From fd01648929cfec91d149f7ad4fc53d10d6c82a21 Mon Sep 17 00:00:00 2001 From: nlqq Date: Tue, 11 Aug 2020 19:33:39 +0800 Subject: [PATCH 01/20] restructuring --- ComputerVision/cnns/README.md | 656 + ComputerVision/cnns/alexnet_model.py | 136 + ComputerVision/cnns/config.py | 124 + .../cnns/data/ILSVRC2012_val_00020287.JPEG | Bin 0 -> 120706 bytes ComputerVision/cnns/data/fish.jpg | Bin 0 -> 81087 bytes ComputerVision/cnns/data/tiger.jpg | Bin 0 -> 14622 bytes .../cnns/docs/resnet50_lr_schedule.png | Bin 0 -> 22779 bytes .../cnns/docs/resnet50_validation_acuracy.png | Bin 0 -> 97580 bytes ComputerVision/cnns/evaluate.sh | 19 + .../cnns/imagenet1000_clsidx_to_labels.py | 1002 + ComputerVision/cnns/inception_model.py | 549 + ComputerVision/cnns/inference.sh | 9 + ComputerVision/cnns/job_function_util.py | 30 + ComputerVision/cnns/mobilenet_v2_model.py | 231 + ComputerVision/cnns/of_cnn_evaluate.py | 76 + ComputerVision/cnns/of_cnn_inference.py | 66 + ComputerVision/cnns/of_cnn_train_val.py | 119 + ComputerVision/cnns/ofrecord_util.py | 145 + ComputerVision/cnns/optimizer_util.py | 104 + ComputerVision/cnns/resnet_model.py | 161 + ComputerVision/cnns/resnet_to_onnx.py | 100 + ComputerVision/cnns/resnext_model.py | 248 + ComputerVision/cnns/tools/README.md | 207 + ComputerVision/cnns/tools/extract_trainval.sh | 37 + ...imagenet_2012_validation_synset_labels.txt | 50000 ++++++++++++++++ .../tools/imagenet_lsvrc_2015_synsets.txt | 1000 + .../cnns/tools/imagenet_metadata.txt | 21842 +++++++ .../cnns/tools/imagenet_ofrecord.py | 687 + .../preprocess_imagenet_validation_data.py | 86 + .../cnns/tools/process_bounding_boxes.py | 235 + ComputerVision/cnns/train.sh | 16 + ComputerVision/cnns/util.py | 169 + ComputerVision/cnns/vgg_model.py | 157 + NaturalLanguageProcessing/BERT/README.md | 275 + NaturalLanguageProcessing/BERT/bert.py | 324 + NaturalLanguageProcessing/BERT/classifier.py | 101 + NaturalLanguageProcessing/BERT/config.py | 90 + .../BERT/convert_tf_ckpt_to_of.py | 78 + NaturalLanguageProcessing/BERT/pretrain.py | 174 + .../BERT/run_classifier.py | 195 + .../BERT/run_pretraining.py | 103 + NaturalLanguageProcessing/BERT/run_squad.py | 205 + NaturalLanguageProcessing/BERT/squad.py | 56 + NaturalLanguageProcessing/BERT/squad_util.py | 789 + .../BERT/tokenization.py | 400 + NaturalLanguageProcessing/BERT/util.py | 159 + README.md | 176 +- 47 files changed, 81321 insertions(+), 15 deletions(-) create mode 100644 ComputerVision/cnns/README.md create mode 100644 ComputerVision/cnns/alexnet_model.py create mode 100755 ComputerVision/cnns/config.py create mode 100644 ComputerVision/cnns/data/ILSVRC2012_val_00020287.JPEG create mode 100644 ComputerVision/cnns/data/fish.jpg create mode 100755 ComputerVision/cnns/data/tiger.jpg create mode 100644 ComputerVision/cnns/docs/resnet50_lr_schedule.png create mode 100644 ComputerVision/cnns/docs/resnet50_validation_acuracy.png create mode 100644 ComputerVision/cnns/evaluate.sh create mode 100755 ComputerVision/cnns/imagenet1000_clsidx_to_labels.py create mode 100644 ComputerVision/cnns/inception_model.py create mode 100755 ComputerVision/cnns/inference.sh create mode 100755 ComputerVision/cnns/job_function_util.py create mode 100644 ComputerVision/cnns/mobilenet_v2_model.py create mode 100644 ComputerVision/cnns/of_cnn_evaluate.py create mode 100755 ComputerVision/cnns/of_cnn_inference.py create mode 100755 ComputerVision/cnns/of_cnn_train_val.py create mode 100755 ComputerVision/cnns/ofrecord_util.py create mode 100755 ComputerVision/cnns/optimizer_util.py create mode 100755 ComputerVision/cnns/resnet_model.py create mode 100644 ComputerVision/cnns/resnet_to_onnx.py create mode 100755 ComputerVision/cnns/resnext_model.py create mode 100644 ComputerVision/cnns/tools/README.md create mode 100755 ComputerVision/cnns/tools/extract_trainval.sh create mode 100755 ComputerVision/cnns/tools/imagenet_2012_validation_synset_labels.txt create mode 100644 ComputerVision/cnns/tools/imagenet_lsvrc_2015_synsets.txt create mode 100755 ComputerVision/cnns/tools/imagenet_metadata.txt create mode 100644 ComputerVision/cnns/tools/imagenet_ofrecord.py create mode 100755 ComputerVision/cnns/tools/preprocess_imagenet_validation_data.py create mode 100755 ComputerVision/cnns/tools/process_bounding_boxes.py create mode 100755 ComputerVision/cnns/train.sh create mode 100755 ComputerVision/cnns/util.py create mode 100644 ComputerVision/cnns/vgg_model.py create mode 100644 NaturalLanguageProcessing/BERT/README.md create mode 100755 NaturalLanguageProcessing/BERT/bert.py create mode 100644 NaturalLanguageProcessing/BERT/classifier.py create mode 100644 NaturalLanguageProcessing/BERT/config.py create mode 100644 NaturalLanguageProcessing/BERT/convert_tf_ckpt_to_of.py create mode 100755 NaturalLanguageProcessing/BERT/pretrain.py create mode 100644 NaturalLanguageProcessing/BERT/run_classifier.py create mode 100755 NaturalLanguageProcessing/BERT/run_pretraining.py create mode 100755 NaturalLanguageProcessing/BERT/run_squad.py create mode 100755 NaturalLanguageProcessing/BERT/squad.py create mode 100644 NaturalLanguageProcessing/BERT/squad_util.py create mode 100644 NaturalLanguageProcessing/BERT/tokenization.py create mode 100755 NaturalLanguageProcessing/BERT/util.py mode change 100755 => 100644 README.md diff --git a/ComputerVision/cnns/README.md b/ComputerVision/cnns/README.md new file mode 100644 index 0000000..3a5f7aa --- /dev/null +++ b/ComputerVision/cnns/README.md @@ -0,0 +1,656 @@ +## 简介 Introduction + +## 图像分类与CNN + +**图像分类** 是指将图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法,是计算机视觉中其他任务,比如目标检测、语义分割、人脸识别等高层视觉任务的基础。 + +ImageNet大规模视觉识别挑战赛(ILSVRC),常称为ImageNet竞赛,包括图像分类、物体定位,以及物体检测等任务,是推动计算机视觉领域发展最重要的比赛之一。 + +在2012年的ImageNet竞赛中,深度卷积网络AlexNet横空出世。以超出第二名10%以上的top-5准确率,勇夺ImageNet2012比赛的冠军。从此,以 CNN(卷积神经网络) 为代表的深度学习方法开始在计算机视觉领域的应用开始大放异彩,更多的更深的CNN网络被提出,比如ImageNet2014比赛的冠军VGGNet, ImageNet2015比赛的冠军ResNet。 + +OneFlow-Benchmark下的cnn仓库目前已支持 **Alexnet** 、 **VGG16** 、 **Resnet50** **InceptionV3** **MobileNetV2**等经典的cnn模型,未来会陆续添加新的cnn模型。这些cnn模型共享一套训练、验证和推理代码,您只需要指定模型,即可使用一套代码完成这些cnn网络模型的训练、测试和验证。 + + + +## 快速开始 Quick Start + +### 准备工作 Requirements + +别担心,使用OneFlow非常容易,只要准备好下面三步,即可开始OneFlow的图像识别之旅。 + +- 安装OneFlow。 + + - 直接通过pip安装:`pip install oneflow` + - 安装轻量版:`pip install --find-links https://oneflow-inc.github.io/nightly oneflow` + - 源码编译等其他安装方式:参考[OneFlow项目主页](https://github.com/Oneflow-Inc/oneflow) + +- 克隆/下载[OneFlow-Benchmark](https://github.com/Oneflow-Inc/OneFlow-Benchmark)仓库。 + + `git clone git@github.com:Oneflow-Inc/OneFlow-Benchmark.git` + +- 准备数据集(可选) + + - 直接使用synthetic虚拟合成数据集 + - 下载我们制作的Imagenet(2012)[迷你数据集](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/mini-imagenet.zip) 解压放入data目录 + - 或者:制作完整OFRecord格式的ImageNet数据集(见下文进阶部分) + + +我们提供了通用脚本:train.sh和inference.sh,它们适用于此仓库下所有cnn网络模型的训练、验证、推理。您可以通过设置参数使用不同的模型、数据集来训练/推理。 + + **关于模型的说明:** + +> 默认情况下,我们使用resnet50,您也可以通过改动脚本中的--model参数指定其他模型,如:--model="resnet50",--model="vgg"等。 + +**关于数据集的说明:** + + +> 1)为了使读者快速上手,我们提供了synthetic虚拟合成数据,“合成数据”是指不通过磁盘加载数据,而是直接在内存中生成一些随机数据,作为神经网络的数据输入源。 +> +> 2)同时,我们提供了一个小的迷你示例数据集。直接下载解压至cnn项目的root目录,即可快速开始训练。读者可以在熟悉了流程后,参考数据集制作部分,制作完整的Imagenet2012数据集。 +> +> 3)使用OFRcord格式的数据集可以提高数据加载效率(但这非必须,参考[数据输入](https://github.com/Oneflow-Inc/oneflow-documentation/docs/basics_topics/data_input.md),oneflow支持直接加载numpy数据)。 + + + +### 预训练模型 + +#### Resnet50 + +[resnet50_v1.5_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_v15_of_best_model_val_top1_77318.tgz ) (validation accuracy: 77.318% top1,93.622% top5 ) + +#### VGG16 + +[vgg16_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/vgg16_of_best_model_val_top1_721.zip) (validation accuracy: 72.1% top1,92.7% top5 ) + +#### Alexnet + +[alexnet_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/alexnet_of_best_model_val_top1_54762.zip) (validation accuracy: 54.762% top1,78.1914% top5 ) + + + +### 预测/推理 + +下载预训练模型:[resnet50_v1.5_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_v15_of_best_model_val_top1_77318.tgz ) ,解压后放入当前目录,然后执行: + +```shell +sh inference.sh +``` + +脚本执行后,将对下面的图片进行分类: + + +
+ +
+ **输出:** + +```shell +data/fish.jpg +0.87059885 goldfish, Carassius auratus +``` + +可见,模型判断这张图片有87.05%的概率是金鱼goldfish + + + +### 训练&验证 + +训练同样很简单,只需执行: + +```shell +sh train.sh +``` + +即可开始模型的训练,您将看到如下输出: + +```shell +Loading synthetic data. +Loading synthetic data. +Saving model to ./output/snapshots/model_save-20200723124215/snapshot_initial_model. +Init model on demand. +train: epoch 0, iter 10, loss: 7.197278, top_1: 0.000000, top_k: 0.000000, samples/s: 61.569 +train: epoch 0, iter 20, loss: 6.177684, top_1: 0.000000, top_k: 0.000000, samples/s: 122.555 +Saving model to ./output/snapshots/model_save-20200723124215/snapshot_epoch_0. +train: epoch 0, iter 30, loss: 3.988656, top_1: 0.525000, top_k: 0.812500, samples/s: 120.337 +train: epoch 1, iter 10, loss: 1.185733, top_1: 1.000000, top_k: 1.000000, samples/s: 80.705 +train: epoch 1, iter 20, loss: 1.042017, top_1: 1.000000, top_k: 1.000000, samples/s: 118.478 +Saving model to ./output/snapshots/model_save-20200723124215/snapshot_epoch_1. +... +``` + +> 为了方便运行演示,我们默认使用synthetic虚拟合成数据集,使您可以快速看到模型运行的效果 + +同样,你也可以使用[迷你示例数据集](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/mini-imagenet.zip),下载解压后放入cnn项目的root目录即可,然后修改训练脚本如下: + +```shell +rm -rf core.* +rm -rf ./output/snapshots/* + +DATA_ROOT=data/mini-imagenet/ofrecord + +python3 of_cnn_train_val.py \ + --train_data_dir=$DATA_ROOT/train \ + --num_examples=50 \ + --train_data_part_num=1 \ + --val_data_dir=$DATA_ROOT/validation \ + --num_val_examples=50 \ + --val_data_part_num=1 \ + --num_nodes=1 \ + --gpu_num_per_node=1 \ + --model_update="momentum" \ + --learning_rate=0.001 \ + --loss_print_every_n_iter=1 \ + --batch_size_per_device=16 \ + --val_batch_size_per_device=10 \ + --num_epoch=10 \ + --model="resnet50" +``` + +运行此脚本,将在仅有50张金鱼图片的迷你imagenet数据集上,训练出一个分类模型,利用它,你可以对金鱼图片进行分类。 + +不要着急,如果您需要在完整的ImageNet2012数据集上进行训练,请看下文【ResNet】部分的介绍。其中,我们将重点介绍其中的经典网络:Resnet50,以及如何利用OneFlow在完整的Imagenet2012数据集上训练Resnet50,并提供 **对标Nvidia的Mxnet版** 实现。 + + + +## ResNet + +[ResNet](https://arxiv.org/abs/1512.03385) 是2015年ImageNet竞赛的冠军。目前,ResNet相对对于传统的机器学习分类算法而言,效果已经相当的出色,之后大量的检测,分割,识别等任务也都在ResNet基础上完成。 + +[OneFlow-Benchmark](https://github.com/Oneflow-Inc/OneFlow-Benchmark)仓库中,我们提供了ResNet50 v1.5的OneFlow实现。该实现对标了[英伟达的Mxnet版实现](https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5)。我们在ImageNet-2012数据集上训练90轮后,验证集上的准确率能够达到:77.318%(top1),93.622%(top5) 更详细的网络参数对齐工作,见下面【进阶 Advanced】部分。 + + +![resnet50_validation_acuracy](docs/resnet50_validation_acuracy.png) + + +**关于ResNet50 v1.5的说明:** + +> ResNet50 v1.5是原始[ResNet50 v1](https://arxiv.org/abs/1512.03385)的一个改进版本,相对于原始的模型,精度稍有提升 (~0.5% top1),详细说明参见[这里](https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5) 。 + + + +准备好亲自动手,复现上面的结果了吗?那么接下来,立马开始OneFlow的图像识别之旅吧! + +下面,本文就以上面的ResNet50 为例,一步步展现如何使用OneFlow进行网络的训练和预测。 + +### 训练和验证(Train & Validation) + +训练开始前,需要提前准备好数据集,具体见上面的【准备工作 Requirements】部分,准备好之后就可以进行下面的步骤了。 + +先切换到代码目录: + +```shell +cd OneFlow-Benchmark/Classification/cnns +``` + +在train.sh脚本设置训练参数(以下为示例,具体参数可自行设置): + +```shell +rm -rf core.* +rm -rf ./output/snapshots/* + +DATA_ROOT=/dataset/ImageNet/ofrecord + +python3 of_cnn_train_val.py \ + --train_data_dir=$DATA_ROOT/train \ + --train_data_part_num=256 \ + --val_data_dir=$DATA_ROOT/validation \ + --val_data_part_num=256 \ + --num_nodes=1 \ + --gpu_num_per_node=4 \ + --model_update="momentum" \ + --learning_rate=0.256 \ + --loss_print_every_n_iter=10 \ + --batch_size_per_device=64 \ + --val_batch_size_per_device=50 \ + --num_epoch=90 \ + --model="resnet50" +``` + +**参数说明**(部分) + +- --train_data_dir Imagenet2012训练集文件夹路径(ofrecord格式) + +- --train_data_part_num 训练所用的ofrecord分片数量 + +- --val_data_dir Imagenet2012验证集文件夹路径(ofrecord格式) + +- --val_data_part_num 验证所用的ofrecord分片数量 + +- --num_nodes=1 训练使用的机器节点数 + +- --gpu_num_per_node 每个机器节点使用的gpu数量 + +- --model_update="momentum" 学习率更新方式 + +- --learning_rate=0.256 初始学习率 + +- --loss_print_every_n_iter 打印loss间隔 + +- --batch_size_per_device 训练时每个gpu的batch大小 + +- --val_batch_size_per_device 验证时每个gpu的batch大小 + +- --num_epoch 迭代总轮数 + +- --model 使用的模型,可选:resnet50、vgg、alexnet、inceptionv3 + +然后在命令行执行: + +```shell +sh train.sh +``` + +若在屏幕上不断打印出类似下面的信息,则表明训练过程正常运行: + +``` +train: epoch 0, iter 200, loss: 7.024337, top_1: 0.000957, top_k: 0.005313, samples/s: 964.656 +train: epoch 0, iter 400, loss: 6.849526, top_1: 0.003594, top_k: 0.012969, samples/s: 991.474 +... +train: epoch 0, iter 5000, loss: 5.557458, top_1: 0.064590, top_k: 0.174648, samples/s: 935.390 +Saving model to ./output/snapshots/model_save-20200629223546/snapshot_epoch_0. +validation: epoch 0, iter 100, top_1: 0.074620, top_k: 0.194120, samples/s: 2014.683 +``` + +可以看到: + +- 随着训练的进行,loss不断下降,而训练的top_1/top_k准确率不断提高(其中top_k默认为top_5准确率,可自定义)。 +- 每个epoch结束时,会做另外两个工作:1)执行一次验证,并打印出验证集上的top_1/top_k准确率;2)保存模型。 +- samples/s 用来指示训练/验证的执行速度,即每秒钟能处理的图片数量。 + +**复现实验的说明:** + +> Q1. 多久能够完成训练? +> +> 在GPU环境下,使用单机8卡(NVIDIA TITAN V),完成90个epoch的完整训练过程,大概需要15小时。 +> +> Q2. 在ImageNet-2012数据集上训练90个epoch后,准确率能达到多少? +> +> 训练集:80.57%(top1) +> +> 验证集:77.318%(top1),93.622%(top5) + + + +### 预测(Inference) + +恭喜,到这里,您已经知道如何用OneFlow训练模型,接下来,试试用训练好的模型对新图片进行分类预测吧! + +在预测之前, **关于模型,您可以选择:** + +- 自己训练的模型(如:./output/snapshots/model_save-20200723124724/snapshot_epoch_89) + +- 下载我们训练好的模型:[resnet_v1.5_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_v15_of_best_model_val_top1_77318.tgz ) (validation accuracy: 77.318% top1,93.622% top5 ) + + + +准备好模型后,将模型目录填入`inference.sh` 脚本的`MODEL_LOAD_DIR`变量中,然后执行inference.sh脚本,开始对图片`data/tiger.jpg`的类别的进行预测: + +```shell +sh inference.sh +``` + +若输出下面的内容,则表示预测成功: + +```shell +data/tiger.jpg +0.81120294 tiger, Panthera tigris +``` + +**参数说明**(部分) + +- --model 指定要加载的模型 +- --image_path 待检测图片路径 +- --model_load_dir 模型文件路径 + +### 评估(Evaluate) + +在测试了单张图片之后,想试试模型精度有没有达到 **SOTA** (State Of The Art)? 只需运行: +```shell +sh evaluate.sh +``` +即可获得训练好的模型在50000张验证集上的准确率: +```shell +Time stamp: 2020-07-27-09:28:28 +Restoring model from resnet_v15_of_best_model_val_top1_77318. +I0727 09:28:28.773988162 8411 ev_epoll_linux.c:82] Use of signals is disabled. Epoll engine will not be used +Loading data from /dataset/ImageNet/ofrecord/validation +validation: epoch 0, iter 195, top_1: 0.773277, top_k: 0.936058, samples/s: 1578.325 +validation: epoch 0, iter 195, top_1: 0.773237, top_k: 0.936078, samples/s: 1692.303 +validation: epoch 0, iter 195, top_1: 0.773297, top_k: 0.936018, samples/s: 1686.896 +``` + +从3轮的评估结果来看,我们的模型在Imagenet(2012)上已经达到了77.32+%的top_1精度。 + + + +最后,恭喜你!完成了Resnet模型在ImageNet上完整的训练/验证、推理和评估,为自己鼓个掌吧! + + + +## 更详细的说明 Details + +### 分布式训练 +**简单而易用的分布式,是OneFlow的主打特色之一。** + +OneFlow框架从底层设计上,就原生支持高效的分布式训练。尤其对于分布式的数据并行,用户完全不用操心算法从单机单卡扩展到多机多卡时,数据如何划分以及同步的问题。也就是说,使用OneFlow,用户以单机单卡的视角写好算法,**自动具备多机多卡分布式数据并行的能力。** + + +#### 如何配置并运行分布式训练? +还是以上面"快速开始"部分演示的代码为例,在`train.sh`中,只要用`--num_nodes` 指定节点(机器)个数,同时用`--node_ips`指定节点的ip地址,然后用`--gpu_num_per_node`指定每个节点上使用的卡数,就轻松地完成了分布式的配置。 + +例如,想要在2机8卡上进行分布式训练,像下面这样配置: + +```shell +# train.sh +python3 of_cnn_train_val.py \ + --num_nodes=2 \ + --node_ips="192.168.1.1, 192.168.1.2" + --gpu_num_per_node=4 \ + ... + --model="resnet50" +``` + +然后分别在两台机器上,同时执行: +```shell +./train.sh +``` + +程序启动后,通过`watch -n 0.1 nvidia-smi`命令可以看到,两台机器的GPU都开始了工作。一段时间后,会在`--node_ips`设置中的第一台机器的屏幕上,打印输出。 + + +### 混合精度训练与预测 + +目前,OneFlow已经原生支持半精度/全精度的混合精度训练。训练时,模型参数(权重)使用float16进行训练,同时保留float32用作梯度更新和计算过程。由于参数的存储减半,会带来训练速度的提升。 + +在OneFlow中开启半精度/全精度的混合精度训练模式,ResNet50的训练速度理论上能达到`1.7`倍的加速。 + + +#### 如何开启半精度/全精度混合精度训练? + +只需要在`train.sh`脚本中添加参数`--use_fp16=True`即可。 + +#### 混合精度模型 + +我们为您提供了一个在Imagenet2012完整训练了90个epoch的混合精度模型,top_1:77.33% + +您可以直接下载使用:[resnet50_v15_fp16](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_fp16_of_best_model_val_top1_77330.zip) + + + +### 训练过程可视化 + +Oneflow支持将训练生成的中间结果以日志文件的形式保存到本地,可视化后端通过实时读取日志文件,将训练过程产生的数据实时展示到可视化前端。 + +目前,Oneflow支持的可视化类型分为以下几种: + +| 可视化类型 | 描述 | +| ---------- | ------------------------ | +| 模型结构 | 结构图、计算图(后续支持) | +| 标量数据 | 标量数据 | +| 媒体数据 | 文本、图像 | +| 统计分析 | 数据直方图、数据分布图 | +| 降维分析 | 数据降维 | +| 超参分析 | 超参数 | +| 异常检测 | 异常数据检测 | + +具体使用方式可参考test_summary.py 文件 + +具体可视化效果参考之江天枢人工智能开源平台http://tianshu.org.cn/?/course 用户手册可视化部分 + + + +## 进阶 Advanced + +### 参数对齐 + +Oneflow的ResNet50实现,为了保证和[英伟达的Mxnet版实现](https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5)对齐,我们从learning rate学习率,优化器Optimizer的选择,数据增强的图像参数设定,到更细的每一层网络的形态,bias,weight初始化等都做了细致且几乎完全一致的对齐工作。 + +#### Data Augmentation + +**训练** + +1. 随机采样图像并将其解码为[0; 255]。 +2. 随机裁剪一个矩形区域,该矩形区域的长宽比以[3/4; 4/3]和以[8%;100%],然后将裁剪的区域调整为224 x 224平方的图像。 +3. 以0.5的概率水平翻转。 +4. 色彩增强,比例色相,饱和度和亮度,其系数从[0.6; 1.4]。 +5. 将PCA噪声与从正态分布N(0,0.1)采样的系数相加。 +6. 通过分别减去123.68、116.779、103.939并除以58.393、57.12、57.375来标准化RGB通道。 +7. 调整图像的大小,使其较短的一面在[256,480]中随机采样以进行缩放。随机抽取224×224区域。 + +| item | oneflow | nvidia | +| ------------------------ | ------- | ------ | +| 1 random sample | Yes | Yes | +| 2 random crop resize | Yes | Yes | +| 7 short side resize crop | No | No | +| 3 Flip horizontally | Yes | Yes | +| 4 Color augmentation | No | No | +| 5 PCA Noise | No | No | +| 6.1 Normalize mean | Yes | Yes | +| 6.2 Normalize std | Yes | Yes | + +**验证** + +- 将每个图像的短边调整为256像素,同时保持其宽高比。 +- 裁剪中心的224×224区域 +- 标准化RGB通道,类似于训练。 + +#### Learning Rate Schedule + +Oneflow保持了和Mxnet一致的初始学习率以及衰减方式。具体来说,我们采用了5个epoch的warmup,初始学习率lr = 0.256,lr衰减方式采用cosine decay(初始lr可根据batch_size和gpu数量可线性缩放) + +- warmup + cosine decay +- warmup + step decay + +
+ +
+ + +| item | oneflow | nvidia | +| ----------- | ------- | ------ | +| start lr | 0.256 | 0.256 | +| lr schedule | cosine | cosine | + +#### Optimizer + +| oneflow | nvidia | +| -------- | -------- | +| momentum | momentum | + +#### Weight Initializer + +OneFlow和英伟达保持了相同的初始化方式,只是在两个框架中部分api的名称不同。 + +| variable | oneflow | nvidia | +| ----------- | ------------- | ---------------------------- | +| conv weight | random_normal | Xavier( 'gaussian', 'in', 2) | +| conv bias | NA | NA | +| fc weight | random_normal | Xavier( 'gaussian', 'in', 2) | +| fc bias | 0 | 0 | +| bn gamma | 1 | 1 | +| bn beta | 0 | 0 | + +#### Weight Decay + +| item | oneflow | nvidia | +| ------------ | --------- | --------- | +| weight_decay | 1.0/32768 | 1.0/32768 | +| conv weight | Yes | Yes | +| conv bias | NA | NA | +| fc weight | Yes | Yes | +| fc bias | Yes | NA | +| bn gamma | No | No | +| bn beta | No | No | + +#### Batch Norm + +| param | oneflow | nvidia | +| -------- | ------- | ------ | +| momentum | 0.9 | 0.9 | +| epsilon | 1e-5 | 1e-5 | + +#### Label Smoothing + +| item | oneflow | nvidia | +| --------------- | ------- | ------ | +| label smoothing | 0.1 | 0.1 | + +### 数据集制作 + +#### 用于图像分类数据集简介 + +用于图像分类的公开数据集有CIFAR,ImageNet等等,这些数据集中,是以jpeg的格式提供原始的图片。 + +- [CIFAR](http://www.cs.toronto.edu/~kriz/cifar.html) + 是由Hinton 的学生Alex Krizhevsky 和Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。包括CIFAR-10和CIFAR-100。 + +- [ImageNet](http://image-net.org/index) + ImageNet数据集,一般是指2010-2017年间大规模视觉识别竞赛(ILSVRC)的所使用的数据集的统称。ImageNet数据从2010年来稍有变化,常用ImageNet-2012数据集包含1000个类别,其中训练集包含1,281,167张图片,每个类别数据732至1300张不等,验证集包含50,000张图片,平均每个类别50张图片。 + +完整的ImageNet(2012)制作过程,请参考tools目录下的[README说明](https://github.com/Oneflow-Inc/OneFlow-Benchmark/Classification/cnns/tools/README.md) + + + +### OneFlow 模型转 ONNX 模型 + +#### 简介 + + **ONNX (Open Neural Network Exchange)** 是一种较为广泛使用的神经网络中间格式,通过 ONNX 格式,OneFlow 模型可以被许多部署框架(如 OpenVINO、ONNX Runtime 和移动端的 ncnn、tnn、TEngine 等)所使用。这一节介绍如何将训练好的 resnet50 v1.5 模型转换为 ONNX 模型并验证正确性。 + +#### 快速上手 + +我们提供了完整代码:[resnet\_to\_onnx.py](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/resnet_to_onnx.py) 帮你轻松完成模型的转换和测试的工作 + + **步骤一:** 下载预训练模型:[resnet50_v1.5_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_v15_of_best_model_val_top1_77318.tgz ) ,解压后放入当前目录 + + **步骤二:** 执行:`python3 resnet_to_onnx.py ` + +此代码将完成OneFlow模型->ONNX模型的转化,然后使用ONNX Runtime加载转换后的模型对单张图片进行测试。测试图片如下: + +
+ +
