-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathuntypeast.ml
916 lines (836 loc) · 34.2 KB
/
untypeast.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Thomas Gazagnaire (OCamlPro), Fabrice Le Fessant (INRIA Saclay) *)
(* *)
(* Copyright 2007 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
open Longident
open Asttypes
open Parsetree
open Ast_helper
module T = Typedtree
type mapper = {
attribute: mapper -> T.attribute -> attribute;
attributes: mapper -> T.attribute list -> attribute list;
binding_op: mapper -> T.binding_op -> T.pattern -> binding_op;
case: 'k . mapper -> 'k T.case -> case;
class_declaration: mapper -> T.class_declaration -> class_declaration;
class_description: mapper -> T.class_description -> class_description;
class_expr: mapper -> T.class_expr -> class_expr;
class_field: mapper -> T.class_field -> class_field;
class_signature: mapper -> T.class_signature -> class_signature;
class_structure: mapper -> T.class_structure -> class_structure;
class_type: mapper -> T.class_type -> class_type;
class_type_declaration: mapper -> T.class_type_declaration
-> class_type_declaration;
class_type_field: mapper -> T.class_type_field -> class_type_field;
constructor_declaration: mapper -> T.constructor_declaration
-> constructor_declaration;
expr: mapper -> T.expression -> expression;
extension_constructor: mapper -> T.extension_constructor
-> extension_constructor;
include_declaration: mapper -> T.include_declaration -> include_declaration;
include_description: mapper -> T.include_description -> include_description;
label_declaration: mapper -> T.label_declaration -> label_declaration;
location: mapper -> Location.t -> Location.t;
module_binding: mapper -> T.module_binding -> module_binding;
module_declaration: mapper -> T.module_declaration -> module_declaration;
module_substitution: mapper -> T.module_substitution -> module_substitution;
module_expr: mapper -> T.module_expr -> module_expr;
module_type: mapper -> T.module_type -> module_type;
module_type_declaration:
mapper -> T.module_type_declaration -> module_type_declaration;
package_type: mapper -> T.package_type -> package_type;
open_declaration: mapper -> T.open_declaration -> open_declaration;
open_description: mapper -> T.open_description -> open_description;
pat: 'k . mapper -> 'k T.general_pattern -> pattern;
row_field: mapper -> T.row_field -> row_field;
object_field: mapper -> T.object_field -> object_field;
signature: mapper -> T.signature -> signature;
signature_item: mapper -> T.signature_item -> signature_item;
structure: mapper -> T.structure -> structure;
structure_item: mapper -> T.structure_item -> structure_item;
typ: mapper -> T.core_type -> core_type;
type_declaration: mapper -> T.type_declaration -> type_declaration;
type_extension: mapper -> T.type_extension -> type_extension;
type_exception: mapper -> T.type_exception -> type_exception;
type_kind: mapper -> T.type_kind -> type_kind;
value_binding: mapper -> T.value_binding -> value_binding;
value_description: mapper -> T.value_description -> value_description;
with_constraint:
mapper -> (Path.t * Longident.t Location.loc * T.with_constraint)
-> with_constraint;
}
open T
(*
Some notes:
* For Pexp_function, we cannot go back to the exact original version
when there is a default argument, because the default argument is
translated in the typer. The code, if printed, will not be parsable because
new generated identifiers are not correct.
* For Pexp_apply, it is unclear whether arguments are reordered, especially
when there are optional arguments.
