-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
560 lines (522 loc) · 27.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import numpy as np
from sacred import Ingredient
from src.util import warp_tqdm, compute_confidence_interval, load_checkpoint
from src.util import load_pickle, save_pickle
from src.util import save_checkpoint
import os
import torch
import collections
import torch.nn.functional as F
from src.tim import TIM, TIM_GD
from src.datasets.Datagenerator import Datagen_test
from src.datasets.batch_sampler import EpisodicBatchSampler
from src.util import warp_tqdm, get_metric, AverageMeter,euclidean_dist,save_plot_data
import torch.nn as nn
import time
import torch.backends.cudnn as cudnn
import random
def config():
number_tasks = 10000
n_ways = 5
query_shots = 15
method = 'baseline'
model_tag = 'best'
target_data_path = None # Only for cross-domain scenario
target_split_dir = None # Only for cross-domain scenario
plt_metrics = ['accs']
shots = [1, 5]
used_set = 'test' # can also be val for hyperparameter tuning
fresh_start = False
seed = 2021
if seed is not None:
random.seed(seed)
torch.manual_seed(seed)
cudnn.deterministic = True
class Evaluator:
def __init__(self, device):
self.device = device
self.number_tasks = 10000
self.n_ways = 2
self.query_shots = 15
self.method = 'tim_gd' #tim_gd
self.model_tag = 'best'
self.plt_metrics = ['accs']
self.shots = [5]
self.used_set = 'test'
self.fresh_start = True
def align_predict_and_query(self,pre_predict,num_query,k_q): # align predict and true the number of query
if pre_predict.shape[0]>num_query: # deal predict length
n_ = pre_predict.shape[0]//k_q
prob_final = pre_predict[:(n_-1)*k_q]
n_last = num_query - prob_final.shape[0]
prob_final = np.concatenate((prob_final,pre_predict[-n_last:]))
else:
prob_final = pre_predict
return prob_final
def best_lower_bound_search(self,pos_num,x_query_labels):
l = 0.0
r=0.5
iterate_num = 0
ans = (l+r)/2.0
while iterate_num<50:
mid = (l+r)/2.0
x_query_neg_index = torch.where(x_query_labels<mid,torch.ones(x_query_labels.shape[0]),torch.zeros(x_query_labels.shape[0])) # 选出预测为正的样本
x_q_trian_label = x_query_labels[x_query_neg_index==1]
if x_q_trian_label.shape[0]>pos_num:
r = mid
elif x_q_trian_label.shape[0]<pos_num:
ans = mid
l = mid
else:
return mid
iterate_num +=1
return ans
def best_upper_bound_search(self,pos_num,x_query_labels):
l = 0.5
r=1.0
iterate_num = 0
ans = 0.5
while iterate_num<50:
mid = (l+r)/2.0
x_query_pos_index = torch.where(x_query_labels>mid,torch.ones(x_query_labels.shape[0]),torch.zeros(x_query_labels.shape[0])) # 选出预测为正的样本
x_q_trian_label = x_query_labels[x_query_pos_index==1]
if x_q_trian_label.shape[0]>pos_num:
ans = mid
l = mid
elif x_q_trian_label.shape[0]<pos_num:
r = mid
else:
return mid
iterate_num +=1
return ans
def from_teacher_to_student(self,student,save_dict,W,pre_predict,num_query,k_q,iter_num,test_file,loaders_dic): # control the KD learning
prob_final = self.align_predict_and_query(pre_predict,num_query,k_q)
x_query = save_dict['x_query']
x_pos_train = save_dict['x_pos'] # support sample, thoes sapmle are very small, just 5 shots
x_query = torch.from_numpy(x_query)
assert prob_final.shape[0]==x_query.shape[0]
x_query_labels = torch.from_numpy(prob_final)
hyper_high_confident_num = 400 # this is a hyper-parameter, you can set it by yourself
thres_pos = self.best_upper_bound_search(hyper_high_confident_num,x_query_labels)
x_query_pos_index = torch.where(x_query_labels>=thres_pos,torch.ones(x_query_labels.shape[0]),torch.zeros(x_query_labels.shape[0])) # 选出预测为正的样本
x_query_tr_pos = x_query[x_query_pos_index==1] # the query predict as positive
x_query_tr_pos_label = x_query_labels[x_query_pos_index==1] # get thier predict probability