+ +输出: + +```python +Convert to onnx success! >> onnx/model/resnet_v15_of_best_model_val_top1_77318.onnx +data/tiger.jpg +Are the results equal? Yes +Class: tiger, Panthera tigris; score: 0.8112028241157532 +``` + + + +#### 如何生成 ONNX 模型 + +**步骤一:指定模型路径 ** + +首先指定待转换的OneFlow模型路径,然后指定转换后的ONNX模型存放路径,例如示例中: + +```python +# set up your model path +flow_weights_path = 'resnet_v15_of_best_model_val_top1_77318' +onnx_model_dir = 'onnx/model' +``` + +**步骤二:新建一个用于推理的 job function** + +然后新建一个用于推理的 job function,它只包含网络结构本身,不包含读取 OFRecord 的算子,并且直接接受 numpy 数组形式的输入。可参考 resnet\_to\_onnx.py 中的 `InferenceNet` + +**步骤三:调用 flow.onnx.export 方法** + +接下来代码中会调用`oneflow_to_onnx()`方法,此方法包含了核心的模型转换方法: `flow.onnx.export()` + + **flow.onnx.export** 将从 OneFlow 网络得到 ONNX 模型,它的第一个参数是上文所说的专用于推理的 job function,第二个参数是OneFlow模型路径,第三个参数是(转换后)ONNX模型的存放路径 + +```python +onnx_model = oneflow_to_onnx(InferenceNet, flow_weights_path, onnx_model_dir, external_data=False) +``` + +#### 验证 ONNX 模型的正确性 + +生成 ONNX 模型之后可以使用 ONNX Runtime 运行 ONNX 模型,以验证 OneFlow 模型和 ONNX 模型能够在相同的输入下产生相同的结果。相应的代码在 resnet\_to\_onnx.py 的 `check_equality`。 + +#### 训练AlexNet + +``` +#Please change $DATA_ROOT this to your own data root. +python3 of_cnn_train_val.py \ + --train_data_dir=$DATA_ROOT/train \ + --val_data_dir=$DATA_ROOT/validation \ + --train_data_part_num=256 \ + --val_data_part_num=256 \ + --num_nodes=1 \ + --gpu_num_per_node=1 \ + --model_update="momentum" \ + --mom=0.9 \ + --learning_rate=0.01 \ + --loss_print_every_n_iter=100 \ + --batch_size_per_device=512 \ + --val_batch_size_per_device=512 \ + --num_epoch=90 \ + --use_fp16=false \ + --model="alexnet" \ +``` + +经过90个epochs的训练后,oneflow模型的top1准确率和top5准确率分别为54.762%和78.1914%。 作为对比,经过90个训练周期后,来自tensorflow基准的模型的top1准确率和top5准确率分别为54.6%和78.33%。 + + + +#### 训练 VGG-16 +``` +#Please change $DATA_ROOT this to your own data root. +python3 cnn_benchmark/of_cnn_train_val.py \ + --train_data_dir=$DATA_ROOT/train \ + --val_data_dir=$DATA_ROOT/validation \ + --train_data_part_num=256 \ + --val_data_part_num=256 \ + --num_nodes=1 \ + --gpu_num_per_node=4 \ + --model_update="momentum" \ + --mom=0.9 \ + --learning_rate=0.01 \ + --loss_print_every_n_iter=10 \ + --batch_size_per_device=128 \ + --val_batch_size_per_device=128 \ + --num_epoch=90 \ + --use_fp16=false \ + --model="vgg" \ +``` + +经过90个epochs的训练后,oneflow模型的top1准确率和top5准确率分别为72.1%和90.7%。 作为对比,经过90轮epochs的训练后的tensorflow基准模型的top1准确率和top5准确率分别为71.5%和89.9%。 + + +## 训练 InceptionV3 +``` +#Please change $DATA_ROOT this to your own data root. +python3 of_cnn_train_val.py \ + --train_data_dir=$DATA_ROOT/train \ + --val_data_dir=$DATA_ROOT/validation \ + --train_data_part_num=256 \ + --val_data_part_num=256 \ + --num_nodes=1 \ + --gpu_num_per_node=1 \ + --model_update="rmsprop" \ + --epsilon=1 \ + --decay_rate=0.9 \ + --learning_rate=0.045 \ + --lr_decay="exponential" \ + --lr_decay_rate=0.94 \ + --lr_decay_epochs=2 \ + --loss_print_every_n_iter=10 \ + --batch_size_per_device=256 \ + --val_batch_size_per_device=256 \ + --num_epoch=100 \ + --use_fp16=false \ + --model="inceptionv3" \ + --image_size=299 \ + --resize_shorter=299 \ + --gradient_clipping=2 \ + --warmup_epochs=0 \ +``` + +经过100个epochs的训练后,oneflow模型在验证集上的top1准确率和top5准确率分别为72.53%和90.04%;在训练集上的top1准确率和top5准确率分别为81.19%和93.15%。 +目前训练结果和主流benchmark的准确率还有差距,我们会在后续调整数据预处理方式,并进一步调整训练参数,已达到预期效果,并提供预训练模型。 + diff --git a/ComputerVision/cnns/alexnet_model.py b/ComputerVision/cnns/alexnet_model.py new file mode 100644 index 0000000..6e852bb --- /dev/null +++ b/ComputerVision/cnns/alexnet_model.py @@ -0,0 +1,136 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import oneflow as flow + +def _get_kernel_initializer(): + return flow.variance_scaling_initializer(distribution="random_normal", data_format="NCHW") + +def _get_regularizer(): + return flow.regularizers.l2(0.00005) + +def _get_bias_initializer(): + return flow.zeros_initializer() + +def conv2d_layer( + name, + input, + filters, + kernel_size=3, + strides=1, + padding="SAME", + data_format="NCHW", + dilation_rate=1, + activation="Relu", + use_bias=True, + weight_initializer=_get_kernel_initializer(), + bias_initializer=_get_bias_initializer(), + weight_regularizer=_get_regularizer(), + bias_regularizer=_get_regularizer(), +): + if isinstance(kernel_size, int): + kernel_size_1 = kernel_size + kernel_size_2 = kernel_size + if isinstance(kernel_size, list): + kernel_size_1 = kernel_size[0] + kernel_size_2 = kernel_size[1] + + weight_shape = (filters, input.shape[1], kernel_size_1, kernel_size_2) + weight = flow.get_variable( + name + "-weight", + shape=weight_shape, + dtype=input.dtype, + initializer=weight_initializer, + regularizer=weight_regularizer, + ) + output = flow.nn.conv2d( + input, weight, strides, padding, data_format, dilation_rate, name=name + ) + if use_bias: + bias = flow.get_variable( + name + "-bias", + shape=(filters,), + dtype=input.dtype, + initializer=bias_initializer, + regularizer=bias_regularizer, + ) + output = flow.nn.bias_add(output, bias, data_format) + + if activation is not None: + if activation == "Relu": + output = flow.nn.relu(output) + else: + raise NotImplementedError + + return output + + +def alexnet(images, need_transpose=False, channel_last=False, training=True): + if need_transpose: + images = flow.transpose(images, name="transpose", perm=[0, 3, 1, 2]) + if channel_last: + # if channel_last=True, then change mode from 'nchw' to 'nhwc' + images = flow.transpose(images, name="transpose", perm=[0, 2, 3, 1]) + conv1 = conv2d_layer( + "conv1", images, filters=64, kernel_size=11, strides=4, padding="VALID" + ) + + pool1 = flow.nn.avg_pool2d(conv1, 3, 2, "VALID", "NCHW", name="pool1") + + conv2 = conv2d_layer("conv2", pool1, filters=192, kernel_size=5) + + pool2 = flow.nn.avg_pool2d(conv2, 3, 2, "VALID", "NCHW", name="pool2") + + conv3 = conv2d_layer("conv3", pool2, filters=384) + + conv4 = conv2d_layer("conv4", conv3, filters=384) + + conv5 = conv2d_layer("conv5", conv4, filters=256) + + pool5 = flow.nn.avg_pool2d(conv5, 3, 2, "VALID", "NCHW", name="pool5") + + if len(pool5.shape) > 2: + pool5 = flow.reshape(pool5, shape=(pool5.shape[0], -1)) + + fc1 = flow.layers.dense( + inputs=pool5, + units=4096, + activation=flow.nn.relu, + use_bias=True, + #kernel_initializer=flow.random_uniform_initializer(), + kernel_initializer=_get_kernel_initializer(), + bias_initializer=_get_bias_initializer(), + kernel_regularizer=_get_regularizer(), + bias_regularizer=_get_regularizer(), + name="fc1", + ) + + dropout1 = flow.nn.dropout(fc1, rate=0.5) + + fc2 = flow.layers.dense( + inputs=dropout1, + units=4096, + activation=flow.nn.relu, + use_bias=True, + kernel_initializer=_get_kernel_initializer(), + bias_initializer=_get_bias_initializer(), + kernel_regularizer=_get_regularizer(), + bias_regularizer=_get_regularizer(), + name="fc2", + ) + + dropout2 = flow.nn.dropout(fc2, rate=0.5) + + fc3 = flow.layers.dense( + inputs=dropout2, + units=1000, + activation=None, + use_bias=False, + kernel_initializer=_get_kernel_initializer(), + kernel_regularizer=_get_regularizer(), + bias_initializer=False, + name="fc3", + ) + + return fc3 diff --git a/ComputerVision/cnns/config.py b/ComputerVision/cnns/config.py new file mode 100755 index 0000000..fea7325 --- /dev/null +++ b/ComputerVision/cnns/config.py @@ -0,0 +1,124 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import argparse +from datetime import datetime + + +from optimizer_util import add_optimizer_args +from ofrecord_util import add_ofrecord_args + + +def get_parser(parser=None): + def str_list(x): + return x.split(',') + + def int_list(x): + return list(map(int, x.split(','))) + + def float_list(x): + return list(map(float, x.split(','))) + + def str2bool(v): + if v.lower() in ('yes', 'true', 't', 'y', '1'): + return True + elif v.lower() in ('no', 'false', 'f', 'n', '0'): + return False + else: + raise argparse.ArgumentTypeError('Unsupported value encountered.') + + if parser is None: + parser = argparse.ArgumentParser("flags for cnn benchmark") + + parser.add_argument("--dtype", type=str, + default='float32', help="float16 float32") + + # resouce + parser.add_argument("--gpu_num_per_node", type=int, default=1) + parser.add_argument('--num_nodes', type=int, default=1, + help='node/machine number for training') + parser.add_argument('--node_ips', type=str_list, default=['192.168.1.13', '192.168.1.14'], + help='nodes ip list for training, devided by ",", length >= num_nodes') + + parser.add_argument("--model", type=str, default="resnext50", + help="resnet50") + parser.add_argument( + '--use_fp16', + type=str2bool, + nargs='?', + const=True, + help='Whether to use use fp16' + ) + parser.add_argument( + '--channel_last', + type=str2bool, + nargs='?', + const=False, + help='Whether to use use channel last mode(nhwc)' + ) + + # train and validaion + parser.add_argument('--num_epochs', type=int, + default=90, help='number of epochs') + parser.add_argument("--model_load_dir", type=str, + default=None, help="model load directory if need") + parser.add_argument("--batch_size_per_device", type=int, default=64) + parser.add_argument("--val_batch_size_per_device", type=int, default=8) + + # inference + parser.add_argument("--image_path", type=str, default='test_img/tiger.jpg', help="image path") + + # for data process + parser.add_argument("--num_classes", type=int, default=1000, help="num of pic classes") + parser.add_argument("--num_examples", type=int, + default=1281167, help="train pic number") + parser.add_argument("--num_val_examples", type=int, + default=50000, help="validation pic number") + parser.add_argument('--rgb-mean', type=float_list, default=[123.68, 116.779, 103.939], + help='a tuple of size 3 for the mean rgb') + parser.add_argument('--rgb-std', type=float_list, default=[58.393, 57.12, 57.375], + help='a tuple of size 3 for the std rgb') + parser.add_argument("--input_layout", type=str, + default='NHWC', help="NCHW or NHWC") + parser.add_argument('--image-shape', type=int_list, default=[3, 224, 224], + help='the image shape feed into the network') + parser.add_argument('--label-smoothing', type=float, default=0.1, help='label smoothing factor') + + # snapshot + parser.add_argument("--model_save_dir", type=str, + default="./output/snapshots/model_save-{}".format( + str(datetime.now().strftime("%Y%m%d%H%M%S"))), + help="model save directory", + ) + + # log and loss print + parser.add_argument("--log_dir", type=str, + default="./output", help="log info save directory") + parser.add_argument( + "--loss_print_every_n_iter", + type=int, + default=1, + help="print loss every n iteration", + ) + add_ofrecord_args(parser) + add_optimizer_args(parser) + return parser + + +def print_args(args): + print("=".ljust(66, "=")) + print("Running {}: num_gpu_per_node = {}, num_nodes = {}.".format( + args.model, args.gpu_num_per_node, args.num_nodes)) + print("=".ljust(66, "=")) + for arg in vars(args): + print("{} = {}".format(arg, getattr(args, arg))) + print("-".ljust(66, "-")) + print("Time stamp: {}".format( + str(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")))) + + +if __name__ == '__main__': + parser = get_parser() + args = parser.parse_args() + print_args(args) diff --git a/ComputerVision/cnns/data/ILSVRC2012_val_00020287.JPEG b/ComputerVision/cnns/data/ILSVRC2012_val_00020287.JPEG new file mode 100644 index 0000000000000000000000000000000000000000..255c59dddb3d4b8992e4bb733872ad9c62c9c518 GIT binary patch literal 120706 zcmb4qbx>PR*mZC#ZUq_w1&Y?t65Or0mSQc%ODS$4L5jOu@lqf_kWyR=MN4slhvEb) zS}fts@11YvoA1wWlgUhSclX}A**)hx=h=HVcee_l(Nxt?1>oV~0n~9Xz#SIwNY&}R z9fz-nlb4s>2adP?918E;-r8~KIl6hdc{;j%Eawn?