTE1NadKkCXv27FG3+/r6cuHCBd599100Go3WdEUHDhygVatWGBkZ4eDgwOjRo9U2AFy+fJmuXbtiZGRE9erVWbNmTaHnDODs2bPo6Ojw999/A/DPP/+go6PDm2++qZaZPn06LVu2VM9T3pCFmJgYBg0aRGZmphrn1KlT1f1u3bpFUFAQZmZmODo68vnnnz82lofNnTuXd955h3Xr1qmJd965eXjYibOzMzNnznzscSZOnEjt2rUxNjamRo0afPTRR2RnZ6vbT506RZs2bTAzM8Pc3JxGjRpx/PhxdXtR5/xRf//9N3v37qVr1675tuW9Da1GjRpMnDiRSpUqsXv3bnX79evXefvtt6latSrm5ua0bduWU6dOadUxffp0rKysMDMz4+2332bSpEl4enpqldHT08PGxgZ7e3t69+5Nv3792L59u1aZ+Ph4GjdujLGxMS1atMg3jONx17yiKEydOhVHR0cMDAyws7Nj9OjR6nZdXV06derEunXrCj1PTyMzMxN4cb6MCSGEKHsvRfL9KCMjI+7du1eiffT19enXrx/h4eHquoiICIKCgrTKHT9+nNGjRxMWFkZycjI7d+58bA/XnTt3aNSoET/++CNnz55l6NCh9O/fn6NHjwKQkZFBnz59CAoKIikpiZiYGHr06IGiKNy/f5/u3bvTunVrTp8+zaFDhxg6dKia9G7dupUxY8Ywfvx4zp49y7Bhwxg0aBDR0dEA5Obm0rFjR+Li4vj2229JTExk9uzZWj3+D8vKyqJTp05ERUVx8uRJAgIC6Nq1K+np6QBs2bIFe3t7wsLCyMjIICMjA3iQtAcEBNCzZ09Onz7N+vXrOXDgAMHBwWrdgYGB/P7770RHR7Np0yaWLVvG5cuXCz1v9erVo3LlysTGxgKwf/9+rc8AsbGx+Pr65tu3RYsWLFq0CHNzczXOCRMmqNsXLFhA48aNOXnyJCNHjmTEiBHFGqc7ceJEPv74YyIjI3nttdeKLF/UcczMzIiIiCAxMZHFixfzxRdfsHDhQnV7v379sLe359ixY8THxzNp0iQqVKgAFO+cP+rAgQMYGxsX+qIGeHDNbN68mWvXrqGvr6+u79WrF5cvX+ann34iPj6ehg0b0q5dO/755x8A1qxZw4wZM5gzZw7x8fE4OjqyfPnyIs9RQb+rH3zwAQsWLOD48ePo6elp/Q4Wdc1v3ryZhQsXsnLlSlJSUvj+++9xd3fXqr9p06aFvtwCHjxAdePGDa2lOHJzcxk7dize3t7Ur1+/WPsIIYT4D3rqgSvl7OHxuLm5ucru3bsVAwMDZcKECfnKAsrWrVvzrW/durUyZswYJSEhQTEzM1OysrKU2NhYxcrKSsnOzlY8PDzUMd+bN29WzM3Nn2p8b+fOnZXx48criqIo8fHxCqCkpaXlK3f16lUFUGJiYgqsp0WLFsqQIUO01vXq1Uvp1KmToiiKsmvXLkVHR0dJTk4ucP/CxkU/rF69esqnn36qfi5ozPTgwYOVoUOHaq3bv3+/oqOjo9y+fVtJTk5WAOXo0aPq9qSkJAV47PjrHj16KKNGjVIURVHGjh2rhISEKBUrVlSSkpKUe/fuKcbGxsrPP/+sKEr+8cKPG/P91ltvqZ9zc3MVKysrZfny5YXGMXDgQEVfX18BlKioqALL5F1DT3OcefPmKY0aNVI/m5mZKREREQWWLeqcF2ThwoVKjRo18q13cnJS9PX1FRMTE0VPT08BlEqVKikpKSlqvebm5sqdO3e09qtZs6aycuVKRVEUpVmzZurPKo+3t7fi4eGhfg4NDdX6fPz4caVKlSrK66+/rijK//0M9+zZo5b58ccfFUBtU1HX/IIFC5TatWsr9+7dK/AcKMqDce86OjqFjvt+eGz6w0tBY74fNnz4cMXJyUn5/fffCz22ECK/x42zFaIsldWY75ei5zsyMhJTU1MMDQ3p2LEjvXv31hpmUFweHh64uLiwadMmVq1aRf/+/dHT0x4W3759e5ycnKhRowb9+/dnzZo13Lp1q9A6c3Jy+Pjjj3F3d6dSpUqYmpqya9cutTfZw8ODdu3a4e7uTq9evfjiiy+4du0a8ODWdWBgIP7+/nTt2pXFixervc3wYGJ9b29vreN5e3uTlJQEQEJCAvb29sWafB8e9HxPmDABNzc3LC0tMTU1JSkpSY21MKdOnSIiIkLrtbn+/v7k5uaSmppKUlISenp6NGrUSN2nTp06Rc600rp1a2JiYoAHvdxt27bFx8eHmJgYjh07RnZ2dr72F0eDBg3Uf2s0GmxsbB7bC5+3j7OzM6GhoWRlZZXKcdavX4+3tzc2NjaYmpry4Ycfap3rcePG8fbbb+Pn58fs2bM5f/68uq2oc16Q27dvY2hY8OwBISEhJCQksHfvXpo1a8bChQvV6ahOnTpFVlYWlStX1jpeamqqGlNycjJNmzbVqvPRzwBnzpzB1NQUIyMjmjZtSvPmzfnss88KPW95z1vknbeirvlevXpx+/ZtatSowZAhQ9i6dSv379/XKm9kZERubi53794t8FxMnjyZzMxMdfn9998LLPew4OBgIiMjiY6Oxt7evsjyQggh/rteiuS7TZs2JCQkkJKSwu3bt1m9ejUmJiZPVFdQUBBLly5l06ZN+YacwIOhAidOnGDt2rXY2toyZcoUPDw8Cp0ebd68eSxevJiJEycSHR1NQkIC/v7+6q12XV1ddu/ezU8//UTdunX59NNPcXV1VROo8PBwDh06RIsWLVi/fj21a9fm8OHDxWpLSR+mnDBhAlu3bmXmzJns37+fhIQE3N3dixzCk5WVxbBhw0hISFCXU6dOkZKSQs2aNUsUw8N8fX1JTEwkJSWFxMREWrZsia+vLzExMcTGxqrjgksqb+hGHo1Gk+/FBY+qVq0aMTExXLx4kYCAAP7999+nOs6hQ4fo168fnTp1IjIykpMnT/LBBx9oneupU6fyyy+/0LlzZ/bu3UvdunXZunUr8GTnvEqVKuoXu4K21apVi1atWrFx40ZGjx5NYmKieixbW1utYyUkJJCcnExISEiR5+Fhrq6uJCQkkJSUxO3bt9m+fbvW65MfPW95Q6yK+vnkcXBwIDk5mWXLlmFkZMTIkSPx8fHRGkv/zz//YGJiUujvh4GBAebm5lpLYRRFITg4mK1bt7J37155c5wQQogivRTJt4mJCbVq1cLR0TFfT3VJ9e3blzNnzlC/fn3q1q1bYBk9PT38/PyYO3cup0+fJi0tjb179xZYNi4ujm7duvHWW2/h4eFBjRo1OHfunFYZjUaDt7c306ZN4+TJk+jr66tJFoCXlxeTJ0/m4MGD1K9fX52j2c3NTesB0bzj5cXdoEED/vjjj3zHK0xcXByBgYG89tpruLu7Y2NjQ1pamlYZfX19cnJytNY1bNiQxMREatWqlW/R19enTp063L9/n/j4eHWf5OTkIudzdnd3p2LFikyfPh1PT09MTU3x9fUlNjaWmJiYAsd7Py7Op+Xk5ERsbCyXLl0qdgJemIMHD+Lk5MQHH3xA48aNcXFx0XqQNk/t2rV59913+fnnn+nRo4f6TEJR57wgXl5eXLp0qdAEPI+DgwO9e/dm8uTJ6rEuXbqEnp5evmNVqfJgTlxXV1eOHTumVc+jn+HBz6VWrVo4OzsXGufjFHXNw4MvnV27dmXJkiXExMRw6NAhzpw5o24/e/Zsga9ofhKjRo3i22+/5bvvvsPMzIxLly5x6dIlbt++XSr1CyGEePm8FMl3aapYsSIZGRlERUUVuD0yMpIlS5aQkJDAhQsX+Prrr8nNzcXV1bXA8i4uLuzevZuDBw+SlJTEsGHD+Ouvv9TtR44cYebMmRw/fpz09HS2bNnC33//jZubG6mpqUyePJlDhw5x4cIFfv75Z1JSUtQH5kJCQoiIiGD58uWkpKTwySefsGXLFvXhwtatW+Pj40PPnj3ZvXs3qamp/PTTT/mmR3s41i1btqi9qH379s3X4+js7My+ffu4ePEiV65cAR48iHjw4EGCg4PVOxDbtm1TH/5zdXUlICCAYcOGceTIEeLj43n77beL7JnXaDT4+PiwZs0aNdFu0KABd+/eJSoqitatWxe6r7OzM1lZWURFRXHlypXHDg0qCQcHB2JiYrh8+TL+/v7FfhjvUS4uLqSnp7Nu3TrOnz/PkiVLtL5w3b59m+DgYGJiYrhw4QJxcXEcO3ZM/dkXdc4L4uXlRZUqVfIlrwUZM2YMP/zwA8ePH8fPz4/mzZvTvXt3fv75Z9LS0jh48CAffPCBOvvKO++8w1dffcXq1atJSUlh+vTpnD59WmtGnNJQ1DUfERHBV199xdmzZ/ntt9/49ttvMTIywsnJSa1j//79dOjQoVTiWb58OZmZmfj6+mq9PGP9+vWlUr8QQoiXjyTfBbC0tCx02IqlpSVbtmyhbdu2uLm5sWLFCtauXUu9evUKLP/hhx/SsGFD/P398fX1xcbGhu7du6vbzc3N2bdvH506daJ27dp8+OGHLFiwgI4dO2JsbMyvv/5Kz549qV27NkOHDmXUqFEMGzYMgO7du7N48WLmz59PvXr1WLlyJeHh4Vo9wps3b6ZJkyb06dOHunXr8t577xXaI/zJJ59QsWJFWrRoQdeuXfH396dhw4ZaZcLCwkhLS6NmzZrqVI0NGjQgNjaWc+fO0apVK7y8vJgyZQp2dnbqfuHh4djZ2dG6dWt69OjB0KFD803hWJDWrVuTk5OjtklHRwcfHx/1bkFhWrRowfDhw+nduzdVq1Zl7ty5RR6ruOzt7YmJieHKlStPnIC/+uqrvPvuuwQHB+Pp6cnBgwf56KOP1O26urpcvXqVAQMGULt2bd544w06duzItGnTgOKd80fp6uoyaNCgIqd5BKhbty4dOnRgypQpaDQaduzYgY+PD4MGDaJ27dq8+eabXLhwQR0y0q9fPyZPnsyECRNo2LAhqampBAYGFjrG/EkVdc1bWlryxRdf4O3tTYMGDdizZw8//PADlStXBh7M3X/w4EGtaSKfhqIoBS6BgYGlUr8QQoiXj0ZRFKW8gxBClI1Lly5Rr149Tpw4odUb/Cy0b98eGxubfHPPl6eJEydy7dq1Es3tfuPGDSwsLMg8BuamD22oI/91ClEa7ty5Q2pqKtWrV9f+wp6dDjlXyi4Q3SpQ4cV7qY9Go2Hr1q1aHXviyRR6LfLQ34LMzMc+C1QcL8UbLoUQxWNjY8NXX31Fenp6qSbft27dYsWKFfj7+6Orq8vatWvZs2eP1ot6ngdWVlaMGzeuvMMQQhQlOx1+cwXlTtkdU2MINZKLnYAHBgayevVq4MGzYPb29vTq1YuwsLBSu+sXExNDmzZt1M9WVla0bNmSefPmUaNGjVI5hih7knwL8R/zLHpH8oamzJgxgzt37uDq6srmzZvx8/Mr9WM9jfHjx5d3CEKI4si5UraJNzw4Xs6VEvV+BwQEEB4eTnZ2NvHx8QwcOBCNRsOcOXNKNbTk5GTMzMxISUlh6NChdO3aldOnTxf60jzxfJMx30KIp2ZkZMSePXu4evUqN2/e5MSJE/To0aO8wxJCiGfKwMAAGxsbHBwc6N69O35+fuodv9zcXGbNmkX16tUxMjLCw8ODTZs2ae2/fft2XFxcMDQ0pE2bNqxevRqNRpNvNjArKytsbW3x8fFhypQpJCYm8r///U/dfuXKFV577TWMjY1xcXFh+/btWvvHxsbStGlTDAwMsLW1ZdKkSVrvQNi0aRPu7u4YGRlRuXJl/Pz8uHnzZimfLZFHkm8hhBBCiKd09uxZDh48qE6jOmvWLL7++mtWrFjBL7/8wrvvvstbb71FbGwsAKmpqbz++ut0796dU6dOMWzYMD744IMij5M3U9jD74WYNm0ab7zxBqdPn6ZTp07069ePf/75B3jwoHmnTp1o0qQJp06dYvny5Xz11VdMnz4dgIyMDPr06UNQUBBJSUnExMTQo0cP5JHAZ0eGnQghhBBCPIG8N2zfv3+fu3fvoqOjw2effcbdu3eZOXMme/bsoXnz5gDUqFGDAwcOsHLlSlq3bs3KlStxdXVl3rx5wINpec+ePcuMGTMKPV5GRgbz58+nWrVqWlMcBwYG0qdPHwBmzpzJkiVLOHr0KAEBASxbtgwHBwc+++wzNBoNderU4c8//2TixIlMmTKFjIwM7t+/T48ePdRngdzd3Z/VKRNI8i2EEEII8UTatGnD8uXLuXnzJgsXLkRPT4+ePXvyyy+/cOvWLdq3b69V/t69e+pLvpKTk2nSpInW9qZNmxZ4HHt7exRF4datW3h4eLB582atF5U1aNBA/beJiQnm5uZcvnwZgKSkJJo3b6713gVvb2+ysrL4448/8PDwoF27dri7u+Pv70+HDh14/fXXqVix4tOdHFEoSb6FEEIIIZ5A3hu2AVatWoWHhwdfffUV9evXB+DHH3+kWrVqWvsYGBiU+Dj79+/H3NwcKysrzMzM8m2vUKGC1meNRpPvJXmF0dXVVV8G+PPPP/Ppp5/ywQcfcOTIEapXr17iWEXRZMy3EEIUR+3MB3N75y1CCPEQHR0d3n//fT788EPq1q2LgYEB6enp1KpVS2txcHAAHgwzyXtLcJ5jx44VWHf16tWpWbNmgYl3Udzc3Dh06JDWGO64uDjMzMywt7cHUF9cN23aNE6ePIm+vr7WW5dF6ZLkWwghhBCiFPTq1QtdXV1WrlzJhAkTePfdd1m9ejXnz5/nxIkTfPrpp+rc4MOGDePXX39l4sSJnDt3jg0bNhAREQGgNUTkaY0cOZLff/+dd955h19//ZVt27YRGhrKuHHj0NHR4ciRI8ycOZPjx4+Tnp7Oli1b+Pvvv3Fzcyu1GIQ2GXYihBBCiOeLbpUHL70p65fs6FZ5qir09PQIDg5m7ty5pKamUrVqVWbNmsVvv/2GpaUlDRs25P333wce9GZv2rSJ8ePHs3jxYpo3b84HH3zAiBEjnmhoSmGqVavGjh07CAkJwcPDg0qVKjF48GA+/PBDAMzNzdm3bx+LFi3ixo0bODk5sWDBAjp27FhqMQht8np5IYR4jNJ8pbAQIj95vfz/mTFjBitWrOD3338v1zj+q+T18kIIIYT476rgWO7J8LO2bNkymjRpQuXKlYmLi2PevHkEBweXd1jiGZPkWwghhBCiHKSkpDB9+nT++ecfHB0dGT9+PJMnTy7vsMQzJsm3EEIIIUQ5WLhwIQsXLizvMEQZk9lOhBBCCCGEKCOSfAshhBCi3Mn8D6K8ldU1KMm3EEIIIcqNrq4u8ODV60KUp1u3bgH53xha2mTMtxBCCCHKjZ6eHsbGxvz9999UqFABHR3pFxRlS1EUbt26xeXLl7G0tFS/ED4rknwLIYQQotxoNBpsbW1JTU3lwoUL5R2O+A+ztLTExsbmmR9Hkm8hhBBClCt9fX1cXFxk6IkoNxUqVHjmPd55JPkWQgghRLnT0dHJ91ZBIV5GMrBKCCGEEEKIMiLJtxBCCCGEEGVEkm8hhBBCCCHKiIz5FkKIx8h76cKNGzfKORIhhBDlJe9vQGm8iEeSbyGEeIyrV68C4ODgUM6RCCGEKG///vsvFhYWT1WHJN9CCPEYlSpVAiA9Pf2p/8MtLzdu3MDBwYHff/8dc3Pz8g7niUgbng8vQxvg5WiHtKFsKYrCv//+i52d3VPXJcm3EEI8Rt7b9iwsLJ77Pw5FMTc3lzY8B6QNz4+XoR3ShrJTWh0w8sClEEIIIYQQZUSSbyGEEEIIIcqIJN9CCPEYBgYGhIaGYmBgUN6hPDFpw/NB2vD8eBnaIW14cWmU0pgzRQghhBBCCFEk6fkWQgghhBCijEjyLYQQQgghRBmR5FsIIYQQQogyIsm3EEIIIYQQZUSSbyGEKMTSpUtxdnbG0NCQZs2acfTo0fIOqVCzZs2iSZMmmJmZYWVlRffu3UlOTtYqc+fOHUaNGkXlypUxNTWlZ8+e/PXXX+UUcdFmz56NRqNh7Nix6roXoQ0XL17krbfeonLlyhgZGeHu7s7x48fV7YqiMGXKFGxtbTEyMsLPz4+UlJRyjDi/nJwcPvroI6pXr46RkRE1a9bk448/5uE5Gp63duzbt4+uXbtiZ2eHRqPh+++/19penHj/+ecf+vXrh7m5OZaWlgwePJisrKznog3Z2dlMnDgRd3d3TExMsLOzY8CAAfz5558vTBseNXz4cDQaDYsWLdJaX95teNYk+RZCiAKsX7+ecePGERoayokTJ/Dw8MDf35/Lly+Xd2gFio2NZdSoURw+fJjdu3eTnZ1Nhw4duHnzplrm3Xff5YcffmDjxo3Exsby559/0qNHj3KMunDHjh1j5cqVNGjQQGv9896Ga9eu4e3tTYUKFfjpp59ITExkwYIFVKxYUS0zd+5clixZwooVKzhy5AgmJib4+/tz586dcoxc25w5c1i+fDmfffYZSUlJzJkzh7lz5/Lpp5+qZZ63dty8eRMPDw+WLl1a4PbixNuvXz9++eUXdu/eTWRkJPv27WPo0KFl1YTHtuHWrVucOHGCjz76iBMnTrBlyxaSk5N59dVXtco9z2142NatWzl8+HCBr2sv7zY8c4oQQoh8mjZtqowaNUr9nJOTo9jZ2SmzZs0qx6iK7/LlywqgxMbGKoqiKNevX1cqVKigbNy4US2TlJSkAMqhQ4fKK8wC/fvvv4qLi4uye/dupXXr1sqYMWMURXkx2jBx4kSlZcuWhW7Pzc1VbGxslHnz5qnrrl+/rhgYGChr164tixCLpXPnzkpQUJDWuh49eij9+vVTFOX5bwegbN26Vf1cnHgTExMVQDl27Jha5qefflI0Go1y8eLFMos9z6NtKMjRo0cVQLlw4YKiKC9OG/744w+lWrVqytmzZxUnJydl4cKF6rbnrQ3PgvR8CyHEI+7du0d8fDx+fn7qOh0dHfz8/Dh06FA5RlZ8mZmZAFSqVAmA+Ph4srOztdpUp04dHB0dn7s2jRo1is6dO2vFCi9GG7Zv307jxo3p1asXVlZWeHl58cUXX6jbU1NTuXTpklYbLCwsaNas2XPTBoAWLVoQFRXFuXPnADh16hQHDhygY8eOwIvTjjzFiffQoUNYWlrSuHFjtYyfnx86OjocOXKkzGMujszMTDQaDZaWlsCL0Ybc3Fz69+9PSEgI9erVy7f9RWjD09Ir7wCEEOJ5c+XKFXJycrC2ttZab21tza+//lpOURVfbm4uY8eOxdvbm/r16wNw6dIl9PX11T/Seaytrbl06VI5RFmwdevWceLECY4dO5Zv24vQht9++43ly5czbtw43n//fY4dO8bo0aPR19dn4MCBapwFXVvPSxsAJk2axI0bN6hTpw66urrk5OQwY8YM+vXrB/DCtCNPceK9dOkSVlZWWtv19PSoVKnSc9mmO3fuMHHiRPr06YO5uTnwYrRhzpw56OnpMXr06AK3vwhteFqSfAshxEtm1KhRnD17lgMHDpR3KCXy+++/M2bMGHbv3o2hoWF5h/NEcnNzady4MTNnzgTAy8uLs2fPsmLFCgYOHFjO0RXfhg0bWLNmDd999x316tUjISGBsWPHYmdn90K142WVnZ3NG2+8gaIoLF++vLzDKbb4+HgWL17MiRMn0Gg05R1OuZFhJ0II8YgqVaqgq6ubbxaNv/76Cxsbm3KKqniCg4OJjIwkOjoae3t7db2NjQ337t3j+vXrWuWfpzbFx8dz+fJlGjZsiJ6eHnp6esTGxrJkyRL09PSwtrZ+7ttga2tL3bp1tda5ubmRnp4OoMb5vF9bISEhTJo0iTfffBN3d3f69+/Pu+++y6xZs4AXpx15ihOvjY1Nvgeq79+/zz///PNctSkv8b5w4QK7d+9We73h+W/D/v37uXz5Mo6Ojurv+IULFxg/fjzOzs7A89+G0iDJtxBCPEJfX59GjRoRFRWlrsvNzSUqKormzZuXY2SFUxSF4OBgtm7dyt69e6levbrW9kaNGlGhQgWtNiUnJ5Oenv7ctKldu3acOXOGhIQEdWncuDH9+vVT//28t8Hb2zvfFI/nzp3DyckJgOrVq2NjY6PVhhs3bnDkyJHnpg3wYGYNHR3tFEFXV5fc3FzgxWlHnuLE27x5c65fv058fLxaZu/eveTm5tKsWbMyj7kgeYl3SkoKe/bsoXLlylrbn/c29O/fn9OnT2v9jtvZ2RESEsKuXbuA578NpaK8n/gUQojn0bp16xQDAwMlIiJCSUxMVIYOHapYWloqly5dKu/QCjRixAjFwsJCiYmJUTIyMtTl1q1bapnhw4crjo6Oyt69e5Xjx48rzZs3V5o3b16OURft4dlOFOX5b8PRo0cVPT09ZcaMGUpKSoqyZs0axdjYWPn222/VMrNnz1YsLS2Vbdu2KadPn1a6deumVK9eXbl9+3Y5Rq5t4MCBSrVq1ZTIyEglNTVV2bJli1KlShXlvffeU8s8b+34999/lZMnTyonT55UAOWTTz5RTp48qc4EUpx4AwICFC8vL+XIkSPKgQMHFBcXF6VPnz7PRRvu3bunvPrqq4q9vb2SkJCg9Xt+9+7dF6INBXl0thNFKf82PGuSfAshRCE+/fRTxdHRUdHX11eaNm2qHD58uLxDKhRQ4BIeHq6WuX37tjJy5EilYsWKirGxsfLaa68pGRkZ5Rd0MTyafL8Ibfjhhx+U+vXrKwYGBkqdOnWUzz//XGt7bm6u8tFHHynW1taKgYGB0q5dOyU5Obmcoi3YjRs3lDFjxiiOjo6KoaGhUqNGDeWDDz7QSvKet3ZER0cX+DswcODAYsd79epVpU+fPoqpqalibm6uDBo0SPn333+fizakpqYW+nseHR39QrShIAUl3+XdhmdNoygPva5KCCGEEEII8czImG8hhBBCCCHKiCTfQgghhBBClBFJvoUQQgghhCgjknwLIYQQQghRRiT5FkIIIYQQooxI8i2EEEIIIUQZkeRbCCGEEEKIMiLJtxBCCCGEEGVEkm8hhBDiBZeWloZGoyEhIaG8Q1H9+uuvvPLKKxgaGuLp6Vne4Qjx3JDkWwghhHhKgYGBaDQaZs+erbX++++/R6PRlFNU5Ss0NBQTExOSk5OJiooqsEzeedNoNOjr61OrVi3CwsK4f/++1raCFmdnZwB8fX0LPPcAnTt3RqPRMHXq1GfYUiFKRpJvIYQQohQYGhoyZ84crl27Vt6hlJp79+498b7nz5+nZcuWODk5Ubly5ULLBQQEkJGRQUpKCuPHj2fq1KnMmzePxYsXk5GRoS4A4eHh6udjx46pdTg4OBAREaFV78WLF4mKisLW1vaJ2yDEsyDJtxBCCFEK/Pz8sLGxYdasWYWWmTp1ar4hGIsWLVJ7ceFBb3D37t2ZOXMm1tbWWFpaqr3BISEhVKpUCXt7e8LDw/PV/+uvv9KiRQsMDQ2pX78+sbGxWtvPnj1Lx44dMTU1xdramv79+3PlyhV1u6+vL8HBwYwdO5YqVarg7+9fYDtyc3MJCwvD3t4eAwMDPD092blzp7pdo9EQHx9PWFhYkT3PBgYG2NjY4OTkxIgRI/Dz82P79u1YWFhgY2OjLgCWlpbq56pVq6p1dOnShStXrhAXF6euW716NR06dMDKykrreMuWLcPFxQVDQ0Osra15/fXXC41NiGdBkm8hhBCiFOjq6jJz5kw+/fRT/vjjj6eqa+/evfz555/s27ePTz75hNDQULp06ULFihU5cuQIw4cPZ9iwYfmOExISwvjx4zl58iTNmzena9euXL16FYDr16/Ttm1bvLy8OH78ODt37uSvv/7ijTfe0Kpj9erV6OvrExcXx4oVKwqMb/HixSxYsID58+dz+vRp/P39efXVV0lJSQEgIyODevXqMX78eDIyMpgwYUKx225kZFTiHnd9fX369eun9YUkIiKCoKAgrXLHjx9n9OjRhIWFkZyczM6dO/Hx8SnRsYR4WpJ8CyGEEKXktddew9PTk9DQ0Keqp1KlSixZsgRXV1eCgoJwdXXl1q1bvP/++7i4uDB58mT09fU5cOCA1n7BwcH07NkTNzc3li9fjoWFBV999RUAn332GV5eXsycOZM6derg5eXFqlWriI6O5ty5c2odLi4uzJ07F1dXV1xdXQuMb/78+UycOJE333wTV1dX5syZg6enJ4sWLQLAxsYGPT09TE1NsbGxwdTUtMg2K4rCnj172LVrF23bti3xOQsKCmLDhg3cvHmTffv2kZmZSZcuXbTKpKenY2JiQpcuXXBycsLLy4vRo0eX+FhCPA298g5ACCGEeJnMmTOHtm3blqi391H16tVDR+f/+sesra2pX7+++llXV5fKlStz+fJlrf2aN2+u/ltPT4/GjRuTlJQEwKlTp4iOji4wET5//jy1a9cGoFGjRo+N7caNG/z55594e3trrff29ubUqVPFbOH/iYyMxNTUlOzsbHJzc+nbt+8TPSDp4eGBi4sLmzZtIjo6mv79+6Onp53mtG/fHicnJ2rUqEFAQAABAQG89tprGBsbl/h4QjwpSb6FEEKIUuTj44O/vz+TJ08mMDBQa5uOjg6Komity87OzldHhQoVtD5rNJoC1+Xm5hY7rqysLLp27cqcOXPybXv4oUQTE5Ni11ka2rRpw/Lly9HX18fOzi5fwlwSQUFBLF26lMTERI4ePZpvu5mZGSdOnCAmJoaff/6ZKVOmMHXqVI4dO4alpeVTtEKI4pNhJ0IIIUQpmz17Nj/88AOHDh3SWl+1alUuXbqklYCX5tzchw8fVv99//594uPjcXNzA6Bhw4b88ssvODs7U6tWLa2lJAm3ubk5dnZ2Wg83AsTFxVG3bt0Sx2xiYkKtWrVwdHR8qsQboG/fvpw5c4b69esXGouenh5+fn7MnTuX06dPk5aWxt69e5/quEKUhPR8CyGEEKXM3d2dfv36sWTJEq31vr6+/P3338ydO5fXX3+dnTt38tNPP2Fubl4qx126dCkuLi64ubmxcOFCrl27pj50OGrUKL744gv69OnDe++9R6VKlfjf//7HunXr+PLLL9HV1S32cUJCQggNDaVmzZp4enoSHh5OQkICa9asKZV2PKmKFSuSkZGR7y5BnsjISH777Td8fHyoWLEiO3bsIDc3t9Cx7UI8C9LzLYQQQjwDYWFh+YaFuLm5sWzZMpYuXYqHhwdHjx59qrHhj5o9ezazZ8/Gw8ODAwcOsH37dqpUqQKg9lbn5OTQoUMH3N3dGTt2LJaWllrjy4tj9OjRjBs3jvHjx+Pu7s7OnTvZvn07Li4updaWJ2VpaVloT76lpSVbtmyhbdu2uLm5sWLFCtauXUu9evXKOErxX6ZRHh18JoQQQgghhHgmpOdbCCGEEEKIMiLJtxBCCCGEEGVEkm8hhBBCCCHKiCTfQgghhBBClBFJvoUQQgghhCgjknwLIYQQQghRRiT5FkIIIYQQooxI8i2EEEIIIUQZkeRbCCGEEEKIMiLJtxBCCCGEEGVEkm8hhBBCCCHKyP8D9ArNd0+4v4QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ptm_pose import analyze\n", + "\n", + "analyze.show_available_annotations(spliced_ptms, figsize = (5,5))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are several ptms that have previously been annotated with specific functions, let's take a look at those:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GeneUniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassPSP:ON_PROCESS
145CEACAM1P13688S461.0Phosphorylationapoptosis, altered
184YAP1P46937K342.0Ubiquitinationcarcinogenesis, altered
217TSC2P49815S981.0Phosphorylationcarcinogenesis, inhibited; cell growth, inhibi...
395SPHK2Q9NRA0S387.0Phosphorylationcell motility, altered
407SPHK2Q9NRA0T614.0Phosphorylationcell motility, altered
\n", + "
" + ], + "text/plain": [ + " Gene UniProtKB Accession Residue PTM Position in Canonical Isoform \\\n", + "145 CEACAM1 P13688 S 461.0 \n", + "184 YAP1 P46937 K 342.0 \n", + "217 TSC2 P49815 S 981.0 \n", + "395 SPHK2 Q9NRA0 S 387.0 \n", + "407 SPHK2 Q9NRA0 T 614.0 \n", + "\n", + " Modification Class PSP:ON_PROCESS \n", + "145 Phosphorylation apoptosis, altered \n", + "184 Ubiquitination carcinogenesis, altered \n", + "217 Phosphorylation carcinogenesis, inhibited; cell growth, inhibi... \n", + "395 Phosphorylation cell motility, altered \n", + "407 Phosphorylation cell motility, altered " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "annotations, annotation_counts = analyze.get_ptm_annotations(spliced_ptms, annotation_type = 'Process', database = 'PhosphoSitePlus')\n", + "annotations.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PSP:ON_PROCESScount
0cell motility, altered3
1cell growth, induced2
2apoptosis, altered1
3carcinogenesis, altered1
4carcinogenesis, inhibited1
5cell growth, inhibited1
6autophagy, inhibited1
7signaling pathway regulation1
8cytoskeletal reorganization1
9cell adhesion, inhibited1
\n", + "
" + ], + "text/plain": [ + " PSP:ON_PROCESS count\n", + "0 cell motility, altered 3\n", + "1 cell growth, induced 2\n", + "2 apoptosis, altered 1\n", + "3 carcinogenesis, altered 1\n", + "4 carcinogenesis, inhibited 1\n", + "5 cell growth, inhibited 1\n", + "6 autophagy, inhibited 1\n", + "7 signaling pathway regulation 1\n", + "8 cytoskeletal reorganization 1\n", + "9 cell adhesion, inhibited 1" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "annotation_counts" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pose", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/Examples/Examples.rst b/_sources/Examples/Examples.rst new file mode 100644 index 0000000..9baa443 --- /dev/null +++ b/_sources/Examples/Examples.rst @@ -0,0 +1,21 @@ +Full Analysis Examples +====================== + +ESRP1 knockdown (MATS output) +----------------------------- + +.. toctree:: + :maxdepth: 3 + + ESRP1_knockdown.ipynb + + + + + + + + + + + diff --git a/_sources/Gallery/GALLERY_HEADER.rst b/_sources/Gallery/GALLERY_HEADER.rst new file mode 100644 index 0000000..d9bf92b --- /dev/null +++ b/_sources/Gallery/GALLERY_HEADER.rst @@ -0,0 +1,4 @@ +Types of Analysis Performed with PTM-POSE +========================================= + +Below you will find different ways you might choose to analyze the PTMs identified by PTM-POSE: \ No newline at end of file diff --git a/_sources/Gallery/gallery_tests.ipynb b/_sources/Gallery/gallery_tests.ipynb new file mode 100644 index 0000000..c36fd41 --- /dev/null +++ b/_sources/Gallery/gallery_tests.ipynb @@ -0,0 +1,2123 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gallery Tests" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inspecting identify PTMs" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "from ptm_pose import plots as pose_plots\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAFzCAYAAABCTGKrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwoklEQVR4nO3dd3xO5//48dedPWURSYgEIUIitholRsUIMWqvNKiWGDWKqhpV1GitUlW5o0p1hSpKrVBbELSNIEbQ+KRGk0oqMs7vD7+cr1uGhMhwv5+Px3nUuc51rvO+bnq/7+s6S6MoioIQQgihxwyKOwAhhBCiuEkyFEIIofckGQohhNB7kgyFEELoPUmGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3jMq7gBEyZGZmclff/2FtbU1Go2muMMRQojnpigK//77Ly4uLhgY5D7+k2QoVH/99Reurq7FHYYQQhS669evU7FixVy3SzIUKmtra+DRP5oyZcoUczRCCPH8kpKScHV1Vb/fciPJUKiypkbLlCkjyVAI8VJ52qkfuYBGCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5KhEEIIvSfJUAghhN6TZCiEEELvSTIUQgih9+TZpCIbm6m/oDG1KO4whNAbsRV7FHcIRary2IfFHUI2MjIUQgih9yQZCiGE0HuSDIUQQug9SYZCCCH0niRDIYQQRW7GjBloNBqdxcnJCYC0tDQmTZqEj48PlpaWuLi4MGjQIP766y+dNvz8/LK10adPn2eKp9CSYUREBBqNhn/++aewmnwmGo2GzZs3F8ux/fz8GDt2bIlpRwghSrJatWoRHx+vLufOnQMgJSWFU6dOMW3aNE6dOkV4eDgXLlygS5cu2doYNmyYThurVq16plgKdGtFUFAQa9eufbSjkRGurq50796dmTNnPtPB9V1ERAStWrXi3r172NraquXh4eEYGxsXX2BCCFEEjIyM1NHg42xsbNi1a5dO2bJly2jUqBFxcXFUqlRJLbewsMixjYIq8Miwffv2xMfHc/nyZWbPns2KFSuYMGHCcwdSkj18WLT3xNjb22NtbV2kxxRCiKJ28eJFXFxcqFy5Mn369OHy5cu51k1MTESj0egMHADWr19P2bJlqVWrFhMmTODff/99plgKnAxNTU1xcnLC1dWVfv360b9/f51pyZMnT9KgQQMsLCxo2rQpMTExOvuvXLmSqlWrYmJigqenJ+vWrdPZPmPGDCpVqoSpqSkuLi6MHj1a3ebu7s6HH35Iv379sLKywsXFhWXLlmWL8fbt23Tr1g0LCwuqVavGli1bdLbv37+fRo0aYWpqirOzM5MnTyY9PV3d7ufnR0hICOPGjaNs2bK89tprBAcHExAQoNNOeno6Tk5OhIaG5vhZff311zRo0ABra2ucnJzo168fCQkJAFy9epVWrVoBYGdnh0ajISgoSD3+49Ok9+7dY9CgQdjZ2WFhYUGHDh24ePGiuj0sLAxbW1t27tyJl5cXVlZW6o8WIYQoiRo3bsxXX33Fzp07Wb16Nbdu3aJp06bcuXMnW90HDx4wefJk+vXrR5kyZdTy/v3788033xAREcG0adP48ccf6d69+zPF89znDM3NzUlLS1PXp06dyqJFi4iMjMTIyIjg4GB126ZNmxgzZgzjx4/n999/Z/jw4bzxxhvs27cPgB9++IFPP/2UVatWcfHiRTZv3oyPj4/O8RYsWEDt2rU5deoUU6ZM4Z133sk2nJ45cya9evXi7NmzdOzYkf79+3P37l0Abt68SceOHWnYsCFnzpxh5cqVrFmzhtmzZ+u0sXbtWoyMjDh06BCrVq1i6NCh7NixQyfBbN++nfv379OrV68cP5uHDx/y4YcfcubMGTZv3syVK1fUhOfq6sqPP/4IQExMDPHx8SxZsiTHdoKCgoiMjGTLli0cOXIERVHo2LGjzueekpLCwoULWbduHQcOHCAuLu6pI/bU1FSSkpJ0FiGEKAodOnSgR48e+Pj40LZtW7Zt2wagnorLkpaWRp8+fcjMzGTFihU624YNG0bbtm3x9vamT58+/PDDD+zevZtTp04VOJ7nehzb8ePH2bBhA23atFHLPvroI1q2bAnA5MmT6dSpEw8ePMDMzIyFCxcSFBTEiBEjABg3bhxHjx5l4cKFtGrViri4OJycnGjbti3GxsZUqlSJRo0a6RyzWbNmTJ48GYDq1atz6NAhPv30U1577TW1TlBQEH379gVgzpw5LFu2jOPHj9O+fXtWrFiBq6sry5cvR6PRUKNGDf766y8mTZrEBx98gIHBo98HHh4ezJ8/X+fYWSPZd999FwCtVkvPnj2xsrLK8fN5/IdAlSpVWLp0KY0aNeL+/ftYWVlhb28PgKOjY7ahf5aLFy+yZcsWDh06RNOmTYFH0wKurq5s3ryZnj17Ao/+wXz++edUrVoVgJCQEGbNmpVjm1nmzp0r53uFECWCpaUlPj4+OrNeaWlp9OrViytXrrB3716dUWFO6tWrh7GxMRcvXqRevXoFOn6BR4Zbt27FysoKMzMzmjRpQosWLXSmKmvXrq3+2dnZGUCdGoyOjqZZs2Y67TVr1ozo6GgAevbsyX///UeVKlUYNmwYmzZt0pm+BGjSpEm29az9c4rB0tISa2trnRiaNGmCRqPRieH+/fvcuHFDLWvQoEG2vg8dOhStVqv2adu2bToJ70mnT58mMDAQNzc3rK2t8fPzAyAuLi7XfZ4UHR2NkZERjRs3VsscHBzw9PTU6beFhYWaCOHRZ5/V59xMmTKFxMREdbl+/Xq+4xJCiMKUmppKdHS0mjeyEuHFixfZvXs3Dg4OT23jjz/+IC0tTW2jIAqcDFu1akVUVBQxMTE8ePCA8PBwHB0d1e2PXwWZlXAyMzOzlWVRFEUtc3V1JSYmhs8++wxzc3NGjBhBixYtdKYDc/Jkm09eianRaNQYHj/e4zE82Y6lpWW24wwaNIjLly9z5MgRvv76a9zd3Xn11VdzjCk5OZl27dphZWXF119/zYkTJ9i0aRNQsAtysmLLqfzxeHPqc277ZjE1NaVMmTI6ixBCFIUJEyawf/9+rly5wrFjx3j99ddJSkpi8ODBpKen8/rrrxMZGcn69evJyMjg1q1b3Lp1S/3+jI2NZdasWURGRnL16lW2b99Oz549qVu3brZBV34UOBlaWlri4eGBm5tbgS//9/Ly4uDBgzplhw8fxsvLS103NzenS5cuLF26lIiICI4cOaLeewJw9OhRnf2PHj1KjRo18h1DzZo1OXz4sE6iOHz4MNbW1lSoUCHPfR0cHOjatStarRatVssbb7yRa93z589z+/Zt5s2bx6uvvkqNGjWyjdRMTEwAyMjIyDPe9PR0jh07ppbduXOHCxcu6HxuQghRmty4cYO+ffvi6elJ9+7dMTEx4ejRo7i5uXHjxg22bNnCjRs3qFOnDs7Ozupy+PBh4NH35549e/D398fT05PRo0fTrl07du/ejaGhYYHjKdJXOE2cOJFevXpRr1492rRpw88//0x4eDi7d+8GHl0VmZGRQePGjbGwsGDdunWYm5vj5uamtnHo0CHmz59P165d2bVrF99//7164jU/RowYweLFixk1ahQhISHExMQwffp0xo0bp54vzMvQoUMJCAggIyODwYMH51qvUqVKmJiYsGzZMt566y1+//13PvzwQ506bm5uaDQatm7dSseOHTE3N892/rFatWoEBgYybNgwVq1ahbW1NZMnT6ZChQoEBgbmu99CCFGSbNy4Mddt7u7uT53ZcnV1Zf/+/YUWT5E+jq1r164sWbKEBQsWUKtWLVatWoVWq1XPpdna2rJ69WqaNWtG7dq12bNnDz///LPOXPH48eM5efIkdevW5cMPP2TRokX4+/vnO4YKFSqwfft2jh8/jq+vL2+99RZDhgzh/fffz9f+bdu2xdnZGX9/f1xcXHKtV65cOcLCwvj++++pWbMm8+bNY+HChdlimTlzJpMnT6Z8+fKEhITk2JZWq6V+/foEBATQpEkTFEVh+/btcmO+EEIUEo3ytPRbgri7uzN27NhifVRZSkoKLi4uhIaGPvP9LCVVUlISNjY2ELJRXu4rRBGSl/u+OFnfa4mJiXleFyFvus+nzMxMbt26xaJFi7CxscnxGXlCCCFKJ0mG+RQXF0flypWpWLEiYWFhGBnJRyeEEC+LUvWNfvXq1WI7dn5O6AohhCid5H2GQggh9J4kQyGEEHqvVE2TiqKR+FEHeRqNEEWqaF8TJ7KTkaEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH35AIakY3N1F9K7ePYCvuxVkX52CghRPGRkaEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhciHAwcO0LlzZ1xcXNBoNGzevFndlpaWxqRJk/Dx8cHS0hIXFxcGDRrEX3/9pda5evUqGo0mx+X7778vhh4JIR5XopLhjBkzqFOnTp51goKC6Nq1a6EeN+uLKioqKs96fn5+jB07tlCPnZsnv3BF8UpOTsbX15fly5dn25aSksKpU6eYNm0ap06dIjw8nAsXLui8ANrV1ZX4+HidZebMmVhaWtKhQ4ei7IoQIgdFdp+hn58fderUYfHixTrlmzdvplu3bvl+V+CSJUsK/b2CWV9UZcuWBSAiIoJWrVpx7949bG1t1Xrh4eEYGxsX6rFnzJjB5s2bsyXi+Ph47OzsCvVY4tl16NAh16RlY2PDrl27dMqWLVtGo0aNiIuLo1KlShgaGuLk5KRTZ9OmTfTu3RsrK6sXFrcQIn9K3U33NjY2hd5mTl9UObG3ty/0Y+cmP/GIkisxMRGNRqPzY+pxJ0+eJCoqis8++6xoAxNC5KhETZNmWbVqFa6urlhYWNCzZ0/++ecfdduT06TJyckMGjQIKysrnJ2dWbRoUbbpzJymHG1tbQkLCwN0p0mvXr1Kq1atALCzs0Oj0RAUFARknyZ1d3dnzpw5BAcHY21tTaVKlfjiiy90jjNp0iSqV6+OhYUFVapUYdq0aaSlpQEQFhbGzJkzOXPmjHr+KCumJ2M+d+4crVu3xtzcHAcHB958803u37+f7XNZuHAhzs7OODg4MHLkSPVYoug8ePCAyZMn069fv1xfhbVmzRq8vLxo2rRpEUcnhMhJiUuGly5d4rvvvuPnn39mx44dREVFMXLkyFzrT5w4kX379rFp0yZ+/fVXIiIiOHny5DMf39XVlR9//BGAmJgY4uPjWbJkSa71Fy1aRIMGDTh9+jQjRozg7bff5vz58+p2a2trwsLC+PPPP1myZAmrV6/m008/BaB3796MHz+eWrVqqeeRevfune0YKSkptG/fHjs7O06cOMH333/P7t27CQkJ0am3b98+YmNj2bdvH2vXriUsLExNrjlJTU0lKSlJZxHPJy0tjT59+pCZmcmKFStyrPPff/+xYcMGhgwZUsTRCSFyU+KS4YMHD1i7di116tShRYsWLFu2jI0bN3Lr1q1sde/fv8+aNWtYuHAhr732Gj4+Pqxdu5aMjIxnPr6hoaE6Hero6IiTk1OeU7MdO3ZkxIgReHh4MGnSJMqWLUtERIS6/f3336dp06a4u7vTuXNnxo8fz3fffQeAubk5VlZWGBkZ4eTkhJOTE+bm5tmOsX79ev777z+++uorvL29ad26NcuXL2fdunX873//U+vZ2dmxfPlyatSoQUBAAJ06dWLPnj25xj537lxsbGzUxdXVtaAfl3hMWloavXr14sqVK+zatSvXUeEPP/xASkoKgwYNKuIIhRC5KXHJsFKlSlSsWFFdb9KkCZmZmcTExGSrGxsby8OHD2nSpIlaZm9vj6enZ5HEClC7dm31zxqNBicnJxISEtSyH374gebNm+Pk5ISVlRXTpk0jLi6uQMeIjo7G19cXS0tLtaxZs2bZPpdatWphaGiorjs7O+vE8qQpU6aQmJioLtevXy9QXOL/ZCXCixcvsnv3bhwcHHKtu2bNGrp06UK5cuWKMEIhRF6K7AKaMmXKkJiYmK38n3/+yfUXNDxKMI//93H5vapUo9Fkq1tY59KevLpUo9GQmZkJwNGjR+nTpw8zZ87E398fGxsbNm7cyKJFiwp0DEVRcux/1vHyE0tOTE1NMTU1LVAs+ur+/ftcunRJXb9y5QpRUVHY29vj4uLC66+/zqlTp9i6dSsZGRnqTIa9vT0mJibqfpcuXeLAgQNs3769yPsghMhdkY0Ma9SoQWRkZLbyEydO6Izk4uLidG5WPnLkCAYGBlSvXj3bvh4eHhgbG3P06FG17N69e1y4cEGnXrly5YiPj1fXL168SEpKSq6xZn15Pc90K8ChQ4dwc3Nj6tSpNGjQgGrVqnHt2rVsx3racWrWrElUVBTJyck6bef2uYjCFxkZSd26dalbty4A48aNo27dunzwwQfcuHGDLVu2cOPGDerUqYOzs7O6HD58WKed0NBQKlSoQLt27YqjG0KIXBRZMhwxYgSxsbGMHDmSM2fOcOHCBT777DPWrFnDxIkT1XpmZmYMHjyYM2fO8NtvvzF69Gh69eqV460GVlZWDBkyhIkTJ7Jnzx5+//13goKCMDDQ7VbWObZTp04RGRnJW2+9lef9gm5ubmg0GrZu3crff/+tc9VmQXh4eBAXF8fGjRuJjY1l6dKlbNq0SaeOu7u7Osq4ffs2qamp2drp37+/+rn8/vvv7Nu3j1GjRjFw4EDKly//TLGJgvHz80NRlGxLWFgY7u7uOW5TFAU/Pz+ddubMmcP169ez/RsVQhSvIvs/0t3dnd9++43Y2FjatWtHw4YN1asde/bsqdbz8PCge/fudOzYkXbt2uHt7Z3rVXkACxYsoEWLFnTp0oW2bdvSvHlz6tevr1Nn0aJFuLq60qJFC/r168eECROwsMj95bUVKlRg5syZTJ48mfLly2e7ajO/AgMDeeeddwgJCaFOnTocPnyYadOm6dTp0aMH7du3p1WrVpQrV45vvvkmWzsWFhbs3LmTu3fv0rBhQ15//XXatGmT49NQhBBCFJxGKezHuZQAuT3tRuQtKSnp0ZWzIRvlTff/n7zpXojSLet7LTExMc/rU2SuRgghhN6TZCiEEELvlbpnk+bH4ze9CyGEEE8jI0MhhBB676UcGYrnk/hRhzxPNJdscsGLEKLgZGQohBBC70kyFEIIofckGQohhNB7kgyFEELoPUmGQggh9J5cTSqysZn6S6l5HFvmws7FHYIQ4iUgI0MhhBB6T5KhEEIIvSfJUAghhN6TZCiEEELvSTIUQgih90p8MtRoNGzevLm4w8iXsLAwbG1tS0w7+iI9PZ3333+fypUrY25uTpUqVZg1axaZmZlqnRkzZlCjRg0sLS2xs7Ojbdu2HDt2rBijFkKUJMWaDG/dusWYMWPw8PDAzMyM8uXL07x5cz7//HNSUlKKM7Qi4+7uzuLFi3XKevfuzYULF4onoFLo448/5vPPP2f58uVER0czf/58FixYwLJly9Q61atXZ/ny5Zw7d46DBw/i7u5Ou3bt+Pvvv4sxciFESVFs9xlevnyZZs2aYWtry5w5c/Dx8SE9PZ0LFy4QGhqKi4sLXbp0Ka7wipW5uTnm5ubFHUapceTIEQIDA+nUqRPw6AfGN998Q2RkpFqnX79+Ovt88sknrFmzhrNnz9KmTZsijVcIUfIU28hwxIgRGBkZERkZSa9evfDy8sLHx4cePXqwbds2OnfOfjN169atCQkJ0Sm7c+cOpqam7N27F4DU1FTeffddXF1dMTU1pVq1aqxZs0atv3//fho1aoSpqSnOzs5MnjyZ9PR0dfsPP/yAj48P5ubmODg40LZtW5KTkzlw4ADGxsbcunVL5/jjx4+nRYsWOfYxNjaWwMBAypcvj5WVFQ0bNmT37t3qdj8/P65du8Y777yDRqNBo9EAOU+Trly5kqpVq2JiYoKnpyfr1q3T2a7RaPjyyy/p1q0bFhYWVKtWjS1btuT28b9Umjdvzp49e9TR9JkzZzh48CAdO3bMsf7Dhw/54osvsLGxwdfXtyhDFUKUUMWSDO/cucOvv/7KyJEjsbS0zLFOVmJ43NChQ9mwYQOpqalq2fr163FxcaFVq1YADBo0iI0bN7J06VKio6P5/PPPsbKyAuDmzZt07NiRhg0bcubMGVauXMmaNWuYPXs2APHx8fTt25fg4GCio6OJiIige/fuKIpCixYtqFKlik4SSk9P5+uvv+aNN97IsQ/379+nY8eO7N69m9OnT+Pv70/nzp2Ji4sDIDw8nIoVKzJr1izi4+OJj4/PsZ1NmzYxZswYxo8fz++//87w4cN544032Ldvn069mTNn0qtXL86ePUvHjh3p378/d+/ezbFNePTDISkpSWcpjSZNmkTfvn2pUaMGxsbG1K1bl7Fjx9K3b1+delu3bsXKygozMzM+/fRTdu3aRdmyZYspaiFESVIsyfDSpUsoioKnp6dOedmyZbGyssLKyopJkyZl269Hjx5oNBp++ukntUyr1RIUFIRGo+HChQt89913hIaG0q1bN6pUqUKbNm3o3bs3ACtWrMDV1ZXly5dTo0YNunbtysyZM1m0aBGZmZnEx8eTnp5O9+7dcXd3x8fHhxEjRqjJdMiQIWi1WvXY27ZtIyUlhV69euXYT19fX4YPH46Pjw/VqlVj9uzZVKlSRR2x2dvbY2hoiLW1NU5OTjg5OeXYzsKFCwkKCmLEiBFUr16dcePG0b17dxYuXKhTLygoiL59++Lh4cGcOXNITk7m+PHjuf49zJ07FxsbG3VxdXXNtW5J9u233/L111+zYcMGTp06xdq1a1m4cCFr167VqdeqVSuioqI4fPgw7du3p1evXiQkJBRT1EKIkqRYL6B5cvR3/PhxoqKiqFWrls7oL4upqSkDBgwgNDQUgKioKM6cOUNQUJC6bmhoSMuWLXM8XnR0NE2aNNE5brNmzbh//z43btzA19eXNm3a4OPjQ8+ePVm9ejX37t1T6wYFBXHp0iWOHj0KQGhoKL169cp1dJucnMy7775LzZo1sbW1xcrKivPnz6sjw/yKjo6mWbNmOmXNmjUjOjpap6x27drqny0tLbG2ts7zy37KlCkkJiaqy/Xr1wsUV0kxceJEJk+eTJ8+ffDx8WHgwIG88847zJ07V6eepaUlHh4evPLKK6xZswYjIyOdKXQhhP4qlgtoPDw80Gg0nD9/Xqe8SpUqAHlePDJ06FDq1KnDjRs3CA0NpU2bNri5uT11PwBFUbIlYEVRgEeJ2dDQkF27dnH48GF+/fVXli1bxtSpUzl27BiVK1fG0dGRzp07o9VqqVKlCtu3byciIiLX402cOJGdO3eycOFCPDw8MDc35/XXX+fhw4d5xpmTnOJ+sszY2DjbPo/fXvAkU1NTTE1NCxxLSZOSkoKBge7vOkNDwzz7Do8+w5x+dAkh9E+xjAwdHBx47bXXWL58OcnJyQXa18fHhwYNGrB69Wo2bNhAcHCwzrbMzEz279+f4741a9bk8OHDagIEOHz4MNbW1lSoUAF4lECaNWvGzJkzOX36NCYmJmzatEmtP3ToUDZu3MiqVauoWrVqthHb43777TeCgoLo1q0bPj4+ODk5cfXqVZ06JiYmZGRk5NlnLy8vDh48qFN2+PBhvLy88txPX3Tu3JmPPvqIbdu2cfXqVTZt2sQnn3xCt27dgEcj9Pfee4+jR49y7do1Tp06xdChQ7lx4wY9e/Ys5uiFECVBsU2TrlixgvT0dBo0aMC3335LdHQ0MTExfP3115w/fx5DQ8Nc9x06dCjz5s0jIyND/cKDR5fUDx48mODgYDZv3syVK1eIiIjgu+++Ax5dwXr9+nVGjRrF+fPn+emnn5g+fTrjxo3DwMCAY8eOMWfOHCIjI4mLiyM8PJy///5bJ+n4+/tjY2PD7Nmzc71wJouHhwfh4eHqdG6/fv2yjVbc3d05cOAAN2/e5Pbt2zm2M3HiRMLCwvj888+5ePEin3zyCeHh4UyYMOGpn7M+WLZsGa+//jojRozAy8uLCRMmMHz4cD788EPg0Sjx/Pnz9OjRg+rVqxMQEMDff//Nb7/9Rq1atYo5eiFESVBs9xlWrVqV06dPM2fOHKZMmcKNGzcwNTWlZs2aTJgwgREjRuS6b9++fRk7diz9+vXDzMxMZ9vKlSt57733GDFiBHfu3KFSpUq89957AFSoUIHt27czceJEfH19sbe3Z8iQIbz//vsAlClThgMHDrB48WKSkpJwc3Nj0aJFdOjQQW3fwMCAoKAg5syZw6BBg/Ls46effkpwcDBNmzalbNmyTJo0KdsVm7NmzWL48OFUrVqV1NRUnVFrlq5du7JkyRIWLFjA6NGjqVy5MlqtFj8/vzyPry+sra1ZvHhxtocXZDEzMyM8PLxogxJClCoaJadv3xLu+vXruLu7c+LECerVq1fkxx82bBj/+9//Xrr7+JKSkrCxsYGQjfJyXyHESyHrey0xMZEyZcrkWq9Uvek+LS2N+Ph4Jk+ezCuvvFLkiTAxMZETJ06wfv16nds7hBBClG6lKhkeOnSIVq1aUb16dX744YciP35gYCDHjx9n+PDhvPbaa0V+fCGEEC9GqUqGfn5+OZ5TKyp53UYhhBCi9Crxr3ASQgghXjRJhkIIIfReqZomFUUj8aMOeV51JYQQLxsZGQohhNB7kgyFEELoPUmGQggh9J4kQyGEEHpPLqAR2dhM/aXAj2OTx6IJIUozGRkKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5KhEEIIvSfJUBSauXPn0rBhQ6ytrXF0dKRr167ExMRkqxcdHU2XLl2wsbHB2tqaV155hbi4uGKIWAghHpFk+P/5+fkxduzYYm+jMNspavv372fkyJEcPXqUXbt2kZ6eTrt27UhOTlbrxMbG0rx5c2rUqEFERARnzpxh2rRpmJmZFWPkQgh9VyqSYVBQEBqNhrfeeivbthEjRqDRaAgKCspXWxEREWg0Gv7555/CDfIZ5BZLeHg4H374YfEE9Rx27NhBUFAQtWrVwtfXF61WS1xcHCdPnlTrTJ06lY4dOzJ//nzq1q1LlSpV6NSpE46OjsUYuRBC35WKZAjg6urKxo0b+e+//9SyBw8e8M0331CpUqVijKzw2dvbY21tXdxhPLfExETgUX8AMjMz2bZtG9WrV8ff3x9HR0caN27M5s2bizFKIYQoRcmwXr16VKpUifDwcLUsPDwcV1dX6tatq5YpisL8+fOpUqUK5ubm+Pr68sMPPwBw9epVWrVqBYCdnV22EWVmZibvvvsu9vb2ODk5MWPGDHVbcHAwAQEBOjGlp6fj5OREaGhojjF//fXXNGjQAGtra5ycnOjXrx8JCQlPjeXJadJ79+4xaNAg7OzssLCwoEOHDly8eFHdHhYWhq2tLTt37sTLywsrKyvat29PfHx8Pj/dwqcoCuPGjaN58+Z4e3sDkJCQwP3795k3bx7t27fn119/pVu3bnTv3p39+/cXW6xCCFFqkiHAG2+8gVarVddDQ0MJDg7WqfP++++j1WpZuXIlf/zxB++88w4DBgxg//79uLq68uOPPwIQExNDfHw8S5YsUfddu3YtlpaWHDt2jPnz5zNr1ix27doFwNChQ9mxY4dOgtm+fTv379+nV69eOcb78OFDPvzwQ86cOcPmzZu5cuWKmvCeFsvjgoKCiIyMZMuWLRw5cgRFUejYsSNpaWlqnZSUFBYuXMi6des4cOAAcXFxTJgwIc/PMzU1laSkJJ2lsISEhHD27Fm++eYbtSwzMxOAwMBA3nnnHerUqcPkyZMJCAjg888/L7RjCyFEQZWqZDhw4EAOHjzI1atXuXbtGocOHWLAgAHq9uTkZD755BNCQ0Px9/enSpUqBAUFMWDAAFatWoWhoaE6Zefo6IiTkxM2Njbq/rVr12b69OlUq1aNQYMG0aBBA/bs2QNA06ZN8fT0ZN26dWp9rVZLz549sbKyyjHe4OBgOnToQJUqVXjllVdYunQpv/zyC/fv339qLFkuXrzIli1b+PLLL3n11Vfx9fVl/fr13Lx5U2d6MS0tjc8//5wGDRpQr149QkJC1NhzM3fuXGxsbNTF1dX1KX8D+TNq1Ci2bNnCvn37qFixolpetmxZjIyMqFmzpk59Ly8vuZpUCFGsSlUyLFu2LJ06dWLt2rVotVo6depE2bJl1e1//vknDx484LXXXsPKykpdvvrqK2JjY5/afu3atXXWnZ2d1WlNeDQ6zBqZJiQksG3btmwj08edPn2awMBA3NzcsLa2xs/PD6BAX/zR0dEYGRnRuHFjtczBwQFPT0+io6PVMgsLC6pWrZpr7DmZMmUKiYmJ6nL9+vV8x5UTRVEICQkhPDycvXv3UrlyZZ3tJiYmNGzYMNvtFhcuXMDNze25ji2EEM+j1L21Ijg4mJCQEAA+++wznW1Z03Dbtm2jQoUKOttMTU2f2raxsbHOukajUdsEGDRoEJMnT+bIkSMcOXIEd3d3Xn311RzbSk5Opl27drRr146vv/6acuXKERcXh7+/Pw8fPnx6R/8/RVFyLddoNHnGntu+WUxNTfP1ueTXyJEj2bBhAz/99BPW1tbcunULABsbG8zNzQGYOHEivXv3pkWLFrRq1YodO3bw888/ExERUWhxCCFEQZW6ZNi+fXs1mfj7++tsq1mzJqampsTFxdGyZcsc9zcxMQEgIyOjwMd2cHCga9euaLVajhw5whtvvJFr3fPnz3P79m3mzZunTj9GRkYWOJaaNWuSnp7OsWPHaNq0KQB37tzhwoULeHl5FbgPL9LKlSsB1BFwFq1Wq54r7datG59//jlz585l9OjReHp68uOPP9K8efMijlYIIf5PqUuGhoaG6vSgoaGhzjZra2smTJjAO++8Q2ZmJs2bNycpKYnDhw9jZWXF4MGDcXNzQ6PRsHXrVjp27Ii5uXmu5/xyMnToUAICAsjIyGDw4MG51qtUqRImJiYsW7aMt956i99//z3bvYP5iaVatWoEBgYybNgwVq1ahbW1NZMnT6ZChQoEBgbmO+6i8LSRaJbg4OA8p5eFEKKolapzhlnKlClDmTJlctz24Ycf8sEHHzB37ly8vLzw9/fn559/Vs9fVahQgZkzZzJ58mTKly+vTrnmV9u2bXF2dsbf3x8XF5dc65UrV46wsDC+//57atasybx581i4cKFOnfzGotVqqV+/PgEBATRp0gRFUdi+fXu2qVEhhBDPRqPk9+e8AB7dwuDi4kJoaCjdu3cv7nAKVVJS0qMrWkM2ypvuhRAvhazvtcTExFwHUVAKp0mLS2ZmJrdu3WLRokXY2NjQpUuX4g5JCCFEIZFkmE9xcXFUrlyZihUrEhYWhpGRfHRCCPGykG/0fHJ3d8/3BSJCCCFKl1J5AY0QQghRmGRkKLJJ/KhDnieahRDiZSMjQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH35GpSkY3N1F/yfBxbbMUeOuuVx+b/lVRCCFESychQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhoUoKCiIrl27lph2itLcuXNp2LAh1tbWODo60rVrV2JiYnKtP3z4cDQaDYsXLy66IIUQIhelOhkePnwYQ0ND2rdvX6jthoWFYWtrW6ht5uTq1atoNBqioqJ0ypcsWUJYWNgLP35h2r9/PyNHjuTo0aPs2rWL9PR02rVrR3Jycra6mzdv5tixY7i4uBRDpEIIkV2pvs8wNDSUUaNG8eWXXxIXF0elSpWKO6RCYWNjU9whFNiOHTt01rVaLY6Ojpw8eZIWLVqo5Tdv3iQkJISdO3fSqVOnog5TCCFyVGpHhsnJyXz33Xe8/fbbBAQEZBtJbdmyhQYNGmBmZkbZsmXp3r27uu3hw4e8++67VKhQAUtLSxo3bkxERAQAERERvPHGGyQmJqLRaNBoNMyYMYNZs2bh4+OTLY769evzwQcf5Bjjjh07aN68Oba2tjg4OBAQEEBsbKy6vXLlygDUrVsXjUaDn58fkH2aNDU1ldGjR+Po6IiZmRnNmzfnxIkT6vaIiAg0Gg179uyhQYMGWFhY0LRp0zynKV+0xMREAOzt7dWyzMxMBg4cyMSJE6lVq1ZxhSaEENmU2mT47bff4unpiaenJwMGDECr1apvot+2bRvdu3enU6dOnD59Wk0SWd544w0OHTrExo0bOXv2LD179qR9+/ZcvHiRpk2bsnjxYsqUKUN8fDzx8fFMmDCB4OBg/vzzT50kdPbsWU6fPk1QUFCOMSYnJzNu3DhOnDjBnj17MDAwoFu3bmRmZgJw/PhxAHbv3k18fDzh4eE5tvPuu+/y448/snbtWk6dOoWHhwf+/v7cvXtXp97UqVNZtGgRkZGRGBkZERwcnOdnmJqaSlJSks5SGBRFYdy4cTRv3hxvb2+1/OOPP8bIyIjRo0cXynGEEKLQKKVU06ZNlcWLFyuKoihpaWlK2bJllV27dimKoihNmjRR+vfvn+N+ly5dUjQajXLz5k2d8jZt2ihTpkxRFEVRtFqtYmNjk23fDh06KG+//ba6PnbsWMXPz09dHzx4sBIYGJhrzAkJCQqgnDt3TlEURbly5YoCKKdPn9ap93g79+/fV4yNjZX169er2x8+fKi4uLgo8+fPVxRFUfbt26cAyu7du9U627ZtUwDlv//+yzWe6dOnK0D2JWSjohm/Jdfl8qfGOsuTRowYobi5uSnXr19XyyIjI5Xy5cvrfO5ubm7Kp59+mmt8QgjxvBITExVASUxMzLNeqRwZxsTEcPz4cfr06QOAkZERvXv3JjQ0FICoqCjatGmT476nTp1CURSqV6+OlZWVuuzfv19nCjMnw4YN45tvvuHBgwekpaWxfv36PEdfsbGx9OvXjypVqlCmTBl1WjQuLi7ffY2NjSUtLY1mzZqpZcbGxjRq1Ijo6GidurVr11b/7OzsDEBCQkKubU+ZMoXExER1uX79er7jys2oUaPYsmUL+/bto2LFimr5b7/9RkJCApUqVcLIyAgjIyOuXbvG+PHjcXd3f+7jCiHE8yiVF9CsWbOG9PR0KlSooJYpioKxsTH37t3D3Nw8130zMzMxNDTk5MmTGBoa6myzsrLK87idO3fG1NSUTZs2YWpqSmpqKj169MizvqurK6tXr8bFxYXMzEy8vb15+DD/D7ZW/v/Ur0ajyVb+ZJmxsbH656xtWVOyOTE1NcXU1DTfsTwtzlGjRrFp0yYiIiLUxJ9l4MCBtG3bVqfM39+fgQMH8sYbbxRKDEII8axKXTJMT0/nq6++YtGiRbRr105nW48ePVi/fj21a9dmz549OX7J1q1bl4yMDBISEnj11VdzPIaJiQkZGRnZyo2MjBg8eDBarRZTU1P69OmDhUXOb3e4c+cO0dHRrFq1Sj3OwYMHsx0HyPFYWTw8PDAxMeHgwYP069cPgLS0NCIjIxk7dmyu+xW1kSNHsmHDBn766Sesra25desW8OjKWHNzcxwcHHBwcNDZx9jYGCcnJzw9PYsjZCGEUJW6ZLh161bu3bvHkCFDst2C8Prrr7NmzRo+/fRT2rRpQ9WqVenTpw/p6en88ssvvPvuu1SvXp3+/fszaNAgFi1aRN26dbl9+zZ79+7Fx8eHjh074u7uzv3799mzZw++vr5YWFioSW/o0KF4eXkBcOjQoVzjtLOzw8HBgS+++AJnZ2fi4uKYPHmyTh1HR0fMzc3ZsWMHFStWxMzMLFufLC0tefvtt5k4cSL29vZUqlSJ+fPnk5KSwpAhQwrjIy0UK1euBFCviM2i1WpzvcBICCFKilJ3znDNmjW0bds2x3vxevToQVRUFGXKlOH7779ny5Yt1KlTh9atW3Ps2DG1nlarZdCgQYwfPx5PT0+6dOnCsWPHcHV1BaBp06a89dZb9O7dm3LlyjF//nx132rVqtG0aVM8PT1p3LhxrnEaGBiwceNGTp48ibe3N++88w4LFizQqWNkZMTSpUtZtWoVLi4uBAYG5tjWvHnz6NGjBwMHDqRevXpcunSJnTt3YmdnV6DP7kVSFCXHJa9EePXq1RI1uhVC6C+NknVSSuSLoijUqFGD4cOHM27cuOIOp1AlJSU9+pERslFe7iuEeClkfa8lJiZSpkyZXOuVumnS4pSQkMC6deu4efOmXPQhhBAvEUmGBVC+fHnKli3LF198UaKmKIUQQjwfSYYFIDPKQgjxcip1F9AIIYQQhU2SoRBCCL0n06Qim8SPOuR51RXI1aNCiJeLjAyFEELoPUmGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhkIIIfSeJEORowMHDtC5c2dcXFzQaDRs3ry5uEMSQogXRpJhISusxFHcCSg5ORlfX1+WL19ebDEIIURRKZHJMCEhgeHDh1OpUiVMTU1xcnLC39+fI0eOFHdohW7GjBnUqVMnW3l8fDwdOnQo+oD+vw4dOjB79my6d+9ebDEIIURRKZFvrejRowdpaWmsXbuWKlWq8L///Y89e/Zw9+7d4g6tyDg5ORV3CEIIoTdK3Mjwn3/+4eDBg3z88ce0atUKNzc3GjVqxJQpU+jUqRNXr15Fo9EQFRWls49GoyEiIgKAiIgINBoNO3fupG7dupibm9O6dWsSEhL45Zdf8PLyokyZMvTt25eUlBS1ndTUVEaPHo2joyNmZmY0b96cEydOAI/ecu/h4cHChQt14v39998xMDAgNjY2x/5MmjSJ6tWrY2FhQZUqVZg2bRppaWkAhIWFMXPmTM6cOYNGo0Gj0RAWFgZknyY9d+4crVu3xtzcHAcHB958803u37+vbg8KCqJr164sXLgQZ2dnHBwcGDlypHosIYQQuStxydDKygorKys2b95Mamrqc7U1Y8YMli9fzuHDh7l+/Tq9evVi8eLFbNiwgW3btrFr1y6WLVum1n/33Xf58ccfWbt2LadOncLDwwN/f3/u3r2LRqMhODgYrVarc4zQ0FBeffVVqlatmmMM1tbWhIWF8eeff7JkyRJWr17Np59+CkDv3r0ZP348tWrVIj4+nvj4eHr37p2tjZSUFNq3b4+dnR0nTpzg+++/Z/fu3YSEhOjU27dvH7Gxsezbt4+1a9cSFhamJtecpKamkpSUpLMIIYReUkqgH374QbGzs1PMzMyUpk2bKlOmTFHOnDmjKIqiXLlyRQGU06dPq/Xv3bunAMq+ffsURVGUffv2KYCye/dutc7cuXMVQImNjVXLhg8frvj7+yuKoij3799XjI2NlfXr16vbHz58qLi4uCjz589XFEVR/vrrL8XQ0FA5duyYur1cuXJKWFiYug+gbNq0Kde+zZ8/X6lfv766Pn36dMXX1zdbvcfb+eKLLxQ7Ozvl/v376vZt27YpBgYGyq1btxRFUZTBgwcrbm5uSnp6ulqnZ8+eSu/evXONZfr06QqQbUlMTMw1FiGEKE0SExNz/F57UokbGcKjc4Z//fUXW7Zswd/fn4iICOrVq5fnKCcntWvXVv9cvnx5dary8bKEhAQAYmNjSUtLo1mzZup2Y2NjGjVqRHR0NADOzs506tSJ0NBQALZu3cqDBw/o2bNnrjH88MMPNG/eHCcnJ6ysrJg2bRpxcXEF6kd0dDS+vr5YWlqqZc2aNSMzM5OYmBi1rFatWhgaGqrrzs7Oav9yMmXKFBITE9Xl+vXrBYpLCCFeFiUyGQKYmZnx2muv8cEHH3D48GGCgoKYPn06BgaPQlYURa2b23kxY2Nj9c8ajUZnPassMzNTpz2NRqNTR1EUnbKhQ4eyceNG/vvvP7RaLb1798bCwiLH4x89epQ+ffrQoUMHtm7dyunTp5k6dSoPHz7M78eQYwxP9iFLXv3LiampKWXKlNFZsty/f5+oqCj13OyVK1eIiooqcCIXQojSoMQmwyfVrFmT5ORkypUrBzy69SDL4xfTPCsPDw9MTEw4ePCgWpaWlkZkZCReXl5qWceOHbG0tGTlypX88ssvBAcH59rmoUOHcHNzY+rUqTRo0IBq1apx7do1nTomJiZkZGTkGVvNmjWJiooiOTlZp20DAwOqV69e0K7mS2RkJHXr1qVu3boAjBs3jrp16/LBBx+8kOMJIURxKnG3Vty5c4eePXsSHBxM7dq1sba2JjIykvnz5xMYGIi5uTmvvPIK8+bNw93dndu3b/P+++8/93EtLS15++23mThxIvb29lSqVIn58+eTkpLCkCFD1HqGhoYEBQUxZcoUPDw8aNKkSa5tenh4EBcXx8aNG2nYsCHbtm1j06ZNOnXc3d3VUVfFihWxtrbG1NRUp07//v2ZPn06gwcPZsaMGfz999+MGjWKgQMHUr58+efue078/Px0Rt9CCPEyK3EjQysrKxo3bsynn35KixYt8Pb2Ztq0aQwbNkx9GkpoaChpaWk0aNCAMWPGMHv27EI59rx58+jRowcDBw6kXr16XLp0iZ07d2JnZ6dTb8iQITx8+DDPUSFAYGAg77zzDiEhIdSpU4fDhw8zbdo0nTo9evSgffv2tGrVinLlyvHNN99ka8fCwoKdO3dy9+5dGjZsyOuvv06bNm3k6TBCCFFINIr8/C+wQ4cO4efnx40bN17YyKw4JCUlYWNjQ2Jios75QyGEKK3y+71W4qZJS7LU1FSuX7/OtGnT6NWr10uVCIUQQp+VuGnSkuybb77B09OTxMRE5s+fX9zhCCGEKCQyTSpUMk0qhHjZ5Pd7TUaGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5KhEEIIvSfJUAghhN6TZCiEEELvlehkGBERgUaj4Z9//nmudtzd3Vm8eHGhxJQXPz8/xo4dW2LaeR4HDhygc+fOuLi4oNFo2Lx5c7HGI4QQL9ILT4ZBQUFoNBo0Gg3GxsZUqVKFCRMmkJyc/KIPrTpx4gRvvvmmul5SvtxzS/bh4eF8+OGHxRPU/5ecnIyvry/Lly8v1jiEEKIoFMmb7tu3b49WqyUtLY3ffvuNoUOHkpyczMqVK4vi8JQrV65IjlNY7O3tizsEOnToQIcOHYo7DCGEKBJFMk1qamqKk5MTrq6u9OvXj/79+7N582a+/vprGjRogLW1NU5OTvTr14+EhIRc2wkLC8PW1patW7fi6emJhYUFr7/+OsnJyaxduxZ3d3fs7OwYNWoUGRkZ6n6PT5O6u7sD0K1bNzQajboOsHLlSqpWrYqJiQmenp6sW7dO3RYcHExAQIBOPOnp6Tg5OREaGppjvHn17+rVq7Rq1QoAOzs7NBoNQUFBQPZp0nv37jFo0CDs7OywsLCgQ4cOXLx4MdvnsnPnTry8vLCysqJ9+/bEx8fn+lkKIYT4P8VyztDc3Jy0tDQePnzIhx9+yJkzZ9i8eTNXrlxRE0JuUlJSWLp0KRs3bmTHjh1ERETQvXt3tm/fzvbt21m3bh1ffPEFP/zwQ477nzhxAgCtVkt8fLy6vmnTJsaMGcP48eP5/fffGT58OG+88Qb79u0DYOjQoezYsUMnwWzfvp379+/Tq1evHI+VV/9cXV358ccfAYiJiSE+Pp4lS5bk2E5QUBCRkZFs2bKFI0eOoCgKHTt2JC0tTedzWbhwIevWrePAgQPExcUxYcKEPD9LIYQQ/5/ygg0ePFgJDAxU148dO6Y4ODgovXr1ylb3+PHjCqD8+++/iqIoyr59+xRAuXfvnqIoiqLVahVAuXTpkrrP8OHDFQsLC3UfRVEUf39/Zfjw4eq6m5ub8umnn6rrgLJp0yadYzdt2lQZNmyYTlnPnj2Vjh07qus1a9ZUPv74Y3W9a9euSlBQkLresmVLZcyYMbl+Fk/rX07tXLhwQQGUQ4cOqdtv376tmJubK999912un8tnn32mlC9fPtdYFEVRHjx4oCQmJqrL9evXFUBJTEzUqZfT5yWEEKVBYmJijt9rTyqSkeHWrVuxsrLCzMyMJk2a0KJFC5YtW8bp06cJDAzEzc0Na2tr/Pz8AIiLi8u1LQsLC6pWraquly9fHnd3d6ysrHTK8ppuzUl0dDTNmjXTKWvWrBnR0dHq+tChQ9FqtQAkJCSwbds2goODc23zWfqXU1xGRkY0btxYLXNwcMDT01Mntic/F2dn56d+BnPnzsXGxkZdXF1d8x2XEEK8TIokGbZq1YqoqChiYmJ48OAB4eHhWFpa0q5dO6ysrPj66685ceIEmzZtAh5NL+bG2NhYZz3rKtUnyzIzMwscp0aj0VlXFEWnbNCgQVy+fJkjR47w9ddf4+7uzquvvppjW8nJyc/UvycpipJr+eOx5fQZ5LZvlilTppCYmKgu169fz3dcQgjxMimSq0ktLS3x8PDQKTt//jy3b99m3rx56ogkMjKyKMLB2NhY5wIbAC8vLw4ePMigQYPUssOHD+Pl5aWuOzg40LVrV7RaLUeOHOGNN97I9Rj56Z+JiQlAtlgeV7NmTdLT0zl27BhNmzYF4M6dO1y4cEEntmdhamqKqalpjtvu37/PpUuX1PUrV64QFRWFvb09lSpVeq7jCiFESVNsN91XqlQJExMTli1bxuXLl9myZUuR3Vvn7u7Onj17uHXrFvfu3QNg4sSJhIWF8fnnn3Px4kU++eQTwsPDs12EMnToUNauXUt0dDSDBw/O9Rj56Z+bmxsajYatW7fy999/c//+/WztVKtWjcDAQIYNG8bBgwc5c+YMAwYMoEKFCgQGBhbCp5GzyMhI6tatS926dQEYN24cdevW5YMPPnhhxxRCiOJSbMmwXLlyhIWF8f3331OzZk3mzZvHwoULi+TYixYtYteuXbi6uqpf9l27dmXJkiUsWLCAWrVqsWrVKrRarXqeL0vbtm1xdnbG398fFxeXXI+Rn/5VqFCBmTNnMnnyZMqXL09ISEiObWm1WurXr09AQABNmjRBURS2b9+ebWq0MPn5+aEoSrYlLCzshR1TCCGKi0Z52okloSMlJQUXFxdCQ0Pp3r17cYdTqJKSkrCxsSExMZEyZcoUdzhCCPHc8vu9ViTnDF8GmZmZ3Lp1i0WLFmFjY0OXLl2KOyQhhBCFRJJhPsXFxVG5cmUqVqxIWFgYRkby0QkhxMtCvtHzyd3d/am3KgghhCidSvQrnIQQQoiiIMlQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5KhEEIIvSfJUAghhN6TZCiEEELvSTIUQgih9yQZCiGE0HuSDEWO5s6dS8OGDbG2tsbR0ZGuXbsSExNT3GEJIcQLUaKSoUajYfPmzcVy7KCgILp27VrsbRRmO89j//79jBw5kqNHj7Jr1y7S09Np164dycnJxRqXEEK8CEWSDIOCgtBoNGg0GoyNjSlfvjyvvfYaoaGhZGZmqvXi4+Pp0KHDC43l6tWraDQaoqKiXuhxnieWJUuWEBYWViwxZdmxYwdBQUHUqlULX19ftFotcXFxnDx5sljjEkKIF6HIRobt27cnPj6eq1ev8ssvv9CqVSvGjBlDQEAA6enpADg5OWFqalpUIZVYNjY22NraFncYOhITEwGwt7cv5kiEEKLwFVkyNDU1xcnJiQoVKlCvXj3ee+89fvrpJ3755Rd1FPT4NGnWqOm7777j1VdfxdzcnIYNG3LhwgVOnDhBgwYNsLKyon379vz99986x9JqtXh5eWFmZkaNGjVYsWKFuq1y5coA1K1bF41Gg5+fn86+CxcuxNnZGQcHB0aOHElaWhoAs2bNwsfHJ1u/6tevzwcffJBjn3fs2EHz5s2xtbXFwcGBgIAAYmNjnxrLk9OkqampjB49GkdHR8zMzGjevDknTpxQt0dERKDRaNizZw8NGjTAwsKCpk2bFto5PkVRGDduHM2bN8fb27tQ2hRCiJKkWM8Ztm7dGl9fX8LDw3OtM336dN5//31OnTqFkZERffv25d1332XJkiX89ttvxMbG6iSj1atXM3XqVD766COio6OZM2cO06ZNY+3atQAcP34cgN27dxMfH69z7H379hEbG8u+fftYu3YtYWFhaqIODg7mzz//1ElCZ8+e5fTp0wQFBeUYe3JyMuPGjePEiRPs2bMHAwMDunXrpk4N5xXL4959911+/PFH1q5dy6lTp/Dw8MDf35+7d+/q1Js6dSqLFi0iMjISIyMjgoODc/1c4VGSTUpK0llyEhISwtmzZ/nmm2/ybE8IIUotpQgMHjxYCQwMzHFb7969FS8vL0VRFAVQNm3apCiKoly5ckUBlC+//FKt+8033yiAsmfPHrVs7ty5iqenp7ru6uqqbNiwQecYH374odKkSROddk+fPp0tRjc3NyU9PV0t69mzp9K7d291vUOHDsrbb7+tro8dO1bx8/PLVz8VRVESEhIUQDl37txTY8lq5/79+4qxsbGyfv16dfvDhw8VFxcXZf78+YqiKMq+ffsUQNm9e7daZ9u2bQqg/Pfff7nGM336dAXItiQmJqp1QkJClIoVKyqXL1/OtR0hhCipEhMTs32v5aTYryZVFAWNRpPr9tq1a6t/Ll++PIDOdGX58uVJSEgA4O+//+b69esMGTIEKysrdZk9e7bO9GRuatWqhaGhobru7Oystg0wbNgwvvnmGx48eEBaWhrr16/Pc/QVGxtLv379qFKlCmXKlFGnRePi4p4ay+NtpKWl0axZM7XM2NiYRo0aER0drVP38c/K2dkZQCf+J02ZMoXExER1uX79urpNURRCQkIIDw9n7969auxCCPEyMiruAKKjo/P8ojU2Nlb/nJU0nyzLmnbM+u/q1atp3LixTjuPJ7n8HOvJtgE6d+6MqakpmzZtwtTUlNTUVHr06JFre507d8bV1ZXVq1fj4uJCZmYm3t7ePHz48KmxZFEURY3lyfIny3L6rB6P/0mmpqa5XrA0cuRINmzYwE8//YS1tTW3bt0CHl3cY25unu/4hRCiNCjWkeHevXs5d+5cngmlIMqXL0+FChW4fPkyHh4eOktWwjUxMQEgIyOjwO0bGRkxePBgtFotWq2WPn36YGFhkWPdO3fuEB0dzfvvv0+bNm3w8vLi3r17OnXyE4uHhwcmJiYcPHhQLUtLSyMyMhIvL68C9yG/Vq5cSWJiIn5+fjg7O6vLt99++8KOKYQQxaXIRoapqancunWLjIwM/ve//7Fjxw7mzp1LQEAAgwYNKrTjzJgxg9GjR1OmTBk6dOhAamoqkZGR3Lt3j3HjxuHo6Ii5uTk7duygYsWKmJmZYWNjk+/2hw4dqiahQ4cO5VrPzs4OBwcHvvjiC5ydnYmLi2Py5Mk6dfITi6WlJW+//TYTJ07E3t6eSpUqMX/+fFJSUhgyZEgBPpmCyRqRCiGEPiiykeGOHTtwdnbG3d2d9u3bs2/fPpYuXcpPP/2UrynM/Bo6dChffvklYWFh+Pj40LJlS8LCwtSRoZGREUuXLmXVqlW4uLgQGBhYoParVatG06ZN8fT0zDYV+zgDAwM2btzIyZMn8fb25p133mHBggU6dfIby7x58+jRowcDBw6kXr16XLp0iZ07d2JnZ1eg2IUQQuRMo8gQoEAURaFGjRoMHz6ccePGFXc4hSopKQkbGxsSExMpU6ZMcYcjhBDPLb/fa8V+AU1pkpCQwLp167h58yZvvPFGcYcjhBCikEgyLIDy5ctTtmxZvvjiC5miFEKIl4gkwwKQGWUhhHg5FftN90IIIURxk2QohBBC70kyFEIIofckGQohhNB7kgyFEELoPUmGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3JBkKIYTQe5IMhRBC6D1JhiJHBw4coHPnzri4uKDRaNi8eXNxhySEEC9MqUuGL/KL+erVq2g0GqKiogCIiIhAo9Hwzz//ABAWFoatre0LOfaTgoKC6Nq1a5EcKyfJycn4+vqyfPnyYotBCCGKSolLhrdu3WLUqFFUqVIFU1NTXF1d6dy5M3v27AEgPj6eDh06ANmT14vWu3dvLly4UKht5taHJUuWEBYWVqjHKogOHTowe/ZsunfvXmwxCCFEUSlRL/e9evUqzZo1w9bWlvnz51O7dm3S0tLYuXMnI0eO5Pz58zg5ORW43YcPH2JiYvLc8Zmbm2Nubv7c7eSHjY1NkRxHCCFECRsZjhgxAo1Gw/Hjx3n99depXr06tWrVYty4cRw9ehTQnSatXLkyAHXr1kWj0eDn5wf83xTj3LlzcXFxoXr16tn2zWJra5vvEdiT06QzZsygTp06rFu3Dnd3d2xsbOjTpw///vuvWmfHjh00b94cW1tbHBwcCAgIIDY2Vt3+tD5kSU1NZfTo0Tg6OmJmZkbz5s05ceKEuj1rSnfPnj00aNAACwsLmjZtSkxMTL76JoQQ+qzEJMO7d++yY8cORo4ciaWlZbbtOZ2rO378OAC7d+8mPj6e8PBwdduePXuIjo5m165dbN269YXFHRsby+bNm9m6dStbt25l//79zJs3T92enJzMuHHjOHHiBHv27MHAwIBu3bqRmZn51D487t133+XHH39k7dq1nDp1Cg8PD/z9/bl7965OvalTp7Jo0SIiIyMxMjIiODg419hTU1NJSkrSWYQQQh+VmGnSS5cuoSgKNWrUyPc+5cqVA8DBwSHb9KmlpSVffvlloUyP5iUzM5OwsDCsra0BGDhwIHv27OGjjz4CoEePHjr116xZg6OjI3/++Sfe3t559iFLcnIyK1euJCwsTD1funr1anbt2sWaNWuYOHGiWvejjz6iZcuWAEyePJlOnTrx4MEDzMzMsrU7d+5cZs6c+ZyfQOmXkZFBWlpacYchhHgGxsbGGBoaPnc7JSYZKooCPJrKLAw+Pj4vPBECuLu7q4kQwNnZmYSEBHU9NjaWadOmcfToUW7fvq2OCOPi4vD29s7XMWJjY0lLS6NZs2ZqmbGxMY0aNSI6Olqnbu3atXViAUhISKBSpUrZ2p0yZQrjxo1T15OSknB1dc1XTC8DRVG4deuWerWwEKJ0srW1xcnJ6bnyR4lJhtWqVUOj0RAdHV0otxTkNNWq0WjUpJvleUcExsbG2Y6RlfAAOnfujKurK6tXr8bFxYXMzEy8vb15+PBhvo+R2w8FRVGylT0eT9a2x+N5nKmpKaampjluu3//PpcuXVLXr1y5QlRUFPb29jkm1tIoKxE6OjpiYWFRaD/EhBBFQ1EUUlJS1AFI1gDgWZSYZGhvb4+/vz+fffYZo0ePzpbM/vnnn2znDbNGfhkZGfk6Rrly5YiPj1fXL168SEpKyvMFnoc7d+4QHR3NqlWrePXVVwE4ePCgTp389MHDwwMTExMOHjxIv379gEdJPDIykrFjx76Q2CMjI2nVqpW6njWCHDx4cLHe8lFYMjIy1ETo4OBQ3OEIIZ5R1hX+CQkJODo6PvOUaYlJhgArVqygadOmNGrUiFmzZlG7dm3S09PZtWsXK1euzDYl6OjoiLm5OTt27KBixYqYmZnleUtC69atWb58Oa+88gqZmZlMmjQp28iuMNnZ2eHg4MAXX3yBs7MzcXFxTJ48ucB9sLS05O2332bixInqyGz+/PmkpKQwZMiQFxK7n59ftlH0yyRrRsDCwqKYIxFCPK+s/4/T0tKeORmWmKtJ4dFtBqdOnaJVq1aMHz8eb29vXnvtNfbs2cPKlSuz1TcyMmLp0qWsWrUKFxcXAgMD82x/0aJFuLq60qJFC/r168eECRNe6JehgYEBGzdu5OTJk3h7e/POO++wYMGCZ+rDvHnz6NGjBwMHDqRevXpcunSJnTt3Ymdn98Li1wcyNSpE6VcY/x9rlJf5578okKSkJGxsbEhMTKRMmTLFHc4L9eDBA65cuULlypVzvNJWCFF65PX/c36/10rUyFAIUXiefMjE+fPneeWVVzAzM6NOnTq5lpU0z/JMYHd3dxYvXqyul7SHzRfWoySzHvxREmIp7UrUOUMhipvBhJ+L9HiZCzsXqH5QUBBr164FHk2x29vbU7t2bfr27UtQUBAGBv/3+zY+Pl5nGn369OlYWloSExODlZVVrmXFyd3dnbFjx+pcGNa7d286duxYfEHxKCGPHTtWb2/D8fPzY//+/cCji/7c3NwICgpi0qRJDBkyRP03mRtFUdR/u8OHD+fzzz/X2T5ixAhWrlxZrBfoychQiFKmffv2xMfHc/XqVX755RdatWrFmDFjCAgIID09Xa3n5OSkc+tMbGwszZs3x83NTb2CNqeygirIbULPwtzcHEdHxxd6DPF0w4YNIz4+npiYGEaPHs3777/PwoULWbJkCfHx8eoCoNVqs5UBuLq6snHjRv777z+17MGDB3zzzTfFfsuWJEMhShlTU1OcnJyoUKEC9erV47333uOnn37il19+0flV/fjUoEaj4eTJk8yaNQuNRsOMGTNyLAO4efMmvXv3Vq+GDgwM5OrVq2q7uT37N7/7LVy4EGdnZxwcHBg5cqR6Za+fnx/Xrl3jnXfeQaPRqBdFPDlNGhsbS2BgIOXLl8fKyoqGDRuye/fufH9+rVu3JiQkRKfszp07mJqasnfv3ny1kZ/nEmdmZvLxxx/j4eGBqakplSpVUp9M9aScpoI3b96c7cKQefPmUb58eaytrRkyZAgPHjzI1pZWq8XLywszMzNq1KjBihUrdLYfP36cunXrYmZmRoMGDTh9+nS++mxhYYGTkxPu7u6EhITQpk0bNm/ejI2NDU5OTuoC/3cT/ONlAPXq1aNSpUo6j50MDw/H1dWVunXr6hzvhx9+wMfHB3NzcxwcHGjbti3Jycn5ivVZSDIU4iXQunVrfH19c322bXx8PLVq1WL8+PHEx8czYcKEHMtSUlJo1aoVVlZWHDhwgIMHD2JlZUX79u11RoBPPvs3v/vt27eP2NhY9u3bx9q1awkLC1MTeHh4OBUrVmTWrFnZRhSPu3//Ph07dmT37t2cPn0af39/OnfuTFxcXL4+q6FDh7JhwwZSU1PVsvXr1+Pi4qJzb+3TPO25xFOmTOHjjz9m2rRp/Pnnn2zYsIHy5cvnu/0nfffdd0yfPp2PPvqIyMhInJ2dsyW61atXM3XqVD766COio6OZM2cO06ZNU6cxk5OTCQgIwNPTk5MnTzJjxgwmTJjwTPGYm5s/00NL3njjDbRarboeGhqa7RnK8fHx9O3bl+DgYKKjo4mIiKB79+4v9HYvOWcoxEuiRo0anD17NsdtTk5OGBkZYWVlpf5St7KyylYWGhqKgYEBX375pToq0Wq12NraEhERQbt27YDsz/7N7352dnYsX74cQ0NDatSoQadOndizZw/Dhg3D3t4eQ0NDrK2t83xVm6+vL76+vur67Nmz2bRpE1u2bMk24stJjx49GDVqFD/99BO9evVSYw0KCirQJfp5PZf433//ZcmSJSxfvpzBgwcDULVqVZo3b57v9p+0ePFigoODGTp0KPCo37t379YZHX744YcsWrRIfQ9p5cqV+fPPP1m1ahWDBw9m/fr1ZGRkEBoaioWFBbVq1eLGjRu8/fbbBer3r7/+ys6dO5/poR8DBw5kypQp6oU7hw4dYuPGjURERKh14uPjSU9Pp3v37ri5uQGPHrH5IsnIUIiXRE6P5yuokydPcunSJaytrbGyssLKygp7e3sePHig8+qxJ5/9m9/9atWqpXNT9JPP8s2P5ORk3n33XWrWrImtrS1WVlacP38+3yNDU1NTBgwYQGhoKABRUVGcOXOGoKCgAsWR13OJo6OjSU1NpU2bNgVqMy/R0dE0adJEp+zx9b///pvr168zZMgQ9e/AysqK2bNnq38H0dHR+Pr66txf/WSbuVmxYgVWVlaYmZnRpUsXBgwYwPTp0wvcj7Jly9KpUyfWrl2LVqulU6dOlC1bVqeOr68vbdq0wcfHh549e7J69Wru3btX4GMVhIwMhXhJREdHq+/HfFaZmZnUr1+f9evXZ9uW9YYVyP7s3/zu97Rn+ebHxIkT2blzJwsXLsTDwwNzc3Nef/31Al3IM3ToUOrUqcONGzcIDQ2lTZs26ggkv/LqS0FfAm5gYPDcz03OOvbq1atp3LixzrasHyDPM83Yv39/pk6diqmpKS4uLs/1pojg4GB1FP/ZZ59l225oaMiuXbs4fPgwv/76K8uWLWPq1KkcO3bsuf+N50ZGhkK8BPbu3cu5c+eyvTKsoOrVq8fFixdxdHTEw8NDZ8nrUYfPut+TTExMnvqs4d9++42goCC6deuGj48PTk5OOhfq5IePjw8NGjRg9erVbNiwIc/3fj6LatWqYW5uzp49e/JVv1y5cvz77786F4g8ed+fl5eX+pLzLI+vly9fngoVKnD58uVsfwdZCaRmzZqcOXNG52rOJ9vMjY2NDR4eHri6uj73K5OyziU/fPgQf3//HOtoNBqaNWvGzJkzOX36NCYmJmzatOm5jpsXSYZClDKpqancunWLmzdvcurUKebMmUNgYCABAQEMGjToudru378/ZcuWJTAwkN9++40rV66wf/9+xowZw40bNwp9vye5u7tz4MABbt68ye3bt3Os4+HhQXh4uDq92a9fvwKPLuHR6HDevHlkZGTQrVu3Au+fFzMzMyZNmsS7777LV199RWxsLEePHmXNmjU51m/cuDEWFha89957XLp0iQ0bNmS7327MmDGEhoYSGhrKhQsXmD59On/88YdOnRkzZjB37lyWLFnChQsXOHfuHFqtlk8++QSAfv36YWBgwJAhQ/jzzz/Zvn07CxcuLNS+54ehoSHR0dFER0fnmFiPHTvGnDlziIyMJC4ujvDwcP7++2+8vLxeWEwyTSrEYwp6E3xx2LFjB87OzhgZGWFnZ4evry9Lly5l8ODBOjfdPwsLCwsOHDjApEmT6N69O//++y8VKlSgTZs2eT7K6ln3e9KsWbMYPnw4VatWJTU1NcdpvU8//ZTg4GCaNm1K2bJlmTRpEklJSQXua9++fRk7diz9+vV7IY/kmzZtGkZGRnzwwQf89ddfODs789Zbb+VY197enq+//pqJEyfyxRdf0LZtW2bMmMGbb76p1unduzexsbFMmjSJBw8e0KNHD95++2127typ1hk6dCgWFhYsWLCAd999F0tLS3x8fNQLXaysrPj555956623qFu3LjVr1uTjjz9+7hmFZ5HXv4syZcpw4MABFi9eTFJSEm5ubixatEh9ufmLIM8mFSp5NqnQJ9evX8fd3Z0TJ05Qr1694g5HPIfCeDapjAyFEHolLS2N+Ph4Jk+ezCuvvCKJUAByzlAIoWcOHTqEm5sbJ0+ezPaMTKG/ZGQohNArL/uLq8WzkZGhEEIIvSfJUOTowIEDdO7cGRcXlxL3LjghhChskgyL0eHDhzE0NKR9+/Y65VnP7DMyMuLmzZs62+Lj4zEyMkKj0ag3GmfVz1rs7Oxo0aKF+v6xZ5GcnIyvry/Lly9/5jaEEKK0kGRYjEJDQxk1ahQHDx7M8bmKLi4ufPXVVzpla9eupUKFCjm2t3v3buLj49m/fz9lypShY8eOXLly5Zli69ChA7Nnz1Yf+CuEEC8zSYbFJDk5me+++463336bgICAHN/uPHjwYJ1XncCj955lPQX/SQ4ODjg5OVG7dm1WrVpFSkoKv/7664sIXwghXiqSDIvJt99+i6enJ56engwYMACtVpvtCrcuXbpw7949Dh48CMDBgwe5e/cunTs//SkpWU+lz+thv6mpqSQlJeksQgihjyQZFpM1a9YwYMAA4NFDa+/fv5/tob7GxsY6r5oJDQ1lwIAB2Z6W/6Tk5GSmTJmCoaEhLVu2zLXe3LlzsbGxURdXV9fn7JUQBePn5/fUd+Ll9Bb4ojx+UXN3d2fx4sXPvH9QUBBdu3YttHjgxf4dlBRyn2ExiImJ4fjx4+pbyY2MjOjduzehoaG0bdtWp+6QIUNo0qQJc+bM4fvvv+fIkSOkp6fn2G7Tpk0xMDAgJSUFZ2dnwsLC8nwh5pQpUxg3bpy6npSUpPcJ8cpik6dXKkSVx+b/tUPw6Isu663lRkZGuLq60r17d2bOnMmCBQuYOXNmnvtfuXKFsLAwZs6cib+/Pzt27NDZPn/+fCZNmkTLli11Xrb6ooSHh+v8uHN3d2fs2LGFmqDatWvHnj17OHToEK+88kqedV/E8QvbjBkzcvx73rVrV7bvD5F/kgyLwZo1a0hPT9e5EEZRFIyNjbO9wNLb25saNWrQt29fvLy88Pb2zvZqlyzffvut+sJTBweHp8ZhamqKqanpc/VFFL327duj1WpJS0vjt99+Y+jQoSQnJ7NgwQKdB0E3bNiQN998k2HDhqllWe8WdHZ2Zt++fdy4cYOKFSuq27VaLZUqVSqyvtjb27/Q9uPi4jhy5AghISGsWbPmqcmwsDx8+FDn5ceFrVatWuzevVun7EV/li87mSYtYunp6Xz11VcsWrSIqKgodTlz5gxubm45vhw1ODiYiIiIp75zzdXVlapVq+YrET7N/fv31djg0YgiKioq328TFy+OqakpTk5OuLq60q9fP/r378/mzZuxsrLCyclJXQwNDbG2ts5WBuDo6Ei7du3UUSY8utXn9u3bdOrUSed4ERERNGrUCEtLS2xtbWnWrBnXrl3LMbYePXowatQodX3s2LFoNBr1VUPp6elYW1urb1p4fJrSz8+Pa9eu8c4776i3CT1u586deHl5YWVlRfv27YmPj3/qZ6XVagkICODtt9/m22+/1Xlf4JPyOv7hw4dp0aIF5ubmuLq6Mnr0aJ223N3dmT17NkFBQdjY2Kg/QJ62X0JCAp07d8bc3JzKlSvn+P9/ToyMjHT+Xp2cnHJNvjt27KB58+bqj+SAgABiY2PV7Vm3ZoWHh9OqVSssLCzw9fXlyJEjuR7/zp07NGrUiC5duvDgwYN8xVzSSTIsYlu3buXevXsMGTIEb29vneX111/P8X1nw4YN4++//2bo0KFFFmdkZCR169albt26AIwbN466devywQcfFFkMIn/Mzc0L/FZ0ePQj6/GrmENDQ+nfv7/Ol2p6ejpdu3alZcuWnD17liNHjvDmm29mS1RZ/Pz8dKZX9+/fT9myZdV7Xk+cOMGDBw9o1qxZtn3Dw8OpWLEis2bNIj4+XifZpaSksHDhQtatW8eBAweIi4tjwoQJefZPURS0Wi0DBgygRo0aVK9ene+++y7X+rkd/9y5c/j7+9O9e3fOnj3Lt99+y8GDB9U3tWdZsGAB3t7enDx5kmnTpuVrv6CgIK5evcrevXv54YcfWLFiBQkJCXn2q6CSk5MZN24cJ06cYM+ePRgYGNCtW7ds74CcOnUqEyZMICoqiurVq9O3b98cT8ncuHGDV199lRo1ahAeHv7SvPVFkmERW7NmDW3bts3x7d89evQgKiqKu3fv6pQbGRlRtmxZjIyKblY76/mNTy453QIiis/x48fZsGEDbdq0KfC+AQEBJCUlceDAAfVWnydnH5KSkkhMTCQgIICqVavi5eXF4MGDc51K9fPz448//uD27dvcu3ePP/74g7Fjx6oJMiIigvr162NlZZVtX3t7+2yj2SxpaWl8/vnnNGjQgHr16hESEvLUt8jv3r2blJQU9U3qAwYMyPXlunkdf8GCBfTr14+xY8dSrVo1mjZtytKlS/nqq690RkWtW7dmwoQJ6tvln7bfhQsX+OWXX/jyyy9p0qQJ9evXZ82aNTpvoc/NuXPnsLKyUpdGjRrlWrdHjx50796datWqUadOHdasWcO5c+f4888/depNmDCBTp06Ub16dWbOnMm1a9e4dOmSTp0LFy7QrFkz2rZty9q1a4v0O+lFe3l6Ukr8/PPPuW6rV6+eentFXg8SrlOnjs52d3d3efCwHtm6dStWVlakp6eTlpZGYGAgy5YtK3A7WVcra7VaLl++TPXq1aldu7ZOHXt7e4KCgvD39+e1116jbdu29OrVC2dn5xzb9Pb2xsHBgf3792NsbIyvry9dunRh6dKlwKNkmNcVzrmxsLCgatWq6rqzs/NTR1Br1qyhd+/e6hd23759mThxIjExMXh6eub72CdPnuTSpUs6U5iKopCZmcmVK1fUt683aNCgQPtduHABIyMjnf1q1KiRr6s2PT092bJli7qe17n/2NhYpk2bxtGjR7l9+7Y6IoyLi8Pb21ut9/jffdbfb0JCAjVq1ADgv//+o3nz5vTt25clS5Y8NcbSRpKhEKVMq1atWLlyJcbGxri4uDz1Vpu8BAcH07hxY37//fdcz0lrtVpGjx7Njh07+Pbbb3n//ffZtWtXjhejaDQaWrRoQUREBCYmJvj5+eHt7U1GRgbnzp3j8OHDz3Sl5pN91Gg0ef4AvHv3Lps3byYtLY2VK1eq5RkZGYSGhvLxxx/n+9iZmZkMHz6c0aNHZ9v2+AjZ0tKyQPvFxMSofSkoExMTPDw88lW3c+fOuLq6snr1alxcXMjMzMTb25uHD3WvZH78M86K6fGpVFNTU9q2bcu2bduYOHGizoVXLwNJhkKUMpaWlvn+InyaWrVqUatWLc6ePUu/fv1yrZd1/njKlCk0adKEDRs25Hplpp+fH1988QUmJibMmjULjUbDq6++ysKFC/nvv/9yPF+YxcTEhIyMjOfu1/r166lYsWK2B8zv2bOHuXPn8tFHH+U4xZfT8evVq8cff/xR4M/8aft5eXmRnp5OZGSkOs0ZExPDP//8U6Dj5OXOnTtER0ezatUqXn31VQD1IR4FZWBgwLp16+jXrx+tW7cmIiICFxeXQou1uMk5QyH03N69e4mPj89xeu7KlStMmTKFI0eOcO3aNX799VcuXLigTg3mJOu84blz59QvYD8/P9avX0+9evUoU6ZMrvu6u7tz4MABbt68ye3bt5+5T2vWrOH111/PdpFacHAw//zzD9u2bcv38SdNmsSRI0cYOXIkUVFRXLx4kS1btuhcNZuTp+3n6elJ+/btGTZsGMeOHePkyZMMHToUc3PzZ+73k+zs7HBwcOCLL77g0qVL7N27V+fe4oIyNDRk/fr1+Pr60rp1a27dulVosRY3GRkK8ZiC3gT/Mnhyeu9xFhYWnD9/nrVr13Lnzh2cnZ0JCQlh+PDhue7j7e1N2bJlcXNzUxNfy5YtycjIeOr5wlmzZjF8+HCqVq1KamrqM50LP3nyJGfOnGH16tXZtllbW9OuXTvWrFlDYGBgvo5fu3Zt9u/fz9SpU3n11VdRFIWqVavSu3fvPOPIz35arZahQ4fSsmVLypcvz+zZs5k2bVqB+5wbAwMDNm7cyOjRo/H29sbT05OlS5fi5+f3zG0aGRnxzTff0Lt3b3WE6OjoWGgxFxeNIldeiP8vKSkJGxsbEhMT8/z1/jJ48OABV65coXLlyi/NpeFC6Ku8/n/O7/eaTJMKIYTQe5IMhRBC6D1JhkIIIfSeJEMhhBB6T5Kh0Gty/ZgQpV9h/H8syVDopaynbaSkpBRzJEKI55X1//HzPI1J7jMUesnQ0BBbW1v1+ZYWFhbP9FgsIUTxURSFlJQUEhISsLW1VV9R9iwkGQq9lfVWgsJ+ZY4QomjZ2trqvOXkWUgyFHpLo9Hg7OyMo6PjM70PUAhR/IyNjZ9rRJhFkqHQe4aGhoXyP5MQovSSC2iEEELoPUmGQggh9J4kQyGEEHpPzhkKVdaNq0lJScUciRBCFI6s77On3ZgvyVCo7ty5A4Crq2sxRyKEEIXr33//xcbGJtftkgyFyt7eHoC4uLg8/9GUNklJSbi6unL9+vWX5j2NL2OfQPpVmpSWPimKwr///ouLi0ue9SQZCpWBwaNTyDY2NiX6H/ezKlOmzEvXr5exTyD9Kk1KQ5/y8+NeLqARQgih9yQZCiGE0HuSDIXK1NSU6dOnY2pqWtyhFKqXsV8vY59A+lWavGx90ijyQjchhBB6TkaGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKABYsWIFlStXxszMjPr16/Pbb78Vd0h5OnDgAJ07d8bFxQWNRsPmzZt1tiuKwowZM3BxccHc3Bw/Pz/++OMPnTqpqamMGjWKsmXLYmlpSZcuXbhx40YR9kLX3LlzadiwIdbW1jg6OtK1a1diYmJ06pTGfq1cuZLatWurN2c3adKEX375Rd1eGvv0pLlz56LRaBg7dqxaVhr7NWPGDDQajc7y+BvkS2Of8k0Rem/jxo2KsbGxsnr1auXPP/9UxowZo1haWirXrl0r7tBytX37dmXq1KnKjz/+qADKpk2bdLbPmzdPsba2Vn788Ufl3LlzSu/evRVnZ2clKSlJrfPWW28pFSpUUHbt2qWcOnVKadWqleLr66ukp6cXcW8e8ff3V7RarfL7778rUVFRSqdOnZRKlSop9+/fV+uUxn5t2bJF2bZtmxITE6PExMQo7733nmJsbKz8/vvvpbZPjzt+/Lji7u6u1K5dWxkzZoxaXhr7NX36dKVWrVpKfHy8uiQkJKjbS2Of8kuSoVAaNWqkvPXWWzplNWrUUCZPnlxMERXMk8kwMzNTcXJyUubNm6eWPXjwQLGxsVE+//xzRVEU5Z9//lGMjY2VjRs3qnVu3rypGBgYKDt27Ciy2POSkJCgAMr+/fsVRXl5+qUoimJnZ6d8+eWXpb5P//77r1KtWjVl165dSsuWLdVkWFr7NX36dMXX1zfHbaW1T/kl06R67uHDh5w8eZJ27drplLdr147Dhw8XU1TP58qVK9y6dUunT6amprRs2VLt08mTJ0lLS9Op4+Ligre3d4npd2JiIvB/D1B/GfqVkZHBxo0bSU5OpkmTJqW+TyNHjqRTp060bdtWp7w09+vixYu4uLhQuXJl+vTpw+XLl4HS3af8kAd167nbt2+TkZFB+fLldcrLly/PrVu3iimq55MVd059unbtmlrHxMQEOzu7bHVKQr8VRWHcuHE0b94cb29voHT369y5czRp0oQHDx5gZWXFpk2bqFmzpvoFWRr7tHHjRk6dOsWJEyeybSutf1eNGzfmq6++onr16vzvf/9j9uzZNG3alD/++KPU9im/JBkKADQajc66oijZykqbZ+lTSel3SEgIZ8+e5eDBg9m2lcZ+eXp6EhUVxT///MOPP/7I4MGD2b9/v7q9tPXp+vXrjBkzhl9//RUzM7Nc65W2fnXo0EH9s4+PD02aNKFq1aqsXbuWV155BSh9fcovmSbVc2XLlsXQ0DDbr7aEhIRsvwBLi6yr3/Lqk5OTEw8fPuTevXu51ikuo0aNYsuWLezbt4+KFSuq5aW5XyYmJnh4eNCgQQPmzp2Lr68vS5YsKbV9OnnyJAkJCdSvXx8jIyOMjIzYv38/S5cuxcjISI2rtPXrSZaWlvj4+HDx4sVS+3eVX5IM9ZyJiQn169dn165dOuW7du2iadOmxRTV86lcuTJOTk46fXr48CH79+9X+1S/fn2MjY116sTHx/P7778XW78VRSEkJITw8HD27t1L5cqVdbaX1n7lRFEUUlNTS22f2rRpw7lz54iKilKXBg0a0L9/f6KioqhSpUqp7NeTUlNTiY6OxtnZudT+XeVbcVy1I0qWrFsr1qxZo/z555/K2LFjFUtLS+Xq1avFHVqu/v33X+X06dPK6dOnFUD55JNPlNOnT6u3g8ybN0+xsbFRwsPDlXPnzil9+/bN8RLwihUrKrt371ZOnTqltG7dulgvAX/77bcVGxsbJSIiQufS9pSUFLVOaezXlClTlAMHDihXrlxRzp49q7z33nuKgYGB8uuvv5baPuXk8atJFaV09mv8+PFKRESEcvnyZeXo0aNKQECAYm1trX4XlMY+5ZckQ6EoiqJ89tlnipubm2JiYqLUq1dPvZy/pNq3b58CZFsGDx6sKMqjy8CnT5+uODk5KaampkqLFi2Uc+fO6bTx33//KSEhIYq9vb1ibm6uBAQEKHFxccXQm0dy6g+gaLVatU5p7FdwcLD6b6tcuXJKmzZt1ESoKKWzTzl5MhmWxn5l3TdobGysuLi4KN27d1f++OMPdXtp7FN+ySuchBBC6D05ZyiEEELvSTIUQgih9yQZCiGE0HuSDIUQQug9SYZCCCH0niRDIYQQek+SoRBCCL0nyVAIkaOrV6+i0WiIiooq7lBU58+f55VXXsHMzIw6deoUdzjiJSLJUIgSKigoCI1Gw7x583TKN2/eXOLfAPCiTJ8+HUtLS2JiYtizZ0+OdbI+N41Gg7GxMVWqVGHChAkkJyczY8YMdVtuy9WrV9V67du3z9b+/Pnz0Wg0+Pn5veDeiqIkyVCIEszMzIyPP/4421sASrOHDx8+876xsbE0b94cNzc3HBwccq3Xvn174uPjuXz5MrNnz2bFihVMmDCBCRMmEB8fry4VK1Zk1qxZOmWurq4AODs7s2/fPm7cuKHTtlarpVKlSs/cB1EySTIUogRr27YtTk5OzJ07N9c6M2bMyDZluHjxYtzd3dX1oKAgunbtypw5cyhfvjy2trbMnDmT9PR0Jk6ciL29PRUrViQ0NDRb++fPn6dp06aYmZlRq1YtIiIidLb/+eefdOzYESsrK8qXL8/AgQO5ffu2ut3Pz4+QkBDGjRtH2bJlee2113LsR2ZmJrNmzaJixYqYmppSp04dduzYoW7XaDScPHmSWbNmodFomDFjRq6fiampKU5OTri6utKvXz/69+/P5s2bsbKywsnJSV0MDQ2xtrbOVgbg6OhIu3btWLt2rdru4cOHuX37Np06ddI5XkREBI0aNcLS0hJbW1uaNWumvvBWlA6SDIUowQwNDZkzZw7Lli3LNkIpqL179/LXX39x4MABPvnkE2bMmEFAQAB2dnYcO3aMt956i7feeovr16/r7Ddx4kTGjx/P6dOnadq0KV26dOHOnTvAo9fztGzZkjp16hAZGcmOHTv43//+R69evXTaWLt2LUZGRhw6dIhVq1blGN+SJUtYtGgRCxcu5OzZs/j7+9OlSxcuXryoHqtWrVqMHz+e+Ph4JkyYkO++m5ubk5aWVpCPC4Dg4GDCwsLU9dDQUPr374+JiYlalp6eTteuXWnZsiVnz57lyJEjvPnmm3o7lV1aSTIUooTr1q0bderUYfr06c/Vjr29PUuXLsXT05Pg4GA8PT1JSUnhvffeo1q1akyZMgUTExMOHTqks19ISAg9evTAy8uLlStXYmNjw5o1awBYuXIl9erVY86cOdSoUYO6desSGhrKvn37uHDhgtqGh4cH8+fPx9PTkxo1auQY38KFC5k0aRJ9+vTB09OTjz/+mDp16rB48WLg0YtjjYyM1NGdlZVVvvp9/PhxNmzYQJs2bQr8mQUEBJCUlMSBAwdITk7mu+++Izg4WKdOUlISiYmJBAQEULVqVby8vBg8eLBMpZYyRsUdgBDi6T7++GNat27N+PHjn7mNWrVqYWDwf79/y5cvj7e3t7puaGiIg4MDCQkJOvs1adJE/bORkRENGjQgOjoaePTG93379uWYmGJjY6levToADRo0yDO2pKQk/vrrL5o1a6ZT3qxZM86cOZPPHv6frVu3YmVlRXp6OmlpaQQGBrJs2bICt2NsbMyAAQPQarVcvnyZ6tWrU7t2bZ069vb2BAUF4e/vz2uvvUbbtm3p1asXzs7OBT6eKD4yMhSiFGjRogX+/v6899572bYZGBjw5JvYcpoSNDY21lnPutryybLMzMynxpM1BZiZmUnnzp113vgeFRXFxYsXadGihVrf0tLyqW0+3m4WRVGeabqxVatWREVFERMTw4MHDwgPD8fR0bHA7cCjqdLvv/+ezz77LNuoMItWq+XIkSM0bdqUb7/9lurVq3P06NFnOp4oHpIMhSgl5s2bx88//8zhw4d1ysuVK8etW7d0EmJh3hv4+Jd6eno6J0+eVKc669Wrxx9//IG7uzseHh46S34TIECZMmVwcXHh4MGDOuWHDx/Gy8urwDFbWlri4eGBm5tbtoRfULVq1aJWrVr8/vvv9OvXL9d6devWZcqUKRw+fBhvb282bNjwXMcVRUuSoRClhI+PD/3798823efn58fff//N/PnziY2N5bPPPuOXX34ptON+9tlnbNq0ifPnzzNy5Eju3bunjpBGjhzJ3bt36du3L8ePH+fy5cv8+uuvBAcHk5GRUaDjTJw4kY8//phvv/2WmJgYJk+eTFRUFGPGjCm0vjyrvXv3Eh8fj62tbbZtV65cYcqUKRw5coRr167x66+/cuHChWdK4qL4SDIUohT58MMPs02Jenl5sWLFCj777DN8fX05fvx4ga60fJp58+bx8ccf4+vry2+//cZPP/1E2bJlAXBxceHQoUNkZGTg7++Pt7c3Y8aMwcbGRuf8ZH6MHj2a8ePHM378eHx8fNixYwdbtmyhWrVqhdaXZ5V1y0ROLCwsOH/+PD169KB69eq8+eabhISEMHz48KINUjwXjfLk/1lCCCGEnpGRoRBCCL0nyVAIIYTek2QohBBC70kyFEIIofckGQohhNB7kgyFEELoPUmGQggh9J4kQyGEEHpPkqEQQgi9J8lQCCGE3pNkKIQQQu9JMhRCCKH3/h+GmvoY4TtqMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.modification_breakdown(spliced_ptms = spliced_ptms, altered_flanks = altered_flanks)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inspecting number of PTMs with annotation information available" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Some annotations in spliced ptms dataframe not found in altered flanks dataframe. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.\n" + ] + } + ], + "source": [ + "\n", + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')\n", + "combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "module 'ptm_pose.analyze' has no attribute 'show_available_annotations'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[3], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mptm_pose\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m plots \u001b[38;5;28;01mas\u001b[39;00m pose_plots\n\u001b[1;32m----> 3\u001b[0m \u001b[43manalyze\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshow_available_annotations\u001b[49m()\n", + "\u001b[1;31mAttributeError\u001b[0m: module 'ptm_pose.analyze' has no attribute 'show_available_annotations'" + ] + } + ], + "source": [ + "analyze.show_available_annotations(spliced_ptms)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inspecting Specific Annotation\n", + "\n", + "Often, we will want to dig deeper into the specific functions, processes, interactions, etc. associated with the proteins in our dataset. First, we can look at the annotations currently available for analysis, based on annotations that have been appended using the annotate module:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Some annotations in spliced ptms dataframe not found in altered flanks dataframe. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
databaseannotation_typecolumn
5CombinedInteractionsCombined:Interactions
8CombinedKinaseCombined:Kinase
1DEPODPhosphataseDEPOD:Phosphatase
2ELMInteractionsELM:Interactions
0PhosphoSitePlusInteractionsPSP:ON_PROT_INTERACT
3PhosphoSitePlusDiseasePSP:Disease_Association
4PhosphoSitePlusProcessPSP:ON_PROCESS
6PhosphoSitePlusFunctionPSP:ON_FUNCTION
7RegPhosKinaseRegPhos:Kinase
\n", + "
" + ], + "text/plain": [ + " database annotation_type column\n", + "5 Combined Interactions Combined:Interactions\n", + "8 Combined Kinase Combined:Kinase\n", + "1 DEPOD Phosphatase DEPOD:Phosphatase\n", + "2 ELM Interactions ELM:Interactions\n", + "0 PhosphoSitePlus Interactions PSP:ON_PROT_INTERACT\n", + "3 PhosphoSitePlus Disease PSP:Disease_Association\n", + "4 PhosphoSitePlus Process PSP:ON_PROCESS\n", + "6 PhosphoSitePlus Function PSP:ON_FUNCTION\n", + "7 RegPhos Kinase RegPhos:Kinase" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from ptm_pose import analyze\n", + "from ptm_pose import plots as pose_plots\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')\n", + "combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks)\n", + "\n", + "annot_categories = analyze.get_annotation_categories(combined_output)\n", + "annot_categories" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This will tell us what database information is available, the types of information from that database, and the column associated with that information. Let's take a closer look at the biological process information from PhosphoSitePlus:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Specific PTMs with annotation:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GeneUniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassPSP:ON_PROCESSdPSISignificanceImpact
0BCAR1P56945Y267.0Phosphorylationcell growth, induced-0.070.0458775672499Excluded
1BCAR1P56945Y287.0Phosphorylationcell growth, induced-0.070.0458775672499Excluded
2BIN1O00499T348.0Phosphorylationsignaling pathway regulation-0.1120.0233903490744Excluded
3CEACAM1P13688S461.0Phosphorylationapoptosis, altered0.5251.73943268451e-09Included
4CTTNQ14247K272.0Acetylationcell motility, inhibited0.090.0355211287599Included
5CTTNQ14247S298.0Phosphorylationcell motility, altered; cytoskeletal reorganiz...0.090.0355211287599Included
6SPHK2Q9NRA0S387.0Phosphorylationcell motility, altered0.2530.0129400018182Included
7SPHK2Q9NRA0T614.0Phosphorylationcell motility, altered0.2530.0129400018182Included
8TSC2P49815S981.0Phosphorylationcarcinogenesis, inhibited; cell growth, inhibi...-0.2194.18472157275e-05Excluded
9YAP1P46937K342.0Ubiquitinationcarcinogenesis, altered-0.188;-0.1610.000211254197372;4.17884655686e-07Excluded
\n", + "
" + ], + "text/plain": [ + " Gene UniProtKB Accession Residue PTM Position in Canonical Isoform \\\n", + "0 BCAR1 P56945 Y 267.0 \n", + "1 BCAR1 P56945 Y 287.0 \n", + "2 BIN1 O00499 T 348.0 \n", + "3 CEACAM1 P13688 S 461.0 \n", + "4 CTTN Q14247 K 272.0 \n", + "5 CTTN Q14247 S 298.0 \n", + "6 SPHK2 Q9NRA0 S 387.0 \n", + "7 SPHK2 Q9NRA0 T 614.0 \n", + "8 TSC2 P49815 S 981.0 \n", + "9 YAP1 P46937 K 342.0 \n", + "\n", + " Modification Class PSP:ON_PROCESS \\\n", + "0 Phosphorylation cell growth, induced \n", + "1 Phosphorylation cell growth, induced \n", + "2 Phosphorylation signaling pathway regulation \n", + "3 Phosphorylation apoptosis, altered \n", + "4 Acetylation cell motility, inhibited \n", + "5 Phosphorylation cell motility, altered; cytoskeletal reorganiz... \n", + "6 Phosphorylation cell motility, altered \n", + "7 Phosphorylation cell motility, altered \n", + "8 Phosphorylation carcinogenesis, inhibited; cell growth, inhibi... \n", + "9 Ubiquitination carcinogenesis, altered \n", + "\n", + " dPSI Significance Impact \n", + "0 -0.07 0.0458775672499 Excluded \n", + "1 -0.07 0.0458775672499 Excluded \n", + "2 -0.112 0.0233903490744 Excluded \n", + "3 0.525 1.73943268451e-09 Included \n", + "4 0.09 0.0355211287599 Included \n", + "5 0.09 0.0355211287599 Included \n", + "6 0.253 0.0129400018182 Included \n", + "7 0.253 0.0129400018182 Included \n", + "8 -0.219 4.18472157275e-05 Excluded \n", + "9 -0.188;-0.161 0.000211254197372;4.17884655686e-07 Excluded " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ptms_with_annotation, annotation_counts = analyze.get_ptm_annotations(spliced_ptms, database = \"PhosphoSitePlus\", annotation_type = 'Process')\n", + "print('Specific PTMs with annotation:')\n", + "ptms_with_annotation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this, we note a total of 9 impacted PTMs from 7 genes that have biological process information available. While we could manually look through to look for common processes, we can also inspect the annotation counts object to see the most common processes, including a breakdown by the type of impact (included [dPSI > 0], excluded [dPSI < 0], or altered flanking sequence):" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of PTMs associated with each annotation:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
All ImpactedIncludedExcludedAltered Flank
PSP:ON_PROCESS
cell motility, altered33.00.00.0
cell growth, induced20.02.00.0
signaling pathway regulation20.02.00.0
apoptosis, altered11.00.00.0
cell motility, inhibited11.00.00.0
cytoskeletal reorganization11.00.00.0
cell adhesion, inhibited11.00.00.0
carcinogenesis, inhibited10.01.00.0
cell growth, inhibited10.01.00.0
autophagy, inhibited10.01.00.0
carcinogenesis, altered10.01.00.0
\n", + "
