-
Notifications
You must be signed in to change notification settings - Fork 10
/
LinIsotropic.C
359 lines (302 loc) · 9.2 KB
/
LinIsotropic.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
// $Id$
//==============================================================================
//!
//! \file LinIsotropic.C
//!
//! \date Mar 01 2011
//!
//! \author Knut Morten Okstad / SINTEF
//!
//! \brief Isotropic linear elastic material model.
//!
//==============================================================================
#include "LinIsotropic.h"
#include "FiniteElement.h"
#include "Field.h"
#include "Functions.h"
#include "Utilities.h"
#include "Tensor.h"
#include "Vec3.h"
#include "IFEM.h"
#include "tinyxml2.h"
LinIsotropic::LinIsotropic (bool ps, bool ax) : planeStress(ps), axiSymmetry(ax)
{
Efunc = nuFunc = rhoFunc = nullptr;
Efield = nullptr;
Cpfunc = Afunc = condFunc = nullptr;
// Default material properties - typical values for steel (SI units)
Emod = 2.05e11;
nu = 0.29;
rho = 7.85e3;
alpha = 1.2e-7;
heatcapacity = conductivity = 1.0;
}
LinIsotropic::LinIsotropic (RealFunc* E, double v, double den, bool ps, bool ax)
: Efunc(E), Efield(nullptr), nu(v), rho(den), planeStress(ps), axiSymmetry(ax)
{
nuFunc = rhoFunc = nullptr;
Cpfunc = Afunc = condFunc = nullptr;
Emod = -1.0; // Should not be referenced
alpha = 1.2e-7;
heatcapacity = conductivity = 1.0;
}
LinIsotropic::LinIsotropic (Field* E, double v, double den, bool ps, bool ax)
: Efunc(nullptr), Efield(E), nu(v), rho(den), planeStress(ps), axiSymmetry(ax)
{
nuFunc = rhoFunc = nullptr;
Cpfunc = Afunc = condFunc = nullptr;
Emod = -1.0; // Should not be referenced
alpha = 1.2e-7;
heatcapacity = conductivity = 1.0;
}
LinIsotropic::~LinIsotropic ()
{
delete Efield;
delete Efunc;
delete nuFunc;
delete rhoFunc;
delete Afunc;
delete Cpfunc;
delete condFunc;
}
void LinIsotropic::parse (const tinyxml2::XMLElement* elem)
{
if (Emod >= 0.0 && utl::getAttribute(elem,"E",Emod))
IFEM::cout <<" "<< Emod;
if (utl::getAttribute(elem,"nu",nu))
IFEM::cout <<" "<< nu;
if (utl::getAttribute(elem,"rho",rho))
IFEM::cout <<" "<< rho;
if (utl::getAttribute(elem,"alpha",alpha))
IFEM::cout <<" "<< alpha;
if (utl::getAttribute(elem,"cp",heatcapacity))
IFEM::cout <<" "<< heatcapacity;
if (utl::getAttribute(elem,"kappa",conductivity))
IFEM::cout <<" "<< conductivity;
// Lambda function for parsing a spatial property function.
auto&& parseSpatialFunc = [](const tinyxml2::XMLElement* child, const char* name)
{
std::string type;
utl::getAttribute(child,"type",type,true);
IFEM::cout <<"\n\t "<< name <<" function ("<< type <<") ";
const tinyxml2::XMLNode* aval = child->FirstChild();
return aval ? utl::parseRealFunc(aval->Value(),type) : nullptr;
};
// Lambda function for parsing a scalar property function.
