-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae_comb.py
59 lines (45 loc) · 1.82 KB
/
vae_comb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn as nn
import torch.nn.functional as F
class VAE(nn.Module):
def __init__(self, input_dim=784, hidden_dim=400, latent_dim=2):
super(VAE, self).__init__()
# Encoder
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc_mu = nn.Linear(hidden_dim, latent_dim)
self.fc_logvar = nn.Linear(hidden_dim, latent_dim)
# Basis and support point
self.basis = nn.Parameter(torch.empty(input_dim, latent_dim))
nn.init.xavier_uniform_(self.basis)
self.support_point = nn.Parameter(torch.zeros(input_dim))
# Decoder
self.fc2 = nn.Linear(input_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, input_dim)
def encoder(self, x):
h = self.fc1(x).relu()
mu = self.fc_mu(h)
logvar = self.fc_logvar(h)
return mu, logvar
@staticmethod
def reparameterize(mu, logvar):
# Sample epsilon from Normal(0,I)
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def linear_comb(self, coord):
return F.linear(coord, self.basis, self.support_point)
def decoder(self, coord):
z = self.linear_comb(coord)
h = self.fc2(z).relu()
return self.fc3(h).tanh() # Apply sigmoid for [0, 1] normalized data and tanh for [-1, 1]
def forward(self, x):
mu, logvar = self.encoder(x)
coord = self.reparameterize(mu, logvar)
recon_x = self.decoder(coord)
return recon_x, mu, logvar
def vae_loss(recon_x, x, mu, logvar):
# Reconstruction loss (MSE)
recon_loss = F.mse_loss(recon_x, x, reduction='sum') / x.size(0) # Averaged over batch
# KL Divergence term
kl_div = 0.5 * (mu.pow(2) + logvar.exp() - 1 - logvar).sum() / x.size(0) # Averaged over batch
return recon_loss + kl_div