" + ], + "text/plain": [ + " All Impacted Included Excluded Altered Flank\n", + "PSP:ON_PROCESS \n", + "cell motility, altered 3 3.0 0.0 0.0\n", + "cell growth, induced 2 0.0 2.0 0.0\n", + "signaling pathway regulation 2 0.0 2.0 0.0\n", + "apoptosis, altered 1 1.0 0.0 0.0\n", + "cell motility, inhibited 1 1.0 0.0 0.0\n", + "cytoskeletal reorganization 1 1.0 0.0 0.0\n", + "cell adhesion, inhibited 1 1.0 0.0 0.0\n", + "carcinogenesis, inhibited 1 0.0 1.0 0.0\n", + "cell growth, inhibited 1 0.0 1.0 0.0\n", + "autophagy, inhibited 1 0.0 1.0 0.0\n", + "carcinogenesis, altered 1 0.0 1.0 0.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print('Number of PTMs associated with each annotation:')\n", + "annotation_counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, you may prefer to visualize this information as a figure. Here, we can plot the top 10 most common biological processes for the included, excluded, and altered flanking sequence impacts. Notably, we can plot either the annotations as outputted above (includes directionality of PTM role) or we can collapse this information into similar groups (e.g. \"cell motility, altered\" and \"cell motility, included\" would be grouped as \"cell motility\"). Here, we will plot the full information on the left and the collapsed information on the right:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Collapsed Annotation')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAFCCAYAAAA6zfEwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADkdElEQVR4nOzdd1gUx+P48fcB0jsIWChKE2yIaIKogCUoajQaNXbs0WDvUeyxxu7HroA9iV1jiEYFuyKKFRuCWDB2QRGk7O8PfuzXExAwFMu8nuce3d3Zmdk9bm9uqkKSJAlBEARBEARBEP4zlZLOgCAIgiAIgiB8LkThWhAEQRAEQRAKiShcC4IgCIIgCEIhEYVrQRAEQRAEQSgkonAtCIIgCIIgCIVEFK4FQRAEQRAEoZCIwrUgCIIgCIIgFBJRuBYEQRAEQRCEQiIK14IgCIIgCIJQSEThWhCKQVBQEAqFIsfX8OHDCxRXaGgoCoWC0NBQed/EiRNRKBQFimfo0KEoFAqaN29eoPOKQ1JSEhMnTlS6xoK6f/8+EydOJDIyMtuxD7lfgiAUngsXLtC9e3cqVKiApqYmurq6uLq6MmvWLJ4+fVrg+Pz8/LCxsVHaZ2Njg5+fX+FkuARlfX/Exsbm+xzxfC/Z57taiaYuCF+YwMBAKlWqpLSvbNmyxZ6P1NRU1q9fD0BISAj37t2jXLlyxZ6P3CQlJTFp0iQAvLy8PiiO+/fvM2nSJGxsbHBxcVE61qtXL5o0afIfcykIwodYuXIl/fv3x9HRkREjRuDs7Exqaipnzpxh2bJlnDhxgu3bt5d0Nj9Z4vle8s93UbgWhGJUpUoV3NzcSjob7Ny5k0ePHtGsWTP+/PNPgoOD+fnnn0s6W8WmfPnylC9fvqSzIQhfnBMnTtCvXz8aN27Mjh070NDQkI81btyYYcOGERISUoI5/PSJ53vJP99FtxBB+EgoFAomTpyYbX9RNG2uXr0adXV1AgMDsbS0JDAwEEmSlMJkdT/ZtGkTY8eOpWzZsujr69OoUSOuXbumFNbLy4sqVaoQHh5OvXr10NbWpmLFisyYMYOMjAylsHFxcXTu3BkzMzM0NDRwcnJizpw5crjY2FhKly4NwKRJk+TuM1n34ObNm3Tv3h17e3u0tbUpV64cLVq04OLFi0p5r1WrFgDdu3eX48i6vzk1G2ZkZDBr1iwqVaqEhoYGZmZmdO3albt3737wtQqCoGzatGkoFApWrFihVLDOoq6uzrfffitv5/dzmR/JyckMGzYMFxcXDAwMMDY2xt3dnZ07d2YLq1Ao8Pf3Z/ny5Tg4OKChoYGzszObN29WCpeUlMTw4cPl7i3Gxsa4ubmxadMmpXBnzpzh22+/xdjYGE1NTWrUqMHvv/+eLd2TJ0/i4eGBpqYmZcuWZcyYMaSmphboOsXz/SN4vkuCIBS5wMBACZBOnjwppaamKr2yANKECROynWttbS1169ZN3j506JAESIcOHZL3TZgwQcrvx/nOnTuSioqK1LZtW0mSJGncuHESIIWGhiqFy0rHxsZG6tSpk/Tnn39KmzZtkqysrCR7e3spLS1NDuvp6SmZmJhI9vb20rJly6T9+/dL/fv3lwApODhYDvfw4UOpXLlyUunSpaVly5ZJISEhkr+/vwRI/fr1kyRJkpKTk6WQkBAJkHr27CmdOHFCOnHihHTz5k1JkiQpLCxMGjZsmLRlyxYpLCxM2r59u9SqVStJS0tLunr1qiRJkvTixQv5no8bN06O486dO7nerz59+kiA5O/vL4WEhEjLli2TSpcuLVlaWkqPHj0q8LUKgqAsLS1N0tbWlr766qt8n5Pfz2W3bt0ka2trpXPffXY+f/5c8vPzk9atWycdPHhQCgkJkYYPHy6pqKhk++wCkqWlpeTs7Cxt2rRJ2rVrl9SkSRMJkP744w85XN++fSVtbW1p7ty50qFDh6Q9e/ZIM2bMkBYtWiSHOXjwoKSuri7Vq1dP+u2336SQkBDJz89PAqTAwEA53OXLlyVtbW05zZ07d0o+Pj6SlZWVBEgxMTF53i/xfP84nu+icC0IxSDrQZDTK6uAXVyF68mTJ0uAFBISIkmSJN26dUtSKBRSly5dlMJlpePr66u0//fff5cA6cSJE/I+T09PCZBOnTqlFNbZ2Vny8fGRt0ePHp1juH79+kkKhUK6du2aJEmS9OjRo1zvx7vS0tKkN2/eSPb29tKQIUPk/eHh4dm+vLK8e7+ioqIkQOrfv79SuFOnTkmA9PPPPxf4WgVBUPbgwQMJkH744Yd8hS/I5zI/het3paWlSampqVLPnj2lGjVqKB0DJC0tLenBgwdK4StVqiTZ2dnJ+6pUqSK1atXqvddRqVIlqUaNGkqVKZIkSc2bN5fKlCkjpaenS5IkSe3bt881zfwWrsXz/eN4votuIYJQjNauXUt4eLjSS02t+IY+SJIkNxU2btwYgAoVKuDl5cXWrVtJSEjIds7bTbQA1apVA+D27dtK+y0sLKhdu3a2sG+HO3jwIM7OztnC+fn5IUkSBw8ezPMa0tLSmDZtGs7Ozqirq6Ompoa6ujo3btwgKioqz/NzcujQITkfb6tduzZOTk4cOHBAaX9+rlUQhP+moJ/L/Pjjjz/w8PBAV1cXNTU1SpUqxerVq3N8djRs2BBzc3N5W1VVlfbt23Pz5k25O0Ht2rX566+/GD16NKGhobx+/Vopjps3b3L16lU6deoEZD6/sl6+vr7Ex8fL3TAOHTqUa5r5IZ7vOSuJ57soXAtCMXJycsLNzU3pVZwOHjxITEwMbdu2JSEhgefPn/P8+XPatWtHUlJStn6CACYmJkrbWf0k3/0SeTdcVti3wz158oQyZcpkC5c1Y8qTJ0/yvIahQ4cSEBBAq1at2L17N6dOnSI8PJzq1atny1N+ZaWbW97ezVd+rlUQBGWmpqZoa2sTExOTr/AF/VzmZdu2bbRr145y5cqxfv16Tpw4QXh4OD169CA5OTlbeAsLi1z3ZaW9cOFCRo0axY4dO/D29sbY2JhWrVpx48YNAP79918Ahg8fTqlSpZRe/fv3B+Dx48dynO9LMy/i+Z6zkni+i9lCBOEjoaGhQUpKSrb9Bf0CeZ/Vq1cDMHfuXObOnZvj8b59+xZaeu8yMTEhPj4+2/779+8DmV++eVm/fj1du3Zl2rRpSvsfP36MoaHhB+cLID4+Ptso8/v37+crX4IgvJ+qqioNGzbkr7/+4u7du3nO6FDYn8v169dToUIFfvvtN6UBbzk9dwEePHiQ676svOno6DBp0iQmTZrEv//+K9dit2jRgqtXr8p5HDNmDK1bt84xHUdHRznO96WZF/F8zz1fULzPd1FzLQgfCRsbGy5cuKC07+DBg7x8+bJQ4n/27Bnbt2/Hw8ODQ4cOZXt16tSJ8PBwLl26VCjp5aRhw4ZcuXKFs2fPKu1fu3YtCoUCb29vIPfaE8gcxf/uLAN//vkn9+7dU9r3vjje1aBBAwB5btgs4eHhREVF0bBhwzzjEAQhb2PGjEGSJHr37s2bN2+yHU9NTWX37t1A4X8uFQoF6urqSgXrBw8e5DhbCMCBAwfkmmeA9PR0fvvtN2xtbXP8YWBubo6fnx8dOnTg2rVrJCUl4ejoiL29PefPn8/Wapn10tPTA8Db2zvXNPMinu+5K4nnu6i5FoSPRJcuXQgICGD8+PF4enpy5coVFi9ejIGBQaHEv2HDBpKTkxk4cGCOE/ebmJiwYcMGVq9ezbx58wolzXcNGTKEtWvX0qxZMyZPnoy1tTV//vknS5YsoV+/fjg4OACgp6eHtbU1O3fupGHDhhgbG2NqaoqNjQ3NmzcnKCiISpUqUa1aNSIiIpg9e3a2LztbW1u0tLTYsGEDTk5O6OrqUrZs2RwX7XF0dKRPnz4sWrQIFRUVmjZtSmxsLAEBAVhaWjJkyJAiuR+C8KVxd3dn6dKl9O/fn5o1a9KvXz8qV65Mamoq586dY8WKFVSpUoUWLVoU+ueyefPmbNu2jf79+/P9999z584dpkyZQpkyZeRuHG8zNTWlQYMGBAQEoKOjw5IlS7h69arSdHxfffUVzZs3p1q1ahgZGREVFcW6detwd3dHW1sbgOXLl9O0aVN8fHzw8/OjXLlyPH36lKioKM6ePcsff/wBwLhx49i1axcNGjRg/PjxaGtr87///Y9Xr17leW3i+f6RPd/zPfRREIQPljVbSHh4eK5hUlJSpJEjR0qWlpaSlpaW5OnpKUVGRhbabCEuLi6SmZmZlJKSkmuYr7/+WjI1NZVSUlLkdN6edkqSJCkmJibbKG1PT0+pcuXK2eLLaQT/7du3pY4dO0omJiZSqVKlJEdHR2n27NnyiPks//zzj1SjRg1JQ0NDAuR78OzZM6lnz56SmZmZpK2tLdWtW1c6cuSI5OnpKXl6eirFsWnTJqlSpUpSqVKllEan53S/0tPTpZkzZ0oODg5SqVKlJFNTU6lz587y9E4fcq2CIOQsMjJS6tatm2RlZSWpq6tLOjo6Uo0aNaTx48dLDx8+lMPl93OZ39lCZsyYIdnY2EgaGhqSk5OTtHLlyhyfB4D0008/SUuWLJFsbW2lUqVKSZUqVZI2bNigFG706NGSm5ubZGRkJGloaEgVK1aUhgwZIj1+/Fgp3Pnz56V27dpJZmZmUqlSpSQLCwupQYMG0rJly5TCHTt2TPr6668lDQ0NycLCQhoxYoS0YsWKPGcLEc/3j+v5rpCkd2YWFwRBEARB+IIpFAp++uknFi9eXNJZET5Bos+1IAiCIAiCIBQSUbgWBEEQBEEQhEIiBjQKgiAIgiC8RfSYFf4LUXMtCIIgCIIgCIVEFK4FQRAEQRAEoZCIwrUgCIIgCIIgFBLR51oQillGRgb3799HT09PaaUw4dMkSRKJiYmULVsWFRVRXyEIHxvxzP28fArPXFG4FoRidv/+fSwtLUs6G0Ihu3PnTo5LIguCULLEM/fz9DE/c0XhWhCKmZ6eHpD5YNDX1y/h3Aj/VUJCApaWlvL7KgjCx0U8cz8vn8IzVxSuBaGYZTVL6uvriwf9Z0Q0NwvCx0k8cz9PH/Mz9+PsrCIIgiAIgiAInyBRcy0IgiAIgvCW9PR0UlNTSzobX7xSpUqhqqpa0tkoMFG4FgRBEARB+P9evnzJ3bt3xSqNHwGFQkH58uXR1dUt6awUiChcC4IgCIIgkFljfffuXbS1tSlduvRH3a/3cydJEo8ePeLu3bvY29t/UjXYonAtCIIgCIIApKamIkkSpUuXRktLq6Sz88UrXbo0sbGxpKamflKFazGgURAEQRAE4S2ixvrj8Km+D6JwLQiCIAiCUAAuLi64uLjg7OyMmpqavN2+ffsSy9OECRNwcnLiq6++ynbMz8+PxYsXl0CulM2fP5+HDx+WdDaKnOgWIgglJDIy8pMbpPExSklJQUNDo9jSMzU1xcrKqtjSEwShcOTnmStJEmpqaiQlJZGenp5ruGPHjgFw+/Zt6tWrJ28DvHr1qnAyXECzZs0iKiqK0qVLZ8tDWloaKSkpRZY3SZLyVcs8b9486tSpg46OTr7ifd978DEThWtBKCGenp4lnYXPgoqKChkZGcWWnra2NlFRUaKALQifmPw8c62trVm2bFm+p+G7f/8+6enpREVFsW7dOu7cucPPP/8MQGJiIt999x1bt27l8OHDhISEoKOjw927d9HV1WXy5MlYWFgAsG7dOv755x/S09MxMTFhzJgx8rG3HT9+nCVLlpCeno6enh6jR4+mYsWK9OjRg+TkZBo3bkzNmjUZPny40nnPnz/n33//JSoqihUrVnD79m2SkpKIjY2lUqVK+Pn5MX/+fO7fv4+XlxdDhgwBoG/fvjg4OHD9+nUePXqEp6cnAwcORKFQsGHDBv7++2/S09NRU1NjxIgRVKlSBYALFy6waNEiXr16hSRJ/Pjjj1y/fp379+/Trl071NXVmTBhAo6Oju+9vwqFAnV19Xy9Fx8TUbgWhBLSokULypQpU9LZ+KTduHGDQ4cOsX79epycnIo8vaioKDp37szjx49F4VoQPjH5eeYaGBigq6uLkZERamp5F5GSk5NRUVGhdOnS9OzZk4YNG6KhoYG+vj47duzAx8cHOzs7zp07x/nz59m7dy+2trYsW7aMOXPmEBQUxM6dO3n06BG7d+9GVVWVbdu2sWDBAlatWqWU1uPHj5k4cSKbNm2iUqVK7Nixg4CAAPbt28fu3buxsbFh586dOdYKa2pqoqurS+nSpdHW1ub69evs2rULHR0dmjVrxvLly9mwYQPp6enUq1ePXr16UbFiRUqVKsW9e/f47bffSEtLo127dpw+fZrmzZvTpUsXBg8eTHJyMsePH2fmzJmcOXOGp0+fMmbMGDZu3MjXX39NRkYGz58/x9jYmJCQEH7//XcqV66cr3sbExNTrJUnhUUUrgWhhJiYmFC2bNmSzsYn7fHjxwA4OTnh6upawrkRBOFjlp9nro6ODqqqqpQqVSpfhetSpUrJ/5qamuLr68v27dvp2bMnGzZsYPny5fJCKLVr16ZSpUoAdO3alfnz56Ompsb+/fu5cOECLVq0ACAjIwMVFRU57iwXL16kcuXKVK1aFYC2bdsyfvx4nj59irm5uZyPd8+DzBa+rOtSVVXFy8sLExMTAJydnalcubLcZcbW1pb79+/j6OiIiooK7dq1Q1tbG4A2bdpw4sQJvvvuO65du8bChQt58uQJADdv3qRUqVJcuHCBypUr07BhQzl9PT09ILMmWltbO9/dQj5VonAtCIIgCIJQCHr27EmPHj2wtrbG1NRU7ibxPpIkMWjQIH744Yc8w+bUr/lDZtR4e5yKqqpqtu20tLT3nv/mzRt69+7Nli1bsLOz4+7du3h7e/PmzZsC5+VzJGYLEQRBEARBKAR2dnZYWloyZswYunfvrnQsPDyc6OhoADZt2kSdOnVQKBR88803BAcH8+zZMyBzru1Lly5li7tmzZpcvnyZGzduALBz507KlCmDmZlZkV7T1q1bSUtL4/Xr1+zYsYN69eqRkpJCWlqa3BLw+++/y+Hr1KlDVFQUx48fBzJr4p8+fQqAvr4+L168KNL8fgxE4bqY+Pn50apVK3nby8uLwYMHl1h+3qVQKNixYwcAsbGxKBQKIiMjAQgNDUWhUPD8+fMSy1+WjykvWYKCgjA0NCzpbAiCIAgfgY4dO5Kenk6zZs2U9ru7uzN37lwaN27M/v37mT59OgDff/89rVu3pm3btjRq1IhvvvlGafaRLCYmJixcuBB/f38aNWrE2rVrWbZsWZFfT5UqVfjhhx9o1KgRX3/9Nc2bN0dPT4/hw4fTrFkzOnTooNQVxcjIiO3btzNixAiqVatGjRo1OHr0KAADBw6ke/fuuLi4yGWMz5HoFvKFmThxIjt27Mj2Rx0fH4+RkVGO59SpU4f4+HgMDAyAzMLk4MGDP4oC7seUF0EQBOHLYmlpma2W+ejRo3Tt2jVb32ctLS3+97//5RhP79696d27d57peXt74+3tneOxe/fu5Xre/Pnz5f8PGzYs12MAW7ZsUdp2c3NjzJgx2eLs378//fv3JykpiefPnzNt2jS5L/XXX3+d4w+EXr160atXr1zz+bkQNdcCABYWFrnOFayuro6FhcUnu1JSfqSnp3+SI5IFQfiyiVbRj8eDBw+oX78+ly9fzldBWfh8icJ1PmVkZDBz5kzs7OzQ0NDAysqKX375RT5+79492rdvj5GRESYmJrRs2ZLY2NgPTm/ixIm4uLiwZs0arKys0NXVpV+/fqSnpzNr1iwsLCwwMzNTygNAXFwcLVu2RFdXF319fdq1a8e///4LZNbyTpo0ifPnz6NQKFAoFAQFBQHKD8B3vf0ADA0NpXv37rx48UKOY+LEiUyePFkewfy2mjVrMn78+Hxf9/r163Fzc0NPTw8LCws6duyY62pOueUFMgdbjBw5knLlyqGjo8NXX31FaGiofG5WV449e/bg7OyMhoYGt2/fzvO8rHOtrKzQ1tbmu+++k0dKC4IgfKmyvrPeFR8fT9OmTXM8J6dW0U+5i52FhQWHDx9m165d2Rarad++PStXriyhnH24LVu20Lhx45LOxidHFK7zacyYMcycOZOAgACuXLnCxo0b5alvkpKS8Pb2RldXl8OHD3P06FF0dXVp0qTJfxo5Gx0dzV9//UVISAibNm1izZo1NGvWjLt37xIWFsbMmTMZN24cJ0+eBDJHHLdq1YqnT58SFhbG/v37iY6Olpdjbd++PcOGDaNy5crEx8cTHx9f4KVa69Spw/z589HX15fjGD58OD169ODKlSuEh4fLYS9cuMC5c+fw8/PLd/xv3rxhypQpnD9/nh07dhATE5Pr+bnlBaB79+4cO3aMzZs3c+HCBdq2bUuTJk3kgSCQ+b5Nnz6dVatWcfnyZczMzPI879SpU/To0YP+/fsTGRmJt7c3U6dOfe81paSkkJCQoPQSBEH4EnzpraLCl0kUrvMhMTGRBQsWMGvWLLp164atrS1169aV+w1t3rwZFRUVVq1aRdWqVXFyciIwMJC4uLhstZ4FkZGRwZo1a3B2dqZFixZ4e3tz7do15s+fj6OjI927d8fR0VFO459//uHChQts3LiRmjVr8tVXX7Fu3TrCwsIIDw9HS0sLXV1d1NTUsLCwwMLCAi0trQLlSV1dHQMDAxQKhRyHrq4u5cuXx8fHh8DAQDlsYGAgnp6eVKxYMd/x9+jRg6ZNm1KxYkW+/vprFi5cyF9//cXLly/znZfo6Gg2bdrEH3/8Qb169bC1tWX48OHUrVtXKX+pqaksWbKEOnXq4OjoyIMHD/I8b8GCBfj4+DB69GgcHBwYOHAgPj4+772m6dOnY2BgIL8sLS3zfT8EQfi8iVbR4mkVFYTiJArX+RAVFUVKSorShOhvi4iI4ObNm+jp6aGrq4uuri7GxsYkJyfL0+58CBsbG3nidQBzc3OcnZ1RUVFR2pfVbSIqKgpLS0ulwpuzszOGhoZERUV9cD7yq3fv3mzatInk5GRSU1PZsGEDPXr0KFAc586do2XLllhbW6Onp4eXlxeQ+WDPr7NnzyJJEg4ODvL7oaurS1hYmNL7oa6uTrVq1Qp0XlRUFO7u7krpvbv9rjFjxvDixQv5defOnXxfiyAInzfRKpqpqFtFBaE4idlC8iGv2t2MjAxq1qzJhg0bsh0rXbr0B6f77khjhUKR476sgXiSJOXYvJbb/sLWokULNDQ02L59OxoaGqSkpNCmTZt8n//q1Su++eYbvvnmG9avX0/p0qWJi4vDx8enQF8kGRkZqKqqEhERgaqqqtKxt/vBaWlpKd2X/JwnSVK+85FFQ0Mj12ZRQRC+XFmtoosXL6Zbt24AcssoKLeKZj2rAgMDMTQ0JDQ0lG+++eaD0s1qFdXT08PZ2VluFd27dy8qKio4Ojoyc+ZMQkND+frrr+VW0ZiYGLnyZt26dVSuXJnw8HBq1aql1Cr6Id5ticyiq6srt4rWqlVLvgfvaxVNSUkhJSVF3hZd8YTiJgrX+WBvb4+WlhYHDhzIcQoZV1dXfvvtN8zMzNDX1y+BHGZydnYmLi6OO3fuyA/AK1eu8OLFC5ycnIDMB1h6evp/Sie3ONTU1OjWrRuBgYFoaGjwww8/yEum5sfVq1d5/PgxM2bMkPN/5syZAuelRo0apKen8/DhQ+rVq5fv9PNznrOzs1ybk+XdbUEQhPwoSKvo24qiVVRVVfWDW0WzCr1FpXfv3vTo0YO5c+eiqqrKhg0bmDNnTq7hp0+fzqRJkwot/Xv37smLoBQGY2NjypUr994wVlZWODo6ytv9+vWjdevW+U7jzp079OnTh7/++ivf5wwePJhmzZrlewDjnDlzMDY2LnArxZdAFK7zQVNTk1GjRjFy5EjU1dXx8PDg0aNHXL58mZ49e9KpUydmz55Ny5YtmTx5MuXLlycuLo5t27YxYsQIypcvXyz5bNSoEdWqVaNTp07Mnz+ftLQ0+vfvj6enJ25ubkDmQzUmJobIyEjKly+Pnp5egWtVbWxsePnyJQcOHKB69epoa2vLhehevXrJBfmc5rh8HysrK9TV1Vm0aBE//vgjly5dYsqUKQXOi4ODA506daJr167MmTOHGjVq8PjxYw4ePEjVqlXx9fXNMa78nDdw4EDq1KnDrFmzaNWqFfv27SMkJKRA1ykIggCiVTS/CtoqOmbMGIYOHSpvJyQkfPBYl3v37uHp6cnr168/6PycaGlpERYW9t4Ctr6+Pvv37y+0NIXiJQrX+RQQEICamhrjx4/n/v37lClThh9//BEAbW1tDh8+zKhRo2jdujWJiYmUK1eOhg0bFmtNdtbAkQEDBlC/fn1UVFRo0qQJixYtksO0adOGbdu24e3tzfPnzwkMDCxwv7U6derw448/0r59e548ecKECRPkKfDs7e2pU6cOT5484auvvlI6LzQ0FG9vb2JiYrCxsckWb+nSpQkKCuLnn39m4cKFuLq68uuvv/Ltt98WOC+BgYFMnTqVYcOGce/ePUxMTHB3d8+1YJ0lr/O+/vprVq1aJafTqFEjxo0bl+ePAEEQhHeJVlFlhdUqWphd8Z4+fcrr16+ZPn16gQbn5+bWrVuMGTOGp0+f5ll7/a7bt2/TrVs39uzZg6qqKs2aNWPZsmVUqFCBSZMmceLECRQKBUOGDFEaT/Tbb79x7do1eQBo06ZNWbFiBZaWlsyaNYs///wTKysrpbQOHDjAvHnzSElJoUaNGsyYMQMVFRXWrl3LypUrKVu2LCYmJhgbG//ne/I5EoXrfFJRUWHs2LGMHTs2x+MWFhYEBwfnen7WyOksec0iMnHiRLnAmlscOcVjZWXFzp07c41XQ0Mj2+pLoNyX2MbGRmnby8srW1/jpUuXsnTp0hzj+ffff+nbt2+2Y7GxsdjZ2b33gdKhQwc6dOiQa97ym5dSpUoxadKkXJsG/fz8cvxRkdd5kDmjybsDNd9d8UoQBCEvolVUWVG1ihaGihUr4uzsXGzpJSQkKHXPmDp1Kl999RVdunRhypQpaGho0LJlSxwcHAgMDCQhIYH9+/ejoqLC8+fPSUxMzDONc+fOERoayv79+3n27BleXl507dqVp0+fsmLFCrZs2YKmpiZjx45l9+7d1K5dm2XLlhESEoKKigo+Pj5F3iXoUyUK10KhefjwIevWrePevXt079492/GQkBCmTZuWrflREAThSyVaRf/Ph7aKfo5y6xbSo0cPWrVqRUpKCnv27AEyf2z06dNH7jNvaGiYr8L1mTNnaNKkCerq6pibm+Ph4SHvj4qKokWLFkBmH/+s+crr1q0r/+2JxWVyJwrXQqExNzfH1NSUFStWYGRklO345s2bSyBXgiAIHy/RKvrfW0W/JImJiTx79gwVFRVSUlJQU8u7GKempib3nwfk2bfe12e+UaNGzJ07V2lfQQZHfunEPNdCoZEkiUePHtGxY8eSzoogCILwmXj48CFz587NtVX0SzJ58mR69OjBDz/8wLRp0wCoW7cu69evlwvQz58/VzqnfPnyXLlyBYDr16/LM83UqlWLkJAQ3rx5w8OHDzl+/DiQ2df/+PHj3Lt3D8jsd37//n1cXFw4duwYCQkJvHr1Sgy4fA9Rcy0IJeTJkyeoq6uXdDYK3cuXL0lOTi6WtLIWFyqORZKKMx1BEP5PXq2ixeHWrVvFGs+7fa5/+OEH7O3tiYmJYfbs2WRkZNCqVStOnTpF586diY6OpmHDhqiqqjJ06FClVS1r166NsbExjRo1okqVKtjZ2QGZ0896enrSqFEjbG1t5e42pqamTJ8+nZ49e5KWloaamhqzZ8+matWq9OnTh2bNmlGuXDlq165dKPfkc6SQPmRVDEEQPlhCQgIGBgYlnY0io6KiotQE+bmlp62tTVRUlDy6Puv9fPHiRYnO6CAIQs6yPqN+fn45zlT1Nh0dHTw8PChXrhxqamolNhXfpyQpKYnnz5/j5OSEjo5OocX76tUroqKiKFWqFI6OjmhqagKfxjNX1FwLQgnp06cPFSpUKOlsFKqDBw+yf/9+1q9fL4/sL0pRUVF07ty52NKDzFqdd6etEgTh81SuXDnCwsKKfREZ4dMmCteCUELc3d3laaw+F/fu3WP//v04OTnh6upabOkWd3qCIHw5ypUrJwrDQoGIAY2CIAiCIAiCUEhEzbUgCIIgCJ+9/AwiNzAwID09ndTU1GzTBH4O0tPTC32MStbUfoU9kL24BsYXBVG4LmJ+fn48f/6cHTt2AJnzerq4uDB//vwSzdeHKoz8Zy2D/uzZMwwNDT84nnfvbUmxsbFh8ODBDB48uETzIQiCIORu9+7deYaxtramQYMGPHv2rBhy9HmJiYkp9DgVCoW8OM6nRBSuhRwVVgE4J3Xq1CE+Pv6znjFDEARB+LjkZxC5trY2hoaGmJmZfXarCScmJpKQkECFChXkmTcKQ3JyMjExMYUeL2TWtGfNt/0pEYXrz8CbN28+qfmS1dXVsbCwKOlsCIIgCF+Q/Awiz8jIQJIk9PX10dDQAODOnTs8fvy40PJhamqKpaXle8NYWlpy586dAsft4+PD3LlzqVy5crZjqampJCQkoKmpKU+ZFxoayuLFi3NcXTMnsbGxfP/995w5cybbsbfjLSyfateQT6+uvZhlZGQwc+ZM7Ozs0NDQwMrKil9++UU+fu/ePdq3b4+RkREmJia0bNmS2NjY/5Tm1KlTMTMzQ09Pj169ejF69GhcXFzk435+frRq1Yrp06dTtmxZHBwcALh48SINGjRAS0sLExMT+vTpw8uXL+VjKioq8gMia/nUtm3byvFOnz4dd3d3YmNj8fb2BsDIyAiFQoGfn5/SPRk5ciTGxsZYWFhkW0o3L6GhoSgUCnkVqaCgIAwNDfn7779xcnJCV1eXJk2aEB8fL5+Tnp7O0KFDMTQ0xMTEhJEjR2brD2djY5Otu4qLi4tS/p4/f06fPn0wNzdHU1OTKlWqsGfPHvn48ePHqV+/PlpaWlhaWjJw4EBevXolH3/48CEtWrRAS0uLChUqsGHDhgJduyAIgvDpuHPnDi4uLnh4eBTay8XF5YMKzsKnQ9Rc52HMmDGsXLmSefPmUbduXeLj47l69SqQOXG6t7c39erV4/Dhw6ipqTF16lSaNGnChQsXPqg2ecOGDfzyyy8sWbIEDw8PNm/ezJw5c7I1ZR04cAB9fX3279+PJEkkJSXRpEkTvv76a8LDw3n48CG9evXC39+foKAgqlSpgomJCWFhYbRp04bDhw9jYmLC4cOH5ThDQ0Px9PTE0tKSrVu30qZNG65du4a+vj5aWlpyuODgYIYOHcqpU6c4ceIEfn5+eHh4KK0mVVBJSUn8+uuvrFu3DhUVFTp37szw4cPlwuucOXNYs2YNq1evxtnZmTlz5rB9+3YaNGiQ7zQyMjJo2rQpiYmJrF+/HltbW65cuYKqqiqQ+QPEx8eHKVOmsHr1ah49eoS/vz/+/v4EBgYCmT9s7ty5w8GDB1FXV2fgwIE8fPjwvemmpKSQkpIibyckJBT09giCIAgl4PHjx7x+/ZrWrVtjampaKPFt27aNx48f51l7DXD48GFmzZqFtrY2V69epWnTpsycOROAPXv2MGXKFACqVq3KqlWrlM59u/Z76dKl3Llzh06dOnHq1CkGDBiAoaGh0hSm//77L3379uXu3btoamqyatUqKlWqxPXr1+nYsSOqqqrUq1fvP9+DL4EoXL9HYmIiCxYsYPHixXTr1g0AW1tb6tatC8DmzZtRUVFh1apVKBQKAAIDAzE0NCQ0NJRvvvmmwGkuWrSInj170r17dwDGjx/Pvn375BroLDo6OqxatUouwK9cuZLXr1+zdu1auVlm8eLFtGjRgpkzZ2Jubk79+vUJDQ2lTZs2hIaG0q1bN4KDg7ly5QoODg4cP36cIUOGoKqqirGxMQBmZmbZ+lxXq1aNCRMmAGBvb8/ixYs5cODAfypcp6amsmzZMmxtbQHw9/dn8uTJ8vH58+czZswY2rRpA8CyZcv4+++/C5TGP//8w+nTp4mKipJr+ytWrCgfnz17Nh07dpQHJtrb27Nw4UI8PT1ZunQpcXFx/PXXX5w8eVJeJnb16tV5Ll4yffp0Jk2aVKC8CoIgCB8PU1NTypYtWyJpnz9/nrNnz2JgYEDNmjXx9/dHXV2dESNG8M8//1CuXLkCLXLz008/sW7dOtzc3Gjfvr28f/DgwQQEBFCzZk3Cw8MZPHgwISEhDB48mJ9//pnWrVszcuTIorjEz47oFvIeUVFRpKSk0LBhwxyPR0REcPPmTfT09NDV1UVXVxdjY2OSk5OJjo7+oDSvXbtG7dq1lfa9uw2Zv1LfrhmPioqievXqSv2dPDw8yMjI4Nq1a0DmTB+hoaEAhIWF4e3tTf369QkLCyM8PJzXr1/j4eGRZx6rVaumtF2mTJk8a2/zoq2tLRes343zxYsXxMfH4+7uLh9XU1Mr8AIskZGRlC9fXi5YvysiIoKgoCD5vdTV1cXHx4eMjAxiYmKIiorKlm6lSpXyHPA5ZswYXrx4Ib9Ec6AgCIKQX7Vr16Z06dKoq6vj7OxMXFwc4eHheHl5yYvbZFWI5SUxMZG0tDT5e6xTp07ysYMHD9KzZ09cXFzo3bs3Dx48ADK/G7/77jsAOnfuXJiX9tkSNdfv8XZXiJxkZGRQs2bNHPvdli5d+oPTzaoFz5LTXJvvDhqQJCnbee/G5+XlxaBBg7h58yaXLl2iXr16REdHExYWxvPnz6lZsyZ6enp55u/dEdQKheI/z5uZU5wFnWNURUUl2zmpqany//Pzfvbt25eBAwdmO2ZlZSX/SMntPudGQ0NDHhgjCIIgCAXx9veHqqoq6enp+Trv7e+qrLmo31dWgMyCdFZXyZziEfJH1Fy/h729PVpaWhw4cCDH466urty4cQMzMzPs7OyUXh86zZyjoyOnT59W2pfTqNx3OTs7ExkZqTT47tixY6ioqMg1tVn9rqdOnUr16tXR19fH09OTsLAwub91lqxa8fx+iIuSgYEBZcqU4eTJk/K+tLQ0IiIilMKVLl1aaRBkQkKC0ryb1apV4+7du1y/fj3HdFxdXbl8+XK299LOzg51dXWcnJxIS0tTej+uXbsmD8wUBEEoaVkD3rN4eXl90nPwf+r5Lyq1a9cmLCxMnqYup24h+vr6xMXFkZqayl9//SXvU1NT4+zZswBs2rRJDu/p6cny5cuBzMqmixcvApnfjTt37gRg48aNRXdRnxFRuH4PTU1NRo0axciRI1m7di3R0dGcPHmS1atXA5nNKaamprRs2ZIjR44QExNDWFgYgwYN4u7dux+U5oABA1i9ejXBwcHcuHGDqVOncuHChTx/OXbq1AlNTU26devGpUuXOHToEAMGDKBLly6Ym5sDmb8+69evz/r16/Hy8gIyC5xv3rzhwIED8j7InEhfoVCwZ88eHj16lK3Pd3EbNGgQM2bMYPv27Vy9epX+/ftnK9Q2aNCAdevWceTIES5dukS3bt2UfoF7enpSv3592rRpw/79+4mJieGvv/4iJCQEgFGjRnHixAl++uknIiMjuXHjBrt27WLAgAFA5g+fJk2a0Lt3b06dOkVERAS9evXKs0ZcEARBeL93Z5H62Dx+/Jj79+//51dhTelnZmbGr7/+SuvWrfnqq68YNWpUtjATJkygadOmtGrVChsbG3n/4sWL6dKlC3Xq1MHKykrev2jRIvbv30+1atWoUqUKf/75J5A55mnq1Kl89dVXn9S0vyVJdAvJQ0BAAGpqaowfP5779+9TpkwZfvzxRyCzn/Dhw4cZNWoUrVu3JjExkXLlytGwYUP09fU/KL1OnTpx69Ythg8fTnJyMu3atcPPzy9bbfa7tLW1+fvvvxk0aBC1atVCW1ubNm3aMHfuXKVw3t7ebNu2TS5IKxQK6tWrx549e+SBmgDlypVj0qRJjB49mu7du9O1a1eCgoLydQ1+fn7ExsbK/bsLw7Bhw4iPj8fPzw8VFRV69OjBd999x4sXL+QwY8aM4datWzRv3hwDAwOmTJmSbcWorVu3Mnz4cDp06MCrV6+ws7NjxowZQOYPjbCwMMaOHUu9evWQJAlbW1ulAR+BgYH06tULT09PzM3NmTp1KgEBAYV2nYIgCB+7T21thf/C1NQULS0ttm3bVmhxamlp5TnzSNbYnPr161O/fn15/9s1x76+vvj6+iqd9/ZA/7Zt2ypNt/vo0SMePnzIV199xeXLl7OlaW5uzvbt27Ptd3BwUGqxfXuyASFnCqmgHVuFYte4cWMsLCxYt25dSWclX7y8vPDy8irw/NdfioSEBAwMDAgMDCzwoMyP3fLly1m8eDERERFKUzwVlbNnz1KzZs1iSy8nWe/nixcvPvhHtSBkycjIYPbs2axcuZI7d+5gbm5O3759GTt2LJC5tsLQoUPZt28fKioq1K1blwULFsg1k35+fjx//pwdO3YAmc9jFxeXbGsAvG3q1KksXLiQ169f0759e0xNTQkJCSEyMlIpzq+++opFixahrq5ObGwsFy9eZNCgQZw4cUKpQkdXV5eLFy9SvXp1Hj58iKmpKc+ePcPExIQ2bdrwxx9/AJkzKe3atYtNmzZlm262W7duBAUF4eXlRbVq1eSp4dTV1fnxxx8L9P1SkGdu1iIy1tbWJbqITFHIKlw7OTkV6mIvr169IioqqtDjhZxXf/wUnrmi5vojk5SUxLJly/Dx8UFVVZVNmzbxzz//sH///pLOWr4kJiYSHR2ttDCLIAiCkD9ibYX/vrZCYa8tYGlpWSKFYeHTJfpcf2QUCgV79+6lXr161KxZk927d7N161YaNWpU0lnLFz09Pe7cuYOurm5JZ0UQBOGTkrW2wqxZs+jWrZu8rkKvXr0A5bUVqlatipOTE4GBgcTFxX1wN7y311ZwcHBg/PjxVK1aNVu4rLUVKleuTJUqVdiwYYO8tkKVKlVo0KABixcvZt26dfz777/yGJ+sfGWtrZCRkcGVK1dIS0vj+PHjeHl5ZVtbwcLCQmlSgKy1Fezt7enatStubm65TjQAmTXiBgYG8ksUjIXiJgrXHxktLS3++ecfnj59yqtXrzh79iytW7cu6WwJgiAIRUysrZCzgq6tINYWEEqa6BYiCCXkxIkT8iT9RS0tLQ01taL/uGd9qUZFRRV5WsWZjiAUB7G2Qs4KuraCWFtAKGmicC0IJWTFihXFlpaKisp/XuinIGkV5ype2traeY68F4RPwdtrK2R1BXmbq6srv/32G2ZmZoU2kCtrbYUuXbrI+/K7tkJwcDCvXr2SC975XVth+vTpPHv27KNdW0EQ/itRuBaEEtKiRQvKlClT5OncuHGDQ4cOsX79epycnIo0raioKDp37lwsaWUxNTVVmqtVED5Vb6+toK6ujoeHB48ePeLy5cv07NmTTp06MXv2bFq2bMnkyZMpX748cXFxbNu2jREjRlC+fPkCpzlgwAB69+6Nm5sbderU4bfffuPChQtUrFjxved16tSJCRMm0K1bNyZOnMijR4/eu7bCkCFDAOW1FQYNGiTH9/baCr6+vmhpaX00Y3dKaraQwMBAhgwZQmxsLIaGhkDmzC4mJib069ePdevW4ePjg5mZWaHlLYufnx/ff/89zZs3V9rv5eXFgwcP5Jk7lixZwosXL/j111/ZtWtXgdMJDQ1l8eLFbNmypVDy/bEQhWtBKCEmJiaULVu2yNPJ+lJwcnIqtunqijMtQficiLUVCr62QlG6c+cONWrUICkpqdDi1NbW5ty5c3kWsLdt24arqyu7du2ia9eu2Y6vX78eV1fXAhWuC6NlYMuWLVSpUkXezlr9Ufg/onAtCIIgCB8JFRUVxo4dK89r/S4LCwuCg4NzPf/dAml+ZhEJCAhQWgyrcePG2NnZ5RpnlqpVq3Lw4MH3xu3v74+/v7/Svqw5uPPKB+Sc/9zOLwqPHz8mKSmp0Frjslr3Hj9+/N7C9ePHj4mJiWHFihXMnDkzW+F6586dnD17lk6dOqGvr8/hw4cJDw9nzJgxvHr1ChsbG1auXImuri6VKlWia9eu7N27l549e3Lu3DnWrFlDcnIyrVq1kheFCQgIYMuWLVSsWDHHfvf5cfLkSYYOHcrr168xMjJiw4YNlClThokTJ3L37l2uX7/O3bt3mTZtGj/88IPSuQcPHmTcuHHs3r0bExOTD0r/YyEK14IgCILwhfrU11YoLsXdGrdjxw5atmyJu7s7169f58mTJ0oFzpYtW7JkyRLmzp1L5cqVefPmDT///DN//PEHRkZGzJs3j2XLljF8+HAAjI2N2b59OydPnmTTpk2cOHEChUJBy5YtOXHiBKqqqoSEhHD+/HmePHmCk5MT/fv3zzFv33//PZqamqipqWXrn+/s7MyRI0dQVVVl48aNzJo1i3nz5gEQExPDwYMHuX37Nj4+PkqF6wMHDhAQEPBZFKxBFK6F/yg/q38VpqCgIAYPHszz58+LJb38mDhxIjt27JBXMxMEQfhUZK2tMHXqVFJSUnB0dPyk1lb4XG3dupWpU6eiUCho3rw5u3btonv37rmGv379OpcuXaJJkyYApKamUq9ePfl41pS+4eHhnD59mpo1awLw8uVLoqOjefz4Md999x3q6uqUKVOGBg0a5JrWu91C3vbs2TM6d+7MrVu3SEtLw9raWj7m6+uLmpoatra2St/h58+fZ9iwYRw4cOCzKFiDKFx/UWxsbBg8eDCDBw8utDi3bduWbZqk4iQKtoIgCB8ua20F4ePx77//cvLkSTp16gRkrjhZuXLl9xauJUnCxcUl1/7P2travH79GkmS6N69O1OnTlU6Pm/evFynViyI8ePH06xZM/r27cvJkycZPXq0fCy36RHLlSvHixcvuHz5MvXr1//PefgYiMK18J9krar1qUtNTS3RHwmCIAjCx6uw5tTPTzzbt2+nd+/ezJo1C8gsOFeqVIlHjx4phdPV1eXly5dA5pSKcXFxnD9/nurVq/Pq1SsePHiAra2t0jlubm5MmjSJYcOGYWRkxN27d9HS0sLDwwN/f3+GDRvG06dPOXToED169Cjw9SUkJMiz1qxfvz5f55iamrJ27Vp8fX1Zv349Li4uBU73YyNWaCxiISEh1K1bF0NDQ0xMTGjevLnSSlqxsbEoFAo2b95MnTp10NTUpHLlytkGcYSFhVG7dm00NDQoU6YMo0ePJi0tTT7u5eUlDxzJSmvcuHHyoAQvLy9u377NkCFDUCgUSr9Qt27dSuXKldHQ0MDGxoY5c+Yopb1kyRLs7e3R1NTE3Nyc77//Xindt2vC3xc2P+bOnUvVqlXR0dHB0tKS/v37yw+PdwUFBTFp0iTOnz8vX1PWwJsXL17Qp08feT7YBg0acP78efnciRMn4uLiwpo1a6hYsSIaGhpIkpTneQAzZszA3NwcPT09evbsSXJycoGuURAEQfg0mJqaoq2tTefOnalZs+Z/fnXu3DnPufm3bdtGixYt5G2FQkHTpk2zDeTs0qULffr0oX79+qirqxMcHMzgwYOpXbs23t7eOa7aaWdnx9ChQ/Hy8qJq1aq0a9eOV69eUbt2bXx8fKhWrRp9+/b94Brk4cOHM3jwYOrWrYu2tna+z7OysuKPP/6gU6dO3Lx584PS/piImusi9urVK4YOHUrVqlV59eoV48eP57vvviMyMhIVlf/7bTNixAjmz5+Ps7Mzc+fO5dtvvyUmJgYTExPu3buHr68vfn5+rF27lqtXr9K7d280NTWZOHGiHEdwcDA9e/bk1KlTnDlzhj59+mBtbU3v3r3Ztm0b1atXp0+fPvTu3Vs+JyIignbt2jFx4kTat2/P8ePH6d+/PyYmJvj5+XHmzBkGDhzIunXrqFOnDk+fPuXIkSM5XmtBwuZGRUWFhQsXYmNjQ0xMDP3792fkyJEsWbIkW9j27dtz6dIlQkJC5GZNAwMDJEmiWbNmGBsbs3fvXgwMDFi+fDkNGzbk+vXrcm37zZs3+f3339m6dSuqqqoAeZ73+++/M2HCBP73v/9Rr1491q1bx8KFC987J2xKSgopKSnydkJCQoHuiSAIgvDfxcbG5lngK1WqFJaWliQnJ5ORkYGpqSknTpzgyZMnhZYPExMTTE1Nef36dY7Hd+7cCaB0fPr06UphXr9+jY+PDz4+PvJ25cqV2bt3b7Zw586dAzJbaCGz/3XHjh2Vwr169YrRo0crdePI2v+2P//8M9v+2rVrM3PmTAA8PDy4ceNGtmt6u6wC/zdFrJeXlzxNo5OTE5cvX8527qdIFK6LWJs2bZS2V69ejZmZGVeuXFEaEODv7y+HXbp0KSEhIaxevVouWFpaWrJ48WIUCgWVKlXi/v37jBo1ivHjx8uFdEtLS7nflKOjIxcvXmTevHn07t0bY2NjVFVV0dPTw8LCQk537ty5NGzYUJ7+yMHBgStXrjB79mz8/PyIi4tDR0eH5s2bo6enh7W1NTVq1MjxWgsSNjdv14JXqFCBKVOm0K9fvxwL11mLDKipqSld08GDB7l48SIPHz6U+3j9+uuv7Nixgy1bttCnTx8A3rx5w7p16+Rlg/Nz3vz58+nRo4e8etrUqVP5559/3lt7PX36dCZNmlSg+yAIgiAUrvw8h62trVm2bFm2/flZpj2/3rx5w61btwotvoKKiYkp9DhVVFRQUxNFyiziThSx6OhoAgICOHnyJI8fP5aXoI6Li1MqXLu7u8v/V1NTw83NTe6bFRUVhbu7u1JXDg8PD16+fMndu3fl1em+/vprpTDu7u7MmTOH9PR0uWb2XVFRUbRs2VJpn4eHB/Pnzyc9PZ3GjRtjbW1NxYoVadKkCU2aNOG7777L8dd/QcLm5tChQ0ybNo0rV66QkJBAWloaycnJSkvs5iUiIoKXL19mG3X8+vVrpWYya2truWCd3/OioqLkBR2yuLu7c+jQoVzzM2bMGIYOHSpvJyQk5Gt1LkEQBKHw9OnThwoVKrw3jLa2NoaGhpiZmZXYOJzExEQSEhIoXbr0e7uPfAhJkgpl4OK71NTUch2w+CUShesi1qJFCywtLVm5ciVly5YlIyODKlWq8ObNmzzPzfoA5PRhyOpL/V8/JO+LGzJ/rZ89e5bQ0FD27dvH+PHjmThxIuHh4fJyrB8SNie3b9/G19eXH3/8kSlTpmBsbMzRo0fp2bOn3JyVHxkZGZQpUybHxQfezse7hfX8nldQGhoa4qEjCIJQwtzd3XFzc3tvmIyMDCRJQk9PT17iu7ilpqaSkJBAqVKl8l2p9Ln60MVsSpooXBehJ0+eEBUVxfLly+X5Jo8ePZpj2JMnT8oDCNLS0oiIiJBXtXJ2dmbr1q1KBeHjx4+jp6dHuXLllOJ4N057e3u51lpdXT3b0qfOzs7Z8nT8+HEcHBzk89TU1GjUqBGNGjViwoQJGBoacvDgQXnezLcVJOy7zpw5Q1paGnPmzJG7uvz+++/vPSena3J1deXBgweoqalhY2OTZ7oFOc/JyYmTJ08qrZb17n0XBEEQPk0KhYKMjAyePXuGkZFRkdTy5iVrsoKsltsvlSRJPHr0CIVC8cnN5iUK10XIyMgIExMTVqxYQZkyZYiLi8s2WCDL//73P+zt7XFycmLevHk8e/ZMnganf//+zJ8/nwEDBuDv78+1a9eYMGECQ4cOVRoUeefOHYYOHUrfvn05e/YsixYtUpr5w8bGhsOHD/PDDz+goaGBqakpw4YNo1atWkyZMoX27dtz4sQJFi9eLPdx3rNnD7du3aJ+/foYGRmxd+9eMjIycHR0zHYNBQmbE1tbW9LS0li0aBEtWrTg2LFjOfZ9e1vWwMfIyEjKly+Pnp4ejRo1wt3dnVatWjFz5kwcHR25f/8+e/fupVWrVrnWXOTnvEGDBtGtWzfc3NyoW7cuGzZs4PLly+8d0CgIgiB8GhQKBSoqKiQkJJCYmFgieXj58iWJiYmkpaVlG1D4pVEoFJQvXz7Xrq0fK1G4LkIqKips3ryZgQMHUqVKFRwdHVm4cKE8MvZtM2bMYObMmZw7dw5bW1t27twp97UqV64ce/fuZcSIEVSvXh1jY2N69uzJuHHjlOLo2rUrr1+/pnbt2qiqqjJgwAB58B7A5MmT6du3L7a2tqSkpCBJEq6urvz++++MHz+eKVOmUKZMGSZPnoyfnx+Q2R1i27ZtTJw4keTkZOzt7dm0aROVK1fOdg15hQ0KCqJ79+65NvO4uLgwd+5cZs6cyZgxY6hfvz7Tp09XqiV+V5s2bdi2bRve3t48f/6cwMBA/Pz82Lt3L2PHjqVHjx48evQICwsL6tevj7m5ea5xZa1U9r7z2rdvT3R0NKNGjSI5OZk2bdrQr18//v7771zjFQRBED4dKioqKBSKEuuS8Ndff7F+/XoGDRpEv379SiQPH4tSpUp9cgVrAIX0qXZo+UzExsZSoUIFzp07958mTi/uZcg/xMSJEwkNDc2xT/OXJCEhAQMDA/z8/ArUbeVDXbhwgW3bthEREYGrq2uRpnX27Flq1qxZLGl9LLLezxcvXqCvr1/S2REE4R1Zn9HAwMA8+1x/DJYvX87ixYuZMmVKtko04dN45oqaa6HY/P333yxYsKCksyEIgiAIglBkxAqNQrE5ceIEtWvXLulsCIIgfPSCgoL+0yxFn7KsFXQF4VMlaq5LmI2NTaH06/rSu1oIgiB8Ttq3b4+vr29JZ6NEDB8+nAEDBpR0NgThg4nCtSCUkCdPnqCurl7k6Tx79gxAXpSoKBVHGoLwqUtNTc1zajEtLS20tLSKKUcfF11dXXR1dUs6G4LwwUThWhBKyO7du4stLRUVFTp37lxsaV28ePGLGdAofBkyMjKYPXs2K1eu5M6dO5ibm9O3b1/Gjh3LqFGj2L59O3fv3sXCwoJOnToxfvx4uQA9ceJEduzYwcCBA5k6dSqxsbGkp6fz4sULRo4cyc6dO3nx4gV2dnbMmDGD5s2bExQUxODBg3n+/LlSHMOGDSMgIIBnz57RtGlTVq5cKS/NnZKSwogRI9i8eTMJCQm4ubkxb948atWqJV/Hrl27GDZsGHfv3uXrr7/Gz88PPz8/nj17JndDOX78OKNHjyY8PBxTU1O+++47pk+fLi9oYmNjQ58+fbh58yZ//PEHRkZGjBs3Tml2qnv37jF06FD27duHiooKdevWZcGCBfIg7tDQUEaOHMnly5cpVaoUlStXZuPGjVhbW8vXGhkZmWdYQfgYicK1IJSQ/CzFW1jS0tJQUyv6j/vBgwfZv38/d+7cKfK0BKE4jRkzhpUrVzJv3jzq1q1LfHw8V69eBTJXpw0KCqJs2bJcvHiR3r17o6enx8iRI+Xzb968ye+//87WrVtRVVUlIyODpk2bkpiYyPr167G1teXKlSvvnXYsOjqaHTt2sGfPHp49e0a7du2YMWMGv/zyCwAjR45k69atBAcHY21tzaxZs/Dx8eHmzZsYGxsTGxvL999/z6BBg+jVqxfnzp1j+PDhSmlcvHgRHx8fpkyZwurVq3n06BH+/v74+/sTGBgoh5szZw5Tpkzh559/ZsuWLfTr14/69etTqVIlkpKS8Pb2pl69ehw+fBg1NTWmTp1KkyZNuHDhAioqKrRq1YrevXuzadMm3rx5w+nTp3NcsCUtLS3fYbOkpKSQkpIibyckJOTx7gpC4RKFa0EoIflZivdTc+/ePfbv31/S2RCEQpWYmMiCBQtYvHgx3bp1AzIXvapbty6A0nRpNjY2DBs2jN9++02pcP3mzRvWrVtH6dKlAdi3bx+nT58mKioKBwcHgDwXo8rIyCAoKEiuqe7SpQsHDhzgl19+4dWrVyxdupSgoCCaNm0KwMqVK9m/fz+rV69mxIgRLFu2DEdHR2bPng2Ao6Mjly5dkgvnALNnz6Zjx44MHjwYAHt7exYuXIinpydLly6VlwT39fWlf//+AIwaNYp58+YRGhpKpUqV2Lx5MyoqKqxatUouBAcGBmJoaEhoaChubm68ePGC5s2bY2trC2SufpuThISEfIfNMn36dCZNmvTeMIJQlMRsIYIgCILwHlFRUaSkpNCwYcMcj2/ZsoW6detiYWGBrq4uAQEBxMXFKYWxtraWC9aAvKpsVsE6P2xsbOSCNUCZMmV4+PAhkFmrnZqaioeHh3y8VKlS1K5dWx4Lce3aNaUuIkC2GZwiIiIICgqS+z3r6uri4+NDRkYGMTExcrhq1arJ/1coFFhYWMh5iYiI4ObNm+jp6clxGBsbk5ycTHR0NMbGxvj5+eHj40OLFi1YsGAB8fHxOV5zQcJmGTNmDC9evJBfoiVNKG6icC0IgiAI7/G+gYUnT57khx9+oGnTpuzZs4dz584xduxY3rx5oxQuq79yfuLMzbuDIBUKBRkZGQDyrFPvdpeQJEne9/b/3z7+toyMDPr27UtkZKT8On/+PDdu3JBrjvPKS0ZGBjVr1lSKIzIykuvXr9OxY0cgsyb7xIkT1KlTh99++w0HBwdOnjyZ43UXJCyAhoYG+vr6Si9BKE6FVrj28/OjVatWhRVdvr07H2ZJ5aMweXl5yU1yQs4K6x6Jey0IQl7s7e3R0tLiwIED2Y4dO3YMa2trxo4di5ubG/b29ty+fTvPOKtVq8bdu3e5fv16oeTRzs4OdXV1jh49Ku9LTU3lzJkzcjeKSpUqER4ernTemTNnlLZdXV25fPkydnZ22V75nd3I1dWVGzduYGZmli0OAwMDOVyNGjUYM2YMx48fp0qVKmzcuDHXOAsSVhBKWqH1uV6wYEGhzNf8ueQjP0JDQ/H29lYapS0Ujdzu9bZt2/KcEksQhC+bpqYmo0aNYuTIkairq+Ph4cGjR4/kQmhcXBybN2+mVq1a/Pnnn2zfvj3POD09Palfvz5t2rRh7ty52NnZcfXqVRQKBU2aNClwHnV0dOjXrx8jRozA2NgYKysrZs2aRVJSEj179gSgb9++zJ07l1GjRtGzZ08iIyMJCgoC/q/Ge9SoUXz99df89NNP9O7dGx0dHaKioti/fz+LFi3KV146derE7NmzadmyJZMnT6Z8+fLExcWxbds2RowYQWpqKitWrODbb7+lbNmyXLt2jevXr9O1a9dsccXExOQ7rCB8LAqtcP32r9GS9LHk40uTnp6OQqFAReXT6mlkbGxc0lkQBOETEBAQgJqaGuPHj+f+/fuUKVOGH3/8kZ49ezJkyBD8/f1JSUmhWbNmBAQEMHHixDzj3Lp1K8OHD6dDhw68evVKnorvQ82YMYOMjAy6dOlCYmIibm5u/P333xgZGQFQoUIFtmzZwrBhw1iwYAHu7u6MHTuWfv36oaGhAWTWqIeFhTF27Fjq1auHJEnY2trSvn37fOdDW1ubw4cPM2rUKFq3bk1iYiLlypWjYcOG6Ovr8/r1a65evUpwcDBPnjyhTJky+Pv707dv3xzjym9YQfhYFKgktGXLFqpWrYqWlhYmJiY0atSIV69eAdm7YyQmJtKpUyd0dHQoU6YM8+bNy9YEb2Njw7Rp0+jRowd6enpYWVmxYsUKpTRHjRqFg4MD2traVKxYkYCAAFJTU3PN47v58PLyYuDAgYwcORJjY2MsLCyyPfSuXr1K3bp10dTUxNnZmX/++QeFQsGOHTtyTcfLy0uensjQ0BATExPGjRunVGu+fv163Nzc0NPTw8LCgo4dO8oDPmJjY/H29gbAyMgIhUKBn5+ffG5GRkaueR42bBgtWrSQt+fPn49CoeDPP/+U9zk6OrJ8+XIAwsPDady4MaamphgYGODp6cnZs2flsD169KB58+ZK15eWloaFhQVr1qzJ8fqzlubds2cPzs7OaGhocPv2bd68ecPIkSMpV64cOjo6fPXVV9lWj1y5ciWWlpZoa2vz3XffMXfuXKXa5Jy69gwePBgvL68c8wIffq/f/Zt89uwZXbt2xcjICG1tbZo2bcqNGzeyXffff/+Nk5MTurq6NGnSJM8BNoIgfNpUVFQYO3YssbGxvHnzhtu3bzNmzBgAZs2axePHj0lMTGTz5s1K81NDZvfFrDmb32ZsbMyaNWt4/Pgxr1+/5uLFizRr1gzIfA7mFcfgwYOJjY2VtzU1NVm4cCGPHj0iOTmZo0ePZhvA+O2333Ljxg2Sk5M5dOgQT548oXz58vIsIAC1atVi3759JCYm8vLlS86fP8/PP/8sH4+Njc3WnS4yMlLpe8rCwoLg4GA5L9HR0axYsQJ9fX3Mzc3Zvn079+/fJyUlhdjYWCZNmiRXzrx9rXmFFYSPUb7/OuPj4+nQoQM9evQgKiqK0NBQWrdunWsXjKFDh3Ls2DF27drF/v37OXLkiFKBLsucOXNwc3Pj3Llz9O/fn379+slzh8L/zR965coVFixYIM8zWhDBwcHo6Ohw6tQpZs2axeTJk+XpwjIyMmjVqhXa2tqcOnWKFStWMHbs2HzHq6amxqlTp1i4cCHz5s1j1apV8vE3b94wZcoUzp8/z44dO4iJiZELdZaWlmzduhXIHMEdHx/PggUL8pVnLy8vjhw5Ig8eCQsLw9TUlLCwMAAePHjA9evX8fT0BDJ/6HTr1o0jR45w8uRJ7O3t8fX1JTExEYBevXoREhKiVEDcu3cvL1++pF27drlef1JSEtOnT2fVqlVcvnwZMzMzunfvzrFjx9i8eTMXLlygbdu2NGnSRC6gHjt2jB9//JFBgwYRGRlJ48aNlaaB+lD/5V6/zc/PjzNnzrBr1y5OnDiBJEn4+voq/aBLSkri119/Zd26dRw+fJi4uLhsc8W+LSUlhYSEBKWXIAhCSViyZAnh4eHcunWLdevWMXv2bHl6QUEQCke+u4XEx8eTlpZG69at5VWRqlatmmPYxMREgoOD2bhxozx1UWBgIGXLls0W9n1zZUL+5g/NS7Vq1ZgwYQKQOTBl8eLFHDhwgMaNG7Nv3z6io6MJDQ3FwsICgF9++YXGjRvnGa+lpSXz5s1DoVDg6OjIxYsXmTdvHr179wYya4SzVKxYkYULF1K7dm1evnwpT00EYGZmlq3P9fvyXL9+fRITEzl37hyurq4cOXKE4cOHs23bNgAOHTqEubm5fA8bNGigFPfy5csxMjIiLCyM5s2bU6dOHRwdHVm3bp18XwMDA2nbtu17l6BNTU1lyZIlVK9eHcicCmrTpk3cvXtXfq+HDx9OSEgIgYGBTJs2jUWLFtG0aVO5MOrg4MDx48fZs2dPnvf7ff7Lvc5y48YNdu3axbFjx6hTpw4AGzZswNLSkh07dtC2bVv5upctWyaPnPf392fy5Mm55k3MuSoIwsfixo0bTJ06ladPn2JlZcWwYcPkGnhBEApHvmuuq1evTsOGDalatSpt27Zl5cqVPHv2LMewt27dIjU1VWn+TAMDAxwdHbOFfd9cmZC/+UPz8nYaoDw36LVr17C0tJQL1pB93s/cfP3110rTGrm7u3Pjxg3S09MBOHfuHC1btsTa2ho9PT25W0N+8v++PBsYGODi4kJoaCgXL15ERUWFvn37cv78eRITEwkNDZVrrQEePnzIjz/+iIODAwYGBhgYGPDy5UulfPTq1Utefevhw4f8+eefSgXWnKirqyvl8+zZs0iShIODg9IcqWFhYURHRwOZ9/vd+5vf+/0+/+VeZ4mKikJNTY2vvvpK3mdiYoKjo6M8Tyxk9gF8e0qqt9+bnIg5VwVB+FjMmzeP+/fvk5yczPXr1+W+5IIgFJ58f6JUVVXZv38/x48fZ9++fSxatIixY8dy6tSpbEs4v2++zXe9b67MrPlDJ02ahI+PDwYGBmzevJk5c+bkN9t5ppHTvJ+F4dWrV3zzzTd88803rF+/ntKlSxMXF4ePj0+2+U8LmmfI7BoSGhqKuro6np6eGBkZUblyZY4dO0ZoaKhSfzg/Pz8ePXrE/Pnzsba2RkNDA3d3d6V8dO3aldGjR3PixAlOnDiBjY0N9erVe28etbS0lO5dRkYGqqqqREREZFvCN6sGPD/zrKqoqGTb975+9v/1XueWj7f3v53nnN6b981Qo6GhIQ8WEgRBEATh81agn6sKhQIPDw88PDwYP3481tbWbN++naFDhyqFs7W1pVSpUpw+fRpLS0sgcwnTGzduKNWo5uXt+UOz5Gf+0IKoVKkScXFx/Pvvv5ibmwNkmwc0N+9OYp/Vn1lVVZWrV6/y+PFjZsyYId+Dd+cTzZozNKumuyC8vLxYvXo1ampqNGrUCMic2mnz5s1K/a0Bjhw5wpIlS/D19QXgzp07PH78WCk+ExMTWrVqJU/W37179wLnqUaNGqSnp/Pw4cNcC+aVKlXi9OnTSvvevS+lS5fm0qVLSvsiIyNznTKvsO61s7MzaWlpnDp1Su4W8uTJE65fv57ncruCIAiCIAhQgML1qVOnOHDgAN988w1mZmacOnWKR48e5Vjo0NPTo1u3bvJ8m2ZmZkyYMAEVFZUC1RJ/6PyhBdG4cWNsbW3p1q0bs2bNIjExUS7M55XXO3fuMHToUPr27cvZs2dZtGiRXKtuZWWFuro6ixYt4scff+TSpUtMmTJF6Xxra2sUCgV79uzB19cXLS2t9/ZxfltWv+vdu3czdepUILPA3aZNG0qXLo2zs7Mc1s7OjnXr1uHm5kZCQgIjRozIcXWwXr160bx5c9LT0z9ogIuDgwOdOnWia9euzJkzhxo1avD48WMOHjxI1apV8fX1ZcCAAdSvX5+5c+fSokULDh48yF9//aV0rxs0aMDs2bNZu3Yt7u7urF+/nkuXLlGjRo0c0y2se21vb0/Lli3p3bs3y5cvR09Pj9GjR1OuXDlatmxZ4PshCIIgfDxOnDjBgwcPCjXOtLS0Qu9Wc+3atUKNTyh++f6L0NfX5/Dhw8yfP5+EhASsra2ZM2cOTZs2zTH83Llz+fHHH2nevDn6+vqMHDmSO3fuKE33k5eWLVt+8Pyh+aWqqsqOHTvo1asXtWrVomLFisyePZsWLVrkmdeuXbvy+vVrateujaqqKgMGDKBPnz5AZu1rUFAQP//8MwsXLsTV1ZVff/2Vb7/9Vj6/XLlyTJo0idGjR9O9e3e6du0qT+ifFwMDA2rUqEFcXJxckK5Xrx4ZGRnZWgfWrFlDnz59qFGjBlZWVkybNi3H2S0aNWpEmTJlqFy5co6DT/MjMDCQqVOnMmzYMO7du4eJiQnu7u5yrbmHhwfLli1j0qRJjBs3Dh8fH4YMGcLixYvlOHx8fAgICGDkyJEkJyfTo0cPunbtysWLF3NMszDvdWBgIIMGDaJ58+a8efOG+vXrs3fvXrHQjCAIwifu3al+C4OKiopSl83ClNUSK3x6FFIxLWf46tUrypUrx5w5c+TVoj5Wx44do27duty8eVNp4NrbvLy8cHFxYf78+cWbuSKUlJRE2bJlWbNmDa1bty62dHv37s3Vq1c5cuRIsaVZkhISEjAwMCAwMBA3N7eSzk6hWr58OYsXL2bKlClKM/18zrLezxcvXqCvr1/S2REE4R1Zn9EWLVpQpkyZQov3xo0bHDp0iPXr1xdq18GoqCg6d+5MREQErq6uhRbv5+JTeOYW2RDhc+fOcfXqVWrXrs2LFy/kqco+xub17du3o6uri729PTdv3mTQoEF4eHjkWrD+3GRkZPDgwQPmzJmDgYGBUo1vUfj1119p3LgxOjo6/PXXXwQHB7NkyZIiTVMQBEH4spmYmHxwq2xOssYuOTk5iUKwoKRI59/59ddfuXbtGurq6tSsWZMjR45gampalEl+kMTERLnbiqmpKY0aNSrwjCSfsri4OCpUqED58uUJCgoq8mmZTp8+Lfdvz5qTulevXkWapiAIgiAIQnEoslJUjRo1iIiIKKroC1XXrl3p2rVrgc55d0nvT5mNjc17p5IrbL///nuxpSUIgiAIglCcxMzxglBCimLkem6KYkR7TsQod0EQBOFLJwrXglBCimLkem6KckR7TsQod0EQBOFLJQrXglBCCnvkem6KakR7TrJGuVetWrVI0xEEQRCEj5UoXAtCCSnskeu5ESPaBeHT4+fnx/Pnz9mxYwdQdNO/2tjYMHjwYAYPHgxkLp62fft2WrVqVajpZHn3ugThcyQK14IgCIIgFIsFCxYU6wB6QSgJonAtCIIgCEKxMDAwKOksCEKRUynpDJQULy8vuRnsQ/j5+RVZs9nbYmNjUSgUREZGFnlaH5viuMehoaEoFAqeP39epOkIgvBlycjIYObMmdjZ2aGhoYGVlRW//PKLfPzevXu0b98eIyMjTExMaNmyJbGxsR+cXnR0NC1btsTc3BxdXV1q1arFP//8oxTm4cOHtGjRAi0tLSpUqMCGDRtyjOvx48d89913aGtrY29vz65du5SOX7lyBV9fX3R1dTE3N6dLly5y9zOALVu2ULVqVbS0tDAxMaFRo0a8evUKyP5cT0lJYeDAgZiZmaGpqUndunUJDw+Xj2c9ow8cOICbmxva2trUqVNHzEwkfNQ+icK1jY3NJ7/MuCjEFdyCBQsICgoqtPhy+kFVp04d4uPjRW2KIAiFasyYMcycOZOAgACuXLnCxo0bMTc3ByApKQlvb290dXU5fPgwR48eRVdXlyZNmvDmzZsPSu/ly5f4+vryzz//cO7cOXx8fGjRogVxcXFyGD8/P2JjYzl48CBbtmxhyZIlPHz4MFtckyZNol27dly4cAFfX186derE06dPAYiPj8fT0xMXFxfOnDlDSEgI//77L+3atZOPd+jQgR49ehAVFUVoaCitW7fOtSvIyJEj2bp1K8HBwZw9exY7Ozt8fHzk9LKMHTuWOXPmcObMGdTU1OjRo0eu9yIlJYWEhASllyAUJ9Et5DP05s0b1NXVCz3e9PR0FAoFKirF85usOAq86urqWFhYFHk6giB8ORITE1mwYAGLFy+mW7duANja2lK3bl0ANm/ejIqKCqtWrUKhUAAQGBiIoaEhoaGhfPPNNwVOs3r16lSvXl3enjp1Ktu3b2fXrl34+/tz/fp1/vrrL06ePMlXX30FwOrVq3OcQcjPz48OHToAMG3aNBYtWsTp06dp0qQJS5cuxdXVlWnTpsnh16xZg6WlJdevX+fly5ekpaXRunVrrK2tAXKdPejVq1csXbqUoKAgmjZtCsDKlSvZv38/q1evZsSIEXLYX375BU9PTwBGjx5Ns2bNSE5ORlNTM1u806dPZ9KkSQW6f4JQmIqllPS+5rEGDRrg7++vFP7JkydoaGhw8OBBvLy8uH37NkOGDEGhUMgPIoCtW7dSuXJlNDQ0sLGxybZk+ZIlS7C3t0dTUxNzc3O+//77XPMYEhKCgYEBa9euBQreZCdJErNmzaJixYpoaWlRvXp1tmzZAmR27fD29gbAyMgIhUKBn5+fnG7dunUxNDTExMSE5s2bEx0dnb8b+//Z2NgwdepU/Pz8MDAwoHfv3gAcP36c+vXro6WlhaWlJQMHDpSb5gCePXtG165dMTIyQltbm6ZNm3Ljxg35eFBQEIaGhuzZswdnZ2c0NDS4ffs28fHxNGvWTG5a3LhxY7bWhblz51K1alV0dHSwtLSkf//+vHz5Mlvcf//9N05OTnKtTXx8vBzm7ebDrO4x7768vLyAzL+ZDh06UL58ebS1talatSqbNm1SiissLIwFCxbI58bGxubYopDX35WNjQ3Tpk2jR48e6OnpYWVlVaxzVguC8HGLiooiJSWFhg0b5ng8IiKCmzdvoqenh66uLrq6uhgbG5OcnFzg53+WV69eMXLkSJydnTE0NERXV5erV6/KNddRUVGoqanh5uYmn1OpUiUMDQ2zxVWtWjX5/zo6Oujp6ck13BERERw6dEjOt66uLpUqVQIyu6ZUr16dhg0bUrVqVdq2bcvKlSt59uxZjnmOjo4mNTUVDw8PeV+pUqWoXbs2UVFRueYpawrTnGrdIbPV4MWLF/Lrzp07ud43QSgKxVK4fl/zWK9evdi4cSMpKSly+A0bNlC2bFm8vb3Ztm0b5cuXZ/LkycTHx8uFr4iICNq1a8cPP/zAxYsXmThxIgEBAXI3gjNnzjBw4EAmT57MtWvXCAkJoX79+jnmb/PmzbRr1461a9fStWvXD2qyGzduHIGBgSxdupTLly8zZMgQOnfuTFhYGJaWlmzduhXIXMEuPj6eBQsWAJkPxKFDhxIeHs6BAwdQUVHhu+++K/CCH7Nnz6ZKlSpEREQQEBDAxYsX8fHxoXXr1ly4cIHffvuNo0ePKv2Q8fPz48yZM+zatYsTJ04gSRK+vr6kpqbKYZKSkpg+fTqrVq3i8uXLmJmZ0bVrV+7fv09oaChbt25lxYoV2R5yKioqLFy4kEuXLhEcHMzBgwcZOXKkUpikpCR+/fVX1q1bx+HDh4mLi2P48OE5Xp+lpaX8/sfHx3Pu3DlMTEzk9zQ5OZmaNWuyZ88eLl26RJ8+fejSpQunTp0CMruYuLu707t3bzmOnBY6yevvKsucOXNwc3Pj3Llz9O/fn379+nH16tUc8y6aKAXhy6KlpfXe4xkZGdSsWZPIyEil1/Xr1+nYseMHpTlixAi2bt3KL7/8wpEjR4iMjKRq1aryd1ZWt4y3K6hyU6pUKaVthUIhfydlZGTQokWLbHm/ceMG9evXR1VVlf379/PXX3/h7OzMokWLcHR0JCYmJls6ueVJkqRs+97OU9ax3L4nNTQ00NfXV3oJQnEq8m4heTWPtWnThgEDBrBz5065z1ZgYCB+fn4oFAqMjY1RVVVFT09Pqfl+7ty5NGzYkICAAAAcHBy4cuUKs2fPxs/Pj7i4OHR0dGjevDl6enpYW1tTo0aNbPlbsmQJP//8Mzt37pRrlwvaZPfq1Svmzp3LwYMHcXd3B6BixYocPXqU5cuX4+npibGxMQBmZmZKNQVt2rRRimv16tWYmZlx5coVqlSpku/73KBBA6WCadeuXenYsaPcx9je3p6FCxfi6enJ0qVLuXPnDrt27eLYsWPUqVMHyPxRY2lpyY4dO2jbti0AqampLFmyRG5uvHr1Kv/88w/h4eFyDciqVauwt7dXys/bfZsrVKjAlClT6NevH0uWLJH3p6amsmzZMmxtbQHw9/dn8uTJOV6fqqqq/P4nJyfTqlUr3N3dmThxIgDlypVTuv4BAwYQEhLCH3/8wVdffYWBgQHq6upoa2u/txtIXn9XWXx9fenfvz8Ao0aNYt68eYSGhso1OG8TTZSC8GWxt7dHS0uLAwcO0KtXr2zHXV1d+e233zAzMyu0gt+RI0fw8/Pju+++AzL7YL/d2urk5ERaWhpnzpyhdu3aQGZlT0HHAbm6urJ161ZsbGxQU8u5CKFQKPDw8MDDw4Px48djbW3N9u3bGTp0qFI4Ozs71NXVOXr0qPyjIjU1lTNnzvynCQcEoaQVec11Xs1jGhoadO7cmTVr1gAQGRnJ+fPnlQoyucX7dlMSgIeHBzdu3CA9PZ3GjRtjbW1NxYoV6dKlCxs2bCApKUkp/NatWxk8eDD79u2TC9ZQ8Ca7K1eukJycTOPGjZWaytauXZtnE190dDQdO3akYsWK6OvrU6FCBQClQSj58XZTX9Y1BAUFKeXHx8eHjIwMYmJi5CbCrL53kLmoiaOjo1JznLq6ulJz3LVr11BTU1NajMTOzg4jIyOl9A8dOkTjxo0pV64cenp6dO3alSdPnih1S9HW1pYL1pDZ1JdbM9/bevbsSWJiIhs3bpT7f6enp/PLL79QrVo1TExM0NXVZd++fQW+j3n9XWV5+54oFAosLCxEE6UgCABoamoyatQoRo4cKX8PnDx5ktWrVwPQqVMnTE1NadmyJUeOHCEmJoawsDAGDRrE3bt3PyhNOzs7tm3bJn+HduzYUalm19HRkSZNmtC7d29OnTpFREQEvXr1yrOW/V0//fQTT58+pUOHDpw+fZpbt26xb98+evToQXp6OqdOnWLatGmcOXOGuLg4tm3bxqNHj3Ls262jo0O/fv0YMWIEISEhXLlyhd69e5OUlETPnj0/6D4IwsegyGuu8/PB7dWrFy4uLty9e5c1a9bQsGFDeSBEbnJqNnp7NLKenh5nz54lNDSUffv2MX78eCZOnEh4eLhcc+zi4sLZs2cJDAykVq1aSk1NNWvWzHGaotKlS2fbl/UA+/PPPylXrpzSMQ0NjfdeR4sWLbC0tGTlypWULVuWjIwMqlSpUuAR4zo6Otny1LdvXwYOHJgtrJWVFdevX88xnnfvq5aWltJ2biO+395/+/ZtfH19+fHHH5kyZQrGxsYcPXqUnj17KnU5yanpMa/FBaZOnUpISAinT59GT09P3j9nzhzmzZvH/Pnz5b7egwcPLvB9zOvv6n15f18TZV5/B4IgfF4CAgJQU1Nj/Pjx3L9/nzJlyvDjjz8CmRULhw8fZtSoUbRu3ZrExETKlStHw4YNP7gme968efTo0YM6depgamrKqFGjsnVBCwwMpFevXnh6emJubs7UqVPlVrr8Klu2LMeOHWPUqFH4+PiQkpKCtbU1TZo0QUVFBX19fQ4fPsz8+fNJSEjA2tqaOXPmyAMW3zVjxgwyMjLo0qULiYmJuLm58ffff2ersBGET0mRF67zah6DzJHEbm5urFy5ko0bN7Jo0SKl4+rq6kq1hgDOzs4cPXpUad/x48dxcHBAVVUVADU1NRo1akSjRo2YMGEChoaGHDx4kNatWwOZ3VPmzJmDl5cXqqqqLF68GCh4k13WYL+4uDh5NPO7smbvePs6njx5QlRUFMuXL6devXoA2a7pQ7m6unL58mXs7OxyzXNaWhqnTp2Su4U8efKE69ev51jDkKVSpUqkpaVx7tw5atasCcDNmzeVmhbPnDlDWloac+bMkWuWf//99/98TVu3bmXy5Mn89ddfSjXekNkk2rJlSzp37gxk/ri4ceOG0rXk9Hf0rvz8XQmCIORFRUWFsWPHMnbs2ByPW1hYEBwcnOv5747zCA0NfW96NjY2HDx4UGnfTz/9lC3NPXv2KO3r0qWL0nZOlQnvdh2xt7dn27ZtOebDycmJkJCQXPP57nVpamqycOFCFi5cmGN4Ly+vbHlycXERqzwKH7Ui7xaSV/NYll69ejFjxgzS09PlPmNZbGxsOHz4MPfu3ZMnqh82bBgHDhxgypQpXL9+neDgYBYvXiz3u92zZw8LFy4kMjKS27dvs3btWjIyMnB0dFSK28HBgUOHDsldRKDgTXZ6enoMHz6cIUOGEBwcTHR0NOfOneN///uf/PC0trZGoVCwZ88eHj16xMuXL+WZSFasWMHNmzc5ePBgtj5pH2rUqFGcOHGCn376SR5ssmvXLgYMGABkPhxbtmxJ7969OXr0KOfPn6dz586UK1eOli1b5hpvpUqVaNSoEX369OH06dOcO3eOPn36KNVw29rakpaWxqJFi7h16xbr1q1j2bJl/+l6Ll26RNeuXRk1ahSVK1fmwYMHPHjwQJ4L1c7Ojv3793P8+HGioqLo27cvDx48UIrDxsaGU6dOERsby+PHj3Osac7r70oQBEEQBOF9imW2kICAAIYNG8b48eNxcnKiffv22fqndujQATU1NTp27Jht3srJkycTGxuLra2t3C3D1dWV33//nc2bN1OlShXGjx/P5MmT5b7ahoaGbNu2jQYNGuDk5MSyZcvYtGkTlStXzpY/R0dHDh48yKZNmxg2bJjcZGdlZUXr1q1xcnKiR48evH79Otea7ClTpjB+/HimT5+Ok5MTPj4+7N69W+5DXa5cOSZNmsTo0aMxNzfH398fFRUVNm/eTEREBFWqVGHIkCHMnj37v95uILNPcFhYGDdu3KBevXrUqFGDgIAAeQojyGwirFmzJs2bN8fd3R1Jkti7d2+2Lg/vWrt2Lebm5tSvX5/vvvuO3r17o6enJ79vLi4uzJ07l5kzZ1KlShU2bNjA9OnT/9P1nDlzhqSkJKZOnUqZMmXkV1YrREBAAK6urvj4+ODl5YWFhUW21R2HDx+Oqqoqzs7OlC5dOsf+2Hn9XQmCIAiCILyPQvpI2lbu3LmDjY0N4eHhSoPlhI/f3bt3sbS05J9//sl14KrwfxISEjAwMMDPzw8bG5siT+/ChQts27aNiIiIIv9snT17lpo1axZLWh+LrPfzxYsXYsovQfgIFdUzt6ierV/ic7QgPoVnbomv0Jiamkp8fDyjR4/m66+/Fn9In4CDBw/y8uVLqlatSnx8PCNHjsTGxibXecQFQRAEQRC+FCVeuD527Bje3t44ODjIKxoKH7fU1FR+/vlnbt26hZ6eHnXq1GHDhg15dicRBEEQBEH43JV44TqnkcDCx83HxwcfH5+SzoYgCIIgCMJHp8QL14LwpXry5Ik8RWNRevbsGYDS4kBFpTjSEARB+BCF/cwtqmereI5++kThWhBKyO7du4stLRUVFXkO8KKmra2NqalpsaQlCIKQX0XxzC2qZ6uqqiopKSmFHq9QPEThWhBKSJ8+feSpGovSwYMH2b9/P/369ct1IafCZGpqipWVVZGnIwiCUBD16tXLcZXlDxUXF8eZM2eYMmVKoT7LY2JiCAgIECv7fsJE4VoQSoi7uztubm5Fns69e/fYv38/ZcuWFbPxCILwxbK1tS306U/PnDmDr69voU/FV9Bl6YWPS7EsIiMIgiAIgiAIXwJRuBYEQRAEQRCEQiIK14XIz89PacltLy8vBg8eXGL5+a8KI/+hoaEoFAqeP3+e73PevY85sbGxYf78+fK2QqFgx44duYaPjY1FoVAQGRmZ73zk14dcoyAIgiAInydRuBaKtHBYp04d4uPjMTAwKNR4w8PD6dOnT77DW1paEh8fT5UqVQBRIBYEQRAEoWiIwvUn5s2bNyWdhQJRV1fHwsIChUJRqPGWLl0abW3tfIdXVVXFwsICNTUxhlcQBOFj96m3/ApfNlG4fktGRgYzZ87Ezs4ODQ0NrKys+OWXX+Tj9+7do3379hgZGWFiYkLLli2JjY39T2lOnToVMzMz9PT06NWrF6NHj8bFxUU+ntVFYvr06ZQtWxYHBwcALl68SIMGDdDS0sLExIQ+ffrw8uVL+ZiKigqPHz8GMie6V1FRoW3btnK806dPx93dndjYWLy9vQEwMjJCoVDg5+endE9GjhyJsbExFhYWTJw4sUDX924NcVBQEIaGhvz99984OTmhq6tLkyZNiI+Pz3bur7/+SpkyZTAxMeGnn34iNTVVPvZutxCA+Ph4mjZtipaWFhUqVOCPP/6Qj73dLeR91yxJErNmzaJixYpoaWlRvXp1tmzZopTO3r17cXBwQEtLC29v7//8NyAIgvApy+l5/F9t27aNKVOmFGqcglBcROH6LWPGjGHmzJkEBARw5coVNm7ciLm5OQBJSUl4e3ujq6vL4cOHOXr0qFww/NDa5A0bNvDLL78wc+ZMIiIisLKyYunSpdnCHThwgKioKPbv38+ePXtISkqiSZMmGBkZER4ezh9//ME///yDv78/AFWqVMHExISwsDAADh8+jImJCYcPH5bjDA0NxdPTE0tLS7Zu3QrAtWvXiI+PZ8GCBXK44OBgdHR0OHXqFLNmzWLy5Mns37//g643S1JSEr/++ivr1q3j8OHDxMXFMXz4cKUwhw4dIjo6mkOHDhEcHExQUBBBQUHvjTcgIIA2bdpw/vx5OnfuTIcOHXJc6ep91zxu3DgCAwNZunQply9fZsiQIXTu3Fm+l3fu3KF169b4+voSGRkp/yB6n5SUFBISEpRegiAIQu6MjY3R09Mr6WwIwgcRhev/LzExkQULFjBr1iy6deuGra0tdevWlRfd2Lx5MyoqKqxatYqqVavi5OREYGAgcXFxhIaGflCaixYtomfPnnTv3h0HBwfGjx9P1apVs4XT0dFh1apVVK5cmSpVqrBhwwZev37N2rVrqVKlCg0aNGDx4sWsW7eOf//9F4VCQf369eV8hYaG0q1bNzIyMrhy5QppaWkcP34cLy8vVFVVMTY2BsDMzAwLCwul/tHVqlVjwoQJ2Nvb07VrV9zc3Dhw4MAHXW+W1NRUli1bhpubG66urvj7+2eL08jIiMWLF1OpUiWaN29Os2bN8ky3bdu29OrVCwcHB6ZMmYKbmxuLFi3KFi63a3716hVz585lzZo1+Pj4ULFiRfz8/OjcuTPLly8HYOnSpVSsWJF58+bh6OhIp06dlGr6czJ9+nQMDAzkl6WlZQHuliAIQs5CQkKoW7cuhoaGmJiY0Lx5c6Kjo4H/a63bvHkzderUQVNTk8qVK2f7vgoLC6N27dpoaGhQpkwZRo8eTVpamnzcy8sLf39//P395XTGjRuHJEny8du3bzNkyBAUCoVSF8CtW7dSuXJlNDQ0sLGxYc6cOUppL1myBHt7ezQ1NTE3N+f7779XSvftbiHvCysIHxtRuP7/oqKiSElJoWHDhjkej4iI4ObNm+jp6aGrq4uuri7GxsYkJyfLD7OCunbtGrVr11ba9+42QNWqVVFXV1fKa/Xq1dHR0ZH3eXh4kJGRwbVr14DMB1PWQzQsLAxvb2/q169PWFgY4eHhvH79Gg8PjzzzWK1aNaXtMmXK8PDhw3xfY060tbWxtbV9b5yVK1dGVVW1QOm6u7tn286p5jo3V65cITk5mcaNG8vvsa6uLmvXrpXf46ioKL7++mulL5B3033XmDFjePHihfy6c+dOvvMkCIKQm1evXjF06FDCw8M5cOAAKioqfPfdd2RkZMhhRowYwbBhwzh37hx16tTh22+/5cmTJ0BmV0dfX19q1arF+fPnWbp0KatXr2bq1KlK6QQHB6OmpsapU6dYuHAh8+bNY9WqVUBm943y5cszefJk4uPj5S5+ERERtGvXjh9++IGLFy8yceJEAgIC5BbIM2fOMHDgQCZPnsy1a9cICQmhfv36OV5nQcIKwsdAjO76/7S0tN57PCMjg5o1a7Jhw4Zsx/7LcqrvDvTLqg1429uF6KwwuQ0QzNrv5eXFoEGDuHnzJpcuXaJevXpER0cTFhbG8+fPqVmzZr6a3EqVKpUt/rcf3B8ipzjfve7CSrcgAymz4v/zzz8pV66c0rGsZWhzen/yoqGhIZaxFQSh0LVp00Zpe/Xq1ZiZmXHlyhV0dXUB8Pf3l8MtXbqUkJAQVq9ezciRI1myZAmWlpYsXrwYhUJBpUqVuH//PqNGjWL8+PGoqGTWv1laWjJv3jwUCgWOjo5cvHiRefPm0bt3b4yNjVFVVUVPTw8LCws5L3PnzqVhw4bySoMODg5cuXKF2bNn4+fnR1xcHDo6OjRv3hw9PT2sra2pUaNGjtdZkLCQ2RUvJSVF3hZd8YTiJmqu/z97e3u0tLRy7Xrg6urKjRs3MDMzw87OTun1odPMOTo6cvr0aaV9Z86cyfM8Z2dnIiMjefXqlbzv2LFjqKioyAMes/pdT506lerVq6Ovr4+npydhYWFyf+ssWbXi6enpH3QdH4uTJ09m265UqVKOYXO6ZmdnZzQ0NIiLi8v2Hmd15XB2ds4xHUEQhOIWHR1Nx44dqVixIvr6+lSoUAHILIxmebtlTU1NDTc3N7lFLyoqCnd3d6VKCA8PD16+fMndu3flfTm11t24ceO93xlRUVHZWkc9PDzk8xo3boy1tTUVK1akS5cubNiwgaSkpBzjKkhYEF3xhJInCtf/n6amJqNGjWLkyJFyN4CTJ0+yevVqADp16oSpqSktW7bkyJEjxMTEEBYWxqBBg5QeQgUxYMAAVq9eTXBwMDdu3GDq1KlcuHAhz9rWTp06oampSbdu3bh06RKHDh1iwIABdOnSRR6AmdXvev369Xh5eQGZXTzevHnDgQMH5H0A1tbWKBQK9uzZw6NHj+RZRz41f/zxB2vWrOH69etMmDCB06dPy4M835XTNevp6TF8+HCGDBlCcHAw0dHRnDt3jv/9738EBwcD8OOPPxIdHc3QoUO5du0aGzduzHOgpSAIQlFo0aIFT548YeXKlZw6dYpTp04BeU/ZmvUdk1MraFbr3H+dPvV9cQPo6elx9uxZNm3aRJkyZRg/fjzVq1fPce2BgoQF0RVPKHmicP2WgIAAhg0bxvjx43FycqJ9+/ZyP19tbW0OHz6MlZUVrVu3xsnJiR49evD69Wv09fU/KL1OnToxZswYhg8fjqurKzExMfj5+aGpqfne87S1tfn77795+vQptWrV4vvvv6dhw4YsXrxYKZy3tzfp6elyQVqhUFCvXj0A6tatK4crV64ckyZNYvTo0Zibm+daIM2Jn5+fUkG9JE2aNInNmzdTrVo1goOD2bBhA87OzjmGze2ap0yZwvjx45k+fTpOTk74+Piwe/duuUbIysqKrVu3snv3bqpXr86yZcuYNm1asV2jIAgCwJMnT4iKimLcuHE0bNgQJycnnj17li3c2y1raWlpREREyC16zs7OHD9+XKnQe/z4cfT09JS6xuXUWmdvby+Pi1FXV89Wi+3s7MzRo0eV9h0/fhwHBwf5PDU1NRo1asSsWbO4cOECsbGxHDx4MMfrLUhYDQ0N9PX1lV6CUJwU0od0IhWKTOPGjbGwsGDdunUlnZV88fLywsvLq8DzX3/JEhISMDAwIDAwEDc3tyJPb/ny5SxevJgpU6Ywbty4Ik/vS5P1fr548UJ8iQvFJiMjAzMzM5o2bcqECROIi4tj9OjRhIeHs337dlxcXKhQoQJWVlbMnz8fJycn5s2bx8aNG4mJicHU1JR79+7h4OBA9+7d8ff359q1a/Tq1YuffvpJfqZ7eXkRERFB79696du3L2fPnqV3797MmTOHvn37AvDNN9+gpaXFkiVL0NDQwNTUlLNnz1KrVi0mTpxI+/btOXHiBP369WPJkiX4+fmxZ88ebt26Rf369TEyMmLv3r34+/tz4cIFKleujJeXFy4uLsyfPz/PsHnJ+oz6+flhY2NTaO/BhQsX2LZtGxEREbi6uhZavGfPnqVmzZqFHu/n4lN45ooBjSUoKSmJZcuW4ePjg6qqKps2beKff/75z/NIF5fExESio6PZs2dPSWdFEAThi6KiosLmzZsZOHAgVapUwdHRkYULF2ZrSZwxYwYzZ87k3Llz2NrasnPnTkxNTYHMFry9e/cyYsQIqlevjrGxMT179sz2I7xr1668fv2a2rVro6qqyoABA+jTp498fPLkyfTt2xdbW1tSUlKQJAlXV1d+//13xo8fz5QpUyhTpgyTJ0+Wpy41NDRk27ZtTJw4keTkZOzt7dm0aVOOheWChBWEj4EoXJcghULB3r17mTp1KikpKTg6OrJ161YaNWpU0lnLFz09PdGXTRAEoYQ0atSIK1euKO3LaozOWjnWycnpvYOuPT09sw2sf1epUqWYP39+joucQeaAx/Pnz2fb36ZNm2wzmmSpW7fue9eIePtYXmEF4WMjCtclSEtLi3/++aeksyEIgiAIgiAUElG4FoQSEhsbi7a2dpGn818X/REEQRAEIf9E4VoQSsikSZOKNb3/uviPIAifDhsbmw9a9OpdojuGIBScKFwLQgnp06ePPMVfUTp48CD79++XV1sTBEEQBKHoiMK1IJQQd3f3YpmK7969e5/MDDSCIAiC8KkTVVmCIAiCIAiCUEhEzbUgCIIgCJ+9J0+eoK6uXmjxZa2IGRUVVWhxFkV8QvEThescBAUFMXjwYJ4/f17SWSl2EydOZMeOHURGRhZKfG+vspUfsbGxVKhQgXPnzuHi4pJjmHffn/zk2c/Pj+fPn7Njx44C5T8/CnqNgiAIQvHbvXt3ocepoqJC586diyTeixcvihUaP1GicJ2D9u3b4+vrW9LZKBHDhw9nwIABhRbftm3bKFWqVKHFBx/2/ixYsEBp5LwoEAuCIHxZimIQeVpaGmpqhVuUyhqELhZp+3R9cYXr1NTUPAt7WlpaaGlpFVOOPi66urro6uoWWnzGxsaFFleWD3l/DAwMCj0fgiAIwqejuAaR/1diEPqn76Mf0JiRkcHMmTOxs7NDQ0MDKysrfvnlF/n4qFGjcHBwQFtbm4oVKxIQEEBqaqp8fOLEibi4uLBmzRoqVqyIhoYGkiTx/Plz+vTpg7m5OZqamlSpUoU9e/YAmd0ODA0Ns8Wxbt06bGxsMDAw4IcffiAxMVEOk5KSwsCBAzEzM0NTU5O6desSHh6udC27du3C3t4eLS0tvL29CQ4ORqFQKHU/OX78OPXr10dLSwtLS0sGDhzIq1ev5OM2NjZMmzaNHj16oKenh5WVFStWrFBK5969e7Rv3x4jIyNMTExo2bKlvBQuZM5bWrt2bXR0dDA0NMTDw4Pbt28rXWt+wuaHl5cXgwcPLlD+AW7duoW3tzfa2tpUr16dEydOyMfefX+yLF++HEtLS7S1tWnbtq3SffXz86NVq1by/8PCwliwYAEKhQKFQiHfnytXruDr64uuri7m5uZ06dKFx48fy/G8evWKrl27oqurS5kyZZgzZ06+74UgCIIgCJ+/j75wPWbMGGbOnElAQABXrlxh48aNmJuby8f19PQICgriypUrLFiwgJUrVzJv3jylOG7evMnvv//O1q1biYyMJCMjg6ZNm3L8+HHWr1/PlStXmDFjBqqqqrnmIzo6mh07drBnzx727NlDWFgYM2bMkI+PHDmSrVu3EhwczNmzZ7Gzs8PHx4enT58CmX2Jv//+e1q1akVkZCR9+/Zl7NixSmlcvHgRHx8fWrduzYULF/jtt984evQo/v7+SuHmzJmDm5sb586do3///vTr14+rV68CkJSUhLe3N7q6uhw+fJijR4+iq6tLkyZNePPmDWlpabRq1QpPT08uXLjAiRMn6NOnDwqFIts1FyRsQbwv/1nGjh3L8OHDiYyMxMHBgQ4dOpCWlpZrnFnv8e7duwkJCSEyMpKffvopx7ALFizA3d2d3r17Ex8fT3x8PJaWlsTHx+Pp6YmLiwtnzpwhJCSEf//9l3bt2snnjhgxgkOHDrF9+3b27dtHaGgoERER773elJQUEhISlF6CIAiCIHyePupuIYmJiSxYsIDFixfTrVs3AGxtbalbt64cZty4cfL/bWxsGDZsGL/99hsjR46U979584Z169ZRunRpAPbt28fp06eJiorCwcEBgIoVK743LxkZGQQFBaGnpwdAly5dOHDgAL/88guvXr1i6dKlBAUF0bRpUwBWrlzJ/v37Wb16NSNGjGDZsmU4Ojoye/ZsABwdHbl06ZJSLfzs2bPp2LGjXNNrb2/PwoUL8fT0ZOnSpWhqagLg6+tL//79gcya+3nz5hEaGkqlSpXYvHkzKioqrFq1Si4EBwYGYmhoSGhoKG5ubrx48YLmzZtja2sLgJOTU47XnJCQkO+wBfG+/GcZPnw4zZo1AzJXMqxcuTI3b95UCvO25ORkgoODKV++PACLFi2iWbNmzJkzBwsLC6WwBgYGqKuro62trXRs6dKluLq6Mm3aNHnfmjVrsLS05Pr165QtW5bVq1ezdu1aGjduDKCUZm6mT59e7KsxCoIgCIJQMj7qmuuoqChSUlJo2LBhrmG2bNlC3bp1sbCwQFdXl4CAAOLi4pTCWFtbywVrgMjISMqXLy8XrPPDxsZGLlgDlClThocPHwKZtdqpqal4eHjIx0uVKkXt2rXlKXWuXbtGrVq1lOKsXbu20nZERARBQUFyv2ddXV18fHzIyMggJiZGDletWjX5/wqFAgsLCzkvERER3Lx5Ez09PTkOY2NjkpOTiY6OxtjYGD8/P3x8fGjRogULFiwgPj4+x2suSNiCeF/+cwpTpkwZgGxh3mZlZaVUyHV3dycjI4Nr167lO18REREcOnRI6f5nFeajo6OJjo7mzZs3uLu7y+cYGxvj6Oj43njHjBnDixcv5JcYpCIIgiAIn6+PunCd16C1kydP8sMPP9C0aVP27NnDuXPnGDt2LG/evFEKp6OjU6B4c/LuIEiFQkFGRgaAPAvFu90lJEmS9739/7ePvy0jI4O+ffsSGRkpv86fP8+NGzfkmuO88pKRkUHNmjWV4oiMjOT69et07NgRyKzJPnHiBHXq1OG3337DwcGBkydP5njdBQmbX+/Lf05hsu7bu2HeJ+ucgnRhycjIoEWLFtnu3Y0bN6hfv3629yu/NDQ00NfXV3oJgiAIgvB5+qgL11mD/w4cOJDj8WPHjmFtbc3YsWNxc3PD3t4+X4PtqlWrxt27d7l+/Xqh5NPOzg51dXWOHj0q70tNTeXMmTNyN4pKlSplG+B45swZpW1XV1cuX76MnZ1dtld+J753dXXlxo0bmJmZZYvj7RkzatSowZgxYzh+/DhVqlRh48aNucZZkLAlJS4ujvv378vbJ06cQEVFJdfWCXV1ddLT05X2Zd1/GxubbPdOR0cHOzs7SpUqpfTj4tmzZ4X2dyQIBfH2IN3i9O6g55LKR2F6d+C1kF1h3SNxr4UvwUdduNbU1GTUqFGMHDmStWvXEh0dzcmTJ1m9ejWQWaiNi4tj8+bNREdHs3DhQrZv355nvJ6entSvX582bdqwf/9+YmJi+OuvvwgJCfmgfOro6NCvXz9GjBhBSEgIV65coXfv3iQlJdGzZ08A+vbty9WrVxk1ahTXr1/n999/JygoCPi/2tVRo0Zx4sQJfvrpJ7nGdNeuXQWad7pTp06YmprSsmVLjhw5QkxMDGFhYQwaNIi7d+8SExPDmDFjOHHiBLdv32bfvn1cv349x77UBQlb0jQ1NenWrRvnz5/nyJEjDBw4kHbt2mXrb53FxsaGU6dOERsby+PHj8nIyOCnn37i6dOndOjQgdOnT3Pr1i327dtHjx49SE9PR1dXl549ezJixAgOHDjApUuX8PPzQ0Xlo/4YCZ+pBQsWyM8QkY/8CQ0NzTZDk1A0crvX27ZtY8qUKSWTKUEoJh99qSAgIIBhw4Yxfvx4nJycaN++vdz3tmXLlgwZMgR/f39cXFw4fvw4AQEB+Yp369at1KpViw4dOuDs7MzIkSOz1WQWxIwZM2jTpg1dunTB1dWVmzdv8vfff2NkZARAhQoV2LJlC9u2baNatWosXbpUni1EQ0MDyKxRDwsL48aNG9SrV48aNWoQEBAg9znOD21tbQ4fPoyVlRWtW7fGycmJHj168Pr1a/T19dHW1ubq1au0adMGBwcH+vTpg7+/P3379s0xrveFjY2NRaFQEBoa+sH3rbDY2dnRunVrfH19+eabb6hSpQpLlizJNfzw4cNRVVXF2dmZ0qVLExcXR9myZTl27Bjp6en4+PhQpUoVBg0ahIGBgVyAnj17NvXr1+fbb7+lUaNG1K1bl5o1axbXZQqCzMDAIMcpKb/UfHxp0tPTC9RV7mNhbGysNH5JED5LklBipk6dKpUvX76ks/HBDh06JBkaGkpPnz4t6ax8Ul68eCEBUmBgoHTx4sUif/n7+0uANGXKlJK+9M9S1vv54sWLQo/7jz/+kKpUqSJpampKxsbGUsOGDaWXL19KkiRJ3bp1k1q2bCmHTUhIkDp27Chpa2tLFhYW0ty5cyVPT09p0KBBchhra2vpl19+kbp37y7p6upKlpaW0vLly5XSHDlypGRvby9paWlJFSpUkMaNGye9efNGPj5hwgSpevXq8va7+fD09JQGDBggjRgxQjIyMpLMzc2lCRMmKKURFRUleXh4SBoaGpKTk5O0f/9+CZC2b9+e673w9PSUfvrpJ+mnn36SDAwMJGNjY2ns2LFSRkaGHGbdunVSzZo1JV1dXcnc3Fzq0KGD9O+//0qSJEkxMTESoPTq1q1bvvI8dOhQqXnz5vL2vHnzJEDas2ePvM/BwUFatmyZJEmSdPr0aalRo0aSiYmJpK+vL9WvX1+KiIiQw3bv3l1q1qyZ0vWlpqZK5ubm0urVq3O8/sDAQMnAwEDavXu35OTkJKmqqkq3bt2SUlJSpBEjRkhly5aVtLW1pdq1a0uHDh1SOnfFihVS+fLlJS0tLalVq1bSnDlzJAMDA/n4u++hJEnSoEGDJE9PT6X7//bf0n+512/H8/TpU6lLly6SoaGhpKWlJTVp0kS6fv16tusOCQmRKlWqJOno6Eg+Pj7S/fv3c7xPOSnuZ654ZhetonzmFpaPvub6c7JkyRLCw8O5desW69atY/bs2fIUg5+ikJAQfv75Z7l2XhCEwhMfH0+HDh3o0aMHUVFRhIaG0rp161wH1g4dOpRjx46xa9cu9u/fz5EjRzh79my2cHnNM5+ftQPyEhwcjI6ODqdOnWLWrFlMnjxZXnEuIyODVq1aoa2tzalTp1ixYkW2Of/fF6+amhqnTp1i4cKFzJs3j1WrVsnH37x5w5QpUzh//jw7duwgJiYGPz8/ACwtLdm6dSuQOXtTfHw8CxYsyFeevby8OHLkiFxTHBYWhqmpKWFhYQA8ePCA69ev4+npCWROI9utWzeOHDnCyZMnsbe3x9fXV154rFevXoSEhCjNvrR3715evnz5/9q776gqjreB499LByliwYIIIoioIAIhggqoKIoaa+wFu0ZjrMESDCrG2I36sytYUJPYY+wC9hKwC2IXC0ZFI1jo+/7BYV+udASxzOece453d3Z2di/OnTs784xSXP13vXnzhhkzZrBq1SquXr2KkZERffv25cSJE2zevJlLly7x7bff0qJFC27cuAGkz00aMmQIP/zwAxcuXKBZs2ZKIWAL633udWbe3t6EhYWxa9cuTp06hSRJeHl5KS0G9+bNG+bMmcP69es5evQo0dHRjB07NseyibUFhJL2Uce5/tzcuHEDf39/nj9/TtWqVRkzZgwTJkwo6WIVWuZFdARBKFoxMTGkpKTQoUMHTE1NAbCxsck2bXx8PGvXrmXjxo1y6NKAgAAqV66cJW1ecebzs3ZAXmxtbfn555+B9Inpixcv5vDhwzRr1owDBw5w69YtQkND5TkR06dPl2PH58bExIT58+ejUCiwsrLi8uXLzJ8/n4EDBwLQr18/Oa25uTkLFy7EycmJV69eyWFJAYyMjLIMZcmtzK6ursTHx3P+/Hns7e05duwYY8eOZdu2bQCEhIRQoUIF+R42adJEKe/ly5djaGjIkSNHaN26NS4uLlhZWbF+/Xr5vgYEBPDtt9+iq6ub4/UnJyezZMkS6tatC6SHCN20aRMPHjyQP+uxY8eyb98+AgIC+OWXX1i0aBEtW7aUG6M1atTg5MmT8orEhfU+9zpDxryiEydO4OLiAkBQUBAmJibs2LGDb7/9Vr7uZcuWyVGzhg8fztSpU3Msm1hbQChpouf6A5o/fz6PHj0iISGB69ev4+vri5qa+H0jCEJWdevWpWnTptjY2PDtt9+ycuVKXrx4kW3a27dvk5ycrBQ738DAINsY7HnFmc/P2gF5yXwOUF4XICoqChMTE6XJxu/G/M9J/fr1lcJrOjs7c+PGDXm+zPnz52nbti2mpqbo6enh7u4OkK/y51ZmAwMD7OzsCA0N5fLly6ioqDB48GAuXrxIfHw8oaGhcq81pMfkHzJkCDVq1MDAwAADAwNevXqlVI4BAwYQEBAgp//777+VGqzZ0dDQUCrnuXPnkCSJGjVqKMXnP3LkCLdu3QLS7/e79ze/9zs373OvM0RGRqKmpsbXX38tbytbtixWVlbyGhGQPv8nczjazJ9NdsTaAkJJEy07QSghp06d4vHjx8V+noIspCN8PFRVVTl48CAnT57kwIEDLFq0iEmTJnHmzBmqVaumlFbKJdb+u3KLM5+xdsCUKVPw9PTEwMCAzZs3M3fu3AKVPa91AQoSfz6/Xr9+TfPmzWnevDkbNmyQJyp7enpmWfugoGWG9KEhoaGhaGho4ObmhqGhIbVr1+bEiROEhoYqhZfz9vbm6dOnLFiwAFNTUzQ1NXF2dlYqR+/evRk/fjynTp3i1KlTmJmZ0ahRo1zLqK2trXTv0tLSUFVVJTw8HFVVVaW0GT3g2d3vd/8uVFRUsmzLPCzjXe97r3MqR+btmcuc3WeT07GQHiQgI1CAIJQE0bgWhBKyYsWKD3o+ExOTD3o+4f0pFAoaNGhAgwYNmDx5Mqampmzfvp3Ro0crpatevTrq6uqcPXtW/pzj4uK4ceOGUo9qXjKvHZAhP2sHFETNmjWJjo7m33//pUKFCgBZ1gDIybsLWGWMZ1ZVVeXatWs8e/aMX3/9Vb4H764lkLFeQGEiQ7m7u7N69WrU1NTw8PAA0sO6bt68WWm8NcCxY8dYsmQJXl5eANy/f59nz54p5Ve2bFnatWsnL9TVt2/fApepXr16pKam8uTJkxwb5jVr1uTs2bNK2969L+XLl+fKlStK2y5cuJClUZuhqO51rVq1SElJ4cyZM/KwkNjY2I825Ksg5JdoXAtCCVmxYsUHCeMXGRlJz549cxyvK3yczpw5w+HDh2nevDlGRkacOXOGp0+fZtvo0NPTo0+fPowbN44yZcpgZGTEzz//jIqKSoF6iTOvHfDVV1/x999/52vtgIJo1qwZ1atXp0+fPsyaNYv4+Hi5MZ9XWe/fv8/o0aMZPHgw586dY9GiRXKvetWqVdHQ0GDRokUMGTKEK1euZImnbGpqikKhYPfu3Xh5eaGtrZ3rGOfMMsZd//XXX/j7+wPpDe6OHTtSvnx5atWqJae1sLBg/fr1ODo6EhcXx7hx47JdGXjAgAG0bt2a1NTUQk1ur1GjBj169KB3797MnTuXevXq8ezZM4KDg7GxscHLy4vvv/8eV1dX5s2bR5s2bQgODmbv3r1K97pJkybMnj2bdevW4ezszIYNG7hy5Qr16tXL9rxFda8tLS1p27YtAwcOZPny5ejp6TF+/HiMjY1p27Ztge+HIHwsRONaEEqIlZUV9vb2JV0M4SOlr6/P0aNHWbBgAXFxcZiamjJ37lxatmyZbfp58+YxZMgQWrdujb6+Pj/++CP3799HS0sr3+fMvHZAYmIirVq1wtfXFz8/vyK6qvThLjt27GDAgAF89dVXmJubM3v2bNq0aZNnWXv37s3bt29xcnJCVVWV77//nkGDBgHpva+BgYFMnDiRhQsXYm9vz5w5c/jmm2/k442NjZkyZQrjx4+nb9++9O7dO98L4BgYGFCvXj2io6PlhnSjRo1IS0vL8nRgzZo1DBo0iHr16lG1alV++eWXbKNbeHh4UKlSJWrXrp3t5NP8CAgIwN/fnzFjxvDw4UPKli2Ls7Oz3GveoEEDli1bxpQpU/jpp5/w9PRk1KhRLF68WM7D09MTX19ffvzxRxISEujXrx+9e/fm8uXL2Z6zKO91QEAAP/zwA61btyYpKQlXV1f27NmTY6+5IHwKFFJuA5cEQShycXFxGBgYcOTIEVxdXYv9fOfOncPBwYHw8HDRmC8GGZ/ny5cv0dfXL+niyF6/fo2xsTFz586VV4r9WJ04cYKGDRty8+ZNpYlrmbm7u2NnZ8eCBQs+bOGK0Zs3b6hcuTJr1qyhQ4cOH+y8AwcO5Nq1axw7duyDnbMkZfwfDQgIwNHRsaSLk6fly5ezePFipk2bphS9R0j3sda5mYmea0EQhM/A+fPnuXbtGk5OTrx8+VIOVfYxPl7fvn07urq6WFpacvPmTX744QcaNGiQY8P6c5OWlsbjx4+ZO3cuBgYGSj2+xWHOnDk0a9aMUqVKsXfvXtauXZvrCraCILwf0bh+T97e3vz333/s2LEDKL7eFTMzM0aOHCnPSFcoFGzfvp127doV6XkyvHtdH4u7d+9SrVo1zp8/j52dXUkXB4DQ0FAaN27Mixcv3nsZ6NTU1Fxn6ReGJEmYmpoiSRIJCQlFmvfnSF1dPUvkhU/FnDlziIqKQkNDAwcHB44dO0a5cuVKulhZxMfHy8NWypUrh4eHR4EjknzKoqOjqVatGlWqVCEwMLDYQ7KePXtWHt+eEZN6wIABxXpOQfiSica1kK3ffvst11BHH4uibNiWtFevXvHgwYMiv+9qamosW7YMNTU17ty5U6R5f44UCgVVqlTJ90S3j0W9evUIDw8v6WLkS+/evendu3eBjgkNDS2ewpQAMzOzD1q//vHHHx/sXIIgiMa1kAMDA4OSLsIHJUkSqampJbaoT2pqKg8ePEBHR4fy5csXaRzgN2/ekJycjImJCTo6OkWW7+dIkiSePn3KgwcP5BBvgiAIglAQX/wKjWlpacycORMLCws0NTWpWrUq06dPl/c/fPiQLl26YGhoSNmyZWnbti13794t9Plu3bpF27ZtqVChArq6unz11VccOnRIKc2TJ09o06YN2traVKtWjaCgoGzzevbsGe3bt0dHRwdLS0t27dqltD8iIgIvLy90dXWpUKECvXr1Uoq1umXLFmxsbNDW1qZs2bJ4eHjw+vVrIH1YSOYhJ4mJiYwYMQIjIyO0tLRo2LChUmza0NBQFAoFhw8fxtHRER0dHVxcXAq8gMm+ffto2LAhpUuXpmzZsrRu3Vpeaexdd+/epXHjxgAYGhqiUCjw9vYG0htJs2bNwtzcHG1tberWrcuWLVuylHf//v04OjqiqanJsWPH8jwOYM+ePdSoUQNtbW0aN278Xn8PGZKTk5EkifLly6OtrY2WllaRvTIWU9DU1CzSfD/Hl7a2NuXLl0eSpCIfniMIgiB8Gb74nusJEyawcuVK5s+fT8OGDYmJieHatWtAeo9f48aNadSoEUePHkVNTQ1/f39atGjBpUuX5CD5BfHq1Su8vLzw9/dHS0uLtWvX0qZNG6KioqhatSqQ3rC9f/8+wcHBaGhoMGLEiGyXep0yZQqzZs1i9uzZLFq0iB49enDv3j3KlClDTEwMbm5uDBw4kHnz5vH27Vt8fHzo3LkzwcHBxMTE0K1bN2bNmkX79u2Jj4+XG5fZ+fHHH9m6dStr167F1NSUWbNm4enpyc2bNylTpoycbtKkScydO5fy5cszZMgQ+vXrx4kTJ/J9f16/fs3o0aOxsbHh9evXTJ48mfbt23PhwgVUVJR/C5qYmLB161Y6duxIVFQU+vr6cizZn376iW3btrF06VIsLS05evQoPXv2pHz58kphs3788UfmzJmDubk5pUuXzvO4+/fv06FDB4YMGcLQoUMJCwtjzJgxuV5TYmIiiYmJ8vu4uLgc0xbHynVCwYjPQBA+T8WxKm5KSkqRP/EUq+p+BqQvWFxcnKSpqSmtXLky2/2rV6+WrKyspLS0NHlbYmKipK2tLe3fv1+SJEnq06eP1LZtW3m/m5ub9MMPPxSoHLVq1ZIWLVokSZIkRUVFSYB0+vRpeX9kZKQESPPnz5e3AdJPP/0kv3/16pWkUCikvXv3SpIkSb6+vlLz5s2VznP//n0JkKKioqTw8HAJkO7evZttmTJf16tXryR1dXUpKChI3p+UlCRVrlxZmjVrliRJkhQSEiIB0qFDh+Q0f//9twRIb9++LdD9yOzJkycSIF2+fFmSJEm6c+eOBEjnz59XOu+LFy+U7oWWlpZ08uRJpbz69+8vdevWTem4HTt2FOi4CRMmSNbW1kp/Ez4+PlnKkNnPP/8sAVleR44ckdO8fftWioiIyPNe1a1bV6pbt65kbW0tqaqqyu87d+6c4zGvXr2S/vnnH+nVq1e55l1YkydPlmrWrCk5OTll2denTx/5b7skzZ8/X/r333/zlTa/n0WGly9fSoD08uXL9ymiIAjFJOP/aHG8VFRUii3vwMDAkr51H6VPoc79onuuIyMjSUxMpGnTptnuDw8P5+bNm+jp6SltT0hIyHGoQl5ev37NlClT2L17N48ePSIlJYW3b98SHR0tl0lNTU0pFmfNmjWznaxna2sr/7tUqVLo6enJPdzh4eGEhIRkOynr1q1bNG/enKZNm2JjY4OnpyfNmzenU6dOGBoaZps+OTmZBg0ayNvU1dVxcnIiMjIyxzJVqlQJSB/mktErn5dbt27h6+vL6dOnefbsGWlpaUD67Po6derkK4+IiAgSEhJo1qyZ0vakpKQsK45lvs/5OS4yMpL69esr9W46OzvnWp4JEyYoLVcdFxdX6KXIL1y4AKQPiXF0dJTfl6RZs2YRHR1N+fLlS7ooOVqwYAEeHh4YGRmVdFEEQSghbdq0kb+XisKNGzcICQlhw4YNRbpcu1hV99P3RTeus1uONrO0tDQcHByyHfNc2IbEuHHj2L9/P3PmzMHCwgJtbW06depEUlISgDwsIz+Ppt9dwUqhUMiN0bS0NNq0acPMmTOzHFepUiVUVVU5ePAgJ0+e5MCBAyxatIhJkyZx5swZqlWrppQ+pzJJkpRlW+YyZezLKFN+tGnTBhMTE1auXEnlypVJS0ujTp068v3Jj4zz/f333xgbGyvtyxh/nKFUqVIFOk4qxAx/TU3NLOctSrNnz+bmzZssX74cgP/++w8LCwuuX7/Orl27WLduHZA+Rt/Q0JD169fLP3bmzJnDH3/8QUpKChUrVmT58uXZNvz37dvHxIkTSUlJwdDQkKVLl1KrVi1cXFxISEigadOmuLu7s3DhwhzL6efnR1RUFPHx8Vy7dg17e3smTJjAmDFjuHv3Lu3atWPevHnA/4e0vHDhAg8fPqRdu3bMmjULhULBvHnz2LRpEykpKairq7No0SK+/vprIP2x748//khcXBySJDFt2jQuXrzIo0eP6NSpE1paWgQGBn40YRwFQfhwypYtW+iVMLOTMYfJ2tpaLNAlKPmiG9eWlpZoa2tz+PDhbGN+2tvb8/vvv2NkZFRkqwAdO3YMb29v2rdvD6SPwc48Ic7a2pqUlBTCwsJwcnIC0sdf/ffffwU6j729PVu3bsXMzCzH8WAKhYIGDRrQoEEDJk+ejKmpKdu3b1fqZQWwsLBAQ0OD48eP0717dyB9Al5YWJgcd7soxMbGEhkZyfLly2nUqBEAx48fz/WYjHHvqamp8rZatWqhqalJdHR0lmWJc5Of42rVqpUl9vfp06fzfY7iMHDgQKysrJg1axYGBgasXr2atm3bymPhT506xfr162nZsiX/+9//GDJkCHv27GHjxo1cv36dU6dOoaqqyvr16xk+fDg7d+5Uyv/Jkyf07NmTkJAQbGxsCAoKonPnzly5coWTJ0+iUCg4efJkvkLXhYWFERYWhq6uLvb29owfP569e/eSkpJCtWrVGDJkCDVq1ADSnyQcPHiQ5ORkXF1d+fPPP+ncuTO9evWS/0ZPnz5N//79uXLlCs+fP6d9+/Zs27YNFxcX0tLS+O+//2jbti1r1qxhy5Yt+X76IQiCIAiF9UVHC9HS0sLHx4cff/yRdevWcevWLU6fPs3q1asB6NGjB+XKlaNt27YcO3aMO3fucOTIEX744QcePHhQqHNaWFiwbds2Lly4wMWLF+nevbtSz66VlRUtWrRg4MCBnDlzhvDwcAYMGJBnL/u7hg0bxvPnz+nWrRtnz57l9u3bHDhwgH79+pGamsqZM2f45ZdfCAsLIzo6mm3btvH06dNsH22VKlWKoUOHMm7cOPbt20dERAQDBw7kzZs3RbqsckZElhUrVnDz5k2Cg4OzNPTfZWpqikKhYPfu3Tx9+pRXr16hp6fH2LFjGTVqFGvXruXWrVucP3+e//3vf6xduzbHvPJz3JAhQ7h16xajR48mKiqKjRs3EhgYWGT3oDBKly5Nx44dCQwMRJIkli5dyvDhw+X9zs7OmJmZATBo0CBCQkKQJIkdO3Zw6NAhHBwcsLOzY9asWdy7dy9L/mfOnMHOzk5+RNmjRw8ePHhATExMgcvq6emJgYEBqqqq2Nra0qxZMzQ1NSlVqhRWVlbcvn1bTtunTx/U1dXR0dGhZ8+eclSd8+fP4+bmRp06dRgyZAgREREkJSVx6tQpuTcdQEVFRWmyrSAIgiB8CF90zzWAr68vampqTJ48mUePHlGpUiWGDBkCgI6ODkePHsXHx4cOHToQHx+PsbExTZs2LXRP9vz58+nXrx8uLi6UK1cOHx+fLNEjAgICGDBgAG5ublSoUAF/f398fX0LdJ7KlStz4sQJfHx88PT0JDExEVNTU1q0aIGKigr6+vocPXqUBQsWEBcXh6mpKXPnzqVly5bZ5vfrr7+SlpZGr169iI+Px9HRkf3792c7RjsnGasrhoSE4O7unmW/iooKmzdvZsSIEdSpUwcrKysWLlyYbdoMxsbGTJkyhfHjx9O3b1969+5NYGAg06ZNw8jIiBkzZnD79m1Kly6Nvb09EydOzLWMeR1XtWpVtm7dyqhRo1iyZAlOTk788ssv9OvXL9/3oTiMGDGCdu3aUb16dSpUqJBlbHl2JEnip59+yrPs2Q3/gcJF1dDS0pL/raqqmuV9SkpKjscqFAqSkpLo2LEjoaGhODg4EBcXh4GBQYGGDQmCIAhCcfriG9cqKipMmjSJSZMmZbu/YsWKufZ2vttrmdcqYmZmZgQHByttGzZsWJZz7t69W2lbr169lN5nN/b33aEjlpaWbNu2LdtyWFtbs2/fvhzL+e51aWlpsXDhwhzH1Lq7u2cpk52dndK2u3fvUrp0aerWrZvjeT08PIiIiFDaljmP7FY28/X1zfLjQ6FQMGLECEaMGJHv8ubnOIDWrVvTunVrpW19+/bNMf2HULNmTczMzBg6dCizZs1S2nf69Gnu3buHtbU1q1atokmTJigUCr755ht+++032rVrR5kyZUhOTubKlStZGubOzs7079+fyMhIrK2t2bx5M1WqVKFixYrFek3r16+nS5cuJCcns3HjRsaNG0dCQoK8IA7AokWL5PQuLi4MGDCAkydPKg0LKVOmDPr6+rx8+bJYyysIgiAI8IUPCxE+rIxJcQXp7Rbyb+DAgaSkpNCpUyel7Q0bNmTlypU4Ozvz119/sWTJEiD9B1vPnj1xd3enbt262NnZERISkiXf8uXLs379enr06EHdunVZunTpB1lO2d7eHg8PD2xtbXFzc6NTp07o6+szdepUnJyccHV1VZooamhoyPbt2xk3bhy2trbUq1dPHrM/YsQI+vbtK0+SFARBEITiopAKE/5AEIRCyxjKcOTIEVxdXYH08I537tyhWrVqSkMlCuK7776jUqVKSr34gYGB7Nixg59++glra2ul6CgfM3d3d8aOHZvlCcGHUNDPIuPzfPnyZZFNfP7cZER/WbBgQaGO9/b25r///ssymbioZQxdO3/+/BcXUeZD3OPQ0FAaN27Mixcvsg0vW1wy/o96e3vL80+KwqVLl9i2bRvh4eFFGi3k3LlzODg4FHm+n4tPoc4VPdeC8Il79OgRNWvW5MKFC0UavUX4MpmZmRW6EfyxCA0NRaFQFDjK0pfst99+K9LJ2e7u7lnqIxcXF2JiYjAwMCiy8wjCx+iLH3MtCCUlKipKDl8nSRJqamq8efNGKaxgfhgYGBAeHi6/f/36tfzvb7/9ljZt2nDnzp2iKfQHktfcBUH4WCQlJckhQYtSamoqCoUCFZUP0wf2IRq8GhoaxT5XQxA+BqLnWhBKyKBBg3BwcMDBwYGOHTsSExPD7du3iYyMLNJXRsM6OTm5hK9Y+BDS0tKYOXMmFhYWaGpqUrVqVaZPnw5AkyZNlMI0Qnp8eU1NTYKDg3F3d+fevXuMGjUKhUKhFBFm69at1K5dG01NTczMzJg7d65SPkuWLMHS0hItLS0qVKiQZex/Zvv27cPAwEBe4Ojhw4d06dJFDsfZtm1bpfj/75IkiVmzZmFubo62tjZ169Zly5YtQPrQjsaNGwPp4/AVCgXe3t7yeRs2bEjp0qUpW7YsrVu3LvBqu2ZmZvj7++Pt7Y2BgQEDBw4E4OTJk7i6uqKtrY2JiQkjRoxQ+qH74sULevfujaGhITo6OrRs2ZIbN27I+wMDAyldujS7d++WY+7fu3ePmJgYWrVqhba2NtWqVWPjxo1Zni7MmzcPGxsbSpUqhYmJCd999x2vXr3Kkvf+/fuxtrZGV1eXFi1aKIXT9Pb2pl27dvI9zPj8M78yIjfFxsbSrVs3qlSpgo6ODjY2NmzatEkpryNHjvDbb7/Jx969ezfbJwp5/V2ZmZnJEZn09PSoWrUqK1asKNBnJggfmmhcC0IJadSoER06dKBDhw40b94cHR0d9PT0KF26dJG+dHR0AArcIy58miZMmMDMmTPx9fUlIiKCjRs3UqFCBQAGDBjAxo0bSUxMlNMHBQVRuXJlGjduzLZt26hSpQpTp04lJiZGbnyFh4fTuXNnunbtyuXLl/Hz88PX11ceRhAWFsaIESOYOnUqUVFR7Nu3T55P8K7NmzfTuXNn1q1bR+/evXnz5g2NGzdGV1eXo0ePcvz4cbnxl1OIxZ9++omAgACWLl3K1atXGTVqFD179uTIkSOYmJiwdetWIP3pUExMDL/99huQ/lRn9OjR/PPPPxw+fBgVFRXat29foFVkIX1V1Dp16hAeHo6vry+XL1/G09OTDh06cOnSJX7//XeOHz+u9EPG29ubsLAwdu3axalTp5AkCS8vL6UfvW/evGHGjBmsWrWKq1evYmRkRO/evXn06BGhoaFs3bqVFStW8OTJE6XyqKiosHDhQq5cucLatWsJDg7mxx9/VErz5s0b5syZw/r16zl69CjR0dGMHTs22+szMTGRP/+YmBjOnz9P2bJlleaIODg4sHv3bq5cucKgQYPo1asXZ86cAdKHmDg7OzNw4EA5j+xWfs3r7yrD3LlzcXR05Pz583z33XcMHTqUa9eu5fj5JCYmEhcXp/QShA9JDAsRhBJSvXp1eXJNqVKlUFdXR1tbO8cVNd/HmzdvijxP4eMTHx/Pb7/9xuLFi+nTpw+Q/nfWsGFDADp27Mj333/Pzp076dy5M5AeV9/b2xuFQkGZMmVQVVVFT09P6fH9vHnzaNq0qTxZtkaNGkRERDB79my8vb2Jjo6mVKlStG7dGj09PUxNTbONtb5kyRImTpzIzp075d7lzZs3o6KiwqpVq+Se8oCAAEqXLk1oaCjNmzdXyuP169fMmzeP4OBgnJ2dATA3N+f48eMsX74cNzc3efEgIyMjpYlzHTt2VMpr9erVGBkZERERUaDVO5s0aaLUMO3duzfdu3eXxxhbWlqycOFC3NzcWLp0Kffv32fXrl2cOHFCXuQoKCgIExMTduzYwbfffgukP11asmSJHK702rVrHDp0iH/++QdHR0cAVq1ahaWlpVJ5Mo9trlatGtOmTWPo0KFyZKCMvJctW0b16tUBGD58OFOnTs32+lRVVeXPPyEhgXbt2uHs7Iyfnx+Qvr5A5uv//vvv2bdvH3/++Sdff/01BgYGaGhooKOjk+swkLz+rjJ4eXnx3XffAeDj48P8+fMJDQ2lZs2a2eY7Y8YMpkyZkuN5BaG4iZ5rQRCEz0RkZCSJiYk0bdo02/2ampr07NmTNWvWAMgrxWZuyOSUb4MGDZS2NWjQgBs3bpCamkqzZs0wNTXF3NycXr16ERQUlOUH3datWxk5ciQHDhyQG9aQ3nt58+ZN9PT00NXVRVdXlzJlypCQkJDtkI2IiAgSEhJo1qyZnF5XV1deZTc3t27donv37pibm6Ovr0+1atUAiI6OzvW4d2U0dDNfQ2BgoFJ5PD09SUtL486dO0RGRqKmpsbXX38tH1O2bFmsrKyIjIyUt2loaGBrayu/j4qKQk1NTSlihIWFRZZwpiEhITRr1gxjY2P09PTo3bs3sbGxSsNSdHR05IY1QKVKlbL0gGenf//+xMfHs3HjRnn8d2pqKtOnT8fW1payZcuiq6vLgQMHCnwf8/q7ypD5nigUCipWrJhr2SdMmMDLly/l1/379wtULkF4X6LnWhA+Ug8fPuT58+fvnU9CQgKqqqpyQyInampqSr1348aNo0ePHvk+z927d+nUqRNhYWH5Psbb25tOnTrlO+Sen58f5cqVyzJuWEinra2dZ5oBAwZgZ2fHgwcPWLNmDU2bNsXU1DTXY7JbpTNzFFc9PT3OnTtHaGgoBw4cYPLkyfj5+fHPP//IPcd2dnacO3eOgIAAvvrqKzm/tLQ0HBwcCAoKynLe8uXLZ9mWMYTj77//xtjYWGlf5rjn2WnTpg0mJiasXLmSypUrk5aWRp06dQq8wue7IS3T0tIYPHhwtotPVa1alevXr2ebz7v3VVtbW+l9TpFyM2+/d+8eXl5eDBkyhGnTplGmTBmOHz9O//79lYacqKurK+WhUChyzD+Dv78/+/bt4+zZs+jp6cnb586dy/z581mwYIE81nvkyJEFvo95/V3lVvbchvJoamrm+bcgCMVJNK7f8W6sz/eNz5oTMzMzRo4cKT/OUygUbN++XZ5QUtQ+VJzYdxX0/uUnzmxgYCAjR46UJ8X4+fmxY8eOXBcHKc7rL46/kYcPH+Lm5sbbt2+LJD8tLS1Onz5N2bJlc0xTunRpscDKJ87S0hJtbW0OHz7MgAEDsk1jY2ODo6MjK1euZOPGjUqrXEJ67+m74/Nr1aolL8iT4eTJk9SoUQNVVVUg/ceZh4cHHh4e/Pzzz5QuXZrg4GA6dOgApA9PmTt3Lu7u7qiqqrJ48WIgfbGg33//HSMjo3zFrM2Y7BcdHY2bm1u2aTKid2S+jtjYWCIjI1m+fDmNGjUCyHJNhWVvb8/Vq1exsLDIscwpKSmcOXNGHhYSGxvL9evXsba2zjHfmjVrkpKSwvnz53FwcADg5s2bShMCw8LCSElJYe7cuXLPclEs8rR161amTp3K3r17lXq8AY4dO0bbtm3p2bMnkP7j4saNG0rXkt3f0bvy83clCJ8i0bj+Qvz222959lIUh23btmXpdXhfXbp0wcvLq0DHvHv9xfWjqag8f/6ct2/fMmPGDMzNzd8rr9u3bzNhwgRiY2MLdWzr1q05c+YMqqqqODk58ccff2Bpacno0aMJDQ1FRUWFyZMny1/+kP4D6MqVK8yZMwdIf4y+ZcsWzMzM8PX1ZcuWLZibmyt9Jnv27GHq1KkkJCTg5OTEsmXLUFFRYdmyZcyfPx8TExPKly9PuXLl3ut+fM60tLTw8fHhxx9/RENDgwYNGvD06VOuXr1K//795XQDBgxg+PDh6Ojo0L59e6U8zMzMOHr0KF27dkVTU5Ny5coxZswYvvrqK6ZNm0aXLl04deoUixcvlsf07t69m9u3b+Pq6oqhoSF79uwhLS0NKysrpbxr1KhBSEgI7u7uqKmpsWDBAnr06MHs2bNp27YtU6dOpUqVKkRHR7Nt2zbGjRtHlSpVlPLQ09Nj7NixjBo1irS0NBo2bEhcXBwnT55EV1eXPn36YGpqikKhYPfu3Xh5eaGtrS1HIlmxYgWVKlUiOjqa8ePHF8l99/HxoX79+gwbNoyBAwdSqlQpIiMjOXjwIIsWLcLS0pK2bdsycOBAli9fjp6eHuPHj8fY2Ji2bdvmmG/NmjXx8PBg0KBBLF26FHV1dcaMGaPUw129enVSUlJYtGgRbdq04cSJEyxbtuy9rufKlSv07t0bHx8fateuzePHj4H0BnOZMmWwsLBg69atnDx5EkNDQ+bNm8fjx4+VGtdmZmacOXOGu3fvykN93pXX35UgfKpE4/oLUVJB+7OrUN+XtrZ2vh5/Z/apLlpgbm5OrVq1Psi5/vvvP6WnBYsWLaJRo0YMGTKEcePGoaWlRbdu3ahVqxaLFy/m5cuXXLx4ERUVFV68eMHLly/zPMfZs2fZt28fFy9eJDY2Fmtra7777juePXvGvHnzCA0NRUtLi+HDh/PHH3/QqFEjZs+ezblz51BRUaFevXpZxmgKynx9fVFTU2Py5Mk8evSISpUqMWTIEKU03bp1Y+TIkXTv3j3LKpRTp05l8ODBVK9encTERCRJwt7enj/++IPJkyczbdo0KlWqxNSpU+Wx2qVLl2bbtm34+fmRkJCApaUlmzZtonbt2lnKZ2VlJYf9U1VVZe7cuRw9ehQfHx86dOhAfHw8xsbGNG3aNMee7GnTpmFkZMSMGTO4ffs2pUuXxt7enokTJwLpE+6mTJnC+PHj6du3L7179yYwMJDNmzczYsQI6tSpg5WVFQsXLpTDy70PW1tbjhw5wqRJk2jUqBGSJFG9enW6dOkipwkICOCHH36gdevWJCUl4erqyp49e/LsfFi3bh39+/fH1dWVihUrMmPGDK5evSp/bnZ2dsybN4+ZM2cyYcIEXF1dmTFjBr179y709YSFhfHmzRv8/f3x9/eXt7u5uREaGoqvry937tzB09MTHR0dBg0aRLt27ZTqgLFjx9KnTx9q1arF27dvs421n9fflSB8qj67xnVaWhqzZ89m5cqV3L9/nwoVKjB48GAmTZoEpD9uHz16NAcOHEBFRYWGDRvy22+/FXpJ1Fu3bjF69GhOnz7N69evsba2ZsaMGXh4eMhpnjx5Qv/+/Tl06BAVK1ZUqqwye/bsGe3bt2f//v0YGxszd+5cvvnmG3l/REQEY8eO5ejRo5QqVYrmzZszf/58uSdvy5YtTJkyhZs3b6Kjo0O9evXYuXMnpUqVyjIsIjExkXHjxrF582bi4uJwdHRk/vz5fPXVV8D/L1N76NAhfHx8iIiIwM7OjoCAgCy9Ubl5t4fYzMyMQYMGcfPmTf78808MDQ356aefGDRokNJxt2/fZtSoUZw5cwZLS0uWLVsmRwZ4d1hIhuXLl+Pv709sbCytWrVi5cqV8njPzNefEYM1Iw4rwJ07dzAzM8vzHr9+/ZqhQ4eybds2uQftc5HTsJDvv/+ehg0bkpCQIIfaCg4OZvTo0fJjaENDw3w1rk+ePEn79u3R0NCgUqVKNGnSBIBTp05x6dIl6tevD8Dbt28xNjZGS0uLpk2byj+OMv9/ELKnoqLCpEmT5DovOy9evCAhIUGpNztD/fr1uXjxYpbtHTt2zBJtI0PDhg1zXfjn3X3W1tb8+++/8vuKFSuydu3aHI9/NzSbQqFgxIgR2Y5xzuDr6ytHocjg4eFBRESE0rbMT0/MzMzyfMKXU/ztr776igMHDuR4nKGhoRzXOzve3t7ZNiorVarEnj175PcPHjzgyZMnSkNQRo0axahRo5SO69WrV655t2vXTulaM9/jnMqSoUyZMnkOsatRowanTp1S2pbd/c3t7wqyv99i+JrwsfvsooXkFuO1MPFU8/Lq1Su8vLw4dOgQ58+fx9PTkzZt2ijNmvb29ubu3bsEBwezZcsWlixZku1M5ylTptC5c2cuXbqEl5cXPXr0kCe0xcTE4Obmhp2dHWFhYezbt49///1XDqcVExNDt27d6NevH5GRkYSGhtKhQ4ccvyh+/PFHtm7dytq1azl37hwWFhZ4enpmmUA3adIk5s6dS1hYGGpqavTr169Q9ymz/MQsnTRpEmPHjuXChQvUqFGDbt26kZKSkmOeN2/e5I8//uCvv/5i3759XLhwgWHDhmWbNqcYrHndY0if5BcSEsL27ds5cOAAoaGhSqsjZudTj7kaFxdHbGwsb9++JSEhIV/HqKmpKU04yoirnN0EpoztrVu35sKFC1y4cIGoqCgmTJiQY3qhcJKTk4mOjpaHMWSOQiF8nIKDg9m1axd37tzh5MmTdO3aFTMzsxzjiAuCUPI+q8Z1RozXWbNm0adPHzm+a8bEnszxVG1sbLC2tiYgIIDo6OhCL7dct25dBg8ejI2NDZaWlvj7+2Nubs6uXbsAuH79Onv37mXVqlU4Ozvj4ODA6tWrs52o5u3tTbdu3bCwsOCXX37h9evXnD17FoClS5dib2/PL7/8Qs2aNalXrx5r1qwhJCSE69evExMTQ0pKCh06dMDMzAwbGxu+++47eXntzF6/fs3SpUuZPXs2LVu2pFatWqxcuRJtbW1Wr16tlHb69Om4ublRq1Ytxo8fz8mTJ/PdwMpJRsxSCwsLfHx8KFeuXJb7P3bsWFq1akWNGjWYMmUK9+7d4+bNmznmmZCQwNq1a7Gzs8PV1ZVFixaxefNmeaxgZu/GYK1YsSKqqqp53uNXr16xevVq5syZQ7NmzbCxsWHt2rV5TtqZMWMGBgYG8iu7xRQ+ZmPGjOH777+nX79+8hhVDw8PVqxYITegX7x4oXSMqamp3PsZERFBVFQUkB5ma/v27SQlJfH48WNCQkKA9N7SkJAQOWRWbGwsDx48wMnJicOHD/Py5UtevXrFX3/99UGu+XN14sQJTE1NCQ8Pf+9xucKHkZyczMSJE6lduzbt27enfPnyhIaGFvlcFkEQis5nNSwkrxivmeOpZpZTPNX8eP36NVOmTGH37t08evSIlJQU3r59K/dcZ8Q3zRwXtWbNmkoLG2TIHMuzVKlS6OnpyT3c4eHhhISEZNtYvnXrFs2bN6dp06bY2Njg6elJ8+bN6dSpU5Z4qBnpk5OTlcauqqur4+TkpBRz9d0yVapUCUgf5lK1atX83J5s5SdmaU7nzWnRgKpVqypNfHJ2diYtLY2oqKhcFzHILK97/PbtW5KSkuThKZD+eDSvYTITJkxg9OjR8vu4uLh8N7Bv376dr3RFkce7Y6779etHrVq1uHHjBitXrpQnjx07doxBgwZx7do1bGxsUFNT4+eff1bqBW3YsCHlypXD1tYWe3t7eaKTk5MTnp6e2NraYmVlJfe+GRkZsXTpUtq1a0dycjLq6uqsXLkSe3t7xowZg5OTE1WrVpUXQxEKx93dvUQmNguF5+npiaenZ0kXQxCEAvisGtd5TXIraDzV/Bg3bhz79+9nzpw5WFhYoK2tTadOneRhJhlfZPl5tJ1bLM+0tDTatGnDzJkzsxxXqVIlVFVVOXjwICdPnuTAgQMsWrSISZMmcebMmSzxjXMqU3aP4DOXKXNc2veRn5il73vejGMKMqQgr3t848aNfOeVWWFirpYpUwZtbW0mTJhQqHO+S0tLK9cwfECOw24y5g+oqqoqjaFcuHBhlrQZMa4VCgW///57tvlNmzaNadOmZdneokULWrRokWX70KFDGTp0aK5lFwRBEISPxWfVuM4rxmtB46nmx7Fjx/D29pbDWb169UppAoa1tTUpKSmEhYXh5OQEpK+69e5kvLzY29uzdetWzMzMclweW6FQ0KBBAxo0aMDkyZMxNTVl+/btSr2mkL7Cl4aGBsePH6d79+5A+qPHsLAwpWV0PyXR0dE8evSIypUrA+kT5FRUVKhRo0a26bOLwZrXPbawsEBdXZ3Tp0/LPfcvXrzg+vXrOcbbLSxjY2OOHDlSpIvIvBvSTBAEQRCEovdZNa7zivFa0Hiq+WFhYcG2bdto06YNCoUCX19fpR5WKysrWrRowcCBA1mxYgVqamqMHDmywKHkhg0bxsqVK+nWrRvjxo2jXLly3Lx5k82bN7Ny5UrCwsI4fPgwzZs3x8jIiDNnzvD06dNsFygoVaoUQ4cOZdy4cZQpU4aqVasya9Ys3rx5k230gE+BlpYWffr0Yc6cOcTFxTFixAg6d+6c45CQ7GKw5nWPdXV16d+/P+PGjaNs2bJUqFCBSZMmyREzipqxsXGWFegK482bNwX+MScIgvC5iY2NlRcYKgoZc03eHU75voo6P+HD+6wa15B7jFcdHZ0Cx1PNy/z58+nXrx8uLi6UK1cOHx+fLNEgAgICGDBgAG5ublSoUAF/f/8sIaLyUrlyZU6cOIGPjw+enp4kJiZiampKixYtUFFRQV9fn6NHj7JgwQLi4uIwNTVl7ty5tGzZMtv8fv31V9LS0ujVqxfx8fE4Ojqyf//+bMdo5yRjNcWMRSFKkoWFBR06dMDLy4vnz5/j5eWV60IE2cVgNTMzy/UeA8yePZtXr17xzTffoKenx5gxY/IVgk4QBEEoWcUxIVpFRUVeqbIo6ejoiAWzPmEKScxuEQopNDSU9u3bc/v27QI1yr90cXFxGBgY4O3tLcdXL1WqFA0aNMDY2DjHYT+FldFzXa1atTzHXQvpw2ju3LlDtWrVsiywkp2Mz/Ply5dFNtxMEISik/F/dNCgQVnmIL2P4OBgDh48yNChQ7Mdivo+ypUr916BAz5nn0Kd+9n1XAsfzr59+5g4caJoWAuCIAgfPWdnZ6XIXe/r4cOHHDx4kMqVK4uY8YIS0bgWCu3XX38t6SIIgiAIgiB8VETjWhA+Ug8fPizSaCF5PQ4tV64cz549K3D+7u7uLF68mDp16uQrfWhoKIsXL2bLli35Sn/37l06deokh/kTBEEQhI+ZaFwLQgnJPHPdwMCA1NRUkpOTkSSJhw8f0rRp0/deDTODpqYmZ86cEWOuBUEQBKGYica1IJSQzDPXTU1NadKkiRza6fbt2yQkJNChQ4f3njH+7Nkztm3blu9e6dDQUKZPn06pUqWIiIigdevWzJs3D4Bdu3YxefJkJEmibt26rFu3TunYzL3fixcv5tmzZ/j5+XHq1CkGDBhA6dKllcYm/vvvvwwePJgHDx6gpaXFqlWrqFmzJtevX6d79+6oqqrSqFGj97p+QRAEQfiQRONaEEpIo0aN5JVBy5Yti46ODnp6eqiqqqKnpwekN1YzFsZ5XwVZrfL8+fNERkZiYGBA7dq1GTlyJJqamvzwww8cP34cY2PjAg1ZGTBgAGvXrsXR0ZEuXbrI20eOHImvry8ODg78888/jBw5kn379jFy5EgmTpxIhw4d+PHHHwt0nYIgCIJQkkTjWhBKSPXq1ZVC8amrq6OtrY2amlq+QsAVJ2dnZ7nhX6dOHe7du8eLFy9o2rSpvLBNmTJl8pXXf//9R3JysjxLv0ePHnKPd3BwcLYLJoSHh/P3338D0LNnT4KDg9/7mgRBKDp+fn7s2LGDCxculHRRBOGjIxrXgiBkoampKf9bVVU1y1LxOcncO56YmAiAJEm59pqHh4ejqqqaYz6CIBROYGAgI0eOFCu0CsIHVjzrNguC8NmpX78+wcHBPHz4ECDbYSEGBgbcu3eP5ORkdu/eDYChoSHq6uqcO3cOgE2bNsnp3dzcWL58OQBpaWlcvnwZAHt7e3bu3AnAxo0bi++iBEEQBKGIicZ1IXl7e9OuXTv5vbu7OyNHjiyx8rxLoVCwY8cOID2UmUKhkB/fhYaGolAoPkhvhpmZGQsWLMh3+vyUzc/PDzs7O/n9u59Fdorz8ynoNRbEs2fPePTo0Xu9ChNeLztGRkYsXLiQVq1aUbduXUaNGpUljb+/P02aNKFly5aYm5vL21euXEmvXr1wcXFRWnVs0aJFHDx4EFtbW+rUqSMPBVmwYAH+/v58/fXXckQVQfjS7Nu3j4YNG1K6dGnKli1L69atuXXrFpB9XXnhwgUUCgV3794lNDSUvn378vLlSxQKBQqFAj8/PwBevHhB7969MTQ0REdHh5YtW3Ljxg05n8DAQEqXLs2OHTuoUaMGWlpaNGvWjPv372cp4/r16zEzM8PAwICuXbsSHx+fr/JnOHnyJHZ2dmhpaeHo6MiOHTvk7ytJkrCwsGDOnDlKx1y5cgUVFZUseQnCx0IMC/nE5TTuLSYmJseVE11cXIiJicHAwAAo3keH//zzD6VKlSrSPMeOHcv3339foGO2bduGurq6/N7MzIyRI0d+VD+IMitTpgxaWlps27atSPLT1NTMMwxfRiPc3d0dd3d3eXvmeNStW7emdevWSseFhobK/+7atStdu3bNkrezszNXr17Nsr1ChQps3749y/YaNWooxbWeOnVqrmUXhM/R69evGT16NDY2Nrx+/ZrJkyfTvn37fI1zdnFxYcGCBUyePJmoqCgAdHV1gfQOiRs3brBr1y709fXx8fHBy8uLiIgIuZ588+YN06dPZ+3atWhoaPDdd9/RtWtXTpw4IZ/j1q1b7Nixg927d/PixQs6d+7Mr7/+yvTp0/Msv4qKCvHx8bRp0wYvLy82btzIvXv3lOpkhUJBv379CAgIYOzYsfL2NWvW0KhRI6pXr57ttScmJsrD0iB9uWxB+JBE4/ozVbFixRz3aWho5Lq/KGVMiitKurq68pdEfuV38t3HwtjYmKNHjxbpIjJVqlQpgpIJgvChdOzYUen96tWrMTIyIiIiIs9jNTQ0MDAwQKFQKNX3GY3qEydO4OLiAkBQUBAmJibs2LGDb7/9FoDk5GQWL17M119/DcDatWuxtrbm7NmzODk5AelDuQIDA+XoRr169eLw4cNy4zq38tepU4egoCAUCgUrV65ES0uLWrVq8fDhQwYOHCgf07dvXyZPniyfNzk5mQ0bNjB79uwcr33GjBlMmTIlz3skCMXlix0WkpaWxsyZM7GwsEBTU5OqVavKFQKkr47XpUsXDA0NKVu2LG3btuXu3buFPl/GUIY1a9ZQtWpVdHV1GTp0KKmpqcyaNYuKFStiZGSkVAaA6Oho2rZti66uLvr6+nTu3Jl///0XSO9xnjJlChcvXpQf+wUGBgLKw0LelflxYk6PDqdOnYqNjU2WYx0cHJg8eXK+r/vdIRMKhYJVq1bRvn17dHR0sLS0ZNeuXVmOCw8Px9HRER0dHVxcXOSel8z38l1TpkzByMgIfX19Bg8eTFJSkrwv87AQd3d37t27x6hRo+RrznDy5ElcXV3R1tbGxMSEESNG8Pr1a3n/kydPaNOmDdra2lSrVo2goKB834uCMjY2xsbG5r1ftWvX/mA/pgRBKDq3bt2ie/fumJubo6+vL6+yGh0dXeg8IyMjUVNTkxvNkB4K1MrKSilyj5qamhzhB6BmzZqULl1aKY2ZmZncsAaoVKkST548yXf5o6KisLW1VYqOlNFwz5xnq1atWLNmDQC7d+8mISFB/hGQnQkTJvDy5Uv5ld1wFkEoTl9s43rChAnMnDkTX19fIiIi2LhxIxUqVADSH4c1btwYXV1djh49yvHjx9HV1aVFixZKDbaCunXrFnv37mXfvn1s2rSJNWvW0KpVKx48eMCRI0eYOXMmP/30E6dPnwbSoyy0a9eO58+fc+TIEQ4ePMitW7fkOMFdunRhzJgx1K5dm5iYGGJiYpRiCOdHxqNDfX19OY+xY8fSr18/IiIi+Oeff+S0ly5d4vz583h7exf6HkB6I7hz585cunQJLy8vevTokaWHdtKkScydO5ewsDDU1NTo169frnkePnyYyMhIQkJC2LRpE9u3b8+x52Lbtm1UqVKFqVOnytcMcPnyZTw9PenQoQOXLl3i999/5/jx4wwfPlw+1tvbm7t37xIcHMyWLVtYsmSJ0pdJdhITE4mLi1N6CYIg5KVNmzbExsaycuVKzpw5w5kzZwBISkpCRSX961uSJDl9cnJynnlmTv/u9nej9GQXtSfztsxD7TL2paWl5av8OZ0zu/INGDCAzZs38/btWwICAujSpQs6Ojo5XqOmpib6+vpKL0H4kL7IYSHx8fH89ttvLF68mD59+gDpMYcbNmwIwObNm1FRUWHVqlXyf/yAgABKly5NaGgozZs3L9R509LSWLNmDXp6etSqVYvGjRsTFRXFnj17UFFRwcrKipkzZxIaGkr9+vU5dOgQly5d4s6dO5iYmADpk0dq167NP//8w1dffYWuri5qamqF7pnM6dGhrq4unp6eBAQE8NVXX8n3wM3NTWmiWmF4e3vTrVs3AH755RcWLVrE2bNnadGihZxm+vTpuLm5ATB+/HhatWpFQkJCjvGfNTQ0WLNmDTo6OtSuXZupU6cybtw4pk2bJn8JZShTpoy8UEvma549ezbdu3eXe7gtLS1ZuHAhbm5uLF26lOjoaPbu3cvp06flXp/Vq1djbW2d6/WKR5SCIBRUbGwskZGRLF++XF6l9Pjx4/L+jCF3mefXvDsWW0NDI0sYzVq1apGSksKZM2fkYSGxsbFcv35dqS5LSUkhLCxM7kmOioriv//+o2bNmkVSfkjvDQ8KCiIxMVEO/5l5rkUGLy8vSpUqxdKlS9m7dy9Hjx7NVxkEoaR8kT3XkZGRJCYm0rRp02z3h4eHc/PmTfT09OTxvWXKlCEhIeG9Zie/+witQoUK1KpVS6nxV6FCBbknNDIyEhMTE7lhDekV47uP5orLwIED2bRpEwkJCSQnJxMUFJRnD3J+2Nrayv8uVaoUenp6WXp/M6epVKkSQK49xHXr1lXqyXB2dubVq1cFehwYHh5OYGCg/Jln/MBIS0vjzp078uPU7B6V5kY8ohQEoaAyhiSuWLGCmzdvEhwczOjRo+X9FhYWmJiY4Ofnx/Xr1/n777+ZO3euUh5mZma8evWKw4cP8+zZM968eYOlpSVt27Zl4MCBHD9+nIsXL9KzZ0+MjY1p27atfKy6ujrff/89Z86c4dy5c/Tt25f69etnGbZR2PIDdO/enbS0NAYNGkRkZCT79++XI4Nk7tFWVVXF29ubCRMmYGFhgbOzc4HvpyB8SF9k41pbWzvX/WlpaTg4OHDhwgWl1/Xr1+nevXuhz5vdI7TcHqvltPhGXotyFJU2bdqgqanJ9u3b+euvv0hMTMwyQaUw8nqU+G6ajGt9N01+FOQ+paWlMXjwYKXP/OLFi9y4cYPq1avLjysLeu/FI0pBEApKRUWFzZs3Ex4eTp06dRg1apTSJD51dXU2bdrEtWvXqFu3LjNnzsTf318pDxcXF4YMGUKXLl0oX748s2bNAtKfQjo4ONC6dWucnZ2RJIk9e/Yo1bs6Ojr4+PjQvXt3nJ2d0dbWZvPmzUVWfgB9fX3++usvLly4gJ2dHZMmTZLn9Lz7lLJ///4kJSUVSQePIBS3L3JYiKWlJdra2hw+fJgBAwZk2W9vb8/vv/8uT44rKbVq1SI6Opr79+/LvdcRERG8fPlSfnyX3WO/gsopDzU1Nfr06UNAQACampp07do113FuJenixYu8fftW/uF0+vRpdHV1c4yQkd0129vbc/XqVSwsLLI9xtraOsdHpcXh4cOHRRotJGMyUW5WrVrFsGHD+Pfff+UeeT8/P8qVK8fw4cMJDAzEy8sLIyOj9y7Xu7y9venUqVOWUH/u7u48fvxY/rJdsmQJSUlJLF68WClMYH6FhoYW+lhB+JA8PDyyRAbJPCa5QYMGXLp0Kcf9AEuXLmXp0qVK2wwNDVm3bl2e5+/QoQMdOnTIdp+fn58cNzvDu+FN8yo/pP8AuHjxovw+KCgIdXV1pXj4kD78RU1Njd69e+dZbkEoaV9k41pLSwsfHx9+/PFHNDQ0aNCgAU+fPuXq1av079+fHj16MHv2bNq2bcvUqVOpUqUK0dHRbNu2jXHjxn2wkGYeHh7Y2trSo0cPFixYQEpKCt999x1ubm7y0AQzMzPu3LnDhQsXqFKlCnp6ekpLV+dH5keHGcMrMhrRAwYMkBvymeObfmySkpLo378/P/30E/fu3ePnn39m+PDhWcZbZzAzM+Po0aN07doVTU1NypUrh4+PD/Xr12fYsGEMHDiQUqVKERkZycGDB1m0aBFWVla0aNGCgQMHsmLFCtTU1Bg5cmSeT0IK4+HDh7i7u/PmzZsiyU9bW5tTp07lGev6jz/+wNHRke3bt9O3b98s+wMDA3F0dCxQ4zo1NTXL8uYFtWXLFurUqSO/zxxbWxCET9e6deswNzfH2NiYixcv4uPjQ+fOneV6NTExkfv37+Pr60vnzp3lwAOC8DH7IoeFAPj6+jJmzBgmT56MtbU1Xbp0kcf06ujocPToUapWrUqHDh2wtramX79+vH379oP2ZGeE0zM0NMTV1RUPDw/Mzc35/fff5TQdO3akRYsWNG7cmPLlyystLZ1fOT06hPRefhcXF6ysrJRCN8H/h/R7nxCFRaVp06ZYWlri6upK586dadOmTZZelcymTp3K3bt3qV69ujwxyNbWliNHjnDjxg0aNWpEvXr18PX1lcd8Q/rjVBMTE9zc3OjQoQODBg0qll7c58+f8+bNGzZs2EB4ePh7vTZs2MDbt2+JjY3N9ZzPnj3j9u3bzJw5kz/++CPL/u3btxMWFkanTp3kv4WzZ8/SqFEj7O3t6dixI69evQLSf7xMnToVFxcXQkNDCQgIwMnJCVtbW6VQjr6+vlhbW9OqVas8o67k5PTp07i4uFCvXj2aNGkiR3/x8/NjwIABuLq6Ym5unu0j7eDgYFxcXPK8N4IgFI/Hjx/Ts2dPrK2tGTVqFN9++y0rVqyQ92/atAkrKytevnyp9N0kCB8zhZRTXB5BIP0RXs2aNRk8eHCWySiBgYFMnz5daVUvIW9xcXEYGBjg7e2NmZkZkD6xs0GDBhgbG6Ompsbly5dp0aIF4eHh2Nvbv9f5zp07h4ODA4cPH6ZJkyY5plu+fDm3bt1i5syZmJubExYWRtmyZZWGhbi7u7N48WLq1KlDUlISHh4e7Ny5E0NDQ2bPnk1qairjx4/HzMyMcePGMWzYMCIiIvj555/ZvHkzCoWCtm3bMnHiRFRVVRk2bBgnTpwgNjYWa2trNmzYkOuwEDU1NcLCwpSGdsTFxVGqVClUVVXZuHEj//zzD/Pnz8fPz49jx46xf/9+7t27h6enJzdv3pSPHTp0KL6+vvz1119KPfoJCQncuXOHatWq5RidJrOMz/Ply5diPL0gfIQy/o8GBAQoTUh/X8uXL2fx4sVMmzaNn376qcjyFXL3KdS5X+SwECF/njx5wvr163n48GG2QwT27dvHL7/8IhrWn4nff/+dWbNmyQ3g7du3ZzsnIUNUVBSXLl2icePGQPrQnMzLpmcs8nD48GFOnTqFg4MDAK9eveLWrVs8e/aM9u3bo6GhQaVKlXJt+L87LCSzFy9e0LNnT27fvk1KSgqmpqbyPi8vL9TU1KhevbrS2PiLFy8yZswYDh8+nOdQGUEQBEEoCNG4FnJUoUIFypUrx4oVK+Q4qpkVZOa48HH7999/OXnyJJ06dQLSxzlevXo118a1JEnY29sTHByc7f6McfuSJDFo0KAsK3vOnz+/SKLeTJ48mVatWjF48GBOnz7N+PHj5X05zT8wNjbm5cuXXL16FVdX1/cugyAIgiBkEI1rIUdixFDJK4p45vnJY8uWLQwdOpT58+cD6Z+9mZkZT58+VUqnp6dHfHw8kB7j+969e3IYrdevXxMTE5Ml2kqTJk3o0qUL33//PYaGhjx48ABtbW0aNGjA8OHDGTNmDM+fPyckJKRQYbbi4uLkScYbNmzI1zHlypVj3bp1eHl5sWHDBuzs7Ap8XkEQBEHIjmhcC0IJiY2NRUNDAwADAwNSU1NJTk5GkiT09PTQ1tamZ8+eRXIubW3tXIc//PHHH0ydOlV+r1AoaN26NVu3blVK5+3tjbe3N6VLl+bMmTNs3ryZ7777Tp7IOGvWrCyN6zp16uDj44O7uztpaWno6emxefNmnJyc8PT0xNbWFisrq0L3II8dOxZvb29mzJghrziXH1WrVuXPP/+kU6dO7Ny5M8cQjIIgfB7u3r1bpOFkCzsJW/j8iQmNgvCBZUzGyMzU1JRly5ZRrlw5edvjx4+LLIa2oaEh7u7ulCpVqkjy+5yJCY2C8HnJrs4tKgqFgr///puWLVsWS/5CVp9CnSt6rgWhhBw5cgRdXV0gfRiGmpoaJiYm8jjhjPjiRUFNTa3A8c8FQRA+J5nr3KJSrly5LAveCIJoXAtCCbGzs5N/dWf0luro6OSrt1QQBEEomMx1riAUpy92ERlB+BiJUVolT3wGgiAIwvsQPdeC8BFQV1dHoVDw9OlTypcvXyQh6oSCkySJp0+folAoRPx2QRAEoVBE41oQPgKqqqpUqVKFBw8efBTLyX/JFAoFVapUQVVVtaSLIgiCIHyCRONaED4Surq6WFpakpycXNJF+aKpq6uLhrUgCIJQaKJxLQgfEVVVVdGwEwRBEIRPmJjQKAiCIAiCIAhFRPRcC8IHlhGNIi4uroRLIhSFjM9RRBkRhI+TqHM/L59CnSsa14LwgcXGxgJgYmJSwiURilJ8fHyxrQInCELhiTr38/Qx17micS0IH1iZMmUAiI6O/mgrhg8tLi4OExMT7t+//8kt8iBJEvHx8VSuXLmkiyIIQjZEnftpyul74VOoc0XjWhA+MBWV9KkOBgYGn1xDsrjp6+t/kvdEfGELwsdL1Lmftuy+Fz72OldMaBQEQRAEQRCEIiIa14IgCIIgCIJQRETjWhA+ME1NTX7++Wc0NTVLuigfDXFPBEEoLqJ++TR9yp+bQvqYY5kIgiAIgiAIwidE9FwLgiAIgiAIQhERjWtBEARBEARBKCKicS0IgiAIgiAIRUQ0rgVBEARBEAShiIjGtSAUgyVLllCtWjW0tLRwcHDg2LFjuaY/cuQIDg4OaGlpYW5uzrJlyz5QSYvfjBkz+Oqrr9DT08PIyIh27doRFRWV6zGhoaEoFIosr2vXrn2gUguC8DkoaF0slDw/P78sdX/FihVLulgFIhrXglDEfv/9d0aOHMmkSZM4f/48jRo1omXLlkRHR2eb/s6dO3h5edGoUSPOnz/PxIkTGTFiBFu3bv3AJS8eR44cYdiwYZw+fZqDBw+SkpJC8+bNef36dZ7HRkVFERMTI78sLS0/QIkFQfgcFLQuFj4etWvXVqr7L1++XNJFKhARik8QitjXX3+Nvb09S5culbdZW1vTrl07ZsyYkSW9j48Pu3btIjIyUt42ZMgQLl68yKlTpz5ImT+kp0+fYmRkxJEjR3B1dc02TWhoKI0bN+bFixeULl36wxZQEITPQkHrYuHj4Ofnx44dO7hw4UJJF6XQRM+1IBShpKQkwsPDad68udL25s2bc/LkyWyPOXXqVJb0np6ehIWFkZycXGxlLSkvX74EoEyZMnmmrVevHpUqVaJp06aEhIQUd9EEQfhMFKYuFj4eN27coHLlylSrVo2uXbty+/btki5SgYjGtSAUoWfPnpGamkqFChWUtleoUIHHjx9ne8zjx4+zTZ+SksKzZ8+KrawlQZIkRo8eTcOGDalTp06O6SpVqsSKFSvYunUr27Ztw8rKiqZNm3L06NEPWFpBED5VhamLhY/D119/zbp169i/fz8rV67k8ePHuLi4EBsbW9JFyze1ki6AIHyOFAqF0ntJkrJsyyt9dts/dcOHD+fSpUscP34813RWVlZYWVnJ752dnbl//z5z5szJcSiJIAjCuwpaFwslr2XLlvK/bWxscHZ2pnr16qxdu5bRo0eXYMnyT/RcC0IRKleuHKqqqll6Rp48eZKlByVDxYoVs02vpqZG2bJli62sH9r333/Prl27CAkJoUqVKgU+vn79+ty4caMYSiYIwuemMHWx8HEqVaoUNjY2n1T9LxrXglCENDQ0cHBw4ODBg0rbDx48iIuLS7bHODs7Z0l/4MABHB0dUVdXL7ayfiiSJDF8+HC2bdtGcHAw1apVK1Q+58+fp1KlSkVcOkEQPkeFqYuFj1NiYiKRkZGfVP0vhoUIQhEbPXo0vXr1wtHREWdnZ1asWEF0dDRDhgwBYMKECTx8+JB169YB6ZFBFi9ezOjRoxk4cCCnTp1i9erVbNq0qSQvo8gMGzaMjRs3snPnTvT09OSeJAMDA7S1tYGs92TBggWYmZlRu3ZtkpKS2LBhA1u3bv1swhMKglD88qqLhY/T2LFjadOmDVWrVuXJkyf4+/sTFxdHnz59Srpo+SYa14JQxLp06UJsbCxTp04lJiaGOnXqsGfPHkxNTQGIiYlRirNarVo19uzZw6hRo/jf//5H5cqVWbhwIR07diypSyhSGWGw3N3dlbYHBATg7e0NZL0nSUlJjB07locPH6KtrU3t2rX5+++/8fLy+lDFFgThE5dXXSx8nB48eEC3bt149uwZ5cuXp379+pw+ffqT+txEnGtBEARBEARBKCJizLUgCIIgCIIgFBHRuBYEQRAEQRCEIiIa14IgCIIgCIJQRETjWhAEQRAEQRCKiGhcC4IgCIIgCEIREY1rQRAEQRAEQSgionEtCIIgCIIgCEVENK4FQRAEQRAEoYiIxrUgfCLMzMyoWbMmKSkp8jZHR0dCQ0OL9Dzu7u7s3r27SPPMy86dO7G2tsbOzo7Lly8r7QsMDKR06dLY2dlRp04dWrZsSXR0NAMGDMDOzg47Ozs0NDSoWbOm/D4+Ph4zMzOMjIxITk6W8woODkahUDB27NgPen2CIHx6RJ0r6tzCEo1rQfiEJCYmsnr16pIuRp4yfxnlx7Jly5g6dSoXLlzAxsYmy34PDw8uXLjAlStXqFmzJqNGjWLVqlVcuHCBCxcuULlyZbZs2SK/19PTA6Bq1ars2rVLzmfNmjU4Ojq+38UJgvDFEHWuqHMLQzSuBeETMmXKFKZNm8abN2+y7PP29mbx4sXy+7Fjx+Ln5weAn58f3bp1o3Xr1lhYWNC5c2fOnz9PkyZNMDc3Z/To0Up5HTp0CHd3dywtLRk3bhySJAHw+PFjOnfujJOTE7a2tkyePFk+xszMjOnTp9O4cWP69OmTpXw3b97Ew8MDW1tb7Ozs2LFjBwAjRozg2LFj+Pj44OLikuc9aNasGVFRUXmmA+jXrx9r1qwB4OXLl5w+fZoWLVrI+0+fPo2Dg4PcQ7N06dJ85SsIwpdB1Lmizi0M0bgWhE+Ivb09rq6uzJ8/v8DHhoWFERQURFRUFFFRUYwfP569e/dy+fJlNmzYwPXr1+W0ERERHDx4kIsXLxISEsKff/4JQJ8+fRg+fDhnz57l3LlznD17lu3bt8vHRUdHExwcTFBQUJbz9+jRg86dO3Pp0iX+/PNP+vfvz/3791m4cCGOjo4sXLiQkydP5noNqamp/Pnnnzg4OOTrml1dXbl9+zYPHz5k06ZNfPvtt6iqqsr7Z8yYwZgxY+Qemq5du+YrX0EQvgyizhV1bmGolXQBBEEoGH9/f77++muGDBlSoOM8PT0xMDAAwNbWlrp166KpqYmmpiZWVlbcvn2bGjVqAOkVurq6Ourq6vTs2ZNDhw7RqlUrgoOD+ffff+U8X716xbVr1+T3ffv2RaFQZDl3fHw8Fy5coH///gBYWlrSsGFDjh8/Trdu3fIs+6FDh7CzswPSv+zmzp2b7+vu1asXa9euZceOHQQFBSl9CTVu3Bh/f39u3rxJkyZNaNiwYb7zFQThyyDqXFHnFpRoXAvCJ8bc3Jxu3brh7++vtF1NTY3U1FT5fUJCArq6uvJ7LS0t+d+qqqpZ3uc2Zk+hUJCWloZCoeCff/5BXV0923SZz5dZxiPOd78EsvtSyI6HhwdbtmzJV9p3eXt7Y29vT40aNbC0tFTaN3LkSL755hsOHz7MxIkTqVOnDkuWLCnUeQRB+DyJOrdgRJ0rhoUIwifJ19eXDRs28OjRI3lb9erVOXPmDACxsbHs2bOn0PmvX7+elJQU3r59y8aNG/Hw8EBPT49GjRrx66+/yukePXrEgwcP8sxPX18fOzs71q5dC8CtW7c4ceIEDRo0KHQZ86ty5crMmDGDmTNnZtkXFRWFubk5AwcOZOLEiZw+fbrYyyMIwqdH1Ln5J+pc0XMtCJ+k8uXLM2LECKXJLYMHD6ZTp07Y2NhQvXp1vv7660Lnb29vj4eHBw8fPqRdu3Z06tQJgKCgIEaPHi3PLtfV1WXZsmVUqVIlzzyDgoIYPHgwCxYsQKFQsGrVKkxMTApdxoLo27dvttsXLVpESEgIGhoaqKqqFujRpyAIXw5R5xbMl17nKqSMZweCIAiCIAiCILwXMSxEEARBEARBEIqIaFwLgiAIgiAIQhERjWtB+Ax5eXlx69atPNP5+fmRlJRUqHO8z5K9jx49onHjxjmW493FGXKTsUSxnZ0dtWrV4n//+1+hyiQIglBYos4VMhONa0H4DO3Zs4fq1avnmW7KlCmFrujfR+XKlQkJCSmycmQsw7t//34mTZrEpUuXlPanpaWRlpZW6PwFQRByI+pcUedmJhrXglBMevbsiaOjI7a2trRu3ZonT54AcOPGDRo0aEDdunWxsbHhp59+AuCvv/6Sl6mtU6cOO3fuBHJewhbg1KlTNGrUiLp162JraysfY2ZmxpUrVwCYN28eX331FfXq1cPJyUkOHZWxIIKLiwt2dnY8efKE+Ph4Bg4cKC+1O2TIEJKTk4H0FcS+/vpr7O3t6dGjBwkJCdled7du3di0aRMACxcuRFNTk9evXwPQqFEjjh07xt27dylXrlyO5cg4n4eHBzVq1KBDhw75+iIwMTGhRo0aXL9+HT8/P3r16kWHDh2ws7MjJiaG9evXY2Njg62tLa1ateLhw4fysTNnzsTGxoa6detSv359ebnj9evXy9ft5uYm39eclvFdtWoVtWrVws7ODhsbG/l+C4JQvESdK+rcj6bOlQRBKBZPnz6V/z1jxgxp2LBhkiRJ0ogRI6Tp06fL+2JjYyVJkiRbW1vpxIkTkiRJUmpqqvTixQtJkiTJyclJWr58uSRJknT9+nWpTJkyUnR0tBQbGytVqFBB6ZiMvExNTaXLly9LkiRJT548kc916tQpqXbt2vJ7QIqPj5ffDxw4UFq3bp0kSZKUlpYm9e/fX5o3b54kSZJkb28vBQYGyvmoqKhIf/31V5brXrVqldS3b19JkiTpm2++kZydnaW9e/dK8fHxkqGhoZSUlCTduXNHKlu2bI7l6NOnj+Ts7Cy9efNGSklJkVxcXKSNGzdme58zX+ulS5ckPT096fr169LPP/8sGRsbS//++68kSZJ0+fJlqUKFCtKDBw8kSZIkf39/ycvLS5IkSQoMDJTq168vvXz5UpIkSXr+/LmUkpIiHT9+XPLy8pISEhIkSZKko0ePSra2tvK1BQUFyeV4/vy5JEmSpK+vLz18+FCSJElKSkpSui5BEIqPqHNFnfux1LkizrUgFJOgoCDWr19PYmIib9++pWLFigC4uroybtw4Xr9+jZubGx4eHgA0bdqUkSNH0qlTJ5o3b46dnV2uS9jq6+tTq1YtXFxcAFBRUaFMmTJZynH+/HmmT59ObGwsampqREREkJSUhIaGRpa0O3bs4PTp03Ls0bdv36KhoUFcXBxXrlyhV69eANSvX1+Ou/quZs2aMWXKFFJTU4mMjOSXX37h0KFDpKam4uzsnONKY+/q0KED2traADg5OeU6nrFTp05oaWmho6PDmjVr5FXBWrdujZGREQAhISG0bt0aY2NjAL777jv8/f2RJIndu3czdOhQ9PX1ATA0NARg586dXLx4USl+7dOnT0lKSspxGd8mTZrQu3dv2rRpQ8uWLeXljQVBKF6izhV17sdS54rGtSAUg+PHj7N48WJOnjxJ+fLl2bVrF1OnTgWgY8eOuLi4cPDgQRYvXsyCBQvYs2cP8+bN4+rVq4SEhNCnTx969OghP74r7BK2SUlJdOzYkdDQUBwcHIiLi8PAwCDHil6SJHbs2IG5ubnS9ri4uHyfs2rVqmhqarJhwwYcHR1p2rQpv/76K6mpqfKXWn4UZKngLVu2UKdOnSzbMy8NLEmS0jXk53okSaJfv37yZ5dZTsv4btu2jfDwcEJDQ/Hy8sLf35+uXbvmeS5BEApP1Lmizv2Y6lwx5loQisGLFy/Q19enTJkyJCUlsXz5cnnfjRs3MDIyonfv3syaNUte/vXatWvUrl2b4cOHM3ToUE6fPp3rErYuLi5ERkZy8uRJIH0CyfPnz5XKkZCQQHJysrwq16JFi5T26+np8fLlS/n9N998w6+//ipXqi9evODmzZvo6+tTp04dgoKCADh79iyXL1/O8fo9PDz4+eef8fDwwNDQEFVVVbZt25ZjRf9uOYpD06ZN2bNnD48fPwZg2bJlNG3aFIVCwTfffMPSpUuJi4sD4L///iM1NZU2bdqwbt067t+/D6Tf47CwMCD7ZXxTUlK4desWjo6OjB07lk6dOnH27NlivS5BEESdK+rcj6vOFT3XglAMWrZsyYYNG6hZsyZVqlTBxcWF/fv3A/Dnn38SFBSEhoYGkiSxbNkyACZMmMD169fR0NBAR0dHnqyR2xK227dvZ8yYMcTHx6NQKJg2bRrffPONXA59fX2mTp2Kk5MTVatWVdoHMGbMGJo0aYK2tjYHDhxgwYIF+Pj4YGdnh4qKCurq6sycORMLCwvWrVtH3759mT9/Pvb29rku9dusWTOWLVum9Ph19erVOT7WfLccxaF27drMmDGD5s2bA+kTcVasWAFAr169ePTokfwIVUdHh0OHDuHq6sovv/xC27ZtSU1NJTk5mVatWuHo6JjtMr6pqan07duXFy9eoKamRvny5QkICCiW6xEE4f+JOlfUuR9TnSuWPxcEQRAEQRCEIiKGhQiCIAiCIAhCERGNa0EQBEEQBEEoIqJxLQiCIAiCIAhFRDSuBUEQBEEQBKGIiMa1IAiCIAiCIBQR0bgWBEEQBEEQhCIiGteCIAiCIAiCUERE41oQBEEQBEEQiohoXAuCIAiCIAhCERGNa0EQBEEQBEEoIqJxLQiCIAiCIAhF5P8A1u+IhsparTkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots(ncols = 2, figsize = (6, 3))\n", + "fig.subplots_adjust(wspace = 2)\n", + "pose_plots.plot_annotations(combined_output, ax = ax[0], collapse_on_similar = False, database = 'PhosphoSitePlus', annot_type = 'Process', top_terms = 10)\n", + "ax[0].set_title('Full Annotation')\n", + "pose_plots.plot_annotations(combined_output, ax = ax[1], collapse_on_similar = True, database = 'PhosphoSitePlus', annot_type = 'Process', top_terms = 10)\n", + "ax[1].set_title('Collapsed Annotation')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of note, you can also choose to only show collapsed annotation information for `analyze.get_ptm_annotations()` by setting `collapse_on_similar=True` in the function call, like we have done for the plot on the right." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Annotation Enrichment Analysis\n", + "\n", + "In some cases, you may want to identify PTM-specific annotations that appear more commonly than might be expected based on how often the annotation appears across the entire proteome. We have provided a function to perform this analysis, `analyze.ptm_annotation_enrichment()`. By default, this function will compare the annotations found in your data to the annotations found in the entire proteome (based on ptm_coordinates dataframe), but you can also choose to perform enrichment analysis by significance. Here, we will we perform enrichment analysis using the entire proteome as the background. First, let's look at the available annotations for enrichment analysis:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Some annotations in spliced ptms dataframe not found in altered flanks dataframe. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
databaseannotation_typecolumn
4CombinedInteractionsCombined:Interactions
5CombinedKinaseCombined:Kinase
2DEPODPhosphataseDEPOD:Phosphatase
3ELMInteractionsELM:Interactions
0PhosphoSitePlusProcessPSP:ON_PROCESS
1PhosphoSitePlusInteractionsPSP:ON_PROT_INTERACT
6PhosphoSitePlusDiseasePSP:Disease_Association
8PhosphoSitePlusFunctionPSP:ON_FUNCTION
7RegPhosKinaseRegPhos:Kinase
\n", + "
" + ], + "text/plain": [ + " database annotation_type column\n", + "4 Combined Interactions Combined:Interactions\n", + "5 Combined Kinase Combined:Kinase\n", + "2 DEPOD Phosphatase DEPOD:Phosphatase\n", + "3 ELM Interactions ELM:Interactions\n", + "0 PhosphoSitePlus Process PSP:ON_PROCESS\n", + "1 PhosphoSitePlus Interactions PSP:ON_PROT_INTERACT\n", + "6 PhosphoSitePlus Disease PSP:Disease_Association\n", + "8 PhosphoSitePlus Function PSP:ON_FUNCTION\n", + "7 RegPhos Kinase RegPhos:Kinase" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')\n", + "combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks)\n", + "\n", + "annot_categories = analyze.get_annotation_categories(combined_output)\n", + "annot_categories" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We would like to know if the PTMs have been implicated in any biological processes more than expected by chance. We can perform enrichment analysis on the biological process annotations from PhosphoSitePlus. To maximize the ability of the hypergeometric test to capture these results, we will use the collapsed annotation information (ignores directionality of PTM role):" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using pregenerated background information on all PTMs in the proteome.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Fraction Impactedp-valueAdjusted p-valuePTM
PSP:ON_PROCESS
cell motility5/10780.0525790.420633ABI1_S392;CTTN_K272;CTTN_S298;SPHK2_S387;SPHK2...