*)
(** Utility functions. *)
let string_is_prefix sub str =
let sublen = String.length sub in
String.length str >= sublen && String.sub str 0 sublen = sub
let rec lident_of_path = function
| Path.Pident id -> Longident.Lident (Ident.name id)
| Path.Pdot (p, s) -> Longident.Ldot (lident_of_path p, s)
| Path.Papply (p1, p2) ->
Longident.Lapply (lident_of_path p1, lident_of_path p2)
let map_loc sub {loc; txt} = {loc = sub.location sub loc; txt}
(** Try a name [$name$0], check if it's free, if not, increment and repeat. *)
let fresh_name s env =
let rec aux i =
let name = s ^ Int.to_string i in
if Env.bound_value name env then aux (i+1)
else name
in
aux 0
(** Extract the [n] patterns from the case of a letop *)
let rec extract_letop_patterns n pat =
if n = 0 then pat, []
else begin
match pat.pat_desc with
| Tpat_tuple([first; rest]) ->
let next, others = extract_letop_patterns (n-1) rest in
first, next :: others
| _ ->
let rec anys n =
if n = 0 then []
else { pat with pat_desc = Tpat_any } :: anys (n-1)
in
{ pat with pat_desc = Tpat_any }, anys (n-1)
end
(** Mapping functions. *)
let constant = function
| Const_char c -> Pconst_char c
| Const_string (s,loc,d) -> Pconst_string (s,loc,d)
| Const_int i -> Pconst_integer (Int.to_string i, None)
| Const_int32 i -> Pconst_integer (Int32.to_string i, Some 'l')
| Const_int64 i -> Pconst_integer (Int64.to_string i, Some 'L')
| Const_nativeint i -> Pconst_integer (Nativeint.to_string i, Some 'n')
| Const_float f -> Pconst_float (f,None)
let attribute sub a = {
attr_name = map_loc sub a.attr_name;
attr_payload = a.attr_payload;
attr_loc = a.attr_loc
}
let attributes sub l = List.map (sub.attribute sub) l
let structure sub str =
List.map (sub.structure_item sub) str.str_items
let open_description sub od =
let loc = sub.location sub od.open_loc in
let attrs = sub.attributes sub od.open_attributes in
Opn.mk ~loc ~attrs
~override:od.open_override
(snd od.open_expr)
let open_declaration sub od =
let loc = sub.location sub od.open_loc in
let attrs = sub.attributes sub od.open_attributes in
Opn.mk ~loc ~attrs
~override:od.open_override
(sub.module_expr sub od.open_expr)
let structure_item sub item =
let loc = sub.location sub item.str_loc in
let desc =
match item.str_desc with
Tstr_eval (exp, attrs) -> Pstr_eval (sub.expr sub exp, attrs)
| Tstr_value (rec_flag, list) ->
Pstr_value (rec_flag, List.map (sub.value_binding sub) list)
| Tstr_primitive vd ->
Pstr_primitive (sub.value_description sub vd)
| Tstr_type (rec_flag, list) ->
Pstr_type (rec_flag, List.map (sub.type_declaration sub) list)
| Tstr_typext tyext ->
Pstr_typext (sub.type_extension sub tyext)
| Tstr_exception ext ->
Pstr_exception (sub.type_exception sub ext)
| Tstr_module mb ->
Pstr_module (sub.module_binding sub mb)
| Tstr_recmodule list ->
Pstr_recmodule (List.map (sub.module_binding sub) list)
| Tstr_modtype mtd ->
Pstr_modtype (sub.module_type_declaration sub mtd)
| Tstr_open od ->
Pstr_open (sub.open_declaration sub od)
| Tstr_class list ->
Pstr_class
(List.map
(fun (ci, _) -> sub.class_declaration sub ci)
list)
| Tstr_class_type list ->
Pstr_class_type
(List.map
(fun (_id, _name, ct) -> sub.class_type_declaration sub ct)
list)
| Tstr_include incl ->
Pstr_include (sub.include_declaration sub incl)
| Tstr_attribute x ->
Pstr_attribute x
in
Str.mk ~loc desc
let value_description sub v =
let loc = sub.location sub v.val_loc in
let attrs = sub.attributes sub v.val_attributes in
Val.mk ~loc ~attrs
~prim:v.val_prim
(map_loc sub v.val_name)
(sub.typ sub v.val_desc)
let module_binding sub mb =
let loc = sub.location sub mb.mb_loc in
let attrs = sub.attributes sub mb.mb_attributes in
Mb.mk ~loc ~attrs
(map_loc sub mb.mb_name)
(sub.module_expr sub mb.mb_expr)
let type_parameter sub (ct, v) = (sub.typ sub ct, v)
