-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathParticleFilter.jl
378 lines (276 loc) · 9.76 KB
/
ParticleFilter.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
addprocs(4)
@everywhere begin
using Gensys.gensysdt
using QuantEcon.solve_discrete_lyapunov
using Distributions
using JLD
include("ParticleFunctions.jl")
end
posest = ["tau","kappa","psi1","psi2","rA","piA","gammaQ","rho_R","rho_g","rho_z","sigma_R","sigma_g","sigma_z"]
funcmod = linearized_model
#=========================================================================#
# Load data
#=========================================================================#
Y = readdlm("us.txt")
#=========================================================================#
# Load estimated parameters
#=========================================================================#
param = [2.09,0.98,2.25,0.65,0.34,3.16,0.51,0.81,0.98,0.93,0.19,0.65,0.24]
#=========================================================================#
# Kalman filter
#=========================================================================#
GG,RR,SDX,ZZ,CC,HH,eu=funcmod(param)
T =size(Y,1)
n = size(GG,1)
nobs = size(ZZ,1)
Liki = zeros(T)
MeasurePredi = zeros(T,nobs)
StatePredi = zeros(T+1,n)
VarStatePredi = zeros(T+1,n,n)
# Initialize Kalman filter
MM=RR*SDX'
VarStatePredi[1,:,:]=solve_discrete_lyapunov(GG, MM*MM')
# Kalman filter Loop
for t in 1:T
Liki[t],MeasurePredi[t,:],StatePredi[t+1,:],VarStatePredi[t+1,:,:]=kffast(Y[t,:],ZZ,CC,HH,StatePredi[t,:],VarStatePredi[t,:,:],GG,MM)
end
LogLh = sum(Liki)
#=========================================================================#
# Bootstrap particle filter
#=========================================================================#
# 1. Initialization
N = 10000
Nstate = size(GG,1)
Nshock = size(RR,2)
Nobs = size(Y,2)
T = size(Y,1)
BSESS = zeros(T)
BSLiki = ones(T)
BSStates = zeros(T,Nstate,N)
s0 = zeros(Nstate)
P0 = nearestSPD(solve_discrete_lyapunov(GG, MM*MM'))
BSWeights = ones(N)
ups = repmat(s0, 1, N) + chol(Hermitian(P0))'*randn(Nstate, N)
# tic()
# MultinomialResampling(abs.(ups[1,:]))
# toc()
println("Bootstrap Particle Filter")
for t in 1:T
println("Period $t / $T")
#2. (a) Forecasting
fors = GG*ups + MM*randn(Nshock,N)
#2. (b) Forecasting
PredError = repmat(Y[t,:], 1, N) - repmat(CC, 1, N) - ZZ*fors
density = pdf(MvNormal(zeros(Nobs), HH),PredError)
#2. (c) Updating
NormWeights = BSWeights.*density/mean(BSWeights.*density)
#2. (d) Selection
BSESS[t] = N^2/sum(NormWeights.^2)
println("ESS : $(BSESS[t])")
if BSESS[t] >= N/2
ups = fors
BSWeights = NormWeights
else
println("Resampling is necessary")
id = MultinomialResampling(NormWeights/sum(NormWeights))
ups = fors[:,id]
BSWeights = ones(N)
end
BSLiki[t] = log(mean(BSWeights.*density))
BSStates[t,:,:] = ups
end
BSLogLh =sum(BSLiki)
#=========================================================================#
