-
Notifications
You must be signed in to change notification settings - Fork 0
/
attention_swin_unetr.py
1151 lines (1038 loc) · 44.4 KB
/
attention_swin_unetr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import itertools
from collections.abc import Sequence
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from torch.nn import LayerNorm
from typing_extensions import Final
from monai.networks.blocks import MLPBlock as Mlp
from monai.networks.blocks import PatchEmbed, UnetOutBlock, UnetrBasicBlock
from monai.networks.layers import DropPath, trunc_normal_
from monai.utils import ensure_tuple_rep, look_up_option, optional_import
from monai.utils.deprecate_utils import deprecated_arg
from unetr_block import UnetrUpBlock
from einops import rearrange
#rearrange, _ = optional_import("einops", name="rearrange")
__all__ = [
"SwinUNETR",
"window_partition",
"window_reverse",
"WindowAttention",
"SwinTransformerBlock",
"PatchMerging",
"PatchMergingV2",
"MERGING_MODE",
"BasicLayer",
"SwinTransformer",
]
class SwinUNETR(nn.Module):
"""
Swin UNETR based on: "Hatamizadeh et al.,
Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images
<https://arxiv.org/abs/2201.01266>"
"""
patch_size: Final[int] = 2
@deprecated_arg(
name="img_size",
since="1.3",
removed="1.5",
msg_suffix="The img_size argument is not required anymore and "
"checks on the input size are run during forward().",
)
def __init__(
self,
img_size: Sequence[int] | int,
in_channels: int,
out_channels: int,
depths: Sequence[int] = (2, 2, 2, 2),
num_heads: Sequence[int] = (3, 6, 12, 24),
feature_size: int = 24,
norm_name: tuple | str = "instance",
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
dropout_path_rate: float = 0.0,
normalize: bool = True,
use_checkpoint: bool = False,
spatial_dims: int = 3,
downsample="merging",
use_v2=False,
) -> None:
"""
Args:
img_size: spatial dimension of input image.
This argument is only used for checking that the input image size is divisible by the patch size.
The tensor passed to forward() can have a dynamic shape as long as its spatial dimensions are divisible by 2**5.
It will be removed in an upcoming version.
in_channels: dimension of input channels.
out_channels: dimension of output channels.
feature_size: dimension of network feature size.
depths: number of layers in each stage.
num_heads: number of attention heads.
norm_name: feature normalization type and arguments.
drop_rate: dropout rate.
attn_drop_rate: attention dropout rate.
dropout_path_rate: drop path rate.
normalize: normalize output intermediate features in each stage.
use_checkpoint: use gradient checkpointing for reduced memory usage.
spatial_dims: number of spatial dims.
downsample: module used for downsampling, available options are `"mergingv2"`, `"merging"` and a
user-specified `nn.Module` following the API defined in :py:class:`monai.networks.nets.PatchMerging`.
The default is currently `"merging"` (the original version defined in v0.9.0).
use_v2: using swinunetr_v2, which adds a residual convolution block at the beggining of each swin stage.
Examples::
# for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48.
>>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48)
# for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage.
>>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2))
# for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing.
>>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2)
"""
super().__init__()
img_size = ensure_tuple_rep(img_size, spatial_dims)
patch_sizes = ensure_tuple_rep(self.patch_size, spatial_dims)
window_size = ensure_tuple_rep(7, spatial_dims)
if spatial_dims not in (2, 3):
raise ValueError("spatial dimension should be 2 or 3.")
self._check_input_size(img_size)
if not (0 <= drop_rate <= 1):
raise ValueError("dropout rate should be between 0 and 1.")
if not (0 <= attn_drop_rate <= 1):
raise ValueError("attention dropout rate should be between 0 and 1.")
if not (0 <= dropout_path_rate <= 1):
raise ValueError("drop path rate should be between 0 and 1.")
if feature_size % 12 != 0:
raise ValueError("feature_size should be divisible by 12.")