let type_declaration sub decl =
let loc = sub.location sub decl.typ_loc in
let attrs = sub.attributes sub decl.typ_attributes in
Type.mk ~loc ~attrs
~params:(List.map (type_parameter sub) decl.typ_params)
~cstrs:(
List.map
(fun (ct1, ct2, loc) ->
(sub.typ sub ct1, sub.typ sub ct2, sub.location sub loc))
decl.typ_cstrs)
~kind:(sub.type_kind sub decl.typ_kind)
~priv:decl.typ_private
?manifest:(Option.map (sub.typ sub) decl.typ_manifest)
(map_loc sub decl.typ_name)
let type_kind sub tk = match tk with
| Ttype_abstract -> Ptype_abstract
| Ttype_variant list ->
Ptype_variant (List.map (sub.constructor_declaration sub) list)
| Ttype_record list ->
Ptype_record (List.map (sub.label_declaration sub) list)
| Ttype_open -> Ptype_open
let constructor_arguments sub = function
| Cstr_tuple l -> Pcstr_tuple (List.map (sub.typ sub) l)
| Cstr_record l -> Pcstr_record (List.map (sub.label_declaration sub) l)
let constructor_declaration sub cd =
let loc = sub.location sub cd.cd_loc in
let attrs = sub.attributes sub cd.cd_attributes in
Type.constructor ~loc ~attrs
~vars:cd.cd_vars
~args:(constructor_arguments sub cd.cd_args)
?res:(Option.map (sub.typ sub) cd.cd_res)
(map_loc sub cd.cd_name)
let label_declaration sub ld =
let loc = sub.location sub ld.ld_loc in
let attrs = sub.attributes sub ld.ld_attributes in
Type.field ~loc ~attrs
~mut:ld.ld_mutable
(map_loc sub ld.ld_name)
(sub.typ sub ld.ld_type)
let type_extension sub tyext =
let attrs = sub.attributes sub tyext.tyext_attributes in
Te.mk ~attrs
~params:(List.map (type_parameter sub) tyext.tyext_params)
~priv:tyext.tyext_private
(map_loc sub tyext.tyext_txt)
(List.map (sub.extension_constructor sub) tyext.tyext_constructors)
let type_exception sub tyexn =
let attrs = sub.attributes sub tyexn.tyexn_attributes in
Te.mk_exception ~attrs
(sub.extension_constructor sub tyexn.tyexn_constructor)
let extension_constructor sub ext =
let loc = sub.location sub ext.ext_loc in
let attrs = sub.attributes sub ext.ext_attributes in
Te.constructor ~loc ~attrs
(map_loc sub ext.ext_name)
(match ext.ext_kind with
| Text_decl (vs, args, ret) ->
Pext_decl (vs, constructor_arguments sub args,
Option.map (sub.typ sub) ret)
| Text_rebind (_p, lid) -> Pext_rebind (map_loc sub lid)
)
let pattern : type k . _ -> k T.general_pattern -> _ = fun sub pat ->
let loc = sub.location sub pat.pat_loc in
(* todo: fix attributes on extras *)
let attrs = sub.attributes sub pat.pat_attributes in
let desc =
match pat with
{ pat_extra=[Tpat_unpack, loc, _attrs]; pat_desc = Tpat_any; _ } ->
Ppat_unpack { txt = None; loc }
| { pat_extra=[Tpat_unpack, _, _attrs]; pat_desc = Tpat_var (_,name); _ } ->
Ppat_unpack { name with txt = Some name.txt }
| { pat_extra=[Tpat_type (_path, lid), _, _attrs]; _ } ->
Ppat_type (map_loc sub lid)
| { pat_extra= (Tpat_constraint ct, _, _attrs) :: rem; _ } ->
Ppat_constraint (sub.pat sub { pat with pat_extra=rem },
sub.typ sub ct)
| _ ->
match pat.pat_desc with
Tpat_any -> Ppat_any
| Tpat_var (id, name) ->
begin
match (Ident.name id).[0] with
'A'..'Z' ->
Ppat_unpack { name with txt = Some name.txt}
| _ ->
Ppat_var name
end
(* We transform (_ as x) in x if _ and x have the same location.
The compiler transforms (x:t) into (_ as x : t).
This avoids transforming a warning 27 into a 26.
*)
| Tpat_alias ({pat_desc = Tpat_any; pat_loc}, _id, name)
when pat_loc = pat.pat_loc ->
Ppat_var name
| Tpat_alias (pat, _id, name) ->
Ppat_alias (sub.pat sub pat, name)
| Tpat_constant cst -> Ppat_constant (constant cst)
| Tpat_tuple list ->
Ppat_tuple (List.map (sub.pat sub) list)
| Tpat_construct (lid, _, args, vto) ->
let tyo =
match vto with
None -> None
| Some (vl, ty) ->
let vl =
List.map (fun x -> {x with txt = Ident.name x.txt}) vl
in
Some (vl, sub.typ sub ty)
in
let arg =
match args with