thresh_neg = self.best_lower_bound_search(x_query_tr_pos_label.shape[0]+x_pos_train.shape[0],x_query_labels)
x_query_neg_index = torch.where(x_query_labels<thresh_neg,torch.ones(x_query_labels.shape[0]),torch.zeros(x_query_labels.shape[0])) # 选出预测为正的样本
x_q_trian = x_query[x_query_neg_index==1] # get exaplem by index,note x_query represent mel spectrum
x_q_fake_label = x_query_labels[x_query_neg_index==1] # thier predict label by previous model
x_q_trian = torch.cat([x_q_trian,x_query_tr_pos],0) # mix up pos sample and random sample
x_q_fake_label = torch.cat([x_q_fake_label,x_query_tr_pos_label],0) # label
assert x_q_trian.shape[0]==x_q_fake_label.shape[0] # judge the number of label and train number is same
x_pos_train = torch.from_numpy(x_pos_train) # convert numpy to tensor
x_pos_label = torch.ones(x_pos_train.shape[0]) # thier label is certainty, 1
assert x_pos_train.shape[0]==x_pos_label.shape[0] # judege
x_train = torch.cat([x_q_trian,x_pos_train],0) # add support sample, we need those label,because thier label is true
y_train = torch.cat([x_q_fake_label,x_pos_label],0) # finally, we have get all the sample for student to train.
model_path = '/home/ydc/DACSE2021/sed-tim-base/check_point/' + str(iter_num)
student = self.train_student(x_train,y_train,student,W,x_pos_train,x_pos_label,model_path) # get student model. note, we need x_pos to updata student according to W.
# torch.save(student,'/home/ydc/DACSE2021/task5/sed-tim/check_point/model/best_55per.pth')
model_path = '/home/ydc/DACSE2021/sed-tim-base/check_point/' + str(iter_num)+'/'
extracted_features_dic = self.extract_features(model=student, model_path=model_path, model_tag='student',
used_set=test_file, fresh_start=True,loaders_dic=loaders_dic,test_student=1) # use student model to extract feature
predict = None
for shot in self.shots: # 5 shot
tasks = self.generate_tasks(extracted_features_dic=extracted_features_dic,k_q=k_q)
logs = self.run_task(task_dic=tasks,
model=student,test_file=test_file,first=iter_num)
# l2n_mean, l2n_conf = compute_confidence_interval(logs['acc'][:, -1])
predict = logs['test']
W = logs['W']
return predict,W,student
def run_full_evaluation(self,test_file, model, model_path,student_model,hdf_eval,conf,k_q,iter_num):
"""
Run the evaluation over all the tasks in parallel
inputs:
model : The loaded model containing the feature extractor
loaders_dic : Dictionnary containing training and testing loaders
model_path : Where was the model loaded from
model_tag : Which model ('final' or 'best') to load
method : Which method to use for inference ("baseline", "tim-gd" or "tim-adm")
shots : Number of support shots to try
returns :
results : List of the mean accuracy for each number of support shots
"""
print("=> Runnning full evaluation with method: {}".format(self.method))
load_checkpoint(model=model, model_path=model_path, type=self.model_tag)
load_checkpoint(model=student_model,model_path=model_path,type=self.model_tag)
# Get loaders
loaders_dic,save_dict = self.get_loaders(hdf_eval=hdf_eval,conf=conf)
# Extract features (just load them if already in memory)
extracted_features_dic = self.extract_features(model=model, model_path=model_path, model_tag=self.model_tag,
used_set=test_file, fresh_start=self.fresh_start,loaders_dic=loaders_dic)
results = []
predict = None
for shot in self.shots: # 5 shot
tasks = self.generate_tasks(extracted_features_dic=extracted_features_dic,k_q=k_q)
logs = self.run_task(task_dic=tasks,
model=model,test_file=test_file,first=0)
# l2n_mean, l2n_conf = compute_confidence_interval(logs['acc'][:, -1])
predict = logs['test']
W = logs['W']
results.append(predict)
if iter_num ==0:
return results, self.number_tasks
results = []
for i in range(iter_num):
