-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
222 lines (173 loc) · 7.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torch.nn as nn
import numpy as np
import time
import seaborn as sns
import matplotlib.pyplot as plt
import config.config as basic_config
from model import QNetwork, get_network_input
from Game import GameEnvironment
from collections import deque
from replay_buffer import ReplayMemory
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def run_episode(num_games, board, model, memory):
run = True
games_played = 0
total_reward = 0
episode_games = 0
len_array = []
while run:
state = get_network_input(board.snake, board.apple)
state = state.to(device)
action_0 = model(state)
rand = np.random.uniform(0, 1)
if rand > basic_config.epsilon:
action = torch.argmax(action_0)
else:
action = np.random.randint(0, 5)
reward, done, len_of_snake = board.update_boardstate(action)
next_state = get_network_input(board.snake, board.apple)
next_state = next_state.to(device)
memory.push(state, action, reward, next_state, done)
total_reward += reward
episode_games += 1
if board.game_over:
games_played += 1
len_array.append(len_of_snake)
board.resetgame()
if num_games == games_played:
run = False
avg_len_of_snake = np.mean(len_array)
max_len_of_snake = np.max(len_array)
return total_reward, avg_len_of_snake, max_len_of_snake
def learn(memory, model, optimizer, criterion):
total_loss = 0
for i in range(basic_config.NUM_UPDATES):
optimizer.zero_grad()
sample = memory.sample(basic_config.BATCH_SIZE)
states, actions, rewards, next_states, dones = sample
states = torch.cat([x.unsqueeze(0) for x in states], dim=0)
states = states.to(device)
actions = torch.LongTensor(actions)
actions = actions.to(device)
rewards = torch.FloatTensor(rewards)
rewards = rewards.to(device)
next_states = torch.cat([x.unsqueeze(0) for x in next_states])
next_states = next_states.to(device)
dones = torch.FloatTensor(dones)
dones = dones.to(device)
q_local = model.forward(states)
next_q_value = model.forward(next_states)
Q_expected = q_local.gather(1, actions.unsqueeze(0).transpose(0, 1)).transpose(0, 1).squeeze(0)
Q_targets_next = torch.max(next_q_value, 1)[0] * (torch.ones(dones.size(), device=device) - dones)
Q_targets = rewards + basic_config.GAMMA * Q_targets_next
loss = criterion(Q_expected, Q_targets)
total_loss += loss
loss.backward()
optimizer.step()
return total_loss
def train(model, board, memory, optimizer, MSE):
print('Training started on {}'.format(device))
scores_deque = deque(maxlen=100)
scores_array = []
avg_scores_array = []
avg_len_array = []
avg_max_len_array = []
time_start = time.time()
temp_avg_len = 0 # 初始化 temp_avg_len
for i_episode in range(basic_config.NUM_EPISODES + 1):
total_reward, avg_len, max_len = run_episode(basic_config.GAMES_IN_EPISODE, board, model, memory)
scores_deque.append(total_reward)
scores_array.append(total_reward)
avg_len_array.append(avg_len)
avg_max_len_array.append(max_len)
avg_score = np.mean(scores_deque)
avg_scores_array.append(avg_score)
total_loss = learn(memory, model, optimizer, MSE)
dt = int(time.time() - time_start)
if i_episode % basic_config.PRINT_EVERY == 0 and i_episode > 0:
print(
'Ep: {:6}, Loss: {:.4f}, Reward in {}局游戏: {:.2f}, Avg.Len/{}局游戏: {:.2f}, Max.Len/{}局游戏: {:.2f} Time: {'
':02}:{:02}:{:02} '.format(i_episode, total_loss, basic_config.GAMES_IN_EPISODE, total_reward,
basic_config.GAMES_IN_EPISODE, avg_len, basic_config.GAMES_IN_EPISODE,