[] -> None
| [arg] -> Some (sub.pat sub arg)
| args -> Some (Pat.tuple ~loc (List.map (sub.pat sub) args))
in
Ppat_construct (map_loc sub lid,
match tyo, arg with
| Some (vl, ty), Some arg ->
Some (vl, Pat.mk ~loc (Ppat_constraint (arg, ty)))
| None, Some arg -> Some ([], arg)
| _, None -> None)
| Tpat_variant (label, pato, _) ->
Ppat_variant (label, Option.map (sub.pat sub) pato)
| Tpat_record (list, closed) ->
Ppat_record (List.map (fun (lid, _, pat) ->
map_loc sub lid, sub.pat sub pat) list, closed)
| Tpat_array list -> Ppat_array (List.map (sub.pat sub) list)
| Tpat_lazy p -> Ppat_lazy (sub.pat sub p)
| Tpat_exception p -> Ppat_exception (sub.pat sub p)
| Tpat_value p -> (sub.pat sub (p :> pattern)).ppat_desc
| Tpat_or (p1, p2, _) -> Ppat_or (sub.pat sub p1, sub.pat sub p2)
in
Pat.mk ~loc ~attrs desc
let exp_extra sub (extra, loc, attrs) sexp =
let loc = sub.location sub loc in
let attrs = sub.attributes sub attrs in
let desc =
match extra with
Texp_coerce (cty1, cty2) ->
Pexp_coerce (sexp,
Option.map (sub.typ sub) cty1,
sub.typ sub cty2)
| Texp_constraint cty ->
Pexp_constraint (sexp, sub.typ sub cty)
| Texp_poly cto -> Pexp_poly (sexp, Option.map (sub.typ sub) cto)
| Texp_newtype s -> Pexp_newtype (mkloc s loc, sexp)
in
Exp.mk ~loc ~attrs desc
let case : type k . mapper -> k case -> _ = fun sub {c_lhs; c_guard; c_rhs} ->
{
pc_lhs = sub.pat sub c_lhs;
pc_guard = Option.map (sub.expr sub) c_guard;
pc_rhs = sub.expr sub c_rhs;
}
let value_binding sub vb =
let loc = sub.location sub vb.vb_loc in
let attrs = sub.attributes sub vb.vb_attributes in
Vb.mk ~loc ~attrs
(sub.pat sub vb.vb_pat)
(sub.expr sub vb.vb_expr)
let expression sub exp =
let loc = sub.location sub exp.exp_loc in
let attrs = sub.attributes sub exp.exp_attributes in
let desc =
match exp.exp_desc with
Texp_ident (_path, lid, _) -> Pexp_ident (map_loc sub lid)
| Texp_constant cst -> Pexp_constant (constant cst)
| Texp_let (rec_flag, list, exp) ->
Pexp_let (rec_flag,
List.map (sub.value_binding sub) list,
sub.expr sub exp)
(* Pexp_function can't have a label, so we split in 3 cases. *)
(* One case, no guard: It's a fun. *)
| Texp_function { arg_label; cases = [{c_lhs=p; c_guard=None; c_rhs=e}];
_ } ->
Pexp_fun (arg_label, None, sub.pat sub p, sub.expr sub e)
(* No label: it's a function. *)
| Texp_function { arg_label = Nolabel; cases; _; } ->
Pexp_function (List.map (sub.case sub) cases)
(* Mix of both, we generate `fun ~label:$name$ -> match $name$ with ...` *)
| Texp_function { arg_label = Labelled s | Optional s as label; cases;
_ } ->
let name = fresh_name s exp.exp_env in
Pexp_fun (label, None, Pat.var ~loc {loc;txt = name },
Exp.match_ ~loc (Exp.ident ~loc {loc;txt= Lident name})
(List.map (sub.case sub) cases))
| Texp_apply (exp, list) ->
Pexp_apply (sub.expr sub exp,
List.fold_right (fun (label, expo) list ->
match expo with
None -> list
| Some exp -> (label, sub.expr sub exp) :: list
) list [])
| Texp_match (exp, cases, _) ->
Pexp_match (sub.expr sub exp, List.map (sub.case sub) cases)
| Texp_try (exp, cases) ->
Pexp_try (sub.expr sub exp, List.map (sub.case sub) cases)
| Texp_tuple list ->
Pexp_tuple (List.map (sub.expr sub) list)
| Texp_construct (lid, _, args) ->
Pexp_construct (map_loc sub lid,
(match args with
[] -> None
| [ arg ] -> Some (sub.expr sub arg)
| args ->
Some
(Exp.tuple ~loc (List.map (sub.expr sub) args))
))
| Texp_variant (label, expo) ->
Pexp_variant (label, Option.map (sub.expr sub) expo)
| Texp_record { fields; extended_expression; _ } ->
let list = Array.fold_left (fun l -> function
| _, Kept _ -> l
| _, Overridden (lid, exp) -> (lid, sub.expr sub exp) :: l)
[] fields
in
Pexp_record (list, Option.map (sub.expr sub) extended_expression)
| Texp_field (exp, lid, _label) ->
Pexp_field (sub.expr sub exp, map_loc sub lid)