# Conditionally Optimal filter
#=========================================================================#
N = 400
Nstate = size(GG,1)
Nshock = size(RR,2)
Nobs = size(Y,2)
T = size(Y,1)
COESS = zeros(T)
COLiki = ones(T)
COStates = zeros(T,Nstate,N)
COWeights = ones(N)
s0 = zeros(Nstate)
P0 = nearestSPD(solve_discrete_lyapunov(GG, MM*MM'))
ups = repmat(s0, 1, N) + chol(Hermitian(P0))'*randn(Nstate, N)
upP = P0
println("CO Particle Filter")
for t in 1:T
println("Period $t / $T")
#2. (a) Forecasting
#Steps from a Kalman Filter p. 186 in Herbst and Schorfeide's book
fors = GG*ups
forP = nearestSPD(MM*MM')
fory = repmat(CC, 1, N)+ZZ*fors
v = repmat(Y[t,:], 1, N) - fory
F = ZZ*forP*ZZ' + HH
C = cholfact(Hermitian(F))
z = C[:L]\v
x = C[:U]\z
M = forP*ZZ'
sqrtinvF = inv(C[:L])
invF = sqrtinvF'*sqrtinvF
ups = fors + M*x
upP = forP - M*invF*M'
upP = nearestSPD(upP)
#Draws from the CO importance sampler
imps = ups + chol(Hermitian(upP))'*randn(Nstate, N)
omega = SharedArray{Float64,1}(N)
#Computation of weights
@sync @parallel for n in 1:N
omega[n] = pdf(MvNormal(fors[:,n], forP),imps[:,n])./pdf(MvNormal(ups[:,n], upP),imps[:,n])
end
# (b) Forecasting
PredError = repmat(Y[t,:], 1, N) - repmat(CC, 1, N) - ZZ*imps
weights = pdf(MvNormal(zeros(Nobs), HH),PredError).*omega
#2. (c) Updating
NormWeights = COWeights.*weights/mean(COWeights.*weights)
# NormWeights = weights/mean(weights)
#2. (d) Selection
COESS[t] = N^2/sum(NormWeights.^2)
println("ESS : $(COESS[t])")
if COESS[t] >= N/2
ups = imps
COWeights = NormWeights
else
println("Resampling is necessary")
id = MultinomialResampling(NormWeights/sum(NormWeights))
ups = imps[:,id]
COWeights = ones(N)
end
COLiki[t] = log(mean(COWeights.*weights))
COStates[t,:,:] = ups
end
COLogLh =sum(COLiki)
#=========================================================================#
# Conditionally Optimal filter with Resample-Move
#=========================================================================#
#Parameters for tuning the MH step
NMH = 100
c = 0.5
trgt = 0.25
acpt = 0.25
#Parameters for the PF
N = 400
Nstate = size(GG,1)
Nshock = size(RR,2)
Nobs = size(Y,2)
T = size(Y,1)
COESS_RM = zeros(T)
COLiki_RM = ones(T)
COStates_RM = zeros(T,Nstate,N)
COWeights_RM = ones(N)
s0 = zeros(Nstate)
P0 = nearestSPD(solve_discrete_lyapunov(GG, RR*SDX*SDX*RR'))
ups = repmat(s0, 1, N) + chol(Hermitian(P0))'*randn(Nstate, N)
upP = P0
println("CO PF with RM step")
for t in 1:T
println("Period $t / $T")
#2. (a) Forecasting
#Steps from a Kalman Filter p. 186 in Herbst and Schorfeide's book
sm = ups
fors = GG*ups
forP = RR*SDX*SDX'*RR'
fory = ZZ*fors
v = repmat(Y[t,:] - CC, 1, N) - ZZ*fors
F = ZZ*forP*ZZ' + HH
C = cholfact(Hermitian(F))
z = C[:L]\v
x = C[:U]\z
M = forP*ZZ'
sqrtinvF = inv(C[:L])
invF = sqrtinvF'*sqrtinvF
ups = fors + M*x
upP = forP - M*invF*M'
upP = nearestSPD(upP)
forP = nearestSPD(forP)
#Draws from the CO importance sampler
imps = ups + chol(upP)'*randn(Nstate,N)