predict,W,student_model= self.from_teacher_to_student(student_model,save_dict,W,predict,self.number_tasks,k_q,i+1,test_file,loaders_dic)
if i == iter_num-1:
results.append(predict)
return results, self.number_tasks
def run_full_evaluation_model_w(self,test_file, model, model_path,student_model,hdf_eval,conf,k_q,iter_num):
print("=> Runnning full evaluation with method: {}".format(self.method))
# Load pre-trained model
load_checkpoint(model=model, model_path=model_path, type=self.model_tag)
load_checkpoint(model=student_model,model_path=model_path,type=self.model_tag)
# Get loaders
loaders_dic,save_dict = self.get_loaders(hdf_eval=hdf_eval,conf=conf)
# Extract features (just load them if already in memory)
extracted_features_dic = self.extract_features(model=model, model_path=model_path, model_tag=self.model_tag,
used_set=test_file, fresh_start=self.fresh_start,loaders_dic=loaders_dic)
results = []
predict = None
for shot in self.shots: # 5 shot
tasks = self.generate_tasks(extracted_features_dic=extracted_features_dic,k_q=k_q)
logs = self.run_task_model_w(task_dic=tasks,
model=model,test_file=test_file,first=0,loaders_dic=loaders_dic,k_q=k_q,model_path=model_path)
# l2n_mean, l2n_conf = compute_confidence_interval(logs['acc'][:, -1])
predict = logs['test']
W = logs['W']
results.append(predict)
if iter_num ==0:
return results, self.number_tasks
results = []
for i in range(iter_num):
predict,W,student_model= self.from_teacher_to_student(student_model,save_dict,W,predict,self.number_tasks,k_q,i+1,test_file,loaders_dic)
if i == iter_num-1:
results.append(predict)
return results, self.number_tasks
def train_student(self,train_data,label,student,W,x_pos_train,x_pos_label,model_path):
losses = AverageMeter()
top1 = AverageMeter()
device = 'cuda'
lr = 0.00001
fc = nn.Linear(1024, 2)
student.cuda()
fc.cuda()
train_dataset = torch.utils.data.TensorDataset(train_data, label)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_sampler=None,batch_size=128,shuffle=True)
student.train()
fc.train()
optimizer = torch.optim.Adam([{'params': student.encoder[3:4].parameters()},{'params': fc.parameters(),'lr': lr*50}], lr=lr) # {'params': student.encoder[2].parameters()},
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=optimizer, gamma=0.5,step_size=10)
epoches = 1
best_loss = 1000.0
best_student = student
for epoch in range(epoches):
loss = self.do_epoch(epoch,lr_scheduler,student,train_loader,optimizer,W,fc,x_pos_train,x_pos_label)
is_best = loss.get_avg() < best_loss
print('loss.get_avg() ',loss.get_avg())
if is_best:
best_student = student
best_loss = min(loss.get_avg(), best_loss)
# Save checkpoint
save_checkpoint(state={'epoch': epoch + 1,
'arch': 'Protonet',
'state_dict': student.state_dict(),
'best_prec1': best_loss,
'optimizer': optimizer.state_dict()},
is_best=is_best,
folder=model_path)
return best_student
def cross_entropy(self, logits, one_hot_targets, reduction='batchmean'):
logsoftmax_fn = nn.LogSoftmax(dim=1)
logsoftmax = logsoftmax_fn(logits)
return - (one_hot_targets * logsoftmax).sum(1).mean()
def do_epoch(self, epoch, scheduler, model,train_loader,optimizer,W,fc,x_pos_train,x_pos_label,disable_tqdm=False,device='cuda'): # 可以看做基类训练,不需要划分支持集,查询集
batch_time = AverageMeter()
losses = AverageMeter()
model.train()
end = time.time()
W_mean = W.mean(0)
x_pos_train = x_pos_train.cuda()
tqdm_train_loader = warp_tqdm(train_loader, disable_tqdm)
for i, (input, target) in enumerate(tqdm_train_loader):
input, target = input.to(self.device), target.to(device, non_blocking=True) # move to cuda
feature,_ = model(input,True)
pos_feature,p_ = model(x_pos_train,True)
choose = torch.where(target>0.5,torch.ones(target.shape[0]).cuda(),torch.zeros(target.shape[0]).cuda())