self.normalize = normalize
self.swinViT = SwinTransformer(
in_chans=in_channels,
embed_dim=feature_size,
window_size=window_size,
patch_size=patch_sizes,
depths=depths,
num_heads=num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=dropout_path_rate,
norm_layer=nn.LayerNorm,
use_checkpoint=use_checkpoint,
spatial_dims=spatial_dims,
downsample=look_up_option(downsample, MERGING_MODE) if isinstance(downsample, str) else downsample,
use_v2=use_v2,
)
self.encoder1 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=in_channels,
out_channels=feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.encoder2 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=feature_size,
out_channels=feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.encoder3 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=2 * feature_size,
out_channels=2 * feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.encoder4 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=4 * feature_size,
out_channels=4 * feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.encoder10 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=16 * feature_size,
out_channels=16 * feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.decoder5 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=16 * feature_size,
out_channels=8 * feature_size,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
attention=True,
selfattention=False,
se_layer=False,
scse_layer=True,
)
self.decoder4 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=feature_size * 8,
out_channels=feature_size * 4,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
attention=True,
selfattention=False,
se_layer=False,
scse_layer=True,
)
self.decoder3 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=feature_size * 4,
out_channels=feature_size * 2,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
attention=True,
selfattention=False,
se_layer=False,
scse_layer=True,
)
self.decoder2 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=feature_size * 2,
out_channels=feature_size,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
attention=True,
selfattention=False,
se_layer=False,
scse_layer=True,
)
self.decoder1 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=feature_size,
out_channels=feature_size,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
attention=True,
selfattention=False,
se_layer=False,
scse_layer=True,
)
self.out = UnetOutBlock(spatial_dims=spatial_dims, in_channels=feature_size, out_channels=out_channels)
def load_from(self, weights):
with torch.no_grad():
self.swinViT.patch_embed.proj.weight.copy_(weights["state_dict"]["module.patch_embed.proj.weight"])
self.swinViT.patch_embed.proj.bias.copy_(weights["state_dict"]["module.patch_embed.proj.bias"])
for bname, block in self.swinViT.layers1[0].blocks.named_children():
block.load_from(weights, n_block=bname, layer="layers1")
self.swinViT.layers1[0].downsample.reduction.weight.copy_(
weights["state_dict"]["module.layers1.0.downsample.reduction.weight"]
)
self.swinViT.layers1[0].downsample.norm.weight.copy_(
weights["state_dict"]["module.layers1.0.downsample.norm.weight"]
)
self.swinViT.layers1[0].downsample.norm.bias.copy_(
weights["state_dict"]["module.layers1.0.downsample.norm.bias"]
)
for bname, block in self.swinViT.layers2[0].blocks.named_children():
block.load_from(weights, n_block=bname, layer="layers2")
self.swinViT.layers2[0].downsample.reduction.weight.copy_(
weights["state_dict"]["module.layers2.0.downsample.reduction.weight"]
)
self.swinViT.layers2[0].downsample.norm.weight.copy_(
weights["state_dict"]["module.layers2.0.downsample.norm.weight"]
)
self.swinViT.layers2[0].downsample.norm.bias.copy_(
weights["state_dict"]["module.layers2.0.downsample.norm.bias"]
)
for bname, block in self.swinViT.layers3[0].blocks.named_children():
block.load_from(weights, n_block=bname, layer="layers3")
self.swinViT.layers3[0].downsample.reduction.weight.copy_(
weights["state_dict"]["module.layers3.0.downsample.reduction.weight"]
)
self.swinViT.layers3[0].downsample.norm.weight.copy_(
weights["state_dict"]["module.layers3.0.downsample.norm.weight"]
)
self.swinViT.layers3[0].downsample.norm.bias.copy_(
weights["state_dict"]["module.layers3.0.downsample.norm.bias"]
)
for bname, block in self.swinViT.layers4[0].blocks.named_children():
block.load_from(weights, n_block=bname, layer="layers4")
self.swinViT.layers4[0].downsample.reduction.weight.copy_(
weights["state_dict"]["module.layers4.0.downsample.reduction.weight"]
)
self.swinViT.layers4[0].downsample.norm.weight.copy_(
weights["state_dict"]["module.layers4.0.downsample.norm.weight"]
)
self.swinViT.layers4[0].downsample.norm.bias.copy_(
weights["state_dict"]["module.layers4.0.downsample.norm.bias"]
)
@torch.jit.unused
def _check_input_size(self, spatial_shape):
img_size = np.array(spatial_shape)
remainder = (img_size % np.power(self.patch_size, 5)) > 0
if remainder.any():
wrong_dims = (np.where(remainder)[0] + 2).tolist()
raise ValueError(
f"spatial dimensions {wrong_dims} of input image (spatial shape: {spatial_shape})"
f" must be divisible by {self.patch_size}**5."
