forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssd_entry_point.py
236 lines (195 loc) · 9.19 KB
/
ssd_entry_point.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import io
import os
import PIL.Image
import json
import logging
import numpy as np
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# ------------------------------------------------------------ #
# Training methods #
# ------------------------------------------------------------ #
import glob
import time
import argparse
import warnings
import mxnet as mx
from mxnet import nd
from mxnet import gluon
from mxnet import autograd
def parse_args():
parser = argparse.ArgumentParser(description='Train SSD networks.')
parser.add_argument('--network', type=str, default='ssd_512_mobilenet1.0_voc',
help="Network name")
parser.add_argument('--data-shape', type=int, default=512,
help="Input data shape, use 300, 512.")
parser.add_argument('--batch-size', type=int, default=32,
help='Training mini-batch size')
parser.add_argument('--num-workers', '-j', dest='num_workers', type=int,
default=4, help='Number of data workers, you can use larger '
'number to accelerate data loading, if you CPU and GPUs are powerful.')
parser.add_argument('--gpus', type=str, default='0',
help='Training with GPUs, you can specify 1,3 for example.')
parser.add_argument('--epochs', type=int, default=240,
help='Training epochs.')
parser.add_argument('--start-epoch', type=int, default=0,
help='Starting epoch for resuming, default is 0 for new training.'
'You can specify it to 100 for example to start from 100 epoch.')
parser.add_argument('--log-interval', type=int, default=100,
help='Logging mini-batch interval. Default is 100.')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate, default is 0.001')
parser.add_argument('--lr-decay', type=float, default=0.1,
help='decay rate of learning rate. default is 0.1.')
parser.add_argument('--lr-decay-epoch', type=str, default='160,200',
help='epochs at which learning rate decays. default is 160,200.')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum, default is 0.9')
parser.add_argument('--wd', type=float, default=0.0005,
help='Weight decay, default is 5e-4')
return parser.parse_args()
def get_dataloader(net, data_shape, batch_size, num_workers, ctx):
"""Get dataloader."""
from gluoncv import data as gdata
from gluoncv.data.batchify import Tuple, Stack, Pad
from gluoncv.data.transforms.presets.ssd import SSDDefaultTrainTransform
width, height = data_shape, data_shape
# use fake data to generate fixed anchors for target generation
with autograd.train_mode():
_, _, anchors = net(mx.nd.zeros((1, 3, height, width), ctx))
anchors = anchors.as_in_context(mx.cpu())
batchify_fn = Tuple(Stack(), Stack(), Stack()) # stack image, cls_targets, box_targets
train_dataset = gdata.RecordFileDetection(os.path.join(os.environ['SM_CHANNEL_TRAIN'], 'train.rec'))
train_loader = gluon.data.DataLoader(
train_dataset.transform(SSDDefaultTrainTransform(width, height, anchors)),
batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers)
return train_loader
def train(net, train_data, ctx, args):
"""Training pipeline"""
import gluoncv as gcv
net.collect_params().reset_ctx(ctx)
trainer = gluon.Trainer(
net.collect_params(), 'sgd',
{'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum}, update_on_kvstore=None)
# lr decay policy
lr_decay = float(args.lr_decay)
lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()])
mbox_loss = gcv.loss.SSDMultiBoxLoss()
ce_metric = mx.metric.Loss('CrossEntropy')
smoothl1_metric = mx.metric.Loss('SmoothL1')
# set up logger
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.info(args)
logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
best_map = [0]
for epoch in range(args.start_epoch, args.epochs):
while lr_steps and epoch >= lr_steps[0]:
new_lr = trainer.learning_rate * lr_decay
lr_steps.pop(0)
trainer.set_learning_rate(new_lr)
logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
ce_metric.reset()
smoothl1_metric.reset()
tic = time.time()
btic = time.time()
net.hybridize(static_alloc=True, static_shape=True)
for i, batch in enumerate(train_data):
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
cls_targets = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
box_targets = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0)
with autograd.record():
cls_preds = []
box_preds = []
for x in data:
cls_pred, box_pred, _ = net(x)
cls_preds.append(cls_pred)
box_preds.append(box_pred)
sum_loss, cls_loss, box_loss = mbox_loss(
cls_preds, box_preds, cls_targets, box_targets)
autograd.backward(sum_loss)
# since we have already normalized the loss, we don't want to normalize
# by batch-size anymore
trainer.step(1)
local_batch_size = int(args.batch_size)
ce_metric.update(0, [l * local_batch_size for l in cls_loss])
smoothl1_metric.update(0, [l * local_batch_size for l in box_loss])
if args.log_interval and not (i + 1) % args.log_interval:
name1, loss1 = ce_metric.get()
name2, loss2 = smoothl1_metric.get()
logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}={:.3f}, {}={:.3f}'.format(
epoch, i, args.batch_size/(time.time()-btic), name1, loss1, name2, loss2))
btic = time.time()
name1, loss1 = ce_metric.get()
name2, loss2 = smoothl1_metric.get()
logger.info('[Epoch {}] Training cost: {:.3f}, {}={:.3f}, {}={:.3f}'.format(
epoch, (time.time()-tic), name1, loss1, name2, loss2))
current_map = 0.
#save model
net.set_nms(nms_thresh=0.45, nms_topk=400, post_nms=100)
net(mx.nd.ones((1,3,512,512), ctx=ctx[0]))
net.export('%s/model' % os.environ['SM_MODEL_DIR'])
return net
if __name__ == '__main__':
from gluoncv import model_zoo
args = parse_args()
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
net = model_zoo.get_model(args.network, pretrained=False, ctx=ctx)
net.initialize(ctx=mx.gpu(0))
train_loader = get_dataloader(net, args.data_shape, args.batch_size, args.num_workers, ctx[0])
train(net, train_loader, ctx, args)
# ------------------------------------------------------------ #
# Hosting methods for Neo compiled model #
# ------------------------------------------------------------ #
def model_fn(model_dir):
"""
Load the gluon model. Called once when hosting service starts.
:param: model_dir The directory where model files are stored.
:return: a model (in this case a Gluon network)
"""
logging.info('Invoking user-defined model_fn')
import neomxnet # noqa: F401
#change context to mx.cpu() when optimizing and deploying with Neo for CPU endpoints
ctx = mx.gpu()
net = gluon.SymbolBlock.imports(
'%s/compiled-symbol.json' % model_dir,
['data'],
'%s/compiled-0000.params' % model_dir,
ctx=ctx
)
net.hybridize(static_alloc=True, static_shape=True)
#run warm-up inference on empty data
warmup_data = mx.nd.empty((1,3,512,512), ctx=ctx)
class_IDs, scores, bounding_boxes = net(warmup_data)
return net
def transform_fn(net, data, content_type, output_content_type):
"""
pre-process the incoming payload, perform prediction & convert the prediction output into response payload
"""
logging.info('Invoking user-defined transform_fn')
import gluoncv as gcv
#change context to mx.cpu() when optimizing and deploying with Neo for CPU endpoints
ctx = mx.gpu()
"""
pre-processing
"""
#decode json string into numpy array
data = json.loads(data)
#preprocess image
x, image = gcv.data.transforms.presets.ssd.transform_test(mx.nd.array(data), 512)
#load image onto right context
x = x.as_in_context(ctx)
"""
prediction/inference
"""
class_IDs, scores, bounding_boxes = net(x)
"""
post-processing
"""
#create list of results
result = [class_IDs.asnumpy().tolist(), scores.asnumpy().tolist(), bounding_boxes.asnumpy().tolist()]
#decode as json string
response_body = json.dumps(result)
return response_body, output_content_type