cell adhesion2/3240.1224660.489864CTTN_S298;MPZL1_Y241
cell growth4/17930.4271341.000000BCAR1_Y267;BCAR1_Y287;BCAR1_Y306;TSC2_S981
autophagy1/3060.4342150.868429TSC2_S981
cytoskeletal reorganization2/7960.4356370.868429ABI1_S392;CTTN_S298
apoptosis2/11790.6440650.868429CEACAM1_S461;CEACAM1_T457
signaling pathway regulation2/12060.6562080.868429BIN1_T348;TSC2_S981
carcinogenesis2/15010.7680910.868429TSC2_S981;YAP1_K342
\n", + "
" + ], + "text/plain": [ + " Fraction Impacted p-value Adjusted p-value \\\n", + "PSP:ON_PROCESS \n", + "cell motility 5/1078 0.052579 0.420633 \n", + "cell adhesion 2/324 0.122466 0.489864 \n", + "cell growth 4/1793 0.427134 1.000000 \n", + "autophagy 1/306 0.434215 0.868429 \n", + "cytoskeletal reorganization 2/796 0.435637 0.868429 \n", + "apoptosis 2/1179 0.644065 0.868429 \n", + "signaling pathway regulation 2/1206 0.656208 0.868429 \n", + "carcinogenesis 2/1501 0.768091 0.868429 \n", + "\n", + " PTM \n", + "PSP:ON_PROCESS \n", + "cell motility ABI1_S392;CTTN_K272;CTTN_S298;SPHK2_S387;SPHK2... \n", + "cell adhesion CTTN_S298;MPZL1_Y241 \n", + "cell growth BCAR1_Y267;BCAR1_Y287;BCAR1_Y306;TSC2_S981 \n", + "autophagy TSC2_S981 \n", + "cytoskeletal reorganization ABI1_S392;CTTN_S298 \n", + "apoptosis CEACAM1_S461;CEACAM1_T457 \n", + "signaling pathway regulation BIN1_T348;TSC2_S981 \n", + "carcinogenesis TSC2_S981;YAP1_K342 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "enrichment = analyze.annotation_enrichment(combined_output, database = 'PhosphoSitePlus', annotation_type = 'Process', collapse_on_similar=True)\n", + "enrichment" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also plot the annotations and include which annotations are enriched (p-value < 0.05) in the plot:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "print('not yet implemented')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gene Set Enrichment Analysis\n", + "\n", + "In addition to looking at the annotations associated with the PTMs, we can also look at the genes themselves with impacted PTMs. We can perform gene set enrichment analysis using EnrichR module of gseapy to identify if any gene sets are enriched in the PTM dataset, as well as break it down by the type of modication. Here, we will use the `analyze.gene_set_enrichment()` function to perform this analysis. First, let's look at the available gene sets for enrichment analysis:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Some annotations in spliced ptms dataframe not found in altered flanks dataframe. These annotations will be ignored. To avoid this, make sure to add annotations to both dataframes, or annotate the combined dataframe.\n" + ] + } + ], + "source": [ + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')\n", + "combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "enrichr_results = analyze.gene_set_enrichment(combined = combined_output, gene_sets = ['GO_Biological_Process_2023', 'Reactome_2022'])" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Gene_setTermOverlapP-valueAdjusted P-valueOld P-valueOld Adjusted P-valueOdds RatioCombined ScoreGenesTypeGenes with Differentially Included PTMs onlyGenes with PTM with Altered Flanking Sequence onlyGenes with Both
0GO_Biological_Process_2023Regulation Of Neurogenesis (GO:0050767)5/670.0000180.0116750017.392181189.619722YAP1;APLP2;DOCK7;NUMB;NF2Differentially Included + Altered Flanking Seq...YAP1;APLP2NF2DOCK7;NUMB
1GO_Biological_Process_2023Enzyme-Linked Receptor Protein Signaling Pathw...6/1240.0000310.0116750011.055131114.642865CSF1;FGFR3;FGFR2;PTPRF;BCAR1;MPZL1Differentially Included + Altered Flanking Seq...FGFR2;CSF1;FGFR3MPZL1;BCAR1;PTPRF
2GO_Biological_Process_2023Protein Localization To Cell-Cell Junction (GO...3/150.0000480.0116750052.901596525.813416TJP1;LSR;SCRIBDifferentially Included + Altered Flanking Seq...LSRSCRIB;TJP1
3GO_Biological_Process_2023Regulation Of Cell Migration (GO:0030334)10/4340.0000490.011675005.28057952.425684TJP1;CEACAM1;CSF1;ADAM15;LIMCH1;APLP2;NUMB;ITG...Differentially Included + Altered Flanking Seq...APLP2;CSF1;ITGA6NF2ADAM15;NUMB;LIMCH1;BCAR1;TJP1;CEACAM1
4GO_Biological_Process_2023Integrin-Mediated Signaling Pathway (GO:0007229)5/850.0000580.0116750013.466712131.282293CEACAM1;ADAM15;ITGA6;CD47;BCAR1Differentially Included + Altered Flanking Seq...ITGA6;CD47ADAM15;CEACAM1;BCAR1
\n", + "
" + ], + "text/plain": [ + " Gene_set \\\n", + "0 GO_Biological_Process_2023 \n", + "1 GO_Biological_Process_2023 \n", + "2 GO_Biological_Process_2023 \n", + "3 GO_Biological_Process_2023 \n", + "4 GO_Biological_Process_2023 \n", + "\n", + " Term Overlap P-value \\\n", + "0 Regulation Of Neurogenesis (GO:0050767) 5/67 0.000018 \n", + "1 Enzyme-Linked Receptor Protein Signaling Pathw... 6/124 0.000031 \n", + "2 Protein Localization To Cell-Cell Junction (GO... 3/15 0.000048 \n", + "3 Regulation Of Cell Migration (GO:0030334) 10/434 0.000049 \n", + "4 Integrin-Mediated Signaling Pathway (GO:0007229) 5/85 0.000058 \n", + "\n", + " Adjusted P-value Old P-value Old Adjusted P-value Odds Ratio \\\n", + "0 0.011675 0 0 17.392181 \n", + "1 0.011675 0 0 11.055131 \n", + "2 0.011675 0 0 52.901596 \n", + "3 0.011675 0 0 5.280579 \n", + "4 0.011675 0 0 13.466712 \n", + "\n", + " Combined Score Genes \\\n", + "0 189.619722 YAP1;APLP2;DOCK7;NUMB;NF2 \n", + "1 114.642865 CSF1;FGFR3;FGFR2;PTPRF;BCAR1;MPZL1 \n", + "2 525.813416 TJP1;LSR;SCRIB \n", + "3 52.425684 TJP1;CEACAM1;CSF1;ADAM15;LIMCH1;APLP2;NUMB;ITG... \n", + "4 131.282293 CEACAM1;ADAM15;ITGA6;CD47;BCAR1 \n", + "\n", + " Type \\\n", + "0 Differentially Included + Altered Flanking Seq... \n", + "1 Differentially Included + Altered Flanking Seq... \n", + "2 Differentially Included + Altered Flanking Seq... \n", + "3 Differentially Included + Altered Flanking Seq... \n", + "4 Differentially Included + Altered Flanking Seq... \n", + "\n", + " Genes with Differentially Included PTMs only \\\n", + "0 YAP1;APLP2 \n", + "1 FGFR2;CSF1;FGFR3 \n", + "2 \n", + "3 APLP2;CSF1;ITGA6 \n", + "4 ITGA6;CD47 \n", + "\n", + " Genes with PTM with Altered Flanking Sequence only \\\n", + "0 NF2 \n", + "1 \n", + "2 LSR \n", + "3 NF2 \n", + "4 \n", + "\n", + " Genes with Both \n", + "0 DOCK7;NUMB \n", + "1 MPZL1;BCAR1;PTPRF \n", + "2 SCRIB;TJP1 \n", + "3 ADAM15;NUMB;LIMCH1;BCAR1;TJP1;CEACAM1 \n", + "4 ADAM15;CEACAM1;BCAR1 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "enrichr_results.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result is the standard output of gseapy, with the specific genes in the gene set with differentially include or altered flanking sequence PTM sites listed. We can also plot the output of the gene set enrichment analysis:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoIAAAF0CAYAAAC301iMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3+ElEQVR4nOzdd1QU19sH8O8Cy9KXItKkqAiICthFYi9YsSuKBWti7xp7rxHFJHYR1IiiscZeAjasKKBUQYoCdnov9/3Dl/kx7oKLghh5PufMOeydO/c+c2cXHu6UFTDGGAghhBBCSLUjV9UBEEIIIYSQqkGJICGEEEJINUWJICGEEEJINUWJICGEEEJINUWJICGEEEJINUWJICGEEEJINUWJICGEEEJINUWJICGEEEJINaVQ1QEQQkh1VlhYiPz8/KoOgxDyAxEKhZCXl5epLiWChBBSRTIyMvDy5UvQFzwRQiqSQCBArVq1oKam9vm69BVzhBDy7RUWFuLZs2dQUVGBrq4uBAJBVYdECPkBMMbw9u1bZGVloV69ep+dGaQZQUIIqQL5+flgjEFXVxfKyspVHQ4h5Aeiq6uL2NhY5OfnfzYRpJtFCCGkCtFMICGkopXn9wolgoQQQggh1RSdGiaEkO9IfEYy3uVkVmofNZRUYaKmVal9VCY1NTXcuXMHjRo1qupQPksgEODx48ews7Or6lAIkYoSQUII+U7EZySj/okNyCksqNR+lOQVENZ/vszJ4K1bt7BmzRrcvXsXjDGYmprCxcUFM2bMgKKi4lfF4urqCk1NTbi7u8u8TUZGxlf1WRqBQABlZWXIyclBQUEBdnZ2cHd3lzmJMzMzg7u7O/r27VshMRTr0qULTp48+cVtysLPzw99+/ZFSkpKpfZDvj90apgQQr4T73IyKz0JBICcwgKZZx3Pnj2L7t27w9HREc+ePUNKSgp8fHwQGhqKpKSkSo702/P390dGRgbevn0LBwcHDBo0qMpiKF4qOwkk1RslgoQQQqRijGHatGmYP38+ZsyYgRo1agAArKys4OXlBVNTUwDAw4cP4eDgAE1NTVhbW+Pw4cNcG8uXL0fv3r0xZcoUaGpqwsTEBD4+PgCA33//HYcOHcL27duhpqaGBg0aAAAOHTqEhg0bQl1dHSYmJliyZAnvWYsCgQCBgYGfbR8Arly5AhsbG6irq0NPTw8TJ06Uad+FQiFcXFwQFRWFvLw8bjzc3NxQt25daGtro1u3bnj+/DkAYNCgQYiPj8fQoUOhpqaGX375hWvr7t27aNiwITQ0NODk5ITU1NRyHYditra2OHDgAK+se/fuWL9+PYCPM6VTpkyBiYkJatasiZEjR3J9xcbGQiAQ4ODBgzA3N4empiZcXV2Rn5+P9+/fo3v37khNTYWamhrU1NRw8+ZNxMTEoHPnzhCLxdDW1oaDgwOysrK+KHby/aJEkBBCiFTPnj1DTEwMhg4dWmqdlJQUdOvWDc7Oznj79i127NiB8ePH4/bt21ydS5cuwcHBAe/fv8fq1asxbtw4pKenY9q0aXBxccGkSZOQkZGBkJAQAIC2tjZOnDiBtLQ0nDlzBrt374a3t3epMZTWPgCMGjUKc+fORXp6Op4/f44RI0bItO85OTk4cOAAWrRowZ3+PnjwIDZv3oxTp04hMTERDRo0QK9evVBQUIBjx47BxMQEhw8fRkZGBnbu3Mm15ePjg2vXriE+Ph4vX77Eli1bZIrhUyNGjMDBgwe5169fv8a1a9fg4uICABgzZgw+fPiA4OBgxMTEID8/H1OmTOG1ce7cOTx69AihoaG4evUqDh06BB0dHVy4cAFisZibhWzTpg0WLVoEc3NzvHv3Dq9fv8Zvv/0GBQW6ouxHQ4kgIYQQqd6+fQsAMDIyKrXOuXPnoKuri6lTp0IoFKJdu3YYNmwY9u/fz9Vp0qQJhg4dCnl5eYwYMQJ5eXmIjIwstc3u3bvDwsICAoEAdnZ2GDp0KPz8/EqtX1b7QqEQUVFRePv2LVRVVdG6desy97lNmzbQ1NSEuro6du7cibVr13LrDh48iGnTpqFRo0ZQUlLC2rVr8fLlS9y/f7/MNufPnw89PT1oampiwIABCAgIkCmG4mXFihUAABcXF1y/fh0JCQkAAG9vb7Rp0wbGxsZ4+/Ytjh8/jj///BOamppQVVXFypUr4ePjg8LCQq7t5cuXQ0NDA4aGhujevXuZsQiFQiQlJSE2NhZCoRCtW7f+6mtCyfeHEkFCCCFSFZ8KLk48pHn58iXMzMx4ZXXq1MHLly+51/r6+tzPxTdDFM/YSXPp0iW0bt0aNWrUgFgsxs6dO/Hu3btS65fV/smTJ/H06VNYWlqicePGOHr0aKntAMDNmzeRkpKCnJwcnDhxAgMGDMCTJ0+k7qtIJIKhoSFvXz8Xn6qqapn7XjKG4mXZsmUAAAMDA3Ts2BGHDh0CABw4cAAjR44E8PHUb1FREerUqcMlkM2bN4ecnBxevXr1RbH89ttvMDIyQufOnWFmZobly5ejqKiozNjJfw8lgoQQQqSysLCAmZkZjhw5UmqdWrVqITY2llcWExODWrVqydRHybtjASAvLw/9+/fHzz//jISEBKSmpuKXX3754u9jbtKkCY4fP453795hyZIlGDZsGF6/fv3Z7eTl5dGxY0eYm5vj8uXLACT3NS8vD4mJidy+frovlaH49PDTp08RGRmJAQMGAACMjY0hJyeHxMREXhKZk5NT5oxuMWmx16xZE9u3b0dcXBzOnj2LnTt30o0rPyBKBAkhhEglEAjwxx9/YP369fjjjz/w/v17AEBkZCTGjh2LuLg49OjRA2/evMH27dtRUFCAmzdvwtvbm5up+hw9PT3uhgsAyM3NRU5ODnR0dCASiXDv3r0yrw8sS15eHg4ePIjk5GTIyclBU1MTAGS6zo0xhhs3biA0NJR7XuHw4cPx559/IjQ0FLm5uVi8eDGMjIzQokULbl+io6O/KFZZ9evXD3FxcZgzZw769esHNTU1AB9n+vr27YspU6Zws6evXr2SOXHT09NDeno6dzkAABw9ehTx8fFgjEEsFkNeXp6uEfwBUSJICCGkVL169cKFCxdw7tw51K1bF5qamhg4cCCsrKxgYGAALS0tXLhwAX/99Rd0dHQwYcIE7NixAz/99JNM7Y8bNw4JCQnQ0tLi7u7dtm0bJkyYAA0NDaxZswZDhgz54vi9vb1hbm4OdXV1TJ06Fd7e3tDR0Sm1fuvWraGmpgYNDQ1MmDABv/32G7p27QoAGDlyJKZOnYpevXpBX18fQUFB+Oeff7jkaOHChfjzzz+hpaWFSZMmfXHMxTEUL8WJJgCoqKhgwIABuHTpkkSy7eXlxZ0S1tDQQJs2bT57PWIxS0tLjB07FvXr14empiZu3bqFgIAALhZ7e3uMHTsWTk5OX7xf5PskYF86304IIeSL5eTkICYmBrVr14aSkhKA7/eB0oSQ/xZpv19KQ3O8hBDynTBR00JY//n0FXOEkG+GEkFCCPmOmKhpUZJGCPlm6BpBQgghhJBqihJBQgghhJBqihJBQgghhJBqihJBQgghhJBqihJBQgghhJBqihJBQgghhJBqih4fQwgh35GCtHgU5ryv1D7klXSgoGFSqX1Utfj4eFhbWyMhIQFisVhqnfbt26Nv376YMWNGhfTp5eUFd3d3BAYGVkh7XyIlJQVaWlqIiYmBmZlZubZdvnw5AgMDcerUqa+Oo6yxkOXYkG+HEkFCCPlOFKTF4+X+hmCFOZXaj0BeCbVGPZUpGWzfvj3u3LkDoVAIoVAIGxsbbNq0CVeuXMHatWsBAIWFhcjJyYGqqiq33YULF3Dt2jWsWLECixYtwurVq7l1Dx48QIsWLWBra1tpSZOJiQkyMjK4166urtDU1IS7u/tXtz1mzBh4enoiNDQU9evXL7WemZkZ3N3d0bdv36/us6IsX74cq1ev5n3bRO/evXH48OFvFsOnx6aiJSUlYfbs2fj333+RmZkJXV1d9OnTB1u2bKm0Pv/L6NQwIYR8Jwpz3ld6EggArDCnXLOOGzZsQEZGBpKSktCkSRP07dsXCxcuREZGBjIyMnDhwgWIxWLudUZGBtq0aQPg43fYHjhwAEVFRVx7np6esLKyqvD9+hYyMjJw9OhRaGtrw8PDo1L7KiionK8a7NWrF+9Yfcsk8FsYMWIElJSUEB4ejtTUVFy5cgV2dnZVHdZ3ixJBQgghMlFSUsLYsWORmJiI9+9lSyStrKxgZGSEq1evAvj4HajHjh3DiBEjePU2b94MExMTqKurw8zMDHv37i21vYsXLwIAnjx5AoFAgJ07dwIAUlNTIRQK8e7dO8TGxkIgECAlJQW///47Dh06hO3bt0NNTQ0NGjTg2nv9+jUcHR2hpqaGJk2a4MmTJ2Xuz5EjR6CqqooNGzbgwIEDyM/Pl1pv0KBBiI+Px9ChQ6GmpoZffvkFAPDmzRu4uLjA0NAQhoaGmDFjBnJzcwEAfn5+0NTUxI4dO2BiYgJ7e3sAwNWrV9GiRQtoamqiQYMGOHPmDNdPbm4uJk6cCG1tbdSuXRt///13mfGXx7x582Bqagp1dXVYW1vj2LFj3LriWPfu3QtjY2Po6Ohg3rx5pba1c+dO1KlTB+Hh4bxjA3ycrR0/fjycnZ2hrq4OS0tL+Pn5cdumpKRg0KBB0NTUhJWVFf744w8IBIJS+7p79y5Gjx4NTU1NyMnJoW7duhg1ahS3Pj8/H0uXLkXdunWho6MDJycnJCYmcutDQkLQqlUrqKuro0OHDpg3bx7at28PABKxA8CMGTPg6urKvY6Ojkbv3r2hq6sLU1NTrF69mvtHyMvLC3Z2dli1ahVq1qwJPT09iVnqw4cPw9bWFhoaGjA1NYWXlxe37siRI7CxsYGmpiaaN28Of3//UsdBVpQIEkIIkUlWVhb27t0LU1NT6OjoyLzd6NGjsW/fPgDAyZMn0aJFCxgaGnLrIyMjsXjxYly+fBnp6em4d+8eWrRoIbWtjh07wtfXFwDw77//om7dutxrPz8/WFtbo0aNGrxtpk2bBhcXF0yaNAkZGRkICQnh1h04cADr169HSkoKmjVrhqlTp5a5Lx4eHnBxcYGzszOysrLwzz//SK137NgxmJiY4PDhw8jIyMDOnTvBGIOTkxP09fURFRWFJ0+eICgoiHfaPD09HUFBQQgPD8f169cRHByMQYMGYf369fjw4QN27dqFESNGICIiAgCwZs0a3LlzB0+fPsXjx49x4sSJMuMvD1tbWzx48AApKSlYunQpRowYgZiYGF6sT548wbNnz3Dr1i1s27aNl8AVW7ZsGbZt24abN2+WOhN85MgRTJgwASkpKRgxYgQvsZo6dSoyMzMRFxcHX19fHDx4sMy4f/rpJ8yYMQMHDhxAZGSkxPpFixbh9u3buHXrFpKSkmBhYQFnZ2cAH2dhnZyc0KlTJ7x//x5r164t9Z8SabKzs9GpUyd07NgRCQkJuHnzJo4cOQJPT0+uTkhICJSUlJCQkAAfHx/MmTMH0dHRAIB//vkHU6ZMwZYtW5CSkoIHDx7A1tYWAHD+/HnMmTMHXl5e+PDhAxYsWIDevXvL/E9ZaSgRJIQQUqYFCxZAU1OTm9EpOSMlC2dnZ1y+fBnJycnw9PTE6NGjeevl5eXBGENISAiys7Ohp6cHGxsbqW116NCBlwguXboU169f51537NixXLGNGDECjRs3hoKCAkaNGoWAgIBS64aGhuLu3bsYNWoU1NTU0K9fv3KdHn748CGePXuG3377DSoqKtDR0cHChQvh7e3N1SkqKsL69euhoqICFRUV7Nq1C66urujYsSPk5OTw008/oVevXjh69CgA4NChQ1i4cCEMDQ2hqamJZcuWfTaOc+fOQVNTk1suXboktZ6Liwtq1qwJeXl5ODs7w8rKijcDxRjDunXroKSkhPr166N169a88SssLMSECRNw7do13LhxA0ZGRqXG1LNnT3Ts2BHy8vIYPXo04uLi8P79exQWFsLHxwcrV66EWCyGgYEB5s6dW+b+HT16FL1794a7uzsaNGgAU1NTbowZY9i+fTs2b94MAwMDKCoqYvXq1bh9+zZevHiBO3fu4N27d1i+fDkUFRVhb2+PIUOGfHZMi509exZaWlqYOXMmFBUVYWJigunTp/OOsY6ODubOnQuhUIj27dujdu3a3LWy27dvx/Tp07njXbNmTTRu3BgAsG3bNsydOxdNmjSBnJwc+vfvDysrK5w/f17m+KShRJAQQkiZ1q1bh5SUFLx69QoXL14sNUkrjYaGBnr06IENGzYgMDAQTk5OvPV169bF/v378eeff0JPTw9du3Yt9SaS9u3b4/Hjx0hOToa/vz/69esHfX19hISEfFEiqK+vz/2sqqpa5k0MHh4esLW15WZoRo0ahUuXLiEhIUGmvmJjY5GSkgJtbW0uCRs4cCBev37N1VFXV4empiZvm507d/ISt9OnT3OnMhMTE2FqasrVL/lzaXr27ImUlBRucXR0lFpvy5YtaNCgAcRiMTQ1NfH06VO8e/eOW6+hoQEVFRXutaqqKtLT07nXL168wIEDB7B06VJoaWmVGdOnxwH4OOP47t075Ofnw9jYmFtvYlL2TU4aGhpYvnw5Hj16hOTkZEybNg0jR45EWFgY3r17h8zMTLRt25YbT319fSgqKuLFixdITEyEoaEhhEIh154sY1osNjYWT58+5R2v2bNn49WrV1L3tXh/i8ctLi4O9erVK7XthQsX8toODAyU+f1XGkoECSGEVLrRo0dj48aNcHZ2hqKiosT6wYMHw9fXF69fv4atra3ENYTFdHV1YWVlBXd3d5ibm0NdXR0dO3aEj48PwsPD0bZtW6nbycl93Z+7/Px8HDx4EJGRkdDX14e+vj5cXFxQWFjIu4arrD6NjY1Rs2ZNXhKWmprKSz6lbTN9+nTeNhkZGdixYwcAwNDQEHFxcVz9+Pj4r9rPYrdu3cLy5ctx4MABJCcnIyUlBQ0bNgRjTOY2zMzMcPLkSQwbNkzqKWNZ1KhRA0KhEC9evODKyrOPampqmD17NsRiMUJDQ6GjowMVFRXcu3ePN6bZ2dlo3bo1DA0NkZiYyLv2s2R/ampqAD5eJlEsKSmJ+9nY2BhNmzbltZ2Wlsa7HKEspqamiIqKkrrO2NgYbm5uvLYzMzPx66+/yjwe0lAiSAghpNJ17NgRV65cweLFiyXWRURE4MqVK8jOzoaioiLU1NSgoFD60806dOgAd3d3dOjQgWt769ataNy4canPpdPT08Pz58+/OP4zZ84gLS0Njx49QmBgIAIDAxEUFIQlS5Zg3759UhMkPT097tovAGjevDlMTEywePFipKengzGGuLg4XLhwodR+f/75Z3h6esLX1xeFhYXIzc3FnTt3EBYWBgAYOnQo1q9fj8TERKSkpGDlypVfvI8lpaWlQUFBAbq6uigqKsK+ffvw9OnTcrfTvXt3eHt7Y+DAgbh27Vq5t5eXl8fgwYOxfPlypKWl4dWrV3Bzcytzm7lz5yIwMBB5eXnIy8vD3r17kZmZiaZNm0JOTg6//PILZs+ezSWX79+/h4+PDwCgVatW0NHRwapVq5CXl4d79+5x64CPiamJiQn279+PoqIi+Pr68k7N9urVC69fv8b27duRk5ODwsJCREREyJwI//zzz9i6dSuuX7+OoqIivHnzBo8fPwYATJkyBb/99hsCAgLAGENWVhauXr2Kly9flmdIJVAiSAghpNIJBAJ06tQJNWvWlFiXl5eHJUuWQE9PDzo6Ovj3339LnWUDPiaCaWlp3Gngdu3aISsrq8zTwuPGjUNCQgK0tLTKfWob+HhaeOjQobCysuJmBPX19TFt2jQkJiZy1y2WtHDhQvz555/Q0tLCpEmTIC8vj3/++QcJCQmoX78+xGIxevbsWeoMEAA0btwYhw8fxuLFi6GrqwsjIyMsWbKEu9N48eLFaNasGRo2bAg7O7sKe2Zht27dMGDAADRq1AiGhoYICQmBg4PDF7XVtWtX+Pj4YMiQIbh8+XK5t//jjz8gEolgbGyM9u3bY/DgwVJnlYvl5ubC2dkZOjo60NfXh6enJ06fPs09YHvdunWwt7dHx44doa6ujqZNm3JxCYVCnD59GpcuXYK2tjZ+/fVXjBkzhtf+vn374OnpCbFYjF27dnE3mgAfZwyvXr2Ka9euwczMDDo6Ohg2bBjv1HBZ+vbti82bN2Py5MkQi8Vo3rw5dyd7r169sH79eowfPx5aWlqoXbs2tm7dyns005cQsPLM8xJCCKkQOTk5iImJQe3atbmH+36PD5Qm5Hvj7e2NpUuXlplAVyR3d3ecOnXqi09vVwVpv19KQ98sQggh3wkFDRPUGvWUvmKOkBKePXuG1NRUNG3aFFFRUVizZg0GDRpU1WH9MCgRJISQ74iChgklaYSUkJmZieHDh+PFixcQi8Xo27ev1GtNyZehU8OEEFIFynPqhhBCyqM8v1/oZhFCCCGEkGqKEkFCCCGEkGqKEkFCCCGEkGqKEkFCCCGEkGqKEkFCCCGEkGqKEkFCCPmOxCdn4dHLlEpd4pOzPh9IOdy8eRO1atXiXufk5KBfv37Q1NREixYtAAD//PMPzMzMoKamhlOnTlVo/1/ql19+wfz582Wq6+XlBTs7O+61mZlZle/H8uXLv+qbRGbMmAFXV9cv3t7Ozq7Mb4Ah/w30HEFCCPlOxCdnwWqDL3IKvu4roz5HSUEO4fM7wERL5bN127dvjzt37kBRURFycnIwNjaGo6Mjfv31V+jq6gIA2rRpw/u+0+PHjyMiIgKvX7+GSCQCAMyaNQsrV67EyJEjK2enPmP58uUIDAzkJW87d+6skljMzMzg7u5eYV8H9z3y8/NDhw4doKqqCgDQ1taGi4sL1qxZAw0NDa5ednY2FBQUIBQKAXx8L124cAECgQAqKipISkri1e/ZsyfOnz+PkydP/tDj9y3RjCAhhHwn3mXmVXoSCAA5BUV4l5knc/0NGzYgPT0dKSkpOHr0KBISEtC0aVO8fv1aav2YmBhYWFhwSWBx2Zd8xy8AFBYWgh55+98jFouRkZGBjIwMnDt3Dvv27cPevXu5soyMDLRp0wYbNmzgXl+4cIHb3tjYGD4+PtzrpKQk3Lt3D3p6elWxOz8sSgQJIYTIRCAQwNraGn/99RfEYjE2b94M4OPsj6amJgBg9uzZWLlyJc6ePQs1NTVMnToVampqKCwsROvWraGmpobc3Fzk5+dj6dKlqFu3LnR0dODk5ITExEReX3/++ScaNmwIFRUVZGRkIDo6Gr1794auri5MTU2xevVqFBV9TJyLT92uWrUKNWvWhJ6eHtzd3QEAp06dwtq1a7mY1NTUAACurq6YMWMG1+fw4cNhaGgIDQ0NNG3aFL6+vp8dk/z8fOjp6eH69eu8cisrKxw9evSz25cVd7HDhw/D1tYWGhoaMDU1lXo6NjY2FgKBACkpKVzZp6d+b9y4gUaNGkFNTQ39+/dHeno6r42yxhcA/vzzTxgbG0NHRweLFi367L6V1KhRI7Rp0wZPnjyReZvRo0fD09OTe33gwAEMHjyY94DkmJgYdO7cGWKxGNra2nBwcEBWVsVe+vCjo0SQEEJIuSgoKKBPnz7w8/OTWOfm5oaFCxeiV69eyMjIwB9//IGMjAwAgL+/PzIyMiASibBo0SLcvn0bt27dQlJSEiwsLODs7Mxry9vbG5cvX0ZaWhrk5OTQqVMndOzYEQkJCbh58yaOHDnCSxRCQkKgpKSEhIQE+Pj4YM6cOYiOjkbfvn15MRXH86lOnTohLCwM79+/h7OzMwYOHCiRLH1KKBRixIgRvDju3LmDN2/eoE+fPjKNZ2lxAx+vrZwyZQq2bNmClJQUPHjwALa2tjK1W1JycjKcnJwwZcoUpKSkYPTo0fjrr7+49dnZ2WWO77///otFixbh6NGjSEpKAgA8ffpU5v6DgoJw48YNNGnSROZtunTpghcvXiA8PBwA4OnpidGjR/PqLFq0CObm5nj37h1ev36N3377DQoKdNVbeVAiSAghpNyMjIzw4cOHL9qWMYbt27dj8+bNMDAwgKKiIlavXo3bt2/jxYsXXL158+bB0NAQIpEI58+fh5aWFmbOnAlFRUWYmJhg+vTp8Pb25urr6Ohg7ty5EAqFaN++PWrXro3AwECZ4xo9ejTEYjGEQiHmzp2LoqIiBAcHf3a7sWPH4vjx41yC6eXlhWHDhvFOjZelrLi3b9+O6dOno2PHjpCTk0PNmjXRuHFjmfep2NmzZ2FoaIiff/4ZCgoK6N27Nzp27MhbX9b4Hjp0CC4uLrC3t4eioiKWL1/OXf9XmtTUVGhqakJLSwuDBw/G1KlTy3VzipycHEaOHAlPT0/4+/tDQUEBzZs359URCoVISkpCbGwshEIhWrduDUVFRdkHhtDNIoQQQsovISEB2traX7Ttu3fvkJmZibZt20IgEHDlioqKePHiBYyNjQEAJiYm3LrY2Fg8ffqUOwUNAEVFRVxdANDX1+f1o6qq+tkZvZJtLVmyBEePHsXr168hJyeHtLQ0vHv37rPb1q9fHw0bNsTff/8NZ2dnHD16FFevXpWp38/FHRcXVyE32CQmJsLU1JRXZmpqipycHACfH9/ExES0b9+eWycUCmFgYFBmn2KxmHeq+kuMHj0abdu2xZs3byRmAwHgt99+w/Lly9G5c2cIBAK4urpi6dKlkJOjeS5ZUSJICCGkXAoKCnD69Gn06NHji7bX0dGBiooK7t27Bysrq1LrlfxjbmxsjKZNm+Lu3btf1OfnEgNvb294e3vj0qVLqFevHgQCAbS0tGS+SWXs2LHw8vKCSCSCiYkJmjZt+kVxfsrU1BRRUVGfrVd83WNWVhaXzCUlJUFZWRkAYGhoiLi4ON428fHxqFmzJoDPj++n2+fn53OniCuTubk56tatC29vb8THx0usr1mzJrZv3w7g46nqzp07o1GjRhgwYEClx/ajoJSZEEKIzMLDwzFq1CikpqZi1qxZX9SGnJwcfvnlF8yePZs7Ffz+/XveHaKf6tWrF16/fo3t27cjJycHhYWFiIiIkHqdojR6enqIi4tDYWGh1PVpaWlQVFREjRo1kJeXh5UrVyItLU3mfRoyZAgePXqE9evXS525+lI///wztm7diuvXr6OoqAhv3rzB48ePJerVqFEDJiYm2L9/P4qKiuDr64vz589z63v27ImEhATs2bMHBQUFOHfuHP79919u/efGd+jQoTh06BDu3bvHjU9mZmaF7WdZvLy8cP36dal3Cx89ehTx8fFgjEEsFkNeXp6uESwnSgQJIYSUaf78+VBXV4dYLEb//v2hr6+Phw8fftVjPNatWwd7e3t07NgR6urqaNq0KS5fvlxqfTU1NVy9ehXXrl2DmZkZdHR0MGzYMLx69Uqm/gYNGgQNDQ3UqFGDd/qz2KhRo9CgQQOYmpqiTp06UFZW5p12/hx1dXUMHDgQYWFhcHFxkXm7z+nbty82b96MyZMnQywWo3nz5qXeebtv3z54enpCLBZj165dvJtvtLW1cfr0aWzduhWamprYu3cvL87PjW/nzp2xatUqDBgwAAYGBigqKkLDhg0rbD/LUrduXbRq1UrquoCAAO5udHt7e4wdOxZOTk7fJK4fhYDRw5kIIeSby8nJQUxMDGrXrs09DuN7fKA0kd3KlSsRGBiIEydOVHUopJqT9vulNDR/Sggh3wkTLRWEz+9Qroc9f4kaqoqUBFawt2/fYs+ePbzHyBDyX0CJICGEfEdMtFQoSfuPWbNmDdauXYsRI0agc+fOVR0OIeVCp4YJIaQKlOfUDSGElEd5fr/QzSKEEEIIIdUUJYKEEEIIIdUUJYKEEFKF6OocQkhFK8/vFbpZhBBCqoBQKIRAIMDbt2+hq6vL+6o1Qgj5UowxvH37FgKBAEKh8LP16WYRQgipIhkZGXj58iXNChJCKpRAIECtWrW4rx4ssy4lgoQQUnUKCwuRn59f1WEQQn4gQqEQ8vLyMtWlRJAQQgghpJqim0UIIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqopSgQJIYQQQqophaoOgBBCSPVRVFSExMREqKurQyAQVHU45AfGGEN6ejoMDQ0hJ0fzXqWhRJAQQsg3k5iYCGNj46oOg1QjL168QK1atao6jO8WJYKEEEK+GXV1dQAf/zhraGhUcTTkR5aWlgZjY2PuPUeko0SQEELIN1N8OlhDQ4MSQfJN0CUIZaOT5oQQQggh1RQlgoQQQggh1RSdGiaEEELIdysoIRXejxOQmp0PTRUhhtoZwdZIXNVh/TBoRpBUiuXLl8POzu67aacihYeHo1WrVlBSUvruYqtKt2/fRqNGjSAUCtG3b99K7cvV1ZXXR/v27TFjxoxK7fNbMDMzg7u7e4W0NWLECKxdu7ZC2irNkydPUKtWLWRmZlZqP6R6yk+Lx8ND/dBx+3X85heN3ffisdE3Gm2330a33XcRn5xV1SH+ECgR/IG4urpCIBBAIBBAQUEBJiYmmDhxIpKTk6s6NJkIBAKcOnWKVzZnzhxcu3btm/Tv7++PHj16QEtLC0pKSmjUqBHc3NxQWFjIq7ds2TKoqqoiIiKi1NhKHouSS7du3WSOpzKTG2ljXZqzZ8+iffv2UFdXh4qKCpo3bw4vLy+JerNmzYKdnR1iYmKkri8WFRWF0aNHo1atWhCJRKhduzaGDh2Khw8fftnOyCgvLw+//fYbmjRpAlVVVYjFYtja2mLx4sVITEys1L4/5eXlBU1NzUprPzg4GOfOncPUqVN55VFRURgzZgxMTEwgEolgZGSETp064dChQygoKODVleW4N2rUCC1atMCWLVsqbV9I9ZSfFo/Xp3pD5+15zKtxmrcuPbcQlyPfosfee3iRnF1FEf44KBH8wXTr1g1JSUmIjY3F3r178c8//2DSpElVHdYXU1NTg46OTqX3c/LkSbRr1w61atWCr68vwsPDMX36dKxZswbOzs5gjHF1o6Oj8dNPP8HU1LTM2IqPRcnl8OHDlb4vFemPP/5Anz590Lp1a9y7dw/BwcFwdnbGL7/8gjlz5vDqRkdHo2PHjqhVq1apSc7Dhw/RtGlTREZGYteuXQgNDcXJkydhZWWF2bNnV9p+5ObmokuXLli7di1cXV1x48YNBAQEYOPGjXj//j3++OOPUrfNy8urtLgqy59//olBgwbxHptx//59NGnSBGFhYdi2bRuePn2Ks2fPYsyYMdi5cydCQkK4uuU57qNHj8aOHTsk/mEi5Gu8u/oL8j+EAWDop3oTWnJpEnVCX2dg/LGgbx/cj4aRH8aoUaNYnz59eGWzZs1i2travLJ9+/YxKysrJhKJmKWlJdu2bRtv/e3bt5mtrS0TiUSsadOm7OTJkwwAe/z4MWOMMU9PTyYWi3nbFNcptmzZMmZra8u9vn//PuvcuTPT0dFhGhoarG3btiwgIIBbb2pqygBwi6mpqdR2CgsL2YoVK5iRkRFTVFRktra27MKFC9z6mJgYBoAdP36ctW/fnikrKzMbGxvm7+9f6rhlZGQwHR0d1r9/f4l1Z86cYQDYkSNHGGOMFyMAtmzZMqltSjsWJfn6+jKhUMhu3LjBlW3atInp6OiwxMRENmrUKIm+YmJiGGOMhYSEsO7duzNVVVVWs2ZNNnz4cPb27VuunXbt2rGpU6eyuXPnMi0tLaanp8eLs7Sx/lR8fDwTCoVs1qxZEut+//13BoDdvXuXG/OSi6enp8Q2RUVFrEGDBqxp06assLBQYn1ycjL388uXL9ngwYOZpqYm09bWZk5OTtz+MyY5vu3atWPTp0+Xuh+MMbZu3TomJyfHHj16JHV9UVERr63JkyezmTNnMh0dHda2bVvGGGN+fn6sefPmTFFRkenr67P58+ez/Px8xtjH94lYLOb26/HjxwwAmzNnDtfuhAkTmLOzM/P19S31fWRqasrWrFnDRo8ezdTU1JixsTHbtWtXqfslTWFhIdPU1GRnz57l7V/9+vVLHfuSYyDrcS+Wm5vLRCIRu3btmkzxpaamMgAsNTW1PLtFqpGc149ZzJ/a7PkWIbcc396LCWafkVg0Fp5jgS9TpLZD7zXZ0IzgD+z58+e4ePEihEIhV7Znzx4sWrQIa9asQVhYGNauXYslS5Zg//79AID09HT07t0bjRo1wqNHj7Bq1SrMnz//q2NJT0/HqFGjcPPmTdy9exf16tVDjx49kJ6eDgB48OABAMDT0xNJSUnc609t3boVbm5u2LRpE4KDg+Ho6AgnJyc8e/aMV2/RokWYM2cOAgMDYWFhgaFDh0qc+ip2+fJlvH//XmKmAwB69+4NCwsLbiYvKSkJDRo0wOzZs5GUlCR1G1kUn/YdMWIEUlNTERQUhEWLFmHPnj0wMDDA1q1bYW9vj/Hjx3OzicbGxkhKSkK7du1gZ2eHhw8f4uLFi3j9+jUGDx7Ma3///v1QVVXFvXv3sHHjRqxcuRJXrlwBIPtY//3338jPz5e6jz///DPU1NRw+PBhLi4NDQ24u7sjKSkJQ4YMkdgmMDAQISEhmD17ttSveyqeRczKykKHDh2gpqaGGzdu4NatW1BTU0O3bt2+eHbu8OHD6NKlCxo3bix1/afPGdu/fz8UFBRw+/Zt7Nq1CwkJCejRoweaN2+OoKAg7NixAx4eHli9ejUAoG3btkhPT8fjx48BANevX0eNGjVw/fp1rk0/Pz+0a9cOrVu3hru7OzQ0NLhjW3KM3dzc0KxZMzx+/BiTJk3CxIkTER4eLvO+BgcHIyUlBc2aNePKAgMDERYWhjlz5pT6VVvFYyDrcS+mqKgIW1tb3Lx5U2q7ubm5SEtL4y2ElCUj4ihYfjqvrDEeoplytETd9NxCHA5M+Fah/ZDoruEfzNmzZ6GmpobCwkLk5OQAADZv3sytX7VqFdzc3NC/f38AQO3atREaGopdu3Zh1KhROHToEAQCAfbs2QMlJSVYW1sjISEB48eP/6q4OnbsyHu9a9cuaGlp4fr16+jVqxd0dXUBfEwG9PX1S21n06ZNmD9/PpydnQEAGzZsgK+vL9zd3bFt2zau3pw5c9CzZ08AwIoVK9CgQQNERUXByspKos3IyEgAQP369aX2aWVlxdXR19eHgoIC1NTUyowT+N+xKGn+/PlYsmQJAGD16tW4evUqJkyYgJCQEIwYMQL9+vUDAIjFYigqKkJFRYXXz44dO9CkSRPeTQD79u2DsbExIiMjYWFhAQCwsbHBsmXLAAD16tXDn3/+iWvXrqFLly4yj3VkZCTEYjEMDAwk1ikqKqJOnTqIjIyEvLw89PX1IRAIIBaLS22zOFmXdgxKOnLkCOTk5LB3714uOfH09ISmpib8/PzQtWvXMrcvbV/at2/PK+vXrx+XHNvY2MDf359bZ25ujo0bN3KvFy1aBGNjY/z5558QCASwsrJCYmIi5s+fj6VLl0IsFsPOzg5+fn5o2rQp/Pz8MHPmTKxYsQLp6enIzMzkYlBUVIRYLIZAIJA6Vj169OAu55g/fz62bNkCPz+/z45bsdjYWMjLy6NmzZq8/QcAS0tLruzNmzeoU6cO93rjxo2YNGmSzMe9JCMjI8TGxkqNZ926dVixYoVMsRMCACwvRbIs9z0s68UiJV/yIeSvIQJgXfmB/aAoEfzBdOjQATt27EBWVhb27t2LyMhI7oLxt2/f4sWLFxg7diwvsSsoKIBY/PFW/IiICNjY2EBJSYlb36JFi6+O682bN1i6dCn+/fdfvH79GoWFhcjKykJ8fLzMbaSlpSExMREODg68cgcHBwQF8a8TsbGx4X4u/oP25s2bMv+YshLXAX5a/iVPpi8+FiVpa2tzPysqKuKvv/6CjY0NTE1NZbpbNCAgAL6+vhIJJvDxGr2SiWBJBgYGePPmTbn3oSzlHZfi8f3cNgEBAYiKipL4WqicnBxER0vOCMjq0363b9+OzMxM/P7777hx4wZvXcnZNAAICwuDvb09rw0HBwdkZGTg5cuXMDExQfv27eHn54dZs2bh5s2bWL16NY4fP45bt24hJSUFenp6MiVzJY9dcbJYnmOXnZ0NkUgkdZxLluno6CAwMBDAxxlqWWdbpR13ZWVlZGVJv4NzwYIFmDVrFve6+Gu/CCmNQFFTouy4+k84zpSQKxcqsW6Ant43iOrHRYngD0ZVVRXm5uYAgN9//x0dOnTAihUrsGrVKhQVFQH4eHq4ZcuWvO3k5eUBSP8l/2mCJCcnJ1GWn59fZlyurq54+/Yt3N3dYWpqCpFIBHt7+y861Sctvk/LSp4OL15XvP+fKk6ewsLC0Lp1a4n14eHhsLYu/3+bJY9FaYpnoT58+IAPHz5AVVW1zPpFRUXo3bs3NmzYILGu5AxOyf0HPo5BaftfGgsLC6SmpiIxMRGGhoa8dXl5eXj+/LnETO/n2gM+jnNZj90pKipC06ZNcejQIYl1xbOZ5VWvXj2J06vF41UyOS/26XEo63NRXN6+fXt4eHggKCgIcnJysLa2Rrt27XD9+nUkJyejXbt2MsX6tceuRo0ayMrKQl5eHhQVFQF83H/g43u5eOzl5eW596eCwv/+FHzJcf/w4QPq1q0rNR6RSASRSCRz/ISoWQ5GevAu7vRwLuTxl5oDcrMk7xBWF4rgXNvuG0f4Y6FrBH9wy5Ytw6ZNm5CYmAg9PT0YGRnh+fPnMDc35y21a9cG8PG0XXBwMHJzc7k2Pn2sh66uLne6q1jxzEJpbt68iWnTpqFHjx5o0KABRCIR3r17x6sjFArLvPNQQ0MDhoaGuHXrFq/c39+/1NO6sujatSu0tbXh5uYmse7MmTN49uwZhg4d+sXtlyY6OhozZ87Enj170KpVK4wcOZL3B19RUVFiPJo0aYKQkBCYmZlJHMPPJZElfW6sAWDAgAFQUFCQOi47d+5EZmZmucbFzs4O1tbWcHNzk5rYpKSkAPi4j8+ePUPNmjUl9rF45rq8hg4diitXrnDX8JWXtbU1/P39ef8A+fv7Q11dHUZGRgD+d52gu7s72rVrB4FAgHbt2sHPz4+7PrCYtGNbUYoTvdDQ/82cNG7cGFZWVti0adNnk8ovOe5Pnz4t9fpLQspLVNMOIoP/TVa46wzAUylJIADY65rCVsfoW4X2Q6JE8AfXvn17NGjQgLumbPny5Vi3bh22bt2KyMhIPHnyBJ6entx1hMOGDUNRUREmTJiAsLAwXLp0CZs2bQLwv5mPli1bQkVFBQsXLkRUVBS8vb3LfG4c8PGaq4MHDyIsLAz37t2Di4sLlJWVeXXMzMxw7do1vHr1qtRnH86dOxcbNmyAj48PIiIi8OuvvyIwMBDTp0//4jFSVVXFrl27cPr0aUyYMAHBwcGIjY2Fh4cHXF1dMXDgQImbMWSRm5uLV69e8Zbi5LewsBAjRoxA165dMXr0aHh6euLp06e8P75mZma4d+8eYmNj8e7dOxQVFWHy5Mn48OEDhg4divv37+P58+e4fPkyxowZU67EQpaxNjExwcaNG+Hu7o5FixYhPDwc0dHR2Lx5M+bNm4fZs2dLzCyXRSAQwNPTE5GRkWjbti3Onz+P58+fIzg4GGvWrEGfPn0AAC4uLqhRowb69OmDmzdvIiYmBtevX8f06dPx8uVLmfsraebMmbC3t0fHjh2xdetWPHr0CDExMbh06RIuXLjAzYiXZtKkSXjx4gWmTp2K8PBwnD59GsuWLcOsWbO4my+KrxP866+/uOsR27Zti0ePHklco2hmZoaMjAxcu3YN7969K/W06pfQ1dVFkyZNeP8wFY99REQEHBwcuH9wQkNDsXPnTrx9+5Ybg/Ie99jYWCQkJKBz584Vtg+E1Oi8E0Lt+kgUqOGigvTZZmuxHnY7DPrGkf2AquZmZVIZSntkyaFDh5iioiKLj4/nXtvZ2TFFRUWmpaXF2rZty06cOMHVv337NrOxsWGKioqsadOmzNvbmwFg4eHhXJ2TJ08yc3NzpqSkxHr16sV2795d5uNjHj16xJo1a8ZEIhGrV68eO3bsGDM1NWVbtmzh6pw5c4aZm5szBQUFmR4fIxQKS318TPGjbhj7+FgSAMzX17fM8btx4wbr1q0bE4vFTFFRkVlbW7NNmzaxgoICXj1bW9tSHxtTTNrjXwAwS0tLxhhjK1asYAYGBuzdu3fcNqdOnWKKiopc7BEREaxVq1ZMWVmZ9/iYyMhI1q9fP6apqcmUlZWZlZUVmzFjBvf4D2mPUunTpw8bNWoU91raWJfm9OnTrE2bNkxVVZUpKSmxpk2bsn379knUE4vFUh8b86mIiAg2cuRIZmhoyBQVFZmpqSkbOnQo79EuSUlJbOTIkaxGjRpMJBKxOnXqsPHjx3OPgSjv42MYYywnJ4etX7+e2draMmVlZSYSiZiVlRWbOXMm99koq62yHh9TbPbs2QwAe/r0KVdma2vLdHV1eY+oYYyxX375heno6Eg8PqbkZ6J4+8+93z61c+dO1qpVK4nyiIgINmrUKFarVi2moKDAxGIxa9u2Ldu1a5fEvsh63NeuXcscHR1ljo0e6UFklZcax6afWsjEBxYyuX2zuUV8cCHrdnEXi0v7UOb29F6TjYCxUq6QJ+T/HTp0CKNHj0ZqaqrELB4h5PuTk5MDS0tLHDlyBPb29pXWT25uLurVq4fDhw9L3MRVmrS0NIjFYqSmpkJDQ/IOUEI+FfQ+AUdiApGcmwUtkQqca9vJdDqY3muyoZtFiIQDBw6gTp06MDIyQlBQEObPn4/BgwdTEkjIf4SSkhIOHDggcR1uRYuLi8OiRYtkTgIJ+RK2OkZ0HWAlokSQSHj16hWWLl2KV69ewcDAAIMGDcKaNWuqOixCSDnIepfy17CwsODuBieE/DfRqWFCCCHfDJ2uI98KvddkQ3cNE0IIIYRUU5QIEkIIIYRUU3SNICGEkG/O3NycewYjIZWhvN+mVF1RIkgIIeSbi4qKouu2SKUqvkaQlI3+HSOEEEIIqaYoESSEEEIIqaYoESSEEEIIqaboGkFCCCGEfLHcN0HIiPDB01RlnMcADGtsBFsjujbvv4JmBKuZ5cuXw87OrqrD+Cp+fn4QCARISUkBAHh5eUFTU7PS+xUIBDh16lSl9/O9iY2NhUAgQGBgIADJ8a9MVXWsK0JVftby8vJgbm6O27dvV2o/f/75J5ycnCq1D/L9yk+LR9LJnkg61hFpAZsgSPLDb37RaLv9Nrrtvov45KyqDpHIgBLBSubq6gqBQACBQAChUIg6depgzpw5yMzM/Kp2v/SPzJw5c3Dt2rWv6vt7+2M8ZMgQREZGVlh7pY1tUlISunfvXmH9fKp9+/bce0XaYmZmVu42GWPYvXs3WrZsCTU1NWhqaqJZs2Zwd3dHVlbl/pLOy8vDxo0bYWtrCxUVFdSoUQMODg7w9PREfn5+pfVbFQm7tD4r4rP2pXbv3g1TU1OJ7wD29fVFr169oKurCyUlJdStWxdDhgzBjRs3ePUKCwuxZcsW2NjYQElJCZqamujevbtEYjl+/Hg8ePAAt27dqvR9It+X/LR4vD7VGzlxV8Dy03nr0nMLcTnyLXrsvUfJ4H8AJYLfQLdu3ZCUlITnz59j9erV2L59O+bMmSO1bmX+gQQANTU16OjoVGof35qysjJq1qxZ6f3o6+tDJBJVWvsnTpxAUlISkpKScP/+fQDA1atXubIHDx6Uu80RI0ZgxowZ6NOnD3x9fREYGIglS5bg9OnTuHz5ckXvAicvLw+Ojo5Yv349JkyYAH9/f9y/fx+TJ0/GH3/8gZCQkErr+3tRlZ+1P/74A+PGjeOVbd++HZ06dYKOjg58fHwQFhaGgwcPonXr1pg5cyZXjzEGZ2dnrFy5EtOmTUNYWBiuX78OY2NjtG/fnpfwikQiDBs2DH/88ce32jXynXh3bSLyP4SVWSf0dQYmHAv+RhGRL8ZIpRo1ahTr06cPr2zcuHFMX1+fMcbYsmXLmK2tLfPw8GC1a9dmAoGAFRUVsbi4OObk5MRUVVWZuro6GzRoEHv16hVjjDFPT08GgLd4enoyxhhLSUlh48ePZ7q6ukxdXZ116NCBBQYGcn0X9/dpfL/99hvT19dn2trabNKkSSwvL6/UffL09GRisbjU9WXFXuz06dOsadOmTCQSMR0dHdavXz9u3cGDB1nTpk2Zmpoa09PTY0OHDmWvX7/m1vv6+jIALDk5WWo8pqamEuNT8q0+b948Vq9ePaasrMxq167NFi9ezO1vWWMLgJ08eZJrJzg4mHXo0IEpKSkxbW1tNn78eJaenv5VY1ssJiaGAWCPHz/myvz8/Fjz5s2ZoqIi09fXZ/Pnz2f5+fmltuHj48MAsFOnTkmsKyoqYikpKdzrffv2MSsrKyYSiZilpSXbtm1bqbF8Ov7SbNiwgcnJybFHjx5JrMvLy2MZGRlcHBs2bGC1a9dmSkpKzMbGhh07doyr+7ljLU3J4yQt1sePHzMALCYmhtfmxYsXmZWVFVNVVWWOjo4sMTGR166Hhweztrbmxn/y5MmMMcn3m6mpKWNM8rNWWFjIVqxYwYyMjJiioiKztbVlFy5c4NYXj/Px48dZ+/btmbKyMrOxsWH+/v5l7u+nAgICmJycHEtNTeXK4uLimFAoZDNnzpS6TVFREffzkSNHGAB25swZiXr9+/dnOjo63PFj7OP7UlFRkWVlZckUX2pqKgPAi4/8t+S8DmQxf2qz51uEvOX67o5MMPsMb9FYeI4Fvkz5fKOVgN5rsqEZwSqgrKzMm/mLiorC0aNHcfz4ce46rL59++LDhw+4fv06rly5gujoaAwZMgTAx1Ohs2fPRoMGDbjZoiFDhoAxhp49e+LVq1c4f/48AgIC0KRJE3Tq1AkfPnwoNR5fX19ER0fD19cX+/fvh5eXF7y8vL5o3xhjZcYOAOfOnUP//v3Rs2dPPH78GNeuXUOzZs249Xl5eVi1ahWCgoJw6tQpxMTEwNXVVeYYHjx4wI3Ly5cv0apVK7Rp04Zbr66uDi8vL4SGhmLr1q3Ys2cPtmzZAqD0sf1UVlYWunXrBi0tLTx48ADHjh3D1atXMWXKFF69ihrbhIQE9OjRA82bN0dQUBB27NgBDw8PrF69utRtDh06BEtLS/Tp00dinUAg4B60umfPHixatAhr1qxBWFgY1q5diyVLlmD//v3ljrNk3507d0bjxo0l1gmFQqiqqgIAFi9eDE9PT+zYsQMhISGYOXMmhg8fjuvXr39x318iKysLmzZtwsGDB3Hjxg3Ex8fzZu137NiByZMnY8KECXjy5AnOnDkDc3NzAOBmaj09Pcucud26dSvc3NywadMmBAcHw9HREU5OTnj27Bmv3qJFizBnzhwEBgbCwsICQ4cORUFBgcz7cuPGDVhYWPAe1nz8+HHk5+dj3rx5UrcRCATcz97e3rCwsEDv3r0l6s2ePRvv37/HlStXuLJmzZohPz+fm8X+VG5uLtLS0ngL+W/LiPCROB1cmvTcQhwOTKjkiMhXqepM9Ef36YzgvXv3mI6ODhs8eDBj7OOsgVAoZG/evOHqXL58mcnLy7P4+HiuLCQkhAFg9+/f57YrOdvAGGPXrl1jGhoaLCcnh1det25dtmvXLqnbjRo1ipmamrKCggKubNCgQWzIkCGl7lNZszKyxG5vb89cXFxKbf9T9+/fZwC42bbyzBJNmzaNmZqa8sb3Uxs3bmRNmzblXksbW8b4M027d+9mWlpavJmRc+fOMTk5OW7280vGttins3ALFy5klpaWvJmbbdu2MTU1NVZYWCi1jfr16zMnJ6fP9mVsbMy8vb15ZatWrWL29vZSY5FlRlBZWZlNmzatzH4zMjKYkpKSxIzX2LFj2dChQ6X2VVkzggBYVFQUV2fbtm1MT0+Pe21oaMgWLVokU5/FPn0fGRoasjVr1vDqNG/enE2aNIkx9r9x3rt3L7e++LMTFhZW5j6XNH36dNaxY0de2S+//MI0NDR4ZX///TdTVVXlluDgYMYYY1ZWVhJnMYp9+PCBAWAbNmzglWtpaTEvLy+p2yxbtkzqDD3N0vx3ufn9wbr6zJNYHA8uZPX2ekgsrmcvVUmcNCMoG3p8zDdw9uxZqKmpoaCgAPn5+ejTpw/vmhpTU1Po6upyr8PCwmBsbAxjY2OuzNraGpqamggLC0Pz5s2l9hMQEICMjAyJ65Kys7MRHR1danwNGjSAvLw899rAwABPnjwp937KGntgYCDGjx9fahuPHz/G8uXLERgYiA8fPnDfFxkfHw9ra2uZY9m9ezc8PDxw+/Zt3vj+/fffcHd3R1RUFDIyMlBQUFDur7oKCwuDra0tN7MFAA4ODigqKkJERAT09PQAVNzYhoWFwd7enjdz4+DggIyMDLx8+RImJiYS2zDGePWlefv2LV68eIGxY8fyjklBQYHMX82kpqbG/Tx8+HDs3LlTpr5DQ0ORk5ODLl268Mrz8vKkziRWJhUVFdStW5d7bWBggDdv3gAA3rx5g8TERHTq1OmL209LS0NiYqLEzRsODg4ICgrildnY2PDiKI7ByspKpr6ys7OhpKQkUf7p8XB0dERgYCASEhLQvn17FBYWytS+tLaUlZVLvflowYIFmDVrFvc6LS2N9/uB/Pe8Va2Nq5mxUtYUAnKhEqUD/v/3Ifk+USL4DXTo0AE7duyAUCiEoaEhhEIhb33JZAIo/Q/45/64FhUVwcDAAH5+fhLryrrL99N4BALBF39ZtyyxKysrl7p9ZmYmunbtiq5du+Kvv/6Crq4u4uPj4ejoiLy8PJnj8PPzw9SpU3H48GHY2tpy5Xfv3oWzszNWrFgBR0dHiMViHDlyBG5ubuXYy7KPRcnyihpbaf0xxiT6K8nCwgJhYWVfzF0cy549e9CyZUveupIJbFmKL2cAwCXU5en73LlzMDIy4q2rqJty5OQ+Xv1SPFaA9BuypB2n4m3Ker+Wl7Rj+GlZyViK15XnPVOjRg2Jfzbq1auH1NRUvHr1Cvr6+gA+JvDm5uZQUOD/GbCwsEBoqOQfcwDcMa1Xrx6v/MOHD7x/tkoSiUSVepMV+faca9thR7g/0vNzP1tXXSiCc227yg+KfDG6RvAbUFVVhbm5OUxNTSX+4EhjbW2N+Ph4vHjxgisLDQ1Famoq6tevDwBQVFSU+A++SZMmePXqFRQUFGBubs5batSoUbE79RWx29jYlPpYjfDwcLx79w7r169HmzZtYGVlxc3MyCoqKgoDBgzAwoUL0b9/f96627dvw9TUFIsWLUKzZs1Qr149xMXF8epIG1tp+xkYGMh7DNDt27chJycHCwuLcsUrC2tra/j7+/MSGn9/f6irq0skUcWGDRuGyMhInD59WmIdYwypqanQ09ODkZERnj9/LvGeqV27tkyxldym+O7tYcOG4erVq3j8+LFE/YKCAmRmZsLa2hoikQjx8fESfVfUjFFxcpKUlMSVlUxcZaGurg4zM7MyHwUjFArLfM9oaGjA0NBQ4jEr/v7+3OeiojRu3Bjh4eG898rAgQMhFAqxYcOGz27v7OyMZ8+e4Z9//pFY5+bmBh0dHd4sbnR0NHJycr75LC6pOrY6RrDXNZWprr2uKWx1pP+OIt8HSgS/Q507d4aNjQ1cXFzw6NEj3L9/HyNHjkS7du24myrMzMwQExODwMBAvHv3Drm5uejcuTPs7e3Rt29fXLp0CbGxsfD398fixYvx8OHDCo2xsLAQgYGBvCU0NFSm2JctW4bDhw9j2bJlCAsLw5MnT7Bx40YAgImJCRQVFfHHH3/g+fPnOHPmDFatWiVzXNnZ2ejduzfs7OwwYcIEvHr1iluAj0lLfHw8jhw5gujoaPz+++84efIkrw1pY/spFxcXKCkpYdSoUXj69Cl8fX0xdepUjBgxgjstXJEmTZqEFy9eYOrUqQgPD8fp06exbNkyzJo1i5v1+tTgwYMxZMgQDB06FOvWrcPDhw8RFxeHs2fPonPnzvD19QXw8bmJ69atw9atWxEZGYknT57A09MTmzdv/uJ4Z8yYAQcHB3Tq1Anbtm1DUFAQnj9/jqNHj6Jly5Z49uwZ1NXVMWfOHMycORP79+9HdHQ0Hj9+jG3btn3VjSolFSeVy5cvR2RkJM6dO1fu2V/g4xi5ubnh999/x7Nnz/Do0SPe5R3FieKrV6+QnJwstY25c+diw4YN8PHxQUREBH799VcEBgZi+vTpX7x/0nTo0AGZmZm8R/SYmJjAzc0NW7duxahRo+Dr64vY2Fg8evQIv//+O4D/zQA7OzujX79+GDVqFDw8PBAbG4vg4GD8/PPPOHPmDPbu3cs7i3Hz5k3UqVOHd2qd/Ph2OwyCtbjs33XWYj3sdhj0jSIiX6wKrkusVqQ9Pqak0m5M+NwjWHJyctiAAQOYpqYm7xEnaWlpbOrUqczQ0JAJhUJmbGzMXFxcuJs3Snt8TEnTp09n7dq1KzVmaY9YQYnHZsjy+Jjjx48zOzs7pqioyGrUqMH69+/PrfP29mZmZmZMJBIxe3t7dubMmTJvVih5A0HxBffSlmJz585lOjo6TE1NjQ0ZMoRt2bKFdwNCaWOLL3x8THnGtlhFPD6GsY+PLNmxYwdr3rw5U1FRYRoaGqxp06Zs69atvMd9HDp0iDseWlparG3btuzEiRNSY5HlZhHGPo7junXrWKNGjbgxcnBwYF5eXlzcRUVFbOvWrczS0pIJhUKmq6vLHB0d2fXr16X29bmbRQoLCxkA9s8//3Blt27d4mJo06YNO3bsmNTHx5R08uRJ9umvx507d3JxGhgYsKlTp3Lrzpw5w8zNzZmCgoJMj48RCoWlPj6m5DFPTk5mAJivr28ZIy3J2dmZ/frrrxLlV65cYd27d2fa2tpMQUGB6enpsb59+7KLFy/y6uXn57NNmzaxBg0aMJFIxDQ0NJijoyO7efOmRJtdu3Zl69atkzk2uoD/xxGf/oF1u7iLiQ8uZHL7ZnOL+OBC1u3iLvYi40OVxkfvNdkIGCtx/oAQQv7DXr16BQMDAzx48ID3SKLq5smTJ+jcuTOioqKgrq5eaf08ffoUnTp1QmRkpMw3F6WlpUEsFiM1NbXcN2mR71PQ+wQciQlEcm4WtEQqcK5t912cDqb3mmzoZhFCyH8eYwxxcXHYtGkT9PT00LBhw6oOqUo1atQIGzduRGxsLBo1alRp/SQmJuLAgQMyJ4Hkx2SrY/RdJH7ky1AiSAj5z0tNTYWlpSXq16+PI0eOSH18SnUzatSoSu+ja9euld4HIaRyUSJICPnP09TUlHpTDyGEkLLRXcOEEEIIIdUUJYKEEEIIIdUUnRomhBDyzZmbm5f6DExCKsKXfkNWdUOJICGEkG8uKiqKHulBKlXx42NI2ejfMUIIIYSQaooSQUIIIYSQaooSQUIIIYSQaoquESSEEEJIueS+CUJGhA+epirjPAZgWGMj2BrR9Xj/RZQIEkIIIUQm+WnxeHdtInIT74Llp0Og2ga/Rdhh551Y2JtqY/cgG5hoqVR1mKQc6NQwIYRUMIFAgFOnTgEAYmNjIRAIEBgYKFP9irJkyRJMmDChQtv81Js3b6Crq4uEhIRK7Yd8H/LT4vH6VG/kxF0By0/nrUvPLcTlyLfosfce4pOzqihC8iUoESSEVCv+/v6Ql5dHt27dKq2PpKQkdO/evdLqf87r16+xdetWLFy4kFf+6tUrTJ8+Hebm5lBSUoKenh5++ukn7Ny5E1lZ/D/e/v7+6NGjB7S0tKCkpIRGjRrBzc0NhYWFXJ2aNWtixIgRWLZsWYXFTr5f765NRP6HsDLrhL7OwIRjwd8oIlIRKBEkhFQr+/btw9SpU3Hr1i3Ex8dXSh/6+voQiUSVVv9zPDw8YG9vDzMzM67s+fPnaNy4MS5fvoy1a9fi8ePHuHr1KmbOnIl//vkHV69e5eqePHkS7dq1Q61ateDr64vw8HBMnz4da9asgbOzMxhjXN3Ro0fj0KFDSE5OrrD4yfcn900QchPvylT3TtwHBCWkVnJEpKJQIkgIqTYyMzNx9OhRTJw4Eb169YKXlxdvvZ+fHwQCAa5du4ZmzZpBRUUFrVu3RkREBK/ejh07ULduXSgqKsLS0hIHDx7krS/rVG9RURHGjx8PCwsLxMXFSdTPy8vDlClTYGBgACUlJZiZmWHdunXl2s8jR47AycmJVzZp0iQoKCjg4cOHGDx4MOrXr49GjRphwIABOHfuHHr37s2N0fjx4+Hk5ITdu3fDzs4OZmZmGDduHPbv34+///4bR48e5dpt1KgR9PX1cfLkSamx5ObmIi0tjbeQ/56MCB+J08GlSc8txOFAulzgv4JuFiGEVBs+Pj6wtLSEpaUlhg8fjqlTp2LJkiUQCAS8eosWLYKbmxt0dXXxyy+/YMyYMbh9+zaAj7Nl06dPh7u7Ozp37oyzZ89i9OjRqFWrFjp06FBm/3l5eRg2bBiio6Nx69Yt1KxZU6LO77//jjNnzuDo0aMwMTHBixcv8OLFC5n3MTk5GU+fPkWzZs24svfv33MzgaqqqlK3Kx6Dy5cv4/3795gzZ45End69e8PCwgKHDx/GkCFDuPIWLVrg5s2bGDNmjMQ269atw4oVK2SOn3yf9hcZ4pLhTIlyQZ4CzOu/lSh/DREA628QGflalAgSQqoNDw8PDB8+HADQrVs3ZGRk4Nq1a+jcuTOv3po1a9CuXTsAwK+//oqePXsiJycHSkpK2LRpE1xdXTFp0iQAwKxZs3D37l1s2rSpzEQwIyMDPXv2RHZ2Nvz8/Er96qv4+HjUq1cPP/30EwQCAUxNTcu1j3FxcWCMwdDQkCuLiooCYwyWlpa8ujVq1EBOTg4AYPLkydiwYQMiIyMBAPXr15favpWVFVenmJGRER4/fiy1/oIFCzBr1izudVpaGoyNjcu1T6TqvVWtjauZsVLWFAJyoRKlA/T0Kj0mUjHo1DAhpFqIiIjA/fv34ezsDABQUFDAkCFDsG/fPom6NjY23M8GBgYAPt4hCwBhYWFwcHDg1XdwcEBYWNkX0Q8dOhQZGRm4fPlymd9/6urqisDAQFhaWmLatGm4fPmybDv4/7KzswEASkpKEus+nfm8f/8+AgMD0aBBA+Tm5vLWlbwO8NPyT9tRVlaWuNmkmEgkgoaGBm8h/z3Ote2gLpTtOlZ1oQjOte0qNyBSYSgRJIRUCx4eHigoKICRkREUFBSgoKCAHTt24MSJExI3OgiFQu7n4qSnqKhIoqyYtOToUz169EBwcDDu3i37gvsmTZogJiYGq1atQnZ2NgYPHoyBAwfKtI/Ax1k+ALx9Mjc3h0AgQHh4OK9unTp1YG5uDmVlZa7MwsICAEpNbMPDw1GvXj1e2YcPH6CrqytzjOS/x1bHCPa6ss1O2+uawlbHqJIjIhWFEkFCyA+voKAABw4cgJubGwIDA7klKCgIpqamOHTokMxt1a9fH7du3eKV+fv7l3oqtdjEiROxfv16ODk54fr162XW1dDQwJAhQ7Bnzx74+Pjg+PHj+PDhg0zx1a1bFxoaGggN/d/pOh0dHXTp0gV//vknMjMzy9y+a9eu0NbWhpubm8S6M2fO4NmzZxg6dCiv/OnTp2jcuLFM8ZH/rt0Og2AtLvuUr7VYD7sdBn2jiEhFoESQEPLDO3v2LJKTkzF27Fg0bNiQtwwcOBAeHh4ytzV37lx4eXlh586dePbsGTZv3owTJ05IvbniU1OnTsXq1avRq1cviWSy2JYtW3DkyBGEh4cjMjISx44dg76+PjQ1NWWKT05ODp07d5Zof/v27SgoKECzZs3g4+ODsLAwRERE4K+//kJ4eDjk5eUBAKqqqti1axdOnz6NCRMmIDg4GLGxsfDw8ICrqysGDhyIwYMHc+1mZWUhICAAXbt2lSk+8t9lrKaF813HoauhhcRpYnWhCF0NLXDBcRyM1bSqKELyRRghhPzgevXqxXr06CF1XUBAAAPAAgICmK+vLwPAkpOTufWPHz9mAFhMTAxXtn37dlanTh0mFAqZhYUFO3DgAK9NAOzkyZOMMcZiYmIYAPb48WNuvZubG1NXV2e3b9+WqL97925mZ2fHVFVVmYaGBuvUqRN79OhRufb34sWLzMjIiBUWFvLKExMT2ZQpU1jt2rWZUChkampqrEWLFuy3335jmZmZvLo3btxg3bp1Y2KxmCkqKjJra2u2adMmVlBQwKvn7e3NLC0tZY4tNTWVAWCpqanl2ifyfQl895L9+uAs+/nWUfbrg7Ms8N3Lqg5JAr3XZCNgrJQrggkhhPwnMcbQqlUrzJgxQ+I0bkVr0aIFZsyYgWHDhslUPy0tDWKxGKmpqXTjCKlU9F6TDZ0aJoSQH4xAIMDu3btRUFBQqf28efMGAwcOrPRkkxBSeWhGkBBCyDdDszTkW6H3mmxoRpAQQgghpJqiRJAQQgghpJqir5gjhBDyzZmbm0NOjuYiSOUp+RB4UjpKBAkhhHxzUVFRdN0WqVTF1wiSstG/Y4QQQggh1RQlgoQQQggh1RQlgoQQQggh1RQlgoQQQggh1RQlggSxsbEQCAQIDAwss1779u0xY8aMbxLT92D58uWws7P7btqpSOHh4WjVqhWUlJS+ODaBQIBTp05VaFz/FX5+fhAIBEhJSZGpvqyfsYry/v171KxZE7GxsZXaz5w5czBt2rRK7YNUrKCEVCw4F4pfjgVhwblQBCWkVnVIpIpRIvgf4erqCoFAAIFAAKFQiDp16mDOnDnIzMz86raNjY2RlJSEhg0bAij9j9yJEyewatWqr+6vLCX3U0FBASYmJpg4cSKSk5Mrtd+KIi05mjNnDq5du/ZN+vf390ePHj2gpaUFJSUlNGrUCG5ubigsLOTVW7ZsGVRVVREREVFqbK6urujbt2+pfSUlJaF79+4VGX6lefnyJRQVFWFlZVXubaX9A9S6dWskJSXJfEeirJ+xirJu3Tr07t0bZmZmvPLjx4+jY8eO0NLSgoqKCiwtLTFmzBg8fvyYVy87OxvLli2DpaUlRCIRatSogYEDByIkJIRXb968efD09ERMTEyl7AepOPHJWXDcfRdtt9/GBt9o7L4Xjw2+0Wi7/TYcd9/Fi+Tsqg6RVBFKBP9DunXrhqSkJDx//hyrV6/G9u3bMWfOnK9uV15eHvr6+lBQKPtpQtra2lBXV//q/j6neD9jY2Oxd+9e/PPPP5g0aVKl91tZ1NTUoKOjU+n9nDx5Eu3atUOtWrXg6+uL8PBwTJ8+HWvWrIGzszNKfptkdHQ0fvrpJ5iamn5xbPr6+hCJRBUVfqXy8vLC4MGDkZWVhdu3b391e4qKitDX14dAIJCpvqyfsYqQnZ0NDw8PjBs3jlc+f/58DBkyBHZ2djhz5gxCQkKwe/du1K1bFwsXLuTq5ebmonPnzti3bx9WrVqFyMhInD9/HoWFhWjZsiXu3r3L1a1Zsya6du2KnTt3Vvp+kS/3IjkbPfbew5XIt0jP5f9TmJ5biCuRb9F9LyWD1RYj/wmjRo1iffr04ZWNGzeO6evrM8YYy8nJYVOnTmW6urpMJBIxBwcHdv/+fa7uhw8f2LBhw1iNGjWYkpISMzc3Z/v27WOMMRYTE8MAsMePH3M/l1xGjRrFGGOsXbt2bPr06Ywxxn799VfWsmVLiTgbNWrEli5dyr3et28fs7KyYiKRiFlaWrJt27aVez9nzZrFtLW1eWWfa/f27dvM1taWiUQi1rRpU3by5EluHxljzNPTk4nFYt42xXWKLVu2jNna2nKv79+/zzp37sx0dHSYhoYGa9u2LQsICODWm5qa8sbN1NRUajuFhYVsxYoVzMjIiCkqKjJbW1t24cIFbn3xMTh+/Dhr3749U1ZWZjY2Nszf37/UccvIyGA6Ojqsf//+EuvOnDnDALAjR44wxpjE8V22bJnUNqUdi5IAsJMnT/JiPnz4MLO3t2cikYhZW1szX19frn5BQQEbM2YMMzMzY0pKSszCwoK5u7vz2vT19WXNmzdnKioqTCwWs9atW7PY2FjevjRp0oSJRCJWu3Zttnz5cpafn19qjIwxVlRUxOrUqcMuXrzI5s+fz0aPHi1R59atW6xt27ZMWVmZaWpqsq5du7IPHz6wUaNGSYxXTEwM8/X1ZQBYcnIyS0lJYUpKSrxjyBhjx48fZyoqKiw9PV2mz9j+/fuZtrY2y8nJ4bXTv39/NmLEiDL38dN+a9SowSu7c+cOA8C2bt1a6hgVW79+PRMIBCwwMJBXp7CwkDVr1oxZW1vz6nt5eTFjY2OZ40tNTWUAWGpqqszbkK/juOsOE8w+89nFcdedqg61QtF7TTY0I/gfpqysjPz8fAAfT9EcP34c+/fvx6NHj2Bubg5HR0d8+PABALBkyRKEhobiwoULCAsLw44dO1CjRg2JNo2NjXH8+HEAQEREBJKSkrB161aJei4uLrh37x6io6O5spCQEDx58gQuLi4AgD179mDRokVYs2YNwsLCsHbtWixZsgT79++XeR+fP3+OixcvQigUcmWfazc9PR29e/dGo0aN8OjRI6xatQrz58+Xuc/SpKenY9SoUbh58ybu3r2LevXqoUePHkhPTwcAPHjwAADg6emJpKQk7vWntm7dCjc3N2zatAnBwcFwdHSEk5MTnj17xqu3aNEizJkzB4GBgbCwsMDQoUNRUFAgtc3Lly/j/fv3UmeIe/fuDQsLCxw+fBjAx1O6DRo0wOzZs5GUlFQhs8rF5s6di9mzZ+Px48do3bo1nJyc8P79ewAfn/Jfq1YtHD16FKGhoVi6dCkWLlyIo0ePAgAKCgrQt29ftGvXDsHBwbhz5w4mTJjAzbpdunQJw4cPx7Rp0xAaGopdu3bBy8sLa9asKTMmX19fZGVloXPnzhgxYgSOHj3KHTMACAwMRKdOndCgQQPcuXMHt27dQu/evVFYWIitW7fC3t4e48ePR1JSEpKSkmBsbMxrXywWo2fPnjh06BCv3NvbG3369IGamhqvvLTP2KBBg1BYWIgzZ85wdd+9e4ezZ89i9OjRMh+DGzduoFmzZryyw4cPQ01NrdSZ9ZIzm97e3ujSpQtsbW15deTk5DBz5kyEhoYiKCiIK2/RogVevHiBuLg4mWMk305QQiruxH2Qqe6duA90zWB1VNWZKJHNp7Mz9+7dYzo6Omzw4MEsIyODCYVCdujQIW59Xl4eMzQ0ZBs3bmSMMda7d2+pMyGM8WcEGWO82Y6SSs4IMsaYjY0NW7lyJfd6wYIFrHnz5txrY2Nj5u3tzWtj1apVzN7evsz9lJeXZ6qqqkxJSYmbMdm8ebPM7e7YsYPp6Oiw7Oxsbv2ePXu+ekbwUwUFBUxdXZ39888/XBlKzJKV1o6hoSFbs2YNr07z5s3ZpEmTGGP/Ox579+7l1oeEhDAALCwsTGos69evl3rMijk5ObH69etzr21tbUudCSz2JTOC69ev59bn5+ezWrVqsQ0bNpTaxqRJk9iAAQMYY4y9f/+eAWB+fn5S67Zp04atXbuWV3bw4EFmYGBQ5n4MGzaMzZgxg3tta2vL9uzZw70eOnQoc3BwKHX7T9/3jEl+Rk6cOMHU1NRYZmYmY+zjTISSkhI7d+4cY0z2z9jEiRNZ9+7dudfu7u6sTp06vBm4z+nTpw8bM2YMr6xbt27MxsaGV+bm5sZUVVW5JSUlhTHGmJKSksT+Fnv06BEDwHx8fLiy4lmX0o5bTk4OS01N5ZYXL17QLM039OvZEJlmA4uXX8+GVHXIFYZmBGVDXzH3H3L27FmoqamhoKAA+fn56NOnD/744w9ER0cjPz8fDg4OXF2hUIgWLVogLCwMADBx4kQMGDAAjx49QteuXdG3b1+0bt36q+JxcXHBvn37sGTJEjDGcPjwYe6i+rdv3+LFixcYO3Ysxo8fz21TUFDw2QvsO3TogB07diArKwt79+5FZGQkpk6dKnO7ERERsLGxgZKSEre+RYsWX7WvAPDmzRssXboU//77L16/fo3CwkJkZWUhPj5e5jbS0tKQmJjIO1YA4ODgwJtlAQAbGxvuZwMDAy6Gsm54YCWuA/y0XNbr2b6Gvb0997OCggKaNWvGvQcBYOfOndi7dy/i4uKQnZ2NvLw87q5lbW1tuLq6wtHREV26dEHnzp0xePBgbt8DAgLw4MED3gxgYWEhcnJykJWVBRUVFYl4UlJScOLECdy6dYsrGz58OPbt28ddQxcYGIhBgwZ91X737NkTCgoKOHPmDJydnXH8+HGoq6uja9eu5Wpn/PjxaN68ORISEmBkZARPT0/uBipZZWdn8977xT5tY8yYMXBycsK9e/cwfPjwUt87JRXXKdmWsrIyACArK0vqNuvWrcOKFStkjp9ULEecRnfLqxLl74p0kFSgJVGuX2QHwLryAyPfDUoE/0OKEyShUAhDQ0PudGlSUhIAyV/0Jf/4d+/eHXFxcTh37hyuXr2KTp06YfLkydi0adMXxzNs2DD8+uuvePToEbKzs/HixQs4OzsD+N+Xfe/ZswctW7bkbScvL19mu6qqqjA3NwcA/P777+jQoQNWrFiBVatWydSutKTn0z9ycnJyEmXFp9lL4+rqirdv38Ld3R2mpqYQiUSwt7dHXl5emdtJU9axKlbydHjxutK+RN3CwgIAEBYWJjXBDw8Ph7V11fxyL4796NGjmDlzJtzc3GBvbw91dXX89ttvuHfvHlfX09MT06ZNw8WLF+Hj44PFixfjypUraNWqFYqKirBixQr0799fog9piQ/w8TRnTk4O773CGENRURFCQ0NhbW3NJTJfQ1FREQMHDoS3tzecnZ3h7e2NIUOGlPvmkMaNG8PW1hYHDhyAo6Mjnjx5gn/++adcbdSoUUPiLvt69erh1q1byM/P595Xmpqa0NTUxMuXL3l1LSwsEBoaKrXt8PBwrr1ixZef6OrqSt1mwYIFmDVrFvc6LS1N4vQ6qTw24gykPrspUW4MoLGU+mKtuZUeE/m+0DWC/yHFCZKpqSkvSTA3N4eioiJv1iM/Px8PHz5E/fr1uTJdXV24urrir7/+gru7O3bv3i21H0VFRQCQeOTIp2rVqoW2bdvi0KFDOHToEDp37gw9PT0AgJ6eHoyMjPD8+XOYm5vzltq1a5drv5ctW4ZNmzYhMTFRpnatrKwQHByM3Nxcro2HDx/y2tTV1UV6ejrv8Tufe8bbzZs3MW3aNPTo0QMNGjSASCTCu3fveHWEQmGZ46ahoQFDQ0PesQI+Pval5LEqr65du0JbWxtubm4S686cOYNnz55h6NChX9y+rEreUVpQUICAgABuBvPmzZto3bo1Jk2ahMaNG8Pc3Jx3jWmxxo0bY8GCBfD390fDhg3h7e0NAGjSpAkiIiIkjru5uTnk5KT/KvPw8MDs2bMRGBjILUFBQejQoQP27dsH4OPMa1mP91FUVPzsZwH4OEN+8eJFhISEwNfXl7tWtrQ2AemfsXHjxsHT0xP79u1D586dy500NW7cWCKRGzp0KDIyMrB9+/bPbu/s7IyrV69KzFAXFRVhy5YtsLa25l0/+PTpUwiFQjRo0EBqeyKRCBoaGryFfDuqFoMhEMr2tAeBUB2qFoMrOSLyvaFE8AegqqqKiRMnYu7cubh48SJCQ0Mxfvx4ZGVlYezYsQCApUuX4vTp04iKikJISAjOnj1bauJhamoKgUCAs2fP4u3bt8jIyCi1bxcXFxw5cgTHjh3D8OHDeeuWL1+OdevWYevWrYiMjMSTJ0/g6emJzZs3l2v/2rdvjwYNGmDt2rUytTts2DAUFRVhwoQJCAsLw6VLl7iZz+LZqZYtW0JFRQULFy5EVFQUvL294eXlVWYc5ubmOHjwIMLCwnDv3j24uLhIzCaZmZnh2rVrePXqVanPPpw7dy42bNgAHx8fRERE4Ndff0VgYCCmT59ernEpSVVVFbt27cLp06cxYcIEBAcHIzY2Fh4eHnB1dcXAgQMxeHD5f8GnpqbykqjAwMAyT4Vv27YNJ0+eRHh4OCZPnozk5GSMGTMGwMfxe/jwIS5duoTIyEgsWbKEd0NNTEwMFixYgDt37iAuLg6XL19GZGQk9z5dunQpDhw4gOXLlyMkJARhYWHcrKE0gYGBePToEcaNG4eGDRvylqFDh+LAgQPIz8/HggUL8ODBA0yaNAnBwcEIDw/Hjh07uCTfzMwM9+7dQ2xsLN69e1fqrGy7du2gp6cHFxcXmJmZoVWrVqWOU1mfMRcXFyQkJGDPnj3c2JWHo6MjQkJCeO8/e3t7zJ49G7Nnz8asWbNw69YtxMXF4e7du/Dw8IBAIOCS6ZkzZ6JFixbo3bs3jh07hvj4eDx48AADBgxAWFgYV7/YzZs30aZNmwqZWSUVT1TTFiLD0t+LvLqGrSCqafv5iuTHUkXXJpJy+tyF+9nZ2Wzq1KmsRo0aUh8fs2rVKla/fn2mrKzMtLW1WZ8+fdjz588ZY5IXsjPG2MqVK5m+vj4TCARSHx9TLDk5mYlEIu4xGZ86dOgQs7OzY4qKikxLS4u1bduWnThxotz7eejQIaaoqMji4+Nlavf27dvMxsaGKSoqsqZNmzJvb28GgIWHh3N1Tp48yczNzZmSkhLr1asX2717d5k3izx69Ig1a9aMiUQiVq9ePXbs2DFmamrKtmzZwtU5c+YMMzc3ZwoKCjI9PkYoFJb6+JiSxyM5OZkB4D2ORZobN26wbt26MbFYzBQVFZm1tTXbtGkTKygo4NWT9WYRfPKYE5R4nBCk3Czi7e3NWrZsyRQVFVn9+vXZtWvXuPZycnKYq6srE4vFTFNTk02cOJH9+uuv3Ni8evWK9e3blxkYGDBFRUVmamrKli5dygoLC7k2Ll68yFq3bs2UlZWZhoYGa9GiBdu9e7fU+KdMmcKsra2lrnvz5g2Tl5dnx48fZ4wx5ufnx1q3bs1EIhHT1NRkjo6O3I0cERERrFWrVkxZWVnq42NKmjt3LgPAe4RSyfH53Ges2IgRI6Q+SkZWrVq1Yjt37pQo9/HxYe3bt2disZgJhUJWq1YtNmzYMHb37l1evczMTLZ48WJmbm7OhEIh09bWZgMGDGBPnjyRaNPCwoIdPnxY5tjoAv5vLy81nr3Yb8OebxGWurzYb8PyUuOrOtQKRe812QgYk+EKYUL+4w4dOoTRo0cjNTWVZi4qQWxsLGrXro3Hjx9/d1+n91/UpUsX1K9fH7///vsXbX/+/HnMmTMHT58+LfW0eUU4d+4c5s6di+DgYJmvh0xLS4NYLEZqaiqdJv6G8tNe4N21X5CbeBcs/3+PTxII1SEybIUanXdBqF6rCiOsePRekw3dLEJ+SAcOHECdOnVgZGSEoKAgzJ8/H4MHD6YkkHzXPnz4gMuXL+Pff//Fn3/++cXt9OjRA8+ePUNCQkKl3piRmZkJT0/Pb/KNKeTrCDWMYdDvHHLfBCEz8iiKcpMhJ9KCqsVgOh1czdGnl/yQXr16haVLl+LVq1cwMDDAoEGDPvvgYUKqWpMmTZCcnIwNGzbA0tLyq9r6mmtOZfUl152SqiWqaUuJH+GhU8OEEEK+GTpdR74Veq/Jhu4aJoQQQgippigRJIQQQgippugaQUIIId9cWQ8CJ6QilPbMT8JHiSAhhJBvLioqiq7bIpWq+BpBUjb6d4wQQgghpJqiRJAQQgghpJqiRJAQQgghpJqiRJAQQgghpJqiRJCQb2z58uWf/T5eV1dX9O3b95vEQ75PXl5e0NTULLOOLO8lWfz777+wsrIq912WAwcOxObNm7+6f/LtBCWkYv7ZUPxyLAi/ngtFUEJqVYdEqhglguSLCQSCMhdXV9dvHlNsbCwEAgECAwNLrdO+fXvMmDFDolyWP7wVYc6cObh27Vql90MkTZgwAfLy8jhy5EhVh/JdmTdvHhYtWsQ9zsXLy4v3WdbT00Pv3r0REhLC227p0qVYs2YN0tLSqiJsUg75afF4eKgfOm6/jt/8orH7Xjw2+kaj7fbb6Lb7LuKTs6o6RFJFKBEkXywpKYlb3N3doaGhwSvbunVrVYf4XVJTU4OOjk5Vh1HtZGVlwcfHB3PnzoWHh0dVh/Pd8Pf3x7NnzzBo0CBeefHnOTExEefOnUNmZiZ69uyJvLw8ro6NjQ3MzMxw6NChbx02KYf8tHi8PtUbOm/PY16N07x16bmFuBz5Fj323sOL5OwqipBUJUoEyRfT19fnFrFYDIFAAH19fejp6eGnn37Cnj17ePWfPn0KOTk5REdHA/g4o7hjxw50794dysrKqF27No4dO8bbJiEhAUOGDIGWlhZ0dHTQp08fxMbGfqtdxD///IOmTZtCSUkJderUwYoVK1BQUMCtFwgE2LVrF3r16gUVFRXUr18fd+7cQVRUFNq3bw9VVVXY29tz+wxIns4rLCzErFmzoKmpCR0dHcybNw+ffgU4YwwbN25EnTp1oKysDFtbW/z999/c+uTkZLi4uEBXVxfKysqoV68ePD09AfxvlvTo0aNo06YNlJWV0bx5c0RGRuLBgwdo1qwZ1NTU0K1bN7x9+5Zrs6ioCCtXrkStWrUgEolgZ2eHixcvcuvz8vIwZcoUGBgYQElJCWZmZli3bh23Pj4+Hn369IGamho0NDQwePBgvH79WmIc9u3bBxMTE6ipqWHixIkoLCzExo0boa+vj5o1a2LNmjW8sUhNTcWECRNQs2ZNaGhooGPHjggKCvrssTx27Bisra2xYMEC3L59W+J95OfnhxYtWkBVVRWamppwcHBAXFwcACAoKAgdOnSAuro6NDQ00LRpUzx8+JDb1t/fH23btoWysjKMjY0xbdo0ZGZmcuvNzMywevVqjBw5EmpqajA1NcXp06fx9u1bbowaNWrEa7PYqVOnYGFhASUlJXTp0gUvXryQun83btyAUCjEq1eveOWzZ89G27ZtSx2XI0eOoGvXrlBSUuKVF3+eDQwM0KxZM8ycORNxcXGIiIjg1XNycsLhw4dLbZ9UvXdXf0H+hzAADP1Ub0JLTnIGN/R1BsYf+/zniPx4KBEkFU4gEGDMmDFcIlJs3759aNOmDerWrcuVLVmyBAMGDEBQUBCGDx+OoUOHIiwsDMDHGZwOHTpATU0NN27cwK1bt7iEpeSsRGW5dOkShg8fjmnTpiE0NBS7du2Cl5eXRGKyatUqjBw5EoGBgbCyssKwYcPw888/Y8GCBdwf9ilTppTaj5ubG/bt2wcPDw/cunULHz58wMmTJ3l1Fi9eDE9PT+zYsQMhISGYOXMmhg8fjuvXrwP4OI6hoaG4cOECwsLCsGPHDtSoUYPXxrJly7B48WI8evQICgoKGDp0KObNm4etW7fi5s2biI6OxtKlS7n6W7duhZubGzZt2oTg4GA4OjrCyckJz549AwD8/vvvOHPmDI4ePYqIiAj89ddfMDMzA/Axce3bty8+fPiA69ev48qVK4iOjsaQIUN4MUVHR+PChQu4ePEiDh8+jH379qFnz554+fIlrl+/jg0bNmDx4sW4e/cu127Pnj3x6tUrnD9/HgEBAWjSpAk6deqEDx8+lHk8PTw8MHz4cIjFYvTo0YP3/iwoKEDfvn3Rrl07BAcH486dO5gwYQIEAgEAwMXFBbVq1cKDBw8QEBCAX3/9FUKhEADw5MkTODo6on///ggODoaPjw9u3bolccy3bNkCBwcHPH78GD179sSIESMwcuRIDB8+HI8ePYK5uTlGjhzJ+ycgKysLa9aswf79+3H79m2kpaXB2dlZ6v61bdsWderUwcGDB3n79ddff2H06NGljsuNGzfQrFmzMscuJSUF3t7eAMDtd7EWLVrg/v37yM3NLbMNUjVy3wQiN+ke91qYFYs9taVfGnEn7gNdM1gdMUIqgKenJxOLxdzrxMREJi8vz+7du8cYYywvL4/p6uoyLy8vrg4A9ssvv/DaadmyJZs4cSJjjDEPDw9maWnJioqKuPW5ublMWVmZXbp0SWocMTExDAB7/PhxqbG2a9eOCYVCpqqqyltEIhFvH9q0acPWrl3L2/bgwYPMwMCAtw+LFy/mXt+5c4cBYB4eHlzZ4cOHmZKSEvd62bJlzNbWlnttYGDA1q9fz73Oz89ntWrVYn369GGMMZaRkcGUlJSYv78/L5axY8eyoUOHMsYY6927Nxs9enSZY7J3715eTADYtWvXuLJ169YxS0tL7rWhoSFbs2YNr63mzZuzSZMmMcYYmzp1KuvYsSPv+BS7fPkyk5eXZ/Hx8VxZSEgIA8Du37/PjYOKigpLS0vj6jg6OjIzMzNWWFjIlVlaWrJ169Yxxhi7du0a09DQYDk5Obz+6taty3bt2iV1/xljLDIykgmFQvb27VvGGGMnT55kxsbGXD/v379nAJifn5/U7dXV1Xnv3ZJGjBjBJkyYwCu7efMmk5OTY9nZ2YwxxkxNTdnw4cO59UlJSQwAW7JkCVdW/N5JSkpijH38TAFgd+/e5eqEhYUxANzn6tP30oYNG1j9+vW516dOnWJqamosIyOj1LERi8XswIEDvLLivlVVVZmKigoDwAAwJycnie2DgoIYABYbGyu1/ZycHJaamsotL168YABYampqqTGRivPuxgL2fIuQv2zXZ80Xb2GC2WcklvlnQ6o65AqTmppK7zUZ0IwgqRQGBgbo2bMn9u3bBwA4e/YscnJyJK5Dsre3l3hdPCMYEBCAqKgoqKurQ01NDWpqatDW1kZOTg7vVOuXcHFxQWBgIG9ZuXIlr05AQABWrlzJ9a2mpobx48cjKSkJWVn/u7DaxsaG+1lPTw8A0KhRI15ZTk6O1AvqU1NTkZSUxBsHBQUF3gxNaGgocnJy0KVLF14sBw4c4MZh4sSJOHLkCOzs7DBv3jz4+/tL9CVLnG/evAHw8auZEhMT4eDgwGvDwcGBOz6urq4IDAyEpaUlpk2bhsuXL3P1wsLCYGxsDGNjY67M2toampqa3PbAx1Om6urqvBisra1530FbMq6AgABkZGRAR0eHNxYxMTFlvic8PDzg6OjIzZL26NEDmZmZuHr1KgBAW1sbrq6ucHR0RO/evbF161YkJSVx28+aNQvjxo1D586dsX79el5fAQEB8PLy4sXj6OiIoqIixMTElGv8AXD7Cki+F6ysrCTGsCRXV1dERUVxM6j79u3D4MGDoaqqWurYZGdnS5wWBgB1dXUEBgYiICAAO3fuRN26dbFz506JesrKygDA+0yUtG7dOojFYm4p+Z4glY/lpUiW5b6HZb1YmNd/K7G8xstvHySpUvRdw6TSjBs3DiNGjMCWLVvg6emJIUOGQEVF5bPbFZ+OKyoqQtOmTaVeiK6rq/tVsYnFYpibm/PKatasyXtdVFSEFStWoH///hLbl/zDWfJUWXHs0sq+9AvQi7c7d+4cjIyMeOtEIhEAoHv37oiLi8O5c+dw9epVdOrUCZMnT8amTZvKFeenMRbXK8YY48qaNGmCmJgYXLhwAVevXsXgwYPRuXNn/P3337x6pW3/af/F/UkrK46rqKgIBgYG8PPzk2i7tDu+CwsLceDAAbx69QoKCgq8cg8PD3Tt2hUA4OnpiWnTpuHixYvw8fHB4sWLceXKFbRq1QrLly/HsGHDcO7cOVy4cAHLli3DkSNH0K9fPxQVFeHnn3/GtGnTJPo2MTGRuq/leZ9IG0dpZcDH93Dv3r3h6emJOnXq4Pz581LHqqQaNWogOTlZolxOTo77jFhZWeHVq1cYMmQIbty4watXfEq+tM/kggULMGvWLO51WloaJYPfkEBRU6LsuPpPOM6UkCsXKrFuwP//Q0KqD0oESaXp0aMHVFVVsWPHDly4cEHiDwgA3L17FyNHjuS9bty4MYCPiYaPjw93U8C31qRJE0REREgkjBVJLBbDwMAAd+/e5S7oLygo4K59Az7OpIlEIsTHx6Ndu3altqWrqwtXV1e4urqiTZs2mDt3Li8RLA8NDQ0YGhri1q1bvBsN/P390aJFC169IUOGYMiQIRg4cCC6deuGDx8+wNraGvHx8Xjx4gX3Rz80NBSpqamoX7/+F8UEfDwmxQld8fWIn3P+/Hmkp6fj8ePHkJeX58rDw8Ph4uKC9+/fc3dxN27cGI0bN8aCBQtgb28Pb29vtGrVCgBgYWEBCwsLzJw5E0OHDoWnpyf69euHJk2aICQkpFLeJwUFBXj48CE35hEREUhJSYGVlVWp24wbNw7Ozs6oVasW6tatKzGr+6nGjRsjNFQyIfjUzJkzsXnzZpw8eRL9+vXjyp8+fYpatWpJXJNaTCQScf+wkG9PzXIw0oN3geWnAwByIY+/1ByQmyV5h7C6UATn2nbfOEJS1SgRJJVGXl4erq6uWLBgAczNzSVOAwMf7+Rs1qwZfvrpJxw6dAj379/nHu3h4uKC3377DX369OHuXo2Pj8eJEycwd+5c1KpVq1LjX7p0KXr16gVjY2MMGjQIcnJyCA4OxpMnT7B69eoK62f69OlYv3496tWrh/r162Pz5s1ISUnh1qurq2POnDmYOXMmioqK8NNPPyEtLQ3+/v5QU1PDqFGjsHTpUjRt2hQNGjRAbm4uzp49+1UJFwDMnTsXy5YtQ926dWFnZwdPT08EBgZyM7RbtmyBgYEB7OzsICcnh2PHjkFfXx+ampro3LkzbGxs4OLiAnd3dxQUFGDSpElo167dZ29MKEvnzp1hb2+Pvn37YsOGDbC0tERiYiLOnz+Pvn37Sm3bw8MDPXv2hK2tLa+8QYMGmDFjBv766y84OTlh9+7dcHJygqGhISIiIhAZGYmRI0ciOzsbc+fOxcCBA1G7dm28fPkSDx48wIABAwAA8+fPR6tWrTB58mSMHz8eqqqqCAsLw5UrV/DHH3988b4CH2cMp06dit9//x1CoRBTpkxBq1ateMn4pxwdHSEWi7F69WqJyx1Kq79///7P1tPQ0MC4ceOwbNky9O3bl5uVvHnzJjerSr4/opp2EBm0RE78x8sg3HUG4KmUJBAA7HVNYatjJHUd+XHRNYKkUo0dOxZ5eXkYM2aM1PUrVqzAkSNHYGNjg/379+PQoUOwtrYGAKioqODGjRswMTFB//79Ub9+fYwZMwbZ2dnfZIbQ0dERZ8+exZUrV9C8eXO0atUKmzdvhqmpaYX2M3v2bIwcORKurq6wt7eHuro6b8YF+Hhn8tKlS7Fu3TrUr18fjo6O+Oeff1C7dm0AgKKiIhYsWAAbGxu0bdu2Qh6aPG3aNMyePRuzZ89Go0aNcPHiRZw5cwb16tUD8PF5iBs2bECzZs3QvHlzxMbG4vz585CTk4NAIMCpU6egpaWFtm3bonPnzqhTpw58fHy+KiaBQIDz58+jbdu2GDNmDCwsLODs7IzY2FjuGruSXr9+jXPnznFJ26dt9e/fHx4eHlBRUUF4eDgGDBgACwsLTJgwAVOmTMHPP/8MeXl5vH//HiNHjoSFhQUGDx6M7t27Y8WKFQA+Xvt3/fp1PHv2DG3atEHjxo2xZMkSGBgYfNW+Ah8/A/Pnz8ewYcNgb28PZWXlzx5XOTk5uLq6orCwkDfbXprhw4cjNDRU4rEw0kyfPh1hYWHcY55ycnJw8uRJjB8/XrYdIlWiRuedEGrXR6JADRcV6kqtYy3Ww26HQVLXkR+bgLFPHlhGSAW6ffs22rdvj5cvX0r8oRYIBDh58iR9lRohFWz8+PF4/fo1zpw5I1P9efPmITU1Fbt27SpXP9u2bcPp06d5Nwp9TlpaGsRiMVJTU6vkko/qKj8tHnN9d8ErDUgv+N+jftSFItjrmmJX60EwUdeqwggrHr3XZEOnhkmlyM3NxYsXL7BkyRIMHjxY6mwNIaRipaam4sGDBzh06BBOnz79+Q3+36JFi7Bt2zYUFhbyrqP8HKFQ+NWnv8m3IdQwgXufNRj9PgFHYgKRnJsFLZEKnGvb0engao4SQVIpDh8+jLFjx8LOzo73gFtCSOXp06cP7t+/j59//hldunSReTuxWIyFCxeWu78JEyaUextStWx1jCjxIzx0apgQQsg3Q6fryLdC7zXZ0M0ihBBCCCHVFCWChBBCCCHVFF0jSAgh5JszNzfnfZUgIRXtS7/NqbqhRJAQQsg3FxUVRddtkUpVfI0gKRv9O0YIIYQQUk1RIkgIIYQQUk1RIkgIIYQQUk1RIkgIIYQQUk3RzSKEEELIf0zumyBkRPjgaaoyzmMAhjU2gq0R3RhByo9mBMkPZfny5bCzs+Neu7q6om/fvt88jtjYWAgEAgQGBgIA/Pz8IBAIkJKSwtU5deoUzM3NIS8vjxkzZnzzGAFAIBDg1KlTVdL3f4GXlxc0NTUrpe1P3yMV6f3796hZsyZiY2MrvO2S5syZg2nTplVqH4QvPy0eSSd7IulYR6QFbIIgyQ+/+UWj7fbb6Lb7LuKTs6o6RPIfQ4kg+W68evUKU6dORZ06dSASiWBsbIzevXvj2rVrldZncYJWvOjq6qJ79+4ICgqq0H5at26NpKQk3qMMfv75ZwwcOBAvXrzAqlWrKrS/T32aIBdLSkpC9+7dK7XvikimPj1OxcvixYsrJsgqYGxsjKSkJDRs2LDC2163bh169+4NMzMzXvnx48fRsWNHaGlpQUVFBZaWlhgzZgweP37Mq5ednY1ly5bB0tISIpEINWrUwMCBAxESEsKrN2/ePHh6eiImJqbC94FIyk+Lx+tTvZETdwUsP523Lj23EJcj36LH3nuUDJJyoUSQfBdiY2PRtGlT/Pvvv9i4cSOePHmCixcvokOHDpg8eXKl9x8REYGkpCScO3cOycnJ6NatG1JTU6XWzc/PL3f7ioqK0NfXh0AgAABkZGTgzZs3cHR0hKGhIdTV1b8o7ry8vC/arpi+vj5EItFXtfEtFR+n4uXXX3/9onYKCwsr7WGzsr4/5OXloa+vDwWFir1CJzs7Gx4eHhg3bhyvfP78+RgyZAjs7Oxw5swZhISEYPfu3ahbty4WLlzI1cvNzUXnzp2xb98+rFq1CpGRkTh//jwKCwvRsmVL3L17l6tbs2ZNdO3aFTt37qzQfSDSvbs2EfkfwsqsE/o6AxOOBX+jiMiPgBJB8l2YNGkSBAIB7t+/j4EDB8LCwgINGjTArFmzeH94UlNTMWHCBNSsWRMaGhro2LFjhcze1axZE/r6+mjRogXc3Nzw6tUr3L17lzt9d/ToUbRv3x5KSkr466+/UFRUhJUrV6JWrVoQiUSws7PDxYsXS22/5KlhPz8/LvHr2LEjBAIB/Pz8AAD+/v5o27YtlJWVYWxsjGnTpiEzM5Nrx8zMDKtXr4arqyvEYjHGjx8P4OMfeQsLC6ioqKBOnTpYsmQJl5B4eXlhxYoVCAoK4mbSvLy8AEieGn7y5Ak6duwIZWVl6OjoYMKECcjIyODWF59q37RpEwwMDKCjo4PJkyeXKzkunp08ePAgzMzMIBaL4ezsjPT09M9uW3ycihc1NTUAQHJyMkaOHMnNdHXv3h3Pnj3jtiuelTx79iysra0hEokQFxeHvLw8zJs3D0ZGRlBVVUXLli25Y1HSqVOnYGFhASUlJXTp0gUvXryQ2J99+/Zxs9mMMVy8eBE//fQTNDU1oaOjg169eiE6OprbrrTLB65du4ZmzZpBRUUFrVu3RkREhMxjCwAXLlyAgoIC7O3tubK7d+9i48aN2Lx5MzZv3ow2bdqgdu3aaNeuHRYtWoTz589zdd3d3XHnzh2cPXsWgwcPhqmpKVq0aIHjx4+jfv36GDt2LBhjXH0nJyccPny4XDGS8st9E4TcxLufrwjgTtwHBCVI/0eWkE9RIkiq3IcPH3Dx4kVMnjwZqqqqEuuLTysyxtCzZ0+8evUK58+fR0BAAJo0aYJOnTrhw4cPFRaPsrIyAP7Mzvz58zFt2jSEhYXB0dERW7duhZubGzZt2oTg4GA4OjrCycmJl3yUpuQf9+PHjyMpKQmtW7fGkydP4OjoiP79+yM4OBg+Pj64desWpkyZwtv+t99+Q8OGDREQEIAlS5YAANTV1eHl5YXQ0FBs3boVe/bswZYtWwAAQ4YMwezZs9GgQQNuJm3IkCEScWVlZaFbt27Q0tLCgwcPcOzYMVy9elWif19fX0RHR8PX1xf79++Hl5cXl1jKKjo6GqdOncLZs2dx9uxZXL9+HevXry9XGyW5urri4cOHOHPmDO7cuQPGGHr06ME7hllZWVi3bh327t2LkJAQ1KxZE6NHj8bt27dx5MgRBAcHY9CgQejWrRvvOGZlZWHNmjXYv38/bt++jbS0NDg7O/P6j4qKwtGjR3H8+HEuscvMzMSsWbPw4MEDXLt2DXJycujXr99nZyIXLVoENzc3PHz4EAoKChgzZky5xuLGjRto1qwZr+zw4cNQU1PDpEmTpG5TPFMNAN7e3ujSpQtsbW15deTk5DBz5kyEhoby/vlq0aIFXrx4gbi4OKlt5+bmIi0tjbeQ8suI8JE4HVya9NxCHA5MqOSIyA+DEVLF7t27xwCwEydOlFnv2rVrTENDg+Xk5PDK69aty3bt2sUYY2zZsmXM1taWWzdq1CjWp0+fUtv09fVlAFhycjJjjLF3794xJycnpq6uzl6/fs1iYmIYAObu7s7bztDQkK1Zs4ZX1rx5czZp0iTGGOO2e/z4sdR+kpOTGQDm6+vLbT9ixAg2YcIEXps3b95kcnJyLDs7mzHGmKmpKevbt2+p+1Ns48aNrGnTptzrT8elGAB28uRJxhhju3fvZlpaWiwjI4Nbf+7cOSYnJ8devXrFGPs4nqampqygoICrM2jQIDZkyJBSY/H09GRisZgXi4qKCktLS+PK5s6dy1q2bFlqG8Xjp6qqylvevXvHIiMjGQB2+/Ztrv67d++YsrIyO3r0KBcDABYYGMjViYqKYgKBgCUkJPD66tSpE1uwYAFvu7t373Lrw8LCGAB27949bn+EQiF78+ZNqfEzxtibN28YAPbkyRPGWOnvkatXr3LbnDt3jgHgjr8s+vTpw8aMGcMr69atG7OxseGVubm58cYyJSWFMcaYkpISmz59utS2Hz16xAAwHx8friw1NZUBYH5+flK3WbZsGQMgsaSmpsq8T4QxN78/WFefeRKL48GFrN5eD4nF9eylqg65yhW/N+m9VjZ6fAypcuz/TzOVnJWQJiAgABkZGdDR0eGVZ2dn8065fYlatWoB+DiLU69ePRw7dox312XJGZa0tDQkJibCwcGB14aDg8NXnaYOCAhAVFQUDh06xJUxxlBUVISYmBjUr19fIpZif//9N9zd3REVFYWMjAwUFBSU+3tcw8LCYGtry5uVdXBwQFFRESIiIqCnpwcAaNCgAeTl5bk6BgYGePLkSbn6MjMz410XaWBggDdv3nx2u5s3b/K209LSwu3bt6GgoICWLVty5To6OrC0tERY2P+up1JUVISNjQ33+tGjR2CMwcLCgtdHbm4u7z2moKDAG3MrKytoamoiLCwMLVq0AACYmppCV1eX1050dDSWLFmCu3fv4t27d9xMYHx8fJk3iJSM0cDAAADw5s0bmJiYlDEy/5OdnQ0lJSWJ8k8/X2PGjIGTkxPu3buH4cOH8073lkbaZ7V4Bj0rS/oNCgsWLMCsWbO412lpaTA2Nv78jhCet6q1cTUzVsqaQkAuVKJ0wP9/Xgn5HEoESZWrV68eBAIBwsLCynzUS1FREQwMDKRew/W1d6XevHkTGhoa0NXVlZpASTtl/ekfVsbYZ5PZshQVFeHnn3+W+jiOkknAp7HcvXsXzs7OWLFiBRwdHSEWi3HkyBG4ubmVq/+y4i9ZLhQKJdaV98aLL22jdu3aEse6tATm0/1RVlbmvS4qKoK8vDwCAgJ4iS0A7trDkvF9qmSZtPdH7969YWxsjD179sDQ0BBFRUVo2LDhZ2/wKTk2xX2UZ3xr1KiB5ORkXlm9evVw69Yt5Ofnc+1rampCU1MTL1++5NW1sLBAaKhkYgEA4eHhXHvFii/L+DQRLiYSif5TNyR9r5xr22FHuD/S83M/W1ddKIJzbbvKD4r8EOgaQVLltLW14fh/7d15XE35/wfw161ut7q30qZNCrdFVLKnQYhokF0mFGPJkn1fJmbGLlkmY5lkF0YZ+y5LSIsUkkpNIYREpPX9+8Ov83XcW8qW0ef5eJwH9/P5nM95f845997P/ZzzObm4ICAggDcxolTps/caN26Mhw8fQklJCVKplLfo6up+Ugx16tRBvXr1KjSKpqGhASMjI1y8eJGXfunSJW7U7mM0btwYN2/elGmbVCqFsrJymeuFh4fD1NQUs2fPRtOmTWFubi5zv5aysjKKi4vL3b61tTViY2N5xyA8PBwKCgoyo2bfEmtraxQVFSEiIoJLe/r0Ke7cuVPu8bC3t0dxcTEeP34ss78NDAy4ckVFRYiKiuJeJyYm4vnz57Cysiqz7qdPnyIhIQFz5sxBhw4dUL9+fZnO2Zdib28v05EbMGAAcnNzsXbt2g+u7+7ujlOnTsmMbpeUlMDf3x/W1ta8+wdv3LgBoVCIBg0afJ4GMHLZ6RjDQc+0QmUd9Exhp2P8hSNivhesI8h8E9auXYvi4mJudmJSUhISEhKwevVqbvajs7MzHBwc0KNHDxw/fhxpaWm4dOkS5syZw/ui/hqmTp2KJUuWYPfu3UhMTMSMGTMQGxuL8ePHf3Sd06dPx+XLlzFmzBjExsYiKSkJBw4cgI+PT7nrSaVSpKenIzg4GCkpKVi9ejVCQ0N5ZczMzJCamorY2Fg8efIE+fmyowoeHh5QUVGBp6cnbty4gbNnz8LHxweDBg3iLgt/i8zNzeHm5obhw4fj4sWLuH79OgYOHAhjY2O4ubmVuZ6FhQU8PDwwePBghISEIDU1FZGRkViyZAlvFq1QKISPjw8iIiIQExODIUOGoGXLltxlYXm0tLSgo6ODDRs2IDk5GWfOnOFdHv2SXFxccPPmTV7H08HBAZMnT8bkyZMxadIkXLx4Ef/++y+uXLmCwMBACAQCKCi8/TqYOHEimjdvjm7dumHv3r1IT09HZGQkevfujYSEBK58qQsXLqB169bcJWLmy9ng2BfWmuW/F6019bHBse9Xioj5HrCOIPNNqFOnDmJiYtCuXTtMnjwZDRs2RMeOHXH69Gn8+eefAN5eJjty5AjatGmDoUOHwsLCAu7u7khLS/vqHZVx48ZxX6w2NjY4duwYDhw4wLtkVlm2trY4d+4ckpKS0Lp1a9jb22Pu3LncfWJlcXNzw8SJEzF27Fg0atQIly5d4mYTl+rduzc6d+6Mdu3aQU9PT+7jPtTU1HD8+HE8e/YMzZo1Q58+fdChQwf88ccfH92mryUoKAhNmjRB165d4eDgACLCkSNHZC5By1tv8ODBmDx5MiwtLbl75t69h01NTQ3Tp0/HTz/9BAcHB6iqqiI4OLjcehUUFBAcHIzo6Gg0bNgQEydOxLJlyz5LWz/ExsYGTZs2xZ49e3jpy5cvx86dO3Ht2jV07doV5ubm6Nu3L0pKSnD58mVuNFxFRQVnzpyBp6cnZs2aBalUis6dO0NRURFXrlxBy5YtefXu2rWLe4wR82WZSLRwpNMwdDKygLqQf7ldXShCJyMLHHUZBhOJVhVFyPwXCagidwgzDMMw/xlHjhzBlClTcOPGDW6k70s4fPgwpk6diri4uAo/GPvFixfQ1NRETk5OpSc0Mf9z/el9BKfGIjv/NbREanCv04hdDn4PO9cqhk0WYRiG+c64uroiKSkJ9+/f/6IzdF+9eoWgoKDP/tdRmA+z0zFmHT/ms2AjggzDMMxXw0ZpmK+FnWsVw+4RZBiGYRiGqaZYR5BhGIZhGKaaYjd2MAzDMF+dVCr9ohNZGKayD7qvrlhHkGEYhvnqkpOT2X1bzBdVeo8gUz72c4xhGIZhGKaaYh1BhmEYhmGYaop1BBmGYRiGYaop1hFkGIZhGIappthkEYZhGIb5j7l+PwfBsfeR/boQWmpCuDcyhp0xmxjBVB4bEWQ+ybx589CoUaNvpp7P6fbt22jZsiVUVFQ+OrawsDAIBAI8f/78s8ZWWQKBAPv37/+kOpycnDBhwgTutZmZGVauXPlJdf5XpaWlQSAQIDY2tsLrfI5jUFEFBQWQSqUIDw//otv5448/0L179y+6DYYvPfs1XDZcQZu14VhyNgUbItKx5GwK2qwNh8uGK8jIzqvqEJn/GNYR/A/y8vKCQCCAQCCAkpISateujVGjRiE7O7uqQ6sQeV+IU6ZMwenTp7/K9i9dugRXV1doaWlBRUUFNjY28PPzQ3FxMa+cr68vxGIxEhMTy4zt3WMhFApRt25dTJkyBa9evfoaTalSkZGRGDFiRFWHUSF5eXnQ0tKCtrY28vIq90Xp5eWFHj168NJMTEyQmZmJhg0bVriezMxMdOnSBcDHdSQrY8OGDTA1NYWjoyMv/ezZs+jatSv09PSgoqKCevXqoX///jh//jyvXHFxMfz9/WFrawsVFRXUqFEDXbp0kelYDh8+HJGRkbh48eIXaQfDl5GdB9e/InDyThZe5vM/r17mF+PknSx0+Yt1BpnKYR3B/6jOnTsjMzMTaWlp+Ouvv3Dw4EGMHj26qsP6aBKJBDo6Ol98O6GhoWjbti1q1aqFs2fP4vbt2xg/fjwWLFgAd3d3vPunt1NSUvDDDz/A1NS03NhKj8Xdu3fx+++/Y+3atZgyZcoXb0tV09PTg5qaWlWHUSH79u1Dw4YNYW1tjZCQkE+uT1FREQYGBlBSqvjdNQYGBhCJRJ+87YpYs2YNhg0bxktbu3YtOnToAB0dHezevRsJCQnYtm0bWrVqhYkTJ3LliAju7u749ddfMW7cOCQkJODcuXMwMTGBk5MT70ecSCTCTz/9hDVr1nyVdlV3w/dex61HueWWufUoF8P3Xv9KETHfBWL+czw9PcnNzY2XNmnSJNLW1ualbdq0iaysrEgkEpGlpSUFBATw8sPDw8nOzo5EIhE1adKEQkNDCQBdu3aNiIiCgoJIU1OTt05pmVK+vr5kZ2fHvb569So5OzuTjo4OaWhoUJs2bSg6OprLNzU1JQDcYmpqKree4uJimj9/PhkbG5OysjLZ2dnR0aNHufzU1FQCQPv27SMnJydSVVUlW1tbunTpUpn7LTc3l3R0dKhXr14yeQcOHCAAFBwcTETEixEA+fr6yq1T3rEYNmwYGRgYEBHR2bNnCQCdOnWKmjRpQqqqquTg4EC3b9/mrbN27VqqW7cuCYVCsrCwoK1bt/LyfX19ycTEhJSVlcnQ0JB8fHx4+/TXX3+lAQMGkFgsJkNDQ1q9ejVvfQC0ceNG6tGjB6mqqpJUKqV//vmHVyYsLIyaNWtGysrKZGBgQNOnT6fCwkIuv23btjR+/Hjedv39/XnbWLt2LXXu3JlUVFTIzMyM9uzZw9vGtGnTyNzcnFRVValOnTo0Z84cKigo4PJjY2PJycmJJBIJqaurU+PGjSkyMpLLDw8Pp9atW5OKigrVqlWLfHx8KDc39/3DIsPJyYnWrVtHf/75J7Vr104m/8aNG+Tq6krq6uokkUjohx9+oOTkZPL19ZU5F86ePcudf9euXaPi4mIyNjamP//8k1dndHQ0AaCUlBRu/4SGhnL/f3dp27YtnTt3jpSUlCgzM5NXz6RJk6h169YfbOO721VQUKCcnBwu7d9//yWhUEgTJ06Uu05JSQn3/+DgYAJABw4ckCnXq1cv0tHR4e3zsLAwUlZWptevX1covpycHALAi4/5sNh7z0lj1mESTD7wwUVj1mGKvfe8qkOucuxcqxg2IvgduHv3Lo4dOwahUMilbdy4EbNnz8aCBQuQkJCAhQsXYu7cudiyZQsA4OXLl+jWrRtsbGwQExOD3377DdOnT//kWF6+fAlPT09cuHABV65cgbm5OVxdXfHy5UsAby8nAkBQUBAyMzO51+9btWoV/Pz8sHz5csTFxcHFxQXdu3dHUlISr9zs2bMxZcoUxMbGwsLCAgMGDEBRUZHcOk+cOIGnT5/KHa3r1q0bLCwssGvXLgBvL+M1aNAAkydPRmZmZqVG+FRVVVFYWCgTp5+fH6KioqCkpIShQ4dyeaGhoRg/fjwmT56MGzduYOTIkRgyZAjOnj0LAPj777/h7++P9evXIykpCfv374eNjQ2v/mXLlsHW1hYxMTGYOXMmJk6ciJMnT/LKzJ8/H/369UNcXBxcXV3h4eGBZ8+eAQDu378PV1dXNGvWDNevX8eff/6JwMBA/P777xVuNwDMnTsXvXv3xvXr1zFw4EAMGDAACQkJXL66ujo2b96MW7duYdWqVdi4cSP8/f25fA8PD9SqVQuRkZGIjo7GjBkzuPM6Pj4eLi4u6NWrF+Li4rB7925cvHgRY8eOLTemlJQUXL58Gf369UO/fv1w6dIl3L17l8u/f/8+2rRpAxUVFZw5cwbR0dEYOnQoioqKMGXKFPTr148b9c3MzESrVq149SsoKMDd3R07duzgpe/cuRMODg6oW7euTExXr14FAJw6dQqZmZkICQlBmzZtULduXWzbto0rV1RUhO3bt2PIkCEf2vWc8+fPw8LCgvdXO/bt24fCwkJMmzZN7joCgYAXt4WFBbp16yZTbvLkyXj69Cnv3GratCkKCwu5Nr0vPz8fL1684C1M5QXH3pe5HFyWl/nFCI69/4UjYr4bVd0TZSrP09OTFBUVSSwWk4qKCjeqsGLFCq6MiYkJ7dy5k7feb7/9Rg4ODkRE9Oeff5KOjg7l5eVx+Rs3bvzkEcH3FRUVkbq6Oh08eJBLwzsjI2XVY2RkRAsWLOCVadasGY0ePZqI/jci+Ndff3H5N2/eJACUkJAgN5bFixcTAMrOzpab3717d6pfvz732s7OrsyRwFLvjwhGRESQjo4O9evXj4j4I4KlDh8+TAC4fd+qVSsaPnw4r96+ffuSq6srERH5+fmRhYUFb+TsXaamptS5c2deWv/+/alLly7cawA0Z84c7nVubi4JBAJulHXWrFlkaWnJGxkKCAggiURCxcXFRFSxEUFvb29eHC1atKBRo0bJjZuIaOnSpdSkSRPutbq6Om3evFlu2UGDBtGIESN4aRcuXCAFBQXeefy+WbNmUY8ePbjXbm5uNHv2bO71zJkzqU6dOmXuX3mjvu+OCBIRxcTEkEAgoLS0NCIibpTw3VH4d8/799cvtWTJEt45uH//fpJIJBUa9Sw1fvx4at++PS/N29ubNDQ0eGl///03icVibomLiyMiIisrK5n2lnr27BkBoCVLlvDStbS0yjxu8kZVwUZpKu3soYV0bkN7mWXfur70xx8jZJa/D6yt6pCrHBsRrBg2Ivgf1a5dO8TGxiIiIgI+Pj5wcXGBj48PACArKwsZGRn4+eefIZFIuOX3339HSkoKACAxMZG7EbxU8+bNPzmux48fw9vbGxYWFtDU1ISmpiZyc3ORnp5e4TpevHiBBw8eyNzo7ujoyBtdAgBbW1vu/4aGhlwM5aF37gN8P/3dkZGKOnToECQSCVRUVODg4IA2bdrI3DNVXpwJCQnltrVv377Iy8tD3bp1MXz4cISGhsqMejo4OMi8Lm9ficViqKur82JwcHDgtd/R0RG5ubm4d+9ehffFh+L4+++/8cMPP8DAwAASiQRz587lnRuTJk3CsGHD4OzsjMWLF3PnKwBER0dj8+bNvHPaxcUFJSUlSE1NlRtPcXExtmzZgoEDB3JpAwcOxJYtW7jJQbGxsWjdujVvRL2y7O3tYWVlxY0onzt3Do8fP0a/fv0qVY+XlxeSk5Nx5coVAMCmTZvQr18/iMXiCteRl5fHe1+Xev/cdnFxQWxsLA4fPoxXr17JTJYqz/t1qaqq4vXr13LLzpw5Ezk5OdySkZFR4e0w/2OrmQuTVxdkFvu8/XAtDJJZ2mlV/H3LVG+sI/gfJRaLIZVKYWtri9WrVyM/Px/z588HAJSUlAB4e3k4NjaWW27cuMF9wcjr9LzfQVJQUJBJe/+S5/u8vLwQHR2NlStX4tKlS4iNjYWOjg4KCgoq3UZ58b2f9u6Xd2leafvfZ2FhAQAyHaRSt2/fhrm5eaXjLO2UJyYm4s2bNwgJCUHNmjUrFWd5bTUxMUFiYiICAgKgqqqK0aNHo02bNh88FuXtq9L80hjKOx8+pnMsL44rV67A3d0dXbp0waFDh3Dt2jXMnj2bd27MmzcPN2/exI8//ogzZ87A2toaoaGhAN7ur5EjR/LO6evXryMpKQn16tWTu+3jx4/j/v376N+/P5SUlKCkpAR3d3fcu3cPJ06cAPC2E/M5eHh4YOfOnQDeXl51cXGBrq5upeqoWbMmunXrhqCgIDx+/BhHjhzh3UZQEbq6ujJPEDA3N0dOTg4ePnzIpUkkEkilUpiamvLKWlhY4NatW3LrLn3vvP8+efbsGfT09OSuIxKJoKGhwVuYyhNb9INAqF6hsgKhOsQWlfsRwlRfrCP4nfD19cXy5cvx4MED6Ovrw9jYGHfv3oVUKuUtderUAQBYWVkhLi4O+fn5XB1RUVG8OvX09PDy5Uveo1A+9LiLCxcuYNy4cXB1dUWDBg0gEonw5MkTXhmhUFju6IOGhgaMjIxkHklx6dIl1K9fv9ztl6dTp07Q1taGn5+fTN6BAweQlJSEAQMGVLre0k65qanpR40q1a9f/4NtVVVVRffu3bF69WqEhYXh8uXLiI+P5/JLO/jvvraysqpwDNbW1rh06RKv43/p0iWoq6vD2Ni4wvWUF0d4eDhMTU0xe/ZsNG3aFObm5vj3339l6rCwsMDEiRNx4sQJ9OrVC0FBQQCAxo0b4+bNmzLntFQqhbKystx4AgMD4e7uzus8xsbGwsPDA4GBgQDejpReuHChzI61srJyhUbLfvrpJ8THxyM6Ohp///03PDw8yixbGq+8eocNG4bg4GCsX78e9erVkxkt/hB7e3vcvn2bdyz79OkDoVCIJUuWfHB9d3d3JCUl4eDBgzJ5fn5+0NHRQceOHbm0lJQUvHnzBvb29pWKk6kcUU07iIxaVqysUUuIatp94YiY7wXrCH4nnJyc0KBBAyxcuBDA25GVRYsWYdWqVbhz5w7i4+MRFBSEFStWAHj7pVVSUoIRI0YgISEBx48fx/LlywH8bwSnRYsWUFNTw6xZs5CcnIydO3di8+bN5cYhlUqxbds2JCQkICIiAh4eHjIjLmZmZjh9+jQePnxY5rMPp06diiVLlmD37t1ITEzEjBkzEBsbi/Hjx3/0PhKLxVi/fj3++ecfjBgxAnFxcUhLS0NgYCC8vLzQp0+fSl/K+xymTp2KzZs3Y926dUhKSsKKFSsQEhLCTVDZvHkzAgMDcePGDdy9exfbtm2DqqoqbyQnPDwcS5cuxZ07dxAQEIC9e/dWal+NHj0aGRkZ8PHxwe3bt/HPP//A19cXkyZNgoJCxT8m9u7di02bNuHOnTvw9fXF1atXuckcUqkU6enpCA4ORkpKClavXs2N9gFvL2mOHTsWYWFh+PfffxEeHo7IyEiuQzx9+nRcvnwZY8aMQWxsLJKSknDgwAHuloj3ZWVl4eDBg/D09ETDhg15i6enJw4cOICsrCyMHTsWL168gLu7O6KiopCUlIRt27YhMTERwNvzNS4uDomJiXjy5EmZHcY6deqgVatW+Pnnn1FUVAQ3N7cy91PNmjWhqqqKY8eO4dGjR8jJyeHyXFxcoKmpid9//71Sk0RKtWvXDq9evcLNmze5tNq1a8PPzw+rVq2Cp6cnzp49i7S0NMTExGD16tUA3j4SB3jbEezZsyc8PT0RGBiItLQ0xMXFYeTIkThw4AD++usv3qXqCxcuoG7dumWOyjKfj26HdRBql/9jWKhdH7od1n2liJjvQhXdm8h8Ank3rxMR7dixg5SVlSk9PZ173ahRI1JWViYtLS1q06YNhYSEcOXDw8PJ1taWlJWVqUmTJrRz504CwHu0SWhoKEmlUlJRUaGuXbvShg0byp0sEhMTQ02bNiWRSETm5ua0d+9emUkFBw4cIKlUSkpKShV6fIxQKCzz8THv3myfnZ3NPd6jPOfPn6fOnTuTpqYmKSsrk7W1NS1fvpyKiop45T5mssj7SieLvDtB5dq1awSAUlNTubTyHh8TGhpKLVq0IA0NDRKLxdSyZUve5BNTU1OaP38+9evXj9TU1EhfX59WrlzJiwNyJuhoampSUFAQ9/pzPD4mICCAOnbsSCKRiExNTWnXrl28bU6dOpV0dHRIIpFQ//79yd/fn5uQlJ+fT+7u7txjcoyMjGjs2LG8iSBXr16ljh07kkQiIbFYTLa2tjKTikotX76catSoIXcSSGFhIWlra5Ofnx8REV2/fp06depEampqpK6uTq1bt+Ye+/L48WNum6XnV1mTPQICAggADR48WGab7x+DjRs3komJCSkoKFDbtm15ZefOnUuKior04MEDuW37EHd3d5oxY4ZM+smTJ6lLly6kra1NSkpKpK+vTz169KBjx47xyhUWFtLy5cupQYMGJBKJSENDg1xcXOjChQsydXbq1IkWLVpU4djYDfyfpiAnnR6EuFLqH9p011/ILal/aNODEFcqeJFR1SF+M9i5VjECojLunGeqnR07dmDIkCHIycn5bPdNMV+emZkZJkyYwPvzb1VBIBAgNDRU5q9wMJU3fPhwPHr0CAcOHPio9ePj4+Hs7Izk5GSoq1fsvrKPcePGDXTo0AF37tyBpmbF/s7tixcvoKmpiZycHHa/4CfIf3wdr+7sQUl+NhREWhBb9GOXg9/DzrWKqfhj8ZnvztatW1G3bl0YGxvj+vXrmD59Ovr168c6gQxTRXJychAZGYkdO3bgn3/++eh6bGxssHTpUqSlpck8c/JzevDgAbZu3VrhTiDz+Yhq2rGOH/NZsI5gNfbw4UP88ssvePjwIQwNDdG3b18sWLCgqsNimGrLzc0NV69exciRI3kTMj6Gp6fnZ4qqbJ06dfri22AY5stil4YZhmGYr4ZdrmO+FnauVQybNcwwDMMwDFNNsUvDDMMwzFcnlUor9Wgihqmssv64AMPHOoIMwzDMV5ecnMwu1zFfVOmlYaZ87OcYwzAMwzBMNcU6ggzDMAzDMNUU6wgyDMMwDMNUU6wjyDAMwzAMU02xySIMwzAM8424fj8HO6/dR05eIWqoCTGgkTHsjNmEB+bLYSOCDMN8N+bNm4dGjRpVdRj/OQUFBZBKpQgPD6/UeocOHYK9vT17TMdnUPgiHVE7eqL92nNYFpaCDRHpWHo2BW3WhqPzhitIz35d1SEy3ynWEWSqFS8vLwgEAggEAigpKaF27doYNWoUsrOzeeXMzMywcuVKmfXldTSePXuGCRMmwMzMDMrKyjA0NMSQIUOQnp7+wXiICBs3boSDgwM0NDQgkUjQoEEDjB8/HsnJydi8eTMXb1lLWFiYTDlDQ0P069cPqampn7K7vridO3dCUVER3t7elV5XIBBg//79vLQpU6bg9OnTnym6t5ycnDBhwoRPricsLIx3jPT09NClSxdcv36dV+7SpUtQVFRE586dZepIS0uDQCBAbGwsl/by5Us4OTnBysoKGRkZHxXbhg0bYGpqCkdHRy7t3VglEgns7OywefNm3npdu3aFQCDAzp07P2q7zFuFL9LxaH836GQdwTRd/t+YfplfjBN3suD6VwQysvOqKELme8Y6gky107lzZ2RmZiItLQ1//fUXDh48iNGjR39UXc+ePUPLli1x6tQprF27FsnJydi9ezdSUlLQrFkz3L17t8x1iQg//fQTxo0bB1dXV5w4cQJxcXFYvXo1VFVV8fvvv6N///7IzMzkFgcHBwwfPpyX1qpVKwCAhoYGMjMz8eDBA+zcuROxsbHo3r07iouLP6ptX8OmTZswbdo0BAcH4/XrTx/xkEgk0NHR+QyRfTmJiYnIzMzE4cOHkZ2djc6dOyMnJ4fL37RpE3x8fHDx4sUP/pjIyspCu3btkJubi4sXL8LExOSjYlqzZg2GDRsmkx4UFITMzExcv34d/fv3x5AhQ3D8+HFemSFDhmDNmjUftV3mrSenvFH4LAEAoaf4ArQUXsiUufUoF8P3XpddmWE+FTFMNeLp6Ulubm68tEmTJpG2tjYvzdTUlPz9/WXW9/X1JTs7O+61t7c3icViyszM5JV7/fo1GRsbU+fOncuMZdeuXQSA/vnnH7n5JSUlMmlt27al8ePHy6QHBQWRpqYmL2379u0EgG7fvk1Xr14lZ2dn0tHRIQ0NDWrTpg1FR0fLtM3ExISUlZXJ0NCQfHx8uLz8/HyaOnUqGRkZkZqaGjVv3pzOnj3L5aelpVHXrl2pRo0apKamRtbW1nT48OEy205ElJqaSqqqqvT8+XNq0aIFbdmyRaZMYGAgWVtbk7KyMhkYGNCYMWOI6O3xAcAtpqamXBtKj8+xY8dIJBJRdnY2r04fHx9q06YNERE9efKE3N3dydjYmFRVValhw4a0c+dOrqynpydvOwAoNTWViIhu3rxJXbp0IbFYTDVr1qSBAwdSVlZWme09e/YsAeDFc/HiRQJAx44dIyKi3NxcUldXp9u3b1P//v1p/vz5MvsMAF27do3S09PJ0tKSnJyc6MWLF1yZ/Px8GjNmDBkYGJBIJCJTU1NauHBhmXFFR0eTgoIC5eTk8NIBUGhoKC9NW1ubJk2axEtLS0sjAJSSklLmNt6Vk5NDAGS2V129eXSNUv/Qprv+Qm7Zt7YrCSYfkFk0Zh2m2HvPqzrk/wx2rlUMGxFkqrW7d+/i2LFjEAqFlV63pKQEwcHB8PDwgIGBAS9PVVUVo0ePxvHjx/Hs2TO56+/atQuWlpbo3r273HyBQFDpmN6PAQAKCwvx8uVLeHp64sKFC7hy5QrMzc3h6uqKly9fAgD+/vtv+Pv7Y/369UhKSsL+/fthY2PD1TVkyBCEh4cjODgYcXFx6Nu3Lzp37oykpCQAwJgxY5Cfn4/z588jPj4eS5YsgUQiKTe+TZs24ccff4SmpiYGDhyIwMBAXv6ff/6JMWPGYMSIEYiPj8eBAwcglUoBAJGRkQD+N2JV+vpdzs7OqFGjBvbt28elFRcXY8+ePfDw8AAAvHnzBk2aNMGhQ4dw48YNjBgxAoMGDUJERAQAYNWqVTKjsCYmJsjMzETbtm3RqFEjREVF4dixY3j06BH69etX8QME/jECgN27d8PS0hKWlpYYOHAggoKCQEQy6yUmJsLR0RFWVlY4duwY1NXVubzVq1fjwIED2LNnDxITE7F9+3aYmZmVGcP58+dhYWFR7l/5KN1vz549k3mvmJqaombNmrhw4YLcdfPz8/HixQvewvxPbuIeUOFLXpo9otBUNUWm7Mv8YuyKvf+1QmOqi6ruiTLM1+Tp6UmKiookFotJRUWFG+VZsWIFr5ypqSkpKyuTWCzmLUKhkBtxevjwIQGQO3JIRBQSEkIAKCIiQm6+lZUVde/enZc2fvx4blvGxsYy61R0RDAjI4NatmxJtWrVovz8fJnyRUVFpK6uTgcPHiQiIj8/P7KwsKCCggKZssnJySQQCOj+/fu89A4dOtDMmTOJiMjGxobmzZsnt53yFBcXk4mJCe3fv5+IiLKyskgoFFJSUhJXxsjIiGbPnl1mHZAzYvX+iO24ceOoffv23Ovjx4+TsrIyPXv2rMx6XV1dafLkydxreft87ty51KlTJ15aRkYGAaDExES59b4/IvjkyRPq3r07qaur06NHj4iIqFWrVrRy5UoiIiosLCRdXV06efIkV0fpiKCysjI5OTlRUVGRzHZ8fHyoffv2ckeU5Rk/fjxvH5UCQCoqKiQWi0lRUZEAkLa2Nu8YlbK3ty/z+Pv6+sqMqoKN0nCyTo3ijQbe9RdSir+QBm4ZT+Z/BcosXoeOV3XI/xlsRLBi2IggU+20a9cOsbGxiIiIgI+PD1xcXODj4yNTburUqYiNjeUtlZnUQP8/klPeyN77ebNnz0ZsbCx++eUX5ObmVnhbAJCTkwOJRAKxWAwTExMUFBQgJCQEysrKePz4Mby9vWFhYQFNTU1oamoiNzeXuwetb9++yMvLQ926dTF8+HCEhoaiqKgIABATEwMigoWFBSQSCbecO3cOKSlvRy3GjRuH33//HY6OjvD19UVcXFy5sZ44cQKvXr1Cly5dAAC6urro1KkTNm3aBAB4/PgxHjx4gA4dOlRqH7zPw8MDYWFhePDgAQBgx44dcHV1hZaWFoC3I10LFiyAra0tdHR0IJFIcOLEiQ/emxcdHY2zZ8/y9oeVlRUAcPukLLVq1YJEIoGuri4SEhKwd+9e1KxZE4mJibh69Src3d0BAEpKSujfvz+3T97l5uaGixcv8kY7S3l5eSE2NhaWlpYYN24cTpw4UW48eXl5UFFRkZvn7++P2NhYnDx5Eo0aNYK/vz83KvsuVVXVMu/xnDlzJnJycrjlYye0fK8EyjVk0vap/4B9pIIUhVsyi4F+4dcPkvmusecIMtWOWCzmvsxWr16Ndu3aYf78+fjtt9945XR1dWW+9LS1tbn/6+npoUaNGrh165bc7dy+fRsCgQD16tWTm29ubo7bt2/z0vT09KCnp4eaNWtWul3q6uqIiYmBgoIC9PX1IRaLuTwvLy9kZWVh5cqVMDU1hUgkgoODAwoKCgAAJiYmSExMxMmTJ3Hq1CmMHj0ay5Ytw7lz51BSUgJFRUVER0dDUVGRt83Sy7/Dhg2Di4sLDh8+jBMnTmDRokXw8/OT28EG3l4WfvbsGdTU1Li0kpISXLt2Db/99ht3yfRTNW/eHPXq1UNwcDBGjRqF0NBQBAUFcfl+fn7w9/fHypUrYWNjA7FYjAkTJnD7pSwlJSXo1q0blixZIpNnaGhY7roXLlyAhoYG9PT0eJdjAwMDUVRUBGNjYy6NiCAUCpGdnc11XgFg1qxZsLW1hYeHB4gI/fv35/IaN26M1NRUHD16FKdOnUK/fv3g7OyMv//+W248urq6iI+Pl5tnYGAAqVQKqVSKvXv3wt7eHk2bNoW1tTWv3LNnz6Cnpye3DpFIBJFIVO4+qc4klv3wMm49d3k4H4rYLnFE/mvZGcLqQhHc6zT6yhEy3zs2IshUe76+vli+fDk3alRRCgoK6NevH3bu3ImHDx/y8vLy8rB27Vq4uLjwOo/vGjBgABITE/HPP//Iza8sBQUFSKVS1K1bl9cJBN52PkpnJzdo0AAikQhPnjzhlVFVVUX37t2xevVqhIWF4fLly4iPj4e9vT2Ki4vx+PFjrlNQurx7b6SJiQm8vb0REhKCyZMnY+PGjXLjfPr0Kf755x8EBwfLjLjm5ubi6NGjUFdXh5mZWbmPghEKhRWaEf3TTz9hx44dOHjwIBQUFPDjjz/y9oubmxsGDhwIOzs71K1bl7vvsZSysrLMdho3boybN2/CzMxMZp+8v+/fV6dOHdSrV4/XCSwqKsLWrVvh5+fH2x/Xr1+HqakpduzYIVPPnDlz8Ntvv8HDwwO7du3i5WloaKB///7YuHEjdu/ejX379pV5r6q9vT1u374t917Ed0mlUvTu3RszZ87kpb958wYpKSmwt7cvd31GPlHNRhAZtuBer9TpjRtyOoEA4KBnCjsdY7l5DPOxWEeQqfacnJzQoEEDLFy4sNLrLliwAAYGBujYsSOOHj2KjIwMnD9/Hi4uLigsLERAQECZ67q7u6NPnz5wd3fHr7/+ioiICKSlpeHcuXPYvXu3zOjbp5BKpdi2bRsSEhIQEREBDw8P3qjb5s2bERgYiBs3buDu3bvYtm0bVFVVYWpqCgsLC3h4eGDw4MEICQlBamoqIiMjsWTJEhw5cgQAMGHCBBw/fhypqamIiYnBmTNnUL9+fbmxbNu2DTo6Oujbty8aNmzILba2tujatSs3aWTevHnw8/PD6tWrkZSUhJiYGN5jSko7ig8fPpR5DuS7PDw8EBMTgwULFqBPnz68y6BSqRQnT57EpUuXkJCQgJEjR8p06s3MzLhj8+TJE5SUlGDMmDF49uwZBgwYgKtXr+Lu3bs4ceIEhg4d+lGP6zl06BCys7Px888/8/ZJw4YN0adPH5mJNKVmzJiBRYsWYdCgQVxn0d/fH8HBwbh9+zbu3LmDvXv3wsDAADVq1JBbR7t27fDq1SvcvHnzg3FOnjwZBw8eRFRUFJd25coVboSZ+Ti6zusg1K6PBwIJjinJv4JgramPDY59v3JkTHXAOoIMA2DSpEnYuHFjpe9f0tXVxZUrV9CuXTuMHDkSdevWRb9+/VC3bl1ERkaibt26Za4rEAiwe/durFy5EkeOHEGHDh1gaWmJoUOHwsTEBBcvXvzUZnE2bdqE7Oxs2NvbY9CgQRg3bhzv8nONGjWwceNGODo6wtbWFqdPn8bBgwe5Z/IFBQVh8ODBmDx5MjfTOSIigntuXXFxMcaMGYP69eujc+fOsLS0xNq1a8uMpWfPnlBQkP346d27Nw4dOoRHjx7B09MTK1euxNq1a9GgQQN07dqVN1rn5+eHkydPwsTEpNzRKHNzczRr1gxxcXHcbOFSc+fORePGjeHi4gInJycYGBigR48evDJTpkyBoqIirK2toaenh/T0dBgZGSE8PBzFxcVwcXFBw4YNMX78eGhqaspt14cEBgbC2dkZmpqyf0qsd+/eiI2NRUxMjNx1p06diqVLl8LT0xPbtm2DRCLBkiVL0LRpUzRr1gxpaWk4cuRImXHp6OigV69eckcd32djYwNnZ2f88ssvXNquXbvg4eHBu8zPVI5Qozb0exzEXrNReP7/9+aWUheK0MnIAoc7DoOJRKuMGhjm4wnoQ9cDGIZhmO9afHw8nJ2dkZyczHsUzYdkZWXBysoKUVFRqFOnToXWefHiBTQ1NZGTk1PuI2uqq+tP7yM4NRbZ+a+hJVKDe51G7HLwR2LnWsWwySIMwzDVnI2NDZYuXYq0tDTe8yM/JDU1FWvXrq1wJ5D5MDsdY9bxY74qNiLIMAzDfDVslIb5Wti5VjHsHkGGYRiGYZhqinUEGYZhGIZhqinWEWQYhmEYhqmm2GQRhmEY5quTSqUf9agdhqmokpKSqg7hP4F1BBmGYZivLjk5md3Az3xRpZNFmPKxn2MMwzAMwzDVFOsIMgzDMAzDVFOsI8gwDMMwDFNNsXsEGYZhGOYruX4/Bzuv3UdOXiFqqAkxoJEx7IzZfWxM1WEjgt+gsLAwCAQCPH/+HACwefNm1KhRo8riMTMzw8qVK7+Zer5H+/fvh1QqhaKiIiZMmFDV4VTapx5bJyenr9Lu999b/wVfY98UFBRAKpUiPDy8UusdOnQI9vb2bHZmBRS+SEfUjp5ov/YcloWlYENEOpaeTUGbteHovOEK0rNfV3WITDVV6Y7gw4cP4ePjg7p160IkEsHExATdunXD6dOnv0R8DID+/fvjzp07lVrna3e6Xrx4gdmzZ8PKygoqKiowMDCAs7MzQkJCUJ3/iuGWLVvQvHlziMViqKuro02bNjh06JBMuZEjR6JPnz7IyMjAb7/9VmZ9165dQ9++faGvrw8VFRVYWFhg+PDhlTo/BAIB9u/f/zHN+WZ8yR9HZmZmEAgEEAgEUFNTQ8OGDbF+/fpPrvdjO3QhISHlnhOfw4YNG2BqagpHR0curXQfCAQCSCQS2NnZYfPmzbz1unbtCoFAgJ07d37R+P7rCl+k49H+btDJOoJpuv/w8l7mF+PEnSy4/hWBjOy8KoqQqc4q1RFMS0tDkyZNcObMGSxduhTx8fE4duwY2rVrhzFjxnypGKs9VVVV1KxZs6rDKNPz58/RqlUrbN26FTNnzkRMTAzOnz+P/v37Y9q0acjJyanqEKvElClTMHLkSPTr1w/Xr1/H1atX0bp1a7i5ueGPP/7gyuXm5uLx48dwcXGBkZER1NXV5dZ36NAhtGzZEvn5+dixYwcSEhKwbds2aGpqYu7cuV+rWdXCr7/+iszMTMTFxaFHjx7w9vbG7t275ZYtKCj4orFoa2uXeU58LmvWrMGwYcNk0oOCgpCZmYnr16+jf//+GDJkCI4fP84rM2TIEKxZs+aLxvdf9+SUNwqfJQAg9BRfgJbCC5kytx7lYvje618/OIahSujSpQsZGxtTbm6uTF52djb3fz8/P2rYsCGpqalRrVq1aNSoUfTy5UsuPy0tjbp27Uo1atQgNTU1sra2psOHDxMR0dmzZwkAHTp0iGxtbUkkElHz5s0pLi6OW//Jkyfk7u5OxsbGpKqqSg0bNqSdO3fy4tm7dy81bNiQVFRUSFtbmzp06MCLe9OmTWRlZUUikYgsLS0pICCg3LaXxnXs2DFq1KgRqaioULt27ejRo0d05MgRsrKyInV1dXJ3d6dXr15x65WUlNCSJUuoTp06pKKiQra2trR3715e3YcPHyZzc3NSUVEhJycnCgoKIgDcPg0KCiJNTU2ufHJyMnXv3p1q1qxJYrGYmjZtSidPnuTy27ZtSwB4S6nw8HBq3bo1qaioUK1atcjHx4e3Xx49ekRdu3YlFRUVMjMzo+3bt5OpqSn5+/uXuW9GjRpFYrGY7t+/L5P38uVLKiwsJCKSqef58+c0fPhw0tPTI3V1dWrXrh3FxsZWuJ0zZsygFi1ayGzTxsaGfvnlFyIiunr1Kjk7O5OOjg5paGhQmzZtKDo6mlc+ISGBHB0dSSQSUf369enkyZMEgEJDQ7ky9+7do379+lGNGjVIW1ubunfvTqmpqWXuk8uXLxMAWr16tUzepEmTSCgUUnp6OndevbucPXtWZp1Xr16Rrq4u9ejRQ+72srOzqaSkhOrVq0fLli3j5cXHx5NAIKDk5GQyNTXlbcvU1JQrt3btWqpbty4JhUKysLCgrVu38urx9fUlExMTUlZWJkNDQ/Lx8eHy3j+2mzZtIg0NDTpx4gQREd28eZO6dOlCYrGYatasSQMHDqSsrCyufNu2bWn8+PHc6/z8fJo6dSoZGRmRmpoaNW/enNsv8vaZr68vERFt27aNmjRpQhKJhPT19WnAgAH06NEjrt7Sdd/9vHqfvPPd3Nyc3N3duVjHjBlDEydOJB0dHWrTpg0REYWFhVGzZs1IWVmZDAwMaPr06dy57+npKRNz6flT2X1jampKCxYsoCFDhpBEIiETExNav349b9+NGTOGDAwMSCQSkampKS1cuLDM9kZHR5OCggLl5OTw0t9/DxARaWtr06RJk3hpaWlpBIBSUlLK3Ma7cnJyCIDM9r5Xbx5do9Q/tOmuv5Bb9q3tSoLJB2QWjVmHKfbe86oO+btR3c61j1XhjuDTp09JIBCU+4FSyt/fn86cOUN3796l06dPk6WlJY0aNYrL//HHH6ljx44UFxdHKSkpdPDgQTp37hwR/e+Dun79+nTixAmKi4ujrl27kpmZGRUUFBDR2y/lZcuW0bVr1yglJYVWr15NioqKdOXKFSIievDgASkpKdGKFSsoNTWV4uLiKCAggOuMbtiwgQwNDWnfvn109+5d2rdvH2lra9PmzZvLbFNpXC1btqSLFy9STEwMSaVSatu2LXXq1IliYmLo/PnzpKOjQ4sXL+bWmzVrFllZWdGxY8coJSWFgoKCSCQSUVhYGBERpaenk0gkovHjx9Pt27dp+/btpK+vX25HMDY2ltatW0dxcXF0584dmj17NqmoqNC///7LHatatWrRr7/+SpmZmZSZmUlERHFxcSSRSMjf35/u3LlD4eHhZG9vT15eXlzdXbp0oYYNG9KlS5coKiqKWrVqRaqqqmV2BIuLi0lLS4tGjBjxwfPi3S/YkpIScnR0pG7dulFkZCTduXOHJk+eTDo6OvT06dMKtTM+Pp4AUHJyMreNGzduEABKTEwkIqLTp0/Ttm3b6NatW3Tr1i36+eefSV9fn168eMHFb2lpSR07dqTY2Fi6cOECNW/enPcl+OrVKzI3N6ehQ4dSXFwc3bp1i3766SeytLSk/Px8uW0dN24cSSQSufn3798nAOTv70/5+fmUmJhIAGjfvn2UmZkpd52QkBACQJcuXSp3Hy9YsICsra15aRMnTuQ6K48fPyYAFBQURJmZmfT48WOufqFQSAEBAZSYmEh+fn6kqKhIZ86cIaK3P6w0NDToyJEj9O+//1JERARt2LCB28a7x3bZsmWkra1Nly9fJqK370ddXV2aOXMmJSQkUExMDHXs2JHatWvHrf9+Z+enn36iVq1a0fnz5yk5OZmWLVtGIpGI7ty5Q/n5+bRy5UrS0NDgzu/S93ZgYCAdOXKEUlJS6PLly9SyZUvq0qULV+/HdgRtbGyod+/eXKwSiYSmTp1Kt2/fpoSEBLp37x6pqanR6NGjKSEhgUJDQ0lXV5froD5//pwcHBxo+PDhXMxFRUUftW9MTU1JW1ubAgICKCkpiRYtWkQKCgqUkJDA7X8TExM6f/48paWl0YULF2R+KL/L39+frKysZNLffQ8UFRXR7t27CQBNnz5dpmzNmjXL/Px88+YN5eTkcEtGRka1+nJ+cn4mrxN4119Id9caULM5/nI7g9MP3azqkL8brCNYMRXuCEZERBAACgkJqfRG9uzZQzo6OtxrGxsbmjdvntyypR/UwcHBXNrTp09JVVWVdu/eXeY2XF1dafLkyUT09hcuAEpLS5Nb1sTEROaD8bfffiMHB4cy6y+N69SpU1zaokWLZH4Jjxw5klxcXIiIKDc3l1RUVGS+vH/++WcaMGAAERHNnDmT6tevTyUlJVz+9OnTy+0IymNtbU1r1qzhXsv7Mhs0aJBMh+3ChQukoKBAeXl5XIektENN9Ha0rLTTIs+jR48IAK1YsaLc+N6P6fTp06ShoUFv3rzhlalXrx5vdOND7bS1taVff/2Vez1z5kxq1qxZmesXFRWRuro6HTx4kIiIjh49SkpKSlxnmYhkRgQDAwPJ0tKSd4zy8/NJVVWVjh8/Lnc7nTt3Jjs7uzLj0NTU5H4cZWdnlzkSWGrJkiUEgJ49e1ZmGaK3nS5FRUWKiIggIqKCggLS09PjfUnLG+lp1aoVDR8+nJfWt29fcnV1JaK3o/wWFhbcj7H3lR7bGTNmkKGhIW8Ef+7cudSpUyde+dLOQGmH/d3OTnJyMgkEApkR5g4dOtDMmTOJqGLvCaK3I8IAuI5iZTuChYWF3Aj92rVruVgbNWrEW2fWrFky50hAQABJJBIqLi6WaWOpyu6b0vgGDhzIvS4pKaGaNWvSn3/+SUREPj4+1L59e14s5Rk/fjy1b99eJh0AqaiokFgsJkVFRQJA2tralJSUJFPW3t6+zM90X19fmdHQ6vTlnHVqlExHMMVfSAO3jCfzvwJlFq9D8j9TmMpjHcGKqfA9gvT/N/wLBIIPlj179iw6duwIY2NjqKurY/DgwXj69ClevXoFABg3bhx+//13ODo6wtfXF3FxcTJ1ODg4cP/X1taGpaUlEhISAADFxcVYsGABbG1toaOjA4lEghMnTiA9PR0AYGdnhw4dOsDGxgZ9+/bFxo0bkZ2dDQDIyspCRkYGfv75Z0gkEm75/fffkZKSAgDo0qULl96gQQNeXLa2ttz/9fX1oaamhrp16/LSHj9+DAC4desW3rx5g44dO/K2tXXrVm5bCQkJaNmyJW+/vtt2eV69eoVp06bB2toaNWrUgEQiwe3bt7n2lyU6OhqbN2/mxeLi4oKSkhKkpqYiISEBSkpKaNq0KbeOlZVVuTflV+a8eD+W3Nxc7viVLqmpqdy+qUg7PTw8sGPHDi6WXbt2wcPDg8t//PgxvL29YWFhAU1NTWhqaiI3N5erIzExESYmJjAwMODWad68uUysycnJUFdX5+LU1tbGmzdvuFgri4gqtc+oghNuDA0N8eOPP2LTpk0A3t5X+ObNG/Tt27fc9RISEngTBQDA0dGRe8/17dsXeXl5qFu3LoYPH47Q0FAUFRXxyvv5+WH9+vW4ePEibGxsuPTo6GicPXuWd5ytrKwAQO7+i4mJARHBwsKCt865c+c+uL+vXbsGNzc3mJqaQl1dHU5OTgDwwffG+6ZPnw6JRAJVVVWMGTMGU6dOxciRI7n8d98jwNv95+DgwDumjo6OyM3Nxb1798rcTmX3Tal3P4cEAgEMDAy4zx0vLy/ExsbC0tIS48aNw4kTJ8pta15eHlRUVOTm+fv7IzY2FidPnkSjRo3g7+8PqVQqU05VVRWvX8uf9Tpz5kzk5ORwS0ZGRrnxfG8EyjVk0vap/4B9pIIUhVsyi4F+4dcPkqnWKvwcQXNzcwgEAiQkJKBHjx5llvv333/h6uoKb29v/Pbbb9DW1sbFixfx888/o7Dw7Qk+bNgwuLi44PDhwzhx4gQWLVoEPz8/+Pj4lBtD6Yesn58f/P39sXLlStjY2EAsFmPChAncTduKioo4efIkLl26hBMnTmDNmjWYPXs2IiIioKamBgDYuHEjWrRowatfUVERAPDXX38hL+/t7C2hUMgr8+5rgUAgky8QCLhHKZT+e/jwYRgbG/PKiUQiABX/gn/X1KlTcfz4cSxfvhxSqRSqqqro06fPB29aLykpwciRIzFu3DiZvNq1ayMxMZFrQ0Xp6elBS0uL6zBUVElJCQwNDREWFiaTV9rxrEg7f/rpJ8yYMQMxMTHIy8tDRkYG3N3duXwvLy9kZWVh5cqVMDU1hUgkgoODA1dHRTpkJSUlaNKkCdfhfL/98lhYWODixYsoKCiAsrIyL+/Bgwd48eIFzM3Ny93u+/UBwO3btz/4Q2HYsGEYNGgQ/P39ERQUhP79+3PnfXne3w/v7hsTExMkJibi5MmTOHXqFEaPHo1ly5bh3Llz3HugdevWOHz4MPbs2YMZM2Zw9ZSUlKBbt25YsmSJzDYNDQ1l0kpKSqCoqIjo6GjuPVlKIpGUGf+rV6/QqVMndOrUCdu3b4eenh7S09Ph4uJS6QkdU6dOhZeXF9TU1GBoaCizb8RiMe+1vPOoIj+SKrtvSpX3udO4cWOkpqbi6NGjOHXqFPr16wdnZ2f8/fffcuvS1dVFfHy83DwDAwNIpVJIpVLs3bsX9vb2aNq0KaytrXnlnj17VuZ7QSQScZ931ZHEsh9exq0HFb4EAORDEdsljsh/LTtDWF0ognudRl85Qqa6q3BHUFtbGy4uLggICMC4ceNkPgifP3+OGjVqICoqCkVFRfDz84OCwtsBxz179sjUZ2JiAm9vb3h7e2PmzJnYuHEjryN45coV1K5dGwCQnZ2NO3fucL+UL1y4ADc3NwwcOBDA2w/TpKQk1K9fn1tfIBDA0dERjo6O+OWXX2BqaorQ0FBMmjQJxsbGuHv3Lm/k6F3vd9o+lrW1NUQiEdLT09G2bdsyy7z/KI8rV66UW++FCxfg5eWFnj17Ang76zQtLY1XRllZGcXFxby0xo0b4+bNm3J/0QNA/fr1UVRUhKioKG5ULDExsdxnrikoKKB///7Ytm0bfH19YWRkxMt/9eoVRCIRlJT4p1rjxo3x8OFDKCkpwczM7KPbWatWLbRp0wY7duxAXl4enJ2doa+vz6tj7dq1cHV1BQBkZGTgyZMnXL6VlRXS09Px6NEjbr3IyEiZWHfv3o2aNWtCQ0OjzH3xLnd3d6xevRrr16+X+YGzfPlyCIVC9O7du0J1AUCnTp2gq6uLpUuXIjQ0VCa/9P0HAK6urhCLxfjzzz9x9OhRnD9/nldWKBTKnBv169fHxYsXMXjwYC7t0qVLvPeUqqoqunfvju7du2PMmDGwsrJCfHw8GjduDODtSKqPjw9cXFygqKiIqVOnAni7//bt2wczMzOZ80Aee3t7FBcX4/Hjx2jdurXcMvLO79u3b+PJkydYvHgxTExMAABRUVEf3J48urq6Zb5P5LG2tsa+fft4HcJLly5BXV2d+zwp6z1ZmX1TURoaGujfvz/69++PPn36oHPnznj27Bm0tbVlytrb2+PPP//84I8iqVSK3r17Y+bMmfjnn/89AqV0ZNze3v6zxf89EdVsBJFhC7xJPwUAWKnTGzfkdAIBwEHPFHY6n+f7h2EqqlKPj1m7di2Ki4vRvHlz7Nu3D0lJSUhISMDq1au5UYp69eqhqKgIa9aswd27d7Ft2zasW7eOV8+ECRNw/PhxpKamIiYmBmfOnOF94QBvH99w+vRp3LhxA15eXtDV1eVGIqVSKTfil5CQgJEjR+Lhw4fcuhEREVi4cCGioqKQnp6OkJAQZGVlcduYN28eFi1ahFWrVuHOnTuIj49HUFAQVqxYUekdWB51dXVMmTIFEydOxJYtW5CSkoJr164hICAAW7ZsAQB4e3sjJSUFkyZNQmJiInbu3CnzrK73SaVShISEIDY2FtevX8dPP/0k80BXMzMznD9/Hvfv3+c6PtOnT8fly5cxZswYxMbGIikpCQcOHOA6KpaWlujcuTOGDx+OiIgIREdHY9iwYVBVVS03noULF8LExAQtWrTA1q1bcevWLSQlJWHTpk1o1KgRcnNzZdZxdnaGg4MDevTogePHjyMtLQ2XLl3CnDlzuC/virQTeHt5ODg4GHv37uV+HLy7r7Zt24aEhARERETAw8OD156OHTuiXr168PT0RFxcHMLDwzF79mwA/xvJ8fDwgK6uLtzc3HDhwgWkpqbi3LlzGD9+fJmX/RwcHDB+/HhMnToVfn5+SElJwe3btzFnzhysWrUKfn5+XGelIsRiMf766y8cPnwY3bt3x6lTp5CWloaoqChMmzYN3t7eXFlFRUV4eXlh5syZkEqlMiOIZmZmOH36NB4+fMjdMjF16lRs3rwZ69atQ1JSElasWIGQkBBMmTIFwNvn9gUGBuLGjRvc+1pVVRWmpqYy7T569Ch+/fVX+Pv7AwDGjBmDZ8+eYcCAAbh69Sru3r2LEydOYOjQoTIdI+Dt6KeHhwcGDx6MkJAQpKamIjIyEkuWLMGRI0e4NuTm5uL06dN48uQJXr9+jdq1a0NZWZn77Dlw4MAXf/5eqdGjRyMjIwM+Pj64ffs2/vnnH/j6+mLSpEncD2IzMzNEREQgLS0NT548QUlJSaX3TUX4+/sjODgYt2/fxp07d7B3714YGBiUeYtHu3bt8OrVK9y8efODdU+ePBkHDx7kdbCvXLnCjbQz8uk6r4NQuz4eCCQ4plRPbhlrTX1scCz/Fg6G+SIqe1PhgwcPaMyYMWRqakrKyspkbGxM3bt3593ovmLFCjI0NCRVVVVycXGhrVu38m7QHjt2LNWrV49EIhHp6enRoEGD6MmTJ0T0v5u5Dx48SA0aNCBlZWVq1qwZ77EiT58+JTc3N5JIJFSzZk2aM2cODR48mNzc3IiI6NatW+Ti4kJ6enokEonIwsKCN8GAiGjHjh3UqFEjUlZWJi0tLWrTpk25E2Hk3WQu74Z1X19f3iSBkpISWrVqFVlaWpJQKCQ9PT1ycXHhZkkTER08eJCkUimJRCJq3bo1bdq0qdzJIqmpqdSuXTtSVVUlExMT+uOPP2RuKL98+TL3+J13D/PVq1epY8eOJJFISCwWk62tLS1YsIDLz8zMpB9//JFEIhHVrl2btm7d+sHHxxC9nRU5Y8YMMjc3J2VlZdLX1ydnZ2cKDQ3lblp/v54XL16Qj48PGRkZkVAoJBMTE/Lw8KD09PQKt5Po7WQLkUhEampqvMcUERHFxMRQ06ZNSSQSkbm5Oe3du1cmjtLHxygrK5OVlRUdPHiQe1TQu/tl8ODBpKurSyKRiOrWrUvDhw//4E3IgYGB1LRpU1JVVSU1NTX64Ycf6MCBAzLx4wOTRUpFRkZSr169uHNbKpXSiBEjZG7gT0lJIQC0dOlSmToOHDhAUqmUlJSUKvz4mNDQUGrRogVpaGiQWCymli1b8iZOvb9Pz507R2KxmFatWkVERHfu3KGePXtSjRo1SFVVlaysrGjChAncufH+cS0oKKBffvmFzMzMSCgUkoGBAfXs2ZM3CcXb25t0dHR4j4/ZuXMnmZmZkUgkIgcHBzpw4AABoGvXrhHRx88afpe8c5Co/MfHEBElJiZSy5YtSVVVlff4mMruG3nx2dnZcftgw4YN1KhRIxKLxaShoUEdOnSgmJiYMttDROTu7k4zZszgpUHOpCIioo4dO/JmYo8YMYJGjhxZbv3vqq438Bfk/Evj988iza2zSGHTZG7R3DaLOh9bT/++KH8iGFN51fVcqywB0bf1Zx/CwsLQrl07ZGdnV+mfVWOqr/DwcPzwww9ITk5GvXryf71/68LDw+Hk5IR79+7xLpUzjDzx8fFwdnbmJkVVVFZWFqysrBAVFYU6depUaJ0XL15AU1MTOTk5Fb7V4nty/el9BKfGIjv/NbREanCv04hdDv5Cqvu5VlGf76YUhvmPCg0NhUQigbm5OZKTkzF+/Hg4Ojr+JzuB+fn5yMjIwNy5c9GvXz/WCWQqxMbGBkuXLkVaWhpvxveHpKamYu3atRXuBDKAnY4x6/gx3xTWEWSqvZcvX2LatGnIyMiArq4unJ2d4efnV9VhfZRdu3bh559/RqNGjbBt27aqDof5D/H09Kz0Os2bN5d53BLDMP8t39ylYYZhGOb7xS7XMV8LO9cqplKzhhmGYRiGYZjvB+sIMgzDMAzDVFPsHkGGYRjmq5NKpdwzFhnmS5D33FlGFusIMgzDMF9dcnIyu2+L+aJK7xFkysd+jjEMwzAMw1RTrCPIMAzDMAxTTbGOIMMwDMMwTDXF7hFkGIZhmK/k+v0c7Lx2Hzl5haihJsSARsawM2b3sTFVh40Ifie8vLzQo0ePqg7jq/iabd2/fz+kUikUFRUxYcKEr7LNivpc+2Hz5s1f/O96f61j5uTk9MHj9Dnam5aWBoFAgNjYWABv/0a6QCDA8+fPP6nez2nQoEFYuHDhF91GfHw8atWqhVevXn3R7XwPCl+kI2pHT7Rfew7LwlKwISIdS8+moM3acHTecAXp2a+rOkSmmmIdwU/g5eUFgUAAb29vmbzRo0dDIBDAy8vr6wf2nVu1ahU2b978SXVs2bIFzZs3h1gshrq6Otq0aYNDhw7JlBs5ciT69OmDjIwM/Pbbb+XWuXDhQigqKmLx4sUVikEgEHCLuro6mjZtipCQkI9qz6fo378/7ty589W3+67SjpS85eHDhxWuJyQkhHeczMzMsHLlyi8QMV+rVq2QmZn5zcxQjIuLw+HDh+Hj48NLT05OxtChQ1G7dm2IRCIYGxujQ4cO2LFjB4qKinhlDx06BCcnJ6irq0NNTQ3NmjWTed/Z2NigefPm8Pf3/9JN+k8rfJGOR/u7QSfrCKbp/sPLe5lfjBN3suD6VwQysvOqKEKmOmMdwU9kYmKC4OBg5OX97w385s0b7Nq1C7Vr1/6kuolI5sOZATQ1NT9pRGfKlCkYOXIk+vXrh+vXr+Pq1ato3bo13Nzc8Mcff3DlcnNz8fjxY7i4uMDIyAjq6url1hsUFIRp06Zh06ZNFY4lKCgImZmZiIyMhJ2dHfr27YvLly9/dNsqq7CwEKqqqqhZs+ZX22Z5EhMTkZmZyVsqE5u2tvYHj9OXoKysDAMDAwgEgq++bXn++OMP9O3bl7cvrl69isaNGyMhIQEBAQG4ceMGDh06hKFDh2LdunW4efMmV3bNmjVwc3NDq1atEBERgbi4OLi7u8Pb2xtTpkzhbWvIkCH4888/UVxc/NXa91/z5JQ3Cp8lACD0FF+AlsILmTK3HuVi+N7rXz84ptpjHcFP1LhxY9SuXZs3khMSEgITExPY29vzyubn52PcuHGoWbMmVFRU8MMPPyAyMpLLLx0VOX78OJo2bQqRSIQLFy5g3rx5aNSoEdavXw8TExOoqamhb9++ci9DLV++HIaGhtDR0cGYMWNQWFjI5WVnZ2Pw4MHQ0tKCmpoaunTpgqSkJN76Gzdu5LbRs2dPrFixQqbTdfDgQTRp0gQqKiqoW7cu5s+fz+uwCgQC/PXXX+jZsyfU1NRgbm6OAwcO8Oq4desWXF1dIZFIoK+vj0GDBuHJkydc/t9//w0bGxuoqqpCR0cHzs7O3OWn9y8zllf2fVeuXIGfnx+WLVuGKVOmQCqVon79+liwYAEmTJiASZMmISMjA2FhYdyXaPv27SEQCBAWFia3TgA4d+4c8vLy8Ouvv+LVq1c4f/58mWXfVaNGDRgYGMDKygrr1q2DiooKt6/i4+PRvn17rl0jRoxAbm5umXUdO3YMP/zwA2rUqAEdHR107doVKSkpXH7p5cw9e/bAyckJKioq2L59u8ylUjMzM7kjc6Xu37+P/v37Q0tLCzo6OnBzc0NaWhqXX1xcjEmTJnFxTJs2DRX9k+Y1a9aEgYEBbyl96HDpcZ8/fz5q1qwJDQ0NjBw5EgUFBdz6714adnJywr///ouJEyfKtAEAjh8/jvr160MikaBz587IzMzk5QcFBaF+/fpQUVGBlZUV1q5dW2bc718aLn3PvmvlypUwMzPjXpe2Z+HChdDX10eNGjW499LUqVOhra2NWrVqVeqHBfD2Ibp79+5F9+7duTQigpeXFywsLBAeHo5u3brB3Nwc9vb28PDwwIULF2BrawsAyMjIwOTJkzFhwgQsXLgQ1tbWkEqlmDx5MpYtWwY/Pz9ERERwdbu4uODp06c4d+5cpeKsLvIfxyI/83/7S/g6DRvrBMste/nfZ7h+P+drhcYwAFhH8LMYMmQIgoKCuNebNm3C0KFDZcpNmzYN+/btw5YtWxATEwOpVAoXFxc8e/ZMptyiRYuQkJDAfTgnJydjz549OHjwII4dO4bY2FiMGTOGt97Zs2eRkpKCs2fPYsuWLdi8eTPvUo6XlxeioqJw4MABXL58GUQEV1dXrrMYHh4Ob29vjB8/HrGxsejYsSMWLFjA28bx48cxcOBAjBs3Drdu3cL69euxefNmmXLz589Hv379EBcXB1dXV3h4eHDtzMzMRNu2bdGoUSNERUXh2LFjePToEfr168flDxgwAEOHDkVCQgLCwsLQq1cvuZ2JypQFgF27dkEikWDkyJEyeZMnT0ZhYSH27duHVq1aITExEQCwb98+ZGZmolWrVnLrBIDAwEAMGDAAQqEQAwYMQGBgYJllyyIUCqGkpITCwkK8fv0anTt3hpaWFiIjI7F3716cOnUKY8eOLXP9V69eYdKkSYiMjMTp06ehoKCAnj17yjxdf/r06Rg3bhwSEhLg4uIiU09kZCQ3Gnfv3j20bNkSrVu3BgC8fv0a7dq1g0Qiwfnz53Hx4kWuI1XaIfPz88OmTZsQGBiIixcv4tmzZwgNDa30/pDn9OnTSEhIwNmzZ7Fr1y6EhoZi/vz5csuGhISgVq1a+PXXX7n2lHr9+jWWL1+Obdu24fz580hPT+eNdG3cuBGzZ8/GggULkJCQgIULF2Lu3LnYsmXLZ2lHqTNnzuDBgwc4f/48VqxYgXnz5qFr167Q0tJCREQEvL294e3tjYyMjArXGRcXh+fPn6Np06ZcWmxsLBISEjBlypQy/5pHaUf577//RmFhoczIH/D2VgmJRIJdu3ZxacrKyrCzs8OFCxfk1pufn48XL17wluokN3EPqPAlL80eUWiqmiJT9mV+MXbF3v9aoTHMW8R8NE9PT3Jzc6OsrCwSiUSUmppKaWlppKKiQllZWeTm5kaenp5ERJSbm0tCoZB27NjBrV9QUEBGRka0dOlSIiI6e/YsAaD9+/fztuPr60uKioqUkZHBpR09epQUFBQoMzOTi8XU1JSKioq4Mn379qX+/fsTEdGdO3cIAIWHh3P5T548IVVVVdqzZw8REfXv359+/PFH3rY9PDxIU1OTe926dWtauHAhr8y2bdvI0NCQew2A5syZw73Ozc0lgUBAR48eJSKiuXPnUqdOnXh1ZGRkEABKTEyk6OhoAkBpaWky+7y0rW5ubkREHyz7vs6dO5OdnV2Z+ZqamjRq1CgiIsrOziYAdPbs2XLrzMnJITU1NYqNjSUiomvXrpGamhrl5OSUux4ACg0NJSKiN2/e0G+//UYA6MiRI7RhwwbS0tKi3Nxcrvzhw4dJQUGBHj58SET8/SDP48ePCQDFx8cTEVFqaioBoJUrV/LKBQUF8Y7xu8aNG0empqb0+PFjIiIKDAwkS0tLKikp4crk5+eTqqoqHT9+nIiIDA0NafHixVx+YWEh1apVq9xYS899sVjMWywsLLgynp6epK2tTa9eveLS/vzzT5JIJFRcXExERG3btqXx48dz+aampuTv7y/TXgCUnJzMpQUEBJC+vj732sTEhHbu3Mlb77fffiMHBwci+t++vHbtGi/+7OxsInr7nn3/PPP39ydTU1Nee0xNTbnYiYgsLS2pdevW3OuioiISi8W0a9euMvacrNDQUFJUVOQdo+DgYAJAMTExXNqjR494+zogIICIiLy9vcs8H4iIbG1tqUuXLry0nj17kpeXl9zyvr6+BEBm+dD743uRdWoU3fUX8pYUfyEN3DKezP8KlFm8Dh2v6pC/Gzk5OdXqXPtY7PExn4Guri5+/PFHbNmyBUSEH3/8Ebq6urwyKSkpKCwshKOjI5cmFArRvHlzJCQk8Mq++0u+VO3atVGrVi3utYODA0pKSpCYmAgDAwMAQIMGDaCoqMiVMTQ0RHx8PAAgISEBSkpKaNGiBZevo6MDS0tLbvuJiYno2bMnb7vNmzfnTaKIjo5GZGQkbwSwuLgYb968wevXr6GmpgYA3EgmAG5CxuPHj7k6zp49C4lEItPOlJQUdOrUCR06dICNjQ1cXFzQqVMn9OnTB1paWjLl7ezsKly2Ioio0vd57dy5E3Xr1oWdnR0AoFGjRqhbty6Cg4MxYsSIctcdMGAAFBUVkZeXB01NTSxfvhxdunTBpEmTYGdnB7FYzJV1dHTkjrm+vr5MXSkpKZg7dy6uXLmCJ0+ecCOB6enpaNiwIVdO3vklz4YNGxAYGIjw8HDo6ekBeHvskpOTZe7De/PmDVJSUpCTk4PMzEw4ODhweUpKSmjatGmFLg9fuHCBV7eSEv8jys7OjjvHgLfvg9zcXGRkZMDU1LRC7QIANTU11KtXj3ttaGjInZ9ZWVnIyMjAzz//jOHDh3NlioqKPvtkkAYNGvBG6PT19XnHSlFRETo6OlxsFZGXlweRSCT3PH43TUdHh5v17OTkxLvEXh557xFVVVW8fi1/1uvMmTMxadIk7vWLFy9gYmJSoW19DwTKNWTS9qn/gH2kgnyFWzJ5veW8txnmS2Idwc9k6NCh3GW7gIAAmfzSL8H3P0Dlfai+++VfltJ13l1XKBTKlCntDJT1Jfzu9uXF8v56JSUlmD9/Pnr16iVTl4qKSoViKSkpQbdu3bBkyRKZOgwNDaGoqIiTJ0/i0qVLOHHiBNasWYPZs2cjIiICderU4ZWvTFkAsLCwwMWLF1FQUABlZWVe3oMHD/DixQuYm5vLrFeeTZs24ebNm7xOS0lJCQIDAz/YEfT394ezszM0NDR4kyLK65CWld6tWzeYmJhg48aNMDIyQklJCRo2bCjzBV+R8yssLAw+Pj7YtWsX18EtbVeTJk2wY8cOmXVKO4ufok6dOh81EaiynXd552fpuV56nm7cuJH3wwkA74dWeRQUFGTeO+/er1teHOW9dypCV1cXr1+/5p3jpef07du3uXsXFRUVIZVKAfA73BYWFsjJycGDBw9gZGTEq7ugoAB3795F+/bteenPnj3jdazfJRKJIBKJKhz/90Zi2Q8v49Zzl4fzoYjtEkfkv5adIawuFMG9TqOvHCFT3bF7BD+T0nukCgoK5N53JZVKoaysjIsXL3JphYWFiIqKQv369T9Yf3p6Oh48eMC9vnz5MhQUFGBhYVGh+KytrVFUVMS7yfvp06e4c+cOt30rKytcvXqVt15UVBTvdePGjZGYmAipVCqzlHXv0fsaN26MmzdvwszMTKaO0k6KQCCAo6Mj5s+fj2vXrkFZWbnM+8wqU9bd3R25ublYv369TN7y5cshFArRu3fvCrUDeDuhIyoqCmFhYYiNjeWW8+fPIzIyEjdu3Ch3fQMDA0ilUpmZsdbW1oiNjeVNegkPDy/zmD99+hQJCQmYM2cOOnTogPr16yM7O7vC7XhXcnIyevfujVmzZsl0+Bs3boykpCTUrFlT5thpampCU1MThoaGuHLlCrdOUVERoqOjPyqW912/fp03Q//KlSuQSCS80fJ3KSsrV3o2q76+PoyNjXH37l2ZNsr7cSGPnp4eHj58yOsMlo6+fWmlHb1bt/432mRvbw8rKyssX778g53K3r17Q0lJCX5+fjJ569atw6tXrzBgwABe+o0bN2QmxzFviWo2gsjwfz8oVur0xg05nUAAcNAzhZ2O8dcKjWEAsBHBz0ZRUZG7xCpv1EAsFmPUqFHcbMDatWtj6dKleP36NX7++ecP1q+iogJPT08sX74cL168wLhx49CvXz/usvCHmJubw83NDcOHD8f69euhrq6OGTNmwNjYGG5ubgAAHx8ftGnTBitWrEC3bt1w5swZHD16lDfa8ssvv6Br164wMTFB3759oaCggLi4OMTHx+P333+vUCxjxozBxo0bMWDAAEydOhW6urpITk5GcHAwNm7ciKioKJw+fRqdOnVCzZo1ERERgaysLLkd5oiIiAqXBd5eShw/fjymTp2KgoIC9OjRA4WFhdi+fTtWrVqFlStXVuqyVWBgIJo3b442bdrI3VZgYOBHPWPNw8MDvr6+8PT0xLx585CVlQUfHx8MGjRI7mXh0hm8GzZsgKGhIdLT0zFjxoxKbzcvLw/dunVDo0aNMGLECN4z/AwMDODh4YFly5bBzc0Nv/76K2rVqoX09HSEhIRg6tSpqFWrFsaPH4/FixfD3Nwc9evXx4oVKyr8oOXHjx/jzZs3vDQdHR1ulKygoAA///wz5syZg3///Re+vr4YO3ZsmT9CzMzMcP78ebi7u0MkEsncslGWefPmYdy4cdDQ0ECXLl2Qn5+PqKgoZGdn8y5zlsXJyQlZWVlYunQp+vTpg2PHjuHo0aPQ0NCo0PY/hZ6eHho3boyLFy9ynUKBQICgoCB07NgRjo6OmDlzJurXr4/CwkKcP38eWVlZ3OdW6WfTlClToKKigkGDBkEoFOKff/7BrFmzMHnyZN5IaVpaGu7fvw9nZ+cv3rb/Kl3ndXi0vxv+zc7AMaV6QJHsUw2sNfWxwbFvFUTHVHdsRPAz0tDQKPeDfvHixejduzcGDRqExo0bIzk5GcePH6/Q/WxSqRS9evWCq6srOnXqhIYNG5b7OAt5goKC0KRJE3Tt2hUODg4gIhw5coT7knV0dMS6deuwYsUK2NnZ4dixY5g4cSLvkq+LiwsOHTqEkydPolmzZmjZsiVWrFhRqfuzjIyMEB4ejuLiYri4uKBhw4YYP348NDU1oaCgAA0NDZw/fx6urq6wsLDAnDlz4Ofnhy5dusjUVZmypVauXIm1a9ciODgYNjY2aNKkCc6dO4f9+/fLPIC3PAUFBdi+fXuZI4i9e/fG9u3bK3zv1bvU1NRw/PhxPHv2DM2aNUOfPn3QoUMH3nMO36WgoIDg4GBER0ejYcOGmDhxIpYtW1bp7T569Ai3b9/GmTNnYGRkBENDQ24pjev8+fOoXbs2evXqhfr162Po0KHIy8vjzv3Jkydj8ODB8PLygoODA9TV1WXuPS2LpaUlb5uGhoa80cQOHTrA3Nwcbdq0Qb9+/dCtWzfMmzevzPp+/fVXpKWloV69epW6dD1s2DD89ddf2Lx5M2xsbNC2bVts3ry5wiOC9evXx9q1axEQEAA7OztcvXpV7izcL2XEiBEyl+9btmyJ6OhoWFpaYsyYMbC2tkarVq2wa9cu+Pv7Y9SoUVzZiRMnIjQ0FBcuXEDTpk3RsGFD7Ny5E3/++SeWL1/Oq3fXrl3o1KlTpT4DqhuhRm3o9ziIvWaj8Py9Z8OqC0XoZGSBwx2HwUTycfc2M8ynEFBF7uBmqtS8efOwf//+r3Zp6V3Dhw/H7du3y3w0BMN8LV5eXnj+/Dn2799f1aF88968eQNLS0sEBwfzJu58bvn5+TA3N8euXbt4E+HK8+LFC2hqaiInJ+erjJB+a64/vY/g1Fhk57+GlkgN7nUascvBX0h1P9cqil0aZniWL1+Ojh07QiwW4+jRo9iyZUulRx4ZhqlaKioq2Lp1K+8h7V/Cv//+i9mzZ1e4E8gAdjrGrOPHfFNYR5DhuXr1KpYuXYqXL1+ibt26WL16NYYNG1bVYTEMU0lt27b94tuwsLCo8IQ1hmG+TezSMMMwDPPVsMt1zNfCzrWKYZNFGIZhGIZhqil2aZhhGIb5akovQlW3vznMfH2l5xi78Fk+1hFkGIZhvpqXL9/+hY3q9GfmmKr18uXLz/7nIb8n7B5BhmEY5qspKSnBgwcPoK6uLvOnAUv/DnFGRsZ3c08Xa1PVISK8fPkSRkZGFf7LV9URGxFkGIZhvhoFBYUy/yRgqQ89nP+/iLWparCRwA9jXWSGYRiGYZhqinUEGYZhGIZhqinWEWQYhmG+CSKRCL6+vhCJRFUdymfD2sR869hkEYZhGIZhmGqKjQgyDMMwDMNUU6wjyDAMwzAMU02xjiDDMAzDMEw1xTqCDMMwDMMw1RTrCDIMwzDfhLVr16JOnTpQUVFBkyZNcOHChaoOSa5FixahWbNmUFdXR82aNdGjRw8kJibyynh5eUEgEPCWli1b8srk5+fDx8cHurq6EIvF6N69O+7du/c1mwIAmDdvnkysBgYGXD4RYd68eTAyMoKqqiqcnJxw8+ZNXh3fSluYymMdQYZhGKbK7d69GxMmTMDs2bNx7do1tG7dGl26dEF6enpVhybj3LlzGDNmDK5cuYKTJ0+iqKgInTp1wqtXr3jlOnfujMzMTG45cuQIL3/ChAkIDQ1FcHAwLl68iNzcXHTt2hXFxcVfszkAgAYNGvBijY+P5/KWLl2KFStW4I8//kBkZCQMDAzQsWNH7u9Gf2ttYSqJGIZhGKaKNW/enLy9vXlpVlZWNGPGjCqKqOIeP35MAOjcuXNcmqenJ7m5uZW5zvPnz0koFFJwcDCXdv/+fVJQUKBjx459yXBl+Pr6kp2dndy8kpISMjAwoMWLF3Npb968IU1NTVq3bh0RfVttYSqPjQgyDMMwVaqgoADR0dHo1KkTL71Tp064dOlSFUVVcTk5OQAAbW1tXnpYWBhq1qwJCwsLDB8+HI8fP+byoqOjUVhYyGuzkZERGjZsWCVtTkpKgpGREerUqQN3d3fcvXsXAJCamoqHDx/y4hSJRGjbti0X57fWFqZyWEeQYRiGqVJPnjxBcXEx9PX1een6+vp4+PBhFUVVMUSESZMm4YcffkDDhg259C5dumDHjh04c+YM/Pz8EBkZifbt2yM/Px8A8PDhQygrK0NLS4tXX1W0uUWLFti6dSuOHz+OjRs34uHDh2jVqhWePn3KxVLesfmW2sJUnlJVB8AwDMMwACAQCHiviUgm7VszduxYxMXF4eLFi7z0/v37c/9v2LAhmjZtClNTUxw+fBi9evUqs76qaHOXLl24/9vY2MDBwQH16tXDli1buAkuH3Ns/gvHj2EjggzDMEwV09XVhaKioszo0ePHj2VGor4lPj4+OHDgAM6ePYtatWqVW9bQ0BCmpqZISkoCABgYGKCgoADZ2dm8ct9Cm8ViMWxsbJCUlMTNHi7v2HzLbWE+jHUEGYZhmCqlrKyMJk2a4OTJk7z0kydPolWrVlUUVdmICGPHjkVISAjOnDmDOnXqfHCdp0+fIiMjA4aGhgCAJk2aQCgU8tqcmZmJGzduVHmb8/PzkZCQAENDQ9SpUwcGBga8OAsKCnDu3Dkuzm+5LUwFVOVMFYZhGIYhIgoODiahUEiBgYF069YtmjBhAonFYkpLS6vq0GSMGjWKNDU1KSwsjDIzM7nl9evXRET08uVLmjx5Ml26dIlSU1Pp7Nmz5ODgQMbGxvTixQuuHm9vb6pVqxadOnWKYmJiqH379mRnZ0dFRUVftT2TJ0+msLAwunv3Ll25coW6du1K6urq3L5fvHgxaWpqUkhICMXHx9OAAQPI0NDwm2wLU3msI8gwDMN8EwICAsjU1JSUlZWpcePGvMexfEsAyF2CgoKIiOj169fUqVMn0tPTI6FQSLVr1yZPT09KT0/n1ZOXl0djx44lbW1tUlVVpa5du8qU+Rr69+9PhoaGJBQKycjIiHr16kU3b97k8ktKSsjX15cMDAxIJBJRmzZtKD4+nlfHt9IWpvIERERVOSLJMAzDMAzDVA12jyDDMAzDMEw1xTqCDMMwDMMw1RTrCDIMwzAMw1RTrCPIMAzDMAxTTbGOIMMwDMMwTDXFOoIMwzAMwzDVFOsIMgzDMAzDVFOsI8gwDMNUyrx58yAQCOQuv//++2fbjpmZGcaOHVvh8mlpaRAIBPj777/LLbd582ZezDVq1EDTpk2xbdu2Cm/r1atXWLBgAezs7KCmpgY1NTU0adIEAQEByMvLq3A9n0ogEGD58uXllqnofvmcoqKiIBAIEBYWVm65jIwMDB06FHXq1IGKigoMDQ3h7OyM7du3f51AGShVdQAMwzDMf4+qqirOnDkjk25iYvLZthEaGgotLa3PVt/7jh07Bk1NTTx9+hRr1qzB4MGDIRQK4e7uXu56T58+RYcOHXD37l1MmDABrVu3hoKCAiIiIrBw4UI8efIEvr6+XyzuyjI0NMTly5dhYWFR1aHwZGdno0WLFtDW1sa8efNgamqKe/fu4cyZMzh27BgGDhxY1SFWC6wjyDAMw1SagoICWrZs+UXqzsvLg6qqKuzt7b9I/aWaNGkCXV1dAEC7du1gYmKCoKCgD3YEx4wZgzt37uDy5cuws7Pj0jt06AAfHx9ER0d/0bgrSyQSfbFj9Sn+/vtvZGZm4sqVK6hduzaXPnDgQJSUlHyVGN68eQMVFZWvsq1vFbs0zDAMw3wRAoEAS5cuha+vL/T19aGrq4shQ4bg1atXXJnSy7SXL19Gx44dIRaLMWXKFADyLw1fvnwZnTp1goaGBtTV1dGiRQucPHmSV+bNmzcYO3YstLS0YGhoiClTpqCoqKjcWNXU1CCVSpGenl5uufT0dOzduxfe3t68TmApdXV1ODk58cr37dsXNWrUgJqaGtq3b4+oqCjeOqXt9PPzQ61atSCRSDB48GC8efMGsbGxcHR0hFgsRrNmzRAfHy+zzaKiIkybNg16enpQV1eHl5cXXr58yeXLuzRcus0//vgDpqam0NTURI8ePZCVlcWr+/nz5xg9ejQMDQ0hEonQpEkTnDhxQiaG33//HQYGBpBIJOjVqxceP35c7n4srVtBQQE1a9aUyVNQ4HdP7t+/j8GDB0NfXx+qqqqwsrLCqlWruPySkhIsXLgQderUgUgkgrm5OVauXMmrY968eZBIJLh69SocHBygoqKCNWvWAAASEhLg5uYGTU1NiMVi/Pjjj0hJSflgG74HbESQYRiG+SjyOleKiooQCATc6z/++AOtW7fGli1bkJiYiGnTpkFfXx+LFy/mrefh4YERI0Zg1qxZUFVVlbu98PBwtG/fHi1btsRff/2FGjVqICoqSqbzNnv2bLi5uWHPnj0IDw/H/PnzIZVK4e3tXWZbSkpKcO/evQ+OQp4/fx4lJSVwdXUttxwAvHz5Em3btgURISAgABKJBEuXLoWTkxOioqJgZWXFlf3nn39ga2uLDRs24O7du5g0aRJEIhGuXLmCSZMmQV9fH9OnT0ffvn1x69YtXkdpzZo1aNy4MbZs2YLU1FTMmDEDb968QXBwcLnxHThwAElJSQgICMCTJ08wYcIE+Pj4cOsVFBSgY8eOePToERYsWABjY2Ns374dP/74I2JiYmBjYwPg7TGeO3cupkyZAmdnZ5w4cQIjRoz44P5p0qQJSkpK4OHhgSlTpqBZs2ZQUpLtljx9+hQODg4AgAULFqBu3bpISkriddSmTp2KlStXYtasWWjdujVOnjyJiRMn4uXLl5g7dy5XrqCgAB4eHpg4cSIWLVoELS0t3L17F61atULDhg2xefNmKCgoYMGCBejQoQMSExMhEok+2Jb/NGIYhmGYSvD19SUAcpezZ89y5QBQs2bNeOt6eHhQvXr1uNdBQUEEgJYuXSqzHVNTUxozZgz3ulWrVmRtbU1FRUVy40pNTSUA1LdvX166o6MjdejQQWabDx8+pMLCQnr48CFNnjyZRCIRhYeHl9v2xYsXEwC6fft2ueWIiFatWkUCgYBu3LjBpb18+ZK0tbXJ09OT104TExPKz8/n0nr37k0A6OjRo1zawYMHCQDFxsZyaQCoTp06vH3y119/kUAgoISEBN5+2bt3L2+btWrVojdv3nBps2fPJqFQSMXFxUREtGnTJlJSUqKbN2/y2tW8eXNuHxcVFZGRkRENGjSIV2bAgAEy54M8U6dOJQUFBQJAqqqq1LFjR9qyZQuVlJRwZWbNmkUikYhSU1Pl1pGVlUVCoZCmTp3KSx8xYgSJxWJ6+fIlEf3vvN2zZw+v3ODBg6lOnTqUl5fHpT1+/JjEYjEFBASUG//3gF0aZhiGYSpNVVUVkZGRMkuTJk145Tp16sR7bW1tjXv37snU96ERttevX+PKlSvw9PSEoqJiuWUruk0DAwMIhUIYGBjAz88Pq1atQqtWrcqtm4gAgDfqWZYLFy6gQYMGaNCgAZcmkUjQrVs3XLhwgVe2TZs2UFZW5l5bWFhAQUEB7du356UBb2favqtbt268fdKrVy8QEa5evVpufG3btuWNdllbW6OwsJC7rHvixAnY2NjAwsICRUVF3NKhQwdERkYCAO7du4cHDx6gZ8+evLr79OlT7rZLLV26FMnJyfD390eXLl1w9epVeHp6YvDgwVyZ06dPo3379jAzM5NbR0REBAoLC9G/f39e+oABA/Dq1Stcu3aNl/7+uXbixAm4ublBSUmJa6OWlhbs7Oy4dn7P2KVhhmEYptIUFBTQtGnTD5arUaMG77WysjLy8/Nlysm7T+xd2dnZKCkpgZGR0Udt882bNzLlTp06BQ0NDWRkZMDX1xfjxo2Dg4MDbG1ty6y7Vq1aAN7e+/ehWbjZ2dkwMDCQSTcwMMCzZ88+GLOqqiqvc1j6//fb8v6+09LSglAoRGZmZrnxydvmu/U/efIE165dg1AolFm3tONZuo33Y9DX1y932++qU6cOJkyYgAkTJiA3Nxd9+/bF9u3bMXXqVNja2uLp06do2LBhmetnZ2cDgMy+Ln397r5WU1ODWCzmlXvy5AlWrlwpc08hgDJvU/iesI4gwzAMU+U+NMJWo0YNKCgo4MGDB59tm3Z2dtDV1UWzZs3QvHlzWFlZYfr06Th69GiZ67Rt2xYKCgo4evQonJ2dy61fW1sbt2/flkl/+PAhtLW1Pzn+Uu9PzMjOzkZhYSEMDQ0/qV5tbW3Y2toiMDCwzDKl23g/hkePHn3UNiUSCUaPHo1jx44hISEBtra20NHRKfe4l+7LR48ewdjYmEt/+PAhLx+Qf55pa2vjxx9/xOjRo2Xy1NXVP6od/yXs0jDDMAzzzROLxXBwcMDWrVtRXFz82euvVasWJkyYgGPHjslcSnyXiYkJ+vbti3Xr1smdwZubm4tz584BAH744QfcuHEDt27d4vJfvXqFQ4cOoXXr1p8t9oMHD/L2SUhICAQCAZo1a/ZJ9To7O+Pu3bswMjJC06ZNZRbg7X4zNDREaGgob92KPLw6KyuLu9T+rjt37gD434ies7Mzzpw5U+aM7ubNm0MoFGLPnj289N27d0MsFqNx48YfbOeNGzdgb28v00ZLS8sPtuO/jo0IMgzDMJVWUlKCK1euyKTr6emhXr16X2SbixcvRvv27eHs7IzRo0dDS0sLMTEx0NXVxdChQz+5/kmTJmH16tVYsmRJuTNuAwICkJCQgNatW2P8+PFo06YNACA6Ohpr1qzBsGHD0LZtWwwZMgT+/v7o2rUrfv/9d27WcF5eHmbMmPHJ8ZbKz89Hjx49MHr0aKSmpmL69Ono06cP6tev/0n1Dh48GOvXr4eTkxOmTJkCCwsLPH/+HNeuXUNBQQEWLVoERUVFzJgxA+PHj4e+vj46duyI48eP4/z58x+sf8uWLdi2bRsGDRoEe3t7EBHCw8OxZMkSNGnSBD/88AMAYOLEidi6dSvatGmDuXPnom7durh79y7u3LmDJUuWQFdXF+PGjcPy5cshEong6OiI06dPY/369Zg/f77MpeD3zZ8/H82aNYOLiwtGjBgBfX19PHz4EOfOnUPr1q0xYMCAT9qP3zrWEWQYhmEqLS8vj3ukx7s8PT2xefPmL7LNH374AWFhYZgzZw68vLygqKiIBg0afLY/a6etrY1x48Zh8eLFSElJKbNDq6Ojg0uXLsHf3x+7d+/GsmXLAAD169eHj48PxowZA+DtZcVz585h8uTJGDVqFAoLC9GiRQuEhYXxHh3zqXx8fJCVlYWBAweioKAAPXv2xB9//PHJ9YpEIpw5cwbz5s3DggULkJmZCV1dXdjb2/Muo/r4+OD58+cICAjA2rVr4ezsjPXr16Nr167l1u/q6op///0XW7ZswW+//YaSkhLUrl0bU6ZMwaRJk7j7EHV0dBAeHo6ZM2di2rRpeP36NczMzHgxLF26FFpaWti4cSMWLVqE2rVrw8/PDxMnTvxgO6VSKa5evYo5c+Zg9OjRyM3NhaGhIdq0aVPu/aLfCwHJG5dlGIZhGIZhvnvsHkGGYRiGYZhqinUEGYZhGIZhqinWEWQYhmEYhqmmWEeQYRiGYRimmmIdQYZhGIZhmGqKdQQZhmEYhmGqKdYRZBiGYRiGqaZYR5BhGIZhGKaaYh1BhmEYhmGYaop1BBmGYRiGYaop1hFkGIZhGIapplhHkGEYhmEYppr6P8aC3VQZ+4hRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ptm_pose import plots as pose_plots\n", + "\n", + "pose_plots.plot_EnrichR_pies(enrichr_results, top_terms = 10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Protein Interaction Networks" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PhosphoSitePlus regulatory site data found and added\n", + "Combined kinase-substrate data found and added\n", + "PTMInt data found and added\n", + "ELM data found and added\n" + ] + } + ], + "source": [ + "interaction_graph, network_data = analyze.get_interaction_network(spliced_ptms, node_type = 'Gene')\n", + "network_stats = analyze.get_interaction_stats(interaction_graph)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Modified GeneInteracting GeneResidueTypeSourcedPSIRegulation Change
0ADAM15HCKY735;Y715REGULATESPSP/RegPhos0.181;-0.052+;-
1ADAM15LCKY715REGULATESPSP/RegPhos0.181;-0.052+;-
2ADAM15SRCY735;Y715REGULATESPSP/RegPhos0.181;-0.052+;-
3BCAR1SRCY267;Y287REGULATESPSP/RegPhos-0.07-
4BIN1MAPTT348INDUCESPhosphoSitePlus;PTMInt-0.112-
\n", + "
" + ], + "text/plain": [ + " Modified Gene Interacting Gene Residue Type \\\n", + "0 ADAM15 HCK Y735;Y715 REGULATES \n", + "1 ADAM15 LCK Y715 REGULATES \n", + "2 ADAM15 SRC Y735;Y715 REGULATES \n", + "3 BCAR1 SRC Y267;Y287 REGULATES \n", + "4 BIN1 MAPT T348 INDUCES \n", + "\n", + " Source dPSI Regulation Change \n", + "0 PSP/RegPhos 0.181;-0.052 +;- \n", + "1 PSP/RegPhos 0.181;-0.052 +;- \n", + "2 PSP/RegPhos 0.181;-0.052 +;- \n", + "3 PSP/RegPhos -0.07 - \n", + "4 PhosphoSitePlus;PTMInt -0.112 - " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "network_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import importlib\n", + "importlib.reload(analyze)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Decreased interaction likelihoods: AKT1, YWHAE, YWHAZ\n", + "Number of interactions: 3 (Rank: 2)\n", + "Centrality measures - \t Degree = 0.2 (Rank: 2)\n", + " \t Betweenness = 0.028571428571428574 (Rank: 3)\n", + " \t Closeness = 0.2 (Rank: 3)\n" + ] + } + ], + "source": [ + "analyze.summarize_protein_network(protein = 'TSC2', interaction_graph = interaction_graph, network_data = network_data, network_stats = network_stats)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAIMCAYAAAAkUd+LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0+UlEQVR4nO3deXjU1aHG8Xcm+0IgLGEzgiwCIqtWDAIJVApYUUGrsolrW6/Ig7W9Xu3GtVdtq10Uxbb6FBAK1gVwBVxYVHABFQGDgJAAkTX7vszMuX/EpAQCQpjM78zM9/M8Pi1h5jdvZoZ555zfzDkuY4wRAABwlNvpAAAAgEIGAMAKFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtEOh0AZ88Yo6qqKqdjIJwZI+XlyVVWJpOQILVpI7lcTqcKOzExMXJxvwctCjkEHDhwQMXFxU7HQBhyFxer5SuvqPWiRYrev7/+59WpqcqfOlVFV18tX1KSgwnDS1JSkjp37ux0DDSRi6Uzg5vH49GuXbvUpk0bJfHChwByv/22oiZNksrLJUmuY15KTN0oLT5eNUuWyDd6tBMRw0pxcbHy8vLUs2dPRUYy1gpGPGpBzuPxSJJatGih2NhYh9MgbKxaJU2YUDtV3ch7+vpyrqhQ9IQJ0htvSGPGBDhkeDHGKC8vTx6Ph0IOUnyoK0QE4rxRdna2rrvuupP+/ebNm/XJJ5/4/XaXL1+uI0eOSJJWrlypZcuWNflYP/nJT/wVK3wVFkrXXltbxD7fqS/r89Ve7tpra693CsXFxRo/frwyMjJ0ySWX6LXXXjvpZW+++WZt27ZNmzdv1tNPP33mv8O3Lr300hN+1rNnT2VkZOiiiy46ZYZjHfscbcyhQ4f029/+tsk5TwfnjoMfb6PgN5s3b1ZpaakuueSS77ysz+eT23167weXL1+uHj16KCUlRWPHjj2rjH//+9+bfN0zyRzSFiyonaY+3bNdPl/t5Z97Tpo586QXW7hwocaOHau77rpLxhgVFRV956EHDhyogQMHnmbw09OyZUutXbtWhw4d0qhRozR+/Pj6vzvZc+DY52hjOnTooP/93//1a06EHl5dQoQxRtXV1X7777s+WpCRkaFZs2Zp+PDh+q//+i9J0tNPP63HH39c48aNkyQ9/PDDSk9P14gRI7R161ZJ0uDBgzVjxgxNnz5dW7du1ciRIzV06FDNmDGj/ve46667NHz4cKWnp+vTTz/VypUrdcstt+j+++/X/Pnz9eSTT0qSHnvsMaWlpWno0KH69NNP64//05/+VEOGDNEjjzxyQu6LL75YkjR79mxNmTJFY8eO1YgRI1T+7XnQhx56SEOHDlV6eroyMzM1e/ZsTZ8+XePGjdOXX37Z6O9077331o/qNm/eLEm65ZZbNHz4cI0YMULZ2dmqrKzU1KlTNWrUKF111VUqLi7W119/raFDhyojI0M//vGPm/zYB5Qx0pw5TbvuE0+cssTj4+P1ySef6PDhw3K5XGrVqpUk6YILLtD06dN18cUXa9GiRQ2us3btWv385z+XJL355ptKS0tTenq6Fi9eLGOM7r77bo0cOVKjR49WTk6OpNrnZVpammbMmCGv13vSPB06dFBlZaWys7M1fPhw/ehHP9Jjjz2md999V5deeqmGDBmiefPmKSsrq8FztLHH+tjZpcb+7QASI+SQUVNToz/+8Y9+O97999+v6OjoU15m4sSJ+utf/6phw4apqKhId955p0pLSzVjxgxt3bpVO3bs0Lp163To0CHdeeedWrZsmQoKCjRr1iz16NFDFRUVWr16tVwulyZOnKhdu3YpMzNTkZGRev/99yXVjkjGjh2rn//857rwwgs1f/58SbVTgK+++qrWr1+vffv26fbbb9c777yjwsJC3X///UpNTdWgQYN0//33nzR/r1699Jvf/Ea//OUv9c4776hLly7atGmT1q9fL5fLJd+307HnnnuuFixYcNLf6Xe/+53i4+O1ZcsW/eEPf9D8+fO1fft2ffjhh/XHmTt3rkaNGqVbb71VL7/8sv7xj38oOTlZkydP1owZM+pvy3p5edLu3Wd+PWNqr5efX/uVqEZMmzZNBw8e1JgxYxQfH68FCxaoZ8+e2rdvnz744AMlJCRo6NChmjRp0gnX9fl8uv/++7V+/XolJibK5/PpjTfeUHJystasWaNPP/1Uv//97/WrX/1Kq1at0oYNG7Rr165Tzrjs2LFDycnJkmq/yfDuu+8qOjpaQ4YM0RtvvKGWLVvq0ksv1Y033tjgOfrkk0+e8Fgff6rn+H87LVu2PPP7FCGHQkaTDRo0SJJ0zjnnqPC484Pbt2/Xhg0blJGRIUmKiIiQJCUnJ6tHjx6Sas9J/+xnP1N5ebmysrJ04MABffXVVxo+fHj9cU42RZydna0BAwbI7Xara9eu9dObycnJ6tKliyQpLi7utPKnpqaqoKBAFRUVuuyyy+rPxdXd9ve+971T/k5/+tOftGrVKrndbkVERCgqKkozZ87UrbfeqpYtW+r//u//lJmZqY0bN+q5555TTU2Nhg8frp/85Cd66KGHdNNNN+nyyy/XTTfddMq8VigtPbvrl5SctJAjIyP1wAMP6IEHHtCaNWv0m9/8RkuWLNF5552n1q1bS6p9c5Sbm3vCdY8eParU1FQlJiZKqn3sMjMztWzZMr333nsyxig1NVXZ2dnq37+/XC6Xzj///EaLsKioSBkZGXK73XrqqackSQMGDKh/g+rz+dS2bVtJteebDxw40OD6jT3Wxzv+3w6FDIlCDhlRUVGnHA025Xjf5dgPkRhjFBUVVT8F2Lt3b6Wnp+vZZ5+VVDuClxoW7Ny5c3X33Xfriiuu0MSJE2WMUZ8+fbRmzZr6EcXxx63TtWtXbd68WT6fT/v27auf3jyTD7Ycn793797697//Xf+zulFrXebGfqe8vDy9/vrr+uijj7R161bNnDlTXq9XP/rRjzR58mQ9/PDDWrp0qXr37q20tDRNmzat/roej0e///3vJdVOy06dOtX+c9TfFl6TtWhx0r/au3evOnbsqOjoaKWkpNTf/9nZ2SooKFBCQoL2799fX4bHateunXJyclRWVqaEhAT5fD717t1b119/vX79619L+s/jtW3bNhljtHv37kbPU9edQ66TnZ3d4HFxu93Kzc1Vy5YttWvXLnXq1OmE5/7xj/U333zT4DaOf+4BEoUcMlwu13dOMTe3tLQ03XTTTdq0aZMWLlyonj17Kj09XW63W6NHj9YDDzzQ4PLjx4/XPffco2effbb+61vjx4/XihUrNGzYMEVHR+vFF1/UuHHjNGvWLI0ZM0YdOnSQVHt+7+qrr64f0T7xxBNnnX/AgAEaNGiQ0tLSFBcXV3+uuk7//v1P+J3+53/+R+3bt9fIkSPrP7FbUlKiq6++Wj6fTy6XS88//7xat26tH//4x5o3b56k2vPOpaWlevLJJ1VVVaWxY8faX8ZS7ei2e3dpz57T/1CXVLtqV7du0rcj3cZs2bJF119/ff3MRt39n5qaqpkzZ2r79u2aNWtW/czEsdxutx566CGNGjVK8fHxuuOOOzRp0iStXr1aI0eOlCRNnTpVt912m0aPHq20tDQNHjxYbU4yWj+Vhx9+WD/84Q8lSTNmzFBcXFyD5+isWbNOeKz79u17xreD8MPCIEGusrJSWVlZOu+88/geMgLj8cele+4580L+619P+Snrk7n44ou1adOmM75euOG1IPgFwVtyAFaZPl2Kj5dOd0TvdtdePhjOkQMOopABnJlWraSXX64d9X5XKbvdtZdburT2ek3A6BjhgkIGcObGjKldDjMurrZwj/8wXd3P4uKkN9+UfvADZ3ICQYRCBtA0Y8ZIOTm154a7dWv4d9261f78m28oY+A08SlrAE3XqlXtB7Xuvrt20Y+SktqvNrVuzX7IwBmikAGcPZer9itRTfgaEYBaTFnjtLHb0+nJzs7WW2+95ffj1q3DHapC4fk1e/Zs9evXT5dddpluv/3207rO6TxfZs2apYqKiibnQnCgkOE3Z/KCeSZrNx/7gjl27FhNmDChSfmks9vt6XQ1VyGfjaBZK/sUguH5JUmPPPKI1q9fr8OHD2v9+vXfmel0ni9//etfv3MpWAQ/CjnENGVnp2NfKE73hSwUdnuaPHmyxowZo6uuukpPPfWUxowZo4kTJ0qS5s+frxtvvFFXXHGFhg0bVr9T0JQpU5SRkaFhw4Zp3759kk7cZejpp5/Wv//9b2VkZDRYmvHY7CtXrtTs2bMlSX369NGUKVM0aNAgLVy4UJL09ddf6/LLL1d6erp+8YtfNPgd9uzZozFjxigjI0P33HOPJDV6X65du1ZXXnmlrrrqqvrjBgsbnl+NPS6ff/65Lr74Yl111VW6+uqrGyyxebwLL7xQOTk5ysjI0L333qtx48apqKhI48ePV3p6uq6//npVV1ef8HyZP3++hg8frqFDh2r16tX190dpaanmz5+viRMn6oc//KG+973vnbCONoIb55BDTGMl9F2uu+66+qX9tm/fftrL/AX7bk99+/bVL3/5S02bNk0ej0erVq3ShAkTtHPnTkm1yzG++eabevvtt/WHP/xBc+bM0TPPPKP4+Hi9+uqr+vvf/67f/e53J+wy1KlTJ6Wmpuqxxx47rfvx0KFDevrpp+uX45w2bZp+8Ytf6NFHH9WgQYNOeJN03333ae7cuerevbvuvvtubdq0SX379j3hvpSk4uJirVu3LiCb1+8pLNOOvFL1apOobq0Szvp4Tj6/pMYfl1/96ldavHhx/RKqJ+P1erVhwwbdcMMNkqQrrrhCf/rTn/Too4/qhz/8oX7605/qd7/7nZYsWaI777yz/vmSm5urJUuW6L333lNFRYXGjx+vUaNGNTh2q1at9M9//lPPPPOMXnrpJc1swupnsBOFjCYL9t2e+vfvL0nq3Llzg/9fUFAgSbroooskSZdccon+/Oc/y+v16r777tPmzZtVVVWlvn37NrrL0MmcbEOBbt26KSkpqcHPc3Jy6u/f44+5Y8cO3XbbbZJq183+/ve/r4SEhBPuS6l2RiAQZSxJO/JKVeHxaUdeqV8K2cnnl9T443LkyBGdf/75kv7z/Dje/fffrz/+8Y/6wQ9+oIEDB0r6z45hu3fv1h133FH/s/Xr19c/X6Xa2Y/MzMz69bePHj160vslNTVVH3/88UnzI/hQyCGmKTs+RUb+52nQp0+f075eKO321FhZfv7555JqV4rq0aOHNm/erMOHD+v999/Xq6++qqVLlza6y1BjeaXassjMzJSk+in2k2VOTU3VF198oQEDBsjn8zW433r16qXHHntMXbp0kTFGXq9X99xzzwn3pXTqwvG3Xm0S60fI/uDk8+v426/Tvn177dq1Sz169NBnn32mq6+++oTLPPLII7ryyisb/KwuV48ePbRx40ZddNFF2rhxo3r27Nng9rt166b+/fvr9ddfl8vlqv+9TnW/IHRwDjnEREdHn/F/x28t11RpaWl68cUXNW3atAY7I40cOVKPPvroCZcfP368fvGLX2jixIkNdnuqrKzUsGHDNGrUKOXn59fvpFO3VaHUcLenyZMnN2mq/rtUV1dr7Nix+u1vf6v77rtPvXv31sGDBzV69Gi98847khruMjRy5Eg9//zz6tevnz799FNdd911KikpqT/e5Zdfrg8//FBjx47Vjh07Tnnbf/zjHzVr1ixlZGSc8CbrD3/4g376059q1KhRGj16tA4cONDofRlo3VolaFz39n4ZHTcmkM+vk3nwwQc1adIkjR8/XomJiae1Temx7rjjDr3++uv1571vvPHGBs+XmJgY3XjjjfW/17333ntGx0dwY7enIMcOL81j/vz59ecrgTo1NTWKioqSz+fTqFGjtGTJEnXs2NHpWJJ4LQgFjJAB4DR9/PHHSk9P15AhQ3T55ZdbU8YIDYyQgxzvigFIvBaEAkbIAABYgEIGAMACFDIAABagkHHaQmHx/2NdeumlfjkOAPgDC4PAbzZv3qzS0lJdcskl33nZ4xe7OJXly5erR48eSklJ0dixY8825lmr+xxkoFbAAhAeKOQQU11dLUmKioqqLwyv1yuv1yu3291gVa6TXbZuGcJTycjI0MCBA/Xpp5+qX79+mjt3rp5++mnl5+frjTfe0IoVK/Twww9r1apVMsboqaeeUr9+/TR48GANHTpURUVF+u///m/NnDlTVVVVGjx4sJ588kkZYzRjxgxt2bJFbrdbf/7zn7Vy5Up9+eWXuvzyy9WrV6/67wc/9thjevnll+VyuTRnzhxddNFFGjx4sC655BJ9/vnnuuaaa05YVGPBggWaM2eOLrjgApWVlUmScnNzdfvtt6u4uFidOnXSggUL5Ha7G+RYtmyZfvaznykuLk47d+7USy+9pN/85jfatm2bIiMjNW/ePJ1zzjmaMmWKvvnmG3k8Hi1evFgdOnTQtddeq+LiYhlj9NZbb6m0tPSE2/vkk080a9YsxcbGKj09XQ8++ODZPxkABBeDoFZRUWEyMzNNRUWFMcaY2bNnm9mzZ5vS0tL6y6xbt87Mnj3bvPLKKw2u+9BDD5nZs2ebgoKC+p99+OGHJ72trKwsc+211xpjjElPTzfr1q0zxhhz2WWXmcLCQjNv3jwzZ84cY4wxW7ZsMTfddJMxxpiDBw+aa665xhhjTNeuXc2uXbuMMcaUl5cbn89njDFmwoQJZufOnWb58uVm5syZ9bfp9XrN9OnTzdatW40xpv42Dh48aIYPH268Xq/Jysoy3//+940xxpx33nkmOzvbeL1e079//wb5PR6PGTBggKmsrDR5eXmmRYsWxhhj7r33XvPuu+8aY4x57LHHzIsvvnjSHM8++6wxxpjXXnvN/PrXvzbGGLNp0yZz1113GWOMKSsrM8YY88orr5gHHnjAfP311/X3Wd3v2tjt/epXvzKvvfZa/W0BZ+r41wIEH0bIaLJg21yibiOImJgYxcTEqHv37pKkzMxMffzxx3rwwQdVUVGhadOmqaysrNEcdZsEZGZmatmyZXrvvfdkjFFqamqjm090795d6enpuvnmm9W5c2c9+OCDjd7eXXfdpUceeUQvvPBC/baPAMILhRxi6qZoj11j97LLLtOll156Qrn9/Oc/P+GydYVzOoJtc4m6jSCqq6tVVlam3bt312edMGFCfQHX1NRoxYoVJ+Q4Nn/v3r11/fXX69e//nX9dRrbfKKqqkp33XWX3G63fvzjH2v9+vWN3p7H49Hjjz+u6upqXXTRRRQyEIYo5BATHR19ws8iIiIaPS98sss2VVpamm666SZt2rRJCxcurF/8v24/2QceeKDB5cePH6977rlHzz77bIPF/1esWKFhw4YpOjpaL774Yv3i/2PGjFGHDh0kNdxcwuVy6YknnvjOfBEREZo1a5aGDh2q3r1714+kf/nLX+qOO+7Qb3/7W0m1Gzs0luP47KtXr67fJm/q1Km68cYb6zefqNs1a+/evbrtttvk8/mUlJSkwYMHq2/fvifc3gcffKClS5eqrKxMN998cxMfAQDBjKUzgxzL5QGQeC0IBXwPGQAAC1DIAABYgEIOEZx5AMIbrwHBjw91Bbm6hT5KSkpYOQoIYyUlJZLUYPEfBBceuSAXGRmppKQk5eXlKS8vz+k4AByUlJREIQcxPmUdAowxqq6uZsoKCGMul0vR0dHMlAUxChkAAAvwoS4AACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAEJxKS6VZs6QhQ6TrrpO2b3c60VlxGWOM0yEAADgjPp80apT0wQeS1ytFREiJidKWLdK55zqdrkkYIQMAgs/27dK6dbVlLNX+b2mptGSJs7nOAoUMAAg+1dVn9vMgQCEDAIJP375S9+4yERGSJONySS6XNH68w8GajkIGAASf6GjpnXfkGjpUio2Vq2tX6ZVXpIEDnU7WZHyoCwAQtEpKSlRQUKBzzjlHbndwjzGDOz0AIKzt3LlT8+bNczqGXzBCBgAErerqahUXF6tt27ZORzlrFDIAABZgyhoAELQ+++wzbdy40ekYfhHpdAAAAJrq6NGj8ng8TsfwC6asAQCwAFPWAABYgEIGAAStxx9/XJ999pnTMfyCQgYABCVjjC666CK1b9/e6Sh+ERLnkHPLq3WkvErntYpXXGSE03EAADhjQT9CNsZofU6+vsor1ZbDxU7HAQAESGVlpfbt26eamhqno/hF0BeyJMVH1f4aCdGMjgEgXBw8eFDz5s1TSUmJ01H8IiSmrD0+nw4XFGn1m6/riiuuUJs2bZyOBABoZjU1NSosLFTr1q0VERH8A7KQWBgk0u1WSlKi3G63KisrnY4DAAiAqKgotWvXzukYfhMSI2QAQPjZsWOHDh8+rBEjRjgdxS9C4hzysYqKirRq1Sp5vV6nowAAmlF+fr5ycnKcjuE3IVfIFRUVyszMVH5+vtNRAADNKC0tTZMnT3Y6ht+E5JS11+sNiRP8AIDwEXIjZEmKiIhQRUWFvvzyS6ejAACayYIFC7RmzRqnY/hNSBayJG3dulWvvfaaKioqnI4CAGgGffv2VWpqqtMx/CYkp6yl2mnriooKJSYmOh0FAIDvFLIj5IiICCUmJsrj8ejo0aNOxwEA+JHX69W+fftCau2JkC3kOitWrNCSJUvk8/mcjgIA8JPS0lLNmzcvpL72FLJT1nUKCgrk8XhCajUXAAh3Xq9XBQUFatGihWJiYpyO4xchX8h1jDGqrq4OmQcOABBaQn7Kus7zzz+v119/3ekYAAA/yMnJ0VtvvRVSpyPDppAHDx6s733ve07HAAD4QVFRkXbv3i2Xy+V0FL8JmynrYxljQupBBIBwU+31yRijmMjQWZUxbEbIUu2HAJYsWaLPP//c6SgAgCYqq/Zoxe4jenP3EeVXVDsdx2/CqpAjIiLUrl07FgsBgCBWWuOV1xgZScXVHqfj+E1YTlkDAIKXMUa7Csrk8Rn1ap2oCHdonIIMy0KurKzU22+/rbS0NLVt29bpOAAAhNeUdZ2IiAgdPHiQPZMBANYIyxGyZM8nrXPLq1TjM+qQEGNFHgCAM8JyhCxJLpdL1dXV2rBhg7xeryMZ8soq9d7+fH34TYG+KQ2dBdIBAGcu0ukATiooKNDatWt1zjnn6Nxzzw3obb/66quqckUq4vxBkiTGxgAQ3sJ2yrpOZWWlYmNjm/12ysrKtG7dOg0dOlStWrXSV199Ja/Xq47deqrGZ5QSH82UNQCEsbCdsq4TGxsrn8+nrKwsvx+7qqpK+/fvlyRFRUVpz5499R8k6927t/r27avWcdFqz/ljAAh7YV/IkrRlyxYtXLhQRUVFZ30sY0z9Yufr1q3TCy+8IJ/Pp+joaN11113q1q3bWd8GACD0hP2UtST5fD4dOXJEHTp0OKvjeDwe/eMf/1BaWpoGDRqkkpISGWOUlJTkp6QAgFDFCFmS2+1Whw4dZIxRSUnJGV334MGDWrVqlYwxioyMVL9+/ZSSkiJJatGiBWUMADgtFPIx1q5dq2effVYez6nXRi0uLq4/F1xaWqrdu3eroqJCkjR8+HB17ty52bMCAEILU9bHKCgoUO6RI+q5fbu0f780cKA0fLikhguJzJ07Vx07dtSECRNUd/fxoSwAwNmgkI/l9UoTJkivvSbjcslljDR7tnJuu00vvviibr/9drVo0UKHDx9Wq1atFBMT43RiAECIoJCP9cIL0g03nPDjqq1btXr/fl122WWcEwYANIuwXqnrBFlZUkRE7Uj5GDGHDmncuHEOhQIAhAM+1HWsfv1OKGNFREi9ejmTBwAQNijkY40bJ91993/+HBEh/f3vUmqqc5kAAGGBc8jHycnJUftDhxR16JB0wQUSK2sBAAKAEfIxPB6PFi1apPWlpdKVV1LGAICAYYR8nLy8PMXExCgxMdHpKACAMEIhAwBgAaasv3XgwAH94x//UHFxsdNRAABhiEL+lsvlUkpKClPVAABHMGUNAIAFGCFL2rNnj/bt2+d0DABAGGPpTEmffPKJXC6Xzj33XKejAADCFFPWqt1asbKyUnFxcU5HAQCEqbAv5OrqakVHRzsdAwAQ5sL6HHJFRYX+/Oc/a/v27U5HAQCEubAu5IiICI0cOVKpbB4BAHBY2E9ZAwBgg7AdIefk5GjNmjXyeDxORwEAIHwLOTc3V7t27VJERITTUQAACO8pa2OMXC6X0zEAAAjPEXJubq48Hg9lDACwRtgVsjFGzz//vFasWOF0FAAA6oXllPXRo0fldrvVpk0bp6MAACApTAsZAADbhNWUdWlpqebNm6ejR486HQUAgAbCqpArKysVExOjxMREp6MAANAAU9YAAFggbEbIhw4dUk5Ojnj/AQCwUdgU8ieffKLXX3/d6RgAADQqbKasfT6fSktLlZSU5HQUAABOEBaF7PV6WbMaAGC1kJ+y9vl8euqpp/TZZ585HQUAgJMKi0K++OKL1alTJ6ejAABwUmExZQ0AgO1CeoR8NL9Qa957X1VVVU5HAQDglCKdDtBc8iuq9f6RcvnadFW5x6eYGKcTAQBwciE7Qi6p9kgul9yRkaoO3V8TABAiQnaEnJoUp/IaryLdLqXERzsdBwCAU+JDXQAAWIC5XAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgIPjU10pEjks/ndBIA8BsKGcHlueekli2l9u2lzp2lDz90OhEA+IXLGGOcDgGclo0bpSFDpLqnrNstJSVJe/ZIycnOZgOAs8QIGcFj7draEq7j80mFhdIXXziVCAD8hkJG8GjZsvHzxq1aBTwKAPgbhYzgceONUrduUkRE7X8ul3TVVdKAAU4nA4CzxjlkBJXKAwd04J57dI6k6EsukWbOlKKinI4FAGct0ukAwJkocLm0fMgQ3XrrrYpmqhpACGGEjKBjjJHL5XI6BgD4FeeQEVQ8Hg9lDCAkUcgIGsXFxfr973+vrKwsp6MAgN9RyAgakZGRuvzyy9W+fXunowCA33EOGQAACzBCRlAwxuijjz5SYWGh01EAoFlQyAgKxcXFWr16tfLy8pyOAgDNgilrBA2v1yuXyyW3m/eRAEIPhYygwHePAYQ6hhqwntfr1Zw5c7R9+3anowBAs6GQYT2Px6MLL7xQrVu3djoKADQbpqwBALAAI2RYb+fOnSopKXE6BgA0KwoZVvN4PHrhhRf01VdfOR0FAJoVU9awXkVFhVwul2JjY52OAgDNhkIGAMACTFnDai+88IK2bNnidAwAaHYUMqzl8/kUFxenmJgYp6MAQLNjyhoAAAswQoa1Dh8+rKqqKqdjAEBAUMiwkjFGS5Ys0erVq52OAgABwZQ1rGSMUX5+vtxut5KTk52OAwDNjkIGAMACTFnDSmvXrtUXX3zhdAwACJhIpwMAjSkqKlJUVJTTMQAgYJiyBgDAAkxZwzplZWXy+XxOxwCAgKKQYZ2lS5fqpZdecjoGAAQUU9awTk5OjowxSk1NdToKAAQMhQwAgAWYsoZVtm3bpq1btzodAwACjkKGVbKysvT11187HQMAAo4pa1jHGCOXy+V0DAAIKEbIsIbX65UkyhhAWGKlLlihuKpG73x9QN6qSl0zsKei3LxXBBBeeNWDFQ6VVkmR0YpISFJhZY3TcQAg4ChkWKGlalRycL+STLXaxEU7HQcAAo5ChhW+2Zulve+t1GVdUuTmHDKAMEQhwwp5eXnq1KmT4uLinI4CAI7ga0+whsfjUWQknzMEEJ4oZDjO6/XK7XbzdScAYY0pazjuo48+0lNPPSXeGwIIZ8wPwnFdu3ZVbGwsI2QAYY0pawAALMCUNRx16NAhffzxx/XLZgJAuKKQ4aht27bp/fffl5ulMgGEOV4F4ag9e/aoW7dunD8GEPYoZDimvLxcBw8eVLdu3ZyOAgCOo5DhmKysLEmikAFAFDIctGfPHrVt21ZJSUlORwEAx1HIcEzd+WMAAIUMh+Tn56uwsJBCBoBvUchwxJ49e+RyudS1a1enowCAFVipC47wer06cuSIOnbs6HQUALAChQwAgAWYskbAHThwQIsWLVJJSYnTUQDAGhQyAs7n8ykyMlLx8fFORwEAazBlDQCABRghI6BqamqUlZXF7k4AcBwKGQG1d+9ePffcc8rPz3c6CgBYhUJGQO3evVstWrRQ27ZtnY4CAFahkBFQWVlZbLeIsGKMUW55tcprOE2DU6OQETClpaU6fPgwy2UirHxdUKb39ufpneyjqvH6nI7TZDVenw6UVgb172C7SKcDIHzs2bNHEtstIrxUf1tgXp9RdY1HURHRDidqmg/25aqg2qu2cdEacW4bp+OEJEbICJisrCylpKQoMTHR6ShAwPRu00IDUpLUvjJPC/75rKqqqpyOdMZKS0t1ODdXkuTlm7LNhhEyAsIYo927d6tv375ORwECKsLtUvfkBLXydVT1BRcoOjq4RshlZWV67rnnVG2k7199nXq0T3Y6UshihIyAyMvLU0lJCdPVCFtt2rRRRkaGXC6X8vPzFQxrMpWVlWnBggWqqKjQ1BuuV79zUhQXFeF0rJBFISMg4uPjdcUVV6hLly5ORwEcVVJSor/97W/6/PPPnY5ySnUj4/Lyck2fPp2vKgYAS2cCQIBt375dPXr0UFRUlNNRGlVeXq7nnntOpaWlmj59utq1a+d0pLDACBnNzuv16q233lJeXp7TUQAr9OnTR1FRUSosLNT+/fudjtNAeXm5Fi5cqJKSEso4wChkNLuioiJ9+eWXqqysdDoKYJV3331XK1eutOZ8ckVFhRYuXKji4mLK2AFMWSMg6p5mrNAF/EdlZaW8Xq8SEhKcjlJfxoWFhZo+fbrat2/vdKSwwwgZza6yslIul4syBo4TGxurhIQEVVZWatWqVaqpqXEkR2VlZX0Z33TTTZSxQyhkNKuqqio9+uij2rZtm9NRAGsVFBQoMzPTkV3Qji/jDh06BDwDarEwCJpVdna2fD6fOnXq5HQUwFodO3bU3XffrcjISBljAjabVFlZqUWLFik/P58ytgAjZDSrPXv2qFWrVkpOZnUf4FQiIyPl8/n06quvatOmTc1+e1VVVfrXv/6lvLw8TZs2TR07dmz228SpUchoVnv27GG7ReA0uVwuxcbGNvvymnVlfPToUU2bNo0ZLEswZY1mU1xcrNzcXGVkZDgdBQgKLpdLY8aMqf9zVVWVYmJi/HobdWV85MgRytgyjJDRPLKydPRf/1JyXp7OO+88p9MAQeezzz7T3LlzVVFR4bdjVldXa/HixTp8+LCmTp2qzp07++3YOHuMkOF/TzwhzZql7sZopiR17izdd5/TqYCg0rNnT1VXVys2NtYvx6sr40OHDmnq1Kk655xz/HJc+A8Lg8C/tm2T+veXjn9abdwoXXyxM5mAIHfo0CGlpKTI7W7apGZNTY0WL16sAwcOaOrUqUpNTfVzQvgDU9bwr23bTixjSdqyJfBZgBBQVlamf/7zn9q4cWOTrl9TU6MlS5bom2++0ZQpUyhjizFlDb+q7tBBjX4+lG0XgSZJSEjQ5MmTm1SkdWWck5OjKVOm6Nxzz22GhPAXRsjwm7y8PD2zbZs+/3Zq2lf3VafJk6VRoxxMBgS3rl27KiIiQrm5udq1a9dpXaempkbPP/+8cnJyNHnyZPYiDwKMkOEXO3fu1NKlS5WYmKjUN9+UPv5YmxcvVmmHDhrxpz9JfA8ZOGsbNmzQ4cOH1aNHj1N+t9/j8ejf//639u3bpylTpqhr166BC4kmo5BxVowxev/997VmzRr16tVL11xzTe2nQq+8UkejorRz506NoIwBvxg3bpy8Xu9plfHevXs1efJkyjiIMGWNs7Jy5UqtWbNG6enpuuGGGxp8RaNdu3YqKCiQx+NxMCEQOqKiohQbG6uysjItX778hD3GPR6PXnjhBWVnZ2vSpEmsARBkGCGjSeoWwB88eLC6deumXr16nXCZtm3byhijvLw8tnMD/KiiokLffPONivLyFLt+vXTggDwDB+qFAwe0Z88eTZo0Sd26dXM6Js4QhYwztnv3bm3YsEGTJk1S+/btT1q27dq1kyQdPXqUQgb8qG3btrrz9tvlHjdOWrNGxu1WpM+nDqNH65K5c9W9e3enI6IJKGScsbi4OMXFxcnr9Soy8uRPobi4OCUkJOjo0aMBTAeEB/fixTJr18olyeXzSZJGvvOOXH5a2QuBxzlknJaqqiqtXr1aHo9HnTp10nXXXXdai95fccUV6tOnTwASAmEmO1uu494Qu4yR9u93KBDOFiNkfKe8vDw9//zzKi4uVp8+fc5o39QLLrigGZMBYax/f6mmpv6PRpIrOlrq2dO5TDgrjJBxSjt37tQzzzwjY4zuuOOOM97EPD8/X++//758306pAfCTiROln/yk/o+uyEiZBQtUEBHhYCicDQoZjTLG6L333tOSJUvUpUsX3X777Wrbtu0ZH6eoqEgbNmxQSUlJM6QEwpjLJf3tb9IXX0grVkhZWdrcq5eefvppFRcXO50OTcBuTzhBVVWVXnnlFW3fvl3p6elKT08/5UIEp1L39Grq9QGc2iuvvKKamhpdd911qqmp0c6dO9W3b1+nY6EJKGQ0UFxcrEWLFqmoqEgTJkxQ7969nY4E4BS2b98uj8ejfv36Nfj5V199pZSUFLVu3dqhZDhTfKgLDSQkJKhTp066/vrrmzRF3Zhly5YpIiJCV111lV+OB+A/GvsWg9fr1bvvvqsePXpozJgxDqRCU1DIkDFGH3zwgbp3765OnTrpmmuu8evxIyIidOjQIb8eE0Ctffv2KTk5WS1atKj/WUREhG6++WbFxcU5mAxnig91QV6vVzt27ND+Zvr+Ytu2bZWbmyvOjgD+t2jRIn355Zcn/DwhIUFut1sHDhzQkiVLVF1d7UA6nAlGyGEsLy9PHo9H7du31y233KKIZvq6RLt27VRTU6OioiK1atWqWW4DCFd33nnndy7S4/V65fV6A5QITcUIOUzt2rVLzzzzjN555x1JarYylhquaQ3Av5KTkxUfH3/Sv+/UqZOmTp2quLg4VVRUsCaAxSjkMFP3/eLFixerS5cuuvbaa5v9Nlu2bKmoqCjl5uY2+20B4aSwsFBvvvnmaX3P3+fzacGCBXr77bcDkAxNwZR1mKj2+rTlcKGydn6lzHVrNGLECGVkZATk+8Eul0tt2rRhhAz4WUVFhfbu3auhQ4d+52XdbrdGjBihlJSUACRDU/A95DCxI69UX+bWvos+z5RqUO/Arne7dOlSFRYW6tZbbw3o7QI4kdfr1c6dO9n4xTJMWYeJ1nFRckmKdrt0Qc/A75WakpLCh0oAS2RmZurll19WQUGB01FwDEbIYaTG55NbLkW4A7+MpTGG5TMBP1u/fr0yMzN1xx13nNH1jDHKz89XmzZtmikZmoJzyGEkyu3chEhdGVPMgP907txZkZFn/jJe97kOY4zWrVunTp066fzzz2+GhDgTTFkjIIwxeuKJJ7Rp0yanowAho2vXrhoyZEiTr2+M0ZEjR/gGhCWYskbAfPjhhzr33HPVuXNnp6MAIeHgwYOKjY1VcnJyk49x7KxVTU2NoqKi/BUPZ4gRMgImLS2NMgb86LXXXtMHH3xwVseoK+Ndu3Zpzpw5Kiws9EMyNAUjZARMYWGh9u7dqwEDBjgdBQgJRUVFcrlcSkpKOutjlZeXa8Omz+TpfL6iI9waltpa0RGM2QKJexsBs3//fi1fvlyVlZVORwFCQsuWLf1SxpIUHx+vrv0GqdzjVWFVjfIr2Ywi0ChkBAxrWgP+4/F49Oabb/p1a9NzWsSqXXy0OiXGql3cqTesgP9RyAiYuu888olO4OxVV1dr7969Ki8v99sxYyMjNDy1jS7tnOzIegXhju8hI2CioqKUnJzMCBnwg/j4eN15551Ox4AfMUJGQLVr144RMgA0gkJGQLVt25YRMuAHX331lf7yl7+oqqrK6SjwEwoZAdWuXTsVFhaquppPcAJnIzk5WQMGDFB0dLTTUeAnnENGQLVt21aSlJeXp44dOzqcBghe7du3V/v27Z2OAT9ihIyAateunUaPHq2EhASnowBBLS8vj9M/IYaVugAgCC1btkyFhYW65ZZbnI4CP6GQEXA5OTkqKSlRnz59nI4CBK2SkhLV1NSodevWTkeBn3AOGQG3detW7du3j0IGzkKLFi2cjgA/Y4SMgCuvrFJelVftEmIUGxnhdBwgKK1Zs0ZdunRRt27dnI4CP2GEjID7/GiZDpdXqWVMpL7ftZ3TcYCglJ2d7beNJWAHChkBZ1Q7KcPcDNB0fJgr9DBljYCr9vp0sLRSKQkximPKGgAk8T1kOCA6wq0uLeMpY6CJjh49qr/85S9+3XoRzqOQASDIxMTEaODAgUpMTHQ6CvyIKWsAACzACBkAgkxxcTHT1SGIQgaAILN582YtXLjQ6RjwM6asASDIlJeXq7S0VCkpKU5HgR9RyAAAWIApawAIMhs3btTWrVudjgE/o5ABIMjk5OTo4MGDTseAnzFlDQCABRghA0AQqfb69HV+mQora5yOAj9jcwkACCKbDxcqp6RKbhlddX5HuV0upyPBTxghA0AQiY2sHUfFREaIKg4tnEMGgCDiM0Z5FdVKio5STCRjqlBCIQMAYAHeXgEAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAFKGQAACxAIQMAYAEKGQAAC1DIAABYgEIGAMACFDIAABagkAEAsACFDACABShkAAAsQCEDAGABChkAAAtQyAAAWIBCBgDAAhQyAAAWoJABALAAhQwAgAUoZAAALEAhAwBgAQoZAAALUMgAAFiAQgYAwAIUMgAAFqCQAQCwAIUMAIAF/h+XKg07LF/53wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.plot_interaction_network(interaction_graph, network_data, network_stats = network_stats)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUEAAAEmCAYAAAD8/yLTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoAUlEQVR4nO3de1xN+f4/8NdWKezaRaiU26Sdu2jkcgYRueeMMU2UXGfcwhiDEMatIzPjMi4jupiZEOM6MSRTTGMcwo5jGjJHMqO+GJRKRa3fH36tYyvpvi/r9Xw81uNhr/1Zn/VZPc68zmftvfbnLRMEQQARkUTV0vQAiIg0iSFIRJLGECQiSWMIEpGkMQSJSNIYgkQkaQxBIpI0hiARSZqhpgegqwoLC3H37l2YmppCJpNpejhE9BJBEPDkyRPY2NigVq3S53oMwQq6e/cu7OzsND0MIirFnTt3YGtrW2obhmAFmZqaAnjxRzYzM9PwaIjoZZmZmbCzsxP/Oy0NQ7CCim6BzczMGIJEWqosH1XxixEikjSGIBFJGkOQiCSNIUhEksYQJCJJYwgSkaQxBIlI0vicYCUFBgbCxMRE08OockuXLtX0EIhqBGeCRCRpDEEikjSGIBFJGkOQiCRNq0Lw7NmzMDAwwMCBA4u9l5+fj6CgIHTs2BF169aFpaUlevbsibCwMDx79gwymazUbdy4cQCgts/Q0BBNmzbFnDlzkJeXV8NXS0TaQKu+HQ4NDYWfnx927NiB1NRUNG3aFMCLAHR3d0diYiJWrFiBnj17wszMDOfOncPnn38OJycnpKWlif1ERkZiyZIluH79urivTp064r/DwsIwcOBAPHv2DImJiRg/fjzq1auHFStW1NzFEpFW0JoQzM7Oxt69e3HhwgWkp6cjPDwcS5YsAQCsX78eZ86cQUJCApycnMRjWrZsiVGjRiE/Px/16tUT9ysUCshkMlhZWZV4LnNzc/E9Ozs7DB8+HJcuXarGqyMibaU1t8ORkZFQKpVQKpXw9vZGWFgYBEEAAERERMDNzU0tAIsYGRmpBWB53bhxA7GxsXBxcSm1XV5eHjIzM9U2ItJ9WhOCISEh8Pb2BgAMHDgQWVlZOHXqFAAgOTkZjo6OVXYuLy8vyOVymJiYQKlUom3btvD39y/1mMDAQCgUCnHj0vpE+kErQvD69es4f/48PvjgAwCAoaEhPD09ERoaCuBF0ZSqLGa0bt06qFQqJCYmIioqCjdu3ICPj0+px/j7+yMjI0Pc7ty5U2XjISLN0YrPBENCQvD8+XM0adJE3CcIAoyMjPDo0SM4ODggKSmpys5nZWUFe3t7AIBSqcSTJ0/g5eWFlStXivtfZWxsDGNj4yobAxFpB43PBJ8/f45vvvkGX3zxBVQqlbglJiaiWbNmiIiIwOjRoxETE4PLly+XeHx2dnalxmBgYAAAePr0aaX6ISLdo/GZYFRUFB49eoSJEydCoVCovffee+8hJCQE586dw9GjR9GvXz+sWLEC//jHP2BqaoqEhASsWbMGISEh6NSpU5nP+fjxY6Snp6OwsBDJyclYvnw5HBwc0Lp16yq+OiLSdhoPwZCQELi5uRULQAAYOXIkVq9ejWvXruHkyZNYt24dtm3bhrlz56Ju3bpo3bo1Zs6ciXbt2pXrnOPHjwcA8TGaXr16YfXq1TA01Pifg4hqmEwoeg6FyiUzMxMKhQILFizgUlpEWqbov8+MjIw3lsTV+GeCRESaxJlgBZXn/2mIqGZxJkhEVEYMQSKSNIYgEUkaQ5CIJI0PxlUSq80R6TbOBIlI0hiCRCRpDEEikjSNh+C4ceMgk8kwZcqUYu9NmzZNrUhSkdIKMqWkpKgVU7KwsECvXr1w+vRpAChzQSYikgaNhyDwos7Hnj171Jayys3Nxe7du8ViSy8rKsgUHx+P1NTUEvuMiYlBWloaTp8+DTMzMwwePBi3bt1CWlqauK1fvx5mZmZq+zZs2FBt10lE2kcrQrBz585o2rQpDhw4IO47cOAA7OzsitUVKSrINHXqVAwdOhTh4eEl9tmgQQNYWVmhQ4cO2LZtG3JychAdHQ0rKytxe7kg08v7iEg6tCIEgRfLW4WFhYmvQ0NDMWHChGLtSivI9Dp169YFADx79qzC42OhJSL9pDUh6OPjg/j4eKSkpOD27dv45ZdfxMJLLyutIFNJsrOz4e/vDwMDA/Tu3bvC42OhJSL9pDUPS1taWmLIkCHYuXMnBEHAkCFDYGlpqdamqCBT0W3zywWZ3Nzc1Nr26NEDtWrVQk5ODqytrREeHo727dtXeHz+/v6YM2eO+DozM5NBSKQHtCYEAWDChAmYMWMGAGDz5s3F3n9TQSYLCwtxf2RkJNq0aQNzc3M0aNCg0mNjoSUi/aQ1t8PAi9vb/Px85Ofnw93dXe29shRkepmdnR3eeuutKglAItJfWjUTNDAwEEtrFlWAK1KWgkxFs0giorLSqpkgAJiZmZW4EuybCjKpVCpcunSpJoZIRHqEy+tXEAstEWkvLq9PRFRGDEEikjTeDlcQq80RaS/eDhMRlRFDkIgkjSFIRJKmVQ9L66TA0YCxkaZHUfWWHdT0CIhqBGeCRCRpDEEikjSGIBFJmtaGYFEBpqKtQYMGGDhwIK5cuSK2kclkOHTokNprExMT3L59W62vESNGqBVQOnPmDIYNGwYbG5tifRCRtGhtCAIvltYqKoB06tQpGBoaYujQoaUeI5PJsGTJklLbZGdno2PHjti0aVNVDpeIdJBWh6CxsbFYAKlTp06YP38+7ty5g/v377/2GD8/P3z33Xe4evXqa9sMGjQIK1euxLvvvlsdwyYiHaLVIfiyrKwsREREwN7evtSFUnv06IGhQ4fC39+/BkdHRLpKq58TjIqKglwuB/DiFtba2hpRUVGoVav07A4MDESHDh3w888/45133qmSseTl5SEvL098zWpzRPpBq2eCrq6u4jL6//73vzFgwAAMGjSo2Bcfr2rTpg3Gjh2L+fPnV9lYWG2OSD9pdQjWq1cP9vb2sLe3R9euXRESEoLs7Gxs3779jcd+9tlnuHz5cpV98+vv74+MjAxxu3PnTpX0S0SapdW3w6+SyWSoVasWnj59+sa2dnZ2mDFjBhYuXIi33nqr0udmtTki/aTVM8G8vDykp6cjPT0dSUlJ8PPzQ1ZWFoYNG1am4/39/XH37l3ExMSo7c/KyhJvswHg1q1bUKlUSE1NrepLICItp9UhePz4cVhbW8Pa2houLi64cOEC9u3bhz59+pTp+Pr162P+/PnIzc1V25+QkAAnJyc4OTkBAObMmQMnJ6c3Pl9IRPqHK0tXkLhy7YIhMOMqMkRahStLExGVEUOQiCRNp74d1kr+uwAWWiLSWZwJEpGkMQSJSNIYgkQkaQxBIpI0fjFSWaw2R6TTOBMkIkljCBKRpDEEiUjSqjUEy1IxThAEBAcHw8XFBXK5HObm5nB2dsb69euRk5Oj1t+ff/6J2rVrw9HRscTzvXwuuVyOjh07Ijw8XK1Nbm4uxo0bh/bt28PQ0BAjRoyo6ssmIh1S7TPBN1WM8/HxwezZs+Hh4YHY2FioVCoEBATg8OHDiI6OVusrPDwc77//PnJycvDLL7+UeL6wsDCkpaUhMTERnp6eGD9+PE6cOCG+X1BQgDp16mDmzJlwc3OrnosmIp1R7d8OF1WMAwArKyvMnz8fvXr1wv379xEbG4uIiAgcOnQIHh4e4jHNmzfH8OHD1ep4CIKAsLAwbNmyBba2tggJCUHPnj2Lnc/c3Fw838KFC/HFF18gOjoa7u7uAF6sVr1161YAwC+//ILHjx9X16UTkQ6o0UdkXq0YFxERAaVSqRaARWQyGRQKhfg6NjYWOTk5cHNzg62tLVxcXLBhwwaYmpqWeK6CggLs378fDx8+hJFR5R9hYaElIv1U7SFYWsW45ORkKJXKMvUTEhKCDz74AAYGBmjbti3s7e0RGRmJSZMmqbXz8vKCgYEBcnNzUVBQgPr16xdrUxGBgYH47LPPKt0PEWmXav9MsLSKcYIgQCaTvbGPx48f48CBA/D29hb3eXt7IzQ0tFjbdevWQaVS4eTJk+jUqRPWrVsHe3v7Sl8HCy0R6adqnwkWVYwr0qVLFygUCmzfvh0ODg5ISkp6Yx+7du1Cbm4uXFxcxH2CIKCwsBC//fYb2rRpI+63srISK9Tt27cPTk5OcHZ2VmtTESy0RKSfavw5wZcrxo0ePRo3btzA4cOHi7UTBAEZGRkAXtwKf/LJJ+KMUqVSITExEa6uriXOBovY29tj5MiR8Pf3r7brISLdVu0zwaKKcQDw6NEjbNq0SawY17t3bxw8eBBeXl4ICAhA//790bBhQ1y9ehXr1q2Dn58fmjdvjkuXLiEiIqLY84FeXl5YtGgRAgMDX/vlxyeffIKOHTsiISEBzs7OAIDffvsN+fn5ePjwIZ48eSJWnevUqVO1/R2ISDtVewgWVYwDAFNTUzg6OqpVjNu1axeCg4MRGhqKlStXwtDQEK1atcLYsWPh7u6OefPmoU2bNiU+ID1ixAhMnToVP/zwA959990Sz9++fXu4ublhyZIlOHbsGABg8ODBuH37ttimqOoca04RSQ+rzVUQq80RaS9WmyMiKiOGIBFJGhdVrSxWmyPSaZwJEpGkMQSJSNIYgkQkafxMsJICAwNhYmKi6WFUuaVLl2p6CEQ1gjNBIpI0hiARSRpDkIgkTedCcNy4caUWR7p8+TJGjRqFxo0bw8TEBA4ODpg8eTJu3LgBAEhJSYFMJhMXTQCAJ0+eoE+fPnB0dOQ6gUQSo3MhWJqoqCh069YNeXl5iIiIQFJSEr799lsoFAoEBASUeMz9+/fh6uqKrKwsxMfHw87OroZHTUSapDffDufk5GD8+PEYPHgwDh7834//W7RoARcXlxILKt25cwf9+/eHtbU1jhw58tp6JUSkv/RmJnjixAk8ePAA8+bNK/F9c3NztdfXr19Hz5494ejoiOPHjzMAiSRKb2aCycnJAPDawuyvGjt2LHr06IH9+/fDwMDgje1ZbY5IP+nNTLC8yyJ6eHggPj4e+/fvL1P7wMBAKBQKceNnh0T6QW9C0MHBAQDw+++/l6n9woULsXTpUowZMwaRkZFvbM9qc0T6SW9uhwcMGABLS0sEBQWpfTFS5PHjx8U+F1y8eDEMDQ0xZswYFBYWwsvL67X9s9ockX7SyRDMyMhQe84PAOrXr48dO3Zg1KhRGD58OGbOnAl7e3s8ePAAe/fuRWpqKvbs2VOsrwULFsDAwAA+Pj4oLCzEmDFjaugqiEgb6GQIxsXFicWRivj6+iI8PBxnz55FYGAgRo8ejczMTNjZ2aFv375YuXLla/v79NNPYWBgAF9fXxQWFsLHx6e6L4GItAQLLVVQUSGXBQsWcBUZIi3DQktERGXEECQiSePtcAWVZ7pNRDWLt8NERGXEECQiSWMIEpGk6eRzgtqEhZaIdBtngkQkaQxBIpI0hiARSRpDkIgkTSdC8HUV5uLi4iCTycT6IYIgIDg4GC4uLpDL5TA3N4ezszPWr1+PnJwcAMCyZcvQqVMntX5+/vlnmJubw8/Pr9yLsxKRbtOJECwrHx8fzJ49Gx4eHoiNjYVKpUJAQAAOHz6M6OjoEo85evQo3N3dMWvWLHz11VeQyWQ1PGoi0iS9eURm7969iIiIwKFDh+Dh4SHub968OYYPH15iTZBdu3Zh/PjxWLt2LWbOnFmTwyUiLaE3IRgREQGlUqkWgEVkMhkUCoXavs2bN2POnDkICQmBt7f3G/tnoSUi/aQzIRgVFQW5XK62r6CgQPx3cnIylEplmfpKSkrCjBkzyhyAwIuHoj/77LOyD5iIdILOfCbo6uoKlUqltu3YsUN8XxCEMn+eZ2tri86dOyMoKAhpaWllOoaFloj0k87MBOvVqwd7e3u1fX/++af4bwcHByQlJZWpL1NTU8TExGDAgAHo06cPYmNjYWNjU+oxLLREpJ90Zib4JqNHj8aNGzdw+PDhYu8JgoCMjAy1fRYWFoiJiYGFhQX69OmDv/76q6aGSkRaRG9C8P3334enpye8vLwQGBiIhIQE3L59G1FRUXBzc0NsbGyxYxQKBaKjo2FpaYk+ffqozSyJSBr0JgRlMhl27dqFL7/8EgcPHkTv3r3RoUMHLFu2DB4eHnB3dy/xODMzM5w4cQKNGzdGnz59+FkfkcRwef0KYrU5Iu3F5fWJiMqIIUhEksbb4QpitTki7cXbYSKiMmIIEpGkMQSJSNJ05mdz2kpfq83pOz4CREU4EyQiSWMIEpGkMQSJSNJ0LgTv3buHjz76CE2bNoWxsTGsrKzg7u6OX3/9FcCL5fRlMhlkMhnq1KkDR0dHrF27tlgBpcuXL2PUqFFo3LgxTExM4ODggMmTJ+PGjRuauCwi0hCdC8GRI0ciMTERO3fuxI0bN3DkyBH06dMHDx8+FNssX74caWlpSEpKwty5c7Fw4UIEBweL70dFRaFbt27Iy8tDREQEkpKS8O2330KhUCAgIEATl0VEGqJT3w4/fvwY8fHxiIuLQ+/evQEAzZo1Q9euXdXamZqawsrKCgAwadIkbN26FdHR0fjoo4+Qk5OD8ePHY/DgwTh48KB4TIsWLeDi4iKW7yQiadCpmaBcLodcLsehQ4fUih69jiAIiIuLQ1JSEoyMjAAAJ06cwIMHDzBv3rwSjzE3Ny9xf15eHjIzM9U2ItJ9OhWChoaGCA8Px86dO2Fubo6ePXti4cKFuHLlilq7+fPnQy6Xw9jYGK6urhAEQSypmZycDABwdHQs17kDAwOhUCjEzc7Ormouiog0SqdCEHjxmeDdu3dx5MgRuLu7Iy4uDp07d0Z4eLjY5tNPP4VKpcLp06fh6uqKRYsWoUePHgBQ7AuSsmKhJSL9pHMhCAAmJibo378/lixZgrNnz2LcuHFqvwCwtLSEvb09unfvjv3792PdunWIiYkB8KIgEwD8/vvv5TqnsbExzMzM1DYi0n06GYKvatOmDbKzs0t8z8LCAn5+fpg7dy4EQcCAAQNgaWmJoKCgEtvzixEiadGpEPz777/Rt29ffPfdd7hy5Qpu3bqFffv2ISgoCB4eHq89bvr06bh+/Tr279+PevXqYceOHTh69CiGDx+OmJgYpKSkICEhAfPmzcOUKVNq8IqISNN0KgTlcjlcXFywbt069OrVC+3atUNAQAAmT56MTZs2vfa4hg0bwsfHB8uWLUNhYSE8PDxw9uxZGBkZYfTo0XB0dISXlxcyMjKwcuXKGrwiItI0rixdQfpeaEnfcRUZ/caVpYmIyoghSESSxtvhCmKhJSLtxdthIqIyYggSkaQxBIlI0nRqKS2tFDgaMDbS9CiI/mfZwTe3IRFngkQkaQxBIpI0hiARSRpDkIgkTStCsKg63Ou2cePGAQBiY2Ph6uqK+vXro27dumjVqhV8fX3x/PlzsS9BEBAcHAwXFxfI5XKYm5vD2dkZ69evR05ODgBg+/bteOedd2BhYQELCwu4ubnh/Pnzmrh0ItIwrQjBtLQ0cVu/fj3MzMzU9m3YsAHXrl3DoEGD8Pbbb+PMmTO4evUqvvrqKxgZGaGwsFDsy8fHB7Nnz4aHhwdiY2OhUqkQEBCAw4cPIzo6GgAQFxcHLy8vxMbG4tdff0XTpk0xYMAA/PXXX5r6ExCRhmjdz+bCw8Mxe/bsYoubrl+/Hhs2bMCtW7dee+zevXvh6emJQ4cOFVtfUBAE8ac0ryooKICFhQU2bdqEsWPHlmmc4s9yFgyBGR+RIW3CR2T082dzVlZWSEtLw5kzZ17bJiIiAkqlssQFVmUyWYkBCAA5OTl49uwZ6tev/9q+WW2OSD/pTAiOGjUKXl5e6N27N6ytrfHPf/4TmzZtUguj5ORkKJXKcve9YMECNGnSBG5ubq9tw2pzRPpJZ0LQwMAAYWFh+PPPPxEUFAQbGxusWrUKbdu2RVpaGoAXt7wymaxc/QYFBWH37t04cOBAqYujstockX7SmRAs0qRJE/j4+GDz5s347bffkJubi6+//hrAi0pySUlJZe7r888/x+rVqxEdHY0OHTqU2pbV5oj0k86F4MssLCxgbW0tVpobPXo0bty4gcOHDxdrKwgCMjIyxNdr167FihUrcPz4cTg7O9fYmIlIu+hMCG7btg1Tp05FdHQ0/vjjD1y7dg3z58/HtWvXMGzYMADA+++/D09PT3h5eSEwMBAJCQm4ffs2oqKi4ObmhtjYWAAvboEXL16M0NBQNG/eHOnp6UhPT0dWVpYmL5GINEBnVpHp2rUr4uPjMWXKFNy9exdyuRxt27bFoUOH0Lt3bwAvvgHetWsXgoODERoaipUrV8LQ0BCtWrXC2LFj4e7uDgDYsmUL8vPz8d5776mdY+nSpVi2bFlNXxoRaZDWPSeoK/icIGktPieon88JEhFVB525HdZa/rsAflNMpLM4EyQiSWMIEpGkMQSJSNIYgkQkafxipLJYbY60DR+RKRfOBIlI0hiCRCRpDEEikrQKheDZs2dhYGCAgQMHqu1PSUlRK5BkamqKtm3bYvr06UhOTi5XXy/3Z2hoWKz+R1paGgwNDSGTyZCSkiLunzVrFrp06QJjY2N06tTptX2+uh0/frz8fwgi0nkVCsHQ0FD4+fkhPj4eqampxd6PiYlBWloaEhMTsXr1aiQlJaFjx444depUufsCABsbG3zzzTdq+3bu3IkmTZoUaysIAiZMmABPT89Sr6FojEVb3759S21PRPqp3CGYnZ2NvXv3YurUqRg6dCjCw8OLtWnQoAGsrKzQsmVLeHh4ICYmBi4uLpg4cSIKCgrK1RcA+Pr6IiwsTG1feHg4fH19i7XduHEjpk+fjpYtW5Z6HUVjLNpq16795osnIr1T7hCMjIyEUqmEUqmEt7c3wsLC8KaFaGrVqoVZs2bh9u3buHjxYrn7Gj58OB49eoT4+HgAQHx8PB4+fCiuI1gRw4cPR6NGjdCzZ098//33b2zPQktE+qncIRgSEgJvb28AwMCBA5GVlVXibe6rHB0dAUDt87uy9mVkZARvb2+EhoYCeHEL7e3tDSOj8j+fJ5fL8eWXX+L777/HsWPH0K9fP3h6euK7774r9TgWWiLST+UKwevXr+P8+fP44IMPAACGhobw9PQUw6k0RTO8okJI5e1r4sSJ2LdvH9LT07Fv3z5MmDChPEMXWVpa4uOPP0bXrl3h7OyM5cuXY9q0aQgKCir1OBZaItJP5frFSEhICJ4/f672hYQgCDAyMsKjR49KPbaoAFKLFi3K1JeFhYXa8e3atYOjoyO8vLzQunVrtGvXDiqVqjzDf61u3bphx44dpbYxNjaGsbFxlZyPiLRHmWeCz58/xzfffIMvvvgCKpVK3BITE9GsWTNERES89tjCwkJs3LgRLVq0gJOTU4X7mjBhAuLi4io8C3ydy5cvw9raukr7JCLdUOaZYFRUFB49eoSJEydCoVCovffee+8hJCQEQ4cOBQD8/fffSE9PR05ODv7zn/9g/fr1OH/+PI4ePQoDAwMcOnTojX3NmDGj2BgmT56MUaNGwdzc/LXjvHnzJrKyspCeno6nT5+Ks8U2bdqgdu3a2LlzJ4yMjODk5IRatWrhhx9+wMaNG7FmzZqy/imISI+UOQRDQkLg5uZWLLQAYOTIkVi9ejUePnwIAHBzcwMA1K1bF82aNYOrqyuCg4Nhb29f5r4uXbqE+vXrqw/W0BCWlpaljnPSpEk4ffq0+NrJyQkAcOvWLTRv3hwAsHLlSty+fRsGBgZwcHAQv2ghIulhoaUKYqEl0lpcRYaFloiIyoohSESSxkVVK4vV5oh0GmeCRCRpDEEikjSGIBFJGj8TrCwWWiKqOdXw+A9ngkQkaQxBIpI0hiARSZpWhWB6ejr8/PzQsmVLGBsbw87ODsOGDcOpU6dKLI708ta8efNS3+/Tpw8AiO3OnTundu7Zs2eLbYhIOrTmi5GUlBT07NkT5ubmCAoKQocOHfDs2TOcOHECkydPRlpamth21qxZyMzMVKs78uzZM3Gl6bNnz2LkyJG4fv26+LvBl2uImJiYYP78+WoLLRCRNGlNCE6bNg0ymQznz59HvXr1xP1t27bFhAkT1JbPqlOnDvLy8mBlZVViX0WrzzRq1KjEZbc++ugjbN26FceOHcPgwYOr9DqISLdoxe3ww4cPcfz4cUyfPl0tAIuUtn5gRTRv3hxTpkyBv78/CgsLq7RvItItWhGCN2/ehCAIYjGmmrB48WLcunWr1BWxX8Zqc0T6SStC8NUiTDWhYcOGmDt3LpYsWYL8/Pw3tme1OSL9pBUh2KpVK8hkMrEYU02ZM2cOnj59ii1btryxLavNEeknrQjB+vXrw93dHZs3b0Z2dnax9x8/flwt55XL5QgICMCqVaveeHtrbGwMMzMztY2IdJ9WhCAAbNmyBQUFBejatSv279+P5ORkJCUlYePGjejevXu1nffDDz+EQqHA7t27q+0cRKS9tCYEW7RogUuXLsHV1RWffPIJ2rVrh/79++PUqVPYunVrtZ3XyMgIK1asQG5ubrWdg4i0FwstVRALLRFpQBlXkWGhJSKiMmIIEpGkac3P5nQWCy0R6TTOBIlI0hiCRCRpDEEikjSGIBFJGkOQiCSNIUhEksYQJCJJYwgSkaQxBIlI0viLkQoqWneCy+wTaZ+i/y7Lsj4MQ7CC/v77bwDgMvtEWuzJkydQKBSltmEIVlBRWc/U1NQ3/pF1TWZmJuzs7HDnzh29XEFbn6+P1/aCIAh48uQJbGxs3tgvQ7CCatV68XGqQqHQu/+xFdH3MgL6fH28NpR5csIvRohI0hiCRCRpDMEKMjY2xtKlS2FsbKzpoVQ5fb42QL+vj9dWfqwxQkSSxpkgEUkaQ5CIJI0hSESSxhAkIkljCFbAli1b0KJFC5iYmKBLly74+eefNT2kKnHmzBkMGzYMNjY2kMlkOHTokKaHVGUCAwPx9ttvw9TUFI0aNcKIESNw/fp1TQ+rymzduhUdOnQQHyTu3r07fvzxR00Pq1oEBgZCJpNh9uzZVdIfQ7CcIiMjMXv2bCxatAiXL1/GO++8g0GDBiE1NVXTQ6u07OxsdOzYEZs2bdL0UKrc6dOnMX36dJw7dw4nT57E8+fPMWDAAGRnZ2t6aFXC1tYW//rXv5CQkICEhAT07dsXHh4euHbtmqaHVqUuXLiA4OBgdOjQoeo6FahcunbtKkyZMkVtn6Ojo7BgwQINjah6ABAOHjyo6WFUm3v37gkAhNOnT2t6KNXGwsJC2LFjh6aHUWWePHkitGrVSjh58qTQu3dvYdasWVXSL2eC5ZCfn4+LFy9iwIABavsHDBiAs2fPamhUVBEZGRkA/rcQhj4pKCjAnj17kJ2dje7du2t6OFVm+vTpGDJkCNzc3Kq0Xy6gUA4PHjxAQUEBGjdurLa/cePGSE9P19CoqLwEQcCcOXPwj3/8A+3atdP0cKrM1atX0b17d+Tm5kIul+PgwYNo06aNpodVJfbs2YNLly7hwoULVd43Q7ACZDKZ2mtBEIrtI+01Y8YMXLlyBfHx8ZoeSpVSKpVQqVR4/Pgx9u/fD19fX5w+fVrng/DOnTuYNWsWoqOjYWJiUuX9MwTLwdLSEgYGBsVmfffu3Ss2OyTt5OfnhyNHjuDMmTOwtbXV9HCqVO3atWFvbw8AcHZ2xoULF7BhwwZs27ZNwyOrnIsXL+LevXvo0qWLuK+goABnzpzBpk2bkJeXBwMDgwr3z88Ey6F27dro0qULTp48qbb/5MmT6NGjh4ZGRWUhCAJmzJiBAwcO4KeffkKLFi00PaRqJwgC8vLyND2MSuvXrx+uXr0KlUolbs7OzhgzZgxUKlWlAhDgTLDc5syZAx8fHzg7O6N79+4IDg5GamoqpkyZoumhVVpWVhZu3rwpvr516xZUKhXq16+Ppk2banBklTd9+nTs2rULhw8fhqmpqTibVygUqFOnjoZHV3kLFy7EoEGDYGdnhydPnmDPnj2Ii4vD8ePHNT20SjM1NS322W29evXQoEGDqvlMt0q+Y5aYzZs3C82aNRNq164tdO7cWW8es4iNjRUAFNt8fX01PbRKK+m6AAhhYWGaHlqVmDBhgvi/yYYNGwr9+vUToqOjNT2salOVj8hwKS0ikjR+JkhEksYQJCJJYwgSkaQxBIlI0hiCRCRpDEEikjSGIBFJGkOQiCSNIUg6Y9y4cZDJZJDJZDAyMkLjxo3Rv39/hIaGorCwUNPDIx3FECSdMnDgQKSlpSElJQU//vgjXF1dMWvWLAwdOhTPnz+vtvPm5+dXW9+kWQxB0inGxsawsrJCkyZN0LlzZyxcuBCHDx/Gjz/+iPDwcAAvVo3+8MMP0ahRI5iZmaFv375ITExU62flypVo1KgRTE1NMWnSJCxYsACdOnUS3x83bhxGjBiBwMBA2NjYwMHBAQDw119/wdPTExYWFmjQoAE8PDyQkpKi1ndYWBhat24NExMTODo6YsuWLdX5J6FKYgiSzuvbty86duyIAwcOQBAEDBkyBOnp6Th27BguXryIzp07o1+/fnj48CEAICIiAqtWrcKaNWtw8eJFNG3aFFu3bi3W76lTp5CUlISTJ08iKioKOTk5cHV1hVwux5kzZxAfHw+5XI6BAweKM8Xt27dj0aJFWLVqFZKSkrB69WoEBARg586dNfo3oXKokmUYiGqAr6+v4OHhUeJ7np6eQuvWrYVTp04JZmZmQm5urtr7b731lrBt2zZBEATBxcVFmD59utr7PXv2FDp27Kh2rsaNGwt5eXnivpCQEEGpVAqFhYXivry8PKFOnTrCiRMnBEEQBDs7O2HXrl1qfa9YsULo3r17ua+XagbXEyS9IPz/EgcXL15EVlYWGjRooPb+06dP8ccffwAArl+/jmnTpqm937VrV/z0009q+9q3b4/atWuLry9evIibN2/C1NRUrV1ubi7++OMP3L9/H3fu3MHEiRMxefJk8f3nz59DoVBUyXVS1WMIkl5ISkpCixYtUFhYCGtra8TFxRVrY25uLv67pDoxr6pXr57a68LCQnTp0gURERHF2jZs2BC5ubkAXtwSu7i4qL1f2dWPqfowBEnn/fTTT7h69So+/vhj2NraIj09HYaGhmjevHmJ7ZVKJc6fPw8fHx9xX0JCwhvP07lzZ0RGRopfuLxKoVCgSZMm+O9//4sxY8ZU+HqoZjEESafk5eUhPT0dBQUF+L//+z8cP34cgYGBGDp0KMaOHYtatWqhe/fuGDFiBNasWQOlUom7d+/i2LFjGDFiBJydneHn54fJkyfD2dkZPXr0QGRkJK5cuYKWLVuWeu4xY8Zg7dq18PDwwPLly2Fra4vU1FQcOHAAn376KWxtbbFs2TLMnDkTZmZmGDRoEPLy8pCQkIBHjx5hzpw5NfRXonLR9IeSRGXl6+srLotvaGgoNGzYUHBzcxNCQ0OFgoICsV1mZqbg5+cn2NjYCEZGRoKdnZ0wZswYITU1VWyzfPlywdLSUpDL5cKECROEmTNnCt26dVM7V0lfwqSlpQljx44VLC0tBWNjY6Fly5bC5MmThYyMDLFNRESE0KlTJ6F27dqChYWF0KtXL+HAgQPV80ehSuPy+kQA+vfvDysrK3z77beaHgrVMN4Ok+Tk5OTg66+/hru7OwwMDLB7927ExMQUK6VK0sCZIEnO06dPMWzYMFy6dAl5eXlQKpVYvHgx3n33XU0PjTSAIUhEksafzRGRpDEEiUjSGIJEJGkMQSKSNIYgEUkaQ5CIJI0hSESSxhAkIkljCBKRpP0/GEhu/e3sRtEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ptm_pose import plots as pose_plots\n", + "\n", + "network_stats = analyze.get_interaction_stats(interaction_graph)\n", + "pose_plots.plot_network_centrality(network_stats, network_data, top_N = 10, modified_color = 'coral', interacting_color = 'grey')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## KSTAR Analysis\n", + "\n", + "While we provide functions for performing enrichment of known kinase substrates from databases like PhosphoSitePlus, RegPhos, and PTMsigDB, these resources are limited by the overall number of validated substrates (<5%). For this purpose, we have adapted a previously developed algorithm called KSTAR (Kinase Substrate to Activity Relationships) for use with spliced PTM data, which harnesses kinase-substrate predictions to expand the overall number of phosphorylation sites that can be used as evidence. This particularly important as you may find many of the spliced PTMs in your dataset are less well studied and may not have any annotated kinases.\n", + "\n", + "In order to perform KSTAR analysis, you will first need to download KSTAR networks from the following [figshare](https://figshare.com/articles/dataset/NETWORKS/14944305?file=28768155).\n", + "\n", + "Once you have downloaded the networks, all you need is your PTM data." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from ptm_pose import analyze\n", + "import pandas as pd\n", + "\n", + "# Load spliced ptm and altered flank data\n", + "spliced_ptms = pd.read_csv('spliced_ptms.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "kstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = '../../../../Database_Information/NETWORKS/NetworKIN/', phospho_type = 'Y')\n", + "kstar_enrichment.run_kstar_enrichment()\n", + "kstar_enrichment.return_enriched_kinases()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also run the same analysis for serine/threonine kinases:" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['PRKG2', 'MAPK14', 'PRKCH', 'PRKCG', 'PRKD1', 'PRKCE', 'ROCK1',\n", + " 'TTK'], dtype=object)" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = '../../../../Database_Information/NETWORKS/NetworKIN/', phospho_type = 'ST')\n", + "kstar_enrichment.run_kstar_enrichment()\n", + "kstar_enrichment.return_enriched_kinases()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Flanking Sequence Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Location of altered flanks" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "from ptm_pose import flanking_sequences as fs\n", + "import pandas as pd\n", + "\n", + "# Load altered flank data\n", + "altered_flanks = pd.read_csv('altered_flanks.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassInclusion SequenceExclusion SequenceSequence IdentityAltered PositionsResidue ChangeAltered Flank Side
0P01116T148PhosphorylationETSAKtRQESGETSAKtRQGC*NaNNaNNaNNaN
1P01116K147AcetylationIETSAkTRQESIETSAkTRQGC0.818182[4.0, 5.0][E->G, S->C]C-term only
2P01116K147UbiquitinationIETSAkTRQESIETSAkTRQGC0.818182[4.0, 5.0][E->G, S->C]C-term only
3Q9UPQ0S746PhosphorylationLPNLNsQGVAWLPNLNsQGGFS0.727273[3.0, 4.0, 5.0][V->G, A->F, W->S]C-term only
4Q9UPQ0S750PhosphorylationPSQVDsPSSEKILKVDsPSSEK0.727273[-5.0, -4.0, -3.0][P->I, S->L, Q->K]N-term only
\n", + "