assert choose.shape[0] == target.shape[0]
neg_w = feature[choose==0] # 68
neg_mul = (1-target[choose==0]).view(-1,1)
neg_mul = neg_mul.repeat(1,neg_w.shape[1])
neg_w_wi = torch.mul(neg_w,neg_mul) #
pos_w = pos_feature.mean(0) # positive samples
neg_w_wi = neg_w_wi.mean(0)
target_neg = 1-target
target_pos = target.view(-1,1)
target_neg = target_neg.view(-1,1)
target_one_hot = torch.cat([target_pos,target_neg],1)
logits = fc(feature)
loss_ce = self.cross_entropy(logits,target_one_hot)
p_t = torch.cosine_similarity(W_mean[0],pos_w,dim=0)
ls = []
for k in range(neg_w.shape[0]):
ls.append(torch.cosine_similarity(W_mean[0],neg_w[k],dim=0))
T_t = 1
fenmu = 0
for t in ls:
fenmu+= torch.exp(t/T_t)
loss_clr = -torch.log(torch.exp(p_t/T_t)/fenmu)
loss_w = 0.6*torch.cosine_similarity(W_mean[0],pos_w,dim=0) - 0.4*torch.cosine_similarity(W_mean[0],neg_w_wi,dim=0)
loss = 0.7*loss_ce + 0.3*loss_w # thoese hyper parameter you can set by your self
#loss = 0.5*loss_ce + 0.5*loss_clr # thoese hyper parameter you can set by your self
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Measure accuracy and record loss
losses.update(loss.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
if i % 20== 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses))
return losses
def run_task(self, task_dic, model,test_file,first):
# Build the TIM classifier builder
tim_builder = self.get_tim_builder(model,self.method,test_file,first) # choose the update methods
# Extract support and query
y_s = task_dic['y_s'] # n_task*?*?
z_s, z_q = task_dic['z_s'], task_dic['z_q']
# Transfer tensors to GPU if needed
support = z_s.to(self.device) # [ N * (K_s + K_q), d]
query = z_q.to(self.device) # [ N * (K_s + K_q), d]
y_s = y_s.long().squeeze(2).to(self.device)
# Perform normalizations required
support = F.normalize(support, dim=2)
query = F.normalize(query, dim=2)
# Initialize weights
tim_builder.compute_lambda(support=support, query=query, y_s=y_s) # lambda
print('tim_builder.loss_weights',tim_builder.loss_weights[0])
print('self.number_task ',self.number_tasks)
tim_builder.init_weights(support=support, y_s=y_s, query=query) # init W
tim_builder.compute_FB_param(query)
# Run adaptation
tim_builder.run_adaptation(support=support, query=query, y_s=y_s) # update
# Extract adaptation logs
logs = tim_builder.get_logs()
return logs
def run_task_model_w(self, task_dic, model,test_file,first,loaders_dic,k_q,model_path):
# Build the TIM classifier builder
tim_builder = self.get_tim_builder(model,self.method,test_file,first)
# Extract support and query
y_s = task_dic['y_s'] # n_task*?*?
z_s, z_q = task_dic['z_s'], task_dic['z_q']
# Transfer tensors to GPU if needed
support = z_s.to(self.device) # [ N * (K_s + K_q), d]
query = z_q.to(self.device) # [ N * (K_s + K_q), d]
# print('y_s ',y_s.shape)
y_s = y_s.long().squeeze(2).to(self.device) #
# Perform normalizations required
support = F.normalize(support, dim=2)
query = F.normalize(query, dim=2)
# Initialize weights
tim_builder.compute_lambda(support=support, query=query, y_s=y_s)
print('tim_builder.loss_weights',tim_builder.loss_weights[0])
print('self.number_task ',self.number_tasks)
tim_builder.init_weights(support=support, y_s=y_s, query=query)
tim_builder.compute_FB_param(query)
# Run adaptation
model_new,nums,iters = tim_builder.run_adaptation_model_w(support=support, query=query, y_s=y_s,nums=1) # update
while nums<iters:
print('nums ',nums)
extracted_features_dic = self.extract_features(model=model_new, model_path=model_path, model_tag=self.model_tag,
used_set=test_file, fresh_start=1,loaders_dic=loaders_dic)
tasks = self.generate_tasks(extracted_features_dic=extracted_features_dic,k_q=k_q) # generate task
y_s = tasks['y_s'] # n_task*?*?