^6YLAp!8p>|6B0!3Gn|bgaicm z1Vn^HL_~yygha$7#6(0S#Ds*zWW*$-{}m!)GIBCf^8dd4*U5h!{MQQiCdIY--zxuK zA9vjVT2ee;yfXqkS^z#R9sw=hT_1oQ0Kg;q--`qMpF)VcDq<2mQUDn_?zk!q0C!eA z+_e%C5RniN04VVA2?&X3=>Wu>^bemiD3A#2zhUHZCshndE+S*%7BQ&%`?hDozKs*3G!T)m}0zy1|A^`4Y$#932X#seI0Ng+j5)tA~Mu1Q9Uwv9a zI?m@r3i@y8AG+hZ@A=ChTsQHDm`m}Pgp|>M`>lsaXbKavlBlg`YVq3L0^lA2t`#i- zEkF){ok|Bx@#*;@I$Iu|#3xLr>6bsqkbQbxkRtaX-DhVsQ8_@hzG6eH@kH+Q+KZ%O zSmmguN8<;C$VTxFV4a6)HBo{`G+32*-2oV_!*9;XBIE&uapV$>Tw{Ba2ygzs6SU>? zB=117V7eoUR(?ZgdBK{lkoDUDiqCM4EeRb+6X##=8OAuBtr#O@guUnK#u+ns`ch^p zOl$BMH86yR_Y}U*H?mId4V?Wx&0tMkyz}R$hPB+)1)5YkUCYJ$U(>sA{dH@gI!R7O z$b=9dXSB-fz?hyXsju?={t#|p9&Jt6-nd9Hm;?2z<)`Tq6ehY~-Wb{40 zhMmrc5UnuoG)`2h#k08o}4-%Vz0xvUBsl5$T+bH6Mz<|q7*mi-e5~W9&|OM znVAfB;^hg{Zd*6|#Tgpoh~}=2FVNW&%QPd!8UVg|xh4zta*oL!3u!Vo!|81<6^B~j zk3H2gb3*FHVtc+PA*JpmDj>o;K%(X6qWflI+U1H~M(6Xxb-k3kf-$g3*cjrs-Y;zp zzArocpw4S}+glQwBt1-e;vHZV$?xasOL3$eG?yQ}#_7j#*nFHwKiF89;D#+0_gl}X+YtYFGcH`dQ3!xS z#isCP;0(z*6Kc;MSjVW{k1fJe3^4~0cuxhXG34HPt4Jk6n~ zJs|a!*A$UN9!(Im2{7Rw2~gRs`V$d(pI+Pnp2V|!ck5-!ZQxRdiO|GAUtsP4HFp5u zGvrQY&8fT=gFI-M4OaG2jnn9{%XdEU^tyekxxv z`#Uso4;cYI?C^0n=U0!23H1@%IKnRD{hpwW=TaI4fx@i;@ppjL9qQ%#TZQ%}+PgZx(*aPH*v1aZnVF_Ff! z!_f@4z%kw^_)8-94kZwBCf1W@fT>q!)FYm~&9A7PvFM+!L(|-+AwECduHg1m6hbO* z%K(V~9bcbob{L0LPlbeDasTBSoV~7iqm&d@Z{5I1T@1O+FLHOH*mV7L+Xq_8FAfcz z6ypniZTnIg_O+EhCZi!Q)1PmSqmHZ#;w8G?FqDijLhddsC+<~@XJ3P3941!8}kXPOu?3x+6qQ&wAQ1I$w zBWux6v=81qx+gLxiCVO`fJbrXsFB8dUUO2Pqh40pfqgaHxbeNfe~jRN)cw`< zw}-JP8IMo%oUhe-VY&&3?g}pXd11|cM?Y@tN`L?zW$ucG)N##JiHO}G3qz=vUy546 z)YoeI7u9;d#1-=r8}9&Ch~Cmdsb5*PeHm^e7bFK0=3oK4$#G$(4_0@8uH72ovvK%9 ztiqsK9UBq;K6LpRz+iSat#E$O?aIN5BpG2z+a@Sg__981u)qOLiW@zhs8HJ{OJBLC zo)KgpZ(pAe*M<0mWlpokpO0)SjlKL)@vPJF)%{9$z?1%eHBB!iyxQVf**G2v838N# zPsp%;cQYsrPMTiJYbvmA6fAo(^0CLur!z>qdI%Q>*%3BWdV>#Y3PYKeGCrW22mD;;06_bc^{q3qnQW( zk8DRw(z=1qZo6tM7ReEQZJMhHGKYJza=Is&YnDf6roUD+Ui0VlHfEpnPydg9lvwi+HQ|VgeIT zbf$!#iWMax;yt?YetlTV|H_NZZl$#($4zBuQvN{*D^hV-U%^pBh>Q>irI%hV=qnMHTe0b^l9C{|Vri!mem863->*BY!E3&Kg3T7;v& zi^_d%Wx~0WGO9vi21Jc>CMRW+}me~Nhi6^kLkxNS8!(ognW+QA>x9-bh6?+6#}Dt%;(AdQeHR) zbwW`$UhZ$6Y-h5P%UWu20qLmG&;YwuB2&wq&@Cn4<=o9JZ2M@6sIc;x@j^l}D%zBy zYZ`)s%9mnAl;=J)RNcpmPr8u?Z{1Xo%kL+Elo9`eB02+(wWjno;y#7X4y{RJb5F;Y z$lrpw!yk5~i6ayDIztbm%YQmXMG53(2-bvLd(nNG*pygi8KgrHNdAS+Pp1Fg8b~FROj34@Mn$@Te&*X3~mCee0Ubc#?LxbhO?*tL6X zcM(ix9kRaaO$1Mv-pRLgx8HgPD!SUS|IsMl`n%9=kmTsJ6JEX*Qg5KnJ$~E`?JD0( zH`U-sH)valxK5EoSWtHCDMLW{MMkv|iv}$1JMS^={^$cYBcOV53eOtE15{%&GV?rR z6hF0g;5{C}`Hi>OYmR1pYi73s8#Zh!2w6@^UimqSNHuXRp-OS1$A?QSE<~7NZUqw&MA0L2jygsT^#Hwzm z+|T57mbh4H6=3*!rXaWB&6#yegHvi($2058%3;I!_nNrs#;m0<0q;cMz?{PD%q-3* zZit_300(oim5Gy0`ITiDG43z6{s?xBV+aM>j|;0ST$J(fZrpm=JU0HcKsz+?kAMDB z3aN^p21`~P92O@(;X3+Dt?H=c4%&E($0bP6DJ#8qwp+_^|LmmjwWjXrL(40qMP!Oj zr98*p69BitvrF9{R7zuwyqb^0H z8>*)8vD6{bQBe6U{gr0wjoW%*vnTm{?wImPQ|fn{R#d@MQPC#vI|Gq?j)JDeRj(Gj z``<^o1Ozh~?m@-IKN~f$2jW)cKi6n%o?(ul6+TqrZJC-SmFi@3NwZGBKmAnn+QX{b|GP11=5bpee+hCEE+K8p2;VcQ5!57Tm} zF6}h&nO0p(>PTPsf9m~o{2PPsv(0(VIb!g}eK#v`^M|y|H?^k9F}DBSOAKN=d^80X z@BNT-zm0hO9TI$@l-(S^L)~?N1u{H?Z&EF)oQ$o)3!oP`+|9I1%{Jf? zPqS!B;7DD+1IQsO03QnbHC>WPlEBFPs#U5eDDX=qVlM9rxrp#IwiS@`!xXNdg+(O{7Agzu?1&h#vyAH%Cf^K-&A=zRLS< z857cXfC9yjQi9@a%#Pui`7IJ5lk?=6R2nPVwZ5ftprCUDMiGfO=^c1Z@%M1X`&o^06bDWbxRx2sdj!kp3i7L0_IJg3S+XZ=~DD`wXB>SUqOp)(fJb*eko1d2`Df& z1t)*}mhqtRMe=Gv{-=vi_6)k^#ytQcIVri^YcHV~#4>lCkQfU&)JqoJ7$Q%QV_MGO zG$wkJ4}blOPhC~9H_I1PHeeDo8=H#0-sn!ofFs4vlmh(`ETELGM^Yfd^LZ76Es30? zM{Gn50SB}KXW9j92L5znI7$v_;H^(pzMAbe@Sd(zRTC{uj=AEsmYUlOGm>1Z;MrJ+ ze}>u#=+HNE{HB4gx@H7=&?pL(_O_-PEe{l%5uJoE0rF#5iobN-DC)}a8*^PJcHywB znbOtbd-XhbosB;u0q%zFOj@T@=74zL?*JefZ_X~S6#u}8G;EHHN5o;$Bu!Z+*LG#p zfsuq!L=p|)bh}bmm{DRsn-0;9YCGD#ZEdXs#1$58B(-dalk861UvchaizpJFq#IBU z`?nJeU|jjJiKkhBJrKXH3ay_|M9)p4gW# z!qgKZyDZ!tAv#aKIjBd?*)_FY+#txD!+{P>o=#HNlSOr@;t|p+Q_}qQe|}ukbcw|< zB4$(KMT32Xd{{`ipgLX1b2J)hK2y}8!#8*;cO8U^S}|hv@ciVYo%o zWF>Y(RXLZk2FZOGabXto@oO=&o|PoKDVj15w8ac*I=IamD>{-WgJ(Gf0W(h1%< z(u;~RB|Mp(4wZgtBxI3q>K5UeICoA+P+$A4Sb%rEqX}oRicd#+>sCc61*;X@oblGt zP|QfNmCI@n1n#JmdV8pr6i}9}U+kz9A{?uei5fdeQCD6Z3(NO&=lMVcNs3|@Cjlkp z`z_U+FXAL?@}68rQZiP))?uL*n|J`LQ8Z{9#4GwLheTLp@PJQzewTNzbe z_uX-Kj&QB`z2cu3H2!6QnhAEqOJ(9+n&=ohIHg%t`U~}`jNjf$6&O<)L2ACD!lVePAa^I`F$ZR zF4Q-8YBy4BHb-OXa44}}F=)g*xu;p?vK@7LTpV!Um0wFZ1rV=(eC^HI(A@aL;e!R2 z8x%@y%3%_lv!Znv!0ELCLf!$IjP)+&C%i2oA$3@wHK$Ub6HgX|hyo++eUI=%)mB)& zLw=UKjqbphs)FawajosXn{>#n|H>Vp7Yh+XDRElx-ugm!YE41G4tPKObq{WI-mfQ1 zNqetG+?*M|Y#rBl(yMs~NW=7?EFFu5m&do>n!>sg<+djl`iSuY#8b?*Gq{w-Ffyw0 zvC8jBQ1$NyOI1Ti%#n-Mx92|JEEx$up(7m}9!wLnqVf~)$)2z#W&2WAH+I<~iBHJQ z*S76^hFZ7@#vYpPtEt+Gma5?mF1%F}fWJ~FSGZgmGr=F_e}gA(#x9>vdGg{+wMk29 z_`#YYZFaIcs$8P*_3NE@H=b8Sj#(>13+14x59{PnzX8{4joK0)xy;5qkf z8Vwn{!i~47DUT1`hhcyJQ0A0m9M~FL7RfkCvhi(b%-sPD0ygcX%$2!wk#xfn+g9KT z8-v#qvh^M|eZk#F7czuRDdnQE)FT@J>H@+u;h$tb1xRQA%}{vF+<&2m$CM%vOt$9x zH-PMIJ&%K{1dZ5@7d`Mp3%CjbImYG@jdn~Y=gQN@K1y?qxTg8g5M^0x3h#PLiqmwK zkBwfeR0O{H>($j{%xV2XE57*zwKrq2Xrehs;9L~B4`x^CzhYQRfgFQD|IqLR2kohz z{zjcd3v**-`*T+A2$E#(Jo*cqz|sFYQZ&7Pj2kX0S9s%9*{2w4Ud3*|+lABdSe+iT zU|$`NabpgqtE(%_^(T5;qg6Yu6Tl5FdfgmttN*M@;(n0X!-4J4@6CC^1wR}FNO@qS z6M-N1OLUx6!e}&*iL$=a-y6zz!Q2sv*d&;@tgeB%so3>ZrtTvtR?zf02bFW_)|on9 zTGD;!dXV=MI)+AX1H5Uyw6B5<*2G%T|g0Yi>nagvtSh+ z49O>I&X3N7fBP(aMXp7oGZ%k!hW20_<$BpatfbDIj11}OGNnXUa3cs~ltkl8$GOgt zyLW&w6Fhki3jR(_s)#PP-H9+Sg{MftPz4^POa5y&EJjBU@kep76_jz-iFAc2U@cz} z+ehq3Xty0(y)1lRfKZwfbE#*dAPb041#B)BmaN1lZc>1-f6mRo* z^%D8A{;DDgU;9JJqEar6D0KOOgnatnB`+QdE}+1U#|;E_Fk$N^T&0w|=|Q`J7v=gK z8GhqZ^1XxR9f3DUL@=MPDD74vFL8Gwhwl|XqDRB>{m$3eAeqgC50!%p ziuESNGtOt%AV^^gg&IjDthchI$~sI3})dzu64pVS>$jRgEs=RUS-ou?fMlp*KTJ z@}{;@f3d%oohZ5X<}ldaaojPK?fj7fKu;Tg`XIRbAe{62F9;N)#b%$JJu0km`j>il zLjH>g=T6QXb#=(a75dr$Vc=~c)cZzVz`Ir!^U)P;q`%BrN-l5hfSW-bMkzW&6&BAo zmSUkDW>ite)nC6Pg_4bfz_@_EI3o0`DUFB$@UvWxjRpoPXN^n6Y01Oog;5zPEa^&( zJ%-gFWHCVVk*ECE6@~I!#(&5Jy1+h@>6QZ*nwqi&?&GBA*t>JRnr9uQpZF<`;haLavWXRzw#-$l^X`qw!z zqoigEQpqn9tbBOKwGvbJ+>8z7=M=Bw2{Cy7R z0ev^G?(c0798Z*h^^HVWPY#yJq-yC1`kpQYLjySQPkBzw@fM!_j*J;9gxO=Rzk9Or z6N(SWb)>yVEX5S!YvUvf&L$zTh_J2(l*GlZ%hx0#5r&^14*_5K+=HZK$GCn#xAG{F( zBi{-4K{9F)rK|BVdn4T*yaVTZ?P6n|>IkPtc3eqwV3f%qBOT!{3IN3IFrXEsxc82;JtB8l^YWKWuq4-dIc=KnrWE%nMYZEC4lE7-z#|sqGdDawYT$A& z)qiFy>nXluqyZ`Al56&+Ba-0nTql;rm(&t{ue>2YmGU$wd6}kM)@}CBIWwBC3?!c~ z;{TGfMpeEeRrx8t;lGq4S7vGfTo&ii|3`>RkBB4Ln~JqG`#khWF1_6-y-}NdZ;cp< zb^WghiUr?ED2Sf`cj!uRlF(#WxNxGLtT^SJwNHQUdJpEh_HC8@&T@;WMPXQ4#8OmV1MUnb1t&KxYdnIlYkB-GH3COi=yYg@4fCzM=a9xkQgLA<$bih|z)f zaCHn8b~>PnNBO&fOR8?W!*8cpOv8@DoK+*coenN{dN8s6mV(T?HOY;`ht+uY-xOXB z#}GdiW%U6G*B#)O>#hXWl7^g|RmfQnu^IHc+iN&eJjp}dbWp%Y;!wuo8BICWC|Zwa zj6<|s9m&x~dPs*z>RgEMrw;caOiX#bURf;G6JOFw*Sq_}<1f{j+$nBD#A_#r za!#!N$@>>1gR|!~j+oZ0FTWlu$JGeO=Dd=q{{`#7*|dE@GrbpwBsXqA#TCI{k5ia(7$O$ zz@(w(r=aUUZ0Vo(w$yMAJ?Yc+ZL0uwt$Eu1)HgGbgMf$l3Lffj>Tb>-+sA0ZV-(UZ zrZq#2C+#CZ}(yLNXv{1CC_T#**id0Gxn3W^}YDyWkH?YuW5WMSwPI~ z`N!WC0pE%pM}9%B@3nz8~tKlPUC)=i>`3-(>sRm&<(=1A(sN;#h++!HCkKN5+IZDc+}@ z2)5GlG7nZxjLPHVud+~IYzJ+1=@4hT06rdOz@*yP{KP^-n^^FW9L#A07UT|yQ&6gg zw&C;w&__?qBKHXik89nPT$gF7!C%pa5$z5>X_)pEdfp#yPqnR)eSZ+edRi=T63{$h zVwm+P?-HI`(uK2Ywkv6!5h?vfQ&Mh$xWL=l7_Y=2n>(a_P_DP)1G)yCogPAdf9D7a z1{X7_Z83<4?2IxLvMFfx9XUiHn=DyENS9AvYCJsV2nbO_{lf$Zs#Z8v<&j-;@Jz** zD-yTwC!Xz$PAFw5^gTZ&b5ORsoz+J|_&NPJ!yG{hf5p{xYYe%`3B? zLed=akDVkxnhhX>1pofB6P#ieqt0cwMoKV-MXk>qer60Qa#T&*`-e;i_~DGPCX36k z?~0x+h1{ucex$TwAV=5GJca=3cg*dZjYkuzqi@EZZAWp(QxC&>E5*L-f7;a$*Q1sl zjF-jVI|Io9af7S|K9g@q4m-3`JD=YPDfP@%%~;^!F4AKjLmeT5pKrPnH2n;Gr0@Pw z%;KI#M4$K_McDGkT72YEoS9c=@Af z%&W|IA9QuC-)skwP0WVVztD*`b%?&i?axZ6VbeBDCm`XOdeqT_ThWMfEYQdpUENqJ z!|*9R2(RekrT|p|PPZI}s1M7}uODM&j9ltJhd+L$mLiWWLFi$o>e4~nlo0AB;~CE= zUGA#;{(2-k0iivbW_aLY+blX$s2H|`^jl7yQ-`=p3BDeEp>zQ<2oPf+N}9?=iC3}> z4Pcj#;-2iU`17O_3xmSVjDzT|@FgLjId9dz7D!cLC<-)H9!SkIWRaAIh&sOZ5^p%Q z$UAS8&V%M@yxr{K{Ofmlb4yk6XL7IFaHScwlsM-tN&dC5^ZdLTNN~K7P{L`LYpzL8 zUs6|tEt#QEtha`%o-K8aAs!PM|1KR!?Uo{hE~3p>VnF;JyXoX%gQ-Q+#OSh=H(zI` zlVnjcG|#;fr)P&KpX)Jt?R6p75r13K7^nCZ+w5JjIQggkHbc!~if68g$>u%;_rsr= zlW_ZI#ze?8F8o)amzQYs#f@f4FZFY25?0p&cIor?rS4A4;uq8$8q&TOS2AX5#YbMr z;#pUZu`;TPEr{7+HMrTn`jYM#eLZYsz=U$YMDpd3)ce}wdLK!*O41r-u#1lCu$r)8 z7LSJ9<^%!XWLtc$h6uZ?I^_-Jxy`7N-G^=OA2%0C_hFfLfc!7DPqZ`jt6gACID?~# zl~Dsv_yl-kdpdKH;1YILo8!-tmdRHS4QanU=Pa>_n14^_j|hm~c0JrltALkHkL8X`9m-Ao6KbI`ykZGn)Ef;^WX#wsz*#M2Mi zDQ_Y1iN{xHW#>ul+*8i%v4^6O7pMW%!ceEBDLQp8b>oQ}5O^mZfFK^tOM1$cdbpN+%55@-k(w-Y z<4hJJ8Wo1^fb2aLkI!uLgHx(1y)h00Le77N4wwL4I(2_%MA43fey4IK-1VbkiBji?LS37Bv z;g5Y<_oGA@|H_n|A;$~|G~>c$Q<5M@>qV!fM8$}S=flL2&$h2|?yFVHFEj$Ez>xaf z_JSP`o2OSRu+5h&<$Hi|6FVDIhMy@<)?S6b14kuoLD3%neRge4~P2+s^v63lB~2{Zd~Ui)U}+Fu1HjJ3i`*JPFq6T)0HPwBbyWM2MCx z#Jti?oyqBGtrd0TZbbtt+t&C_&>B<(LOpHIeKqj7|=O0rBjhYoS?c*${CJPo# z+zv5uJHY|hk%6sCRDMfcg2JoTJtyLieS3qb{3w>&25P}#GZ0HH+CPZ{ zWBO{v^a&n0_JF){Y#EN_$4rKe6Kp&^wX-9}fP3fc0U5$G8c&u*Cp|ebGP|+pGkv;5 zQp#bsS?jPq9Epr|8E{F5lCx^@*ATiuy`bQ>S2G?;qpZhMBA8o$q_Ras%8zD_JkA?v zp2x#L? zZtH!5>@WAeeT!yjF~+pxNS7-2z0H2;l}CG1hzK1n;C`xWm0 z^oZMGsA5&u1%argZM}I_Exs$8RoK$mkP}>u8Fq%pcLlDe8pSA+u7s?GBcPK-jBVT3e_GC7KJf3XWX1F#$=FEj4LWT8kQkFtRRpT1+m%0D!4Yv!