-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqueries.sql
256 lines (190 loc) · 9.98 KB
/
queries.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
-- SQLite
-- Select all data stored in the database
SELECT *
FROM full_test_24_03;
---------------------------------- DATASET EXPLORATION ----------------------------------
-- Select blur types
SELECT blur_type, COUNT(DISTINCT kernel)
FROM full_test_24_03
GROUP BY blur_type;
-- Select dicretization types
SELECT discretization, COUNT(discretization)
FROM full_test_24_03
GROUP BY discretization;
-- Select images
SELECT image_dataset, COUNT(DISTINCT image)
FROM full_test_24_03
GROUP BY image_dataset;
SELECT model, COUNT(image)
FROM full_test_24_03
GROUP BY model;
---------------------------------- MODEL BENCHMARKING ----------------------------------
-- Select mean metrics for different model types
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so'); -- IMPORTANT: you should change this path to yours
SELECT discretization, noised, blur_type, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
GROUP BY discretization, noised, blur_type, model;
-- -- Select mean metrics only for Wiener filter
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so'); -- IMPORTANT: you should change this path to yours
SELECT discretization, blur_type, noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
WHERE model IN ('wiener_nonblind_noise', 'wiener_blind_noise') AND noised == True
GROUP BY discretization, blur_type, noised, model;
-- -- Select mean metrics only for Wiener filter
-- SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so'); -- IMPORTANT: you should change this path to yours
-- SELECT discretization, blur_type, noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
-- FROM full_test_tuned_wiener_21_03_5
-- WHERE model IN ('wiener_nonblind_noise', 'wiener_blind_noise') AND noised == False
-- GROUP BY discretization, blur_type, noised, model;
-- Select mean metrics only for Wiener filter
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so'); -- IMPORTANT: you should change this path to yours
SELECT discretization, blur_type, noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM Wiener_16_03
WHERE model IN ('wiener_nonblind_noise', 'wiener_blind_noise')
GROUP BY discretization, blur_type, noised, model;
-- Select mean metrics for different model types for all blur types (not quite correct, because not all models were trained on gauss_blur or eye_blur)
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so');
SELECT noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
GROUP BY noised, model;
--motion blur (type of blur which was used to training with all models)
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so');
SELECT discretization, noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
WHERE blur_type == 'motion_blur'
GROUP BY discretization, noised, model;
----------------------------- float -----------------------------
-- Select mean metrics for different model types and FLOAT dicretization
-- (not quite correct, because not all models were tested on gauss_blur or eye_blur)
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so');
SELECT noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
WHERE discretization == 'float'
GROUP BY noised, model;
-- Select mean metrics for different model types + FLOAT dicretization + MOTION_BLUR
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so');
SELECT noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
WHERE discretization == 'float' and blur_type == 'motion_blur'
GROUP BY noised, model;
----------------------------- srgb_8bit -----------------------------
-- Select mean metrics for different model types and UINT8 dicretization
-- (not quite correct, because not all models were tested on gauss_blur or eye_blur)
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so');
SELECT noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
WHERE discretization == 'srgb_8bit'
GROUP BY noised, model;
-- Select mean metrics for different model types | FLOAT dicretization | MOTION_BLUR
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so');
SELECT noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
WHERE discretization == 'srgb_8bit' and blur_type == 'motion_blur'
GROUP BY noised, model;
----------------------------- linrgb_16bit -----------------------------
-- Select mean metrics for different model types | FLOAT dicretization | MOTION_BLUR
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so');
