-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdyna.py
260 lines (214 loc) · 11.1 KB
/
dyna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import gymnasium as gym
import random
import numpy as np
import matplotlib.pyplot as plt
from collections import deque
import argparse
from scipy.special import softmax
from tqdm import tqdm
import wandb
from scipy.special import softmax
class DynaAgent:
def __init__(self, discr_step=np.array([0.025, 0.005]), gamma=0.99, decay= 0.99, start_epsilon=0.9, min_epsilon=0.05, k=5, replay_size=10_000, alpha=0,env=gym.make('MountainCar-v0'), init_val=0.1):
self.born_inf=env.observation_space.low
self.born_sup=env.observation_space.high
self.discr_step = discr_step
self.n_states = ((self.born_sup - self.born_inf) / self.discr_step).astype(int)+1
self.n_actions=env.action_space.n
self.gamma = gamma
self.decay=decay
self.epsilon = start_epsilon
self.min_epsilon = min_epsilon
self.k = k
self.replay_size = replay_size
# Initialize model components
self.P_hat = np.full((self.n_states[0], self.n_states[1], self.n_actions, self.n_states[0], self.n_states[1]),init_val)
self.R_hat = np.zeros((self.n_states[0], self.n_states[1], self.n_actions))
self.count_matrix=np.zeros_like(self.R_hat)
self.Q = np.zeros((self.n_states[0], self.n_states[1], self.n_actions))
self.delta_Q = []
self.replay_buffer = None
self.alpha = alpha
def discretize_state(self, state):
discr_state = (state - self.born_inf) / self.discr_step
return discr_state.astype(int)
def update_model(self, discr_state, action, reward, discr_next_state):
# Update transition probabilities
self.P_hat[discr_state[0], discr_state[1], action, discr_next_state[0], discr_next_state[1]] += 1
# Update rewards
self.R_hat[discr_state[0], discr_state[1], action] += reward
self.count_matrix[discr_state[0], discr_state[1], action]+=1
def update_q_value(self, discr_state, action, idx=None):
# Precompute max Q-values for all next states
max_next_q_values = np.max(self.Q, axis=-1)
if len(discr_state.shape)>1:
position = discr_state[:,0]
velocity = discr_state[:,1]
else:
position = discr_state[0]
velocity = discr_state[1]
if len(discr_state.shape)>1:
discounted_rewards = self.gamma * np.sum(self.P_hat[position, velocity, action, :,:] / np.sum(self.P_hat[position, velocity, action, :,:],axis=(-1,-2)).reshape(-1,1,1)*max_next_q_values, axis=(-1,-2))
else:
discounted_rewards = self.gamma * np.sum(self.P_hat[position, velocity, action, :,:] / np.sum(self.P_hat[position, velocity, action, :,:],axis=(-1,-2))*max_next_q_values, axis=(-1,-2))
# Compute the Q-value update
update_value = self.R_hat[position, velocity, action] / self.count_matrix[position, velocity, action] + discounted_rewards
delta = update_value - self.Q[position, velocity, action]
# Update Q-value
if len(discr_state.shape)>1:
self.delta_Q.extend(delta)
else:
self.delta_Q.append(delta)
self.Q[position, velocity, action] = update_value
# FIXME: do we have to reset the count matrix after updating the Q-value?
if self.alpha>1e-5 and idx is not None:
self.importance_buffer[idx] = np.abs(delta)
return delta
def update(self, state, action, reward, next_state):
discr_state = self.discretize_state(state)
discr_next_state = self.discretize_state(next_state)
# FIXME: add none when too small replay buffer
self.update_model(discr_state, action, reward, discr_next_state)
_ = self.update_q_value(discr_state, action)
# Store experience in replay buffer
if self.replay_buffer is None:
self.replay_buffer = np.array([(discr_state[0], discr_state[1], action)])
self.importance_buffer = np.array([1], dtype=np.float32)
else:
self.replay_buffer = np.vstack((self.replay_buffer[-self.replay_size:], (discr_state[0], discr_state[1], action)))
self.importance_buffer = np.hstack((self.importance_buffer[-self.replay_size:], np.max(self.importance_buffer)),dtype=np.float32)
# Sample from replay buffer for further updates
# Randomly sample from replay buffer
if len(self.replay_buffer) >= self.replay_size:
if self.alpha>1e-5:
rand_idx = np.random.choice(len(self.replay_buffer), self.k, replace=False, p = self.importance_buffer**self.alpha/np.sum(self.importance_buffer**self.alpha))
else:
rand_idx = np.random.choice(len(self.replay_buffer), self.k, replace=False)
rand_experience = self.replay_buffer[rand_idx]
return np.mean(self.update_q_value(rand_experience[:,0:2], rand_experience[:,-1], idx=rand_idx))
return None
def select_action(self, state, env):
if np.random.random() < self.epsilon:
action = env.action_space.sample()
return action
else:
discr_state = self.discretize_state(state)
return np.argmax(self.Q[discr_state[0], discr_state[1], :])
def decay_epsilon(self):
if len(self.replay_buffer) >= self.replay_size:
self.epsilon = max(self.min_epsilon, self.epsilon * self.decay)