_+k|QZ(HbZCx`xmDS=Q-B9+;;U=MzWUF zN2b1E%Ajs$xewVt2uAXZ!8t;!6mb1isdM47o@D2(K9a&am>w>;C}ltVXJ08M zpnQ${K?`k%+W^ibXOEh6j-K#T0288)Ul?~haX-EBKT#XNj2U&p;S!IR((CTu%)3PB z>$JNHmEv)iBL~osbB$x6sMlAO;w@EdINjDjsm@q=(MG26NxgC7Q@9YDPOwDC!J6;Q zd9nnH=TlCVzb3JZs03hTL0f45O#Xsp^DF$p9JBkpkDsGZOT=9|1wW4YKJT|rcS@MV z>dB18L>~w>RggqH7b>4Be_nL?R$>)$wVV0&En(cWq6L*E5XKOw2$pOwZ7-X$-LVvX zRB%f6XzfeD8=rTCFJ$F*<;oO%o_Bbe44On+?YoVAs(2Jl*|*ORa{Id*yy~Oq*)94d zLvQbN`=}V4W(r0InFx{D$YUb9M&KLd*M!%jjh6YckbEV024|`hsvP?Gh-YYm4XOX9 z+>)*_k&Fd5C9Mh@JSkEuM0PwZVG(zLDL50+koL2W5`#&)!+QgIvy+`3&6Ahbt$wG+ z(-Cl<==O*cH8hFw^PQT{@$~tv1q9tloNvY`%dagxSO&?W49ct|9kN_Y+s#dg7NTBs zD5ov@Y7&Is%AI;0)LIvB(LBTbJ)VTWN$%@+Y@T|erCy$QF$g`j$rZb|FM-XY?;#%| z_BH0rN`WrF=93a2X1AZrnWEEpest~q;~C@f*S$aBn?)#w;JC9g)!2X_UcX^cQ+|O) z;{-ZT8R2d0LTN3Esv0=;uto*x$bVgKnc#7-?b3^|ymhlwcT+K0BYD;ggt%MMc6Ax1 z#m~%h$rsYG28oY6ij4Ojwm8lTc(l@OiC4@PxD%3RY(eyCsJ?Iqe-Xr0F-T+2X9wN1t8wMY|gI56-(E8gHifAQuf6DWq=|lqg zL{ZmWi~c*dkQxc4wg_Kysng3A!pU2WxBiT80gYEK2N)Ra9G#-hDpaZO6QZ|=Wms|ZMBkcQ#Y|nk@UBU03OD$HOzk37VCWT88C99 zAqV>N58cqa$!p!|tRX2c#kpVysC}S8qKvtAtxKUftt$>Ce*M~T#5U@5@RIi$i=p}P z$4KwffmBgxTJb?+U!Ef<@fdx-8^bo_xwPf)B|rMK+nCTz`I7f`;H64=Nh?FOcdYyf zf3mvkH%z1MOR++ZT+rr$wUNm1i~XAB%iCqfxK5bLM3*T;4#XU8S5^PPA<)5^w zl(B?3cIq)KRZAU&rhxBEK_U*6Z%0d1|F|inAiex#hbkL zG;2tF9 z8QDb{@C-@S*RG{JX9S@H*C1J&CUvaT=jZ2e^gLB#VdXsQk&-ZHKS`%+`3Iqs9nBjH zr1V~4-T0oB^xFcbTO*A}ss$6DE2}-92N;bcoPNP)BFi;>KDSE+`J(TwJ%%G!QHtB{~uYz}WZlkc zr^_>KysaMoQZ4gE!s-1#8XtbWjfvW?wRvNUuu=fqcwhf;BJ5(2XZ4uvtGPSX8S2wyJf73Bp_ zhRl3~&5UOx^Km3BmVkK^haU%;*1;NZah$^%l~TRCOiO+uXV&N>)592sx8F<8URK|0 zV^f`!%K!uhoV}3cjm(PZ+v7FLrk)uie0=_a)B2wG%^d)B?N;s1l%dal0>Be`#ijW= zS{BxOz89x<%15_rfkf%yo?ctIZnldxd>2fvrE@S62>OG39+OhrGzAA%Q-A1h$L3l0 zn%b5ljkv7v8iG^*qM8iu6PJ2!jQGN9?4{rltd$EL_5$OTM2qY^OSgO^8+owBqF-Ag zrmWx9`#qfA28~`WU1l3s_A<=G3f5;Vs(+#^=h%a)@6lNaO;maVllzGGa)#OxZ&a;Y z_b6FR86ViD9=o>Ho{0BRgKBsE{dyjsI5I;STf!_W(^&^Dq7HwWeX&~g7Gz00;XM`i zZDc(`b!mvij9ta>{>jA>0o`s?d>Qw|*&7v{rsv)%Qyl1#EMeVbfVTm*Mn+h&vQr|7 z80;jAxkteoLYTIp9V6V%LT|qI$q#uB6a%p)e{opMG3*|Olz8v{a#+)K*{oJk{c6tQ zCc<}iK{l@wK#wq2D4^<#v#h+g$J!@0rENR6{!9nuty=pi3W^e3e zkzYJH0oRJ3h3?7W23mgmCcMW+&JuD)R;OQk71OqGq+)zn(`NytC%qEQ5L`N|Etf^U zl_>dlc{;wi_PnkoX%4w?O6`Yzd>c_1DS!1SRV_66@k4ob|o5vbE`? zM4RvOem}8qiCgBoqV!iQ){K&;ATl-&jT&EJ=_FD)kSi1`!%RLE>sVPZko`JUO@>deozq&ck~0i8}Awr2zOEXCg_%HP@97*F2; z{B@UgF+F?MR7<@|#jk&k*nih>c|AMa6e^u0huhEkBIjzCWL!zqM{|q7$;<-^J})|V|Mn@3+rx$oN5k4Pz~y&!S1O6XnjKU21O)~8~dZN-77Lqe%6LhR&0 zVg##>&-IHsL-Kx01aLjCZo_k!m&#g*7~Y_Bp-)%Q)$aduQ#YH~99DF}uA7elfc1FX z-33Y?SCo@y2dvpubAgp5{&xgtDUC#oFp`1$4`$5NK#%tlAvAi>zqj; z?ekPK`^$uKRQ^SZ5@vphS~)HR%*R;?5!khQZUt^PC?t`K(~e zNH9Z7t*M&*D;QqRE6*FBNZ{a5WBtQjRxsK#<)m)Z`9jz(z2WyYJM~jmsXhNbiBpDR zuymS7U`wdDJjbQXJr&5z=i{acw)2tFd1JRFx5|BH$%fC&(|!x7{|GNZNCeg74D0%M zk()2E6dU0;>kgt9A>0jdjH;cmL%A`ytVyWQA>zI+ccmoS%PAN6xW^zTL7O{{(Fhdw z4L5eEN|Km*W7FxjT*d%f1B7aIEPKk_YT~!u)I!u$AW$u8s!%X3s}cU|^%T38cz~>8 z6%x;<8ENcS_YRkXxvpF^XOL*8+L832ec09z6Ftap&%wuQgO4J3=Q6~u4uY0R$$u-< zPs<+;S?Y=js$0Y{H)iNEMR-~`uQIlOZcyv(_wpQm6CO94%uGgmZ`%0eLk|Dlm#V@q z*1Z}@$>qdjuaH<=+TeipP_C~k{N5w55RSJxmYnAkS`Ayxy2rSLs(HV(dN5BWCcill z@;gZAl=vwJFYR}UU>FZT?w!3Pp3UguKb4DRYRlytkPH-E?z>oOkCAcWNxGCR@tByG zzQSJbjdhH%l(M^^ea_^+-7jj^Jc0#3SHAA+~c#!cFMOrtg^eiycw~Z*9yNS(RwN^KTP1Ado+KKH_e;eK_z5nF* zlL^b%$4lmCB!9}*Vct+SU&Pbq8{YQqk|nb#V0xZzW%*|+P1O01g?D^GRaM=IU9Y7D z<2$+5jpfc2h{C@BItX&_0FH8N|33P9VU|GwTl^yr-0q3(Enb^{FLtmu)~g&!2ln1H zjYJV*TT@^rwmg}A+}8qrFAF6rj=H-pBA^ekOuqC_+*;iJ@!C?a;hurHCyY_Ct9wJi z9cr@3L4R%VY=eaE4?vi9wu}f{oFw-WQI;1@3w@0tIMnFo9RV-$}8T5t8*ID*EKi~ga%(XctBSc#+3q2|5= z7Ztz%F@M}}7_hF3{+h_`y&hq2lblYjnOc)C-E>+H2|>p9xihyXdojg6>-I2m0VTXz z$_J-Yw8T#7Cn)~yJNRzOogs&G?Z`We-AcOBs(L8emRmx5 zLBSm4>^X;PuEph|sb;dnG1J5=vzI;8TU#AF@wzC?4(E&@}IjGH5f*!zIQ0j=l_=zR1hVp?0F z-BrQuH126rel2A&cPr!DF>Pmr7DQOyFG!Q*C~qTRD+8biAn1AOWRt_#s(3(=V|A`} zSN4U<<0xmSoQ?O&WXkZrG|eMd3O&o|d=_)Bf973l3X|lR?bConFuVjQpl4Qgv1o`eqTG~;O{_eeY&h~G)W^(6~S|fY2=`@9sF94r1qwg zWaY{amP7IJzn|O2w0f(Y95Y!&j@#uSU|FxkJ21->(8)Y&&4-2sO8%qH{@o_oJp1Ua zZa0-madN;hKN=b%=b{{4`A8nT(3^+V)>e)95&fVf#&_PcSzM-Wo8s3OUaIm+ z@ibw5FscI`0FN3E?>vk4B=q+O;^rA`yDa=i59Ze|eD)XO{tNL3CzHnFVt87=5Unfv zZt@?L^x0QTG|Qp0?LVhqL*e{+vObBVq}X>2R;F!xTZvX*hachooq7ud(AfhJ@+y#i zu_KXT$9%W?c-N2HqP*1(zeEO->$6A$VT+hct4K#6n*@=+oqX%#&&K?3?bX{mLCa%q zzeF|yc~TxpTgMlZ=kL)#CsY^8;A@hPl5pzm9I4)q+kH%Jrv*&l48R~|u!>)f!jt3w z0H5p8{6KdJYXDM@d7SN7u~ORk2gmLEb;X180Hvg+L&o0cMcMfF{kjozxh@Z2(4Uc0 zv1Me0qN}G3l0oyo-(7r#lK{S!24h60PFhFgdB~@JfBS2piB4-FPvx)|4o*cNvnd0} zQg%=EJwxRORV^2(P05!d$&fc8#0_X~_1{8s>?zBwg$*`w(CR&^`Pe7tU-|Rb2`v!1 z)=&6{-1+KNBbN^3Mh@f%h1`6Q2DkR>BNaQ3q9X=v%JHUuxZ}u)-tq|@lyQ_2Oi#a_ zCqcLHLDx$+O+p}TjHN(Y$zZT`VzrdWK4MppX(%tY5UdL$vmXS5uZ@HHj-p9JMeo=6 zR6qE)bwgbKGH|Ihvp}x=SzMYFO3iD4RDZ;Y@woh=P{8G{U5LTX ze^4ufCzGWh0zeu+>Coq6b)upy#NQ>F)Xd}~nTl918aM>83IRWTe^0kb_{{)XWotO@ z_xw1-_UG1Ej{a}Hp^`Zwj#ehBIb+471i=}h^>)hdYPr&ISBh&?hRnP=1U^nv&pdx zp<`uI0A2E5RsQ+|_dP8pG=p4`7qtt^%Ny| z(T|pHMn+-d`gNg!;!S3(C~kG=7wK+4zuMJ0_15IGLB3r5Ktq0oPyIUU&_RvN%RwLw zDQTUp-&JA~{dLYTcqpLk1M%d1^{W;(fDS5>0!5Xn)b1+Q6f_ngkROKU=ly>F0B*I! z%&qM#ZqqrA?WKyNJ*zh>M+)-exdQrye#88HbrVk3G?yyoBW2;<^ZZ4%lCsiUo_h>= zFw~kTJOan<_5(xDkb3d+;vDzpy%R065L7=BbFYP$12oNQgvZy9l=3SOrAMc(L>VDtle{v?zjb%9yA>tj^hyq zX9mwir-E;?^VVnkUFX8uo`ozmYVoA+r;N9zo=UqN{{V0TN%;M>)_LRZALB@a1|3?` z{9*pvU+o9)zri*U;)*!y_a}cptp{)`MFEX#vKMRJethOX8ov>&cKzICOPO3}Z`ov){yFT)9cfuxOX|R+Cy!|X zzBIZY9eGJJM&iQrN088asdiTCO?z6+>i0fdBalj2Jm;ZD(UY9j(U}};+L8tUY-`~7 zBV&6V0!B9_h_(4?wS9$9#(rb1rn`?S^dgq$X-$Bd#Nb3J*CeYk979JVY;V|n5H!v5 zb=9M{WfQcD>aQjq=mDoym{aaM)Y)=bTM}Bm5=bG0%B|_6ANh_BmHsw0nmHjQMT%@V*((?(JrSjHSwJVw!*r-J-bQ@FfYy=@ zw2tjR#W*psQvNEbc@Y$gp--l);kcutfE150oosJ<2hUN8z&-EI(`0fQDn2qzjTOfM zmB;sehT&#h9eoyP<9JH!f>%oI?D90CD}WKR#N#P-Ce;&0N+I7d8Q1tH~sjNy(0!fQmM%0Qz_IpB{o3GRl0%N=o8~ zpFzof&DQQZxfExmYQ3&5s7y`|83+U`5PTma$6rN`M!aTf16^ZKzcT*-wa50Ft9uti zw7VZYi^_J+PaE|&tk+}Dkh03L2K#t~@?Vp&zmeCJ;`~{q-W*22`_*V+pe_WR3jEBu z-{Lj(MABAnKm*HKAEEjG0KwOrGG6J;LZe^&S-V!ukP8KsNhO#aI3FL-efo!Nb=gCW zodSqG`nCj+QPb@)1j@0YzFXcU9XWHIa?T8F_Qq1n77l zr}%U)6o+hv*0sFKu`hN*PG59YBv#vyX4r_3JQ4A|AD@rgqeqJ&)D>iPWjyIhUhc}0 z2%aRbS4x{$qDmu;$1XFW6$PMIZpM3s0d@PJ$r$P^}TL;(eS8) zz#p$JUu|p8Lz5sDPO6P1&Z4Mo-+3&CVoMo|*$kBAmuphZ%0}P!$z~+@@HgjO0LyzH zlC3y8m7@#XlGd>;o7Y$&_o#La;2jg^zys&04JFsnah`@-04uTlNj26gkvx^klQ~3_ z+hRZph9iDh0!H*a6RxNvkTjMbiiSaCubaQ4jh73HJd{+JX zAWJ(O($F;@e#`aiw0{u0Ke{VZr`x^59!5y&t0Zp>ut;N7Up!=0_zr}Rk;rf7ucz>y zAry=aVI;3HG;RWlv*fZ>Db%xK-Riiy=^GcZEP)aqY11>G00XZl{d(Ma4H=IwzlT&v z-ERV}`!B()kK*OLt($%GpYDF+#oWrw4f{0hl`|)-^R#unzsekp3BZ85;`%=HUx{Ne zq0&1LVX5ht%1ziF#+ zVnmU8W;A_-QmWfLy}ZC9tekK4$&t=%BB<^)KLqX{h5~9qe(P`k&p(R&^Z1Qg&8+oo zrboAyu#y~=%zSl>u4Ev3a-dY1IH!;lGP8N{)}Qp}7sg@;Yr!n)>iPwlj>55q+sS%L zTN`1>I4kfxe0}=&FS0BwtmKp_vK5#rha2#9*D0M7LSwt{9W2JfJVLQNd6nkG9dC~Q{Zqw_ zjy5S3#Dcrr*C`2qh~TB3<{6;%VtIIaiRVNzgTEgizt7*HzDUUD@>1L8v5dx0i)l5L zK@x)EHIs`mI{yFz^S|=xXSt!g@4B+iuJ>#l9B~Se`tVIaVDZkpm*GkAy!d=SN?*zIwT3YHRAcH)-8UUCzTa@zVPH zhJgzrF$d3$cww!B=i~gpTLuy=4HUSG)fE?dD4wPh8E_@Uk=j?6njz(`Og>NLQTu%L zN0YL%92e@x_I~_O$#)-TFuR+BJvA#IOtQgTK$1cfdR$Y3oyGX2V)Ym)&12SrEtvF1!ENmPZ^=K?s|kz8n5vc=(`AL^d!|_=o>%wI+&HlF zz>WM5zWfjVdJClFhbv2tisgat6z#b2mTpjz?JGuCB4`4o^$wuGTVrt^ATb_81tZAv z_>rtP{yM35n^$V98UFKWB)@irb4D2^k)uYGyF#3{h{X9JM!-KldPG^G-~d#MHPBhj z&fv9r&@*0l;+qTe$+zSWusYvPWFVRv6jqKz`zp`kCwIkx>`v&q*Cm1Dr#A^bQ4EFj zL~4ior+Onm@5ug&@nais?k7MO6O{H}&yRB5i#ObsZ+8@VHk!qRWS&_W%%^9Y?4Dab zHL`X9KW@AqifHB5&=^BWc?v@>eoHkgV{GE(#&+_^(g~8&5{}8SBR7rs*MbV{4zbG# ze~26pVxhHHcYiL(WXVv1omIkC#!o7@sUw*_q1`~>vJX5 z|^tx#2t9w+%Pbb3wBi09K4sfKLC4!6;dlXNZNR^oR&B8 zP%3X~q#uH$FdF-L>(JpE0nKz%akRHitMv1#8Ujl?r+2!eZ`WyXCr#W%)P0e%*_%h zWqtB3_5?TVG&k|qY?9G06=d18M@N&&O{#U=?3SRE#4H|qP}4+svwZxIk@oTX^cP|| z(zqj;zRIIUTbD%aw%)~Xcjy^5#kIa5`T5qopC9SbhC3+kpfvtqi(6J=Sr)&m6Yyf_ z><8)X*7x#t(Tu~8Lk|ViN|j#VqllqW#k;nGoiGtF_BWl4==k5?=UVA09BoC}pe=Sj z>!)@|p{G4~fjsGaT9n^kEla;9Qv5=mv68ImOu7E*iz_Z$5` zPMeDmNTZ@HX}Y8Lf8vd*!det2w%nCVGrt{%{G~|VhQ|E;ymb$INUhLvoVxC-SiIIu z+pc7{7rmMGyJkh%AzXZ^9y$a@GVMtPSPw0Y)$9H0N_AIuTHK|BX-cx~{0)A9eg6R0 zqPgLY1FGw2X(Z8CTy6MR%RQT|GO*?8qYaG_=YMcF{u=)P9;@Qtl>xQ5Q`hs+K@_q~ zz*kaMXI(f6_HREwxbf#*1%`Qw5p4HAR=}8YDQfA^uw_vgW0MOs&@H)(q?sKSV z>V)_BdPHm#E$-(vaS**(Qdri|u_RWjDoE4lDE)bjZ^L-;za2S*;xB3N_E(9mb-K>K z58Y_LgdN-1HoMM+Z^fI}srHohtSrq+Ez1;)35dF&J4TU0HyIG$k6B)qx;9YF}O@`YG*qWC7kRY-^8D(Obph(qMi6;M0-+F^&=si7exMKjvU3H zqt3lN&tQl?7goCJsv-nX6i+p=-Tu`-g@4)e2amn@O4U2tGn=y={GAoZ80q3Gh=Q0~ z(*X^c8{QdI1k(~c1R5{?po#{E;r!1v(@w=A+$@r}G=hrFe-r-zwx&<Vl z&tbC{;>Os_)5ha0*OC}k|dGr383<)Yj|5R25DzO&UBQl0HFM zxe@Ns-iOgYr1*rhXk6VluiN%sV;dY`k*)V$ftKnZ0og~AHc#*4eS1-u47ak(V;VO2 z{SXg$@+5N6^ZAEM$u?6(9kJ#YYOr!`?Pypk@8q!g{dM~F@pB;NzLZ$*V!iDX9!wD6 z$+iQ^k8ZlKkn&O(d6XpCC-po`Ie%XtAN~5Ph$CHslE8;-gy1pck~WXS9k*2SR*J=~ z1G=MkMW5o7o~qxskA7<6NC?>T@OR*i{f~~7l%L9~SO(>I{{T5pF_5u$A68M2jxJKf z-jP=3B7O0`0@bhDIu|t%%}xGkrWr{2V--SdHkPkGJp8-rXpo zvaeNu_YB;nFhcqhA+76&pef_*t1@Px4E^pgllAZK7I%F=#ok*&b_PZyTs&A%j&FkvKOP8 z`q2IxkSdBJcHtRdNb*at&;V?=$DXs~pJTAqbBlwhjTJ*N+!;#O;jq@D$Jt%(HRH?_ zAQQ-ccfk4ZchuqW4J74tgh+Do)q3;r+wmJW+PKRY&ezX3dUqY$m0nERN>SZ{d~s2;)2)>LRxXX2uhuTw?zMLAz5H>P&ZQ9DQ7UiR?B$ z3FNT^T**|C!iOq8%-m3)*F&SRj&AFVB5SFkSMO!(OU7wuQi^%8Vtk+Q-%Z#p@9Rpe zAiG6f&i76m4+WgO_hX8zF#7f-ka6_UK_q}a!{_xqR$N9#7dw|EaL+Zb&mZk6_{U4W zVyy-$_EEcDoNdO!K+%g+aw1)F_Q=b)lx+J*J`XOuKOMxnVki*N)Ytn;Vje1r@MFb} zyI|z&HOZ{Nt?D$T(W3Fh1yFeM*#lr`Z|&e5wiz1BZpci|@IcrgEmydhs0JymL3Bi7 zLodABMq$AOWNZ>c=<*=@cdoSIYaY zD<~sR$I9~f<@%N1Tw?J^76U>36`b1JPj#VVJ43c6j_g>=wX>N{AlPJ)cG9c! z0fwXt@~T)LIs>J~1~N`&kAfCJs(9;J%Q;9g6GLS#MdltV$m;E|H~=(Q?6G0v@A7)Q zZHp-l(w9j>fm${SE7oU{5p9Hx!P#Pwm(?Jhw48wwH-ZZjztEqKfgmk3^ORQm-|V@u zI`X)U7pQw*x|azQ6<+>MD4E11M1U_bdh~>IU4vR{QP(W8d zlBM6cxny;(40zg(sHlk-E@yktC&K>#@Al{t2j04<4x>%gOGBHjo2?VJt6mMsw;9xN z?C)v;+kX4$s9BY|>WIK>*jc7ux^7}Jkj-Ntkb*s$E@a-WL{lEyqVFFZ0%S>953 z=<8n^@vVKjY0x+g2((6!2CE;)cavk?DI}>ZX*g*mk}v04W8iCFm3ZiE{E^bZrNFxB zQcEMsefL@h1G>`bmSmdEDFkG?`bw^Z_}?S2b^idq`cgnyvKSS)`XMd%KG?@Gyq7Dx z#B3PITSHp|Uvs^A{fF<-;x(#qSU-WsXj6%0{=Z*U8`S z@DEJ5jY|cUa?sEM)1dEV$m46+hGoe`B0Os&OToF6J__g$8uD~}9zO*3^I+s!EREC?jb5^$R>~Ex%s^f(#O%Zvkv@ER~0ivL@HjlUx zK=4TW^bZO`?