| Texp_setfield (exp1, lid, _label, exp2) ->
Pexp_setfield (sub.expr sub exp1, map_loc sub lid,
sub.expr sub exp2)
| Texp_array list ->
Pexp_array (List.map (sub.expr sub) list)
| Texp_ifthenelse (exp1, exp2, expo) ->
Pexp_ifthenelse (sub.expr sub exp1,
sub.expr sub exp2,
Option.map (sub.expr sub) expo)
| Texp_sequence (exp1, exp2) ->
Pexp_sequence (sub.expr sub exp1, sub.expr sub exp2)
| Texp_while (exp1, exp2) ->
Pexp_while (sub.expr sub exp1, sub.expr sub exp2)
| Texp_for (_id, name, exp1, exp2, dir, exp3) ->
Pexp_for (name,
sub.expr sub exp1, sub.expr sub exp2,
dir, sub.expr sub exp3)
| Texp_send (exp, meth) ->
Pexp_send (sub.expr sub exp, match meth with
Tmeth_name name -> mkloc name loc
| Tmeth_val id -> mkloc (Ident.name id) loc
| Tmeth_ancestor(id, _) -> mkloc (Ident.name id) loc)
| Texp_new (_path, lid, _) -> Pexp_new (map_loc sub lid)
| Texp_instvar (_, path, name) ->
Pexp_ident ({loc = sub.location sub name.loc ; txt = lident_of_path path})
| Texp_setinstvar (_, _path, lid, exp) ->
Pexp_setinstvar (map_loc sub lid, sub.expr sub exp)
| Texp_override (_, list) ->
Pexp_override (List.map (fun (_path, lid, exp) ->
(map_loc sub lid, sub.expr sub exp)
) list)
| Texp_letmodule (_id, name, _pres, mexpr, exp) ->
Pexp_letmodule (name, sub.module_expr sub mexpr,
sub.expr sub exp)
| Texp_letexception (ext, exp) ->
Pexp_letexception (sub.extension_constructor sub ext,
sub.expr sub exp)
| Texp_assert exp -> Pexp_assert (sub.expr sub exp)
| Texp_lazy exp -> Pexp_lazy (sub.expr sub exp)
| Texp_object (cl, _) ->
Pexp_object (sub.class_structure sub cl)
| Texp_pack (mexpr) ->
Pexp_pack (sub.module_expr sub mexpr)
| Texp_letop {let_; ands; body; _} ->
let pat, and_pats =
extract_letop_patterns (List.length ands) body.c_lhs
in
let let_ = sub.binding_op sub let_ pat in
let ands = List.map2 (sub.binding_op sub) ands and_pats in
let body = sub.expr sub body.c_rhs in
Pexp_letop {let_; ands; body }
| Texp_unreachable ->
Pexp_unreachable
| Texp_extension_constructor (lid, _) ->
Pexp_extension ({ txt = "ocaml.extension_constructor"; loc },
PStr [ Str.eval ~loc
(Exp.construct ~loc (map_loc sub lid) None)
])
| Texp_open (od, exp) ->
Pexp_open (sub.open_declaration sub od, sub.expr sub exp)
in
List.fold_right (exp_extra sub) exp.exp_extra
(Exp.mk ~loc ~attrs desc)
let binding_op sub bop pat =
let pbop_op = bop.bop_op_name in
let pbop_pat = sub.pat sub pat in
let pbop_exp = sub.expr sub bop.bop_exp in
let pbop_loc = bop.bop_loc in
{pbop_op; pbop_pat; pbop_exp; pbop_loc}
let package_type sub pack =
(map_loc sub pack.pack_txt,
List.map (fun (s, ct) ->
(s, sub.typ sub ct)) pack.pack_fields)
let module_type_declaration sub mtd =
let loc = sub.location sub mtd.mtd_loc in
let attrs = sub.attributes sub mtd.mtd_attributes in
Mtd.mk ~loc ~attrs
?typ:(Option.map (sub.module_type sub) mtd.mtd_type)
(map_loc sub mtd.mtd_name)
let signature sub sg =
List.map (sub.signature_item sub) sg.sig_items
let signature_item sub item =
let loc = sub.location sub item.sig_loc in
let desc =
match item.sig_desc with
Tsig_value v ->
Psig_value (sub.value_description sub v)
| Tsig_type (rec_flag, list) ->
Psig_type (rec_flag, List.map (sub.type_declaration sub) list)
| Tsig_typesubst list ->
Psig_typesubst (List.map (sub.type_declaration sub) list)
| Tsig_typext tyext ->
Psig_typext (sub.type_extension sub tyext)
| Tsig_exception ext ->
Psig_exception (sub.type_exception sub ext)
| Tsig_module md ->
Psig_module (sub.module_declaration sub md)
| Tsig_modsubst ms ->
Psig_modsubst (sub.module_substitution sub ms)
| Tsig_recmodule list ->
Psig_recmodule (List.map (sub.module_declaration sub) list)
| Tsig_modtype mtd ->
Psig_modtype (sub.module_type_declaration sub mtd)
| Tsig_modtypesubst mtd ->
Psig_modtypesubst (sub.module_type_declaration sub mtd)
