Skip to content

Latest commit

 

History

History
88 lines (73 loc) · 3.01 KB

README.md

File metadata and controls

88 lines (73 loc) · 3.01 KB

Project 2: Feature Detection and Matching


CS5670 - Intro to Computer Vision

Project Details Page: https://www.cs.cornell.edu/courses/cs5670/2023sp/projects/pa2/

Introduction:

The goal of feature detection and matching is to identify a pairing between a point in one image and a corresponding point in another image. These correspondences can then be used to stitch multiple images together into a panorama. In this project, we detected image features and matching pairing features as following:

  • Feature detection using Harris
  • Feature description (simple and MOPS)
  • Feature descriptor SIFT (Scale Invariant Feature Transform) implemented in bonus directory in 'extracredit.py'
  • Feature matching (SSD and ratio)

Results:

Input:

Yosemite 1 & Yosemite 2
Yosemite 1
Yosemite 2


Output: Keypoint Detection:

Yosemite 1: 1559 keypoints detected
Yosemite 1
Yosemite 2: 1356 keypoints detected
Yosemite 2


Output: Feature Matching

MOPS SSD: 1559 Matches
MOPS SSD
MOPS Ratio: 1559 Matches
MOPS Ratio

Simple SSD: 1559 Matches
Simple SSD
Simple Ratio: 1559 Matches
Simple Ratio

Performance Benchmark

ROC Curves and their respective AUC values for all matcher types and tests are shown below in the figure:
ROC Curves & AUC values

Extra Credit: SIFT ROC Curves

ROC Curves:

SIFT SSD Test ROC Curve: AUC Value 0.9841
SIFT SSD Test ROC Curve
SIFT Ratio Test ROC Curve: AUC Value 0.9858
SIFT Ratio Test ROC Curve:


Feature Matching Results:

SIFT SSD
SIFT SSD
SIFT Ratio
SIFT Ratio