)
def forward(self, x_in):
if not torch.jit.is_scripting():
self._check_input_size(x_in.shape[2:])
hidden_states_out = self.swinViT(x_in, self.normalize)
enc0 = self.encoder1(x_in)
enc1 = self.encoder2(hidden_states_out[0])
enc2 = self.encoder3(hidden_states_out[1])
enc3 = self.encoder4(hidden_states_out[2])
dec4 = self.encoder10(hidden_states_out[4])
dec3 = self.decoder5(dec4, hidden_states_out[3])
dec2 = self.decoder4(dec3, enc3)
dec1 = self.decoder3(dec2, enc2)
dec0 = self.decoder2(dec1, enc1)
out = self.decoder1(dec0, enc0)
logits = self.out(out)
return logits
def window_partition(x, window_size):
"""window partition operation based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
x: input tensor.
window_size: local window size.
"""
x_shape = x.size()
if len(x_shape) == 5:
b, d, h, w, c = x_shape
x = x.view(
b,
d // window_size[0],
window_size[0],
h // window_size[1],
window_size[1],
w // window_size[2],
window_size[2],
c,
)
windows = (
x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, window_size[0] * window_size[1] * window_size[2], c)
)
elif len(x_shape) == 4:
b, h, w, c = x.shape
x = x.view(b, h // window_size[0], window_size[0], w // window_size[1], window_size[1], c)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0] * window_size[1], c)
return windows
def window_reverse(windows, window_size, dims):
"""window reverse operation based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
windows: windows tensor.
window_size: local window size.
dims: dimension values.
"""
if len(dims) == 4:
b, d, h, w = dims
x = windows.view(
b,
d // window_size[0],
h // window_size[1],
w // window_size[2],
window_size[0],
window_size[1],
window_size[2],
-1,
)
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(b, d, h, w, -1)
elif len(dims) == 3:
b, h, w = dims
x = windows.view(b, h // window_size[0], w // window_size[1], window_size[0], window_size[1], -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
return x
def get_window_size(x_size, window_size, shift_size=None):
"""Computing window size based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
x_size: input size.
window_size: local window size.
shift_size: window shifting size.
"""
use_window_size = list(window_size)
if shift_size is not None:
use_shift_size = list(shift_size)
for i in range(len(x_size)):
if x_size[i] <= window_size[i]:
use_window_size[i] = x_size[i]
if shift_size is not None:
use_shift_size[i] = 0
if shift_size is None:
return tuple(use_window_size)
else:
return tuple(use_window_size), tuple(use_shift_size)
class WindowAttention(nn.Module):
"""
Window based multi-head self attention module with relative position bias based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
dim: int,
num_heads: int,
window_size: Sequence[int],
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
) -> None:
"""
Args:
dim: number of feature channels.
num_heads: number of attention heads.
window_size: local window size.
qkv_bias: add a learnable bias to query, key, value.
attn_drop: attention dropout rate.
proj_drop: dropout rate of output.
"""
super().__init__()
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
mesh_args = torch.meshgrid.__kwdefaults__
if len(self.window_size) == 3:
self.relative_position_bias_table = nn.Parameter(
torch.zeros(
(2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1),
num_heads,
)
)
coords_d = torch.arange(self.window_size[0])
coords_h = torch.arange(self.window_size[1])
coords_w = torch.arange(self.window_size[2])
if mesh_args is not None:
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w, indexing="ij"))
else:
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 2] += self.window_size[2] - 1
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
elif len(self.window_size) == 2:
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
)
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
if mesh_args is not None:
coords = torch.stack(torch.meshgrid(coords_h, coords_w, indexing="ij"))
else:
coords = torch.stack(torch.meshgrid(coords_h, coords_w))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask):
b, n, c = x.shape
qkv = self.qkv(x).reshape(b, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.clone()[:n, :n].reshape(-1)
].reshape(n, n, -1)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nw = mask.shape[0]
attn = attn.view(b // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, n, n)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn).to(v.dtype)
x = (attn @ v).transpose(1, 2).reshape(b, n, c)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Module):
"""
Swin Transformer block based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
dim: int,
num_heads: int,
window_size: Sequence[int],
shift_size: Sequence[int],
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop: float = 0.0,
attn_drop: float = 0.0,
drop_path: float = 0.0,
act_layer: str = "GELU",
norm_layer: type[LayerNorm] = nn.LayerNorm,
use_checkpoint: bool = False,
) -> None:
"""
Args:
dim: number of feature channels.