| Tsig_open od ->
Psig_open (sub.open_description sub od)
| Tsig_include incl ->
Psig_include (sub.include_description sub incl)
| Tsig_class list ->
Psig_class (List.map (sub.class_description sub) list)
| Tsig_class_type list ->
Psig_class_type (List.map (sub.class_type_declaration sub) list)
| Tsig_attribute x ->
Psig_attribute x
in
Sig.mk ~loc desc
let module_declaration sub md =
let loc = sub.location sub md.md_loc in
let attrs = sub.attributes sub md.md_attributes in
Md.mk ~loc ~attrs
(map_loc sub md.md_name)
(sub.module_type sub md.md_type)
let module_substitution sub ms =
let loc = sub.location sub ms.ms_loc in
let attrs = sub.attributes sub ms.ms_attributes in
Ms.mk ~loc ~attrs
(map_loc sub ms.ms_name)
(map_loc sub ms.ms_txt)
let include_infos f sub incl =
let loc = sub.location sub incl.incl_loc in
let attrs = sub.attributes sub incl.incl_attributes in
Incl.mk ~loc ~attrs
(f sub incl.incl_mod)
let include_declaration sub = include_infos sub.module_expr sub
let include_description sub = include_infos sub.module_type sub
let class_infos f sub ci =
let loc = sub.location sub ci.ci_loc in
let attrs = sub.attributes sub ci.ci_attributes in
Ci.mk ~loc ~attrs
~virt:ci.ci_virt
~params:(List.map (type_parameter sub) ci.ci_params)
(map_loc sub ci.ci_id_name)
(f sub ci.ci_expr)
let class_declaration sub = class_infos sub.class_expr sub
let class_description sub = class_infos sub.class_type sub
let class_type_declaration sub = class_infos sub.class_type sub
let functor_parameter sub : functor_parameter -> Parsetree.functor_parameter =
function
| Unit -> Unit
| Named (_, name, mtype) -> Named (name, sub.module_type sub mtype)
let module_type (sub : mapper) mty =
let loc = sub.location sub mty.mty_loc in
let attrs = sub.attributes sub mty.mty_attributes in
let desc = match mty.mty_desc with
Tmty_ident (_path, lid) -> Pmty_ident (map_loc sub lid)
| Tmty_alias (_path, lid) -> Pmty_alias (map_loc sub lid)
| Tmty_signature sg -> Pmty_signature (sub.signature sub sg)
| Tmty_functor (arg, mtype2) ->
Pmty_functor (functor_parameter sub arg, sub.module_type sub mtype2)
| Tmty_with (mtype, list) ->
Pmty_with (sub.module_type sub mtype,
List.map (sub.with_constraint sub) list)
| Tmty_typeof mexpr ->
Pmty_typeof (sub.module_expr sub mexpr)
in
Mty.mk ~loc ~attrs desc
let with_constraint sub (_path, lid, cstr) =
match cstr with
| Twith_type decl ->
Pwith_type (map_loc sub lid, sub.type_declaration sub decl)
| Twith_module (_path, lid2) ->
Pwith_module (map_loc sub lid, map_loc sub lid2)
| Twith_modtype mty ->
let mty = sub.module_type sub mty in
Pwith_modtype (map_loc sub lid,mty)
| Twith_typesubst decl ->
Pwith_typesubst (map_loc sub lid, sub.type_declaration sub decl)
| Twith_modsubst (_path, lid2) ->
Pwith_modsubst (map_loc sub lid, map_loc sub lid2)
| Twith_modtypesubst mty ->
let mty = sub.module_type sub mty in
Pwith_modtypesubst (map_loc sub lid, mty)
let module_expr (sub : mapper) mexpr =
let loc = sub.location sub mexpr.mod_loc in
let attrs = sub.attributes sub mexpr.mod_attributes in
match mexpr.mod_desc with
Tmod_constraint (m, _, Tmodtype_implicit, _ ) ->
sub.module_expr sub m
| _ ->
let desc = match mexpr.mod_desc with
Tmod_ident (_p, lid) -> Pmod_ident (map_loc sub lid)
| Tmod_structure st -> Pmod_structure (sub.structure sub st)
| Tmod_functor (arg, mexpr) ->
Pmod_functor
(functor_parameter sub arg, sub.module_expr sub mexpr)
| Tmod_apply (mexp1, mexp2, _) ->
Pmod_apply (sub.module_expr sub mexp1, sub.module_expr sub mexp2)
| Tmod_constraint (mexpr, _, Tmodtype_explicit mtype, _) ->
Pmod_constraint (sub.module_expr sub mexpr,
sub.module_type sub mtype)
| Tmod_constraint (_mexpr, _, Tmodtype_implicit, _) ->
assert false
| Tmod_unpack (exp, _pack) ->
Pmod_unpack (sub.expr sub exp)
(* TODO , sub.package_type sub pack) *)