omega = SharedArray{Float64,1}(N)
#Computation of weights
@sync @parallel for n in 1:N
omega[n] = pdf(MvNormal(fors[:,n], forP),imps[:,n])./pdf(MvNormal(ups[:,n], upP),imps[:,n])
end
# (b) Forecasting
PredError = repmat(Y[t,:] - CC, 1, N) - ZZ*imps
weights = pdf(MvNormal(zeros(Nobs), HH),PredError).*omega
#2. (c) Updating
NormWeights = COWeights_RM.*weights/mean(COWeights_RM.*weights)
#2. (d') Selection and Resample-Move
#Selection
COESS_RM[t] = N^2/sum(NormWeights.^2)
println("ESS : $(COESS_RM[t])")
id = MultinomialResampling(NormWeights/sum(NormWeights))
shat = imps[:,id]
smhat = sm[:,id]
COWeights_RM = ones(N)
#Resample-Move
R = upP
c = c*(0.95 + 0.10*exp(16*(acpt-trgt))/(1 + exp(16*(acpt-trgt))))
sMH = copy(shat)
temp_acpt = zeros(N)
sMH = convert(SharedArray,sMH)
temp_acpt = convert(SharedArray,temp_acpt)
acptArray = zeros(NMH)
for n in 1:NMH
@sync @parallel for j in 1:N
dzeta = shat[:,j] + c*chol(Hermitian(R))'*randn(Nstate)
PredError = Y[t,:] - CC - ZZ*dzeta
Numerator = pdf(MvNormal(zeros(Nobs),HH),PredError)
Numerator *= pdf(MvNormal(GG*smhat[:,j],forP),dzeta)
Numerator /= pdf(MvNormal(shat[:,j],c*c*R),dzeta)
PredError = Y[t,:] - CC - ZZ*shat[:,j]
Denominator = pdf(MvNormal(zeros(Nobs),HH),PredError)
Denominator *= pdf(MvNormal(GG*smhat[:,j],forP),shat[:,j])
Denominator /= pdf(MvNormal(dzeta,c*c*R),shat[:,j])
alphalim = min(1,Numerator/Denominator)
u = rand()
if u<alphalim
sMH[:,j] = dzeta
temp_acpt[j] = 1
else
sMH[:,j] = shat[:,j]
end
end
smhat = shat
acptArray[n] = mean(temp_acpt)
shat = copy(sMH)
end
acpt = mean(acptArray)
ups = copy(shat)
println("Scale parameter c : $c")
println("Acceptance rate : $(acpt)")
COLiki_RM[t] = log(mean(COWeights_RM.*weights))
COStates_RM[t,:,:] = ups
end
COLogLh_RM =sum(COLiki_RM)
#=========================================================================#
# Log Likelihood Increments
#=========================================================================#
using PyPlot
figure()
plot(Liki,"blue")
plot(BSLiki,"red")
plot(COLiki,"green")
plot(COLiki_RM,"black")
title("\$ln \\left[\\hat{p} \\left(y_{t}|Y_{1:t-1}, \\Theta^{m}\\right)\\right] \$ vs. \$ln \\left[ p\\left(y_{t}|Y_{1:t-1}, \\Theta^{m}\\right)\\right] \$")
legend(["Kalman Filter","Bootstrap PF","Conditionally optimal PF","CO PF with Resample-Move"])
tight_layout()
savefig("LikIncrements.pdf")
IndShocks = [3,5,6]
Var = ["R","g","z"]
FileVar = ["R","g","z"]
for s in 1:length(IndShocks)
figure()
plot(StatePredi[2:end,IndShocks[s]],"blue")
plot(BSStates[:,IndShocks[s]],"red")
plot(COStates[:,IndShocks[s]],"green")
plot(COStates_RM[:,IndShocks[s]],"black")
title("\$\\hat{E} \\left(\\hat{$(Var[s])}_{t}|Y_{1:t-1}, \\Theta^{m}\\right)\$ vs. \$E\\left(\\hat{$(Var[s])}_t|Y_{1:t-1}, \\Theta^{m}\\right)\$")
legend(["Kalman Filter","Bootstrap PF","Conditionally optimal PF","CO PF with Resample-Move"])
tight_layout()
savefig("ComparisonFilters_$(FileVar[s]).pdf")
end