num_heads: number of attention heads.
window_size: local window size.
shift_size: window shift size.
mlp_ratio: ratio of mlp hidden dim to embedding dim.
qkv_bias: add a learnable bias to query, key, value.
drop: dropout rate.
attn_drop: attention dropout rate.
drop_path: stochastic depth rate.
act_layer: activation layer.
norm_layer: normalization layer.
use_checkpoint: use gradient checkpointing for reduced memory usage.
"""
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
self.use_checkpoint = use_checkpoint
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
window_size=self.window_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(hidden_size=dim, mlp_dim=mlp_hidden_dim, act=act_layer, dropout_rate=drop, dropout_mode="swin")
def forward_part1(self, x, mask_matrix):
x_shape = x.size()
x = self.norm1(x)
if len(x_shape) == 5:
b, d, h, w, c = x.shape
window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size)
pad_l = pad_t = pad_d0 = 0
pad_d1 = (window_size[0] - d % window_size[0]) % window_size[0]
pad_b = (window_size[1] - h % window_size[1]) % window_size[1]
pad_r = (window_size[2] - w % window_size[2]) % window_size[2]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
_, dp, hp, wp, _ = x.shape
dims = [b, dp, hp, wp]
elif len(x_shape) == 4:
b, h, w, c = x.shape
window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size)
pad_l = pad_t = 0
pad_b = (window_size[0] - h % window_size[0]) % window_size[0]
pad_r = (window_size[1] - w % window_size[1]) % window_size[1]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, hp, wp, _ = x.shape
dims = [b, hp, wp]
if any(i > 0 for i in shift_size):
if len(x_shape) == 5:
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3))
elif len(x_shape) == 4:
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
x_windows = window_partition(shifted_x, window_size)
attn_windows = self.attn(x_windows, mask=attn_mask)
attn_windows = attn_windows.view(-1, *(window_size + (c,)))
shifted_x = window_reverse(attn_windows, window_size, dims)
if any(i > 0 for i in shift_size):
if len(x_shape) == 5:
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3))
elif len(x_shape) == 4:
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1]), dims=(1, 2))
else:
x = shifted_x
if len(x_shape) == 5:
if pad_d1 > 0 or pad_r > 0 or pad_b > 0:
x = x[:, :d, :h, :w, :].contiguous()
elif len(x_shape) == 4:
if pad_r > 0 or pad_b > 0:
x = x[:, :h, :w, :].contiguous()
return x
def forward_part2(self, x):
return self.drop_path(self.mlp(self.norm2(x)))
def load_from(self, weights, n_block, layer):
root = f"module.{layer}.0.blocks.{n_block}."
block_names = [
"norm1.weight",
"norm1.bias",
"attn.relative_position_bias_table",
"attn.relative_position_index",
"attn.qkv.weight",
"attn.qkv.bias",
"attn.proj.weight",
"attn.proj.bias",
"norm2.weight",
"norm2.bias",
"mlp.fc1.weight",
"mlp.fc1.bias",
"mlp.fc2.weight",
"mlp.fc2.bias",
]
with torch.no_grad():
self.norm1.weight.copy_(weights["state_dict"][root + block_names[0]])
self.norm1.bias.copy_(weights["state_dict"][root + block_names[1]])
self.attn.relative_position_bias_table.copy_(weights["state_dict"][root + block_names[2]])
self.attn.relative_position_index.copy_(weights["state_dict"][root + block_names[3]])
self.attn.qkv.weight.copy_(weights["state_dict"][root + block_names[4]])
self.attn.qkv.bias.copy_(weights["state_dict"][root + block_names[5]])
self.attn.proj.weight.copy_(weights["state_dict"][root + block_names[6]])
self.attn.proj.bias.copy_(weights["state_dict"][root + block_names[7]])
self.norm2.weight.copy_(weights["state_dict"][root + block_names[8]])
self.norm2.bias.copy_(weights["state_dict"][root + block_names[9]])
self.mlp.linear1.weight.copy_(weights["state_dict"][root + block_names[10]])
self.mlp.linear1.bias.copy_(weights["state_dict"][root + block_names[11]])
self.mlp.linear2.weight.copy_(weights["state_dict"][root + block_names[12]])
self.mlp.linear2.bias.copy_(weights["state_dict"][root + block_names[13]])
def forward(self, x, mask_matrix):
shortcut = x
if self.use_checkpoint:
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix, use_reentrant=False)
else:
x = self.forward_part1(x, mask_matrix)
x = shortcut + self.drop_path(x)
if self.use_checkpoint:
x = x + checkpoint.checkpoint(self.forward_part2, x, use_reentrant=False)
else:
x = x + self.forward_part2(x)
return x
class PatchMergingV2(nn.Module):
"""
Patch merging layer based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(self, dim: int, norm_layer: type[LayerNorm] = nn.LayerNorm, spatial_dims: int = 3) -> None:
"""
Args:
dim: number of feature channels.