in
Mod.mk ~loc ~attrs desc
let class_expr sub cexpr =
let loc = sub.location sub cexpr.cl_loc in
let attrs = sub.attributes sub cexpr.cl_attributes in
let desc = match cexpr.cl_desc with
| Tcl_constraint ( { cl_desc = Tcl_ident (_path, lid, tyl); _ },
None, _, _, _ ) ->
Pcl_constr (map_loc sub lid,
List.map (sub.typ sub) tyl)
| Tcl_structure clstr -> Pcl_structure (sub.class_structure sub clstr)
| Tcl_fun (label, pat, _pv, cl, _partial) ->
Pcl_fun (label, None, sub.pat sub pat, sub.class_expr sub cl)
| Tcl_apply (cl, args) ->
Pcl_apply (sub.class_expr sub cl,
List.fold_right (fun (label, expo) list ->
match expo with
None -> list
| Some exp -> (label, sub.expr sub exp) :: list
) args [])
| Tcl_let (rec_flat, bindings, _ivars, cl) ->
Pcl_let (rec_flat,
List.map (sub.value_binding sub) bindings,
sub.class_expr sub cl)
| Tcl_constraint (cl, Some clty, _vals, _meths, _concrs) ->
Pcl_constraint (sub.class_expr sub cl, sub.class_type sub clty)
| Tcl_open (od, e) ->
Pcl_open (sub.open_description sub od, sub.class_expr sub e)
| Tcl_ident _ -> assert false
| Tcl_constraint (_, None, _, _, _) -> assert false
in
Cl.mk ~loc ~attrs desc
let class_type sub ct =
let loc = sub.location sub ct.cltyp_loc in
let attrs = sub.attributes sub ct.cltyp_attributes in
let desc = match ct.cltyp_desc with
Tcty_signature csg -> Pcty_signature (sub.class_signature sub csg)
| Tcty_constr (_path, lid, list) ->
Pcty_constr (map_loc sub lid, List.map (sub.typ sub) list)
| Tcty_arrow (label, ct, cl) ->
Pcty_arrow (label, sub.typ sub ct, sub.class_type sub cl)
| Tcty_open (od, e) ->
Pcty_open (sub.open_description sub od, sub.class_type sub e)
in
Cty.mk ~loc ~attrs desc
let class_signature sub cs =
{
pcsig_self = sub.typ sub cs.csig_self;
pcsig_fields = List.map (sub.class_type_field sub) cs.csig_fields;
}
let class_type_field sub ctf =
let loc = sub.location sub ctf.ctf_loc in
let attrs = sub.attributes sub ctf.ctf_attributes in
let desc = match ctf.ctf_desc with
Tctf_inherit ct -> Pctf_inherit (sub.class_type sub ct)
| Tctf_val (s, mut, virt, ct) ->
Pctf_val (mkloc s loc, mut, virt, sub.typ sub ct)
| Tctf_method (s, priv, virt, ct) ->
Pctf_method (mkloc s loc, priv, virt, sub.typ sub ct)
| Tctf_constraint (ct1, ct2) ->
Pctf_constraint (sub.typ sub ct1, sub.typ sub ct2)
| Tctf_attribute x -> Pctf_attribute x
in
Ctf.mk ~loc ~attrs desc
let core_type sub ct =
let loc = sub.location sub ct.ctyp_loc in
let attrs = sub.attributes sub ct.ctyp_attributes in
let desc = match ct.ctyp_desc with
Ttyp_any -> Ptyp_any
| Ttyp_var s -> Ptyp_var s
| Ttyp_arrow (label, ct1, ct2) ->
Ptyp_arrow (label, sub.typ sub ct1, sub.typ sub ct2)
| Ttyp_tuple list -> Ptyp_tuple (List.map (sub.typ sub) list)
| Ttyp_constr (_path, lid, list) ->
Ptyp_constr (map_loc sub lid,
List.map (sub.typ sub) list)
| Ttyp_object (list, o) ->
Ptyp_object
(List.map (sub.object_field sub) list, o)
| Ttyp_class (_path, lid, list) ->
Ptyp_class (map_loc sub lid, List.map (sub.typ sub) list)
| Ttyp_alias (ct, s) ->
Ptyp_alias (sub.typ sub ct, s)
| Ttyp_variant (list, bool, labels) ->
Ptyp_variant (List.map (sub.row_field sub) list, bool, labels)
| Ttyp_poly (list, ct) ->
let list = List.map (fun v -> mkloc v loc) list in
Ptyp_poly (list, sub.typ sub ct)
| Ttyp_package pack -> Ptyp_package (sub.package_type sub pack)
in
Typ.mk ~loc ~attrs desc
let class_structure sub cs =
let rec remove_self = function
| { pat_desc = Tpat_alias (p, id, _s) }
when string_is_prefix "selfpat-" (Ident.name id) ->
remove_self p
| p -> p
in
{ pcstr_self = sub.pat sub (remove_self cs.cstr_self);
pcstr_fields = List.map (sub.class_field sub) cs.cstr_fields;
}
let row_field sub {rf_loc; rf_desc; rf_attributes;} =
let loc = sub.location sub rf_loc in
let attrs = sub.attributes sub rf_attributes in