z_s, z_q = tasks['z_s'], tasks['z_q']
# Transfer tensors to GPU if needed
support = z_s.to(self.device) # [ N * (K_s + K_q), d]
query = z_q.to(self.device) # [ N * (K_s + K_q), d]
# print('y_s ',y_s.shape)
y_s = y_s.long().squeeze(2).to(self.device) #
model_new,nums,iters = tim_builder.run_adaptation_model_w(support=support, query=query, y_s=y_s,nums=nums)
support = F.normalize(support, dim=2)
query = F.normalize(query, dim=2)
# Extract adaptation logs
logs = tim_builder.get_logs()
return logs
def get_tim_builder(self, model, method,test_file,first):
# Initialize TIM classifier builder
tim_info = {'model': model,'test_file': test_file,'first': first}
if method == 'tim_adm':
tim_builder = TIM_ADM(**tim_info)
elif method == 'tim_gd':
tim_builder = TIM_GD(**tim_info)
elif method == 'baseline':
tim_builder = TIM(**tim_info)
else:
raise ValueError("Method must be in ['tim_gd', 'tim_adm', 'baseline']")
return tim_builder
def get_loaders(self, hdf_eval,conf):
# First, get loaders
loaders_dic = {}
gen_eval = Datagen_test(hdf_eval,conf)
X_pos, X_neg,X_query = gen_eval.generate_eval()
save_dict = {}
save_dict['x_pos'] = X_pos
save_dict.update({'x_query': X_query})
self.number_tasks = X_query.shape[0] #
X_pos = torch.tensor(X_pos)
Y_pos = torch.LongTensor(np.zeros(X_pos.shape[0])) # init as 0
X_neg = torch.tensor(X_neg)
Y_neg = torch.LongTensor(np.ones(X_neg.shape[0]))
X_query = torch.tensor(X_query)
Y_query = torch.LongTensor(np.zeros(X_query.shape[0]))
num_batch_query = len(Y_query) // conf.eval.query_batch_size # len // 8
# print('num_batch_query ',num_batch_query) # 8821
query_dataset = torch.utils.data.TensorDataset(X_query, Y_query)
q_loader = torch.utils.data.DataLoader(dataset=query_dataset, batch_sampler=None,batch_size=conf.eval.query_batch_size,shuffle=False) # 按顺序来
loaders_dic['query'] = q_loader
neg_indices = torch.randperm(len(X_neg))[:conf.eval.samples_neg]
X_neg = X_neg[neg_indices]
Y_neg = Y_neg[neg_indices]
batch_size_neg = conf.eval.negative_set_batch_size # 16
neg_dataset = torch.utils.data.TensorDataset(X_neg, Y_neg)
negative_loader = torch.utils.data.DataLoader(dataset=neg_dataset, batch_sampler=None, batch_size=batch_size_neg)
loaders_dic.update({'neg_loader': negative_loader})
# batch_samplr_pos = EpisodicBatchSampler(Y_pos, num_batch_query + 1, 1, conf.train.n_shot*4)
pos_dataset = torch.utils.data.TensorDataset(X_pos, Y_pos)
#pos_loader = torch.utils.data.DataLoader(dataset=pos_dataset, batch_sampler=batch_samplr_pos)
pos_loader = torch.utils.data.DataLoader(dataset=pos_dataset,batch_sampler=None, batch_size=25,shuffle=False)
loaders_dic.update({'pos_loader': pos_loader})
return loaders_dic,save_dict
def extract_features(self, model, model_path, model_tag, used_set, fresh_start, loaders_dic,test_student=0):
"""
inputs:
model : The loaded model containing the feature extractor
loaders_dic : Dictionnary containing training and testing loaders
model_path : Where was the model loaded from
model_tag : Which model ('final' or 'best') to load
used_set : Set used between 'test' and 'val'
n_ways : Number of ways for the task
returns :
extracted_features_dic : Dictionnary containing all extracted features and labels
"""