auto&& parseScalarFunc = [](const tinyxml2::XMLElement* child)
{
std::string type;
utl::getAttribute(child,"type",type,true);
IFEM::cout <<" ";
const tinyxml2::XMLNode* aval = child->FirstChild();
return aval ? utl::parseTimeFunc(aval->Value(),type) : nullptr;
};
const tinyxml2::XMLElement* child = elem->FirstChildElement();
for (; child; child = child->NextSiblingElement())
if (Emod >= 0.0 && !Efunc && !strcasecmp(child->Value(),"stiffness"))
Efunc = parseSpatialFunc(child,"Stiffness");
else if (!strcasecmp(child->Value(),"poisson"))
nuFunc = parseSpatialFunc(child,"Poisson's ratio");
else if (!strcasecmp(child->Value(),"density"))
rhoFunc = parseSpatialFunc(child,"Mass density");
else if (!strcasecmp(child->Value(),"thermalexpansion"))
Afunc = parseScalarFunc(child);
else if (!strcasecmp(child->Value(),"heatcapacity"))
Cpfunc = parseScalarFunc(child);
else if (!strcasecmp(child->Value(),"conductivity"))
condFunc = parseScalarFunc(child);
if (!Efunc && !nuFunc && !rhoFunc && !Afunc && !Cpfunc && !condFunc)
IFEM::cout << std::endl;
}
void LinIsotropic::printLog () const
{
IFEM::cout <<"LinIsotropic: ";
if (axiSymmetry)
IFEM::cout <<"axial-symmetric, ";
else if (planeStress)
IFEM::cout <<"plane stress, ";
IFEM::cout <<"E = "<< Emod <<", nu = "<< nu <<", rho = "<< rho
<<", alpha = "<< alpha << std::endl;
}
/*!
The consitutive matrix for Isotropic linear elastic problems
is defined as follows:
For 2D plain stress: \f[
[C] = \frac{E}{(1-\nu^2)} \left[\begin{array}{ccc}
1 & \ \ \nu & 0 \\
\nu & \ \ 1 & 0 \\
0 & \ \ 0 & \frac{1}{2}(1-\nu)
\end{array}\right] \f]
For 2D plain strain: \f[
[C] = \frac{E}{(1+\nu)(1-2\nu)} \left[\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & \frac{1}{2}-\nu
\end{array}\right] \f]
For 3D axisymmetric solids: \f[
[C] = \frac{E}{(1+\nu)(1-2\nu)} \left[\begin{array}{cccc}
1-\nu & \nu & \nu & 0 \\
\nu & 1-\nu & \nu & 0 \\
\nu & \nu & 1-\nu & 0 \\
0 & 0 & 0 & \frac{1}{2}-\nu
\end{array}\right] \f]
For 3D: \f[
[C] = \frac{E}{(1+\nu)(1-2\nu)} \left[\begin{array}{cccccc}
1-\nu & \nu & \nu & 0 & 0 & 0 \\
\nu & 1-\nu & \nu & 0 & 0 & 0 \\
\nu & \nu & 1-\nu & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2}-\nu & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2}-\nu & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2}-\nu
\end{array}\right] \f]
*/
bool LinIsotropic::evaluate (Matrix& C, SymmTensor& sigma, double& U,
const FiniteElement& fe, const Vec3& X,
const Tensor&, const SymmTensor& eps, char iop,
const TimeDomain*, const Tensor*) const
{
const size_t nsd = sigma.dim();
const size_t nst = nsd == 2 && axiSymmetry ? 4 : nsd*(nsd+1)/2;
C.resize(nst,nst,true);
// Evaluate the scalar stiffness function or field, if defined
double E = Emod;
if (Efield)
E = Efield->valueFE(fe);
else if (Efunc)
E = (*Efunc)(X);
if (nuFunc)
const_cast<LinIsotropic*>(this)->nu = (*nuFunc)(X);
if (nsd == 1)
{
// Special for 1D problems
C(1,1) = iop < 0 ? 1.0/E : E;
if (iop > 0)
{
sigma = eps; sigma *= E;
if (iop == 3)
