-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
240 lines (204 loc) · 8.08 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
import numpy as np
import shutil
from tqdm import tqdm
import logging
import os
import pickle
import torch.nn.functional as F
from sklearn import manifold, datasets
import h5py
def prototypical_loss(input, target,n_support):
'''
Adopted from https://github.com/orobix/Prototypical-Networks-for-Few-shot-Learning-PyTorch
Compute the prototypes by averaging the features of n_support
samples for each class in target, computes then the distances from each
samples' features to each one of the barycentres, computes the
log_probability for each n_query samples for each one of the current
classes, of appartaining to a class c, loss and accuracy are then computed
and returned
Args:
- input: the model output for a batch of samples
- target: ground truth for the above batch of samples
- n_support: number of samples to keep in account when computing
bprototypes, for each one of the current classes
'''
def supp_idxs(c):
return target_cpu.eq(c).nonzero()[:n_support].squeeze(1)
target_cpu = target.to('cpu')
input_cpu = input.to('cpu')
classes = torch.unique(target_cpu)
n_classes = len(classes)
p = n_classes * n_support
n_query = target.eq(classes[0].item()).sum().item() - n_support
support_idxs = list(map(supp_idxs,classes))
prototypes = torch.stack([input_cpu[idx_list].mean(0) for idx_list in support_idxs])
query_idxs = torch.stack(list(map(lambda c:target.eq(c).nonzero()[n_support:],classes))).view(-1)
query_samples = input.cpu()[query_idxs]
dists = euclidean_dist(query_samples, prototypes)
log_p_y = F.log_softmax(-dists, dim=1).view(n_classes, n_query, -1)
target_inds = torch.arange(0, n_classes)
target_inds = target_inds.view(n_classes, 1, 1)
target_inds = target_inds.expand(n_classes, n_query, 1).long()
loss_val = -log_p_y.gather(2, target_inds).squeeze().view(-1).mean()
_, y_hat = log_p_y.max(2)
acc_val = y_hat.eq(target_inds.squeeze()).float().mean()
return loss_val, acc_val
def euclidean_dist(x, y):
'''
Compute euclidean distance between two tensors
'''
# x: N x D
# y: M x D
n = x.size(0)
m = y.size(0)
d = x.size(1)
if d != y.size(1):
raise Exception
x = x.unsqueeze(1).expand(n, m, d)
y = y.unsqueeze(0).expand(n, m, d)
return torch.pow(x - y, 2).sum(2)
def get_one_hot(y_s): #
num_classes = torch.unique(y_s).size(0)
eye = torch.eye(num_classes).to(y_s.device)
one_hot = []
for y_task in y_s:
one_hot.append(eye[y_task].unsqueeze(0))
one_hot = torch.cat(one_hot, 0)
return one_hot
def get_logs_path(model_path, method, shot):
exp_path = '_'.join(model_path.split('/')[1:])
file_path = os.path.join('tmp', exp_path, method)
os.makedirs(file_path, exist_ok=True)
return os.path.join(file_path, f'{shot}.txt')
def get_features(model, samples):
features, _ = model(samples, True)
features = F.normalize(features.view(features.size(0), -1), dim=1)
return features
def get_loss(logits_s, logits_q, labels_s, lambdaa):
Q = logits_q.softmax(2)
y_s_one_hot = get_one_hot(labels_s) #
ce_sup = - (y_s_one_hot * torch.log(logits_s.softmax(2) + 1e-12)).sum(2).mean(1) # Taking the mean over samples within a task, and summing over all samples
# ce_sup
ent_q = get_entropy(Q)
cond_ent_q = get_cond_entropy(Q)
loss = - (ent_q - cond_ent_q) + lambdaa * ce_sup
return loss
def get_mi(probs):
q_cond_ent = get_cond_entropy(probs)
q_ent = get_entropy(probs)
return q_ent - q_cond_ent
def get_entropy(probs): # H(Y_q)
q_ent = - (probs.mean(1) * torch.log(probs.mean(1) + 1e-12)).sum(1, keepdim=True) # H(Y_q)
return q_ent
def get_cond_entropy(probs): # H(Y_q | X_q)