SELECT noised, model, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
WHERE discretization == 'linrgb_16bit' and blur_type == 'motion_blur'
GROUP BY noised, model;
---------------------------------- WIENER ----------------------------------
----------------------------- worst restoration -----------------------------
-- Select the WORST restoration examples for WIENER
SELECT blur_type, noised, kernel, image, ssim, psnr
FROM full_test_24_03
WHERE discretization == 'float' and model == 'wiener_nonblind_noise' and ssim <= 0.8
ORDER BY psnr, ssim
LIMIT 20;
-- Select the WORST restoration examples for WIENER
SELECT kernel, image, ssim, psnr
FROM full_test_24_03
WHERE noised == 0 AND discretization == 'float' and model == 'wiener_nonblind_noise' and blur_type == 'motion_blur'
ORDER BY psnr, ssim
LIMIT 20;
SELECT kernel, image, ssim, psnr
FROM full_test_24_03
WHERE noised == 1 AND discretization == 'float' and model == 'wiener_nonblind_noise' and blur_type == 'motion_blur'
ORDER BY psnr, ssim
LIMIT 20;
-- Select the WORST restoration examples for KERUNC
SELECT kernel, image, ssim, psnr
FROM full_test_24_03
WHERE noised == 1 AND discretization == 'float' and model == 'kerunc' and blur_type == 'motion_blur'
ORDER BY psnr, ssim
LIMIT 20;
----------------------------- best restoration -----------------------------
-- float
SELECT blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 0 AND discretization == 'float' and model == 'wiener_nonblind_noise'
ORDER BY psnr DESC, ssim DESC
LIMIT 20;
-- srgb_8bit
SELECT blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 0 AND discretization == 'srgb_8bit' and model == 'wiener_nonblind_noise'
ORDER BY psnr DESC, ssim DESC
LIMIT 20;
-- linrgb_16bit
SELECT blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 0 AND discretization == 'linrgb_16bit' and model == 'wiener_nonblind_noise'
ORDER BY psnr DESC, ssim DESC
LIMIT 20;
-- Select the BEST restoration examples for WIENER with GAUSS BLUR
SELECT blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 0 AND discretization == 'float' and model == 'wiener_nonblind_noise' and blur_type == 'gauss_blur'
ORDER BY psnr DESC, ssim DESC
LIMIT 20;
-- Select the BEST restoration examples for WIENER with MOTION BLUR
SELECT blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 0 AND discretization == 'float' and model == 'wiener_nonblind_noise' and blur_type == 'motion_blur'
ORDER BY psnr DESC, ssim DESC
LIMIT 20;
-- Select the BEST restoration examples for WIENER with MOTION BLUR
SELECT blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 1 AND discretization == 'float' and model == 'wiener_nonblind_noise' and blur_type == 'motion_blur'
ORDER BY psnr DESC, ssim DESC
LIMIT 20;
-- Select the BEST restoration examples for DWDN with MOTION BLUR
SELECT blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 1 AND discretization == 'float' and model == 'dwdn' and blur_type == 'motion_blur'
ORDER BY psnr DESC, ssim DESC
LIMIT 20;
-- DWDN & KerUnc
-- Select the BEST restoration examples for DWDN & KERUNC with GAUSS BLUR
SELECT model blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 0 AND discretization == 'float' and model in ('kerunc', 'dwdn') and blur_type == 'gauss_blur'
ORDER BY psnr DESC, ssim DESC
LIMIT 10;
-- Select the WORST restoration examples for DWDN & KERUNC with GAUSS BLUR
SELECT model blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 0 AND discretization == 'float' and model in ('kerunc', 'dwdn') and blur_type == 'gauss_blur'
ORDER BY psnr, ssim
LIMIT 10;
-- Select the BEST restoration examples for DWDN & KERUNC with GAUSS BLUR
SELECT model blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 1 AND discretization == 'float' and model in ('kerunc', 'dwdn') and blur_type == 'gauss_blur'
ORDER BY psnr DESC, ssim DESC
LIMIT 10;
-- Select the WORST restoration examples for DWDN & KERUNC with GAUSS BLUR
SELECT model blur_type, kernel, image, psnr, ssim
FROM full_test_24_03
WHERE noised == 1 AND discretization == 'float' and model in ('kerunc', 'dwdn') and blur_type == 'gauss_blur'
ORDER BY psnr, ssim
LIMIT 10;
-- USRNET --
-- Select mean metrics for different model types
SELECT load_extension('edu/non-blind-deconvolution-benchmark/sqlean/stats.so'); -- IMPORTANT: you should change this path to yours
SELECT noised, blur_type, MEDIAN(psnr), AVG(psnr), STDDEV(psnr) as 'STD(psnr)', MEDIAN(ssim), AVG(ssim), STDDEV(ssim) as 'STD(ssim)'
FROM full_test_24_03
WHERE model == 'usrnet'
GROUP BY noised, blur_type;