norm_layer: normalization layer.
spatial_dims: number of spatial dims.
"""
super().__init__()
self.dim = dim
if spatial_dims == 3:
self.reduction = nn.Linear(8 * dim, 2 * dim, bias=False)
self.norm = norm_layer(8 * dim)
elif spatial_dims == 2:
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
x_shape = x.size()
if len(x_shape) == 5:
b, d, h, w, c = x_shape
pad_input = (h % 2 == 1) or (w % 2 == 1) or (d % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, w % 2, 0, h % 2, 0, d % 2))
x = torch.cat(
[x[:, i::2, j::2, k::2, :] for i, j, k in itertools.product(range(2), range(2), range(2))], -1
)
elif len(x_shape) == 4:
b, h, w, c = x_shape
pad_input = (h % 2 == 1) or (w % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, w % 2, 0, h % 2))
x = torch.cat([x[:, j::2, i::2, :] for i, j in itertools.product(range(2), range(2))], -1)
x = self.norm(x)
x = self.reduction(x)
return x
class PatchMerging(PatchMergingV2):
"""The `PatchMerging` module previously defined in v0.9.0."""
def forward(self, x):
x_shape = x.size()
if len(x_shape) == 4:
return super().forward(x)
if len(x_shape) != 5:
raise ValueError(f"expecting 5D x, got {x.shape}.")
b, d, h, w, c = x_shape
pad_input = (h % 2 == 1) or (w % 2 == 1) or (d % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, w % 2, 0, h % 2, 0, d % 2))
x0 = x[:, 0::2, 0::2, 0::2, :]
x1 = x[:, 1::2, 0::2, 0::2, :]
x2 = x[:, 0::2, 1::2, 0::2, :]
x3 = x[:, 0::2, 0::2, 1::2, :]
x4 = x[:, 1::2, 0::2, 1::2, :]
x5 = x[:, 0::2, 1::2, 0::2, :]
x6 = x[:, 0::2, 0::2, 1::2, :]
x7 = x[:, 1::2, 1::2, 1::2, :]
x = torch.cat([x0, x1, x2, x3, x4, x5, x6, x7], -1)
x = self.norm(x)
x = self.reduction(x)
return x
MERGING_MODE = {"merging": PatchMerging, "mergingv2": PatchMergingV2}
def compute_mask(dims, window_size, shift_size, device):
"""Computing region masks based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
dims: dimension values.
window_size: local window size.
shift_size: shift size.
device: device.
"""
cnt = 0
if len(dims) == 3:
d, h, w = dims
img_mask = torch.zeros((1, d, h, w, 1), device=device)
for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None):
for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None):
for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2], None):
img_mask[:, d, h, w, :] = cnt
cnt += 1
elif len(dims) == 2:
h, w = dims
img_mask = torch.zeros((1, h, w, 1), device=device)
for h in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None):
for w in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None):
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size)
mask_windows = mask_windows.squeeze(-1)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
class BasicLayer(nn.Module):
"""
Basic Swin Transformer layer in one stage based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
dim: int,
depth: int,
num_heads: int,
window_size: Sequence[int],
drop_path: list,
mlp_ratio: float = 4.0,
qkv_bias: bool = False,
drop: float = 0.0,
attn_drop: float = 0.0,
norm_layer: type[LayerNorm] = nn.LayerNorm,
downsample: nn.Module | None = None,
use_checkpoint: bool = False,
) -> None:
"""
Args:
dim: number of feature channels.