" + ], + "text/plain": [ + " UniProtKB Accession Residue PTM Position in Canonical Isoform \\\n", + "0 P01116 T 148 \n", + "1 P01116 K 147 \n", + "2 P01116 K 147 \n", + "3 Q9UPQ0 S 746 \n", + "4 Q9UPQ0 S 750 \n", + "\n", + " Modification Class Inclusion Sequence Exclusion Sequence Sequence Identity \\\n", + "0 Phosphorylation ETSAKtRQESG ETSAKtRQGC* NaN \n", + "1 Acetylation IETSAkTRQES IETSAkTRQGC 0.818182 \n", + "2 Ubiquitination IETSAkTRQES IETSAkTRQGC 0.818182 \n", + "3 Phosphorylation LPNLNsQGVAW LPNLNsQGGFS 0.727273 \n", + "4 Phosphorylation PSQVDsPSSEK ILKVDsPSSEK 0.727273 \n", + "\n", + " Altered Positions Residue Change Altered Flank Side \n", + "0 NaN NaN NaN \n", + "1 [4.0, 5.0] [E->G, S->C] C-term only \n", + "2 [4.0, 5.0] [E->G, S->C] C-term only \n", + "3 [3.0, 4.0, 5.0] [V->G, A->F, W->S] C-term only \n", + "4 [-5.0, -4.0, -3.0] [P->I, S->L, Q->K] N-term only " + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "altered_flanks = fs.compare_flanking_sequences(altered_flanks)\n", + "altered_flanks[['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'Inclusion Sequence', 'Exclusion Sequence', 'Sequence Identity', 'Altered Positions', 'Residue Change', 'Altered Flank Side']].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note, we only calculate these metrics for cases where altered flanking sequences do not cause a stop codon to be introduced, as this is harder to interpret (such as for the first PTM in the list). The above table will indicate the positions in the flanking sequence that are altered, how similar the altered flanking sequence is to the original flanking sequence, and the specific residue change that takes place. We can also plot some of this information to get a better sense of the distribution of altered flanking sequences:" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "importlib.reload(pose_plots)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Sam\\OneDrive\\Documents\\GradSchool\\Research\\Splicing\\PTM_POSE\\ptm_pose\\plots.py:391: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.\n", + " ax[0].set_xticklabels(['N-term\\nonly', 'C-term\\nonly'])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAElCAYAAAAPyi6bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/x0lEQVR4nO3dd1hUx/s28HuRpnSQqrigWLDEjhVBYzf2RI09lkTR2BKNNaCxG0usMRYw9uRribEQFRW7YkejoAYUETSi0lnavH/447xuFnQXdxfE+3Nde2V39sw8c/CEhzllRiaEECAiInqNQVF3gIiIih8mByIiUsHkQEREKpgciIhIhV6TQ0xMDF6+fAkAUCgUWLp0KVasWIHs7Gx9doOIiN7CUJ/BevTogQ0bNsDa2hqTJ0/G0aNHYWRkhMjISKxYsUKfXSEiojeQ6fNWVhsbGzx//hwymQwuLi44d+4czM3NUbNmTcTFxemrG0RE9BZ6HTkYGBggMzMTERERsLS0hFwuhxACKSkp+uwGERG9hV6Tg4+PD3r16oWEhAR0794dAHDv3j04ODjosxtqyc3NxePHj2FhYQGZTFbU3SEiemdCCCQnJ8PFxQUGBm++5KzX5LBhwwb8+OOPMDIywqRJkwAAkZGRGDNmjD67oZbHjx/D1dW1qLtBRKR1MTExKF++/Bu30es1h/dJYmIirK2tERMTA0tLy6LuDhHRO0tKSoKrqytevnwJKyurN26rl5HD8uXL37pNcRs95J1KsrS0ZHKgYm/mzJlF3QXSM39//0LXVedUuV6Sw7hx41C5cmWUK1cO+Q1UZDJZsUsOREQfMr08BDdy5Ei8ePECZcqUwejRo3H48GEcP35ceh07dkyj9gICAiCTyZReTk5O0vdCCAQEBMDFxQWlS5eGr68vbt26pe3dIiIqsfSSHFatWoVHjx5h4MCBWLduHcqXL4+xY8fi+vXrhW6zRo0aiIuLk17h4eHSdwsXLsSSJUuwcuVKhIWFwcnJCW3atEFycrI2doeIqMTT2/QZxsbG6NWrF4KDg3HlyhUYGRmhfv36CA0NLVR7hoaGcHJykl729vYAXo0ali1bhmnTpqFHjx6oWbMmNm3ahLS0NGzbtk2bu0REVGLpfeK9w4cP45tvvkFgYCD69u2LqlWrFqqdu3fvwsXFBe7u7ujTpw/++ecfAEBUVBTi4+PRtm1baVsTExP4+Pjg7NmzBbanUCiQlJSk9CIi+lDpJTncv38fM2bMgFwux6xZs9CmTRtER0fj119/VbpWoK5GjRrh119/xV9//YV169YhPj4eTZs2RUJCAuLj4wEAjo6OSnUcHR2l7/Izb948WFlZSS8+40BEHzK93K1UuXJlVKtWDaNHj5ZGCsePH1fapkuXLmq316FDB+l9rVq10KRJE1SqVAmbNm1C48aNAajeqiWEeOPtW1OmTMGECROkz3n3AxcGbyv88LzLbYVExZFekkOFChWQnp6O1atX5/u9TCbTKDn8l5mZGWrVqoW7d++iW7duAID4+Hg4OztL2zx9+lRlNPE6ExMTmJiYFLoPREQliV6SQ3R0tE7bVygUuH37Nry9veHu7g4nJyccOXIEdevWBQBkZmYiNDQUCxYs0Gk/iIhKCr1cc6hVq5ZW2/v2228RGhqKqKgoXLhwAZ9++imSkpIwaNAgyGQyjBs3DnPnzsWePXtw8+ZNDB48GGXKlEHfvn212g8iopLqvRw5PHr0CJ9//jmePXsGe3t7NG7cGOfPn4dcLgcATJo0Cenp6fDz88OLFy/QqFEjHD58GBYWFlrtBxFRSaWX5KDtKa937Njx1ngBAQEICAjQalwiog+FXpKDQqFQuhMoP0uWLNFHV4iISA16SQ5CCLx48UIfoYiISAv0khxMTU0RGBioj1BERKQFep8+g4iIij+9JIcKFSroIwwREWmJXpJDWFgYpk+fjq5du2LWrFnIysrSR1giIiokvSSHCRMmYPfu3ahSpQq2b9+OKVOm6CMsEREVkl6Sw59//ong4GAsWrQIBw4cwN69e/URloiICkkvySEpKUm67lCxYkXe1kpEVMzp5VZWAEhOToYQAgCQm5ur9BkALC0t9dUVIiJ6C70kh5SUFFhbW0ufhRDS57x1FnJycvTRFSIiUoNekkNUVJQ+whARkZboJTnkzZZKRETvBz4hTUREKpgciIhIBZMDERGp0HlyaNy4sfR+5syZug5HRERaoPPkEBERgezsbADA4sWLdR2OiIi0QOd3K/n6+qJOnTqoUqUK0tPT0aNHj3y32717t667QkREatJ5ctixYwd27dqFqKgoHDhwALVr19Z1SCIiekc6Tw4mJibo27cvAODFixfw9/fXdUgiInpHeptbCQB+/PFHJCcn48CBA3j06BHKly+Pjh07cl4lIqJiRq/J4dq1a2jXrh1sbGzg7u6O6OhojB07FsHBwahbt64+u0JERG+g1+ccxowZg6lTp+LOnTs4dOgQbt++jenTp2PMmDH67AYREb2FXpPDzZs3MXr0aKUyPz8/3Lx5U5/dICKit9BrcnBycsL58+eVyi5evAgnJyd9doOIiN5Cr9ccpk6dig4dOmDAgAFwc3NDdHQ0tm7dihUrVuizG0RE9BZ6HTn0798fBw4cQFZWFo4fP46srCzs27cPAwYM0Gc3iIjoLfQ6cgAAb29veHt76zssERFpgLOyEhGRCiYHIiJSweRAREQqSnRyWL16Ndzd3WFqaor69evj1KlTRd0lIqL3gt6Tw7x58/QSZ+fOnRg3bhymTZuGq1evwtvbGx06dMDDhw/1Ep+I6H2ml+Tw4MED6f2iRYuk9z4+PjqLuWTJEgwdOhTDhg2Dp6cnli1bBldXV6xZs0ZnMYmISgq93Mravn17vHjxAvXr14dCocCZM2fQoEEDhIeH6yReZmYmLl++jMmTJyuVt23bFmfPns23jkKhgEKhkD4nJiYCAJKSkjSOn5GRoXEder8V5jjRJh5zH57CHHN5dYQQb99Y6EliYqI4cuSIKF26tPj444+Fra2tMDIyEgsWLBARERFajRUbGysAiDNnziiVz5kzR1SpUiXfOv7+/gIAX3zxxVeJf8XExLz196heRg5bt26Fl5cXWrduDRMTExw9ehRZWVmws7NDamoqevfujatXr2o9rkwmU/oshFApyzNlyhRMmDBB+pybm4vnz5/Dzs6uwDqkLCkpCa6uroiJieEaHaRzPN40J4RAcnIyXFxc3rqtXpJDSEgIFixYgNjYWKSlpWHBggXw9vaGoaEhZs6ciZkzZ2o1XtmyZVGqVCnEx8crlT99+hSOjo751jExMYGJiYlSmbW1tVb79aGwtLTk/6ykNzzeNGNlZaXWdnq5IL1x40bcuHEDDx8+hLGxMVJTUzF58mQkJyeje/fuCAoK0mo8Y2Nj1K9fH0eOHFEqP3LkCJo2barVWEREJZFeb2U1MzODoaEhZs2ahZMnT8Lc3BwjR47EhQsXtB5rwoQJWL9+PTZu3Ijbt29j/PjxePjwIUaMGKH1WEREJY3eJ97buHGj0ue2bduibdu2Wo/Tu3dvJCQkYNasWYiLi0PNmjVx8OBByOVyrceiV0xMTODv769yeo5IF3i86ZZMCHXuadKNzMxMGBsbF1V4IiIqQJEmByIiKp5K9NxKRERUOEwORESkgsmBiIhUMDl8gAYPHgyZTIb58+crle/du/eNT4MHBASgTp06Ou4dlVTx8fH4+uuvUbFiRZiYmMDV1RWdO3dGSEhIvttHR0dDJpPh2rVr+u0oAWBy+GCZmppiwYIFePHihd5jZ2Vl6T0mFa3o6GjUr18fx44dw8KFCxEeHo7g4GC0bNkSo0aN0nl8HnOaY3L4QLVu3RpOTk5qr68RFBSEmTNn4vr165DJZJDJZNKT7YmJifjyyy/h4OAAS0tLtGrVCtevX5fq5o04Nm7cKP3VmDfP1dq1a/HJJ5+gTJky8PT0xLlz53Dv3j34+vrCzMwMTZo0wf3793XxIyA98vPzg0wmw8WLF/Hpp5+iSpUqqFGjBiZMmIDz58/nW8fd3R0AULduXchkMvj6+krfBQYGwtPTE6ampqhWrRpWr14tfZc34vjtt9/g6+sLU1NTbNmyBYMHD0a3bt0wd+5cODo6wtraGjNnzkR2djYmTpwIW1tblC9fXuVZrA/Wu81/Su+jQYMGia5du4rdu3cLU1NTaYbGPXv2iIIOibS0NPHNN9+IGjVqiLi4OBEXFyfS0tJEbm6uaNasmejcubMICwsTkZGR4ptvvhF2dnYiISFBCPFqxlszMzPRrl07ceXKFXH9+nWRm5srAIhy5cqJnTt3ioiICNGtWzfh5uYmWrVqJYKDg8Xff/8tGjduLNq3b6+3nw1pX0JCgpDJZGLu3Lka1bt48aIAII4ePSri4uKk4+mXX34Rzs7OYteuXeKff/4Ru3btEra2tiIoKEgIIURUVJQAINzc3KRtYmNjxaBBg4SFhYUYNWqUuHPnjtiwYYMAINq1ayfmzJkjIiMjxQ8//CCMjIzEw4cPtf5zeN8wOXyA8pKDEEI0btxYDBkyRAjx5uQgxKtf8rVr11YqCwkJEZaWliIjI0OpvFKlSmLt2rVSPSMjI/H06VOlbQCI6dOnS5/PnTsnAIgNGzZIZdu3bxempqYa7yMVHxcuXBAAxO7duzWql/dL/urVq0rlrq6uYtu2bUplP/zwg2jSpIlSvWXLliltM2jQICGXy0VOTo5UVrVqVeHt7S19zs7OFmZmZmL79u0a9bUk4mmlD9yCBQuwadMm/P3330rl5ubm0utN81FdvnwZKSkpsLOzU6oTFRWldDpILpfD3t5epf5HH30kvc+bMbdWrVpKZRkZGUW+mA4Vnvi/52zfdLPDiBEjlI6fgvz777+IiYnB0KFDlbafPXu2yunHBg0aqNSvUaMGDAz+/689R0dHpeOtVKlSsLOzw9OnT9Xev5JK73MrUfHSokULtGvXDlOnTsXgwYOl8tfvEHnTdMi5ublwdnbGiRMnVL57fcpzMzOzfOsbGRlJ7/N+eeRXlpub+6bdoGKscuXKkMlkuH37Nrp165bvNrNmzcK333771rbyjoN169ahUaNGSt+VKlVK6XN+x9zrxxbw6vjKr4zHG5MDAZg/fz7q1KmDKlWqSGUeHh4q2xkbGyMnJ0eprF69eoiPj4ehoSHc3Nx03VV6D9na2qJdu3ZYtWoVxowZo/JL++XLl3BwcICDg4NSed68a68fc46OjihXrhz++ecf9OvXT/ed/4DxtBKhVq1a6NevH1asWPHG7dzc3BAVFYVr167h2bNnUCgUaN26NZo0aYJu3brhr7/+QnR0NM6ePYvp06fj0qVLetoDKu5Wr16NnJwceHl5YdeuXbh79y5u376N5cuXo0mTJvnWcXBwQOnSpREcHIwnT55I67oHBARg3rx5+OmnnxAZGYnw8HAEBgZiyZIl+tylEo/JgQAAP/zww1sXHe/Zsyfat2+Pli1bwt7eHtu3b4dMJsPBgwfRokULDBkyBFWqVEGfPn0QHR1d4Kp79OFxd3fHlStX0LJlS3zzzTeoWbMm2rRpg5CQEKxZsybfOoaGhli+fDnWrl0LFxcXdO3aFQAwbNgwrF+/HkFBQahVqxZ8fHwQFBQk3fpK2sFZWYmISAVHDkREpILJgYiIVDA5EBGRCiYHIiJSweRAOsMpvkmfeLxpF5MDERGpYHIgIiIVTA5UIIVCgTFjxsDBwQGmpqZo3rw5wsLCAAAnTpyATCZDSEgIGjRogDJlyqBp06aIiIjIt62TJ0/CyMgI8fHxSuXffPMNWrRoofN9oeKPx1vxwuRABZo0aRJ27dqFTZs24cqVK/Dw8EC7du3w/PlzaZtp06Zh8eLFuHTpEgwNDTFkyJB822rRogUqVqyIzZs3S2XZ2dnYsmULvvjiC53vCxV/PN6KmaKdMZyKq5SUFGFkZCS2bt0qlWVmZgoXFxexcOFCcfz4cWkhljwHDhwQAER6eroQQnX9hwULFghPT0/p8969e4W5ublISUnR/Q5RscbjrfjhyIHydf/+fWRlZaFZs2ZSmZGREby8vHD79m2p7PX1GJydnQGgwLnwBw8ejHv37knLQm7cuBG9evUqcDpv+nDweCt+OGU35UsUsECL+L+1n/NosvaCg4MDOnfujMDAQFSsWBEHDx7Mdx0I+vDweCt+OHKgfHl4eMDY2BinT5+WyrKysnDp0iV4enoWut1hw4Zhx44dWLt2LSpVqqT0lyJ9uHi8FT9MDpQvMzMzjBw5EhMnTkRwcDD+/vtvDB8+HGlpaRg6dGih223Xrh2srKwwe/ZsXhgkCY+34ofJgQo0f/589OzZEwMGDEC9evVw7949/PXXX7CxsSl0mwYGBhg8eDBycnIwcOBALfaW3nc83ooXrudAejd8+HA8efIE+/btK+qu0AeAx1vh8II06U1iYiLCwsKwdetW/PHHH0XdHSrheLy9GyYH0puuXbvi4sWL+Oqrr9CmTZui7g6VcDze3g1PKxERkQpekCYiIhVMDkREpILJgYiIVDA5EBGRCiYHIiJSweRAJUKNGjWwf//+Ion9559/ws3NDebm5ti7d6/G9U+cOAFra2ut90tT1tbWRTYx3dy5c/H5558XSWzKH5MDvRNfX18sW7asyGPeunULn3zyiV77kWfChAmYNWsWUlJS0K1btwK3mzVrFmQyGQ4dOvTG9oriZ/o2QUFBKFWqFMzNzWFhYQEPDw8sXbpUa+1PnToV27dv11p79O6YHIjeUVRUlNI6A/kRQiAwMBC2trbYsGGDTvuTnZ2tk3Zr1aqFlJQUJCcn49dff8W0adNw7NgxncSiosfkQDpz6dIlNGvWDNbW1qhevbrKX4bbt29H7dq1YWlpCblcjqCgIADA1atX0bx5c9ja2sLe3h6ff/45EhISALxaA/jUqVP47rvvYG5ujg4dOgAA3NzclE7pbNmyBZ6enrC2tkbz5s1x9epV6TtfX19MmTIF7dq1g7m5OerVq4fw8PAC9+PJkyfo1asX7O3tUaFCBUybNg3Z2dlISEiAubk5cnJy0LRpU5ibm0OhUOTbRkhICGJjY7F27Vrs27cP//77b77bFbR/KSkpGD16NCpUqAAHBwcMHDgQiYmJAIDo6GjIZDIEBgbCw8MD5cqVAwBcuXIFLVu2hK2tLTw8PLBu3TopTm5uLmbMmAFHR0e4uLhg1apVBe5/fpo2bYoaNWrg8uXLUtnb4k2fPl0p3uunsQICApRGXffu3UO7du1ga2uLSpUqKY2kgoKCUKdOHfzwww9wcHCAo6NjsRtplQhFtgYdlQg+Pj5i6dKlKuUvXrwQdnZ2Yvny5SIzM1OcOHFCmJmZidOnTwshhNi3b5+wtbUVISEhIicnRzx58kRcuXJFCCHEtWvXxKlTp0RmZqaIj48X3t7eYtiwYW+MKZfLxZ49e4QQQpw8eVKYm5uL0NBQkZmZKZYuXSrs7e3Fy5cvpfouLi7iypUrIisrSwwfPlz4+PgUuI+tWrUSffv2FcnJySI6OlpUr15dzJkzR/oegLh69eobf059+vQR3bt3F7m5ucLNzU0sXrxY+u748ePCysrqjfv32Wefic8//1y8ePFCpKSkiD59+oj+/fsLIYSIiooSAES3bt3EixcvRGpqqoiLixO2trZi586dIjs7W4SHhwtnZ2dpmc0NGzaI8uXLi9u3b4vU1FQxePBgYWBgII4fP55v/wMDA6UlOHNzc0VoaKgwNTUVe/fuFUKIt8Zbv369cHNzExERESItLU0MGTJEKZ6/v7/o2rWrEEKIrKwsUbVqVTFx4kSRnp4url+/LpydnaUlRAMDA4WhoaFYuHChyMzMFMePHxelSpUS9+7de+O/AWmGyYHeSUHJYcuWLaJatWpKZcOHDxfDhw8XQgjRvn17MXPmTLVi7NmzR3h4eLwx5uvJYdiwYWLEiBFK31epUkX65eLj4yO+++476bvTp08Lc3PzfGM/evRIABBxcXFS2datW0XlypWlz29LDs+fPxcmJibSL9Lp06eL6tWrS9+/LTk8ffpUGBgYiISEBKksMjJSGBkZiezsbCk5vN6HhQsXim7duin1Y+rUqWLIkCFCiFcJb8GCBdJ38fHxAsAbk4OBgYGwsrISxsbGAoCYPn26yM3NVTveokWLlPbp9XivJ4fTp08LS0tLoVAopO3nzJkj2rRpI/XF0dFRKZaHh4f43//+l2/fqXB4Wol04tGjR3Bzc1Mqq1ixIh49egQAePDgASpXrpxv3Xv37qFr165wcXGBpaUl+vfvj2fPnr1TbHd3dyk2ADg5OUnvzczMkJKSUmBbpqamStu/vh/q2LJlCywtLdGxY0cAwMCBA/H3339Laxu/TXR0NHJzc1GxYkVYW1vD2toaDRs2hIGBAeLj46XtKlSooFTn4MGD0vbW1tZYvnw54uLiAACPHz+GXC6Xtnd0dISJickb+1GrVi28fPkSycnJmDFjBkJCQqTrG+rEc3V1ldqyt7eHqalpvnEePXoEFxcXGBsbS2X//Zm//u8BvPo3TE5OfmP/STNMDqQT5cuXR3R0tFJZVFQUypcvDwCQy+W4d+9evnVHjBiBcuXK4e+//0ZSUhK2bNkirTEMvFrARdPY0dHRUmxN9yMjIwNPnjzJdz/UsWHDBiQmJsLV1RVOTk7w9vaGTCYr8ML0f/fP1dUVBgYGePz4MV6+fCm9MjIypOsL/63n6uqK7t27K22fnJyMgwcPAgBcXFzw4MEDafunT58WeL3kv4yNjTFz5kykp6dj9erVaseLiYmR2vj333+RkZGRb/vly5fH48ePkZWVJZVp+jOnd8fkQO8sOzsbGRkZ0kuhUKBjx454+vQpVq9ejezsbJw6dQrbtm2TVuP66quv8NNPPyE0NBS5ubl4+vSpdNE4KSkJFhYWsLS0RExMDBYtWqQUz9HREffv3y+wP/3798fWrVtx5swZZGdnY8WKFUhISJD+ctdEuXLl0LJlS3z77bdITU3Fw4cPMXfuXAwaNEit+pcvX8b169dx5MgRXLt2TXqtXbsWO3bsQGpqqkqd/+6fk5MTunXrhtGjR0sjqPj4eOzZs6fAuAMGDMCxY8ewa9cuZGVlISsrC9euXUNYWBgA4PPPP8eqVasQERGB9PR0TJky5a1J93UymQzTpk3D3LlzkZaWpla81atX4969e0hPT8fUqVMLjOfl5QVHR0d8//33UCgUuHnzJlauXKn2z5y0g8mB3tnEiRNRunRp6VW1alXY2Njg0KFD2LJlC+zs7PDll19izZo1aN68OQCgW7duWLJkCUaNGgUrKys0bNhQumNoyZIl2L9/PywtLdG1a1f07NlTKd64ceNw9OhRWFtb5/tsg4+PD1asWIGhQ4fCzs4OO3bswKFDhwr9oNm2bduQnp4OuVyOZs2aoVOnTpg0aZJadTds2ABfX1+0aNECTk5O0mvw4MGwsLDAzp07Verkt39BQUHS6SRLS0t4e3sr3Sn0X+XKlcNff/2FtWvXwtnZGY6Ojhg1ahSSkpIAAEOGDEH//v3h7e2NihUrom7durCwsNDo59KjRw/Y2tpi5cqVasXr06cPmjZtikqVKqFOnTowNTXN91SWkZER9u/fj8uXL8PJyQldunTBhAkT0LdvX436R++G6zkQkd49fvwY5cqVQ0xMDE8XFVMcORCRzmVnZ2Pv3r3IysrCixcvMH78eDRu3JiJoRhjciAinRNCYP78+bCzs0PFihWRnJyMbdu2FXW36A14WomIiFRw5EBERCqYHIiISAWTAxERqWByICIiFUwORESkgsmBiIhUMDkQEZEKJgciIlLB5EBERCqYHIiISAWTAxERqWByICIiFUwORESkgsmBiIhUMDkQEZEKJgciIlJhWNQdKK5yc3Px+PFjWFhYQCaTFXV3iIjemRACycnJcHFxgYHBm8cGTA4FePz4MVxdXYu6G0REWhcTE/PW9buZHApgYWEB4NUP0dLSsoh7Q0T07pKSkuDq6ir9fnsTJocC5J1KsrS0ZHIgohJFnVPlvCBNREQqmByIiEgFTysRERUTM2fO1Em7/v7+GtfhyIGIiFQwORARkQomByIiUsHkQEREKtS6ID1r1iy1Gvv+++/fqTNERFQ8qJUcrl69Kr3Pzs5GcHAwKleuDLlcjocPHyIyMhIdOnTQWSeJiEi/1EoOe/bskd5/+eWXWLlyJb766iupbN26dQgLC9N+74qR4nSLGRGRrml8zeH333/H8OHDlcqGDBmC33//XWudIiKioqVxcihbtiyCg4OVyg4fPgw7OzutdYqIiIqWxk9Iz58/Hz169EDr1q0hl8vx4MEDhISEYPPmzbroHxERFQGNRw49e/ZEeHg4GjduDCEEGjdujOvXr+PTTz/VRf+IiKgIFGpupcqVK2P69Ona7gsRERUTGo8csrKy4O/vDw8PD1hZWQEAgoODsWrVKq13joiIiobGyWHSpEk4ffo0fv75Z2nBCE9PT6xdu1brnSMioqKh8Wml33//HeHh4bCxsZEWqM57GI6IqKTQ1bNNwPvxfJPGIwchBMqUKaNUlpKSotaapERE9H7QODm0bNkSM2bMUCpbsGAB2rRpo7VOERFR0dI4OSxduhSnTp2Cvb09kpKSUK5cORw9ehQLFy7URf/eat68eZDJZBg3bpxUJoRAQEAAXFxcULp0afj6+uLWrVtF0j8ioveRxtcc7O3tce7cOYSFheHBgwdwdXVFw4YNpesP+hQWFoZffvkFH330kVL5woULsWTJEgQFBaFKlSqYPXs22rRpg4iICJ7+IiJSQ6F/ozds2BCffvopGjVqVCSJISUlBf369cO6detgY2MjlQshsGzZMkybNg09evRAzZo1sWnTJqSlpWHbtm167ycR0ftI45FDy5YtpVtYX2diYgJXV1f06tULrVu31krn3mTUqFHo1KkTWrdujdmzZ0vlUVFRiI+PR9u2bZX65uPjg7NnzyrNJktERPnT+E9+Ly8vhIeHo3r16mjfvj2qV6+Omzdvonr16pDJZOjRo8cbH4iLiYnBy5cvAQAKhQJLly7FihUrkJ2drXYfduzYgStXrmDevHkq38XHxwMAHB0dlcodHR2l7/KjUCiQlJSk9CIi+lBpPHK4dOkSDhw4AC8vL6ls0KBBmDx5MkJCQtCrVy/4+flh1KhR+dbv0aMHNmzYAGtra0yePBlHjx6FkZERIiMjsWLFirfGj4mJwdixY3H48GGYmpoWuN1/RzdCiHxHPHnmzZun0/uaiYjeJxqPHC5duoR69eopldWtW1da7KdVq1aIjY0tsP69e/dQq1YtAMDOnTuxf/9+HDlyBP/73//Uin/58mU8ffoU9evXh6GhIQwNDREaGorly5fD0NBQGjH8d5Tw9OlTldHE66ZMmYLExETpFRMTo1Z/iIhKIo2TQ/Xq1TF//nzk5uYCAHJzc7FgwQJUr14dABAbGwtra+uCAxoYIDMzEzdu3IClpSXkcjlsbW2RkpKiVvyPP/4Y4eHhuHbtmvRq0KAB+vXrh2vXrqFixYpwcnLCkSNHpDqZmZkIDQ1F06ZNC2zXxMQElpaWSi8iog+VxqeVNmzYgC5dumDJkiVwdnZGfHw8bGxssHfvXgBAdHQ05s6dW2B9Hx8f9OrVCwkJCejevTuAV6MJBwcHteJbWFigZs2aSmVmZmaws7OTyseNG4e5c+eicuXKqFy5MubOnYsyZcqgb9++mu4uEdEHSePkUL16ddy5cwfnzp1DXFwcXFxc0LhxYxgavmqqefPmaN68eYH1N2zYgB9//BFGRkaYOHEiACAyMhJjxowp5C6omjRpEtLT0+Hn54cXL16gUaNGOHz4MJ9xICJSU6HWczA0NIS3t3ehAtrY2GDOnDlKZZ06dSpUW3lOnDih9FkmkyEgIAABAQHv1C4R0YdK42sOsbGxGDJkCGrXro2KFSsqvdTB9SCIiIo/jUcO/fv3R5kyZfDdd9/BzMxM44CTJk3CjRs38PPPP0tLi3p6emLSpEkF3v5KRET6pXFyuHz5Mp49ewZjY+NCBeR6EERExZ/Gp5Vq1KiBuLi4QgfkehBERMWfxiOHHj16oHPnzvj6669VHirr0qXLW+vnrQfx+hTfXA+CiKh40Tg5rF69GgBUnmWQyWRqJYelS5eiS5cuSutBVKhQAX/++aemXSEiIh3RODlERUW9U8DitB4EERHlr1DPOWhDw4YN0bBhw6IKT0TvGV1OjOnv76+ztt9XGicHhUKBJUuW4MSJE3j27BmEENJ3V65ceWv9gtaDAIBjx45p2h0iItIBjc/lTJgwAVu2bEHHjh0RERGBQYMGIS0tDV27dlWrfrdu3dC1a1fp5eXlhYiICDRp0kTjzhMRkW5oPHLYu3cvzpw5Azc3N/j7+2Ps2LFo27Yt/Pz81BqajR07VqWsT58+mDJliqZdISIiHdF45JCamgo3NzcAgKmpKTIyMuDp6YnLly8XuhO1atXCmTNnCl2fiIi0S+ORQ+XKlXH9+nXUrl0btWrVwtKlS2FtbY2yZcuqVf/GjRtKn9PS0rB582ZUqlRJ064QEZGOaJwc5s6dKy3MM3fuXPTt2xfJyclYu3atWvXr1KkDmUwmXcg2MzNDvXr1sGnTJk27QkREOqJxcnj9SeaGDRvi7t27GtXPW0GOiIiKr0I955CamorIyEgkJycrlbdo0UIrnSIioqKlcXL47bffMGzYMGRmZqJ06dJSuUwmw/Pnz/Ot4+7uXuCzDa/7559/NO0OERHpgMbJYdKkSVi1ahUGDBigdp1ly5ZJ7//++2+sW7cOI0aMgFwux4MHD/DLL79g6NChmnaFiIh0ROPkkJiYiP79+2tU5/UH5GbPno3g4GBUqVJF6fv+/fvzWYfXcKoAIipKGj/n0L9/f/z++++FDhgZGQm5XK5UJpfLERkZWeg2iYhIu9QaOXTv3l26ZpCdnY1169Zh2bJlcHJyUtpu9+7db22rcePGGDlyJBYtWgQ7Ozs8e/YMkydPRqNGjQrRfSIi0gW1kkOdOnWUPtevX7/QATdu3IjPP/8cDg4O0hPWzZo1w7Zt2wrdJhERaZdayUGb56jLlSuHkydPIiYmBnFxcXBxcUH58uW11j4REb07ta85HD9+HKNHj873u6+//honTpzQKLCrqyu8vLyYGIiIiiG171ZatGhRgcmhU6dOWLRoEXx9ffP9vnnz5jh9+jQAoG7dugU+86DOehBERKR7aieH69evo23btvl+17p16zc+p+Dn5ye9HzdunPq9IyKiIqF2ckhMTFRa9e11ubm5SEpKKrBu3759pfeDBg3SoHtERFQU1L7m4O7ujgsXLuT73cWLF1WeXSjIxo0bcfPmTQCQpv6uX78+wsPD1e0K5s2bh4YNG8LCwgIODg7o1q0bIiIilLYRQiAgIAAuLi4oXbo0fH19cevWLbVjEBF9yNRODoMHD8bIkSMRHR2tVB4dHY1Ro0ZhyJAharUze/ZsODo6AgC+++47tGvXDl27dsWYMWPU7nRoaChGjRqF8+fP48iRI8jOzkbbtm2RmpoqbbNw4UIsWbIEK1euRFhYGJycnNCmTRuVyQKJiEiV2qeVxo8fj7CwMHh6esLLywvlypVDbGwsLl68iO7du2P8+PFqtfPs2TPY29sjIyMD586dwx9//AFDQ0Ol+ZfeJjg4WOlzYGAgHBwccPnyZbRo0QJCCCxbtgzTpk1Djx49AACbNm2Co6Mjtm3bhq+++krtWEREHyK1Rw4GBgbYsWMHgoOD0bx5c5ibm6NZs2YIDg7Gtm3b1Jp1FQBsbGxw9+5dHDp0CPXr14eJiQmysrLeaZ2HxMREAICtrS0AICoqCvHx8UoX0E1MTODj44OzZ8/m24ZCoUBSUpLSi4joQ6XxxHs+Pj7w8fEpdMCxY8dKT1znrf52+vRpeHp6Fqo9IQQmTJiA5s2bo2bNmgCA+Ph4AJBOX+VxdHTEgwcP8m1n3rx5Op3srrjjRH+kKR4zJVuhFvt5FxMmTEDnzp1RqlQpVKxYEQBQoUIFrFu3rlDtjR49Gjdu3JCeo3jdf0czQogCRzhTpkzBhAkTpM9JSUlwdXUtVJ+IiN53Gs/Kqg3u7u6Ii4vDzp07AbyaUsPd3V3jdr7++mvs27cPx48fV3rSOm9CwLwRRJ6nT5+qjCbymJiYwNLSUulFRPSh0ntyuHPnDjw9PdG7d2/pwbmQkBAMGzZM7TaEEBg9ejR2796NY8eOqSQWd3d3ODk54ciRI1JZZmYmQkND0bRpU+3sCBFRCaZWcmjcuLH0/l3PM/r5+WHs2LF49OgRjIyMAAC+vr75nhYqyKhRo7BlyxZs27YNFhYWiI+PR3x8PNLT0wG8Op00btw4zJ07F3v27MHNmzcxePBglClTRumBPCIiyp9a1xwiIiKQnZ0NQ0NDLF68+J0uFl27dg1Hjx4F8P+vCVhaWmr0/MGaNWsAQGUup8DAQAwePBjAq+VM09PT4efnhxcvXqBRo0Y4fPgwLCwsCt13IqIPhVrJwdfXF3Xq1EGVKlWQnp4uPTvwX+os9uPo6Ijo6GjpYjTwanU4TWZnLWgaj9fJZDIEBAQgICBA7XaJiOgVtZLDjh07sGvXLkRFReHAgQOoXbt2oQOOHDkSPXv2xKxZs5CTk4PDhw9jxowZBc74SkRE+qdWcjAxMZHO1b948eKdTiuNGTMGhoaGmDJlCnJycjBu3DiMGjUKnTt3LnSbRESkXRrfrfTjjz8iOTkZO3bswI8//ogdO3Zo9DRxQkICRowYgZs3byIlJQUhISG4c+cOKleurGlXiIhIRzRODteuXYOHhwcCAgIQEhKCmTNnonLlyrh69eob612+fBlyuRwODg5wdnbGuXPnsGbNGlStWhUPHjzAsWPHCr0TRESkXRo/IT1mzBhMnToVY8eOlcpWrFiBMWPG4NSpUwXW+/bbb9GnTx8MGjQI69evx6effgoXFxeEhoaibt26hes9ERHphMbJ4ebNmzh+/LhSmZ+fH77//vs31gsPD8eRI0dgaGiIOXPm4KeffsKlS5fg7OysaReIiEjHND6t5OTkhPPnzyuVXbx4UZqyoiCZmZkwNHyVi0qXLg0rKysmBiKiYkrjkcPUqVPRoUMHDBgwAG5uboiOjsbWrVuxYsWKN9bLzMzE8uXLpc8KhULpMwCNFvwhIiLd0Tg59O/fH3K5HJs3b5YmvNu3bx9atGjxxnqNGzfGnj17pM9eXl5Kn2UyGZMDEVExUagpu729veHt7a1RnRMnThQmFBERFYEimbKbiIiKNyYHIiJSweRAREQqmByIiEhFoS5Iz5s3D1OmTNF2X+gDwsXpiYo3tUcODx48kN4vWrRIeu/j46PdHhERUZFTOzm0b98eTk5O6NSpExQKBc6cOQOFQoHw8HBd9o+IiIqA2snh9u3biIyMxPjx4yGEgL+/P1xcXJCSkoKFCxciMjJSl/0kIiI9Uvuaw9atW+Hl5YXWrVvDxMQER48eRVZWFuzs7JCamorevXu/ddpuItIdXV3H4TWcD5PaI4eQkBD07NkTdnZ2SEtLw4IFCxAWFgZDQ0PMnDmTiYGIqARROzls3LgRN27cwMOHD2FsbIzU1FRMnjwZycnJ6N69O4KCgnTYTSIi0ieNn3MwMzODoaEhZs2ahZMnT8Lc3BwjR47EhQsXdNE/IiIqAoV6zmHjxo1Kn9u2bYu2bdtqpUNERFT0CvWEdPfu3aX3T5480VpniIioeHjn6TOMjY210Q8iIipGOLcSERGpKNHJYfXq1XB3d4epqSnq16+PU6dOFXWXiIjeCyU2OezcuRPjxo3DtGnTcPXqVXh7e6NDhw54+PBhUXeNiKjYK7HJYcmSJRg6dCiGDRsGT09PLFu2DK6urlizZk1Rd42IqNgrkckhMzMTly9fVrm9tm3btjh79mwR9YqI6P1RqOccirtnz54hJycHjo6OSuWOjo6Ij4/Pt45CoYBCoZA+JyYmAgCSkpIAABkZGTrpa177/6WreAXFLOnxPgQ8Rt/veLqMmRcv779CiLdXEiVQbGysACDOnj2rVD579mxRtWrVfOv4+/sLAHzxxRdfJf4VExPz1t+jJXLkULZsWZQqVUpllPD06VOV0USeKVOmYMKECdLn3NxcPH/+HHZ2dpDJZGrHTkpKgqurK2JiYmBpaVm4HdBASY9XFDEZ7/2OVxQx35d4QggkJyfDxcXlrduWyORgbGyM+vXr48iRI0pPcx85cgRdu3bNt46JiQlMTEyUyqytrQvdB0tLS739j/AhxCuKmIz3fscripjvQzwrKyu1tiuRyQEAJkyYgAEDBqBBgwZo0qQJfvnlFzx8+BAjRowo6q4RERV7JTY59O7dGwkJCZg1axbi4uJQs2ZNHDx4EHK5vKi7RkRU7JXY5AAAfn5+8PPz02tMExMT+Pv7q5yiYrz3Jybjvd/xiiJmSYwnE0Kde5qIiOhDUiIfgiMionfD5EBERCqYHIiISAWTAxERqWBy0CE3NzfIZDKl1+TJk/USW6FQoE6dOpDJZLh27ZrO4nTp0gUVKlSAqakpnJ2dMWDAADx+/FgnsaKjozF06FC4u7ujdOnSqFSpEvz9/ZGZmamTeAAwZ84cNG3aFGXKlHmnhyILos81R06ePInOnTvDxcUFMpkMe/fu1VksAJg3bx4aNmwICwsLODg4oFu3boiIiNBZvDVr1uCjjz6SHgxr0qQJDh06pLN4/zVv3jzIZDKMGzdOZzECAgJUfqc4OTnpJBaTg47lPWeR95o+fbpe4k6aNEmtR+TfVcuWLfHbb78hIiICu3btwv379/Hpp5/qJNadO3eQm5uLtWvX4tatW1i6dCl+/vlnTJ06VSfxgFcz/H722WcYOXKk1tvW95ojqampqF27NlauXKmT9v8rNDQUo0aNwvnz53HkyBFkZ2ejbdu2SE1N1Um88uXLY/78+bh06RIuXbqEVq1aoWvXrrh165ZO4r0uLCwMv/zyCz766COdx6pRo4bS75Tw8HDdBHr3ae6oIHK5XCxdulTvcQ8ePCiqVasmbt26JQCIq1ev6i32H3/8IWQymcjMzNRLvIULFwp3d3edxwkMDBRWVlZabdPLy0uMGDFCqaxatWpi8uTJWo2THwBiz549Oo/zuqdPnwoAIjQ0VG8xbWxsxPr163UaIzk5WVSuXFkcOXJE+Pj4iLFjx+oslr+/v6hdu7bO2n8dRw46tmDBAtjZ2aFOnTqYM2eOTk+BAMCTJ08wfPhwbN68GWXKlNFprP96/vw5tm7diqZNm8LIyEgvMRMTE2Fra6uXWNr0Ia45kjcNvj7+vXJycrBjxw6kpqaiSZMmOo01atQodOrUCa1bt9ZpnDx3796Fi4sL3N3d0adPH/zzzz86iVOin5AuamPHjkW9evVgY2ODixcvYsqUKYiKisL69et1Ek8IgcGDB2PEiBFo0KABoqOjdRLnv7777jusXLkSaWlpaNy4Mfbv36+XuPfv38eKFSuwePFivcTTpsKsOfI+E0JgwoQJaN68OWrWrKmzOOHh4WjSpAkyMjJgbm6OPXv2oHr16jqLt2PHDly5cgVhYWE6i/G6Ro0a4ddff0WVKlXw5MkTzJ49G02bNsWtW7dgZ2en3WB6GZ+UIOqs+xAWFpZv3f/9738CgHj27JlOYv7000+iadOmIjs7WwghRFRUVKFOK2m6j//++6+IiIgQhw8fFs2aNRMdO3YUubm5OosnxKs1Ozw8PMTQoUM12rfCxtP2aaXCrDmiTdDzaSU/Pz8hl8vVWkfgXSgUCnH37l0RFhYmJk+eLMqWLStu3bqlk1gPHz4UDg4O4tq1a1KZrk8r/VdKSopwdHQUixcv1nrbnD5DQ8+ePcOzZ8/euI2bmxtMTU1VymNjY1G+fHmcP38ejRo10nrMPn364M8//1RafyInJwelSpVCv379sGnTJq3Gy28fHz16BFdXV5w9e1bt4bym8R4/foyWLVuiUaNGCAoKgoGBZmdHC7N/QUFBGDduHF6+fKlRrIJkZmaiTJky+P3335WmlR87diyuXbuG0NBQrcQpiEwmw549e9CtWzedxgGAr7/+Gnv37sXJkyfh7u6u83iva926NSpVqoS1a9dqve29e/eie/fuKFWqlFSWk5MDmUwGAwMDKBQKpe90pU2bNvDw8MCaNWu02i5PK2mobNmyKFu2bKHqXr16FQDg7Oysk5jLly/H7Nmzpc+PHz9Gu3btsHPnTo2S0bvsY97fGq8vuarNeLGxsWjZsiXq16+PwMBAjRODpvF0pTBrjrxvhBD4+uuvsWfPHpw4cULviSGvD5oci5r4+OOPVe4U+uKLL1CtWjV89913ekkMCoUCt2/fhre3t9bbZnLQkXPnzuH8+fNo2bIlrKysEBYWhvHjx0vPBejCf9s1NzcHAFSqVAnly5fXeryLFy/i4sWLaN68OWxsbPDPP//g+++/R6VKlXRyEfDx48fw9fVFhQoV8OOPP+Lff/+VvtPVvd4PHz7E8+fP8fDhQ+Tk5EjPjHh4eEg/38LS95ojKSkpuHfvnvQ5KioK165dg62trU6OyVGjRmHbtm34448/YGFhIV1LsbKyQunSpbUeb+rUqejQoQNcXV2RnJyMHTt24MSJEwgODtZ6LACwsLBQuX5iZmYGOzs7nV1X+fbbb9G5c2dUqFABT58+xezZs5GUlIRBgwZpP5jWT1SREEKIy5cvi0aNGgkrKythamoqqlatKvz9/UVqaqre+lDYaw7qunHjhmjZsqWwtbUVJiYmws3NTYwYMUI8evRIJ/ECAwMLvEagK4MGDco33vHjx7XS/qpVq4RcLhfGxsaiXr16Or3N8/jx4/nuy6BBg3QSr6B/q8DAQJ3EGzJkiPSztLe3Fx9//LE4fPiwTmIVRNfXHHr37i2cnZ2FkZGRcHFxET169NDZNRVecyAiIhV8zoGIiFQwORARkQomByIiUsHkQEREKpgciIhIBZMDERGpYHIgIiIVTA703unQoQNWr15d4Pd504YXR0FBQahTp06h6586dUonT7sT/ReTA+mUr68vTExMYG5uDhsbG/j4+Lzz9MaHDh2Cn58fAODEiRMqy3f269dPZ2sinDhxAjKZDObm5rCwsIBcLseUKVOQm5ur9VjR0dGQyWRKk/15e3vj0aNHWo8FAIMHD37nJS5lMhnKlCkDc3NzODo6ok+fPnjy5Ak6dOgAc3NzmJubw9jYGIaGhtLnvGlIfH19IZPJcPToUaU2Fy1apPPlN0kVkwPp3IIFC5CSkoK4uDjUq1dPLzOB6pKVlRVSUlKQnJyM4OBgBAUFISgoqKi7VWycPXsWKSkpCA8PR1xcHMaPH49Dhw4hJSUFKSkpmDp1Kj755BPpc0pKilS3atWqCAwMVGovKCgI1apV0/dufPCYHEhvTE1NMXToUDx+/BgJCQl48uQJevXqBXt7e1SoUAHTpk1DdnY2gFerynXv3h22trawtrZG/fr18eDBAwCv/sJctmwZEhIS0KFDByQmJkp/gZ46dUrl1M2b4uSNPNavXw9XV1fY2dlh0qRJau+Tp6cnmjdvjsuXL0tl9+/fR+fOnWFvbw+5XI7Zs2cXOLJYsmQJKleuDAsLC1SqVElpfWcvLy8Ar9ZGNjc3x9atW5VGSrt370alSpWU2rtw4QKsra2RkZEBADh69Ci8vLxgbW2NGjVqYN++ffn2Y/ny5di6dStWr14Nc3Nz1KhRAwCQnJyML7/8Es7OznB2dsaIESPUXgPawcEBn332mUZrHPfp0weHDh2SVo27cOEChBAazSpM2sHkQHqTlpaG9evXQy6Xw87ODn379oWRkRGioqJw6tQp7N27FwsXLgQA/Pjjj8jOzsajR4+QkJCADRs2wMLCQqk9Ozs7HDp0SPpLPiUlJd+pi98UB3j1CzA8PBx3797F6dOnsWrVKpw4cUKtfQoPD8fJkydRpUoVAEB6ejo+/vhjtGrVCrGxsTh16hR27Nih8tdwHrlcjmPHjiEpKQnr16/HxIkTcebMGQCvZr0FXq2RkZKSgn79+inV/eSTT/Dy5UtpewDYvHkzPvvsM5iamuLGjRv47LPPMH/+fDx//hxr167FgAEDEBERodKPMWPGoF+/fvDz80NKSgpu3boF4NX6Evfu3cPNmzcRHh6OO3fuYPz48Wr9bOLj4/Hbb7+hXr16am0PANbW1mjfvj22b98OANi4cSO++OILteuT9jA5kM5NmTIF1tbWqFixIu7cuYN9+/YhNjYWx44dw+LFi2Fubg65XI5p06ZJp2eMjIyQkJCAu3fvolSpUqhTp06h1h5+Wxzg1Zz/8+bNg6mpKTw9PdG0aVOlkcB/JSYmwtraGqVLl8ZHH32ETp06SddA9u/fDxsbG4wfPx7GxsaoUKECxo4di23btuXbVs+ePeHq6gqZTIaWLVuiXbt2aicmY2Nj9O7dG5s3bwYAZGVlYefOnRg4cCAAYO3atRg8eDBatWoFAwMDNG/eHJ988gl+++03tdrPzc3Ftm3bMG/ePNjZ2aFs2bKYO3cufv311zdeY/H29oaNjQ28vLxQqVIlLF26VK14eb744gsEBgYiPT0du3btwoABAzSqT9rB9RxI5+bNm6dyMfHChQswNTVVWoehYsWK0sXWiRMnIiMjA7169UJiYiJ69+6N+fPna7wOwKNHj94YBwAsLS1RpkwZ6bOZmRmSk5MLbNPKygovX75ETk4ONm7ciIULFyItLQ1WVlaIjo7GzZs3lS6S5+bmwtXVNd+2tm7disWLFyMqKgpCCKSlpWm0KM7AgQPRsWNH/PTTTwgODoaFhQWaN28O4NUF7WPHjimNWrKzs2FpaalW2//++y8UCgXc3NyksooVK0KhUODZs2dwcHDIt96pU6fe6Y6sjz/+GMOGDcMPP/yAJk2a6GytDnozjhyoSJQvXx4ZGRl48uSJVBYVFSXdpmlubo4FCxYgIiIC586dQ0hISL63r75tJbi3xXkXpUqVwvDhw1G9enUEBAQAAFxdXVG/fn28fPlSeiUlJUmnaV738OFDDBo0CAsXLsS///6Lly9fomPHjtJqeuqscte4cWOULVsW+/fvx+bNm9G/f39pmVhXV1eMHTtWqS8pKSkFLif533j29vYwNjZGdHS0VBYVFQUTExOdrqRnYGCAgQMHYv78+TylVISYHKhIlCtXDi1btsS3336L1NRUPHz4EHPnzpVWtNq/fz8iIyORm5sLS0tLGBkZwdBQdaDr6OiI5ORkpVXhNImjDTNmzMDPP/+M2NhYfPLJJ3jy5AlWr16NjIwM5OTkICIiIt9TRSkpKRBCwMHBAQYGBjh48CAOHz4sfW9vbw8DAwPcv3//jfEHDBiAlStX4sCBA9IpJQD46quvEBgYiOPHjyMnJwcKhQLnzp3D7du3823H0dER//zzj/TZwMAAffv2xbRp0/D8+XMkJCRg2rRpGDBgQKGWZ9XE+PHjcfjwYXTu3FmncahgTA5UZLZt24b09HTI5XI0a9YMnTp1ku4UunfvHtq3bw8LCwtUr14dTZo0wciRI1XaqFq1KoYOHQpPT09YW1vj9OnTGsXRhgYNGqBFixaYM2cOzM3NcfToUYSEhMDNzU268J63RObrqlevjmnTpqFVq1aws7PDzp070aVLF+n70qVLw9/fHx06dIC1tXWB1y0GDBiA0NBQ1K1bFx4eHlJ53bp1sX37dkyfPh329vYoV64cZsyYUeCaysOGDUNsbCxsbGzw0UcfAQB++uknuLm5oXr16qhRowY8PDywZMmSd/lxqcXW1hatW7eGkZGRzmNR/rgSHBERqeDIgYiIVDA5EBGRCiYHIiJSweRAREQqmByIiEgFkwMREalgciAiIhVMDkREpILJgYiIVDA5EBGRCiYHIiJSweRAREQq/h99f2K9DIfQRQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ptm_pose import plots as pose_plots\n", + "\n", + "pose_plots.location_of_altered_flanking_residues(altered_flanks)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can even create the same plot for specific modification types or residues, as well as label the specific residue changes that occur:" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Sam\\OneDrive\\Documents\\GradSchool\\Research\\Splicing\\PTM_POSE\\ptm_pose\\plots.py:437: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.\n", + " ax[0].set_xticklabels(['N-term\\nonly', 'C-term\\nonly'])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAElCAYAAADjk4nIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA990lEQVR4nO3dfVyN9/8H8NdJd3SqU+m+41QKhbmJFkplJjdD2DATzc2GRrQxZGvMXe7HsEZqc5dtbmZuGlLuxiQhQ4lSukOoTnS6+/z+8Ov6OrpxzumcivN+Ph7nsa7PuT7X+33l2rvrXOe6Ph8eY4yBEEKI2tBo7AQIIYQ0LCr8hBCiZqjwE0KImqHCTwghakbhwp+ZmYmnT58CACQSCdauXYsNGzagvLxcWbkRQghRAU1FOw4fPhzh4eEQCASYO3cuTpw4AS0tLaSkpGDDhg3KzJEQQogS8RS9ndPIyAiPHz8Gj8eDlZUVzp8/Dz6fjw4dOiAnJ0fZeRJCCFEShc/4NTQ0UFpaiuTkZBgYGEAkEoExBrFYrMz8CCGEKJnChd/T0xMjR45Efn4+hg0bBgBITU2FmZmZ0pJTlcrKSmRnZ0NfXx88Hq+x0yGEkHpjjKGoqAhWVlbQ0Kj761uFC394eDhWrVoFLS0tzJkzBwCQkpKCGTNmKLrJBpOdnQ2hUNjYaRBCiNJlZmbCxsamznUUvsb/JisoKIBAIEBmZiYMDAwaOx1CCKm3wsJCCIVCPH36FIaGhnWuK/cZ//r161+7TlM/66+6vGNgYCB34V+4cKEqUiJNWEhISGOnQIjMZLl8LXfhnzlzJhwdHWFtbY2aPizweLwmX/gJIUSdyV34p06dit9//x2Ojo749NNPMWTIEGhpaakiN0IIISog95O7GzduxP379zFu3Dhs2bIFNjY2CAwMxNWrV1WRHyGEECVTaMgGbW1tjBw5EtHR0bh8+TK0tLTg4uKCU6dOybWdZcuWoXv37tDX14eZmRl8fX2RnJxcZ5+4uDjweLxqr1u3bimyK4QQonYUvp0TAI4dO4Zt27bh+PHjGDNmDNq2bStX/1OnTiEgIADdu3dHeXk5goOD0a9fP9y4cQN6enp19q16cKyKqampQvtACCHqRu7Cf+fOHURGRuLXX3+FUCjEp59+ii1btkBfX1/u4NHR0VLLERERMDMzQ0JCAnr37l1nXzMzMwgEArljEkKIupO78Ds6OqJdu3b44osvuDP82NhYqXWGDBmiUDIFBQUAAGNj49eu26VLF5SUlMDZ2RkLFiyAt7d3retKJBJIJBJuubCwUKH8CCHkbSB34W/VqhWeP3+OTZs21fg+j8dTqPAzxhAUFAR3d3d06NCh1vUsLS3x888/w8XFBRKJBNu3b8d7772HuLi4Wj8lLFu2jO6/J4SQ/9dkntwNCAjA4cOHcfbs2dc+bvyqwYMHg8fj4eDBgzW+X9MZv1AoREFBAT3ARV6LHuAib4LCwkIYGhrKVNfkvqunY8eOCidWm+nTp+PgwYOIjY2Vu+gDgJubG27fvl3r+zo6OtxTuoo8rUsIIW8TuS/1pKenKy04YwzTp0/H/v37ERcXBzs7O4W2k5iYCEtLS6XlRQghbzO5C78yhzEOCAjArl278Oeff0JfXx+5ubkAAENDQzRv3hwAMG/ePGRlZeHXX38FAKxbtw62trZo3749SktLsWPHDuzduxd79+5VWl6EEPI2k7vwSyQSBAUF1bnOmjVrZNrW5s2bAQBeXl5S7REREfD39wcA5OTkICMjg3uvtLQUX331FbKystC8eXO0b98ehw8fxsCBA2XfCUIIUWNyF37GGJ48eaKU4LJ8rxwZGSm1PGfOHG78f0IIIfKTu/Dr6uoiIiJCFbkQQghpAPUasoEQonp0C7H6UfUtxHLfztmqVStV5EEIIaSByF344+PjsWDBAgwdOhSLFi1CWVmZKvIihBCiInIX/qCgIOzbtw9t2rTB7t27MW/ePFXkRQghREXkLvx//fUXoqOjsXLlShw+fBgHDhxQQVqEEEJURe7CX1hYyF3nt7e3V9qtnYQQQhqGQnf1FBUVcffgV1ZWSi0DoLFwCCGkCZO78IvFYqkJUBhj3DJjDDweDxUVFcrKjxBCiJLJXfjT0tJUkQchhJAGInfhF4lEqsiDEEJIA5H7y11CCCFvNir8hBCiZqjwE0KImpGr8Lu5uXE/08BRhBDyZpKr8CcnJ6O8vBwAsHr1apUkRAghRLXkuqvHy8sLnTt3Rps2bfD8+XMMHz68xvX27dunlOQIIYQon1yFPyoqCnv37kVaWhoOHz6MTp06qSovQgghKiJX4dfR0cGYMWMAAE+ePFH5ZAGEEEKUT+EZuFatWoWioiIcPnwY9+/fh42NDQYOHEjj9BBCSBOncOG/cuUKfHx8YGRkBDs7O6SnpyMwMBDR0dHo0qWLMnMkhBCiRArfxz9jxgzMnz8ft27dwtGjR3Hz5k0sWLAAM2bMUGZ+hBBClEzhwn/9+nV88cUXUm3Tpk3D9evX650UIYQQ1VG48FtYWODChQtSbRcvXoSFhUW9kyKEEKI6Cl/jnz9/PgYMGAA/Pz/Y2toiPT0dO3fuxIYNG5SZHyGEECVT+Ix/7NixOHz4MMrKyhAbG4uysjIcPHgQfn5+ysyPEEKIkil8xg8AHh4e8PDwUFYuhBBCGgCNzkkIIWqGCj8hhKgZKvyEEKJmmkTh37RpE+zs7KCrqwsXFxecOXOmzvVPnToFFxcX6Orqwt7eHj/99FMDZUoIIW++ehX+ZcuW1TuBPXv2YObMmQgODkZiYiI8PDwwYMAAZGRk1Lh+WloaBg4cCA8PDyQmJmL+/PmYMWMG9u7dW+9cCCFEHchd+O/du8f9vHLlSu5nT09PhRJYs2YNJk6ciEmTJsHJyQnr1q2DUCjE5s2ba1z/p59+QqtWrbBu3To4OTlh0qRJmDBhAlatWqVQfEIIUTdy387Zv39/PHnyBC4uLpBIJDh37hy6deuGpKQkuYOXlpYiISEBc+fOlWrv168f/vnnnxr7nD9/Hv369ZNq8/HxQXh4OMrKyqClpVWtj0QigUQi4ZYLCgoAAIWFhXLnXFJSIncf8mZT5DhRJjrm1I8ix1xVH8bY61dmCigoKGDHjx9nzZs3Z++99x4zNjZmWlpaLDQ0lCUnJ8u8naysLAaAnTt3Tqp9yZIlrE2bNjX2cXR0ZEuWLJFqO3fuHAPAsrOza+wTEhLCANCLXvSi11v/yszMfG3tlfuMf+fOnXB1dUXfvn2ho6ODEydOoKysDCYmJiguLsaoUaOQmJgo1zZ5PJ7UMmOsWtvr1q+pvcq8efMQFBTELVdWVuLx48cwMTGpMw75n8LCQgiFQmRmZtKcC0Tl6HiTH2MMRUVFsLKyeu26chf+mJgYhIaGIisrC8+ePUNoaCg8PDygqamJhQsXYuHChTJvq2XLlmjWrBlyc3Ol2h88eABzc/Ma+1hYWNS4vqamJkxMTGrso6OjAx0dHak2gUAgc57kfwwMDOh/RNJg6HiTj6GhoUzryf3l7rZt23Dt2jVkZGRAW1sbxcXFmDt3LoqKijBs2DBERkbKvC1tbW24uLjg+PHjUu3Hjx9Hz549a+zTo0ePausfO3YM3bp1q/H6PiGEkFfIci2+NgKBQOrnv//+m02ZMkWubURFRTEtLS0WHh7Obty4wWbOnMn09PRYeno6Y4yxuXPnMj8/P279u3fvshYtWrBZs2axGzdusPDwcKalpcX++OOP+uwKeY2CggIGgBUUFDR2KkQN0PGmWvUapG3btm1Sy/369at2x83rjBo1Cvn5+Vi0aBFycnLQoUMHHDlyBCKRCACQk5MjdU+/nZ0djhw5glmzZmHjxo2wsrLC+vXrMWLEiPrsCnkNHR0dhISEVLtkRogq0PGmWjzGZLn35/VKS0uhra2tjE0RQghRIaUVfkIIIW+GJjFWDyGEkIZDhZ8QQtQMFX5CCFEzVPjfMv7+/uDxeFi+fLlU+4EDB+p8Svm7775D586dVZwdeVvl5uZi+vTpsLe3h46ODoRCIQYPHoyYmJga109PTwePx8OVK1caNlECgAr/W0lXVxehoaF48uRJg8cuKytr8JikcaWnp8PFxQUnT57EihUrkJSUhOjoaHh7eyMgIEDl8emYkx8V/rdQ3759YWFhIfN8CZGRkVi4cCGuXr0KHo8HHo/HPYFdUFCAzz77DGZmZjAwMECfPn1w9epVrm/VJ4Vt27ZxZ3vs/8daCgsLwwcffIAWLVrAyckJ58+fR2pqKry8vKCnp4cePXrgzp07qvgVkAY0bdo08Hg8XLx4ER9++CHatGmD9u3bIygoCBcuXKixj52dHQCgS5cu4PF48PLy4t6LiIiAk5MTdHV10a5dO2zatIl7r+qTwm+//QYvLy/o6upix44d8Pf3h6+vL5YuXQpzc3MIBAIsXLgQ5eXlmD17NoyNjWFjY1Pt2SO11aiPjxGlGz9+PBs6dCjbt28f09XV5Ubq279/P6vtn/vZs2fsyy+/ZO3bt2c5OTksJyeHPXv2jFVWVrJevXqxwYMHs/j4eJaSksK+/PJLZmJiwvLz8xljL0Y+1dPTYz4+Puzy5cvs6tWrrLKykgFg1tbWbM+ePSw5OZn5+voyW1tb1qdPHxYdHc1u3LjB3NzcWP/+/Rvsd0OULz8/n/F4PLZ06VK5+l28eJEBYCdOnGA5OTnc8fTzzz8zS0tLtnfvXnb37l22d+9eZmxszCIjIxljjKWlpTEAzNbWllsnKyuLjR8/nunr67OAgAB269YtFh4ezgAwHx8ftmTJEpaSksK+//57pqWlxTIyMpT+e3jTUOF/y1QVfsYYc3NzYxMmTGCM1V34GXtRwDt16iTVFhMTwwwMDFhJSYlUe+vWrVlYWBjXT0tLiz148EBqHQBswYIF3PL58+cZABYeHs617d69m+nq6sq9j6Tp+PfffxkAtm/fPrn6VRXwxMREqXahUMh27dol1fb999+zHj16SPVbt26d1Drjx49nIpGIVVRUcG1t27ZlHh4e3HJ5eTnT09Nju3fvlivXtxFd6nmLhYaG4pdffsGNGzek2vl8PveaMmVKrf0TEhIgFothYmIi1SctLU3qEo1IJIKpqWm1/u+88w73c9Voqx07dpRqKykpafSJToji2GuGRAeAKVOmSB0/tXn48CEyMzMxceJEqfUXL15c7ZJgt27dqvVv3749NDT+V9LMzc2ljrdmzZrBxMQEDx48kHn/3lb1GquHNG29e/eGj48P5s+fD39/f6795Tsp6hrytrKyEpaWloiLi6v23svDWuvp6dXY/+XRUqsKQ01tlZWVde0GacIcHR3B4/Fw8+ZN+Pr61rjOokWL8NVXX712W1XHwZYtW/Duu+9KvdesWTOp5ZqOuVdH5+XxeDW20fFGhf+tt3z5cnTu3Blt2rTh2hwcHKqtp62tjYqKCqm2rl27Ijc3F5qamrC1tVV1quQNZGxsDB8fH2zcuBEzZsyoVpCfPn0KMzMzmJmZSbVXjev18jFnbm4Oa2tr3L17F5988onqk1djdKnnLdexY0d88skn2LBhQ53r2draIi0tDVeuXMGjR48gkUjQt29f9OjRA76+vvj777+Rnp6Of/75BwsWLMClS5caaA9IU7dp0yZUVFTA1dUVe/fuxe3bt3Hz5k2sX78ePXr0qLGPmZkZmjdvjujoaOTl5XHzYH/33XdYtmwZfvjhB6SkpCApKQkRERFYs2ZNQ+7SW48Kvxr4/vvvXzsB84gRI9C/f394e3vD1NQUu3fvBo/Hw5EjR9C7d29MmDABbdq0wejRo5Genl7rDGlE/djZ2eHy5cvw9vbGl19+iQ4dOuD9999HTEwMNm/eXGMfTU1NrF+/HmFhYbCyssLQoUMBAJMmTcLWrVsRGRmJjh07wtPTE5GRkdztn0Q5aHROQghRM3TGTwghaoYKPyGEqBkq/IQQomao8BNCiJqhwk8UQsM4k4ZEx5tyUeEnhBA1Q4WfEELUDBV+NSWRSDBjxgyYmZlBV1cX7u7uiI+PBwDExcWBx+MhJiYG3bp1Q4sWLdCzZ08kJyfXuK3Tp09DS0sLubm5Uu1ffvklevfurfJ9IU0fHW9NCxV+NTVnzhzs3bsXv/zyCy5fvgwHBwf4+Pjg8ePH3DrBwcFYvXo1Ll26BE1NTUyYMKHGbfXu3Rv29vbYvn0711ZeXo4dO3bg008/Vfm+kKaPjrcmpnFHhSaNQSwWMy0tLbZz506urbS0lFlZWbEVK1aw2NhYbpKMKocPH2YA2PPnzxlj1cfvDw0NZU5OTtzygQMHGJ/PZ2KxWPU7RJo0Ot6aHjrjV0N37txBWVkZevXqxbVpaWnB1dUVN2/e5NpeHk/f0tISAGody9zf3x+pqancVHvbtm3DyJEjax2ymagPOt6aHhqWWQ2xWibPYP8/V24VecbONzMzw+DBgxEREQF7e3scOXKkxnH8ifqh463poTN+NeTg4ABtbW2cPXuWaysrK8OlS5fg5OSk8HYnTZqEqKgohIWFoXXr1lJneER90fHW9FDhV0N6enqYOnUqZs+ejejoaNy4cQOTJ0/Gs2fPMHHiRIW36+PjA0NDQyxevJi+ZCMcOt6aHir8amr58uUYMWIE/Pz80LVrV6SmpuLvv/+GkZGRwtvU0NCAv78/KioqMG7cOCVmS950dLw1LTQeP1GqyZMnIy8vDwcPHmzsVIgaoONNMfTlLlGKgoICxMfHY+fOnfjzzz8bOx3ylqPjrX6o8BOlGDp0KC5evIjPP/8c77//fmOnQ95ydLzVD13qIYQQNUNf7hJCiJqhwk8IIWqGCj8hhKgZKvyEEKJmqPATQoiaocJPmrz27dvj0KFDjRL7r7/+gq2tLfh8Pg4cOCB3/7i4OAgEAqXnJS+BQNBog5gtXboUH3/8caPEJjWjwk9q5eXlhXXr1jV6zP/++w8ffPBBg+ZRJSgoCIsWLYJYLIavr2+t6y1atAg8Hg9Hjx6tc3uN8Tt9ncjISDRr1gx8Ph/6+vpwcHDA2rVrlbb9+fPnY/fu3UrbHqk/KvyE1CEtLU1qnPiaMMYQEREBY2NjhIeHqzSf8vJylWy3Y8eOEIvFKCoqwq+//org4GCcPHlSJbFI46PCTxRy6dIl9OrVCwKBAM7OztXO6Hbv3o1OnTrBwMAAIpEIkZGRAIDExES4u7vD2NgYpqam+Pjjj5Gfnw/gxZypZ86cwddffw0+n48BAwYAAGxtbaUus+zYsQNOTk4QCARwd3dHYmIi956XlxfmzZsHHx8f8Pl8dO3aFUlJSbXuR15eHkaOHAlTU1O0atUKwcHBKC8vR35+Pvh8PioqKtCzZ0/w+XxIJJIatxETE4OsrCyEhYXh4MGDePjwYY3r1bZ/YrEYX3zxBVq1agUzMzOMGzcOBQUFAID09HTweDxERETAwcEB1tbWAIDLly/D29sbxsbGcHBwwJYtW7g4lZWV+Oabb2Bubg4rKyts3Lix1v2vSc+ePdG+fXskJCRwba+Lt2DBAql4L19a+u6776Q+LaWmpsLHxwfGxsZo3bq11CegyMhIdO7cGd9//z3MzMxgbm7e5D4hvRUabe4v0uR5enqytWvXVmt/8uQJMzExYevXr2elpaUsLi6O6enpsbNnzzLGGDt48CAzNjZmMTExrKKiguXl5bHLly8zxhi7cuUKO3PmDCstLWW5ubnMw8ODTZo0qc6YIpGI7d+/nzHG2OnTpxmfz2enTp1ipaWlbO3atczU1JQ9ffqU629lZcUuX77MysrK2OTJk5mnp2et+9inTx82ZswYVlRUxNLT05mzszNbsmQJ9z4AlpiYWOfvafTo0WzYsGGssrKS2drastWrV3PvxcbGMkNDwzr376OPPmIff/wxe/LkCROLxWz06NFs7NixjDHG0tLSGADm6+vLnjx5woqLi1lOTg4zNjZme/bsYeXl5SwpKYlZWlpyUxeGh4czGxsbdvPmTVZcXMz8/f2ZhoYGi42NrTH/iIgIblrDyspKdurUKaarq8sOHDjAGGOvjbd161Zma2vLkpOT2bNnz9iECROk4oWEhLChQ4cyxhgrKytjbdu2ZbNnz2bPnz9nV69eZZaWlty0jBEREUxTU5OtWLGClZaWstjYWNasWTOWmppa578BkQ8VflKr2gr/jh07WLt27aTaJk+ezCZPnswYY6x///5s4cKFMsXYv38/c3BwqDPmy4V/0qRJbMqUKVLvt2nThiscnp6e7Ouvv+beO3v2LOPz+TXGvn//PgPAcnJyuLadO3cyR0dHbvl1hf/x48dMR0eHK5ILFixgzs7O3PuvK/wPHjxgGhoaLD8/n2tLSUlhWlparLy8nCv8L+ewYsUK5uvrK5XH/Pnz2YQJExhjL/6YhYaGcu/l5uYyAHUWfg0NDWZoaMi0tbUZALZgwQJWWVkpc7yVK1dK7dPL8V4u/GfPnmUGBgZMIpFw6y9ZsoS9//77XC7m5uZSsRwcHNgff/xRY+5EMXSph8jt/v37sLW1lWqzt7fH/fv3AQD37t2Do6NjjX1TU1MxdOhQWFlZwcDAAGPHjsWjR4/qFdvOzo6LDQAWFhbcz3p6ehCLxbVuS1dXV2r9l/dDFjt27ICBgQEGDhwIABg3bhxu3LjBzQX7Ounp6aisrIS9vT0EAgEEAgG6d+8ODQ0N5Obmcuu1atVKqs+RI0e49QUCAdavX4+cnBwAQHZ2NkQiEbe+ubk5dHR06syjY8eOePr0KYqKivDNN98gJiaG+z5BlnhCoZDblqmpKXR1dWuMc//+fVhZWUFbW5tre/V3/vK/B/Di37CoqKjO/Il8qPATudnY2CA9PV2qLS0tDTY2NgAAkUiE1NTUGvtOmTIF1tbWuHHjBgoLC7Fjxw5uTlbgxeQa8sZOT0/nYsu7HyUlJcjLy6txP2QRHh6OgoICCIVCWFhYwMPDAzwer9YveV/dP6FQCA0NDWRnZ+Pp06fcq6SkhLue/2o/oVCIYcOGSa1fVFSEI0eOAACsrKxw7949bv0HDx7U+v3Eq7S1tbFw4UI8f/4cmzZtkjleZmYmt42HDx+ipKSkxu3b2NggOzsbZWVlXJu8v3NSf1T4SZ3Ky8tRUlLCvSQSCQYOHIgHDx5g06ZNKC8vx5kzZ7Br1y5uFqTPP/8cP/zwA06dOoXKyko8ePCA+wK2sLAQ+vr6MDAwQGZmJlauXCkVz9zcHHfu3Kk1n7Fjx2Lnzp04d+4cysvLsWHDBuTn53Nn3PKwtraGt7c3vvrqKxQXFyMjIwNLly7F+PHjZeqfkJCAq1ev4vjx47hy5Qr3CgsLQ1RUFIqLi6v1eXX/LCws4Ovriy+++IL75JObm4v9+/fXGtfPzw8nT57E3r17UVZWhrKyMly5cgXx8fEAgI8//hgbN25EcnIynj9/jnnz5r32D+rLeDwegoODsXTpUjx79kymeJs2bUJqaiqeP3+O+fPn1xrP1dUV5ubm+PbbbyGRSHD9+nX8+OOPMv/OiXJQ4Sd1mj17Npo3b8692rZtCyMjIxw9ehQ7duyAiYkJPvvsM2zevBnu7u4AAF9fX6xZswYBAQEwNDRE9+7duTtr1qxZg0OHDsHAwABDhw7FiBEjpOLNnDkTJ06cgEAgqPHefU9PT2zYsAETJ06EiYkJoqKicPToUYUfktq1axeeP38OkUiEXr16YdCgQZgzZ45MfcPDw+Hl5YXevXvDwsKCe/n7+0NfXx979uyp1qem/YuMjOQu8RgYGMDDw0PqjppXWVtb4++//0ZYWBgsLS1hbm6OgIAAFBYWAgAmTJiAsWPHwsPDA/b29ujSpQv09fXl+r0MHz4cxsbG+PHHH2WKN3r0aPTs2ROtW7dG586doaurW+PlJS0tLRw6dAgJCQmwsLDAkCFDEBQUhDFjxsiVH6kfGo+fEKJU2dnZsLa2RmZmJl3CaaLojJ8QUi/l5eU4cOAAysrK8OTJE8yaNQtubm5U9JswKvyEkHphjGH58uUwMTGBvb09ioqKsGvXrsZOi9SBLvUQQoiaoTN+QghRM1T4CSFEzVDhJ4QQNUOFnxBC1AwVfkIIUTNU+AkhRM1Q4SeEEDVDhZ8QQtQMFX5CCFEzVPgJIUTNUOEnhBA1Q4WfEELUDBV+QghRM1T4CSFEzVDhJ4QQNUOFnxBC1IxmYyfQGCorK5GdnQ19fX3weLzGTocQQuqNMYaioiJYWVlBQ6Puc3q1LPzZ2dkQCoWNnQYhhCidLJPcq2Xh19fXB/DiF2RgYNDI2RBCSP0VFhZCKBRy9a0ualn4qy7vGBgYUOEnhLxVZLl8TV/uEkKImqHCTwghakYtL/W8auHChSrbdkhIiMq2TQghiqAzfkIIUTNU+AkhRM1Q4SeEEDVDhZ8QQtSMTF/uLlq0SKaNffvtt/VKhhBCiOrJVPgTExO5n8vLyxEdHQ1HR0eIRCJkZGQgJSUFAwYMUFmShBBClEemwr9//37u588++ww//vgjPv/8c65ty5YtiI+PV352hBBClE7ua/y///47Jk+eLNU2YcIE/P7770pLihBCiOrIXfhbtmyJ6OhoqbZjx47BxMREaUkRQghRHbmf3F2+fDmGDx+Ovn37QiQS4d69e4iJicH27dtVkR8hhBAlk/uMf8SIEUhKSoKbmxsYY3Bzc8PVq1fx4YcfqiI/QgghSqbQWD2Ojo5YsGCBsnMhhBDSAOQ+4y8rK0NISAgcHBxgaGgIAIiOjsbGjRuVnhwhhBDlk7vwz5kzB2fPnsVPP/3EDfjv5OSEsLAwpSdHCCFE+eS+1PP7778jKSkJRkZG3IS+VQ9yEUIIafrkPuNnjKFFixZSbWKxWKZ5HgkhhDQ+uQu/t7c3vvnmG6m20NBQvP/++0pLihBCiOrIfaln7dq1GDJkCExNTVFYWAhra2u0atUKf/31lyryI4QQomRyF35TU1OcP38e8fHxuHfvHoRCIbp3785d7yeEENK0KTznbvfu3dG9e3dl5kIIIaQByF34vb29uds4X6ajowOhUIiRI0eib9++SkmOEEKI8sl9fcbV1RVJSUlwdnZG//794ezsjOvXr8PZ2Rk8Hg/Dhw+v82GuzMxMPH36FAAgkUiwdu1abNiwAeXl5QrvBCGEENnJfcZ/6dIlHD58GK6urlzb+PHjMXfuXMTExGDkyJGYNm0aAgICauw/fPhwhIeHQyAQYO7cuThx4gS0tLSQkpKCDRs2KL4nhBBCZMJjjDF5OhgaGiI/Px+amv/7m1FeXg5jY2MUFhaCMQZ9fX2IxeIa+xsZGeHx48fg8XiwsrLC+fPnwefz0aFDB+Tk5NRvb2RUWFgIQ0NDFBQUwMDAAAsXLlRZrJCQEJVtmxBCqrxa1+oi96UeZ2dnLF++HJWVlQCAyspKhIaGwtnZGQCQlZUFgUBQe0ANDZSWluLatWswMDCASCSCsbFxrX8oCCGEKJfcl3rCw8MxZMgQrFmzBpaWlsjNzYWRkREOHDgAAEhPT8fSpUtr7e/p6YmRI0ciPz8fw4YNAwCkpqbCzMxMsT0ghBAiF7kLv7OzM27duoXz588jJycHVlZWcHNz4y79uLu7w93dvdb+4eHhWLVqFbS0tDB79mwAQEpKCmbMmKHgLhBCCJGHQvfxa2pqwsPDQ6GARkZGWLJkiVTboEGD5NrGsmXLsG/fPty6dQvNmzdHz549ERoairZt2yqUEyGEqBO5r/FnZWVhwoQJ6NSpE+zt7aVeslDGeP6nTp1CQEAALly4gOPHj6O8vBz9+vVDcXGxvLtDCCFqR+4z/rFjx6JFixb4+uuvoaenJ3fAOXPm4Nq1a/jpp5+46RqdnJwwZ86cWm8BfdWrk71HRETAzMwMCQkJ6N27t9w5EUKIOpG78CckJODRo0fQ1tZWKKAqxvMvKCgAABgbGyu8DUIIURdyF/727dsjJycHIpFIoYDKHs+fMYagoCC4u7ujQ4cONa4jkUggkUi45cLCQoViEULI20Duwj98+HAMHjwY06dPh7m5udR7Q4YMeW3/qvH8V6xYwbXVZzz/L774AteuXcPZs2drXWfZsmUqfUhLXvTAGCGNT1X/H9b2/2BDx6uL3IV/06ZNAFDtXn0ejydT4VfmeP7Tp0/HwYMHcfr0adjY2NS63rx58xAUFMQtFxYWQigUyh2PEELeBnIX/rS0tHoFVMZ4/owxTJ8+Hfv370dcXBzs7OzqXF9HRwc6Ojr1ypsQQt4WCo/HX1/1Gc8/ICAAu3btwp9//gl9fX3k5uYCeDGOUPPmzZWZJiGEvHXkLvwSiQRr1qxBXFwcHj16hJfHeLt8+fJr+9c2nj8AnDx5UqYcNm/eDADw8vKSao+IiIC/v79M2yCEEHUld+EPCgpCXFwcPvvsMwQHB2PJkiXYvHkzPv74Y5n6+/r6Si3n5ORg+/btchVsOQcUJYQQ8hK5C/+BAwdw7tw52NraIiQkBIGBgejXrx+mTZsm07fLgYGB1dpGjx6NefPmyZsKIYQQBcg9ZENxcTFsbW0BALq6uigpKYGTkxMSEhIUTqJjx444d+6cwv0JIYTITu4zfkdHR1y9ehWdOnVCx44dsXbtWggEArRs2VKm/teuXZNafvbsGbZv347WrVvLmwohhBAFyF34ly5dyk2asnTpUowZMwZFRUUICwuTqX/nzp3B4/G46/R6enro2rUrfvnlF3lTIYQQogC5C//LT9h2794dt2/flqt/1cxdhBBCGodC9/EXFxcjJSUFRUVFUu00MiYhhDR9chf+3377DZMmTUJpaanUw1I8Hg+PHz+usY+dnV2t9+6/7O7du/KmQwghRE5yF/45c+Zg48aN8PPzk7nPunXruJ9v3LiBLVu2YMqUKRCJRLh37x5+/vlnTJw4Ud5UCCGEKEDuwl9QUICxY8fK1Wfo0KHcz4sXL0Z0dDTatGkj9f7YsWPpXn5CCGkAct/HP3bsWPz+++8KB0xJSak2lr9IJEJKSorC2ySEECI7mc74hw0bxl2jLy8vx5YtW7Bu3TpYWFhIrbdv377XbsvNzQ1Tp07FypUrYWJigkePHmHu3Ll49913FUifEEKIvGQq/J07d5ZadnFxUTjgtm3b8PHHH8PMzIx78rdXr17YtWuXwtskhBAiO5kKvzJndbK2tsbp06eRmZmJnJwcWFlZ1TmJCiGEEOWS+Rp/bGwsvvjiixrfmz59OuLi4uQKLBQK4erqSkWfEEIamMx39axcubLWwj9o0CCsXLmy2vj4Vdzd3bk5cbt06VLrPf2yjOdPCCGkfmQu/FevXkW/fv1qfK9v37513oc/bdo07ueZM2fKnh0hhBClk7nwFxQU1DoBSmVlJQoLC2vtO2bMGO7n8ePHy5EeIYQQZZP5Gr+dnR3+/fffGt+7ePFitXvza7Nt2zZcv34dALjhnV1cXJCUlCRrKoQQQupB5sLv7++PqVOnIj09Xao9PT0dAQEBmDBhgkzbWbx4MczNzQEAX3/9NXx8fDB06FDMmDFD9qwJIYQoTOZLPbNmzUJ8fDycnJzg6uoKa2trZGVl4eLFixg2bBhmzZol03YePXoEU1NTlJSU4Pz58/jzzz+hqakpNZ4PIYQQ1ZH5jF9DQwNRUVGIjo6Gu7s7+Hw+evXqhejoaOzatUum0TcBwMjICLdv38bRo0fh4uICHR0dlJWV0Tj9hBDSQOQepM3T0xOenp4KBwwMDOSeBK6adevs2bNwcnJSeJuEEEJkp9BELPURFBSEwYMHo1mzZrC3twcAtGrVClu2bGnoVAghRC3JPTqnMtjZ2SEnJwd79uwB8GIYBzs7u8ZIhRBC1E6DF/5bt27ByckJo0aN4h76iomJwaRJkxo6FUIIUUsyFX43Nzfu54ULF9Yr4LRp0xAYGIj79+9DS0sLAODl5cUN6UAIIUS1ZLrGn5ycjPLycmhqamL16tX1Gq3zypUrOHHiBABwdwIZGBhUm7idKE99/1jXpbZjQVUxlTlS7Jukof8N3/Z46k6mwu/l5YXOnTujTZs2eP78OYYPH17jerJMxGJubo709HTui13gxaxcNEonIYQ0DJkKf1RUFPbu3Yu0tDQcPnwYnTp1Ujjg1KlTMWLECCxatAgVFRU4duwYvvnmm1pH/iSEEKJcMhV+HR0dbqC1J0+e1Ouj04wZM6CpqYl58+ahoqICM2fOREBAAAYPHqzwNgkhhMhO7rt6Vq1ahaKiIkRFRWHVqlWIioqqc2TOV+Xn52PKlCm4fv06xGIxYmJicOvWLTg6OsqbCiGEEAXIXfivXLkCBwcHfPfdd4iJicHChQvh6OiIxMTEOvslJCRAJBLBzMwMlpaWOH/+PDZv3oy2bdvi3r17OHnypMI7QQghRHZyP7k7Y8YMzJ8/H4GBgVzbhg0bMGPGDJw5c6bWfl999RVGjx6N8ePHY+vWrfjwww9hZWWFU6dOoUuXLoplTwghRG5yF/7r168jNjZWqm3atGn49ttv6+yXlJSE48ePQ1NTE0uWLMEPP/yAS5cuwdLSUt4UCCGE1IPcl3osLCxw4cIFqbaLFy/CwsKizn6lpaXQ1Hzxd6Z58+YwNDSkok8IIY1A7jP++fPnY8CAAfDz84OtrS3S09Oxc+dObNiwoc5+paWlWL9+PbcskUiklgHQZCyEENIA5C78Y8eOhUgkwvbt2xEbGwsbGxscPHgQvXv3rrOfm5sb9u/fzy27urpKLfN4PCr8hBDSABQaltnDwwMeHh5y9YmLi1MkFCGEECVrlGGZCSGENB4q/IQQomao8BNCiJqhwk8IIWpGocK/bNkyZedBCCGkgchc+O/du8f9vHLlSu5nT09P5WZECCFEpWQu/P3794eFhQUGDRoEiUSCc+fOQSKRICkpSZX5EUIIUTKZC//NmzeRkpKCWbNmgTGGkJAQWFlZQSwWY8WKFUhJSVFlnoQQQpRE5sK/c+dO5OXloW/fvtDR0cGJEyeQm5sLXV1dFBcXY9SoUarMkxBCiJLIXPhjYmIwYsQImJiY4NmzZwgNDUV8fDw0NTWxcOHC147HTwghpGmQufBv27YN165dQ0ZGBrS1tVFcXIy5c+eiqKgIw4YNQ2RkpArTJIQQoixy386pp6cHTU1NLFq0CKdPnwafz8fUqVPx77//qiI/QgghSqbQIG3btm2TWu7Xrx/69eunlIQIIYSolkIPcA0bNoz7OS8vT2nJEEIIUb16D9mgra2tjDwIIYQ0EBqrhxBC1MwbW/g3bdoEOzs76OrqwsXFBWfOnGnslAgh5I3wRhb+PXv2YObMmQgODkZiYiI8PDwwYMAAZGRkNHZqhBDS5L2RhX/NmjWYOHEiJk2aBCcnJ6xbtw5CoRCbN29u7NQIIaTJe+MKf2lpKRISEqrdPtqvXz/8888/jZQVIYS8ORS6j78xPXr0CBUVFTA3N5dqNzc3R25ubo19JBIJJBIJt1xQUAAAKCwsBACUlJSoKNv/xXjZ2x5PlTFri/e2e9uPGXU4RlUdr+q/jLHXd2JvmKysLAaA/fPPP1LtixcvZm3btq2xT0hICANAL3rRi15v/SszM/O1dfSNO+Nv2bIlmjVrVu3s/sGDB9U+BVSZN28egoKCuOXKyko8fvwYJiYm4PF4MscuLCyEUChEZmYmDAwMFNsBOTR0vMaISfHe7HiNEZPi1YwxhqKiIlhZWb123Teu8Gtra8PFxQXHjx+XeoL4+PHjGDp0aI19dHR0oKOjI9UmEAgUzsHAwKDB/qdqjHiNEZPivdnxGiMmxavO0NBQpvXeuMIPAEFBQfDz80O3bt3Qo0cP/Pzzz8jIyMCUKVMaOzVCCGny3sjCP2rUKOTn52PRokXIyclBhw4dcOTIEYhEosZOjRBCmrw3svADwLRp0zBt2rQGjamjo4OQkJBql43elniNEZPivdnxGiMmxas/HmOy3PtDCCHkbfHGPcBFCCGkfqjwE0KImqHCTwghaoYKPyGEqBkq/AqytbUFj8eTes2dO7dBYkskEnTu3Bk8Hg9XrlxRWZwhQ4agVatW0NXVhaWlJfz8/JCdna2SWOnp6Zg4cSLs7OzQvHlztG7dGiEhISgtLVVJPABYsmQJevbsiRYtWtTrgb66NNS8EadPn8bgwYNhZWUFHo+HAwcOqCROlWXLlqF79+7Q19eHmZkZfH19kZycrLJ4mzdvxjvvvMM91NSjRw8cPXpUZfFetWzZMvB4PMycOVNlMb777rtqNcXCwkIlsajw10PVcwRVrwULFjRI3Dlz5sj0WHZ9eXt747fffkNycjL27t2LO3fu4MMPP1RJrFu3bqGyshJhYWH477//sHbtWvz000+YP3++SuIBL0Z6/eijjzB16lSVbL8h540oLi5Gp06d8OOPPyp92zU5deoUAgICcOHCBRw/fhzl5eXo168fiouLVRLPxsYGy5cvx6VLl3Dp0iX06dMHQ4cOxX///aeSeC+Lj4/Hzz//jHfeeUflsdq3by9VU5KSklQTqP7DpqknkUjE1q5d2+Bxjxw5wtq1a8f+++8/BoAlJiY2WOw///yT8Xg8Vlpa2iDxVqxYwezs7FQeJyIighkaGip9u66urmzKlClSbe3atWNz585VeqyXAWD79+9XaYxXPXjwgAFgp06darCYRkZGbOvWrSqNUVRUxBwdHdnx48eZp6cnCwwMVFmskJAQ1qlTJ5Vt/2V0xl8PoaGhMDExQefOnbFkyRKVXpYAgLy8PEyePBnbt29HixYtVBrrVY8fP8bOnTvRs2dPaGlpNUjMgoICGBsbN0gsZVO3eSOqhjpviH+viooKREVFobi4GD169FBprICAAAwaNAh9+/ZVaZwqt2/fhpWVFezs7DB69GjcvXtXJXHe2Cd3G1tgYCC6du0KIyMjXLx4EfPmzUNaWhq2bt2qkniMMfj7+2PKlCno1q0b0tPTVRLnVV9//TV+/PFHPHv2DG5ubjh06FCDxL1z5w42bNiA1atXN0g8ZVNk3og3FWMMQUFBcHd3R4cOHVQWJykpCT169EBJSQn4fD72798PZ2dnlcWLiorC5cuXER8fr7IYL3v33Xfx66+/ok2bNsjLy8PixYvRs2dP/PfffzAxMVFusAb5XPGGkGXc/vj4+Br7/vHHHwwAe/TokUpi/vDDD6xnz56svLycMcZYWlqaQpd65N3Hhw8fsuTkZHbs2DHWq1cvNnDgQFZZWamyeIy9mHPBwcGBTZw4Ua59UzSeKi71KDJvhLKggS/1TJs2jYlEIpnGga8PiUTCbt++zeLj49ncuXNZy5Yt2X///aeSWBkZGczMzIxduXKFa1P1pZ5XicViZm5uzlavXq30bdOQDS959OgRHj16VOc6tra20NXVrdaelZUFGxsbXLhwAe+++67SY44ePRp//fWX1PwBFRUVaNasGT755BP88ssvSo1X0z7ev38fQqEQ//zzj8wfseWNl52dDW9vb7z77ruIjIyEhoZ8VyMV2b/IyEjMnDkTT58+lStWXUpLS9GiRQv8/vvvUsOHBwYG4sqVKzh16pTSYr2Kx+Nh//798PX1VVmMKtOnT8eBAwdw+vRp2NnZqTzey/r27YvWrVsjLCxM6ds+cOAAhg0bhmbNmnFtFRUV4PF40NDQgEQikXpPVd5//304ODgofT5xutTzkpYtW6Jly5YK9U1MTAQAWFpaqiTm+vXrsXjxYm45OzsbPj4+2LNnj1x/aOqzj1XnCC9PY6nMeFlZWfD29oaLiwsiIiLkLvryxlMlReaNeJMwxjB9+nTs378fcXFxDV70q3KQ51iUx3vvvVftjppPP/0U7dq1w9dff90gRV8ikeDmzZvw8PBQ+rap8Cvg/PnzuHDhAry9vWFoaIj4+HjMmjWLu+9dFV7dLp/PBwC0bt0aNjY2So938eJFXLx4Ee7u7jAyMsLdu3fx7bffonXr1ir5Qi07OxteXl5o1aoVVq1ahYcPH3Lvqepe5oyMDDx+/BgZGRmoqKjgnolwcHDgfr/10ZDzRojFYqSmpnLLaWlpuHLlCoyNjVVyTAYEBGDXrl34888/oa+vz31vYWhoiObNmys93vz58zFgwAAIhUIUFRUhKioKcXFxiI6OVnosANDX16/2fYWenh5MTExU9j3GV199hcGDB6NVq1Z48OABFi9ejMLCQowfP175wZR+8UgNJCQksHfffZcZGhoyXV1d1rZtWxYSEsKKi4sbLAdFr/HL6tq1a8zb25sZGxszHR0dZmtry6ZMmcLu37+vkngRERG1XpNXlfHjx9cYLzY2VmkxNm7cyEQiEdPW1mZdu3ZV2e2OsbGxNe7L+PHjVRKvtn+riIgIlcSbMGEC93s0NTVl7733Hjt27JhKYtVG1df4R40axSwtLZmWlhazsrJiw4cPV9l3GHSNnxBC1Azdx08IIWqGCj8hhKgZKvyEEKJmqPATQoiaocJPCCFqhgo/IYSoGSr8hBCiZqjwkyZlwIAB2LRpU63vVw0N3RRFRkaic+fOCvc/c+aMSp7CJuRVVPiJwry8vKCjowM+nw8jIyN4enrWewjbo0ePYtq0aQCAuLi4alMifvLJJyobzz4uLg48Hg98Ph/6+voQiUSYN28eKisrlR4rPT0dPB5PamA4Dw8P3L9/X+mxAMDf37/e0wbyeDy0aNECfD4f5ubmGD16NPLy8jBgwADw+Xzw+Xxoa2tDU1OTW64a+sLLyws8Hg8nTpyQ2ubKlStVPqUhqY4KP6mX0NBQiMVi5OTkoGvXrg0yIqQqGRoaQiwWo6ioCNHR0YiMjERkZGRjp9Vk/PPPPxCLxUhKSkJOTg5mzZqFo0ePQiwWQywWY/78+fjggw+4ZbFYzPVt27YtIiIipLYXGRmJdu3aNfRuqD0q/EQpdHV1MXHiRGRnZyM/Px95eXkYOXIkTE1N0apVKwQHB6O8vBzAi9m8hg0bBmNjYwgEAri4uODevXsAXpwZrlu3Dvn5+RgwYAAKCgq4M8czZ85Uu5xSV5yqTwxbt26FUCiEiYkJ5syZI/M+OTk5wd3dHQkJCVzbnTt3MHjwYJiamkIkEmHx4sW1fiJYs2YNHB0doa+vj9atW0vNh+vq6grgxVyyfD4fO3fulPqEs2/fPrRu3Vpqe//++y8EAgFKSkoAACdOnICrqysEAgHat2+PgwcP1pjH+vXrsXPnTmzatAl8Ph/t27cHABQVFeGzzz6DpaUlLC0tMWXKFJnnzDUzM8NHH30k15ywo0ePxtGjR7nZuv79918wxuQaXZYoBxV+ohTPnj3D1q1bIRKJYGJigjFjxkBLSwtpaWk4c+YMDhw4gBUrVgAAVq1ahfLycty/fx/5+fkIDw+Hvr6+1PZMTExw9OhR7gxcLBbXODxtXXGAF8UtKSkJt2/fxtmzZ7Fx40bExcXJtE9JSUk4ffo02rRpAwB4/vw53nvvPfTp0wdZWVk4c+YMoqKiqp3FVhGJRDh58iQKCwuxdetWzJ49G+fOnQPwYvRT4MUcB2KxGJ988olU3w8++ABPnz7l1geA7du346OPPoKuri6uXbuGjz76CMuXL8fjx48RFhYGPz8/JCcnV8tjxowZ+OSTTzBt2jSIxWJugvLAwECkpqbi+vXrSEpKwq1btzBr1iyZfje5ubn47bff0LVrV5nWBwCBQID+/ftj9+7dAIBt27bh008/lbk/UR4q/KRe5s2bB4FAAHt7e9y6dQsHDx5EVlYWTp48idWrV4PP50MkEiE4OJi7ZKKlpYX8/Hzcvn0bzZo1Q+fOnRWaq/V1cYAXY7YvW7YMurq6cHJyQs+ePaXO4F9VUFAAgUCA5s2b45133sGgQYO47xwOHToEIyMjzJo1C9ra2mjVqhUCAwOxa9euGrc1YsQICIVC8Hg8eHt7w8fHR+Y/Otra2hg1ahS2b98OACgrK8OePXswbtw4AEBYWBj8/f3Rp08faGhowN3dHR988AF+++03mbZfWVmJXbt2YdmyZTAxMUHLli2xdOlS/Prrr3V+p+Hh4QEjIyO4urqidevWWLt2rUzxqnz66aeIiIjA8+fPsXfvXvj5+cnVnygHjcdP6mXZsmXVvpj7999/oaurKzWOvr29PffF5ezZs1FSUoKRI0eioKAAo0aNwvLly+Uex/3+/ft1xgEAAwMDqYnp9fT0UFRUVOs2DQ0N8fTpU1RUVGDbtm1YsWIFnj17BkNDQ6Snp+P69etSXzhXVlZCKBTWuK2dO3di9erVSEtLA2MMz549k2vCknHjxmHgwIH44YcfEB0dDX19fbi7uwN48eXwyZMnpT5tlJeXw8DAQKZtP3z4EBKJBLa2tlybvb09JBIJHj16BDMzsxr7nTlzpl53Lr333nuYNGkSvv/+e/To0UNlcy2QutEZP1E6GxsblJSUIC8vj2tLS0vjblXk8/kIDQ1FcnIyzp8/j5iYmBpv4XzdDFyvi1MfzZo1w+TJk+Hs7IzvvvsOACAUCuHi4oKnT59yr8LCQu7SycsyMjIwfvx4rFixAg8fPsTTp08xcOBAbhYzWWYXc3NzQ8uWLXHo0CFs374dY8eO5abeFAqFCAwMlMpFLBbXOkXfq/FMTU2hra2N9PR0ri0tLQ06OjoqncFMQ0MD48aNw/Lly+kyTyOiwk+UztraGt7e3vjqq69QXFyMjIwMLF26lJtJ6NChQ0hJSUFlZSUMDAygpaUFTc3qHz7Nzc1RVFQkNRuXPHGU4ZtvvsFPP/2ErKwsfPDBB8jLy8OmTZtQUlKCiooKJCcn13j5RiwWgzEGMzMzaGho4MiRIzh27Bj3vqmpKTQ0NHDnzp064/v5+eHHH3/E4cOHucs8APD5558jIiICsbGxqKiogEQiwfnz53Hz5s0at2Nubo67d+9yyxoaGhgzZgyCg4Px+PFj5OfnIzg4GH5+fgpNeSmPWbNm4dixYxg8eLBK45DaUeEnKrFr1y48f/4cIpEIvXr1wqBBg7g7alJTU9G/f3/o6+vD2dkZPXr0wNSpU6tto23btpg4cSKcnJwgEAhw9uxZueIoQ7du3dC7d28sWbIEfD4fJ06cQExMDGxtbbkvsaumHXyZs7MzgoOD0adPH5iYmGDPnj0YMmQI937z5s0REhKCAQMGQCAQ1Po9gZ+fH06dOoUuXbrAwcGBa+/SpQt2796NBQsWwNTUFNbW1vjmm29qnYN20qRJyMrKgpGREd555x0AwA8//ABbW1s4Ozujffv2cHBwwJo1a+rz65KJsbEx+vbtCy0tLZXHIjWjGbgIIUTN0Bk/IYSoGSr8hBCiZqjwE0KImqHCTwghaoYKPyGEqBkq/IQQomao8BNCiJqhwk8IIWqGCj8hhKgZKvyEEKJmqPATQoiaocJPCCFq5v8AEb/PUxWu6y8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.location_of_altered_flanking_residues(altered_flanks, modification_class='Acetylation')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want to dig deeper, we can look at the specific changes that occurring, although this is only recommended with a selected subset of PTMs, such as those that may have a functional impact:" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbMAAAEOCAYAAAADufksAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABD6klEQVR4nO3deXxMZ///8ddkj4RMJEQkkknIIuuIJXYhKbHv1FpL6a3y7UJvrWprqRvd7m6o9q5QShprKUpLlSq101gTNEIlSCIrWWd+f+RnamSbWCLTfp6Ph8fDnOs653OdyWTec65zMkeh1Wq1CCGEEEbM5EkPQAghhHhYEmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuiZPekBiEdLoVA86SEIIcQjZch3e0iY/Q3FxcVVW63AwECpJ/VqdM1/Qr2p+6ZVW70P2r9brfUMJdOMQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKNndGGmUqk4deoUAHl5efTt25enn36aESNG4OrqilqtxtfXl1GjRnH79m29dd966y1MTU25fPmy3vK9e/fSpk0b1Go1fn5+tGvXjuvXr5c7hsTERBwdHXWPL1++jI+PDx9//DEAL7zwAiqVCoVCoRvr/b766isUCgVbtmzRLRs0aBBqtVr3z8TEhM2bN1ftCRJC/KNlJmeyuNenxEbFEBsVw74vfjF43ewb2Wx+41tio2KImbSKX7+sfN383Hw2TltPbFQMqyas4OK+C1Wqt+n1jcRGxbB64krid583eN37Ge39zLKysujTpw++vr4sXryYcePG8dprrxEVFUVBQQHh4eEsXLiQadNK7ruj0WhYvnw5HTt2ZPny5cycOROAoqIi+vfvz86dO2nWrBkA58+fx8bGxqBxnDlzhh49ejBnzhxGjx4NlITStGnTaN++fZnrXL16lc8//5zWrVvrLV+3bp3u/0eOHCEyMpJu3bpV7YkRQvzjuaob0WduvzLbCvMLMbc0L7Nt+3+20SkqjPpeTgBcOZ5Uaa0z20+jCvWg2cAQtFot+Tn5VazXmfpe9SkuKib51LVK65XH6I7MAG7evEnnzp1p3bo1S5YswcREfzcsLCxo27at3hHYDz/8gJOTEx988AHLli1Do9EAkJ2dTXZ2Ns7Ozrq+Pj4+2NraVjqOw4cP07VrVz7++GNdkAF07NgRV1fXctebOHEiH374IZaWluX2iY6OZuTIkRX2EUKIqvrxnR18P3drqaDKSsnC0tZSF2QAjZq5Vbo9cytzUs4mk5uei0KhwKq2VRXr1QfA1MwUV3WjB90t4zwyGzx4MBMmTGD+/PlltmdmZrJ7924WLFigW7Z06VLGjRtHSEgI9vb27Nq1i6eeegp7e3uef/55vLy86NChA23atGHo0KF4e3tXOIbs7GzCw8NZu3ZtlY6ePvvsM/z9/QkNDS23T15eHjExMezdu7fCbeXn55Ofn19hHyHEP8/VE1eIjYoBwLuzD80GhujaerzVi4w/b3FqSxwHlu3HvaWK4L5qctNysHEs+RCfm5bDlpnfkZuey6joZzC3KvvICsCvmz+5aTmsn7IWMyszus/ogX2julWq9ygY5ZFZz549Wbt2LVeuXNFbvmDBAoKCgnBycsLV1ZXOnTsDkJqayo8//siwYcMAGD9+PEuXLtWt99FHH3Hq1CmGDBlCfHw8zZo1Y9++fRWOoVatWnTu3JlFixZRUFBg0Lj/+OMP/ve//zFnzpwK+61fvx4vLy8CAwMr7Dd//nzs7Oz0/gkhhKu6EUMXDmPowmE4qByIjYrh+7e36tqVLvYE9VXjGuzKmR2nyUzOwMbRlpyb2QDYONgydOEwbOraoNVoK6xlYmZC6Og2jF4+hvYTO+jO1VWl3qNglEdm//73v/H39ycsLIzdu3fj5lZyKHz3nFlSUhIdOnRgyZIlTJo0iZUrV1JUVIRarQaguLiYtLQ00tLScHBwAMDd3Z0xY8YwZswYbGxsWLNmTbnnvABMTU1Zt24dQ4YMYcCAAaxfv77SKcEDBw5w7do1mjZtCkBKSgrjx49n7ty5TJgwQddv6dKljB8/vtLnYfr06UyZMkVvmQSaEOJebs3dcWvurnucsCeeU1vjMLc2J6BnIG3GtUOhUABQkFvA9fjrOHmXTDVqijWVbj8rJRMbB1tMzU2ppbTBJdiV3nP6GlbvdgE3Em5Q36s+miIN107/iWvwg001GmWYAUybNg0TExNdoN3Lzc2NTz/9lOeee44xY8YQHR3NunXriIyM1PUZNGgQq1atYty4cfzyyy9ERkaiUCi4c+cOZ8+eZcCAAZWOwdzcnDVr1jB06FD69evHxo0bsbKyKrf/8OHDGT58uO5xWFgYr7zyCr169dIt++OPPzh06BDffvttpfUtLS3lnJoQopR7pxnre9Wn84vhuraC2wV0e707tZS1Sq0XOaMHP320k7ysPEzMTHAJcq1wihHg5oWbfPfmZswsS+IkfEqEXnuF9V7vwU8f7iQvO4/iomJaDmtV5X29y2jDDOCVV17BxMSETp060alTJ722Pn368OGHH/LJJ59w48YNIiL0n+BRo0bx1ltvMXbsWJYsWcKLL76ItbU1hYWFREZGMnnyZIPGcDfQnn76afr27cumTZuYOnUqmzZtIiUlhYiICGxtbblwwbDLVaOjoxk4cCB16tQx7EkQQoh72Dnb8fyW/yu33b97QLlttevXpu+8/lWq17h9Exq3b/Lg9eZXrV55FFqttuIJUWFUFAoFcXFx1VYvMDBQ6km9Gl3zn1Bv6r5p1Vbvg/bvVms9gPfbvVNpH6O8AEQIIYS4l1FPMz5uffr0ISlJ/28j7O3tS52jE0II8WRJmFVAvkpKCCGMg0wzCiGEMHoSZkIIIYyehJkQQgijJ2EmhBDC6EmYCSGEMHoSZkIIIYyehJkQQgijJ2EmhBDC6EmYCSGEMHoSZkIIIYyehJkQQgijJ7eA+Zu5ewdXIYT4uzAkpuSLhv+G/u73bpJ6xlvvSdSU+4sZdz1DyTSjEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIo/dEw0ylUnHq1Cm9ZWFhYWzZsgWAWbNmoVAo+Pbbb3XtWq0WDw8PHB0ddcuKioqYM2cOvr6++Pv74+vry8SJE8nIyCAxMVGv710KhYKcnBwA5s2bh4+PDyYmJrralZkzZw4BAQEEBwfj6+vLv//9bwDOnDmDWq3W/VOpVNStW7fU+rNnz0ahUOjtv1arZdasWXh7exMQEEBYWJhBYxFC1EzfPL+a3PRc3eO4Lb9zcOVvBq2bfSObzW98S2xUDDGTVvHrl79Uqfbqf33NwRUHqrTO/qX7+Gp0NLFRMayfurbS/jvmf0/y6WsAHF59iE2vbwRAU6xhxdjlBtXMup7F2hdjiY1azaoJK0g5l1ylMd9V428B07x5c5YuXUq/fv0A2LVrF46OjmRnZ+v6jB8/nvT0dA4cOIC9vT0ajYb169eTnp6OiUnleR0eHs7QoUMZP368QWNav349O3bs4PDhw1hbW1NUVMTp06cB8PPz48SJE7q+UVFRpe4xduzYMX777Tfc3Nz0ln/yySfExcVx6tQpLCwsSE5+sB+qEKJm8ArzJmFPPOr+zQBI+Dmezi+F69oL8wsxtzQvc93t/9lGp6gw6ns5AXDleJLBdbOuZ1HHqQ5JRy8TOrqNXltFNQHaP9eRxu2aGFTH2b8hyWeScfZvyM2LN3TLUy+l4uh5zwFHQRGm5qZl3m/x+LqjNB/aAs+2jdEUaSgqKDSo9v1q/DRjp06dSEhI0L2xR0dHM27cOF37hQsXWLt2LcuWLcPe3h4AExMTBg8ejKenp0E1QkNDady4scFjSkpKwtHRESsrKwDMzMwIDg4u1S8/P5/Vq1frhWR+fj6TJ09m8eLFpX6w7733Hu+88w4WFhYAODs7GzwmIUTN4x3mQ8KeeADysvPIy7qDvau9rv3Hd3bw/dytpYIqKyULS1tLXZABNGqm/+G3Igk/n8evmz92DZXcunpLr+3CngTWvbyG3787ScHt/AfZLR1nP2fdkVlxfjFKFyVZKVkkn76Gs19DXb/MPzOIjYrhwPL9ZF3P0tuGmZU5f/5+lbzsPEzMTLCoZflAY6nxYaZQKBg5ciQrVqwgIyODw4cP07VrV137sWPH8PLyKnMq8a6MjAy9qT+1Wv1QYxo2bBgJCQl4enoyevRooqOjuXPnTql+GzZswMPDQ6/eW2+9xciRI/Hw8NDrm5WVxc2bN9m4cSOtW7emdevWxMbGVjiO/Px8srKy9P4JIWqO2vVrU1xYzO2M21zcd4HGHbz02nu81Ys2Y9ty+VAia174hoMrfyMvK4/ctBxsHG0ByE3LITYqhujhX1KYZ9hRS9LRy7i3UuH7VFPid5/Xa2va1Y++8/phYmrClre+Y8eC77l+PkXXvu/zvcRGxfDLkj2V1nH0rEdaYhq56bnYONrQoKkzyWeukXwmmYb+f4WZg4cjQz8dRgPfBvzy2R42Td+oC/mWw1qh0WiJ+dfXrJ+yltu3cssrV6EaP80IMGbMGLp27YqtrS1DhgzB1NS0SusrlUq9qT+gzMNdQzVo0IC4uDgOHjzIr7/+yuLFi/n00085ePCg7qgKSo4i7z0qO3DgAIcPH2bBggWltllYWEhBQQF37tzht99+IykpiTZt2uDv709AQECZ45g/fz6zZ89+4P0QQjx+Xh29uLjvAhf2JtC4XWNio2Ko41SH7m/2BEDpYk9QXzUmZiac2XEaVSsVNo625NwsOZVi42DL0IXDiI2KQavRVlov+0Y2Ny/c5NtpG9BqtRTmFXLlWBLFhcVETH0KBw9HzK0t8A1viqm5KUdjj5B48A+cfBoAVZtmVJgosKpjxaX9F2nQ1BlnP2eOrTtG6sUbnP3xDD8v3E1Qn2CadvVDYaJAFeqBmYUZR2IPc2prHF6dvLGoZUGn58Po9HwYp7bGcTT2CB3+1anKz7NRhJmrqytubm7Mnj2b/fv367WFhISQkJBAWloaDg4O1TYmU1NT2rZtS9u2bXnhhRdwcnLi1KlThISEAHD58mX279/P2rV/nUTds2cP586d0x2VXb16lW7duvHll1/SvXt3bG1tGTlyJABubm60a9eOI0eOlBtm06dPZ8qUKXrL7OzsHsfuCiEekFeYD9tmb0FTVExQXzVBfdW6toQ98ZzaGoe5tTkBPQNpM66d7oN2QW4B1+Ov4+RdMtWoKdYYVC/+5/N0fjEcr07eQMlFGq1GtdZNb6YnpXNs7VHSL6fh1cmbQR8Owaq21QPvn7OfM8fXHaP3232o08COmxduYG5tQdj/ddH1ycvO4/j6Y1w+lIhrsCtdXgzHrqESgIw/b2HnrERhoqCWfS3SL6c90DiMIswA5s6dy7Fjx2jSpAmJiYm65U2aNGHgwIGMHz+e5cuXo1Qq0Wq1rFy5knbt2lX5KM4QR44cwd7eXnee7dy5cxQWFtKoUSNdn2XLltG/f3+USqVu2WuvvcZrr72me6xSqdiyZYsurIYNG8b27dt5/vnnuXXrFocOHdLrfz9LS0ssLR9sflkIUT3qONVBU6yhcfvSRzsFtwvo9np3ailrlWqLnNGDnz7aSV5WybkklyBXzK3Kv3DjroSf4+m7oL/usVtzd+J3nyd0VGugZNoyoGcADXwfzTn5Bn4N+X3TSewblVy1bWZhRl0v/Su487LyqN+kPqGjWmNiqn92K+lYEnGbv8PM0hxTc1MiZ3R/oHE88TCLiIjAzOyvYdy9qOJ+LVq0oEWLFmW2RUdHM3fuXEJDQzEzM0Or1dKxY0f69OlDRkZGpWOYP38+ixYt4ubNm4wZMwYrKyuOHz9OvXr1yuyflpZGVFQUGRkZWFtbY2pqyurVq3X9tVoty5cvZ9myZZXWvte8efMYO3YsixcvBkqOvO4e6QkhjNfwz0eWudy/e9mzLlByvq3vvP7ltpfn6cXD9R437eqn97iiC0najm9f5XpeHb3w6vjXucD+7w4s1UfpokTpoixz/aDewQT1Ln0BXVU90TC79wirLLNmzSpzuUqlIjU1VffY3Nyc2bNnl3n+SKlU6vW9S6v9a+55+vTpTJ8+3bBBA926daNbt27ltisUikr3DUrvv6OjI999953B4xBCCFGixl/NKIQQQlTmiU8z1mR9+vQhKUn/7z/s7e3ZvXv3ExqREEKIskiYVWDz5s1PeghCCCEMINOMQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoKbT33gtFGL27d6kVQoi/C0NiSr5o+G8oLi6u2moFBgZKPalXo2sGBgYydd+0aqv3Qft3pd4TINOMQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKNXI8NMpVLh6+uLWq3Gx8eHBQsWAJCYmIiZmRlqtZrg4GBatGjB7t27AcjMzGTkyJEEBAQQFBREQEAAq1evBuCnn34iNDQUPz8/AgICmDFjRqn742i1WsLDw3F0dKx0fLNmzeKVV17RPV6xYgUqlYqzZ8+SmJhIWFgYdnZ2tGjRQm+9uLg4OnbsiK+vL4GBgUycOJH8/Hxd+8qVKwkODiYgIIDw8HCSkpIe7AkUQpQrPzefjdPWExsVw6oJK7i470KV1v9lyR7WTVljcP9vnl9Nbnqu7nHclt85uPI3g9Zd+vQXxEbFEBsVw8Zp6wxa52H2L/tGNpvf+JbYqBhiJq3i1y9/qbD/jvnfk3z6GgCHVx9i0+sbAdAUa1gxdnml9bRaLV+Njqa4qFi37Nf//cK5nWcNHvNdNfZ+ZuvWrSMgIIBr167h5+dHly5dqF+/PkqlkhMnTgCwadMmhgwZwo0bN3jjjTdwcnIiLi4OhUJBdnY2KSkpANjb2xMTE4Onpyd5eXlEREQQExPD8OHDdfUWLlyISqXi5MmTVRrnxx9/zOLFi9mzZw/u7u6kp6czd+5cMjMzmTlzpl5fKysrFi5cSFBQEMXFxQwfPpwPPviA119/nXPnzvHqq69y/PhxnJyc+Oqrr5g0aRJbt259uCdSCKHnzPbTqEI9aDYwBK1WS35Ovl57YX4h5pbm5a6fcjYZ81oW3Mm8g7WddaX1vMK8SdgTj7p/MwASfo6n80vhBtWztLFk6MJhhuyWzsPs3/b/bKNTVBj1vZwAuHK84g/Uzv4NST6TjLN/Q25evKFbnnopFUfPvw4MigqKMDU3LXXzYIVCgVtzd5IOX8ajjScAlw5couWIUMN3+P+rkUdm92rYsCE+Pj5cvny5VNtTTz1FamoqaWlpJCUl4eLionuyateujZeXFwDNmjXD07PkibKyskKtVnPp0iXddhISEvjmm2947bXXqjS2mTNnsmzZMvbu3Yu7uzsAdevWpX379tjY2JTq7+XlRVBQEACmpqa0bNlSN45Tp06hVqtxcip5EfXq1Yvvv/+etLS0Ko1JCFExcytzUs4mk5uei0KhwKq2lV77j+/s4Pu5W8t8I78ef5363k74dPYlYW+8QfW8w3xI2FPSNy87j7ysO9i72htU70E86P5lpWRhaWupCzKARs3cKqzl7OesOzIrzi9G6aIkKyWL5NPXcPZrqOuX+WcGsVExHFi+n6zrWXrb8O7sQ/ye80BJCNZpUAeLWhZV3u8ae2R217lz50hNTSUsLIzc3Fy9tpiYGNzc3HB0dOSll15i0KBBrF69mtatWxMZGUmvXr1KbS8lJYV169axbds2ADQaDRMmTGDRokWYm5f/aex+y5cvp169ehw4cAClUlnl/crNzeXLL7/knXfeAUCtVnP06FEuXLhAkyZNWLFiBVqtlsuXL+Pg4FDmNvLz8/WmKYUQlfPr5k9uWg7rp6zFzMqM7jN6YN+orq69x1u9yPjzFqe2xHFg2X7cW6oI7qvGqo4V8bvP4xPui4O7A9vmbCWod3Cl9WrXr01xYTG3M27zx4FLNO7gpddeUb383Hxio2IAULoq6fZa98e2f7lpOdg42gKQm5bDlpnfkZuey6joZzC3Kvu90dGzHmmJaeSm52LjaEODps4kn7lG8plkmg1opuvn4OHI0E+HkXjoD375bA9F+UX4Rfrj1cmbhoEu7PrvTjRFGuJ/Po93Z59K97EsNTbMBg0ahEKh4Pz583z44YfUq1eP3NxcMjIyUKvVALi4uLB582YAOnfuTFJSEnv27GH//v0899xz9OvXj0WLFum2mZWVRe/evZk2bRohISEAvP/++3Ts2BG1Wk1iYqLB42vVqhXHjx9ny5YtjBw5skr7VlhYyNChQ+natSt9+/YFoEmTJnz22WeMGjWK4uJievXqhZ2dXYUBO3/+fGbPnl2l2kL805mYmRA6ug2ho9uQdOwysVEx2DeqSx2nOnR/sycAShd7gvqqMTEz4cyO06haqbCq04A/DlzixvnrAKQlpho+1djRi4v7LnBhbwKN2zUmNirGoHoPMs34oPtn42hLzs1sAGwcbBm6cBixUTFoNdpyaylMFFjVseLS/os0aOqMs58zx9YdI/XiDc7+eIafF+4mqE8wTbv6oTBRoAr1wMzCjCOxhzm1NQ6vTt4oFApc1Y24cuIKl/ZfZMgnQ6u0v3fV2DC7e85s586d9O7dmy5dulC7dm29c2b3s7GxoUePHvTo0YNevXrRtWtXXZhlZ2cTGRlJnz59mDJlim6dvXv38vvvv7NixQqKioq4desWKpWK48ePY29vX2YdAD8/P959912eeuopNBoNo0ePNmi/CgsLGTJkCM7Oznz88cd6bQMGDGDAgAFAyRHkvHnzaNy4cbnbmj59ut6+ANjZ2Rk0DiH+qbJSMrFxsMXU3JRaShtcgl3pPaevrj1hTzyntsZhbm1OQM9A2oxrh0Kh4EbCdVzVjejy/893ndl+mgu/JBDYK6jSml5hPmybvQVNUTFBfdUE9VVXWq+69w+gILeA6/HXcfIumWrUFGsqrefs58zxdcfo/XYf6jSw4+aFG5hbWxD2f110ffKy8zi+/hiXDyXiGuxKlxfDsWuo1LV7d/bhQPQ+aterjUUtywfa7xobZndFREQwadIk3njjjVJv/vf64YcfaNmypS6Ajh49qguCnJwcIiMj6datG2+++abeelu2bNH9PzExkRYtWhh8hBYQEMCuXbuIiIiguLiYsWPHVti/qKiIp59+mrp16/LFF1+UesEmJyfj7OxMcXExr776KpMnT6ZWrVrlbs/S0hJLywf7wQvxT3Xzwk2+e3MzZpYlb3/hUyL02gtuF9Dt9e7UUur/7sX/dJ5GIX+dQ3Jr4caOedsNCrM6TnXQFGto3L5Jqbby6gF604yAQUdpD7p/AJEzevDTRzvJy8rDxMwElyDXcqcY72rg15DfN53UTWWaWZhR16uuXp+8rDzqN6lP6KjWmJiWvlTDJciF9KR0Ok4Kq3T/ylPjwwzgzTffpEmTJhVeDBEXF8fUqVPRarWYmJjg7OzM119/DZRccXjo0CFyc3PZuLHk0tHBgwczY8aMhx6bn5+fXqCNGjWKxo0bk5+fT2ZmJq6urowaNYr58+cTGxvLhg0bCAoKolmzkvnkdu3a6Y4ex44dS1JSEgUFBfTo0YN58+Y99PiEEPoat29SZqjc5d89oMzl7Z/rqPfY1rE2A/872OC6wz8v+3REefUAxn8z0eDt3/Wg+wcl5/f6zutfpXpeHb3w6vjXecD+7w4s1UfpokTpoix3GwqFguc2Pl+luverkWF2/5GRvb29LshSU1PLXGfq1KlMnTq1zLYZM2YYFFwqlarc7d9r1qxZeo+bNm3Kn3/+qXt89erVMtcbMWIEI0aMKHe727dvr7S2EEKI0mr8pflCCCFEZWrkkVlNcOLECcaMGVNq+TPPPMPLL79c/QMSQghRLgmzcqjV6nKvmhRCCFGzyDSjEEIIo1elI7MuXbpU3omSL/YVQgghqkuVwuznn3/G3d2dnj17Vumrn4QQQojHqUphtmDBApYvX87atWsZMWIE48aNIyCg/L9ZEEIIIapDlc6ZTZs2jTNnzvDtt9+SnZ1Nu3btaNWqFUuWLCErK6vyDQghhBCPwQNdANKmTRv+97//kZyczOTJk4mOjqZhw4YSaEIIIZ6Ih7qa8dixY+zZs4ezZ88SEBAg59GEEEI8EVUOs2vXrjFv3jy8vb0ZNGgQdevW5eDBg/z2229YW1d+KwQhhBDiUavSBSA9evRg9+7ddO3alffee4+ePXtiZiZ/dy2EEOLJqlISbd++HWdnZ5KSkpg9e3a5N4Y8duzYIxmcEEIIYYgqhdnMmTMf1ziEEEKIB6bQarXl3xP7PklJSbi6umJiIt+CVVM9zB1qhRCiJjIkpqp0ZObh4UFycjL169d/4EGJxy8uLq7aagUGBko9qVflmlP3Tau2eh+0f1fqGXE9Q1XpEKsKB3FCCCFEtZH5QiGEEEavytfVf/nll9ja2lbY54UXXnjgAQkhhBBVVeUwW7JkCaampuW2KxQKCTMhhBDVqsphduTIEbkARAghRI1SpXNmctm3EEKImkiuZhRCCGH0qhRmr7zyCtOnT8fFxYX69eszfPhwUlNTH9fYhBBCCINU+cjsm2++oWfPngwbNowff/yRSZMmPa6xCSGEEAap0gUgGzZsYOnSpTz99NMAjBgxgnbt2lFcXFzhFY5CCCHE41SlI7MrV67QoUMH3eNWrVphZmbGtWvXHvnAhBBCCENVKcyKi4uxsLDQW2ZmZkZRUdEjHZQQQghRFVWaZtRqtYwZMwZLS0vdsry8PP71r39hY2OjW7Zhw4ZHN0IhhBCiElU6MnvmmWeoX78+dnZ2un8jR46kYcOGesselkqlwtfXF7VajY+PDwsWLAAgMTERMzMz1Go1wcHBtGjRgt27dwOQmZnJyJEjCQgIICgoiICAAFavXg3ATz/9RGhoKH5+fgQEBDBjxoxSf2ag1WoJDw/H0dGx0vHNmjWLV155Rfd4xYoVqFQqzp49S2JiImFhYdjZ2dGiRQu99f744w+aN2+OWq0mMDCQwYMHc+vWLV37wYMHUavVeHt7Ex4eTnJy8oM9gUIYkfzcfDZOW09sVAyrJqzg4r4LVVr/lyV7WDdljcH9v3l+NbnpubrHcVt+5+DK3wxad+nTXxAbFUNsVAwbp60zaJ2H2b/sG9lsfuNbYqNiiJm0il+//KXC/jvmf0/y6ZLTPodXH2LT6xsB0BRrWDF2eaX1tFotX42OprioWLfs1//9wrmdZytcLzM5k8W9PiU2KobVE1dy/VxKpbXuio2KoeB2AZpiDZtnfMvp708ZvO69qnRktmzZsgcq8iDWrVtHQEAA165dw8/Pjy5dulC/fn2USiUnTpwAYNOmTQwZMoQbN27wxhtv4OTkRFxcHAqFguzsbFJSSp5Qe3t7YmJi8PT0JC8vj4iICGJiYhg+fLiu3sKFC1GpVJw8ebJK4/z4449ZvHgxe/bswd3dnfT0dObOnUtmZmapm5k2bNiQffv2YW1tDcBLL73E22+/zX//+1+0Wi0jRozgyy+/JCwsjPfff58pU6YQExPzEM+iEDXfme2nUYV60GxgCFqtlvycfL32wvxCzC3Ny10/5Wwy5rUsuJN5B2s760rreYV5k7AnHnX/ZgAk/BxP55fCDapnaWPJ0IXDDNktnYfZv+3/2UanqDDqezkBcOV4UoW1nP0bknwmGWf/hty8eEO3PPVSKo6ef31QLyoowtTctNQXYSgUCtyau5N0+DIebTwBuHTgEi1HhFa6n67qRvSZ248/4/7k0NcH6T23r0H7eNeP7+3AJcgF/+4BldYqS43/1vyGDRvi4+PD5cuXS7U99dRTpKamkpaWRlJSEi4uLrofTu3atfHy8gKgWbNmeHqW/GCsrKxQq9VcunRJt52EhAS++eYbXnvttSqNbebMmSxbtoy9e/fi7u4OQN26dWnfvr3etOtdlpaWuiArLi4mJydHd6PTI0eOYGlpSVhYGADPPfcc3377LYWFhVUakxDGxtzKnJSzyeSm56JQKLCqbaXX/uM7O/h+7tYy38ivx1+nvrcTPp19Sdgbb1A97zAfEvaU9M3LziMv6w72rvYG1XsQD7p/WSlZWNpa6oIMoFEztwprOfs5647MivOLUbooyUrJIvn0NZz9Gur6Zf6ZQWxUDAeW7yfrepbeNrw7+xC/5zxQEoJ1GtTBopb+tRIVyc/JQ4v+zNf+L/fx3RubuLT/IppiTal19n62B5u6tjQf2tLgOver8nczVrdz586RmppKWFgYubm5em0xMTG4ubnh6OjISy+9xKBBg1i9ejWtW7cmMjKSXr16ldpeSkoK69atY9u2bQBoNBomTJjAokWLMDev+JPDvZYvX069evU4cOAASqXS4PUKCgpo1aoVly9fJjg4mM2bNwMld/G+G4hQEsa1a9cmOTkZN7eyX8D5+fnk5+eX2SaEsfDr5k9uWg7rp6zFzMqM7jN6YN+orq69x1u9yPjzFqe2xHFg2X7cW6oI7qvGqo4V8bvP4xPui4O7A9vmbCWod3Cl9WrXr01xYTG3M27zx4FLNO7gpddeUb383Hxio0pmS5SuSrq91v2x7V9uWg42jiV3KMlNy2HLzO/ITc9lVPQzmFuV/V7l6FmPtMQ0ctNzsXG0oUFTZ5LPXCP5TDLNBjTT9XPwcGTop8NIPPQHv3y2h6L8Ivwi/fHq5E3DQBd2/XcnmiIN8T+fx7uzT6X7CHD1xBVWTVhJxrUMhnw8VK+t0+TO5KRmc/r70xz55jANA1xQD1Bj61gbgAt74xn+xSiD6pSnxh6ZDRo0iKZNm+Ln58cLL7xAvXr1AMjIyECtVqNWq9mwYYMuDDp37kxSUhJz5sxBqVTy3HPPMXnyZL1tZmVl0bt3b6ZNm0ZISAgA77//Ph07dkStVldpfK1atSIjI4MtW7ZUaT0LCwtOnDjB9evX8fHxYcmSJbq2+w/5K/v6sPnz5+udq3wU5yuFqG4mZiaEjm7D6OVjaD+xg+6c1Pdvb9X1UbrYE9RXjWuwK2d2nCYzOQOAPw5c4tcv9rF5xiaun0/hTuYdg2p6dfTi4r4LxO8+j3UdK4Pr3Z1mHLpwmEFB9jD7Z+NoS87NbABsHGwZunAYNnVt0GrKf19QmCiwqmPFpf0XadDUueRI7UwyqRdvcPbHM8RGxXD2hzO6vqpQD4L6BKPRaDi1teSO4wqFAld1I66cuMKl/Rdp3K6xQfvpqm7EiP+Nos0zbbhy/AqxUTGse/mvc5m2jrUJ7BVE43aNSdhznpsXburaIl/vwXdvfEt+7oN/OK+xR2Z3z5nt3LmT3r1706VLF2rXrq13zux+NjY29OjRgx49etCrVy+6du3KokWLAMjOziYyMpI+ffowZcoU3Tp79+7l999/Z8WKFRQVFXHr1i1UKhXHjx/H3t6+zDoAfn5+vPvuuzz11FNoNBpGjx5dpf2zsLBg7NixTJgwgWnTpuHm5kZiYqKuPTs7m+zsbJydncvdxvTp0/X2BZBAE0YnKyUTGwdbTM1NqaW0wSXYld5z/jrfkrAnnlNb4zC3NiegZyBtxrVDoVBwI+E6rupGdPn/57vObD/NhV8SCOwVVGlNrzAfts3egqaomKC+aoL6qiutV937B1CQW8D1+Os4eZdMNZY1RXc/Zz9njq87Ru+3+1CngR03L9zA3NqCsP/rouuTl53H8fXHuHwoEddgV7q8GI5dQ6Wu3buzDwei91G7Xm0salmWUaV8wQOasXriSoZ/MQpTs5Iv00g6epmTG09QXFSMX6Q/o78aq2sDaBjoQvOhLfnuzU0MeHcQJmZVP86qsWF2V0REBJMmTeKNN97g448/LrffDz/8QMuWLXUBdPToURo3LvlEkZOTQ2RkJN26dePNN9/UW+/eI6vExERatGihFyoVCQgIYNeuXURERFBcXMzYsWMr7J+UlISDgwM2NjZoNBrWrFlDUFDJL17z5s3Jy8vj559/JiwsjM8//5x+/fpVOPVpaWmp92cSQhijmxdu8t2bmzGzLHk7Cp8SoddecLuAbq93p5aylt7y+J/O0yjkryl4txZu7Ji33aAwq+NUB02xhsbtm5RqK68eoDfNCBh0MciD7h9A5Iwe/PTRTvKy8jAxM8ElyLXcKca7Gvg15PdNJ3VTmWYWZtT1qqvXJy8rj/pN6hM6qjUmpqWDwyXIhfSkdDpOCqt0/+5namaKqpUHCT/H4xvRFIA7mXfo9H+dqeNUp9z1fCOaknktgx/f32HwUe+9anyYAbz55ps0adKEtLS0cvvExcUxdepUtFotJiYmODs78/XXXwMlVxweOnSI3NxcNm4suVR18ODBzJgx46HH5ufnpxdoo0aNonHjxuTn55OZmYmrqyujRo1i/vz5nDp1SneRiUajISQkhE8++QQAExMTvv76a/71r39x584dXFxcdOMX4u+scfsmZYbKXeVd3db+uY56j20dazPwv4MNrjv885FVqgcw/puJBm//rgfdPyg5v9d3Xv8q1fPq6IVXx7/OA/Z/d2CpPkoXJUoXZbnbUCgUPLfxeYNr2jnb0WduP93jDv/qpNfu08W33HXv/UAQOrqNwTXvVyPD7P4jI3t7e12Qlfct/VOnTmXq1Kllts2YMcOg4FKpVAbdBWDWrFl6j5s2bcqff/6pe3z16tUy17s7BVqeNm3aVPlPA4QQQtTgC0CEEEIIQ9XII7Oa4MSJE4wZM6bU8meeeYaXX365+gckhBCiXBJm5VCr1eVeNSmEEKJmkWlGIYQQRk/CTAghhNGTMBNCCGH0JMyEEEIYPQkzIYQQRk/CTAghhNGTMBNCCGH0JMyEEEIYPQkzIYQQRk/CTAghhNGTMBNCCGH0FFqttvx7cAuj8zB3xBVCiJrIkJiSLxr+G5q6b1q11fqg/bt/+3pxcXHVVi8wMPBvXe9J1JR6xl3PUDLNKIQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6EmZCCCGMnoSZEEIIoydhJoQQwuhJmAkhhDB6TzTMVCoVp06d0lsWFhbGli1bAJg1axYKhYJvv/1W167VavHw8MDR0VG3rKioiDlz5uDr64u/vz++vr5MnDiRjIwMEhMT9frepVAoyMnJAWDevHn4+PhgYmKiq12ZOXPmEBAQQHBwML6+vvz73/8G4MyZM6jVat0/lUpF3bp19fbZ19dX1x4bG6tru3HjBpGRkXh5eREQEMC+ffsMGoshMpMzWdzrU2KjYoiZtIpbV28ZtN6VY0n8vHC3wXXyc/PZOG09sVExrJqwgov7Lhi87tfjvzK4773ji41azTeTV7Nl5mbysvKqtO7dffvz96vETFpFfm5+lccghHjyavz9zJo3b87SpUvp168fALt27cLR0ZHs7Gxdn/Hjx5Oens6BAwewt7dHo9Gwfv160tPTMTGpPK/Dw8MZOnQo48ePN2hM69evZ8eOHRw+fBhra2uKioo4ffo0AH5+fpw4cULXNyoqqtQNM9etW0dAQECp7b722mu0bt2a7du3c/jwYQYNGsTFixcxM3s0PyZXdSP6zO1H/M/nObzqIF1fjQSgqKAIU3PTR3JjzzPbT6MK9aDZwBC0Wi35OfrhUJhfiLml+UPXAbiTdYe9n+1h4AeDsapjxZntp9n14Y/0nNlb18eQfbt54QY/f/oT/d8diKWN5SMZmxCietX4acZOnTqRkJBAcnIyANHR0YwbN07XfuHCBdauXcuyZcuwt7cHwMTEhMGDB+Pp6WlQjdDQUBo3bmzwmJKSknB0dMTKygoAMzMzgoODS/XLz89n9erVBofkmjVrmDx5MgAtW7bEycnpkR6d3eXo6Uj2jb8+DGT+mUFsVAwHlu8n63rWQ23b3MqclLPJ5KbnolAosKptpdf+4zs7+H7uVq4cT3qoOgCXfr1I06eaYlWnpIZfpD/Jp66hKdbo+lS2b1nJmexYsJ1ec/pSy97mocckhHgyanyYKRQKRo4cyYoVK8jIyODw4cN07dpV137s2DG8vLzKnEq8KyMjQ2/qT61WP9SYhg0bRkJCAp6enowePZro6Gju3LlTqt+GDRvw8PAoVW/EiBEEBgby7LPPcvPmTQDS0tLQaDTUq1dP10+lUpGUVP6bfn5+PllZWXr/DHH15FXquv019eng4cjQT4fRwLcBv3y2h03TN5KwJ96gbd3Pr5s/dd3qsn7KWlb/62tuXUnXa+/xVi/ajG3L5UOJrHnhGw6u/K1KU4P3yk3LxbZ+bb1lteracCfjtu5xZfuWdPQyzv4NsXO2e6AxCCFqhhofZgBjxozhq6++YtWqVQwZMgRTU9Mqra9UKjlx4oTev4fRoEED4uLiWLVqFYGBgSxevJi2bdtSUFCg1y86OrrUUdnevXs5efIkx44dw8HBgWeeeUbXdv9UmFarrXAc8+fPx87OTu9fRa6euEJsVAx/HLhEfm4+sVExnP3hTEltEwWqUA+C+gSj0Wg4tfXBbotuYmZC6Og2jF4+hvYTOxAbFUNsVAzfv71V10fpYk9QXzWuwa6c2XGazOSMB6pl42BDzs0cvWV3Mm9zePUhg/ctoGcg2TeyHnh/hRA1Q40/Zwbg6uqKm5sbs2fPZv/+/XptISEhJCQkkJaWhoODQ7WNydTUlLZt29K2bVteeOEFnJycOHXqFCEhIQBcvnyZ/fv3s3btWr313NzcADA3N+ell17C29sbQDf2mzdv6o7OLl++rOtflunTpzNlyhS9ZRUF2t1zZvfLy87j+PpjXD6UiGuwK11eDMeuobLiJ6AcWSmZ2DjYYmpuSi2lDS7BrvSe01fXnrAnnlNb4zC3NiegZyBtxrV74HN1nm0bs+GVdfhF+mNV24qzP5zBJciVsP/rYvi+KRT0nNmbtS/GUrt+bdxbqh5oLEKIJ8sowgxg7ty5HDt2jCZNmpCYmKhb3qRJEwYOHMj48eNZvnw5SqUSrVbLypUradeuXZWP4gxx5MgR7O3tdefZzp07R2FhIY0aNdL1WbZsGf3790epVOqW5ebmUlhYqFsWExNDs2bNdO2DBw9m0aJFzJo1i8OHD5OSkkL79u3LHYelpSWWlg9/wUJeVh71m9QndFRrTEwf7mD95oWbfPfmZswsS15a4VMi9NoLbhfQ7fXu1FLWKrVuQW4Ba18subrTxsGGHm/1qrCWtZ017Z/ryLevbaDwTgHmVhb0f2+gXh9D9s3cypw+/+nH+qlr6TmzF46e9crsJ4SouZ54mEVEROhdrXf3oor7tWjRghYtWpTZFh0dzdy5cwkNDcXMzAytVkvHjh3p06cPGRkZlY5h/vz5LFq0iJs3bzJmzBisrKw4fvy43vmre6WlpREVFUVGRgbW1taYmpqyevVqXX+tVsvy5ctZtmyZ3nrXr19n4MCBFBcXo9Vq8fT0ZMWKFbr2d955h1GjRuHl5YWFhQUrV658ZFcy2jnblXlUBqB0UaJ0UZbZ1ijEjUYh5R8d3q9x+yY0bt+k3Hb/7qWv4rxr3DcTDK5zl3sLd9xbuHM74zYbpq4lKzmTek3q69oN3TdbR1ue+WpslesLIWqGJxpm9x5hlWXWrFllLlepVKSmpuoem5ubM3v2bGbPnl2qr1Kp1Ot7173no6ZPn8706dMNGzTQrVs3unXrVm67QqEoc988PT05fvx4ues5OTnxww8/GDwO8ZdaylqMXPpM5R2FEH9LRnEBiBBCCFGRJz7NWJP16dOn1KXx9vb27N5t+DdiCCGEePwkzCqwefPmJz0EIYQQBpBpRiGEEEZPwkwIIYTRkzATQghh9CTMhBBCGD0JMyGEEEZPwkwIIYTRkzATQghh9CTMhBBCGD0JMyGEEEZPwkwIIYTRkzATQghh9BTae++FIozeg961WQghaipDYkq+aPhvaOq+adVW64P270q9R1wvLi6u2uoFBgZWa70nUVPqGXc9Q8k0oxBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKNnNN+ar1AoyM7OxtbWVrdMpVKxZcsWAgIC2Lt3L6+++ip37tyhoKAAe3t7NmzYgJOTEwDLly/ngw8+oKioiMLCQgYOHMjbb7+NhYUFAC+88AKbN2/m8uXLxMXFERAQUOF4CgsLmTp1Krt27cLMzIzCwkKeffZZpkyZouuj1WqJiIjg5MmTpKam6pZ//fXXvPvuu5iYmKBQKJg3bx7du3cHID8/n6lTp7Jjxw4sLCxo1qwZX3/99QM/b/m5+WybvYWC2wUU5RfS+pm2NG7fxKB1lz79BbaOtQHw6uhFyJAWla5TXFjMupfXAHD9fApOPg0A6LdgAJa2lo+0XmZyJqsmrMDRsx5ajYYGfg1pO74d5pbmlY4TYPt/ttFiWEscPesBsHriSoZ/MarS9f78/Sr7l+5DU6xFq9USMrg53mE+BtdM/SMVU3NT6jWuR8QrXQ1aTwhRMaMJs4oUFRXRv39/du7cSbNmzQA4f/48NjY2AHzxxRd8+OGHbNu2DQ8PD27fvs2oUaMYM2YMq1evBmDQoEFMmzaN9u3bG1Tzk08+ISUlhZMnT2JmZkZeXh4XL17U67Nw4UJUKhUnT57ULUtPT+f555/n/PnzODs7s2/fPgYMGMCNGzcAeO211zAxMSE+Ph6FQkFycvJDPTdntp9GFepBs4EhaLVa8nPy9doL8wvLffO3tLFk6MJhVapnam6qW+fr8V+VWv9R13NVN6LP3H5otVr2f7mPA0t/pePzYQbVexB3Mu+wZ/HP9H9nINZ21hQXFZNyNkWvT2U1I1/vjqNnPda9vIbUS6k4ejo+svEJ8U/1twiz7OxssrOzcXZ21i3z8fnrk/Lbb7/N559/joeHBwC1atXiiy++oFGjRly4cIEmTZrQsWPHKtVMSkqiQYMGmJmVPIVWVlb4+/vr2hMSEvjmm29Yvnw5mzZt0i3XaDRotVpycnIAyMjIwNXVFYDc3FyWLVvG1atXdTfZvHefHoS5lTlXjieRm56LTV0brGpb6bX/+M4OFCYKAnoG0qiZ20PVMsTjqqdQKAh9pg0rxizXC7OTG45z5XgSTbv606SjF2YWD/eSv7T/Ir4RTbG2swbA1MwUl0AXvT6G1NQUayi4UwDIvXGFeBT+FmFmb2/P888/j5eXFx06dKBNmzYMHToUb29vbty4wdWrV2nTpo3eOg4ODnh5eXH8+HGaNDFs2u1eEydOJDIykl27dtG2bVvCw8MZPHgwpqamaDQaJkyYwKJFizA31/+E7ujoyJIlSwgJCaFu3brcuXOHnTt3AnDx4kUcHByYO3cuO3fuxNramlmzZhEeHl7mGPLz88nPzy+z7S6/bv7kpuWwfspazKzM6D6jB/aN6urae7zVi4w/b3FqSxwHlu3HvaWK4L5qrOpYkZ+bT2xUDABtx7d7JOHzOOuZWZhRXFist6zFsFYE9Azi7I9n2DhtPY4ejqgHNNM9B9vnfY+5VcnPKC0xrdIauWm5KF2VAPzx2yUOfX0QCxsL+r8zsEo1c1NzcG/loZviFEI8HKMPs7tHMB999BEvv/wyu3fvZteuXTRr1owdO3bg7e1d7rqG3Iq7PP7+/ly8eJF9+/axf/9+Zs6cycqVK9m6dSvvv/8+HTt2RK1Wk5iYqLdeVlYWixcv5siRI/j4+PDdd98xaNAgzpw5Q2FhIZcuXcLPz48FCxZw8uRJIiIiOHPmDPXqlX7Tmz9/PrNnz65wnCZmJoSObkPo6DYkHbtMbFQM9o3qUsepDt3f7AmA0sWeoL5qTMxMOLPjNKpWKqzqNHigab/7JR29zIFl+6ulXnFhMaamJrpA7DOvH9Z1rLGqY4VfpD+m5qYcX3eUek3q64Ll7pQflJwzq4ytoy05N0uOqj1ae+LR2pMvB39e5Zq29Wqzeca3FOUXYWZp9L+GQjxxRvNbVK9ePVJTU/UuAElNTaV+/fq6x+7u7owZM4YxY8ZgY2PDmjVr+OSTT3BxceHAgQP06NFD1zctLY0LFy7ozrE9CAsLC7p06UKXLl149tlncXZ2Jj09nb179/L777+zYsUKioqKuHXrFiqViuPHj7Nr1y7s7Ox006C9e/dm3LhxXLlyBXd3d0xMTBgxYgQAwcHBeHh4cPr0acLCwkrVnz59ut4FJwB2dnZ6j7NSMrFxsMXU3JRaShtcgl3pPaevrj1hTzyntsZhbm1OQM9A2oxrp/uA8Ci4NXfHrbl7tdQ7uOIATTp503FSJ92y6+dSOL7+GLlpufg+1ZTh/xv1UOfQPNp4svHV9fg+1ZRaylpoijRY1bHSC2FDalrVtqJJBy9ObY1DPeDBX4NCiBJGE2bdunXjs88+45133gFgxYoVeHt7U69ePXJycvjll1+IjIxEoVBw584dzp49y4ABAwCYMWMGU6dOpWnTproLQCZOnEifPn0eaIoRYO/evXh5eenOaR09epS6deuiVCrZsmWLrl9iYiItWrTQHaF5enpy7Ngxbty4Qf369Tlw4AAajQYXFxcsLCwIDw9nx44d9OjRg8uXL/PHH3/onf+7l6WlJZaWFV8hePPCTb57c7Pu03/4lAi99oLbBXR7vTu1lLUe6Hmoqkdd7+qJK6x54ZuSqxmbOtP2Wf0LeHLTc2k5MhQHd4dHUs/azpqOk8LY8tZmoGRm4P6rLg2t6Rfpz9oXYwnur36kHyCE+CcymjD76KOPeOmllwgKCsLExARnZ2diY2OBkunCJUuW8OKLL2JtbU1hYSGRkZFMnjwZgEmTJmFubk7v3r0pLi6moKCAAQMGMHfuXN32J0+ezKZNm0hJSSEiIgJbW1suXLhQ7niSkpJ46aWXyMvLw8LCAltbWzZt2oSJScV/uhcSEsL06dMJCwvD3Nwcc3Nz1qxZo/sTgSVLljBu3DheffVVTE1N+eKLLx7qIpDG7ZtUeCm+f/fy/wRh5NJnHrhuees/ynp2znY8v+X/Kuzj2bZxuW2RM3roPTbksnwA12BXhnzy9EPXtKptxajoh3uOhRAljCbMHBwcWLmy7HMatWvX1rtisCzPPvsszz77bLntixYtYtGiRQaPZ+TIkYwcObLSfiqVSu9vzABefPFFXnzxxTL7e3p68vPPPxs8DiGEEPINIEIIIf4GjObI7Elp0aIFRUVFesv8/f1ZtWrVExqREEKI+0mYVeLIkSNPeghCCCEqIdOMQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJIYQwehJmQgghjJ6EmRBCCKMnYSaEEML4acU/Xl5ennbmzJnavLw8qSf1amRNqSf1KqPQarXaJx2o4snKysrCzs6OzMxM6tSpI/WkXo2rKfWkXmVkmlEIIYTRkzATQghh9CTMhBBCGD0JM4GlpSUzZ87E0tJS6km9GllT6km9ysgFIEIIIYyeHJkJIYQwehJmQgghjJ6EmRBCCKMnYSaEEMLoSZgJVCoVvr6+qNVq1Go1sbGx1VJ39uzZKBQKTp069VjrdO3alaCgINRqNR06dODEiROPrVZeXh79+vXD29sbtVpNZGQkiYmJj60ewAsvvIBKpXokz+W9rwU/Pz9mz56te124ubmhVCp1j9977z2WL1+OQqHgo48+0ttOp06dUCgU5OTkPNR4HuW+GeJJ/Pyq8/V5r+r6/YNqeo95bF+UJYyGu7u7Ni4urlprHj16VBsZGal1c3N77LVv3bql+//GjRu1zZo1e2y17ty5o926datWo9FotVqt9tNPP9U+9dRTj62eVqvV7tmzR3vlypVH8nO8dxtJSUlaOzs77cmTJ7VarVa7bNky7cCBA/X6L1u2TBsSEqINCgrSLUtISNC2bNlSC2izs7MfajyPct8M8SR+ftX5+ryrOn//tNrqeY+RIzNR7fLz85k8eTKLFy9GoVA89npKpVL3/8zMTExMHt/L3srKih49euj2q3Xr1ly6dOmx1QPo2LEjrq6uj3y7jRo1wtvbm/j4+Ar7eXh44ODgwOHDhwGIjo5m7Nixj2QMj2vfyvMkfn7V+fqE6v/9qy5mT3oAomYYMWIEGo2G0NBQ5s+fT7169R5brbfeeouRI0fi4eHx2Grcb/To0ezevRuA7du3V1vdTz75hN69e1dbvUcpLi6Oc+fOERwcXGnfcePGER0dTUhICGvXruXw4cM8//zz1TDKx6u6fn7V+fp8Er9/8PjfY+TITLB3715OnjzJsWPHcHBw4JlnnnlstQ4cOPBE3uhWrFjBlStXmDt3Lv/+97+rpea8efNISEjgP//5T7XUe1QGDRqEWq3mueeeIzo6Gi8vr0rXGThwINu2bWPjxo20atVK72jDWFXnz6+6Xp9P6vevWt5jHuskpqiRvvrqK21wcLA2ODhYGx0drdd27do1ra2t7WOrN2/ePK2zs7PW3d1d6+7urjU1NdU2bNhQu23btsdS7/7902q1WisrK21qaupjrffee+9pmzdvrnc+5HHW02ofzXmJirZR3jmzu8uee+45raOjo3bnzp1arVb7SM6ZGTKux+Fx/vwq86hfn/eaP3/+Y//9q8zjeI/RarVaCbN/uJycHL1f2A8++EDboUOHaqv/uN+kMjMztX/++afu8YYNG7QuLi66E/yPwwcffKANCQnRpqenP7YaZXnSYRYfH6997733dM+tsYZZdf78nsTr817V8bxW13uMnDP7h7t+/ToDBw6kuLgYrVaLp6cnK1aseNLDemQyMzMZOHAgd+7cwcTEhHr16rFly5bHduL76tWrTJ06FU9PTzp37gyUfMnqwYMHH0s9gMmTJ7Np0yZSUlKIiIjA1taWCxcuPLZ65fHy8uKVV155pNus7n2r7p9fdb8+n4Tqeo+RLxoWQghh9OQCECGEEEZPwkwIIYTRkzATQghh9CTMhBBCGD0JMyGEEEZPwkwIIYTRkzATQghh9CTMhBBCGD0JMyGEEEZPwkwIIYTR+39KiHRYmdTqAAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.alterations_matrix(altered_flanks.head(10))" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "importlib.reload(analyze)" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [], + "source": [ + "altered_flanks = analyze.compare_inclusion_motifs(altered_flanks)" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [], + "source": [ + "sh2_motif_changes = analyze.identify_change_to_specific_motif(altered_flanks, elm_motif_name = '14-3-3', modification_class = 'Phosphorylation', residues = ['S','T'])" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GeneUniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassInclusion SequenceExclusion SequenceMotif only in InclusionMotif only in ExclusionAltered PositionsResidue Change
22MLPHQ9BV36S337PhosphorylationRGRASsESQDLRGRASsESQGSLIG_14-3-3_CanoR_1NaN[4.0, 5.0][D->G, L->S]
23MLPHQ9BV36S339PhosphorylationRASSEsQDL*ARASSEsQGSRCLIG_14-3-3_CanoR_1NaNNaNNaN
50CEACAM1P13688T457PhosphorylationLHFGKtGRGKRLHFGKtGRLRTNaNLIG_14-3-3_CterR_2[3.0, 4.0, 5.0][G->L, K->R, R->T]
67ENAHQ8N8S7S512PhosphorylationKSPVIsRTGFSKSPVIsRTKIHLIG_14-3-3_CterR_2NaN[3.0, 4.0, 5.0][G->K, F->I, S->H]
93LMO7Q8WWI1-3S356PhosphorylationADGTFsRTLSKADGTFsRE*VHLIG_14-3-3_CterR_2NaNNaNNaN
129MAP3K7O43318T403PhosphorylationRIAATtGLFQARIAATtGQRTALIG_14-3-3_CanoR_1NaN[2.0, 3.0, 4.0][L->Q, F->R, Q->T]
141LMO7Q8WWI1-3T354PhosphorylationTEADGtFSR*STEADGtFSRE*LIG_14-3-3_CterR_2NaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " Gene UniProtKB Accession Residue PTM Position in Canonical Isoform \\\n", + "22 MLPH Q9BV36 S 337 \n", + "23 MLPH Q9BV36 S 339 \n", + "50 CEACAM1 P13688 T 457 \n", + "67 ENAH Q8N8S7 S 512 \n", + "93 LMO7 Q8WWI1-3 S 356 \n", + "129 MAP3K7 O43318 T 403 \n", + "141 LMO7 Q8WWI1-3 T 354 \n", + "\n", + " Modification Class Inclusion Sequence Exclusion Sequence \\\n", + "22 Phosphorylation RGRASsESQDL RGRASsESQGS \n", + "23 Phosphorylation RASSEsQDL*A RASSEsQGSRC \n", + "50 Phosphorylation LHFGKtGRGKR LHFGKtGRLRT \n", + "67 Phosphorylation KSPVIsRTGFS KSPVIsRTKIH \n", + "93 Phosphorylation ADGTFsRTLSK ADGTFsRE*VH \n", + "129 Phosphorylation RIAATtGLFQA RIAATtGQRTA \n", + "141 Phosphorylation TEADGtFSR*S TEADGtFSRE* \n", + "\n", + " Motif only in Inclusion Motif only in Exclusion Altered Positions \\\n", + "22 LIG_14-3-3_CanoR_1 NaN [4.0, 5.0] \n", + "23 LIG_14-3-3_CanoR_1 NaN NaN \n", + "50 NaN LIG_14-3-3_CterR_2 [3.0, 4.0, 5.0] \n", + "67 LIG_14-3-3_CterR_2 NaN [3.0, 4.0, 5.0] \n", + "93 LIG_14-3-3_CterR_2 NaN NaN \n", + "129 LIG_14-3-3_CanoR_1 NaN [2.0, 3.0, 4.0] \n", + "141 LIG_14-3-3_CterR_2 NaN NaN \n", + "\n", + " Residue Change \n", + "22 [D->G, L->S] \n", + "23 NaN \n", + "50 [G->L, K->R, R->T] \n", + "67 [G->K, F->I, S->H] \n", + "93 NaN \n", + "129 [L->Q, F->R, Q->T] \n", + "141 NaN " + ] + }, + "execution_count": 127, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sh2_motif_changes" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAEOCAYAAAAZhRmiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsdElEQVR4nO3deVhU9f4H8PewCBgCylIqAu6AAgOi5IYoqLhkXnEjRRFuuZGWmjev29XLFcssb1nZTUYlBQkBUzIqQ1wSU2MRc9cIXFNRdobt/P7w58mRxWEbkPN+Pc88D/Ndzud7mBnenkWQCYIggIiISEK0mnoBREREmsbwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkR6epF0BNRyaTNfUSiIgalLq/t4XhJ3Hp6ekaq+Xg4KDRek1Rk/VYry41Fx9bqrF6Gwe936LrqYunPYmISHIYfkREJDkMPyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSH4UdERJLD8CMiIslp0vArKyvD2rVrYWtri169esHW1hZvvPEGUlNToaOjA7lcLj4GDBigMjchIQEymQw7d+6stN1PP/0UvXv3hp2dHezs7ODr64vMzEyx/+rVq9DS0kJwcLDKvO3bt0Mmk2HTpk0q7UOGDIFMJkN+fj4AYN26dejZsye0tLQQFxdX4z6ePn1a3AcrKyuYmJiIzzds2CCOu3v3Ll588UVMnDhRbEtMTETr1q1Vvg9FRUUAgIMHD6q0d+jQAS4uLjWuhYieDzfOXEfUwt2IDIrA7vnhuJR4Ue258f85gHvX7taqXs6tHOxbsRcAkJ15HzsDdyDvz7xnzjseegw7ZigQGRSOfcv3orysXO16n439BJFBEQh/4yvcuXBbrXlJ235GZFAEvpy45f/rRuDCT+fVmvs0nTrNaiCBgYHIzs5GUlIS2rZti4qKCkRHR8PIyAgmJiZITU2tdm5oaCg8PDwQGhqK6dOni+2rV6/GDz/8gPj4eFhaWkIQBCQkJOD27duwsrICACgUCgwZMgQKhQLLly+HTCYT57u4uGDbtm146623AABXrlwRA+cxT09PTJkyBYGBgc/cR1dXV3E/tm/fjri4OOzZs6fSuHnz5mH06NHIy1N9w9nb2+P06dOVxnt5eal8f8aOHYuhQ4c+cz1E1LwV5RTh8GeJ+Nt7PjAwNkB5WTlun1cNh1JlKXT1dBu8dt6feTiw9luMXv0K2li0UavWoNnu6DqwG354Lx5/nMxAlwFd1aplKe+EccHjcSP9Bk7u/AWvBL8q9lVXs/+sgeg/ayCOhx7Di7YvoevAbrXcw7802ZHflStXEBUVhW3btqFt27aPFqOlhUmTJkFLq+ZlPXz4EAcOHEBERAR+++03XL16FQBQUFCA999/H6GhobC0tAQAyGQyeHp6ol+/fgCA8vJy7NixA5s3b4ahoSEOHTqksu3OnTvD1NQUp06dAvAoKGfNmqUyxs3NDV27qvcCq2PXrl148cUXMWTIkDrNv3nzJhISEuDn59dgayKipnHt+FXYetnBwNgAAKCto42ODh1VxqTFpCB26R5cOHgeZSVlDVK3OLcY+1fsxfAlI9DOqp3YfuXwZex5+2uc2Z+GkkJltfOVBUoIglDrusr8YghQnXd86zHsX/ENrh2/ioryilpvUx1NFn7Jycno3r07zMzMqux/+PChymm9GTNmiH27du3CiBEj8NJLL2HatGlQKBQAgN9++w2tWrWCvb19tXXj4+PRsWNH9OrVC4GBgQgNDa00JiAgAAqFAuXl5YiKioKvr28997Z6N2/exIcffoj169dX2X/x4kW4uLigb9+++Oyzz6ocs2PHDowaNQoWFhbV1lEqlcjNzVV5EFHzU3C/AIZmhgCA309cQ2RQBGL/Ea0yxtW3H0atGIuinCLELo3Gof/+hAdZ2fWq++elOzAwaY0XbV9SabcbYY9X142HlrYW4lbtx/frv8Odi38diR774gi2Tv4flPlK2Lh1Vrve9dQs7Hr9K3wXfAD9/VUvaw2ZPxRD3xqGu1fvYs/bX+PY/44i/96zT8PWRrO94eXxac/Hj7CwMLEvNDQUAQEBAB6dOt2+fTvKyx+da37yFGZVnpw7ffp0fPvtt3jw4IHKGB8fHxw4cACxsbHo168fTExMGnDPVL3++ut4//33YWhoWKnPxcUF169fR3JyMmJjY7FlyxZ8/fXXlcZt27btmadgQ0JCYGxsrPIgoubH0MwQ+Xcf3V/Q+eUumLLZF/ev3UNkUAQigyJQlPvoMoy+kT7svXuh5zBbZP76B26cuVGvulau1jBqb4yfQ49hz9tfIzIoAvd/vwcA0DVoBVtPO9iNtMfdK3eR8cvv4rxBs93h/1UAZJBBmVesdj1LeSdM+9IP/Wf2R1ZKFiKDIrDn7b9+vhmatYHDWEd0HdgVlw9fxN0rtbuO+SxNds3PxcUFly9fxv3792Fqaqr2vNTUVKSnp+ONN94Qg+7evXuIj4/HkCFDoFQqce7cuSqP/v78808cOHAAp06dQkhICACgtLQU4eHhmD9/vjjOwMAAo0aNwty5c7F79+567mnNkpKSxODKz89HUVERRo4cie+//x5GRkbiOEtLS/j6+uLo0aOYPHmy2H7kyBEUFhZi5MiRNdZZtmwZFi1apNLGACRqfjr374LYf0TDdrgdWpu0RkVZBfSN9DFl819noO5cuI2U6GQU3C+A7XA7vPalX4NcAxy6YBi+WRYLuxH26DWqNwAgOzMbyVG/IvuP++g+pAcmfjQZ+m30Vebp6OnAaYIcpyJOYcg8j1rVdJrgjPA3vsJr//ODto42ACDz1z+QFpuK8rJy2Hv3wowds8S+htJk4detWzf4+PiIR24mJiYQBAFfffUVBg4cWO28rVu3YvHixSqnCTdv3ozQ0FCMGTMGS5Ysweuvv46oqCh06NABAHDgwAGYmpri6NGjGD9+vEqgxcXFYdWqVSrhBwCLFy9Gt27dMGzYsAbec1XZ2X+dqnj6hphbt27hxRdfhJaWFvLy8hAXF1fpCE+hUMDf3x/a2jW/MfT09KCnp9fwO0BEDcrA2ADucz0Qt2ofgEdns1wmu6qMKcguQN/pbjC1rvrA4Yf3voeu/qMwHL16LF5o94JatbW0tTDmX69gz1uRaGPRBlZ9rFFwPx+9x/TGS7bta5zbpX9X/PzlMQwIGCjWVoe2jjZs+nXG5cRLsPWyA/Dopp8hbw6F0YtGz5hdd016t6dCoUBwcDDc3Nygo6MDQRDg7u4OR0dH8Zrfk5KSkhAeHo7Dhw+rtE+dOhX/+Mc/cOfOHaxduxbm5uYYMWIEysvLIZPJ4OzsjPXr10OhUOC9995Tmevt7Y2AgAAkJyertHfv3h1Lliypct0hISH49NNPcffuXfj7+0NfXx8pKSkwNzev/zflCdHR0fj888+ho6ODsrIyTJo0SeXmm7y8PERHRyMtLa1B6xJR07J0ssTkj6dW21/THZXey0fXup5xe2OMCx4PAGjVuhVe+99fN891craqdt6AwEHi11raWpi5Y1a1Y6urBwCD56je7NdzmG2N85+sW1cyoS6351CLIJPJkJ6errF6Dg4OGq3XFDVZj/XqUnPxsaUaq7dx0Pstut4HA9979iA04xteiIiIGkuTnvZsacaNG6fym2QAoG3btpX+LyERETUthl8D2rdvX1MvgYiI1MDTnkREJDkMPyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSH4UdERJIjEwRBaOpFUNOQyWRNvQQiogalbqTpNPI6qJlLT0/XWC0HBweN1muKmqzHenWpufjYUo3V2zjo/RZdT1087UlERJLD8CMiIslh+BERkeQw/IiISHIYfkREJDkMPyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUlOiww/Gxsb2NraQi6Xi49z586J7WVlZeJYV1dXJCYmqsyfMWMGjIyMUFhYWGm7Z8+eVWnz8PBAXFxcjevZsmULHB0d4eTkBFtbW0ybNq3atUZGRop969atQ8+ePaGlpVWpxj//+U/Y2dnByckJ/fr1Q0JCglrfGyJq3m6cuY6ohbsRGRSB3fPDcSnxotpz4/9zAPeu3QUAJGw6iKTtx9Wem3MrB5+N/QSRQRGIDIpAVkqmWvOykjORuPmQ2nWUBUrELo1GZFAEdr0ehqvHrqg9d2fgDvHrMmUZIoMi1J77NJ06z2zm9uzZg969e1dqVyqVCA0NxezZs6ucl5ubi/3798PBwQFRUVGYOXNmvdZx+vRpfPDBBzh58iTatWsHQRCQkpKi1lo9PT0xZcoUBAYGVuobPHgwVq5cCQMDA6SlpcHDwwO3bt2Cvr5+vdZLRE2nKKcIhz9LxN/e84GBsQHKy8px+/xtlTGlylLo6unWuJ2kbT8DkKG//4Ba1beUd8K44PGV2stKyqCtqw2ZTFar7VXlXPxvsHHrDGcfFwiCAGW+UqVfnf1rCC3yyK8ma9aswb///e9KR3WPhYeHw8vLC4sXL0ZoaGi962VlZcHY2BhGRkYAAJlMBhcXF7Xmurm5oWvXrlX2jRo1CgYGBgAABwcHlJeX4969e/VeLxE1nWvHr8LWyw4Gxo8+29o62ujo0FFlTFpMCmKX7sGFg+dRVlJWaRupsal4eP0hhi4c1mDryrnxEJFBEUjafhy5d3LrtS1dfV3cPn8LBdkFkMlk0G+j+g/2H9/7Ht8Ff6v2kWddtdgjv4kTJ6ocBZ08eRIA4OLiAnd3d3z00UdYvnx5pXmhoaFYu3YtvLy8MHfuXFy6dAk9evSodrtXrtR8yD5y5Ehs3LgRnTp1wpAhQzBo0CBMmzYNbdu2FcdMmzYNFRUVcHNzQ0hICMzNzWu1r9u2bUPXrl1haWlZ7RilUgmlUlltPxE1vYL7BTCxNAEA/H7iGk7u/AWtXmiFv73nI45x9e2H3mMccf7Hc4hdGg2zzmaQT3BG207tAAAXfjyHiZsm1+ko7Xpqlngqcfz6CdAz1AMAmHY2w5RPfJFx8ncc/fwwypRlsPfuhe5DetS0uSrZj+yFgvv5iF4UBR19HYxaPlpcOwCMXjUWD288wNm4dCRtOw7rvjZwelUOfSN9KAuU4voEQajXkWiLPfLbs2cPUlNTxUerVq3EvuDgYGzatAn3799XmZOeno5bt25hxIgR0NXVhZ+fHxQKRY3bdXV1rXEdrVu3xtGjR3HgwAEMGDAAMTExcHR0RHZ2NgDgyJEjSEtLQ3JyMkxNTWt9mvWnn37CmjVrsHv37hrHhYSEwNjYWOVBRM2LoZkh8u/mAwA6v9wFUzb74v61e+J1uKLcIgCAvpE+7L17oecwW2T++gdunLkhbmPkslH4PiQeeX/m1bq+pbwTpmz2xZTNvjgRloTIoAic/+EcAECmJYONW2c4jnNCRUUFzn6bXqd91NLRgtuM/pix3R+D3hgs7tt3//5WHGPSsS0cX5XD0skS577/DTm3HgIA9F7QE9c38cPJdar/WIs98qtJly5d4Ovri+DgYJX2rVu3Ij8/XzzVWFpaioqKCgQHB0NHp+7fKplMBmdnZzg7O+PNN9+Evb09EhMTMWHCBFhZWQEAdHV18dZbb6kcZT7L4cOHMWvWLOzfvx89e/asceyyZcuwaNEilTYGIFHz0rl/F8T+Ixq2w+3Q2qQ1KsoqoG+kjymbfcUxdy7cRkp0MgruF8B2uB1e+9JP5RpZ205t4bnIC/uWx2LSf6egVWu9Oq1lyDwP8evivGKkRCfjj5MZsHSyxLCFnjDuYFKn7ebezsELpobQ1tVGa5MX0NHJEq+sfVXsv3z4Es5+mw5dA130HuOA/gEDG+Ra49MkGX4AsHLlStjb20NX99GbRqlUYteuXThx4gRsbW3Fca6urjhw4ADGjRtXpzoXLlxASUkJHB0dATy6Bnj37l106dIFBQUFKC0thYmJCQAgIiICzs7Oam33yJEj8PPzwzfffAMnJ6dnjtfT04OeXt0+BESkGQbGBnCf64G4VfsA/P89ApNVzy4VZBeg73Q3mFqbVrsdS6dOcJnUB/tX7sPf3vOBlk79TvIV5xbDopsF3PxehpZ2/bZ198pd7F+5Dzp6j+LHc5GXSn9JYQlG/nMUWpu0rledZ2mx4ff0tblPPvlEpd/c3BwLFizAqlWrAAB79+6FtbW1SvABgJ+fH7Zu3Vrn8CssLMTbb7+N27dvw8DAAIIgYP369ZDL5bh27Rp8fHxQXl4OQRDQpUsXhIWFiXNDQkLw6aef4u7du/D394e+vj5SUlJgbm6OwMBAKJVKzJo1Sxz/1VdfwcHBoU7rJKLmwdLJEpM/nlptf5cBVd8EBwDey0eLX9uN6AW7Eb3Urmvc3rjKOz0BwKSjCUw6mlTZ18nFCp1crNSu03VQN3Qd1K3a/l6jKt/5/tj00L8uC+no6agcEddWiwy/jIwMtdpXrlyJlStXis+nTJlSac7ChQuxcOHCarf79P8RfJqLiwsOHz5cZV+XLl0q/beHJy1btgzLli2rsu/y5cs11iUiouq12BteiIiIqtMij/yawpw5c3DixIlK7UlJSeL/xyMiouaB4ddAtmzZ0tRLICIiNfG0JxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSU6vf7Tls2DC1xiUkJNRpMURERJpQq/BLTEyEtbU1xowZI/4FdCIioudNrcJv/fr12L59O6KiojBt2jQEBASgd+/q/+ouERFRc1Sra35Lly7FuXPnsHfvXuTl5WHgwIHo168ftmzZgtzc3MZaIxERUYOq0w0v/fv3x5dffolbt25h/vz5UCgU6NChAwOQiIieC/W62zM5ORmHDx/G+fPn0bt3b14HJCKi50Ktw+/mzZtYt24devTogYkTJ6Jdu3b45ZdfcOLECRgYGDTGGomIiBpUrW54GT16NA4dOoQRI0Zgw4YNGDNmDHR0arUJIiKiJler5IqPj0f79u2RmZmJNWvWYM2aNVWOS05ObpDFERERNYZahd/q1asbax1EREQaIxMEQVB3cGZmJiwtLaGlxd+K1hLIZLKmXgIRUYNSN9JqdeTXuXNn3Lp1CxYWFnVaFDU/6enpGqvl4OCg0XpNUZP1WK+513RwcMDiY0s1Vm/joPc1Wk9dtTqEq8VBIhERUbPF85dERCQ5tf5/Clu3boWhoWGNYxYsWFDnBRERETW2Woffli1boK2tXW2/TCZj+BERUbNW6/A7ffo0b3ghIqLnWq2u+fHWeCIiagl4tycREUlOrcJvyZIlWLZsGTp27AgLCwu89tpruHfvXmOtjYiIqFHU+shv9+7dGDNmDHx9ffHjjz9i7ty5jbU2IiKiRlGrG15iYmIQGhqKqVOnAgCmTZuGgQMHory8vMY7QImIiJqTWh35ZWVlYfDgweLzfv36QUdHBzdv3mzwhRERETWWWoVfeXk5WrVqpdKmo6ODsrKyBl0UERFRY6rVaU9BEODv7w89PT2xrbi4GHPmzMELL7wgtsXExDTcComIiBpYrcJv5syZldqmT5/eYIshIiLShFqF37Zt2xprHURERBrDv+pARESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSnxYafjY0NLCwsUFpaKrYlJCRAJpNhyZIlSExMhKura6V5GRkZ0NHRgVwuh5OTE1xdXXHo0CEAwPbt2zFx4kSV8dVt50lZWVkYN24cHB0d4eDgALlcjoSEBABAbGwsHB0dIZfL0atXLyxfvlz8o8FJSUmQy+Vi3+zZs6FUKgEABw8eFPvkcjk6dOgAFxeXun/DiEhycm7l4LOxn+DrBbsRGRSOw58lolRZ+uyJ/69MWYZD//0JkUER2D0/HN/+az+UBUq16u5bsbfW6z3/4zmEv/EVds8LR+zSPbWe/6Ra/YaX542VlRX27dsHHx8fAIBCoXhmUAGAiYkJUlNTAQDffPMNJk+ejD///LPO65g3bx68vLywcOFCAMC9e/dQWFgIAPDy8sKrr74KLS0tlJSUYNCgQXBzc8O4cePg5OSEU6dOQVdXFxUVFZg4cSK++OILLFiwAF5eXuIaAWDs2LEYOnRonddIRNJkKe+EccHjIQgCjm89hqTQn+E+z0PsL1WWQldPt8q5J3Ykoa1VOwxd6AkAuHv1LirKK+q1nprqndp1EtO+9IO2rjaKc4vrVafFHvkBQEBAABQKBQAgJycHJ06cgLe3d622MXz4cNy7dw/379+v8zoyMzPRqVMn8bmZmRmsrKwAAG3atIGW1qOXobi4GEqlUnzeunVr6Oo+ehOUlJSgqKhI7HvSzZs3kZCQAD8/vzqvkYikTSaTwW1mf1w5dkWlPS0mBbFL9+DCwfMoK1H9Cz5/nMqA03i5+Ny8qzkMjAzqtY6a6pWVlOHWuZuoKK+AvpF+veq06PBzd3fHtWvXcOPGDURERGDSpEm1/qO7ERERsLKygpmZGYDKpxv//ve/P3Mb7777LmbOnIlBgwZh8eLFOHLkiEr/8ePH4ejoCAsLC3h6emLMmDFiX0ZGBuRyOczMzGBkZIQ33nij0vZ37NiBUaNGwcLCoto1KJVK5ObmqjyIiJ6k00oH5aXlKm2uvv0wasVYFOUUIXZpNA799yc8yMoG8Ogv/chkMgBA3Op9CPPfjsxf/6jXGmqqN2bVWCR//StCp36JpO3H61WnRYcfAPj5+WHHjh1QKBQICAhQa87Dhw/FcIuJicG+ffvEvsenGx8/tm7d+szt+fr6IjMzE4sWLQIAvPrqq9iwYYPYP2DAAJw5cwZZWVk4deoUjh49KvbZ2NggNTUVt2/fhlKprPLPRW3btg2BgYE1riEkJATGxsYqDyKiJ5WXlkNbWwuRQRGIDIpAUW4RAEDfSB/23r3Qc5gtMn/9AzfO3ADw6Gjx8T0KY9eMQ7fB3VBarP41QwAoyi1Su96Lti9h3H/GIyD877iemoXszLqfkWvR1/wAwN/fHy4uLujRowe6d++u1pwnr/k1lLZt22LChAmYMGEC+vbti3Xr1uGdd95RGWNubo4xY8YgKioK7u7uKn2GhoaYOnUqdu3ahalTp4rtR44cQWFhIUaOHFlj/WXLlonh+xgDkIie9EtYEroN6QH3uUPEtjsXbiMlOhkF9wtgO9wOr33pJ16Ts+5rg7TYVMgnOAMAKsqFWtc0MDLAlM2+atV7kJWNtp3aQVtXG/qG+hDqcXmxxYdfhw4dEBISAltb2yZbw/79++Hp6YnWrVtDEASkpKSga9euAICLFy+ie/fu0NLSQl5eHuLi4sS/m3j16lVYWVlBV1cXJSUliImJgaOjo8q2FQoF/P39n3k6V09PT+WPEBMRAcD11Cx8vWA3hIoKvGTXHgP+PkilvyC7AH2nu8HU2rTS3Jdn9seRzw9j9/xw6OjpwMDYAM4+zmrVvZF2HVELIwEANm426Pua2zPrHf40EYUPCyGTyWDpZAlTm8pj1NXiww8AZs2aVWX7mTNnYGlpKT7v37+/yunIhnLkyBEsXboUOjo6EAQBPXv2xObNmwEAUVFRCA8Ph66uLsrLyzFx4kTxOmJiYiI++ugjaGtro6ysDMOGDcPKlSvF7ebl5SE6OhppaWkNvmYiavmM2xtjXtybNY7pMqBrtX06ejoY9pZnnerO3R9U63rj10+oda3qtNjwy8jIqLL9X//6l/h1SUlJlWPu3btXZbu/vz/8/f1V2jw8PHD69Oka17Jhw4ZqQ3XFihVYsWJFlX2BgYE1Xstr06YN8vLyaqxNRESVtfgbXoiIiJ7WYo/8NC01NbXSUSEAzJw5E2+//bbmF0RERNVi+DUQuVze4HeIEhFR4+BpTyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSH4UdERJLD8CMiIsmRCYIgNPUiqGnIZLKmXgIRUYNSN9J0Gnkd1Mylp6drrJaDg4NG6zVFTdZ7/ustPrZUY/UAYOOg9zVasynqafpzrw6e9iQiIslh+BERkeQw/IiISHIYfkREJDkMPyIikhyGHxERSQ7Dj4iIJIfhR0REksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSnWYefjY0NLCwsUFpaKrYlJCRAJpNhyZIlYptCoYBMJsOxY8dU5vv7+8PS0hJyuRx2dnaYPXu2uK0RI0bA0dERcrkcgwcPRmpqqjjPw8MDcXFxAICKigrMnTsXHh4eyMvLw4IFCyCXy8WHvr4+Pv7442r34fE4e3t76OjoiM+nTJkijhEEAZ6enjAzM1OZ+8svv0Aul6NHjx7w9PTErVu3xL6a1k9EDSfnVg72rdhb63llyjIc/OAHRAZFIHz2TlxMuKB2vc/GfoLIoAhEBkUgKyVTrXlZyZn4YsLniAyKwO554ci5laP2vMigcOyeH4641ftQnFus1rzc27niGj8e/hEigyIQvThKrbnNgU5TL+BZrKyssG/fPvj4+AB4FHSurq4qY0JDQ+Hh4YHQ0FAMGjRIpe/dd99FUFAQiouLMXToUGzZsgVvvvkmvv76a5iYmAAA9u7di4CAACQnJ6vMLS0thZ+fHwoLCxEfH18p6G7fvo3OnTtj8uTJ1a7/cShlZGTA1dW1ypDavHkzbGxskJaWJrYJgoBp06Zh69at8PDwwAcffIBFixYhIiICANRaPxE1rlJlKXT1dKvsO7H9OMy6msNryQiUFCrx9Zu7YdbVHKbWps/crqW8E8YFj6/UXlZSBm1dbchksirn9RxmC4+goTj/wzmkxiRjyPyhNdYpyi3Ckc8Pw2fjJOgb6eNc/G/46aMfMWb1K8+safSSEaZs9gUA7AzcIX79vGjWR34AEBAQAIVCAQDIycnBiRMn4O3tLfZfuHABv//+O3bu3InY2Fjk5eVVuR19fX0MHjwYFy9eBAAxOB5vV0tL9VtRWFiIcePGQVdXFzExMdDX16+0zbCwMIwcORIvvfRSnffv8uXL2L17N959912V9tOnT0NPTw8eHh4AgNmzZ2Pv3r3ikeuz1v80pVKJ3NxclQcR1U9aTApil+7BhYPnUVZSptKXcSoDTq/KAQCtWuvBcbwcl9Q8+qtOzo2HiAyKQNL248i9U/1nWJmvhCA8e3vXfr4Ku+F20Dd69PPN3rsXbp29iYryilrXfN40+/Bzd3fHtWvXcOPGDURERGDSpEnQ1tYW+0NDQ+Hn54eOHTti6NCh2L17d5XbefDgAb7//nv06dNHbJsxYwY6deqEFStWYMeOHSrj582bh3bt2iEsLAw6OlUfICsUCgQGBtZ53yoqKvD666/j008/ha6u6r8eMzMzYW1tLT5v06YN2rRpo3Lqs6b1Py0kJATGxsYqDyKqH1fffhi1YiyKcooQuzQah/77Ex5kZQMAZDJApvXX0ZKRhRHy7+Wrtd3rqVniKUVlvlJsN+1shimf+OIl25dw9PPD+GZZLC4fviT2X0y4gLBZ23Eq4iRcJvWpatMqCu4XwNCijUpb63YvoOhhodo1n1fNPvwAwM/PDzt27IBCoUBAQIDYXlpaiq+++kpsCwwMRGhoqMrc9evXw9nZGZ6envDx8YG/v7/YFxYWhqysLAQHB+Odd95Rmeft7Y2EhASkp6dXuaaff/4Zubm5GD16dJ3364MPPoC7uzvkcnmV/U+fZhCe+qdcTet/2rJly5CTk6PyIKLaKcotEkOpKLcIAKBvpA97717oOcwWmb/+gRtnbojjhYq/PrN5d/NgaGaoVh1LeSdM2eyLKZt9cSIsCZFBETj/wzkAjwLVxq0zHMc5oaKiAme//etnVM9htvBTzER39+7Izrj/zDovmL6A/LuqgVyUU4hT4SfVrvm8avbX/IBHN664uLigR48e6N69u9geFxeHhw8fYuTIkQAehcPNmzdx9uxZ9O7dG8Bf1/xqMnPmTMyZMwf379+Hqemj8/FTp07FmDFjMGLECMTHx1cKqNDQUMycOVPlKLS2jhw5gjNnziAsLAxlZWV48OABbGxskJKSAisrK2RkZIhj8/LykJeXh/bt26u1/qfp6elBT0+vzmslIsDAyEDl2tadC7eREp2MgvsFsB1uh9e+9BOvAVr1sUb6/jQ4vipHSWEJ0vefgffy2v9jecg8D/Hr4rxipEQn44+TGbB0ssSwhZ4w7mCiMl4mk6Hf9Jexb/le2Lh1rnHbXQZ0RcySPbD37gX9Nvo4/8M5dHS0hMebw2pV83n0XIRfhw4dEBISAltbW5X20NBQbNq0CXPmzBHblixZAoVCgQ8//LDa7eXm5iI/Px8dOnQAAMTGxsLU1BTt2rVTGefr6wstLS2MHDkS8fHxcHZ2BgDk5+djz549+PXXX+u1X4/vKAX+uiHmceD16dMHxcXFSExMhIeHB7744guMHz8eurq6aq+fiBrGjbTriFoYCQCwcbNB39fcAAAF2QXoO92typtYXp41AIc2/YRzP4Qj+49seC0ejnZW9fuMFucWw6KbBdz8XoaWdvUn7lq3bQ1Dc0PcPHsTHXp3qHacgbEBBs12x953Y1BaVAJd/Vb42wafOtV83jwX4QcAs2bNUnmenZ2NhISESte6/Pz84OXlhfXr11e7rZycHPj4+KCoqAhaWlowNzdHXFxclXdQTZkyBTKZDCNHjsR3332HPn36IDIyEs7OzipHoQ1NS0sLO3fuxJw5c1BUVISOHTti586dtV4/EdWPcXtjzN1f9dmjLgO6VjtPV08XI/7x6Oa8lOhkXP35CnoM7alWvaru9AQAk44mMOloUmVfJxcrdHKxEp+PXTPumbUAwNrVGtau1ih8WIiYxVHIvZUD824WatV8bHroTLVqNScy4ekLSSQZMpms2muajcHBwUGj9ZqiJus9//UWH1uqsXoAsHHQ+xqt2RT1NPkaPr7k9Swt5xiWiIhITc/Nac/mbu3atYiJianUHh0dja5dqz81QkREmsfwayCrVq3CqlWrmnoZRESkBp72JCIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJYfgREZHkMPyIiEhyGH5ERCQ5DD8iIpIchh8REUkOw4+IiCSH4UdERJLD8CMiIslh+BERkeQw/IiISHIYfkREJD0CUS0UFxcLq1evFoqLi1tkvaaoyXrPd72mqMl69ScTBEFo6gCm50dubi6MjY2Rk5MDIyOjFlevKWqy3vNdrylqsl798bQnERFJDsOPiIgkh+FHRESSw/CjWtHT08Pq1auhp6fXIus1RU3We77rNUVN1qs/3vBCRESSwyM/IiKSHIYfERFJDsOPiIgkh+FHRESSw/CjWrGxsYGtrS3kcjnkcjkiIyM1UnfNmjWQyWQ4e/Zso9caMWIEHB0dIZfLMXjwYKSmpjZareLiYowfPx49evSAXC6Ht7c3MjIyGq0eACxYsAA2NjYN8v188v1gb2+PNWvWiO8NKysrmJiYiM83bNiA7du3QyaTYdOmTSrbGTJkCGQyGfLz8+u1nobcN3U0xeunyffnkzT1GdTYz5hG+8Vp1CJZW1sL6enpGq3566+/Ct7e3oKVlZVGaj948ED8OjY2VnB2dm60WkVFRcK3334rVFRUCIIgCJ988okwfPjwRqsnCIJw+PBhISsrq0Feyye3kZmZKRgbGwtpaWmCIAjCtm3bBB8fH5Xx27ZtE1xcXARHR0ex7fLly0Lfvn0FAEJeXl691tOQ+6aOpnj9NPn+fEyTn0FNvXY88qNmTalUYv78+fjss88gk8k0UtPExET8OicnB1pajfcx0dfXx+jRo8V9e/nll3Ht2rVGqwcA7u7usLS0bPDtdurUCT169MClS5dqHNe5c2eYmpri1KlTAACFQoFZs2Y1yBoaa9+q0xSvnybfn0DTfAY1QaepF0DPn2nTpqGiogJubm4ICQmBubl5o9VatWoVpk+fjs6dOzdajarMmDEDhw4dAgDEx8drrO7HH3+MV155RWP1GlJ6ejouXLgAJyenZ44NCAiAQqGAi4sLoqKicOrUKcybN08Dq2xcmnr9NPn+bIrPoCZ+xvDIj2rlyJEjSEtLQ3JyMkxNTTFz5sxGq5WUlNRkPxTDwsKQlZWF4OBgvPPOOxqpuW7dOly+fBn/+c9/NFKvoUycOBFyuRyzZ8+GQqFA9+7dnznHx8cHBw4cQGxsLPr166dyNPO80uTrp6n3Z1N8BjX2M6bRT6zSc23Hjh2Ck5OT4OTkJCgUCpW+mzdvCoaGho1Wb926dUL79u0Fa2trwdraWtDW1hY6dOggHDhwoNFqPr2PgiAI+vr6wr179xq13oYNG4Q+ffqoXM9pzHqC0DDXVmraRnXX/B63zZ49WzAzMxMOHjwoCILQINf81FlXY2jM1+9ZGvr9+aSQkBCNfAar0xg/Yx5j+JHa8vPzVT7cGzduFAYPHqyx+pr4gZaTkyPcuHFDfB4TEyN07NhRvKGhMWzcuFFwcXERsrOzG61GVZo6/C5duiRs2LBB/N4+r+GnydevKd6fT2rs76smf8bwmh+p7c6dO/Dx8UF5eTkEQUCXLl0QFhbW1MtqUDk5OfDx8UFRURG0tLRgbm6OuLi4RrvQf/36dSxevBhdunTB0KFDATz6pb6//PJLo9QDgPnz5+Obb77B7du34eXlBUNDQ1y5cqXR6lWne/fuWLJkSYNuU9P7punXT9PvT03T5M8Y/mJrIiKSHN7wQkREksPwIyIiyWH4ERGR5DD8iIhIchh+REQkOQw/IiKSHIYfERFJDsOPiIgkh+FHRESSw/AjIiLJ+T8o0PCFI05TwwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pose_plots.alterations_matrix(sh2_motif_changes)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot Event" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pose", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/General_Instructions.rst b/_sources/General_Instructions.rst new file mode 100644 index 0000000..932ff00 --- /dev/null +++ b/_sources/General_Instructions.rst @@ -0,0 +1,142 @@ +================ +Running PTM-POSE +================ + +PTM-POSE is an easily implementable tool to project PTM sites onto splice event data generated from RNA sequencing data and is compatible with any splice event quantification tool that outputs genomic coordinates of different splice events (MATS, SpliceSeq, etc.). PTM-POSE harnesses PTMs that have been mapped to their genomic location by a sister package, [ExonPTMapper](https://github.com/NaegleLab/ExonPTMapper). It also contains functions for annotating these PTMs with information from various databases, like PhosphoSitePlus and ELM. + +Formatting Data +--------------- + +To run PTM-POSE, you first need to process your data such that each row corresponds to a unique splice event with the genomic location of that splice event (chromosome, strand, and the bounds of the spliced region). Strand can be indicated using either '+'/'-' or 1/-1. If desired, you can also provide a delta PSI and significance value which will be included in the final PTM dataframe. Any additional columns will be kept. At a minimum, the dataframe should look something like this (optional but recommended parameters indicated): + ++---------------------+-----------------------+------------+--------+--------------+------------+-----------------+-------------------------+ +| event id | Gene name | chromosome | strand | region start | region end | dPSI | significance | +| (optional) | (recommended) | | | | | (optional) | (optional) | ++=====================+=======================+============+========+==============+============+=================+=========================+ +| first_event | CSTN1 |1 | \-1 | 9797555 | 9797612 | 0.362 | 0.032 | ++---------------------+-----------------------+------------+--------+--------------+------------+-----------------+-------------------------+ + + +PTM-POSE allows you to assess two potential impacts of splicing on PTMs: + +Differential inclusion + lost or gained from the isoform as a result of a splice event +Altered flanking sequences + the PTM site is present in both isoforms, but the adjacent residues around a PTM are changed in one isoform such that its linear motif that drives many protein interactions is unique + +Identifying differentially included PTMs +---------------------------------------- + +Once the data is in the correct format, simply run the `project_ptms_onto_splice_events()` function, indicating the column names corresponding each data element. By default, PTM-POSE assumes the provided coordinates are in hg38 coordinates, but you can use older coordinate systems with the `coordinate_type` parameter. If you have saved ptm_coordinates locally, you can set this parameter to None. + +.. code-block:: python + + from ptm-pose import project + + my_splice_data_annotated, spliced_ptms = project.project_ptms_onto_splice_events(my_splice_data, + ptm_coordinates, + chromosome_col = 'chromosome', + strand_col = 'strand', + region_start_col = 'region start', + region_end_col = 'region end', + event_id_col = 'event id', + gene_col = 'Gene name', + dPSI_col='dPSI', + coordinate_type = 'hg19') + +Altered Flanking Sequences +-------------------------- + +In addition to the previously mentioned columns, we will need to know the location of the flanking exonic regions next to the spliced region. Make sure your dataframe contains the following information prior to running flanking sequence analysis: + ++---------------------+-------------------------+------------+--------+--------------+------------+-------------------+-----------------+--------------------+------------------+-----------------+-------------------------+ +| event id | Gene name | chromosome | strand | region start | region end | first flank start | first flank end | second flank start | second flank end | dPSI | significance | +| (optional) | (recommended) | | | | | | | | | (recommended) | (recommended) | +|=====================|=========================|============|========|==============|============|===================|=================|====================|==================|=================|=========================| +| first event | CSTN1 | 1 | \-1 | 9797555 | 9797612 | 9687655 | 9688446 | 9811223 | 9811745 | 0.362 | 0.032 | ++---------------------+-------------------------+------------+--------+--------------+------------+-------------------+-----------------+--------------------+------------------+-----------------+-------------------------+ + +Then, as with differentially included PTMs, you only need to run `get_flanking_changes_from_splice_data()` function: + +.. code-block:: python + + from ptm-pose import project + + altered_flanks = project.get_flanking_changes_from_splice_data(my_splice_data, + ptm_coordinates, + chromosome_col = 'chromosome', + strand_col = 'strand', + region_start_col = 'region_start', + region_end_col = 'region_end', + first_flank_start_col = 'first_flank_start', + first_flank_end_col = 'first_flank_end', + second_flank_start_col = 'second_flank_start', + second_flank_end_col = 'second_flank_start', + event_id_col = 'event_id', + gene_col = 'Gene name', + dPSI_col='dPSI', + coordinate_type = 'hg19') + +Combining outputs +----------------- +In some cases you may wish to work with a combined file that indicates both differential inclusion and altered flanking sequence events. This can be done quickly by running: + +.. code-block:: python + + from ptm_pose import analyze + combined_output = analyze.combine_outputs(spliced_ptms, altered_flanks) + +Annotating PTMs with Functional Information +------------------------------------------- +Beyond projecting PTMs onto your data, we have also provided additional functions for appending information on the function, relationships, and interactions of each post-translational modification that have been recorded in various databases. These annotations include information from: + ++---------------------------------------------------------------------+------------------------+--------------------------------------------------------------------------------------------------------------+ +| Database | Annotation types | PTM-POSE function | ++=====================================================================+========================+==============================================================================================================+ +| `PhosphoSitePlus `_ |- Function |.. code-block:: python | +| |- Biological Process | | +| |- interactions | annotate.add_PSP_regulatory_site_data(spliced_ptms, file = "/path/to/file/Regulatory_sites.gz") | +| +------------------------+--------------------------------------------------------------------------------------------------------------+ +| |- Kinase substrates |.. code-block:: python | +| | | | +| | | annotate.add_PSP_kinase_substrate_data(spliced_ptms, file = "/path/to/file/Kinase_Substrate_Dataset.gz" | ++---------------------------------------------------------------------+------------------------+--------------------------------------------------------------------------------------------------------------+ +| `DEPOD `_ |- Phosphatase substrates|.. code-block:: python | +| | | | +| | | annotate.add_DEPOD_data(spliced_ptms, file = "/path/to/file/") | ++---------------------------------------------------------------------+------------------------+--------------------------------------------------------------------------------------------------------------+ +| `RegPhos `_ |- Kinase substrates |.. code-block:: python | +| | | | +| | | annotate.add_RegPhos_data(spliced_ptms, file = "/path/to/file/") | ++---------------------------------------------------------------------+------------------------+--------------------------------------------------------------------------------------------------------------+ +| `ELM `_ |- Interactions |.. code-block:: python | +| | | | +| | | annotate.add_PTMcode_interprotein(spliced_ptms, file = "/path/to/file/") | +| +------------------------+--------------------------------------------------------------------------------------------------------------+ +| |- Linear motifs |.. code-block:: python | +| | | | +| | | annotate.add_PTMcode_intraprotein(spliced_ptms, file = "/path/to/file/") | ++---------------------------------------------------------------------+------------------------+--------------------------------------------------------------------------------------------------------------+ +| `PTMcode `_ |- Interactions |.. code-block:: python | +| | | | +| | | annotate.add_PTMcode_interprotein(spliced_ptms, file = "/path/to/file/") | +| +------------------------+--------------------------------------------------------------------------------------------------------------+ +| |- Intraprotein contacts |.. code-block:: python | +| | | | +| | | annotate.add_PTMcode_intraprotein(spliced_ptms, file = "/path/to/file/") | ++---------------------------------------------------------------------+------------------------+--------------------------------------------------------------------------------------------------------------+ + + + + + +Rather than running each function individually, you can also use the master function `annotate_ptms()` to annotate with all desired information at once. + +We are continuing to work on adding functions to append more contextual information for individual PTMs. If you have suggestions for what information you would like to be added, please let us know! + +Downstream Analysis +------------------- + +PTM-POSE also provides functions in the `annotate` module for annotating the above outputs with functional information from various databases: PhosphoSitePlus, RegPhos, PTMcode, PTMInt, ELM, DEPOD. You can then identify PTMs with specific functions, interaction, etc. with the `analyze` module. See an example on a real dataset [here](Examples/ESRP1_knockdown). + + diff --git a/_sources/Overview.rst b/_sources/Overview.rst new file mode 100644 index 0000000..ce9f8a5 --- /dev/null +++ b/_sources/Overview.rst @@ -0,0 +1,8 @@ +Overview +============= + +PTM-POSE is an easily implementable tool to project PTM sites onto splice event data generated from RNA sequencing data and is compatible with any splice event quantification tool that outputs genomic coordinates of different splice events (MATS, SpliceSeq, etc.). PTM-POSE harnesses PTMs that have been mapped to their genomic location by a sister package, ExonPTMapper. It also contains functions for annotating these PTMs with information from various databases, like PhosphoSitePlus and ELM. + + +For more details about PTM projection and how it can be used to understand the impacts of splicing on cell signaling and other processes, see our pre-print: https://www.biorxiv.org/content/10.1101/2024.01.10.575062v2 + diff --git a/_sources/PTM_POSE.rst b/_sources/PTM_POSE.rst new file mode 100644 index 0000000..bf8427e --- /dev/null +++ b/_sources/PTM_POSE.rst @@ -0,0 +1,49 @@ + +================== +PTM-POSE Reference +================== + +############# +Configuration +############# + +.. automodule:: ptm_pose.pose_config + :members: download_ptm_coordinates + +############## +PTM Projection +############## + +.. automodule:: ptm_pose.project + :members: find_PTMs_in_region, project_ptms_onto_splice_events, project_ptms_onto_MATS, project_ptms_onto_SpliceSeq + +################## +Flanking Sequences +################## + +.. automodule:: ptm_pose.flanking_sequences + :members: + +############### +Annotating PTMs +############### + +.. automodule:: ptm_pose.annotate + :members: + +######## +Analysis +######## + +.. automodule:: ptm_pose.analyze + :members: + +######## +Plotting +######## + +.. automodule:: ptm_pose.analyze + :members: + + + diff --git a/_sources/faq.md b/_sources/faq.md new file mode 100644 index 0000000..846b2df --- /dev/null +++ b/_sources/faq.md @@ -0,0 +1,18 @@ +# Frequently Asked Questions +If you do not see your question here, feel free to ask your question with this [form]() + +## Data Preparation + +**Q: What type of data can be used with PTM-POSE? ** + +A: Any splicing quantification tools that return the chromosome, DNA strand, and start and stop regions of a given splice event can use PTM-POSE. We have tested this approach using MATS and SpliceSeq tools, but PTM-POSE does not require any special dataset. + +**Q: ** + +A: + + + + +## Interpreting Results + diff --git a/_sources/gallery_output/index.rst b/_sources/gallery_output/index.rst new file mode 100644 index 0000000..3bfbf4b --- /dev/null +++ b/_sources/gallery_output/index.rst @@ -0,0 +1,116 @@ +:orphan: + +Types of Analysis Performed with PTM-POSE +========================================= + +Below you will find different ways you might choose to analyze the PTMs identified by PTM-POSE: + + +.. raw:: html + +
+ +.. thumbnail-parent-div-open + +.. raw:: html + +
+ +.. only:: html + + .. image:: /gallery_output/images/thumb/sphx_glr_plot_protein_interactions_thumb.png + :alt: + + :ref:`sphx_glr_gallery_output_plot_protein_interactions.py` + +.. raw:: html + +
Identify protein interactions that may be impacted by splicing of PTMs
+
+ + +.. raw:: html + +
+ +.. only:: html + + .. image:: /gallery_output/images/thumb/sphx_glr_plot_num_annotations_thumb.png + :alt: + + :ref:`sphx_glr_gallery_output_plot_num_annotations.py` + +.. raw:: html + +
Inspecting number of PTMs with annotation information available
+
+ + +.. raw:: html + +
+ +.. only:: html + + .. image:: /gallery_output/images/thumb/sphx_glr_plot_kstar_enrichment_thumb.png + :alt: + + :ref:`sphx_glr_gallery_output_plot_kstar_enrichment.py` + +.. raw:: html + +
Identify kinases with enriched substrates in differentially included exons, using an adapted version of KSTAR
+
+ + +.. raw:: html + +
+ +.. only:: html + + .. image:: /gallery_output/images/thumb/sphx_glr_plot_location_altered_flanks_thumb.png + :alt: + + :ref:`sphx_glr_gallery_output_plot_location_altered_flanks.py` + +.. raw:: html + +
Probing where and how PTM flanking sequences are altered
+
+ + +.. thumbnail-parent-div-close + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /gallery_output/plot_protein_interactions + /gallery_output/plot_num_annotations + /gallery_output/plot_kstar_enrichment + /gallery_output/plot_location_altered_flanks + + +.. only:: html + + .. container:: sphx-glr-footer sphx-glr-footer-gallery + + .. container:: sphx-glr-download sphx-glr-download-python + + :download:`Download all examples in Python source code: gallery_output_python.zip ` + + .. container:: sphx-glr-download sphx-glr-download-jupyter + + :download:`Download all examples in Jupyter notebooks: gallery_output_jupyter.zip ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/_sources/gallery_output/plot_kstar_enrichment.rst b/_sources/gallery_output/plot_kstar_enrichment.rst new file mode 100644 index 0000000..4292926 --- /dev/null +++ b/_sources/gallery_output/plot_kstar_enrichment.rst @@ -0,0 +1,113 @@ + +.. DO NOT EDIT. +.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. +.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: +.. "gallery_output/plot_kstar_enrichment.py" +.. LINE NUMBERS ARE GIVEN BELOW. + +.. only:: html + + .. note:: + :class: sphx-glr-download-link-note + + :ref:`Go to the end ` + to download the full example code. + +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_gallery_output_plot_kstar_enrichment.py: + + +Identify kinases with enriched substrates in differentially included exons, using an adapted version of KSTAR +============================================================================================================= + +Given that phosphorlaiton are one of the most commonly impacted modifications, there is potential for kinases targeting these sites to be indirectly impacted by alternative splicing through changes in the availability of their substrates. While we provide functions for performing enrichment of known kinase substrates from databases like PhosphoSitePlus, RegPhos, and PTMsigDB, these resources are limited by the overall number of validated substrates (<5%). For this purpose, we have adapted a previously developed algorithm called KSTAR (Kinase Substrate to Activity Relationships) for use with spliced PTM data, which harnesses kinase-substrate predictions to expand the overall number of phosphorylation sites that can be used as evidence. This particularly important as you may find many of the spliced PTMs in your dataset are less well studied and may not have any annotated kinases. + +In order to perform KSTAR analysis, you will first need to download KSTAR networks from the following [figshare](https://figshare.com/articles/dataset/NETWORKS/14944305?file=28768155). + +Once you have downloaded the networks, all you need is your PTM data. You will need to run analysis for tyrosine kinases (Y) and serine/threonine kinases (ST) + +.. GENERATED FROM PYTHON SOURCE LINES 11-24 + +.. code-block:: Python + + + from ptm_pose import analyze + import pandas as pd + + # Load spliced ptm and altered flank data + spliced_ptms = pd.read_csv('spliced_ptms.csv') + + #perform kstar enrichment for tyrosine phosphorylation, denoted by "Y" + network_dir = './NetworKIN/' + kstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = network_dir, phospho_type = 'Y') + kstar_enrichment.run_kstar_enrichment() + kstar_enrichment.return_enriched_kinases() + + + + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + + array(['CSF1R', 'ERBB2', 'FYN', 'LCK', 'HCK'], dtype=object) + + + +.. GENERATED FROM PYTHON SOURCE LINES 25-26 + +You can also run the same analysis for serine/threonine kinases: + +.. GENERATED FROM PYTHON SOURCE LINES 26-28 + +.. code-block:: Python + + kstar_enrichment = analyze.kstar_enrichment(spliced_ptms, network_dir = network_dir, phospho_type = 'ST') + kstar_enrichment.run_kstar_enrichment() + kstar_enrichment.return_enriched_kinases() + + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + + array(['PRKG2', 'MAPK14', 'PRKCH', 'PRKCG', 'PRKD1', 'PRKCE', 'ROCK1', + 'TTK'], dtype=object) + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** (5 minutes 2.439 seconds) + + +.. _sphx_glr_download_gallery_output_plot_kstar_enrichment.py: + +.. only:: html + + .. container:: sphx-glr-footer sphx-glr-footer-example + + .. container:: sphx-glr-download sphx-glr-download-jupyter + + :download:`Download Jupyter notebook: plot_kstar_enrichment.ipynb ` + + .. container:: sphx-glr-download sphx-glr-download-python + + :download:`Download Python source code: plot_kstar_enrichment.py ` + + .. container:: sphx-glr-download sphx-glr-download-zip + + :download:`Download zipped: plot_kstar_enrichment.zip ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/_sources/gallery_output/plot_location_altered_flanks.rst b/_sources/gallery_output/plot_location_altered_flanks.rst new file mode 100644 index 0000000..184469d --- /dev/null +++ b/_sources/gallery_output/plot_location_altered_flanks.rst @@ -0,0 +1,270 @@ + +.. DO NOT EDIT. +.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. +.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: +.. "gallery_output/plot_location_altered_flanks.py" +.. LINE NUMBERS ARE GIVEN BELOW. + +.. only:: html + + .. note:: + :class: sphx-glr-download-link-note + + :ref:`Go to the end ` + to download the full example code. + +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_gallery_output_plot_location_altered_flanks.py: + + +Probing where and how PTM flanking sequences are altered +=============================================================== + +In order to understand how PTMs may be altered due to splicing events, it is useful to identify the flanking sequences of the PTMs and how they may be altered due to nearby splice events (as identified by flanking sequence module). Once we have, this information we can analyze and visualize where the alterations in the flanking sequences occur. First, we need to compare the flanking sequences of PTMs based on whether an exonic region is included or excluded using the `compare_flanking_sequences` function in PTM-POSE. + +.. GENERATED FROM PYTHON SOURCE LINES 7-18 + +.. code-block:: Python + + + from ptm_pose import analyze + import pandas as pd + + # Load altered flank data + altered_flanks = pd.read_csv('altered_flanks.csv') + + altered_flanks = analyze.compare_flanking_sequences(altered_flanks) + print('Comparison of flanking sequences:') + altered_flanks[['UniProtKB Accession', 'Residue', 'PTM Position in Canonical Isoform', 'Modification Class', 'Inclusion Flanking Sequence', 'Exclusion Flanking Sequence', 'Sequence Identity', 'Altered Positions', 'Residue Change', 'Altered Flank Side']].head() + + + + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Comparison of flanking sequences: + + +.. raw:: html + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassInclusion Flanking SequenceExclusion Flanking SequenceSequence IdentityAltered PositionsResidue ChangeAltered Flank Side
0P01116T148PhosphorylationETSAKtRQESGETSAKtRQGC*NaNNaNNaNNaN
1P01116K147AcetylationIETSAkTRQESIETSAkTRQGC0.818182[4.0, 5.0][E->G, S->C]C-term only
2P01116K147UbiquitinationIETSAkTRQESIETSAkTRQGC0.818182[4.0, 5.0][E->G, S->C]C-term only
3Q9UPQ0S746PhosphorylationLPNLNsQGVAWLPNLNsQGGFS0.727273[3.0, 4.0, 5.0][V->G, A->F, W->S]C-term only
4Q9UPQ0S750PhosphorylationPSQVDsPSSEKILKVDsPSSEK0.727273[-5.0, -4.0, -3.0][P->I, S->L, Q->K]N-term only
+
+
+
+
+ +.. GENERATED FROM PYTHON SOURCE LINES 19-20 + +Note, we only calculate these metrics for cases where altered flanking sequences do not cause a stop codon to be introduced, as this is harder to interpret (such as for the first PTM in the list). The above table will indicate the positions in the flanking sequence that are altered, how similar the altered flanking sequence is to the original flanking sequence, and the specific residue change that takes place. We can also plot some of this information to get a better sense of the distribution of altered flanking sequences: + +.. GENERATED FROM PYTHON SOURCE LINES 20-25 + +.. code-block:: Python + + + from ptm_pose import plots as pose_plots + + pose_plots.location_of_altered_flanking_residues(altered_flanks) + + + + +.. image-sg:: /gallery_output/images/sphx_glr_plot_location_altered_flanks_001.png + :alt: plot location altered flanks + :srcset: /gallery_output/images/sphx_glr_plot_location_altered_flanks_001.png + :class: sphx-glr-single-img + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + /home/srcrowl/miniconda3/envs/documentation/lib/python3.10/site-packages/ptm_pose/plots.py:494: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator. + ax[0].set_xticklabels(['N-term\nonly', 'C-term\nonly']) + + + + +.. GENERATED FROM PYTHON SOURCE LINES 26-27 + +We can even create the same plot for specific modification types or residues, as well as label the specific residue changes that occur: + +.. GENERATED FROM PYTHON SOURCE LINES 27-30 + +.. code-block:: Python + + + pose_plots.location_of_altered_flanking_residues(altered_flanks, modification_class='Acetylation') + + + + +.. image-sg:: /gallery_output/images/sphx_glr_plot_location_altered_flanks_002.png + :alt: plot location altered flanks + :srcset: /gallery_output/images/sphx_glr_plot_location_altered_flanks_002.png + :class: sphx-glr-single-img + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + /home/srcrowl/miniconda3/envs/documentation/lib/python3.10/site-packages/ptm_pose/plots.py:494: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator. + ax[0].set_xticklabels(['N-term\nonly', 'C-term\nonly']) + + + + +.. GENERATED FROM PYTHON SOURCE LINES 31-32 + +If we want to dig deeper, we can look at the specific changes that occurring, although this is only recommended with a selected subset of PTMs, such as those that may have a functional impact: + +.. GENERATED FROM PYTHON SOURCE LINES 32-33 + +.. code-block:: Python + + + pose_plots.alterations_matrix(altered_flanks.head(10)) + + +.. image-sg:: /gallery_output/images/sphx_glr_plot_location_altered_flanks_003.png + :alt: plot location altered flanks + :srcset: /gallery_output/images/sphx_glr_plot_location_altered_flanks_003.png + :class: sphx-glr-single-img + + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** (0 minutes 0.309 seconds) + + +.. _sphx_glr_download_gallery_output_plot_location_altered_flanks.py: + +.. only:: html + + .. container:: sphx-glr-footer sphx-glr-footer-example + + .. container:: sphx-glr-download sphx-glr-download-jupyter + + :download:`Download Jupyter notebook: plot_location_altered_flanks.ipynb ` + + .. container:: sphx-glr-download sphx-glr-download-python + + :download:`Download Python source code: plot_location_altered_flanks.py ` + + .. container:: sphx-glr-download sphx-glr-download-zip + + :download:`Download zipped: plot_location_altered_flanks.zip ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/_sources/gallery_output/plot_num_annotations.rst b/_sources/gallery_output/plot_num_annotations.rst new file mode 100644 index 0000000..9ae9b11 --- /dev/null +++ b/_sources/gallery_output/plot_num_annotations.rst @@ -0,0 +1,304 @@ + +.. DO NOT EDIT. +.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. +.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: +.. "gallery_output/plot_num_annotations.py" +.. LINE NUMBERS ARE GIVEN BELOW. + +.. only:: html + + .. note:: + :class: sphx-glr-download-link-note + + :ref:`Go to the end ` + to download the full example code. + +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_gallery_output_plot_num_annotations.py: + + +Inspecting number of PTMs with annotation information available +=============================================================== + +As described in Running PTM-POSE section, PTM-POSE provides various options for annotating functional information for PTMs, coming from various databases. However, PTM functional information is inherently sparse, and so most annotations will only provide information on a handful of PTMs. For this reason, it can be useful to probe how many PTMsTo better understand the types of annotations that are available, as well as the number of PTMs that have an annotation of that type. This can be done using the `analyze` function in PTM-POSE. + +Note: This examples assumes that you have already run the PTM-POSE pipeline and have at annotated PTMs with at least one layer of information. + +.. GENERATED FROM PYTHON SOURCE LINES 9-24 + +.. code-block:: Python + + + + from ptm_pose import analyze + from ptm_pose import plots as pose_plots + import pandas as pd + + # Load spliced ptm and altered flank data + spliced_ptms = pd.read_csv('spliced_ptms.csv') + altered_flanks = pd.read_csv('altered_flanks.csv') + + pose_plots.show_available_annotations(spliced_ptms) + + + + + + + +.. image-sg:: /gallery_output/images/sphx_glr_plot_num_annotations_001.png + :alt: plot num annotations + :srcset: /gallery_output/images/sphx_glr_plot_num_annotations_001.png + :class: sphx-glr-single-img + + + + + +.. GENERATED FROM PYTHON SOURCE LINES 25-32 + +As you can, see there are only a few PTMs from each annotation that have +available information, with the most being 9 PTMs out of the 184 differentially +included sites having been associated with a biological process. While this this +should be taken into consideration when analyzing these annotations, we can glean +some useful information and identify potentially interesting proteins/sites to dig +deeper into. Let's look at the PTMs that have been associated with a biological +process: + +.. GENERATED FROM PYTHON SOURCE LINES 32-36 + +.. code-block:: Python + + ptms_with_annotation, annotation_counts = analyze.get_ptm_annotations(spliced_ptms, database = "PhosphoSitePlus", annotation_type = 'Process') + print('Specific PTMs with annotation:') + ptms_with_annotation + + + + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Specific PTMs with annotation: + + +.. raw:: html + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
GeneUniProtKB AccessionResiduePTM Position in Canonical IsoformModification ClassPSP:ON_PROCESSdPSISignificance
0BCAR1P56945Y267.0Phosphorylationcell growth, induced-0.070.0458775672499
1BCAR1P56945Y287.0Phosphorylationcell growth, induced-0.070.0458775672499
2BIN1O00499T348.0Phosphorylationsignaling pathway regulation-0.1120.0233903490744
3CEACAM1P13688S461.0Phosphorylationapoptosis, altered0.5251.73943268451e-09
4CTTNQ14247K272.0Acetylationcell motility, inhibited0.090.0355211287599
5CTTNQ14247S298.0Phosphorylationcell motility, altered; cytoskeletal reorganiz...0.090.0355211287599
6SPHK2Q9NRA0S387.0Phosphorylationcell motility, altered0.2530.0129400018182
7SPHK2Q9NRA0T614.0Phosphorylationcell motility, altered0.2530.0129400018182
8TSC2P49815S981.0Phosphorylationcarcinogenesis, inhibited; cell growth, inhibi...-0.2194.18472157275e-05
9YAP1P46937K342.0Ubiquitinationcarcinogenesis, altered-0.161;-0.1880.000211254197372;4.17884655686e-07
+
+
+
+
+ +.. GENERATED FROM PYTHON SOURCE LINES 37-38 + +We can also look at the number of PTMs associated with each annotation: + +.. GENERATED FROM PYTHON SOURCE LINES 38-42 + +.. code-block:: Python + + print('Number of PTMs associated with each annotation:') + annotation_counts + + + + + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Number of PTMs associated with each annotation: + + PSP:ON_PROCESS + cell motility, altered 3 + signaling pathway regulation 2 + cell growth, induced 2 + apoptosis, altered 1 + cell motility, inhibited 1 + cytoskeletal reorganization 1 + cell adhesion, inhibited 1 + carcinogenesis, inhibited 1 + cell growth, inhibited 1 + autophagy, inhibited 1 + carcinogenesis, altered 1 + Name: count, dtype: int64 + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** (0 minutes 0.159 seconds) + + +.. _sphx_glr_download_gallery_output_plot_num_annotations.py: + +.. only:: html + + .. container:: sphx-glr-footer sphx-glr-footer-example + + .. container:: sphx-glr-download sphx-glr-download-jupyter + + :download:`Download Jupyter notebook: plot_num_annotations.ipynb ` + + .. container:: sphx-glr-download sphx-glr-download-python + + :download:`Download Python source code: plot_num_annotations.py ` + + .. container:: sphx-glr-download sphx-glr-download-zip + + :download:`Download zipped: plot_num_annotations.zip ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/_sources/gallery_output/plot_protein_interactions.rst b/_sources/gallery_output/plot_protein_interactions.rst new file mode 100644 index 0000000..ccf03bf --- /dev/null +++ b/_sources/gallery_output/plot_protein_interactions.rst @@ -0,0 +1,335 @@ + +.. DO NOT EDIT. +.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. +.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: +.. "gallery_output/plot_protein_interactions.py" +.. LINE NUMBERS ARE GIVEN BELOW. + +.. only:: html + + .. note:: + :class: sphx-glr-download-link-note + + :ref:`Go to the end ` + to download the full example code. + +.. rst-class:: sphx-glr-example-title + +.. _sphx_glr_gallery_output_plot_protein_interactions.py: + + +Identify protein interactions that may be impacted by splicing of PTMs +============================================================================================================= + +Post translational modifications (PTMs) often facilitate protein interactions, either through direct binding of domains specific to that particular modification (e.g. SH2 domains binding to phosphorylated tyrosines) or through allosteric effects that change the conformation of the protein to either enhance or disrupt interactions. We provide functions to annotate spliced PTMs with relevant protein interactions and to identify key PTMs that may disrupt protein interaction networks. + +Currently, we provide functions to process and analyze protein interaction data from PhosphoSitePlus, PTMInt, and PTMcode. We can also include enzyme-specific interactions (such as kinase substrate interactions through PhosphoSitePlus and RegPhos). First, we need to annotate the spliced PTMs with protein interactions (see rest of documentation for how to do this). Then, we can process the interactions across the different databases using the protein_interactions class to identify key PTMs that may disrupt protein interaction networks. + +.. GENERATED FROM PYTHON SOURCE LINES 9-21 + +.. code-block:: Python + + + from ptm_pose import analyze + import pandas as pd + + # Load spliced ptm and altered flank data + spliced_ptms = pd.read_csv('spliced_ptms.csv') + + interactions = analyze.protein_interactions(spliced_ptms) + interactions.get_interaction_network() + + interactions.network_data.head() + + + + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + PhosphoSitePlus regulatory site data found and added + Combined kinase-substrate data found and added + PTMcode data found and added + PTMInt data found and added + ELM data found and added + + +.. raw:: html + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Modified GeneInteracting GeneResidueTypeSourcedPSIRegulation Change
0ABI1ABL1S361INDUCESPTMcode0.213+
1ABI1BAIAP2S361INDUCESPTMcode0.213+
2ABI1CYFIP2S361INDUCESPTMcode0.213+
3ABI1EPS8S361INDUCESPTMcode0.213+
4ABI1EPS8L1S361INDUCESPTMcode0.213+
+
+
+
+
+ +.. GENERATED FROM PYTHON SOURCE LINES 22-23 + +We can also calculate interaction stats to identify proteins that are most impacted or relevant to spliced PTMs and the protein interaction network + +.. GENERATED FROM PYTHON SOURCE LINES 23-27 + +.. code-block:: Python + + interactions.get_interaction_stats() + + interactions.network_stats.head() + + + + + + +.. raw:: html + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
DegreeDegree CentralityClosenessBetweenness
ABI1180.1111110.2144930.237466
ABL130.0185190.1767860.105207
BAIAP220.0123460.1661630.000000
CYFIP210.0061730.1640510.000000
EPS810.0061730.1640510.000000
+
+
+
+