U = 0.5*sigma(1,1)*eps(1,1);
}
return true;
}
else if (nu < 0.0 || nu >= 0.5)
{
std::cerr <<" *** LinIsotropic::evaluate: Poisson's ratio "<< nu
<<" out of range [0,0.5>."<< std::endl;
return false;
}
if (iop < 0) // The inverse C-matrix is wanted
if (nsd == 3 || (nsd == 2 && (planeStress || axiSymmetry)))
{
C(1,1) = 1.0 / E;
C(2,1) = -nu / E;
}
else // 2D plain strain
{
C(1,1) = (1.0 - nu*nu) / E;
C(2,1) = (-nu - nu*nu) / E;
}
else
if (nsd == 2 && planeStress && !axiSymmetry)
{
C(1,1) = E / (1.0 - nu*nu);
C(2,1) = C(1,1) * nu;
}
else // 2D plain strain, axisymmetric or 3D
{
double fact = E / ((1.0 + nu) * (1.0 - nu - nu));
C(1,1) = fact * (1.0 - nu);
C(2,1) = fact * nu;
}
C(1,2) = C(2,1);
C(2,2) = C(1,1);
const double G = E / (2.0 + nu + nu);
C(nsd+1,nsd+1) = iop < 0 ? 1.0 / G : G;
if (nsd == 2 && axiSymmetry)
{
C(4,4) = C(3,3);
C(3,1) = C(2,1);
C(3,2) = C(2,1);
C(1,3) = C(2,1);
C(2,3) = C(2,1);
C(3,3) = C(1,1);
}
else if (nsd > 2)
{
C(3,1) = C(2,1);
C(3,2) = C(2,1);
C(1,3) = C(2,1);
C(2,3) = C(2,1);
C(3,3) = C(1,1);
C(5,5) = C(4,4);
C(6,6) = C(4,4);
}
if (iop > 0)
{
// Calculate the stress tensor, sigma = C*eps
Vector sig; // Use a local variable to avoid redimensioning of sigma
if (eps.dim() != sigma.dim())
{
// Account for non-matching tensor dimensions
SymmTensor epsil(sigma.dim(), nsd == 2 && axiSymmetry);
if (!C.multiply(epsil=eps,sig))
return false;
}
else
if (!C.multiply(eps,sig))
return false;
sigma = sig; // Add sigma_zz in case of plane strain
if (!planeStress && ! axiSymmetry && nsd == 2 && sigma.size() == 4)
sigma(3,3) = nu * (sigma(1,1)+sigma(2,2));
}
if (iop == 3) // Calculate strain energy density, // U = 0.5*sigma:eps
U = 0.5*sigma.innerProd(eps);
return true;
}
bool LinIsotropic::evaluate (double& lambda, double& mu,
const FiniteElement& fe, const Vec3& X) const
{
if (nuFunc)
const_cast<LinIsotropic*>(this)->nu = (*nuFunc)(X);
if (nu < 0.0 || nu >= 0.5)
{
std::cerr <<" *** LinIsotropic::evaluate: Poisson's ratio "<< nu
<<" out of range [0,0.5>."<< std::endl;
return false;
}
// Evaluate the scalar stiffness function or field, if defined
double E = Emod;
if (Efield)
E = Efield->valueFE(fe);
else if (Efunc)
E = (*Efunc)(X);
// Evaluate the Lame parameters
mu = 0.5*E/(1.0+nu);
lambda = mu*nu/(0.5-nu);
return true;
}
double LinIsotropic::getStiffness (const Vec3& X) const
{
return Efunc ? (*Efunc)(X) : Emod;
}
double LinIsotropic::getPlateStiffness (const Vec3& X, double t) const
{
double E = Efunc ? (*Efunc)(X) : Emod;
double v = nuFunc ? (*nuFunc)(X) : nu;
return E*t*t*t / (12.0 - 12.0*v*v);
}
double LinIsotropic::getMassDensity (const Vec3& X) const
{
return rhoFunc ? (*rhoFunc)(X) : rho;
}
double LinIsotropic::getThermalExpansion (double T) const
{
return Afunc ? (*Afunc)(T) : alpha;
}
double LinIsotropic::getHeatCapacity (double T) const
{
return Cpfunc ? (*Cpfunc)(T) : heatcapacity;
}
double LinIsotropic::getThermalConductivity (double T) const
{
return condFunc ? (*condFunc)(T) : conductivity;
}