def plot_max_Q(Q_values, t, discr_step,born_inf, maximum=False):
if not maximum:
data = np.max(Q_values, axis=-1).T
else:
data = Q_values.T
plt.figure()
plt.imshow(data, cmap='hot', interpolation='nearest')
plt.xlabel('Position')
plt.ylabel('Velocity')
xlocs, xlabels = plt.xticks()
ylocs, ylabels = plt.yticks()
# Multiply them by 0.025 and set them back
plt.xticks(xlocs, ["{:.2f}".format(loc * discr_step[0] + born_inf[0]) for loc in xlocs])
plt.yticks(ylocs, ["{:.2f}".format(loc * discr_step[1] + born_inf[1]) for loc in ylocs])
plt.title(f'Max Q-value at episode {t}')
plt.colorbar()
return plt
def run(args):
# Parameters
seed = args.seed
np.random.seed(args.seed)
random.seed(args.seed)
discr_step = [args.discr_pos, args.discr_vel]
k = args.k
alpha = args.alpha
decay = args.decay
discount = args.discount_factor
replay_size = args.replay_size
start_epsilon= args.start_epsilon
n_episodes = args.n_episodes
final_epsilon= args.final_epsilon
snapshot_interval = args.snapshot_interval
# Create the environment
env = gym.make('MountainCar-v0')
env.action_space.seed(seed)
observation, info = env.reset(seed=seed)
# Create the DynaAgent
agent = DynaAgent(decay=decay, start_epsilon=start_epsilon, gamma=discount, discr_step=discr_step, k=k,alpha=alpha, replay_size=replay_size,env=env, min_epsilon=final_epsilon, init_val=args.init_val)
if args.wandb:
wandb.init(project='ANN-1', config={"seed":seed,"n_episodes": n_episodes, "start_epsilon": start_epsilon, "final_epsilon": final_epsilon, "epsilon_decay": decay, "batch_size": k, "discount_factor": discount, "replay_size": replay_size,"alpha":alpha, "discr_pos":args.discr_pos, "discr_vel":args.discr_vel, "init_val":args.init_val}, name='dyna')
# Train the agent
env = gym.wrappers.RecordEpisodeStatistics(env, deque_size=n_episodes)
with tqdm(total=n_episodes, desc=f"Episode 0/{n_episodes}") as pbar:
finished = 0
empty = True
cumulative_env_reward = 0
fig,ax=plt.subplots(1,2,figsize=(11,5))
for episode in tqdm(range(n_episodes)):
state, info = env.reset()
done = False
# play one episode
t = 0
episode_env_reward = 0
episode_loss = 0
x=[state[0]]
v=[state[1]]
while not done:
action = agent.select_action(state, env)
next_state, reward, terminated, truncated, _ = env.step(action)
loss = agent.update(state, action, reward, next_state)
done = terminated or truncated
state = next_state
if loss is not None:
episode_env_reward += reward
episode_loss+=loss
t+=1
if episode % snapshot_interval == 0 or episode == (n_episodes - 1):
x.append(state[0])
v.append(state[1])
agent.decay_epsilon()
pbar.set_description(f"Episode {episode + 1}/{n_episodes}")
pbar.set_postfix(train_loss=episode_loss, epsilon=agent.epsilon, episode_steps=t, episode_env_reward=episode_env_reward, finished=finished, cumulative_env_reward=cumulative_env_reward)
pbar.update(1)
pbar.refresh()
if not empty:
finished += terminated
cumulative_env_reward += episode_env_reward
agent.decay_epsilon()
if args.wandb:
wandb.log({"train_loss": episode_loss, "epsilon": agent.epsilon, "episode_steps": t, "finished": finished, "episode_env_reward":episode_env_reward, "cumulative_env_reward":cumulative_env_reward})
if (episode // snapshot_interval >=1 and episode % snapshot_interval == 0) or episode == (n_episodes - 1):
max_q = plot_max_Q(agent.Q, episode, discr_step, agent.born_inf)
color = f"{0.9*(1-(episode+1)/n_episodes)}"
ax[0].plot(range(t+1),x, c=color, zorder = 1)
ax[1].plot(range(t+1),v, c=color, zorder = 1)
if args.wandb:
wandb.log({"max_Q": wandb.Image(max_q,caption=f'Max Q-value at episode {episode}')})
if loss is not None:
empty = False
env.close()
ax[0].set_xlabel('Steps')
ax[0].set_ylabel('Position')
ax[1].set_xlabel('Steps')
ax[1].set_ylabel('Velocity')
plt.legend()
if args.wandb:
wandb.log({"trajectories": wandb.Image(fig,caption=f'Trajectories')})
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Script for pretraining a language model")
parser.add_argument("--n_episodes", type=int, default=10_000)
parser.add_argument("--snapshot_interval", type=int, default=500)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--discr_pos", type=float, default=0.05)
parser.add_argument("--discr_vel", type=float, default=0.005)
parser.add_argument("--k", type=int, default=128)
parser.add_argument("--alpha", type=float, default=0)
parser.add_argument("--decay", type=float, default=0.99)
parser.add_argument("--init_val", type=float, default=0.01)
parser.add_argument("--discount_factor", type=float, default=0.99)
parser.add_argument("--replay_size", type=int, default=10_000)
parser.add_argument("--start_epsilon", type=float, default=0.9)
parser.add_argument("--final_epsilon", type=float, default=0.05)
parser.add_argument("--wandb", action='store_true')
args = parser.parse_args()
run(args)