+ +.. GENERATED FROM PYTHON SOURCE LINES 28-29 + +If we want to focus on a specific protein, we can summarize information about a single protein in the network. In this case, let's look at TSC2, which loses pS981 upon ESRP1 knockdown + +.. GENERATED FROM PYTHON SOURCE LINES 29-32 + +.. code-block:: Python + + + interactions.summarize_protein_network(protein = 'TSC2') + + + + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Decreased interaction likelihoods: AKT1, SGK1, YWHAE, YWHAZ + Number of interactions: 4 (Rank: 14) + Centrality measures - Degree = 0.024691358024691357 (Rank: 14) + Betweenness = 0.0004600874166091557 (Rank: 28) + Closeness = 0.024691358024691357 (Rank: 126) + + + + +.. GENERATED FROM PYTHON SOURCE LINES 33-34 + +We can also visualize the network... + +.. GENERATED FROM PYTHON SOURCE LINES 34-37 + +.. code-block:: Python + + + interactions.plot_interaction_network(interacting_node_size = 10) + + + + +.. image-sg:: /gallery_output/images/sphx_glr_plot_protein_interactions_001.png + :alt: plot protein interactions + :srcset: /gallery_output/images/sphx_glr_plot_protein_interactions_001.png + :class: sphx-glr-single-img + + + + + +.. GENERATED FROM PYTHON SOURCE LINES 38-39 + +...and the centrality of proteins in the network + +.. GENERATED FROM PYTHON SOURCE LINES 39-40 + +.. code-block:: Python + + + interactions.plot_network_centrality(centrality_measure='Degree') + + +.. image-sg:: /gallery_output/images/sphx_glr_plot_protein_interactions_002.png + :alt: plot protein interactions + :srcset: /gallery_output/images/sphx_glr_plot_protein_interactions_002.png + :class: sphx-glr-single-img + + + + + + +.. rst-class:: sphx-glr-timing + + **Total running time of the script:** (0 minutes 1.096 seconds) + + +.. _sphx_glr_download_gallery_output_plot_protein_interactions.py: + +.. only:: html + + .. container:: sphx-glr-footer sphx-glr-footer-example + + .. container:: sphx-glr-download sphx-glr-download-jupyter + + :download:`Download Jupyter notebook: plot_protein_interactions.ipynb ` + + .. container:: sphx-glr-download sphx-glr-download-python + + :download:`Download Python source code: plot_protein_interactions.py ` + + .. container:: sphx-glr-download sphx-glr-download-zip + + :download:`Download zipped: plot_protein_interactions.zip ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/_sources/gallery_output/sg_execution_times.rst b/_sources/gallery_output/sg_execution_times.rst new file mode 100644 index 0000000..8f4adfa --- /dev/null +++ b/_sources/gallery_output/sg_execution_times.rst @@ -0,0 +1,46 @@ + +:orphan: + +.. _sphx_glr_gallery_output_sg_execution_times: + + +Computation times +================= +**00:00.159** total execution time for 4 files **from gallery_output**: + +.. container:: + + .. raw:: html + + + + + + + + .. list-table:: + :header-rows: 1 + :class: table table-striped sg-datatable + + * - Example + - Time + - Mem (MB) + * - :ref:`sphx_glr_gallery_output_plot_num_annotations.py` (``plot_num_annotations.py``) + - 00:00.159 + - 0.0 + * - :ref:`sphx_glr_gallery_output_plot_kstar_enrichment.py` (``plot_kstar_enrichment.py``) + - 00:00.000 + - 0.0 + * - :ref:`sphx_glr_gallery_output_plot_location_altered_flanks.py` (``plot_location_altered_flanks.py``) + - 00:00.000 + - 0.0 + * - :ref:`sphx_glr_gallery_output_plot_protein_interactions.py` (``plot_protein_interactions.py``) + - 00:00.000 + - 0.0 diff --git a/_sources/index.rst b/_sources/index.rst new file mode 100644 index 0000000..f0aff74 --- /dev/null +++ b/_sources/index.rst @@ -0,0 +1,39 @@ +.. PTM-POSE documentation master file, adapted from KSTAR documentation files + +PTM-POSE +========================================= + + +.. toctree:: + :maxdepth: 4 + :caption: Instructions: + + Overview + Dependencies + quickstart + PTM_POSE + General_Instructions + +.. toctree:: + :maxdepth: 2 + :caption: Examples + + gallery_output/index + Examples/Examples + +.. toctree:: + :maxdepth: 2 + :caption: Troubleshooting + + faq + + + + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` + diff --git a/_sources/quickstart.rst b/_sources/quickstart.rst new file mode 100644 index 0000000..6c68a0c --- /dev/null +++ b/_sources/quickstart.rst @@ -0,0 +1,42 @@ +=============== +Installation +=============== + +Here, we have provided a quick start guide that will allow you to get up and running quickly and able to project PTMs on any splicing dataset you might have + +Installation +------------ + +KSTAR can be installed via `pip`, tarball, and directly from the Git repository. We recommend using pip to install the most well-tested version of the package, but check our development branch on the GitHub repository to see some of the additional analyses/data we are adding to the package! + +==================================== ================================================================================ +Install Method Code +==================================== ================================================================================ +pip .. code-block:: bash + + pip install ptm-pose + +conda .. code-block:: bash + + conda install -c naeglelab ptm-pose + conda install -c bioconda gseapy + +Github Release .. code-block:: bash + + wget https://github.com/NaegleLab/PTM-POSE/archive/refs/tags/.tar.gz + tar -xvf PTM-POSE-.tar.gz + cd PTM-POSE- + python setup.py install + +Git Clone (for development version) .. code-block:: bash + + git clone https://github.com/NaegleLab/PTM-POSE + cd PTM-POSE + git checkout dev + python setup.py install + +==================================== ================================================================================ + + + + diff --git a/_sources/sg_execution_times.rst b/_sources/sg_execution_times.rst new file mode 100644 index 0000000..bf2115f --- /dev/null +++ b/_sources/sg_execution_times.rst @@ -0,0 +1,46 @@ + +:orphan: + +.. _sphx_glr_sg_execution_times: + + +Computation times +================= +**00:00.159** total execution time for 4 files **from all galleries**: + +.. container:: + + .. raw:: html + + + + + + + + .. list-table:: + :header-rows: 1 + :class: table table-striped sg-datatable + + * - Example + - Time + - Mem (MB) + * - :ref:`sphx_glr_gallery_output_plot_num_annotations.py` (``gallery/plot_num_annotations.py``) + - 00:00.159 + - 0.0 + * - :ref:`sphx_glr_gallery_output_plot_kstar_enrichment.py` (``gallery/plot_kstar_enrichment.py``) + - 00:00.000 + - 0.0 + * - :ref:`sphx_glr_gallery_output_plot_location_altered_flanks.py` (``gallery/plot_location_altered_flanks.py``) + - 00:00.000 + - 0.0 + * - :ref:`sphx_glr_gallery_output_plot_protein_interactions.py` (``gallery/plot_protein_interactions.py``) + - 00:00.000 + - 0.0 diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 0000000..8549469 --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,134 @@ +/* + * _sphinx_javascript_frameworks_compat.js + * ~~~~~~~~~~ + * + * Compatability shim for jQuery and underscores.js. + * + * WILL BE REMOVED IN Sphinx 6.0 + * xref RemovedInSphinx60Warning + * + */ + +/** + * select a different prefix for underscore + */ +$u = _.noConflict(); + + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 0000000..9e364ed --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,930 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 270px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} +nav.contents, +aside.topic, + +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ +nav.contents, +aside.topic, + +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, + +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, + +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +/* Docutils 0.17 and older (footnotes & citations) */ +dl.footnote > dt, +dl.citation > dt { + float: left; + margin-right: 0.5em; +} + +dl.footnote > dd, +dl.citation > dd { + margin-bottom: 0em; +} + +dl.footnote > dd:after, +dl.citation > dd:after { + content: ""; + clear: both; +} + +/* Docutils 0.18+ (footnotes & citations) */ +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +/* Footnotes & citations ends */ + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dt:after { + content: ":"; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/binder_badge_logo.svg b/_static/binder_badge_logo.svg new file mode 100644 index 0000000..327f6b6 --- /dev/null +++ b/_static/binder_badge_logo.svg @@ -0,0 +1 @@ + launchlaunchbinderbinder \ No newline at end of file diff --git a/_static/broken_example.png b/_static/broken_example.png new file mode 100644 index 0000000..4fea24e Binary files /dev/null and b/_static/broken_example.png differ diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 0000000..c3db08d --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,264 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + parent.insertBefore( + span, + parent.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.highlightSearchWords(); + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * highlight the search words provided in the url in the text + */ + highlightSearchWords: () => { + const highlight = + new URLSearchParams(window.location.search).get("highlight") || ""; + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + const url = new URL(window.location); + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + const blacklistedElements = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", + ]); + document.addEventListener("keydown", (event) => { + if (blacklistedElements.has(document.activeElement.tagName)) return; // bail for input elements + if (event.altKey || event.ctrlKey || event.metaKey) return; // bail with special keys + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + case "Escape": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.hideSearchWords(); + event.preventDefault(); + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 0000000..10e567e --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,14 @@ +var DOCUMENTATION_OPTIONS = { + URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), + VERSION: '1', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: false, +}; \ No newline at end of file diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/_static/file.png differ diff --git a/_static/images/logo_binder.svg b/_static/images/logo_binder.svg new file mode 100644 index 0000000..45fecf7 --- /dev/null +++ b/_static/images/logo_binder.svg @@ -0,0 +1,19 @@ + + + + +logo + + + + + + + + diff --git a/_static/images/logo_colab.png b/_static/images/logo_colab.png new file mode 100644 index 0000000..b7560ec Binary files /dev/null and b/_static/images/logo_colab.png differ diff --git a/_static/images/logo_deepnote.svg b/_static/images/logo_deepnote.svg new file mode 100644 index 0000000..fa77ebf --- /dev/null +++ b/_static/images/logo_deepnote.svg @@ -0,0 +1 @@ + diff --git a/_static/images/logo_jupyterhub.svg b/_static/images/logo_jupyterhub.svg new file mode 100644 index 0000000..60cfe9f --- /dev/null +++ b/_static/images/logo_jupyterhub.svg @@ -0,0 +1 @@ +logo_jupyterhubHub diff --git a/_static/jquery-3.6.0.js b/_static/jquery-3.6.0.js new file mode 100644 index 0000000..fc6c299 --- /dev/null +++ b/_static/jquery-3.6.0.js @@ -0,0 +1,10881 @@ +/*! + * jQuery JavaScript Library v3.6.0 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright OpenJS Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2021-03-02T17:08Z + */ +( function( global, factory ) { + + "use strict"; + + if ( typeof module === "object" && typeof module.exports === "object" ) { + + // For CommonJS and CommonJS-like environments where a proper `window` + // is present, execute the factory and get jQuery. + // For environments that do not have a `window` with a `document` + // (such as Node.js), expose a factory as module.exports. + // This accentuates the need for the creation of a real `window`. + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info. + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 +// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode +// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common +// enough that all such attempts are guarded in a try block. +"use strict"; + +var arr = []; + +var getProto = Object.getPrototypeOf; + +var slice = arr.slice; + +var flat = arr.flat ? function( array ) { + return arr.flat.call( array ); +} : function( array ) { + return arr.concat.apply( [], array ); +}; + + +var push = arr.push; + +var indexOf = arr.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var fnToString = hasOwn.toString; + +var ObjectFunctionString = fnToString.call( Object ); + +var support = {}; + +var isFunction = function isFunction( obj ) { + + // Support: Chrome <=57, Firefox <=52 + // In some browsers, typeof returns "function" for HTML elements + // (i.e., `typeof document.createElement( "object" ) === "function"`). + // We don't want to classify *any* DOM node as a function. + // Support: QtWeb <=3.8.5, WebKit <=534.34, wkhtmltopdf tool <=0.12.5 + // Plus for old WebKit, typeof returns "function" for HTML collections + // (e.g., `typeof document.getElementsByTagName("div") === "function"`). (gh-4756) + return typeof obj === "function" && typeof obj.nodeType !== "number" && + typeof obj.item !== "function"; + }; + + +var isWindow = function isWindow( obj ) { + return obj != null && obj === obj.window; + }; + + +var document = window.document; + + + + var preservedScriptAttributes = { + type: true, + src: true, + nonce: true, + noModule: true + }; + + function DOMEval( code, node, doc ) { + doc = doc || document; + + var i, val, + script = doc.createElement( "script" ); + + script.text = code; + if ( node ) { + for ( i in preservedScriptAttributes ) { + + // Support: Firefox 64+, Edge 18+ + // Some browsers don't support the "nonce" property on scripts. + // On the other hand, just using `getAttribute` is not enough as + // the `nonce` attribute is reset to an empty string whenever it + // becomes browsing-context connected. + // See https://github.com/whatwg/html/issues/2369 + // See https://html.spec.whatwg.org/#nonce-attributes + // The `node.getAttribute` check was added for the sake of + // `jQuery.globalEval` so that it can fake a nonce-containing node + // via an object. + val = node[ i ] || node.getAttribute && node.getAttribute( i ); + if ( val ) { + script.setAttribute( i, val ); + } + } + } + doc.head.appendChild( script ).parentNode.removeChild( script ); + } + + +function toType( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; +} +/* global Symbol */ +// Defining this global in .eslintrc.json would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.6.0", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + + // Return all the elements in a clean array + if ( num == null ) { + return slice.call( this ); + } + + // Return just the one element from the set + return num < 0 ? this[ num + this.length ] : this[ num ]; + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + even: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return ( i + 1 ) % 2; + } ) ); + }, + + odd: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return i % 2; + } ) ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + copy = options[ name ]; + + // Prevent Object.prototype pollution + // Prevent never-ending loop + if ( name === "__proto__" || target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = Array.isArray( copy ) ) ) ) { + src = target[ name ]; + + // Ensure proper type for the source value + if ( copyIsArray && !Array.isArray( src ) ) { + clone = []; + } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { + clone = {}; + } else { + clone = src; + } + copyIsArray = false; + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + // Evaluates a script in a provided context; falls back to the global one + // if not specified. + globalEval: function( code, options, doc ) { + DOMEval( code, { nonce: options && options.nonce }, doc ); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return flat( ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), + function( _i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); + } ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = toType( obj ); + + if ( isFunction( obj ) || isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.6 + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://js.foundation/ + * + * Date: 2021-02-16 + */ +( function( window ) { +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + nonnativeSelectorCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ( {} ).hasOwnProperty, + arr = [], + pop = arr.pop, + pushNative = arr.push, + push = arr.push, + slice = arr.slice, + + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[ i ] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + + "ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram + identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + + "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + + // "Attribute values must be CSS identifiers [capture 5] + // or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + + whitespace + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + + "*" ), + rdescend = new RegExp( whitespace + "|>" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + + whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + + whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rhtml = /HTML$/i, + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), + funescape = function( escape, nonHex ) { + var high = "0x" + escape.slice( 1 ) - 0x10000; + + return nonHex ? + + // Strip the backslash prefix from a non-hex escape sequence + nonHex : + + // Replace a hexadecimal escape sequence with the encoded Unicode code point + // Support: IE <=11+ + // For values outside the Basic Multilingual Plane (BMP), manually construct a + // surrogate pair + high < 0 ? + String.fromCharCode( high + 0x10000 ) : + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + inDisabledFieldset = addCombinator( + function( elem ) { + return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + ( arr = slice.call( preferredDoc.childNodes ) ), + preferredDoc.childNodes + ); + + // Support: Android<4.0 + // Detect silently failing push.apply + // eslint-disable-next-line no-unused-expressions + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + pushNative.apply( target, slice.call( els ) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + + // Can't trust NodeList.length + while ( ( target[ j++ ] = els[ i++ ] ) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + setDocument( context ); + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { + + // ID selector + if ( ( m = match[ 1 ] ) ) { + + // Document context + if ( nodeType === 9 ) { + if ( ( elem = context.getElementById( m ) ) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && ( elem = newContext.getElementById( m ) ) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[ 2 ] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !nonnativeSelectorCache[ selector + " " ] && + ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && + + // Support: IE 8 only + // Exclude object elements + ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { + + newSelector = selector; + newContext = context; + + // qSA considers elements outside a scoping root when evaluating child or + // descendant combinators, which is not what we want. + // In such cases, we work around the behavior by prefixing every selector in the + // list with an ID selector referencing the scope context. + // The technique has to be used as well when a leading combinator is used + // as such selectors are not recognized by querySelectorAll. + // Thanks to Andrew Dupont for this technique. + if ( nodeType === 1 && + ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + + // We can use :scope instead of the ID hack if the browser + // supports it & if we're not changing the context. + if ( newContext !== context || !support.scope ) { + + // Capture the context ID, setting it first if necessary + if ( ( nid = context.getAttribute( "id" ) ) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", ( nid = expando ) ); + } + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + + toSelector( groups[ i ] ); + } + newSelector = groups.join( "," ); + } + + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + nonnativeSelectorCache( selector, true ); + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return ( cache[ key + " " ] = value ); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement( "fieldset" ); + + try { + return !!fn( el ); + } catch ( e ) { + return false; + } finally { + + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split( "|" ), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[ i ] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( ( cur = cur.nextSibling ) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return ( name === "input" || name === "button" ) && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + + // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Only certain elements can match :enabled or :disabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled + if ( "form" in elem ) { + + // Check for inherited disabledness on relevant non-disabled elements: + // * listed form-associated elements in a disabled fieldset + // https://html.spec.whatwg.org/multipage/forms.html#category-listed + // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled + // * option elements in a disabled optgroup + // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled + // All such elements have a "form" property. + if ( elem.parentNode && elem.disabled === false ) { + + // Option elements defer to a parent optgroup if present + if ( "label" in elem ) { + if ( "label" in elem.parentNode ) { + return elem.parentNode.disabled === disabled; + } else { + return elem.disabled === disabled; + } + } + + // Support: IE 6 - 11 + // Use the isDisabled shortcut property to check for disabled fieldset ancestors + return elem.isDisabled === disabled || + + // Where there is no isDisabled, check manually + /* jshint -W018 */ + elem.isDisabled !== !disabled && + inDisabledFieldset( elem ) === disabled; + } + + return elem.disabled === disabled; + + // Try to winnow out elements that can't be disabled before trusting the disabled property. + // Some victims get caught in our net (label, legend, menu, track), but it shouldn't + // even exist on them, let alone have a boolean value. + } else if ( "label" in elem ) { + return elem.disabled === disabled; + } + + // Remaining elements are neither :enabled nor :disabled + return false; + }; +} + +/** + * Returns a function to use in pseudos for positionals + * @param {Function} fn + */ +function createPositionalPseudo( fn ) { + return markFunction( function( argument ) { + argument = +argument; + return markFunction( function( seed, matches ) { + var j, + matchIndexes = fn( [], seed.length, argument ), + i = matchIndexes.length; + + // Match elements found at the specified indexes + while ( i-- ) { + if ( seed[ ( j = matchIndexes[ i ] ) ] ) { + seed[ j ] = !( matches[ j ] = seed[ j ] ); + } + } + } ); + } ); +} + +/** + * Checks a node for validity as a Sizzle context + * @param {Element|Object=} context + * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value + */ +function testContext( context ) { + return context && typeof context.getElementsByTagName !== "undefined" && context; +} + +// Expose support vars for convenience +support = Sizzle.support = {}; + +/** + * Detects XML nodes + * @param {Element|Object} elem An element or a document + * @returns {Boolean} True iff elem is a non-HTML XML node + */ +isXML = Sizzle.isXML = function( elem ) { + var namespace = elem && elem.namespaceURI, + docElem = elem && ( elem.ownerDocument || elem ).documentElement; + + // Support: IE <=8 + // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes + // https://bugs.jquery.com/ticket/4833 + return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); +}; + +/** + * Sets document-related variables once based on the current document + * @param {Element|Object} [doc] An element or document object to use to set the document + * @returns {Object} Returns the current document + */ +setDocument = Sizzle.setDocument = function( node ) { + var hasCompare, subWindow, + doc = node ? node.ownerDocument || node : preferredDoc; + + // Return early if doc is invalid or already selected + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { + return document; + } + + // Update global variables + document = doc; + docElem = document.documentElement; + documentIsHTML = !isXML( document ); + + // Support: IE 9 - 11+, Edge 12 - 18+ + // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( preferredDoc != document && + ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { + + // Support: IE 11, Edge + if ( subWindow.addEventListener ) { + subWindow.addEventListener( "unload", unloadHandler, false ); + + // Support: IE 9 - 10 only + } else if ( subWindow.attachEvent ) { + subWindow.attachEvent( "onunload", unloadHandler ); + } + } + + // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, + // Safari 4 - 5 only, Opera <=11.6 - 12.x only + // IE/Edge & older browsers don't support the :scope pseudo-class. + // Support: Safari 6.0 only + // Safari 6.0 supports :scope but it's an alias of :root there. + support.scope = assert( function( el ) { + docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); + return typeof el.querySelectorAll !== "undefined" && + !el.querySelectorAll( ":scope fieldset div" ).length; + } ); + + /* Attributes + ---------------------------------------------------------------------- */ + + // Support: IE<8 + // Verify that getAttribute really returns attributes and not properties + // (excepting IE8 booleans) + support.attributes = assert( function( el ) { + el.className = "i"; + return !el.getAttribute( "className" ); + } ); + + /* getElement(s)By* + ---------------------------------------------------------------------- */ + + // Check if getElementsByTagName("*") returns only elements + support.getElementsByTagName = assert( function( el ) { + el.appendChild( document.createComment( "" ) ); + return !el.getElementsByTagName( "*" ).length; + } ); + + // Support: IE<9 + support.getElementsByClassName = rnative.test( document.getElementsByClassName ); + + // Support: IE<10 + // Check if getElementById returns elements by name + // The broken getElementById methods don't pick up programmatically-set names, + // so use a roundabout getElementsByName test + support.getById = assert( function( el ) { + docElem.appendChild( el ).id = expando; + return !document.getElementsByName || !document.getElementsByName( expando ).length; + } ); + + // ID filter and find + if ( support.getById ) { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + return elem.getAttribute( "id" ) === attrId; + }; + }; + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var elem = context.getElementById( id ); + return elem ? [ elem ] : []; + } + }; + } else { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + var node = typeof elem.getAttributeNode !== "undefined" && + elem.getAttributeNode( "id" ); + return node && node.value === attrId; + }; + }; + + // Support: IE 6 - 7 only + // getElementById is not reliable as a find shortcut + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var node, i, elems, + elem = context.getElementById( id ); + + if ( elem ) { + + // Verify the id attribute + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + + // Fall back on getElementsByName + elems = context.getElementsByName( id ); + i = 0; + while ( ( elem = elems[ i++ ] ) ) { + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + } + } + + return []; + } + }; + } + + // Tag + Expr.find[ "TAG" ] = support.getElementsByTagName ? + function( tag, context ) { + if ( typeof context.getElementsByTagName !== "undefined" ) { + return context.getElementsByTagName( tag ); + + // DocumentFragment nodes don't have gEBTN + } else if ( support.qsa ) { + return context.querySelectorAll( tag ); + } + } : + + function( tag, context ) { + var elem, + tmp = [], + i = 0, + + // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too + results = context.getElementsByTagName( tag ); + + // Filter out possible comments + if ( tag === "*" ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem.nodeType === 1 ) { + tmp.push( elem ); + } + } + + return tmp; + } + return results; + }; + + // Class + Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { + if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { + return context.getElementsByClassName( className ); + } + }; + + /* QSA/matchesSelector + ---------------------------------------------------------------------- */ + + // QSA and matchesSelector support + + // matchesSelector(:active) reports false when true (IE9/Opera 11.5) + rbuggyMatches = []; + + // qSa(:focus) reports false when true (Chrome 21) + // We allow this because of a bug in IE8/9 that throws an error + // whenever `document.activeElement` is accessed on an iframe + // So, we allow :focus to pass through QSA all the time to avoid the IE error + // See https://bugs.jquery.com/ticket/13378 + rbuggyQSA = []; + + if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { + + // Build QSA regex + // Regex strategy adopted from Diego Perini + assert( function( el ) { + + var input; + + // Select is set to empty string on purpose + // This is to test IE's treatment of not explicitly + // setting a boolean content attribute, + // since its presence should be enough + // https://bugs.jquery.com/ticket/12359 + docElem.appendChild( el ).innerHTML = "" + + ""; + + // Support: IE8, Opera 11-12.16 + // Nothing should be selected when empty strings follow ^= or $= or *= + // The test attribute must be unknown in Opera but "safe" for WinRT + // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section + if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { + rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); + } + + // Support: IE8 + // Boolean attributes and "value" are not treated correctly + if ( !el.querySelectorAll( "[selected]" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); + } + + // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ + if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { + rbuggyQSA.push( "~=" ); + } + + // Support: IE 11+, Edge 15 - 18+ + // IE 11/Edge don't find elements on a `[name='']` query in some cases. + // Adding a temporary attribute to the document before the selection works + // around the issue. + // Interestingly, IE 10 & older don't seem to have the issue. + input = document.createElement( "input" ); + input.setAttribute( "name", "" ); + el.appendChild( input ); + if ( !el.querySelectorAll( "[name='']" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + + whitespace + "*(?:''|\"\")" ); + } + + // Webkit/Opera - :checked should return selected option elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + // IE8 throws error here and will not see later tests + if ( !el.querySelectorAll( ":checked" ).length ) { + rbuggyQSA.push( ":checked" ); + } + + // Support: Safari 8+, iOS 8+ + // https://bugs.webkit.org/show_bug.cgi?id=136851 + // In-page `selector#id sibling-combinator selector` fails + if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { + rbuggyQSA.push( ".#.+[+~]" ); + } + + // Support: Firefox <=3.6 - 5 only + // Old Firefox doesn't throw on a badly-escaped identifier. + el.querySelectorAll( "\\\f" ); + rbuggyQSA.push( "[\\r\\n\\f]" ); + } ); + + assert( function( el ) { + el.innerHTML = "" + + ""; + + // Support: Windows 8 Native Apps + // The type and name attributes are restricted during .innerHTML assignment + var input = document.createElement( "input" ); + input.setAttribute( "type", "hidden" ); + el.appendChild( input ).setAttribute( "name", "D" ); + + // Support: IE8 + // Enforce case-sensitivity of name attribute + if ( el.querySelectorAll( "[name=d]" ).length ) { + rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); + } + + // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) + // IE8 throws error here and will not see later tests + if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: IE9-11+ + // IE's :disabled selector does not pick up the children of disabled fieldsets + docElem.appendChild( el ).disabled = true; + if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: Opera 10 - 11 only + // Opera 10-11 does not throw on post-comma invalid pseudos + el.querySelectorAll( "*,:x" ); + rbuggyQSA.push( ",.*:" ); + } ); + } + + if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || + docElem.webkitMatchesSelector || + docElem.mozMatchesSelector || + docElem.oMatchesSelector || + docElem.msMatchesSelector ) ) ) ) { + + assert( function( el ) { + + // Check to see if it's possible to do matchesSelector + // on a disconnected node (IE 9) + support.disconnectedMatch = matches.call( el, "*" ); + + // This should fail with an exception + // Gecko does not error, returns false instead + matches.call( el, "[s!='']:x" ); + rbuggyMatches.push( "!=", pseudos ); + } ); + } + + rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); + rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); + + /* Contains + ---------------------------------------------------------------------- */ + hasCompare = rnative.test( docElem.compareDocumentPosition ); + + // Element contains another + // Purposefully self-exclusive + // As in, an element does not contain itself + contains = hasCompare || rnative.test( docElem.contains ) ? + function( a, b ) { + var adown = a.nodeType === 9 ? a.documentElement : a, + bup = b && b.parentNode; + return a === bup || !!( bup && bup.nodeType === 1 && ( + adown.contains ? + adown.contains( bup ) : + a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 + ) ); + } : + function( a, b ) { + if ( b ) { + while ( ( b = b.parentNode ) ) { + if ( b === a ) { + return true; + } + } + } + return false; + }; + + /* Sorting + ---------------------------------------------------------------------- */ + + // Document order sorting + sortOrder = hasCompare ? + function( a, b ) { + + // Flag for duplicate removal + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + // Sort on method existence if only one input has compareDocumentPosition + var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; + if ( compare ) { + return compare; + } + + // Calculate position if both inputs belong to the same document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? + a.compareDocumentPosition( b ) : + + // Otherwise we know they are disconnected + 1; + + // Disconnected nodes + if ( compare & 1 || + ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { + + // Choose the first element that is related to our preferred document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( a == document || a.ownerDocument == preferredDoc && + contains( preferredDoc, a ) ) { + return -1; + } + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( b == document || b.ownerDocument == preferredDoc && + contains( preferredDoc, b ) ) { + return 1; + } + + // Maintain original order + return sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + } + + return compare & 4 ? -1 : 1; + } : + function( a, b ) { + + // Exit early if the nodes are identical + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + var cur, + i = 0, + aup = a.parentNode, + bup = b.parentNode, + ap = [ a ], + bp = [ b ]; + + // Parentless nodes are either documents or disconnected + if ( !aup || !bup ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + return a == document ? -1 : + b == document ? 1 : + /* eslint-enable eqeqeq */ + aup ? -1 : + bup ? 1 : + sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + + // If the nodes are siblings, we can do a quick check + } else if ( aup === bup ) { + return siblingCheck( a, b ); + } + + // Otherwise we need full lists of their ancestors for comparison + cur = a; + while ( ( cur = cur.parentNode ) ) { + ap.unshift( cur ); + } + cur = b; + while ( ( cur = cur.parentNode ) ) { + bp.unshift( cur ); + } + + // Walk down the tree looking for a discrepancy + while ( ap[ i ] === bp[ i ] ) { + i++; + } + + return i ? + + // Do a sibling check if the nodes have a common ancestor + siblingCheck( ap[ i ], bp[ i ] ) : + + // Otherwise nodes in our document sort first + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + ap[ i ] == preferredDoc ? -1 : + bp[ i ] == preferredDoc ? 1 : + /* eslint-enable eqeqeq */ + 0; + }; + + return document; +}; + +Sizzle.matches = function( expr, elements ) { + return Sizzle( expr, null, null, elements ); +}; + +Sizzle.matchesSelector = function( elem, expr ) { + setDocument( elem ); + + if ( support.matchesSelector && documentIsHTML && + !nonnativeSelectorCache[ expr + " " ] && + ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && + ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { + + try { + var ret = matches.call( elem, expr ); + + // IE 9's matchesSelector returns false on disconnected nodes + if ( ret || support.disconnectedMatch || + + // As well, disconnected nodes are said to be in a document + // fragment in IE 9 + elem.document && elem.document.nodeType !== 11 ) { + return ret; + } + } catch ( e ) { + nonnativeSelectorCache( expr, true ); + } + } + + return Sizzle( expr, document, null, [ elem ] ).length > 0; +}; + +Sizzle.contains = function( context, elem ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( context.ownerDocument || context ) != document ) { + setDocument( context ); + } + return contains( context, elem ); +}; + +Sizzle.attr = function( elem, name ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( elem.ownerDocument || elem ) != document ) { + setDocument( elem ); + } + + var fn = Expr.attrHandle[ name.toLowerCase() ], + + // Don't get fooled by Object.prototype properties (jQuery #13807) + val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? + fn( elem, name, !documentIsHTML ) : + undefined; + + return val !== undefined ? + val : + support.attributes || !documentIsHTML ? + elem.getAttribute( name ) : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; +}; + +Sizzle.escape = function( sel ) { + return ( sel + "" ).replace( rcssescape, fcssescape ); +}; + +Sizzle.error = function( msg ) { + throw new Error( "Syntax error, unrecognized expression: " + msg ); +}; + +/** + * Document sorting and removing duplicates + * @param {ArrayLike} results + */ +Sizzle.uniqueSort = function( results ) { + var elem, + duplicates = [], + j = 0, + i = 0; + + // Unless we *know* we can detect duplicates, assume their presence + hasDuplicate = !support.detectDuplicates; + sortInput = !support.sortStable && results.slice( 0 ); + results.sort( sortOrder ); + + if ( hasDuplicate ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem === results[ i ] ) { + j = duplicates.push( i ); + } + } + while ( j-- ) { + results.splice( duplicates[ j ], 1 ); + } + } + + // Clear input after sorting to release objects + // See https://github.com/jquery/sizzle/pull/225 + sortInput = null; + + return results; +}; + +/** + * Utility function for retrieving the text value of an array of DOM nodes + * @param {Array|Element} elem + */ +getText = Sizzle.getText = function( elem ) { + var node, + ret = "", + i = 0, + nodeType = elem.nodeType; + + if ( !nodeType ) { + + // If no nodeType, this is expected to be an array + while ( ( node = elem[ i++ ] ) ) { + + // Do not traverse comment nodes + ret += getText( node ); + } + } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { + + // Use textContent for elements + // innerText usage removed for consistency of new lines (jQuery #11153) + if ( typeof elem.textContent === "string" ) { + return elem.textContent; + } else { + + // Traverse its children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + ret += getText( elem ); + } + } + } else if ( nodeType === 3 || nodeType === 4 ) { + return elem.nodeValue; + } + + // Do not include comment or processing instruction nodes + + return ret; +}; + +Expr = Sizzle.selectors = { + + // Can be adjusted by the user + cacheLength: 50, + + createPseudo: markFunction, + + match: matchExpr, + + attrHandle: {}, + + find: {}, + + relative: { + ">": { dir: "parentNode", first: true }, + " ": { dir: "parentNode" }, + "+": { dir: "previousSibling", first: true }, + "~": { dir: "previousSibling" } + }, + + preFilter: { + "ATTR": function( match ) { + match[ 1 ] = match[ 1 ].replace( runescape, funescape ); + + // Move the given value to match[3] whether quoted or unquoted + match[ 3 ] = ( match[ 3 ] || match[ 4 ] || + match[ 5 ] || "" ).replace( runescape, funescape ); + + if ( match[ 2 ] === "~=" ) { + match[ 3 ] = " " + match[ 3 ] + " "; + } + + return match.slice( 0, 4 ); + }, + + "CHILD": function( match ) { + + /* matches from matchExpr["CHILD"] + 1 type (only|nth|...) + 2 what (child|of-type) + 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) + 4 xn-component of xn+y argument ([+-]?\d*n|) + 5 sign of xn-component + 6 x of xn-component + 7 sign of y-component + 8 y of y-component + */ + match[ 1 ] = match[ 1 ].toLowerCase(); + + if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { + + // nth-* requires argument + if ( !match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + // numeric x and y parameters for Expr.filter.CHILD + // remember that false/true cast respectively to 0/1 + match[ 4 ] = +( match[ 4 ] ? + match[ 5 ] + ( match[ 6 ] || 1 ) : + 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); + match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); + + // other types prohibit arguments + } else if ( match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + return match; + }, + + "PSEUDO": function( match ) { + var excess, + unquoted = !match[ 6 ] && match[ 2 ]; + + if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { + return null; + } + + // Accept quoted arguments as-is + if ( match[ 3 ] ) { + match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; + + // Strip excess characters from unquoted arguments + } else if ( unquoted && rpseudo.test( unquoted ) && + + // Get excess from tokenize (recursively) + ( excess = tokenize( unquoted, true ) ) && + + // advance to the next closing parenthesis + ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { + + // excess is a negative index + match[ 0 ] = match[ 0 ].slice( 0, excess ); + match[ 2 ] = unquoted.slice( 0, excess ); + } + + // Return only captures needed by the pseudo filter method (type and argument) + return match.slice( 0, 3 ); + } + }, + + filter: { + + "TAG": function( nodeNameSelector ) { + var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); + return nodeNameSelector === "*" ? + function() { + return true; + } : + function( elem ) { + return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; + }; + }, + + "CLASS": function( className ) { + var pattern = classCache[ className + " " ]; + + return pattern || + ( pattern = new RegExp( "(^|" + whitespace + + ")" + className + "(" + whitespace + "|$)" ) ) && classCache( + className, function( elem ) { + return pattern.test( + typeof elem.className === "string" && elem.className || + typeof elem.getAttribute !== "undefined" && + elem.getAttribute( "class" ) || + "" + ); + } ); + }, + + "ATTR": function( name, operator, check ) { + return function( elem ) { + var result = Sizzle.attr( elem, name ); + + if ( result == null ) { + return operator === "!="; + } + if ( !operator ) { + return true; + } + + result += ""; + + /* eslint-disable max-len */ + + return operator === "=" ? result === check : + operator === "!=" ? result !== check : + operator === "^=" ? check && result.indexOf( check ) === 0 : + operator === "*=" ? check && result.indexOf( check ) > -1 : + operator === "$=" ? check && result.slice( -check.length ) === check : + operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : + operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : + false; + /* eslint-enable max-len */ + + }; + }, + + "CHILD": function( type, what, _argument, first, last ) { + var simple = type.slice( 0, 3 ) !== "nth", + forward = type.slice( -4 ) !== "last", + ofType = what === "of-type"; + + return first === 1 && last === 0 ? + + // Shortcut for :nth-*(n) + function( elem ) { + return !!elem.parentNode; + } : + + function( elem, _context, xml ) { + var cache, uniqueCache, outerCache, node, nodeIndex, start, + dir = simple !== forward ? "nextSibling" : "previousSibling", + parent = elem.parentNode, + name = ofType && elem.nodeName.toLowerCase(), + useCache = !xml && !ofType, + diff = false; + + if ( parent ) { + + // :(first|last|only)-(child|of-type) + if ( simple ) { + while ( dir ) { + node = elem; + while ( ( node = node[ dir ] ) ) { + if ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) { + + return false; + } + } + + // Reverse direction for :only-* (if we haven't yet done so) + start = dir = type === "only" && !start && "nextSibling"; + } + return true; + } + + start = [ forward ? parent.firstChild : parent.lastChild ]; + + // non-xml :nth-child(...) stores cache data on `parent` + if ( forward && useCache ) { + + // Seek `elem` from a previously-cached index + + // ...in a gzip-friendly way + node = parent; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex && cache[ 2 ]; + node = nodeIndex && parent.childNodes[ nodeIndex ]; + + while ( ( node = ++nodeIndex && node && node[ dir ] || + + // Fallback to seeking `elem` from the start + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + // When found, cache indexes on `parent` and break + if ( node.nodeType === 1 && ++diff && node === elem ) { + uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; + break; + } + } + + } else { + + // Use previously-cached element index if available + if ( useCache ) { + + // ...in a gzip-friendly way + node = elem; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex; + } + + // xml :nth-child(...) + // or :nth-last-child(...) or :nth(-last)?-of-type(...) + if ( diff === false ) { + + // Use the same loop as above to seek `elem` from the start + while ( ( node = ++nodeIndex && node && node[ dir ] || + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + if ( ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) && + ++diff ) { + + // Cache the index of each encountered element + if ( useCache ) { + outerCache = node[ expando ] || + ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + uniqueCache[ type ] = [ dirruns, diff ]; + } + + if ( node === elem ) { + break; + } + } + } + } + } + + // Incorporate the offset, then check against cycle size + diff -= last; + return diff === first || ( diff % first === 0 && diff / first >= 0 ); + } + }; + }, + + "PSEUDO": function( pseudo, argument ) { + + // pseudo-class names are case-insensitive + // http://www.w3.org/TR/selectors/#pseudo-classes + // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters + // Remember that setFilters inherits from pseudos + var args, + fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || + Sizzle.error( "unsupported pseudo: " + pseudo ); + + // The user may use createPseudo to indicate that + // arguments are needed to create the filter function + // just as Sizzle does + if ( fn[ expando ] ) { + return fn( argument ); + } + + // But maintain support for old signatures + if ( fn.length > 1 ) { + args = [ pseudo, pseudo, "", argument ]; + return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? + markFunction( function( seed, matches ) { + var idx, + matched = fn( seed, argument ), + i = matched.length; + while ( i-- ) { + idx = indexOf( seed, matched[ i ] ); + seed[ idx ] = !( matches[ idx ] = matched[ i ] ); + } + } ) : + function( elem ) { + return fn( elem, 0, args ); + }; + } + + return fn; + } + }, + + pseudos: { + + // Potentially complex pseudos + "not": markFunction( function( selector ) { + + // Trim the selector passed to compile + // to avoid treating leading and trailing + // spaces as combinators + var input = [], + results = [], + matcher = compile( selector.replace( rtrim, "$1" ) ); + + return matcher[ expando ] ? + markFunction( function( seed, matches, _context, xml ) { + var elem, + unmatched = matcher( seed, null, xml, [] ), + i = seed.length; + + // Match elements unmatched by `matcher` + while ( i-- ) { + if ( ( elem = unmatched[ i ] ) ) { + seed[ i ] = !( matches[ i ] = elem ); + } + } + } ) : + function( elem, _context, xml ) { + input[ 0 ] = elem; + matcher( input, null, xml, results ); + + // Don't keep the element (issue #299) + input[ 0 ] = null; + return !results.pop(); + }; + } ), + + "has": markFunction( function( selector ) { + return function( elem ) { + return Sizzle( selector, elem ).length > 0; + }; + } ), + + "contains": markFunction( function( text ) { + text = text.replace( runescape, funescape ); + return function( elem ) { + return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; + }; + } ), + + // "Whether an element is represented by a :lang() selector + // is based solely on the element's language value + // being equal to the identifier C, + // or beginning with the identifier C immediately followed by "-". + // The matching of C against the element's language value is performed case-insensitively. + // The identifier C does not have to be a valid language name." + // http://www.w3.org/TR/selectors/#lang-pseudo + "lang": markFunction( function( lang ) { + + // lang value must be a valid identifier + if ( !ridentifier.test( lang || "" ) ) { + Sizzle.error( "unsupported lang: " + lang ); + } + lang = lang.replace( runescape, funescape ).toLowerCase(); + return function( elem ) { + var elemLang; + do { + if ( ( elemLang = documentIsHTML ? + elem.lang : + elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { + + elemLang = elemLang.toLowerCase(); + return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; + } + } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); + return false; + }; + } ), + + // Miscellaneous + "target": function( elem ) { + var hash = window.location && window.location.hash; + return hash && hash.slice( 1 ) === elem.id; + }, + + "root": function( elem ) { + return elem === docElem; + }, + + "focus": function( elem ) { + return elem === document.activeElement && + ( !document.hasFocus || document.hasFocus() ) && + !!( elem.type || elem.href || ~elem.tabIndex ); + }, + + // Boolean properties + "enabled": createDisabledPseudo( false ), + "disabled": createDisabledPseudo( true ), + + "checked": function( elem ) { + + // In CSS3, :checked should return both checked and selected elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + var nodeName = elem.nodeName.toLowerCase(); + return ( nodeName === "input" && !!elem.checked ) || + ( nodeName === "option" && !!elem.selected ); + }, + + "selected": function( elem ) { + + // Accessing this property makes selected-by-default + // options in Safari work properly + if ( elem.parentNode ) { + // eslint-disable-next-line no-unused-expressions + elem.parentNode.selectedIndex; + } + + return elem.selected === true; + }, + + // Contents + "empty": function( elem ) { + + // http://www.w3.org/TR/selectors/#empty-pseudo + // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), + // but not by others (comment: 8; processing instruction: 7; etc.) + // nodeType < 6 works because attributes (2) do not appear as children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + if ( elem.nodeType < 6 ) { + return false; + } + } + return true; + }, + + "parent": function( elem ) { + return !Expr.pseudos[ "empty" ]( elem ); + }, + + // Element/input types + "header": function( elem ) { + return rheader.test( elem.nodeName ); + }, + + "input": function( elem ) { + return rinputs.test( elem.nodeName ); + }, + + "button": function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === "button" || name === "button"; + }, + + "text": function( elem ) { + var attr; + return elem.nodeName.toLowerCase() === "input" && + elem.type === "text" && + + // Support: IE<8 + // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" + ( ( attr = elem.getAttribute( "type" ) ) == null || + attr.toLowerCase() === "text" ); + }, + + // Position-in-collection + "first": createPositionalPseudo( function() { + return [ 0 ]; + } ), + + "last": createPositionalPseudo( function( _matchIndexes, length ) { + return [ length - 1 ]; + } ), + + "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { + return [ argument < 0 ? argument + length : argument ]; + } ), + + "even": createPositionalPseudo( function( matchIndexes, length ) { + var i = 0; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "odd": createPositionalPseudo( function( matchIndexes, length ) { + var i = 1; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? + argument + length : + argument > length ? + length : + argument; + for ( ; --i >= 0; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; ++i < length; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ) + } +}; + +Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; + +// Add button/input type pseudos +for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { + Expr.pseudos[ i ] = createInputPseudo( i ); +} +for ( i in { submit: true, reset: true } ) { + Expr.pseudos[ i ] = createButtonPseudo( i ); +} + +// Easy API for creating new setFilters +function setFilters() {} +setFilters.prototype = Expr.filters = Expr.pseudos; +Expr.setFilters = new setFilters(); + +tokenize = Sizzle.tokenize = function( selector, parseOnly ) { + var matched, match, tokens, type, + soFar, groups, preFilters, + cached = tokenCache[ selector + " " ]; + + if ( cached ) { + return parseOnly ? 0 : cached.slice( 0 ); + } + + soFar = selector; + groups = []; + preFilters = Expr.preFilter; + + while ( soFar ) { + + // Comma and first run + if ( !matched || ( match = rcomma.exec( soFar ) ) ) { + if ( match ) { + + // Don't consume trailing commas as valid + soFar = soFar.slice( match[ 0 ].length ) || soFar; + } + groups.push( ( tokens = [] ) ); + } + + matched = false; + + // Combinators + if ( ( match = rcombinators.exec( soFar ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + + // Cast descendant combinators to space + type: match[ 0 ].replace( rtrim, " " ) + } ); + soFar = soFar.slice( matched.length ); + } + + // Filters + for ( type in Expr.filter ) { + if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || + ( match = preFilters[ type ]( match ) ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + type: type, + matches: match + } ); + soFar = soFar.slice( matched.length ); + } + } + + if ( !matched ) { + break; + } + } + + // Return the length of the invalid excess + // if we're just parsing + // Otherwise, throw an error or return tokens + return parseOnly ? + soFar.length : + soFar ? + Sizzle.error( selector ) : + + // Cache the tokens + tokenCache( selector, groups ).slice( 0 ); +}; + +function toSelector( tokens ) { + var i = 0, + len = tokens.length, + selector = ""; + for ( ; i < len; i++ ) { + selector += tokens[ i ].value; + } + return selector; +} + +function addCombinator( matcher, combinator, base ) { + var dir = combinator.dir, + skip = combinator.next, + key = skip || dir, + checkNonElements = base && key === "parentNode", + doneName = done++; + + return combinator.first ? + + // Check against closest ancestor/preceding element + function( elem, context, xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + return matcher( elem, context, xml ); + } + } + return false; + } : + + // Check against all ancestor/preceding elements + function( elem, context, xml ) { + var oldCache, uniqueCache, outerCache, + newCache = [ dirruns, doneName ]; + + // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching + if ( xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + if ( matcher( elem, context, xml ) ) { + return true; + } + } + } + } else { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + outerCache = elem[ expando ] || ( elem[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ elem.uniqueID ] || + ( outerCache[ elem.uniqueID ] = {} ); + + if ( skip && skip === elem.nodeName.toLowerCase() ) { + elem = elem[ dir ] || elem; + } else if ( ( oldCache = uniqueCache[ key ] ) && + oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { + + // Assign to newCache so results back-propagate to previous elements + return ( newCache[ 2 ] = oldCache[ 2 ] ); + } else { + + // Reuse newcache so results back-propagate to previous elements + uniqueCache[ key ] = newCache; + + // A match means we're done; a fail means we have to keep checking + if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { + return true; + } + } + } + } + } + return false; + }; +} + +function elementMatcher( matchers ) { + return matchers.length > 1 ? + function( elem, context, xml ) { + var i = matchers.length; + while ( i-- ) { + if ( !matchers[ i ]( elem, context, xml ) ) { + return false; + } + } + return true; + } : + matchers[ 0 ]; +} + +function multipleContexts( selector, contexts, results ) { + var i = 0, + len = contexts.length; + for ( ; i < len; i++ ) { + Sizzle( selector, contexts[ i ], results ); + } + return results; +} + +function condense( unmatched, map, filter, context, xml ) { + var elem, + newUnmatched = [], + i = 0, + len = unmatched.length, + mapped = map != null; + + for ( ; i < len; i++ ) { + if ( ( elem = unmatched[ i ] ) ) { + if ( !filter || filter( elem, context, xml ) ) { + newUnmatched.push( elem ); + if ( mapped ) { + map.push( i ); + } + } + } + } + + return newUnmatched; +} + +function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { + if ( postFilter && !postFilter[ expando ] ) { + postFilter = setMatcher( postFilter ); + } + if ( postFinder && !postFinder[ expando ] ) { + postFinder = setMatcher( postFinder, postSelector ); + } + return markFunction( function( seed, results, context, xml ) { + var temp, i, elem, + preMap = [], + postMap = [], + preexisting = results.length, + + // Get initial elements from seed or context + elems = seed || multipleContexts( + selector || "*", + context.nodeType ? [ context ] : context, + [] + ), + + // Prefilter to get matcher input, preserving a map for seed-results synchronization + matcherIn = preFilter && ( seed || !selector ) ? + condense( elems, preMap, preFilter, context, xml ) : + elems, + + matcherOut = matcher ? + + // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, + postFinder || ( seed ? preFilter : preexisting || postFilter ) ? + + // ...intermediate processing is necessary + [] : + + // ...otherwise use results directly + results : + matcherIn; + + // Find primary matches + if ( matcher ) { + matcher( matcherIn, matcherOut, context, xml ); + } + + // Apply postFilter + if ( postFilter ) { + temp = condense( matcherOut, postMap ); + postFilter( temp, [], context, xml ); + + // Un-match failing elements by moving them back to matcherIn + i = temp.length; + while ( i-- ) { + if ( ( elem = temp[ i ] ) ) { + matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); + } + } + } + + if ( seed ) { + if ( postFinder || preFilter ) { + if ( postFinder ) { + + // Get the final matcherOut by condensing this intermediate into postFinder contexts + temp = []; + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) ) { + + // Restore matcherIn since elem is not yet a final match + temp.push( ( matcherIn[ i ] = elem ) ); + } + } + postFinder( null, ( matcherOut = [] ), temp, xml ); + } + + // Move matched elements from seed to results to keep them synchronized + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) && + ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { + + seed[ temp ] = !( results[ temp ] = elem ); + } + } + } + + // Add elements to results, through postFinder if defined + } else { + matcherOut = condense( + matcherOut === results ? + matcherOut.splice( preexisting, matcherOut.length ) : + matcherOut + ); + if ( postFinder ) { + postFinder( null, results, matcherOut, xml ); + } else { + push.apply( results, matcherOut ); + } + } + } ); +} + +function matcherFromTokens( tokens ) { + var checkContext, matcher, j, + len = tokens.length, + leadingRelative = Expr.relative[ tokens[ 0 ].type ], + implicitRelative = leadingRelative || Expr.relative[ " " ], + i = leadingRelative ? 1 : 0, + + // The foundational matcher ensures that elements are reachable from top-level context(s) + matchContext = addCombinator( function( elem ) { + return elem === checkContext; + }, implicitRelative, true ), + matchAnyContext = addCombinator( function( elem ) { + return indexOf( checkContext, elem ) > -1; + }, implicitRelative, true ), + matchers = [ function( elem, context, xml ) { + var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( + ( checkContext = context ).nodeType ? + matchContext( elem, context, xml ) : + matchAnyContext( elem, context, xml ) ); + + // Avoid hanging onto element (issue #299) + checkContext = null; + return ret; + } ]; + + for ( ; i < len; i++ ) { + if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { + matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; + } else { + matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); + + // Return special upon seeing a positional matcher + if ( matcher[ expando ] ) { + + // Find the next relative operator (if any) for proper handling + j = ++i; + for ( ; j < len; j++ ) { + if ( Expr.relative[ tokens[ j ].type ] ) { + break; + } + } + return setMatcher( + i > 1 && elementMatcher( matchers ), + i > 1 && toSelector( + + // If the preceding token was a descendant combinator, insert an implicit any-element `*` + tokens + .slice( 0, i - 1 ) + .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) + ).replace( rtrim, "$1" ), + matcher, + i < j && matcherFromTokens( tokens.slice( i, j ) ), + j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), + j < len && toSelector( tokens ) + ); + } + matchers.push( matcher ); + } + } + + return elementMatcher( matchers ); +} + +function matcherFromGroupMatchers( elementMatchers, setMatchers ) { + var bySet = setMatchers.length > 0, + byElement = elementMatchers.length > 0, + superMatcher = function( seed, context, xml, results, outermost ) { + var elem, j, matcher, + matchedCount = 0, + i = "0", + unmatched = seed && [], + setMatched = [], + contextBackup = outermostContext, + + // We must always have either seed elements or outermost context + elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), + + // Use integer dirruns iff this is the outermost matcher + dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), + len = elems.length; + + if ( outermost ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + outermostContext = context == document || context || outermost; + } + + // Add elements passing elementMatchers directly to results + // Support: IE<9, Safari + // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id + for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { + if ( byElement && elem ) { + j = 0; + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( !context && elem.ownerDocument != document ) { + setDocument( elem ); + xml = !documentIsHTML; + } + while ( ( matcher = elementMatchers[ j++ ] ) ) { + if ( matcher( elem, context || document, xml ) ) { + results.push( elem ); + break; + } + } + if ( outermost ) { + dirruns = dirrunsUnique; + } + } + + // Track unmatched elements for set filters + if ( bySet ) { + + // They will have gone through all possible matchers + if ( ( elem = !matcher && elem ) ) { + matchedCount--; + } + + // Lengthen the array for every element, matched or not + if ( seed ) { + unmatched.push( elem ); + } + } + } + + // `i` is now the count of elements visited above, and adding it to `matchedCount` + // makes the latter nonnegative. + matchedCount += i; + + // Apply set filters to unmatched elements + // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` + // equals `i`), unless we didn't visit _any_ elements in the above loop because we have + // no element matchers and no seed. + // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that + // case, which will result in a "00" `matchedCount` that differs from `i` but is also + // numerically zero. + if ( bySet && i !== matchedCount ) { + j = 0; + while ( ( matcher = setMatchers[ j++ ] ) ) { + matcher( unmatched, setMatched, context, xml ); + } + + if ( seed ) { + + // Reintegrate element matches to eliminate the need for sorting + if ( matchedCount > 0 ) { + while ( i-- ) { + if ( !( unmatched[ i ] || setMatched[ i ] ) ) { + setMatched[ i ] = pop.call( results ); + } + } + } + + // Discard index placeholder values to get only actual matches + setMatched = condense( setMatched ); + } + + // Add matches to results + push.apply( results, setMatched ); + + // Seedless set matches succeeding multiple successful matchers stipulate sorting + if ( outermost && !seed && setMatched.length > 0 && + ( matchedCount + setMatchers.length ) > 1 ) { + + Sizzle.uniqueSort( results ); + } + } + + // Override manipulation of globals by nested matchers + if ( outermost ) { + dirruns = dirrunsUnique; + outermostContext = contextBackup; + } + + return unmatched; + }; + + return bySet ? + markFunction( superMatcher ) : + superMatcher; +} + +compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { + var i, + setMatchers = [], + elementMatchers = [], + cached = compilerCache[ selector + " " ]; + + if ( !cached ) { + + // Generate a function of recursive functions that can be used to check each element + if ( !match ) { + match = tokenize( selector ); + } + i = match.length; + while ( i-- ) { + cached = matcherFromTokens( match[ i ] ); + if ( cached[ expando ] ) { + setMatchers.push( cached ); + } else { + elementMatchers.push( cached ); + } + } + + // Cache the compiled function + cached = compilerCache( + selector, + matcherFromGroupMatchers( elementMatchers, setMatchers ) + ); + + // Save selector and tokenization + cached.selector = selector; + } + return cached; +}; + +/** + * A low-level selection function that works with Sizzle's compiled + * selector functions + * @param {String|Function} selector A selector or a pre-compiled + * selector function built with Sizzle.compile + * @param {Element} context + * @param {Array} [results] + * @param {Array} [seed] A set of elements to match against + */ +select = Sizzle.select = function( selector, context, results, seed ) { + var i, tokens, token, type, find, + compiled = typeof selector === "function" && selector, + match = !seed && tokenize( ( selector = compiled.selector || selector ) ); + + results = results || []; + + // Try to minimize operations if there is only one selector in the list and no seed + // (the latter of which guarantees us context) + if ( match.length === 1 ) { + + // Reduce context if the leading compound selector is an ID + tokens = match[ 0 ] = match[ 0 ].slice( 0 ); + if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && + context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { + + context = ( Expr.find[ "ID" ]( token.matches[ 0 ] + .replace( runescape, funescape ), context ) || [] )[ 0 ]; + if ( !context ) { + return results; + + // Precompiled matchers will still verify ancestry, so step up a level + } else if ( compiled ) { + context = context.parentNode; + } + + selector = selector.slice( tokens.shift().value.length ); + } + + // Fetch a seed set for right-to-left matching + i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; + while ( i-- ) { + token = tokens[ i ]; + + // Abort if we hit a combinator + if ( Expr.relative[ ( type = token.type ) ] ) { + break; + } + if ( ( find = Expr.find[ type ] ) ) { + + // Search, expanding context for leading sibling combinators + if ( ( seed = find( + token.matches[ 0 ].replace( runescape, funescape ), + rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || + context + ) ) ) { + + // If seed is empty or no tokens remain, we can return early + tokens.splice( i, 1 ); + selector = seed.length && toSelector( tokens ); + if ( !selector ) { + push.apply( results, seed ); + return results; + } + + break; + } + } + } + } + + // Compile and execute a filtering function if one is not provided + // Provide `match` to avoid retokenization if we modified the selector above + ( compiled || compile( selector, match ) )( + seed, + context, + !documentIsHTML, + results, + !context || rsibling.test( selector ) && testContext( context.parentNode ) || context + ); + return results; +}; + +// One-time assignments + +// Sort stability +support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; + +// Support: Chrome 14-35+ +// Always assume duplicates if they aren't passed to the comparison function +support.detectDuplicates = !!hasDuplicate; + +// Initialize against the default document +setDocument(); + +// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) +// Detached nodes confoundingly follow *each other* +support.sortDetached = assert( function( el ) { + + // Should return 1, but returns 4 (following) + return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; +} ); + +// Support: IE<8 +// Prevent attribute/property "interpolation" +// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx +if ( !assert( function( el ) { + el.innerHTML = ""; + return el.firstChild.getAttribute( "href" ) === "#"; +} ) ) { + addHandle( "type|href|height|width", function( elem, name, isXML ) { + if ( !isXML ) { + return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); + } + } ); +} + +// Support: IE<9 +// Use defaultValue in place of getAttribute("value") +if ( !support.attributes || !assert( function( el ) { + el.innerHTML = ""; + el.firstChild.setAttribute( "value", "" ); + return el.firstChild.getAttribute( "value" ) === ""; +} ) ) { + addHandle( "value", function( elem, _name, isXML ) { + if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { + return elem.defaultValue; + } + } ); +} + +// Support: IE<9 +// Use getAttributeNode to fetch booleans when getAttribute lies +if ( !assert( function( el ) { + return el.getAttribute( "disabled" ) == null; +} ) ) { + addHandle( booleans, function( elem, name, isXML ) { + var val; + if ( !isXML ) { + return elem[ name ] === true ? name.toLowerCase() : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; + } + } ); +} + +return Sizzle; + +} )( window ); + + + +jQuery.find = Sizzle; +jQuery.expr = Sizzle.selectors; + +// Deprecated +jQuery.expr[ ":" ] = jQuery.expr.pseudos; +jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; +jQuery.text = Sizzle.getText; +jQuery.isXMLDoc = Sizzle.isXML; +jQuery.contains = Sizzle.contains; +jQuery.escapeSelector = Sizzle.escape; + + + + +var dir = function( elem, dir, until ) { + var matched = [], + truncate = until !== undefined; + + while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { + if ( elem.nodeType === 1 ) { + if ( truncate && jQuery( elem ).is( until ) ) { + break; + } + matched.push( elem ); + } + } + return matched; +}; + + +var siblings = function( n, elem ) { + var matched = []; + + for ( ; n; n = n.nextSibling ) { + if ( n.nodeType === 1 && n !== elem ) { + matched.push( n ); + } + } + + return matched; +}; + + +var rneedsContext = jQuery.expr.match.needsContext; + + + +function nodeName( elem, name ) { + + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + +} +var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); + + + +// Implement the identical functionality for filter and not +function winnow( elements, qualifier, not ) { + if ( isFunction( qualifier ) ) { + return jQuery.grep( elements, function( elem, i ) { + return !!qualifier.call( elem, i, elem ) !== not; + } ); + } + + // Single element + if ( qualifier.nodeType ) { + return jQuery.grep( elements, function( elem ) { + return ( elem === qualifier ) !== not; + } ); + } + + // Arraylike of elements (jQuery, arguments, Array) + if ( typeof qualifier !== "string" ) { + return jQuery.grep( elements, function( elem ) { + return ( indexOf.call( qualifier, elem ) > -1 ) !== not; + } ); + } + + // Filtered directly for both simple and complex selectors + return jQuery.filter( qualifier, elements, not ); +} + +jQuery.filter = function( expr, elems, not ) { + var elem = elems[ 0 ]; + + if ( not ) { + expr = ":not(" + expr + ")"; + } + + if ( elems.length === 1 && elem.nodeType === 1 ) { + return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; + } + + return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { + return elem.nodeType === 1; + } ) ); +}; + +jQuery.fn.extend( { + find: function( selector ) { + var i, ret, + len = this.length, + self = this; + + if ( typeof selector !== "string" ) { + return this.pushStack( jQuery( selector ).filter( function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( self[ i ], this ) ) { + return true; + } + } + } ) ); + } + + ret = this.pushStack( [] ); + + for ( i = 0; i < len; i++ ) { + jQuery.find( selector, self[ i ], ret ); + } + + return len > 1 ? jQuery.uniqueSort( ret ) : ret; + }, + filter: function( selector ) { + return this.pushStack( winnow( this, selector || [], false ) ); + }, + not: function( selector ) { + return this.pushStack( winnow( this, selector || [], true ) ); + }, + is: function( selector ) { + return !!winnow( + this, + + // If this is a positional/relative selector, check membership in the returned set + // so $("p:first").is("p:last") won't return true for a doc with two "p". + typeof selector === "string" && rneedsContext.test( selector ) ? + jQuery( selector ) : + selector || [], + false + ).length; + } +} ); + + +// Initialize a jQuery object + + +// A central reference to the root jQuery(document) +var rootjQuery, + + // A simple way to check for HTML strings + // Prioritize #id over to avoid XSS via location.hash (#9521) + // Strict HTML recognition (#11290: must start with <) + // Shortcut simple #id case for speed + rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, + + init = jQuery.fn.init = function( selector, context, root ) { + var match, elem; + + // HANDLE: $(""), $(null), $(undefined), $(false) + if ( !selector ) { + return this; + } + + // Method init() accepts an alternate rootjQuery + // so migrate can support jQuery.sub (gh-2101) + root = root || rootjQuery; + + // Handle HTML strings + if ( typeof selector === "string" ) { + if ( selector[ 0 ] === "<" && + selector[ selector.length - 1 ] === ">" && + selector.length >= 3 ) { + + // Assume that strings that start and end with <> are HTML and skip the regex check + match = [ null, selector, null ]; + + } else { + match = rquickExpr.exec( selector ); + } + + // Match html or make sure no context is specified for #id + if ( match && ( match[ 1 ] || !context ) ) { + + // HANDLE: $(html) -> $(array) + if ( match[ 1 ] ) { + context = context instanceof jQuery ? context[ 0 ] : context; + + // Option to run scripts is true for back-compat + // Intentionally let the error be thrown if parseHTML is not present + jQuery.merge( this, jQuery.parseHTML( + match[ 1 ], + context && context.nodeType ? context.ownerDocument || context : document, + true + ) ); + + // HANDLE: $(html, props) + if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { + for ( match in context ) { + + // Properties of context are called as methods if possible + if ( isFunction( this[ match ] ) ) { + this[ match ]( context[ match ] ); + + // ...and otherwise set as attributes + } else { + this.attr( match, context[ match ] ); + } + } + } + + return this; + + // HANDLE: $(#id) + } else { + elem = document.getElementById( match[ 2 ] ); + + if ( elem ) { + + // Inject the element directly into the jQuery object + this[ 0 ] = elem; + this.length = 1; + } + return this; + } + + // HANDLE: $(expr, $(...)) + } else if ( !context || context.jquery ) { + return ( context || root ).find( selector ); + + // HANDLE: $(expr, context) + // (which is just equivalent to: $(context).find(expr) + } else { + return this.constructor( context ).find( selector ); + } + + // HANDLE: $(DOMElement) + } else if ( selector.nodeType ) { + this[ 0 ] = selector; + this.length = 1; + return this; + + // HANDLE: $(function) + // Shortcut for document ready + } else if ( isFunction( selector ) ) { + return root.ready !== undefined ? + root.ready( selector ) : + + // Execute immediately if ready is not present + selector( jQuery ); + } + + return jQuery.makeArray( selector, this ); + }; + +// Give the init function the jQuery prototype for later instantiation +init.prototype = jQuery.fn; + +// Initialize central reference +rootjQuery = jQuery( document ); + + +var rparentsprev = /^(?:parents|prev(?:Until|All))/, + + // Methods guaranteed to produce a unique set when starting from a unique set + guaranteedUnique = { + children: true, + contents: true, + next: true, + prev: true + }; + +jQuery.fn.extend( { + has: function( target ) { + var targets = jQuery( target, this ), + l = targets.length; + + return this.filter( function() { + var i = 0; + for ( ; i < l; i++ ) { + if ( jQuery.contains( this, targets[ i ] ) ) { + return true; + } + } + } ); + }, + + closest: function( selectors, context ) { + var cur, + i = 0, + l = this.length, + matched = [], + targets = typeof selectors !== "string" && jQuery( selectors ); + + // Positional selectors never match, since there's no _selection_ context + if ( !rneedsContext.test( selectors ) ) { + for ( ; i < l; i++ ) { + for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { + + // Always skip document fragments + if ( cur.nodeType < 11 && ( targets ? + targets.index( cur ) > -1 : + + // Don't pass non-elements to Sizzle + cur.nodeType === 1 && + jQuery.find.matchesSelector( cur, selectors ) ) ) { + + matched.push( cur ); + break; + } + } + } + } + + return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); + }, + + // Determine the position of an element within the set + index: function( elem ) { + + // No argument, return index in parent + if ( !elem ) { + return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; + } + + // Index in selector + if ( typeof elem === "string" ) { + return indexOf.call( jQuery( elem ), this[ 0 ] ); + } + + // Locate the position of the desired element + return indexOf.call( this, + + // If it receives a jQuery object, the first element is used + elem.jquery ? elem[ 0 ] : elem + ); + }, + + add: function( selector, context ) { + return this.pushStack( + jQuery.uniqueSort( + jQuery.merge( this.get(), jQuery( selector, context ) ) + ) + ); + }, + + addBack: function( selector ) { + return this.add( selector == null ? + this.prevObject : this.prevObject.filter( selector ) + ); + } +} ); + +function sibling( cur, dir ) { + while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} + return cur; +} + +jQuery.each( { + parent: function( elem ) { + var parent = elem.parentNode; + return parent && parent.nodeType !== 11 ? parent : null; + }, + parents: function( elem ) { + return dir( elem, "parentNode" ); + }, + parentsUntil: function( elem, _i, until ) { + return dir( elem, "parentNode", until ); + }, + next: function( elem ) { + return sibling( elem, "nextSibling" ); + }, + prev: function( elem ) { + return sibling( elem, "previousSibling" ); + }, + nextAll: function( elem ) { + return dir( elem, "nextSibling" ); + }, + prevAll: function( elem ) { + return dir( elem, "previousSibling" ); + }, + nextUntil: function( elem, _i, until ) { + return dir( elem, "nextSibling", until ); + }, + prevUntil: function( elem, _i, until ) { + return dir( elem, "previousSibling", until ); + }, + siblings: function( elem ) { + return siblings( ( elem.parentNode || {} ).firstChild, elem ); + }, + children: function( elem ) { + return siblings( elem.firstChild ); + }, + contents: function( elem ) { + if ( elem.contentDocument != null && + + // Support: IE 11+ + // elements with no `data` attribute has an object + // `contentDocument` with a `null` prototype. + getProto( elem.contentDocument ) ) { + + return elem.contentDocument; + } + + // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only + // Treat the template element as a regular one in browsers that + // don't support it. + if ( nodeName( elem, "template" ) ) { + elem = elem.content || elem; + } + + return jQuery.merge( [], elem.childNodes ); + } +}, function( name, fn ) { + jQuery.fn[ name ] = function( until, selector ) { + var matched = jQuery.map( this, fn, until ); + + if ( name.slice( -5 ) !== "Until" ) { + selector = until; + } + + if ( selector && typeof selector === "string" ) { + matched = jQuery.filter( selector, matched ); + } + + if ( this.length > 1 ) { + + // Remove duplicates + if ( !guaranteedUnique[ name ] ) { + jQuery.uniqueSort( matched ); + } + + // Reverse order for parents* and prev-derivatives + if ( rparentsprev.test( name ) ) { + matched.reverse(); + } + } + + return this.pushStack( matched ); + }; +} ); +var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); + + + +// Convert String-formatted options into Object-formatted ones +function createOptions( options ) { + var object = {}; + jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { + object[ flag ] = true; + } ); + return object; +} + +/* + * Create a callback list using the following parameters: + * + * options: an optional list of space-separated options that will change how + * the callback list behaves or a more traditional option object + * + * By default a callback list will act like an event callback list and can be + * "fired" multiple times. + * + * Possible options: + * + * once: will ensure the callback list can only be fired once (like a Deferred) + * + * memory: will keep track of previous values and will call any callback added + * after the list has been fired right away with the latest "memorized" + * values (like a Deferred) + * + * unique: will ensure a callback can only be added once (no duplicate in the list) + * + * stopOnFalse: interrupt callings when a callback returns false + * + */ +jQuery.Callbacks = function( options ) { + + // Convert options from String-formatted to Object-formatted if needed + // (we check in cache first) + options = typeof options === "string" ? + createOptions( options ) : + jQuery.extend( {}, options ); + + var // Flag to know if list is currently firing + firing, + + // Last fire value for non-forgettable lists + memory, + + // Flag to know if list was already fired + fired, + + // Flag to prevent firing + locked, + + // Actual callback list + list = [], + + // Queue of execution data for repeatable lists + queue = [], + + // Index of currently firing callback (modified by add/remove as needed) + firingIndex = -1, + + // Fire callbacks + fire = function() { + + // Enforce single-firing + locked = locked || options.once; + + // Execute callbacks for all pending executions, + // respecting firingIndex overrides and runtime changes + fired = firing = true; + for ( ; queue.length; firingIndex = -1 ) { + memory = queue.shift(); + while ( ++firingIndex < list.length ) { + + // Run callback and check for early termination + if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && + options.stopOnFalse ) { + + // Jump to end and forget the data so .add doesn't re-fire + firingIndex = list.length; + memory = false; + } + } + } + + // Forget the data if we're done with it + if ( !options.memory ) { + memory = false; + } + + firing = false; + + // Clean up if we're done firing for good + if ( locked ) { + + // Keep an empty list if we have data for future add calls + if ( memory ) { + list = []; + + // Otherwise, this object is spent + } else { + list = ""; + } + } + }, + + // Actual Callbacks object + self = { + + // Add a callback or a collection of callbacks to the list + add: function() { + if ( list ) { + + // If we have memory from a past run, we should fire after adding + if ( memory && !firing ) { + firingIndex = list.length - 1; + queue.push( memory ); + } + + ( function add( args ) { + jQuery.each( args, function( _, arg ) { + if ( isFunction( arg ) ) { + if ( !options.unique || !self.has( arg ) ) { + list.push( arg ); + } + } else if ( arg && arg.length && toType( arg ) !== "string" ) { + + // Inspect recursively + add( arg ); + } + } ); + } )( arguments ); + + if ( memory && !firing ) { + fire(); + } + } + return this; + }, + + // Remove a callback from the list + remove: function() { + jQuery.each( arguments, function( _, arg ) { + var index; + while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { + list.splice( index, 1 ); + + // Handle firing indexes + if ( index <= firingIndex ) { + firingIndex--; + } + } + } ); + return this; + }, + + // Check if a given callback is in the list. + // If no argument is given, return whether or not list has callbacks attached. + has: function( fn ) { + return fn ? + jQuery.inArray( fn, list ) > -1 : + list.length > 0; + }, + + // Remove all callbacks from the list + empty: function() { + if ( list ) { + list = []; + } + return this; + }, + + // Disable .fire and .add + // Abort any current/pending executions + // Clear all callbacks and values + disable: function() { + locked = queue = []; + list = memory = ""; + return this; + }, + disabled: function() { + return !list; + }, + + // Disable .fire + // Also disable .add unless we have memory (since it would have no effect) + // Abort any pending executions + lock: function() { + locked = queue = []; + if ( !memory && !firing ) { + list = memory = ""; + } + return this; + }, + locked: function() { + return !!locked; + }, + + // Call all callbacks with the given context and arguments + fireWith: function( context, args ) { + if ( !locked ) { + args = args || []; + args = [ context, args.slice ? args.slice() : args ]; + queue.push( args ); + if ( !firing ) { + fire(); + } + } + return this; + }, + + // Call all the callbacks with the given arguments + fire: function() { + self.fireWith( this, arguments ); + return this; + }, + + // To know if the callbacks have already been called at least once + fired: function() { + return !!fired; + } + }; + + return self; +}; + + +function Identity( v ) { + return v; +} +function Thrower( ex ) { + throw ex; +} + +function adoptValue( value, resolve, reject, noValue ) { + var method; + + try { + + // Check for promise aspect first to privilege synchronous behavior + if ( value && isFunction( ( method = value.promise ) ) ) { + method.call( value ).done( resolve ).fail( reject ); + + // Other thenables + } else if ( value && isFunction( ( method = value.then ) ) ) { + method.call( value, resolve, reject ); + + // Other non-thenables + } else { + + // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: + // * false: [ value ].slice( 0 ) => resolve( value ) + // * true: [ value ].slice( 1 ) => resolve() + resolve.apply( undefined, [ value ].slice( noValue ) ); + } + + // For Promises/A+, convert exceptions into rejections + // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in + // Deferred#then to conditionally suppress rejection. + } catch ( value ) { + + // Support: Android 4.0 only + // Strict mode functions invoked without .call/.apply get global-object context + reject.apply( undefined, [ value ] ); + } +} + +jQuery.extend( { + + Deferred: function( func ) { + var tuples = [ + + // action, add listener, callbacks, + // ... .then handlers, argument index, [final state] + [ "notify", "progress", jQuery.Callbacks( "memory" ), + jQuery.Callbacks( "memory" ), 2 ], + [ "resolve", "done", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 0, "resolved" ], + [ "reject", "fail", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 1, "rejected" ] + ], + state = "pending", + promise = { + state: function() { + return state; + }, + always: function() { + deferred.done( arguments ).fail( arguments ); + return this; + }, + "catch": function( fn ) { + return promise.then( null, fn ); + }, + + // Keep pipe for back-compat + pipe: function( /* fnDone, fnFail, fnProgress */ ) { + var fns = arguments; + + return jQuery.Deferred( function( newDefer ) { + jQuery.each( tuples, function( _i, tuple ) { + + // Map tuples (progress, done, fail) to arguments (done, fail, progress) + var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; + + // deferred.progress(function() { bind to newDefer or newDefer.notify }) + // deferred.done(function() { bind to newDefer or newDefer.resolve }) + // deferred.fail(function() { bind to newDefer or newDefer.reject }) + deferred[ tuple[ 1 ] ]( function() { + var returned = fn && fn.apply( this, arguments ); + if ( returned && isFunction( returned.promise ) ) { + returned.promise() + .progress( newDefer.notify ) + .done( newDefer.resolve ) + .fail( newDefer.reject ); + } else { + newDefer[ tuple[ 0 ] + "With" ]( + this, + fn ? [ returned ] : arguments + ); + } + } ); + } ); + fns = null; + } ).promise(); + }, + then: function( onFulfilled, onRejected, onProgress ) { + var maxDepth = 0; + function resolve( depth, deferred, handler, special ) { + return function() { + var that = this, + args = arguments, + mightThrow = function() { + var returned, then; + + // Support: Promises/A+ section 2.3.3.3.3 + // https://promisesaplus.com/#point-59 + // Ignore double-resolution attempts + if ( depth < maxDepth ) { + return; + } + + returned = handler.apply( that, args ); + + // Support: Promises/A+ section 2.3.1 + // https://promisesaplus.com/#point-48 + if ( returned === deferred.promise() ) { + throw new TypeError( "Thenable self-resolution" ); + } + + // Support: Promises/A+ sections 2.3.3.1, 3.5 + // https://promisesaplus.com/#point-54 + // https://promisesaplus.com/#point-75 + // Retrieve `then` only once + then = returned && + + // Support: Promises/A+ section 2.3.4 + // https://promisesaplus.com/#point-64 + // Only check objects and functions for thenability + ( typeof returned === "object" || + typeof returned === "function" ) && + returned.then; + + // Handle a returned thenable + if ( isFunction( then ) ) { + + // Special processors (notify) just wait for resolution + if ( special ) { + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ) + ); + + // Normal processors (resolve) also hook into progress + } else { + + // ...and disregard older resolution values + maxDepth++; + + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ), + resolve( maxDepth, deferred, Identity, + deferred.notifyWith ) + ); + } + + // Handle all other returned values + } else { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Identity ) { + that = undefined; + args = [ returned ]; + } + + // Process the value(s) + // Default process is resolve + ( special || deferred.resolveWith )( that, args ); + } + }, + + // Only normal processors (resolve) catch and reject exceptions + process = special ? + mightThrow : + function() { + try { + mightThrow(); + } catch ( e ) { + + if ( jQuery.Deferred.exceptionHook ) { + jQuery.Deferred.exceptionHook( e, + process.stackTrace ); + } + + // Support: Promises/A+ section 2.3.3.3.4.1 + // https://promisesaplus.com/#point-61 + // Ignore post-resolution exceptions + if ( depth + 1 >= maxDepth ) { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Thrower ) { + that = undefined; + args = [ e ]; + } + + deferred.rejectWith( that, args ); + } + } + }; + + // Support: Promises/A+ section 2.3.3.3.1 + // https://promisesaplus.com/#point-57 + // Re-resolve promises immediately to dodge false rejection from + // subsequent errors + if ( depth ) { + process(); + } else { + + // Call an optional hook to record the stack, in case of exception + // since it's otherwise lost when execution goes async + if ( jQuery.Deferred.getStackHook ) { + process.stackTrace = jQuery.Deferred.getStackHook(); + } + window.setTimeout( process ); + } + }; + } + + return jQuery.Deferred( function( newDefer ) { + + // progress_handlers.add( ... ) + tuples[ 0 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onProgress ) ? + onProgress : + Identity, + newDefer.notifyWith + ) + ); + + // fulfilled_handlers.add( ... ) + tuples[ 1 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onFulfilled ) ? + onFulfilled : + Identity + ) + ); + + // rejected_handlers.add( ... ) + tuples[ 2 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onRejected ) ? + onRejected : + Thrower + ) + ); + } ).promise(); + }, + + // Get a promise for this deferred + // If obj is provided, the promise aspect is added to the object + promise: function( obj ) { + return obj != null ? jQuery.extend( obj, promise ) : promise; + } + }, + deferred = {}; + + // Add list-specific methods + jQuery.each( tuples, function( i, tuple ) { + var list = tuple[ 2 ], + stateString = tuple[ 5 ]; + + // promise.progress = list.add + // promise.done = list.add + // promise.fail = list.add + promise[ tuple[ 1 ] ] = list.add; + + // Handle state + if ( stateString ) { + list.add( + function() { + + // state = "resolved" (i.e., fulfilled) + // state = "rejected" + state = stateString; + }, + + // rejected_callbacks.disable + // fulfilled_callbacks.disable + tuples[ 3 - i ][ 2 ].disable, + + // rejected_handlers.disable + // fulfilled_handlers.disable + tuples[ 3 - i ][ 3 ].disable, + + // progress_callbacks.lock + tuples[ 0 ][ 2 ].lock, + + // progress_handlers.lock + tuples[ 0 ][ 3 ].lock + ); + } + + // progress_handlers.fire + // fulfilled_handlers.fire + // rejected_handlers.fire + list.add( tuple[ 3 ].fire ); + + // deferred.notify = function() { deferred.notifyWith(...) } + // deferred.resolve = function() { deferred.resolveWith(...) } + // deferred.reject = function() { deferred.rejectWith(...) } + deferred[ tuple[ 0 ] ] = function() { + deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); + return this; + }; + + // deferred.notifyWith = list.fireWith + // deferred.resolveWith = list.fireWith + // deferred.rejectWith = list.fireWith + deferred[ tuple[ 0 ] + "With" ] = list.fireWith; + } ); + + // Make the deferred a promise + promise.promise( deferred ); + + // Call given func if any + if ( func ) { + func.call( deferred, deferred ); + } + + // All done! + return deferred; + }, + + // Deferred helper + when: function( singleValue ) { + var + + // count of uncompleted subordinates + remaining = arguments.length, + + // count of unprocessed arguments + i = remaining, + + // subordinate fulfillment data + resolveContexts = Array( i ), + resolveValues = slice.call( arguments ), + + // the primary Deferred + primary = jQuery.Deferred(), + + // subordinate callback factory + updateFunc = function( i ) { + return function( value ) { + resolveContexts[ i ] = this; + resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; + if ( !( --remaining ) ) { + primary.resolveWith( resolveContexts, resolveValues ); + } + }; + }; + + // Single- and empty arguments are adopted like Promise.resolve + if ( remaining <= 1 ) { + adoptValue( singleValue, primary.done( updateFunc( i ) ).resolve, primary.reject, + !remaining ); + + // Use .then() to unwrap secondary thenables (cf. gh-3000) + if ( primary.state() === "pending" || + isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { + + return primary.then(); + } + } + + // Multiple arguments are aggregated like Promise.all array elements + while ( i-- ) { + adoptValue( resolveValues[ i ], updateFunc( i ), primary.reject ); + } + + return primary.promise(); + } +} ); + + +// These usually indicate a programmer mistake during development, +// warn about them ASAP rather than swallowing them by default. +var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; + +jQuery.Deferred.exceptionHook = function( error, stack ) { + + // Support: IE 8 - 9 only + // Console exists when dev tools are open, which can happen at any time + if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { + window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); + } +}; + + + + +jQuery.readyException = function( error ) { + window.setTimeout( function() { + throw error; + } ); +}; + + + + +// The deferred used on DOM ready +var readyList = jQuery.Deferred(); + +jQuery.fn.ready = function( fn ) { + + readyList + .then( fn ) + + // Wrap jQuery.readyException in a function so that the lookup + // happens at the time of error handling instead of callback + // registration. + .catch( function( error ) { + jQuery.readyException( error ); + } ); + + return this; +}; + +jQuery.extend( { + + // Is the DOM ready to be used? Set to true once it occurs. + isReady: false, + + // A counter to track how many items to wait for before + // the ready event fires. See #6781 + readyWait: 1, + + // Handle when the DOM is ready + ready: function( wait ) { + + // Abort if there are pending holds or we're already ready + if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { + return; + } + + // Remember that the DOM is ready + jQuery.isReady = true; + + // If a normal DOM Ready event fired, decrement, and wait if need be + if ( wait !== true && --jQuery.readyWait > 0 ) { + return; + } + + // If there are functions bound, to execute + readyList.resolveWith( document, [ jQuery ] ); + } +} ); + +jQuery.ready.then = readyList.then; + +// The ready event handler and self cleanup method +function completed() { + document.removeEventListener( "DOMContentLoaded", completed ); + window.removeEventListener( "load", completed ); + jQuery.ready(); +} + +// Catch cases where $(document).ready() is called +// after the browser event has already occurred. +// Support: IE <=9 - 10 only +// Older IE sometimes signals "interactive" too soon +if ( document.readyState === "complete" || + ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { + + // Handle it asynchronously to allow scripts the opportunity to delay ready + window.setTimeout( jQuery.ready ); + +} else { + + // Use the handy event callback + document.addEventListener( "DOMContentLoaded", completed ); + + // A fallback to window.onload, that will always work + window.addEventListener( "load", completed ); +} + + + + +// Multifunctional method to get and set values of a collection +// The value/s can optionally be executed if it's a function +var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { + var i = 0, + len = elems.length, + bulk = key == null; + + // Sets many values + if ( toType( key ) === "object" ) { + chainable = true; + for ( i in key ) { + access( elems, fn, i, key[ i ], true, emptyGet, raw ); + } + + // Sets one value + } else if ( value !== undefined ) { + chainable = true; + + if ( !isFunction( value ) ) { + raw = true; + } + + if ( bulk ) { + + // Bulk operations run against the entire set + if ( raw ) { + fn.call( elems, value ); + fn = null; + + // ...except when executing function values + } else { + bulk = fn; + fn = function( elem, _key, value ) { + return bulk.call( jQuery( elem ), value ); + }; + } + } + + if ( fn ) { + for ( ; i < len; i++ ) { + fn( + elems[ i ], key, raw ? + value : + value.call( elems[ i ], i, fn( elems[ i ], key ) ) + ); + } + } + } + + if ( chainable ) { + return elems; + } + + // Gets + if ( bulk ) { + return fn.call( elems ); + } + + return len ? fn( elems[ 0 ], key ) : emptyGet; +}; + + +// Matches dashed string for camelizing +var rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g; + +// Used by camelCase as callback to replace() +function fcamelCase( _all, letter ) { + return letter.toUpperCase(); +} + +// Convert dashed to camelCase; used by the css and data modules +// Support: IE <=9 - 11, Edge 12 - 15 +// Microsoft forgot to hump their vendor prefix (#9572) +function camelCase( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); +} +var acceptData = function( owner ) { + + // Accepts only: + // - Node + // - Node.ELEMENT_NODE + // - Node.DOCUMENT_NODE + // - Object + // - Any + return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); +}; + + + + +function Data() { + this.expando = jQuery.expando + Data.uid++; +} + +Data.uid = 1; + +Data.prototype = { + + cache: function( owner ) { + + // Check if the owner object already has a cache + var value = owner[ this.expando ]; + + // If not, create one + if ( !value ) { + value = {}; + + // We can accept data for non-element nodes in modern browsers, + // but we should not, see #8335. + // Always return an empty object. + if ( acceptData( owner ) ) { + + // If it is a node unlikely to be stringify-ed or looped over + // use plain assignment + if ( owner.nodeType ) { + owner[ this.expando ] = value; + + // Otherwise secure it in a non-enumerable property + // configurable must be true to allow the property to be + // deleted when data is removed + } else { + Object.defineProperty( owner, this.expando, { + value: value, + configurable: true + } ); + } + } + } + + return value; + }, + set: function( owner, data, value ) { + var prop, + cache = this.cache( owner ); + + // Handle: [ owner, key, value ] args + // Always use camelCase key (gh-2257) + if ( typeof data === "string" ) { + cache[ camelCase( data ) ] = value; + + // Handle: [ owner, { properties } ] args + } else { + + // Copy the properties one-by-one to the cache object + for ( prop in data ) { + cache[ camelCase( prop ) ] = data[ prop ]; + } + } + return cache; + }, + get: function( owner, key ) { + return key === undefined ? + this.cache( owner ) : + + // Always use camelCase key (gh-2257) + owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; + }, + access: function( owner, key, value ) { + + // In cases where either: + // + // 1. No key was specified + // 2. A string key was specified, but no value provided + // + // Take the "read" path and allow the get method to determine + // which value to return, respectively either: + // + // 1. The entire cache object + // 2. The data stored at the key + // + if ( key === undefined || + ( ( key && typeof key === "string" ) && value === undefined ) ) { + + return this.get( owner, key ); + } + + // When the key is not a string, or both a key and value + // are specified, set or extend (existing objects) with either: + // + // 1. An object of properties + // 2. A key and value + // + this.set( owner, key, value ); + + // Since the "set" path can have two possible entry points + // return the expected data based on which path was taken[*] + return value !== undefined ? value : key; + }, + remove: function( owner, key ) { + var i, + cache = owner[ this.expando ]; + + if ( cache === undefined ) { + return; + } + + if ( key !== undefined ) { + + // Support array or space separated string of keys + if ( Array.isArray( key ) ) { + + // If key is an array of keys... + // We always set camelCase keys, so remove that. + key = key.map( camelCase ); + } else { + key = camelCase( key ); + + // If a key with the spaces exists, use it. + // Otherwise, create an array by matching non-whitespace + key = key in cache ? + [ key ] : + ( key.match( rnothtmlwhite ) || [] ); + } + + i = key.length; + + while ( i-- ) { + delete cache[ key[ i ] ]; + } + } + + // Remove the expando if there's no more data + if ( key === undefined || jQuery.isEmptyObject( cache ) ) { + + // Support: Chrome <=35 - 45 + // Webkit & Blink performance suffers when deleting properties + // from DOM nodes, so set to undefined instead + // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) + if ( owner.nodeType ) { + owner[ this.expando ] = undefined; + } else { + delete owner[ this.expando ]; + } + } + }, + hasData: function( owner ) { + var cache = owner[ this.expando ]; + return cache !== undefined && !jQuery.isEmptyObject( cache ); + } +}; +var dataPriv = new Data(); + +var dataUser = new Data(); + + + +// Implementation Summary +// +// 1. Enforce API surface and semantic compatibility with 1.9.x branch +// 2. Improve the module's maintainability by reducing the storage +// paths to a single mechanism. +// 3. Use the same single mechanism to support "private" and "user" data. +// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) +// 5. Avoid exposing implementation details on user objects (eg. expando properties) +// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 + +var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, + rmultiDash = /[A-Z]/g; + +function getData( data ) { + if ( data === "true" ) { + return true; + } + + if ( data === "false" ) { + return false; + } + + if ( data === "null" ) { + return null; + } + + // Only convert to a number if it doesn't change the string + if ( data === +data + "" ) { + return +data; + } + + if ( rbrace.test( data ) ) { + return JSON.parse( data ); + } + + return data; +} + +function dataAttr( elem, key, data ) { + var name; + + // If nothing was found internally, try to fetch any + // data from the HTML5 data-* attribute + if ( data === undefined && elem.nodeType === 1 ) { + name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); + data = elem.getAttribute( name ); + + if ( typeof data === "string" ) { + try { + data = getData( data ); + } catch ( e ) {} + + // Make sure we set the data so it isn't changed later + dataUser.set( elem, key, data ); + } else { + data = undefined; + } + } + return data; +} + +jQuery.extend( { + hasData: function( elem ) { + return dataUser.hasData( elem ) || dataPriv.hasData( elem ); + }, + + data: function( elem, name, data ) { + return dataUser.access( elem, name, data ); + }, + + removeData: function( elem, name ) { + dataUser.remove( elem, name ); + }, + + // TODO: Now that all calls to _data and _removeData have been replaced + // with direct calls to dataPriv methods, these can be deprecated. + _data: function( elem, name, data ) { + return dataPriv.access( elem, name, data ); + }, + + _removeData: function( elem, name ) { + dataPriv.remove( elem, name ); + } +} ); + +jQuery.fn.extend( { + data: function( key, value ) { + var i, name, data, + elem = this[ 0 ], + attrs = elem && elem.attributes; + + // Gets all values + if ( key === undefined ) { + if ( this.length ) { + data = dataUser.get( elem ); + + if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { + i = attrs.length; + while ( i-- ) { + + // Support: IE 11 only + // The attrs elements can be null (#14894) + if ( attrs[ i ] ) { + name = attrs[ i ].name; + if ( name.indexOf( "data-" ) === 0 ) { + name = camelCase( name.slice( 5 ) ); + dataAttr( elem, name, data[ name ] ); + } + } + } + dataPriv.set( elem, "hasDataAttrs", true ); + } + } + + return data; + } + + // Sets multiple values + if ( typeof key === "object" ) { + return this.each( function() { + dataUser.set( this, key ); + } ); + } + + return access( this, function( value ) { + var data; + + // The calling jQuery object (element matches) is not empty + // (and therefore has an element appears at this[ 0 ]) and the + // `value` parameter was not undefined. An empty jQuery object + // will result in `undefined` for elem = this[ 0 ] which will + // throw an exception if an attempt to read a data cache is made. + if ( elem && value === undefined ) { + + // Attempt to get data from the cache + // The key will always be camelCased in Data + data = dataUser.get( elem, key ); + if ( data !== undefined ) { + return data; + } + + // Attempt to "discover" the data in + // HTML5 custom data-* attrs + data = dataAttr( elem, key ); + if ( data !== undefined ) { + return data; + } + + // We tried really hard, but the data doesn't exist. + return; + } + + // Set the data... + this.each( function() { + + // We always store the camelCased key + dataUser.set( this, key, value ); + } ); + }, null, value, arguments.length > 1, null, true ); + }, + + removeData: function( key ) { + return this.each( function() { + dataUser.remove( this, key ); + } ); + } +} ); + + +jQuery.extend( { + queue: function( elem, type, data ) { + var queue; + + if ( elem ) { + type = ( type || "fx" ) + "queue"; + queue = dataPriv.get( elem, type ); + + // Speed up dequeue by getting out quickly if this is just a lookup + if ( data ) { + if ( !queue || Array.isArray( data ) ) { + queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); + } else { + queue.push( data ); + } + } + return queue || []; + } + }, + + dequeue: function( elem, type ) { + type = type || "fx"; + + var queue = jQuery.queue( elem, type ), + startLength = queue.length, + fn = queue.shift(), + hooks = jQuery._queueHooks( elem, type ), + next = function() { + jQuery.dequeue( elem, type ); + }; + + // If the fx queue is dequeued, always remove the progress sentinel + if ( fn === "inprogress" ) { + fn = queue.shift(); + startLength--; + } + + if ( fn ) { + + // Add a progress sentinel to prevent the fx queue from being + // automatically dequeued + if ( type === "fx" ) { + queue.unshift( "inprogress" ); + } + + // Clear up the last queue stop function + delete hooks.stop; + fn.call( elem, next, hooks ); + } + + if ( !startLength && hooks ) { + hooks.empty.fire(); + } + }, + + // Not public - generate a queueHooks object, or return the current one + _queueHooks: function( elem, type ) { + var key = type + "queueHooks"; + return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { + empty: jQuery.Callbacks( "once memory" ).add( function() { + dataPriv.remove( elem, [ type + "queue", key ] ); + } ) + } ); + } +} ); + +jQuery.fn.extend( { + queue: function( type, data ) { + var setter = 2; + + if ( typeof type !== "string" ) { + data = type; + type = "fx"; + setter--; + } + + if ( arguments.length < setter ) { + return jQuery.queue( this[ 0 ], type ); + } + + return data === undefined ? + this : + this.each( function() { + var queue = jQuery.queue( this, type, data ); + + // Ensure a hooks for this queue + jQuery._queueHooks( this, type ); + + if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { + jQuery.dequeue( this, type ); + } + } ); + }, + dequeue: function( type ) { + return this.each( function() { + jQuery.dequeue( this, type ); + } ); + }, + clearQueue: function( type ) { + return this.queue( type || "fx", [] ); + }, + + // Get a promise resolved when queues of a certain type + // are emptied (fx is the type by default) + promise: function( type, obj ) { + var tmp, + count = 1, + defer = jQuery.Deferred(), + elements = this, + i = this.length, + resolve = function() { + if ( !( --count ) ) { + defer.resolveWith( elements, [ elements ] ); + } + }; + + if ( typeof type !== "string" ) { + obj = type; + type = undefined; + } + type = type || "fx"; + + while ( i-- ) { + tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); + if ( tmp && tmp.empty ) { + count++; + tmp.empty.add( resolve ); + } + } + resolve(); + return defer.promise( obj ); + } +} ); +var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; + +var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); + + +var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; + +var documentElement = document.documentElement; + + + + var isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ); + }, + composed = { composed: true }; + + // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only + // Check attachment across shadow DOM boundaries when possible (gh-3504) + // Support: iOS 10.0-10.2 only + // Early iOS 10 versions support `attachShadow` but not `getRootNode`, + // leading to errors. We need to check for `getRootNode`. + if ( documentElement.getRootNode ) { + isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ) || + elem.getRootNode( composed ) === elem.ownerDocument; + }; + } +var isHiddenWithinTree = function( elem, el ) { + + // isHiddenWithinTree might be called from jQuery#filter function; + // in that case, element will be second argument + elem = el || elem; + + // Inline style trumps all + return elem.style.display === "none" || + elem.style.display === "" && + + // Otherwise, check computed style + // Support: Firefox <=43 - 45 + // Disconnected elements can have computed display: none, so first confirm that elem is + // in the document. + isAttached( elem ) && + + jQuery.css( elem, "display" ) === "none"; + }; + + + +function adjustCSS( elem, prop, valueParts, tween ) { + var adjusted, scale, + maxIterations = 20, + currentValue = tween ? + function() { + return tween.cur(); + } : + function() { + return jQuery.css( elem, prop, "" ); + }, + initial = currentValue(), + unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), + + // Starting value computation is required for potential unit mismatches + initialInUnit = elem.nodeType && + ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && + rcssNum.exec( jQuery.css( elem, prop ) ); + + if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { + + // Support: Firefox <=54 + // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) + initial = initial / 2; + + // Trust units reported by jQuery.css + unit = unit || initialInUnit[ 3 ]; + + // Iteratively approximate from a nonzero starting point + initialInUnit = +initial || 1; + + while ( maxIterations-- ) { + + // Evaluate and update our best guess (doubling guesses that zero out). + // Finish if the scale equals or crosses 1 (making the old*new product non-positive). + jQuery.style( elem, prop, initialInUnit + unit ); + if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { + maxIterations = 0; + } + initialInUnit = initialInUnit / scale; + + } + + initialInUnit = initialInUnit * 2; + jQuery.style( elem, prop, initialInUnit + unit ); + + // Make sure we update the tween properties later on + valueParts = valueParts || []; + } + + if ( valueParts ) { + initialInUnit = +initialInUnit || +initial || 0; + + // Apply relative offset (+=/-=) if specified + adjusted = valueParts[ 1 ] ? + initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : + +valueParts[ 2 ]; + if ( tween ) { + tween.unit = unit; + tween.start = initialInUnit; + tween.end = adjusted; + } + } + return adjusted; +} + + +var defaultDisplayMap = {}; + +function getDefaultDisplay( elem ) { + var temp, + doc = elem.ownerDocument, + nodeName = elem.nodeName, + display = defaultDisplayMap[ nodeName ]; + + if ( display ) { + return display; + } + + temp = doc.body.appendChild( doc.createElement( nodeName ) ); + display = jQuery.css( temp, "display" ); + + temp.parentNode.removeChild( temp ); + + if ( display === "none" ) { + display = "block"; + } + defaultDisplayMap[ nodeName ] = display; + + return display; +} + +function showHide( elements, show ) { + var display, elem, + values = [], + index = 0, + length = elements.length; + + // Determine new display value for elements that need to change + for ( ; index < length; index++ ) { + elem = elements[ index ]; + if ( !elem.style ) { + continue; + } + + display = elem.style.display; + if ( show ) { + + // Since we force visibility upon cascade-hidden elements, an immediate (and slow) + // check is required in this first loop unless we have a nonempty display value (either + // inline or about-to-be-restored) + if ( display === "none" ) { + values[ index ] = dataPriv.get( elem, "display" ) || null; + if ( !values[ index ] ) { + elem.style.display = ""; + } + } + if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { + values[ index ] = getDefaultDisplay( elem ); + } + } else { + if ( display !== "none" ) { + values[ index ] = "none"; + + // Remember what we're overwriting + dataPriv.set( elem, "display", display ); + } + } + } + + // Set the display of the elements in a second loop to avoid constant reflow + for ( index = 0; index < length; index++ ) { + if ( values[ index ] != null ) { + elements[ index ].style.display = values[ index ]; + } + } + + return elements; +} + +jQuery.fn.extend( { + show: function() { + return showHide( this, true ); + }, + hide: function() { + return showHide( this ); + }, + toggle: function( state ) { + if ( typeof state === "boolean" ) { + return state ? this.show() : this.hide(); + } + + return this.each( function() { + if ( isHiddenWithinTree( this ) ) { + jQuery( this ).show(); + } else { + jQuery( this ).hide(); + } + } ); + } +} ); +var rcheckableType = ( /^(?:checkbox|radio)$/i ); + +var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); + +var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); + + + +( function() { + var fragment = document.createDocumentFragment(), + div = fragment.appendChild( document.createElement( "div" ) ), + input = document.createElement( "input" ); + + // Support: Android 4.0 - 4.3 only + // Check state lost if the name is set (#11217) + // Support: Windows Web Apps (WWA) + // `name` and `type` must use .setAttribute for WWA (#14901) + input.setAttribute( "type", "radio" ); + input.setAttribute( "checked", "checked" ); + input.setAttribute( "name", "t" ); + + div.appendChild( input ); + + // Support: Android <=4.1 only + // Older WebKit doesn't clone checked state correctly in fragments + support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; + + // Support: IE <=11 only + // Make sure textarea (and checkbox) defaultValue is properly cloned + div.innerHTML = ""; + support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; + + // Support: IE <=9 only + // IE <=9 replaces "; + support.option = !!div.lastChild; +} )(); + + +// We have to close these tags to support XHTML (#13200) +var wrapMap = { + + // XHTML parsers do not magically insert elements in the + // same way that tag soup parsers do. So we cannot shorten + // this by omitting or other required elements. + thead: [ 1, "", "
" ], + col: [ 2, "", "
" ], + tr: [ 2, "", "
" ], + td: [ 3, "", "
" ], + + _default: [ 0, "", "" ] +}; + +wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; +wrapMap.th = wrapMap.td; + +// Support: IE <=9 only +if ( !support.option ) { + wrapMap.optgroup = wrapMap.option = [ 1, "" ]; +} + + +function getAll( context, tag ) { + + // Support: IE <=9 - 11 only + // Use typeof to avoid zero-argument method invocation on host objects (#15151) + var ret; + + if ( typeof context.getElementsByTagName !== "undefined" ) { + ret = context.getElementsByTagName( tag || "*" ); + + } else if ( typeof context.querySelectorAll !== "undefined" ) { + ret = context.querySelectorAll( tag || "*" ); + + } else { + ret = []; + } + + if ( tag === undefined || tag && nodeName( context, tag ) ) { + return jQuery.merge( [ context ], ret ); + } + + return ret; +} + + +// Mark scripts as having already been evaluated +function setGlobalEval( elems, refElements ) { + var i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + dataPriv.set( + elems[ i ], + "globalEval", + !refElements || dataPriv.get( refElements[ i ], "globalEval" ) + ); + } +} + + +var rhtml = /<|&#?\w+;/; + +function buildFragment( elems, context, scripts, selection, ignored ) { + var elem, tmp, tag, wrap, attached, j, + fragment = context.createDocumentFragment(), + nodes = [], + i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + elem = elems[ i ]; + + if ( elem || elem === 0 ) { + + // Add nodes directly + if ( toType( elem ) === "object" ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); + + // Convert non-html into a text node + } else if ( !rhtml.test( elem ) ) { + nodes.push( context.createTextNode( elem ) ); + + // Convert html into DOM nodes + } else { + tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); + + // Deserialize a standard representation + tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); + wrap = wrapMap[ tag ] || wrapMap._default; + tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; + + // Descend through wrappers to the right content + j = wrap[ 0 ]; + while ( j-- ) { + tmp = tmp.lastChild; + } + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, tmp.childNodes ); + + // Remember the top-level container + tmp = fragment.firstChild; + + // Ensure the created nodes are orphaned (#12392) + tmp.textContent = ""; + } + } + } + + // Remove wrapper from fragment + fragment.textContent = ""; + + i = 0; + while ( ( elem = nodes[ i++ ] ) ) { + + // Skip elements already in the context collection (trac-4087) + if ( selection && jQuery.inArray( elem, selection ) > -1 ) { + if ( ignored ) { + ignored.push( elem ); + } + continue; + } + + attached = isAttached( elem ); + + // Append to fragment + tmp = getAll( fragment.appendChild( elem ), "script" ); + + // Preserve script evaluation history + if ( attached ) { + setGlobalEval( tmp ); + } + + // Capture executables + if ( scripts ) { + j = 0; + while ( ( elem = tmp[ j++ ] ) ) { + if ( rscriptType.test( elem.type || "" ) ) { + scripts.push( elem ); + } + } + } + } + + return fragment; +} + + +var rtypenamespace = /^([^.]*)(?:\.(.+)|)/; + +function returnTrue() { + return true; +} + +function returnFalse() { + return false; +} + +// Support: IE <=9 - 11+ +// focus() and blur() are asynchronous, except when they are no-op. +// So expect focus to be synchronous when the element is already active, +// and blur to be synchronous when the element is not already active. +// (focus and blur are always synchronous in other supported browsers, +// this just defines when we can count on it). +function expectSync( elem, type ) { + return ( elem === safeActiveElement() ) === ( type === "focus" ); +} + +// Support: IE <=9 only +// Accessing document.activeElement can throw unexpectedly +// https://bugs.jquery.com/ticket/13393 +function safeActiveElement() { + try { + return document.activeElement; + } catch ( err ) { } +} + +function on( elem, types, selector, data, fn, one ) { + var origFn, type; + + // Types can be a map of types/handlers + if ( typeof types === "object" ) { + + // ( types-Object, selector, data ) + if ( typeof selector !== "string" ) { + + // ( types-Object, data ) + data = data || selector; + selector = undefined; + } + for ( type in types ) { + on( elem, type, selector, data, types[ type ], one ); + } + return elem; + } + + if ( data == null && fn == null ) { + + // ( types, fn ) + fn = selector; + data = selector = undefined; + } else if ( fn == null ) { + if ( typeof selector === "string" ) { + + // ( types, selector, fn ) + fn = data; + data = undefined; + } else { + + // ( types, data, fn ) + fn = data; + data = selector; + selector = undefined; + } + } + if ( fn === false ) { + fn = returnFalse; + } else if ( !fn ) { + return elem; + } + + if ( one === 1 ) { + origFn = fn; + fn = function( event ) { + + // Can use an empty set, since event contains the info + jQuery().off( event ); + return origFn.apply( this, arguments ); + }; + + // Use same guid so caller can remove using origFn + fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); + } + return elem.each( function() { + jQuery.event.add( this, types, fn, data, selector ); + } ); +} + +/* + * Helper functions for managing events -- not part of the public interface. + * Props to Dean Edwards' addEvent library for many of the ideas. + */ +jQuery.event = { + + global: {}, + + add: function( elem, types, handler, data, selector ) { + + var handleObjIn, eventHandle, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.get( elem ); + + // Only attach events to objects that accept data + if ( !acceptData( elem ) ) { + return; + } + + // Caller can pass in an object of custom data in lieu of the handler + if ( handler.handler ) { + handleObjIn = handler; + handler = handleObjIn.handler; + selector = handleObjIn.selector; + } + + // Ensure that invalid selectors throw exceptions at attach time + // Evaluate against documentElement in case elem is a non-element node (e.g., document) + if ( selector ) { + jQuery.find.matchesSelector( documentElement, selector ); + } + + // Make sure that the handler has a unique ID, used to find/remove it later + if ( !handler.guid ) { + handler.guid = jQuery.guid++; + } + + // Init the element's event structure and main handler, if this is the first + if ( !( events = elemData.events ) ) { + events = elemData.events = Object.create( null ); + } + if ( !( eventHandle = elemData.handle ) ) { + eventHandle = elemData.handle = function( e ) { + + // Discard the second event of a jQuery.event.trigger() and + // when an event is called after a page has unloaded + return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? + jQuery.event.dispatch.apply( elem, arguments ) : undefined; + }; + } + + // Handle multiple events separated by a space + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // There *must* be a type, no attaching namespace-only handlers + if ( !type ) { + continue; + } + + // If event changes its type, use the special event handlers for the changed type + special = jQuery.event.special[ type ] || {}; + + // If selector defined, determine special event api type, otherwise given type + type = ( selector ? special.delegateType : special.bindType ) || type; + + // Update special based on newly reset type + special = jQuery.event.special[ type ] || {}; + + // handleObj is passed to all event handlers + handleObj = jQuery.extend( { + type: type, + origType: origType, + data: data, + handler: handler, + guid: handler.guid, + selector: selector, + needsContext: selector && jQuery.expr.match.needsContext.test( selector ), + namespace: namespaces.join( "." ) + }, handleObjIn ); + + // Init the event handler queue if we're the first + if ( !( handlers = events[ type ] ) ) { + handlers = events[ type ] = []; + handlers.delegateCount = 0; + + // Only use addEventListener if the special events handler returns false + if ( !special.setup || + special.setup.call( elem, data, namespaces, eventHandle ) === false ) { + + if ( elem.addEventListener ) { + elem.addEventListener( type, eventHandle ); + } + } + } + + if ( special.add ) { + special.add.call( elem, handleObj ); + + if ( !handleObj.handler.guid ) { + handleObj.handler.guid = handler.guid; + } + } + + // Add to the element's handler list, delegates in front + if ( selector ) { + handlers.splice( handlers.delegateCount++, 0, handleObj ); + } else { + handlers.push( handleObj ); + } + + // Keep track of which events have ever been used, for event optimization + jQuery.event.global[ type ] = true; + } + + }, + + // Detach an event or set of events from an element + remove: function( elem, types, handler, selector, mappedTypes ) { + + var j, origCount, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); + + if ( !elemData || !( events = elemData.events ) ) { + return; + } + + // Once for each type.namespace in types; type may be omitted + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // Unbind all events (on this namespace, if provided) for the element + if ( !type ) { + for ( type in events ) { + jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); + } + continue; + } + + special = jQuery.event.special[ type ] || {}; + type = ( selector ? special.delegateType : special.bindType ) || type; + handlers = events[ type ] || []; + tmp = tmp[ 2 ] && + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); + + // Remove matching events + origCount = j = handlers.length; + while ( j-- ) { + handleObj = handlers[ j ]; + + if ( ( mappedTypes || origType === handleObj.origType ) && + ( !handler || handler.guid === handleObj.guid ) && + ( !tmp || tmp.test( handleObj.namespace ) ) && + ( !selector || selector === handleObj.selector || + selector === "**" && handleObj.selector ) ) { + handlers.splice( j, 1 ); + + if ( handleObj.selector ) { + handlers.delegateCount--; + } + if ( special.remove ) { + special.remove.call( elem, handleObj ); + } + } + } + + // Remove generic event handler if we removed something and no more handlers exist + // (avoids potential for endless recursion during removal of special event handlers) + if ( origCount && !handlers.length ) { + if ( !special.teardown || + special.teardown.call( elem, namespaces, elemData.handle ) === false ) { + + jQuery.removeEvent( elem, type, elemData.handle ); + } + + delete events[ type ]; + } + } + + // Remove data and the expando if it's no longer used + if ( jQuery.isEmptyObject( events ) ) { + dataPriv.remove( elem, "handle events" ); + } + }, + + dispatch: function( nativeEvent ) { + + var i, j, ret, matched, handleObj, handlerQueue, + args = new Array( arguments.length ), + + // Make a writable jQuery.Event from the native event object + event = jQuery.event.fix( nativeEvent ), + + handlers = ( + dataPriv.get( this, "events" ) || Object.create( null ) + )[ event.type ] || [], + special = jQuery.event.special[ event.type ] || {}; + + // Use the fix-ed jQuery.Event rather than the (read-only) native event + args[ 0 ] = event; + + for ( i = 1; i < arguments.length; i++ ) { + args[ i ] = arguments[ i ]; + } + + event.delegateTarget = this; + + // Call the preDispatch hook for the mapped type, and let it bail if desired + if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { + return; + } + + // Determine handlers + handlerQueue = jQuery.event.handlers.call( this, event, handlers ); + + // Run delegates first; they may want to stop propagation beneath us + i = 0; + while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { + event.currentTarget = matched.elem; + + j = 0; + while ( ( handleObj = matched.handlers[ j++ ] ) && + !event.isImmediatePropagationStopped() ) { + + // If the event is namespaced, then each handler is only invoked if it is + // specially universal or its namespaces are a superset of the event's. + if ( !event.rnamespace || handleObj.namespace === false || + event.rnamespace.test( handleObj.namespace ) ) { + + event.handleObj = handleObj; + event.data = handleObj.data; + + ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || + handleObj.handler ).apply( matched.elem, args ); + + if ( ret !== undefined ) { + if ( ( event.result = ret ) === false ) { + event.preventDefault(); + event.stopPropagation(); + } + } + } + } + } + + // Call the postDispatch hook for the mapped type + if ( special.postDispatch ) { + special.postDispatch.call( this, event ); + } + + return event.result; + }, + + handlers: function( event, handlers ) { + var i, handleObj, sel, matchedHandlers, matchedSelectors, + handlerQueue = [], + delegateCount = handlers.delegateCount, + cur = event.target; + + // Find delegate handlers + if ( delegateCount && + + // Support: IE <=9 + // Black-hole SVG instance trees (trac-13180) + cur.nodeType && + + // Support: Firefox <=42 + // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) + // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click + // Support: IE 11 only + // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) + !( event.type === "click" && event.button >= 1 ) ) { + + for ( ; cur !== this; cur = cur.parentNode || this ) { + + // Don't check non-elements (#13208) + // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) + if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { + matchedHandlers = []; + matchedSelectors = {}; + for ( i = 0; i < delegateCount; i++ ) { + handleObj = handlers[ i ]; + + // Don't conflict with Object.prototype properties (#13203) + sel = handleObj.selector + " "; + + if ( matchedSelectors[ sel ] === undefined ) { + matchedSelectors[ sel ] = handleObj.needsContext ? + jQuery( sel, this ).index( cur ) > -1 : + jQuery.find( sel, this, null, [ cur ] ).length; + } + if ( matchedSelectors[ sel ] ) { + matchedHandlers.push( handleObj ); + } + } + if ( matchedHandlers.length ) { + handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); + } + } + } + } + + // Add the remaining (directly-bound) handlers + cur = this; + if ( delegateCount < handlers.length ) { + handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); + } + + return handlerQueue; + }, + + addProp: function( name, hook ) { + Object.defineProperty( jQuery.Event.prototype, name, { + enumerable: true, + configurable: true, + + get: isFunction( hook ) ? + function() { + if ( this.originalEvent ) { + return hook( this.originalEvent ); + } + } : + function() { + if ( this.originalEvent ) { + return this.originalEvent[ name ]; + } + }, + + set: function( value ) { + Object.defineProperty( this, name, { + enumerable: true, + configurable: true, + writable: true, + value: value + } ); + } + } ); + }, + + fix: function( originalEvent ) { + return originalEvent[ jQuery.expando ] ? + originalEvent : + new jQuery.Event( originalEvent ); + }, + + special: { + load: { + + // Prevent triggered image.load events from bubbling to window.load + noBubble: true + }, + click: { + + // Utilize native event to ensure correct state for checkable inputs + setup: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Claim the first handler + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + // dataPriv.set( el, "click", ... ) + leverageNative( el, "click", returnTrue ); + } + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Force setup before triggering a click + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + leverageNative( el, "click" ); + } + + // Return non-false to allow normal event-path propagation + return true; + }, + + // For cross-browser consistency, suppress native .click() on links + // Also prevent it if we're currently inside a leveraged native-event stack + _default: function( event ) { + var target = event.target; + return rcheckableType.test( target.type ) && + target.click && nodeName( target, "input" ) && + dataPriv.get( target, "click" ) || + nodeName( target, "a" ); + } + }, + + beforeunload: { + postDispatch: function( event ) { + + // Support: Firefox 20+ + // Firefox doesn't alert if the returnValue field is not set. + if ( event.result !== undefined && event.originalEvent ) { + event.originalEvent.returnValue = event.result; + } + } + } + } +}; + +// Ensure the presence of an event listener that handles manually-triggered +// synthetic events by interrupting progress until reinvoked in response to +// *native* events that it fires directly, ensuring that state changes have +// already occurred before other listeners are invoked. +function leverageNative( el, type, expectSync ) { + + // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add + if ( !expectSync ) { + if ( dataPriv.get( el, type ) === undefined ) { + jQuery.event.add( el, type, returnTrue ); + } + return; + } + + // Register the controller as a special universal handler for all event namespaces + dataPriv.set( el, type, false ); + jQuery.event.add( el, type, { + namespace: false, + handler: function( event ) { + var notAsync, result, + saved = dataPriv.get( this, type ); + + if ( ( event.isTrigger & 1 ) && this[ type ] ) { + + // Interrupt processing of the outer synthetic .trigger()ed event + // Saved data should be false in such cases, but might be a leftover capture object + // from an async native handler (gh-4350) + if ( !saved.length ) { + + // Store arguments for use when handling the inner native event + // There will always be at least one argument (an event object), so this array + // will not be confused with a leftover capture object. + saved = slice.call( arguments ); + dataPriv.set( this, type, saved ); + + // Trigger the native event and capture its result + // Support: IE <=9 - 11+ + // focus() and blur() are asynchronous + notAsync = expectSync( this, type ); + this[ type ](); + result = dataPriv.get( this, type ); + if ( saved !== result || notAsync ) { + dataPriv.set( this, type, false ); + } else { + result = {}; + } + if ( saved !== result ) { + + // Cancel the outer synthetic event + event.stopImmediatePropagation(); + event.preventDefault(); + + // Support: Chrome 86+ + // In Chrome, if an element having a focusout handler is blurred by + // clicking outside of it, it invokes the handler synchronously. If + // that handler calls `.remove()` on the element, the data is cleared, + // leaving `result` undefined. We need to guard against this. + return result && result.value; + } + + // If this is an inner synthetic event for an event with a bubbling surrogate + // (focus or blur), assume that the surrogate already propagated from triggering the + // native event and prevent that from happening again here. + // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the + // bubbling surrogate propagates *after* the non-bubbling base), but that seems + // less bad than duplication. + } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { + event.stopPropagation(); + } + + // If this is a native event triggered above, everything is now in order + // Fire an inner synthetic event with the original arguments + } else if ( saved.length ) { + + // ...and capture the result + dataPriv.set( this, type, { + value: jQuery.event.trigger( + + // Support: IE <=9 - 11+ + // Extend with the prototype to reset the above stopImmediatePropagation() + jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), + saved.slice( 1 ), + this + ) + } ); + + // Abort handling of the native event + event.stopImmediatePropagation(); + } + } + } ); +} + +jQuery.removeEvent = function( elem, type, handle ) { + + // This "if" is needed for plain objects + if ( elem.removeEventListener ) { + elem.removeEventListener( type, handle ); + } +}; + +jQuery.Event = function( src, props ) { + + // Allow instantiation without the 'new' keyword + if ( !( this instanceof jQuery.Event ) ) { + return new jQuery.Event( src, props ); + } + + // Event object + if ( src && src.type ) { + this.originalEvent = src; + this.type = src.type; + + // Events bubbling up the document may have been marked as prevented + // by a handler lower down the tree; reflect the correct value. + this.isDefaultPrevented = src.defaultPrevented || + src.defaultPrevented === undefined && + + // Support: Android <=2.3 only + src.returnValue === false ? + returnTrue : + returnFalse; + + // Create target properties + // Support: Safari <=6 - 7 only + // Target should not be a text node (#504, #13143) + this.target = ( src.target && src.target.nodeType === 3 ) ? + src.target.parentNode : + src.target; + + this.currentTarget = src.currentTarget; + this.relatedTarget = src.relatedTarget; + + // Event type + } else { + this.type = src; + } + + // Put explicitly provided properties onto the event object + if ( props ) { + jQuery.extend( this, props ); + } + + // Create a timestamp if incoming event doesn't have one + this.timeStamp = src && src.timeStamp || Date.now(); + + // Mark it as fixed + this[ jQuery.expando ] = true; +}; + +// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding +// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html +jQuery.Event.prototype = { + constructor: jQuery.Event, + isDefaultPrevented: returnFalse, + isPropagationStopped: returnFalse, + isImmediatePropagationStopped: returnFalse, + isSimulated: false, + + preventDefault: function() { + var e = this.originalEvent; + + this.isDefaultPrevented = returnTrue; + + if ( e && !this.isSimulated ) { + e.preventDefault(); + } + }, + stopPropagation: function() { + var e = this.originalEvent; + + this.isPropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopPropagation(); + } + }, + stopImmediatePropagation: function() { + var e = this.originalEvent; + + this.isImmediatePropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopImmediatePropagation(); + } + + this.stopPropagation(); + } +}; + +// Includes all common event props including KeyEvent and MouseEvent specific props +jQuery.each( { + altKey: true, + bubbles: true, + cancelable: true, + changedTouches: true, + ctrlKey: true, + detail: true, + eventPhase: true, + metaKey: true, + pageX: true, + pageY: true, + shiftKey: true, + view: true, + "char": true, + code: true, + charCode: true, + key: true, + keyCode: true, + button: true, + buttons: true, + clientX: true, + clientY: true, + offsetX: true, + offsetY: true, + pointerId: true, + pointerType: true, + screenX: true, + screenY: true, + targetTouches: true, + toElement: true, + touches: true, + which: true +}, jQuery.event.addProp ); + +jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { + jQuery.event.special[ type ] = { + + // Utilize native event if possible so blur/focus sequence is correct + setup: function() { + + // Claim the first handler + // dataPriv.set( this, "focus", ... ) + // dataPriv.set( this, "blur", ... ) + leverageNative( this, type, expectSync ); + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function() { + + // Force setup before trigger + leverageNative( this, type ); + + // Return non-false to allow normal event-path propagation + return true; + }, + + // Suppress native focus or blur as it's already being fired + // in leverageNative. + _default: function() { + return true; + }, + + delegateType: delegateType + }; +} ); + +// Create mouseenter/leave events using mouseover/out and event-time checks +// so that event delegation works in jQuery. +// Do the same for pointerenter/pointerleave and pointerover/pointerout +// +// Support: Safari 7 only +// Safari sends mouseenter too often; see: +// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 +// for the description of the bug (it existed in older Chrome versions as well). +jQuery.each( { + mouseenter: "mouseover", + mouseleave: "mouseout", + pointerenter: "pointerover", + pointerleave: "pointerout" +}, function( orig, fix ) { + jQuery.event.special[ orig ] = { + delegateType: fix, + bindType: fix, + + handle: function( event ) { + var ret, + target = this, + related = event.relatedTarget, + handleObj = event.handleObj; + + // For mouseenter/leave call the handler if related is outside the target. + // NB: No relatedTarget if the mouse left/entered the browser window + if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { + event.type = handleObj.origType; + ret = handleObj.handler.apply( this, arguments ); + event.type = fix; + } + return ret; + } + }; +} ); + +jQuery.fn.extend( { + + on: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn ); + }, + one: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn, 1 ); + }, + off: function( types, selector, fn ) { + var handleObj, type; + if ( types && types.preventDefault && types.handleObj ) { + + // ( event ) dispatched jQuery.Event + handleObj = types.handleObj; + jQuery( types.delegateTarget ).off( + handleObj.namespace ? + handleObj.origType + "." + handleObj.namespace : + handleObj.origType, + handleObj.selector, + handleObj.handler + ); + return this; + } + if ( typeof types === "object" ) { + + // ( types-object [, selector] ) + for ( type in types ) { + this.off( type, selector, types[ type ] ); + } + return this; + } + if ( selector === false || typeof selector === "function" ) { + + // ( types [, fn] ) + fn = selector; + selector = undefined; + } + if ( fn === false ) { + fn = returnFalse; + } + return this.each( function() { + jQuery.event.remove( this, types, fn, selector ); + } ); + } +} ); + + +var + + // Support: IE <=10 - 11, Edge 12 - 13 only + // In IE/Edge using regex groups here causes severe slowdowns. + // See https://connect.microsoft.com/IE/feedback/details/1736512/ + rnoInnerhtml = /\s*$/g; + +// Prefer a tbody over its parent table for containing new rows +function manipulationTarget( elem, content ) { + if ( nodeName( elem, "table" ) && + nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { + + return jQuery( elem ).children( "tbody" )[ 0 ] || elem; + } + + return elem; +} + +// Replace/restore the type attribute of script elements for safe DOM manipulation +function disableScript( elem ) { + elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; + return elem; +} +function restoreScript( elem ) { + if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { + elem.type = elem.type.slice( 5 ); + } else { + elem.removeAttribute( "type" ); + } + + return elem; +} + +function cloneCopyEvent( src, dest ) { + var i, l, type, pdataOld, udataOld, udataCur, events; + + if ( dest.nodeType !== 1 ) { + return; + } + + // 1. Copy private data: events, handlers, etc. + if ( dataPriv.hasData( src ) ) { + pdataOld = dataPriv.get( src ); + events = pdataOld.events; + + if ( events ) { + dataPriv.remove( dest, "handle events" ); + + for ( type in events ) { + for ( i = 0, l = events[ type ].length; i < l; i++ ) { + jQuery.event.add( dest, type, events[ type ][ i ] ); + } + } + } + } + + // 2. Copy user data + if ( dataUser.hasData( src ) ) { + udataOld = dataUser.access( src ); + udataCur = jQuery.extend( {}, udataOld ); + + dataUser.set( dest, udataCur ); + } +} + +// Fix IE bugs, see support tests +function fixInput( src, dest ) { + var nodeName = dest.nodeName.toLowerCase(); + + // Fails to persist the checked state of a cloned checkbox or radio button. + if ( nodeName === "input" && rcheckableType.test( src.type ) ) { + dest.checked = src.checked; + + // Fails to return the selected option to the default selected state when cloning options + } else if ( nodeName === "input" || nodeName === "textarea" ) { + dest.defaultValue = src.defaultValue; + } +} + +function domManip( collection, args, callback, ignored ) { + + // Flatten any nested arrays + args = flat( args ); + + var fragment, first, scripts, hasScripts, node, doc, + i = 0, + l = collection.length, + iNoClone = l - 1, + value = args[ 0 ], + valueIsFunction = isFunction( value ); + + // We can't cloneNode fragments that contain checked, in WebKit + if ( valueIsFunction || + ( l > 1 && typeof value === "string" && + !support.checkClone && rchecked.test( value ) ) ) { + return collection.each( function( index ) { + var self = collection.eq( index ); + if ( valueIsFunction ) { + args[ 0 ] = value.call( this, index, self.html() ); + } + domManip( self, args, callback, ignored ); + } ); + } + + if ( l ) { + fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); + first = fragment.firstChild; + + if ( fragment.childNodes.length === 1 ) { + fragment = first; + } + + // Require either new content or an interest in ignored elements to invoke the callback + if ( first || ignored ) { + scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); + hasScripts = scripts.length; + + // Use the original fragment for the last item + // instead of the first because it can end up + // being emptied incorrectly in certain situations (#8070). + for ( ; i < l; i++ ) { + node = fragment; + + if ( i !== iNoClone ) { + node = jQuery.clone( node, true, true ); + + // Keep references to cloned scripts for later restoration + if ( hasScripts ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( scripts, getAll( node, "script" ) ); + } + } + + callback.call( collection[ i ], node, i ); + } + + if ( hasScripts ) { + doc = scripts[ scripts.length - 1 ].ownerDocument; + + // Reenable scripts + jQuery.map( scripts, restoreScript ); + + // Evaluate executable scripts on first document insertion + for ( i = 0; i < hasScripts; i++ ) { + node = scripts[ i ]; + if ( rscriptType.test( node.type || "" ) && + !dataPriv.access( node, "globalEval" ) && + jQuery.contains( doc, node ) ) { + + if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { + + // Optional AJAX dependency, but won't run scripts if not present + if ( jQuery._evalUrl && !node.noModule ) { + jQuery._evalUrl( node.src, { + nonce: node.nonce || node.getAttribute( "nonce" ) + }, doc ); + } + } else { + DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); + } + } + } + } + } + } + + return collection; +} + +function remove( elem, selector, keepData ) { + var node, + nodes = selector ? jQuery.filter( selector, elem ) : elem, + i = 0; + + for ( ; ( node = nodes[ i ] ) != null; i++ ) { + if ( !keepData && node.nodeType === 1 ) { + jQuery.cleanData( getAll( node ) ); + } + + if ( node.parentNode ) { + if ( keepData && isAttached( node ) ) { + setGlobalEval( getAll( node, "script" ) ); + } + node.parentNode.removeChild( node ); + } + } + + return elem; +} + +jQuery.extend( { + htmlPrefilter: function( html ) { + return html; + }, + + clone: function( elem, dataAndEvents, deepDataAndEvents ) { + var i, l, srcElements, destElements, + clone = elem.cloneNode( true ), + inPage = isAttached( elem ); + + // Fix IE cloning issues + if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && + !jQuery.isXMLDoc( elem ) ) { + + // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 + destElements = getAll( clone ); + srcElements = getAll( elem ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + fixInput( srcElements[ i ], destElements[ i ] ); + } + } + + // Copy the events from the original to the clone + if ( dataAndEvents ) { + if ( deepDataAndEvents ) { + srcElements = srcElements || getAll( elem ); + destElements = destElements || getAll( clone ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + cloneCopyEvent( srcElements[ i ], destElements[ i ] ); + } + } else { + cloneCopyEvent( elem, clone ); + } + } + + // Preserve script evaluation history + destElements = getAll( clone, "script" ); + if ( destElements.length > 0 ) { + setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); + } + + // Return the cloned set + return clone; + }, + + cleanData: function( elems ) { + var data, elem, type, + special = jQuery.event.special, + i = 0; + + for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { + if ( acceptData( elem ) ) { + if ( ( data = elem[ dataPriv.expando ] ) ) { + if ( data.events ) { + for ( type in data.events ) { + if ( special[ type ] ) { + jQuery.event.remove( elem, type ); + + // This is a shortcut to avoid jQuery.event.remove's overhead + } else { + jQuery.removeEvent( elem, type, data.handle ); + } + } + } + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataPriv.expando ] = undefined; + } + if ( elem[ dataUser.expando ] ) { + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataUser.expando ] = undefined; + } + } + } + } +} ); + +jQuery.fn.extend( { + detach: function( selector ) { + return remove( this, selector, true ); + }, + + remove: function( selector ) { + return remove( this, selector ); + }, + + text: function( value ) { + return access( this, function( value ) { + return value === undefined ? + jQuery.text( this ) : + this.empty().each( function() { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + this.textContent = value; + } + } ); + }, null, value, arguments.length ); + }, + + append: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.appendChild( elem ); + } + } ); + }, + + prepend: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.insertBefore( elem, target.firstChild ); + } + } ); + }, + + before: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this ); + } + } ); + }, + + after: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this.nextSibling ); + } + } ); + }, + + empty: function() { + var elem, + i = 0; + + for ( ; ( elem = this[ i ] ) != null; i++ ) { + if ( elem.nodeType === 1 ) { + + // Prevent memory leaks + jQuery.cleanData( getAll( elem, false ) ); + + // Remove any remaining nodes + elem.textContent = ""; + } + } + + return this; + }, + + clone: function( dataAndEvents, deepDataAndEvents ) { + dataAndEvents = dataAndEvents == null ? false : dataAndEvents; + deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; + + return this.map( function() { + return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); + } ); + }, + + html: function( value ) { + return access( this, function( value ) { + var elem = this[ 0 ] || {}, + i = 0, + l = this.length; + + if ( value === undefined && elem.nodeType === 1 ) { + return elem.innerHTML; + } + + // See if we can take a shortcut and just use innerHTML + if ( typeof value === "string" && !rnoInnerhtml.test( value ) && + !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { + + value = jQuery.htmlPrefilter( value ); + + try { + for ( ; i < l; i++ ) { + elem = this[ i ] || {}; + + // Remove element nodes and prevent memory leaks + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + elem.innerHTML = value; + } + } + + elem = 0; + + // If using innerHTML throws an exception, use the fallback method + } catch ( e ) {} + } + + if ( elem ) { + this.empty().append( value ); + } + }, null, value, arguments.length ); + }, + + replaceWith: function() { + var ignored = []; + + // Make the changes, replacing each non-ignored context element with the new content + return domManip( this, arguments, function( elem ) { + var parent = this.parentNode; + + if ( jQuery.inArray( this, ignored ) < 0 ) { + jQuery.cleanData( getAll( this ) ); + if ( parent ) { + parent.replaceChild( elem, this ); + } + } + + // Force callback invocation + }, ignored ); + } +} ); + +jQuery.each( { + appendTo: "append", + prependTo: "prepend", + insertBefore: "before", + insertAfter: "after", + replaceAll: "replaceWith" +}, function( name, original ) { + jQuery.fn[ name ] = function( selector ) { + var elems, + ret = [], + insert = jQuery( selector ), + last = insert.length - 1, + i = 0; + + for ( ; i <= last; i++ ) { + elems = i === last ? this : this.clone( true ); + jQuery( insert[ i ] )[ original ]( elems ); + + // Support: Android <=4.0 only, PhantomJS 1 only + // .get() because push.apply(_, arraylike) throws on ancient WebKit + push.apply( ret, elems.get() ); + } + + return this.pushStack( ret ); + }; +} ); +var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); + +var getStyles = function( elem ) { + + // Support: IE <=11 only, Firefox <=30 (#15098, #14150) + // IE throws on elements created in popups + // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" + var view = elem.ownerDocument.defaultView; + + if ( !view || !view.opener ) { + view = window; + } + + return view.getComputedStyle( elem ); + }; + +var swap = function( elem, options, callback ) { + var ret, name, + old = {}; + + // Remember the old values, and insert the new ones + for ( name in options ) { + old[ name ] = elem.style[ name ]; + elem.style[ name ] = options[ name ]; + } + + ret = callback.call( elem ); + + // Revert the old values + for ( name in options ) { + elem.style[ name ] = old[ name ]; + } + + return ret; +}; + + +var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); + + + +( function() { + + // Executing both pixelPosition & boxSizingReliable tests require only one layout + // so they're executed at the same time to save the second computation. + function computeStyleTests() { + + // This is a singleton, we need to execute it only once + if ( !div ) { + return; + } + + container.style.cssText = "position:absolute;left:-11111px;width:60px;" + + "margin-top:1px;padding:0;border:0"; + div.style.cssText = + "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + + "margin:auto;border:1px;padding:1px;" + + "width:60%;top:1%"; + documentElement.appendChild( container ).appendChild( div ); + + var divStyle = window.getComputedStyle( div ); + pixelPositionVal = divStyle.top !