depth: number of layers in each stage.
num_heads: number of attention heads.
window_size: local window size.
drop_path: stochastic depth rate.
mlp_ratio: ratio of mlp hidden dim to embedding dim.
qkv_bias: add a learnable bias to query, key, value.
drop: dropout rate.
attn_drop: attention dropout rate.
norm_layer: normalization layer.
downsample: an optional downsampling layer at the end of the layer.
use_checkpoint: use gradient checkpointing for reduced memory usage.
"""
super().__init__()
self.window_size = window_size
self.shift_size = tuple(i // 2 for i in window_size)
self.no_shift = tuple(0 for i in window_size)
self.depth = depth
self.use_checkpoint = use_checkpoint
self.blocks = nn.ModuleList(
[
SwinTransformerBlock(
dim=dim,
num_heads=num_heads,
window_size=self.window_size,
shift_size=self.no_shift if (i % 2 == 0) else self.shift_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
use_checkpoint=use_checkpoint,
)
for i in range(depth)
]
)
self.downsample = downsample
if callable(self.downsample):
self.downsample = downsample(dim=dim, norm_layer=norm_layer, spatial_dims=len(self.window_size))
def forward(self, x):
x_shape = x.size()
if len(x_shape) == 5:
b, c, d, h, w = x_shape
window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size)
x = rearrange(x, "b c d h w -> b d h w c")
dp = int(np.ceil(d / window_size[0])) * window_size[0]
hp = int(np.ceil(h / window_size[1])) * window_size[1]
wp = int(np.ceil(w / window_size[2])) * window_size[2]
attn_mask = compute_mask([dp, hp, wp], window_size, shift_size, x.device)
for blk in self.blocks:
x = blk(x, attn_mask)
x = x.view(b, d, h, w, -1)
if self.downsample is not None:
x = self.downsample(x)
x = rearrange(x, "b d h w c -> b c d h w")
elif len(x_shape) == 4:
b, c, h, w = x_shape
window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size)
x = rearrange(x, "b c h w -> b h w c")
hp = int(np.ceil(h / window_size[0])) * window_size[0]
wp = int(np.ceil(w / window_size[1])) * window_size[1]
attn_mask = compute_mask([hp, wp], window_size, shift_size, x.device)
for blk in self.blocks:
x = blk(x, attn_mask)
x = x.view(b, h, w, -1)
if self.downsample is not None:
x = self.downsample(x)
x = rearrange(x, "b h w c -> b c h w")
return x
class SwinTransformer(nn.Module):
"""
Swin Transformer based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
in_chans: int,
embed_dim: int,
window_size: Sequence[int],
patch_size: Sequence[int],
depths: Sequence[int],
num_heads: Sequence[int],
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: type[LayerNorm] = nn.LayerNorm,
patch_norm: bool = False,
use_checkpoint: bool = False,
spatial_dims: int = 3,
downsample="merging",
use_v2=False,
) -> None:
"""
Args:
in_chans: dimension of input channels.
embed_dim: number of linear projection output channels.
window_size: local window size.
patch_size: patch size.
depths: number of layers in each stage.
num_heads: number of attention heads.
mlp_ratio: ratio of mlp hidden dim to embedding dim.
qkv_bias: add a learnable bias to query, key, value.
drop_rate: dropout rate.
attn_drop_rate: attention dropout rate.
drop_path_rate: stochastic depth rate.
norm_layer: normalization layer.
patch_norm: add normalization after patch embedding.
use_checkpoint: use gradient checkpointing for reduced memory usage.
spatial_dims: spatial dimension.
downsample: module used for downsampling, available options are `"mergingv2"`, `"merging"` and a
user-specified `nn.Module` following the API defined in :py:class:`monai.networks.nets.PatchMerging`.
The default is currently `"merging"` (the original version defined in v0.9.0).
use_v2: using swinunetr_v2, which adds a residual convolution block at the beginning of each swin stage.
"""
super().__init__()
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.patch_norm = patch_norm