-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathbonus.py
58 lines (43 loc) · 1.48 KB
/
bonus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Simple script to fine-tune GPT-2 on custom dataset
import torch
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from transformers import GPT2LMHeadModel, GPT2Tokenizer
is_gpu = True
model_name = 'gpt2'
device = 'cuda' if torch.cuda.is_available() and is_gpu else 'cpu'
class SingleTextFile(Dataset):
def __init__(self, fn, tokenizer, max_len=128):
with open(fn) as f:
text = f.read()
self.tokens = tokenizer.encode(text)
self.max_len = max_len
def __len__(self):
return len(self.tokens)-self.max_len
def __getitem__(self, i):
block = self.tokens[i:i+self.max_len]
return torch.tensor(block)
if __name__ == '__main__':
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name).to(device)
optim = torch.optim.Adam(model.parameters(), lr=1e-6)
ds = SingleTextFile('data.txt', tokenizer, 128)
dl = DataLoader(ds, batch_size=8, shuffle=True)
prog = tqdm(dl)
for i, batch in enumerate(prog):
batch = batch.cuda()
loss, *_ = model(
batch,
labels=batch
)
optim.zero_grad()
loss.backward()
optim.step()
if i % 200 == 0:
print('----------------------------')
sample = model.generate(
max_length=100,
do_sample=True,
)[0]
print(tokenizer.decode(sample.tolist()))
torch.save(model.state_dict(), 'gpt2.pt')