== "1%"; + + // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 + reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; + + // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 + // Some styles come back with percentage values, even though they shouldn't + div.style.right = "60%"; + pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; + + // Support: IE 9 - 11 only + // Detect misreporting of content dimensions for box-sizing:border-box elements + boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; + + // Support: IE 9 only + // Detect overflow:scroll screwiness (gh-3699) + // Support: Chrome <=64 + // Don't get tricked when zoom affects offsetWidth (gh-4029) + div.style.position = "absolute"; + scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; + + documentElement.removeChild( container ); + + // Nullify the div so it wouldn't be stored in the memory and + // it will also be a sign that checks already performed + div = null; + } + + function roundPixelMeasures( measure ) { + return Math.round( parseFloat( measure ) ); + } + + var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, + reliableTrDimensionsVal, reliableMarginLeftVal, + container = document.createElement( "div" ), + div = document.createElement( "div" ); + + // Finish early in limited (non-browser) environments + if ( !div.style ) { + return; + } + + // Support: IE <=9 - 11 only + // Style of cloned element affects source element cloned (#8908) + div.style.backgroundClip = "content-box"; + div.cloneNode( true ).style.backgroundClip = ""; + support.clearCloneStyle = div.style.backgroundClip === "content-box"; + + jQuery.extend( support, { + boxSizingReliable: function() { + computeStyleTests(); + return boxSizingReliableVal; + }, + pixelBoxStyles: function() { + computeStyleTests(); + return pixelBoxStylesVal; + }, + pixelPosition: function() { + computeStyleTests(); + return pixelPositionVal; + }, + reliableMarginLeft: function() { + computeStyleTests(); + return reliableMarginLeftVal; + }, + scrollboxSize: function() { + computeStyleTests(); + return scrollboxSizeVal; + }, + + // Support: IE 9 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Behavior in IE 9 is more subtle than in newer versions & it passes + // some versions of this test; make sure not to make it pass there! + // + // Support: Firefox 70+ + // Only Firefox includes border widths + // in computed dimensions. (gh-4529) + reliableTrDimensions: function() { + var table, tr, trChild, trStyle; + if ( reliableTrDimensionsVal == null ) { + table = document.createElement( "table" ); + tr = document.createElement( "tr" ); + trChild = document.createElement( "div" ); + + table.style.cssText = "position:absolute;left:-11111px;border-collapse:separate"; + tr.style.cssText = "border:1px solid"; + + // Support: Chrome 86+ + // Height set through cssText does not get applied. + // Computed height then comes back as 0. + tr.style.height = "1px"; + trChild.style.height = "9px"; + + // Support: Android 8 Chrome 86+ + // In our bodyBackground.html iframe, + // display for all div elements is set to "inline", + // which causes a problem only in Android 8 Chrome 86. + // Ensuring the div is display: block + // gets around this issue. + trChild.style.display = "block"; + + documentElement + .appendChild( table ) + .appendChild( tr ) + .appendChild( trChild ); + + trStyle = window.getComputedStyle( tr ); + reliableTrDimensionsVal = ( parseInt( trStyle.height, 10 ) + + parseInt( trStyle.borderTopWidth, 10 ) + + parseInt( trStyle.borderBottomWidth, 10 ) ) === tr.offsetHeight; + + documentElement.removeChild( table ); + } + return reliableTrDimensionsVal; + } + } ); +} )(); + + +function curCSS( elem, name, computed ) { + var width, minWidth, maxWidth, ret, + + // Support: Firefox 51+ + // Retrieving style before computed somehow + // fixes an issue with getting wrong values + // on detached elements + style = elem.style; + + computed = computed || getStyles( elem ); + + // getPropertyValue is needed for: + // .css('filter') (IE 9 only, #12537) + // .css('--customProperty) (#3144) + if ( computed ) { + ret = computed.getPropertyValue( name ) || computed[ name ]; + + if ( ret === "" && !isAttached( elem ) ) { + ret = jQuery.style( elem, name ); + } + + // A tribute to the "awesome hack by Dean Edwards" + // Android Browser returns percentage for some values, + // but width seems to be reliably pixels. + // This is against the CSSOM draft spec: + // https://drafts.csswg.org/cssom/#resolved-values + if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { + + // Remember the original values + width = style.width; + minWidth = style.minWidth; + maxWidth = style.maxWidth; + + // Put in the new values to get a computed value out + style.minWidth = style.maxWidth = style.width = ret; + ret = computed.width; + + // Revert the changed values + style.width = width; + style.minWidth = minWidth; + style.maxWidth = maxWidth; + } + } + + return ret !== undefined ? + + // Support: IE <=9 - 11 only + // IE returns zIndex value as an integer. + ret + "" : + ret; +} + + +function addGetHookIf( conditionFn, hookFn ) { + + // Define the hook, we'll check on the first run if it's really needed. + return { + get: function() { + if ( conditionFn() ) { + + // Hook not needed (or it's not possible to use it due + // to missing dependency), remove it. + delete this.get; + return; + } + + // Hook needed; redefine it so that the support test is not executed again. + return ( this.get = hookFn ).apply( this, arguments ); + } + }; +} + + +var cssPrefixes = [ "Webkit", "Moz", "ms" ], + emptyStyle = document.createElement( "div" ).style, + vendorProps = {}; + +// Return a vendor-prefixed property or undefined +function vendorPropName( name ) { + + // Check for vendor prefixed names + var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), + i = cssPrefixes.length; + + while ( i-- ) { + name = cssPrefixes[ i ] + capName; + if ( name in emptyStyle ) { + return name; + } + } +} + +// Return a potentially-mapped jQuery.cssProps or vendor prefixed property +function finalPropName( name ) { + var final = jQuery.cssProps[ name ] || vendorProps[ name ]; + + if ( final ) { + return final; + } + if ( name in emptyStyle ) { + return name; + } + return vendorProps[ name ] = vendorPropName( name ) || name; +} + + +var + + // Swappable if display is none or starts with table + // except "table", "table-cell", or "table-caption" + // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display + rdisplayswap = /^(none|table(?!-c[ea]).+)/, + rcustomProp = /^--/, + cssShow = { position: "absolute", visibility: "hidden", display: "block" }, + cssNormalTransform = { + letterSpacing: "0", + fontWeight: "400" + }; + +function setPositiveNumber( _elem, value, subtract ) { + + // Any relative (+/-) values have already been + // normalized at this point + var matches = rcssNum.exec( value ); + return matches ? + + // Guard against undefined "subtract", e.g., when used as in cssHooks + Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : + value; +} + +function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { + var i = dimension === "width" ? 1 : 0, + extra = 0, + delta = 0; + + // Adjustment may not be necessary + if ( box === ( isBorderBox ? "border" : "content" ) ) { + return 0; + } + + for ( ; i < 4; i += 2 ) { + + // Both box models exclude margin + if ( box === "margin" ) { + delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); + } + + // If we get here with a content-box, we're seeking "padding" or "border" or "margin" + if ( !isBorderBox ) { + + // Add padding + delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + + // For "border" or "margin", add border + if ( box !== "padding" ) { + delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + + // But still keep track of it otherwise + } else { + extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + + // If we get here with a border-box (content + padding + border), we're seeking "content" or + // "padding" or "margin" + } else { + + // For "content", subtract padding + if ( box === "content" ) { + delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + } + + // For "content" or "padding", subtract border + if ( box !== "margin" ) { + delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + } + } + + // Account for positive content-box scroll gutter when requested by providing computedVal + if ( !isBorderBox && computedVal >= 0 ) { + + // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border + // Assuming integer scroll gutter, subtract the rest and round down + delta += Math.max( 0, Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + computedVal - + delta - + extra - + 0.5 + + // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter + // Use an explicit zero to avoid NaN (gh-3964) + ) ) || 0; + } + + return delta; +} + +function getWidthOrHeight( elem, dimension, extra ) { + + // Start with computed style + var styles = getStyles( elem ), + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). + // Fake content-box until we know it's needed to know the true value. + boxSizingNeeded = !support.boxSizingReliable() || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + valueIsBorderBox = isBorderBox, + + val = curCSS( elem, dimension, styles ), + offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); + + // Support: Firefox <=54 + // Return a confounding non-pixel value or feign ignorance, as appropriate. + if ( rnumnonpx.test( val ) ) { + if ( !extra ) { + return val; + } + val = "auto"; + } + + + // Support: IE 9 - 11 only + // Use offsetWidth/offsetHeight for when box sizing is unreliable. + // In those cases, the computed value can be trusted to be border-box. + if ( ( !support.boxSizingReliable() && isBorderBox || + + // Support: IE 10 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Interestingly, in some cases IE 9 doesn't suffer from this issue. + !support.reliableTrDimensions() && nodeName( elem, "tr" ) || + + // Fall back to offsetWidth/offsetHeight when value is "auto" + // This happens for inline elements with no explicit setting (gh-3571) + val === "auto" || + + // Support: Android <=4.1 - 4.3 only + // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) + !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && + + // Make sure the element is visible & connected + elem.getClientRects().length ) { + + isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; + + // Where available, offsetWidth/offsetHeight approximate border box dimensions. + // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the + // retrieved value as a content box dimension. + valueIsBorderBox = offsetProp in elem; + if ( valueIsBorderBox ) { + val = elem[ offsetProp ]; + } + } + + // Normalize "" and auto + val = parseFloat( val ) || 0; + + // Adjust for the element's box model + return ( val + + boxModelAdjustment( + elem, + dimension, + extra || ( isBorderBox ? "border" : "content" ), + valueIsBorderBox, + styles, + + // Provide the current computed size to request scroll gutter calculation (gh-3589) + val + ) + ) + "px"; +} + +jQuery.extend( { + + // Add in style property hooks for overriding the default + // behavior of getting and setting a style property + cssHooks: { + opacity: { + get: function( elem, computed ) { + if ( computed ) { + + // We should always get a number back from opacity + var ret = curCSS( elem, "opacity" ); + return ret === "" ? "1" : ret; + } + } + } + }, + + // Don't automatically add "px" to these possibly-unitless properties + cssNumber: { + "animationIterationCount": true, + "columnCount": true, + "fillOpacity": true, + "flexGrow": true, + "flexShrink": true, + "fontWeight": true, + "gridArea": true, + "gridColumn": true, + "gridColumnEnd": true, + "gridColumnStart": true, + "gridRow": true, + "gridRowEnd": true, + "gridRowStart": true, + "lineHeight": true, + "opacity": true, + "order": true, + "orphans": true, + "widows": true, + "zIndex": true, + "zoom": true + }, + + // Add in properties whose names you wish to fix before + // setting or getting the value + cssProps: {}, + + // Get and set the style property on a DOM Node + style: function( elem, name, value, extra ) { + + // Don't set styles on text and comment nodes + if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { + return; + } + + // Make sure that we're working with the right name + var ret, type, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ), + style = elem.style; + + // Make sure that we're working with the right name. We don't + // want to query the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Gets hook for the prefixed version, then unprefixed version + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // Check if we're setting a value + if ( value !== undefined ) { + type = typeof value; + + // Convert "+=" or "-=" to relative numbers (#7345) + if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { + value = adjustCSS( elem, name, ret ); + + // Fixes bug #9237 + type = "number"; + } + + // Make sure that null and NaN values aren't set (#7116) + if ( value == null || value !== value ) { + return; + } + + // If a number was passed in, add the unit (except for certain CSS properties) + // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append + // "px" to a few hardcoded values. + if ( type === "number" && !isCustomProp ) { + value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); + } + + // background-* props affect original clone's values + if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { + style[ name ] = "inherit"; + } + + // If a hook was provided, use that value, otherwise just set the specified value + if ( !hooks || !( "set" in hooks ) || + ( value = hooks.set( elem, value, extra ) ) !== undefined ) { + + if ( isCustomProp ) { + style.setProperty( name, value ); + } else { + style[ name ] = value; + } + } + + } else { + + // If a hook was provided get the non-computed value from there + if ( hooks && "get" in hooks && + ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { + + return ret; + } + + // Otherwise just get the value from the style object + return style[ name ]; + } + }, + + css: function( elem, name, extra, styles ) { + var val, num, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ); + + // Make sure that we're working with the right name. We don't + // want to modify the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Try prefixed name followed by the unprefixed name + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // If a hook was provided get the computed value from there + if ( hooks && "get" in hooks ) { + val = hooks.get( elem, true, extra ); + } + + // Otherwise, if a way to get the computed value exists, use that + if ( val === undefined ) { + val = curCSS( elem, name, styles ); + } + + // Convert "normal" to computed value + if ( val === "normal" && name in cssNormalTransform ) { + val = cssNormalTransform[ name ]; + } + + // Make numeric if forced or a qualifier was provided and val looks numeric + if ( extra === "" || extra ) { + num = parseFloat( val ); + return extra === true || isFinite( num ) ? num || 0 : val; + } + + return val; + } +} ); + +jQuery.each( [ "height", "width" ], function( _i, dimension ) { + jQuery.cssHooks[ dimension ] = { + get: function( elem, computed, extra ) { + if ( computed ) { + + // Certain elements can have dimension info if we invisibly show them + // but it must have a current display style that would benefit + return rdisplayswap.test( jQuery.css( elem, "display" ) ) && + + // Support: Safari 8+ + // Table columns in Safari have non-zero offsetWidth & zero + // getBoundingClientRect().width unless display is changed. + // Support: IE <=11 only + // Running getBoundingClientRect on a disconnected node + // in IE throws an error. + ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? + swap( elem, cssShow, function() { + return getWidthOrHeight( elem, dimension, extra ); + } ) : + getWidthOrHeight( elem, dimension, extra ); + } + }, + + set: function( elem, value, extra ) { + var matches, + styles = getStyles( elem ), + + // Only read styles.position if the test has a chance to fail + // to avoid forcing a reflow. + scrollboxSizeBuggy = !support.scrollboxSize() && + styles.position === "absolute", + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) + boxSizingNeeded = scrollboxSizeBuggy || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + subtract = extra ? + boxModelAdjustment( + elem, + dimension, + extra, + isBorderBox, + styles + ) : + 0; + + // Account for unreliable border-box dimensions by comparing offset* to computed and + // faking a content-box to get border and padding (gh-3699) + if ( isBorderBox && scrollboxSizeBuggy ) { + subtract -= Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + parseFloat( styles[ dimension ] ) - + boxModelAdjustment( elem, dimension, "border", false, styles ) - + 0.5 + ); + } + + // Convert to pixels if value adjustment is needed + if ( subtract && ( matches = rcssNum.exec( value ) ) && + ( matches[ 3 ] || "px" ) !== "px" ) { + + elem.style[ dimension ] = value; + value = jQuery.css( elem, dimension ); + } + + return setPositiveNumber( elem, value, subtract ); + } + }; +} ); + +jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, + function( elem, computed ) { + if ( computed ) { + return ( parseFloat( curCSS( elem, "marginLeft" ) ) || + elem.getBoundingClientRect().left - + swap( elem, { marginLeft: 0 }, function() { + return elem.getBoundingClientRect().left; + } ) + ) + "px"; + } + } +); + +// These hooks are used by animate to expand properties +jQuery.each( { + margin: "", + padding: "", + border: "Width" +}, function( prefix, suffix ) { + jQuery.cssHooks[ prefix + suffix ] = { + expand: function( value ) { + var i = 0, + expanded = {}, + + // Assumes a single number if not a string + parts = typeof value === "string" ? value.split( " " ) : [ value ]; + + for ( ; i < 4; i++ ) { + expanded[ prefix + cssExpand[ i ] + suffix ] = + parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; + } + + return expanded; + } + }; + + if ( prefix !== "margin" ) { + jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; + } +} ); + +jQuery.fn.extend( { + css: function( name, value ) { + return access( this, function( elem, name, value ) { + var styles, len, + map = {}, + i = 0; + + if ( Array.isArray( name ) ) { + styles = getStyles( elem ); + len = name.length; + + for ( ; i < len; i++ ) { + map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); + } + + return map; + } + + return value !== undefined ? + jQuery.style( elem, name, value ) : + jQuery.css( elem, name ); + }, name, value, arguments.length > 1 ); + } +} ); + + +function Tween( elem, options, prop, end, easing ) { + return new Tween.prototype.init( elem, options, prop, end, easing ); +} +jQuery.Tween = Tween; + +Tween.prototype = { + constructor: Tween, + init: function( elem, options, prop, end, easing, unit ) { + this.elem = elem; + this.prop = prop; + this.easing = easing || jQuery.easing._default; + this.options = options; + this.start = this.now = this.cur(); + this.end = end; + this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); + }, + cur: function() { + var hooks = Tween.propHooks[ this.prop ]; + + return hooks && hooks.get ? + hooks.get( this ) : + Tween.propHooks._default.get( this ); + }, + run: function( percent ) { + var eased, + hooks = Tween.propHooks[ this.prop ]; + + if ( this.options.duration ) { + this.pos = eased = jQuery.easing[ this.easing ]( + percent, this.options.duration * percent, 0, 1, this.options.duration + ); + } else { + this.pos = eased = percent; + } + this.now = ( this.end - this.start ) * eased + this.start; + + if ( this.options.step ) { + this.options.step.call( this.elem, this.now, this ); + } + + if ( hooks && hooks.set ) { + hooks.set( this ); + } else { + Tween.propHooks._default.set( this ); + } + return this; + } +}; + +Tween.prototype.init.prototype = Tween.prototype; + +Tween.propHooks = { + _default: { + get: function( tween ) { + var result; + + // Use a property on the element directly when it is not a DOM element, + // or when there is no matching style property that exists. + if ( tween.elem.nodeType !== 1 || + tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { + return tween.elem[ tween.prop ]; + } + + // Passing an empty string as a 3rd parameter to .css will automatically + // attempt a parseFloat and fallback to a string if the parse fails. + // Simple values such as "10px" are parsed to Float; + // complex values such as "rotate(1rad)" are returned as-is. + result = jQuery.css( tween.elem, tween.prop, "" ); + + // Empty strings, null, undefined and "auto" are converted to 0. + return !result || result === "auto" ? 0 : result; + }, + set: function( tween ) { + + // Use step hook for back compat. + // Use cssHook if its there. + // Use .style if available and use plain properties where available. + if ( jQuery.fx.step[ tween.prop ] ) { + jQuery.fx.step[ tween.prop ]( tween ); + } else if ( tween.elem.nodeType === 1 && ( + jQuery.cssHooks[ tween.prop ] || + tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { + jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); + } else { + tween.elem[ tween.prop ] = tween.now; + } + } + } +}; + +// Support: IE <=9 only +// Panic based approach to setting things on disconnected nodes +Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { + set: function( tween ) { + if ( tween.elem.nodeType && tween.elem.parentNode ) { + tween.elem[ tween.prop ] = tween.now; + } + } +}; + +jQuery.easing = { + linear: function( p ) { + return p; + }, + swing: function( p ) { + return 0.5 - Math.cos( p * Math.PI ) / 2; + }, + _default: "swing" +}; + +jQuery.fx = Tween.prototype.init; + +// Back compat <1.8 extension point +jQuery.fx.step = {}; + + + + +var + fxNow, inProgress, + rfxtypes = /^(?:toggle|show|hide)$/, + rrun = /queueHooks$/; + +function schedule() { + if ( inProgress ) { + if ( document.hidden === false && window.requestAnimationFrame ) { + window.requestAnimationFrame( schedule ); + } else { + window.setTimeout( schedule, jQuery.fx.interval ); + } + + jQuery.fx.tick(); + } +} + +// Animations created synchronously will run synchronously +function createFxNow() { + window.setTimeout( function() { + fxNow = undefined; + } ); + return ( fxNow = Date.now() ); +} + +// Generate parameters to create a standard animation +function genFx( type, includeWidth ) { + var which, + i = 0, + attrs = { height: type }; + + // If we include width, step value is 1 to do all cssExpand values, + // otherwise step value is 2 to skip over Left and Right + includeWidth = includeWidth ? 1 : 0; + for ( ; i < 4; i += 2 - includeWidth ) { + which = cssExpand[ i ]; + attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; + } + + if ( includeWidth ) { + attrs.opacity = attrs.width = type; + } + + return attrs; +} + +function createTween( value, prop, animation ) { + var tween, + collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), + index = 0, + length = collection.length; + for ( ; index < length; index++ ) { + if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { + + // We're done with this property + return tween; + } + } +} + +function defaultPrefilter( elem, props, opts ) { + var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, + isBox = "width" in props || "height" in props, + anim = this, + orig = {}, + style = elem.style, + hidden = elem.nodeType && isHiddenWithinTree( elem ), + dataShow = dataPriv.get( elem, "fxshow" ); + + // Queue-skipping animations hijack the fx hooks + if ( !opts.queue ) { + hooks = jQuery._queueHooks( elem, "fx" ); + if ( hooks.unqueued == null ) { + hooks.unqueued = 0; + oldfire = hooks.empty.fire; + hooks.empty.fire = function() { + if ( !hooks.unqueued ) { + oldfire(); + } + }; + } + hooks.unqueued++; + + anim.always( function() { + + // Ensure the complete handler is called before this completes + anim.always( function() { + hooks.unqueued--; + if ( !jQuery.queue( elem, "fx" ).length ) { + hooks.empty.fire(); + } + } ); + } ); + } + + // Detect show/hide animations + for ( prop in props ) { + value = props[ prop ]; + if ( rfxtypes.test( value ) ) { + delete props[ prop ]; + toggle = toggle || value === "toggle"; + if ( value === ( hidden ? "hide" : "show" ) ) { + + // Pretend to be hidden if this is a "show" and + // there is still data from a stopped show/hide + if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { + hidden = true; + + // Ignore all other no-op show/hide data + } else { + continue; + } + } + orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); + } + } + + // Bail out if this is a no-op like .hide().hide() + propTween = !jQuery.isEmptyObject( props ); + if ( !propTween && jQuery.isEmptyObject( orig ) ) { + return; + } + + // Restrict "overflow" and "display" styles during box animations + if ( isBox && elem.nodeType === 1 ) { + + // Support: IE <=9 - 11, Edge 12 - 15 + // Record all 3 overflow attributes because IE does not infer the shorthand + // from identically-valued overflowX and overflowY and Edge just mirrors + // the overflowX value there. + opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; + + // Identify a display type, preferring old show/hide data over the CSS cascade + restoreDisplay = dataShow && dataShow.display; + if ( restoreDisplay == null ) { + restoreDisplay = dataPriv.get( elem, "display" ); + } + display = jQuery.css( elem, "display" ); + if ( display === "none" ) { + if ( restoreDisplay ) { + display = restoreDisplay; + } else { + + // Get nonempty value(s) by temporarily forcing visibility + showHide( [ elem ], true ); + restoreDisplay = elem.style.display || restoreDisplay; + display = jQuery.css( elem, "display" ); + showHide( [ elem ] ); + } + } + + // Animate inline elements as inline-block + if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { + if ( jQuery.css( elem, "float" ) === "none" ) { + + // Restore the original display value at the end of pure show/hide animations + if ( !propTween ) { + anim.done( function() { + style.display = restoreDisplay; + } ); + if ( restoreDisplay == null ) { + display = style.display; + restoreDisplay = display === "none" ? "" : display; + } + } + style.display = "inline-block"; + } + } + } + + if ( opts.overflow ) { + style.overflow = "hidden"; + anim.always( function() { + style.overflow = opts.overflow[ 0 ]; + style.overflowX = opts.overflow[ 1 ]; + style.overflowY = opts.overflow[ 2 ]; + } ); + } + + // Implement show/hide animations + propTween = false; + for ( prop in orig ) { + + // General show/hide setup for this element animation + if ( !propTween ) { + if ( dataShow ) { + if ( "hidden" in dataShow ) { + hidden = dataShow.hidden; + } + } else { + dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); + } + + // Store hidden/visible for toggle so `.stop().toggle()` "reverses" + if ( toggle ) { + dataShow.hidden = !hidden; + } + + // Show elements before animating them + if ( hidden ) { + showHide( [ elem ], true ); + } + + /* eslint-disable no-loop-func */ + + anim.done( function() { + + /* eslint-enable no-loop-func */ + + // The final step of a "hide" animation is actually hiding the element + if ( !hidden ) { + showHide( [ elem ] ); + } + dataPriv.remove( elem, "fxshow" ); + for ( prop in orig ) { + jQuery.style( elem, prop, orig[ prop ] ); + } + } ); + } + + // Per-property setup + propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); + if ( !( prop in dataShow ) ) { + dataShow[ prop ] = propTween.start; + if ( hidden ) { + propTween.end = propTween.start; + propTween.start = 0; + } + } + } +} + +function propFilter( props, specialEasing ) { + var index, name, easing, value, hooks; + + // camelCase, specialEasing and expand cssHook pass + for ( index in props ) { + name = camelCase( index ); + easing = specialEasing[ name ]; + value = props[ index ]; + if ( Array.isArray( value ) ) { + easing = value[ 1 ]; + value = props[ index ] = value[ 0 ]; + } + + if ( index !== name ) { + props[ name ] = value; + delete props[ index ]; + } + + hooks = jQuery.cssHooks[ name ]; + if ( hooks && "expand" in hooks ) { + value = hooks.expand( value ); + delete props[ name ]; + + // Not quite $.extend, this won't overwrite existing keys. + // Reusing 'index' because we have the correct "name" + for ( index in value ) { + if ( !( index in props ) ) { + props[ index ] = value[ index ]; + specialEasing[ index ] = easing; + } + } + } else { + specialEasing[ name ] = easing; + } + } +} + +function Animation( elem, properties, options ) { + var result, + stopped, + index = 0, + length = Animation.prefilters.length, + deferred = jQuery.Deferred().always( function() { + + // Don't match elem in the :animated selector + delete tick.elem; + } ), + tick = function() { + if ( stopped ) { + return false; + } + var currentTime = fxNow || createFxNow(), + remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), + + // Support: Android 2.3 only + // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) + temp = remaining / animation.duration || 0, + percent = 1 - temp, + index = 0, + length = animation.tweens.length; + + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( percent ); + } + + deferred.notifyWith( elem, [ animation, percent, remaining ] ); + + // If there's more to do, yield + if ( percent < 1 && length ) { + return remaining; + } + + // If this was an empty animation, synthesize a final progress notification + if ( !length ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + } + + // Resolve the animation and report its conclusion + deferred.resolveWith( elem, [ animation ] ); + return false; + }, + animation = deferred.promise( { + elem: elem, + props: jQuery.extend( {}, properties ), + opts: jQuery.extend( true, { + specialEasing: {}, + easing: jQuery.easing._default + }, options ), + originalProperties: properties, + originalOptions: options, + startTime: fxNow || createFxNow(), + duration: options.duration, + tweens: [], + createTween: function( prop, end ) { + var tween = jQuery.Tween( elem, animation.opts, prop, end, + animation.opts.specialEasing[ prop ] || animation.opts.easing ); + animation.tweens.push( tween ); + return tween; + }, + stop: function( gotoEnd ) { + var index = 0, + + // If we are going to the end, we want to run all the tweens + // otherwise we skip this part + length = gotoEnd ? animation.tweens.length : 0; + if ( stopped ) { + return this; + } + stopped = true; + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( 1 ); + } + + // Resolve when we played the last frame; otherwise, reject + if ( gotoEnd ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + deferred.resolveWith( elem, [ animation, gotoEnd ] ); + } else { + deferred.rejectWith( elem, [ animation, gotoEnd ] ); + } + return this; + } + } ), + props = animation.props; + + propFilter( props, animation.opts.specialEasing ); + + for ( ; index < length; index++ ) { + result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); + if ( result ) { + if ( isFunction( result.stop ) ) { + jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = + result.stop.bind( result ); + } + return result; + } + } + + jQuery.map( props, createTween, animation ); + + if ( isFunction( animation.opts.start ) ) { + animation.opts.start.call( elem, animation ); + } + + // Attach callbacks from options + animation + .progress( animation.opts.progress ) + .done( animation.opts.done, animation.opts.complete ) + .fail( animation.opts.fail ) + .always( animation.opts.always ); + + jQuery.fx.timer( + jQuery.extend( tick, { + elem: elem, + anim: animation, + queue: animation.opts.queue + } ) + ); + + return animation; +} + +jQuery.Animation = jQuery.extend( Animation, { + + tweeners: { + "*": [ function( prop, value ) { + var tween = this.createTween( prop, value ); + adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); + return tween; + } ] + }, + + tweener: function( props, callback ) { + if ( isFunction( props ) ) { + callback = props; + props = [ "*" ]; + } else { + props = props.match( rnothtmlwhite ); + } + + var prop, + index = 0, + length = props.length; + + for ( ; index < length; index++ ) { + prop = props[ index ]; + Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; + Animation.tweeners[ prop ].unshift( callback ); + } + }, + + prefilters: [ defaultPrefilter ], + + prefilter: function( callback, prepend ) { + if ( prepend ) { + Animation.prefilters.unshift( callback ); + } else { + Animation.prefilters.push( callback ); + } + } +} ); + +jQuery.speed = function( speed, easing, fn ) { + var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { + complete: fn || !fn && easing || + isFunction( speed ) && speed, + duration: speed, + easing: fn && easing || easing && !isFunction( easing ) && easing + }; + + // Go to the end state if fx are off + if ( jQuery.fx.off ) { + opt.duration = 0; + + } else { + if ( typeof opt.duration !== "number" ) { + if ( opt.duration in jQuery.fx.speeds ) { + opt.duration = jQuery.fx.speeds[ opt.duration ]; + + } else { + opt.duration = jQuery.fx.speeds._default; + } + } + } + + // Normalize opt.queue - true/undefined/null -> "fx" + if ( opt.queue == null || opt.queue === true ) { + opt.queue = "fx"; + } + + // Queueing + opt.old = opt.complete; + + opt.complete = function() { + if ( isFunction( opt.old ) ) { + opt.old.call( this ); + } + + if ( opt.queue ) { + jQuery.dequeue( this, opt.queue ); + } + }; + + return opt; +}; + +jQuery.fn.extend( { + fadeTo: function( speed, to, easing, callback ) { + + // Show any hidden elements after setting opacity to 0 + return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() + + // Animate to the value specified + .end().animate( { opacity: to }, speed, easing, callback ); + }, + animate: function( prop, speed, easing, callback ) { + var empty = jQuery.isEmptyObject( prop ), + optall = jQuery.speed( speed, easing, callback ), + doAnimation = function() { + + // Operate on a copy of prop so per-property easing won't be lost + var anim = Animation( this, jQuery.extend( {}, prop ), optall ); + + // Empty animations, or finishing resolves immediately + if ( empty || dataPriv.get( this, "finish" ) ) { + anim.stop( true ); + } + }; + + doAnimation.finish = doAnimation; + + return empty || optall.queue === false ? + this.each( doAnimation ) : + this.queue( optall.queue, doAnimation ); + }, + stop: function( type, clearQueue, gotoEnd ) { + var stopQueue = function( hooks ) { + var stop = hooks.stop; + delete hooks.stop; + stop( gotoEnd ); + }; + + if ( typeof type !== "string" ) { + gotoEnd = clearQueue; + clearQueue = type; + type = undefined; + } + if ( clearQueue ) { + this.queue( type || "fx", [] ); + } + + return this.each( function() { + var dequeue = true, + index = type != null && type + "queueHooks", + timers = jQuery.timers, + data = dataPriv.get( this ); + + if ( index ) { + if ( data[ index ] && data[ index ].stop ) { + stopQueue( data[ index ] ); + } + } else { + for ( index in data ) { + if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { + stopQueue( data[ index ] ); + } + } + } + + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && + ( type == null || timers[ index ].queue === type ) ) { + + timers[ index ].anim.stop( gotoEnd ); + dequeue = false; + timers.splice( index, 1 ); + } + } + + // Start the next in the queue if the last step wasn't forced. + // Timers currently will call their complete callbacks, which + // will dequeue but only if they were gotoEnd. + if ( dequeue || !gotoEnd ) { + jQuery.dequeue( this, type ); + } + } ); + }, + finish: function( type ) { + if ( type !== false ) { + type = type || "fx"; + } + return this.each( function() { + var index, + data = dataPriv.get( this ), + queue = data[ type + "queue" ], + hooks = data[ type + "queueHooks" ], + timers = jQuery.timers, + length = queue ? queue.length : 0; + + // Enable finishing flag on private data + data.finish = true; + + // Empty the queue first + jQuery.queue( this, type, [] ); + + if ( hooks && hooks.stop ) { + hooks.stop.call( this, true ); + } + + // Look for any active animations, and finish them + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && timers[ index ].queue === type ) { + timers[ index ].anim.stop( true ); + timers.splice( index, 1 ); + } + } + + // Look for any animations in the old queue and finish them + for ( index = 0; index < length; index++ ) { + if ( queue[ index ] && queue[ index ].finish ) { + queue[ index ].finish.call( this ); + } + } + + // Turn off finishing flag + delete data.finish; + } ); + } +} ); + +jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { + var cssFn = jQuery.fn[ name ]; + jQuery.fn[ name ] = function( speed, easing, callback ) { + return speed == null || typeof speed === "boolean" ? + cssFn.apply( this, arguments ) : + this.animate( genFx( name, true ), speed, easing, callback ); + }; +} ); + +// Generate shortcuts for custom animations +jQuery.each( { + slideDown: genFx( "show" ), + slideUp: genFx( "hide" ), + slideToggle: genFx( "toggle" ), + fadeIn: { opacity: "show" }, + fadeOut: { opacity: "hide" }, + fadeToggle: { opacity: "toggle" } +}, function( name, props ) { + jQuery.fn[ name ] = function( speed, easing, callback ) { + return this.animate( props, speed, easing, callback ); + }; +} ); + +jQuery.timers = []; +jQuery.fx.tick = function() { + var timer, + i = 0, + timers = jQuery.timers; + + fxNow = Date.now(); + + for ( ; i < timers.length; i++ ) { + timer = timers[ i ]; + + // Run the timer and safely remove it when done (allowing for external removal) + if ( !timer() && timers[ i ] === timer ) { + timers.splice( i--, 1 ); + } + } + + if ( !timers.length ) { + jQuery.fx.stop(); + } + fxNow = undefined; +}; + +jQuery.fx.timer = function( timer ) { + jQuery.timers.push( timer ); + jQuery.fx.start(); +}; + +jQuery.fx.interval = 13; +jQuery.fx.start = function() { + if ( inProgress ) { + return; + } + + inProgress = true; + schedule(); +}; + +jQuery.fx.stop = function() { + inProgress = null; +}; + +jQuery.fx.speeds = { + slow: 600, + fast: 200, + + // Default speed + _default: 400 +}; + + +// Based off of the plugin by Clint Helfers, with permission. +// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ +jQuery.fn.delay = function( time, type ) { + time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; + type = type || "fx"; + + return this.queue( type, function( next, hooks ) { + var timeout = window.setTimeout( next, time ); + hooks.stop = function() { + window.clearTimeout( timeout ); + }; + } ); +}; + + +( function() { + var input = document.createElement( "input" ), + select = document.createElement( "select" ), + opt = select.appendChild( document.createElement( "option" ) ); + + input.type = "checkbox"; + + // Support: Android <=4.3 only + // Default value for a checkbox should be "on" + support.checkOn = input.value !== ""; + + // Support: IE <=11 only + // Must access selectedIndex to make default options select + support.optSelected = opt.selected; + + // Support: IE <=11 only + // An input loses its value after becoming a radio + input = document.createElement( "input" ); + input.value = "t"; + input.type = "radio"; + support.radioValue = input.value === "t"; +} )(); + + +var boolHook, + attrHandle = jQuery.expr.attrHandle; + +jQuery.fn.extend( { + attr: function( name, value ) { + return access( this, jQuery.attr, name, value, arguments.length > 1 ); + }, + + removeAttr: function( name ) { + return this.each( function() { + jQuery.removeAttr( this, name ); + } ); + } +} ); + +jQuery.extend( { + attr: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set attributes on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + // Fallback to prop when attributes are not supported + if ( typeof elem.getAttribute === "undefined" ) { + return jQuery.prop( elem, name, value ); + } + + // Attribute hooks are determined by the lowercase version + // Grab necessary hook if one is defined + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + hooks = jQuery.attrHooks[ name.toLowerCase() ] || + ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); + } + + if ( value !== undefined ) { + if ( value === null ) { + jQuery.removeAttr( elem, name ); + return; + } + + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + elem.setAttribute( name, value + "" ); + return value; + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + ret = jQuery.find.attr( elem, name ); + + // Non-existent attributes return null, we normalize to undefined + return ret == null ? undefined : ret; + }, + + attrHooks: { + type: { + set: function( elem, value ) { + if ( !support.radioValue && value === "radio" && + nodeName( elem, "input" ) ) { + var val = elem.value; + elem.setAttribute( "type", value ); + if ( val ) { + elem.value = val; + } + return value; + } + } + } + }, + + removeAttr: function( elem, value ) { + var name, + i = 0, + + // Attribute names can contain non-HTML whitespace characters + // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 + attrNames = value && value.match( rnothtmlwhite ); + + if ( attrNames && elem.nodeType === 1 ) { + while ( ( name = attrNames[ i++ ] ) ) { + elem.removeAttribute( name ); + } + } + } +} ); + +// Hooks for boolean attributes +boolHook = { + set: function( elem, value, name ) { + if ( value === false ) { + + // Remove boolean attributes when set to false + jQuery.removeAttr( elem, name ); + } else { + elem.setAttribute( name, name ); + } + return name; + } +}; + +jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { + var getter = attrHandle[ name ] || jQuery.find.attr; + + attrHandle[ name ] = function( elem, name, isXML ) { + var ret, handle, + lowercaseName = name.toLowerCase(); + + if ( !isXML ) { + + // Avoid an infinite loop by temporarily removing this function from the getter + handle = attrHandle[ lowercaseName ]; + attrHandle[ lowercaseName ] = ret; + ret = getter( elem, name, isXML ) != null ? + lowercaseName : + null; + attrHandle[ lowercaseName ] = handle; + } + return ret; + }; +} ); + + + + +var rfocusable = /^(?:input|select|textarea|button)$/i, + rclickable = /^(?:a|area)$/i; + +jQuery.fn.extend( { + prop: function( name, value ) { + return access( this, jQuery.prop, name, value, arguments.length > 1 ); + }, + + removeProp: function( name ) { + return this.each( function() { + delete this[ jQuery.propFix[ name ] || name ]; + } ); + } +} ); + +jQuery.extend( { + prop: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set properties on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + + // Fix name and attach hooks + name = jQuery.propFix[ name ] || name; + hooks = jQuery.propHooks[ name ]; + } + + if ( value !== undefined ) { + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + return ( elem[ name ] = value ); + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + return elem[ name ]; + }, + + propHooks: { + tabIndex: { + get: function( elem ) { + + // Support: IE <=9 - 11 only + // elem.tabIndex doesn't always return the + // correct value when it hasn't been explicitly set + // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ + // Use proper attribute retrieval(#12072) + var tabindex = jQuery.find.attr( elem, "tabindex" ); + + if ( tabindex ) { + return parseInt( tabindex, 10 ); + } + + if ( + rfocusable.test( elem.nodeName ) || + rclickable.test( elem.nodeName ) && + elem.href + ) { + return 0; + } + + return -1; + } + } + }, + + propFix: { + "for": "htmlFor", + "class": "className" + } +} ); + +// Support: IE <=11 only +// Accessing the selectedIndex property +// forces the browser to respect setting selected +// on the option +// The getter ensures a default option is selected +// when in an optgroup +// eslint rule "no-unused-expressions" is disabled for this code +// since it considers such accessions noop +if ( !support.optSelected ) { + jQuery.propHooks.selected = { + get: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent && parent.parentNode ) { + parent.parentNode.selectedIndex; + } + return null; + }, + set: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent ) { + parent.selectedIndex; + + if ( parent.parentNode ) { + parent.parentNode.selectedIndex; + } + } + } + }; +} + +jQuery.each( [ + "tabIndex", + "readOnly", + "maxLength", + "cellSpacing", + "cellPadding", + "rowSpan", + "colSpan", + "useMap", + "frameBorder", + "contentEditable" +], function() { + jQuery.propFix[ this.toLowerCase() ] = this; +} ); + + + + + // Strip and collapse whitespace according to HTML spec + // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace + function stripAndCollapse( value ) { + var tokens = value.match( rnothtmlwhite ) || []; + return tokens.join( " " ); + } + + +function getClass( elem ) { + return elem.getAttribute && elem.getAttribute( "class" ) || ""; +} + +function classesToArray( value ) { + if ( Array.isArray( value ) ) { + return value; + } + if ( typeof value === "string" ) { + return value.match( rnothtmlwhite ) || []; + } + return []; +} + +jQuery.fn.extend( { + addClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + if ( cur.indexOf( " " + clazz + " " ) < 0 ) { + cur += clazz + " "; + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + removeClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + if ( !arguments.length ) { + return this.attr( "class", "" ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + + // This expression is here for better compressibility (see addClass) + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + + // Remove *all* instances + while ( cur.indexOf( " " + clazz + " " ) > -1 ) { + cur = cur.replace( " " + clazz + " ", " " ); + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + toggleClass: function( value, stateVal ) { + var type = typeof value, + isValidValue = type === "string" || Array.isArray( value ); + + if ( typeof stateVal === "boolean" && isValidValue ) { + return stateVal ? this.addClass( value ) : this.removeClass( value ); + } + + if ( isFunction( value ) ) { + return this.each( function( i ) { + jQuery( this ).toggleClass( + value.call( this, i, getClass( this ), stateVal ), + stateVal + ); + } ); + } + + return this.each( function() { + var className, i, self, classNames; + + if ( isValidValue ) { + + // Toggle individual class names + i = 0; + self = jQuery( this ); + classNames = classesToArray( value ); + + while ( ( className = classNames[ i++ ] ) ) { + + // Check each className given, space separated list + if ( self.hasClass( className ) ) { + self.removeClass( className ); + } else { + self.addClass( className ); + } + } + + // Toggle whole class name + } else if ( value === undefined || type === "boolean" ) { + className = getClass( this ); + if ( className ) { + + // Store className if set + dataPriv.set( this, "__className__", className ); + } + + // If the element has a class name or if we're passed `false`, + // then remove the whole classname (if there was one, the above saved it). + // Otherwise bring back whatever was previously saved (if anything), + // falling back to the empty string if nothing was stored. + if ( this.setAttribute ) { + this.setAttribute( "class", + className || value === false ? + "" : + dataPriv.get( this, "__className__" ) || "" + ); + } + } + } ); + }, + + hasClass: function( selector ) { + var className, elem, + i = 0; + + className = " " + selector + " "; + while ( ( elem = this[ i++ ] ) ) { + if ( elem.nodeType === 1 && + ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { + return true; + } + } + + return false; + } +} ); + + + + +var rreturn = /\r/g; + +jQuery.fn.extend( { + val: function( value ) { + var hooks, ret, valueIsFunction, + elem = this[ 0 ]; + + if ( !arguments.length ) { + if ( elem ) { + hooks = jQuery.valHooks[ elem.type ] || + jQuery.valHooks[ elem.nodeName.toLowerCase() ]; + + if ( hooks && + "get" in hooks && + ( ret = hooks.get( elem, "value" ) ) !== undefined + ) { + return ret; + } + + ret = elem.value; + + // Handle most common string cases + if ( typeof ret === "string" ) { + return ret.replace( rreturn, "" ); + } + + // Handle cases where value is null/undef or number + return ret == null ? "" : ret; + } + + return; + } + + valueIsFunction = isFunction( value ); + + return this.each( function( i ) { + var val; + + if ( this.nodeType !== 1 ) { + return; + } + + if ( valueIsFunction ) { + val = value.call( this, i, jQuery( this ).val() ); + } else { + val = value; + } + + // Treat null/undefined as ""; convert numbers to string + if ( val == null ) { + val = ""; + + } else if ( typeof val === "number" ) { + val += ""; + + } else if ( Array.isArray( val ) ) { + val = jQuery.map( val, function( value ) { + return value == null ? "" : value + ""; + } ); + } + + hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; + + // If set returns undefined, fall back to normal setting + if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { + this.value = val; + } + } ); + } +} ); + +jQuery.extend( { + valHooks: { + option: { + get: function( elem ) { + + var val = jQuery.find.attr( elem, "value" ); + return val != null ? + val : + + // Support: IE <=10 - 11 only + // option.text throws exceptions (#14686, #14858) + // Strip and collapse whitespace + // https://html.spec.whatwg.org/#strip-and-collapse-whitespace + stripAndCollapse( jQuery.text( elem ) ); + } + }, + select: { + get: function( elem ) { + var value, option, i, + options = elem.options, + index = elem.selectedIndex, + one = elem.type === "select-one", + values = one ? null : [], + max = one ? index + 1 : options.length; + + if ( index < 0 ) { + i = max; + + } else { + i = one ? index : 0; + } + + // Loop through all the selected options + for ( ; i < max; i++ ) { + option = options[ i ]; + + // Support: IE <=9 only + // IE8-9 doesn't update selected after form reset (#2551) + if ( ( option.selected || i === index ) && + + // Don't return options that are disabled or in a disabled optgroup + !option.disabled && + ( !option.parentNode.disabled || + !nodeName( option.parentNode, "optgroup" ) ) ) { + + // Get the specific value for the option + value = jQuery( option ).val(); + + // We don't need an array for one selects + if ( one ) { + return value; + } + + // Multi-Selects return an array + values.push( value ); + } + } + + return values; + }, + + set: function( elem, value ) { + var optionSet, option, + options = elem.options, + values = jQuery.makeArray( value ), + i = options.length; + + while ( i-- ) { + option = options[ i ]; + + /* eslint-disable no-cond-assign */ + + if ( option.selected = + jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 + ) { + optionSet = true; + } + + /* eslint-enable no-cond-assign */ + } + + // Force browsers to behave consistently when non-matching value is set + if ( !optionSet ) { + elem.selectedIndex = -1; + } + return values; + } + } + } +} ); + +// Radios and checkboxes getter/setter +jQuery.each( [ "radio", "checkbox" ], function() { + jQuery.valHooks[ this ] = { + set: function( elem, value ) { + if ( Array.isArray( value ) ) { + return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); + } + } + }; + if ( !support.checkOn ) { + jQuery.valHooks[ this ].get = function( elem ) { + return elem.getAttribute( "value" ) === null ? "on" : elem.value; + }; + } +} ); + + + + +// Return jQuery for attributes-only inclusion + + +support.focusin = "onfocusin" in window; + + +var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, + stopPropagationCallback = function( e ) { + e.stopPropagation(); + }; + +jQuery.extend( jQuery.event, { + + trigger: function( event, data, elem, onlyHandlers ) { + + var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, + eventPath = [ elem || document ], + type = hasOwn.call( event, "type" ) ? event.type : event, + namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; + + cur = lastElement = tmp = elem = elem || document; + + // Don't do events on text and comment nodes + if ( elem.nodeType === 3 || elem.nodeType === 8 ) { + return; + } + + // focus/blur morphs to focusin/out; ensure we're not firing them right now + if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { + return; + } + + if ( type.indexOf( "." ) > -1 ) { + + // Namespaced trigger; create a regexp to match event type in handle() + namespaces = type.split( "." ); + type = namespaces.shift(); + namespaces.sort(); + } + ontype = type.indexOf( ":" ) < 0 && "on" + type; + + // Caller can pass in a jQuery.Event object, Object, or just an event type string + event = event[ jQuery.expando ] ? + event : + new jQuery.Event( type, typeof event === "object" && event ); + + // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) + event.isTrigger = onlyHandlers ? 2 : 3; + event.namespace = namespaces.join( "." ); + event.rnamespace = event.namespace ? + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : + null; + + // Clean up the event in case it is being reused + event.result = undefined; + if ( !event.target ) { + event.target = elem; + } + + // Clone any incoming data and prepend the event, creating the handler arg list + data = data == null ? + [ event ] : + jQuery.makeArray( data, [ event ] ); + + // Allow special events to draw outside the lines + special = jQuery.event.special[ type ] || {}; + if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { + return; + } + + // Determine event propagation path in advance, per W3C events spec (#9951) + // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) + if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { + + bubbleType = special.delegateType || type; + if ( !rfocusMorph.test( bubbleType + type ) ) { + cur = cur.parentNode; + } + for ( ; cur; cur = cur.parentNode ) { + eventPath.push( cur ); + tmp = cur; + } + + // Only add window if we got to document (e.g., not plain obj or detached DOM) + if ( tmp === ( elem.ownerDocument || document ) ) { + eventPath.push( tmp.defaultView || tmp.parentWindow || window ); + } + } + + // Fire handlers on the event path + i = 0; + while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { + lastElement = cur; + event.type = i > 1 ? + bubbleType : + special.bindType || type; + + // jQuery handler + handle = ( dataPriv.get( cur, "events" ) || Object.create( null ) )[ event.type ] && + dataPriv.get( cur, "handle" ); + if ( handle ) { + handle.apply( cur, data ); + } + + // Native handler + handle = ontype && cur[ ontype ]; + if ( handle && handle.apply && acceptData( cur ) ) { + event.result = handle.apply( cur, data ); + if ( event.result === false ) { + event.preventDefault(); + } + } + } + event.type = type; + + // If nobody prevented the default action, do it now + if ( !onlyHandlers && !event.isDefaultPrevented() ) { + + if ( ( !special._default || + special._default.apply( eventPath.pop(), data ) === false ) && + acceptData( elem ) ) { + + // Call a native DOM method on the target with the same name as the event. + // Don't do default actions on window, that's where global variables be (#6170) + if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { + + // Don't re-trigger an onFOO event when we call its FOO() method + tmp = elem[ ontype ]; + + if ( tmp ) { + elem[ ontype ] = null; + } + + // Prevent re-triggering of the same event, since we already bubbled it above + jQuery.event.triggered = type; + + if ( event.isPropagationStopped() ) { + lastElement.addEventListener( type, stopPropagationCallback ); + } + + elem[ type ](); + + if ( event.isPropagationStopped() ) { + lastElement.removeEventListener( type, stopPropagationCallback ); + } + + jQuery.event.triggered = undefined; + + if ( tmp ) { + elem[ ontype ] = tmp; + } + } + } + } + + return event.result; + }, + + // Piggyback on a donor event to simulate a different one + // Used only for `focus(in | out)` events + simulate: function( type, elem, event ) { + var e = jQuery.extend( + new jQuery.Event(), + event, + { + type: type, + isSimulated: true + } + ); + + jQuery.event.trigger( e, null, elem ); + } + +} ); + +jQuery.fn.extend( { + + trigger: function( type, data ) { + return this.each( function() { + jQuery.event.trigger( type, data, this ); + } ); + }, + triggerHandler: function( type, data ) { + var elem = this[ 0 ]; + if ( elem ) { + return jQuery.event.trigger( type, data, elem, true ); + } + } +} ); + + +// Support: Firefox <=44 +// Firefox doesn't have focus(in | out) events +// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 +// +// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 +// focus(in | out) events fire after focus & blur events, +// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order +// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 +if ( !support.focusin ) { + jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { + + // Attach a single capturing handler on the document while someone wants focusin/focusout + var handler = function( event ) { + jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); + }; + + jQuery.event.special[ fix ] = { + setup: function() { + + // Handle: regular nodes (via `this.ownerDocument`), window + // (via `this.document`) & document (via `this`). + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ); + + if ( !attaches ) { + doc.addEventListener( orig, handler, true ); + } + dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); + }, + teardown: function() { + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ) - 1; + + if ( !attaches ) { + doc.removeEventListener( orig, handler, true ); + dataPriv.remove( doc, fix ); + + } else { + dataPriv.access( doc, fix, attaches ); + } + } + }; + } ); +} +var location = window.location; + +var nonce = { guid: Date.now() }; + +var rquery = ( /\?/ ); + + + +// Cross-browser xml parsing +jQuery.parseXML = function( data ) { + var xml, parserErrorElem; + if ( !data || typeof data !== "string" ) { + return null; + } + + // Support: IE 9 - 11 only + // IE throws on parseFromString with invalid input. + try { + xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); + } catch ( e ) {} + + parserErrorElem = xml && xml.getElementsByTagName( "parsererror" )[ 0 ]; + if ( !xml || parserErrorElem ) { + jQuery.error( "Invalid XML: " + ( + parserErrorElem ? + jQuery.map( parserErrorElem.childNodes, function( el ) { + return el.textContent; + } ).join( "\n" ) : + data + ) ); + } + return xml; +}; + + +var + rbracket = /\[\]$/, + rCRLF = /\r?\n/g, + rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, + rsubmittable = /^(?:input|select|textarea|keygen)/i; + +function buildParams( prefix, obj, traditional, add ) { + var name; + + if ( Array.isArray( obj ) ) { + + // Serialize array item. + jQuery.each( obj, function( i, v ) { + if ( traditional || rbracket.test( prefix ) ) { + + // Treat each array item as a scalar. + add( prefix, v ); + + } else { + + // Item is non-scalar (array or object), encode its numeric index. + buildParams( + prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", + v, + traditional, + add + ); + } + } ); + + } else if ( !traditional && toType( obj ) === "object" ) { + + // Serialize object item. + for ( name in obj ) { + buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); + } + + } else { + + // Serialize scalar item. + add( prefix, obj ); + } +} + +// Serialize an array of form elements or a set of +// key/values into a query string +jQuery.param = function( a, traditional ) { + var prefix, + s = [], + add = function( key, valueOrFunction ) { + + // If value is a function, invoke it and use its return value + var value = isFunction( valueOrFunction ) ? + valueOrFunction() : + valueOrFunction; + + s[ s.length ] = encodeURIComponent( key ) + "=" + + encodeURIComponent( value == null ? "" : value ); + }; + + if ( a == null ) { + return ""; + } + + // If an array was passed in, assume that it is an array of form elements. + if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { + + // Serialize the form elements + jQuery.each( a, function() { + add( this.name, this.value ); + } ); + + } else { + + // If traditional, encode the "old" way (the way 1.3.2 or older + // did it), otherwise encode params recursively. + for ( prefix in a ) { + buildParams( prefix, a[ prefix ], traditional, add ); + } + } + + // Return the resulting serialization + return s.join( "&" ); +}; + +jQuery.fn.extend( { + serialize: function() { + return jQuery.param( this.serializeArray() ); + }, + serializeArray: function() { + return this.map( function() { + + // Can add propHook for "elements" to filter or add form elements + var elements = jQuery.prop( this, "elements" ); + return elements ? jQuery.makeArray( elements ) : this; + } ).filter( function() { + var type = this.type; + + // Use .is( ":disabled" ) so that fieldset[disabled] works + return this.name && !jQuery( this ).is( ":disabled" ) && + rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && + ( this.checked || !rcheckableType.test( type ) ); + } ).map( function( _i, elem ) { + var val = jQuery( this ).val(); + + if ( val == null ) { + return null; + } + + if ( Array.isArray( val ) ) { + return jQuery.map( val, function( val ) { + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ); + } + + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ).get(); + } +} ); + + +var + r20 = /%20/g, + rhash = /#.*$/, + rantiCache = /([?&])_=[^&]*/, + rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, + + // #7653, #8125, #8152: local protocol detection + rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, + rnoContent = /^(?:GET|HEAD)$/, + rprotocol = /^\/\//, + + /* Prefilters + * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) + * 2) These are called: + * - BEFORE asking for a transport + * - AFTER param serialization (s.data is a string if s.processData is true) + * 3) key is the dataType + * 4) the catchall symbol "*" can be used + * 5) execution will start with transport dataType and THEN continue down to "*" if needed + */ + prefilters = {}, + + /* Transports bindings + * 1) key is the dataType + * 2) the catchall symbol "*" can be used + * 3) selection will start with transport dataType and THEN go to "*" if needed + */ + transports = {}, + + // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression + allTypes = "*/".concat( "*" ), + + // Anchor tag for parsing the document origin + originAnchor = document.createElement( "a" ); + +originAnchor.href = location.href; + +// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport +function addToPrefiltersOrTransports( structure ) { + + // dataTypeExpression is optional and defaults to "*" + return function( dataTypeExpression, func ) { + + if ( typeof dataTypeExpression !== "string" ) { + func = dataTypeExpression; + dataTypeExpression = "*"; + } + + var dataType, + i = 0, + dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; + + if ( isFunction( func ) ) { + + // For each dataType in the dataTypeExpression + while ( ( dataType = dataTypes[ i++ ] ) ) { + + // Prepend if requested + if ( dataType[ 0 ] === "+" ) { + dataType = dataType.slice( 1 ) || "*"; + ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); + + // Otherwise append + } else { + ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); + } + } + } + }; +} + +// Base inspection function for prefilters and transports +function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { + + var inspected = {}, + seekingTransport = ( structure === transports ); + + function inspect( dataType ) { + var selected; + inspected[ dataType ] = true; + jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { + var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); + if ( typeof dataTypeOrTransport === "string" && + !seekingTransport && !inspected[ dataTypeOrTransport ] ) { + + options.dataTypes.unshift( dataTypeOrTransport ); + inspect( dataTypeOrTransport ); + return false; + } else if ( seekingTransport ) { + return !( selected = dataTypeOrTransport ); + } + } ); + return selected; + } + + return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); +} + +// A special extend for ajax options +// that takes "flat" options (not to be deep extended) +// Fixes #9887 +function ajaxExtend( target, src ) { + var key, deep, + flatOptions = jQuery.ajaxSettings.flatOptions || {}; + + for ( key in src ) { + if ( src[ key ] !== undefined ) { + ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; + } + } + if ( deep ) { + jQuery.extend( true, target, deep ); + } + + return target; +} + +/* Handles responses to an ajax request: + * - finds the right dataType (mediates between content-type and expected dataType) + * - returns the corresponding response + */ +function ajaxHandleResponses( s, jqXHR, responses ) { + + var ct, type, finalDataType, firstDataType, + contents = s.contents, + dataTypes = s.dataTypes; + + // Remove auto dataType and get content-type in the process + while ( dataTypes[ 0 ] === "*" ) { + dataTypes.shift(); + if ( ct === undefined ) { + ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); + } + } + + // Check if we're dealing with a known content-type + if ( ct ) { + for ( type in contents ) { + if ( contents[ type ] && contents[ type ].test( ct ) ) { + dataTypes.unshift( type ); + break; + } + } + } + + // Check to see if we have a response for the expected dataType + if ( dataTypes[ 0 ] in responses ) { + finalDataType = dataTypes[ 0 ]; + } else { + + // Try convertible dataTypes + for ( type in responses ) { + if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { + finalDataType = type; + break; + } + if ( !firstDataType ) { + firstDataType = type; + } + } + + // Or just use first one + finalDataType = finalDataType || firstDataType; + } + + // If we found a dataType + // We add the dataType to the list if needed + // and return the corresponding response + if ( finalDataType ) { + if ( finalDataType !== dataTypes[ 0 ] ) { + dataTypes.unshift( finalDataType ); + } + return responses[ finalDataType ]; + } +} + +/* Chain conversions given the request and the original response + * Also sets the responseXXX fields on the jqXHR instance + */ +function ajaxConvert( s, response, jqXHR, isSuccess ) { + var conv2, current, conv, tmp, prev, + converters = {}, + + // Work with a copy of dataTypes in case we need to modify it for conversion + dataTypes = s.dataTypes.slice(); + + // Create converters map with lowercased keys + if ( dataTypes[ 1 ] ) { + for ( conv in s.converters ) { + converters[ conv.toLowerCase() ] = s.converters[ conv ]; + } + } + + current = dataTypes.shift(); + + // Convert to each sequential dataType + while ( current ) { + + if ( s.responseFields[ current ] ) { + jqXHR[ s.responseFields[ current ] ] = response; + } + + // Apply the dataFilter if provided + if ( !prev && isSuccess && s.dataFilter ) { + response = s.dataFilter( response, s.dataType ); + } + + prev = current; + current = dataTypes.shift(); + + if ( current ) { + + // There's only work to do if current dataType is non-auto + if ( current === "*" ) { + + current = prev; + + // Convert response if prev dataType is non-auto and differs from current + } else if ( prev !== "*" && prev !== current ) { + + // Seek a direct converter + conv = converters[ prev + " " + current ] || converters[ "* " + current ]; + + // If none found, seek a pair + if ( !conv ) { + for ( conv2 in converters ) { + + // If conv2 outputs current + tmp = conv2.split( " " ); + if ( tmp[ 1 ] === current ) { + + // If prev can be converted to accepted input + conv = converters[ prev + " " + tmp[ 0 ] ] || + converters[ "* " + tmp[ 0 ] ]; + if ( conv ) { + + // Condense equivalence converters + if ( conv === true ) { + conv = converters[ conv2 ]; + + // Otherwise, insert the intermediate dataType + } else if ( converters[ conv2 ] !== true ) { + current = tmp[ 0 ]; + dataTypes.unshift( tmp[ 1 ] ); + } + break; + } + } + } + } + + // Apply converter (if not an equivalence) + if ( conv !== true ) { + + // Unless errors are allowed to bubble, catch and return them + if ( conv && s.throws ) { + response = conv( response ); + } else { + try { + response = conv( response ); + } catch ( e ) { + return { + state: "parsererror", + error: conv ? e : "No conversion from " + prev + " to " + current + }; + } + } + } + } + } + } + + return { state: "success", data: response }; +} + +jQuery.extend( { + + // Counter for holding the number of active queries + active: 0, + + // Last-Modified header cache for next request + lastModified: {}, + etag: {}, + + ajaxSettings: { + url: location.href, + type: "GET", + isLocal: rlocalProtocol.test( location.protocol ), + global: true, + processData: true, + async: true, + contentType: "application/x-www-form-urlencoded; charset=UTF-8", + + /* + timeout: 0, + data: null, + dataType: null, + username: null, + password: null, + cache: null, + throws: false, + traditional: false, + headers: {}, + */ + + accepts: { + "*": allTypes, + text: "text/plain", + html: "text/html", + xml: "application/xml, text/xml", + json: "application/json, text/javascript" + }, + + contents: { + xml: /\bxml\b/, + html: /\bhtml/, + json: /\bjson\b/ + }, + + responseFields: { + xml: "responseXML", + text: "responseText", + json: "responseJSON" + }, + + // Data converters + // Keys separate source (or catchall "*") and destination types with a single space + converters: { + + // Convert anything to text + "* text": String, + + // Text to html (true = no transformation) + "text html": true, + + // Evaluate text as a json expression + "text json": JSON.parse, + + // Parse text as xml + "text xml": jQuery.parseXML + }, + + // For options that shouldn't be deep extended: + // you can add your own custom options here if + // and when you create one that shouldn't be + // deep extended (see ajaxExtend) + flatOptions: { + url: true, + context: true + } + }, + + // Creates a full fledged settings object into target + // with both ajaxSettings and settings fields. + // If target is omitted, writes into ajaxSettings. + ajaxSetup: function( target, settings ) { + return settings ? + + // Building a settings object + ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : + + // Extending ajaxSettings + ajaxExtend( jQuery.ajaxSettings, target ); + }, + + ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), + ajaxTransport: addToPrefiltersOrTransports( transports ), + + // Main method + ajax: function( url, options ) { + + // If url is an object, simulate pre-1.5 signature + if ( typeof url === "object" ) { + options = url; + url = undefined; + } + + // Force options to be an object + options = options || {}; + + var transport, + + // URL without anti-cache param + cacheURL, + + // Response headers + responseHeadersString, + responseHeaders, + + // timeout handle + timeoutTimer, + + // Url cleanup var + urlAnchor, + + // Request state (becomes false upon send and true upon completion) + completed, + + // To know if global events are to be dispatched + fireGlobals, + + // Loop variable + i, + + // uncached part of the url + uncached, + + // Create the final options object + s = jQuery.ajaxSetup( {}, options ), + + // Callbacks context + callbackContext = s.context || s, + + // Context for global events is callbackContext if it is a DOM node or jQuery collection + globalEventContext = s.context && + ( callbackContext.nodeType || callbackContext.jquery ) ? + jQuery( callbackContext ) : + jQuery.event, + + // Deferreds + deferred = jQuery.Deferred(), + completeDeferred = jQuery.Callbacks( "once memory" ), + + // Status-dependent callbacks + statusCode = s.statusCode || {}, + + // Headers (they are sent all at once) + requestHeaders = {}, + requestHeadersNames = {}, + + // Default abort message + strAbort = "canceled", + + // Fake xhr + jqXHR = { + readyState: 0, + + // Builds headers hashtable if needed + getResponseHeader: function( key ) { + var match; + if ( completed ) { + if ( !responseHeaders ) { + responseHeaders = {}; + while ( ( match = rheaders.exec( responseHeadersString ) ) ) { + responseHeaders[ match[ 1 ].toLowerCase() + " " ] = + ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) + .concat( match[ 2 ] ); + } + } + match = responseHeaders[ key.toLowerCase() + " " ]; + } + return match == null ? null : match.join( ", " ); + }, + + // Raw string + getAllResponseHeaders: function() { + return completed ? responseHeadersString : null; + }, + + // Caches the header + setRequestHeader: function( name, value ) { + if ( completed == null ) { + name = requestHeadersNames[ name.toLowerCase() ] = + requestHeadersNames[ name.toLowerCase() ] || name; + requestHeaders[ name ] = value; + } + return this; + }, + + // Overrides response content-type header + overrideMimeType: function( type ) { + if ( completed == null ) { + s.mimeType = type; + } + return this; + }, + + // Status-dependent callbacks + statusCode: function( map ) { + var code; + if ( map ) { + if ( completed ) { + + // Execute the appropriate callbacks + jqXHR.always( map[ jqXHR.status ] ); + } else { + + // Lazy-add the new callbacks in a way that preserves old ones + for ( code in map ) { + statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; + } + } + } + return this; + }, + + // Cancel the request + abort: function( statusText ) { + var finalText = statusText || strAbort; + if ( transport ) { + transport.abort( finalText ); + } + done( 0, finalText ); + return this; + } + }; + + // Attach deferreds + deferred.promise( jqXHR ); + + // Add protocol if not provided (prefilters might expect it) + // Handle falsy url in the settings object (#10093: consistency with old signature) + // We also use the url parameter if available + s.url = ( ( url || s.url || location.href ) + "" ) + .replace( rprotocol, location.protocol + "//" ); + + // Alias method option to type as per ticket #12004 + s.type = options.method || options.type || s.method || s.type; + + // Extract dataTypes list + s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; + + // A cross-domain request is in order when the origin doesn't match the current origin. + if ( s.crossDomain == null ) { + urlAnchor = document.createElement( "a" ); + + // Support: IE <=8 - 11, Edge 12 - 15 + // IE throws exception on accessing the href property if url is malformed, + // e.g. http://example.com:80x/ + try { + urlAnchor.href = s.url; + + // Support: IE <=8 - 11 only + // Anchor's host property isn't correctly set when s.url is relative + urlAnchor.href = urlAnchor.href; + s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== + urlAnchor.protocol + "//" + urlAnchor.host; + } catch ( e ) { + + // If there is an error parsing the URL, assume it is crossDomain, + // it can be rejected by the transport if it is invalid + s.crossDomain = true; + } + } + + // Convert data if not already a string + if ( s.data && s.processData && typeof s.data !== "string" ) { + s.data = jQuery.param( s.data, s.traditional ); + } + + // Apply prefilters + inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); + + // If request was aborted inside a prefilter, stop there + if ( completed ) { + return jqXHR; + } + + // We can fire global events as of now if asked to + // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) + fireGlobals = jQuery.event && s.global; + + // Watch for a new set of requests + if ( fireGlobals && jQuery.active++ === 0 ) { + jQuery.event.trigger( "ajaxStart" ); + } + + // Uppercase the type + s.type = s.type.toUpperCase(); + + // Determine if request has content + s.hasContent = !rnoContent.test( s.type ); + + // Save the URL in case we're toying with the If-Modified-Since + // and/or If-None-Match header later on + // Remove hash to simplify url manipulation + cacheURL = s.url.replace( rhash, "" ); + + // More options handling for requests with no content + if ( !s.hasContent ) { + + // Remember the hash so we can put it back + uncached = s.url.slice( cacheURL.length ); + + // If data is available and should be processed, append data to url + if ( s.data && ( s.processData || typeof s.data === "string" ) ) { + cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; + + // #9682: remove data so that it's not used in an eventual retry + delete s.data; + } + + // Add or update anti-cache param if needed + if ( s.cache === false ) { + cacheURL = cacheURL.replace( rantiCache, "$1" ); + uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + + uncached; + } + + // Put hash and anti-cache on the URL that will be requested (gh-1732) + s.url = cacheURL + uncached; + + // Change '%20' to '+' if this is encoded form body content (gh-2658) + } else if ( s.data && s.processData && + ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { + s.data = s.data.replace( r20, "+" ); + } + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + if ( jQuery.lastModified[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); + } + if ( jQuery.etag[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); + } + } + + // Set the correct header, if data is being sent + if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { + jqXHR.setRequestHeader( "Content-Type", s.contentType ); + } + + // Set the Accepts header for the server, depending on the dataType + jqXHR.setRequestHeader( + "Accept", + s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? + s.accepts[ s.dataTypes[ 0 ] ] + + ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : + s.accepts[ "*" ] + ); + + // Check for headers option + for ( i in s.headers ) { + jqXHR.setRequestHeader( i, s.headers[ i ] ); + } + + // Allow custom headers/mimetypes and early abort + if ( s.beforeSend && + ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { + + // Abort if not done already and return + return jqXHR.abort(); + } + + // Aborting is no longer a cancellation + strAbort = "abort"; + + // Install callbacks on deferreds + completeDeferred.add( s.complete ); + jqXHR.done( s.success ); + jqXHR.fail( s.error ); + + // Get transport + transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); + + // If no transport, we auto-abort + if ( !transport ) { + done( -1, "No Transport" ); + } else { + jqXHR.readyState = 1; + + // Send global event + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); + } + + // If request was aborted inside ajaxSend, stop there + if ( completed ) { + return jqXHR; + } + + // Timeout + if ( s.async && s.timeout > 0 ) { + timeoutTimer = window.setTimeout( function() { + jqXHR.abort( "timeout" ); + }, s.timeout ); + } + + try { + completed = false; + transport.send( requestHeaders, done ); + } catch ( e ) { + + // Rethrow post-completion exceptions + if ( completed ) { + throw e; + } + + // Propagate others as results + done( -1, e ); + } + } + + // Callback for when everything is done + function done( status, nativeStatusText, responses, headers ) { + var isSuccess, success, error, response, modified, + statusText = nativeStatusText; + + // Ignore repeat invocations + if ( completed ) { + return; + } + + completed = true; + + // Clear timeout if it exists + if ( timeoutTimer ) { + window.clearTimeout( timeoutTimer ); + } + + // Dereference transport for early garbage collection + // (no matter how long the jqXHR object will be used) + transport = undefined; + + // Cache response headers + responseHeadersString = headers || ""; + + // Set readyState + jqXHR.readyState = status > 0 ? 4 : 0; + + // Determine if successful + isSuccess = status >= 200 && status < 300 || status === 304; + + // Get response data + if ( responses ) { + response = ajaxHandleResponses( s, jqXHR, responses ); + } + + // Use a noop converter for missing script but not if jsonp + if ( !isSuccess && + jQuery.inArray( "script", s.dataTypes ) > -1 && + jQuery.inArray( "json", s.dataTypes ) < 0 ) { + s.converters[ "text script" ] = function() {}; + } + + // Convert no matter what (that way responseXXX fields are always set) + response = ajaxConvert( s, response, jqXHR, isSuccess ); + + // If successful, handle type chaining + if ( isSuccess ) { + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + modified = jqXHR.getResponseHeader( "Last-Modified" ); + if ( modified ) { + jQuery.lastModified[ cacheURL ] = modified; + } + modified = jqXHR.getResponseHeader( "etag" ); + if ( modified ) { + jQuery.etag[ cacheURL ] = modified; + } + } + + // if no content + if ( status === 204 || s.type === "HEAD" ) { + statusText = "nocontent"; + + // if not modified + } else if ( status === 304 ) { + statusText = "notmodified"; + + // If we have data, let's convert it + } else { + statusText = response.state; + success = response.data; + error = response.error; + isSuccess = !error; + } + } else { + + // Extract error from statusText and normalize for non-aborts + error = statusText; + if ( status || !statusText ) { + statusText = "error"; + if ( status < 0 ) { + status = 0; + } + } + } + + // Set data for the fake xhr object + jqXHR.status = status; + jqXHR.statusText = ( nativeStatusText || statusText ) + ""; + + // Success/Error + if ( isSuccess ) { + deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); + } else { + deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); + } + + // Status-dependent callbacks + jqXHR.statusCode( statusCode ); + statusCode = undefined; + + if ( fireGlobals ) { + globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", + [ jqXHR, s, isSuccess ? success : error ] ); + } + + // Complete + completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); + + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); + + // Handle the global AJAX counter + if ( !( --jQuery.active ) ) { + jQuery.event.trigger( "ajaxStop" ); + } + } + } + + return jqXHR; + }, + + getJSON: function( url, data, callback ) { + return jQuery.get( url, data, callback, "json" ); + }, + + getScript: function( url, callback ) { + return jQuery.get( url, undefined, callback, "script" ); + } +} ); + +jQuery.each( [ "get", "post" ], function( _i, method ) { + jQuery[ method ] = function( url, data, callback, type ) { + + // Shift arguments if data argument was omitted + if ( isFunction( data ) ) { + type = type || callback; + callback = data; + data = undefined; + } + + // The url can be an options object (which then must have .url) + return jQuery.ajax( jQuery.extend( { + url: url, + type: method, + dataType: type, + data: data, + success: callback + }, jQuery.isPlainObject( url ) && url ) ); + }; +} ); + +jQuery.ajaxPrefilter( function( s ) { + var i; + for ( i in s.headers ) { + if ( i.toLowerCase() === "content-type" ) { + s.contentType = s.headers[ i ] || ""; + } + } +} ); + + +jQuery._evalUrl = function( url, options, doc ) { + return jQuery.ajax( { + url: url, + + // Make this explicit, since user can override this through ajaxSetup (#11264) + type: "GET", + dataType: "script", + cache: true, + async: false, + global: false, + + // Only evaluate the response if it is successful (gh-4126) + // dataFilter is not invoked for failure responses, so using it instead + // of the default converter is kludgy but it works. + converters: { + "text script": function() {} + }, + dataFilter: function( response ) { + jQuery.globalEval( response, options, doc ); + } + } ); +}; + + +jQuery.fn.extend( { + wrapAll: function( html ) { + var wrap; + + if ( this[ 0 ] ) { + if ( isFunction( html ) ) { + html = html.call( this[ 0 ] ); + } + + // The elements to wrap the target around + wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); + + if ( this[ 0 ].parentNode ) { + wrap.insertBefore( this[ 0 ] ); + } + + wrap.map( function() { + var elem = this; + + while ( elem.firstElementChild ) { + elem = elem.firstElementChild; + } + + return elem; + } ).append( this ); + } + + return this; + }, + + wrapInner: function( html ) { + if ( isFunction( html ) ) { + return this.each( function( i ) { + jQuery( this ).wrapInner( html.call( this, i ) ); + } ); + } + + return this.each( function() { + var self = jQuery( this ), + contents = self.contents(); + + if ( contents.length ) { + contents.wrapAll( html ); + + } else { + self.append( html ); + } + } ); + }, + + wrap: function( html ) { + var htmlIsFunction = isFunction( html ); + + return this.each( function( i ) { + jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); + } ); + }, + + unwrap: function( selector ) { + this.parent( selector ).not( "body" ).each( function() { + jQuery( this ).replaceWith( this.childNodes ); + } ); + return this; + } +} ); + + +jQuery.expr.pseudos.hidden = function( elem ) { + return !jQuery.expr.pseudos.visible( elem ); +}; +jQuery.expr.pseudos.visible = function( elem ) { + return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); +}; + + + + +jQuery.ajaxSettings.xhr = function() { + try { + return new window.XMLHttpRequest(); + } catch ( e ) {} +}; + +var xhrSuccessStatus = { + + // File protocol always yields status code 0, assume 200 + 0: 200, + + // Support: IE <=9 only + // #1450: sometimes IE returns 1223 when it should be 204 + 1223: 204 + }, + xhrSupported = jQuery.ajaxSettings.xhr(); + +support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); +support.ajax = xhrSupported = !!xhrSupported; + +jQuery.ajaxTransport( function( options ) { + var callback, errorCallback; + + // Cross domain only allowed if supported through XMLHttpRequest + if ( support.cors || xhrSupported && !options.crossDomain ) { + return { + send: function( headers, complete ) { + var i, + xhr = options.xhr(); + + xhr.open( + options.type, + options.url, + options.async, + options.username, + options.password + ); + + // Apply custom fields if provided + if ( options.xhrFields ) { + for ( i in options.xhrFields ) { + xhr[ i ] = options.xhrFields[ i ]; + } + } + + // Override mime type if needed + if ( options.mimeType && xhr.overrideMimeType ) { + xhr.overrideMimeType( options.mimeType ); + } + + // X-Requested-With header + // For cross-domain requests, seeing as conditions for a preflight are + // akin to a jigsaw puzzle, we simply never set it to be sure. + // (it can always be set on a per-request basis or even using ajaxSetup) + // For same-domain requests, won't change header if already provided. + if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { + headers[ "X-Requested-With" ] = "XMLHttpRequest"; + } + + // Set headers + for ( i in headers ) { + xhr.setRequestHeader( i, headers[ i ] ); + } + + // Callback + callback = function( type ) { + return function() { + if ( callback ) { + callback = errorCallback = xhr.onload = + xhr.onerror = xhr.onabort = xhr.ontimeout = + xhr.onreadystatechange = null; + + if ( type === "abort" ) { + xhr.abort(); + } else if ( type === "error" ) { + + // Support: IE <=9 only + // On a manual native abort, IE9 throws + // errors on any property access that is not readyState + if ( typeof xhr.status !== "number" ) { + complete( 0, "error" ); + } else { + complete( + + // File: protocol always yields status 0; see #8605, #14207 + xhr.status, + xhr.statusText + ); + } + } else { + complete( + xhrSuccessStatus[ xhr.status ] || xhr.status, + xhr.statusText, + + // Support: IE <=9 only + // IE9 has no XHR2 but throws on binary (trac-11426) + // For XHR2 non-text, let the caller handle it (gh-2498) + ( xhr.responseType || "text" ) !== "text" || + typeof xhr.responseText !== "string" ? + { binary: xhr.response } : + { text: xhr.responseText }, + xhr.getAllResponseHeaders() + ); + } + } + }; + }; + + // Listen to events + xhr.onload = callback(); + errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); + + // Support: IE 9 only + // Use onreadystatechange to replace onabort + // to handle uncaught aborts + if ( xhr.onabort !== undefined ) { + xhr.onabort = errorCallback; + } else { + xhr.onreadystatechange = function() { + + // Check readyState before timeout as it changes + if ( xhr.readyState === 4 ) { + + // Allow onerror to be called first, + // but that will not handle a native abort + // Also, save errorCallback to a variable + // as xhr.onerror cannot be accessed + window.setTimeout( function() { + if ( callback ) { + errorCallback(); + } + } ); + } + }; + } + + // Create the abort callback + callback = callback( "abort" ); + + try { + + // Do send the request (this may raise an exception) + xhr.send( options.hasContent && options.data || null ); + } catch ( e ) { + + // #14683: Only rethrow if this hasn't been notified as an error yet + if ( callback ) { + throw e; + } + } + }, + + abort: function() { + if ( callback ) { + callback(); + } + } + }; + } +} ); + + + + +// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) +jQuery.ajaxPrefilter( function( s ) { + if ( s.crossDomain ) { + s.contents.script = false; + } +} ); + +// Install script dataType +jQuery.ajaxSetup( { + accepts: { + script: "text/javascript, application/javascript, " + + "application/ecmascript, application/x-ecmascript" + }, + contents: { + script: /\b(?:java|ecma)script\b/ + }, + converters: { + "text script": function( text ) { + jQuery.globalEval( text ); + return text; + } + } +} ); + +// Handle cache's special case and crossDomain +jQuery.ajaxPrefilter( "script", function( s ) { + if ( s.cache === undefined ) { + s.cache = false; + } + if ( s.crossDomain ) { + s.type = "GET"; + } +} ); + +// Bind script tag hack transport +jQuery.ajaxTransport( "script", function( s ) { + + // This transport only deals with cross domain or forced-by-attrs requests + if ( s.crossDomain || s.scriptAttrs ) { + var script, callback; + return { + send: function( _, complete ) { + script = jQuery( " +{% endmacro %} diff --git a/_static/scripts/bootstrap.js b/_static/scripts/bootstrap.js new file mode 100644 index 0000000..c8178de --- /dev/null +++ b/_static/scripts/bootstrap.js @@ -0,0 +1,3 @@ +/*! For license information please see bootstrap.js.LICENSE.txt */ +(()=>{"use strict";var t={d:(e,i)=>{for(var n in i)t.o(i,n)&&!t.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:i[n]})},o:(t,e)=>Object.prototype.hasOwnProperty.call(t,e),r:t=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(t,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(t,"__esModule",{value:!0})}},e={};t.r(e),t.d(e,{afterMain:()=>E,afterRead:()=>v,afterWrite:()=>C,applyStyles:()=>$,arrow:()=>J,auto:()=>a,basePlacements:()=>l,beforeMain:()=>y,beforeRead:()=>_,beforeWrite:()=>A,bottom:()=>s,clippingParents:()=>d,computeStyles:()=>it,createPopper:()=>Dt,createPopperBase:()=>St,createPopperLite:()=>$t,detectOverflow:()=>_t,end:()=>h,eventListeners:()=>st,flip:()=>bt,hide:()=>wt,left:()=>r,main:()=>w,modifierPhases:()=>O,offset:()=>Et,placements:()=>g,popper:()=>f,popperGenerator:()=>Lt,popperOffsets:()=>At,preventOverflow:()=>Tt,read:()=>b,reference:()=>p,right:()=>o,start:()=>c,top:()=>n,variationPlacements:()=>m,viewport:()=>u,write:()=>T});var i={};t.r(i),t.d(i,{Alert:()=>Oe,Button:()=>ke,Carousel:()=>li,Collapse:()=>Ei,Dropdown:()=>Ki,Modal:()=>Ln,Offcanvas:()=>Kn,Popover:()=>bs,ScrollSpy:()=>Ls,Tab:()=>Js,Toast:()=>po,Tooltip:()=>fs});var n="top",s="bottom",o="right",r="left",a="auto",l=[n,s,o,r],c="start",h="end",d="clippingParents",u="viewport",f="popper",p="reference",m=l.reduce((function(t,e){return t.concat([e+"-"+c,e+"-"+h])}),[]),g=[].concat(l,[a]).reduce((function(t,e){return t.concat([e,e+"-"+c,e+"-"+h])}),[]),_="beforeRead",b="read",v="afterRead",y="beforeMain",w="main",E="afterMain",A="beforeWrite",T="write",C="afterWrite",O=[_,b,v,y,w,E,A,T,C];function x(t){return t?(t.nodeName||"").toLowerCase():null}function k(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function L(t){return t instanceof k(t).Element||t instanceof Element}function S(t){return t instanceof k(t).HTMLElement||t instanceof HTMLElement}function D(t){return"undefined"!=typeof ShadowRoot&&(t instanceof k(t).ShadowRoot||t instanceof ShadowRoot)}const $={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];S(s)&&x(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});S(n)&&x(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function I(t){return t.split("-")[0]}var N=Math.max,P=Math.min,M=Math.round;function j(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function F(){return!/^((?!chrome|android).)*safari/i.test(j())}function H(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&S(t)&&(s=t.offsetWidth>0&&M(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&M(n.height)/t.offsetHeight||1);var r=(L(t)?k(t):window).visualViewport,a=!F()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function B(t){var e=H(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function W(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&D(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function z(t){return k(t).getComputedStyle(t)}function R(t){return["table","td","th"].indexOf(x(t))>=0}function q(t){return((L(t)?t.ownerDocument:t.document)||window.document).documentElement}function V(t){return"html"===x(t)?t:t.assignedSlot||t.parentNode||(D(t)?t.host:null)||q(t)}function Y(t){return S(t)&&"fixed"!==z(t).position?t.offsetParent:null}function K(t){for(var e=k(t),i=Y(t);i&&R(i)&&"static"===z(i).position;)i=Y(i);return i&&("html"===x(i)||"body"===x(i)&&"static"===z(i).position)?e:i||function(t){var e=/firefox/i.test(j());if(/Trident/i.test(j())&&S(t)&&"fixed"===z(t).position)return null;var i=V(t);for(D(i)&&(i=i.host);S(i)&&["html","body"].indexOf(x(i))<0;){var n=z(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Q(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function X(t,e,i){return N(t,P(e,i))}function U(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function G(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const J={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,a=t.name,c=t.options,h=i.elements.arrow,d=i.modifiersData.popperOffsets,u=I(i.placement),f=Q(u),p=[r,o].indexOf(u)>=0?"height":"width";if(h&&d){var m=function(t,e){return U("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:G(t,l))}(c.padding,i),g=B(h),_="y"===f?n:r,b="y"===f?s:o,v=i.rects.reference[p]+i.rects.reference[f]-d[f]-i.rects.popper[p],y=d[f]-i.rects.reference[f],w=K(h),E=w?"y"===f?w.clientHeight||0:w.clientWidth||0:0,A=v/2-y/2,T=m[_],C=E-g[p]-m[b],O=E/2-g[p]/2+A,x=X(T,O,C),k=f;i.modifiersData[a]=((e={})[k]=x,e.centerOffset=x-O,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&W(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Z(t){return t.split("-")[1]}var tt={top:"auto",right:"auto",bottom:"auto",left:"auto"};function et(t){var e,i=t.popper,a=t.popperRect,l=t.placement,c=t.variation,d=t.offsets,u=t.position,f=t.gpuAcceleration,p=t.adaptive,m=t.roundOffsets,g=t.isFixed,_=d.x,b=void 0===_?0:_,v=d.y,y=void 0===v?0:v,w="function"==typeof m?m({x:b,y}):{x:b,y};b=w.x,y=w.y;var E=d.hasOwnProperty("x"),A=d.hasOwnProperty("y"),T=r,C=n,O=window;if(p){var x=K(i),L="clientHeight",S="clientWidth";x===k(i)&&"static"!==z(x=q(i)).position&&"absolute"===u&&(L="scrollHeight",S="scrollWidth"),(l===n||(l===r||l===o)&&c===h)&&(C=s,y-=(g&&x===O&&O.visualViewport?O.visualViewport.height:x[L])-a.height,y*=f?1:-1),l!==r&&(l!==n&&l!==s||c!==h)||(T=o,b-=(g&&x===O&&O.visualViewport?O.visualViewport.width:x[S])-a.width,b*=f?1:-1)}var D,$=Object.assign({position:u},p&&tt),I=!0===m?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:M(i*s)/s||0,y:M(n*s)/s||0}}({x:b,y},k(i)):{x:b,y};return b=I.x,y=I.y,f?Object.assign({},$,((D={})[C]=A?"0":"",D[T]=E?"0":"",D.transform=(O.devicePixelRatio||1)<=1?"translate("+b+"px, "+y+"px)":"translate3d("+b+"px, "+y+"px, 0)",D)):Object.assign({},$,((e={})[C]=A?y+"px":"",e[T]=E?b+"px":"",e.transform="",e))}const it={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:I(e.placement),variation:Z(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,et(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,et(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var nt={passive:!0};const st={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=k(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,nt)})),a&&l.addEventListener("resize",i.update,nt),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,nt)})),a&&l.removeEventListener("resize",i.update,nt)}},data:{}};var ot={left:"right",right:"left",bottom:"top",top:"bottom"};function rt(t){return t.replace(/left|right|bottom|top/g,(function(t){return ot[t]}))}var at={start:"end",end:"start"};function lt(t){return t.replace(/start|end/g,(function(t){return at[t]}))}function ct(t){var e=k(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function ht(t){return H(q(t)).left+ct(t).scrollLeft}function dt(t){var e=z(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function ut(t){return["html","body","#document"].indexOf(x(t))>=0?t.ownerDocument.body:S(t)&&dt(t)?t:ut(V(t))}function ft(t,e){var i;void 0===e&&(e=[]);var n=ut(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=k(n),r=s?[o].concat(o.visualViewport||[],dt(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(ft(V(r)))}function pt(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function mt(t,e,i){return e===u?pt(function(t,e){var i=k(t),n=q(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=F();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+ht(t),y:l}}(t,i)):L(e)?function(t,e){var i=H(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):pt(function(t){var e,i=q(t),n=ct(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=N(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=N(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+ht(t),l=-n.scrollTop;return"rtl"===z(s||i).direction&&(a+=N(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(q(t)))}function gt(t){var e,i=t.reference,a=t.element,l=t.placement,d=l?I(l):null,u=l?Z(l):null,f=i.x+i.width/2-a.width/2,p=i.y+i.height/2-a.height/2;switch(d){case n:e={x:f,y:i.y-a.height};break;case s:e={x:f,y:i.y+i.height};break;case o:e={x:i.x+i.width,y:p};break;case r:e={x:i.x-a.width,y:p};break;default:e={x:i.x,y:i.y}}var m=d?Q(d):null;if(null!=m){var g="y"===m?"height":"width";switch(u){case c:e[m]=e[m]-(i[g]/2-a[g]/2);break;case h:e[m]=e[m]+(i[g]/2-a[g]/2)}}return e}function _t(t,e){void 0===e&&(e={});var i=e,r=i.placement,a=void 0===r?t.placement:r,c=i.strategy,h=void 0===c?t.strategy:c,m=i.boundary,g=void 0===m?d:m,_=i.rootBoundary,b=void 0===_?u:_,v=i.elementContext,y=void 0===v?f:v,w=i.altBoundary,E=void 0!==w&&w,A=i.padding,T=void 0===A?0:A,C=U("number"!=typeof T?T:G(T,l)),O=y===f?p:f,k=t.rects.popper,D=t.elements[E?O:y],$=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=ft(V(t)),i=["absolute","fixed"].indexOf(z(t).position)>=0&&S(t)?K(t):t;return L(i)?e.filter((function(t){return L(t)&&W(t,i)&&"body"!==x(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=mt(t,i,n);return e.top=N(s.top,e.top),e.right=P(s.right,e.right),e.bottom=P(s.bottom,e.bottom),e.left=N(s.left,e.left),e}),mt(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(L(D)?D:D.contextElement||q(t.elements.popper),g,b,h),I=H(t.elements.reference),M=gt({reference:I,element:k,strategy:"absolute",placement:a}),j=pt(Object.assign({},k,M)),F=y===f?j:I,B={top:$.top-F.top+C.top,bottom:F.bottom-$.bottom+C.bottom,left:$.left-F.left+C.left,right:F.right-$.right+C.right},R=t.modifiersData.offset;if(y===f&&R){var Y=R[a];Object.keys(B).forEach((function(t){var e=[o,s].indexOf(t)>=0?1:-1,i=[n,s].indexOf(t)>=0?"y":"x";B[t]+=Y[i]*e}))}return B}const bt={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,h=t.name;if(!e.modifiersData[h]._skip){for(var d=i.mainAxis,u=void 0===d||d,f=i.altAxis,p=void 0===f||f,_=i.fallbackPlacements,b=i.padding,v=i.boundary,y=i.rootBoundary,w=i.altBoundary,E=i.flipVariations,A=void 0===E||E,T=i.allowedAutoPlacements,C=e.options.placement,O=I(C),x=_||(O!==C&&A?function(t){if(I(t)===a)return[];var e=rt(t);return[lt(t),e,lt(e)]}(C):[rt(C)]),k=[C].concat(x).reduce((function(t,i){return t.concat(I(i)===a?function(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,c=i.allowedAutoPlacements,h=void 0===c?g:c,d=Z(n),u=d?a?m:m.filter((function(t){return Z(t)===d})):l,f=u.filter((function(t){return h.indexOf(t)>=0}));0===f.length&&(f=u);var p=f.reduce((function(e,i){return e[i]=_t(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[I(i)],e}),{});return Object.keys(p).sort((function(t,e){return p[t]-p[e]}))}(e,{placement:i,boundary:v,rootBoundary:y,padding:b,flipVariations:A,allowedAutoPlacements:T}):i)}),[]),L=e.rects.reference,S=e.rects.popper,D=new Map,$=!0,N=k[0],P=0;P=0,B=H?"width":"height",W=_t(e,{placement:M,boundary:v,rootBoundary:y,altBoundary:w,padding:b}),z=H?F?o:r:F?s:n;L[B]>S[B]&&(z=rt(z));var R=rt(z),q=[];if(u&&q.push(W[j]<=0),p&&q.push(W[z]<=0,W[R]<=0),q.every((function(t){return t}))){N=M,$=!1;break}D.set(M,q)}if($)for(var V=function(t){var e=k.find((function(e){var i=D.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return N=e,"break"},Y=A?3:1;Y>0&&"break"!==V(Y);Y--);e.placement!==N&&(e.modifiersData[h]._skip=!0,e.placement=N,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function vt(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function yt(t){return[n,o,s,r].some((function(e){return t[e]>=0}))}const wt={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=_t(e,{elementContext:"reference"}),a=_t(e,{altBoundary:!0}),l=vt(r,n),c=vt(a,s,o),h=yt(l),d=yt(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},Et={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,s=t.name,a=i.offset,l=void 0===a?[0,0]:a,c=g.reduce((function(t,i){return t[i]=function(t,e,i){var s=I(t),a=[r,n].indexOf(s)>=0?-1:1,l="function"==typeof i?i(Object.assign({},e,{placement:t})):i,c=l[0],h=l[1];return c=c||0,h=(h||0)*a,[r,o].indexOf(s)>=0?{x:h,y:c}:{x:c,y:h}}(i,e.rects,l),t}),{}),h=c[e.placement],d=h.x,u=h.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=d,e.modifiersData.popperOffsets.y+=u),e.modifiersData[s]=c}},At={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=gt({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},Tt={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,a=t.name,l=i.mainAxis,h=void 0===l||l,d=i.altAxis,u=void 0!==d&&d,f=i.boundary,p=i.rootBoundary,m=i.altBoundary,g=i.padding,_=i.tether,b=void 0===_||_,v=i.tetherOffset,y=void 0===v?0:v,w=_t(e,{boundary:f,rootBoundary:p,padding:g,altBoundary:m}),E=I(e.placement),A=Z(e.placement),T=!A,C=Q(E),O="x"===C?"y":"x",x=e.modifiersData.popperOffsets,k=e.rects.reference,L=e.rects.popper,S="function"==typeof y?y(Object.assign({},e.rects,{placement:e.placement})):y,D="number"==typeof S?{mainAxis:S,altAxis:S}:Object.assign({mainAxis:0,altAxis:0},S),$=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,M={x:0,y:0};if(x){if(h){var j,F="y"===C?n:r,H="y"===C?s:o,W="y"===C?"height":"width",z=x[C],R=z+w[F],q=z-w[H],V=b?-L[W]/2:0,Y=A===c?k[W]:L[W],U=A===c?-L[W]:-k[W],G=e.elements.arrow,J=b&&G?B(G):{width:0,height:0},tt=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},et=tt[F],it=tt[H],nt=X(0,k[W],J[W]),st=T?k[W]/2-V-nt-et-D.mainAxis:Y-nt-et-D.mainAxis,ot=T?-k[W]/2+V+nt+it+D.mainAxis:U+nt+it+D.mainAxis,rt=e.elements.arrow&&K(e.elements.arrow),at=rt?"y"===C?rt.clientTop||0:rt.clientLeft||0:0,lt=null!=(j=null==$?void 0:$[C])?j:0,ct=z+ot-lt,ht=X(b?P(R,z+st-lt-at):R,z,b?N(q,ct):q);x[C]=ht,M[C]=ht-z}if(u){var dt,ut="x"===C?n:r,ft="x"===C?s:o,pt=x[O],mt="y"===O?"height":"width",gt=pt+w[ut],bt=pt-w[ft],vt=-1!==[n,r].indexOf(E),yt=null!=(dt=null==$?void 0:$[O])?dt:0,wt=vt?gt:pt-k[mt]-L[mt]-yt+D.altAxis,Et=vt?pt+k[mt]+L[mt]-yt-D.altAxis:bt,At=b&&vt?function(t,e,i){var n=X(t,e,i);return n>i?i:n}(wt,pt,Et):X(b?wt:gt,pt,b?Et:bt);x[O]=At,M[O]=At-pt}e.modifiersData[a]=M}},requiresIfExists:["offset"]};function Ct(t,e,i){void 0===i&&(i=!1);var n,s,o=S(e),r=S(e)&&function(t){var e=t.getBoundingClientRect(),i=M(e.width)/t.offsetWidth||1,n=M(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=q(e),l=H(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==x(e)||dt(a))&&(c=(n=e)!==k(n)&&S(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:ct(n)),S(e)?((h=H(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=ht(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function Ot(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var xt={placement:"bottom",modifiers:[],strategy:"absolute"};function kt(){for(var t=arguments.length,e=new Array(t),i=0;iIt.has(t)&&It.get(t).get(e)||null,remove(t,e){if(!It.has(t))return;const i=It.get(t);i.delete(e),0===i.size&&It.delete(t)}},Pt="transitionend",Mt=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),jt=t=>{t.dispatchEvent(new Event(Pt))},Ft=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),Ht=t=>Ft(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(Mt(t)):null,Bt=t=>{if(!Ft(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},Wt=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),zt=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?zt(t.parentNode):null},Rt=()=>{},qt=t=>{t.offsetHeight},Vt=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,Yt=[],Kt=()=>"rtl"===document.documentElement.dir,Qt=t=>{var e;e=()=>{const e=Vt();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(Yt.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of Yt)t()})),Yt.push(e)):e()},Xt=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,Ut=(t,e,i=!0)=>{if(!i)return void Xt(t);const n=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let s=!1;const o=({target:i})=>{i===e&&(s=!0,e.removeEventListener(Pt,o),Xt(t))};e.addEventListener(Pt,o),setTimeout((()=>{s||jt(e)}),n)},Gt=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},Jt=/[^.]*(?=\..*)\.|.*/,Zt=/\..*/,te=/::\d+$/,ee={};let ie=1;const ne={mouseenter:"mouseover",mouseleave:"mouseout"},se=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function oe(t,e){return e&&`${e}::${ie++}`||t.uidEvent||ie++}function re(t){const e=oe(t);return t.uidEvent=e,ee[e]=ee[e]||{},ee[e]}function ae(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function le(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=ue(t);return se.has(o)||(o=t),[n,s,o]}function ce(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=le(e,i,n);if(e in ne){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=re(t),c=l[a]||(l[a]={}),h=ae(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=oe(r,e.replace(Jt,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return pe(s,{delegateTarget:r}),n.oneOff&&fe.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return pe(n,{delegateTarget:t}),i.oneOff&&fe.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function he(t,e,i,n,s){const o=ae(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function de(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&he(t,e,i,r.callable,r.delegationSelector)}function ue(t){return t=t.replace(Zt,""),ne[t]||t}const fe={on(t,e,i,n){ce(t,e,i,n,!1)},one(t,e,i,n){ce(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=le(e,i,n),a=r!==e,l=re(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))de(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(te,"");a&&!e.includes(s)||he(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;he(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=Vt();let s=null,o=!0,r=!0,a=!1;e!==ue(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=pe(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function pe(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function me(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function ge(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const _e={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${ge(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${ge(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=me(t.dataset[n])}return e},getDataAttribute:(t,e)=>me(t.getAttribute(`data-bs-${ge(e)}`))};class be{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=Ft(e)?_e.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...Ft(e)?_e.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],o=Ft(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(o))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${o}" but expected type "${s}".`)}var i}}class ve extends be{constructor(t,e){super(),(t=Ht(t))&&(this._element=t,this._config=this._getConfig(e),Nt.set(this._element,this.constructor.DATA_KEY,this))}dispose(){Nt.remove(this._element,this.constructor.DATA_KEY),fe.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){Ut(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return Nt.get(Ht(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.3"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const ye=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return e?e.split(",").map((t=>Mt(t))).join(","):null},we={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!Wt(t)&&Bt(t)))},getSelectorFromElement(t){const e=ye(t);return e&&we.findOne(e)?e:null},getElementFromSelector(t){const e=ye(t);return e?we.findOne(e):null},getMultipleElementsFromSelector(t){const e=ye(t);return e?we.find(e):[]}},Ee=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;fe.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),Wt(this))return;const s=we.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},Ae=".bs.alert",Te=`close${Ae}`,Ce=`closed${Ae}`;class Oe extends ve{static get NAME(){return"alert"}close(){if(fe.trigger(this._element,Te).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),fe.trigger(this._element,Ce),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Oe.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}Ee(Oe,"close"),Qt(Oe);const xe='[data-bs-toggle="button"]';class ke extends ve{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=ke.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}fe.on(document,"click.bs.button.data-api",xe,(t=>{t.preventDefault();const e=t.target.closest(xe);ke.getOrCreateInstance(e).toggle()})),Qt(ke);const Le=".bs.swipe",Se=`touchstart${Le}`,De=`touchmove${Le}`,$e=`touchend${Le}`,Ie=`pointerdown${Le}`,Ne=`pointerup${Le}`,Pe={endCallback:null,leftCallback:null,rightCallback:null},Me={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class je extends be{constructor(t,e){super(),this._element=t,t&&je.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return Pe}static get DefaultType(){return Me}static get NAME(){return"swipe"}dispose(){fe.off(this._element,Le)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),Xt(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&Xt(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(fe.on(this._element,Ie,(t=>this._start(t))),fe.on(this._element,Ne,(t=>this._end(t))),this._element.classList.add("pointer-event")):(fe.on(this._element,Se,(t=>this._start(t))),fe.on(this._element,De,(t=>this._move(t))),fe.on(this._element,$e,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const Fe=".bs.carousel",He=".data-api",Be="ArrowLeft",We="ArrowRight",ze="next",Re="prev",qe="left",Ve="right",Ye=`slide${Fe}`,Ke=`slid${Fe}`,Qe=`keydown${Fe}`,Xe=`mouseenter${Fe}`,Ue=`mouseleave${Fe}`,Ge=`dragstart${Fe}`,Je=`load${Fe}${He}`,Ze=`click${Fe}${He}`,ti="carousel",ei="active",ii=".active",ni=".carousel-item",si=ii+ni,oi={[Be]:Ve,[We]:qe},ri={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},ai={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class li extends ve{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=we.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===ti&&this.cycle()}static get Default(){return ri}static get DefaultType(){return ai}static get NAME(){return"carousel"}next(){this._slide(ze)}nextWhenVisible(){!document.hidden&&Bt(this._element)&&this.next()}prev(){this._slide(Re)}pause(){this._isSliding&&jt(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?fe.one(this._element,Ke,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void fe.one(this._element,Ke,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?ze:Re;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&fe.on(this._element,Qe,(t=>this._keydown(t))),"hover"===this._config.pause&&(fe.on(this._element,Xe,(()=>this.pause())),fe.on(this._element,Ue,(()=>this._maybeEnableCycle()))),this._config.touch&&je.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of we.find(".carousel-item img",this._element))fe.on(t,Ge,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(qe)),rightCallback:()=>this._slide(this._directionToOrder(Ve)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new je(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=oi[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=we.findOne(ii,this._indicatorsElement);e.classList.remove(ei),e.removeAttribute("aria-current");const i=we.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(ei),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===ze,s=e||Gt(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>fe.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(Ye).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),qt(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(ei),i.classList.remove(ei,c,l),this._isSliding=!1,r(Ke)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return we.findOne(si,this._element)}_getItems(){return we.find(ni,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return Kt()?t===qe?Re:ze:t===qe?ze:Re}_orderToDirection(t){return Kt()?t===Re?qe:Ve:t===Re?Ve:qe}static jQueryInterface(t){return this.each((function(){const e=li.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}fe.on(document,Ze,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=we.getElementFromSelector(this);if(!e||!e.classList.contains(ti))return;t.preventDefault();const i=li.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===_e.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),fe.on(window,Je,(()=>{const t=we.find('[data-bs-ride="carousel"]');for(const e of t)li.getOrCreateInstance(e)})),Qt(li);const ci=".bs.collapse",hi=`show${ci}`,di=`shown${ci}`,ui=`hide${ci}`,fi=`hidden${ci}`,pi=`click${ci}.data-api`,mi="show",gi="collapse",_i="collapsing",bi=`:scope .${gi} .${gi}`,vi='[data-bs-toggle="collapse"]',yi={parent:null,toggle:!0},wi={parent:"(null|element)",toggle:"boolean"};class Ei extends ve{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=we.find(vi);for(const t of i){const e=we.getSelectorFromElement(t),i=we.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return yi}static get DefaultType(){return wi}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>Ei.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(fe.trigger(this._element,hi).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(gi),this._element.classList.add(_i),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(_i),this._element.classList.add(gi,mi),this._element.style[e]="",fe.trigger(this._element,di)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(fe.trigger(this._element,ui).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,qt(this._element),this._element.classList.add(_i),this._element.classList.remove(gi,mi);for(const t of this._triggerArray){const e=we.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(_i),this._element.classList.add(gi),fe.trigger(this._element,fi)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(mi)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=Ht(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(vi);for(const e of t){const t=we.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=we.find(bi,this._config.parent);return we.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=Ei.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}fe.on(document,pi,vi,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of we.getMultipleElementsFromSelector(this))Ei.getOrCreateInstance(t,{toggle:!1}).toggle()})),Qt(Ei);const Ai="dropdown",Ti=".bs.dropdown",Ci=".data-api",Oi="ArrowUp",xi="ArrowDown",ki=`hide${Ti}`,Li=`hidden${Ti}`,Si=`show${Ti}`,Di=`shown${Ti}`,$i=`click${Ti}${Ci}`,Ii=`keydown${Ti}${Ci}`,Ni=`keyup${Ti}${Ci}`,Pi="show",Mi='[data-bs-toggle="dropdown"]:not(.disabled):not(:disabled)',ji=`${Mi}.${Pi}`,Fi=".dropdown-menu",Hi=Kt()?"top-end":"top-start",Bi=Kt()?"top-start":"top-end",Wi=Kt()?"bottom-end":"bottom-start",zi=Kt()?"bottom-start":"bottom-end",Ri=Kt()?"left-start":"right-start",qi=Kt()?"right-start":"left-start",Vi={autoClose:!0,boundary:"clippingParents",display:"dynamic",offset:[0,2],popperConfig:null,reference:"toggle"},Yi={autoClose:"(boolean|string)",boundary:"(string|element)",display:"string",offset:"(array|string|function)",popperConfig:"(null|object|function)",reference:"(string|element|object)"};class Ki extends ve{constructor(t,e){super(t,e),this._popper=null,this._parent=this._element.parentNode,this._menu=we.next(this._element,Fi)[0]||we.prev(this._element,Fi)[0]||we.findOne(Fi,this._parent),this._inNavbar=this._detectNavbar()}static get Default(){return Vi}static get DefaultType(){return Yi}static get NAME(){return Ai}toggle(){return this._isShown()?this.hide():this.show()}show(){if(Wt(this._element)||this._isShown())return;const t={relatedTarget:this._element};if(!fe.trigger(this._element,Si,t).defaultPrevented){if(this._createPopper(),"ontouchstart"in document.documentElement&&!this._parent.closest(".navbar-nav"))for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._element.focus(),this._element.setAttribute("aria-expanded",!0),this._menu.classList.add(Pi),this._element.classList.add(Pi),fe.trigger(this._element,Di,t)}}hide(){if(Wt(this._element)||!this._isShown())return;const t={relatedTarget:this._element};this._completeHide(t)}dispose(){this._popper&&this._popper.destroy(),super.dispose()}update(){this._inNavbar=this._detectNavbar(),this._popper&&this._popper.update()}_completeHide(t){if(!fe.trigger(this._element,ki,t).defaultPrevented){if("ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._popper&&this._popper.destroy(),this._menu.classList.remove(Pi),this._element.classList.remove(Pi),this._element.setAttribute("aria-expanded","false"),_e.removeDataAttribute(this._menu,"popper"),fe.trigger(this._element,Li,t)}}_getConfig(t){if("object"==typeof(t=super._getConfig(t)).reference&&!Ft(t.reference)&&"function"!=typeof t.reference.getBoundingClientRect)throw new TypeError(`${Ai.toUpperCase()}: Option "reference" provided type "object" without a required "getBoundingClientRect" method.`);return t}_createPopper(){if(void 0===e)throw new TypeError("Bootstrap's dropdowns require Popper (https://popper.js.org)");let t=this._element;"parent"===this._config.reference?t=this._parent:Ft(this._config.reference)?t=Ht(this._config.reference):"object"==typeof this._config.reference&&(t=this._config.reference);const i=this._getPopperConfig();this._popper=Dt(t,this._menu,i)}_isShown(){return this._menu.classList.contains(Pi)}_getPlacement(){const t=this._parent;if(t.classList.contains("dropend"))return Ri;if(t.classList.contains("dropstart"))return qi;if(t.classList.contains("dropup-center"))return"top";if(t.classList.contains("dropdown-center"))return"bottom";const e="end"===getComputedStyle(this._menu).getPropertyValue("--bs-position").trim();return t.classList.contains("dropup")?e?Bi:Hi:e?zi:Wi}_detectNavbar(){return null!==this._element.closest(".navbar")}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(_e.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...Xt(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=we.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>Bt(t)));i.length&&Gt(i,e,t===xi,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=Ki.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=we.find(ji);for(const i of e){const e=Ki.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Oi,xi].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Mi)?this:we.prev(this,Mi)[0]||we.next(this,Mi)[0]||we.findOne(Mi,t.delegateTarget.parentNode),o=Ki.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}fe.on(document,Ii,Mi,Ki.dataApiKeydownHandler),fe.on(document,Ii,Fi,Ki.dataApiKeydownHandler),fe.on(document,$i,Ki.clearMenus),fe.on(document,Ni,Ki.clearMenus),fe.on(document,$i,Mi,(function(t){t.preventDefault(),Ki.getOrCreateInstance(this).toggle()})),Qt(Ki);const Qi="backdrop",Xi="show",Ui=`mousedown.bs.${Qi}`,Gi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Ji={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Zi extends be{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Gi}static get DefaultType(){return Ji}static get NAME(){return Qi}show(t){if(!this._config.isVisible)return void Xt(t);this._append();const e=this._getElement();this._config.isAnimated&&qt(e),e.classList.add(Xi),this._emulateAnimation((()=>{Xt(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Xi),this._emulateAnimation((()=>{this.dispose(),Xt(t)}))):Xt(t)}dispose(){this._isAppended&&(fe.off(this._element,Ui),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=Ht(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),fe.on(t,Ui,(()=>{Xt(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){Ut(t,this._getElement(),this._config.isAnimated)}}const tn=".bs.focustrap",en=`focusin${tn}`,nn=`keydown.tab${tn}`,sn="backward",on={autofocus:!0,trapElement:null},rn={autofocus:"boolean",trapElement:"element"};class an extends be{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return on}static get DefaultType(){return rn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),fe.off(document,tn),fe.on(document,en,(t=>this._handleFocusin(t))),fe.on(document,nn,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,fe.off(document,tn))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=we.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===sn?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?sn:"forward")}}const ln=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",cn=".sticky-top",hn="padding-right",dn="margin-right";class un{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,hn,(e=>e+t)),this._setElementAttributes(ln,hn,(e=>e+t)),this._setElementAttributes(cn,dn,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,hn),this._resetElementAttributes(ln,hn),this._resetElementAttributes(cn,dn)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&_e.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=_e.getDataAttribute(t,e);null!==i?(_e.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(Ft(t))e(t);else for(const i of we.find(t,this._element))e(i)}}const fn=".bs.modal",pn=`hide${fn}`,mn=`hidePrevented${fn}`,gn=`hidden${fn}`,_n=`show${fn}`,bn=`shown${fn}`,vn=`resize${fn}`,yn=`click.dismiss${fn}`,wn=`mousedown.dismiss${fn}`,En=`keydown.dismiss${fn}`,An=`click${fn}.data-api`,Tn="modal-open",Cn="show",On="modal-static",xn={backdrop:!0,focus:!0,keyboard:!0},kn={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class Ln extends ve{constructor(t,e){super(t,e),this._dialog=we.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new un,this._addEventListeners()}static get Default(){return xn}static get DefaultType(){return kn}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||fe.trigger(this._element,_n,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(Tn),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(fe.trigger(this._element,pn).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(Cn),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){fe.off(window,fn),fe.off(this._dialog,fn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Zi({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new an({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=we.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),qt(this._element),this._element.classList.add(Cn),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,fe.trigger(this._element,bn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){fe.on(this._element,En,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),fe.on(window,vn,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),fe.on(this._element,wn,(t=>{fe.one(this._element,yn,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(Tn),this._resetAdjustments(),this._scrollBar.reset(),fe.trigger(this._element,gn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(fe.trigger(this._element,mn).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(On)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(On),this._queueCallback((()=>{this._element.classList.remove(On),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=Kt()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=Kt()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=Ln.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}fe.on(document,An,'[data-bs-toggle="modal"]',(function(t){const e=we.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),fe.one(e,_n,(t=>{t.defaultPrevented||fe.one(e,gn,(()=>{Bt(this)&&this.focus()}))}));const i=we.findOne(".modal.show");i&&Ln.getInstance(i).hide(),Ln.getOrCreateInstance(e).toggle(this)})),Ee(Ln),Qt(Ln);const Sn=".bs.offcanvas",Dn=".data-api",$n=`load${Sn}${Dn}`,In="show",Nn="showing",Pn="hiding",Mn=".offcanvas.show",jn=`show${Sn}`,Fn=`shown${Sn}`,Hn=`hide${Sn}`,Bn=`hidePrevented${Sn}`,Wn=`hidden${Sn}`,zn=`resize${Sn}`,Rn=`click${Sn}${Dn}`,qn=`keydown.dismiss${Sn}`,Vn={backdrop:!0,keyboard:!0,scroll:!1},Yn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class Kn extends ve{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return Vn}static get DefaultType(){return Yn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||fe.trigger(this._element,jn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new un).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add(Nn),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(In),this._element.classList.remove(Nn),fe.trigger(this._element,Fn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(fe.trigger(this._element,Hn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add(Pn),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(In,Pn),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new un).reset(),fe.trigger(this._element,Wn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Zi({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():fe.trigger(this._element,Bn)}:null})}_initializeFocusTrap(){return new an({trapElement:this._element})}_addEventListeners(){fe.on(this._element,qn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():fe.trigger(this._element,Bn))}))}static jQueryInterface(t){return this.each((function(){const e=Kn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}fe.on(document,Rn,'[data-bs-toggle="offcanvas"]',(function(t){const e=we.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this))return;fe.one(e,Wn,(()=>{Bt(this)&&this.focus()}));const i=we.findOne(Mn);i&&i!==e&&Kn.getInstance(i).hide(),Kn.getOrCreateInstance(e).toggle(this)})),fe.on(window,$n,(()=>{for(const t of we.find(Mn))Kn.getOrCreateInstance(t).show()})),fe.on(window,zn,(()=>{for(const t of we.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&Kn.getOrCreateInstance(t).hide()})),Ee(Kn),Qt(Kn);const Qn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],dd:[],div:[],dl:[],dt:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Xn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Un=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Gn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Xn.has(i)||Boolean(Un.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Jn={allowList:Qn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"
