|
| 1 | +<p>You are given two integers, <code>m</code> and <code>k</code>, and an integer array <code>nums</code>.</p> |
| 2 | +A sequence of integers <code>seq</code> is called <strong>magical</strong> if: |
| 3 | + |
| 4 | +<ul> |
| 5 | + <li><code>seq</code> has a size of <code>m</code>.</li> |
| 6 | + <li><code>0 <= seq[i] < nums.length</code></li> |
| 7 | + <li>The <strong>binary representation</strong> of <code>2<sup>seq[0]</sup> + 2<sup>seq[1]</sup> + ... + 2<sup>seq[m - 1]</sup></code> has <code>k</code> <strong>set bits</strong>.</li> |
| 8 | +</ul> |
| 9 | + |
| 10 | +<p>The <strong>array product</strong> of this sequence is defined as <code>prod(seq) = (nums[seq[0]] * nums[seq[1]] * ... * nums[seq[m - 1]])</code>.</p> |
| 11 | + |
| 12 | +<p>Return the <strong>sum</strong> of the <strong>array products</strong> for all valid <strong>magical</strong> sequences.</p> |
| 13 | + |
| 14 | +<p>Since the answer may be large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> |
| 15 | + |
| 16 | +<p>A <strong>set bit</strong> refers to a bit in the binary representation of a number that has a value of 1.</p> |
| 17 | + |
| 18 | +<p> </p> |
| 19 | +<p><strong class="example">Example 1:</strong></p> |
| 20 | + |
| 21 | +<div class="example-block"> |
| 22 | +<p><strong>Input:</strong> <span class="example-io">m = 5, k = 5, nums = [1,10,100,10000,1000000]</span></p> |
| 23 | + |
| 24 | +<p><strong>Output:</strong> <span class="example-io">991600007</span></p> |
| 25 | + |
| 26 | +<p><strong>Explanation:</strong></p> |
| 27 | + |
| 28 | +<p>All permutations of <code>[0, 1, 2, 3, 4]</code> are magical sequences, each with an array product of 10<sup>13</sup>.</p> |
| 29 | +</div> |
| 30 | + |
| 31 | +<p><strong class="example">Example 2:</strong></p> |
| 32 | + |
| 33 | +<div class="example-block"> |
| 34 | +<p><strong>Input:</strong> <span class="example-io">m = 2, k = 2, nums = [5,4,3,2,1]</span></p> |
| 35 | + |
| 36 | +<p><strong>Output:</strong> <span class="example-io">170</span></p> |
| 37 | + |
| 38 | +<p><strong>Explanation:</strong></p> |
| 39 | + |
| 40 | +<p>The magical sequences are <code>[0, 1]</code>, <code>[0, 2]</code>, <code>[0, 3]</code>, <code>[0, 4]</code>, <code>[1, 0]</code>, <code>[1, 2]</code>, <code>[1, 3]</code>, <code>[1, 4]</code>, <code>[2, 0]</code>, <code>[2, 1]</code>, <code>[2, 3]</code>, <code>[2, 4]</code>, <code>[3, 0]</code>, <code>[3, 1]</code>, <code>[3, 2]</code>, <code>[3, 4]</code>, <code>[4, 0]</code>, <code>[4, 1]</code>, <code>[4, 2]</code>, and <code>[4, 3]</code>.</p> |
| 41 | +</div> |
| 42 | + |
| 43 | +<p><strong class="example">Example 3:</strong></p> |
| 44 | + |
| 45 | +<div class="example-block"> |
| 46 | +<p><strong>Input:</strong> <span class="example-io">m = 1, k = 1, nums = [28]</span></p> |
| 47 | + |
| 48 | +<p><strong>Output:</strong> <span class="example-io">28</span></p> |
| 49 | + |
| 50 | +<p><strong>Explanation:</strong></p> |
| 51 | + |
| 52 | +<p>The only magical sequence is <code>[0]</code>.</p> |
| 53 | +</div> |
| 54 | + |
| 55 | +<p> </p> |
| 56 | +<p><strong>Constraints:</strong></p> |
| 57 | + |
| 58 | +<ul> |
| 59 | + <li><code>1 <= k <= m <= 30</code></li> |
| 60 | + <li><code>1 <= nums.length <= 50</code></li> |
| 61 | + <li><code>1 <= nums[i] <= 10<sup>8</sup></code></li> |
| 62 | +</ul> |
0 commit comments