>ou&Lvx(dZwiy0?%VeAuXEGqVpiDn&jAjXM~M9fv^0Out(XH^(;qOZ z$GWnRtN7mY&vLZ{CR-5g`7G$ARF%*x%iYi0z5R&k97%+lf9{6n2I%b-vX6b_F5~{C zq>(Et0QK0OP{YBZc-s`F zo`hbP8J1bZ#z}NJ$N*8qZ+b(&AAYYn1b`3=T}WIW^iUl?*)CwXszEQM+nMq7%;^6fwr^9pQ>8A(k&mh}s2e@Q@c=N^E`lJ2;*qHsy`R zyDCo`8fkiO@EiM0XFDIh?svy@XK~h{%1l=!Ql>gMKCZA{Z7B#6KUt~D*|L@QM%cG6@RzCc;=yh{{Th!o1LG4RYLhIF+)AV$3&sz z#wgJ7Z50KG-u1q{emDB{(zdYPTloAIJbWuFs$;KV_4+Ri_jmS#?!NKM4DWFFFK}eC zvP7#S$s~vlx1bdd5wDF8)2}Nx630E+yi%X=NB#rgzkX}pk@Tiupn?b=eg6R9>E>I8 zrFwUobtxCT;4s>SA09qBhPsZYMMk;0lo7t9uPFdOzkq+IMQF?wokw1XYdHcGa14+A zKEv<6f(MumxAIq%@*C34yQ3wMj~`-8WN&8w01}ZXPG0Y^{{RkyihYW2=H#mcd7Qk3 z+}Y0Z!i=Qn>Z!GW!owK2q91@u1@XT+(d!}dxuexPk)e4@Kiu8Rki7V}X%=aw^;ph< z8+>)PcGC~B>dcstZdGI3y{eUlSn5o--g+#^ITmJfF$C?Gj>7$i&!3(7=?Bcipd$Wg zjRcBz>WfnLGJKXl6_HD;Mc8wAfaUp57AnKQAKoDRZ~FCTxH^H+3F4PCS==rfwmosy zQp}IUu@HJ?81LFokbT=Ajd&x^NKV$>1S)fdx01_p{mj;FJzCaazRrH2!5+A??2m;b zU$*`>ItY+e6=nxnaahgX{fiTFRFEarmA1~y%1Bu3X^A>-AE#H!PN8!jeABl3rj1%5 zQ#_Yq*kTqi7<_F&1nd$#54XtIo|TY3>c3<%NPV4@7IU~H%HFLeF{?Gyi-x%G>X+mc z8qoHDzI>iPsp^6}o>yuLl3qrJ!B-yJ&c~U_Zfg8$Y{f6EN*K|U^N>7+I=b?i`3s# z%SA_rmujg^o3|r^WtBOSHTi%5Z|(Nzn0v1b6;^{pf{c?nD6Ke>${9_}zA>_q(3VPO-d-oK)%jmJ9d!`+ujNi6%2mREXR)8>~ycKO14fWGmsQ z)}!3{2|$X?XAE9GLtKF#)2|?p>HGEL_`mf7<8f?G0)>!=H06%TM*8wzLhhOwe6N%h+>zwy>wXoSO@;a0WyfBjFIl%#FW_)4K87o_@lamw zBp*>>;6`aJ1_1hO9Qio9jI%+{WzKeC=GWw+aMvkK>RmQ5Rwi^$ zR%wGr6;rd~DAbi_17I$`dKA#eORMq&w{D2TD?u*Tx~At@Gnp*c)3VJ*IsGYZOp3mu zvW_jK(HiijKm*5sId!MP<9Li6fwe8y&fQwR?F@t#X*Cf}j7bFY%)&CvSTgBP07len z^0tEg_I`5st{Oogb4lN#87DS|mA5bHy#$jD9tPAEXyamB>4%)1W$O7ab&K_`h{xapaiTqqhuAT#q2R+U%0?0scv zO9E< zIQ}7mLWBlm<3)pL9q;Y-@_Nv0`CUU>T<{~+y#A^hmV3BuH`7<4k$cg4Y)FlYgYX9a zFn72PlZ4XdJ1IT>zCjW+&@v_Or$WsRAg zSAO*;&yTnV%-#U6dl=pqA-Pm&BJbdStD3{I2@h;7{22(Hra!1hV@!6IJT-m=i)pkOP>u3t*k(NrabOmdN5XxE-+a*hzui^t$Pm?Z z+iDm9*qoN%hAp-G0(|eI_*UOG>I*DV-YQ$kU61O2g~eSEuMs7#BzaN%vIoYS?ld~h zl0YrD@Kskh5 z?&3b=4Qs06F*(={)~0d;0d9&{xiUAWv0lW|OER&NSCo)dS-iL;c?6wkF+7RrxJf_3 zx|B9YZKi8zSngpfikQa7*tDqYW~0KImB@Pl zVr8IXdi>d9EU3~E#1>|akCJt*^6&>-<~X*TXq3B}Nuq41IWxG~^Dj=-NU6>M4#Gmt zSw{V?Jm`FDUI6*=(BFo8V)C8;0Cahp_SMiFl>&Clre;g84TxYf$)}N6sB$;Gp8%cx zwf5-qVj2cU3w3|Liacz}Eb3A3+*t@E`b(DKX_Rewu;h2~?)`o=IxJ7}*x#Dq+}>vp z08zc%YaDFy*=ZPnC)d!)G?cBBr<7y zY29CX3$x>w$L-eBUSGd5m6+uM#^kN96^-<<^rX3zwzhfc;WfgLSL7=X2lpEJ-%3L} zoJ$C>qMKfA&dX4v{5pVwN`}CZ#}81RPZ%D2k>kS;lh9|HN4k$C4tct5glw%5L=j9a zC#SX&gX%H;e0-nj{d|4A4Ri;_(nC&&rNHVn``rlL#dw{Xm6V?(c^W_E z)m|74SzP#?doSrqu2Yn1>WXwhAoCt)Pzwya}%$2L1tC2-^Lde9suDr7<>>qJq#eYxJ ztofqI>IT$E+8QhuE8Q{1E5lPGbxe|fJ;?!4PQck;`)~H?K?}u@Edh*i9%V_M*{$_3 zy06vExVnhr!d~(we0N(n( z8xqmGzC|#{wXLF8w{gFUc#HHgcj-?GM|EUqBb1btfI1{0(H(96F|KH%VO6G=Z1*b3 z>&VlrXNmmBd`Id(Zi>u6yr3=zQab9Wc^>AKxjc3imA#?U&is6TuU3h!C(O9lC0&y+ z@H@4Mkr3&{~^lCq@(bFQccI|0LWX0uWxt75KZ z2rgFUrnS1T8p0(!d~?t)SpHx>-Uj;5jnyc71y=phG-DLJ zj<=xV40-UMr$pRhx7}5{vYl)NKcc1{2boIxvMFIUkHKFaHbL0?kG8sD@Ku67YQUS& zC?&>a;_RH3MoDoNs}@*cu4E!mg@i;!85|3ePv+TeY#y?)I2O5~&2a=JrfYL*H7h9lpc%7b*k(k+E=YCo|kXtz(M=B;qyQpLPn>iL|3G2jd zM0K zjGTh&#)pDcemB0B!o%T{oRWL&Jr!8jR%Z>0*SmIHrUMlv{KgW@F_;4u5v-ny1=uMO zA@|^uzaVSi^sYY~9z(u&mmE!9HFdaOB`s-s*>3&E;W5a8)f)2+HR z;<&N2u*X?FSSLJoIjIAWpBzWWR+ARs;0vr(5{M;n)S`Zt38ScqV+B@aWC3@gWEv(g z0Xo;8*!+0tZJL{2WH;^HtpffHq->P9s|gyi25fX{1cQ>VE(2|_c@hVYJL+Sc-4MDL zu#mz@J=H@coIgn}GSRW?k4k#-h}DQyUMtNH&h_#8dFs(It~thvkr3gKD6FmQ1|n;H z&rCG7pZSjwoFQ&nUuqCW!*ALN9)HK8m*N)!pWEVbP)7rU4zz}1YjqlSTK8&XDBZOjILN1#C5+d(JnX1t zB}UIZcs|fT1n3@xJVY}y-KQXpCzXSmnpnnGcY*9$dR66ABuKBuPx|zL1`1A&_IKm1 z619yI8rPy5&5YGbFC#kP^7P@$WME2j$VWKG4M>{|s^pRFW*-_+y#jUAj6iz}qZ)-q z3uT=(Q24qush4HR$qgA`eW3E9yjem|$jOFJ0%GrdtmbM(jV~6Ecn(M!1bG_Y=J@l}#fh2E+e)Q)*!$FIs#9iG{Y#4?<*C|=Xv^^a zWO8V>m&pZGe1;>($5)bPHU3gH(|vyWAO^U3ST|K%-gT+eTk*oFIgr5_mri4Cestda zYebLJqha22hGw&OuO!$8sdIi=g$8CZnR;8A+YVe($pE{3h9NrEFPP}lFtJUPp>}kH{<|* zd<`C`_{rR#qAOcuEfO1;+3Hz9)&dd9;zr-!V~S{z{wJm16PkTjI?Jh|)nT%@hMH*U zU6!1I$dQ8}Mp5=8k+1UWL3#~#@S>+{5qk0Z~K z)hM`KP*f8+xm~`>tu{i0k~3Y7b+&xJ8CgN!kahhC>x86eirI^Fwf#2J%Ww-BW6OWG zhwgu0`*rFJrD~eVs-A~36`z!c#FG*KEP0hL zA^3&cRb`T$tfgd}Y!EqokFfF5hZx(Yt1=F&A@2_4#dkDDD!B;Zf-p>@%CyA%CcbWWBRXfDT(BmDmTCybDm6@0`RUNP_d<#|4` zIKm>|vgm{!y}G0pZymb^-Mp!QQ_6*1809+p^7}_4;!9Dw&#NAnsKQE0U;T zw$WoEX+s4p3yQW7{5HWHT(6x5^S=YfPQxH;LtJY5>1eRki&X0qNpd+=@i5YgRS6or zjJ$Nm`HSFkRUoKl_|e!uB$8;;T@}lP($>2bXr^M7EZ#3M1kGYMBhy(qNJuIXWE@+` z16t4@ug5`#9YJ}k?MQBDaM5nS*1KJ<;&RtyVJ(Rztzse)q*0b`OsYc4&BuzWdF7?z zH_^Nk%>5A_8_X@&u_vb|arSM@mw4m*p8bd{G$~nUb5Xq@#aX!(jDY&nfI$EO}JTeYV_q2l}5sALZ8kB8knvr6LCq+f+OEq)P_7&e3`C zv$MbO`+x1zEq_IKu#;k`LS{0yA*SgnNbXLLx62RP&yVuyVDKGi4rm&YYK#8z%?dsF zresbAG|=Qo*dHI^qp$tCQc0TXu0xuKOHH%7@jv1Qf4qC5K(Z>iy7EHnN~urwgY^Qypi&HQ;J~=s#drIdfF4C z4)ZrsI;op|@t3(;C!-x#v>0=?(TL2g!2bX#q8`u8d`aPtA1B?`YYZh z?>=W8eNeb6w6pi)wUv({T~;Ao-dX)ZfG{556?_6n`yFicTt*lo{2&N52s19+h6rC>Pl3Gh~s#nQk1<@<*g5rD<=d{6ujM=zh0aVWajc#=H((5uMmoO zLXy%Xg3sMCSdZ&6-&TAZ<5s;yDH=!wmvBB{Zqh_$d>1CPE|fO2c7-AZ~Xpx41z{C zPs{hs4ohoxP+5BxYc%4c$9kDpj&kytjbf)q-SMxtk_V3mduj6!3UKXFuL$VfF(=ay~23X`E;G2Wmkm0N+=3Z( z6c!mHkyStkgOQ-#KpuR9qx$ugjJ8SUId7r;P|PKsQii*jPTR-|Q}*NIWSJG9`lyt6 z9spK5;sa=M`T6@Eo{BQ&SatiWm}$1v7m)9{Y2?i-H|>yXdd(1p-Qbx{fGR-Rohc-E z@zC3YE+)UGpTq;M%KGp+7>*R0l2j8i4KuUwioe$9X8|fp6ndErC&&61RMq~Oac00MUv&tU_HL6h6uxGT&${kC7 za;L(!zWe=$TCa9M8!omq3!Nz*Qa&qNZuiLJFIQZAkiV^?A-6W=v|MsP@PoyCZ``1G z(eu8%)+Taorp0a0e&{8@=vSNj#{O*o{#YEJZF3 zTt(=mwN`k_9!h0o3=bcY3D&{T(dYr0UK}+)1yJDE0OF(Ksg}jPKx{R^5LlJxKW%tC zSd}ZUAE@~G>DZ-VaW2rJWpkC^58YAQdhoOXFZ#&~!pujed>yF`;IKY-{YOr}1b;P9 z>V)C0soSwzu!}Xj%~teB)G;KX_<&CmK|bB+9eE$WREsDlCd-_`WgUyk8xcsqRP~`o zQqG{LcK-m>NB4f;ezjv^4dkFo28C!?{^SiGp!XK4vbVA^`A7XAACuDZ#!l;_aR)-7 z^0sKa(M3`Tiu_2d+L0Wc>ttx}L&5RU#%KAE$!iEST!^hS>gyaPc`GPsRyh}ZTYnoK zH@_Zycl$#vPUs=IQ4R7}0wEJPT`Ct;!#{l8Px zX8=&-x+()?G}+&(UGpn9+ym_+_UKNMhUmu5p;R)Lxd2jj<@Vp-p*i_VrrVX~zVEhU zwAUuPUee1UQdi=){{RQF63gIq%Q?{$Z|e?q>tZUKi8p?XI)jFD}O7Oi2M5_mXg$w#}%0Y z;iVwye)~G#`ThD-v}$%JCFJhB%iQ$krE=s`%Ls{FAZXKIdqF398v}aZj;Qw>zEi5J z=!z;Wvz6tcmBr^v{e3k_Hx;1bSil4}wnIjC7m^dNcDhPty@$kY52w{Higr_O)O7pk zvvZ!qt?02qF|01see@xd?hkG_kDqhn?58~w)9aexUDFFFc-#C`rh z%dbKMMLDRhBXvQ@W}2uVBRrvr=j4z-UHtF%>%3gsXoA?l)NH92@>gw3Dp`eQ;>3oL zi3NW`KVSYjABUB?YEg!wf{n3iNa_Nz%*+YeGJqVPjeWKE>dtF+2}iK(R&(5sC5l%e z6=JgPgqY+6D-e92)DOP;UTB{7kyocQT%oL@vikz0aEL4cb82ByLE_Eux>4h2&*}R0 zs7exUQPNZ4&21Py#|rdb=DM}}y3-{guMZ%1mOqPvi{n4vxk9H%CE z2$EJT0Qn`GdH{K1PuP9BoNO&<^SZg3>Y|-}){(|q471;_Vpy4VC4%t{u~zmm4YUCG zKnK54PtLWWz3<0fT6yD^i#Gj!%A}#L)yCFc-xe;9YV+Wc$ArjzL=-5qkV5dDoAQkQ_WQrI9kUQG%enH-W@zxWtvv`@m$6@pfJniNkl!ikr zF@~y8uSV6E4$?_HE>^s!T%8Hl)qoA6NcRGKfI4O@D<7G!G&^(kL@~EQ2|uEp#GAe7 zzekOST9!UmW{ZQy+(~sKkqo2Ra!5S zGz5amS73wi56*z=)t^$82tECzmw$b z^_eyrcaQHH*O%A2&6){^n2OikN?@zw#8xwz5jA*}2b0!dQYHtKYCgbx==|%)LVhB@ zwjFe)OMaP_WtQ&ga^2lEUf+TYYypgg(DRNqRUV|Oz7G~U*T@^|Za5tbf80NP6Pa?h zo^2}S=cP!tI^v-+ zD?NE);S|s3lRB!9{{WN^AbxMYx`T!e)?Qb5r= zy0|+m#Ie{QanU5~5PWpxGROtUe1v=MhS$8d>y^t!N$ZVDwBA<9VT|@6}8#y9UYjS8P^uKbe5$aV?aiMJz=eFEpznC<+zheduru zb`OpFK^{7su{6|z+*f#GH500~PS{&e{SHpOS*7+RN##Qoh#zH&1v?EMx8xmYjd>kq zV@VDLn{VugB&0s6WtTtRS~sA#hqH^x)r_=Kr=~bYKpa(-j*I950Q2L2ezY+7)(`}( zH^`sk>a6(y^2j$$+V454V!wsbw+qi=)B<|aMao5tsM7{MH?{pgPrsg?iw_*$X$FVy zk|>3_2ys{5-pfyz!^>4F+M$u146q1s;KN~q64D(79ESxYgU8R34_Ns2Wt2NGA-YjI zkDtLMJRmp`T)L`0B7Bq+)yvVjT6*$Ym1ZsEA<_1-vux~di5u_-$4^fzA)X7zoQ(ii zn6;V#s-Etec5T3t0VHbh7BxA%f3hN>2cx%5%S$3g2zQ0vc%fD8ll7*!9zt? z?MBD6(PXKJWX+=%5lTZs;CyVb;#*_m<9%*%Cl(x=0##;sJeJ8~=2IWr5?@-rzB$BR zwPJ`QQRILYKRW@5-n2Kb->)Xm4B|v}ry@G{zoHCsHP#q)RGh86TzK2I2X9x08)Can zxelYSI1NaT@D8**c^cP{dUhF}>BD4xpy;U#pu0k|{@ju7C9Bw(Dr2sP=IZj91ix}v z4=8o^Kd9?sX@pO?Y^LKra9y&!;c^y|-GP2Ab+u#?2thtJbx6yKcIqYEo8=I7QZvB?p$rogY0o*EyOI?3IbF-=E)AVXag*}6w* z>TgmVYudx)f(i0I`s)7xjLv`YA#@+xt?!4;MlX)Wi2x zlI#R=cP>3mbUHq$4>0C{?OFHWjSc+tn}6i44V(V}tDxUUe#poA7m8&B#xC}?=5NK% zz#qjQ!EW8DocvGheAjH&wc2fZ<;9$}vpo!zva9jSUXy6C&;SA9hsRIHiX%W;KK)h*dE`RF zE>gc|BLTx#o`qV`Fm^nVR3d4B@IE>_Z~@>k?hfa5UwzdBS@~WqRC{~ylONg=-mBe{&)%$O^&#a{ zeLW}8Jk>~N`Z&C*Qypa5l{(7kmR*kKyCbj5>XsvqkOvRce_WQN=^YQmO`*jZuV|<8@ zu!PLx!30Of8s(MKThJdM0rvZk@aTN3?v{NQ=vG0VwZ_A%S&~Z(NMNz~`QNya{)3^8 zY9)*fb6Tf8oE}0%sWQW6Wg||~xCx>O;>rQv!Pm#nUOOD=Uoj=r(d?+#YFt%YKXxf> zz+q{`Dhjs~re8WB{{V+i;N6vnF|)}Phy0M$Gd6Kvkf_dJ2bZSas%CCg$fTY;^^UKd#9^xaYY8COI)A3A??F8*|W z`s&PmyKkK%377>e=4z;-d759QktHte>1eShW58b<{ZG$C!^q$=azTZ*XlkT8e=ODV z24f6QMHNKo)(k<1F9DC-a@UX7UmbQc4%6ov5IsfuE}5W$74p;MWlAPhlBEUp1QD*; zBj1+T{{XAN_kG7%kg_9Ser{*>K!<80=k!)gWu&bHaAa$T4pLZbLPE~cfAs^uBVIpE z>!s(zJ>T4GtJiHls^zpTXqg`In%zh$)55*T;koqsX#Eo+6&$$}um-}OP4`jy^-M1e z2291<^wkB?1HRpVg_(XLK0>?rOOb@qER$u_i{!6e!1;Ve z9vobgWG_}IV^%A_PkSyx>&X2H+5I}qjwTo9Z4RK2RRl%H$|{pTf**zd0E-`pJ;osX zIPKW8CutRncA7XKtXr2AYciEcxdm@&B({!}>tdX9j$q)A#l$|Fu7i8(I}TxO;P@6N z80?TX`|@7+?2q<${w4R@JX!DUG5wpr3hyn?MjT#t)?!7EQ+q^~>rk4qMa5L?$Uxt_ zL(g6S{{YI|Ha{e6d%Nfd&X=^o{{Y7L!po7(Y4yL;W$CB?0AUCA#J!M`XnzuavhQ$J zZYHDA?whF<^kzDh8|YP)305J9;M{$zM?!!6vBTQIamoJx`u^#U{{U@qt`{5IUq69f zCjQm`0POkx)PLDRe1CENBK9ua~={G&2m%{$Snl>RYJda}A$=_I@iR*87wZVzG<1E1bVF!mvJ0~b7bCH*7D*ag0f5NHk|uZA@>re zmx91(j*xrXWuR#8)nCF|R!{*$cY5NcOl7-^Q)E1!M-voBl&*~2bi@)55SjpxI*cov zEHT$#FMrW=ZF940e&1D0?;ChXCW68xc<(_liZ4yKEJ&l+u8sML`2>B{hPBgNF2jq3 zpPHECaL{~hSuj6|89LNr%FB(ze+j7os*f{iRC3;tC2DBNO3#XfSfaiP$Up9*4v@B+|)n zipn%~(mpZ=mu6t(IjWC*cl|LncyN}j}G8zFC7+3s!SPCA8> zxu992jn*hqKm%p#bRoUm|UhGBvtua z7}*2C0<&>L$g?{gh75F}PtL=yOyTLS&CBYQ#KI%hd9N?ucV}>GSdzRPHbjK#L%r)? zf45Ev3(dG_l88Jwx%+YoLR(o3{{VRQb|&?KQaGRJsYKH$ju1i_T zH_@~>|W?j&X#;!o`vcnm8j*WlK%kA^y3Hl z1Z;D35A(!wP<9W`nc`7INs~95L8A2$Vm!2YEh{Pb$Aws}SB+*{)ZP&tcbSpBC)jC8 zZw#OY+P{@7Kqo}?nArDe+@e7+%bCSm=ln?Qp6#LBU8&vm>}LC7E7erMtk95n8YwV_$oQ1+kU zwgV;HUE6L9gdCDO)WZPw909nNHahe2%uckvdfg$gx}T^kHd)z}6X?8)_~G9F0Egd+ z7U0Wv()UGNtToMKr8Fv);EFc(l-Il78+<{~M zRV%rq=(ADVw}snxAu+?Lw+SR4Na$#vf%e{ySuKW+ViW)Xry;T(p=*q7EHbo3xydI6 zB)8a;^XJb@M9A1}jZovKmt|W19vaNh7=pIf)Z)84--g%5{{ZdNCE>!thZ@;QLsGqI zI0k|%1Q0#PWA-E-hDdjH4)U5%m)=^f>PWcfk;^HO(7&cN<#>J6@jpMV`ozTH3;e|i z;MgtQ31=BFmMbqT6zTB(L_Exl$^aYE{QjL&4D6tRspf|(TuB2`fs-FwxFeGha^uHV z8B4dOKrOFm3J4`s{15BBba{ak;uO;~4g{5wcV%fB<@_|2-a8Dk$g+SzVXtZ^AOI8( zk)!9T%GQ?W2TpW~TGu#QpwOpfYfD%{_X02s3X>--AIxcq3=HY})!p{^E_6d- zztLST?(b`Q^^y>Pdg0F&C=o`qHSXB?