"},Zn={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},ts={entry:"(string|element|function|null)",selector:"(string|element)"};class es extends be{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Jn}static get DefaultType(){return Zn}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},ts)}_setContent(t,e,i){const n=we.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?Ft(e)?this._putElementInTemplate(Ht(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Gn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return Xt(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const is=new Set(["sanitize","allowList","sanitizeFn"]),ns="fade",ss="show",os=".tooltip-inner",rs=".modal",as="hide.bs.modal",ls="hover",cs="focus",hs={AUTO:"auto",TOP:"top",RIGHT:Kt()?"left":"right",BOTTOM:"bottom",LEFT:Kt()?"right":"left"},ds={allowList:Qn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'',title:"",trigger:"hover focus"},us={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class fs extends ve{constructor(t,i){if(void 0===e)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,i),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return ds}static get DefaultType(){return us}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),fe.off(this._element.closest(rs),as,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=fe.trigger(this._element,this.constructor.eventName("show")),e=(zt(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),fe.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(ss),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._queueCallback((()=>{fe.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!fe.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(ss),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._activeTrigger.click=!1,this._activeTrigger[cs]=!1,this._activeTrigger[ls]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),fe.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(ns,ss),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(ns),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new es({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{[os]:this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(ns)}_isShown(){return this.tip&&this.tip.classList.contains(ss)}_createPopper(t){const e=Xt(this._config.placement,[this,t,this._element]),i=hs[e.toUpperCase()];return Dt(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return Xt(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...Xt(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)fe.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===ls?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===ls?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");fe.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?cs:ls]=!0,e._enter()})),fe.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?cs:ls]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},fe.on(this._element.closest(rs),as,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=_e.getDataAttributes(this._element);for(const t of Object.keys(e))is.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:Ht(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=fs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(fs);const ps=".popover-header",ms=".popover-body",gs={...fs.Default,content:"",offset:[0,8],placement:"right",template:'',trigger:"click"},_s={...fs.DefaultType,content:"(null|string|element|function)"};class bs extends fs{static get Default(){return gs}static get DefaultType(){return _s}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{[ps]:this._getTitle(),[ms]:this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=bs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(bs);const vs=".bs.scrollspy",ys=`activate${vs}`,ws=`click${vs}`,Es=`load${vs}.data-api`,As="active",Ts="[href]",Cs=".nav-link",Os=`${Cs}, .nav-item > ${Cs}, .list-group-item`,xs={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},ks={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Ls extends ve{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return xs}static get DefaultType(){return ks}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=Ht(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(fe.off(this._config.target,ws),fe.on(this._config.target,ws,Ts,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=we.find(Ts,this._config.target);for(const e of t){if(!e.hash||Wt(e))continue;const t=we.findOne(decodeURI(e.hash),this._element);Bt(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(As),this._activateParents(t),fe.trigger(this._element,ys,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))we.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(As);else for(const e of we.parents(t,".nav, .list-group"))for(const t of we.prev(e,Os))t.classList.add(As)}_clearActiveClass(t){t.classList.remove(As);const e=we.find(`${Ts}.${As}`,t);for(const t of e)t.classList.remove(As)}static jQueryInterface(t){return this.each((function(){const e=Ls.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(window,Es,(()=>{for(const t of we.find('[data-bs-spy="scroll"]'))Ls.getOrCreateInstance(t)})),Qt(Ls);const Ss=".bs.tab",Ds=`hide${Ss}`,$s=`hidden${Ss}`,Is=`show${Ss}`,Ns=`shown${Ss}`,Ps=`click${Ss}`,Ms=`keydown${Ss}`,js=`load${Ss}`,Fs="ArrowLeft",Hs="ArrowRight",Bs="ArrowUp",Ws="ArrowDown",zs="Home",Rs="End",qs="active",Vs="fade",Ys="show",Ks=".dropdown-toggle",Qs=`:not(${Ks})`,Xs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Us=`.nav-link${Qs}, .list-group-item${Qs}, [role="tab"]${Qs}, ${Xs}`,Gs=`.${qs}[data-bs-toggle="tab"], .${qs}[data-bs-toggle="pill"], .${qs}[data-bs-toggle="list"]`;class Js extends ve{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),fe.on(this._element,Ms,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?fe.trigger(e,Ds,{relatedTarget:t}):null;fe.trigger(t,Is,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(qs),this._activate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),fe.trigger(t,Ns,{relatedTarget:e})):t.classList.add(Ys)}),t,t.classList.contains(Vs)))}_deactivate(t,e){t&&(t.classList.remove(qs),t.blur(),this._deactivate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),fe.trigger(t,$s,{relatedTarget:e})):t.classList.remove(Ys)}),t,t.classList.contains(Vs)))}_keydown(t){if(![Fs,Hs,Bs,Ws,zs,Rs].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!Wt(t)));let i;if([zs,Rs].includes(t.key))i=e[t.key===zs?0:e.length-1];else{const n=[Hs,Ws].includes(t.key);i=Gt(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Js.getOrCreateInstance(i).show())}_getChildren(){return we.find(Us,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=we.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=we.findOne(t,i);s&&s.classList.toggle(n,e)};n(Ks,qs),n(".dropdown-menu",Ys),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(qs)}_getInnerElement(t){return t.matches(Us)?t:we.findOne(Us,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Js.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(document,Ps,Xs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this)||Js.getOrCreateInstance(this).show()})),fe.on(window,js,(()=>{for(const t of we.find(Gs))Js.getOrCreateInstance(t)})),Qt(Js);const Zs=".bs.toast",to=`mouseover${Zs}`,eo=`mouseout${Zs}`,io=`focusin${Zs}`,no=`focusout${Zs}`,so=`hide${Zs}`,oo=`hidden${Zs}`,ro=`show${Zs}`,ao=`shown${Zs}`,lo="hide",co="show",ho="showing",uo={animation:"boolean",autohide:"boolean",delay:"number"},fo={animation:!0,autohide:!0,delay:5e3};class po extends ve{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return fo}static get DefaultType(){return uo}static get NAME(){return"toast"}show(){fe.trigger(this._element,ro).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(lo),qt(this._element),this._element.classList.add(co,ho),this._queueCallback((()=>{this._element.classList.remove(ho),fe.trigger(this._element,ao),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(fe.trigger(this._element,so).defaultPrevented||(this._element.classList.add(ho),this._queueCallback((()=>{this._element.classList.add(lo),this._element.classList.remove(ho,co),fe.trigger(this._element,oo)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(co),super.dispose()}isShown(){return this._element.classList.contains(co)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){fe.on(this._element,to,(t=>this._onInteraction(t,!0))),fe.on(this._element,eo,(t=>this._onInteraction(t,!1))),fe.on(this._element,io,(t=>this._onInteraction(t,!0))),fe.on(this._element,no,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=po.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}function mo(t){"loading"!=document.readyState?t():document.addEventListener("DOMContentLoaded",t)}Ee(po),Qt(po),mo((function(){[].slice.call(document.querySelectorAll('[data-bs-toggle="tooltip"]')).map((function(t){return new fs(t,{delay:{show:500,hide:100}})}))})),mo((function(){document.getElementById("pst-back-to-top").addEventListener("click",(function(){document.body.scrollTop=0,document.documentElement.scrollTop=0}))})),mo((function(){var t=document.getElementById("pst-back-to-top"),e=document.getElementsByClassName("bd-header")[0].getBoundingClientRect();window.addEventListener("scroll",(function(){this.oldScroll>this.scrollY&&this.scrollY>e.bottom?t.style.display="block":t.style.display="none",this.oldScroll=this.scrollY}))})),window.bootstrap=i})(); +//# sourceMappingURL=bootstrap.js.map \ No newline at end of file diff --git a/_static/scripts/bootstrap.js.LICENSE.txt b/_static/scripts/bootstrap.js.LICENSE.txt new file mode 100644 index 0000000..28755c2 --- /dev/null +++ b/_static/scripts/bootstrap.js.LICENSE.txt @@ -0,0 +1,5 @@ +/*! + * Bootstrap v5.3.3 (https://getbootstrap.com/) + * Copyright 2011-2024 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors) + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) + */ diff --git a/_static/scripts/bootstrap.js.map b/_static/scripts/bootstrap.js.map new file mode 100644 index 0000000..e9e8158 --- /dev/null +++ b/_static/scripts/bootstrap.js.map @@ -0,0 +1 @@ +{"version":3,"file":"scripts/bootstrap.js","mappings":";mBACA,IAAIA,EAAsB,CCA1BA,EAAwB,CAACC,EAASC,KACjC,IAAI,IAAIC,KAAOD,EACXF,EAAoBI,EAAEF,EAAYC,KAASH,EAAoBI,EAAEH,EAASE,IAC5EE,OAAOC,eAAeL,EAASE,EAAK,CAAEI,YAAY,EAAMC,IAAKN,EAAWC,IAE1E,ECNDH,EAAwB,CAACS,EAAKC,IAAUL,OAAOM,UAAUC,eAAeC,KAAKJ,EAAKC,GCClFV,EAAyBC,IACH,oBAAXa,QAA0BA,OAAOC,aAC1CV,OAAOC,eAAeL,EAASa,OAAOC,YAAa,CAAEC,MAAO,WAE7DX,OAAOC,eAAeL,EAAS,aAAc,CAAEe,OAAO,GAAO,01BCLvD,IAAI,EAAM,MACNC,EAAS,SACTC,EAAQ,QACRC,EAAO,OACPC,EAAO,OACPC,EAAiB,CAAC,EAAKJ,EAAQC,EAAOC,GACtCG,EAAQ,QACRC,EAAM,MACNC,EAAkB,kBAClBC,EAAW,WACXC,EAAS,SACTC,EAAY,YACZC,EAAmCP,EAAeQ,QAAO,SAAUC,EAAKC,GACjF,OAAOD,EAAIE,OAAO,CAACD,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAChE,GAAG,IACQ,EAA0B,GAAGS,OAAOX,EAAgB,CAACD,IAAOS,QAAO,SAAUC,EAAKC,GAC3F,OAAOD,EAAIE,OAAO,CAACD,EAAWA,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAC3E,GAAG,IAEQU,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAc,cACdC,EAAQ,QACRC,EAAa,aACbC,EAAiB,CAACT,EAAYC,EAAMC,EAAWC,EAAYC,EAAMC,EAAWC,EAAaC,EAAOC,GC9B5F,SAASE,EAAYC,GAClC,OAAOA,GAAWA,EAAQC,UAAY,IAAIC,cAAgB,IAC5D,CCFe,SAASC,EAAUC,GAChC,GAAY,MAARA,EACF,OAAOC,OAGT,GAAwB,oBAApBD,EAAKE,WAAkC,CACzC,IAAIC,EAAgBH,EAAKG,cACzB,OAAOA,GAAgBA,EAAcC,aAAwBH,MAC/D,CAEA,OAAOD,CACT,CCTA,SAASK,EAAUL,GAEjB,OAAOA,aADUD,EAAUC,GAAMM,SACIN,aAAgBM,OACvD,CAEA,SAASC,EAAcP,GAErB,OAAOA,aADUD,EAAUC,GAAMQ,aACIR,aAAgBQ,WACvD,CAEA,SAASC,EAAaT,GAEpB,MAA0B,oBAAfU,aAKJV,aADUD,EAAUC,GAAMU,YACIV,aAAgBU,WACvD,CCwDA,SACEC,KAAM,cACNC,SAAS,EACTC,MAAO,QACPC,GA5EF,SAAqBC,GACnB,IAAIC,EAAQD,EAAKC,MACjB3D,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIS,EAAQJ,EAAMK,OAAOV,IAAS,CAAC,EAC/BW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EACxCf,EAAUoB,EAAME,SAASP,GAExBJ,EAAcX,IAAaD,EAAYC,KAO5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUR,GACxC,IAAI3C,EAAQsD,EAAWX,IAET,IAAV3C,EACF4B,EAAQ4B,gBAAgBb,GAExBf,EAAQ6B,aAAad,GAAgB,IAAV3C,EAAiB,GAAKA,EAErD,IACF,GACF,EAoDE0D,OAlDF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MACdY,EAAgB,CAClBlD,OAAQ,CACNmD,SAAUb,EAAMc,QAAQC,SACxB5D,KAAM,IACN6D,IAAK,IACLC,OAAQ,KAEVC,MAAO,CACLL,SAAU,YAEZlD,UAAW,CAAC,GASd,OAPAtB,OAAOkE,OAAOP,EAAME,SAASxC,OAAO0C,MAAOQ,EAAclD,QACzDsC,EAAMK,OAASO,EAEXZ,EAAME,SAASgB,OACjB7E,OAAOkE,OAAOP,EAAME,SAASgB,MAAMd,MAAOQ,EAAcM,OAGnD,WACL7E,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIf,EAAUoB,EAAME,SAASP,GACzBW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EAGxCS,EAFkB/D,OAAO4D,KAAKD,EAAMK,OAAOzD,eAAe+C,GAAQK,EAAMK,OAAOV,GAAQiB,EAAcjB,IAE7E9B,QAAO,SAAUuC,EAAOe,GAElD,OADAf,EAAMe,GAAY,GACXf,CACT,GAAG,CAAC,GAECb,EAAcX,IAAaD,EAAYC,KAI5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUiB,GACxCxC,EAAQ4B,gBAAgBY,EAC1B,IACF,GACF,CACF,EASEC,SAAU,CAAC,kBCjFE,SAASC,EAAiBvD,GACvC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCHO,IAAI,EAAMC,KAAKC,IACX,EAAMD,KAAKE,IACXC,EAAQH,KAAKG,MCFT,SAASC,IACtB,IAAIC,EAASC,UAAUC,cAEvB,OAAc,MAAVF,GAAkBA,EAAOG,QAAUC,MAAMC,QAAQL,EAAOG,QACnDH,EAAOG,OAAOG,KAAI,SAAUC,GACjC,OAAOA,EAAKC,MAAQ,IAAMD,EAAKE,OACjC,IAAGC,KAAK,KAGHT,UAAUU,SACnB,CCTe,SAASC,IACtB,OAAQ,iCAAiCC,KAAKd,IAChD,CCCe,SAASe,EAAsB/D,EAASgE,EAAcC,QAC9C,IAAjBD,IACFA,GAAe,QAGO,IAApBC,IACFA,GAAkB,GAGpB,IAAIC,EAAalE,EAAQ+D,wBACrBI,EAAS,EACTC,EAAS,EAETJ,GAAgBrD,EAAcX,KAChCmE,EAASnE,EAAQqE,YAAc,GAAItB,EAAMmB,EAAWI,OAAStE,EAAQqE,aAAmB,EACxFD,EAASpE,EAAQuE,aAAe,GAAIxB,EAAMmB,EAAWM,QAAUxE,EAAQuE,cAAoB,GAG7F,IACIE,GADOhE,EAAUT,GAAWG,EAAUH,GAAWK,QAC3BoE,eAEtBC,GAAoBb,KAAsBI,EAC1CU,GAAKT,EAAW3F,MAAQmG,GAAoBD,EAAiBA,EAAeG,WAAa,IAAMT,EAC/FU,GAAKX,EAAW9B,KAAOsC,GAAoBD,EAAiBA,EAAeK,UAAY,IAAMV,EAC7FE,EAAQJ,EAAWI,MAAQH,EAC3BK,EAASN,EAAWM,OAASJ,EACjC,MAAO,CACLE,MAAOA,EACPE,OAAQA,EACRpC,IAAKyC,EACLvG,MAAOqG,EAAIL,EACXjG,OAAQwG,EAAIL,EACZjG,KAAMoG,EACNA,EAAGA,EACHE,EAAGA,EAEP,CCrCe,SAASE,EAAc/E,GACpC,IAAIkE,EAAaH,EAAsB/D,GAGnCsE,EAAQtE,EAAQqE,YAChBG,EAASxE,EAAQuE,aAUrB,OARI3B,KAAKoC,IAAId,EAAWI,MAAQA,IAAU,IACxCA,EAAQJ,EAAWI,OAGjB1B,KAAKoC,IAAId,EAAWM,OAASA,IAAW,IAC1CA,EAASN,EAAWM,QAGf,CACLG,EAAG3E,EAAQ4E,WACXC,EAAG7E,EAAQ8E,UACXR,MAAOA,EACPE,OAAQA,EAEZ,CCvBe,SAASS,EAASC,EAAQC,GACvC,IAAIC,EAAWD,EAAME,aAAeF,EAAME,cAE1C,GAAIH,EAAOD,SAASE,GAClB,OAAO,EAEJ,GAAIC,GAAYvE,EAAauE,GAAW,CACzC,IAAIE,EAAOH,EAEX,EAAG,CACD,GAAIG,GAAQJ,EAAOK,WAAWD,GAC5B,OAAO,EAITA,EAAOA,EAAKE,YAAcF,EAAKG,IACjC,OAASH,EACX,CAGF,OAAO,CACT,CCrBe,SAAS,EAAiBtF,GACvC,OAAOG,EAAUH,GAAS0F,iBAAiB1F,EAC7C,CCFe,SAAS2F,EAAe3F,GACrC,MAAO,CAAC,QAAS,KAAM,MAAM4F,QAAQ7F,EAAYC,KAAa,CAChE,CCFe,SAAS6F,EAAmB7F,GAEzC,QAASS,EAAUT,GAAWA,EAAQO,cACtCP,EAAQ8F,WAAazF,OAAOyF,UAAUC,eACxC,CCFe,SAASC,EAAchG,GACpC,MAA6B,SAAzBD,EAAYC,GACPA,EAMPA,EAAQiG,cACRjG,EAAQwF,aACR3E,EAAab,GAAWA,EAAQyF,KAAO,OAEvCI,EAAmB7F,EAGvB,CCVA,SAASkG,EAAoBlG,GAC3B,OAAKW,EAAcX,IACoB,UAAvC,EAAiBA,GAASiC,SAInBjC,EAAQmG,aAHN,IAIX,CAwCe,SAASC,EAAgBpG,GAItC,IAHA,IAAIK,EAASF,EAAUH,GACnBmG,EAAeD,EAAoBlG,GAEhCmG,GAAgBR,EAAeQ,IAA6D,WAA5C,EAAiBA,GAAclE,UACpFkE,EAAeD,EAAoBC,GAGrC,OAAIA,IAA+C,SAA9BpG,EAAYoG,IAA0D,SAA9BpG,EAAYoG,IAAwE,WAA5C,EAAiBA,GAAclE,UAC3H5B,EAGF8F,GAhDT,SAA4BnG,GAC1B,IAAIqG,EAAY,WAAWvC,KAAKd,KAGhC,GAFW,WAAWc,KAAKd,MAEfrC,EAAcX,IAII,UAFX,EAAiBA,GAEnBiC,SACb,OAAO,KAIX,IAAIqE,EAAcN,EAAchG,GAMhC,IAJIa,EAAayF,KACfA,EAAcA,EAAYb,MAGrB9E,EAAc2F,IAAgB,CAAC,OAAQ,QAAQV,QAAQ7F,EAAYuG,IAAgB,GAAG,CAC3F,IAAIC,EAAM,EAAiBD,GAI3B,GAAsB,SAAlBC,EAAIC,WAA4C,SAApBD,EAAIE,aAA0C,UAAhBF,EAAIG,UAAiF,IAA1D,CAAC,YAAa,eAAed,QAAQW,EAAII,aAAsBN,GAAgC,WAAnBE,EAAII,YAA2BN,GAAaE,EAAIK,QAAyB,SAAfL,EAAIK,OACjO,OAAON,EAEPA,EAAcA,EAAYd,UAE9B,CAEA,OAAO,IACT,CAgByBqB,CAAmB7G,IAAYK,CACxD,CCpEe,SAASyG,EAAyB3H,GAC/C,MAAO,CAAC,MAAO,UAAUyG,QAAQzG,IAAc,EAAI,IAAM,GAC3D,CCDO,SAAS4H,EAAOjE,EAAK1E,EAAOyE,GACjC,OAAO,EAAQC,EAAK,EAAQ1E,EAAOyE,GACrC,CCFe,SAASmE,EAAmBC,GACzC,OAAOxJ,OAAOkE,OAAO,CAAC,ECDf,CACLS,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GDHuC0I,EACjD,CEHe,SAASC,EAAgB9I,EAAOiD,GAC7C,OAAOA,EAAKpC,QAAO,SAAUkI,EAAS5J,GAEpC,OADA4J,EAAQ5J,GAAOa,EACR+I,CACT,GAAG,CAAC,EACN,CC4EA,SACEpG,KAAM,QACNC,SAAS,EACTC,MAAO,OACPC,GApEF,SAAeC,GACb,IAAIiG,EAEAhG,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZmB,EAAUf,EAAKe,QACfmF,EAAejG,EAAME,SAASgB,MAC9BgF,EAAgBlG,EAAMmG,cAAcD,cACpCE,EAAgB9E,EAAiBtB,EAAMjC,WACvCsI,EAAOX,EAAyBU,GAEhCE,EADa,CAACnJ,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAClC,SAAW,QAElC,GAAKH,GAAiBC,EAAtB,CAIA,IAAIL,EAxBgB,SAAyBU,EAASvG,GAItD,OAAO4F,EAAsC,iBAH7CW,EAA6B,mBAAZA,EAAyBA,EAAQlK,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CAC/EzI,UAAWiC,EAAMjC,aACbwI,GACkDA,EAAUT,EAAgBS,EAASlJ,GAC7F,CAmBsBoJ,CAAgB3F,EAAQyF,QAASvG,GACjD0G,EAAY/C,EAAcsC,GAC1BU,EAAmB,MAATN,EAAe,EAAMlJ,EAC/ByJ,EAAmB,MAATP,EAAepJ,EAASC,EAClC2J,EAAU7G,EAAMwG,MAAM7I,UAAU2I,GAAOtG,EAAMwG,MAAM7I,UAAU0I,GAAQH,EAAcG,GAAQrG,EAAMwG,MAAM9I,OAAO4I,GAC9GQ,EAAYZ,EAAcG,GAAQrG,EAAMwG,MAAM7I,UAAU0I,GACxDU,EAAoB/B,EAAgBiB,GACpCe,EAAaD,EAA6B,MAATV,EAAeU,EAAkBE,cAAgB,EAAIF,EAAkBG,aAAe,EAAI,EAC3HC,EAAoBN,EAAU,EAAIC,EAAY,EAG9CpF,EAAMmE,EAAcc,GACpBlF,EAAMuF,EAAaN,EAAUJ,GAAOT,EAAce,GAClDQ,EAASJ,EAAa,EAAIN,EAAUJ,GAAO,EAAIa,EAC/CE,EAAS1B,EAAOjE,EAAK0F,EAAQ3F,GAE7B6F,EAAWjB,EACfrG,EAAMmG,cAAcxG,KAASqG,EAAwB,CAAC,GAAyBsB,GAAYD,EAAQrB,EAAsBuB,aAAeF,EAASD,EAAQpB,EAnBzJ,CAoBF,EAkCEtF,OAhCF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MAEdwH,EADU7G,EAAMG,QACWlC,QAC3BqH,OAAoC,IAArBuB,EAA8B,sBAAwBA,EAErD,MAAhBvB,IAKwB,iBAAjBA,IACTA,EAAejG,EAAME,SAASxC,OAAO+J,cAAcxB,MAOhDpC,EAAS7D,EAAME,SAASxC,OAAQuI,KAIrCjG,EAAME,SAASgB,MAAQ+E,EACzB,EASE5E,SAAU,CAAC,iBACXqG,iBAAkB,CAAC,oBCxFN,SAASC,EAAa5J,GACnC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCOA,IAAIqG,GAAa,CACf5G,IAAK,OACL9D,MAAO,OACPD,OAAQ,OACRE,KAAM,QAeD,SAAS0K,GAAYlH,GAC1B,IAAImH,EAEApK,EAASiD,EAAMjD,OACfqK,EAAapH,EAAMoH,WACnBhK,EAAY4C,EAAM5C,UAClBiK,EAAYrH,EAAMqH,UAClBC,EAAUtH,EAAMsH,QAChBpH,EAAWF,EAAME,SACjBqH,EAAkBvH,EAAMuH,gBACxBC,EAAWxH,EAAMwH,SACjBC,EAAezH,EAAMyH,aACrBC,EAAU1H,EAAM0H,QAChBC,EAAaL,EAAQ1E,EACrBA,OAAmB,IAAf+E,EAAwB,EAAIA,EAChCC,EAAaN,EAAQxE,EACrBA,OAAmB,IAAf8E,EAAwB,EAAIA,EAEhCC,EAAgC,mBAAjBJ,EAA8BA,EAAa,CAC5D7E,EAAGA,EACHE,IACG,CACHF,EAAGA,EACHE,GAGFF,EAAIiF,EAAMjF,EACVE,EAAI+E,EAAM/E,EACV,IAAIgF,EAAOR,EAAQrL,eAAe,KAC9B8L,EAAOT,EAAQrL,eAAe,KAC9B+L,EAAQxL,EACRyL,EAAQ,EACRC,EAAM5J,OAEV,GAAIkJ,EAAU,CACZ,IAAIpD,EAAeC,EAAgBtH,GAC/BoL,EAAa,eACbC,EAAY,cAEZhE,IAAiBhG,EAAUrB,IAGmB,WAA5C,EAFJqH,EAAeN,EAAmB/G,IAECmD,UAAsC,aAAbA,IAC1DiI,EAAa,eACbC,EAAY,gBAOZhL,IAAc,IAAQA,IAAcZ,GAAQY,IAAcb,IAAU8K,IAAczK,KACpFqL,EAAQ3L,EAGRwG,IAFc4E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeD,OACzF2B,EAAa+D,IACEf,EAAW3E,OAC1BK,GAAKyE,EAAkB,GAAK,GAG1BnK,IAAcZ,IAASY,IAAc,GAAOA,IAAcd,GAAW+K,IAAczK,KACrFoL,EAAQzL,EAGRqG,IAFc8E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeH,MACzF6B,EAAagE,IACEhB,EAAW7E,MAC1BK,GAAK2E,EAAkB,GAAK,EAEhC,CAEA,IAgBMc,EAhBFC,EAAe5M,OAAOkE,OAAO,CAC/BM,SAAUA,GACTsH,GAAYP,IAEXsB,GAAyB,IAAjBd,EAlFd,SAA2BrI,EAAM8I,GAC/B,IAAItF,EAAIxD,EAAKwD,EACTE,EAAI1D,EAAK0D,EACT0F,EAAMN,EAAIO,kBAAoB,EAClC,MAAO,CACL7F,EAAG5B,EAAM4B,EAAI4F,GAAOA,GAAO,EAC3B1F,EAAG9B,EAAM8B,EAAI0F,GAAOA,GAAO,EAE/B,CA0EsCE,CAAkB,CACpD9F,EAAGA,EACHE,GACC1E,EAAUrB,IAAW,CACtB6F,EAAGA,EACHE,GAMF,OAHAF,EAAI2F,EAAM3F,EACVE,EAAIyF,EAAMzF,EAENyE,EAGK7L,OAAOkE,OAAO,CAAC,EAAG0I,IAAeD,EAAiB,CAAC,GAAkBJ,GAASF,EAAO,IAAM,GAAIM,EAAeL,GAASF,EAAO,IAAM,GAAIO,EAAe5D,WAAayD,EAAIO,kBAAoB,IAAM,EAAI,aAAe7F,EAAI,OAASE,EAAI,MAAQ,eAAiBF,EAAI,OAASE,EAAI,SAAUuF,IAG5R3M,OAAOkE,OAAO,CAAC,EAAG0I,IAAenB,EAAkB,CAAC,GAAmBc,GAASF,EAAOjF,EAAI,KAAO,GAAIqE,EAAgBa,GAASF,EAAOlF,EAAI,KAAO,GAAIuE,EAAgB1C,UAAY,GAAI0C,GAC9L,CA4CA,UACEnI,KAAM,gBACNC,SAAS,EACTC,MAAO,cACPC,GA9CF,SAAuBwJ,GACrB,IAAItJ,EAAQsJ,EAAMtJ,MACdc,EAAUwI,EAAMxI,QAChByI,EAAwBzI,EAAQoH,gBAChCA,OAA4C,IAA1BqB,GAA0CA,EAC5DC,EAAoB1I,EAAQqH,SAC5BA,OAAiC,IAAtBqB,GAAsCA,EACjDC,EAAwB3I,EAAQsH,aAChCA,OAAyC,IAA1BqB,GAA0CA,EACzDR,EAAe,CACjBlL,UAAWuD,EAAiBtB,EAAMjC,WAClCiK,UAAWL,EAAa3H,EAAMjC,WAC9BL,OAAQsC,EAAME,SAASxC,OACvBqK,WAAY/H,EAAMwG,MAAM9I,OACxBwK,gBAAiBA,EACjBG,QAAoC,UAA3BrI,EAAMc,QAAQC,UAGgB,MAArCf,EAAMmG,cAAcD,gBACtBlG,EAAMK,OAAO3C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAO3C,OAAQmK,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACvGhB,QAASjI,EAAMmG,cAAcD,cAC7BrF,SAAUb,EAAMc,QAAQC,SACxBoH,SAAUA,EACVC,aAAcA,OAIe,MAA7BpI,EAAMmG,cAAcjF,QACtBlB,EAAMK,OAAOa,MAAQ7E,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAOa,MAAO2G,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACrGhB,QAASjI,EAAMmG,cAAcjF,MAC7BL,SAAU,WACVsH,UAAU,EACVC,aAAcA,OAIlBpI,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,wBAAyBsC,EAAMjC,WAEnC,EAQE2L,KAAM,CAAC,GCrKT,IAAIC,GAAU,CACZA,SAAS,GAsCX,UACEhK,KAAM,iBACNC,SAAS,EACTC,MAAO,QACPC,GAAI,WAAe,EACnBY,OAxCF,SAAgBX,GACd,IAAIC,EAAQD,EAAKC,MACb4J,EAAW7J,EAAK6J,SAChB9I,EAAUf,EAAKe,QACf+I,EAAkB/I,EAAQgJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAkBjJ,EAAQkJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7C9K,EAASF,EAAUiB,EAAME,SAASxC,QAClCuM,EAAgB,GAAGjM,OAAOgC,EAAMiK,cAActM,UAAWqC,EAAMiK,cAAcvM,QAYjF,OAVIoM,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaC,iBAAiB,SAAUP,EAASQ,OAAQT,GAC3D,IAGEK,GACF/K,EAAOkL,iBAAiB,SAAUP,EAASQ,OAAQT,IAG9C,WACDG,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaG,oBAAoB,SAAUT,EAASQ,OAAQT,GAC9D,IAGEK,GACF/K,EAAOoL,oBAAoB,SAAUT,EAASQ,OAAQT,GAE1D,CACF,EASED,KAAM,CAAC,GC/CT,IAAIY,GAAO,CACTnN,KAAM,QACND,MAAO,OACPD,OAAQ,MACR+D,IAAK,UAEQ,SAASuJ,GAAqBxM,GAC3C,OAAOA,EAAUyM,QAAQ,0BAA0B,SAAUC,GAC3D,OAAOH,GAAKG,EACd,GACF,CCVA,IAAI,GAAO,CACTnN,MAAO,MACPC,IAAK,SAEQ,SAASmN,GAA8B3M,GACpD,OAAOA,EAAUyM,QAAQ,cAAc,SAAUC,GAC/C,OAAO,GAAKA,EACd,GACF,CCPe,SAASE,GAAgB3L,GACtC,IAAI6J,EAAM9J,EAAUC,GAGpB,MAAO,CACL4L,WAHe/B,EAAIgC,YAInBC,UAHcjC,EAAIkC,YAKtB,CCNe,SAASC,GAAoBpM,GAQ1C,OAAO+D,EAAsB8B,EAAmB7F,IAAUzB,KAAOwN,GAAgB/L,GAASgM,UAC5F,CCXe,SAASK,GAAerM,GAErC,IAAIsM,EAAoB,EAAiBtM,GACrCuM,EAAWD,EAAkBC,SAC7BC,EAAYF,EAAkBE,UAC9BC,EAAYH,EAAkBG,UAElC,MAAO,6BAA6B3I,KAAKyI,EAAWE,EAAYD,EAClE,CCLe,SAASE,GAAgBtM,GACtC,MAAI,CAAC,OAAQ,OAAQ,aAAawF,QAAQ7F,EAAYK,KAAU,EAEvDA,EAAKG,cAAcoM,KAGxBhM,EAAcP,IAASiM,GAAejM,GACjCA,EAGFsM,GAAgB1G,EAAc5F,GACvC,CCJe,SAASwM,GAAkB5M,EAAS6M,GACjD,IAAIC,OAES,IAATD,IACFA,EAAO,IAGT,IAAIvB,EAAeoB,GAAgB1M,GAC/B+M,EAASzB,KAAqE,OAAlDwB,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,MACpH1C,EAAM9J,EAAUmL,GAChB0B,EAASD,EAAS,CAAC9C,GAAK7K,OAAO6K,EAAIxF,gBAAkB,GAAI4H,GAAef,GAAgBA,EAAe,IAAMA,EAC7G2B,EAAcJ,EAAKzN,OAAO4N,GAC9B,OAAOD,EAASE,EAChBA,EAAY7N,OAAOwN,GAAkB5G,EAAcgH,IACrD,CCzBe,SAASE,GAAiBC,GACvC,OAAO1P,OAAOkE,OAAO,CAAC,EAAGwL,EAAM,CAC7B5O,KAAM4O,EAAKxI,EACXvC,IAAK+K,EAAKtI,EACVvG,MAAO6O,EAAKxI,EAAIwI,EAAK7I,MACrBjG,OAAQ8O,EAAKtI,EAAIsI,EAAK3I,QAE1B,CCqBA,SAAS4I,GAA2BpN,EAASqN,EAAgBlL,GAC3D,OAAOkL,IAAmBxO,EAAWqO,GCzBxB,SAAyBlN,EAASmC,GAC/C,IAAI8H,EAAM9J,EAAUH,GAChBsN,EAAOzH,EAAmB7F,GAC1ByE,EAAiBwF,EAAIxF,eACrBH,EAAQgJ,EAAKhF,YACb9D,EAAS8I,EAAKjF,aACd1D,EAAI,EACJE,EAAI,EAER,GAAIJ,EAAgB,CAClBH,EAAQG,EAAeH,MACvBE,EAASC,EAAeD,OACxB,IAAI+I,EAAiB1J,KAEjB0J,IAAmBA,GAA+B,UAAbpL,KACvCwC,EAAIF,EAAeG,WACnBC,EAAIJ,EAAeK,UAEvB,CAEA,MAAO,CACLR,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EAAIyH,GAAoBpM,GAC3B6E,EAAGA,EAEP,CDDwD2I,CAAgBxN,EAASmC,IAAa1B,EAAU4M,GAdxG,SAAoCrN,EAASmC,GAC3C,IAAIgL,EAAOpJ,EAAsB/D,GAAS,EAAoB,UAAbmC,GASjD,OARAgL,EAAK/K,IAAM+K,EAAK/K,IAAMpC,EAAQyN,UAC9BN,EAAK5O,KAAO4O,EAAK5O,KAAOyB,EAAQ0N,WAChCP,EAAK9O,OAAS8O,EAAK/K,IAAMpC,EAAQqI,aACjC8E,EAAK7O,MAAQ6O,EAAK5O,KAAOyB,EAAQsI,YACjC6E,EAAK7I,MAAQtE,EAAQsI,YACrB6E,EAAK3I,OAASxE,EAAQqI,aACtB8E,EAAKxI,EAAIwI,EAAK5O,KACd4O,EAAKtI,EAAIsI,EAAK/K,IACP+K,CACT,CAG0HQ,CAA2BN,EAAgBlL,GAAY+K,GEtBlK,SAAyBlN,GACtC,IAAI8M,EAEAQ,EAAOzH,EAAmB7F,GAC1B4N,EAAY7B,GAAgB/L,GAC5B2M,EAA0D,OAAlDG,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,KAChGrI,EAAQ,EAAIgJ,EAAKO,YAAaP,EAAKhF,YAAaqE,EAAOA,EAAKkB,YAAc,EAAGlB,EAAOA,EAAKrE,YAAc,GACvG9D,EAAS,EAAI8I,EAAKQ,aAAcR,EAAKjF,aAAcsE,EAAOA,EAAKmB,aAAe,EAAGnB,EAAOA,EAAKtE,aAAe,GAC5G1D,GAAKiJ,EAAU5B,WAAaI,GAAoBpM,GAChD6E,GAAK+I,EAAU1B,UAMnB,MAJiD,QAA7C,EAAiBS,GAAQW,GAAMS,YACjCpJ,GAAK,EAAI2I,EAAKhF,YAAaqE,EAAOA,EAAKrE,YAAc,GAAKhE,GAGrD,CACLA,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EACHE,EAAGA,EAEP,CFCkMmJ,CAAgBnI,EAAmB7F,IACrO,CG1Be,SAASiO,GAAe9M,GACrC,IAOIkI,EAPAtK,EAAYoC,EAAKpC,UACjBiB,EAAUmB,EAAKnB,QACfb,EAAYgC,EAAKhC,UACjBqI,EAAgBrI,EAAYuD,EAAiBvD,GAAa,KAC1DiK,EAAYjK,EAAY4J,EAAa5J,GAAa,KAClD+O,EAAUnP,EAAU4F,EAAI5F,EAAUuF,MAAQ,EAAItE,EAAQsE,MAAQ,EAC9D6J,EAAUpP,EAAU8F,EAAI9F,EAAUyF,OAAS,EAAIxE,EAAQwE,OAAS,EAGpE,OAAQgD,GACN,KAAK,EACH6B,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI7E,EAAQwE,QAE3B,MAEF,KAAKnG,EACHgL,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI9F,EAAUyF,QAE7B,MAEF,KAAKlG,EACH+K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI5F,EAAUuF,MAC3BO,EAAGsJ,GAEL,MAEF,KAAK5P,EACH8K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI3E,EAAQsE,MACzBO,EAAGsJ,GAEL,MAEF,QACE9E,EAAU,CACR1E,EAAG5F,EAAU4F,EACbE,EAAG9F,EAAU8F,GAInB,IAAIuJ,EAAW5G,EAAgBV,EAAyBU,GAAiB,KAEzE,GAAgB,MAAZ4G,EAAkB,CACpB,IAAI1G,EAAmB,MAAb0G,EAAmB,SAAW,QAExC,OAAQhF,GACN,KAAK1K,EACH2K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAC7E,MAEF,KAAK/I,EACH0K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAKnF,CAEA,OAAO2B,CACT,CC3De,SAASgF,GAAejN,EAAOc,QAC5B,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACXqM,EAAqBD,EAASnP,UAC9BA,OAAmC,IAAvBoP,EAAgCnN,EAAMjC,UAAYoP,EAC9DC,EAAoBF,EAASnM,SAC7BA,OAAiC,IAAtBqM,EAA+BpN,EAAMe,SAAWqM,EAC3DC,EAAoBH,EAASI,SAC7BA,OAAiC,IAAtBD,EAA+B7P,EAAkB6P,EAC5DE,EAAwBL,EAASM,aACjCA,OAAyC,IAA1BD,EAAmC9P,EAAW8P,EAC7DE,EAAwBP,EAASQ,eACjCA,OAA2C,IAA1BD,EAAmC/P,EAAS+P,EAC7DE,EAAuBT,EAASU,YAChCA,OAAuC,IAAzBD,GAA0CA,EACxDE,EAAmBX,EAAS3G,QAC5BA,OAA+B,IAArBsH,EAA8B,EAAIA,EAC5ChI,EAAgBD,EAAsC,iBAAZW,EAAuBA,EAAUT,EAAgBS,EAASlJ,IACpGyQ,EAAaJ,IAAmBhQ,EAASC,EAAYD,EACrDqK,EAAa/H,EAAMwG,MAAM9I,OACzBkB,EAAUoB,EAAME,SAAS0N,EAAcE,EAAaJ,GACpDK,EJkBS,SAAyBnP,EAAS0O,EAAUE,EAAczM,GACvE,IAAIiN,EAAmC,oBAAbV,EAlB5B,SAA4B1O,GAC1B,IAAIpB,EAAkBgO,GAAkB5G,EAAchG,IAElDqP,EADoB,CAAC,WAAY,SAASzJ,QAAQ,EAAiB5F,GAASiC,WAAa,GACnDtB,EAAcX,GAAWoG,EAAgBpG,GAAWA,EAE9F,OAAKS,EAAU4O,GAKRzQ,EAAgBgI,QAAO,SAAUyG,GACtC,OAAO5M,EAAU4M,IAAmBpI,EAASoI,EAAgBgC,IAAmD,SAAhCtP,EAAYsN,EAC9F,IANS,EAOX,CAK6DiC,CAAmBtP,GAAW,GAAGZ,OAAOsP,GAC/F9P,EAAkB,GAAGQ,OAAOgQ,EAAqB,CAACR,IAClDW,EAAsB3Q,EAAgB,GACtC4Q,EAAe5Q,EAAgBK,QAAO,SAAUwQ,EAASpC,GAC3D,IAAIF,EAAOC,GAA2BpN,EAASqN,EAAgBlL,GAK/D,OAJAsN,EAAQrN,IAAM,EAAI+K,EAAK/K,IAAKqN,EAAQrN,KACpCqN,EAAQnR,MAAQ,EAAI6O,EAAK7O,MAAOmR,EAAQnR,OACxCmR,EAAQpR,OAAS,EAAI8O,EAAK9O,OAAQoR,EAAQpR,QAC1CoR,EAAQlR,KAAO,EAAI4O,EAAK5O,KAAMkR,EAAQlR,MAC/BkR,CACT,GAAGrC,GAA2BpN,EAASuP,EAAqBpN,IAK5D,OAJAqN,EAAalL,MAAQkL,EAAalR,MAAQkR,EAAajR,KACvDiR,EAAahL,OAASgL,EAAanR,OAASmR,EAAapN,IACzDoN,EAAa7K,EAAI6K,EAAajR,KAC9BiR,EAAa3K,EAAI2K,EAAapN,IACvBoN,CACT,CInC2BE,CAAgBjP,EAAUT,GAAWA,EAAUA,EAAQ2P,gBAAkB9J,EAAmBzE,EAAME,SAASxC,QAAS4P,EAAUE,EAAczM,GACjKyN,EAAsB7L,EAAsB3C,EAAME,SAASvC,WAC3DuI,EAAgB2G,GAAe,CACjClP,UAAW6Q,EACX5P,QAASmJ,EACThH,SAAU,WACVhD,UAAWA,IAET0Q,EAAmB3C,GAAiBzP,OAAOkE,OAAO,CAAC,EAAGwH,EAAY7B,IAClEwI,EAAoBhB,IAAmBhQ,EAAS+Q,EAAmBD,EAGnEG,EAAkB,CACpB3N,IAAK+M,EAAmB/M,IAAM0N,EAAkB1N,IAAM6E,EAAc7E,IACpE/D,OAAQyR,EAAkBzR,OAAS8Q,EAAmB9Q,OAAS4I,EAAc5I,OAC7EE,KAAM4Q,EAAmB5Q,KAAOuR,EAAkBvR,KAAO0I,EAAc1I,KACvED,MAAOwR,EAAkBxR,MAAQ6Q,EAAmB7Q,MAAQ2I,EAAc3I,OAExE0R,EAAa5O,EAAMmG,cAAckB,OAErC,GAAIqG,IAAmBhQ,GAAUkR,EAAY,CAC3C,IAAIvH,EAASuH,EAAW7Q,GACxB1B,OAAO4D,KAAK0O,GAAiBxO,SAAQ,SAAUhE,GAC7C,IAAI0S,EAAW,CAAC3R,EAAOD,GAAQuH,QAAQrI,IAAQ,EAAI,GAAK,EACpDkK,EAAO,CAAC,EAAKpJ,GAAQuH,QAAQrI,IAAQ,EAAI,IAAM,IACnDwS,EAAgBxS,IAAQkL,EAAOhB,GAAQwI,CACzC,GACF,CAEA,OAAOF,CACT,CCyEA,UACEhP,KAAM,OACNC,SAAS,EACTC,MAAO,OACPC,GA5HF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KAEhB,IAAIK,EAAMmG,cAAcxG,GAAMmP,MAA9B,CAoCA,IAhCA,IAAIC,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAqCA,EACpDG,EAA8BtO,EAAQuO,mBACtC9I,EAAUzF,EAAQyF,QAClB+G,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtB0B,EAAwBxO,EAAQyO,eAChCA,OAA2C,IAA1BD,GAA0CA,EAC3DE,EAAwB1O,EAAQ0O,sBAChCC,EAAqBzP,EAAMc,QAAQ/C,UACnCqI,EAAgB9E,EAAiBmO,GAEjCJ,EAAqBD,IADHhJ,IAAkBqJ,GACqCF,EAjC/E,SAAuCxR,GACrC,GAAIuD,EAAiBvD,KAAeX,EAClC,MAAO,GAGT,IAAIsS,EAAoBnF,GAAqBxM,GAC7C,MAAO,CAAC2M,GAA8B3M,GAAY2R,EAAmBhF,GAA8BgF,GACrG,CA0B6IC,CAA8BF,GAA3E,CAAClF,GAAqBkF,KAChHG,EAAa,CAACH,GAAoBzR,OAAOqR,GAAoBxR,QAAO,SAAUC,EAAKC,GACrF,OAAOD,EAAIE,OAAOsD,EAAiBvD,KAAeX,ECvCvC,SAA8B4C,EAAOc,QAClC,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACX/C,EAAYmP,EAASnP,UACrBuP,EAAWJ,EAASI,SACpBE,EAAeN,EAASM,aACxBjH,EAAU2G,EAAS3G,QACnBgJ,EAAiBrC,EAASqC,eAC1BM,EAAwB3C,EAASsC,sBACjCA,OAAkD,IAA1BK,EAAmC,EAAgBA,EAC3E7H,EAAYL,EAAa5J,GACzB6R,EAAa5H,EAAYuH,EAAiB3R,EAAsBA,EAAoB4H,QAAO,SAAUzH,GACvG,OAAO4J,EAAa5J,KAAeiK,CACrC,IAAK3K,EACDyS,EAAoBF,EAAWpK,QAAO,SAAUzH,GAClD,OAAOyR,EAAsBhL,QAAQzG,IAAc,CACrD,IAEiC,IAA7B+R,EAAkBC,SACpBD,EAAoBF,GAItB,IAAII,EAAYF,EAAkBjS,QAAO,SAAUC,EAAKC,GAOtD,OANAD,EAAIC,GAAakP,GAAejN,EAAO,CACrCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,IACRjF,EAAiBvD,IACbD,CACT,GAAG,CAAC,GACJ,OAAOzB,OAAO4D,KAAK+P,GAAWC,MAAK,SAAUC,EAAGC,GAC9C,OAAOH,EAAUE,GAAKF,EAAUG,EAClC,GACF,CDC6DC,CAAqBpQ,EAAO,CACnFjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTgJ,eAAgBA,EAChBC,sBAAuBA,IACpBzR,EACP,GAAG,IACCsS,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzB4S,EAAY,IAAIC,IAChBC,GAAqB,EACrBC,EAAwBb,EAAW,GAE9Bc,EAAI,EAAGA,EAAId,EAAWG,OAAQW,IAAK,CAC1C,IAAI3S,EAAY6R,EAAWc,GAEvBC,EAAiBrP,EAAiBvD,GAElC6S,EAAmBjJ,EAAa5J,KAAeT,EAC/CuT,EAAa,CAAC,EAAK5T,GAAQuH,QAAQmM,IAAmB,EACtDrK,EAAMuK,EAAa,QAAU,SAC7B1F,EAAW8B,GAAejN,EAAO,CACnCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdI,YAAaA,EACbrH,QAASA,IAEPuK,EAAoBD,EAAaD,EAAmB1T,EAAQC,EAAOyT,EAAmB3T,EAAS,EAE/FoT,EAAc/J,GAAOyB,EAAWzB,KAClCwK,EAAoBvG,GAAqBuG,IAG3C,IAAIC,EAAmBxG,GAAqBuG,GACxCE,EAAS,GAUb,GARIhC,GACFgC,EAAOC,KAAK9F,EAASwF,IAAmB,GAGtCxB,GACF6B,EAAOC,KAAK9F,EAAS2F,IAAsB,EAAG3F,EAAS4F,IAAqB,GAG1EC,EAAOE,OAAM,SAAUC,GACzB,OAAOA,CACT,IAAI,CACFV,EAAwB1S,EACxByS,GAAqB,EACrB,KACF,CAEAF,EAAUc,IAAIrT,EAAWiT,EAC3B,CAEA,GAAIR,EAqBF,IAnBA,IAEIa,EAAQ,SAAeC,GACzB,IAAIC,EAAmB3B,EAAW4B,MAAK,SAAUzT,GAC/C,IAAIiT,EAASV,EAAU9T,IAAIuB,GAE3B,GAAIiT,EACF,OAAOA,EAAOS,MAAM,EAAGH,GAAIJ,OAAM,SAAUC,GACzC,OAAOA,CACT,GAEJ,IAEA,GAAII,EAEF,OADAd,EAAwBc,EACjB,OAEX,EAESD,EAnBY/B,EAAiB,EAAI,EAmBZ+B,EAAK,GAGpB,UAFFD,EAAMC,GADmBA,KAOpCtR,EAAMjC,YAAc0S,IACtBzQ,EAAMmG,cAAcxG,GAAMmP,OAAQ,EAClC9O,EAAMjC,UAAY0S,EAClBzQ,EAAM0R,OAAQ,EA5GhB,CA8GF,EAQEhK,iBAAkB,CAAC,UACnBgC,KAAM,CACJoF,OAAO,IE7IX,SAAS6C,GAAexG,EAAUY,EAAM6F,GAQtC,YAPyB,IAArBA,IACFA,EAAmB,CACjBrO,EAAG,EACHE,EAAG,IAIA,CACLzC,IAAKmK,EAASnK,IAAM+K,EAAK3I,OAASwO,EAAiBnO,EACnDvG,MAAOiO,EAASjO,MAAQ6O,EAAK7I,MAAQ0O,EAAiBrO,EACtDtG,OAAQkO,EAASlO,OAAS8O,EAAK3I,OAASwO,EAAiBnO,EACzDtG,KAAMgO,EAAShO,KAAO4O,EAAK7I,MAAQ0O,EAAiBrO,EAExD,CAEA,SAASsO,GAAsB1G,GAC7B,MAAO,CAAC,EAAKjO,EAAOD,EAAQE,GAAM2U,MAAK,SAAUC,GAC/C,OAAO5G,EAAS4G,IAAS,CAC3B,GACF,CA+BA,UACEpS,KAAM,OACNC,SAAS,EACTC,MAAO,OACP6H,iBAAkB,CAAC,mBACnB5H,GAlCF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZ0Q,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBkU,EAAmB5R,EAAMmG,cAAc6L,gBACvCC,EAAoBhF,GAAejN,EAAO,CAC5C0N,eAAgB,cAEdwE,EAAoBjF,GAAejN,EAAO,CAC5C4N,aAAa,IAEXuE,EAA2BR,GAAeM,EAAmB5B,GAC7D+B,EAAsBT,GAAeO,EAAmBnK,EAAY6J,GACpES,EAAoBR,GAAsBM,GAC1CG,EAAmBT,GAAsBO,GAC7CpS,EAAMmG,cAAcxG,GAAQ,CAC1BwS,yBAA0BA,EAC1BC,oBAAqBA,EACrBC,kBAAmBA,EACnBC,iBAAkBA,GAEpBtS,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,+BAAgC2U,EAChC,sBAAuBC,GAE3B,GCJA,IACE3S,KAAM,SACNC,SAAS,EACTC,MAAO,OACPwB,SAAU,CAAC,iBACXvB,GA5BF,SAAgBa,GACd,IAAIX,EAAQW,EAAMX,MACdc,EAAUH,EAAMG,QAChBnB,EAAOgB,EAAMhB,KACb4S,EAAkBzR,EAAQuG,OAC1BA,OAA6B,IAApBkL,EAA6B,CAAC,EAAG,GAAKA,EAC/C7I,EAAO,EAAW7L,QAAO,SAAUC,EAAKC,GAE1C,OADAD,EAAIC,GA5BD,SAAiCA,EAAWyI,EAAOa,GACxD,IAAIjB,EAAgB9E,EAAiBvD,GACjCyU,EAAiB,CAACrV,EAAM,GAAKqH,QAAQ4B,IAAkB,GAAK,EAAI,EAEhErG,EAAyB,mBAAXsH,EAAwBA,EAAOhL,OAAOkE,OAAO,CAAC,EAAGiG,EAAO,CACxEzI,UAAWA,KACPsJ,EACFoL,EAAW1S,EAAK,GAChB2S,EAAW3S,EAAK,GAIpB,OAFA0S,EAAWA,GAAY,EACvBC,GAAYA,GAAY,GAAKF,EACtB,CAACrV,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAAI,CACjD7C,EAAGmP,EACHjP,EAAGgP,GACD,CACFlP,EAAGkP,EACHhP,EAAGiP,EAEP,CASqBC,CAAwB5U,EAAWiC,EAAMwG,MAAOa,GAC1DvJ,CACT,GAAG,CAAC,GACA8U,EAAwBlJ,EAAK1J,EAAMjC,WACnCwF,EAAIqP,EAAsBrP,EAC1BE,EAAImP,EAAsBnP,EAEW,MAArCzD,EAAMmG,cAAcD,gBACtBlG,EAAMmG,cAAcD,cAAc3C,GAAKA,EACvCvD,EAAMmG,cAAcD,cAAczC,GAAKA,GAGzCzD,EAAMmG,cAAcxG,GAAQ+J,CAC9B,GC1BA,IACE/J,KAAM,gBACNC,SAAS,EACTC,MAAO,OACPC,GApBF,SAAuBC,GACrB,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KAKhBK,EAAMmG,cAAcxG,GAAQkN,GAAe,CACzClP,UAAWqC,EAAMwG,MAAM7I,UACvBiB,QAASoB,EAAMwG,MAAM9I,OACrBqD,SAAU,WACVhD,UAAWiC,EAAMjC,WAErB,EAQE2L,KAAM,CAAC,GCgHT,IACE/J,KAAM,kBACNC,SAAS,EACTC,MAAO,OACPC,GA/HF,SAAyBC,GACvB,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KACZoP,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAsCA,EACrD3B,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtBrH,EAAUzF,EAAQyF,QAClBsM,EAAkB/R,EAAQgS,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAwBjS,EAAQkS,aAChCA,OAAyC,IAA1BD,EAAmC,EAAIA,EACtD5H,EAAW8B,GAAejN,EAAO,CACnCsN,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTqH,YAAaA,IAEXxH,EAAgB9E,EAAiBtB,EAAMjC,WACvCiK,EAAYL,EAAa3H,EAAMjC,WAC/BkV,GAAmBjL,EACnBgF,EAAWtH,EAAyBU,GACpC8I,ECrCY,MDqCSlC,ECrCH,IAAM,IDsCxB9G,EAAgBlG,EAAMmG,cAAcD,cACpCmK,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBwV,EAA4C,mBAAjBF,EAA8BA,EAAa3W,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CACvGzI,UAAWiC,EAAMjC,aACbiV,EACFG,EAA2D,iBAAtBD,EAAiC,CACxElG,SAAUkG,EACVhE,QAASgE,GACP7W,OAAOkE,OAAO,CAChByM,SAAU,EACVkC,QAAS,GACRgE,GACCE,EAAsBpT,EAAMmG,cAAckB,OAASrH,EAAMmG,cAAckB,OAAOrH,EAAMjC,WAAa,KACjG2L,EAAO,CACTnG,EAAG,EACHE,EAAG,GAGL,GAAKyC,EAAL,CAIA,GAAI8I,EAAe,CACjB,IAAIqE,EAEAC,EAAwB,MAAbtG,EAAmB,EAAM7P,EACpCoW,EAAuB,MAAbvG,EAAmB/P,EAASC,EACtCoJ,EAAmB,MAAb0G,EAAmB,SAAW,QACpC3F,EAASnB,EAAc8G,GACvBtL,EAAM2F,EAAS8D,EAASmI,GACxB7R,EAAM4F,EAAS8D,EAASoI,GACxBC,EAAWV,GAAU/K,EAAWzB,GAAO,EAAI,EAC3CmN,EAASzL,IAAc1K,EAAQ+S,EAAc/J,GAAOyB,EAAWzB,GAC/DoN,EAAS1L,IAAc1K,GAASyK,EAAWzB,IAAQ+J,EAAc/J,GAGjEL,EAAejG,EAAME,SAASgB,MAC9BwF,EAAYoM,GAAU7M,EAAetC,EAAcsC,GAAgB,CACrE/C,MAAO,EACPE,OAAQ,GAENuQ,GAAqB3T,EAAMmG,cAAc,oBAAsBnG,EAAMmG,cAAc,oBAAoBI,QxBhFtG,CACLvF,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GwB6EFyW,GAAkBD,GAAmBL,GACrCO,GAAkBF,GAAmBJ,GAMrCO,GAAWnO,EAAO,EAAG0K,EAAc/J,GAAMI,EAAUJ,IACnDyN,GAAYd,EAAkB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWF,GAAkBT,EAA4BnG,SAAWyG,EAASK,GAAWF,GAAkBT,EAA4BnG,SACxMgH,GAAYf,GAAmB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWD,GAAkBV,EAA4BnG,SAAW0G,EAASI,GAAWD,GAAkBV,EAA4BnG,SACzMjG,GAAoB/G,EAAME,SAASgB,OAAS8D,EAAgBhF,EAAME,SAASgB,OAC3E+S,GAAelN,GAAiC,MAAbiG,EAAmBjG,GAAkBsF,WAAa,EAAItF,GAAkBuF,YAAc,EAAI,EAC7H4H,GAAwH,OAAjGb,EAA+C,MAAvBD,OAA8B,EAASA,EAAoBpG,IAAqBqG,EAAwB,EAEvJc,GAAY9M,EAAS2M,GAAYE,GACjCE,GAAkBzO,EAAOmN,EAAS,EAAQpR,EAF9B2F,EAAS0M,GAAYG,GAAsBD,IAEKvS,EAAK2F,EAAQyL,EAAS,EAAQrR,EAAK0S,IAAa1S,GAChHyE,EAAc8G,GAAYoH,GAC1B1K,EAAKsD,GAAYoH,GAAkB/M,CACrC,CAEA,GAAI8H,EAAc,CAChB,IAAIkF,GAEAC,GAAyB,MAAbtH,EAAmB,EAAM7P,EAErCoX,GAAwB,MAAbvH,EAAmB/P,EAASC,EAEvCsX,GAAUtO,EAAcgJ,GAExBuF,GAAmB,MAAZvF,EAAkB,SAAW,QAEpCwF,GAAOF,GAAUrJ,EAASmJ,IAE1BK,GAAOH,GAAUrJ,EAASoJ,IAE1BK,IAAuD,IAAxC,CAAC,EAAKzX,GAAMqH,QAAQ4B,GAEnCyO,GAAyH,OAAjGR,GAAgD,MAAvBjB,OAA8B,EAASA,EAAoBlE,IAAoBmF,GAAyB,EAEzJS,GAAaF,GAAeF,GAAOF,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAEzI6F,GAAaH,GAAeJ,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAAUyF,GAE5IK,GAAmBlC,GAAU8B,G1BzH9B,SAAwBlT,EAAK1E,EAAOyE,GACzC,IAAIwT,EAAItP,EAAOjE,EAAK1E,EAAOyE,GAC3B,OAAOwT,EAAIxT,EAAMA,EAAMwT,CACzB,C0BsHoDC,CAAeJ,GAAYN,GAASO,IAAcpP,EAAOmN,EAASgC,GAAaJ,GAAMF,GAAS1B,EAASiC,GAAaJ,IAEpKzO,EAAcgJ,GAAW8F,GACzBtL,EAAKwF,GAAW8F,GAAmBR,EACrC,CAEAxU,EAAMmG,cAAcxG,GAAQ+J,CAvE5B,CAwEF,EAQEhC,iBAAkB,CAAC,WE1HN,SAASyN,GAAiBC,EAAyBrQ,EAAcsD,QAC9D,IAAZA,IACFA,GAAU,GAGZ,ICnBoCrJ,ECJOJ,EFuBvCyW,EAA0B9V,EAAcwF,GACxCuQ,EAAuB/V,EAAcwF,IAf3C,SAAyBnG,GACvB,IAAImN,EAAOnN,EAAQ+D,wBACfI,EAASpB,EAAMoK,EAAK7I,OAAStE,EAAQqE,aAAe,EACpDD,EAASrB,EAAMoK,EAAK3I,QAAUxE,EAAQuE,cAAgB,EAC1D,OAAkB,IAAXJ,GAA2B,IAAXC,CACzB,CAU4DuS,CAAgBxQ,GACtEJ,EAAkBF,EAAmBM,GACrCgH,EAAOpJ,EAAsByS,EAAyBE,EAAsBjN,GAC5EyB,EAAS,CACXc,WAAY,EACZE,UAAW,GAET7C,EAAU,CACZ1E,EAAG,EACHE,EAAG,GAkBL,OAfI4R,IAA4BA,IAA4BhN,MACxB,SAA9B1J,EAAYoG,IAChBkG,GAAetG,MACbmF,GCnCgC9K,EDmCT+F,KClCdhG,EAAUC,IAAUO,EAAcP,GCJxC,CACL4L,YAFyChM,EDQbI,GCNR4L,WACpBE,UAAWlM,EAAQkM,WDGZH,GAAgB3L,IDoCnBO,EAAcwF,KAChBkD,EAAUtF,EAAsBoC,GAAc,IACtCxB,GAAKwB,EAAauH,WAC1BrE,EAAQxE,GAAKsB,EAAasH,WACjB1H,IACTsD,EAAQ1E,EAAIyH,GAAoBrG,KAI7B,CACLpB,EAAGwI,EAAK5O,KAAO2M,EAAOc,WAAa3C,EAAQ1E,EAC3CE,EAAGsI,EAAK/K,IAAM8I,EAAOgB,UAAY7C,EAAQxE,EACzCP,MAAO6I,EAAK7I,MACZE,OAAQ2I,EAAK3I,OAEjB,CGvDA,SAASoS,GAAMC,GACb,IAAItT,EAAM,IAAIoO,IACVmF,EAAU,IAAIC,IACdC,EAAS,GAKb,SAAS3F,EAAK4F,GACZH,EAAQI,IAAID,EAASlW,MACN,GAAG3B,OAAO6X,EAASxU,UAAY,GAAIwU,EAASnO,kBAAoB,IACtEvH,SAAQ,SAAU4V,GACzB,IAAKL,EAAQM,IAAID,GAAM,CACrB,IAAIE,EAAc9T,EAAI3F,IAAIuZ,GAEtBE,GACFhG,EAAKgG,EAET,CACF,IACAL,EAAO3E,KAAK4E,EACd,CAQA,OAzBAJ,EAAUtV,SAAQ,SAAU0V,GAC1B1T,EAAIiP,IAAIyE,EAASlW,KAAMkW,EACzB,IAiBAJ,EAAUtV,SAAQ,SAAU0V,GACrBH,EAAQM,IAAIH,EAASlW,OAExBsQ,EAAK4F,EAET,IACOD,CACT,CCvBA,IAAIM,GAAkB,CACpBnY,UAAW,SACX0X,UAAW,GACX1U,SAAU,YAGZ,SAASoV,KACP,IAAK,IAAI1B,EAAO2B,UAAUrG,OAAQsG,EAAO,IAAIpU,MAAMwS,GAAO6B,EAAO,EAAGA,EAAO7B,EAAM6B,IAC/ED,EAAKC,GAAQF,UAAUE,GAGzB,OAAQD,EAAKvE,MAAK,SAAUlT,GAC1B,QAASA,GAAoD,mBAAlCA,EAAQ+D,sBACrC,GACF,CAEO,SAAS4T,GAAgBC,QACL,IAArBA,IACFA,EAAmB,CAAC,GAGtB,IAAIC,EAAoBD,EACpBE,EAAwBD,EAAkBE,iBAC1CA,OAA6C,IAA1BD,EAAmC,GAAKA,EAC3DE,EAAyBH,EAAkBI,eAC3CA,OAA4C,IAA3BD,EAAoCV,GAAkBU,EAC3E,OAAO,SAAsBjZ,EAAWD,EAAQoD,QAC9B,IAAZA,IACFA,EAAU+V,GAGZ,ICxC6B/W,EAC3BgX,EDuCE9W,EAAQ,CACVjC,UAAW,SACXgZ,iBAAkB,GAClBjW,QAASzE,OAAOkE,OAAO,CAAC,EAAG2V,GAAiBW,GAC5C1Q,cAAe,CAAC,EAChBjG,SAAU,CACRvC,UAAWA,EACXD,OAAQA,GAEV4C,WAAY,CAAC,EACbD,OAAQ,CAAC,GAEP2W,EAAmB,GACnBC,GAAc,EACdrN,EAAW,CACb5J,MAAOA,EACPkX,WAAY,SAAoBC,GAC9B,IAAIrW,EAAsC,mBAArBqW,EAAkCA,EAAiBnX,EAAMc,SAAWqW,EACzFC,IACApX,EAAMc,QAAUzE,OAAOkE,OAAO,CAAC,EAAGsW,EAAgB7W,EAAMc,QAASA,GACjEd,EAAMiK,cAAgB,CACpBtM,UAAW0B,EAAU1B,GAAa6N,GAAkB7N,GAAaA,EAAU4Q,eAAiB/C,GAAkB7N,EAAU4Q,gBAAkB,GAC1I7Q,OAAQ8N,GAAkB9N,IAI5B,IElE4B+X,EAC9B4B,EFiEMN,EDhCG,SAAwBtB,GAErC,IAAIsB,EAAmBvB,GAAMC,GAE7B,OAAO/W,EAAeb,QAAO,SAAUC,EAAK+B,GAC1C,OAAO/B,EAAIE,OAAO+Y,EAAiBvR,QAAO,SAAUqQ,GAClD,OAAOA,EAAShW,QAAUA,CAC5B,IACF,GAAG,GACL,CCuB+ByX,EElEK7B,EFkEsB,GAAGzX,OAAO2Y,EAAkB3W,EAAMc,QAAQ2U,WEjE9F4B,EAAS5B,EAAU5X,QAAO,SAAUwZ,EAAQE,GAC9C,IAAIC,EAAWH,EAAOE,EAAQ5X,MAK9B,OAJA0X,EAAOE,EAAQ5X,MAAQ6X,EAAWnb,OAAOkE,OAAO,CAAC,EAAGiX,EAAUD,EAAS,CACrEzW,QAASzE,OAAOkE,OAAO,CAAC,EAAGiX,EAAS1W,QAASyW,EAAQzW,SACrD4I,KAAMrN,OAAOkE,OAAO,CAAC,EAAGiX,EAAS9N,KAAM6N,EAAQ7N,QAC5C6N,EACEF,CACT,GAAG,CAAC,GAEGhb,OAAO4D,KAAKoX,GAAQlV,KAAI,SAAUhG,GACvC,OAAOkb,EAAOlb,EAChB,MF4DM,OAJA6D,EAAM+W,iBAAmBA,EAAiBvR,QAAO,SAAUiS,GACzD,OAAOA,EAAE7X,OACX,IA+FFI,EAAM+W,iBAAiB5W,SAAQ,SAAUJ,GACvC,IAAIJ,EAAOI,EAAKJ,KACZ+X,EAAe3X,EAAKe,QACpBA,OAA2B,IAAjB4W,EAA0B,CAAC,EAAIA,EACzChX,EAASX,EAAKW,OAElB,GAAsB,mBAAXA,EAAuB,CAChC,IAAIiX,EAAYjX,EAAO,CACrBV,MAAOA,EACPL,KAAMA,EACNiK,SAAUA,EACV9I,QAASA,IAKXkW,EAAiB/F,KAAK0G,GAFT,WAAmB,EAGlC,CACF,IA/GS/N,EAASQ,QAClB,EAMAwN,YAAa,WACX,IAAIX,EAAJ,CAIA,IAAIY,EAAkB7X,EAAME,SACxBvC,EAAYka,EAAgBla,UAC5BD,EAASma,EAAgBna,OAG7B,GAAKyY,GAAiBxY,EAAWD,GAAjC,CAKAsC,EAAMwG,MAAQ,CACZ7I,UAAWwX,GAAiBxX,EAAWqH,EAAgBtH,GAAoC,UAA3BsC,EAAMc,QAAQC,UAC9ErD,OAAQiG,EAAcjG,IAOxBsC,EAAM0R,OAAQ,EACd1R,EAAMjC,UAAYiC,EAAMc,QAAQ/C,UAKhCiC,EAAM+W,iBAAiB5W,SAAQ,SAAU0V,GACvC,OAAO7V,EAAMmG,cAAc0P,EAASlW,MAAQtD,OAAOkE,OAAO,CAAC,EAAGsV,EAASnM,KACzE,IAEA,IAAK,IAAIoO,EAAQ,EAAGA,EAAQ9X,EAAM+W,iBAAiBhH,OAAQ+H,IACzD,IAAoB,IAAhB9X,EAAM0R,MAAV,CAMA,IAAIqG,EAAwB/X,EAAM+W,iBAAiBe,GAC/ChY,EAAKiY,EAAsBjY,GAC3BkY,EAAyBD,EAAsBjX,QAC/CoM,OAAsC,IAA3B8K,EAAoC,CAAC,EAAIA,EACpDrY,EAAOoY,EAAsBpY,KAEf,mBAAPG,IACTE,EAAQF,EAAG,CACTE,MAAOA,EACPc,QAASoM,EACTvN,KAAMA,EACNiK,SAAUA,KACN5J,EAdR,MAHEA,EAAM0R,OAAQ,EACdoG,GAAS,CAzBb,CATA,CAqDF,EAGA1N,QC1I2BtK,ED0IV,WACf,OAAO,IAAImY,SAAQ,SAAUC,GAC3BtO,EAASgO,cACTM,EAAQlY,EACV,GACF,EC7IG,WAUL,OATK8W,IACHA,EAAU,IAAImB,SAAQ,SAAUC,GAC9BD,QAAQC,UAAUC,MAAK,WACrBrB,OAAUsB,EACVF,EAAQpY,IACV,GACF,KAGKgX,CACT,GDmIIuB,QAAS,WACPjB,IACAH,GAAc,CAChB,GAGF,IAAKd,GAAiBxY,EAAWD,GAC/B,OAAOkM,EAmCT,SAASwN,IACPJ,EAAiB7W,SAAQ,SAAUL,GACjC,OAAOA,GACT,IACAkX,EAAmB,EACrB,CAEA,OAvCApN,EAASsN,WAAWpW,GAASqX,MAAK,SAAUnY,IACrCiX,GAAenW,EAAQwX,eAC1BxX,EAAQwX,cAActY,EAE1B,IAmCO4J,CACT,CACF,CACO,IAAI2O,GAA4BhC,KGzLnC,GAA4BA,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,EAAa,GAAQ,GAAM,GAAiB,EAAO,MCJrH,GAA4BjC,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,KCatE,MAAMC,GAAa,IAAIlI,IACjBmI,GAAO,CACX,GAAAtH,CAAIxS,EAASzC,EAAKyN,GACX6O,GAAWzC,IAAIpX,IAClB6Z,GAAWrH,IAAIxS,EAAS,IAAI2R,KAE9B,MAAMoI,EAAcF,GAAWjc,IAAIoC,GAI9B+Z,EAAY3C,IAAI7Z,IAA6B,IAArBwc,EAAYC,KAKzCD,EAAYvH,IAAIjV,EAAKyN,GAHnBiP,QAAQC,MAAM,+EAA+E7W,MAAM8W,KAAKJ,EAAY1Y,QAAQ,MAIhI,EACAzD,IAAG,CAACoC,EAASzC,IACPsc,GAAWzC,IAAIpX,IACV6Z,GAAWjc,IAAIoC,GAASpC,IAAIL,IAE9B,KAET,MAAA6c,CAAOpa,EAASzC,GACd,IAAKsc,GAAWzC,IAAIpX,GAClB,OAEF,MAAM+Z,EAAcF,GAAWjc,IAAIoC,GACnC+Z,EAAYM,OAAO9c,GAGM,IAArBwc,EAAYC,MACdH,GAAWQ,OAAOra,EAEtB,GAYIsa,GAAiB,gBAOjBC,GAAgBC,IAChBA,GAAYna,OAAOoa,KAAOpa,OAAOoa,IAAIC,SAEvCF,EAAWA,EAAS5O,QAAQ,iBAAiB,CAAC+O,EAAOC,IAAO,IAAIH,IAAIC,OAAOE,QAEtEJ,GA4CHK,GAAuB7a,IAC3BA,EAAQ8a,cAAc,IAAIC,MAAMT,IAAgB,EAE5C,GAAYU,MACXA,GAA4B,iBAAXA,UAGO,IAAlBA,EAAOC,SAChBD,EAASA,EAAO,SAEgB,IAApBA,EAAOE,UAEjBC,GAAaH,GAEb,GAAUA,GACLA,EAAOC,OAASD,EAAO,GAAKA,EAEf,iBAAXA,GAAuBA,EAAO7J,OAAS,EACzCrL,SAAS+C,cAAc0R,GAAcS,IAEvC,KAEHI,GAAYpb,IAChB,IAAK,GAAUA,IAAgD,IAApCA,EAAQqb,iBAAiBlK,OAClD,OAAO,EAET,MAAMmK,EAAgF,YAA7D5V,iBAAiB1F,GAASub,iBAAiB,cAE9DC,EAAgBxb,EAAQyb,QAAQ,uBACtC,IAAKD,EACH,OAAOF,EAET,GAAIE,IAAkBxb,EAAS,CAC7B,MAAM0b,EAAU1b,EAAQyb,QAAQ,WAChC,GAAIC,GAAWA,EAAQlW,aAAegW,EACpC,OAAO,EAET,GAAgB,OAAZE,EACF,OAAO,CAEX,CACA,OAAOJ,CAAgB,EAEnBK,GAAa3b,IACZA,GAAWA,EAAQkb,WAAaU,KAAKC,gBAGtC7b,EAAQ8b,UAAU7W,SAAS,mBAGC,IAArBjF,EAAQ+b,SACV/b,EAAQ+b,SAEV/b,EAAQgc,aAAa,aAAoD,UAArChc,EAAQic,aAAa,aAE5DC,GAAiBlc,IACrB,IAAK8F,SAASC,gBAAgBoW,aAC5B,OAAO,KAIT,GAAmC,mBAAxBnc,EAAQqF,YAA4B,CAC7C,MAAM+W,EAAOpc,EAAQqF,cACrB,OAAO+W,aAAgBtb,WAAasb,EAAO,IAC7C,CACA,OAAIpc,aAAmBc,WACdd,EAIJA,EAAQwF,WAGN0W,GAAelc,EAAQwF,YAFrB,IAEgC,EAErC6W,GAAO,OAUPC,GAAStc,IACbA,EAAQuE,YAAY,EAEhBgY,GAAY,IACZlc,OAAOmc,SAAW1W,SAAS6G,KAAKqP,aAAa,qBACxC3b,OAAOmc,OAET,KAEHC,GAA4B,GAgB5BC,GAAQ,IAAuC,QAAjC5W,SAASC,gBAAgB4W,IACvCC,GAAqBC,IAhBAC,QAiBN,KACjB,MAAMC,EAAIR,KAEV,GAAIQ,EAAG,CACL,MAAMhc,EAAO8b,EAAOG,KACdC,EAAqBF,EAAE7b,GAAGH,GAChCgc,EAAE7b,GAAGH,GAAQ8b,EAAOK,gBACpBH,EAAE7b,GAAGH,GAAMoc,YAAcN,EACzBE,EAAE7b,GAAGH,GAAMqc,WAAa,KACtBL,EAAE7b,GAAGH,GAAQkc,EACNJ,EAAOK,gBAElB,GA5B0B,YAAxBpX,SAASuX,YAENZ,GAA0BtL,QAC7BrL,SAASyF,iBAAiB,oBAAoB,KAC5C,IAAK,MAAMuR,KAAYL,GACrBK,GACF,IAGJL,GAA0BpK,KAAKyK,IAE/BA,GAkBA,EAEEQ,GAAU,CAACC,EAAkB9F,EAAO,GAAI+F,EAAeD,IACxB,mBAArBA,EAAkCA,KAAoB9F,GAAQ+F,EAExEC,GAAyB,CAACX,EAAUY,EAAmBC,GAAoB,KAC/E,IAAKA,EAEH,YADAL,GAAQR,GAGV,MACMc,EA/JiC5d,KACvC,IAAKA,EACH,OAAO,EAIT,IAAI,mBACF6d,EAAkB,gBAClBC,GACEzd,OAAOqF,iBAAiB1F,GAC5B,MAAM+d,EAA0BC,OAAOC,WAAWJ,GAC5CK,EAAuBF,OAAOC,WAAWH,GAG/C,OAAKC,GAA4BG,GAKjCL,EAAqBA,EAAmBlb,MAAM,KAAK,GACnDmb,EAAkBA,EAAgBnb,MAAM,KAAK,GAtDf,KAuDtBqb,OAAOC,WAAWJ,GAAsBG,OAAOC,WAAWH,KANzD,CAMoG,EA0IpFK,CAAiCT,GADlC,EAExB,IAAIU,GAAS,EACb,MAAMC,EAAU,EACdrR,aAEIA,IAAW0Q,IAGfU,GAAS,EACTV,EAAkBjS,oBAAoB6O,GAAgB+D,GACtDf,GAAQR,GAAS,EAEnBY,EAAkBnS,iBAAiB+O,GAAgB+D,GACnDC,YAAW,KACJF,GACHvD,GAAqB6C,EACvB,GACCE,EAAiB,EAYhBW,GAAuB,CAAC1R,EAAM2R,EAAeC,EAAeC,KAChE,MAAMC,EAAa9R,EAAKsE,OACxB,IAAI+H,EAAQrM,EAAKjH,QAAQ4Y,GAIzB,OAAe,IAAXtF,GACMuF,GAAiBC,EAAiB7R,EAAK8R,EAAa,GAAK9R,EAAK,IAExEqM,GAASuF,EAAgB,GAAK,EAC1BC,IACFxF,GAASA,EAAQyF,GAAcA,GAE1B9R,EAAKjK,KAAKC,IAAI,EAAGD,KAAKE,IAAIoW,EAAOyF,EAAa,KAAI,EAerDC,GAAiB,qBACjBC,GAAiB,OACjBC,GAAgB,SAChBC,GAAgB,CAAC,EACvB,IAAIC,GAAW,EACf,MAAMC,GAAe,CACnBC,WAAY,YACZC,WAAY,YAERC,GAAe,IAAIrI,IAAI,CAAC,QAAS,WAAY,UAAW,YAAa,cAAe,aAAc,iBAAkB,YAAa,WAAY,YAAa,cAAe,YAAa,UAAW,WAAY,QAAS,oBAAqB,aAAc,YAAa,WAAY,cAAe,cAAe,cAAe,YAAa,eAAgB,gBAAiB,eAAgB,gBAAiB,aAAc,QAAS,OAAQ,SAAU,QAAS,SAAU,SAAU,UAAW,WAAY,OAAQ,SAAU,eAAgB,SAAU,OAAQ,mBAAoB,mBAAoB,QAAS,QAAS,WAM/lB,SAASsI,GAAarf,EAASsf,GAC7B,OAAOA,GAAO,GAAGA,MAAQN,QAAgBhf,EAAQgf,UAAYA,IAC/D,CACA,SAASO,GAAiBvf,GACxB,MAAMsf,EAAMD,GAAarf,GAGzB,OAFAA,EAAQgf,SAAWM,EACnBP,GAAcO,GAAOP,GAAcO,IAAQ,CAAC,EACrCP,GAAcO,EACvB,CAiCA,SAASE,GAAYC,EAAQC,EAAUC,EAAqB,MAC1D,OAAOliB,OAAOmiB,OAAOH,GAAQ7M,MAAKiN,GAASA,EAAMH,WAAaA,GAAYG,EAAMF,qBAAuBA,GACzG,CACA,SAASG,GAAoBC,EAAmB1B,EAAS2B,GACvD,MAAMC,EAAiC,iBAAZ5B,EAErBqB,EAAWO,EAAcD,EAAqB3B,GAAW2B,EAC/D,IAAIE,EAAYC,GAAaJ,GAI7B,OAHKX,GAAahI,IAAI8I,KACpBA,EAAYH,GAEP,CAACE,EAAaP,EAAUQ,EACjC,CACA,SAASE,GAAWpgB,EAAS+f,EAAmB1B,EAAS2B,EAAoBK,GAC3E,GAAiC,iBAAtBN,IAAmC/f,EAC5C,OAEF,IAAKigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GAIzF,GAAID,KAAqBd,GAAc,CACrC,MAAMqB,EAAepf,GACZ,SAAU2e,GACf,IAAKA,EAAMU,eAAiBV,EAAMU,gBAAkBV,EAAMW,iBAAmBX,EAAMW,eAAevb,SAAS4a,EAAMU,eAC/G,OAAOrf,EAAGjD,KAAKwiB,KAAMZ,EAEzB,EAEFH,EAAWY,EAAaZ,EAC1B,CACA,MAAMD,EAASF,GAAiBvf,GAC1B0gB,EAAWjB,EAAOS,KAAeT,EAAOS,GAAa,CAAC,GACtDS,EAAmBnB,GAAYkB,EAAUhB,EAAUO,EAAc5B,EAAU,MACjF,GAAIsC,EAEF,YADAA,EAAiBN,OAASM,EAAiBN,QAAUA,GAGvD,MAAMf,EAAMD,GAAaK,EAAUK,EAAkBnU,QAAQgT,GAAgB,KACvE1d,EAAK+e,EA5Db,SAAoCjgB,EAASwa,EAAUtZ,GACrD,OAAO,SAASmd,EAAQwB,GACtB,MAAMe,EAAc5gB,EAAQ6gB,iBAAiBrG,GAC7C,IAAK,IAAI,OACPxN,GACE6S,EAAO7S,GAAUA,IAAWyT,KAAMzT,EAASA,EAAOxH,WACpD,IAAK,MAAMsb,KAAcF,EACvB,GAAIE,IAAe9T,EASnB,OANA+T,GAAWlB,EAAO,CAChBW,eAAgBxT,IAEdqR,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAM1G,EAAUtZ,GAE3CA,EAAGigB,MAAMnU,EAAQ,CAAC6S,GAG/B,CACF,CAwC2BuB,CAA2BphB,EAASqe,EAASqB,GAvExE,SAA0B1f,EAASkB,GACjC,OAAO,SAASmd,EAAQwB,GAOtB,OANAkB,GAAWlB,EAAO,CAChBW,eAAgBxgB,IAEdqe,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAMhgB,GAEjCA,EAAGigB,MAAMnhB,EAAS,CAAC6f,GAC5B,CACF,CA6DoFwB,CAAiBrhB,EAAS0f,GAC5Gxe,EAAGye,mBAAqBM,EAAc5B,EAAU,KAChDnd,EAAGwe,SAAWA,EACdxe,EAAGmf,OAASA,EACZnf,EAAG8d,SAAWM,EACdoB,EAASpB,GAAOpe,EAChBlB,EAAQuL,iBAAiB2U,EAAWhf,EAAI+e,EAC1C,CACA,SAASqB,GAActhB,EAASyf,EAAQS,EAAW7B,EAASsB,GAC1D,MAAMze,EAAKse,GAAYC,EAAOS,GAAY7B,EAASsB,GAC9Cze,IAGLlB,EAAQyL,oBAAoByU,EAAWhf,EAAIqgB,QAAQ5B,WAC5CF,EAAOS,GAAWhf,EAAG8d,UAC9B,CACA,SAASwC,GAAyBxhB,EAASyf,EAAQS,EAAWuB,GAC5D,MAAMC,EAAoBjC,EAAOS,IAAc,CAAC,EAChD,IAAK,MAAOyB,EAAY9B,KAAUpiB,OAAOmkB,QAAQF,GAC3CC,EAAWE,SAASJ,IACtBH,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAGtE,CACA,SAASQ,GAAaN,GAGpB,OADAA,EAAQA,EAAMjU,QAAQiT,GAAgB,IAC/BI,GAAaY,IAAUA,CAChC,CACA,MAAMmB,GAAe,CACnB,EAAAc,CAAG9hB,EAAS6f,EAAOxB,EAAS2B,GAC1BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAA+B,CAAI/hB,EAAS6f,EAAOxB,EAAS2B,GAC3BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAAiB,CAAIjhB,EAAS+f,EAAmB1B,EAAS2B,GACvC,GAAiC,iBAAtBD,IAAmC/f,EAC5C,OAEF,MAAOigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GACrFgC,EAAc9B,IAAcH,EAC5BN,EAASF,GAAiBvf,GAC1B0hB,EAAoBjC,EAAOS,IAAc,CAAC,EAC1C+B,EAAclC,EAAkBmC,WAAW,KACjD,QAAwB,IAAbxC,EAAX,CAQA,GAAIuC,EACF,IAAK,MAAME,KAAgB1kB,OAAO4D,KAAKoe,GACrC+B,GAAyBxhB,EAASyf,EAAQ0C,EAAcpC,EAAkBlN,MAAM,IAGpF,IAAK,MAAOuP,EAAavC,KAAUpiB,OAAOmkB,QAAQF,GAAoB,CACpE,MAAMC,EAAaS,EAAYxW,QAAQkT,GAAe,IACjDkD,IAAejC,EAAkB8B,SAASF,IAC7CL,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAEpE,CAXA,KAPA,CAEE,IAAKliB,OAAO4D,KAAKqgB,GAAmBvQ,OAClC,OAEFmQ,GAActhB,EAASyf,EAAQS,EAAWR,EAAUO,EAAc5B,EAAU,KAE9E,CAYF,EACA,OAAAgE,CAAQriB,EAAS6f,EAAOpI,GACtB,GAAqB,iBAAVoI,IAAuB7f,EAChC,OAAO,KAET,MAAM+c,EAAIR,KAGV,IAAI+F,EAAc,KACdC,GAAU,EACVC,GAAiB,EACjBC,GAAmB,EAJH5C,IADFM,GAAaN,IAMZ9C,IACjBuF,EAAcvF,EAAEhC,MAAM8E,EAAOpI,GAC7BsF,EAAE/c,GAASqiB,QAAQC,GACnBC,GAAWD,EAAYI,uBACvBF,GAAkBF,EAAYK,gCAC9BF,EAAmBH,EAAYM,sBAEjC,MAAMC,EAAM9B,GAAW,IAAIhG,MAAM8E,EAAO,CACtC0C,UACAO,YAAY,IACVrL,GAUJ,OATIgL,GACFI,EAAIE,iBAEFP,GACFxiB,EAAQ8a,cAAc+H,GAEpBA,EAAIJ,kBAAoBH,GAC1BA,EAAYS,iBAEPF,CACT,GAEF,SAAS9B,GAAWljB,EAAKmlB,EAAO,CAAC,GAC/B,IAAK,MAAOzlB,EAAKa,KAAUX,OAAOmkB,QAAQoB,GACxC,IACEnlB,EAAIN,GAAOa,CACb,CAAE,MAAO6kB,GACPxlB,OAAOC,eAAeG,EAAKN,EAAK,CAC9B2lB,cAAc,EACdtlB,IAAG,IACMQ,GAGb,CAEF,OAAOP,CACT,CASA,SAASslB,GAAc/kB,GACrB,GAAc,SAAVA,EACF,OAAO,EAET,GAAc,UAAVA,EACF,OAAO,EAET,GAAIA,IAAU4f,OAAO5f,GAAOkC,WAC1B,OAAO0d,OAAO5f,GAEhB,GAAc,KAAVA,GAA0B,SAAVA,EAClB,OAAO,KAET,GAAqB,iBAAVA,EACT,OAAOA,EAET,IACE,OAAOglB,KAAKC,MAAMC,mBAAmBllB,GACvC,CAAE,MAAO6kB,GACP,OAAO7kB,CACT,CACF,CACA,SAASmlB,GAAiBhmB,GACxB,OAAOA,EAAIqO,QAAQ,UAAU4X,GAAO,IAAIA,EAAItjB,iBAC9C,CACA,MAAMujB,GAAc,CAClB,gBAAAC,CAAiB1jB,EAASzC,EAAKa,GAC7B4B,EAAQ6B,aAAa,WAAW0hB,GAAiBhmB,KAAQa,EAC3D,EACA,mBAAAulB,CAAoB3jB,EAASzC,GAC3ByC,EAAQ4B,gBAAgB,WAAW2hB,GAAiBhmB,KACtD,EACA,iBAAAqmB,CAAkB5jB,GAChB,IAAKA,EACH,MAAO,CAAC,EAEV,MAAM0B,EAAa,CAAC,EACdmiB,EAASpmB,OAAO4D,KAAKrB,EAAQ8jB,SAASld,QAAOrJ,GAAOA,EAAI2kB,WAAW,QAAU3kB,EAAI2kB,WAAW,cAClG,IAAK,MAAM3kB,KAAOsmB,EAAQ,CACxB,IAAIE,EAAUxmB,EAAIqO,QAAQ,MAAO,IACjCmY,EAAUA,EAAQC,OAAO,GAAG9jB,cAAgB6jB,EAAQlR,MAAM,EAAGkR,EAAQ5S,QACrEzP,EAAWqiB,GAAWZ,GAAcnjB,EAAQ8jB,QAAQvmB,GACtD,CACA,OAAOmE,CACT,EACAuiB,iBAAgB,CAACjkB,EAASzC,IACjB4lB,GAAcnjB,EAAQic,aAAa,WAAWsH,GAAiBhmB,QAgB1E,MAAM2mB,GAEJ,kBAAWC,GACT,MAAO,CAAC,CACV,CACA,sBAAWC,GACT,MAAO,CAAC,CACV,CACA,eAAWpH,GACT,MAAM,IAAIqH,MAAM,sEAClB,CACA,UAAAC,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAChB,OAAOA,CACT,CACA,eAAAC,CAAgBD,EAAQvkB,GACtB,MAAM2kB,EAAa,GAAU3kB,GAAWyjB,GAAYQ,iBAAiBjkB,EAAS,UAAY,CAAC,EAE3F,MAAO,IACFygB,KAAKmE,YAAYT,WACM,iBAAfQ,EAA0BA,EAAa,CAAC,KAC/C,GAAU3kB,GAAWyjB,GAAYG,kBAAkB5jB,GAAW,CAAC,KAC7C,iBAAXukB,EAAsBA,EAAS,CAAC,EAE/C,CACA,gBAAAG,CAAiBH,EAAQM,EAAcpE,KAAKmE,YAAYR,aACtD,IAAK,MAAO7hB,EAAUuiB,KAAkBrnB,OAAOmkB,QAAQiD,GAAc,CACnE,MAAMzmB,EAAQmmB,EAAOhiB,GACfwiB,EAAY,GAAU3mB,GAAS,UAhiBrC4c,OADSA,EAiiB+C5c,GA/hBnD,GAAG4c,IAELvd,OAAOM,UAAUuC,SAASrC,KAAK+c,GAAQL,MAAM,eAAe,GAAGza,cA8hBlE,IAAK,IAAI8kB,OAAOF,GAAehhB,KAAKihB,GAClC,MAAM,IAAIE,UAAU,GAAGxE,KAAKmE,YAAY5H,KAAKkI,0BAA0B3iB,qBAA4BwiB,yBAAiCD,MAExI,CAriBW9J,KAsiBb,EAqBF,MAAMmK,WAAsBjB,GAC1B,WAAAU,CAAY5kB,EAASukB,GACnBa,SACAplB,EAAUmb,GAAWnb,MAIrBygB,KAAK4E,SAAWrlB,EAChBygB,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/BzK,GAAKtH,IAAIiO,KAAK4E,SAAU5E,KAAKmE,YAAYW,SAAU9E,MACrD,CAGA,OAAA+E,GACE1L,GAAKM,OAAOqG,KAAK4E,SAAU5E,KAAKmE,YAAYW,UAC5CvE,GAAaC,IAAIR,KAAK4E,SAAU5E,KAAKmE,YAAYa,WACjD,IAAK,MAAMC,KAAgBjoB,OAAOkoB,oBAAoBlF,MACpDA,KAAKiF,GAAgB,IAEzB,CACA,cAAAE,CAAe9I,EAAU9c,EAAS6lB,GAAa,GAC7CpI,GAAuBX,EAAU9c,EAAS6lB,EAC5C,CACA,UAAAvB,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,EAAQ9D,KAAK4E,UAC3Cd,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CAGA,kBAAOuB,CAAY9lB,GACjB,OAAO8Z,GAAKlc,IAAIud,GAAWnb,GAAUygB,KAAK8E,SAC5C,CACA,0BAAOQ,CAAoB/lB,EAASukB,EAAS,CAAC,GAC5C,OAAO9D,KAAKqF,YAAY9lB,IAAY,IAAIygB,KAAKzgB,EAA2B,iBAAXukB,EAAsBA,EAAS,KAC9F,CACA,kBAAWyB,GACT,MA5CY,OA6Cd,CACA,mBAAWT,GACT,MAAO,MAAM9E,KAAKzD,MACpB,CACA,oBAAWyI,GACT,MAAO,IAAIhF,KAAK8E,UAClB,CACA,gBAAOU,CAAUllB,GACf,MAAO,GAAGA,IAAO0f,KAAKgF,WACxB,EAUF,MAAMS,GAAclmB,IAClB,IAAIwa,EAAWxa,EAAQic,aAAa,kBACpC,IAAKzB,GAAyB,MAAbA,EAAkB,CACjC,IAAI2L,EAAgBnmB,EAAQic,aAAa,QAMzC,IAAKkK,IAAkBA,EAActE,SAAS,OAASsE,EAAcjE,WAAW,KAC9E,OAAO,KAILiE,EAActE,SAAS,OAASsE,EAAcjE,WAAW,OAC3DiE,EAAgB,IAAIA,EAAcxjB,MAAM,KAAK,MAE/C6X,EAAW2L,GAAmC,MAAlBA,EAAwBA,EAAcC,OAAS,IAC7E,CACA,OAAO5L,EAAWA,EAAS7X,MAAM,KAAKY,KAAI8iB,GAAO9L,GAAc8L,KAAM1iB,KAAK,KAAO,IAAI,EAEjF2iB,GAAiB,CACrB1T,KAAI,CAAC4H,EAAUxa,EAAU8F,SAASC,kBACzB,GAAG3G,UAAUsB,QAAQ3C,UAAU8iB,iBAAiB5iB,KAAK+B,EAASwa,IAEvE+L,QAAO,CAAC/L,EAAUxa,EAAU8F,SAASC,kBAC5BrF,QAAQ3C,UAAU8K,cAAc5K,KAAK+B,EAASwa,GAEvDgM,SAAQ,CAACxmB,EAASwa,IACT,GAAGpb,UAAUY,EAAQwmB,UAAU5f,QAAOzB,GAASA,EAAMshB,QAAQjM,KAEtE,OAAAkM,CAAQ1mB,EAASwa,GACf,MAAMkM,EAAU,GAChB,IAAIC,EAAW3mB,EAAQwF,WAAWiW,QAAQjB,GAC1C,KAAOmM,GACLD,EAAQrU,KAAKsU,GACbA,EAAWA,EAASnhB,WAAWiW,QAAQjB,GAEzC,OAAOkM,CACT,EACA,IAAAE,CAAK5mB,EAASwa,GACZ,IAAIqM,EAAW7mB,EAAQ8mB,uBACvB,KAAOD,GAAU,CACf,GAAIA,EAASJ,QAAQjM,GACnB,MAAO,CAACqM,GAEVA,EAAWA,EAASC,sBACtB,CACA,MAAO,EACT,EAEA,IAAAxhB,CAAKtF,EAASwa,GACZ,IAAIlV,EAAOtF,EAAQ+mB,mBACnB,KAAOzhB,GAAM,CACX,GAAIA,EAAKmhB,QAAQjM,GACf,MAAO,CAAClV,GAEVA,EAAOA,EAAKyhB,kBACd,CACA,MAAO,EACT,EACA,iBAAAC,CAAkBhnB,GAChB,MAAMinB,EAAa,CAAC,IAAK,SAAU,QAAS,WAAY,SAAU,UAAW,aAAc,4BAA4B1jB,KAAIiX,GAAY,GAAGA,2BAAiC7W,KAAK,KAChL,OAAO8c,KAAK7N,KAAKqU,EAAYjnB,GAAS4G,QAAOsgB,IAAOvL,GAAWuL,IAAO9L,GAAU8L,IAClF,EACA,sBAAAC,CAAuBnnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAIwa,GACK8L,GAAeC,QAAQ/L,GAAYA,EAErC,IACT,EACA,sBAAA4M,CAAuBpnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW8L,GAAeC,QAAQ/L,GAAY,IACvD,EACA,+BAAA6M,CAAgCrnB,GAC9B,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW8L,GAAe1T,KAAK4H,GAAY,EACpD,GAUI8M,GAAuB,CAACC,EAAWC,EAAS,UAChD,MAAMC,EAAa,gBAAgBF,EAAU9B,YACvC1kB,EAAOwmB,EAAUvK,KACvBgE,GAAac,GAAGhc,SAAU2hB,EAAY,qBAAqB1mB,OAAU,SAAU8e,GAI7E,GAHI,CAAC,IAAK,QAAQgC,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEF,MAAMzT,EAASsZ,GAAec,uBAAuB3G,OAASA,KAAKhF,QAAQ,IAAI1a,KAC9DwmB,EAAUxB,oBAAoB/Y,GAGtCwa,IACX,GAAE,EAiBEG,GAAc,YACdC,GAAc,QAAQD,KACtBE,GAAe,SAASF,KAQ9B,MAAMG,WAAc3C,GAElB,eAAWnI,GACT,MAfW,OAgBb,CAGA,KAAA+K,GAEE,GADmB/G,GAAaqB,QAAQ5B,KAAK4E,SAAUuC,IACxCnF,iBACb,OAEFhC,KAAK4E,SAASvJ,UAAU1B,OAlBF,QAmBtB,MAAMyL,EAAapF,KAAK4E,SAASvJ,UAAU7W,SApBrB,QAqBtBwb,KAAKmF,gBAAe,IAAMnF,KAAKuH,mBAAmBvH,KAAK4E,SAAUQ,EACnE,CAGA,eAAAmC,GACEvH,KAAK4E,SAASjL,SACd4G,GAAaqB,QAAQ5B,KAAK4E,SAAUwC,IACpCpH,KAAK+E,SACP,CAGA,sBAAOtI,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOgd,GAAM/B,oBAAoBtF,MACvC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOF6G,GAAqBQ,GAAO,SAM5BlL,GAAmBkL,IAcnB,MAKMI,GAAyB,4BAO/B,MAAMC,WAAehD,GAEnB,eAAWnI,GACT,MAfW,QAgBb,CAGA,MAAAoL,GAEE3H,KAAK4E,SAASxjB,aAAa,eAAgB4e,KAAK4E,SAASvJ,UAAUsM,OAjB3C,UAkB1B,CAGA,sBAAOlL,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOqd,GAAOpC,oBAAoBtF,MACzB,WAAX8D,GACFzZ,EAAKyZ,IAET,GACF,EAOFvD,GAAac,GAAGhc,SAjCe,2BAiCmBoiB,IAAwBrI,IACxEA,EAAMkD,iBACN,MAAMsF,EAASxI,EAAM7S,OAAOyO,QAAQyM,IACvBC,GAAOpC,oBAAoBsC,GACnCD,QAAQ,IAOfxL,GAAmBuL,IAcnB,MACMG,GAAc,YACdC,GAAmB,aAAaD,KAChCE,GAAkB,YAAYF,KAC9BG,GAAiB,WAAWH,KAC5BI,GAAoB,cAAcJ,KAClCK,GAAkB,YAAYL,KAK9BM,GAAY,CAChBC,YAAa,KACbC,aAAc,KACdC,cAAe,MAEXC,GAAgB,CACpBH,YAAa,kBACbC,aAAc,kBACdC,cAAe,mBAOjB,MAAME,WAAc/E,GAClB,WAAAU,CAAY5kB,EAASukB,GACnBa,QACA3E,KAAK4E,SAAWrlB,EACXA,GAAYipB,GAAMC,gBAGvBzI,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAK0I,QAAU,EACf1I,KAAK2I,sBAAwB7H,QAAQlhB,OAAOgpB,cAC5C5I,KAAK6I,cACP,CAGA,kBAAWnF,GACT,OAAOyE,EACT,CACA,sBAAWxE,GACT,OAAO4E,EACT,CACA,eAAWhM,GACT,MA/CW,OAgDb,CAGA,OAAAwI,GACExE,GAAaC,IAAIR,KAAK4E,SAAUiD,GAClC,CAGA,MAAAiB,CAAO1J,GACAY,KAAK2I,sBAIN3I,KAAK+I,wBAAwB3J,KAC/BY,KAAK0I,QAAUtJ,EAAM4J,SAJrBhJ,KAAK0I,QAAUtJ,EAAM6J,QAAQ,GAAGD,OAMpC,CACA,IAAAE,CAAK9J,GACCY,KAAK+I,wBAAwB3J,KAC/BY,KAAK0I,QAAUtJ,EAAM4J,QAAUhJ,KAAK0I,SAEtC1I,KAAKmJ,eACLtM,GAAQmD,KAAK6E,QAAQuD,YACvB,CACA,KAAAgB,CAAMhK,GACJY,KAAK0I,QAAUtJ,EAAM6J,SAAW7J,EAAM6J,QAAQvY,OAAS,EAAI,EAAI0O,EAAM6J,QAAQ,GAAGD,QAAUhJ,KAAK0I,OACjG,CACA,YAAAS,GACE,MAAME,EAAYlnB,KAAKoC,IAAIyb,KAAK0I,SAChC,GAAIW,GAnEgB,GAoElB,OAEF,MAAM/b,EAAY+b,EAAYrJ,KAAK0I,QACnC1I,KAAK0I,QAAU,EACVpb,GAGLuP,GAAQvP,EAAY,EAAI0S,KAAK6E,QAAQyD,cAAgBtI,KAAK6E,QAAQwD,aACpE,CACA,WAAAQ,GACM7I,KAAK2I,uBACPpI,GAAac,GAAGrB,KAAK4E,SAAUqD,IAAmB7I,GAASY,KAAK8I,OAAO1J,KACvEmB,GAAac,GAAGrB,KAAK4E,SAAUsD,IAAiB9I,GAASY,KAAKkJ,KAAK9J,KACnEY,KAAK4E,SAASvJ,UAAU5E,IAlFG,mBAoF3B8J,GAAac,GAAGrB,KAAK4E,SAAUkD,IAAkB1I,GAASY,KAAK8I,OAAO1J,KACtEmB,GAAac,GAAGrB,KAAK4E,SAAUmD,IAAiB3I,GAASY,KAAKoJ,MAAMhK,KACpEmB,GAAac,GAAGrB,KAAK4E,SAAUoD,IAAgB5I,GAASY,KAAKkJ,KAAK9J,KAEtE,CACA,uBAAA2J,CAAwB3J,GACtB,OAAOY,KAAK2I,wBA3FS,QA2FiBvJ,EAAMkK,aA5FrB,UA4FyDlK,EAAMkK,YACxF,CAGA,kBAAOb,GACL,MAAO,iBAAkBpjB,SAASC,iBAAmB7C,UAAU8mB,eAAiB,CAClF,EAeF,MAEMC,GAAc,eACdC,GAAiB,YACjBC,GAAmB,YACnBC,GAAoB,aAGpBC,GAAa,OACbC,GAAa,OACbC,GAAiB,OACjBC,GAAkB,QAClBC,GAAc,QAAQR,KACtBS,GAAa,OAAOT,KACpBU,GAAkB,UAAUV,KAC5BW,GAAqB,aAAaX,KAClCY,GAAqB,aAAaZ,KAClCa,GAAmB,YAAYb,KAC/Bc,GAAwB,OAAOd,KAAcC,KAC7Cc,GAAyB,QAAQf,KAAcC,KAC/Ce,GAAsB,WACtBC,GAAsB,SAMtBC,GAAkB,UAClBC,GAAgB,iBAChBC,GAAuBF,GAAkBC,GAKzCE,GAAmB,CACvB,CAACnB,IAAmBK,GACpB,CAACJ,IAAoBG,IAEjBgB,GAAY,CAChBC,SAAU,IACVC,UAAU,EACVC,MAAO,QACPC,MAAM,EACNC,OAAO,EACPC,MAAM,GAEFC,GAAgB,CACpBN,SAAU,mBAEVC,SAAU,UACVC,MAAO,mBACPC,KAAM,mBACNC,MAAO,UACPC,KAAM,WAOR,MAAME,WAAiB5G,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKuL,UAAY,KACjBvL,KAAKwL,eAAiB,KACtBxL,KAAKyL,YAAa,EAClBzL,KAAK0L,aAAe,KACpB1L,KAAK2L,aAAe,KACpB3L,KAAK4L,mBAAqB/F,GAAeC,QArCjB,uBAqC8C9F,KAAK4E,UAC3E5E,KAAK6L,qBACD7L,KAAK6E,QAAQqG,OAASV,IACxBxK,KAAK8L,OAET,CAGA,kBAAWpI,GACT,OAAOoH,EACT,CACA,sBAAWnH,GACT,OAAO0H,EACT,CACA,eAAW9O,GACT,MAnFW,UAoFb,CAGA,IAAA1X,GACEmb,KAAK+L,OAAOnC,GACd,CACA,eAAAoC,IAIO3mB,SAAS4mB,QAAUtR,GAAUqF,KAAK4E,WACrC5E,KAAKnb,MAET,CACA,IAAAshB,GACEnG,KAAK+L,OAAOlC,GACd,CACA,KAAAoB,GACMjL,KAAKyL,YACPrR,GAAqB4F,KAAK4E,UAE5B5E,KAAKkM,gBACP,CACA,KAAAJ,GACE9L,KAAKkM,iBACLlM,KAAKmM,kBACLnM,KAAKuL,UAAYa,aAAY,IAAMpM,KAAKgM,mBAAmBhM,KAAK6E,QAAQkG,SAC1E,CACA,iBAAAsB,GACOrM,KAAK6E,QAAQqG,OAGdlL,KAAKyL,WACPlL,GAAae,IAAItB,KAAK4E,SAAUqF,IAAY,IAAMjK,KAAK8L,UAGzD9L,KAAK8L,QACP,CACA,EAAAQ,CAAG7T,GACD,MAAM8T,EAAQvM,KAAKwM,YACnB,GAAI/T,EAAQ8T,EAAM7b,OAAS,GAAK+H,EAAQ,EACtC,OAEF,GAAIuH,KAAKyL,WAEP,YADAlL,GAAae,IAAItB,KAAK4E,SAAUqF,IAAY,IAAMjK,KAAKsM,GAAG7T,KAG5D,MAAMgU,EAAczM,KAAK0M,cAAc1M,KAAK2M,cAC5C,GAAIF,IAAgBhU,EAClB,OAEF,MAAMtC,EAAQsC,EAAQgU,EAAc7C,GAAaC,GACjD7J,KAAK+L,OAAO5V,EAAOoW,EAAM9T,GAC3B,CACA,OAAAsM,GACM/E,KAAK2L,cACP3L,KAAK2L,aAAa5G,UAEpBJ,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAEhB,OADAA,EAAO8I,gBAAkB9I,EAAOiH,SACzBjH,CACT,CACA,kBAAA+H,GACM7L,KAAK6E,QAAQmG,UACfzK,GAAac,GAAGrB,KAAK4E,SAAUsF,IAAiB9K,GAASY,KAAK6M,SAASzN,KAE9C,UAAvBY,KAAK6E,QAAQoG,QACf1K,GAAac,GAAGrB,KAAK4E,SAAUuF,IAAoB,IAAMnK,KAAKiL,UAC9D1K,GAAac,GAAGrB,KAAK4E,SAAUwF,IAAoB,IAAMpK,KAAKqM,uBAE5DrM,KAAK6E,QAAQsG,OAAS3C,GAAMC,eAC9BzI,KAAK8M,yBAET,CACA,uBAAAA,GACE,IAAK,MAAMC,KAAOlH,GAAe1T,KArIX,qBAqImC6N,KAAK4E,UAC5DrE,GAAac,GAAG0L,EAAK1C,IAAkBjL,GAASA,EAAMkD,mBAExD,MAmBM0K,EAAc,CAClB3E,aAAc,IAAMrI,KAAK+L,OAAO/L,KAAKiN,kBAAkBnD,KACvDxB,cAAe,IAAMtI,KAAK+L,OAAO/L,KAAKiN,kBAAkBlD,KACxD3B,YAtBkB,KACS,UAAvBpI,KAAK6E,QAAQoG,QAYjBjL,KAAKiL,QACDjL,KAAK0L,cACPwB,aAAalN,KAAK0L,cAEpB1L,KAAK0L,aAAe7N,YAAW,IAAMmC,KAAKqM,qBAjLjB,IAiL+DrM,KAAK6E,QAAQkG,UAAS,GAOhH/K,KAAK2L,aAAe,IAAInD,GAAMxI,KAAK4E,SAAUoI,EAC/C,CACA,QAAAH,CAASzN,GACP,GAAI,kBAAkB/b,KAAK+b,EAAM7S,OAAO0a,SACtC,OAEF,MAAM3Z,EAAYud,GAAiBzL,EAAMtiB,KACrCwQ,IACF8R,EAAMkD,iBACNtC,KAAK+L,OAAO/L,KAAKiN,kBAAkB3f,IAEvC,CACA,aAAAof,CAAcntB,GACZ,OAAOygB,KAAKwM,YAAYrnB,QAAQ5F,EAClC,CACA,0BAAA4tB,CAA2B1U,GACzB,IAAKuH,KAAK4L,mBACR,OAEF,MAAMwB,EAAkBvH,GAAeC,QAAQ4E,GAAiB1K,KAAK4L,oBACrEwB,EAAgB/R,UAAU1B,OAAO8Q,IACjC2C,EAAgBjsB,gBAAgB,gBAChC,MAAMksB,EAAqBxH,GAAeC,QAAQ,sBAAsBrN,MAAWuH,KAAK4L,oBACpFyB,IACFA,EAAmBhS,UAAU5E,IAAIgU,IACjC4C,EAAmBjsB,aAAa,eAAgB,QAEpD,CACA,eAAA+qB,GACE,MAAM5sB,EAAUygB,KAAKwL,gBAAkBxL,KAAK2M,aAC5C,IAAKptB,EACH,OAEF,MAAM+tB,EAAkB/P,OAAOgQ,SAAShuB,EAAQic,aAAa,oBAAqB,IAClFwE,KAAK6E,QAAQkG,SAAWuC,GAAmBtN,KAAK6E,QAAQ+H,eAC1D,CACA,MAAAb,CAAO5V,EAAO5W,EAAU,MACtB,GAAIygB,KAAKyL,WACP,OAEF,MAAM1N,EAAgBiC,KAAK2M,aACrBa,EAASrX,IAAUyT,GACnB6D,EAAcluB,GAAWue,GAAqBkC,KAAKwM,YAAazO,EAAeyP,EAAQxN,KAAK6E,QAAQuG,MAC1G,GAAIqC,IAAgB1P,EAClB,OAEF,MAAM2P,EAAmB1N,KAAK0M,cAAce,GACtCE,EAAenI,GACZjF,GAAaqB,QAAQ5B,KAAK4E,SAAUY,EAAW,CACpD1F,cAAe2N,EACfngB,UAAW0S,KAAK4N,kBAAkBzX,GAClCuD,KAAMsG,KAAK0M,cAAc3O,GACzBuO,GAAIoB,IAIR,GADmBC,EAAa3D,IACjBhI,iBACb,OAEF,IAAKjE,IAAkB0P,EAGrB,OAEF,MAAMI,EAAY/M,QAAQd,KAAKuL,WAC/BvL,KAAKiL,QACLjL,KAAKyL,YAAa,EAClBzL,KAAKmN,2BAA2BO,GAChC1N,KAAKwL,eAAiBiC,EACtB,MAAMK,EAAuBN,EA3OR,sBADF,oBA6ObO,EAAiBP,EA3OH,qBACA,qBA2OpBC,EAAYpS,UAAU5E,IAAIsX,GAC1BlS,GAAO4R,GACP1P,EAAc1C,UAAU5E,IAAIqX,GAC5BL,EAAYpS,UAAU5E,IAAIqX,GAQ1B9N,KAAKmF,gBAPoB,KACvBsI,EAAYpS,UAAU1B,OAAOmU,EAAsBC,GACnDN,EAAYpS,UAAU5E,IAAIgU,IAC1B1M,EAAc1C,UAAU1B,OAAO8Q,GAAqBsD,EAAgBD,GACpE9N,KAAKyL,YAAa,EAClBkC,EAAa1D,GAAW,GAEYlM,EAAeiC,KAAKgO,eACtDH,GACF7N,KAAK8L,OAET,CACA,WAAAkC,GACE,OAAOhO,KAAK4E,SAASvJ,UAAU7W,SAhQV,QAiQvB,CACA,UAAAmoB,GACE,OAAO9G,GAAeC,QAAQ8E,GAAsB5K,KAAK4E,SAC3D,CACA,SAAA4H,GACE,OAAO3G,GAAe1T,KAAKwY,GAAe3K,KAAK4E,SACjD,CACA,cAAAsH,GACMlM,KAAKuL,YACP0C,cAAcjO,KAAKuL,WACnBvL,KAAKuL,UAAY,KAErB,CACA,iBAAA0B,CAAkB3f,GAChB,OAAI2O,KACK3O,IAAcwc,GAAiBD,GAAaD,GAE9Ctc,IAAcwc,GAAiBF,GAAaC,EACrD,CACA,iBAAA+D,CAAkBzX,GAChB,OAAI8F,KACK9F,IAAU0T,GAAaC,GAAiBC,GAE1C5T,IAAU0T,GAAaE,GAAkBD,EAClD,CAGA,sBAAOrN,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOihB,GAAShG,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,GAIX,GAAsB,iBAAXA,EAAqB,CAC9B,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,OAREzZ,EAAKiiB,GAAGxI,EASZ,GACF,EAOFvD,GAAac,GAAGhc,SAAUklB,GAvSE,uCAuS2C,SAAUnL,GAC/E,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MACrD,IAAKzT,IAAWA,EAAO8O,UAAU7W,SAASgmB,IACxC,OAEFpL,EAAMkD,iBACN,MAAM4L,EAAW5C,GAAShG,oBAAoB/Y,GACxC4hB,EAAanO,KAAKxE,aAAa,oBACrC,OAAI2S,GACFD,EAAS5B,GAAG6B,QACZD,EAAS7B,qBAGyC,SAAhDrJ,GAAYQ,iBAAiBxD,KAAM,UACrCkO,EAASrpB,YACTqpB,EAAS7B,sBAGX6B,EAAS/H,YACT+H,EAAS7B,oBACX,IACA9L,GAAac,GAAGzhB,OAAQ0qB,IAAuB,KAC7C,MAAM8D,EAAYvI,GAAe1T,KA5TR,6BA6TzB,IAAK,MAAM+b,KAAYE,EACrB9C,GAAShG,oBAAoB4I,EAC/B,IAOF/R,GAAmBmP,IAcnB,MAEM+C,GAAc,eAEdC,GAAe,OAAOD,KACtBE,GAAgB,QAAQF,KACxBG,GAAe,OAAOH,KACtBI,GAAiB,SAASJ,KAC1BK,GAAyB,QAAQL,cACjCM,GAAoB,OACpBC,GAAsB,WACtBC,GAAwB,aAExBC,GAA6B,WAAWF,OAAwBA,KAKhEG,GAAyB,8BACzBC,GAAY,CAChBvqB,OAAQ,KACRkjB,QAAQ,GAEJsH,GAAgB,CACpBxqB,OAAQ,iBACRkjB,OAAQ,WAOV,MAAMuH,WAAiBxK,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKmP,kBAAmB,EACxBnP,KAAKoP,cAAgB,GACrB,MAAMC,EAAaxJ,GAAe1T,KAAK4c,IACvC,IAAK,MAAMO,KAAQD,EAAY,CAC7B,MAAMtV,EAAW8L,GAAea,uBAAuB4I,GACjDC,EAAgB1J,GAAe1T,KAAK4H,GAAU5T,QAAOqpB,GAAgBA,IAAiBxP,KAAK4E,WAChF,OAAb7K,GAAqBwV,EAAc7e,QACrCsP,KAAKoP,cAAcxd,KAAK0d,EAE5B,CACAtP,KAAKyP,sBACAzP,KAAK6E,QAAQpgB,QAChBub,KAAK0P,0BAA0B1P,KAAKoP,cAAepP,KAAK2P,YAEtD3P,KAAK6E,QAAQ8C,QACf3H,KAAK2H,QAET,CAGA,kBAAWjE,GACT,OAAOsL,EACT,CACA,sBAAWrL,GACT,OAAOsL,EACT,CACA,eAAW1S,GACT,MA9DW,UA+Db,CAGA,MAAAoL,GACM3H,KAAK2P,WACP3P,KAAK4P,OAEL5P,KAAK6P,MAET,CACA,IAAAA,GACE,GAAI7P,KAAKmP,kBAAoBnP,KAAK2P,WAChC,OAEF,IAAIG,EAAiB,GAQrB,GALI9P,KAAK6E,QAAQpgB,SACfqrB,EAAiB9P,KAAK+P,uBAhEH,wCAgE4C5pB,QAAO5G,GAAWA,IAAYygB,KAAK4E,WAAU9hB,KAAIvD,GAAW2vB,GAAS5J,oBAAoB/lB,EAAS,CAC/JooB,QAAQ,OAGRmI,EAAepf,QAAUof,EAAe,GAAGX,iBAC7C,OAGF,GADmB5O,GAAaqB,QAAQ5B,KAAK4E,SAAU0J,IACxCtM,iBACb,OAEF,IAAK,MAAMgO,KAAkBF,EAC3BE,EAAeJ,OAEjB,MAAMK,EAAYjQ,KAAKkQ,gBACvBlQ,KAAK4E,SAASvJ,UAAU1B,OAAOiV,IAC/B5O,KAAK4E,SAASvJ,UAAU5E,IAAIoY,IAC5B7O,KAAK4E,SAAS7jB,MAAMkvB,GAAa,EACjCjQ,KAAK0P,0BAA0B1P,KAAKoP,eAAe,GACnDpP,KAAKmP,kBAAmB,EACxB,MAQMgB,EAAa,SADUF,EAAU,GAAGxL,cAAgBwL,EAAU7d,MAAM,KAE1E4N,KAAKmF,gBATY,KACfnF,KAAKmP,kBAAmB,EACxBnP,KAAK4E,SAASvJ,UAAU1B,OAAOkV,IAC/B7O,KAAK4E,SAASvJ,UAAU5E,IAAImY,GAAqBD,IACjD3O,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GACjC1P,GAAaqB,QAAQ5B,KAAK4E,SAAU2J,GAAc,GAItBvO,KAAK4E,UAAU,GAC7C5E,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GAAGjQ,KAAK4E,SAASuL,MACpD,CACA,IAAAP,GACE,GAAI5P,KAAKmP,mBAAqBnP,KAAK2P,WACjC,OAGF,GADmBpP,GAAaqB,QAAQ5B,KAAK4E,SAAU4J,IACxCxM,iBACb,OAEF,MAAMiO,EAAYjQ,KAAKkQ,gBACvBlQ,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GAAGjQ,KAAK4E,SAASthB,wBAAwB2sB,OAC1EpU,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIoY,IAC5B7O,KAAK4E,SAASvJ,UAAU1B,OAAOiV,GAAqBD,IACpD,IAAK,MAAM/M,KAAW5B,KAAKoP,cAAe,CACxC,MAAM7vB,EAAUsmB,GAAec,uBAAuB/E,GAClDriB,IAAYygB,KAAK2P,SAASpwB,IAC5BygB,KAAK0P,0BAA0B,CAAC9N,IAAU,EAE9C,CACA5B,KAAKmP,kBAAmB,EAOxBnP,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GACjCjQ,KAAKmF,gBAPY,KACfnF,KAAKmP,kBAAmB,EACxBnP,KAAK4E,SAASvJ,UAAU1B,OAAOkV,IAC/B7O,KAAK4E,SAASvJ,UAAU5E,IAAImY,IAC5BrO,GAAaqB,QAAQ5B,KAAK4E,SAAU6J,GAAe,GAGvBzO,KAAK4E,UAAU,EAC/C,CACA,QAAA+K,CAASpwB,EAAUygB,KAAK4E,UACtB,OAAOrlB,EAAQ8b,UAAU7W,SAASmqB,GACpC,CAGA,iBAAA3K,CAAkBF,GAGhB,OAFAA,EAAO6D,OAAS7G,QAAQgD,EAAO6D,QAC/B7D,EAAOrf,OAASiW,GAAWoJ,EAAOrf,QAC3Bqf,CACT,CACA,aAAAoM,GACE,OAAOlQ,KAAK4E,SAASvJ,UAAU7W,SA3IL,uBAChB,QACC,QA0Ib,CACA,mBAAAirB,GACE,IAAKzP,KAAK6E,QAAQpgB,OAChB,OAEF,MAAMshB,EAAW/F,KAAK+P,uBAAuBhB,IAC7C,IAAK,MAAMxvB,KAAWwmB,EAAU,CAC9B,MAAMqK,EAAWvK,GAAec,uBAAuBpnB,GACnD6wB,GACFpQ,KAAK0P,0BAA0B,CAACnwB,GAAUygB,KAAK2P,SAASS,GAE5D,CACF,CACA,sBAAAL,CAAuBhW,GACrB,MAAMgM,EAAWF,GAAe1T,KAAK2c,GAA4B9O,KAAK6E,QAAQpgB,QAE9E,OAAOohB,GAAe1T,KAAK4H,EAAUiG,KAAK6E,QAAQpgB,QAAQ0B,QAAO5G,IAAYwmB,EAAS3E,SAAS7hB,IACjG,CACA,yBAAAmwB,CAA0BW,EAAcC,GACtC,GAAKD,EAAa3f,OAGlB,IAAK,MAAMnR,KAAW8wB,EACpB9wB,EAAQ8b,UAAUsM,OArKK,aAqKyB2I,GAChD/wB,EAAQ6B,aAAa,gBAAiBkvB,EAE1C,CAGA,sBAAO7T,CAAgBqH,GACrB,MAAMe,EAAU,CAAC,EAIjB,MAHsB,iBAAXf,GAAuB,YAAYzgB,KAAKygB,KACjDe,EAAQ8C,QAAS,GAEZ3H,KAAKwH,MAAK,WACf,MAAMnd,EAAO6kB,GAAS5J,oBAAoBtF,KAAM6E,GAChD,GAAsB,iBAAXf,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,CACF,GACF,EAOFvD,GAAac,GAAGhc,SAAUqpB,GAAwBK,IAAwB,SAAU3P,IAErD,MAAzBA,EAAM7S,OAAO0a,SAAmB7H,EAAMW,gBAAmD,MAAjCX,EAAMW,eAAekH,UAC/E7H,EAAMkD,iBAER,IAAK,MAAM/iB,KAAWsmB,GAAee,gCAAgC5G,MACnEkP,GAAS5J,oBAAoB/lB,EAAS,CACpCooB,QAAQ,IACPA,QAEP,IAMAxL,GAAmB+S,IAcnB,MAAMqB,GAAS,WAETC,GAAc,eACdC,GAAiB,YAGjBC,GAAiB,UACjBC,GAAmB,YAGnBC,GAAe,OAAOJ,KACtBK,GAAiB,SAASL,KAC1BM,GAAe,OAAON,KACtBO,GAAgB,QAAQP,KACxBQ,GAAyB,QAAQR,KAAcC,KAC/CQ,GAAyB,UAAUT,KAAcC,KACjDS,GAAuB,QAAQV,KAAcC,KAC7CU,GAAoB,OAMpBC,GAAyB,4DACzBC,GAA6B,GAAGD,MAA0BD,KAC1DG,GAAgB,iBAIhBC,GAAgBtV,KAAU,UAAY,YACtCuV,GAAmBvV,KAAU,YAAc,UAC3CwV,GAAmBxV,KAAU,aAAe,eAC5CyV,GAAsBzV,KAAU,eAAiB,aACjD0V,GAAkB1V,KAAU,aAAe,cAC3C2V,GAAiB3V,KAAU,cAAgB,aAG3C4V,GAAY,CAChBC,WAAW,EACX7jB,SAAU,kBACV8jB,QAAS,UACT/pB,OAAQ,CAAC,EAAG,GACZgqB,aAAc,KACd1zB,UAAW,UAEP2zB,GAAgB,CACpBH,UAAW,mBACX7jB,SAAU,mBACV8jB,QAAS,SACT/pB,OAAQ,0BACRgqB,aAAc,yBACd1zB,UAAW,2BAOb,MAAM4zB,WAAiBxN,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKmS,QAAU,KACfnS,KAAKoS,QAAUpS,KAAK4E,SAAS7f,WAE7Bib,KAAKqS,MAAQxM,GAAehhB,KAAKmb,KAAK4E,SAAU0M,IAAe,IAAMzL,GAAeM,KAAKnG,KAAK4E,SAAU0M,IAAe,IAAMzL,GAAeC,QAAQwL,GAAetR,KAAKoS,SACxKpS,KAAKsS,UAAYtS,KAAKuS,eACxB,CAGA,kBAAW7O,GACT,OAAOmO,EACT,CACA,sBAAWlO,GACT,OAAOsO,EACT,CACA,eAAW1V,GACT,OAAOgU,EACT,CAGA,MAAA5I,GACE,OAAO3H,KAAK2P,WAAa3P,KAAK4P,OAAS5P,KAAK6P,MAC9C,CACA,IAAAA,GACE,GAAI3U,GAAW8E,KAAK4E,WAAa5E,KAAK2P,WACpC,OAEF,MAAM7P,EAAgB,CACpBA,cAAeE,KAAK4E,UAGtB,IADkBrE,GAAaqB,QAAQ5B,KAAK4E,SAAUkM,GAAchR,GACtDkC,iBAAd,CASA,GANAhC,KAAKwS,gBAMD,iBAAkBntB,SAASC,kBAAoB0a,KAAKoS,QAAQpX,QAzExC,eA0EtB,IAAK,MAAMzb,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAac,GAAG9hB,EAAS,YAAaqc,IAG1CoE,KAAK4E,SAAS6N,QACdzS,KAAK4E,SAASxjB,aAAa,iBAAiB,GAC5C4e,KAAKqS,MAAMhX,UAAU5E,IAAI0a,IACzBnR,KAAK4E,SAASvJ,UAAU5E,IAAI0a,IAC5B5Q,GAAaqB,QAAQ5B,KAAK4E,SAAUmM,GAAejR,EAhBnD,CAiBF,CACA,IAAA8P,GACE,GAAI1U,GAAW8E,KAAK4E,YAAc5E,KAAK2P,WACrC,OAEF,MAAM7P,EAAgB,CACpBA,cAAeE,KAAK4E,UAEtB5E,KAAK0S,cAAc5S,EACrB,CACA,OAAAiF,GACM/E,KAAKmS,SACPnS,KAAKmS,QAAQnZ,UAEf2L,MAAMI,SACR,CACA,MAAAha,GACEiV,KAAKsS,UAAYtS,KAAKuS,gBAClBvS,KAAKmS,SACPnS,KAAKmS,QAAQpnB,QAEjB,CAGA,aAAA2nB,CAAc5S,GAEZ,IADkBS,GAAaqB,QAAQ5B,KAAK4E,SAAUgM,GAAc9Q,GACtDkC,iBAAd,CAMA,GAAI,iBAAkB3c,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAGvCoE,KAAKmS,SACPnS,KAAKmS,QAAQnZ,UAEfgH,KAAKqS,MAAMhX,UAAU1B,OAAOwX,IAC5BnR,KAAK4E,SAASvJ,UAAU1B,OAAOwX,IAC/BnR,KAAK4E,SAASxjB,aAAa,gBAAiB,SAC5C4hB,GAAYE,oBAAoBlD,KAAKqS,MAAO,UAC5C9R,GAAaqB,QAAQ5B,KAAK4E,SAAUiM,GAAgB/Q,EAhBpD,CAiBF,CACA,UAAA+D,CAAWC,GAET,GAAgC,iBADhCA,EAASa,MAAMd,WAAWC,IACRxlB,YAA2B,GAAUwlB,EAAOxlB,YAAgE,mBAA3CwlB,EAAOxlB,UAAUgF,sBAElG,MAAM,IAAIkhB,UAAU,GAAG+L,GAAO9L,+GAEhC,OAAOX,CACT,CACA,aAAA0O,GACE,QAAsB,IAAX,EACT,MAAM,IAAIhO,UAAU,gEAEtB,IAAImO,EAAmB3S,KAAK4E,SACG,WAA3B5E,KAAK6E,QAAQvmB,UACfq0B,EAAmB3S,KAAKoS,QACf,GAAUpS,KAAK6E,QAAQvmB,WAChCq0B,EAAmBjY,GAAWsF,KAAK6E,QAAQvmB,WACA,iBAA3B0hB,KAAK6E,QAAQvmB,YAC7Bq0B,EAAmB3S,KAAK6E,QAAQvmB,WAElC,MAAM0zB,EAAehS,KAAK4S,mBAC1B5S,KAAKmS,QAAU,GAAoBQ,EAAkB3S,KAAKqS,MAAOL,EACnE,CACA,QAAArC,GACE,OAAO3P,KAAKqS,MAAMhX,UAAU7W,SAAS2sB,GACvC,CACA,aAAA0B,GACE,MAAMC,EAAiB9S,KAAKoS,QAC5B,GAAIU,EAAezX,UAAU7W,SArKN,WAsKrB,OAAOmtB,GAET,GAAImB,EAAezX,UAAU7W,SAvKJ,aAwKvB,OAAOotB,GAET,GAAIkB,EAAezX,UAAU7W,SAzKA,iBA0K3B,MA5JsB,MA8JxB,GAAIsuB,EAAezX,UAAU7W,SA3KE,mBA4K7B,MA9JyB,SAkK3B,MAAMuuB,EAAkF,QAA1E9tB,iBAAiB+a,KAAKqS,OAAOvX,iBAAiB,iBAAiB6K,OAC7E,OAAImN,EAAezX,UAAU7W,SArLP,UAsLbuuB,EAAQvB,GAAmBD,GAE7BwB,EAAQrB,GAAsBD,EACvC,CACA,aAAAc,GACE,OAAkD,OAA3CvS,KAAK4E,SAAS5J,QAnLD,UAoLtB,CACA,UAAAgY,GACE,MAAM,OACJhrB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAOgQ,SAAS5vB,EAAO,MAEzC,mBAAXqK,EACFirB,GAAcjrB,EAAOirB,EAAYjT,KAAK4E,UAExC5c,CACT,CACA,gBAAA4qB,GACE,MAAMM,EAAwB,CAC5Bx0B,UAAWshB,KAAK6S,gBAChBzc,UAAW,CAAC,CACV9V,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAKgT,iBAanB,OAPIhT,KAAKsS,WAAsC,WAAzBtS,KAAK6E,QAAQkN,WACjC/O,GAAYC,iBAAiBjD,KAAKqS,MAAO,SAAU,UACnDa,EAAsB9c,UAAY,CAAC,CACjC9V,KAAM,cACNC,SAAS,KAGN,IACF2yB,KACArW,GAAQmD,KAAK6E,QAAQmN,aAAc,CAACkB,IAE3C,CACA,eAAAC,EAAgB,IACdr2B,EAAG,OACHyP,IAEA,MAAMggB,EAAQ1G,GAAe1T,KAhOF,8DAgO+B6N,KAAKqS,OAAOlsB,QAAO5G,GAAWob,GAAUpb,KAC7FgtB,EAAM7b,QAMXoN,GAAqByO,EAAOhgB,EAAQzP,IAAQ6zB,IAAmBpE,EAAMnL,SAAS7U,IAASkmB,OACzF,CAGA,sBAAOhW,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO6nB,GAAS5M,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,CACA,iBAAOsP,CAAWhU,GAChB,GA5QuB,IA4QnBA,EAAMwI,QAAgD,UAAfxI,EAAMqB,MA/QnC,QA+QuDrB,EAAMtiB,IACzE,OAEF,MAAMu2B,EAAcxN,GAAe1T,KAAKkf,IACxC,IAAK,MAAM1J,KAAU0L,EAAa,CAChC,MAAMC,EAAUpB,GAAS7M,YAAYsC,GACrC,IAAK2L,IAAyC,IAA9BA,EAAQzO,QAAQiN,UAC9B,SAEF,MAAMyB,EAAenU,EAAMmU,eACrBC,EAAeD,EAAanS,SAASkS,EAAQjB,OACnD,GAAIkB,EAAanS,SAASkS,EAAQ1O,WAA2C,WAA9B0O,EAAQzO,QAAQiN,YAA2B0B,GAA8C,YAA9BF,EAAQzO,QAAQiN,WAA2B0B,EACnJ,SAIF,GAAIF,EAAQjB,MAAM7tB,SAAS4a,EAAM7S,UAA2B,UAAf6S,EAAMqB,MA/RvC,QA+R2DrB,EAAMtiB,KAAqB,qCAAqCuG,KAAK+b,EAAM7S,OAAO0a,UACvJ,SAEF,MAAMnH,EAAgB,CACpBA,cAAewT,EAAQ1O,UAEN,UAAfxF,EAAMqB,OACRX,EAAckH,WAAa5H,GAE7BkU,EAAQZ,cAAc5S,EACxB,CACF,CACA,4BAAO2T,CAAsBrU,GAI3B,MAAMsU,EAAU,kBAAkBrwB,KAAK+b,EAAM7S,OAAO0a,SAC9C0M,EAjTW,WAiTKvU,EAAMtiB,IACtB82B,EAAkB,CAAClD,GAAgBC,IAAkBvP,SAAShC,EAAMtiB,KAC1E,IAAK82B,IAAoBD,EACvB,OAEF,GAAID,IAAYC,EACd,OAEFvU,EAAMkD,iBAGN,MAAMuR,EAAkB7T,KAAKgG,QAAQoL,IAA0BpR,KAAO6F,GAAeM,KAAKnG,KAAMoR,IAAwB,IAAMvL,GAAehhB,KAAKmb,KAAMoR,IAAwB,IAAMvL,GAAeC,QAAQsL,GAAwBhS,EAAMW,eAAehb,YACpPwF,EAAW2nB,GAAS5M,oBAAoBuO,GAC9C,GAAID,EAIF,OAHAxU,EAAM0U,kBACNvpB,EAASslB,YACTtlB,EAAS4oB,gBAAgB/T,GAGvB7U,EAASolB,aAEXvQ,EAAM0U,kBACNvpB,EAASqlB,OACTiE,EAAgBpB,QAEpB,EAOFlS,GAAac,GAAGhc,SAAU4rB,GAAwBG,GAAwBc,GAASuB,uBACnFlT,GAAac,GAAGhc,SAAU4rB,GAAwBK,GAAeY,GAASuB,uBAC1ElT,GAAac,GAAGhc,SAAU2rB,GAAwBkB,GAASkB,YAC3D7S,GAAac,GAAGhc,SAAU6rB,GAAsBgB,GAASkB,YACzD7S,GAAac,GAAGhc,SAAU2rB,GAAwBI,IAAwB,SAAUhS,GAClFA,EAAMkD,iBACN4P,GAAS5M,oBAAoBtF,MAAM2H,QACrC,IAMAxL,GAAmB+V,IAcnB,MAAM6B,GAAS,WAETC,GAAoB,OACpBC,GAAkB,gBAAgBF,KAClCG,GAAY,CAChBC,UAAW,iBACXC,cAAe,KACfhP,YAAY,EACZzK,WAAW,EAEX0Z,YAAa,QAETC,GAAgB,CACpBH,UAAW,SACXC,cAAe,kBACfhP,WAAY,UACZzK,UAAW,UACX0Z,YAAa,oBAOf,MAAME,WAAiB9Q,GACrB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKwU,aAAc,EACnBxU,KAAK4E,SAAW,IAClB,CAGA,kBAAWlB,GACT,OAAOwQ,EACT,CACA,sBAAWvQ,GACT,OAAO2Q,EACT,CACA,eAAW/X,GACT,OAAOwX,EACT,CAGA,IAAAlE,CAAKxT,GACH,IAAK2D,KAAK6E,QAAQlK,UAEhB,YADAkC,GAAQR,GAGV2D,KAAKyU,UACL,MAAMl1B,EAAUygB,KAAK0U,cACjB1U,KAAK6E,QAAQO,YACfvJ,GAAOtc,GAETA,EAAQ8b,UAAU5E,IAAIud,IACtBhU,KAAK2U,mBAAkB,KACrB9X,GAAQR,EAAS,GAErB,CACA,IAAAuT,CAAKvT,GACE2D,KAAK6E,QAAQlK,WAIlBqF,KAAK0U,cAAcrZ,UAAU1B,OAAOqa,IACpChU,KAAK2U,mBAAkB,KACrB3U,KAAK+E,UACLlI,GAAQR,EAAS,KANjBQ,GAAQR,EAQZ,CACA,OAAA0I,GACO/E,KAAKwU,cAGVjU,GAAaC,IAAIR,KAAK4E,SAAUqP,IAChCjU,KAAK4E,SAASjL,SACdqG,KAAKwU,aAAc,EACrB,CAGA,WAAAE,GACE,IAAK1U,KAAK4E,SAAU,CAClB,MAAMgQ,EAAWvvB,SAASwvB,cAAc,OACxCD,EAAST,UAAYnU,KAAK6E,QAAQsP,UAC9BnU,KAAK6E,QAAQO,YACfwP,EAASvZ,UAAU5E,IApFD,QAsFpBuJ,KAAK4E,SAAWgQ,CAClB,CACA,OAAO5U,KAAK4E,QACd,CACA,iBAAAZ,CAAkBF,GAGhB,OADAA,EAAOuQ,YAAc3Z,GAAWoJ,EAAOuQ,aAChCvQ,CACT,CACA,OAAA2Q,GACE,GAAIzU,KAAKwU,YACP,OAEF,MAAMj1B,EAAUygB,KAAK0U,cACrB1U,KAAK6E,QAAQwP,YAAYS,OAAOv1B,GAChCghB,GAAac,GAAG9hB,EAAS00B,IAAiB,KACxCpX,GAAQmD,KAAK6E,QAAQuP,cAAc,IAErCpU,KAAKwU,aAAc,CACrB,CACA,iBAAAG,CAAkBtY,GAChBW,GAAuBX,EAAU2D,KAAK0U,cAAe1U,KAAK6E,QAAQO,WACpE,EAeF,MAEM2P,GAAc,gBACdC,GAAkB,UAAUD,KAC5BE,GAAoB,cAAcF,KAGlCG,GAAmB,WACnBC,GAAY,CAChBC,WAAW,EACXC,YAAa,MAETC,GAAgB,CACpBF,UAAW,UACXC,YAAa,WAOf,MAAME,WAAkB9R,GACtB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKwV,WAAY,EACjBxV,KAAKyV,qBAAuB,IAC9B,CAGA,kBAAW/R,GACT,OAAOyR,EACT,CACA,sBAAWxR,GACT,OAAO2R,EACT,CACA,eAAW/Y,GACT,MArCW,WAsCb,CAGA,QAAAmZ,GACM1V,KAAKwV,YAGLxV,KAAK6E,QAAQuQ,WACfpV,KAAK6E,QAAQwQ,YAAY5C,QAE3BlS,GAAaC,IAAInb,SAAU0vB,IAC3BxU,GAAac,GAAGhc,SAAU2vB,IAAiB5V,GAASY,KAAK2V,eAAevW,KACxEmB,GAAac,GAAGhc,SAAU4vB,IAAmB7V,GAASY,KAAK4V,eAAexW,KAC1EY,KAAKwV,WAAY,EACnB,CACA,UAAAK,GACO7V,KAAKwV,YAGVxV,KAAKwV,WAAY,EACjBjV,GAAaC,IAAInb,SAAU0vB,IAC7B,CAGA,cAAAY,CAAevW,GACb,MAAM,YACJiW,GACErV,KAAK6E,QACT,GAAIzF,EAAM7S,SAAWlH,UAAY+Z,EAAM7S,SAAW8oB,GAAeA,EAAY7wB,SAAS4a,EAAM7S,QAC1F,OAEF,MAAM1L,EAAWglB,GAAeU,kBAAkB8O,GAC1B,IAApBx0B,EAAS6P,OACX2kB,EAAY5C,QACHzS,KAAKyV,uBAAyBP,GACvCr0B,EAASA,EAAS6P,OAAS,GAAG+hB,QAE9B5xB,EAAS,GAAG4xB,OAEhB,CACA,cAAAmD,CAAexW,GAzED,QA0ERA,EAAMtiB,MAGVkjB,KAAKyV,qBAAuBrW,EAAM0W,SAAWZ,GA5EzB,UA6EtB,EAeF,MAAMa,GAAyB,oDACzBC,GAA0B,cAC1BC,GAAmB,gBACnBC,GAAkB,eAMxB,MAAMC,GACJ,WAAAhS,GACEnE,KAAK4E,SAAWvf,SAAS6G,IAC3B,CAGA,QAAAkqB,GAEE,MAAMC,EAAgBhxB,SAASC,gBAAgBuC,YAC/C,OAAO1F,KAAKoC,IAAI3E,OAAO02B,WAAaD,EACtC,CACA,IAAAzG,GACE,MAAM/rB,EAAQmc,KAAKoW,WACnBpW,KAAKuW,mBAELvW,KAAKwW,sBAAsBxW,KAAK4E,SAAUqR,IAAkBQ,GAAmBA,EAAkB5yB,IAEjGmc,KAAKwW,sBAAsBT,GAAwBE,IAAkBQ,GAAmBA,EAAkB5yB,IAC1Gmc,KAAKwW,sBAAsBR,GAAyBE,IAAiBO,GAAmBA,EAAkB5yB,GAC5G,CACA,KAAAwO,GACE2N,KAAK0W,wBAAwB1W,KAAK4E,SAAU,YAC5C5E,KAAK0W,wBAAwB1W,KAAK4E,SAAUqR,IAC5CjW,KAAK0W,wBAAwBX,GAAwBE,IACrDjW,KAAK0W,wBAAwBV,GAAyBE,GACxD,CACA,aAAAS,GACE,OAAO3W,KAAKoW,WAAa,CAC3B,CAGA,gBAAAG,GACEvW,KAAK4W,sBAAsB5W,KAAK4E,SAAU,YAC1C5E,KAAK4E,SAAS7jB,MAAM+K,SAAW,QACjC,CACA,qBAAA0qB,CAAsBzc,EAAU8c,EAAexa,GAC7C,MAAMya,EAAiB9W,KAAKoW,WAS5BpW,KAAK+W,2BAA2Bhd,GARHxa,IAC3B,GAAIA,IAAYygB,KAAK4E,UAAYhlB,OAAO02B,WAAa/2B,EAAQsI,YAAcivB,EACzE,OAEF9W,KAAK4W,sBAAsBr3B,EAASs3B,GACpC,MAAMJ,EAAkB72B,OAAOqF,iBAAiB1F,GAASub,iBAAiB+b,GAC1Et3B,EAAQwB,MAAMi2B,YAAYH,EAAe,GAAGxa,EAASkB,OAAOC,WAAWiZ,QAAsB,GAGjG,CACA,qBAAAG,CAAsBr3B,EAASs3B,GAC7B,MAAMI,EAAc13B,EAAQwB,MAAM+Z,iBAAiB+b,GAC/CI,GACFjU,GAAYC,iBAAiB1jB,EAASs3B,EAAeI,EAEzD,CACA,uBAAAP,CAAwB3c,EAAU8c,GAWhC7W,KAAK+W,2BAA2Bhd,GAVHxa,IAC3B,MAAM5B,EAAQqlB,GAAYQ,iBAAiBjkB,EAASs3B,GAEtC,OAAVl5B,GAIJqlB,GAAYE,oBAAoB3jB,EAASs3B,GACzCt3B,EAAQwB,MAAMi2B,YAAYH,EAAel5B,IAJvC4B,EAAQwB,MAAMm2B,eAAeL,EAIgB,GAGnD,CACA,0BAAAE,CAA2Bhd,EAAUod,GACnC,GAAI,GAAUpd,GACZod,EAASpd,QAGX,IAAK,MAAM6L,KAAOC,GAAe1T,KAAK4H,EAAUiG,KAAK4E,UACnDuS,EAASvR,EAEb,EAeF,MAEMwR,GAAc,YAGdC,GAAe,OAAOD,KACtBE,GAAyB,gBAAgBF,KACzCG,GAAiB,SAASH,KAC1BI,GAAe,OAAOJ,KACtBK,GAAgB,QAAQL,KACxBM,GAAiB,SAASN,KAC1BO,GAAsB,gBAAgBP,KACtCQ,GAA0B,oBAAoBR,KAC9CS,GAA0B,kBAAkBT,KAC5CU,GAAyB,QAAQV,cACjCW,GAAkB,aAElBC,GAAoB,OACpBC,GAAoB,eAKpBC,GAAY,CAChBtD,UAAU,EACVnC,OAAO,EACPzH,UAAU,GAENmN,GAAgB,CACpBvD,SAAU,mBACVnC,MAAO,UACPzH,SAAU,WAOZ,MAAMoN,WAAc1T,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKqY,QAAUxS,GAAeC,QArBV,gBAqBmC9F,KAAK4E,UAC5D5E,KAAKsY,UAAYtY,KAAKuY,sBACtBvY,KAAKwY,WAAaxY,KAAKyY,uBACvBzY,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAK0Y,WAAa,IAAIvC,GACtBnW,KAAK6L,oBACP,CAGA,kBAAWnI,GACT,OAAOwU,EACT,CACA,sBAAWvU,GACT,OAAOwU,EACT,CACA,eAAW5b,GACT,MA1DW,OA2Db,CAGA,MAAAoL,CAAO7H,GACL,OAAOE,KAAK2P,SAAW3P,KAAK4P,OAAS5P,KAAK6P,KAAK/P,EACjD,CACA,IAAA+P,CAAK/P,GACCE,KAAK2P,UAAY3P,KAAKmP,kBAGR5O,GAAaqB,QAAQ5B,KAAK4E,SAAU4S,GAAc,CAClE1X,kBAEYkC,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAK0Y,WAAW9I,OAChBvqB,SAAS6G,KAAKmP,UAAU5E,IAAIshB,IAC5B/X,KAAK2Y,gBACL3Y,KAAKsY,UAAUzI,MAAK,IAAM7P,KAAK4Y,aAAa9Y,KAC9C,CACA,IAAA8P,GACO5P,KAAK2P,WAAY3P,KAAKmP,mBAGT5O,GAAaqB,QAAQ5B,KAAK4E,SAAUyS,IACxCrV,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAKwY,WAAW3C,aAChB7V,KAAK4E,SAASvJ,UAAU1B,OAAOqe,IAC/BhY,KAAKmF,gBAAe,IAAMnF,KAAK6Y,cAAc7Y,KAAK4E,SAAU5E,KAAKgO,gBACnE,CACA,OAAAjJ,GACExE,GAAaC,IAAI5gB,OAAQw3B,IACzB7W,GAAaC,IAAIR,KAAKqY,QAASjB,IAC/BpX,KAAKsY,UAAUvT,UACf/E,KAAKwY,WAAW3C,aAChBlR,MAAMI,SACR,CACA,YAAA+T,GACE9Y,KAAK2Y,eACP,CAGA,mBAAAJ,GACE,OAAO,IAAIhE,GAAS,CAClB5Z,UAAWmG,QAAQd,KAAK6E,QAAQ+P,UAEhCxP,WAAYpF,KAAKgO,eAErB,CACA,oBAAAyK,GACE,OAAO,IAAIlD,GAAU,CACnBF,YAAarV,KAAK4E,UAEtB,CACA,YAAAgU,CAAa9Y,GAENza,SAAS6G,KAAK1H,SAASwb,KAAK4E,WAC/Bvf,SAAS6G,KAAK4oB,OAAO9U,KAAK4E,UAE5B5E,KAAK4E,SAAS7jB,MAAMgxB,QAAU,QAC9B/R,KAAK4E,SAASzjB,gBAAgB,eAC9B6e,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASnZ,UAAY,EAC1B,MAAMstB,EAAYlT,GAAeC,QA7GT,cA6GsC9F,KAAKqY,SAC/DU,IACFA,EAAUttB,UAAY,GAExBoQ,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIuhB,IAU5BhY,KAAKmF,gBATsB,KACrBnF,KAAK6E,QAAQ4N,OACfzS,KAAKwY,WAAW9C,WAElB1V,KAAKmP,kBAAmB,EACxB5O,GAAaqB,QAAQ5B,KAAK4E,SAAU6S,GAAe,CACjD3X,iBACA,GAEoCE,KAAKqY,QAASrY,KAAKgO,cAC7D,CACA,kBAAAnC,GACEtL,GAAac,GAAGrB,KAAK4E,SAAUiT,IAAyBzY,IAhJvC,WAiJXA,EAAMtiB,MAGNkjB,KAAK6E,QAAQmG,SACfhL,KAAK4P,OAGP5P,KAAKgZ,6BAA4B,IAEnCzY,GAAac,GAAGzhB,OAAQ83B,IAAgB,KAClC1X,KAAK2P,WAAa3P,KAAKmP,kBACzBnP,KAAK2Y,eACP,IAEFpY,GAAac,GAAGrB,KAAK4E,SAAUgT,IAAyBxY,IAEtDmB,GAAae,IAAItB,KAAK4E,SAAU+S,IAAqBsB,IAC/CjZ,KAAK4E,WAAaxF,EAAM7S,QAAUyT,KAAK4E,WAAaqU,EAAO1sB,SAGjC,WAA1ByT,KAAK6E,QAAQ+P,SAIb5U,KAAK6E,QAAQ+P,UACf5U,KAAK4P,OAJL5P,KAAKgZ,6BAKP,GACA,GAEN,CACA,UAAAH,GACE7Y,KAAK4E,SAAS7jB,MAAMgxB,QAAU,OAC9B/R,KAAK4E,SAASxjB,aAAa,eAAe,GAC1C4e,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QAC9B6e,KAAKmP,kBAAmB,EACxBnP,KAAKsY,UAAU1I,MAAK,KAClBvqB,SAAS6G,KAAKmP,UAAU1B,OAAOoe,IAC/B/X,KAAKkZ,oBACLlZ,KAAK0Y,WAAWrmB,QAChBkO,GAAaqB,QAAQ5B,KAAK4E,SAAU2S,GAAe,GAEvD,CACA,WAAAvJ,GACE,OAAOhO,KAAK4E,SAASvJ,UAAU7W,SAjLT,OAkLxB,CACA,0BAAAw0B,GAEE,GADkBzY,GAAaqB,QAAQ5B,KAAK4E,SAAU0S,IACxCtV,iBACZ,OAEF,MAAMmX,EAAqBnZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3EwxB,EAAmBpZ,KAAK4E,SAAS7jB,MAAMiL,UAEpB,WAArBotB,GAAiCpZ,KAAK4E,SAASvJ,UAAU7W,SAASyzB,MAGjEkB,IACHnZ,KAAK4E,SAAS7jB,MAAMiL,UAAY,UAElCgU,KAAK4E,SAASvJ,UAAU5E,IAAIwhB,IAC5BjY,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAASvJ,UAAU1B,OAAOse,IAC/BjY,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAAS7jB,MAAMiL,UAAYotB,CAAgB,GAC/CpZ,KAAKqY,QAAQ,GACfrY,KAAKqY,SACRrY,KAAK4E,SAAS6N,QAChB,CAMA,aAAAkG,GACE,MAAMQ,EAAqBnZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3EkvB,EAAiB9W,KAAK0Y,WAAWtC,WACjCiD,EAAoBvC,EAAiB,EAC3C,GAAIuC,IAAsBF,EAAoB,CAC5C,MAAMr3B,EAAWma,KAAU,cAAgB,eAC3C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAGg1B,KACrC,CACA,IAAKuC,GAAqBF,EAAoB,CAC5C,MAAMr3B,EAAWma,KAAU,eAAiB,cAC5C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAGg1B,KACrC,CACF,CACA,iBAAAoC,GACElZ,KAAK4E,SAAS7jB,MAAMu4B,YAAc,GAClCtZ,KAAK4E,SAAS7jB,MAAMw4B,aAAe,EACrC,CAGA,sBAAO9c,CAAgBqH,EAAQhE,GAC7B,OAAOE,KAAKwH,MAAK,WACf,MAAMnd,EAAO+tB,GAAM9S,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQhE,EAJb,CAKF,GACF,EAOFS,GAAac,GAAGhc,SAAUyyB,GA9OK,4BA8O2C,SAAU1Y,GAClF,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MACjD,CAAC,IAAK,QAAQoB,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAER/B,GAAae,IAAI/U,EAAQirB,IAAcgC,IACjCA,EAAUxX,kBAIdzB,GAAae,IAAI/U,EAAQgrB,IAAgB,KACnC5c,GAAUqF,OACZA,KAAKyS,OACP,GACA,IAIJ,MAAMgH,EAAc5T,GAAeC,QAnQb,eAoQlB2T,GACFrB,GAAM/S,YAAYoU,GAAa7J,OAEpBwI,GAAM9S,oBAAoB/Y,GAClCob,OAAO3H,KACd,IACA6G,GAAqBuR,IAMrBjc,GAAmBic,IAcnB,MAEMsB,GAAc,gBACdC,GAAiB,YACjBC,GAAwB,OAAOF,KAAcC,KAE7CE,GAAoB,OACpBC,GAAuB,UACvBC,GAAoB,SAEpBC,GAAgB,kBAChBC,GAAe,OAAOP,KACtBQ,GAAgB,QAAQR,KACxBS,GAAe,OAAOT,KACtBU,GAAuB,gBAAgBV,KACvCW,GAAiB,SAASX,KAC1BY,GAAe,SAASZ,KACxBa,GAAyB,QAAQb,KAAcC,KAC/Ca,GAAwB,kBAAkBd,KAE1Ce,GAAY,CAChB7F,UAAU,EACV5J,UAAU,EACVvgB,QAAQ,GAEJiwB,GAAgB,CACpB9F,SAAU,mBACV5J,SAAU,UACVvgB,OAAQ,WAOV,MAAMkwB,WAAkBjW,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAK2P,UAAW,EAChB3P,KAAKsY,UAAYtY,KAAKuY,sBACtBvY,KAAKwY,WAAaxY,KAAKyY,uBACvBzY,KAAK6L,oBACP,CAGA,kBAAWnI,GACT,OAAO+W,EACT,CACA,sBAAW9W,GACT,OAAO+W,EACT,CACA,eAAWne,GACT,MApDW,WAqDb,CAGA,MAAAoL,CAAO7H,GACL,OAAOE,KAAK2P,SAAW3P,KAAK4P,OAAS5P,KAAK6P,KAAK/P,EACjD,CACA,IAAA+P,CAAK/P,GACCE,KAAK2P,UAGSpP,GAAaqB,QAAQ5B,KAAK4E,SAAUqV,GAAc,CAClEna,kBAEYkC,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKsY,UAAUzI,OACV7P,KAAK6E,QAAQpa,SAChB,IAAI0rB,IAAkBvG,OAExB5P,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASvJ,UAAU5E,IAAIqjB,IAW5B9Z,KAAKmF,gBAVoB,KAClBnF,KAAK6E,QAAQpa,SAAUuV,KAAK6E,QAAQ+P,UACvC5U,KAAKwY,WAAW9C,WAElB1V,KAAK4E,SAASvJ,UAAU5E,IAAIojB,IAC5B7Z,KAAK4E,SAASvJ,UAAU1B,OAAOmgB,IAC/BvZ,GAAaqB,QAAQ5B,KAAK4E,SAAUsV,GAAe,CACjDpa,iBACA,GAEkCE,KAAK4E,UAAU,GACvD,CACA,IAAAgL,GACO5P,KAAK2P,WAGQpP,GAAaqB,QAAQ5B,KAAK4E,SAAUuV,IACxCnY,mBAGdhC,KAAKwY,WAAW3C,aAChB7V,KAAK4E,SAASgW,OACd5a,KAAK2P,UAAW,EAChB3P,KAAK4E,SAASvJ,UAAU5E,IAAIsjB,IAC5B/Z,KAAKsY,UAAU1I,OAUf5P,KAAKmF,gBAToB,KACvBnF,KAAK4E,SAASvJ,UAAU1B,OAAOkgB,GAAmBE,IAClD/Z,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QACzB6e,KAAK6E,QAAQpa,SAChB,IAAI0rB,IAAkB9jB,QAExBkO,GAAaqB,QAAQ5B,KAAK4E,SAAUyV,GAAe,GAEfra,KAAK4E,UAAU,IACvD,CACA,OAAAG,GACE/E,KAAKsY,UAAUvT,UACf/E,KAAKwY,WAAW3C,aAChBlR,MAAMI,SACR,CAGA,mBAAAwT,GACE,MASM5d,EAAYmG,QAAQd,KAAK6E,QAAQ+P,UACvC,OAAO,IAAIL,GAAS,CAClBJ,UA3HsB,qBA4HtBxZ,YACAyK,YAAY,EACZiP,YAAarU,KAAK4E,SAAS7f,WAC3BqvB,cAAezZ,EAfK,KACU,WAA1BqF,KAAK6E,QAAQ+P,SAIjB5U,KAAK4P,OAHHrP,GAAaqB,QAAQ5B,KAAK4E,SAAUwV,GAG3B,EAUgC,MAE/C,CACA,oBAAA3B,GACE,OAAO,IAAIlD,GAAU,CACnBF,YAAarV,KAAK4E,UAEtB,CACA,kBAAAiH,GACEtL,GAAac,GAAGrB,KAAK4E,SAAU4V,IAAuBpb,IA5IvC,WA6ITA,EAAMtiB,MAGNkjB,KAAK6E,QAAQmG,SACfhL,KAAK4P,OAGPrP,GAAaqB,QAAQ5B,KAAK4E,SAAUwV,IAAqB,GAE7D,CAGA,sBAAO3d,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOswB,GAAUrV,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOFO,GAAac,GAAGhc,SAAUk1B,GA7JK,gCA6J2C,SAAUnb,GAClF,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MAIrD,GAHI,CAAC,IAAK,QAAQoB,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEFO,GAAae,IAAI/U,EAAQ8tB,IAAgB,KAEnC1f,GAAUqF,OACZA,KAAKyS,OACP,IAIF,MAAMgH,EAAc5T,GAAeC,QAAQkU,IACvCP,GAAeA,IAAgBltB,GACjCouB,GAAUtV,YAAYoU,GAAa7J,OAExB+K,GAAUrV,oBAAoB/Y,GACtCob,OAAO3H,KACd,IACAO,GAAac,GAAGzhB,OAAQg6B,IAAuB,KAC7C,IAAK,MAAM7f,KAAY8L,GAAe1T,KAAK6nB,IACzCW,GAAUrV,oBAAoBvL,GAAU8V,MAC1C,IAEFtP,GAAac,GAAGzhB,OAAQ06B,IAAc,KACpC,IAAK,MAAM/6B,KAAWsmB,GAAe1T,KAAK,gDACG,UAAvClN,iBAAiB1F,GAASiC,UAC5Bm5B,GAAUrV,oBAAoB/lB,GAASqwB,MAE3C,IAEF/I,GAAqB8T,IAMrBxe,GAAmBwe,IAUnB,MACME,GAAmB,CAEvB,IAAK,CAAC,QAAS,MAAO,KAAM,OAAQ,OAHP,kBAI7BhqB,EAAG,CAAC,SAAU,OAAQ,QAAS,OAC/BiqB,KAAM,GACNhqB,EAAG,GACHiqB,GAAI,GACJC,IAAK,GACLC,KAAM,GACNC,GAAI,GACJC,IAAK,GACLC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJxqB,EAAG,GACH0b,IAAK,CAAC,MAAO,SAAU,MAAO,QAAS,QAAS,UAChD+O,GAAI,GACJC,GAAI,GACJC,EAAG,GACHC,IAAK,GACLC,EAAG,GACHC,MAAO,GACPC,KAAM,GACNC,IAAK,GACLC,IAAK,GACLC,OAAQ,GACRC,EAAG,GACHC,GAAI,IAIAC,GAAgB,IAAIpmB,IAAI,CAAC,aAAc,OAAQ,OAAQ,WAAY,WAAY,SAAU,MAAO,eAShGqmB,GAAmB,0DACnBC,GAAmB,CAAC76B,EAAW86B,KACnC,MAAMC,EAAgB/6B,EAAUvC,SAASC,cACzC,OAAIo9B,EAAqBzb,SAAS0b,IAC5BJ,GAAc/lB,IAAImmB,IACbhc,QAAQ6b,GAAiBt5B,KAAKtB,EAAUg7B,YAM5CF,EAAqB12B,QAAO62B,GAAkBA,aAA0BzY,SAAQ9R,MAAKwqB,GAASA,EAAM55B,KAAKy5B,IAAe,EA0C3HI,GAAY,CAChBC,UAAWtC,GACXuC,QAAS,CAAC,EAEVC,WAAY,GACZxwB,MAAM,EACNywB,UAAU,EACVC,WAAY,KACZC,SAAU,eAENC,GAAgB,CACpBN,UAAW,SACXC,QAAS,SACTC,WAAY,oBACZxwB,KAAM,UACNywB,SAAU,UACVC,WAAY,kBACZC,SAAU,UAENE,GAAqB,CACzBC,MAAO,iCACP5jB,SAAU,oBAOZ,MAAM6jB,WAAwBna,GAC5B,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,EACjC,CAGA,kBAAWJ,GACT,OAAOwZ,EACT,CACA,sBAAWvZ,GACT,OAAO8Z,EACT,CACA,eAAWlhB,GACT,MA3CW,iBA4Cb,CAGA,UAAAshB,GACE,OAAO7gC,OAAOmiB,OAAOa,KAAK6E,QAAQuY,SAASt6B,KAAIghB,GAAU9D,KAAK8d,yBAAyBha,KAAS3d,OAAO2a,QACzG,CACA,UAAAid,GACE,OAAO/d,KAAK6d,aAAantB,OAAS,CACpC,CACA,aAAAstB,CAAcZ,GAMZ,OALApd,KAAKie,cAAcb,GACnBpd,KAAK6E,QAAQuY,QAAU,IAClBpd,KAAK6E,QAAQuY,WACbA,GAEEpd,IACT,CACA,MAAAke,GACE,MAAMC,EAAkB94B,SAASwvB,cAAc,OAC/CsJ,EAAgBC,UAAYpe,KAAKqe,eAAere,KAAK6E,QAAQ2Y,UAC7D,IAAK,MAAOzjB,EAAUukB,KAASthC,OAAOmkB,QAAQnB,KAAK6E,QAAQuY,SACzDpd,KAAKue,YAAYJ,EAAiBG,EAAMvkB,GAE1C,MAAMyjB,EAAWW,EAAgBpY,SAAS,GACpCsX,EAAard,KAAK8d,yBAAyB9d,KAAK6E,QAAQwY,YAI9D,OAHIA,GACFG,EAASniB,UAAU5E,OAAO4mB,EAAWn7B,MAAM,MAEtCs7B,CACT,CAGA,gBAAAvZ,CAAiBH,GACfa,MAAMV,iBAAiBH,GACvB9D,KAAKie,cAAcna,EAAOsZ,QAC5B,CACA,aAAAa,CAAcO,GACZ,IAAK,MAAOzkB,EAAUqjB,KAAYpgC,OAAOmkB,QAAQqd,GAC/C7Z,MAAMV,iBAAiB,CACrBlK,WACA4jB,MAAOP,GACNM,GAEP,CACA,WAAAa,CAAYf,EAAUJ,EAASrjB,GAC7B,MAAM0kB,EAAkB5Y,GAAeC,QAAQ/L,EAAUyjB,GACpDiB,KAGLrB,EAAUpd,KAAK8d,yBAAyBV,IAKpC,GAAUA,GACZpd,KAAK0e,sBAAsBhkB,GAAW0iB,GAAUqB,GAG9Cze,KAAK6E,QAAQhY,KACf4xB,EAAgBL,UAAYpe,KAAKqe,eAAejB,GAGlDqB,EAAgBE,YAAcvB,EAX5BqB,EAAgB9kB,SAYpB,CACA,cAAA0kB,CAAeG,GACb,OAAOxe,KAAK6E,QAAQyY,SApJxB,SAAsBsB,EAAYzB,EAAW0B,GAC3C,IAAKD,EAAWluB,OACd,OAAOkuB,EAET,GAAIC,GAAgD,mBAArBA,EAC7B,OAAOA,EAAiBD,GAE1B,MACME,GADY,IAAIl/B,OAAOm/B,WACKC,gBAAgBJ,EAAY,aACxD/9B,EAAW,GAAGlC,UAAUmgC,EAAgB5yB,KAAKkU,iBAAiB,MACpE,IAAK,MAAM7gB,KAAWsB,EAAU,CAC9B,MAAMo+B,EAAc1/B,EAAQC,SAASC,cACrC,IAAKzC,OAAO4D,KAAKu8B,GAAW/b,SAAS6d,GAAc,CACjD1/B,EAAQoa,SACR,QACF,CACA,MAAMulB,EAAgB,GAAGvgC,UAAUY,EAAQ0B,YACrCk+B,EAAoB,GAAGxgC,OAAOw+B,EAAU,MAAQ,GAAIA,EAAU8B,IAAgB,IACpF,IAAK,MAAMl9B,KAAam9B,EACjBtC,GAAiB76B,EAAWo9B,IAC/B5/B,EAAQ4B,gBAAgBY,EAAUvC,SAGxC,CACA,OAAOs/B,EAAgB5yB,KAAKkyB,SAC9B,CA2HmCgB,CAAaZ,EAAKxe,KAAK6E,QAAQsY,UAAWnd,KAAK6E,QAAQ0Y,YAAciB,CACtG,CACA,wBAAAV,CAAyBU,GACvB,OAAO3hB,GAAQ2hB,EAAK,CAACxe,MACvB,CACA,qBAAA0e,CAAsBn/B,EAASk/B,GAC7B,GAAIze,KAAK6E,QAAQhY,KAGf,OAFA4xB,EAAgBL,UAAY,QAC5BK,EAAgB3J,OAAOv1B,GAGzBk/B,EAAgBE,YAAcp/B,EAAQo/B,WACxC,EAeF,MACMU,GAAwB,IAAI/oB,IAAI,CAAC,WAAY,YAAa,eAC1DgpB,GAAoB,OAEpBC,GAAoB,OACpBC,GAAyB,iBACzBC,GAAiB,SACjBC,GAAmB,gBACnBC,GAAgB,QAChBC,GAAgB,QAahBC,GAAgB,CACpBC,KAAM,OACNC,IAAK,MACLC,MAAO/jB,KAAU,OAAS,QAC1BgkB,OAAQ,SACRC,KAAMjkB,KAAU,QAAU,QAEtBkkB,GAAY,CAChBhD,UAAWtC,GACXuF,WAAW,EACXnyB,SAAU,kBACVoyB,WAAW,EACXC,YAAa,GACbC,MAAO,EACPvwB,mBAAoB,CAAC,MAAO,QAAS,SAAU,QAC/CnD,MAAM,EACN7E,OAAQ,CAAC,EAAG,GACZtJ,UAAW,MACXszB,aAAc,KACdsL,UAAU,EACVC,WAAY,KACZxjB,UAAU,EACVyjB,SAAU,+GACVgD,MAAO,GACP5e,QAAS,eAEL6e,GAAgB,CACpBtD,UAAW,SACXiD,UAAW,UACXnyB,SAAU,mBACVoyB,UAAW,2BACXC,YAAa,oBACbC,MAAO,kBACPvwB,mBAAoB,QACpBnD,KAAM,UACN7E,OAAQ,0BACRtJ,UAAW,oBACXszB,aAAc,yBACdsL,SAAU,UACVC,WAAY,kBACZxjB,SAAU,mBACVyjB,SAAU,SACVgD,MAAO,4BACP5e,QAAS,UAOX,MAAM8e,WAAgBhc,GACpB,WAAAP,CAAY5kB,EAASukB,GACnB,QAAsB,IAAX,EACT,MAAM,IAAIU,UAAU,+DAEtBG,MAAMplB,EAASukB,GAGf9D,KAAK2gB,YAAa,EAClB3gB,KAAK4gB,SAAW,EAChB5gB,KAAK6gB,WAAa,KAClB7gB,KAAK8gB,eAAiB,CAAC,EACvB9gB,KAAKmS,QAAU,KACfnS,KAAK+gB,iBAAmB,KACxB/gB,KAAKghB,YAAc,KAGnBhhB,KAAKihB,IAAM,KACXjhB,KAAKkhB,gBACAlhB,KAAK6E,QAAQ9K,UAChBiG,KAAKmhB,WAET,CAGA,kBAAWzd,GACT,OAAOyc,EACT,CACA,sBAAWxc,GACT,OAAO8c,EACT,CACA,eAAWlkB,GACT,MAxGW,SAyGb,CAGA,MAAA6kB,GACEphB,KAAK2gB,YAAa,CACpB,CACA,OAAAU,GACErhB,KAAK2gB,YAAa,CACpB,CACA,aAAAW,GACEthB,KAAK2gB,YAAc3gB,KAAK2gB,UAC1B,CACA,MAAAhZ,GACO3H,KAAK2gB,aAGV3gB,KAAK8gB,eAAeS,OAASvhB,KAAK8gB,eAAeS,MAC7CvhB,KAAK2P,WACP3P,KAAKwhB,SAGPxhB,KAAKyhB,SACP,CACA,OAAA1c,GACEmI,aAAalN,KAAK4gB,UAClBrgB,GAAaC,IAAIR,KAAK4E,SAAS5J,QAAQykB,IAAiBC,GAAkB1f,KAAK0hB,mBAC3E1hB,KAAK4E,SAASpJ,aAAa,2BAC7BwE,KAAK4E,SAASxjB,aAAa,QAAS4e,KAAK4E,SAASpJ,aAAa,2BAEjEwE,KAAK2hB,iBACLhd,MAAMI,SACR,CACA,IAAA8K,GACE,GAAoC,SAAhC7P,KAAK4E,SAAS7jB,MAAMgxB,QACtB,MAAM,IAAInO,MAAM,uCAElB,IAAM5D,KAAK4hB,mBAAoB5hB,KAAK2gB,WAClC,OAEF,MAAMnH,EAAYjZ,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAlItD,SAoIXqc,GADapmB,GAAeuE,KAAK4E,WACL5E,KAAK4E,SAAS9kB,cAAcwF,iBAAiBd,SAASwb,KAAK4E,UAC7F,GAAI4U,EAAUxX,mBAAqB6f,EACjC,OAIF7hB,KAAK2hB,iBACL,MAAMV,EAAMjhB,KAAK8hB,iBACjB9hB,KAAK4E,SAASxjB,aAAa,mBAAoB6/B,EAAIzlB,aAAa,OAChE,MAAM,UACJ6kB,GACErgB,KAAK6E,QAYT,GAXK7E,KAAK4E,SAAS9kB,cAAcwF,gBAAgBd,SAASwb,KAAKihB,OAC7DZ,EAAUvL,OAAOmM,GACjB1gB,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhJpC,cAkJnBxF,KAAKmS,QAAUnS,KAAKwS,cAAcyO,GAClCA,EAAI5lB,UAAU5E,IAAI8oB,IAMd,iBAAkBl6B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAac,GAAG9hB,EAAS,YAAaqc,IAU1CoE,KAAKmF,gBAPY,KACf5E,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhKrC,WAiKQ,IAApBxF,KAAK6gB,YACP7gB,KAAKwhB,SAEPxhB,KAAK6gB,YAAa,CAAK,GAEK7gB,KAAKihB,IAAKjhB,KAAKgO,cAC/C,CACA,IAAA4B,GACE,GAAK5P,KAAK2P,aAGQpP,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UA/KtD,SAgLHxD,iBAAd,CAQA,GALYhC,KAAK8hB,iBACbzmB,UAAU1B,OAAO4lB,IAIjB,iBAAkBl6B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAG3CoE,KAAK8gB,eAA4B,OAAI,EACrC9gB,KAAK8gB,eAAelB,KAAiB,EACrC5f,KAAK8gB,eAAenB,KAAiB,EACrC3f,KAAK6gB,WAAa,KAYlB7gB,KAAKmF,gBAVY,KACXnF,KAAK+hB,yBAGJ/hB,KAAK6gB,YACR7gB,KAAK2hB,iBAEP3hB,KAAK4E,SAASzjB,gBAAgB,oBAC9Bof,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAzMpC,WAyM8D,GAEnDxF,KAAKihB,IAAKjhB,KAAKgO,cA1B7C,CA2BF,CACA,MAAAjjB,GACMiV,KAAKmS,SACPnS,KAAKmS,QAAQpnB,QAEjB,CAGA,cAAA62B,GACE,OAAO9gB,QAAQd,KAAKgiB,YACtB,CACA,cAAAF,GAIE,OAHK9hB,KAAKihB,MACRjhB,KAAKihB,IAAMjhB,KAAKiiB,kBAAkBjiB,KAAKghB,aAAehhB,KAAKkiB,2BAEtDliB,KAAKihB,GACd,CACA,iBAAAgB,CAAkB7E,GAChB,MAAM6D,EAAMjhB,KAAKmiB,oBAAoB/E,GAASc,SAG9C,IAAK+C,EACH,OAAO,KAETA,EAAI5lB,UAAU1B,OAAO2lB,GAAmBC,IAExC0B,EAAI5lB,UAAU5E,IAAI,MAAMuJ,KAAKmE,YAAY5H,aACzC,MAAM6lB,EAvuGKC,KACb,GACEA,GAAUlgC,KAAKmgC,MA/BH,IA+BSngC,KAAKogC,gBACnBl9B,SAASm9B,eAAeH,IACjC,OAAOA,CAAM,EAmuGGI,CAAOziB,KAAKmE,YAAY5H,MAAM1c,WAK5C,OAJAohC,EAAI7/B,aAAa,KAAMghC,GACnBpiB,KAAKgO,eACPiT,EAAI5lB,UAAU5E,IAAI6oB,IAEb2B,CACT,CACA,UAAAyB,CAAWtF,GACTpd,KAAKghB,YAAc5D,EACfpd,KAAK2P,aACP3P,KAAK2hB,iBACL3hB,KAAK6P,OAET,CACA,mBAAAsS,CAAoB/E,GAYlB,OAXIpd,KAAK+gB,iBACP/gB,KAAK+gB,iBAAiB/C,cAAcZ,GAEpCpd,KAAK+gB,iBAAmB,IAAInD,GAAgB,IACvC5d,KAAK6E,QAGRuY,UACAC,WAAYrd,KAAK8d,yBAAyB9d,KAAK6E,QAAQyb,eAGpDtgB,KAAK+gB,gBACd,CACA,sBAAAmB,GACE,MAAO,CACL,CAAC1C,IAAyBxf,KAAKgiB,YAEnC,CACA,SAAAA,GACE,OAAOhiB,KAAK8d,yBAAyB9d,KAAK6E,QAAQ2b,QAAUxgB,KAAK4E,SAASpJ,aAAa,yBACzF,CAGA,4BAAAmnB,CAA6BvjB,GAC3B,OAAOY,KAAKmE,YAAYmB,oBAAoBlG,EAAMW,eAAgBC,KAAK4iB,qBACzE,CACA,WAAA5U,GACE,OAAOhO,KAAK6E,QAAQub,WAAapgB,KAAKihB,KAAOjhB,KAAKihB,IAAI5lB,UAAU7W,SAAS86B,GAC3E,CACA,QAAA3P,GACE,OAAO3P,KAAKihB,KAAOjhB,KAAKihB,IAAI5lB,UAAU7W,SAAS+6B,GACjD,CACA,aAAA/M,CAAcyO,GACZ,MAAMviC,EAAYme,GAAQmD,KAAK6E,QAAQnmB,UAAW,CAACshB,KAAMihB,EAAKjhB,KAAK4E,WAC7Die,EAAahD,GAAcnhC,EAAU+lB,eAC3C,OAAO,GAAoBzE,KAAK4E,SAAUqc,EAAKjhB,KAAK4S,iBAAiBiQ,GACvE,CACA,UAAA7P,GACE,MAAM,OACJhrB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAOgQ,SAAS5vB,EAAO,MAEzC,mBAAXqK,EACFirB,GAAcjrB,EAAOirB,EAAYjT,KAAK4E,UAExC5c,CACT,CACA,wBAAA81B,CAAyBU,GACvB,OAAO3hB,GAAQ2hB,EAAK,CAACxe,KAAK4E,UAC5B,CACA,gBAAAgO,CAAiBiQ,GACf,MAAM3P,EAAwB,CAC5Bx0B,UAAWmkC,EACXzsB,UAAW,CAAC,CACV9V,KAAM,OACNmB,QAAS,CACPuO,mBAAoBgQ,KAAK6E,QAAQ7U,qBAElC,CACD1P,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAKgT,eAEd,CACD1yB,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,QACNmB,QAAS,CACPlC,QAAS,IAAIygB,KAAKmE,YAAY5H,eAE/B,CACDjc,KAAM,kBACNC,SAAS,EACTC,MAAO,aACPC,GAAI4J,IAGF2V,KAAK8hB,iBAAiB1gC,aAAa,wBAAyBiJ,EAAK1J,MAAMjC,UAAU,KAIvF,MAAO,IACFw0B,KACArW,GAAQmD,KAAK6E,QAAQmN,aAAc,CAACkB,IAE3C,CACA,aAAAgO,GACE,MAAM4B,EAAW9iB,KAAK6E,QAAQjD,QAAQ1f,MAAM,KAC5C,IAAK,MAAM0f,KAAWkhB,EACpB,GAAgB,UAAZlhB,EACFrB,GAAac,GAAGrB,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAjVlC,SAiV4DxF,KAAK6E,QAAQ9K,UAAUqF,IAC/EY,KAAK2iB,6BAA6BvjB,GAC1CuI,QAAQ,SAEb,GA3VU,WA2VN/F,EAA4B,CACrC,MAAMmhB,EAAUnhB,IAAY+d,GAAgB3f,KAAKmE,YAAYqB,UAnV5C,cAmV0ExF,KAAKmE,YAAYqB,UArV5F,WAsVVwd,EAAWphB,IAAY+d,GAAgB3f,KAAKmE,YAAYqB,UAnV7C,cAmV2ExF,KAAKmE,YAAYqB,UArV5F,YAsVjBjF,GAAac,GAAGrB,KAAK4E,SAAUme,EAAS/iB,KAAK6E,QAAQ9K,UAAUqF,IAC7D,MAAMkU,EAAUtT,KAAK2iB,6BAA6BvjB,GAClDkU,EAAQwN,eAA8B,YAAf1hB,EAAMqB,KAAqBmf,GAAgBD,KAAiB,EACnFrM,EAAQmO,QAAQ,IAElBlhB,GAAac,GAAGrB,KAAK4E,SAAUoe,EAAUhjB,KAAK6E,QAAQ9K,UAAUqF,IAC9D,MAAMkU,EAAUtT,KAAK2iB,6BAA6BvjB,GAClDkU,EAAQwN,eAA8B,aAAf1hB,EAAMqB,KAAsBmf,GAAgBD,IAAiBrM,EAAQ1O,SAASpgB,SAAS4a,EAAMU,eACpHwT,EAAQkO,QAAQ,GAEpB,CAEFxhB,KAAK0hB,kBAAoB,KACnB1hB,KAAK4E,UACP5E,KAAK4P,MACP,EAEFrP,GAAac,GAAGrB,KAAK4E,SAAS5J,QAAQykB,IAAiBC,GAAkB1f,KAAK0hB,kBAChF,CACA,SAAAP,GACE,MAAMX,EAAQxgB,KAAK4E,SAASpJ,aAAa,SACpCglB,IAGAxgB,KAAK4E,SAASpJ,aAAa,eAAkBwE,KAAK4E,SAAS+Z,YAAYhZ,QAC1E3F,KAAK4E,SAASxjB,aAAa,aAAco/B,GAE3CxgB,KAAK4E,SAASxjB,aAAa,yBAA0Bo/B,GACrDxgB,KAAK4E,SAASzjB,gBAAgB,SAChC,CACA,MAAAsgC,GACMzhB,KAAK2P,YAAc3P,KAAK6gB,WAC1B7gB,KAAK6gB,YAAa,GAGpB7gB,KAAK6gB,YAAa,EAClB7gB,KAAKijB,aAAY,KACXjjB,KAAK6gB,YACP7gB,KAAK6P,MACP,GACC7P,KAAK6E,QAAQ0b,MAAM1Q,MACxB,CACA,MAAA2R,GACMxhB,KAAK+hB,yBAGT/hB,KAAK6gB,YAAa,EAClB7gB,KAAKijB,aAAY,KACVjjB,KAAK6gB,YACR7gB,KAAK4P,MACP,GACC5P,KAAK6E,QAAQ0b,MAAM3Q,MACxB,CACA,WAAAqT,CAAYrlB,EAASslB,GACnBhW,aAAalN,KAAK4gB,UAClB5gB,KAAK4gB,SAAW/iB,WAAWD,EAASslB,EACtC,CACA,oBAAAnB,GACE,OAAO/kC,OAAOmiB,OAAOa,KAAK8gB,gBAAgB1f,UAAS,EACrD,CACA,UAAAyC,CAAWC,GACT,MAAMqf,EAAiBngB,GAAYG,kBAAkBnD,KAAK4E,UAC1D,IAAK,MAAMwe,KAAiBpmC,OAAO4D,KAAKuiC,GAClC9D,GAAsB1oB,IAAIysB,WACrBD,EAAeC,GAU1B,OAPAtf,EAAS,IACJqf,KACmB,iBAAXrf,GAAuBA,EAASA,EAAS,CAAC,GAEvDA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAchB,OAbAA,EAAOuc,WAAiC,IAArBvc,EAAOuc,UAAsBh7B,SAAS6G,KAAOwO,GAAWoJ,EAAOuc,WACtD,iBAAjBvc,EAAOyc,QAChBzc,EAAOyc,MAAQ,CACb1Q,KAAM/L,EAAOyc,MACb3Q,KAAM9L,EAAOyc,QAGW,iBAAjBzc,EAAO0c,QAChB1c,EAAO0c,MAAQ1c,EAAO0c,MAAM3gC,YAEA,iBAAnBikB,EAAOsZ,UAChBtZ,EAAOsZ,QAAUtZ,EAAOsZ,QAAQv9B,YAE3BikB,CACT,CACA,kBAAA8e,GACE,MAAM9e,EAAS,CAAC,EAChB,IAAK,MAAOhnB,EAAKa,KAAUX,OAAOmkB,QAAQnB,KAAK6E,SACzC7E,KAAKmE,YAAYT,QAAQ5mB,KAASa,IACpCmmB,EAAOhnB,GAAOa,GASlB,OANAmmB,EAAO/J,UAAW,EAClB+J,EAAOlC,QAAU,SAKVkC,CACT,CACA,cAAA6d,GACM3hB,KAAKmS,UACPnS,KAAKmS,QAAQnZ,UACbgH,KAAKmS,QAAU,MAEbnS,KAAKihB,MACPjhB,KAAKihB,IAAItnB,SACTqG,KAAKihB,IAAM,KAEf,CAGA,sBAAOxkB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOq2B,GAAQpb,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmBukB,IAcnB,MACM2C,GAAiB,kBACjBC,GAAmB,gBACnBC,GAAY,IACb7C,GAAQhd,QACX0Z,QAAS,GACTp1B,OAAQ,CAAC,EAAG,GACZtJ,UAAW,QACX8+B,SAAU,8IACV5b,QAAS,SAEL4hB,GAAgB,IACjB9C,GAAQ/c,YACXyZ,QAAS,kCAOX,MAAMqG,WAAgB/C,GAEpB,kBAAWhd,GACT,OAAO6f,EACT,CACA,sBAAW5f,GACT,OAAO6f,EACT,CACA,eAAWjnB,GACT,MA7BW,SA8Bb,CAGA,cAAAqlB,GACE,OAAO5hB,KAAKgiB,aAAehiB,KAAK0jB,aAClC,CAGA,sBAAAxB,GACE,MAAO,CACL,CAACmB,IAAiBrjB,KAAKgiB,YACvB,CAACsB,IAAmBtjB,KAAK0jB,cAE7B,CACA,WAAAA,GACE,OAAO1jB,KAAK8d,yBAAyB9d,KAAK6E,QAAQuY,QACpD,CAGA,sBAAO3gB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOo5B,GAAQne,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmBsnB,IAcnB,MAEME,GAAc,gBAEdC,GAAiB,WAAWD,KAC5BE,GAAc,QAAQF,KACtBG,GAAwB,OAAOH,cAE/BI,GAAsB,SAEtBC,GAAwB,SAExBC,GAAqB,YAGrBC,GAAsB,GAAGD,mBAA+CA,uBAGxEE,GAAY,CAChBn8B,OAAQ,KAERo8B,WAAY,eACZC,cAAc,EACd93B,OAAQ,KACR+3B,UAAW,CAAC,GAAK,GAAK,IAElBC,GAAgB,CACpBv8B,OAAQ,gBAERo8B,WAAY,SACZC,aAAc,UACd93B,OAAQ,UACR+3B,UAAW,SAOb,MAAME,WAAkB9f,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GAGf9D,KAAKykB,aAAe,IAAIvzB,IACxB8O,KAAK0kB,oBAAsB,IAAIxzB,IAC/B8O,KAAK2kB,aAA6D,YAA9C1/B,iBAAiB+a,KAAK4E,UAAU5Y,UAA0B,KAAOgU,KAAK4E,SAC1F5E,KAAK4kB,cAAgB,KACrB5kB,KAAK6kB,UAAY,KACjB7kB,KAAK8kB,oBAAsB,CACzBC,gBAAiB,EACjBC,gBAAiB,GAEnBhlB,KAAKilB,SACP,CAGA,kBAAWvhB,GACT,OAAOygB,EACT,CACA,sBAAWxgB,GACT,OAAO4gB,EACT,CACA,eAAWhoB,GACT,MAhEW,WAiEb,CAGA,OAAA0oB,GACEjlB,KAAKklB,mCACLllB,KAAKmlB,2BACDnlB,KAAK6kB,UACP7kB,KAAK6kB,UAAUO,aAEfplB,KAAK6kB,UAAY7kB,KAAKqlB,kBAExB,IAAK,MAAMC,KAAWtlB,KAAK0kB,oBAAoBvlB,SAC7Ca,KAAK6kB,UAAUU,QAAQD,EAE3B,CACA,OAAAvgB,GACE/E,KAAK6kB,UAAUO,aACfzgB,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAShB,OAPAA,EAAOvX,OAASmO,GAAWoJ,EAAOvX,SAAWlH,SAAS6G,KAGtD4X,EAAOsgB,WAAatgB,EAAO9b,OAAS,GAAG8b,EAAO9b,oBAAsB8b,EAAOsgB,WAC3C,iBAArBtgB,EAAOwgB,YAChBxgB,EAAOwgB,UAAYxgB,EAAOwgB,UAAUpiC,MAAM,KAAKY,KAAInF,GAAS4f,OAAOC,WAAW7f,MAEzEmmB,CACT,CACA,wBAAAqhB,GACOnlB,KAAK6E,QAAQwf,eAKlB9jB,GAAaC,IAAIR,KAAK6E,QAAQtY,OAAQs3B,IACtCtjB,GAAac,GAAGrB,KAAK6E,QAAQtY,OAAQs3B,GAAaG,IAAuB5kB,IACvE,MAAMomB,EAAoBxlB,KAAK0kB,oBAAoBvnC,IAAIiiB,EAAM7S,OAAOtB,MACpE,GAAIu6B,EAAmB,CACrBpmB,EAAMkD,iBACN,MAAM3G,EAAOqE,KAAK2kB,cAAgB/kC,OAC5BmE,EAASyhC,EAAkBnhC,UAAY2b,KAAK4E,SAASvgB,UAC3D,GAAIsX,EAAK8pB,SAKP,YAJA9pB,EAAK8pB,SAAS,CACZ9jC,IAAKoC,EACL2hC,SAAU,WAMd/pB,EAAKlQ,UAAY1H,CACnB,KAEJ,CACA,eAAAshC,GACE,MAAM5jC,EAAU,CACdka,KAAMqE,KAAK2kB,aACXL,UAAWtkB,KAAK6E,QAAQyf,UACxBF,WAAYpkB,KAAK6E,QAAQuf,YAE3B,OAAO,IAAIuB,sBAAqBxkB,GAAWnB,KAAK4lB,kBAAkBzkB,IAAU1f,EAC9E,CAGA,iBAAAmkC,CAAkBzkB,GAChB,MAAM0kB,EAAgBlI,GAAS3d,KAAKykB,aAAatnC,IAAI,IAAIwgC,EAAMpxB,OAAO4N,MAChEub,EAAWiI,IACf3d,KAAK8kB,oBAAoBC,gBAAkBpH,EAAMpxB,OAAOlI,UACxD2b,KAAK8lB,SAASD,EAAclI,GAAO,EAE/BqH,GAAmBhlB,KAAK2kB,cAAgBt/B,SAASC,iBAAiBmG,UAClEs6B,EAAkBf,GAAmBhlB,KAAK8kB,oBAAoBE,gBACpEhlB,KAAK8kB,oBAAoBE,gBAAkBA,EAC3C,IAAK,MAAMrH,KAASxc,EAAS,CAC3B,IAAKwc,EAAMqI,eAAgB,CACzBhmB,KAAK4kB,cAAgB,KACrB5kB,KAAKimB,kBAAkBJ,EAAclI,IACrC,QACF,CACA,MAAMuI,EAA2BvI,EAAMpxB,OAAOlI,WAAa2b,KAAK8kB,oBAAoBC,gBAEpF,GAAIgB,GAAmBG,GAGrB,GAFAxQ,EAASiI,IAEJqH,EACH,YAMCe,GAAoBG,GACvBxQ,EAASiI,EAEb,CACF,CACA,gCAAAuH,GACEllB,KAAKykB,aAAe,IAAIvzB,IACxB8O,KAAK0kB,oBAAsB,IAAIxzB,IAC/B,MAAMi1B,EAActgB,GAAe1T,KAAK6xB,GAAuBhkB,KAAK6E,QAAQtY,QAC5E,IAAK,MAAM65B,KAAUD,EAAa,CAEhC,IAAKC,EAAOn7B,MAAQiQ,GAAWkrB,GAC7B,SAEF,MAAMZ,EAAoB3f,GAAeC,QAAQugB,UAAUD,EAAOn7B,MAAO+U,KAAK4E,UAG1EjK,GAAU6qB,KACZxlB,KAAKykB,aAAa1yB,IAAIs0B,UAAUD,EAAOn7B,MAAOm7B,GAC9CpmB,KAAK0kB,oBAAoB3yB,IAAIq0B,EAAOn7B,KAAMu6B,GAE9C,CACF,CACA,QAAAM,CAASv5B,GACHyT,KAAK4kB,gBAAkBr4B,IAG3ByT,KAAKimB,kBAAkBjmB,KAAK6E,QAAQtY,QACpCyT,KAAK4kB,cAAgBr4B,EACrBA,EAAO8O,UAAU5E,IAAIstB,IACrB/jB,KAAKsmB,iBAAiB/5B,GACtBgU,GAAaqB,QAAQ5B,KAAK4E,SAAUgf,GAAgB,CAClD9jB,cAAevT,IAEnB,CACA,gBAAA+5B,CAAiB/5B,GAEf,GAAIA,EAAO8O,UAAU7W,SA9LQ,iBA+L3BqhB,GAAeC,QArLc,mBAqLsBvZ,EAAOyO,QAtLtC,cAsLkEK,UAAU5E,IAAIstB,SAGtG,IAAK,MAAMwC,KAAa1gB,GAAeI,QAAQ1Z,EA9LnB,qBAiM1B,IAAK,MAAMxJ,KAAQ8iB,GAAeM,KAAKogB,EAAWrC,IAChDnhC,EAAKsY,UAAU5E,IAAIstB,GAGzB,CACA,iBAAAkC,CAAkBxhC,GAChBA,EAAO4W,UAAU1B,OAAOoqB,IACxB,MAAMyC,EAAc3gB,GAAe1T,KAAK,GAAG6xB,MAAyBD,KAAuBt/B,GAC3F,IAAK,MAAM9E,KAAQ6mC,EACjB7mC,EAAK0b,UAAU1B,OAAOoqB,GAE1B,CAGA,sBAAOtnB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOm6B,GAAUlf,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGzhB,OAAQkkC,IAAuB,KAC7C,IAAK,MAAM2C,KAAO5gB,GAAe1T,KApOT,0BAqOtBqyB,GAAUlf,oBAAoBmhB,EAChC,IAOFtqB,GAAmBqoB,IAcnB,MAEMkC,GAAc,UACdC,GAAe,OAAOD,KACtBE,GAAiB,SAASF,KAC1BG,GAAe,OAAOH,KACtBI,GAAgB,QAAQJ,KACxBK,GAAuB,QAAQL,KAC/BM,GAAgB,UAAUN,KAC1BO,GAAsB,OAAOP,KAC7BQ,GAAiB,YACjBC,GAAkB,aAClBC,GAAe,UACfC,GAAiB,YACjBC,GAAW,OACXC,GAAU,MACVC,GAAoB,SACpBC,GAAoB,OACpBC,GAAoB,OAEpBC,GAA2B,mBAE3BC,GAA+B,QAAQD,MAIvCE,GAAuB,2EACvBC,GAAsB,YAFOF,uBAAiDA,mBAA6CA,OAE/EC,KAC5CE,GAA8B,IAAIP,8BAA6CA,+BAA8CA,4BAMnI,MAAMQ,WAAYtjB,GAChB,WAAAP,CAAY5kB,GACVolB,MAAMplB,GACNygB,KAAKoS,QAAUpS,KAAK4E,SAAS5J,QAdN,uCAelBgF,KAAKoS,UAOVpS,KAAKioB,sBAAsBjoB,KAAKoS,QAASpS,KAAKkoB,gBAC9C3nB,GAAac,GAAGrB,KAAK4E,SAAUoiB,IAAe5nB,GAASY,KAAK6M,SAASzN,KACvE,CAGA,eAAW7C,GACT,MAnDW,KAoDb,CAGA,IAAAsT,GAEE,MAAMsY,EAAYnoB,KAAK4E,SACvB,GAAI5E,KAAKooB,cAAcD,GACrB,OAIF,MAAME,EAASroB,KAAKsoB,iBACdC,EAAYF,EAAS9nB,GAAaqB,QAAQymB,EAAQ1B,GAAc,CACpE7mB,cAAeqoB,IACZ,KACa5nB,GAAaqB,QAAQumB,EAAWtB,GAAc,CAC9D/mB,cAAeuoB,IAEHrmB,kBAAoBumB,GAAaA,EAAUvmB,mBAGzDhC,KAAKwoB,YAAYH,EAAQF,GACzBnoB,KAAKyoB,UAAUN,EAAWE,GAC5B,CAGA,SAAAI,CAAUlpC,EAASmpC,GACZnpC,IAGLA,EAAQ8b,UAAU5E,IAAI+wB,IACtBxnB,KAAKyoB,UAAU5iB,GAAec,uBAAuBpnB,IAcrDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ4B,gBAAgB,YACxB5B,EAAQ6B,aAAa,iBAAiB,GACtC4e,KAAK2oB,gBAAgBppC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAASunC,GAAe,CAC3ChnB,cAAe4oB,KAPfnpC,EAAQ8b,UAAU5E,IAAIixB,GAQtB,GAE0BnoC,EAASA,EAAQ8b,UAAU7W,SAASijC,KACpE,CACA,WAAAe,CAAYjpC,EAASmpC,GACdnpC,IAGLA,EAAQ8b,UAAU1B,OAAO6tB,IACzBjoC,EAAQq7B,OACR5a,KAAKwoB,YAAY3iB,GAAec,uBAAuBpnB,IAcvDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ6B,aAAa,iBAAiB,GACtC7B,EAAQ6B,aAAa,WAAY,MACjC4e,KAAK2oB,gBAAgBppC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAASqnC,GAAgB,CAC5C9mB,cAAe4oB,KAPfnpC,EAAQ8b,UAAU1B,OAAO+tB,GAQzB,GAE0BnoC,EAASA,EAAQ8b,UAAU7W,SAASijC,KACpE,CACA,QAAA5a,CAASzN,GACP,IAAK,CAAC8nB,GAAgBC,GAAiBC,GAAcC,GAAgBC,GAAUC,IAASnmB,SAAShC,EAAMtiB,KACrG,OAEFsiB,EAAM0U,kBACN1U,EAAMkD,iBACN,MAAMyD,EAAW/F,KAAKkoB,eAAe/hC,QAAO5G,IAAY2b,GAAW3b,KACnE,IAAIqpC,EACJ,GAAI,CAACtB,GAAUC,IAASnmB,SAAShC,EAAMtiB,KACrC8rC,EAAoB7iB,EAAS3G,EAAMtiB,MAAQwqC,GAAW,EAAIvhB,EAASrV,OAAS,OACvE,CACL,MAAM8c,EAAS,CAAC2Z,GAAiBE,IAAgBjmB,SAAShC,EAAMtiB,KAChE8rC,EAAoB9qB,GAAqBiI,EAAU3G,EAAM7S,OAAQihB,GAAQ,EAC3E,CACIob,IACFA,EAAkBnW,MAAM,CACtBoW,eAAe,IAEjBb,GAAI1iB,oBAAoBsjB,GAAmB/Y,OAE/C,CACA,YAAAqY,GAEE,OAAOriB,GAAe1T,KAAK21B,GAAqB9nB,KAAKoS,QACvD,CACA,cAAAkW,GACE,OAAOtoB,KAAKkoB,eAAe/1B,MAAKzN,GAASsb,KAAKooB,cAAc1jC,MAAW,IACzE,CACA,qBAAAujC,CAAsBxjC,EAAQshB,GAC5B/F,KAAK8oB,yBAAyBrkC,EAAQ,OAAQ,WAC9C,IAAK,MAAMC,KAASqhB,EAClB/F,KAAK+oB,6BAA6BrkC,EAEtC,CACA,4BAAAqkC,CAA6BrkC,GAC3BA,EAAQsb,KAAKgpB,iBAAiBtkC,GAC9B,MAAMukC,EAAWjpB,KAAKooB,cAAc1jC,GAC9BwkC,EAAYlpB,KAAKmpB,iBAAiBzkC,GACxCA,EAAMtD,aAAa,gBAAiB6nC,GAChCC,IAAcxkC,GAChBsb,KAAK8oB,yBAAyBI,EAAW,OAAQ,gBAE9CD,GACHvkC,EAAMtD,aAAa,WAAY,MAEjC4e,KAAK8oB,yBAAyBpkC,EAAO,OAAQ,OAG7Csb,KAAKopB,mCAAmC1kC,EAC1C,CACA,kCAAA0kC,CAAmC1kC,GACjC,MAAM6H,EAASsZ,GAAec,uBAAuBjiB,GAChD6H,IAGLyT,KAAK8oB,yBAAyBv8B,EAAQ,OAAQ,YAC1C7H,EAAMyV,IACR6F,KAAK8oB,yBAAyBv8B,EAAQ,kBAAmB,GAAG7H,EAAMyV,MAEtE,CACA,eAAAwuB,CAAgBppC,EAAS8pC,GACvB,MAAMH,EAAYlpB,KAAKmpB,iBAAiB5pC,GACxC,IAAK2pC,EAAU7tB,UAAU7W,SApKN,YAqKjB,OAEF,MAAMmjB,EAAS,CAAC5N,EAAUoa,KACxB,MAAM50B,EAAUsmB,GAAeC,QAAQ/L,EAAUmvB,GAC7C3pC,GACFA,EAAQ8b,UAAUsM,OAAOwM,EAAWkV,EACtC,EAEF1hB,EAAOggB,GAA0BH,IACjC7f,EA5K2B,iBA4KI+f,IAC/BwB,EAAU9nC,aAAa,gBAAiBioC,EAC1C,CACA,wBAAAP,CAAyBvpC,EAASwC,EAAWpE,GACtC4B,EAAQgc,aAAaxZ,IACxBxC,EAAQ6B,aAAaW,EAAWpE,EAEpC,CACA,aAAAyqC,CAAc9Y,GACZ,OAAOA,EAAKjU,UAAU7W,SAASgjC,GACjC,CAGA,gBAAAwB,CAAiB1Z,GACf,OAAOA,EAAKtJ,QAAQ8hB,IAAuBxY,EAAOzJ,GAAeC,QAAQgiB,GAAqBxY,EAChG,CAGA,gBAAA6Z,CAAiB7Z,GACf,OAAOA,EAAKtU,QA5LO,gCA4LoBsU,CACzC,CAGA,sBAAO7S,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO29B,GAAI1iB,oBAAoBtF,MACrC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGhc,SAAU0hC,GAAsBc,IAAsB,SAAUzoB,GAC1E,CAAC,IAAK,QAAQgC,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,OAGfgoB,GAAI1iB,oBAAoBtF,MAAM6P,MAChC,IAKAtP,GAAac,GAAGzhB,OAAQqnC,IAAqB,KAC3C,IAAK,MAAM1nC,KAAWsmB,GAAe1T,KAAK41B,IACxCC,GAAI1iB,oBAAoB/lB,EAC1B,IAMF4c,GAAmB6rB,IAcnB,MAEMhjB,GAAY,YACZskB,GAAkB,YAAYtkB,KAC9BukB,GAAiB,WAAWvkB,KAC5BwkB,GAAgB,UAAUxkB,KAC1BykB,GAAiB,WAAWzkB,KAC5B0kB,GAAa,OAAO1kB,KACpB2kB,GAAe,SAAS3kB,KACxB4kB,GAAa,OAAO5kB,KACpB6kB,GAAc,QAAQ7kB,KAEtB8kB,GAAkB,OAClBC,GAAkB,OAClBC,GAAqB,UACrBrmB,GAAc,CAClByc,UAAW,UACX6J,SAAU,UACV1J,MAAO,UAEH7c,GAAU,CACd0c,WAAW,EACX6J,UAAU,EACV1J,MAAO,KAOT,MAAM2J,WAAcxlB,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAK4gB,SAAW,KAChB5gB,KAAKmqB,sBAAuB,EAC5BnqB,KAAKoqB,yBAA0B,EAC/BpqB,KAAKkhB,eACP,CAGA,kBAAWxd,GACT,OAAOA,EACT,CACA,sBAAWC,GACT,OAAOA,EACT,CACA,eAAWpH,GACT,MA/CS,OAgDX,CAGA,IAAAsT,GACoBtP,GAAaqB,QAAQ5B,KAAK4E,SAAUglB,IACxC5nB,mBAGdhC,KAAKqqB,gBACDrqB,KAAK6E,QAAQub,WACfpgB,KAAK4E,SAASvJ,UAAU5E,IA/CN,QAsDpBuJ,KAAK4E,SAASvJ,UAAU1B,OAAOmwB,IAC/BjuB,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIszB,GAAiBC,IAC7ChqB,KAAKmF,gBARY,KACfnF,KAAK4E,SAASvJ,UAAU1B,OAAOqwB,IAC/BzpB,GAAaqB,QAAQ5B,KAAK4E,SAAUilB,IACpC7pB,KAAKsqB,oBAAoB,GAKGtqB,KAAK4E,SAAU5E,KAAK6E,QAAQub,WAC5D,CACA,IAAAxQ,GACO5P,KAAKuqB,YAGQhqB,GAAaqB,QAAQ5B,KAAK4E,SAAU8kB,IACxC1nB,mBAQdhC,KAAK4E,SAASvJ,UAAU5E,IAAIuzB,IAC5BhqB,KAAKmF,gBANY,KACfnF,KAAK4E,SAASvJ,UAAU5E,IAAIqzB,IAC5B9pB,KAAK4E,SAASvJ,UAAU1B,OAAOqwB,GAAoBD,IACnDxpB,GAAaqB,QAAQ5B,KAAK4E,SAAU+kB,GAAa,GAGrB3pB,KAAK4E,SAAU5E,KAAK6E,QAAQub,YAC5D,CACA,OAAArb,GACE/E,KAAKqqB,gBACDrqB,KAAKuqB,WACPvqB,KAAK4E,SAASvJ,UAAU1B,OAAOowB,IAEjCplB,MAAMI,SACR,CACA,OAAAwlB,GACE,OAAOvqB,KAAK4E,SAASvJ,UAAU7W,SAASulC,GAC1C,CAIA,kBAAAO,GACOtqB,KAAK6E,QAAQolB,WAGdjqB,KAAKmqB,sBAAwBnqB,KAAKoqB,0BAGtCpqB,KAAK4gB,SAAW/iB,YAAW,KACzBmC,KAAK4P,MAAM,GACV5P,KAAK6E,QAAQ0b,QAClB,CACA,cAAAiK,CAAeprB,EAAOqrB,GACpB,OAAQrrB,EAAMqB,MACZ,IAAK,YACL,IAAK,WAEDT,KAAKmqB,qBAAuBM,EAC5B,MAEJ,IAAK,UACL,IAAK,WAEDzqB,KAAKoqB,wBAA0BK,EAIrC,GAAIA,EAEF,YADAzqB,KAAKqqB,gBAGP,MAAM5c,EAAcrO,EAAMU,cACtBE,KAAK4E,WAAa6I,GAAezN,KAAK4E,SAASpgB,SAASipB,IAG5DzN,KAAKsqB,oBACP,CACA,aAAApJ,GACE3gB,GAAac,GAAGrB,KAAK4E,SAAU0kB,IAAiBlqB,GAASY,KAAKwqB,eAAeprB,GAAO,KACpFmB,GAAac,GAAGrB,KAAK4E,SAAU2kB,IAAgBnqB,GAASY,KAAKwqB,eAAeprB,GAAO,KACnFmB,GAAac,GAAGrB,KAAK4E,SAAU4kB,IAAepqB,GAASY,KAAKwqB,eAAeprB,GAAO,KAClFmB,GAAac,GAAGrB,KAAK4E,SAAU6kB,IAAgBrqB,GAASY,KAAKwqB,eAAeprB,GAAO,IACrF,CACA,aAAAirB,GACEnd,aAAalN,KAAK4gB,UAClB5gB,KAAK4gB,SAAW,IAClB,CAGA,sBAAOnkB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO6/B,GAAM5kB,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KACf,CACF,GACF,ECr0IK,SAAS0qB,GAAcruB,GACD,WAAvBhX,SAASuX,WAAyBP,IACjChX,SAASyF,iBAAiB,mBAAoBuR,EACrD,CDy0IAwK,GAAqBqjB,IAMrB/tB,GAAmB+tB,IEpyInBQ,IAzCA,WAC2B,GAAGt4B,MAAM5U,KAChC6H,SAAS+a,iBAAiB,+BAETtd,KAAI,SAAU6nC,GAC/B,OAAO,IAAI,GAAkBA,EAAkB,CAC7CpK,MAAO,CAAE1Q,KAAM,IAAKD,KAAM,MAE9B,GACF,IAiCA8a,IA5BA,WACYrlC,SAASm9B,eAAe,mBAC9B13B,iBAAiB,SAAS,WAC5BzF,SAAS6G,KAAKT,UAAY,EAC1BpG,SAASC,gBAAgBmG,UAAY,CACvC,GACF,IAuBAi/B,IArBA,WACE,IAAIE,EAAMvlC,SAASm9B,eAAe,mBAC9BqI,EAASxlC,SACVylC,uBAAuB,aAAa,GACpCxnC,wBACH1D,OAAOkL,iBAAiB,UAAU,WAC5BkV,KAAK+qB,UAAY/qB,KAAKgrB,SAAWhrB,KAAKgrB,QAAUH,EAAOjtC,OACzDgtC,EAAI7pC,MAAMgxB,QAAU,QAEpB6Y,EAAI7pC,MAAMgxB,QAAU,OAEtB/R,KAAK+qB,UAAY/qB,KAAKgrB,OACxB,GACF,IAUAprC,OAAOqrC,UAAY","sources":["webpack://pydata_sphinx_theme/webpack/bootstrap","webpack://pydata_sphinx_theme/webpack/runtime/define property getters","webpack://pydata_sphinx_theme/webpack/runtime/hasOwnProperty shorthand","webpack://pydata_sphinx_theme/webpack/runtime/make namespace object","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/enums.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/instanceOf.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/applyStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getBasePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/math.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/userAgent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isLayoutViewport.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getBoundingClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getLayoutRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/contains.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getComputedStyle.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isTableElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getParentNode.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getOffsetParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getMainAxisFromPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/within.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergePaddingObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getFreshSideObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/expandToHashMap.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/arrow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getVariation.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/computeStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/eventListeners.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositeVariationPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScrollBarX.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/listScrollParents.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/rectToClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getClippingRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getViewportRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/detectOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/flip.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeAutoPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/hide.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/offset.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/popperOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/preventOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getAltAxis.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getCompositeRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getHTMLElementScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/orderModifiers.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/createPopper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/debounce.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergeByName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper-lite.js","webpack://pydata_sphinx_theme/./node_modules/bootstrap/dist/js/bootstrap.esm.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/mixin.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/bootstrap.js"],"sourcesContent":["// The require scope\nvar __webpack_require__ = {};\n\n","// define getter functions for harmony exports\n__webpack_require__.d = (exports, definition) => {\n\tfor(var key in definition) {\n\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n\t\t}\n\t}\n};","__webpack_require__.o = (obj, prop) => (Object.prototype.hasOwnProperty.call(obj, prop))","// define __esModule on exports\n__webpack_require__.r = (exports) => {\n\tif(typeof Symbol !== 'undefined' && Symbol.toStringTag) {\n\t\tObject.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });\n\t}\n\tObject.defineProperty(exports, '__esModule', { value: true });\n};","export var top = 'top';\nexport var bottom = 'bottom';\nexport var right = 'right';\nexport var left = 'left';\nexport var auto = 'auto';\nexport var basePlacements = [top, bottom, right, left];\nexport var start = 'start';\nexport var end = 'end';\nexport var clippingParents = 'clippingParents';\nexport var viewport = 'viewport';\nexport var popper = 'popper';\nexport var reference = 'reference';\nexport var variationPlacements = /*#__PURE__*/basePlacements.reduce(function (acc, placement) {\n return acc.concat([placement + \"-\" + start, placement + \"-\" + end]);\n}, []);\nexport var placements = /*#__PURE__*/[].concat(basePlacements, [auto]).reduce(function (acc, placement) {\n return acc.concat([placement, placement + \"-\" + start, placement + \"-\" + end]);\n}, []); // modifiers that need to read the DOM\n\nexport var beforeRead = 'beforeRead';\nexport var read = 'read';\nexport var afterRead = 'afterRead'; // pure-logic modifiers\n\nexport var beforeMain = 'beforeMain';\nexport var main = 'main';\nexport var afterMain = 'afterMain'; // modifier with the purpose to write to the DOM (or write into a framework state)\n\nexport var beforeWrite = 'beforeWrite';\nexport var write = 'write';\nexport var afterWrite = 'afterWrite';\nexport var modifierPhases = [beforeRead, read, afterRead, beforeMain, main, afterMain, beforeWrite, write, afterWrite];","export default function getNodeName(element) {\n return element ? (element.nodeName || '').toLowerCase() : null;\n}","export default function getWindow(node) {\n if (node == null) {\n return window;\n }\n\n if (node.toString() !== '[object Window]') {\n var ownerDocument = node.ownerDocument;\n return ownerDocument ? ownerDocument.defaultView || window : window;\n }\n\n return node;\n}","import getWindow from \"./getWindow.js\";\n\nfunction isElement(node) {\n var OwnElement = getWindow(node).Element;\n return node instanceof OwnElement || node instanceof Element;\n}\n\nfunction isHTMLElement(node) {\n var OwnElement = getWindow(node).HTMLElement;\n return node instanceof OwnElement || node instanceof HTMLElement;\n}\n\nfunction isShadowRoot(node) {\n // IE 11 has no ShadowRoot\n if (typeof ShadowRoot === 'undefined') {\n return false;\n }\n\n var OwnElement = getWindow(node).ShadowRoot;\n return node instanceof OwnElement || node instanceof ShadowRoot;\n}\n\nexport { isElement, isHTMLElement, isShadowRoot };","import getNodeName from \"../dom-utils/getNodeName.js\";\nimport { isHTMLElement } from \"../dom-utils/instanceOf.js\"; // This modifier takes the styles prepared by the `computeStyles` modifier\n// and applies them to the HTMLElements such as popper and arrow\n\nfunction applyStyles(_ref) {\n var state = _ref.state;\n Object.keys(state.elements).forEach(function (name) {\n var style = state.styles[name] || {};\n var attributes = state.attributes[name] || {};\n var element = state.elements[name]; // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n } // Flow doesn't support to extend this property, but it's the most\n // effective way to apply styles to an HTMLElement\n // $FlowFixMe[cannot-write]\n\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (name) {\n var value = attributes[name];\n\n if (value === false) {\n element.removeAttribute(name);\n } else {\n element.setAttribute(name, value === true ? '' : value);\n }\n });\n });\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state;\n var initialStyles = {\n popper: {\n position: state.options.strategy,\n left: '0',\n top: '0',\n margin: '0'\n },\n arrow: {\n position: 'absolute'\n },\n reference: {}\n };\n Object.assign(state.elements.popper.style, initialStyles.popper);\n state.styles = initialStyles;\n\n if (state.elements.arrow) {\n Object.assign(state.elements.arrow.style, initialStyles.arrow);\n }\n\n return function () {\n Object.keys(state.elements).forEach(function (name) {\n var element = state.elements[name];\n var attributes = state.attributes[name] || {};\n var styleProperties = Object.keys(state.styles.hasOwnProperty(name) ? state.styles[name] : initialStyles[name]); // Set all values to an empty string to unset them\n\n var style = styleProperties.reduce(function (style, property) {\n style[property] = '';\n return style;\n }, {}); // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n }\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (attribute) {\n element.removeAttribute(attribute);\n });\n });\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'applyStyles',\n enabled: true,\n phase: 'write',\n fn: applyStyles,\n effect: effect,\n requires: ['computeStyles']\n};","import { auto } from \"../enums.js\";\nexport default function getBasePlacement(placement) {\n return placement.split('-')[0];\n}","export var max = Math.max;\nexport var min = Math.min;\nexport var round = Math.round;","export default function getUAString() {\n var uaData = navigator.userAgentData;\n\n if (uaData != null && uaData.brands && Array.isArray(uaData.brands)) {\n return uaData.brands.map(function (item) {\n return item.brand + \"/\" + item.version;\n }).join(' ');\n }\n\n return navigator.userAgent;\n}","import getUAString from \"../utils/userAgent.js\";\nexport default function isLayoutViewport() {\n return !/^((?!chrome|android).)*safari/i.test(getUAString());\n}","import { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport { round } from \"../utils/math.js\";\nimport getWindow from \"./getWindow.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getBoundingClientRect(element, includeScale, isFixedStrategy) {\n if (includeScale === void 0) {\n includeScale = false;\n }\n\n if (isFixedStrategy === void 0) {\n isFixedStrategy = false;\n }\n\n var clientRect = element.getBoundingClientRect();\n var scaleX = 1;\n var scaleY = 1;\n\n if (includeScale && isHTMLElement(element)) {\n scaleX = element.offsetWidth > 0 ? round(clientRect.width) / element.offsetWidth || 1 : 1;\n scaleY = element.offsetHeight > 0 ? round(clientRect.height) / element.offsetHeight || 1 : 1;\n }\n\n var _ref = isElement(element) ? getWindow(element) : window,\n visualViewport = _ref.visualViewport;\n\n var addVisualOffsets = !isLayoutViewport() && isFixedStrategy;\n var x = (clientRect.left + (addVisualOffsets && visualViewport ? visualViewport.offsetLeft : 0)) / scaleX;\n var y = (clientRect.top + (addVisualOffsets && visualViewport ? visualViewport.offsetTop : 0)) / scaleY;\n var width = clientRect.width / scaleX;\n var height = clientRect.height / scaleY;\n return {\n width: width,\n height: height,\n top: y,\n right: x + width,\n bottom: y + height,\n left: x,\n x: x,\n y: y\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\"; // Returns the layout rect of an element relative to its offsetParent. Layout\n// means it doesn't take into account transforms.\n\nexport default function getLayoutRect(element) {\n var clientRect = getBoundingClientRect(element); // Use the clientRect sizes if it's not been transformed.\n // Fixes https://github.com/popperjs/popper-core/issues/1223\n\n var width = element.offsetWidth;\n var height = element.offsetHeight;\n\n if (Math.abs(clientRect.width - width) <= 1) {\n width = clientRect.width;\n }\n\n if (Math.abs(clientRect.height - height) <= 1) {\n height = clientRect.height;\n }\n\n return {\n x: element.offsetLeft,\n y: element.offsetTop,\n width: width,\n height: height\n };\n}","import { isShadowRoot } from \"./instanceOf.js\";\nexport default function contains(parent, child) {\n var rootNode = child.getRootNode && child.getRootNode(); // First, attempt with faster native method\n\n if (parent.contains(child)) {\n return true;\n } // then fallback to custom implementation with Shadow DOM support\n else if (rootNode && isShadowRoot(rootNode)) {\n var next = child;\n\n do {\n if (next && parent.isSameNode(next)) {\n return true;\n } // $FlowFixMe[prop-missing]: need a better way to handle this...\n\n\n next = next.parentNode || next.host;\n } while (next);\n } // Give up, the result is false\n\n\n return false;\n}","import getWindow from \"./getWindow.js\";\nexport default function getComputedStyle(element) {\n return getWindow(element).getComputedStyle(element);\n}","import getNodeName from \"./getNodeName.js\";\nexport default function isTableElement(element) {\n return ['table', 'td', 'th'].indexOf(getNodeName(element)) >= 0;\n}","import { isElement } from \"./instanceOf.js\";\nexport default function getDocumentElement(element) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return ((isElement(element) ? element.ownerDocument : // $FlowFixMe[prop-missing]\n element.document) || window.document).documentElement;\n}","import getNodeName from \"./getNodeName.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport { isShadowRoot } from \"./instanceOf.js\";\nexport default function getParentNode(element) {\n if (getNodeName(element) === 'html') {\n return element;\n }\n\n return (// this is a quicker (but less type safe) way to save quite some bytes from the bundle\n // $FlowFixMe[incompatible-return]\n // $FlowFixMe[prop-missing]\n element.assignedSlot || // step into the shadow DOM of the parent of a slotted node\n element.parentNode || ( // DOM Element detected\n isShadowRoot(element) ? element.host : null) || // ShadowRoot detected\n // $FlowFixMe[incompatible-call]: HTMLElement is a Node\n getDocumentElement(element) // fallback\n\n );\n}","import getWindow from \"./getWindow.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isHTMLElement, isShadowRoot } from \"./instanceOf.js\";\nimport isTableElement from \"./isTableElement.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getUAString from \"../utils/userAgent.js\";\n\nfunction getTrueOffsetParent(element) {\n if (!isHTMLElement(element) || // https://github.com/popperjs/popper-core/issues/837\n getComputedStyle(element).position === 'fixed') {\n return null;\n }\n\n return element.offsetParent;\n} // `.offsetParent` reports `null` for fixed elements, while absolute elements\n// return the containing block\n\n\nfunction getContainingBlock(element) {\n var isFirefox = /firefox/i.test(getUAString());\n var isIE = /Trident/i.test(getUAString());\n\n if (isIE && isHTMLElement(element)) {\n // In IE 9, 10 and 11 fixed elements containing block is always established by the viewport\n var elementCss = getComputedStyle(element);\n\n if (elementCss.position === 'fixed') {\n return null;\n }\n }\n\n var currentNode = getParentNode(element);\n\n if (isShadowRoot(currentNode)) {\n currentNode = currentNode.host;\n }\n\n while (isHTMLElement(currentNode) && ['html', 'body'].indexOf(getNodeName(currentNode)) < 0) {\n var css = getComputedStyle(currentNode); // This is non-exhaustive but covers the most common CSS properties that\n // create a containing block.\n // https://developer.mozilla.org/en-US/docs/Web/CSS/Containing_block#identifying_the_containing_block\n\n if (css.transform !== 'none' || css.perspective !== 'none' || css.contain === 'paint' || ['transform', 'perspective'].indexOf(css.willChange) !== -1 || isFirefox && css.willChange === 'filter' || isFirefox && css.filter && css.filter !== 'none') {\n return currentNode;\n } else {\n currentNode = currentNode.parentNode;\n }\n }\n\n return null;\n} // Gets the closest ancestor positioned element. Handles some edge cases,\n// such as table ancestors and cross browser bugs.\n\n\nexport default function getOffsetParent(element) {\n var window = getWindow(element);\n var offsetParent = getTrueOffsetParent(element);\n\n while (offsetParent && isTableElement(offsetParent) && getComputedStyle(offsetParent).position === 'static') {\n offsetParent = getTrueOffsetParent(offsetParent);\n }\n\n if (offsetParent && (getNodeName(offsetParent) === 'html' || getNodeName(offsetParent) === 'body' && getComputedStyle(offsetParent).position === 'static')) {\n return window;\n }\n\n return offsetParent || getContainingBlock(element) || window;\n}","export default function getMainAxisFromPlacement(placement) {\n return ['top', 'bottom'].indexOf(placement) >= 0 ? 'x' : 'y';\n}","import { max as mathMax, min as mathMin } from \"./math.js\";\nexport function within(min, value, max) {\n return mathMax(min, mathMin(value, max));\n}\nexport function withinMaxClamp(min, value, max) {\n var v = within(min, value, max);\n return v > max ? max : v;\n}","import getFreshSideObject from \"./getFreshSideObject.js\";\nexport default function mergePaddingObject(paddingObject) {\n return Object.assign({}, getFreshSideObject(), paddingObject);\n}","export default function getFreshSideObject() {\n return {\n top: 0,\n right: 0,\n bottom: 0,\n left: 0\n };\n}","export default function expandToHashMap(value, keys) {\n return keys.reduce(function (hashMap, key) {\n hashMap[key] = value;\n return hashMap;\n }, {});\n}","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport contains from \"../dom-utils/contains.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport { within } from \"../utils/within.js\";\nimport mergePaddingObject from \"../utils/mergePaddingObject.js\";\nimport expandToHashMap from \"../utils/expandToHashMap.js\";\nimport { left, right, basePlacements, top, bottom } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar toPaddingObject = function toPaddingObject(padding, state) {\n padding = typeof padding === 'function' ? padding(Object.assign({}, state.rects, {\n placement: state.placement\n })) : padding;\n return mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n};\n\nfunction arrow(_ref) {\n var _state$modifiersData$;\n\n var state = _ref.state,\n name = _ref.name,\n options = _ref.options;\n var arrowElement = state.elements.arrow;\n var popperOffsets = state.modifiersData.popperOffsets;\n var basePlacement = getBasePlacement(state.placement);\n var axis = getMainAxisFromPlacement(basePlacement);\n var isVertical = [left, right].indexOf(basePlacement) >= 0;\n var len = isVertical ? 'height' : 'width';\n\n if (!arrowElement || !popperOffsets) {\n return;\n }\n\n var paddingObject = toPaddingObject(options.padding, state);\n var arrowRect = getLayoutRect(arrowElement);\n var minProp = axis === 'y' ? top : left;\n var maxProp = axis === 'y' ? bottom : right;\n var endDiff = state.rects.reference[len] + state.rects.reference[axis] - popperOffsets[axis] - state.rects.popper[len];\n var startDiff = popperOffsets[axis] - state.rects.reference[axis];\n var arrowOffsetParent = getOffsetParent(arrowElement);\n var clientSize = arrowOffsetParent ? axis === 'y' ? arrowOffsetParent.clientHeight || 0 : arrowOffsetParent.clientWidth || 0 : 0;\n var centerToReference = endDiff / 2 - startDiff / 2; // Make sure the arrow doesn't overflow the popper if the center point is\n // outside of the popper bounds\n\n var min = paddingObject[minProp];\n var max = clientSize - arrowRect[len] - paddingObject[maxProp];\n var center = clientSize / 2 - arrowRect[len] / 2 + centerToReference;\n var offset = within(min, center, max); // Prevents breaking syntax highlighting...\n\n var axisProp = axis;\n state.modifiersData[name] = (_state$modifiersData$ = {}, _state$modifiersData$[axisProp] = offset, _state$modifiersData$.centerOffset = offset - center, _state$modifiersData$);\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state,\n options = _ref2.options;\n var _options$element = options.element,\n arrowElement = _options$element === void 0 ? '[data-popper-arrow]' : _options$element;\n\n if (arrowElement == null) {\n return;\n } // CSS selector\n\n\n if (typeof arrowElement === 'string') {\n arrowElement = state.elements.popper.querySelector(arrowElement);\n\n if (!arrowElement) {\n return;\n }\n }\n\n if (!contains(state.elements.popper, arrowElement)) {\n return;\n }\n\n state.elements.arrow = arrowElement;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'arrow',\n enabled: true,\n phase: 'main',\n fn: arrow,\n effect: effect,\n requires: ['popperOffsets'],\n requiresIfExists: ['preventOverflow']\n};","export default function getVariation(placement) {\n return placement.split('-')[1];\n}","import { top, left, right, bottom, end } from \"../enums.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getWindow from \"../dom-utils/getWindow.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getComputedStyle from \"../dom-utils/getComputedStyle.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport { round } from \"../utils/math.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar unsetSides = {\n top: 'auto',\n right: 'auto',\n bottom: 'auto',\n left: 'auto'\n}; // Round the offsets to the nearest suitable subpixel based on the DPR.\n// Zooming can change the DPR, but it seems to report a value that will\n// cleanly divide the values into the appropriate subpixels.\n\nfunction roundOffsetsByDPR(_ref, win) {\n var x = _ref.x,\n y = _ref.y;\n var dpr = win.devicePixelRatio || 1;\n return {\n x: round(x * dpr) / dpr || 0,\n y: round(y * dpr) / dpr || 0\n };\n}\n\nexport function mapToStyles(_ref2) {\n var _Object$assign2;\n\n var popper = _ref2.popper,\n popperRect = _ref2.popperRect,\n placement = _ref2.placement,\n variation = _ref2.variation,\n offsets = _ref2.offsets,\n position = _ref2.position,\n gpuAcceleration = _ref2.gpuAcceleration,\n adaptive = _ref2.adaptive,\n roundOffsets = _ref2.roundOffsets,\n isFixed = _ref2.isFixed;\n var _offsets$x = offsets.x,\n x = _offsets$x === void 0 ? 0 : _offsets$x,\n _offsets$y = offsets.y,\n y = _offsets$y === void 0 ? 0 : _offsets$y;\n\n var _ref3 = typeof roundOffsets === 'function' ? roundOffsets({\n x: x,\n y: y\n }) : {\n x: x,\n y: y\n };\n\n x = _ref3.x;\n y = _ref3.y;\n var hasX = offsets.hasOwnProperty('x');\n var hasY = offsets.hasOwnProperty('y');\n var sideX = left;\n var sideY = top;\n var win = window;\n\n if (adaptive) {\n var offsetParent = getOffsetParent(popper);\n var heightProp = 'clientHeight';\n var widthProp = 'clientWidth';\n\n if (offsetParent === getWindow(popper)) {\n offsetParent = getDocumentElement(popper);\n\n if (getComputedStyle(offsetParent).position !== 'static' && position === 'absolute') {\n heightProp = 'scrollHeight';\n widthProp = 'scrollWidth';\n }\n } // $FlowFixMe[incompatible-cast]: force type refinement, we compare offsetParent with window above, but Flow doesn't detect it\n\n\n offsetParent = offsetParent;\n\n if (placement === top || (placement === left || placement === right) && variation === end) {\n sideY = bottom;\n var offsetY = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.height : // $FlowFixMe[prop-missing]\n offsetParent[heightProp];\n y -= offsetY - popperRect.height;\n y *= gpuAcceleration ? 1 : -1;\n }\n\n if (placement === left || (placement === top || placement === bottom) && variation === end) {\n sideX = right;\n var offsetX = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.width : // $FlowFixMe[prop-missing]\n offsetParent[widthProp];\n x -= offsetX - popperRect.width;\n x *= gpuAcceleration ? 1 : -1;\n }\n }\n\n var commonStyles = Object.assign({\n position: position\n }, adaptive && unsetSides);\n\n var _ref4 = roundOffsets === true ? roundOffsetsByDPR({\n x: x,\n y: y\n }, getWindow(popper)) : {\n x: x,\n y: y\n };\n\n x = _ref4.x;\n y = _ref4.y;\n\n if (gpuAcceleration) {\n var _Object$assign;\n\n return Object.assign({}, commonStyles, (_Object$assign = {}, _Object$assign[sideY] = hasY ? '0' : '', _Object$assign[sideX] = hasX ? '0' : '', _Object$assign.transform = (win.devicePixelRatio || 1) <= 1 ? \"translate(\" + x + \"px, \" + y + \"px)\" : \"translate3d(\" + x + \"px, \" + y + \"px, 0)\", _Object$assign));\n }\n\n return Object.assign({}, commonStyles, (_Object$assign2 = {}, _Object$assign2[sideY] = hasY ? y + \"px\" : '', _Object$assign2[sideX] = hasX ? x + \"px\" : '', _Object$assign2.transform = '', _Object$assign2));\n}\n\nfunction computeStyles(_ref5) {\n var state = _ref5.state,\n options = _ref5.options;\n var _options$gpuAccelerat = options.gpuAcceleration,\n gpuAcceleration = _options$gpuAccelerat === void 0 ? true : _options$gpuAccelerat,\n _options$adaptive = options.adaptive,\n adaptive = _options$adaptive === void 0 ? true : _options$adaptive,\n _options$roundOffsets = options.roundOffsets,\n roundOffsets = _options$roundOffsets === void 0 ? true : _options$roundOffsets;\n var commonStyles = {\n placement: getBasePlacement(state.placement),\n variation: getVariation(state.placement),\n popper: state.elements.popper,\n popperRect: state.rects.popper,\n gpuAcceleration: gpuAcceleration,\n isFixed: state.options.strategy === 'fixed'\n };\n\n if (state.modifiersData.popperOffsets != null) {\n state.styles.popper = Object.assign({}, state.styles.popper, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.popperOffsets,\n position: state.options.strategy,\n adaptive: adaptive,\n roundOffsets: roundOffsets\n })));\n }\n\n if (state.modifiersData.arrow != null) {\n state.styles.arrow = Object.assign({}, state.styles.arrow, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.arrow,\n position: 'absolute',\n adaptive: false,\n roundOffsets: roundOffsets\n })));\n }\n\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-placement': state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'computeStyles',\n enabled: true,\n phase: 'beforeWrite',\n fn: computeStyles,\n data: {}\n};","import getWindow from \"../dom-utils/getWindow.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar passive = {\n passive: true\n};\n\nfunction effect(_ref) {\n var state = _ref.state,\n instance = _ref.instance,\n options = _ref.options;\n var _options$scroll = options.scroll,\n scroll = _options$scroll === void 0 ? true : _options$scroll,\n _options$resize = options.resize,\n resize = _options$resize === void 0 ? true : _options$resize;\n var window = getWindow(state.elements.popper);\n var scrollParents = [].concat(state.scrollParents.reference, state.scrollParents.popper);\n\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.addEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.addEventListener('resize', instance.update, passive);\n }\n\n return function () {\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.removeEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.removeEventListener('resize', instance.update, passive);\n }\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'eventListeners',\n enabled: true,\n phase: 'write',\n fn: function fn() {},\n effect: effect,\n data: {}\n};","var hash = {\n left: 'right',\n right: 'left',\n bottom: 'top',\n top: 'bottom'\n};\nexport default function getOppositePlacement(placement) {\n return placement.replace(/left|right|bottom|top/g, function (matched) {\n return hash[matched];\n });\n}","var hash = {\n start: 'end',\n end: 'start'\n};\nexport default function getOppositeVariationPlacement(placement) {\n return placement.replace(/start|end/g, function (matched) {\n return hash[matched];\n });\n}","import getWindow from \"./getWindow.js\";\nexport default function getWindowScroll(node) {\n var win = getWindow(node);\n var scrollLeft = win.pageXOffset;\n var scrollTop = win.pageYOffset;\n return {\n scrollLeft: scrollLeft,\n scrollTop: scrollTop\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nexport default function getWindowScrollBarX(element) {\n // If has a CSS width greater than the viewport, then this will be\n // incorrect for RTL.\n // Popper 1 is broken in this case and never had a bug report so let's assume\n // it's not an issue. I don't think anyone ever specifies width on \n // anyway.\n // Browsers where the left scrollbar doesn't cause an issue report `0` for\n // this (e.g. Edge 2019, IE11, Safari)\n return getBoundingClientRect(getDocumentElement(element)).left + getWindowScroll(element).scrollLeft;\n}","import getComputedStyle from \"./getComputedStyle.js\";\nexport default function isScrollParent(element) {\n // Firefox wants us to check `-x` and `-y` variations as well\n var _getComputedStyle = getComputedStyle(element),\n overflow = _getComputedStyle.overflow,\n overflowX = _getComputedStyle.overflowX,\n overflowY = _getComputedStyle.overflowY;\n\n return /auto|scroll|overlay|hidden/.test(overflow + overflowY + overflowX);\n}","import getParentNode from \"./getParentNode.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nexport default function getScrollParent(node) {\n if (['html', 'body', '#document'].indexOf(getNodeName(node)) >= 0) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return node.ownerDocument.body;\n }\n\n if (isHTMLElement(node) && isScrollParent(node)) {\n return node;\n }\n\n return getScrollParent(getParentNode(node));\n}","import getScrollParent from \"./getScrollParent.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getWindow from \"./getWindow.js\";\nimport isScrollParent from \"./isScrollParent.js\";\n/*\ngiven a DOM element, return the list of all scroll parents, up the list of ancesors\nuntil we get to the top window object. This list is what we attach scroll listeners\nto, because if any of these parent elements scroll, we'll need to re-calculate the\nreference element's position.\n*/\n\nexport default function listScrollParents(element, list) {\n var _element$ownerDocumen;\n\n if (list === void 0) {\n list = [];\n }\n\n var scrollParent = getScrollParent(element);\n var isBody = scrollParent === ((_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body);\n var win = getWindow(scrollParent);\n var target = isBody ? [win].concat(win.visualViewport || [], isScrollParent(scrollParent) ? scrollParent : []) : scrollParent;\n var updatedList = list.concat(target);\n return isBody ? updatedList : // $FlowFixMe[incompatible-call]: isBody tells us target will be an HTMLElement here\n updatedList.concat(listScrollParents(getParentNode(target)));\n}","export default function rectToClientRect(rect) {\n return Object.assign({}, rect, {\n left: rect.x,\n top: rect.y,\n right: rect.x + rect.width,\n bottom: rect.y + rect.height\n });\n}","import { viewport } from \"../enums.js\";\nimport getViewportRect from \"./getViewportRect.js\";\nimport getDocumentRect from \"./getDocumentRect.js\";\nimport listScrollParents from \"./listScrollParents.js\";\nimport getOffsetParent from \"./getOffsetParent.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport contains from \"./contains.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport rectToClientRect from \"../utils/rectToClientRect.js\";\nimport { max, min } from \"../utils/math.js\";\n\nfunction getInnerBoundingClientRect(element, strategy) {\n var rect = getBoundingClientRect(element, false, strategy === 'fixed');\n rect.top = rect.top + element.clientTop;\n rect.left = rect.left + element.clientLeft;\n rect.bottom = rect.top + element.clientHeight;\n rect.right = rect.left + element.clientWidth;\n rect.width = element.clientWidth;\n rect.height = element.clientHeight;\n rect.x = rect.left;\n rect.y = rect.top;\n return rect;\n}\n\nfunction getClientRectFromMixedType(element, clippingParent, strategy) {\n return clippingParent === viewport ? rectToClientRect(getViewportRect(element, strategy)) : isElement(clippingParent) ? getInnerBoundingClientRect(clippingParent, strategy) : rectToClientRect(getDocumentRect(getDocumentElement(element)));\n} // A \"clipping parent\" is an overflowable container with the characteristic of\n// clipping (or hiding) overflowing elements with a position different from\n// `initial`\n\n\nfunction getClippingParents(element) {\n var clippingParents = listScrollParents(getParentNode(element));\n var canEscapeClipping = ['absolute', 'fixed'].indexOf(getComputedStyle(element).position) >= 0;\n var clipperElement = canEscapeClipping && isHTMLElement(element) ? getOffsetParent(element) : element;\n\n if (!isElement(clipperElement)) {\n return [];\n } // $FlowFixMe[incompatible-return]: https://github.com/facebook/flow/issues/1414\n\n\n return clippingParents.filter(function (clippingParent) {\n return isElement(clippingParent) && contains(clippingParent, clipperElement) && getNodeName(clippingParent) !== 'body';\n });\n} // Gets the maximum area that the element is visible in due to any number of\n// clipping parents\n\n\nexport default function getClippingRect(element, boundary, rootBoundary, strategy) {\n var mainClippingParents = boundary === 'clippingParents' ? getClippingParents(element) : [].concat(boundary);\n var clippingParents = [].concat(mainClippingParents, [rootBoundary]);\n var firstClippingParent = clippingParents[0];\n var clippingRect = clippingParents.reduce(function (accRect, clippingParent) {\n var rect = getClientRectFromMixedType(element, clippingParent, strategy);\n accRect.top = max(rect.top, accRect.top);\n accRect.right = min(rect.right, accRect.right);\n accRect.bottom = min(rect.bottom, accRect.bottom);\n accRect.left = max(rect.left, accRect.left);\n return accRect;\n }, getClientRectFromMixedType(element, firstClippingParent, strategy));\n clippingRect.width = clippingRect.right - clippingRect.left;\n clippingRect.height = clippingRect.bottom - clippingRect.top;\n clippingRect.x = clippingRect.left;\n clippingRect.y = clippingRect.top;\n return clippingRect;\n}","import getWindow from \"./getWindow.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getViewportRect(element, strategy) {\n var win = getWindow(element);\n var html = getDocumentElement(element);\n var visualViewport = win.visualViewport;\n var width = html.clientWidth;\n var height = html.clientHeight;\n var x = 0;\n var y = 0;\n\n if (visualViewport) {\n width = visualViewport.width;\n height = visualViewport.height;\n var layoutViewport = isLayoutViewport();\n\n if (layoutViewport || !layoutViewport && strategy === 'fixed') {\n x = visualViewport.offsetLeft;\n y = visualViewport.offsetTop;\n }\n }\n\n return {\n width: width,\n height: height,\n x: x + getWindowScrollBarX(element),\n y: y\n };\n}","import getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nimport { max } from \"../utils/math.js\"; // Gets the entire size of the scrollable document area, even extending outside\n// of the `` and `` rect bounds if horizontally scrollable\n\nexport default function getDocumentRect(element) {\n var _element$ownerDocumen;\n\n var html = getDocumentElement(element);\n var winScroll = getWindowScroll(element);\n var body = (_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body;\n var width = max(html.scrollWidth, html.clientWidth, body ? body.scrollWidth : 0, body ? body.clientWidth : 0);\n var height = max(html.scrollHeight, html.clientHeight, body ? body.scrollHeight : 0, body ? body.clientHeight : 0);\n var x = -winScroll.scrollLeft + getWindowScrollBarX(element);\n var y = -winScroll.scrollTop;\n\n if (getComputedStyle(body || html).direction === 'rtl') {\n x += max(html.clientWidth, body ? body.clientWidth : 0) - width;\n }\n\n return {\n width: width,\n height: height,\n x: x,\n y: y\n };\n}","import getBasePlacement from \"./getBasePlacement.js\";\nimport getVariation from \"./getVariation.js\";\nimport getMainAxisFromPlacement from \"./getMainAxisFromPlacement.js\";\nimport { top, right, bottom, left, start, end } from \"../enums.js\";\nexport default function computeOffsets(_ref) {\n var reference = _ref.reference,\n element = _ref.element,\n placement = _ref.placement;\n var basePlacement = placement ? getBasePlacement(placement) : null;\n var variation = placement ? getVariation(placement) : null;\n var commonX = reference.x + reference.width / 2 - element.width / 2;\n var commonY = reference.y + reference.height / 2 - element.height / 2;\n var offsets;\n\n switch (basePlacement) {\n case top:\n offsets = {\n x: commonX,\n y: reference.y - element.height\n };\n break;\n\n case bottom:\n offsets = {\n x: commonX,\n y: reference.y + reference.height\n };\n break;\n\n case right:\n offsets = {\n x: reference.x + reference.width,\n y: commonY\n };\n break;\n\n case left:\n offsets = {\n x: reference.x - element.width,\n y: commonY\n };\n break;\n\n default:\n offsets = {\n x: reference.x,\n y: reference.y\n };\n }\n\n var mainAxis = basePlacement ? getMainAxisFromPlacement(basePlacement) : null;\n\n if (mainAxis != null) {\n var len = mainAxis === 'y' ? 