# Load features from memory if previously saved ...
save_dir = os.path.join(model_path, model_tag, used_set)
filepath = os.path.join(save_dir, 'output.plk')
if os.path.isfile(filepath) and (not fresh_start):
extracted_features_dic = load_pickle(filepath)
print(" ==> Features loaded from {}".format(filepath))
return extracted_features_dic
# ... otherwise just extract them
else:
print(" ==> Beginning feature extraction")
os.makedirs(save_dir, exist_ok=True)
model.eval()
with torch.no_grad():
all_features = []
all_labels = []
for i, (inputs, labels) in enumerate(warp_tqdm(loaders_dic['query'], False)):
inputs = inputs.to(self.device)
outputs, _ = model(inputs, True)
all_features.append(outputs.cpu())
all_labels.append(labels)
all_features = torch.cat(all_features, 0)
all_labels = torch.cat(all_labels, 0)
extracted_features_dic = {'query_features': all_features,
'query_labels': all_labels}
all_features = []
all_labels = []
for i, (inputs, labels) in enumerate(warp_tqdm(loaders_dic['pos_loader'], False)):
inputs = inputs.to(self.device)
outputs, _ = model(inputs, True)
all_features.append(outputs.cpu())
all_labels.append(labels)
all_features = torch.cat(all_features, 0)
all_labels = torch.cat(all_labels, 0)
extracted_features_dic.update({'pos_features': all_features,
'pos_labels': all_labels})
all_features = []
all_labels = []
for i, (inputs, labels) in enumerate(warp_tqdm(loaders_dic['neg_loader'], False)):
inputs = inputs.to(self.device)
outputs, _ = model(inputs, True)
all_features.append(outputs.cpu())
all_labels.append(labels)
all_features = torch.cat(all_features, 0)
all_labels = torch.cat(all_labels, 0)
extracted_features_dic.update({'neg_features': all_features,
'neg_labels': all_labels})
print(" ==> Saving features to {}".format(filepath))
save_pickle(filepath, extracted_features_dic)
return extracted_features_dic
def get_task(self, extracted_features_dic,index,k_q):
"""
inputs:
extracted_features_dic : Dictionnary containing all extracted features and labels
shot : Number of support shot per class
n_ways : Number of ways for the task
returns :
task : Dictionnary : z_support : torch.tensor of shape [n_ways * shot, feature_dim]
z_query : torch.tensor of shape [n_ways * query_shot, feature_dim]
y_support : torch.tensor of shape [n_ways * shot]
y_query : torch.tensor of shape [n_ways * query_shot]
"""
query_features = extracted_features_dic['query_features']
pos_features = extracted_features_dic['pos_features']
pos_labels = extracted_features_dic['pos_labels']
neg_features = extracted_features_dic['neg_features']
neg_labels = extracted_features_dic['neg_labels']
support_samples = []
query_samples = []
pos_indices = torch.randperm(len(pos_features))[:min(2000,len(pos_features))] # 5 shot
X_pos = pos_features[pos_indices]
num_neg = 50
neg_indices = torch.randperm(len(neg_features))[:max(num_neg,len(pos_features))] # 5 shot
X_neg = neg_features[neg_indices]
support_samples.append(X_pos)
support_samples.append(X_neg)
query_size = query_features.shape[0]
if index+k_q > query_size:
X_query = query_features[-k_q:]
else:
X_query = query_features[index:index+k_q]
query_samples.append(X_query)
y_support_pos = torch.zeros(min(2000,len(pos_features)))
y_support_neg = torch.ones(max(num_neg,len(pos_features)))
y_support = torch.cat([y_support_pos,y_support_neg],0) #
z_support = torch.cat(support_samples, 0)
z_query = torch.cat(query_samples, 0)
task = {'z_s': z_support, 'y_s': y_support,
'z_q': z_query}
return task
def generate_tasks(self, extracted_features_dic,k_q):
"""
inputs:
extracted_features_dic :
shot : Number of support shot per class
number_tasks : Number of tasks to generate
returns :
merged_task : { z_support : torch.tensor of shape [number_tasks, n_ways * shot, feature_dim]
z_query : torch.tensor of shape [number_tasks, n_ways * query_shot, feature_dim]
y_support : torch.tensor of shape [number_tasks, n_ways * shot]
y_query : torch.tensor of shape [number_tasks, n_ways * query_shot] }
"""
print(f" ==> Generating {self.number_tasks//k_q} tasks ...")
tasks_dics = []
index = 0
while index < self.number_tasks:
task_dic = self.get_task(extracted_features_dic,index,k_q)
index += k_q
tasks_dics.append(task_dic)
# Now merging all tasks into 1 single dictionnary
merged_tasks = {}
n_tasks = len(tasks_dics)
for key in tasks_dics[0].keys(): # z_s,y_s,z_q,y_q
n_samples = tasks_dics[0][key].size(0)
merged_tasks[key] = torch.cat([tasks_dics[i][key] for i in range(n_tasks)], dim=0).view(n_tasks, n_samples, -1)
return merged_tasks