q_cond_ent = - (probs * torch.log(probs + 1e-12)).sum(2).mean(1, keepdim=True) # H(Y_q | X_q)
return q_cond_ent
def get_metric(metric_type):
METRICS = {
'cosine': lambda gallery, query: 1. - F.cosine_similarity(query[:, None, :], gallery[None, :, :], dim=2),
'euclidean': lambda gallery, query: ((query[:, None, :] - gallery[None, :, :]) ** 2).sum(2),
'l1': lambda gallery, query: torch.norm((query[:, None, :] - gallery[None, :, :]), p=1, dim=2),
'l2': lambda gallery, query: torch.norm((query[:, None, :] - gallery[None, :, :]), p=2, dim=2),
}
return METRICS[metric_type]
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1): #
self.val = val #
self.sum += val * n #
self.count += n
self.avg = self.sum / self.count
def get_avg(self):
return self.avg
def setup_logger(filepath):
file_formatter = logging.Formatter(
"[%(asctime)s %(filename)s:%(lineno)s] %(levelname)-8s %(message)s",
datefmt='%Y-%m-%d %H:%M:%S',
)
logger = logging.getLogger('example')
# handler = logging.StreamHandler()
# handler.setFormatter(file_formatter)
# logger.addHandler(handler)
file_handle_name = "file"
if file_handle_name in [h.name for h in logger.handlers]:
return
if os.path.dirname(filepath) != '':
if not os.path.isdir(os.path.dirname(filepath)):
os.makedirs(os.path.dirname(filepath))
file_handle = logging.FileHandler(filename=filepath, mode="a")
file_handle.set_name(file_handle_name)
file_handle.setFormatter(file_formatter)
logger.addHandler(file_handle)
logger.setLevel(logging.DEBUG)
return logger
def warp_tqdm(data_loader, disable_tqdm):
if disable_tqdm: #
tqdm_loader = data_loader
else:
tqdm_loader = tqdm(data_loader, total=len(data_loader))
return tqdm_loader
def save_pickle(file, data): #
with open(file, 'wb') as f:
pickle.dump(data, f)
def load_pickle(file): #
with open(file, 'rb') as f:
return pickle.load(f)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', folder='result/default'): # check_point
os.makedirs(folder, exist_ok=True)
torch.save(state, os.path.join(folder, filename))
if is_best:
shutil.copyfile(folder + '/' + filename, folder + '/model_best.pth.tar')
def load_checkpoint(model, model_path, type='best'):
if type == 'best':
checkpoint = torch.load('{}/model_best.pth.tar'.format(model_path))
elif type == 'last':
checkpoint = torch.load('{}/checkpoint.pth.tar'.format(model_path))
else:
assert False, 'type should be in [best, or last], but got {}'.format(type)
state_dict = checkpoint['state_dict']
names = []
for k, v in state_dict.items():
names.append(k)
model.load_state_dict(state_dict)
def compute_confidence_interval(data, axis=0):
"""
Compute 95% confidence interval
:param data: An array of mean accuracy (or mAP) across a number of sampled episodes.
:return: the 95% confidence interval for this data.
"""
a = 1.0 * np.array(data)
m = np.mean(a, axis=axis)
std = np.std(a, axis=axis)
pm = 1.96 * (std / np.sqrt(a.shape[axis]))
return m, pm
def save_plot_data(feature_x,target_y,save_file_name):
feature_x = np.array(feature_x)
target_y = np.array(target_y)
print('feature_x ',feature_x.shape)
print('target_y ',target_y.shape)
tsne = manifold.TSNE(n_components=2, init='pca', random_state=501)
X_tsne = tsne.fit_transform(feature_x)
path = '/home/ydc/DACSE2021/sed-tim-base/check_point/plot/'+save_file_name
hf = h5py.File(path, 'w')
X_shape = X_tsne.shape[1]
hf.create_dataset(
name='feature',
shape=(target_y.shape[0], X_shape),
dtype=np.float32)
hf.create_dataset(
name='target',
shape=(target_y.shape[0],),
dtype=np.float32)
for n,u in enumerate(X_tsne):
#hf['feature'].resize((n + 1, X_shape))
hf['feature'][n] = u
for n,u in enumerate(target_y):
hf['target'][n] = u
hf.close()