let desc = match rf_desc with
| Ttag (label, bool, list) ->
Rtag (label, bool, List.map (sub.typ sub) list)
| Tinherit ct -> Rinherit (sub.typ sub ct)
in
Rf.mk ~loc ~attrs desc
let object_field sub {of_loc; of_desc; of_attributes;} =
let loc = sub.location sub of_loc in
let attrs = sub.attributes sub of_attributes in
let desc = match of_desc with
| OTtag (label, ct) ->
Otag (label, sub.typ sub ct)
| OTinherit ct -> Oinherit (sub.typ sub ct)
in
Of.mk ~loc ~attrs desc
and is_self_pat = function
| { pat_desc = Tpat_alias(_pat, id, _) } ->
string_is_prefix "self-" (Ident.name id)
| _ -> false
let class_field sub cf =
let loc = sub.location sub cf.cf_loc in
let attrs = sub.attributes sub cf.cf_attributes in
let desc = match cf.cf_desc with
Tcf_inherit (ovf, cl, super, _vals, _meths) ->
Pcf_inherit (ovf, sub.class_expr sub cl,
Option.map (fun v -> mkloc v loc) super)
| Tcf_constraint (cty, cty') ->
Pcf_constraint (sub.typ sub cty, sub.typ sub cty')
| Tcf_val (lab, mut, _, Tcfk_virtual cty, _) ->
Pcf_val (lab, mut, Cfk_virtual (sub.typ sub cty))
| Tcf_val (lab, mut, _, Tcfk_concrete (o, exp), _) ->
Pcf_val (lab, mut, Cfk_concrete (o, sub.expr sub exp))
| Tcf_method (lab, priv, Tcfk_virtual cty) ->
Pcf_method (lab, priv, Cfk_virtual (sub.typ sub cty))
| Tcf_method (lab, priv, Tcfk_concrete (o, exp)) ->
let remove_fun_self = function
| { exp_desc =
Texp_function { arg_label = Nolabel; cases = [case]; _ } }
when is_self_pat case.c_lhs && case.c_guard = None -> case.c_rhs
| e -> e
in
let exp = remove_fun_self exp in
Pcf_method (lab, priv, Cfk_concrete (o, sub.expr sub exp))
| Tcf_initializer exp ->
let remove_fun_self = function
| { exp_desc =
Texp_function { arg_label = Nolabel; cases = [case]; _ } }
when is_self_pat case.c_lhs && case.c_guard = None -> case.c_rhs
| e -> e
in
let exp = remove_fun_self exp in
Pcf_initializer (sub.expr sub exp)
| Tcf_attribute x -> Pcf_attribute x
in
Cf.mk ~loc ~attrs desc
let location _sub l = l
let default_mapper =
{
attribute = attribute;
attributes = attributes;
binding_op = binding_op;
structure = structure;
structure_item = structure_item;
module_expr = module_expr;
signature = signature;
signature_item = signature_item;
module_type = module_type;
with_constraint = with_constraint;
class_declaration = class_declaration;
class_expr = class_expr;
class_field = class_field;
class_structure = class_structure;
class_type = class_type;
class_type_field = class_type_field;
class_signature = class_signature;
class_type_declaration = class_type_declaration;
class_description = class_description;
type_declaration = type_declaration;
type_kind = type_kind;
typ = core_type;
type_extension = type_extension;
type_exception = type_exception;
extension_constructor = extension_constructor;
value_description = value_description;
pat = pattern;
expr = expression;
module_declaration = module_declaration;
module_substitution = module_substitution;
module_type_declaration = module_type_declaration;
module_binding = module_binding;
package_type = package_type ;
open_declaration = open_declaration;
open_description = open_description;
include_description = include_description;
include_declaration = include_declaration;
value_binding = value_binding;
constructor_declaration = constructor_declaration;
label_declaration = label_declaration;
case = case;
location = location;
row_field = row_field ;
object_field = object_field ;
}
let untype_structure ?(mapper : mapper = default_mapper) structure =
mapper.structure mapper structure
let untype_signature ?(mapper : mapper = default_mapper) signature =
mapper.signature mapper signature
let untype_expression ?(mapper=default_mapper) expression =
mapper.expr mapper expression
let untype_pattern ?(mapper=default_mapper) pattern =
mapper.pat mapper pattern