@-@SLddR`b?;9(fw?vyZEm@XkzE<6Fd`}Pp zMhvcs%eGD&xVMix@JEl+&t8rxA!Cbw$xB@u92-Ot)m89MCOaWjz+nulYeT~Wg01)kLeJ8O#LexR#ziLhT zl1~sj2i$~_?;t8{fOYvtj`4?MaZkkJ06jO-uVwmAh2R;3!?qZ^S*=RjI}STHt=^9p zleX|D{In6p^zgQcVzG@mi2jU00BjI9x?!}q`JYfylilWw<$WP%bnF7NRcrU zjCL~AEG9$8lPN!vPo6+>KOZFT?bDIO;&MtoJ9kjlmuTjbNsMkzwmKC9#o6JGYmtUtO$vdx9FEH=@L9A6k@3Er zgA(YR0Te$}7^EcRqo+T0di*2&JN#b!L+zZE4#4~={6zdh^sWV4*y;}~G*^zD8c%97 z@jQJ#M3ryYbPh3$!(rxY=9oqYBf0zJwcy~`j6;cmrPt6Bemg3kd3JYlcK2|}+a19} zJNSLxl?bhn#$>UN4XPo$#p*{OQh}5mAA+nuuTSB4xHR?<_Wkac;uu-*jxb_aLxJ1fWp+7>m|#1Xjy?*NJN|vf<2z$@Il!4(d$B2wA(~v z0rUR=YDo@#29@r|;oKc# zMXet0usdFBH|y8QWBC-7xW4MhSdS$+6;ZDQct7NN!@{>T;kQmpG#*L|6W&=&enzA* zWNgh&bLlJ-N(&X@b_TWy^YDMB`t}k+4uonxiGvu~+pASd*+^%#b~MI{S}G6H`fVQ1 z#|9riA0M{5FqlffGi|c8tq&ElwODG_;`Q&+Sgn~k2jm%e>*qx6f5`8m;aKLH1#?=% z`3;3NiJuo#LvABlx#9tMqX0@l`QY9G{Xp~7kVB1|Qs&ya;a0_((oG~VdL)8YFJK=h zTz&_~@6#+Ht*h6PA#6k%UWviofnZgWVC(*8sk8h2yp8L96c>itAPxM-Wn*Sn;?c)z zj=#F6T|*#w7i#RpiqN~*>G~_JUgU;clol@Jt6Z-U^%_q?MvRfFUFrI$NbX0U%i*YId#4eM$3Z&_5@Y4AJuUb$EODl`%z=yfC+DKJMgc^N z^&h&IHO1LU3g-*sDBGV6Ug+)`5Xi|FDTFdYti0A~91apk>Z1u8 z%Y#Vr-R?DB$;|#7_TD@2{{StXo;hpx65%4fj`Z|CiqlABQh8{*EAdy?#>dXbUzd1< zAj;`OvlFN*^ez&NEdbVozv#Ttf&665-N@OGHIL5c)#H+dscF9}9<hvy~BCuWpq! zmN}Erj0OZSARh;M^RxPO_HXGg>s}Rw!Zr+4?PJGYYv3Q$j=Wo(PNiZU>HUqrv|r*5 z109V&gFW+7Xm3R`wAjeq(Kp0^ttP;4`o0ez>DHb<{zl*+(Z#b*Re_0n2=geMXZth1 z9mZ^BF8&tx-e(-D+Mz6!lC`Dd#3+APpO2HK`SYQ!vmO5cAb(HQzZAlE8}0B)mdBRb zEUY86{{Y#M{kZG*O?K`-!0gmGxT9%L)#mY{FgDy)Lbi_EKmrN>01lCx{!-u#B(hts zfYO#WFx^cR?q9=y?0@~NF*MM3pW)B&xM5fNN~a@^{{V)MkCE-1o?ir$_F=7T^{PMR zz6MAldH`*e-$0mbpoTRHy#@ORV%cDgb7)t#6mPS$maoYV_%YY?9(r0|`JaIXnv|bL zlDJ}AK~otI?4kJcBoW0f3lg@-&`EO;uOB}QSp0wq*!>SlfBVtFiMP4nfABus(&At> zc+o_U?4kJYG>(<=J+EcL^VrS82KS++BVVVV+;nFD0M5J!KPG4G{{Vsg(`>{=wHgV< z{>FdWBI_YIj?Rq_<#{`T5E$|*NIE;#zwq=Kf9H?s=(k^u3E2RC{Zb$K?|_z^u8?2;!lBbPujrq%{fYko8|JGe z$?{)@br=<2Mr`Q}ir)nBiGbgapVV}#zvr$79aSM8{Am%A<+4hOt^I=k02{Aac%LWu zU5tr`hkU$}50VDNaBMHe$?>E1>1w%#!^F?tsU&t{@;R{{XWe@wRyuU-!rGQy+F{h?SQi zb-*465(QE`Z+w@a$^QUQ+!>6&4ntcC2(gMjsA|9Ls{CoQD%hLxAMk22l9+eu-*p-w z9d5dlo19s{w|`G+3iAM9`L42KuF{h_;GAL;ue zBekS;nlR#~r_fd2saGItD-%VYll-Y>Uf zzU)}5_NA8f4z;G^WH8saTJi}SK6**N^#s<*;y(&V{{ZLw6rY6RZSAB|{{XSqGb61L z{i6F)8pTHuFKfQgaT{hL&WD};zaz%?)A4`Qa{~Zw6JP#+z(ivlO#nJ-QxX3FvC{fl zW~cq4aB?n+m2TIQNC4lGw!bO+aq)O2%aETN5gPPcy{Y8y{fD?ne4bU;2@NLK&KkRYtmQZK@ z(^$l+z(~+m?3alMKO9K9d2Hrs&Xnld6Y5>|)Ea#z*#$ z!%Im(j5~Im>+3&~`fsTqYfG;uW5&l$ANr7PP#c7zfA{oNd2u$~)|>cS{>tm$g+GW% z_=A!Bbi(&;Gan3=>tU&2Y*m)Tk?q8CO4G>~4`A3R$9#3Kkf#v;0G!*8i|~%a(LD3o z+Ta+$9w~v_-&O0VJ64m~?re9)#O6Wt4d%jG4L=&IwbEBbW>c7xH7rw2qTybmDhCb#2KqkMVb@c_&S z1bqEey{@rf9_3oQPr9z;e-Jw|Tz*nDu$CxMV=O3(=_|yMyrB6zV1y7f>mc#JgNa=B zyDu=8#I!UPgQC)M87T5~1_>_9c(k=*su>kT;iXoP4kYW0YT;Q(&?vrmfzlDN@v^GT zqhLTREg)()Uz&f~cl!fa{@H!Whx|#!{w!g?4*s2T7?`ThiI*q*#Jeoqnn>nB5MN!D zlqn#o*7wugH~vij0I*Exd@mC}nE8n9Krf7c$+)LK6C7hw0`kqz_AK|j(cEYL(w~P> zG@v4VM`>JH6nN2KEH>NZ0KcIpUmb79{{T`Dw0Urbzy9L+ExCrBu+>#Af3bJG>O^A4 ze`wCplCab2PTaJP$_XvLQ;sM4kKf~?NB;m(xOoGQ;R)sW(49Pm*_tg!$^OQV#vf6F z{{U%U!r9Qikk5z8M00ZJ+-|XP;*JWnnS!J|A`{t~; zKlV<3G-0kjML!gO1$&0Yi4@w2{{V?si_=*Y5~?em9Sw zG%AyMh^0gBKlVj`X#9mVtxNHH`#inCBt|VRP7$q=i?ygjc-J6*Ky-RO7yhHTOfDzz z(h@rb5#pN1Y5BhXi}uIxPw>OFKM6kwzYhNZ3NaFP+?DWHy7X)!JG?X7&^Bxn>4ME9 ztt6bkF(=R150>$d`64VYe zPPgISU+~^n(q^ zRhOqm-6i}kx1AhPc;@b;PC-Vu&Eo){gRj%b9y-v#f6rgjttF4~GV<~iP97T(qWTLw zi~W_q+SV&kmBRiOJ(WVhRqogtMhm|_<!f&}{O`ez z8#W2YIoLU*0-wM$4Cz|jQ_CafM^1rzfAJgro1cQYPR^SH+1;<2?5vlh4NSB-+3w3) zRV1oeig_7kjFF-fi9r4i$6jNHf6T#?3Ed-HMQM})M|!WS`b6yhk#uF4XO_ROnEtEs ziht}u{jO*#$3NhIb!055V>I++f>dHW22zjluesKV*1G#18~$Pbo1A7CfXd#%0{a@J z^LacQIZcj7>aKmW{hYtF?Fr+HC-^nrnEnal)S%^GTH1nyf=CqtaMkozXrb(qx2Hz;b(g+gs^)50Kx1A1do{9DfW}EpSb(<`#-JtWq{mEHR$lK zm6c^H6ZmD{c>43#$abH4(67y#`Ph3tm@0mGn9h#8Z^v3k`m2YZH;&CYW^dGmE-i5K zsTpwH-HDN4J)@jrQ0tXBxw7kghLhvQ_Ikhn0H|;zP??|pL0ztHL3*kDW^zbMM{5^q zq-7V9OI^WWu-Q`E43ptT*2kmP+bEE)Q2nfKW&X~Up{rC)dnH)vnyOnuYcK9*co>lry$Ll zAzNH7CdpZ0YQ`TR4FCWd`2)|78tFM6=b9v*=kMU5xLF2|2jNMHGveA>qL;7IP(XHx zKtWXvwU_5(&#)Z90zDh{)8$_g)}jb2$aJh^93@R(3|@b>n&@ z9q-4Ie!z9E&+0rw7$Red*O>lStl^*5n5gjL76C)8pVFyilz+3AWx83bK^TN9#tT`@n?xJh^CtuOA;hI6tfLgk~;i?L+od!+%+E7J|}S zuVMPqvtvK9Z{cn&GBwvV_>VmczMXq1CSe@fg-5a}S!3J82|{Do(NIY`>#-lzxWe4Q zzz)D5JNm;PDJ_xU1JEx~h9)y8x);u09ln8vQ!v7864>W zw|oNgjwR>J1@-Et;>h8nhaC(yCFIW1qa@4%@m@fU4TnD)9^GrMnww5@sJRY&E5!%% z?25bJI5?t-qsrTq3kGg!*OoqK97x>>;vCjIwM5V9hLmit=zU^FijNRVWF*p1$gz@mrzk|g2Kjq~7bweD@aHi|%n|2}ZA&t}Tq5@9k%~ri$ z#VEd~7-iaqvYZu_)DmN3`E{}m!3RWj4#H2L@}67mXhH4{4H^$r_0IFIWvTTR5(pY! z=FHQwh?s>TlydmlK2G?w0x4nBSyAm4W2?yMxtmYuG43#Py0ZeiFyyPWV zZ|%v4w~GCT&!4xI=ZZ-H8Fn8uTx1Mxk&O^P#;ez@>Q5b}KB@IXL>f&m6067(GU%M9ekOq{G2guR+=wMj|?E$?&KT=dVxt)B} zy-bXvNRq9beBPq+SBhzbjsp+~Za^R&;ox{DTG;7!7M6?C@2@2u5NXJE>ZWPRR=m(Q zU$@%Xi_{`ZQY%lO!6R+~oDRPDT(Bs+<+NZkGHgv18_`QeL`Jj+-%B zwnR{pLr(n4pqQie77zNpP`mpNk^t~OZL=Q@v!N-Z>2F%RfhOEX#T40E*(wmaO^de=hKeZW)Uq)EfZHAm5Bk1!tsaRd z4t$`8Gi|j*rpe`T0Z7&KA^!k}sf&_#M0Y-{g~AUYHkb0QkCFz+`+RjV@ZcLmbkE@9 zW3uGix{j@INVXNR)T_vZCoUQVf!Oh&bap)X0jB9j zWU^VjWRS~<$KgF>nG$GYv>Rak<7Z{%pr`usKd(&x0NH5UT|=!Xmxg2k?Qqk#b%|#? zOSp{LY^E;}ki^U_@qtnm^qm;7c$@>sjgp&EqeXu=4?jl2e^5ab0k3{%eHYibfA!WG zkhQXdW0)27`K(IsW&SAFxg4_N>EUIKHx#f25|!fG8UarC$SQ0PaM0*3<2ZL4<>;B0 z{!GCze{hh~*p%IV)BI2E^}^(F7)dX83{!KcqTFIQv>dBU$Hvf|uD9+~9ys}T{^1qn z%!i2o0FpRkT5=Lkq57!XeZTnMj>O=qVmnHvKQmuOyq08w8lXA_jf`QLn};t@4*N{!sCFB19k+9K=)Q?ZCuU&Sw3%Rg8pW7G=WH`%~DADw1o@)^)mcl6K zD~;^CF=NDRX@K#g*ULDrY*fBGoxYXOf3@>&GWjvmI(D1BuKmh2X?Hbwql)$dD$%;_ zcvudxsUun={{T=v4*vi*?a~r(au{;9&s$gr0V7*vZ_!E`H(VIwq|n5P$t4ZRS6~v_ z0F&Sm=gHQGOhJNZZJokqE*{sk0lFH^Y1&ymJXUJrx|L$8%OG%@aL4Wji8}jeeEA^! z0dsO*U^=BFhE})$4Jh}khLt7yiW$`dk0xa(uOH7oS|G33==k&1#|&$RYWe*Yqrv!_ zf&x0v(Y0#mXk1wgVR@ic5=aKvMt=GOmVojB{=E&{I!d;YN0&8!!`@zTxVfa*rJgEk0}n{uMgLlNstvP~D!2?*b%B!mX? z2FmFD!9QW-fzczuIgUOPZu%g2<*cBE$lUF^mTT6ZIb^dsB+Ot8oAd11*PkBVJu)!j zj%{f}>p(TN^|6Op=AOGObw*=gLb_q=BM?g#`;G%B@x@ zC8>Pz1zKamMPG0PaZr4J>N?iO&s=cKYeRzup11J2O1c&h32lMfx-Kj=D`woQLpyK# zs~b2Tnecgg7i8#xqo8&VLykD_HcP!aefpz*9w)mnVrS?mz(T!ih*>zulag3y=K*wye3Z{Bl>#S`8B=-z zqX%01^5yb1)6rqzYe9_KB)Bjc{kD=m2+OY|Rn{4fY8eUim`7kRln`~Hv!kt_Jr*a! zd0pkdkFu*^Z-?Zu?x1Pp`c>--lPo4SSope@36D(#meJkpO#upm9_Dorm zl+Ww8ym%kUhvWQw^x2YAt6it68}RbqlF!2X;KxJ3Bf|r|1=;&_tTDJg*zEx4va@HR zH99F~@64jl^z+!pe|COXww!ysuV zlZZ}CG~S}ARvc8X^w(6Cg7dpU%pkSwCfq2fyoNIj)$7BKxYoTTkJ7G?11BAk$m_!b zIUkL#wfpoOOK`*T09#%3C^I#V776-(>FRjtWyeV}TEnvG$3HsGxzST7bET(S8A*?-dub^YeVWPNV7&YqU4Ps(Iod)P2*l zOJ3obyYx}t?_O3J?#Fsg+p63MUqu+JqJ{AroedD$A&AzAA3ZH3vN^?#Xw$Ce(v&bv z_hfxvO^TIV)$F`bWoEOM8{XD5KJ`B(Z^h)+ zOTNgNdy3~gZe;hKJjMs2;a^*BN61|tACv$O>(J!J2E-gSH?IEx6y!LFo#%7Zorw#v zmOSh^n1b*Mvnn9e1ra{{8OD*@zYdSxw-QPBCW1|8db7KACdlJ>a49? zPwGS%>3yd}22epGUn9>@_r1)i4TN*U9`@KYeYH{1+sI0_@)Om;Tt=1LJE9J2r3%jn zfI;9-6R)0?k`m$N00Hg#B&EYj0L}-|O4qrSN4G(#MP?*Iq%dY!$AY0G2Sa6;0khz* zQtUX4Tfq7K7Y`fmlB?YkWT8nQu~R4*$RvpC*x&-v@8?9WoAuDwgV3KF3w+~N^yTs9 zfgH{@**E*>j7t-w(5yM@5`}eFif#^VBZ96+jerRW_x^x+>X>;611U6mr(uD>(KZuJ zZW{BYL3*mn++?xFW-L=d2p;V#jU8)14;tT|i0I2*tpIB6DKlQf<#k`8Ni1AbT`ssG9jZg8bI);?~9}Iv|C3 zmx!+Rk+z9DWdJE4kQ+mK2JC^l5&3JL{{ZP8S4ihm3Ob%v{z|k{%ZJ2R64+^Hk{LZI zDn`gkrw%{OE5!LHWNVj@-A*EA#sJC)KDL--u3^aVDRS-nJW*Jl);iWf)frw0_{bfZ zc`E={OZf*4c^mWNdl`;91QW~C(FYJ?bF*|#$CJd`u*nt@<|$esEH)bZGv1exP!$OU zc%W@BfXqlIKn{u+UQLmwBAmlEHw?`OnuPe@s$R$qzHpaZa zxNHJQ2bV#`1DDKAjjE7%tXWzd>-OeWUta_Gb=uO|yN&+JWjhAPQ-ogpNas{Zz7bXN;z9qr+T=o7>Av2f5=vH8Welmk@*_++2GQ~l`E6`oDh80*8cF#i=4%9nuLKUu zfUBUzKYCy?TeAvGtq77oP@OU+w!jxLg5>;?2hWas;D^dyU3|TLlomwa?Xk|I_sK)! z=g(ZZl3QPt5UdCy3AoitFI$ljo&GMb_67UGrD%=&cqFvDj&$_v)Zzy45Pd8`Z$y zR05ruAmkE5w^G4CUvDn}o+pa0=z1(TXoZ9Bsv(a2pb^hO`zdL=lNPH|)U>lz@+}PY z<>X2gau28Ks4S&VHBtBZJJIQ35{iQlSNG-b%JJ(^#cw5q&_#hZQ8Bo$?1n z_$TMjN<$=v%u^5tv`{2`KDL;(erpoVYD|QXR3%mz$0nIof|8(+L3KLvJdoPZ(dnn* zUR{}}Zp=%b(n$N{qv&@YLY;^|hgQeragZko47UI(yJ5B((O`4{U(vKrM1BfT1HiWZ z+FiIw!Os!U{qscDovp~WZFc+=K9QD5T^(nRSlv$mK>^|?Wbb+;YkdqyUzAZ+Y}1Ej zYe08Y6Ts?ztN2P}QIrVDgOT3+9$O>Y7z6qPvG8>R4JKm1+6S3Kl+5F>0CZ3}sjxD@ zrqa~JWTdQ-iDjwlL;~%eFJT3lwiq{^hVi|0Z^J+Gm*}DRm%L>p{J&)lUhOkd#yzB( zp^C5`t5tBaFBO%UiSx%ytFP{#@&s-Wk>L$~?JntFTa|#2JAM3+;9_hj79S3^;vy|W zE5xem2A)PImd1hC_qXF`$4W(oc79(p7RvVMLHHrehU}|qD}PsBW%Sw#mV-zWLAi*D z2VUm(5)ZVEbuNlaGy<%WyntFhHjJ-P;EJ3Tv%+ZPu4I6-2_7Woe3mDP@}z6;=dLiw z&@W`z#9|vnZR)!4XC`?o+rJh@S@rFikz-|Iu(>bxDyq92kDuE|tK@qvrjdUfW7l<6n+qUWCao-u>pvLW60Xs5 z2agQ{qDdo%*pD3q;bkW?X(q?z&>a+%Sn9}@tYsF2QO1at0A@`P7?l8cT_3SNK6*5` z6QMc|eLcCRqsEP#?GR!|oZ6n0RIkUe>a0^qq+bCJ&y%yiKOP7^HPaH{gpV$0C)SdZ zNHdqdx7c3Glg|+lRk22_(==>Ij>hF}HubVSx;rO(1P{}u@UTacfXqnr{b@MdOET!i z4K$ZkmKqfd@y4MU%|(7~`hrK1qCPxyfpLq;(JK6T2C^?R;xaipXVA&EG7NA8MhWL2 z(9n?>9$Z2BBoEi)t$a*nt`C0vy+3uG4TExM?W^x~H#T<`lGUI6*~KHg;99W`!!S|3 zlyl_(+K)TeoolIXEufcm(Av-vgQb4|0O?QRF7}epT!t=<-&50B6b3A(mi4H>&?nEG zZ|8plqPM}Ldm%=~Jdn|{la|MC*^)|iZAP^t)F}a!M*Il{LpqhwU3otw{Q2p2czz~G z&YS!F{8ik@^OnC#3L7bf#pUh8e<1R_Nhptu(=l?#k>$Y%RB!H<_}UV7eh4tKO&}JB z_()#iZo2HHzNX!06=)0Bl$2uaAuphLpLWL*IT8-^PQG?}Gw@D~d7N8)=~$51^0%6L z8M0XjudT?%o2cK(S57?Lqbz)`!;m0^VHo?%WL^$U&(`Viqr?0>6iqn{;9 z7?vIdcAgSiMdVY9f}rf^Du4#`2qUDhxMuF!Bhel#Fg|MAs?smh8+6xMKEX|3=gK`98%O40~RCDx@9#j>zb-G(FxKCb<%K^$O8O-LrgjQG5xlLu7gC)64^Cf*jp6^;9^(_ZPm)x~`n}Y2L9#O<3twiB8tkL+R0gQmRUk$$lK` zZJ>VMI_zBK><)3DK8bUIO6JGc*pe9hG+yK_#Tcw* zb*=H&o$sv=`s;Ai^0ON5t#^2{4SX;?hT<3pWpjc5J6{@KTuke|JP#rD!S7X`~=SG=2xULn?wc zp6&7dPv}oUgAPF?Y@B`#<%II}uacDY`+|%qlQwXYMGAoM-h_WJl2is93DS8#IvXFT z9Zc|o+|DEc(Q_tyKx=^@aw5WkquqVelf=Ed^f2Pw(mZS{#T=%&QxhqVkHK&PYv;rH zB#k28D#-zFG0Une$$KKUmfdC1!lC6SH0B1(lLb!LG>mgdjLz~bZ2&+2vn=@W=+ ze2)gtKVR7#PaJ`<*5ukRF^6#!cj@;O9DPV*Dno>vfD0Pd z%W{|59Kt>~4oV@Z_ks- z8w&s+<{YU0$j`!(?>njg00H+%OB3XAH=cpXRZ7b=qwU7e=F8AcpxXSW#3B;)k6cu6==zd=sVtPbM@GEo%_>r1_%{PY3cTNV? znc#}iooXzAM99vK7~YFU;gtKF?0}L2JRc{bz}ez(@f&BcvGL}e!Q!z{zL|M@9TlqI z<2G1Vx0IU)VzpSf$}7tvDhmvGpDetiS5csSyo#PD$vrU?&3t6a3pzu^nD@iCqxZvS~+gwS!8Kx)SdqOEU)|g z!eCx31JI{w{x$Xu$ZW|aEbJ4s!fJwMbPXf&C({GL2Z#ngXasWKk<)mn+V|&>SQ{-o zR~p01rY156A~ZMBsIJ%Up4hp1ywF{b3WBrCc2@=om;xJ$l7u&sHh)pAoehpWULCRt z39TxJ-r*%D5y6LynVZ+{lj5!(&L&xI_b=4f;9YsRA`pek1_S3x2cJIRzjE4Tk7@qk zcgaMJfx|uBl?QLId01Is?wi*!5)C@S@~+4&{IIIb=3)U^89{X45+ z@c4NFEphrH6SYd0u^)5y9CziZ4+w9jh@2&Ldhd9_s6xkv|w=n>%l*<9bQPMBo??3Rb>+iv&H#$ z*QY<8$~PO_{mV6Pt!OJXC{z&&q-tJXDygygLavUr@_8Q{*FzYoV6rs8!Va2&ZQ#7=yzXxE>zD#lkE zZkfu`#{mpd9%%#2u7pP0lVm9@TaOji$>vG%<;gg^!