'height' : 'width';\n\n switch (variation) {\n case start:\n offsets[mainAxis] = offsets[mainAxis] - (reference[len] / 2 - element[len] / 2);\n break;\n\n case end:\n offsets[mainAxis] = offsets[mainAxis] + (reference[len] / 2 - element[len] / 2);\n break;\n\n default:\n }\n }\n\n return offsets;\n}","import getClippingRect from \"../dom-utils/getClippingRect.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getBoundingClientRect from \"../dom-utils/getBoundingClientRect.js\";\nimport computeOffsets from \"./computeOffsets.js\";\nimport rectToClientRect from \"./rectToClientRect.js\";\nimport { clippingParents, reference, popper, bottom, top, right, basePlacements, viewport } from \"../enums.js\";\nimport { isElement } from \"../dom-utils/instanceOf.js\";\nimport mergePaddingObject from \"./mergePaddingObject.js\";\nimport expandToHashMap from \"./expandToHashMap.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport default function detectOverflow(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n _options$placement = _options.placement,\n placement = _options$placement === void 0 ? state.placement : _options$placement,\n _options$strategy = _options.strategy,\n strategy = _options$strategy === void 0 ? state.strategy : _options$strategy,\n _options$boundary = _options.boundary,\n boundary = _options$boundary === void 0 ? clippingParents : _options$boundary,\n _options$rootBoundary = _options.rootBoundary,\n rootBoundary = _options$rootBoundary === void 0 ? viewport : _options$rootBoundary,\n _options$elementConte = _options.elementContext,\n elementContext = _options$elementConte === void 0 ? popper : _options$elementConte,\n _options$altBoundary = _options.altBoundary,\n altBoundary = _options$altBoundary === void 0 ? false : _options$altBoundary,\n _options$padding = _options.padding,\n padding = _options$padding === void 0 ? 0 : _options$padding;\n var paddingObject = mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n var altContext = elementContext === popper ? reference : popper;\n var popperRect = state.rects.popper;\n var element = state.elements[altBoundary ? altContext : elementContext];\n var clippingClientRect = getClippingRect(isElement(element) ? element : element.contextElement || getDocumentElement(state.elements.popper), boundary, rootBoundary, strategy);\n var referenceClientRect = getBoundingClientRect(state.elements.reference);\n var popperOffsets = computeOffsets({\n reference: referenceClientRect,\n element: popperRect,\n strategy: 'absolute',\n placement: placement\n });\n var popperClientRect = rectToClientRect(Object.assign({}, popperRect, popperOffsets));\n var elementClientRect = elementContext === popper ? popperClientRect : referenceClientRect; // positive = overflowing the clipping rect\n // 0 or negative = within the clipping rect\n\n var overflowOffsets = {\n top: clippingClientRect.top - elementClientRect.top + paddingObject.top,\n bottom: elementClientRect.bottom - clippingClientRect.bottom + paddingObject.bottom,\n left: clippingClientRect.left - elementClientRect.left + paddingObject.left,\n right: elementClientRect.right - clippingClientRect.right + paddingObject.right\n };\n var offsetData = state.modifiersData.offset; // Offsets can be applied only to the popper element\n\n if (elementContext === popper && offsetData) {\n var offset = offsetData[placement];\n Object.keys(overflowOffsets).forEach(function (key) {\n var multiply = [right, bottom].indexOf(key) >= 0 ? 1 : -1;\n var axis = [top, bottom].indexOf(key) >= 0 ? 'y' : 'x';\n overflowOffsets[key] += offset[axis] * multiply;\n });\n }\n\n return overflowOffsets;\n}","import getOppositePlacement from \"../utils/getOppositePlacement.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getOppositeVariationPlacement from \"../utils/getOppositeVariationPlacement.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport computeAutoPlacement from \"../utils/computeAutoPlacement.js\";\nimport { bottom, top, start, right, left, auto } from \"../enums.js\";\nimport getVariation from \"../utils/getVariation.js\"; // eslint-disable-next-line import/no-unused-modules\n\nfunction getExpandedFallbackPlacements(placement) {\n if (getBasePlacement(placement) === auto) {\n return [];\n }\n\n var oppositePlacement = getOppositePlacement(placement);\n return [getOppositeVariationPlacement(placement), oppositePlacement, getOppositeVariationPlacement(oppositePlacement)];\n}\n\nfunction flip(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n\n if (state.modifiersData[name]._skip) {\n return;\n }\n\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? true : _options$altAxis,\n specifiedFallbackPlacements = options.fallbackPlacements,\n padding = options.padding,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n _options$flipVariatio = options.flipVariations,\n flipVariations = _options$flipVariatio === void 0 ? true : _options$flipVariatio,\n allowedAutoPlacements = options.allowedAutoPlacements;\n var preferredPlacement = state.options.placement;\n var basePlacement = getBasePlacement(preferredPlacement);\n var isBasePlacement = basePlacement === preferredPlacement;\n var fallbackPlacements = specifiedFallbackPlacements || (isBasePlacement || !flipVariations ? [getOppositePlacement(preferredPlacement)] : getExpandedFallbackPlacements(preferredPlacement));\n var placements = [preferredPlacement].concat(fallbackPlacements).reduce(function (acc, placement) {\n return acc.concat(getBasePlacement(placement) === auto ? computeAutoPlacement(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n flipVariations: flipVariations,\n allowedAutoPlacements: allowedAutoPlacements\n }) : placement);\n }, []);\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var checksMap = new Map();\n var makeFallbackChecks = true;\n var firstFittingPlacement = placements[0];\n\n for (var i = 0; i < placements.length; i++) {\n var placement = placements[i];\n\n var _basePlacement = getBasePlacement(placement);\n\n var isStartVariation = getVariation(placement) === start;\n var isVertical = [top, bottom].indexOf(_basePlacement) >= 0;\n var len = isVertical ? 'width' : 'height';\n var overflow = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n altBoundary: altBoundary,\n padding: padding\n });\n var mainVariationSide = isVertical ? isStartVariation ? right : left : isStartVariation ? bottom : top;\n\n if (referenceRect[len] > popperRect[len]) {\n mainVariationSide = getOppositePlacement(mainVariationSide);\n }\n\n var altVariationSide = getOppositePlacement(mainVariationSide);\n var checks = [];\n\n if (checkMainAxis) {\n checks.push(overflow[_basePlacement] <= 0);\n }\n\n if (checkAltAxis) {\n checks.push(overflow[mainVariationSide] <= 0, overflow[altVariationSide] <= 0);\n }\n\n if (checks.every(function (check) {\n return check;\n })) {\n firstFittingPlacement = placement;\n makeFallbackChecks = false;\n break;\n }\n\n checksMap.set(placement, checks);\n }\n\n if (makeFallbackChecks) {\n // `2` may be desired in some cases – research later\n var numberOfChecks = flipVariations ? 3 : 1;\n\n var _loop = function _loop(_i) {\n var fittingPlacement = placements.find(function (placement) {\n var checks = checksMap.get(placement);\n\n if (checks) {\n return checks.slice(0, _i).every(function (check) {\n return check;\n });\n }\n });\n\n if (fittingPlacement) {\n firstFittingPlacement = fittingPlacement;\n return \"break\";\n }\n };\n\n for (var _i = numberOfChecks; _i > 0; _i--) {\n var _ret = _loop(_i);\n\n if (_ret === \"break\") break;\n }\n }\n\n if (state.placement !== firstFittingPlacement) {\n state.modifiersData[name]._skip = true;\n state.placement = firstFittingPlacement;\n state.reset = true;\n }\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'flip',\n enabled: true,\n phase: 'main',\n fn: flip,\n requiresIfExists: ['offset'],\n data: {\n _skip: false\n }\n};","import getVariation from \"./getVariation.js\";\nimport { variationPlacements, basePlacements, placements as allPlacements } from \"../enums.js\";\nimport detectOverflow from \"./detectOverflow.js\";\nimport getBasePlacement from \"./getBasePlacement.js\";\nexport default function computeAutoPlacement(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n placement = _options.placement,\n boundary = _options.boundary,\n rootBoundary = _options.rootBoundary,\n padding = _options.padding,\n flipVariations = _options.flipVariations,\n _options$allowedAutoP = _options.allowedAutoPlacements,\n allowedAutoPlacements = _options$allowedAutoP === void 0 ? allPlacements : _options$allowedAutoP;\n var variation = getVariation(placement);\n var placements = variation ? flipVariations ? variationPlacements : variationPlacements.filter(function (placement) {\n return getVariation(placement) === variation;\n }) : basePlacements;\n var allowedPlacements = placements.filter(function (placement) {\n return allowedAutoPlacements.indexOf(placement) >= 0;\n });\n\n if (allowedPlacements.length === 0) {\n allowedPlacements = placements;\n } // $FlowFixMe[incompatible-type]: Flow seems to have problems with two array unions...\n\n\n var overflows = allowedPlacements.reduce(function (acc, placement) {\n acc[placement] = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding\n })[getBasePlacement(placement)];\n return acc;\n }, {});\n return Object.keys(overflows).sort(function (a, b) {\n return overflows[a] - overflows[b];\n });\n}","import { top, bottom, left, right } from \"../enums.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\n\nfunction getSideOffsets(overflow, rect, preventedOffsets) {\n if (preventedOffsets === void 0) {\n preventedOffsets = {\n x: 0,\n y: 0\n };\n }\n\n return {\n top: overflow.top - rect.height - preventedOffsets.y,\n right: overflow.right - rect.width + preventedOffsets.x,\n bottom: overflow.bottom - rect.height + preventedOffsets.y,\n left: overflow.left - rect.width - preventedOffsets.x\n };\n}\n\nfunction isAnySideFullyClipped(overflow) {\n return [top, right, bottom, left].some(function (side) {\n return overflow[side] >= 0;\n });\n}\n\nfunction hide(_ref) {\n var state = _ref.state,\n name = _ref.name;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var preventedOffsets = state.modifiersData.preventOverflow;\n var referenceOverflow = detectOverflow(state, {\n elementContext: 'reference'\n });\n var popperAltOverflow = detectOverflow(state, {\n altBoundary: true\n });\n var referenceClippingOffsets = getSideOffsets(referenceOverflow, referenceRect);\n var popperEscapeOffsets = getSideOffsets(popperAltOverflow, popperRect, preventedOffsets);\n var isReferenceHidden = isAnySideFullyClipped(referenceClippingOffsets);\n var hasPopperEscaped = isAnySideFullyClipped(popperEscapeOffsets);\n state.modifiersData[name] = {\n referenceClippingOffsets: referenceClippingOffsets,\n popperEscapeOffsets: popperEscapeOffsets,\n isReferenceHidden: isReferenceHidden,\n hasPopperEscaped: hasPopperEscaped\n };\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-reference-hidden': isReferenceHidden,\n 'data-popper-escaped': hasPopperEscaped\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'hide',\n enabled: true,\n phase: 'main',\n requiresIfExists: ['preventOverflow'],\n fn: hide\n};","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport { top, left, right, placements } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport function distanceAndSkiddingToXY(placement, rects, offset) {\n var basePlacement = getBasePlacement(placement);\n var invertDistance = [left, top].indexOf(basePlacement) >= 0 ? -1 : 1;\n\n var _ref = typeof offset === 'function' ? offset(Object.assign({}, rects, {\n placement: placement\n })) : offset,\n skidding = _ref[0],\n distance = _ref[1];\n\n skidding = skidding || 0;\n distance = (distance || 0) * invertDistance;\n return [left, right].indexOf(basePlacement) >= 0 ? {\n x: distance,\n y: skidding\n } : {\n x: skidding,\n y: distance\n };\n}\n\nfunction offset(_ref2) {\n var state = _ref2.state,\n options = _ref2.options,\n name = _ref2.name;\n var _options$offset = options.offset,\n offset = _options$offset === void 0 ? [0, 0] : _options$offset;\n var data = placements.reduce(function (acc, placement) {\n acc[placement] = distanceAndSkiddingToXY(placement, state.rects, offset);\n return acc;\n }, {});\n var _data$state$placement = data[state.placement],\n x = _data$state$placement.x,\n y = _data$state$placement.y;\n\n if (state.modifiersData.popperOffsets != null) {\n state.modifiersData.popperOffsets.x += x;\n state.modifiersData.popperOffsets.y += y;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'offset',\n enabled: true,\n phase: 'main',\n requires: ['popperOffsets'],\n fn: offset\n};","import computeOffsets from \"../utils/computeOffsets.js\";\n\nfunction popperOffsets(_ref) {\n var state = _ref.state,\n name = _ref.name;\n // Offsets are the actual position the popper needs to have to be\n // properly positioned near its reference element\n // This is the most basic placement, and will be adjusted by\n // the modifiers in the next step\n state.modifiersData[name] = computeOffsets({\n reference: state.rects.reference,\n element: state.rects.popper,\n strategy: 'absolute',\n placement: state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'popperOffsets',\n enabled: true,\n phase: 'read',\n fn: popperOffsets,\n data: {}\n};","import { top, left, right, bottom, start } from \"../enums.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport getAltAxis from \"../utils/getAltAxis.js\";\nimport { within, withinMaxClamp } from \"../utils/within.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport getFreshSideObject from \"../utils/getFreshSideObject.js\";\nimport { min as mathMin, max as mathMax } from \"../utils/math.js\";\n\nfunction preventOverflow(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? false : _options$altAxis,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n padding = options.padding,\n _options$tether = options.tether,\n tether = _options$tether === void 0 ? true : _options$tether,\n _options$tetherOffset = options.tetherOffset,\n tetherOffset = _options$tetherOffset === void 0 ? 0 : _options$tetherOffset;\n var overflow = detectOverflow(state, {\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n altBoundary: altBoundary\n });\n var basePlacement = getBasePlacement(state.placement);\n var variation = getVariation(state.placement);\n var isBasePlacement = !variation;\n var mainAxis = getMainAxisFromPlacement(basePlacement);\n var altAxis = getAltAxis(mainAxis);\n var popperOffsets = state.modifiersData.popperOffsets;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var tetherOffsetValue = typeof tetherOffset === 'function' ? tetherOffset(Object.assign({}, state.rects, {\n placement: state.placement\n })) : tetherOffset;\n var normalizedTetherOffsetValue = typeof tetherOffsetValue === 'number' ? {\n mainAxis: tetherOffsetValue,\n altAxis: tetherOffsetValue\n } : Object.assign({\n mainAxis: 0,\n altAxis: 0\n }, tetherOffsetValue);\n var offsetModifierState = state.modifiersData.offset ? state.modifiersData.offset[state.placement] : null;\n var data = {\n x: 0,\n y: 0\n };\n\n if (!popperOffsets) {\n return;\n }\n\n if (checkMainAxis) {\n var _offsetModifierState$;\n\n var mainSide = mainAxis === 'y' ? top : left;\n var altSide = mainAxis === 'y' ? bottom : right;\n var len = mainAxis === 'y' ? 'height' : 'width';\n var offset = popperOffsets[mainAxis];\n var min = offset + overflow[mainSide];\n var max = offset - overflow[altSide];\n var additive = tether ? -popperRect[len] / 2 : 0;\n var minLen = variation === start ? referenceRect[len] : popperRect[len];\n var maxLen = variation === start ? -popperRect[len] : -referenceRect[len]; // We need to include the arrow in the calculation so the arrow doesn't go\n // outside the reference bounds\n\n var arrowElement = state.elements.arrow;\n var arrowRect = tether && arrowElement ? getLayoutRect(arrowElement) : {\n width: 0,\n height: 0\n };\n var arrowPaddingObject = state.modifiersData['arrow#persistent'] ? state.modifiersData['arrow#persistent'].padding : getFreshSideObject();\n var arrowPaddingMin = arrowPaddingObject[mainSide];\n var arrowPaddingMax = arrowPaddingObject[altSide]; // If the reference length is smaller than the arrow length, we don't want\n // to include its full size in the calculation. If the reference is small\n // and near the edge of a boundary, the popper can overflow even if the\n // reference is not overflowing as well (e.g. virtual elements with no\n // width or height)\n\n var arrowLen = within(0, referenceRect[len], arrowRect[len]);\n var minOffset = isBasePlacement ? referenceRect[len] / 2 - additive - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis : minLen - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis;\n var maxOffset = isBasePlacement ? -referenceRect[len] / 2 + additive + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis : maxLen + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis;\n var arrowOffsetParent = state.elements.arrow && getOffsetParent(state.elements.arrow);\n var clientOffset = arrowOffsetParent ? mainAxis === 'y' ? arrowOffsetParent.clientTop || 0 : arrowOffsetParent.clientLeft || 0 : 0;\n var offsetModifierValue = (_offsetModifierState$ = offsetModifierState == null ? void 0 : offsetModifierState[mainAxis]) != null ? _offsetModifierState$ : 0;\n var tetherMin = offset + minOffset - offsetModifierValue - clientOffset;\n var tetherMax = offset + maxOffset - offsetModifierValue;\n var preventedOffset = within(tether ? mathMin(min, tetherMin) : min, offset, tether ? mathMax(max, tetherMax) : max);\n popperOffsets[mainAxis] = preventedOffset;\n data[mainAxis] = preventedOffset - offset;\n }\n\n if (checkAltAxis) {\n var _offsetModifierState$2;\n\n var _mainSide = mainAxis === 'x' ? top : left;\n\n var _altSide = mainAxis === 'x' ? bottom : right;\n\n var _offset = popperOffsets[altAxis];\n\n var _len = altAxis === 'y' ? 'height' : 'width';\n\n var _min = _offset + overflow[_mainSide];\n\n var _max = _offset - overflow[_altSide];\n\n var isOriginSide = [top, left].indexOf(basePlacement) !== -1;\n\n var _offsetModifierValue = (_offsetModifierState$2 = offsetModifierState == null ? void 0 : offsetModifierState[altAxis]) != null ? _offsetModifierState$2 : 0;\n\n var _tetherMin = isOriginSide ? _min : _offset - referenceRect[_len] - popperRect[_len] - _offsetModifierValue + normalizedTetherOffsetValue.altAxis;\n\n var _tetherMax = isOriginSide ? _offset + referenceRect[_len] + popperRect[_len] - _offsetModifierValue - normalizedTetherOffsetValue.altAxis : _max;\n\n var _preventedOffset = tether && isOriginSide ? withinMaxClamp(_tetherMin, _offset, _tetherMax) : within(tether ? _tetherMin : _min, _offset, tether ? _tetherMax : _max);\n\n popperOffsets[altAxis] = _preventedOffset;\n data[altAxis] = _preventedOffset - _offset;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'preventOverflow',\n enabled: true,\n phase: 'main',\n fn: preventOverflow,\n requiresIfExists: ['offset']\n};","export default function getAltAxis(axis) {\n return axis === 'x' ? 'y' : 'x';\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getNodeScroll from \"./getNodeScroll.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport { round } from \"../utils/math.js\";\n\nfunction isElementScaled(element) {\n var rect = element.getBoundingClientRect();\n var scaleX = round(rect.width) / element.offsetWidth || 1;\n var scaleY = round(rect.height) / element.offsetHeight || 1;\n return scaleX !== 1 || scaleY !== 1;\n} // Returns the composite rect of an element relative to its offsetParent.\n// Composite means it takes into account transforms as well as layout.\n\n\nexport default function getCompositeRect(elementOrVirtualElement, offsetParent, isFixed) {\n if (isFixed === void 0) {\n isFixed = false;\n }\n\n var isOffsetParentAnElement = isHTMLElement(offsetParent);\n var offsetParentIsScaled = isHTMLElement(offsetParent) && isElementScaled(offsetParent);\n var documentElement = getDocumentElement(offsetParent);\n var rect = getBoundingClientRect(elementOrVirtualElement, offsetParentIsScaled, isFixed);\n var scroll = {\n scrollLeft: 0,\n scrollTop: 0\n };\n var offsets = {\n x: 0,\n y: 0\n };\n\n if (isOffsetParentAnElement || !isOffsetParentAnElement && !isFixed) {\n if (getNodeName(offsetParent) !== 'body' || // https://github.com/popperjs/popper-core/issues/1078\n isScrollParent(documentElement)) {\n scroll = getNodeScroll(offsetParent);\n }\n\n if (isHTMLElement(offsetParent)) {\n offsets = getBoundingClientRect(offsetParent, true);\n offsets.x += offsetParent.clientLeft;\n offsets.y += offsetParent.clientTop;\n } else if (documentElement) {\n offsets.x = getWindowScrollBarX(documentElement);\n }\n }\n\n return {\n x: rect.left + scroll.scrollLeft - offsets.x,\n y: rect.top + scroll.scrollTop - offsets.y,\n width: rect.width,\n height: rect.height\n };\n}","import getWindowScroll from \"./getWindowScroll.js\";\nimport getWindow from \"./getWindow.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getHTMLElementScroll from \"./getHTMLElementScroll.js\";\nexport default function getNodeScroll(node) {\n if (node === getWindow(node) || !isHTMLElement(node)) {\n return getWindowScroll(node);\n } else {\n return getHTMLElementScroll(node);\n }\n}","export default function getHTMLElementScroll(element) {\n return {\n scrollLeft: element.scrollLeft,\n scrollTop: element.scrollTop\n };\n}","import { modifierPhases } from \"../enums.js\"; // source: https://stackoverflow.com/questions/49875255\n\nfunction order(modifiers) {\n var map = new Map();\n var visited = new Set();\n var result = [];\n modifiers.forEach(function (modifier) {\n map.set(modifier.name, modifier);\n }); // On visiting object, check for its dependencies and visit them recursively\n\n function sort(modifier) {\n visited.add(modifier.name);\n var requires = [].concat(modifier.requires || [], modifier.requiresIfExists || []);\n requires.forEach(function (dep) {\n if (!visited.has(dep)) {\n var depModifier = map.get(dep);\n\n if (depModifier) {\n sort(depModifier);\n }\n }\n });\n result.push(modifier);\n }\n\n modifiers.forEach(function (modifier) {\n if (!visited.has(modifier.name)) {\n // check for visited object\n sort(modifier);\n }\n });\n return result;\n}\n\nexport default function orderModifiers(modifiers) {\n // order based on dependencies\n var orderedModifiers = order(modifiers); // order based on phase\n\n return modifierPhases.reduce(function (acc, phase) {\n return acc.concat(orderedModifiers.filter(function (modifier) {\n return modifier.phase === phase;\n }));\n }, []);\n}","import getCompositeRect from \"./dom-utils/getCompositeRect.js\";\nimport getLayoutRect from \"./dom-utils/getLayoutRect.js\";\nimport listScrollParents from \"./dom-utils/listScrollParents.js\";\nimport getOffsetParent from \"./dom-utils/getOffsetParent.js\";\nimport orderModifiers from \"./utils/orderModifiers.js\";\nimport debounce from \"./utils/debounce.js\";\nimport mergeByName from \"./utils/mergeByName.js\";\nimport detectOverflow from \"./utils/detectOverflow.js\";\nimport { isElement } from \"./dom-utils/instanceOf.js\";\nvar DEFAULT_OPTIONS = {\n placement: 'bottom',\n modifiers: [],\n strategy: 'absolute'\n};\n\nfunction areValidElements() {\n for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {\n args[_key] = arguments[_key];\n }\n\n return !args.some(function (element) {\n return !(element && typeof element.getBoundingClientRect === 'function');\n });\n}\n\nexport function popperGenerator(generatorOptions) {\n if (generatorOptions === void 0) {\n generatorOptions = {};\n }\n\n var _generatorOptions = generatorOptions,\n _generatorOptions$def = _generatorOptions.defaultModifiers,\n defaultModifiers = _generatorOptions$def === void 0 ? [] : _generatorOptions$def,\n _generatorOptions$def2 = _generatorOptions.defaultOptions,\n defaultOptions = _generatorOptions$def2 === void 0 ? DEFAULT_OPTIONS : _generatorOptions$def2;\n return function createPopper(reference, popper, options) {\n if (options === void 0) {\n options = defaultOptions;\n }\n\n var state = {\n placement: 'bottom',\n orderedModifiers: [],\n options: Object.assign({}, DEFAULT_OPTIONS, defaultOptions),\n modifiersData: {},\n elements: {\n reference: reference,\n popper: popper\n },\n attributes: {},\n styles: {}\n };\n var effectCleanupFns = [];\n var isDestroyed = false;\n var instance = {\n state: state,\n setOptions: function setOptions(setOptionsAction) {\n var options = typeof setOptionsAction === 'function' ? setOptionsAction(state.options) : setOptionsAction;\n cleanupModifierEffects();\n state.options = Object.assign({}, defaultOptions, state.options, options);\n state.scrollParents = {\n reference: isElement(reference) ? listScrollParents(reference) : reference.contextElement ? listScrollParents(reference.contextElement) : [],\n popper: listScrollParents(popper)\n }; // Orders the modifiers based on their dependencies and `phase`\n // properties\n\n var orderedModifiers = orderModifiers(mergeByName([].concat(defaultModifiers, state.options.modifiers))); // Strip out disabled modifiers\n\n state.orderedModifiers = orderedModifiers.filter(function (m) {\n return m.enabled;\n });\n runModifierEffects();\n return instance.update();\n },\n // Sync update – it will always be executed, even if not necessary. This\n // is useful for low frequency updates where sync behavior simplifies the\n // logic.\n // For high frequency updates (e.g. `resize` and `scroll` events), always\n // prefer the async Popper#update method\n forceUpdate: function forceUpdate() {\n if (isDestroyed) {\n return;\n }\n\n var _state$elements = state.elements,\n reference = _state$elements.reference,\n popper = _state$elements.popper; // Don't proceed if `reference` or `popper` are not valid elements\n // anymore\n\n if (!areValidElements(reference, popper)) {\n return;\n } // Store the reference and popper rects to be read by modifiers\n\n\n state.rects = {\n reference: getCompositeRect(reference, getOffsetParent(popper), state.options.strategy === 'fixed'),\n popper: getLayoutRect(popper)\n }; // Modifiers have the ability to reset the current update cycle. The\n // most common use case for this is the `flip` modifier changing the\n // placement, which then needs to re-run all the modifiers, because the\n // logic was previously ran for the previous placement and is therefore\n // stale/incorrect\n\n state.reset = false;\n state.placement = state.options.placement; // On each update cycle, the `modifiersData` property for each modifier\n // is filled with the initial data specified by the modifier. This means\n // it doesn't persist and is fresh on each update.\n // To ensure persistent data, use `${name}#persistent`\n\n state.orderedModifiers.forEach(function (modifier) {\n return state.modifiersData[modifier.name] = Object.assign({}, modifier.data);\n });\n\n for (var index = 0; index < state.orderedModifiers.length; index++) {\n if (state.reset === true) {\n state.reset = false;\n index = -1;\n continue;\n }\n\n var _state$orderedModifie = state.orderedModifiers[index],\n fn = _state$orderedModifie.fn,\n _state$orderedModifie2 = _state$orderedModifie.options,\n _options = _state$orderedModifie2 === void 0 ? {} : _state$orderedModifie2,\n name = _state$orderedModifie.name;\n\n if (typeof fn === 'function') {\n state = fn({\n state: state,\n options: _options,\n name: name,\n instance: instance\n }) || state;\n }\n }\n },\n // Async and optimistically optimized update – it will not be executed if\n // not necessary (debounced to run at most once-per-tick)\n update: debounce(function () {\n return new Promise(function (resolve) {\n instance.forceUpdate();\n resolve(state);\n });\n }),\n destroy: function destroy() {\n cleanupModifierEffects();\n isDestroyed = true;\n }\n };\n\n if (!areValidElements(reference, popper)) {\n return instance;\n }\n\n instance.setOptions(options).then(function (state) {\n if (!isDestroyed && options.onFirstUpdate) {\n options.onFirstUpdate(state);\n }\n }); // Modifiers have the ability to execute arbitrary code before the first\n // update cycle runs. They will be executed in the same order as the update\n // cycle. This is useful when a modifier adds some persistent data that\n // other modifiers need to use, but the modifier is run after the dependent\n // one.\n\n function runModifierEffects() {\n state.orderedModifiers.forEach(function (_ref) {\n var name = _ref.name,\n _ref$options = _ref.options,\n options = _ref$options === void 0 ? {} : _ref$options,\n effect = _ref.effect;\n\n if (typeof effect === 'function') {\n var cleanupFn = effect({\n state: state,\n name: name,\n instance: instance,\n options: options\n });\n\n var noopFn = function noopFn() {};\n\n effectCleanupFns.push(cleanupFn || noopFn);\n }\n });\n }\n\n function cleanupModifierEffects() {\n effectCleanupFns.forEach(function (fn) {\n return fn();\n });\n effectCleanupFns = [];\n }\n\n return instance;\n };\n}\nexport var createPopper = /*#__PURE__*/popperGenerator(); // eslint-disable-next-line import/no-unused-modules\n\nexport { detectOverflow };","export default function debounce(fn) {\n var pending;\n return function () {\n if (!pending) {\n pending = new Promise(function (resolve) {\n Promise.resolve().then(function () {\n pending = undefined;\n resolve(fn());\n });\n });\n }\n\n return pending;\n };\n}","export default function mergeByName(modifiers) {\n var merged = modifiers.reduce(function (merged, current) {\n var existing = merged[current.name];\n merged[current.name] = existing ? Object.assign({}, existing, current, {\n options: Object.assign({}, existing.options, current.options),\n data: Object.assign({}, existing.data, current.data)\n }) : current;\n return merged;\n }, {}); // IE11 does not support Object.values\n\n return Object.keys(merged).map(function (key) {\n return merged[key];\n });\n}","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nimport offset from \"./modifiers/offset.js\";\nimport flip from \"./modifiers/flip.js\";\nimport preventOverflow from \"./modifiers/preventOverflow.js\";\nimport arrow from \"./modifiers/arrow.js\";\nimport hide from \"./modifiers/hide.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles, offset, flip, preventOverflow, arrow, hide];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow }; // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper as createPopperLite } from \"./popper-lite.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport * from \"./modifiers/index.js\";","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow };","/*!\n * Bootstrap v5.3.3 (https://getbootstrap.com/)\n * Copyright 2011-2024 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors)\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n */\nimport * as Popper from '@popperjs/core';\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/data.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n/**\n * Constants\n */\n\nconst elementMap = new Map();\nconst Data = {\n set(element, key, instance) {\n if (!elementMap.has(element)) {\n elementMap.set(element, new Map());\n }\n const instanceMap = elementMap.get(element);\n\n // make it clear we only want one instance per element\n // can be removed later when multiple key/instances are fine to be used\n if (!instanceMap.has(key) && instanceMap.size !== 0) {\n // eslint-disable-next-line no-console\n console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(instanceMap.keys())[0]}.`);\n return;\n }\n instanceMap.set(key, instance);\n },\n get(element, key) {\n if (elementMap.has(element)) {\n return elementMap.get(element).get(key) || null;\n }\n return null;\n },\n remove(element, key) {\n if (!elementMap.has(element)) {\n return;\n }\n const instanceMap = elementMap.get(element);\n instanceMap.delete(key);\n\n // free up element references if there are no instances left for an element\n if (instanceMap.size === 0) {\n elementMap.delete(element);\n }\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/index.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst MAX_UID = 1000000;\nconst MILLISECONDS_MULTIPLIER = 1000;\nconst TRANSITION_END = 'transitionend';\n\n/**\n * Properly escape IDs selectors to handle weird IDs\n * @param {string} selector\n * @returns {string}\n */\nconst parseSelector = selector => {\n if (selector && window.CSS && window.CSS.escape) {\n // document.querySelector needs escaping to handle IDs (html5+) containing for instance /\n selector = selector.replace(/#([^\\s\"#']+)/g, (match, id) => `#${CSS.escape(id)}`);\n }\n return selector;\n};\n\n// Shout-out Angus Croll (https://goo.gl/pxwQGp)\nconst toType = object => {\n if (object === null || object === undefined) {\n return `${object}`;\n }\n return Object.prototype.toString.call(object).match(/\\s([a-z]+)/i)[1].toLowerCase();\n};\n\n/**\n * Public Util API\n */\n\nconst getUID = prefix => {\n do {\n prefix += Math.floor(Math.random() * MAX_UID);\n } while (document.getElementById(prefix));\n return prefix;\n};\nconst getTransitionDurationFromElement = element => {\n if (!element) {\n return 0;\n }\n\n // Get transition-duration of the element\n let {\n transitionDuration,\n transitionDelay\n } = window.getComputedStyle(element);\n const floatTransitionDuration = Number.parseFloat(transitionDuration);\n const floatTransitionDelay = Number.parseFloat(transitionDelay);\n\n // Return 0 if element or transition duration is not found\n if (!floatTransitionDuration && !floatTransitionDelay) {\n return 0;\n }\n\n // If multiple durations are defined, take the first\n transitionDuration = transitionDuration.split(',')[0];\n transitionDelay = transitionDelay.split(',')[0];\n return (Number.parseFloat(transitionDuration) + Number.parseFloat(transitionDelay)) * MILLISECONDS_MULTIPLIER;\n};\nconst triggerTransitionEnd = element => {\n element.dispatchEvent(new Event(TRANSITION_END));\n};\nconst isElement = object => {\n if (!object || typeof object !== 'object') {\n return false;\n }\n if (typeof object.jquery !== 'undefined') {\n object = object[0];\n }\n return typeof object.nodeType !== 'undefined';\n};\nconst getElement = object => {\n // it's a jQuery object or a node element\n if (isElement(object)) {\n return object.jquery ? object[0] : object;\n }\n if (typeof object === 'string' && object.length > 0) {\n return document.querySelector(parseSelector(object));\n }\n return null;\n};\nconst isVisible = element => {\n if (!isElement(element) || element.getClientRects().length === 0) {\n return false;\n }\n const elementIsVisible = getComputedStyle(element).getPropertyValue('visibility') === 'visible';\n // Handle `details` element as its content may falsie appear visible when it is closed\n const closedDetails = element.closest('details:not([open])');\n if (!closedDetails) {\n return elementIsVisible;\n }\n if (closedDetails !== element) {\n const summary = element.closest('summary');\n if (summary && summary.parentNode !== closedDetails) {\n return false;\n }\n if (summary === null) {\n return false;\n }\n }\n return elementIsVisible;\n};\nconst isDisabled = element => {\n if (!element || element.nodeType !== Node.ELEMENT_NODE) {\n return true;\n }\n if (element.classList.contains('disabled')) {\n return true;\n }\n if (typeof element.disabled !== 'undefined') {\n return element.disabled;\n }\n return element.hasAttribute('disabled') && element.getAttribute('disabled') !== 'false';\n};\nconst findShadowRoot = element => {\n if (!document.documentElement.attachShadow) {\n return null;\n }\n\n // Can find the shadow root otherwise it'll return the document\n if (typeof element.getRootNode === 'function') {\n const root = element.getRootNode();\n return root instanceof ShadowRoot ? root : null;\n }\n if (element instanceof ShadowRoot) {\n return element;\n }\n\n // when we don't find a shadow root\n if (!element.parentNode) {\n return null;\n }\n return findShadowRoot(element.parentNode);\n};\nconst noop = () => {};\n\n/**\n * Trick to restart an element's animation\n *\n * @param {HTMLElement} element\n * @return void\n *\n * @see https://www.charistheo.io/blog/2021/02/restart-a-css-animation-with-javascript/#restarting-a-css-animation\n */\nconst reflow = element => {\n element.offsetHeight; // eslint-disable-line no-unused-expressions\n};\nconst getjQuery = () => {\n if (window.jQuery && !document.body.hasAttribute('data-bs-no-jquery')) {\n return window.jQuery;\n }\n return null;\n};\nconst DOMContentLoadedCallbacks = [];\nconst onDOMContentLoaded = callback => {\n if (document.readyState === 'loading') {\n // add listener on the first call when the document is in loading state\n if (!DOMContentLoadedCallbacks.length) {\n document.addEventListener('DOMContentLoaded', () => {\n for (const callback of DOMContentLoadedCallbacks) {\n callback();\n }\n });\n }\n DOMContentLoadedCallbacks.push(callback);\n } else {\n callback();\n }\n};\nconst isRTL = () => document.documentElement.dir === 'rtl';\nconst defineJQueryPlugin = plugin => {\n onDOMContentLoaded(() => {\n const $ = getjQuery();\n /* istanbul ignore if */\n if ($) {\n const name = plugin.NAME;\n const JQUERY_NO_CONFLICT = $.fn[name];\n $.fn[name] = plugin.jQueryInterface;\n $.fn[name].Constructor = plugin;\n $.fn[name].noConflict = () => {\n $.fn[name] = JQUERY_NO_CONFLICT;\n return plugin.jQueryInterface;\n };\n }\n });\n};\nconst execute = (possibleCallback, args = [], defaultValue = possibleCallback) => {\n return typeof possibleCallback === 'function' ? possibleCallback(...args) : defaultValue;\n};\nconst executeAfterTransition = (callback, transitionElement, waitForTransition = true) => {\n if (!waitForTransition) {\n execute(callback);\n return;\n }\n const durationPadding = 5;\n const emulatedDuration = getTransitionDurationFromElement(transitionElement) + durationPadding;\n let called = false;\n const handler = ({\n target\n }) => {\n if (target !== transitionElement) {\n return;\n }\n called = true;\n transitionElement.removeEventListener(TRANSITION_END, handler);\n execute(callback);\n };\n transitionElement.addEventListener(TRANSITION_END, handler);\n setTimeout(() => {\n if (!called) {\n triggerTransitionEnd(transitionElement);\n }\n }, emulatedDuration);\n};\n\n/**\n * Return the previous/next element of a list.\n *\n * @param {array} list The list of elements\n * @param activeElement The active element\n * @param shouldGetNext Choose to get next or previous element\n * @param isCycleAllowed\n * @return {Element|elem} The proper element\n */\nconst getNextActiveElement = (list, activeElement, shouldGetNext, isCycleAllowed) => {\n const listLength = list.length;\n let index = list.indexOf(activeElement);\n\n // if the element does not exist in the list return an element\n // depending on the direction and if cycle is allowed\n if (index === -1) {\n return !shouldGetNext && isCycleAllowed ? list[listLength - 1] : list[0];\n }\n index += shouldGetNext ? 1 : -1;\n if (isCycleAllowed) {\n index = (index + listLength) % listLength;\n }\n return list[Math.max(0, Math.min(index, listLength - 1))];\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/event-handler.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst namespaceRegex = /[^.]*(?=\\..*)\\.|.*/;\nconst stripNameRegex = /\\..*/;\nconst stripUidRegex = /::\\d+$/;\nconst eventRegistry = {}; // Events storage\nlet uidEvent = 1;\nconst customEvents = {\n mouseenter: 'mouseover',\n mouseleave: 'mouseout'\n};\nconst nativeEvents = new Set(['click', 'dblclick', 'mouseup', 'mousedown', 'contextmenu', 'mousewheel', 'DOMMouseScroll', 'mouseover', 'mouseout', 'mousemove', 'selectstart', 'selectend', 'keydown', 'keypress', 'keyup', 'orientationchange', 'touchstart', 'touchmove', 'touchend', 'touchcancel', 'pointerdown', 'pointermove', 'pointerup', 'pointerleave', 'pointercancel', 'gesturestart', 'gesturechange', 'gestureend', 'focus', 'blur', 'change', 'reset', 'select', 'submit', 'focusin', 'focusout', 'load', 'unload', 'beforeunload', 'resize', 'move', 'DOMContentLoaded', 'readystatechange', 'error', 'abort', 'scroll']);\n\n/**\n * Private methods\n */\n\nfunction makeEventUid(element, uid) {\n return uid && `${uid}::${uidEvent++}` || element.uidEvent || uidEvent++;\n}\nfunction getElementEvents(element) {\n const uid = makeEventUid(element);\n element.uidEvent = uid;\n eventRegistry[uid] = eventRegistry[uid] || {};\n return eventRegistry[uid];\n}\nfunction bootstrapHandler(element, fn) {\n return function handler(event) {\n hydrateObj(event, {\n delegateTarget: element\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, fn);\n }\n return fn.apply(element, [event]);\n };\n}\nfunction bootstrapDelegationHandler(element, selector, fn) {\n return function handler(event) {\n const domElements = element.querySelectorAll(selector);\n for (let {\n target\n } = event; target && target !== this; target = target.parentNode) {\n for (const domElement of domElements) {\n if (domElement !== target) {\n continue;\n }\n hydrateObj(event, {\n delegateTarget: target\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, selector, fn);\n }\n return fn.apply(target, [event]);\n }\n }\n };\n}\nfunction findHandler(events, callable, delegationSelector = null) {\n return Object.values(events).find(event => event.callable === callable && event.delegationSelector === delegationSelector);\n}\nfunction normalizeParameters(originalTypeEvent, handler, delegationFunction) {\n const isDelegated = typeof handler === 'string';\n // TODO: tooltip passes `false` instead of selector, so we need to check\n const callable = isDelegated ? delegationFunction : handler || delegationFunction;\n let typeEvent = getTypeEvent(originalTypeEvent);\n if (!nativeEvents.has(typeEvent)) {\n typeEvent = originalTypeEvent;\n }\n return [isDelegated, callable, typeEvent];\n}\nfunction addHandler(element, originalTypeEvent, handler, delegationFunction, oneOff) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n let [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n\n // in case of mouseenter or mouseleave wrap the handler within a function that checks for its DOM position\n // this prevents the handler from being dispatched the same way as mouseover or mouseout does\n if (originalTypeEvent in customEvents) {\n const wrapFunction = fn => {\n return function (event) {\n if (!event.relatedTarget || event.relatedTarget !== event.delegateTarget && !event.delegateTarget.contains(event.relatedTarget)) {\n return fn.call(this, event);\n }\n };\n };\n callable = wrapFunction(callable);\n }\n const events = getElementEvents(element);\n const handlers = events[typeEvent] || (events[typeEvent] = {});\n const previousFunction = findHandler(handlers, callable, isDelegated ? handler : null);\n if (previousFunction) {\n previousFunction.oneOff = previousFunction.oneOff && oneOff;\n return;\n }\n const uid = makeEventUid(callable, originalTypeEvent.replace(namespaceRegex, ''));\n const fn = isDelegated ? bootstrapDelegationHandler(element, handler, callable) : bootstrapHandler(element, callable);\n fn.delegationSelector = isDelegated ? handler : null;\n fn.callable = callable;\n fn.oneOff = oneOff;\n fn.uidEvent = uid;\n handlers[uid] = fn;\n element.addEventListener(typeEvent, fn, isDelegated);\n}\nfunction removeHandler(element, events, typeEvent, handler, delegationSelector) {\n const fn = findHandler(events[typeEvent], handler, delegationSelector);\n if (!fn) {\n return;\n }\n element.removeEventListener(typeEvent, fn, Boolean(delegationSelector));\n delete events[typeEvent][fn.uidEvent];\n}\nfunction removeNamespacedHandlers(element, events, typeEvent, namespace) {\n const storeElementEvent = events[typeEvent] || {};\n for (const [handlerKey, event] of Object.entries(storeElementEvent)) {\n if (handlerKey.includes(namespace)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n}\nfunction getTypeEvent(event) {\n // allow to get the native events from namespaced events ('click.bs.button' --> 'click')\n event = event.replace(stripNameRegex, '');\n return customEvents[event] || event;\n}\nconst EventHandler = {\n on(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, false);\n },\n one(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, true);\n },\n off(element, originalTypeEvent, handler, delegationFunction) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n const [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n const inNamespace = typeEvent !== originalTypeEvent;\n const events = getElementEvents(element);\n const storeElementEvent = events[typeEvent] || {};\n const isNamespace = originalTypeEvent.startsWith('.');\n if (typeof callable !== 'undefined') {\n // Simplest case: handler is passed, remove that listener ONLY.\n if (!Object.keys(storeElementEvent).length) {\n return;\n }\n removeHandler(element, events, typeEvent, callable, isDelegated ? handler : null);\n return;\n }\n if (isNamespace) {\n for (const elementEvent of Object.keys(events)) {\n removeNamespacedHandlers(element, events, elementEvent, originalTypeEvent.slice(1));\n }\n }\n for (const [keyHandlers, event] of Object.entries(storeElementEvent)) {\n const handlerKey = keyHandlers.replace(stripUidRegex, '');\n if (!inNamespace || originalTypeEvent.includes(handlerKey)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n },\n trigger(element, event, args) {\n if (typeof event !== 'string' || !element) {\n return null;\n }\n const $ = getjQuery();\n const typeEvent = getTypeEvent(event);\n const inNamespace = event !== typeEvent;\n let jQueryEvent = null;\n let bubbles = true;\n let nativeDispatch = true;\n let defaultPrevented = false;\n if (inNamespace && $) {\n jQueryEvent = $.Event(event, args);\n $(element).trigger(jQueryEvent);\n bubbles = !jQueryEvent.isPropagationStopped();\n nativeDispatch = !jQueryEvent.isImmediatePropagationStopped();\n defaultPrevented = jQueryEvent.isDefaultPrevented();\n }\n const evt = hydrateObj(new Event(event, {\n bubbles,\n cancelable: true\n }), args);\n if (defaultPrevented) {\n evt.preventDefault();\n }\n if (nativeDispatch) {\n element.dispatchEvent(evt);\n }\n if (evt.defaultPrevented && jQueryEvent) {\n jQueryEvent.preventDefault();\n }\n return evt;\n }\n};\nfunction hydrateObj(obj, meta = {}) {\n for (const [key, value] of Object.entries(meta)) {\n try {\n obj[key] = value;\n } catch (_unused) {\n Object.defineProperty(obj, key, {\n configurable: true,\n get() {\n return value;\n }\n });\n }\n }\n return obj;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/manipulator.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nfunction normalizeData(value) {\n if (value === 'true') {\n return true;\n }\n if (value === 'false') {\n return false;\n }\n if (value === Number(value).toString()) {\n return Number(value);\n }\n if (value === '' || value === 'null') {\n return null;\n }\n if (typeof value !== 'string') {\n return value;\n }\n try {\n return JSON.parse(decodeURIComponent(value));\n } catch (_unused) {\n return value;\n }\n}\nfunction normalizeDataKey(key) {\n return key.replace(/[A-Z]/g, chr => `-${chr.toLowerCase()}`);\n}\nconst Manipulator = {\n setDataAttribute(element, key, value) {\n element.setAttribute(`data-bs-${normalizeDataKey(key)}`, value);\n },\n removeDataAttribute(element, key) {\n element.removeAttribute(`data-bs-${normalizeDataKey(key)}`);\n },\n getDataAttributes(element) {\n if (!element) {\n return {};\n }\n const attributes = {};\n const bsKeys = Object.keys(element.dataset).filter(key => key.startsWith('bs') && !key.startsWith('bsConfig'));\n for (const key of bsKeys) {\n let pureKey = key.replace(/^bs/, '');\n pureKey = pureKey.charAt(0).toLowerCase() + pureKey.slice(1, pureKey.length);\n attributes[pureKey] = normalizeData(element.dataset[key]);\n }\n return attributes;\n },\n getDataAttribute(element, key) {\n return normalizeData(element.getAttribute(`data-bs-${normalizeDataKey(key)}`));\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/config.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Class definition\n */\n\nclass Config {\n // Getters\n static get Default() {\n return {};\n }\n static get DefaultType() {\n return {};\n }\n static get NAME() {\n throw new Error('You have to implement the static method \"NAME\", for each component!');\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n return config;\n }\n _mergeConfigObj(config, element) {\n const jsonConfig = isElement(element) ? Manipulator.getDataAttribute(element, 'config') : {}; // try to parse\n\n return {\n ...this.constructor.Default,\n ...(typeof jsonConfig === 'object' ? jsonConfig : {}),\n ...(isElement(element) ? Manipulator.getDataAttributes(element) : {}),\n ...(typeof config === 'object' ? config : {})\n };\n }\n _typeCheckConfig(config, configTypes = this.constructor.DefaultType) {\n for (const [property, expectedTypes] of Object.entries(configTypes)) {\n const value = config[property];\n const valueType = isElement(value) ? 'element' : toType(value);\n if (!new RegExp(expectedTypes).test(valueType)) {\n throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option \"${property}\" provided type \"${valueType}\" but expected type \"${expectedTypes}\".`);\n }\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap base-component.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst VERSION = '5.3.3';\n\n/**\n * Class definition\n */\n\nclass BaseComponent extends Config {\n constructor(element, config) {\n super();\n element = getElement(element);\n if (!element) {\n return;\n }\n this._element = element;\n this._config = this._getConfig(config);\n Data.set(this._element, this.constructor.DATA_KEY, this);\n }\n\n // Public\n dispose() {\n Data.remove(this._element, this.constructor.DATA_KEY);\n EventHandler.off(this._element, this.constructor.EVENT_KEY);\n for (const propertyName of Object.getOwnPropertyNames(this)) {\n this[propertyName] = null;\n }\n }\n _queueCallback(callback, element, isAnimated = true) {\n executeAfterTransition(callback, element, isAnimated);\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config, this._element);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n\n // Static\n static getInstance(element) {\n return Data.get(getElement(element), this.DATA_KEY);\n }\n static getOrCreateInstance(element, config = {}) {\n return this.getInstance(element) || new this(element, typeof config === 'object' ? config : null);\n }\n static get VERSION() {\n return VERSION;\n }\n static get DATA_KEY() {\n return `bs.${this.NAME}`;\n }\n static get EVENT_KEY() {\n return `.${this.DATA_KEY}`;\n }\n static eventName(name) {\n return `${name}${this.EVENT_KEY}`;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/selector-engine.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst getSelector = element => {\n let selector = element.getAttribute('data-bs-target');\n if (!selector || selector === '#') {\n let hrefAttribute = element.getAttribute('href');\n\n // The only valid content that could double as a selector are IDs or classes,\n // so everything starting with `#` or `.`. If a \"real\" URL is used as the selector,\n // `document.querySelector` will rightfully complain it is invalid.\n // See https://github.com/twbs/bootstrap/issues/32273\n if (!hrefAttribute || !hrefAttribute.includes('#') && !hrefAttribute.startsWith('.')) {\n return null;\n }\n\n // Just in case some CMS puts out a full URL with the anchor appended\n if (hrefAttribute.includes('#') && !hrefAttribute.startsWith('#')) {\n hrefAttribute = `#${hrefAttribute.split('#')[1]}`;\n }\n selector = hrefAttribute && hrefAttribute !== '#' ? hrefAttribute.trim() : null;\n }\n return selector ? selector.split(',').map(sel => parseSelector(sel)).join(',') : null;\n};\nconst SelectorEngine = {\n find(selector, element = document.documentElement) {\n return [].concat(...Element.prototype.querySelectorAll.call(element, selector));\n },\n findOne(selector, element = document.documentElement) {\n return Element.prototype.querySelector.call(element, selector);\n },\n children(element, selector) {\n return [].concat(...element.children).filter(child => child.matches(selector));\n },\n parents(element, selector) {\n const parents = [];\n let ancestor = element.parentNode.closest(selector);\n while (ancestor) {\n parents.push(ancestor);\n ancestor = ancestor.parentNode.closest(selector);\n }\n return parents;\n },\n prev(element, selector) {\n let previous = element.previousElementSibling;\n while (previous) {\n if (previous.matches(selector)) {\n return [previous];\n }\n previous = previous.previousElementSibling;\n }\n return [];\n },\n // TODO: this is now unused; remove later along with prev()\n next(element, selector) {\n let next = element.nextElementSibling;\n while (next) {\n if (next.matches(selector)) {\n return [next];\n }\n next = next.nextElementSibling;\n }\n return [];\n },\n focusableChildren(element) {\n const focusables = ['a', 'button', 'input', 'textarea', 'select', 'details', '[tabindex]', '[contenteditable=\"true\"]'].map(selector => `${selector}:not([tabindex^=\"-\"])`).join(',');\n return this.find(focusables, element).filter(el => !isDisabled(el) && isVisible(el));\n },\n getSelectorFromElement(element) {\n const selector = getSelector(element);\n if (selector) {\n return SelectorEngine.findOne(selector) ? selector : null;\n }\n return null;\n },\n getElementFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.findOne(selector) : null;\n },\n getMultipleElementsFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.find(selector) : [];\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/component-functions.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst enableDismissTrigger = (component, method = 'hide') => {\n const clickEvent = `click.dismiss${component.EVENT_KEY}`;\n const name = component.NAME;\n EventHandler.on(document, clickEvent, `[data-bs-dismiss=\"${name}\"]`, function (event) {\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n const target = SelectorEngine.getElementFromSelector(this) || this.closest(`.${name}`);\n const instance = component.getOrCreateInstance(target);\n\n // Method argument is left, for Alert and only, as it doesn't implement the 'hide' method\n instance[method]();\n });\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap alert.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$f = 'alert';\nconst DATA_KEY$a = 'bs.alert';\nconst EVENT_KEY$b = `.${DATA_KEY$a}`;\nconst EVENT_CLOSE = `close${EVENT_KEY$b}`;\nconst EVENT_CLOSED = `closed${EVENT_KEY$b}`;\nconst CLASS_NAME_FADE$5 = 'fade';\nconst CLASS_NAME_SHOW$8 = 'show';\n\n/**\n * Class definition\n */\n\nclass Alert extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$f;\n }\n\n // Public\n close() {\n const closeEvent = EventHandler.trigger(this._element, EVENT_CLOSE);\n if (closeEvent.defaultPrevented) {\n return;\n }\n this._element.classList.remove(CLASS_NAME_SHOW$8);\n const isAnimated = this._element.classList.contains(CLASS_NAME_FADE$5);\n this._queueCallback(() => this._destroyElement(), this._element, isAnimated);\n }\n\n // Private\n _destroyElement() {\n this._element.remove();\n EventHandler.trigger(this._element, EVENT_CLOSED);\n this.dispose();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Alert.getOrCreateInstance(this);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nenableDismissTrigger(Alert, 'close');\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Alert);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap button.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$e = 'button';\nconst DATA_KEY$9 = 'bs.button';\nconst EVENT_KEY$a = `.${DATA_KEY$9}`;\nconst DATA_API_KEY$6 = '.data-api';\nconst CLASS_NAME_ACTIVE$3 = 'active';\nconst SELECTOR_DATA_TOGGLE$5 = '[data-bs-toggle=\"button\"]';\nconst EVENT_CLICK_DATA_API$6 = `click${EVENT_KEY$a}${DATA_API_KEY$6}`;\n\n/**\n * Class definition\n */\n\nclass Button extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$e;\n }\n\n // Public\n toggle() {\n // Toggle class and sync the `aria-pressed` attribute with the return value of the `.toggle()` method\n this._element.setAttribute('aria-pressed', this._element.classList.toggle(CLASS_NAME_ACTIVE$3));\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Button.getOrCreateInstance(this);\n if (config === 'toggle') {\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$6, SELECTOR_DATA_TOGGLE$5, event => {\n event.preventDefault();\n const button = event.target.closest(SELECTOR_DATA_TOGGLE$5);\n const data = Button.getOrCreateInstance(button);\n data.toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Button);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/swipe.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$d = 'swipe';\nconst EVENT_KEY$9 = '.bs.swipe';\nconst EVENT_TOUCHSTART = `touchstart${EVENT_KEY$9}`;\nconst EVENT_TOUCHMOVE = `touchmove${EVENT_KEY$9}`;\nconst EVENT_TOUCHEND = `touchend${EVENT_KEY$9}`;\nconst EVENT_POINTERDOWN = `pointerdown${EVENT_KEY$9}`;\nconst EVENT_POINTERUP = `pointerup${EVENT_KEY$9}`;\nconst POINTER_TYPE_TOUCH = 'touch';\nconst POINTER_TYPE_PEN = 'pen';\nconst CLASS_NAME_POINTER_EVENT = 'pointer-event';\nconst SWIPE_THRESHOLD = 40;\nconst Default$c = {\n endCallback: null,\n leftCallback: null,\n rightCallback: null\n};\nconst DefaultType$c = {\n endCallback: '(function|null)',\n leftCallback: '(function|null)',\n rightCallback: '(function|null)'\n};\n\n/**\n * Class definition\n */\n\nclass Swipe extends Config {\n constructor(element, config) {\n super();\n this._element = element;\n if (!element || !Swipe.isSupported()) {\n return;\n }\n this._config = this._getConfig(config);\n this._deltaX = 0;\n this._supportPointerEvents = Boolean(window.PointerEvent);\n this._initEvents();\n }\n\n // Getters\n static get Default() {\n return Default$c;\n }\n static get DefaultType() {\n return DefaultType$c;\n }\n static get NAME() {\n return NAME$d;\n }\n\n // Public\n dispose() {\n EventHandler.off(this._element, EVENT_KEY$9);\n }\n\n // Private\n _start(event) {\n if (!this._supportPointerEvents) {\n this._deltaX = event.touches[0].clientX;\n return;\n }\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX;\n }\n }\n _end(event) {\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX - this._deltaX;\n }\n this._handleSwipe();\n execute(this._config.endCallback);\n }\n _move(event) {\n this._deltaX = event.touches && event.touches.length > 1 ? 0 : event.touches[0].clientX - this._deltaX;\n }\n _handleSwipe() {\n const absDeltaX = Math.abs(this._deltaX);\n if (absDeltaX <= SWIPE_THRESHOLD) {\n return;\n }\n const direction = absDeltaX / this._deltaX;\n this._deltaX = 0;\n if (!direction) {\n return;\n }\n execute(direction > 0 ? this._config.rightCallback : this._config.leftCallback);\n }\n _initEvents() {\n if (this._supportPointerEvents) {\n EventHandler.on(this._element, EVENT_POINTERDOWN, event => this._start(event));\n EventHandler.on(this._element, EVENT_POINTERUP, event => this._end(event));\n this._element.classList.add(CLASS_NAME_POINTER_EVENT);\n } else {\n EventHandler.on(this._element, EVENT_TOUCHSTART, event => this._start(event));\n EventHandler.on(this._element, EVENT_TOUCHMOVE, event => this._move(event));\n EventHandler.on(this._element, EVENT_TOUCHEND, event => this._end(event));\n }\n }\n _eventIsPointerPenTouch(event) {\n return this._supportPointerEvents && (event.pointerType === POINTER_TYPE_PEN || event.pointerType === POINTER_TYPE_TOUCH);\n }\n\n // Static\n static isSupported() {\n return 'ontouchstart' in document.documentElement || navigator.maxTouchPoints > 0;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap carousel.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$c = 'carousel';\nconst DATA_KEY$8 = 'bs.carousel';\nconst EVENT_KEY$8 = `.${DATA_KEY$8}`;\nconst DATA_API_KEY$5 = '.data-api';\nconst ARROW_LEFT_KEY$1 = 'ArrowLeft';\nconst ARROW_RIGHT_KEY$1 = 'ArrowRight';\nconst TOUCHEVENT_COMPAT_WAIT = 500; // Time for mouse compat events to fire after touch\n\nconst ORDER_NEXT = 'next';\nconst ORDER_PREV = 'prev';\nconst DIRECTION_LEFT = 'left';\nconst DIRECTION_RIGHT = 'right';\nconst EVENT_SLIDE = `slide${EVENT_KEY$8}`;\nconst EVENT_SLID = `slid${EVENT_KEY$8}`;\nconst EVENT_KEYDOWN$1 = `keydown${EVENT_KEY$8}`;\nconst EVENT_MOUSEENTER$1 = `mouseenter${EVENT_KEY$8}`;\nconst EVENT_MOUSELEAVE$1 = `mouseleave${EVENT_KEY$8}`;\nconst EVENT_DRAG_START = `dragstart${EVENT_KEY$8}`;\nconst EVENT_LOAD_DATA_API$3 = `load${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst EVENT_CLICK_DATA_API$5 = `click${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst CLASS_NAME_CAROUSEL = 'carousel';\nconst CLASS_NAME_ACTIVE$2 = 'active';\nconst CLASS_NAME_SLIDE = 'slide';\nconst CLASS_NAME_END = 'carousel-item-end';\nconst CLASS_NAME_START = 'carousel-item-start';\nconst CLASS_NAME_NEXT = 'carousel-item-next';\nconst CLASS_NAME_PREV = 'carousel-item-prev';\nconst SELECTOR_ACTIVE = '.active';\nconst SELECTOR_ITEM = '.carousel-item';\nconst SELECTOR_ACTIVE_ITEM = SELECTOR_ACTIVE + SELECTOR_ITEM;\nconst SELECTOR_ITEM_IMG = '.carousel-item img';\nconst SELECTOR_INDICATORS = '.carousel-indicators';\nconst SELECTOR_DATA_SLIDE = '[data-bs-slide], [data-bs-slide-to]';\nconst SELECTOR_DATA_RIDE = '[data-bs-ride=\"carousel\"]';\nconst KEY_TO_DIRECTION = {\n [ARROW_LEFT_KEY$1]: DIRECTION_RIGHT,\n [ARROW_RIGHT_KEY$1]: DIRECTION_LEFT\n};\nconst Default$b = {\n interval: 5000,\n keyboard: true,\n pause: 'hover',\n ride: false,\n touch: true,\n wrap: true\n};\nconst DefaultType$b = {\n interval: '(number|boolean)',\n // TODO:v6 remove boolean support\n keyboard: 'boolean',\n pause: '(string|boolean)',\n ride: '(boolean|string)',\n touch: 'boolean',\n wrap: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Carousel extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._interval = null;\n this._activeElement = null;\n this._isSliding = false;\n this.touchTimeout = null;\n this._swipeHelper = null;\n this._indicatorsElement = SelectorEngine.findOne(SELECTOR_INDICATORS, this._element);\n this._addEventListeners();\n if (this._config.ride === CLASS_NAME_CAROUSEL) {\n this.cycle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$b;\n }\n static get DefaultType() {\n return DefaultType$b;\n }\n static get NAME() {\n return NAME$c;\n }\n\n // Public\n next() {\n this._slide(ORDER_NEXT);\n }\n nextWhenVisible() {\n // FIXME TODO use `document.visibilityState`\n // Don't call next when the page isn't visible\n // or the carousel or its parent isn't visible\n if (!document.hidden && isVisible(this._element)) {\n this.next();\n }\n }\n prev() {\n this._slide(ORDER_PREV);\n }\n pause() {\n if (this._isSliding) {\n triggerTransitionEnd(this._element);\n }\n this._clearInterval();\n }\n cycle() {\n this._clearInterval();\n this._updateInterval();\n this._interval = setInterval(() => this.nextWhenVisible(), this._config.interval);\n }\n _maybeEnableCycle() {\n if (!this._config.ride) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.cycle());\n return;\n }\n this.cycle();\n }\n to(index) {\n const items = this._getItems();\n if (index > items.length - 1 || index < 0) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.to(index));\n return;\n }\n const activeIndex = this._getItemIndex(this._getActive());\n if (activeIndex === index) {\n return;\n }\n const order = index > activeIndex ? ORDER_NEXT : ORDER_PREV;\n this._slide(order, items[index]);\n }\n dispose() {\n if (this._swipeHelper) {\n this._swipeHelper.dispose();\n }\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n config.defaultInterval = config.interval;\n return config;\n }\n _addEventListeners() {\n if (this._config.keyboard) {\n EventHandler.on(this._element, EVENT_KEYDOWN$1, event => this._keydown(event));\n }\n if (this._config.pause === 'hover') {\n EventHandler.on(this._element, EVENT_MOUSEENTER$1, () => this.pause());\n EventHandler.on(this._element, EVENT_MOUSELEAVE$1, () => this._maybeEnableCycle());\n }\n if (this._config.touch && Swipe.isSupported()) {\n this._addTouchEventListeners();\n }\n }\n _addTouchEventListeners() {\n for (const img of SelectorEngine.find(SELECTOR_ITEM_IMG, this._element)) {\n EventHandler.on(img, EVENT_DRAG_START, event => event.preventDefault());\n }\n const endCallBack = () => {\n if (this._config.pause !== 'hover') {\n return;\n }\n\n // If it's a touch-enabled device, mouseenter/leave are fired as\n // part of the mouse compatibility events on first tap - the carousel\n // would stop cycling until user tapped out of it;\n // here, we listen for touchend, explicitly pause the carousel\n // (as if it's the second time we tap on it, mouseenter compat event\n // is NOT fired) and after a timeout (to allow for mouse compatibility\n // events to fire) we explicitly restart cycling\n\n this.pause();\n if (this.touchTimeout) {\n clearTimeout(this.touchTimeout);\n }\n this.touchTimeout = setTimeout(() => this._maybeEnableCycle(), TOUCHEVENT_COMPAT_WAIT + this._config.interval);\n };\n const swipeConfig = {\n leftCallback: () => this._slide(this._directionToOrder(DIRECTION_LEFT)),\n rightCallback: () => this._slide(this._directionToOrder(DIRECTION_RIGHT)),\n endCallback: endCallBack\n };\n this._swipeHelper = new Swipe(this._element, swipeConfig);\n }\n _keydown(event) {\n if (/input|textarea/i.test(event.target.tagName)) {\n return;\n }\n const direction = KEY_TO_DIRECTION[event.key];\n if (direction) {\n event.preventDefault();\n this._slide(this._directionToOrder(direction));\n }\n }\n _getItemIndex(element) {\n return this._getItems().indexOf(element);\n }\n _setActiveIndicatorElement(index) {\n if (!this._indicatorsElement) {\n return;\n }\n const activeIndicator = SelectorEngine.findOne(SELECTOR_ACTIVE, this._indicatorsElement);\n activeIndicator.classList.remove(CLASS_NAME_ACTIVE$2);\n activeIndicator.removeAttribute('aria-current');\n const newActiveIndicator = SelectorEngine.findOne(`[data-bs-slide-to=\"${index}\"]`, this._indicatorsElement);\n if (newActiveIndicator) {\n newActiveIndicator.classList.add(CLASS_NAME_ACTIVE$2);\n newActiveIndicator.setAttribute('aria-current', 'true');\n }\n }\n _updateInterval() {\n const element = this._activeElement || this._getActive();\n if (!element) {\n return;\n }\n const elementInterval = Number.parseInt(element.getAttribute('data-bs-interval'), 10);\n this._config.interval = elementInterval || this._config.defaultInterval;\n }\n _slide(order, element = null) {\n if (this._isSliding) {\n return;\n }\n const activeElement = this._getActive();\n const isNext = order === ORDER_NEXT;\n const nextElement = element || getNextActiveElement(this._getItems(), activeElement, isNext, this._config.wrap);\n if (nextElement === activeElement) {\n return;\n }\n const nextElementIndex = this._getItemIndex(nextElement);\n const triggerEvent = eventName => {\n return EventHandler.trigger(this._element, eventName, {\n relatedTarget: nextElement,\n direction: this._orderToDirection(order),\n from: this._getItemIndex(activeElement),\n to: nextElementIndex\n });\n };\n const slideEvent = triggerEvent(EVENT_SLIDE);\n if (slideEvent.defaultPrevented) {\n return;\n }\n if (!activeElement || !nextElement) {\n // Some weirdness is happening, so we bail\n // TODO: change tests that use empty divs to avoid this check\n return;\n }\n const isCycling = Boolean(this._interval);\n this.pause();\n this._isSliding = true;\n this._setActiveIndicatorElement(nextElementIndex);\n this._activeElement = nextElement;\n const directionalClassName = isNext ? CLASS_NAME_START : CLASS_NAME_END;\n const orderClassName = isNext ? CLASS_NAME_NEXT : CLASS_NAME_PREV;\n nextElement.classList.add(orderClassName);\n reflow(nextElement);\n activeElement.classList.add(directionalClassName);\n nextElement.classList.add(directionalClassName);\n const completeCallBack = () => {\n nextElement.classList.remove(directionalClassName, orderClassName);\n nextElement.classList.add(CLASS_NAME_ACTIVE$2);\n activeElement.classList.remove(CLASS_NAME_ACTIVE$2, orderClassName, directionalClassName);\n this._isSliding = false;\n triggerEvent(EVENT_SLID);\n };\n this._queueCallback(completeCallBack, activeElement, this._isAnimated());\n if (isCycling) {\n this.cycle();\n }\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_SLIDE);\n }\n _getActive() {\n return SelectorEngine.findOne(SELECTOR_ACTIVE_ITEM, this._element);\n }\n _getItems() {\n return SelectorEngine.find(SELECTOR_ITEM, this._element);\n }\n _clearInterval() {\n if (this._interval) {\n clearInterval(this._interval);\n this._interval = null;\n }\n }\n _directionToOrder(direction) {\n if (isRTL()) {\n return direction === DIRECTION_LEFT ? ORDER_PREV : ORDER_NEXT;\n }\n return direction === DIRECTION_LEFT ? ORDER_NEXT : ORDER_PREV;\n }\n _orderToDirection(order) {\n if (isRTL()) {\n return order === ORDER_PREV ? DIRECTION_LEFT : DIRECTION_RIGHT;\n }\n return order === ORDER_PREV ? DIRECTION_RIGHT : DIRECTION_LEFT;\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Carousel.getOrCreateInstance(this, config);\n if (typeof config === 'number') {\n data.to(config);\n return;\n }\n if (typeof config === 'string') {\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$5, SELECTOR_DATA_SLIDE, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (!target || !target.classList.contains(CLASS_NAME_CAROUSEL)) {\n return;\n }\n event.preventDefault();\n const carousel = Carousel.getOrCreateInstance(target);\n const slideIndex = this.getAttribute('data-bs-slide-to');\n if (slideIndex) {\n carousel.to(slideIndex);\n carousel._maybeEnableCycle();\n return;\n }\n if (Manipulator.getDataAttribute(this, 'slide') === 'next') {\n carousel.next();\n carousel._maybeEnableCycle();\n return;\n }\n carousel.prev();\n carousel._maybeEnableCycle();\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$3, () => {\n const carousels = SelectorEngine.find(SELECTOR_DATA_RIDE);\n for (const carousel of carousels) {\n Carousel.getOrCreateInstance(carousel);\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Carousel);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap collapse.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$b = 'collapse';\nconst DATA_KEY$7 = 'bs.collapse';\nconst EVENT_KEY$7 = `.${DATA_KEY$7}`;\nconst DATA_API_KEY$4 = '.data-api';\nconst EVENT_SHOW$6 = `show${EVENT_KEY$7}`;\nconst EVENT_SHOWN$6 = `shown${EVENT_KEY$7}`;\nconst EVENT_HIDE$6 = `hide${EVENT_KEY$7}`;\nconst EVENT_HIDDEN$6 = `hidden${EVENT_KEY$7}`;\nconst EVENT_CLICK_DATA_API$4 = `click${EVENT_KEY$7}${DATA_API_KEY$4}`;\nconst CLASS_NAME_SHOW$7 = 'show';\nconst CLASS_NAME_COLLAPSE = 'collapse';\nconst CLASS_NAME_COLLAPSING = 'collapsing';\nconst CLASS_NAME_COLLAPSED = 'collapsed';\nconst CLASS_NAME_DEEPER_CHILDREN = `:scope .${CLASS_NAME_COLLAPSE} .${CLASS_NAME_COLLAPSE}`;\nconst CLASS_NAME_HORIZONTAL = 'collapse-horizontal';\nconst WIDTH = 'width';\nconst HEIGHT = 'height';\nconst SELECTOR_ACTIVES = '.collapse.show, .collapse.collapsing';\nconst SELECTOR_DATA_TOGGLE$4 = '[data-bs-toggle=\"collapse\"]';\nconst Default$a = {\n parent: null,\n toggle: true\n};\nconst DefaultType$a = {\n parent: '(null|element)',\n toggle: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Collapse extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isTransitioning = false;\n this._triggerArray = [];\n const toggleList = SelectorEngine.find(SELECTOR_DATA_TOGGLE$4);\n for (const elem of toggleList) {\n const selector = SelectorEngine.getSelectorFromElement(elem);\n const filterElement = SelectorEngine.find(selector).filter(foundElement => foundElement === this._element);\n if (selector !== null && filterElement.length) {\n this._triggerArray.push(elem);\n }\n }\n this._initializeChildren();\n if (!this._config.parent) {\n this._addAriaAndCollapsedClass(this._triggerArray, this._isShown());\n }\n if (this._config.toggle) {\n this.toggle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$a;\n }\n static get DefaultType() {\n return DefaultType$a;\n }\n static get NAME() {\n return NAME$b;\n }\n\n // Public\n toggle() {\n if (this._isShown()) {\n this.hide();\n } else {\n this.show();\n }\n }\n show() {\n if (this._isTransitioning || this._isShown()) {\n return;\n }\n let activeChildren = [];\n\n // find active children\n if (this._config.parent) {\n activeChildren = this._getFirstLevelChildren(SELECTOR_ACTIVES).filter(element => element !== this._element).map(element => Collapse.getOrCreateInstance(element, {\n toggle: false\n }));\n }\n if (activeChildren.length && activeChildren[0]._isTransitioning) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_SHOW$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n for (const activeInstance of activeChildren) {\n activeInstance.hide();\n }\n const dimension = this._getDimension();\n this._element.classList.remove(CLASS_NAME_COLLAPSE);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.style[dimension] = 0;\n this._addAriaAndCollapsedClass(this._triggerArray, true);\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n this._element.style[dimension] = '';\n EventHandler.trigger(this._element, EVENT_SHOWN$6);\n };\n const capitalizedDimension = dimension[0].toUpperCase() + dimension.slice(1);\n const scrollSize = `scroll${capitalizedDimension}`;\n this._queueCallback(complete, this._element, true);\n this._element.style[dimension] = `${this._element[scrollSize]}px`;\n }\n hide() {\n if (this._isTransitioning || !this._isShown()) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_HIDE$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n const dimension = this._getDimension();\n this._element.style[dimension] = `${this._element.getBoundingClientRect()[dimension]}px`;\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.classList.remove(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n for (const trigger of this._triggerArray) {\n const element = SelectorEngine.getElementFromSelector(trigger);\n if (element && !this._isShown(element)) {\n this._addAriaAndCollapsedClass([trigger], false);\n }\n }\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE);\n EventHandler.trigger(this._element, EVENT_HIDDEN$6);\n };\n this._element.style[dimension] = '';\n this._queueCallback(complete, this._element, true);\n }\n _isShown(element = this._element) {\n return element.classList.contains(CLASS_NAME_SHOW$7);\n }\n\n // Private\n _configAfterMerge(config) {\n config.toggle = Boolean(config.toggle); // Coerce string values\n config.parent = getElement(config.parent);\n return config;\n }\n _getDimension() {\n return this._element.classList.contains(CLASS_NAME_HORIZONTAL) ? WIDTH : HEIGHT;\n }\n _initializeChildren() {\n if (!this._config.parent) {\n return;\n }\n const children = this._getFirstLevelChildren(SELECTOR_DATA_TOGGLE$4);\n for (const element of children) {\n const selected = SelectorEngine.getElementFromSelector(element);\n if (selected) {\n this._addAriaAndCollapsedClass([element], this._isShown(selected));\n }\n }\n }\n _getFirstLevelChildren(selector) {\n const children = SelectorEngine.find(CLASS_NAME_DEEPER_CHILDREN, this._config.parent);\n // remove children if greater depth\n return SelectorEngine.find(selector, this._config.parent).filter(element => !children.includes(element));\n }\n _addAriaAndCollapsedClass(triggerArray, isOpen) {\n if (!triggerArray.length) {\n return;\n }\n for (const element of triggerArray) {\n element.classList.toggle(CLASS_NAME_COLLAPSED, !isOpen);\n element.setAttribute('aria-expanded', isOpen);\n }\n }\n\n // Static\n static jQueryInterface(config) {\n const _config = {};\n if (typeof config === 'string' && /show|hide/.test(config)) {\n _config.toggle = false;\n }\n return this.each(function () {\n const data = Collapse.getOrCreateInstance(this, _config);\n if (typeof config === 'string') {\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$4, SELECTOR_DATA_TOGGLE$4, function (event) {\n // preventDefault only for elements (which change the URL) not inside the collapsible element\n if (event.target.tagName === 'A' || event.delegateTarget && event.delegateTarget.tagName === 'A') {\n event.preventDefault();\n }\n for (const element of SelectorEngine.getMultipleElementsFromSelector(this)) {\n Collapse.getOrCreateInstance(element, {\n toggle: false\n }).toggle();\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Collapse);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dropdown.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$a = 'dropdown';\nconst DATA_KEY$6 = 'bs.dropdown';\nconst EVENT_KEY$6 = `.${DATA_KEY$6}`;\nconst DATA_API_KEY$3 = '.data-api';\nconst ESCAPE_KEY$2 = 'Escape';\nconst TAB_KEY$1 = 'Tab';\nconst ARROW_UP_KEY$1 = 'ArrowUp';\nconst ARROW_DOWN_KEY$1 = 'ArrowDown';\nconst RIGHT_MOUSE_BUTTON = 2; // MouseEvent.button value for the secondary button, usually the right button\n\nconst EVENT_HIDE$5 = `hide${EVENT_KEY$6}`;\nconst EVENT_HIDDEN$5 = `hidden${EVENT_KEY$6}`;\nconst EVENT_SHOW$5 = `show${EVENT_KEY$6}`;\nconst EVENT_SHOWN$5 = `shown${EVENT_KEY$6}`;\nconst EVENT_CLICK_DATA_API$3 = `click${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYDOWN_DATA_API = `keydown${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYUP_DATA_API = `keyup${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst CLASS_NAME_SHOW$6 = 'show';\nconst CLASS_NAME_DROPUP = 'dropup';\nconst CLASS_NAME_DROPEND = 'dropend';\nconst CLASS_NAME_DROPSTART = 'dropstart';\nconst CLASS_NAME_DROPUP_CENTER = 'dropup-center';\nconst CLASS_NAME_DROPDOWN_CENTER = 'dropdown-center';\nconst SELECTOR_DATA_TOGGLE$3 = '[data-bs-toggle=\"dropdown\"]:not(.disabled):not(:disabled)';\nconst SELECTOR_DATA_TOGGLE_SHOWN = `${SELECTOR_DATA_TOGGLE$3}.${CLASS_NAME_SHOW$6}`;\nconst SELECTOR_MENU = '.dropdown-menu';\nconst SELECTOR_NAVBAR = '.navbar';\nconst SELECTOR_NAVBAR_NAV = '.navbar-nav';\nconst SELECTOR_VISIBLE_ITEMS = '.dropdown-menu .dropdown-item:not(.disabled):not(:disabled)';\nconst PLACEMENT_TOP = isRTL() ? 'top-end' : 'top-start';\nconst PLACEMENT_TOPEND = isRTL() ? 'top-start' : 'top-end';\nconst PLACEMENT_BOTTOM = isRTL() ? 'bottom-end' : 'bottom-start';\nconst PLACEMENT_BOTTOMEND = isRTL() ? 'bottom-start' : 'bottom-end';\nconst PLACEMENT_RIGHT = isRTL() ? 'left-start' : 'right-start';\nconst PLACEMENT_LEFT = isRTL() ? 'right-start' : 'left-start';\nconst PLACEMENT_TOPCENTER = 'top';\nconst PLACEMENT_BOTTOMCENTER = 'bottom';\nconst Default$9 = {\n autoClose: true,\n boundary: 'clippingParents',\n display: 'dynamic',\n offset: [0, 2],\n popperConfig: null,\n reference: 'toggle'\n};\nconst DefaultType$9 = {\n autoClose: '(boolean|string)',\n boundary: '(string|element)',\n display: 'string',\n offset: '(array|string|function)',\n popperConfig: '(null|object|function)',\n reference: '(string|element|object)'\n};\n\n/**\n * Class definition\n */\n\nclass Dropdown extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._popper = null;\n this._parent = this._element.parentNode; // dropdown wrapper\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n this._menu = SelectorEngine.next(this._element, SELECTOR_MENU)[0] || SelectorEngine.prev(this._element, SELECTOR_MENU)[0] || SelectorEngine.findOne(SELECTOR_MENU, this._parent);\n this._inNavbar = this._detectNavbar();\n }\n\n // Getters\n static get Default() {\n return Default$9;\n }\n static get DefaultType() {\n return DefaultType$9;\n }\n static get NAME() {\n return NAME$a;\n }\n\n // Public\n toggle() {\n return this._isShown() ? this.hide() : this.show();\n }\n show() {\n if (isDisabled(this._element) || this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$5, relatedTarget);\n if (showEvent.defaultPrevented) {\n return;\n }\n this._createPopper();\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement && !this._parent.closest(SELECTOR_NAVBAR_NAV)) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n this._element.focus();\n this._element.setAttribute('aria-expanded', true);\n this._menu.classList.add(CLASS_NAME_SHOW$6);\n this._element.classList.add(CLASS_NAME_SHOW$6);\n EventHandler.trigger(this._element, EVENT_SHOWN$5, relatedTarget);\n }\n hide() {\n if (isDisabled(this._element) || !this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n this._completeHide(relatedTarget);\n }\n dispose() {\n if (this._popper) {\n this._popper.destroy();\n }\n super.dispose();\n }\n update() {\n this._inNavbar = this._detectNavbar();\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Private\n _completeHide(relatedTarget) {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$5, relatedTarget);\n if (hideEvent.defaultPrevented) {\n return;\n }\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n if (this._popper) {\n this._popper.destroy();\n }\n this._menu.classList.remove(CLASS_NAME_SHOW$6);\n this._element.classList.remove(CLASS_NAME_SHOW$6);\n this._element.setAttribute('aria-expanded', 'false');\n Manipulator.removeDataAttribute(this._menu, 'popper');\n EventHandler.trigger(this._element, EVENT_HIDDEN$5, relatedTarget);\n }\n _getConfig(config) {\n config = super._getConfig(config);\n if (typeof config.reference === 'object' && !isElement(config.reference) && typeof config.reference.getBoundingClientRect !== 'function') {\n // Popper virtual elements require a getBoundingClientRect method\n throw new TypeError(`${NAME$a.toUpperCase()}: Option \"reference\" provided type \"object\" without a required \"getBoundingClientRect\" method.`);\n }\n return config;\n }\n _createPopper() {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s dropdowns require Popper (https://popper.js.org)');\n }\n let referenceElement = this._element;\n if (this._config.reference === 'parent') {\n referenceElement = this._parent;\n } else if (isElement(this._config.reference)) {\n referenceElement = getElement(this._config.reference);\n } else if (typeof this._config.reference === 'object') {\n referenceElement = this._config.reference;\n }\n const popperConfig = this._getPopperConfig();\n this._popper = Popper.createPopper(referenceElement, this._menu, popperConfig);\n }\n _isShown() {\n return this._menu.classList.contains(CLASS_NAME_SHOW$6);\n }\n _getPlacement() {\n const parentDropdown = this._parent;\n if (parentDropdown.classList.contains(CLASS_NAME_DROPEND)) {\n return PLACEMENT_RIGHT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPSTART)) {\n return PLACEMENT_LEFT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP_CENTER)) {\n return PLACEMENT_TOPCENTER;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPDOWN_CENTER)) {\n return PLACEMENT_BOTTOMCENTER;\n }\n\n // We need to trim the value because custom properties can also include spaces\n const isEnd = getComputedStyle(this._menu).getPropertyValue('--bs-position').trim() === 'end';\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP)) {\n return isEnd ? PLACEMENT_TOPEND : PLACEMENT_TOP;\n }\n return isEnd ? PLACEMENT_BOTTOMEND : PLACEMENT_BOTTOM;\n }\n _detectNavbar() {\n return this._element.closest(SELECTOR_NAVBAR) !== null;\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _getPopperConfig() {\n const defaultBsPopperConfig = {\n placement: this._getPlacement(),\n modifiers: [{\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }]\n };\n\n // Disable Popper if we have a static display or Dropdown is in Navbar\n if (this._inNavbar || this._config.display === 'static') {\n Manipulator.setDataAttribute(this._menu, 'popper', 'static'); // TODO: v6 remove\n defaultBsPopperConfig.modifiers = [{\n name: 'applyStyles',\n enabled: false\n }];\n }\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _selectMenuItem({\n key,\n target\n }) {\n const items = SelectorEngine.find(SELECTOR_VISIBLE_ITEMS, this._menu).filter(element => isVisible(element));\n if (!items.length) {\n return;\n }\n\n // if target isn't included in items (e.g. when expanding the dropdown)\n // allow cycling to get the last item in case key equals ARROW_UP_KEY\n getNextActiveElement(items, target, key === ARROW_DOWN_KEY$1, !items.includes(target)).focus();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Dropdown.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n static clearMenus(event) {\n if (event.button === RIGHT_MOUSE_BUTTON || event.type === 'keyup' && event.key !== TAB_KEY$1) {\n return;\n }\n const openToggles = SelectorEngine.find(SELECTOR_DATA_TOGGLE_SHOWN);\n for (const toggle of openToggles) {\n const context = Dropdown.getInstance(toggle);\n if (!context || context._config.autoClose === false) {\n continue;\n }\n const composedPath = event.composedPath();\n const isMenuTarget = composedPath.includes(context._menu);\n if (composedPath.includes(context._element) || context._config.autoClose === 'inside' && !isMenuTarget || context._config.autoClose === 'outside' && isMenuTarget) {\n continue;\n }\n\n // Tab navigation through the dropdown menu or events from contained inputs shouldn't close the menu\n if (context._menu.contains(event.target) && (event.type === 'keyup' && event.key === TAB_KEY$1 || /input|select|option|textarea|form/i.test(event.target.tagName))) {\n continue;\n }\n const relatedTarget = {\n relatedTarget: context._element\n };\n if (event.type === 'click') {\n relatedTarget.clickEvent = event;\n }\n context._completeHide(relatedTarget);\n }\n }\n static dataApiKeydownHandler(event) {\n // If not an UP | DOWN | ESCAPE key => not a dropdown command\n // If input/textarea && if key is other than ESCAPE => not a dropdown command\n\n const isInput = /input|textarea/i.test(event.target.tagName);\n const isEscapeEvent = event.key === ESCAPE_KEY$2;\n const isUpOrDownEvent = [ARROW_UP_KEY$1, ARROW_DOWN_KEY$1].includes(event.key);\n if (!isUpOrDownEvent && !isEscapeEvent) {\n return;\n }\n if (isInput && !isEscapeEvent) {\n return;\n }\n event.preventDefault();\n\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n const getToggleButton = this.matches(SELECTOR_DATA_TOGGLE$3) ? this : SelectorEngine.prev(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.next(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.findOne(SELECTOR_DATA_TOGGLE$3, event.delegateTarget.parentNode);\n const instance = Dropdown.getOrCreateInstance(getToggleButton);\n if (isUpOrDownEvent) {\n event.stopPropagation();\n instance.show();\n instance._selectMenuItem(event);\n return;\n }\n if (instance._isShown()) {\n // else is escape and we check if it is shown\n event.stopPropagation();\n instance.hide();\n getToggleButton.focus();\n }\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_DATA_TOGGLE$3, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_MENU, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_KEYUP_DATA_API, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, SELECTOR_DATA_TOGGLE$3, function (event) {\n event.preventDefault();\n Dropdown.getOrCreateInstance(this).toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Dropdown);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/backdrop.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$9 = 'backdrop';\nconst CLASS_NAME_FADE$4 = 'fade';\nconst CLASS_NAME_SHOW$5 = 'show';\nconst EVENT_MOUSEDOWN = `mousedown.bs.${NAME$9}`;\nconst Default$8 = {\n className: 'modal-backdrop',\n clickCallback: null,\n isAnimated: false,\n isVisible: true,\n // if false, we use the backdrop helper without adding any element to the dom\n rootElement: 'body' // give the choice to place backdrop under different elements\n};\nconst DefaultType$8 = {\n className: 'string',\n clickCallback: '(function|null)',\n isAnimated: 'boolean',\n isVisible: 'boolean',\n rootElement: '(element|string)'\n};\n\n/**\n * Class definition\n */\n\nclass Backdrop extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isAppended = false;\n this._element = null;\n }\n\n // Getters\n static get Default() {\n return Default$8;\n }\n static get DefaultType() {\n return DefaultType$8;\n }\n static get NAME() {\n return NAME$9;\n }\n\n // Public\n show(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._append();\n const element = this._getElement();\n if (this._config.isAnimated) {\n reflow(element);\n }\n element.classList.add(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n execute(callback);\n });\n }\n hide(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._getElement().classList.remove(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n this.dispose();\n execute(callback);\n });\n }\n dispose() {\n if (!this._isAppended) {\n return;\n }\n EventHandler.off(this._element, EVENT_MOUSEDOWN);\n this._element.remove();\n this._isAppended = false;\n }\n\n // Private\n _getElement() {\n if (!this._element) {\n const backdrop = document.createElement('div');\n backdrop.className = this._config.className;\n if (this._config.isAnimated) {\n backdrop.classList.add(CLASS_NAME_FADE$4);\n }\n this._element = backdrop;\n }\n return this._element;\n }\n _configAfterMerge(config) {\n // use getElement() with the default \"body\" to get a fresh Element on each instantiation\n config.rootElement = getElement(config.rootElement);\n return config;\n }\n _append() {\n if (this._isAppended) {\n return;\n }\n const element = this._getElement();\n this._config.rootElement.append(element);\n EventHandler.on(element, EVENT_MOUSEDOWN, () => {\n execute(this._config.clickCallback);\n });\n this._isAppended = true;\n }\n _emulateAnimation(callback) {\n executeAfterTransition(callback, this._getElement(), this._config.isAnimated);\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/focustrap.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$8 = 'focustrap';\nconst DATA_KEY$5 = 'bs.focustrap';\nconst EVENT_KEY$5 = `.${DATA_KEY$5}`;\nconst EVENT_FOCUSIN$2 = `focusin${EVENT_KEY$5}`;\nconst EVENT_KEYDOWN_TAB = `keydown.tab${EVENT_KEY$5}`;\nconst TAB_KEY = 'Tab';\nconst TAB_NAV_FORWARD = 'forward';\nconst TAB_NAV_BACKWARD = 'backward';\nconst Default$7 = {\n autofocus: true,\n trapElement: null // The element to trap focus inside of\n};\nconst DefaultType$7 = {\n autofocus: 'boolean',\n trapElement: 'element'\n};\n\n/**\n * Class definition\n */\n\nclass FocusTrap extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isActive = false;\n this._lastTabNavDirection = null;\n }\n\n // Getters\n static get Default() {\n return Default$7;\n }\n static get DefaultType() {\n return DefaultType$7;\n }\n static get NAME() {\n return NAME$8;\n }\n\n // Public\n activate() {\n if (this._isActive) {\n return;\n }\n if (this._config.autofocus) {\n this._config.trapElement.focus();\n }\n EventHandler.off(document, EVENT_KEY$5); // guard against infinite focus loop\n EventHandler.on(document, EVENT_FOCUSIN$2, event => this._handleFocusin(event));\n EventHandler.on(document, EVENT_KEYDOWN_TAB, event => this._handleKeydown(event));\n this._isActive = true;\n }\n deactivate() {\n if (!this._isActive) {\n return;\n }\n this._isActive = false;\n EventHandler.off(document, EVENT_KEY$5);\n }\n\n // Private\n _handleFocusin(event) {\n const {\n trapElement\n } = this._config;\n if (event.target === document || event.target === trapElement || trapElement.contains(event.target)) {\n return;\n }\n const elements = SelectorEngine.focusableChildren(trapElement);\n if (elements.length === 0) {\n trapElement.focus();\n } else if (this._lastTabNavDirection === TAB_NAV_BACKWARD) {\n elements[elements.length - 1].focus();\n } else {\n elements[0].focus();\n }\n }\n _handleKeydown(event) {\n if (event.key !== TAB_KEY) {\n return;\n }\n this._lastTabNavDirection = event.shiftKey ? TAB_NAV_BACKWARD : TAB_NAV_FORWARD;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/scrollBar.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst SELECTOR_FIXED_CONTENT = '.fixed-top, .fixed-bottom, .is-fixed, .sticky-top';\nconst SELECTOR_STICKY_CONTENT = '.sticky-top';\nconst PROPERTY_PADDING = 'padding-right';\nconst PROPERTY_MARGIN = 'margin-right';\n\n/**\n * Class definition\n */\n\nclass ScrollBarHelper {\n constructor() {\n this._element = document.body;\n }\n\n // Public\n getWidth() {\n // https://developer.mozilla.org/en-US/docs/Web/API/Window/innerWidth#usage_notes\n const documentWidth = document.documentElement.clientWidth;\n return Math.abs(window.innerWidth - documentWidth);\n }\n hide() {\n const width = this.getWidth();\n this._disableOverFlow();\n // give padding to element to balance the hidden scrollbar width\n this._setElementAttributes(this._element, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n // trick: We adjust positive paddingRight and negative marginRight to sticky-top elements to keep showing fullwidth\n this._setElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n this._setElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN, calculatedValue => calculatedValue - width);\n }\n reset() {\n this._resetElementAttributes(this._element, 'overflow');\n this._resetElementAttributes(this._element, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN);\n }\n isOverflowing() {\n return this.getWidth() > 0;\n }\n\n // Private\n _disableOverFlow() {\n this._saveInitialAttribute(this._element, 'overflow');\n this._element.style.overflow = 'hidden';\n }\n _setElementAttributes(selector, styleProperty, callback) {\n const scrollbarWidth = this.getWidth();\n const manipulationCallBack = element => {\n if (element !== this._element && window.innerWidth > element.clientWidth + scrollbarWidth) {\n return;\n }\n this._saveInitialAttribute(element, styleProperty);\n const calculatedValue = window.getComputedStyle(element).getPropertyValue(styleProperty);\n element.style.setProperty(styleProperty, `${callback(Number.parseFloat(calculatedValue))}px`);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _saveInitialAttribute(element, styleProperty) {\n const actualValue = element.style.getPropertyValue(styleProperty);\n if (actualValue) {\n Manipulator.setDataAttribute(element, styleProperty, actualValue);\n }\n }\n _resetElementAttributes(selector, styleProperty) {\n const manipulationCallBack = element => {\n const value = Manipulator.getDataAttribute(element, styleProperty);\n // We only want to remove the property if the value is `null`; the value can also be zero\n if (value === null) {\n element.style.removeProperty(styleProperty);\n return;\n }\n Manipulator.removeDataAttribute(element, styleProperty);\n element.style.setProperty(styleProperty, value);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _applyManipulationCallback(selector, callBack) {\n if (isElement(selector)) {\n callBack(selector);\n return;\n }\n for (const sel of SelectorEngine.find(selector, this._element)) {\n callBack(sel);\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap modal.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$7 = 'modal';\nconst DATA_KEY$4 = 'bs.modal';\nconst EVENT_KEY$4 = `.${DATA_KEY$4}`;\nconst DATA_API_KEY$2 = '.data-api';\nconst ESCAPE_KEY$1 = 'Escape';\nconst EVENT_HIDE$4 = `hide${EVENT_KEY$4}`;\nconst EVENT_HIDE_PREVENTED$1 = `hidePrevented${EVENT_KEY$4}`;\nconst EVENT_HIDDEN$4 = `hidden${EVENT_KEY$4}`;\nconst EVENT_SHOW$4 = `show${EVENT_KEY$4}`;\nconst EVENT_SHOWN$4 = `shown${EVENT_KEY$4}`;\nconst EVENT_RESIZE$1 = `resize${EVENT_KEY$4}`;\nconst EVENT_CLICK_DISMISS = `click.dismiss${EVENT_KEY$4}`;\nconst EVENT_MOUSEDOWN_DISMISS = `mousedown.dismiss${EVENT_KEY$4}`;\nconst EVENT_KEYDOWN_DISMISS$1 = `keydown.dismiss${EVENT_KEY$4}`;\nconst EVENT_CLICK_DATA_API$2 = `click${EVENT_KEY$4}${DATA_API_KEY$2}`;\nconst CLASS_NAME_OPEN = 'modal-open';\nconst CLASS_NAME_FADE$3 = 'fade';\nconst CLASS_NAME_SHOW$4 = 'show';\nconst CLASS_NAME_STATIC = 'modal-static';\nconst OPEN_SELECTOR$1 = '.modal.show';\nconst SELECTOR_DIALOG = '.modal-dialog';\nconst SELECTOR_MODAL_BODY = '.modal-body';\nconst SELECTOR_DATA_TOGGLE$2 = '[data-bs-toggle=\"modal\"]';\nconst Default$6 = {\n backdrop: true,\n focus: true,\n keyboard: true\n};\nconst DefaultType$6 = {\n backdrop: '(boolean|string)',\n focus: 'boolean',\n keyboard: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Modal extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._dialog = SelectorEngine.findOne(SELECTOR_DIALOG, this._element);\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._isShown = false;\n this._isTransitioning = false;\n this._scrollBar = new ScrollBarHelper();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$6;\n }\n static get DefaultType() {\n return DefaultType$6;\n }\n static get NAME() {\n return NAME$7;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown || this._isTransitioning) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$4, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._isTransitioning = true;\n this._scrollBar.hide();\n document.body.classList.add(CLASS_NAME_OPEN);\n this._adjustDialog();\n this._backdrop.show(() => this._showElement(relatedTarget));\n }\n hide() {\n if (!this._isShown || this._isTransitioning) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$4);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._isShown = false;\n this._isTransitioning = true;\n this._focustrap.deactivate();\n this._element.classList.remove(CLASS_NAME_SHOW$4);\n this._queueCallback(() => this._hideModal(), this._element, this._isAnimated());\n }\n dispose() {\n EventHandler.off(window, EVENT_KEY$4);\n EventHandler.off(this._dialog, EVENT_KEY$4);\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n handleUpdate() {\n this._adjustDialog();\n }\n\n // Private\n _initializeBackDrop() {\n return new Backdrop({\n isVisible: Boolean(this._config.backdrop),\n // 'static' option will be translated to true, and booleans will keep their value,\n isAnimated: this._isAnimated()\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _showElement(relatedTarget) {\n // try to append dynamic modal\n if (!document.body.contains(this._element)) {\n document.body.append(this._element);\n }\n this._element.style.display = 'block';\n this._element.removeAttribute('aria-hidden');\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.scrollTop = 0;\n const modalBody = SelectorEngine.findOne(SELECTOR_MODAL_BODY, this._dialog);\n if (modalBody) {\n modalBody.scrollTop = 0;\n }\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_SHOW$4);\n const transitionComplete = () => {\n if (this._config.focus) {\n this._focustrap.activate();\n }\n this._isTransitioning = false;\n EventHandler.trigger(this._element, EVENT_SHOWN$4, {\n relatedTarget\n });\n };\n this._queueCallback(transitionComplete, this._dialog, this._isAnimated());\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS$1, event => {\n if (event.key !== ESCAPE_KEY$1) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n this._triggerBackdropTransition();\n });\n EventHandler.on(window, EVENT_RESIZE$1, () => {\n if (this._isShown && !this._isTransitioning) {\n this._adjustDialog();\n }\n });\n EventHandler.on(this._element, EVENT_MOUSEDOWN_DISMISS, event => {\n // a bad trick to segregate clicks that may start inside dialog but end outside, and avoid listen to scrollbar clicks\n EventHandler.one(this._element, EVENT_CLICK_DISMISS, event2 => {\n if (this._element !== event.target || this._element !== event2.target) {\n return;\n }\n if (this._config.backdrop === 'static') {\n this._triggerBackdropTransition();\n return;\n }\n if (this._config.backdrop) {\n this.hide();\n }\n });\n });\n }\n _hideModal() {\n this._element.style.display = 'none';\n this._element.setAttribute('aria-hidden', true);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n this._isTransitioning = false;\n this._backdrop.hide(() => {\n document.body.classList.remove(CLASS_NAME_OPEN);\n this._resetAdjustments();\n this._scrollBar.reset();\n EventHandler.trigger(this._element, EVENT_HIDDEN$4);\n });\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_FADE$3);\n }\n _triggerBackdropTransition() {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED$1);\n if (hideEvent.defaultPrevented) {\n return;\n }\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const initialOverflowY = this._element.style.overflowY;\n // return if the following background transition hasn't yet completed\n if (initialOverflowY === 'hidden' || this._element.classList.contains(CLASS_NAME_STATIC)) {\n return;\n }\n if (!isModalOverflowing) {\n this._element.style.overflowY = 'hidden';\n }\n this._element.classList.add(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.classList.remove(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.style.overflowY = initialOverflowY;\n }, this._dialog);\n }, this._dialog);\n this._element.focus();\n }\n\n /**\n * The following methods are used to handle overflowing modals\n */\n\n _adjustDialog() {\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const scrollbarWidth = this._scrollBar.getWidth();\n const isBodyOverflowing = scrollbarWidth > 0;\n if (isBodyOverflowing && !isModalOverflowing) {\n const property = isRTL() ? 'paddingLeft' : 'paddingRight';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n if (!isBodyOverflowing && isModalOverflowing) {\n const property = isRTL() ? 'paddingRight' : 'paddingLeft';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n }\n _resetAdjustments() {\n this._element.style.paddingLeft = '';\n this._element.style.paddingRight = '';\n }\n\n // Static\n static jQueryInterface(config, relatedTarget) {\n return this.each(function () {\n const data = Modal.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](relatedTarget);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$2, SELECTOR_DATA_TOGGLE$2, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n EventHandler.one(target, EVENT_SHOW$4, showEvent => {\n if (showEvent.defaultPrevented) {\n // only register focus restorer if modal will actually get shown\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$4, () => {\n if (isVisible(this)) {\n this.focus();\n }\n });\n });\n\n // avoid conflict when clicking modal toggler while another one is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR$1);\n if (alreadyOpen) {\n Modal.getInstance(alreadyOpen).hide();\n }\n const data = Modal.getOrCreateInstance(target);\n data.toggle(this);\n});\nenableDismissTrigger(Modal);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Modal);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap offcanvas.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$6 = 'offcanvas';\nconst DATA_KEY$3 = 'bs.offcanvas';\nconst EVENT_KEY$3 = `.${DATA_KEY$3}`;\nconst DATA_API_KEY$1 = '.data-api';\nconst EVENT_LOAD_DATA_API$2 = `load${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst ESCAPE_KEY = 'Escape';\nconst CLASS_NAME_SHOW$3 = 'show';\nconst CLASS_NAME_SHOWING$1 = 'showing';\nconst CLASS_NAME_HIDING = 'hiding';\nconst CLASS_NAME_BACKDROP = 'offcanvas-backdrop';\nconst OPEN_SELECTOR = '.offcanvas.show';\nconst EVENT_SHOW$3 = `show${EVENT_KEY$3}`;\nconst EVENT_SHOWN$3 = `shown${EVENT_KEY$3}`;\nconst EVENT_HIDE$3 = `hide${EVENT_KEY$3}`;\nconst EVENT_HIDE_PREVENTED = `hidePrevented${EVENT_KEY$3}`;\nconst EVENT_HIDDEN$3 = `hidden${EVENT_KEY$3}`;\nconst EVENT_RESIZE = `resize${EVENT_KEY$3}`;\nconst EVENT_CLICK_DATA_API$1 = `click${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst EVENT_KEYDOWN_DISMISS = `keydown.dismiss${EVENT_KEY$3}`;\nconst SELECTOR_DATA_TOGGLE$1 = '[data-bs-toggle=\"offcanvas\"]';\nconst Default$5 = {\n backdrop: true,\n keyboard: true,\n scroll: false\n};\nconst DefaultType$5 = {\n backdrop: '(boolean|string)',\n keyboard: 'boolean',\n scroll: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Offcanvas extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isShown = false;\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$5;\n }\n static get DefaultType() {\n return DefaultType$5;\n }\n static get NAME() {\n return NAME$6;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$3, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._backdrop.show();\n if (!this._config.scroll) {\n new ScrollBarHelper().hide();\n }\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.classList.add(CLASS_NAME_SHOWING$1);\n const completeCallBack = () => {\n if (!this._config.scroll || this._config.backdrop) {\n this._focustrap.activate();\n }\n this._element.classList.add(CLASS_NAME_SHOW$3);\n this._element.classList.remove(CLASS_NAME_SHOWING$1);\n EventHandler.trigger(this._element, EVENT_SHOWN$3, {\n relatedTarget\n });\n };\n this._queueCallback(completeCallBack, this._element, true);\n }\n hide() {\n if (!this._isShown) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$3);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._focustrap.deactivate();\n this._element.blur();\n this._isShown = false;\n this._element.classList.add(CLASS_NAME_HIDING);\n this._backdrop.hide();\n const completeCallback = () => {\n this._element.classList.remove(CLASS_NAME_SHOW$3, CLASS_NAME_HIDING);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n if (!this._config.scroll) {\n new ScrollBarHelper().reset();\n }\n EventHandler.trigger(this._element, EVENT_HIDDEN$3);\n };\n this._queueCallback(completeCallback, this._element, true);\n }\n dispose() {\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n\n // Private\n _initializeBackDrop() {\n const clickCallback = () => {\n if (this._config.backdrop === 'static') {\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n return;\n }\n this.hide();\n };\n\n // 'static' option will be translated to true, and booleans will keep their value\n const isVisible = Boolean(this._config.backdrop);\n return new Backdrop({\n className: CLASS_NAME_BACKDROP,\n isVisible,\n isAnimated: true,\n rootElement: this._element.parentNode,\n clickCallback: isVisible ? clickCallback : null\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS, event => {\n if (event.key !== ESCAPE_KEY) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n });\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Offcanvas.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$1, SELECTOR_DATA_TOGGLE$1, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$3, () => {\n // focus on trigger when it is closed\n if (isVisible(this)) {\n this.focus();\n }\n });\n\n // avoid conflict when clicking a toggler of an offcanvas, while another is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR);\n if (alreadyOpen && alreadyOpen !== target) {\n Offcanvas.getInstance(alreadyOpen).hide();\n }\n const data = Offcanvas.getOrCreateInstance(target);\n data.toggle(this);\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$2, () => {\n for (const selector of SelectorEngine.find(OPEN_SELECTOR)) {\n Offcanvas.getOrCreateInstance(selector).show();\n }\n});\nEventHandler.on(window, EVENT_RESIZE, () => {\n for (const element of SelectorEngine.find('[aria-modal][class*=show][class*=offcanvas-]')) {\n if (getComputedStyle(element).position !== 'fixed') {\n Offcanvas.getOrCreateInstance(element).hide();\n }\n }\n});\nenableDismissTrigger(Offcanvas);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Offcanvas);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/sanitizer.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n// js-docs-start allow-list\nconst ARIA_ATTRIBUTE_PATTERN = /^aria-[\\w-]*$/i;\nconst DefaultAllowlist = {\n // Global attributes allowed on any supplied element below.\n '*': ['class', 'dir', 'id', 'lang', 'role', ARIA_ATTRIBUTE_PATTERN],\n a: ['target', 'href', 'title', 'rel'],\n area: [],\n b: [],\n br: [],\n col: [],\n code: [],\n dd: [],\n div: [],\n dl: [],\n dt: [],\n em: [],\n hr: [],\n h1: [],\n h2: [],\n h3: [],\n h4: [],\n h5: [],\n h6: [],\n i: [],\n img: ['src', 'srcset', 'alt', 'title', 'width', 'height'],\n li: [],\n ol: [],\n p: [],\n pre: [],\n s: [],\n small: [],\n span: [],\n sub: [],\n sup: [],\n strong: [],\n u: [],\n ul: []\n};\n// js-docs-end allow-list\n\nconst uriAttributes = new Set(['background', 'cite', 'href', 'itemtype', 'longdesc', 'poster', 'src', 'xlink:href']);\n\n/**\n * A pattern that recognizes URLs that are safe wrt. XSS in URL navigation\n * contexts.\n *\n * Shout-out to Angular https://github.com/angular/angular/blob/15.2.8/packages/core/src/sanitization/url_sanitizer.ts#L38\n */\n// eslint-disable-next-line unicorn/better-regex\nconst SAFE_URL_PATTERN = /^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i;\nconst allowedAttribute = (attribute, allowedAttributeList) => {\n const attributeName = attribute.nodeName.toLowerCase();\n if (allowedAttributeList.includes(attributeName)) {\n if (uriAttributes.has(attributeName)) {\n return Boolean(SAFE_URL_PATTERN.test(attribute.nodeValue));\n }\n return true;\n }\n\n // Check if a regular expression validates the attribute.\n return allowedAttributeList.filter(attributeRegex => attributeRegex instanceof RegExp).some(regex => regex.test(attributeName));\n};\nfunction sanitizeHtml(unsafeHtml, allowList, sanitizeFunction) {\n if (!unsafeHtml.length) {\n return unsafeHtml;\n }\n if (sanitizeFunction && typeof sanitizeFunction === 'function') {\n return sanitizeFunction(unsafeHtml);\n }\n const domParser = new window.DOMParser();\n const createdDocument = domParser.parseFromString(unsafeHtml, 'text/html');\n const elements = [].concat(...createdDocument.body.querySelectorAll('*'));\n for (const element of elements) {\n const elementName = element.nodeName.toLowerCase();\n if (!Object.keys(allowList).includes(elementName)) {\n element.remove();\n continue;\n }\n const attributeList = [].concat(...element.attributes);\n const allowedAttributes = [].concat(allowList['*'] || [], allowList[elementName] || []);\n for (const attribute of attributeList) {\n if (!allowedAttribute(attribute, allowedAttributes)) {\n element.removeAttribute(attribute.nodeName);\n }\n }\n }\n return createdDocument.body.innerHTML;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/template-factory.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$5 = 'TemplateFactory';\nconst Default$4 = {\n allowList: DefaultAllowlist,\n content: {},\n // { selector : text , selector2 : text2 , }\n extraClass: '',\n html: false,\n sanitize: true,\n sanitizeFn: null,\n template: '
'\n};\nconst DefaultType$4 = {\n allowList: 'object',\n content: 'object',\n extraClass: '(string|function)',\n html: 'boolean',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n template: 'string'\n};\nconst DefaultContentType = {\n entry: '(string|element|function|null)',\n selector: '(string|element)'\n};\n\n/**\n * Class definition\n */\n\nclass TemplateFactory extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n }\n\n // Getters\n static get Default() {\n return Default$4;\n }\n static get DefaultType() {\n return DefaultType$4;\n }\n static get NAME() {\n return NAME$5;\n }\n\n // Public\n getContent() {\n return Object.values(this._config.content).map(config => this._resolvePossibleFunction(config)).filter(Boolean);\n }\n hasContent() {\n return this.getContent().length > 0;\n }\n changeContent(content) {\n this._checkContent(content);\n this._config.content = {\n ...this._config.content,\n ...content\n };\n return this;\n }\n toHtml() {\n const templateWrapper = document.createElement('div');\n templateWrapper.innerHTML = this._maybeSanitize(this._config.template);\n for (const [selector, text] of Object.entries(this._config.content)) {\n this._setContent(templateWrapper, text, selector);\n }\n const template = templateWrapper.children[0];\n const extraClass = this._resolvePossibleFunction(this._config.extraClass);\n if (extraClass) {\n template.classList.add(...extraClass.split(' '));\n }\n return template;\n }\n\n // Private\n _typeCheckConfig(config) {\n super._typeCheckConfig(config);\n this._checkContent(config.content);\n }\n _checkContent(arg) {\n for (const [selector, content] of Object.entries(arg)) {\n super._typeCheckConfig({\n selector,\n entry: content\n }, DefaultContentType);\n }\n }\n _setContent(template, content, selector) {\n const templateElement = SelectorEngine.findOne(selector, template);\n if (!templateElement) {\n return;\n }\n content = this._resolvePossibleFunction(content);\n if (!content) {\n templateElement.remove();\n return;\n }\n if (isElement(content)) {\n this._putElementInTemplate(getElement(content), templateElement);\n return;\n }\n if (this._config.html) {\n templateElement.innerHTML = this._maybeSanitize(content);\n return;\n }\n templateElement.textContent = content;\n }\n _maybeSanitize(arg) {\n return this._config.sanitize ? sanitizeHtml(arg, this._config.allowList, this._config.sanitizeFn) : arg;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this]);\n }\n _putElementInTemplate(element, templateElement) {\n if (this._config.html) {\n templateElement.innerHTML = '';\n templateElement.append(element);\n return;\n }\n templateElement.textContent = element.textContent;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap tooltip.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$4 = 'tooltip';\nconst DISALLOWED_ATTRIBUTES = new Set(['sanitize', 'allowList', 'sanitizeFn']);\nconst CLASS_NAME_FADE$2 = 'fade';\nconst CLASS_NAME_MODAL = 'modal';\nconst CLASS_NAME_SHOW$2 = 'show';\nconst SELECTOR_TOOLTIP_INNER = '.tooltip-inner';\nconst SELECTOR_MODAL = `.${CLASS_NAME_MODAL}`;\nconst EVENT_MODAL_HIDE = 'hide.bs.modal';\nconst TRIGGER_HOVER = 'hover';\nconst TRIGGER_FOCUS = 'focus';\nconst TRIGGER_CLICK = 'click';\nconst TRIGGER_MANUAL = 'manual';\nconst EVENT_HIDE$2 = 'hide';\nconst EVENT_HIDDEN$2 = 'hidden';\nconst EVENT_SHOW$2 = 'show';\nconst EVENT_SHOWN$2 = 'shown';\nconst EVENT_INSERTED = 'inserted';\nconst EVENT_CLICK$1 = 'click';\nconst EVENT_FOCUSIN$1 = 'focusin';\nconst EVENT_FOCUSOUT$1 = 'focusout';\nconst EVENT_MOUSEENTER = 'mouseenter';\nconst EVENT_MOUSELEAVE = 'mouseleave';\nconst AttachmentMap = {\n AUTO: 'auto',\n TOP: 'top',\n RIGHT: isRTL() ? 'left' : 'right',\n BOTTOM: 'bottom',\n LEFT: isRTL() ? 'right' : 'left'\n};\nconst Default$3 = {\n allowList: DefaultAllowlist,\n animation: true,\n boundary: 'clippingParents',\n container: false,\n customClass: '',\n delay: 0,\n fallbackPlacements: ['top', 'right', 'bottom', 'left'],\n html: false,\n offset: [0, 6],\n placement: 'top',\n popperConfig: null,\n sanitize: true,\n sanitizeFn: null,\n selector: false,\n template: '
' + '
' + '
' + '
',\n title: '',\n trigger: 'hover focus'\n};\nconst DefaultType$3 = {\n allowList: 'object',\n animation: 'boolean',\n boundary: '(string|element)',\n container: '(string|element|boolean)',\n customClass: '(string|function)',\n delay: '(number|object)',\n fallbackPlacements: 'array',\n html: 'boolean',\n offset: '(array|string|function)',\n placement: '(string|function)',\n popperConfig: '(null|object|function)',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n selector: '(string|boolean)',\n template: 'string',\n title: '(string|element|function)',\n trigger: 'string'\n};\n\n/**\n * Class definition\n */\n\nclass Tooltip extends BaseComponent {\n constructor(element, config) {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s tooltips require Popper (https://popper.js.org)');\n }\n super(element, config);\n\n // Private\n this._isEnabled = true;\n this._timeout = 0;\n this._isHovered = null;\n this._activeTrigger = {};\n this._popper = null;\n this._templateFactory = null;\n this._newContent = null;\n\n // Protected\n this.tip = null;\n this._setListeners();\n if (!this._config.selector) {\n this._fixTitle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$3;\n }\n static get DefaultType() {\n return DefaultType$3;\n }\n static get NAME() {\n return NAME$4;\n }\n\n // Public\n enable() {\n this._isEnabled = true;\n }\n disable() {\n this._isEnabled = false;\n }\n toggleEnabled() {\n this._isEnabled = !this._isEnabled;\n }\n toggle() {\n if (!this._isEnabled) {\n return;\n }\n this._activeTrigger.click = !this._activeTrigger.click;\n if (this._isShown()) {\n this._leave();\n return;\n }\n this._enter();\n }\n dispose() {\n clearTimeout(this._timeout);\n EventHandler.off(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n if (this._element.getAttribute('data-bs-original-title')) {\n this._element.setAttribute('title', this._element.getAttribute('data-bs-original-title'));\n }\n this._disposePopper();\n super.dispose();\n }\n show() {\n if (this._element.style.display === 'none') {\n throw new Error('Please use show on visible elements');\n }\n if (!(this._isWithContent() && this._isEnabled)) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOW$2));\n const shadowRoot = findShadowRoot(this._element);\n const isInTheDom = (shadowRoot || this._element.ownerDocument.documentElement).contains(this._element);\n if (showEvent.defaultPrevented || !isInTheDom) {\n return;\n }\n\n // TODO: v6 remove this or make it optional\n this._disposePopper();\n const tip = this._getTipElement();\n this._element.setAttribute('aria-describedby', tip.getAttribute('id'));\n const {\n container\n } = this._config;\n if (!this._element.ownerDocument.documentElement.contains(this.tip)) {\n container.append(tip);\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_INSERTED));\n }\n this._popper = this._createPopper(tip);\n tip.classList.add(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n const complete = () => {\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOWN$2));\n if (this._isHovered === false) {\n this._leave();\n }\n this._isHovered = false;\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n hide() {\n if (!this._isShown()) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDE$2));\n if (hideEvent.defaultPrevented) {\n return;\n }\n const tip = this._getTipElement();\n tip.classList.remove(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n this._activeTrigger[TRIGGER_CLICK] = false;\n this._activeTrigger[TRIGGER_FOCUS] = false;\n this._activeTrigger[TRIGGER_HOVER] = false;\n this._isHovered = null; // it is a trick to support manual triggering\n\n const complete = () => {\n if (this._isWithActiveTrigger()) {\n return;\n }\n if (!this._isHovered) {\n this._disposePopper();\n }\n this._element.removeAttribute('aria-describedby');\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDDEN$2));\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n update() {\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Protected\n _isWithContent() {\n return Boolean(this._getTitle());\n }\n _getTipElement() {\n if (!this.tip) {\n this.tip = this._createTipElement(this._newContent || this._getContentForTemplate());\n }\n return this.tip;\n }\n _createTipElement(content) {\n const tip = this._getTemplateFactory(content).toHtml();\n\n // TODO: remove this check in v6\n if (!tip) {\n return null;\n }\n tip.classList.remove(CLASS_NAME_FADE$2, CLASS_NAME_SHOW$2);\n // TODO: v6 the following can be achieved with CSS only\n tip.classList.add(`bs-${this.constructor.NAME}-auto`);\n const tipId = getUID(this.constructor.NAME).toString();\n tip.setAttribute('id', tipId);\n if (this._isAnimated()) {\n tip.classList.add(CLASS_NAME_FADE$2);\n }\n return tip;\n }\n setContent(content) {\n this._newContent = content;\n if (this._isShown()) {\n this._disposePopper();\n this.show();\n }\n }\n _getTemplateFactory(content) {\n if (this._templateFactory) {\n this._templateFactory.changeContent(content);\n } else {\n this._templateFactory = new TemplateFactory({\n ...this._config,\n // the `content` var has to be after `this._config`\n // to override config.content in case of popover\n content,\n extraClass: this._resolvePossibleFunction(this._config.customClass)\n });\n }\n return this._templateFactory;\n }\n _getContentForTemplate() {\n return {\n [SELECTOR_TOOLTIP_INNER]: this._getTitle()\n };\n }\n _getTitle() {\n return this._resolvePossibleFunction(this._config.title) || this._element.getAttribute('data-bs-original-title');\n }\n\n // Private\n _initializeOnDelegatedTarget(event) {\n return this.constructor.getOrCreateInstance(event.delegateTarget, this._getDelegateConfig());\n }\n _isAnimated() {\n return this._config.animation || this.tip && this.tip.classList.contains(CLASS_NAME_FADE$2);\n }\n _isShown() {\n return this.tip && this.tip.classList.contains(CLASS_NAME_SHOW$2);\n }\n _createPopper(tip) {\n const placement = execute(this._config.placement, [this, tip, this._element]);\n const attachment = AttachmentMap[placement.toUpperCase()];\n return Popper.createPopper(this._element, tip, this._getPopperConfig(attachment));\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this._element]);\n }\n _getPopperConfig(attachment) {\n const defaultBsPopperConfig = {\n placement: attachment,\n modifiers: [{\n name: 'flip',\n options: {\n fallbackPlacements: this._config.fallbackPlacements\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }, {\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'arrow',\n options: {\n element: `.${this.constructor.NAME}-arrow`\n }\n }, {\n name: 'preSetPlacement',\n enabled: true,\n phase: 'beforeMain',\n fn: data => {\n // Pre-set Popper's placement attribute in order to read the arrow sizes properly.\n // Otherwise, Popper mixes up the width and height dimensions since the initial arrow style is for top placement\n this._getTipElement().setAttribute('data-popper-placement', data.state.placement);\n }\n }]\n };\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _setListeners() {\n const triggers = this._config.trigger.split(' ');\n for (const trigger of triggers) {\n if (trigger === 'click') {\n EventHandler.on(this._element, this.constructor.eventName(EVENT_CLICK$1), this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context.toggle();\n });\n } else if (trigger !== TRIGGER_MANUAL) {\n const eventIn = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSEENTER) : this.constructor.eventName(EVENT_FOCUSIN$1);\n const eventOut = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSELEAVE) : this.constructor.eventName(EVENT_FOCUSOUT$1);\n EventHandler.on(this._element, eventIn, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusin' ? TRIGGER_FOCUS : TRIGGER_HOVER] = true;\n context._enter();\n });\n EventHandler.on(this._element, eventOut, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusout' ? TRIGGER_FOCUS : TRIGGER_HOVER] = context._element.contains(event.relatedTarget);\n context._leave();\n });\n }\n }\n this._hideModalHandler = () => {\n if (this._element) {\n this.hide();\n }\n };\n EventHandler.on(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n }\n _fixTitle() {\n const title = this._element.getAttribute('title');\n if (!title) {\n return;\n }\n if (!this._element.getAttribute('aria-label') && !this._element.textContent.trim()) {\n this._element.setAttribute('aria-label', title);\n }\n this._element.setAttribute('data-bs-original-title', title); // DO NOT USE IT. Is only for backwards compatibility\n this._element.removeAttribute('title');\n }\n _enter() {\n if (this._isShown() || this._isHovered) {\n this._isHovered = true;\n return;\n }\n this._isHovered = true;\n this._setTimeout(() => {\n if (this._isHovered) {\n this.show();\n }\n }, this._config.delay.show);\n }\n _leave() {\n if (this._isWithActiveTrigger()) {\n return;\n }\n this._isHovered = false;\n this._setTimeout(() => {\n if (!this._isHovered) {\n this.hide();\n }\n }, this._config.delay.hide);\n }\n _setTimeout(handler, timeout) {\n clearTimeout(this._timeout);\n this._timeout = setTimeout(handler, timeout);\n }\n _isWithActiveTrigger() {\n return Object.values(this._activeTrigger).includes(true);\n }\n _getConfig(config) {\n const dataAttributes = Manipulator.getDataAttributes(this._element);\n for (const dataAttribute of Object.keys(dataAttributes)) {\n if (DISALLOWED_ATTRIBUTES.has(dataAttribute)) {\n delete dataAttributes[dataAttribute];\n }\n }\n config = {\n ...dataAttributes,\n ...(typeof config === 'object' && config ? config : {})\n };\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n config.container = config.container === false ? document.body : getElement(config.container);\n if (typeof config.delay === 'number') {\n config.delay = {\n show: config.delay,\n hide: config.delay\n };\n }\n if (typeof config.title === 'number') {\n config.title = config.title.toString();\n }\n if (typeof config.content === 'number') {\n config.content = config.content.toString();\n }\n return config;\n }\n _getDelegateConfig() {\n const config = {};\n for (const [key, value] of Object.entries(this._config)) {\n if (this.constructor.Default[key] !== value) {\n config[key] = value;\n }\n }\n config.selector = false;\n config.trigger = 'manual';\n\n // In the future can be replaced with:\n // const keysWithDifferentValues = Object.entries(this._config).filter(entry => this.constructor.Default[entry[0]] !== this._config[entry[0]])\n // `Object.fromEntries(keysWithDifferentValues)`\n return config;\n }\n _disposePopper() {\n if (this._popper) {\n this._popper.destroy();\n this._popper = null;\n }\n if (this.tip) {\n this.tip.remove();\n this.tip = null;\n }\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Tooltip.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Tooltip);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap popover.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$3 = 'popover';\nconst SELECTOR_TITLE = '.popover-header';\nconst SELECTOR_CONTENT = '.popover-body';\nconst Default$2 = {\n ...Tooltip.Default,\n content: '',\n offset: [0, 8],\n placement: 'right',\n template: '
' + '
' + '

' + '
' + '
',\n trigger: 'click'\n};\nconst DefaultType$2 = {\n ...Tooltip.DefaultType,\n content: '(null|string|element|function)'\n};\n\n/**\n * Class definition\n */\n\nclass Popover extends Tooltip {\n // Getters\n static get Default() {\n return Default$2;\n }\n static get DefaultType() {\n return DefaultType$2;\n }\n static get NAME() {\n return NAME$3;\n }\n\n // Overrides\n _isWithContent() {\n return this._getTitle() || this._getContent();\n }\n\n // Private\n _getContentForTemplate() {\n return {\n [SELECTOR_TITLE]: this._getTitle(),\n [SELECTOR_CONTENT]: this._getContent()\n };\n }\n _getContent() {\n return this._resolvePossibleFunction(this._config.content);\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Popover.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Popover);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap scrollspy.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$2 = 'scrollspy';\nconst DATA_KEY$2 = 'bs.scrollspy';\nconst EVENT_KEY$2 = `.${DATA_KEY$2}`;\nconst DATA_API_KEY = '.data-api';\nconst EVENT_ACTIVATE = `activate${EVENT_KEY$2}`;\nconst EVENT_CLICK = `click${EVENT_KEY$2}`;\nconst EVENT_LOAD_DATA_API$1 = `load${EVENT_KEY$2}${DATA_API_KEY}`;\nconst CLASS_NAME_DROPDOWN_ITEM = 'dropdown-item';\nconst CLASS_NAME_ACTIVE$1 = 'active';\nconst SELECTOR_DATA_SPY = '[data-bs-spy=\"scroll\"]';\nconst SELECTOR_TARGET_LINKS = '[href]';\nconst SELECTOR_NAV_LIST_GROUP = '.nav, .list-group';\nconst SELECTOR_NAV_LINKS = '.nav-link';\nconst SELECTOR_NAV_ITEMS = '.nav-item';\nconst SELECTOR_LIST_ITEMS = '.list-group-item';\nconst SELECTOR_LINK_ITEMS = `${SELECTOR_NAV_LINKS}, ${SELECTOR_NAV_ITEMS} > ${SELECTOR_NAV_LINKS}, ${SELECTOR_LIST_ITEMS}`;\nconst SELECTOR_DROPDOWN = '.dropdown';\nconst SELECTOR_DROPDOWN_TOGGLE$1 = '.dropdown-toggle';\nconst Default$1 = {\n offset: null,\n // TODO: v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: '0px 0px -25%',\n smoothScroll: false,\n target: null,\n threshold: [0.1, 0.5, 1]\n};\nconst DefaultType$1 = {\n offset: '(number|null)',\n // TODO v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: 'string',\n smoothScroll: 'boolean',\n target: 'element',\n threshold: 'array'\n};\n\n/**\n * Class definition\n */\n\nclass ScrollSpy extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n\n // this._element is the observablesContainer and config.target the menu links wrapper\n this._targetLinks = new Map();\n this._observableSections = new Map();\n this._rootElement = getComputedStyle(this._element).overflowY === 'visible' ? null : this._element;\n this._activeTarget = null;\n this._observer = null;\n this._previousScrollData = {\n visibleEntryTop: 0,\n parentScrollTop: 0\n };\n this.refresh(); // initialize\n }\n\n // Getters\n static get Default() {\n return Default$1;\n }\n static get DefaultType() {\n return DefaultType$1;\n }\n static get NAME() {\n return NAME$2;\n }\n\n // Public\n refresh() {\n this._initializeTargetsAndObservables();\n this._maybeEnableSmoothScroll();\n if (this._observer) {\n this._observer.disconnect();\n } else {\n this._observer = this._getNewObserver();\n }\n for (const section of this._observableSections.values()) {\n this._observer.observe(section);\n }\n }\n dispose() {\n this._observer.disconnect();\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n // TODO: on v6 target should be given explicitly & remove the {target: 'ss-target'} case\n config.target = getElement(config.target) || document.body;\n\n // TODO: v6 Only for backwards compatibility reasons. Use rootMargin only\n config.rootMargin = config.offset ? `${config.offset}px 0px -30%` : config.rootMargin;\n if (typeof config.threshold === 'string') {\n config.threshold = config.threshold.split(',').map(value => Number.parseFloat(value));\n }\n return config;\n }\n _maybeEnableSmoothScroll() {\n if (!this._config.smoothScroll) {\n return;\n }\n\n // unregister any previous listeners\n EventHandler.off(this._config.target, EVENT_CLICK);\n EventHandler.on(this._config.target, EVENT_CLICK, SELECTOR_TARGET_LINKS, event => {\n const observableSection = this._observableSections.get(event.target.hash);\n if (observableSection) {\n event.preventDefault();\n const root = this._rootElement || window;\n const height = observableSection.offsetTop - this._element.offsetTop;\n if (root.scrollTo) {\n root.scrollTo({\n top: height,\n behavior: 'smooth'\n });\n return;\n }\n\n // Chrome 60 doesn't support `scrollTo`\n root.scrollTop = height;\n }\n });\n }\n _getNewObserver() {\n const options = {\n root: this._rootElement,\n threshold: this._config.threshold,\n rootMargin: this._config.rootMargin\n };\n return new IntersectionObserver(entries => this._observerCallback(entries), options);\n }\n\n // The logic of selection\n _observerCallback(entries) {\n const targetElement = entry => this._targetLinks.get(`#${entry.target.id}`);\n const activate = entry => {\n this._previousScrollData.visibleEntryTop = entry.target.offsetTop;\n this._process(targetElement(entry));\n };\n const parentScrollTop = (this._rootElement || document.documentElement).scrollTop;\n const userScrollsDown = parentScrollTop >= this._previousScrollData.parentScrollTop;\n this._previousScrollData.parentScrollTop = parentScrollTop;\n for (const entry of entries) {\n if (!entry.isIntersecting) {\n this._activeTarget = null;\n this._clearActiveClass(targetElement(entry));\n continue;\n }\n const entryIsLowerThanPrevious = entry.target.offsetTop >= this._previousScrollData.visibleEntryTop;\n // if we are scrolling down, pick the bigger offsetTop\n if (userScrollsDown && entryIsLowerThanPrevious) {\n activate(entry);\n // if parent isn't scrolled, let's keep the first visible item, breaking the iteration\n if (!parentScrollTop) {\n return;\n }\n continue;\n }\n\n // if we are scrolling up, pick the smallest offsetTop\n if (!userScrollsDown && !entryIsLowerThanPrevious) {\n activate(entry);\n }\n }\n }\n _initializeTargetsAndObservables() {\n this._targetLinks = new Map();\n this._observableSections = new Map();\n const targetLinks = SelectorEngine.find(SELECTOR_TARGET_LINKS, this._config.target);\n for (const anchor of targetLinks) {\n // ensure that the anchor has an id and is not disabled\n if (!anchor.hash || isDisabled(anchor)) {\n continue;\n }\n const observableSection = SelectorEngine.findOne(decodeURI(anchor.hash), this._element);\n\n // ensure that the observableSection exists & is visible\n if (isVisible(observableSection)) {\n this._targetLinks.set(decodeURI(anchor.hash), anchor);\n this._observableSections.set(anchor.hash, observableSection);\n }\n }\n }\n _process(target) {\n if (this._activeTarget === target) {\n return;\n }\n this._clearActiveClass(this._config.target);\n this._activeTarget = target;\n target.classList.add(CLASS_NAME_ACTIVE$1);\n this._activateParents(target);\n EventHandler.trigger(this._element, EVENT_ACTIVATE, {\n relatedTarget: target\n });\n }\n _activateParents(target) {\n // Activate dropdown parents\n if (target.classList.contains(CLASS_NAME_DROPDOWN_ITEM)) {\n SelectorEngine.findOne(SELECTOR_DROPDOWN_TOGGLE$1, target.closest(SELECTOR_DROPDOWN)).classList.add(CLASS_NAME_ACTIVE$1);\n return;\n }\n for (const listGroup of SelectorEngine.parents(target, SELECTOR_NAV_LIST_GROUP)) {\n // Set triggered links parents as active\n // With both