max_len, dt // 3600, dt % 3600 // 60, dt % 60))
memory.truncate()
if i_episode > 0 and avg_len > temp_avg_len:
torch.save(model.state_dict(), 'dir_chk/Snake_{}'.format(i_episode))
temp_avg_len = avg_len # 更新 temp_avg_len
return scores_array, avg_scores_array, avg_len_array, avg_max_len_array
def plot_scores(scores, avg_scores, avg_len_of_snake, max_len_of_snake):
# 绘制得分和平均得分的折线图
plt.figure()
plt.plot(np.arange(1, len(scores) + 1), scores, label="Reward")
plt.plot(np.arange(1, len(avg_scores) + 1), avg_scores, label="Avg Reward")
plt.legend()
plt.ylabel('Reward')
plt.xlabel('Episodes #')
plt.show()
# 绘制平均蛇长度和最大蛇长度的折线图
plt.figure()
plt.plot(np.arange(1, len(avg_len_of_snake) + 1), avg_len_of_snake, label="Avg Len of Snake")
plt.plot(np.arange(1, len(max_len_of_snake) + 1), max_len_of_snake, label="Max Len of Snake")
plt.legend()
plt.ylabel('Length of Snake')
plt.xlabel('Episodes #')
plt.show()
# 绘制最大蛇长度的直方图
plt.figure()
sns.histplot(max_len_of_snake, bins=45, kde=True, color='green')
plt.xlabel('Max Lengths')
plt.ylabel('Probability')
plt.title('Histogram of Max Lengths')
plt.grid(True)
plt.show()
def drawScores(scores, sample_interval):
# 绘制得分和平均得分的折线图
plt.figure(figsize=(20, 10))
plt.plot(np.arange(1, len(scores) + 1, sample_interval), scores[::sample_interval], label="Reward")
plt.plot(np.arange(1, len(avg_scores) + 1, sample_interval), avg_scores[::sample_interval], label="Avg Reward")
plt.legend()
plt.ylabel('Reward')
plt.xlabel('Episodes')
plt.savefig('./outputImage/drawScores.png')
def drawAvgAndMaxLen(avg_len_of_snake, max_len_of_snake, sample_interval):
# 绘制平均蛇长度和最大蛇长度的折线图
plt.figure(figsize=(20, 10))
plt.plot(np.arange(1, len(avg_len_of_snake) + 1, sample_interval), avg_len_of_snake[::sample_interval],
label="Avg Len of Snake")
plt.plot(np.arange(1, len(max_len_of_snake) + 1, sample_interval), max_len_of_snake[::sample_interval],
label="Max Len of Snake")
plt.legend()
plt.ylabel('Length of Snake')
plt.xlabel('Episodes')
plt.savefig('./outputImage/drawAvgAndMaxLen.png')
def drawMaxHist(max_len_of_snake):
# 绘制最大蛇长度的直方图
plt.figure(figsize=(80, 30))
sns.histplot(max_len_of_snake, bins=45, kde=True, color='green')
plt.xlabel('Max Lengths')
plt.ylabel('Probability')
plt.title('Histogram of Max Lengths')
plt.grid(True)
plt.savefig('./outputImage/drawMaxHist.png')
if __name__ == "__main__":
model = QNetwork(input_dim=10, hidden_dim=20, output_dim=5).to(device)
board = GameEnvironment(basic_config.GRIDSIZE, nothing=0, dead=-1, apple=1)
memory = ReplayMemory(basic_config.MEMORYMAX)
optimizer = torch.optim.Adam(model.parameters(), lr=basic_config.MYLR)
MSE = nn.MSELoss()
scores, avg_scores, avg_len_of_snake, max_len_of_snake = train(model, board, memory, optimizer, MSE)
plot_scores(scores, avg_scores, avg_len_of_snake, max_len_of_snake)
# 将scores, avg_scores, avg_len_of_snake, max_len_of_snake保存到文件中
np.save('./npy/scores.npy', scores)
np.save('./npy/avg_scores.npy', avg_scores)
np.save('./npy/avg_len_of_snake.npy', avg_len_of_snake)
np.save('./npy/max_len_of_snake.npy', max_len_of_snake)
# 读取文件中的scores, avg_scores, avg_len_of_snake, max_len_of_snake,并绘制折线图
scores = np.load('./npy/scores.npy')
avg_scores = np.load('./npy/avg_scores.npy')
avg_len_of_snake = np.load('./npy/avg_len_of_snake.npy')
max_len_of_snake = np.load('./npy/max_len_of_snake.npy')
drawScores(scores, 500)
drawAvgAndMaxLen(avg_len_of_snake, max_len_of_snake, 500)
drawMaxHist(max_len_of_snake)