#qYENmiQ_b@22p=&B10DVF8` z0P6?7vW13Z46-;?VyFuiR#L-SU%3bO>PH*JHr*K3y8M#SVr6@?-uq_z3+lOQ{-!@5 zEB7@kyrYd~No3%GUHwHN_6P@Lr_brs!NxHT^GO)A8q}ALm=sjpAj%6Z2S)mDwET?Q|8B9o${OrDVHb7O;@=9~+OG z6eJ!ekC4C)8VcI*0X1d+K`Z2K zg6rF%r8^rt>WqXv#j(37_5D4QazluF!E1|8Z4-yPGV^0AzC!KkGTvgAI~9qRv?vG0 zwuM!IJ7Pik_y<>Hj9@vPuYPHH#PRjiXRYF$5Ob z4YR+Ux5(bQUP&I(2qRPSOS*TR2@8$gSo~vD#yzKTUCb;eXH|)O0_o~EjThPf08!Ch zh#*r!kvvTD4b#$hb{d(b{61Xegmq|9RZAi`3!uQZ%MhS|Ngh8_uCyB#Qd|atsNJg> zB5BI&B?ddk4{Fj`i!XB2amu1K5uL}j(yuOH^535y9z1>eQL{9X`DnLl=V)@`hCnWY zT;GTg!5E|bLJv^Jr;x7B%{!76W#oJ|*_TBB0CV>1Q#@^L4Ly~yIDpzMZTBHKz0)pA zD$}b$EhH_tkGj+YzFF!3nUjxaKFGntTQHOS=SK-CPm(%)|1i z(D?g!{XA=?UBhMn007$cOPH%bcXoc7j2p^i5%~ z!ZHr}s~#^GS@K3{6%whCnWOZPS|AB-aw8I~RYtTnHozaAhlb(obF7;EJ-e+IVQ}wz zjE0Ij-*eTaB}B)&Ocj%S3PT&Jme(%?ZCJQJK2MNzHEG)oxvnIE?5iVi?H38mLYf(@ zeqQ7aVJClGtwhNp1R*3w4jICYYuvvhYN~t_u8i2)<8Jg;o$)v{9$t#WCGOqGrCI7% zmluAreLT@dOT`$_-=qh*iQst+XaGD8T>wu5Y+aQGY%6OkNhyjH@mVVOQKP3$M-fFD zN)(F{JCtSg!)R-Q><#F$o&5B+B1S$iS-CY`P+J6YJhDAKd2>;DEHzv`jFj6mL6zz$WVVWL!m0NENl;s=4#FJ}NJhj=cJnK9}l) zw2{7s%Ln8S6YkoSK2jIgvq98& z9(DHkA$Xa-P%{Ja^+Sw3r0Jrz*SCg9sxDXf`aP)&NYz59pG;gB)Pk+Z@a4yVJefv= zXhf5~HrIwt@61xXU{SDCYh&?OtmG}@ZzNQ$SC%BGl6oyO7>gnlVa(}@Coi}o;DgeQ z9w>0Ew5TLuX(NzQIQx~>EGxx%F<6mu@zDeyj)Li(8%sqH zHq_eaIJ=o)PEhWwHCKt`GTTX7Iiq;lBJ`qk1UXQucDs?augsbNjcSJ-9r*wk`mGEH z6N%>}`w}nWrt|&L+pSwUZxe{^`Li^IcGuMuU=_VRym7EbZbXoFKqH$k9-NC05s-#D zoYBu?>D6e={vKR%jR5MIhPEp_kBM6uyfvAmu8frB0ai|BjG{(9BGbGX@Jnb~I%PT~ zif>vVgX3K&{2N@~Gi}x=bV&>_ZjT2ybX>edGQ%oU($8ap#_a#>77u?!i2 zQb-yb8qwEG&H0)}!JnwCYq#t?34Jp&+qGJ)c$BiND8zXT zeTRT5d4Qm9FagouM~8|tmP2-L<;f+5#4|B$+ntqu#(Oo7%1?-V^l{RTJ1P9QCD45h z4;~w8ipk+f(AWSFS9H!MfHm<^CMHHm15W<{r=neM?rZp{XZAi<>(V&UqYNj262*z} z%rg++5(saR<6U+WiM~NcL+G2tVxy8ggI6gy{{Rs0xS-S}G2EKGf>#83LxVhVJbZMj z+8~`BFEW3-&>m!EW_F#{eDg^gvV*dEZuYKi-H3k$$s}s9B3xyQ)0aSn4&-u10hphV zQM|D}S;EZ1No1G3*dyR}^y-+wV)}M)bWt6o>fshKS`9Zu_NF%KjVAYd2!;HwIRYDWU~s91JWr z#mMAWi%5j%@=!Oej)ch~aL5K%x8!>ICSc-hm-}Cqx&8A|*DCg{Mz2b&ldW>CER-tn z<034K9Z)bJD=88HPmK|vSaiE^jngsALe6#}vb>j{G1z({n;F{jWU!!4WxOnLYo_6f zJdB5vDi&|cCju0o9(jCuCqa=llq?cA2<;(`@aXH+SNM+JNe(Z#1TcL~(%DJ(i zc3HUUP7C)0F2;d9C5gtE-%d4qDLC&5`9CjF)gMNlZxMSbV;grNcB!iOTB^J*s@jG^ z@u?@==-j@`r1S0?1Ir}s%-3j{ekNkmk;f_b_#!Cx22Q=n^R{w93{KOhG~!HAP3?Ce zkes;0d=sF)LDx+>9L~zqrF_!k7e3ka9~46VCRgp*p2TfCR8Od<3Z+!y;y3)k2q62J z3W5kBe&>BsEOBgk2-j7qhvUXJ7fHDJj*4Ns&mWcg>2hMOHpOcOsrq_Q`nBA#1T!fm zz0W7xdh@LT(+>siE_+D7fI*v%InULengm3h?HgB%5Yy&inXekwZZ+-#qk57fF9keV z2uJ0x4$%)!VMLKY7|J74{HNQ;BQS3aW@E`*&$NO zcdZ4`*T^gfo~a~nW3x7Z<*zh0Nf~v#is+ijcQ#t9idpPU8g?ZjzM_=74O!vp2J)qg z7hXgKZbbOkOS#Xp_q@|qjHu1YMz_cj zvO4TG4bAgPb-j>qxHo5TK43Z`#dNKdgAG?FT+&2Xmq=yxQXTmcs8i&*Jh$Kxzs=Ry zGQTTG>#5aNXFKsf+cXH$)b!n>=>1%tj4|20{MaLQVd=(K$nZfY*x>O$`h0BkX)uM& z(^oACpqL80%DqGI&O28!zr%ZnAqAT$A%jrHMDUi3GKAS7ROz%fb*-OwOh1LcAd%z> zOk#LMo*QIq2UQULt7{7<(Ads)-eKK>JZoA{S!85xWyG6k)Tv@X{J!9I;Pn|x3rkMu zFX6`y!6RthDERwVwWr65D~gX8NZgLRqHv*@lCc-!$6_be&VV3mT~=H}yg=6t`JD&J z4n7=YeK=Qh_wYc=POVg+DF_BONV!WRnAN$KK^gXYhr7vr_$%@>I$h6f0rDa|Fe z&ttA-GF9b*S)+|3Qn2tkWRX;c0SH~O9yj;jOh1UnlG)~3@jqP9jk@bf4$pAMUe%cM zwJgndmc+5l%Cjbhm<@l2^#}U&XgH*fXe?%nFB!xnnnNWIf~Z*SjGh}7E!LH*Nme6W zgL!lT%X?U#<`q1_{{Ypo$-V;-VS{5gtAW?aE_ma%gJjWl=4A z1}O`R6EgDtc7Y|6p0oh-@O*V(+5oY?4ZqsVo5zWw#i^_YVukwGWU7_ozYIod>ZUGG zk0IGu=(2(tb@E1!$>^=Ym-%Z@qYooXwhhv|rgAge$JDOWs#nGxhcgs;A!Qq5$y36X z(IkRN8$TUfy?|tPl#PnS0O};y#eFU%b5-H9jmpJ6a>hoD!m7;M1wygd2jm8CpMpW@ zsj#eR2J8(`ju5zK8U*!hHQN~(ev0fe*^$vhOay=-47)_|Bm}cD1KsWW>~x+phX-(cx-;h_~!~Xy{v)fge z>+sPB z@dONy77DZCd(Im9MS>Z#8A_=v2nVU^cq`;A0Z38AD>Ej?kWPu{QOMR-O-=lj*~Fa) zvCm8U{Z@&I?_7nKiW#M#_(YYBca`2F31a1RU_2~Fp}8c0`ECAgL*RJO@I}lGbYc>9Xug3S9unzV z?><+JE0GZvhMuRVGGg8h4zVsELb9DXzacJ!B$l35#Rqu_Y(e07ly4m{w~q|1@(-Pnv$6$G5AeYw&8>odiYCEE z8~u`U_eJA-hG8jINWC|a%GnPj#%?kCij5Ejka3lPJbY=qc;86FjVBN-#)0;}-$b{9 z(%(1cAEJ%OUB=j;@(5$ZQb};sCSt=18d@?e zOT}jOTURBuMWmIZ5X#=Hi8LWSMr|ljtw_8FB4i*9@1}`?&ZaaUUaFJe;?1a{4<*R^ zb0JVx5mmYTeV9uiLL&$Jd6Pi>|^8OLU_dGt5EQ2bSn z`ZV3)+nO(1(R;Pf`h}sHO9YgF!ZITo1IG?}C)#=e#o{TfnW5CSC;p;#R_Bat1@qYt zg0Pu4t31~(V5qH$`9!dvS{UTwBv~eITwHOC?oN9eUOv`6Hp3L6%`x3Mdo1YZ!^<@m z(|6N*S6g;*sd5LqmhJqkJF2lnSjN|xt1qf2Dx{{EphwW(AAkrQ7ZD6jXk(6Rx~{3m zmJ^kyGkRXCZY%kCVhMM*63sZtCVH#rszW4RS53YqGF68U5)XHtS{4j*W48@0?RinUwN*z1j+VpioIZ-y^^sWQg4;0oo3|61+AC zNC|d`PA07RNHRG&vZSimtd(n#4>o1w3Fb!^;sWv@p;sMFBl~2yo4cZQC($=FEoc@= z-{h5TE#&A`ywT9BJVE26WZZJr;+yos9fV=UkDm>%9yPq#gED3}n5@#r-Pk9lt2J)h zp*37x*(+i#_Wgq_b*u*9FECY+*}!A&<`|6-6`6vAy>%F=WDOCp0Y{MI=UcV_f=$HlzWy0LG z(_^XK85zB7OcgCObIhcfg8LA$3ZyeEdH}DTkjGlqn8e!)q9M%t+m}T; z{oQUUe}+5A@f2GYjYkrC9>yi%VgiIiE`)#rJRj4pWQ}`Ur4g#r!sGcinhE)JM$pgp z?dZiz4Uonw%ltV$w!f+bhkRVHV!z7dTYKJ{eh)|S%gck?n@a4YI@eBw zD&$E{jk;BFtCq%Fl1F&}wd7(735zbqcOamHl5MTGcH{Gc)_@6}aveXHHn@)c*wQoOh8K$Vx*ne+pZ=|8{A9q@|dMu1r4w!1|DoP4@$n9h-rMmISbl8Sukqe_pfO8xJ`$nAxm&UdR zk6A4g`)C=DM1~#GwnLuij!GVR>Ei5Mf$;Y7Rv|*N%;daks>*n##*#&mA82`dj({8S zFYwy?aQN(tg=lMm%6z{>RI7@=ij>DS%JDsCt0+l9bgVXtzN-RC`9Yp zrs_$(IV}@23o1t0>+Xubax8_(&(kDV{WxcI4eDxIu3=0r~|TZqJmmn}P{45yuQunBriwN*j@WM_TY?EJnE#wkJSz>{7hko7UYc zx*ORwmjQLQsx7hBpm?fB6~fS#vnAP;Qp9Ydmlli?d7fuXc@wkX@1{6|2yR9JXI=UB zLY7A|+D+QO%h?93EJU?Fj#!ay>(u8}or!gU_^@fYvl1Bj4oBPqgb_WF7hRA!@9BFj z93x1CfOiTfy?+fWT#icTJ={IDEx1xPo`5pGG^89*sxH05N#(xFtsRrr?hnD0pvure z-uZeX#`gFPX*va6#NoS#x9BbsF6+-_=A=zJ6Hf{}Rs@phhCqXpY#pibr`bB!Sy=h2 z5t2X3bYw)axZ8mtG{;J04G~{;bHsOUQfm@by*6qIAmF1RcO0scN?BD@I+j@Zb6s-TAv~Rv z)us&u5pB|ribI5XfnfzgO)eibB=gt;iCBsL@5bzy}Gfav0ch~hnKA)TM>zs#E~kY9JT@o_%KilbL6CGh=I|~A#}ra zMoP!LxDwmzv0TNqYWV8;zTM1Z?74P=+N-qbxeF%-^&M4XJ1gMv_YWI81e*Y}W zRcs~-d_g%~T{Ybd`23!J{x&N1O`1jqY3GtCSl5Y*5vP4~LR6O99Rd%MI(Bw{Y&pkU zTBnC%n-fdO^6o8EEvlHR&faVM|nhh3`@7;+B25RC;sKHhxqre?#iILUj`4l4^T zYa>mx-~A&iEY<$9Ty93w+2IV3qbk1=vJ=O8<;Tk?@JHMC=_1&o7eqJFCj$wDxwl$` zL^(X^YjET!3GUcwEK4*<7P*gF;kF(Ig6w!3VZV-vhQosU4ZG%vguvn_V|@9C>D>c! zH4SQ&B7&tgvn$6E2)7@op^p^>w#%SE+0o>nosNpq(AQ>ehf66uP8rNC&f+gb%=sK8 zqH=lK@y=37R?%l@y$9DI?Id7=Lj$3rHb@|i9+RF2G4@6E2{~gfpyEjVJE1>{cGdjN zOm-T@1hr`zUTY(jXDR_9*JG0w`1}4+28rtNVVLFu-z`w>{?QmBZ;_-DRd*wdF z$~2BRiB?FVEfj%3E3dc4_2*mp>8T-WO+0F=h~ed~r;&c4H&-8dDy4gC1uHRnRXs&< zA_-N3q=36_M?RwmU4EpW8y==+J=Ps2t7C;?9LH6=rj@_F{8m+x!db;op>}M@jpUW& zvus#F7pRC>sEt^0eW^ST<^w=@>FgNrBh2l6zH5G76k8cMhuPl#o&8l_g^J6QhSVQS zxXSRx9JHJS4rC*O9jgZ471o#ykij|2rUsX4!=U}>a_*;U z=jX{M@VPx<3(4sEmD|u+eHQ$_qVnSYW8VR?Puy=y%bn4NJM()A~+pJbGjv%}m z2Vj7;iNw67#ND%y#ZO$c)~bgRvOr~F6>%cBk?zw4^1%7{>5NYcV+%;o?0x=-^I-7K zdz{AsN^*GX;iASzJvgyg!6P4CZ4ni4G|wT8n~6qN+MSgLd-1NBj|&(#V3EuBO*;(6 z;e@AS*Kc(xkFC!2vyQP|DH$BCrm|Eh8)Sv#1TjIU96mO~TI(7f7YLI#dn64#4{nPq z1&54Hk%EWb>i0|W9?mktfilTTI}>`3A#oXz)ftNdyVr<`Iy`x7k-oOy6G6_x2kf>d z$Gxw(#@j2CcSXFcxYmy~3S{OG2%>H05kv$ zPf+YIYjihT1R0_YpwXf1g;mAho&h3Lv;3rr$&OH*eMo~zBNA1ZmGq?rUrfM_62x_# ziNd&+z2pLR(!Obb!?HGbwP$|mTj5urcAiJgOYSUM{KB!@5##vg=C9v|p*LqOP8z-pTknNdD z62Pwa#J0YAtT4Vewat06xU*jbAsmjBJ8}l2k_WoG=PL?UY=t@#(1zsGMOq@rD%V)u zovb{HK+^P-$EKMqB0;SWTR_C|7~|CIeGv9Pk9Q7Eu2Pj+vgK*UwXBPAvc|5( z0e?-wRaK2+P9%l%utDSt?{Eh0`g(eOQ6sQJ-E^bx;(M;8t5ML#R+`FM`lg;{U5k5P zZ!PSiFC(G8ZW~%U=|3rWjDeV%NJSBIysbXGkdWc~nkx9Lm3t!(pO+bFOfFm3l0|5U zls@!YPGqShGVPRw;8?_Ld~PnPBVTR4g%1wLXV8G|{ds)Wg^TZg>6%%@SCskOl z+?jm7P8*q6=cB7JHL2;rBP=q;$+z{GFy?s?r{Y0R1-=ev5X424xQhX2z9|WNuTQ>c zd2QH{FjroN4*R^eqmVFascHoX>oA5z5;VNIopI6R8_D=qJW~T&?7maXo_#%1S)Rvc z8>+S37b|&Oh+5d*P{H~%3FFYyE{@!oHqp-c3^qw+xAz5 zua&+a8gx_9<*M1T*{J1fbQS>3F)XU8k{&#V9zT${U`XOrc|5w&#KZy2!DM&e{i4Ax zme%Iq)PEl6o1cj>-7h_PV@io;3jD=*-Y->-o-zR&;$&syNCY6+(DFE*@JrebQTM01 zp_sT3=GArwf#!YFEX_3qi)G6AU%HadFF^rrxr-$Oi;hh`Xt8@XQf6+qO%haWF9~5>{(izXKT6*D}e=s`;)d>tpPjD<( z+xzdVtX36{tj->t4}Yr9!{XXJhkNJ9^jjxpcXmbx$7SsH?DJtOPLYR>nObtl5q+^8 zHwEN2%fDw2J`Y-$Cb}kGO?z$kOVhU-k-jYLv2;~Jv|X8##^dZwO(^2xr9Ac)%!;x> z<%>k0mzdgcZ7Doi!3?LR@Z3d?F1JxW-(^l4ib09b9C76Y`hJKj_)ILgI`LyI&w#+Q zp+8k>W%MgVKnUCpiH(Yu(|jlQN%0QiP_^{qSMRD<6OV=gmE?_j{@|ix!(G2G&_|Am zt-Nt&~fp zix46zJr)`bu-Xnncsus;VhP#WvAx8X$r0C`Yw!2b6k(^3S&F@d`>O38)5}k8tw>5_ zmS!=_WH#Cj+>ODTIHP}fS3CMYi=BxQ1X5iSl<9m83E`76PM4FKH^;a4GfE>@gK zqTEn97SVY|tei&y$=hTxi1F6kA3D~$2ZY!8+(p+)2tS4KPG@^A-p}Om7ooFtJC-nW#o#-_d2?wQ@In#dQ^@% zp#nk*PsRTLmUKD#gO@Fh#=Z{6MVAQJ+I&rF^#@;5~+aLgcbcQ?l=uqNie2#P698WIEIk=pL z3A~Ht!o)yAnl05UA zt{2ae+Tpw|P}297jGB!F-)%NVRI8Myl*&gYR@P{9hQyW%#?jC1V4>In?IVf(8~ekT zS@7UPONcsNnpi0uNt5zOOI&MeI(v`NOV8d-i;_h&t=tXiv{A_bMT!uEifnsS6Ri{A zjRCH-0efWvyCz}cbK%@F9WJbnN+v$}!oVzcmO=%yYAFP^eN|>GLo**P+dmrslAr_g z){(`XfYmpK<1!e|6~JBH*1c=sn(ZF)?aZa?Sj#zUwGc3l7$M^sxf6mWF6u`gF`*jQ zz#Acm>obRA8zYMz2>E=Kcs~_u=5Ud@T5n-mdn)ci(o30|8GE1VYrKqVvnhzh!Mvzm zB?QgMwmgp;EwQe<68PFOIo$UB)^IS)GKcJJ6VuUsFKYUj=`&aJRx#Ntbsb};S}{MS z<$?6c00#}{Px=G0PeYO*Twc;o>Y{8UO(a7l-u%=woxhefC|+!bZrQF-H!e<=m?=#> zTu=rCx{u5c>^IRQ4Qxft>GL06=(2xLm|ABp6n5wGS2=q#C6sru4O_J1R%8KWS26%j zn6Vq)hzEXrb$Dj+nj~;GfA@S}ZMSacybw7&4x}clseyFN=zrT*t$SSRzPedvYIEJElFjNpyID zvUxE&VX#j50Y8g#;}2`9?#ET>q-@ef84hh7P48acT~>KdxVu)JPUo$OT5?!hZ*e20 zk@|5*$}|&sUM(l{k;5t2C`X??WWH8MWXlRxW0$MHMTs z)>M>zGs4C=>q@&(D(rFacr z8#=0nvg60Sc(Wp@3S*JT9yYsEhY@^lAJy);t2z1$S)PdwRpu`pIb zYOE8ilE~5o+0==s$PxrsBnDtl#}ZC-61B}OaMW_wZ(rqRV4VSDj!!V_)3&QOtIGaT z_FpZS_3KLjMtDFn#bM{!{RBp(dlCT?HT2aEvDO!yY0{*GMPwa zuYQ@KM%5oltIaGBn(t+OPD5Mwab8ZK@;>45qrQPAb~f(C>3x4xraKDeG#5AX8v~!q zy02NtSe~px)ufVg>hN(+}NW{qps5Qq+N85G z7Kq**mh>Cyto6IL_B!31O$=1AOAUz8r4|F(oq~eT=`jKJ0rqeI0NH>B+d-^05al7R zHQS%XHW@iN+Gw9d)!yTIDP-ceaO7r()2{*lGKsz)mpH)CM20bkoeM}QmyI( z{o-^Kw%U7|A@KDea~%D9eAeU-X^$Xv4fpA)yvqk_Nm7q-9G7YvXUD^HE(?s)?*7-9YT~A^U`M>D>am~(QV_m zDxH=?5`|ApCnqC%EI`>L3D88tn#chM7cLpj$*3NmU*%TLYqIf~45b>_Je2VzRkuCM zakOzuF+~1aODi2X(38pDx95ux1B-032Dl4vEkOC|l*dC0T0Afbt(4AMoqU!a&S!Kh z+#alQ*M`B8Ai+wylgtwCOYxMqBgk*#pf*M|)>}kwbw9PKhYuP4=ma^~{Uc-N6<(}@%Sf3r5t=k!#in_;kTJWxt3j_H9 zr8`j^Ya_|ZMml}?UO*nUVS-{zuhca3AMc{Hd^8ujkCyaSEK**-9NoS?qP2TdM-DpV zykw9UNl~`PMdVcx$+7ZD=l#*qv3O?37F^y__s>+8HwP0O){|O~U60n44t~_`oE8pl z-|cB(w5>JH5Uk?&llJ+OB=yn6!LWLJ2;v>UYvEW@iU9dA0Zrl#Fwn;8=E7 ztVPb_zk|iWV#S$avazJC8DtXJSx}x*Y0x+_dVr8WzJA;3xFUIwFfi9!)6%NGe(CnH zk7tp@1HJ9?Rt)WXS%08xHeTHLxMr(0Gg`=IfX}HF$0EDo88PX0r$8_&7pvA3Vu~5^)0J97)AQ+}b$zKMvnIeK=(wC4+V+;Znms70w}sPuM?RZ%>PEjyUAfp@ z_kx9Q{VhuvYW0?)!|MdHBvM(UECA3h^EqRpIBb)n(yYNaO5*1L(f&VQZ&XL&jI8ku zQ9J!~Kw9qH;x&4iY(m+n)#@d7zanyx8Z|Et_DYl!mnc-IP`cPEdg-vm-V$BfKM$Qr@ zE`S09#^+k!IJmSll5UL-l%A47D*!rKzIA(j5g6|ErBQj6h85CK8I{ekZWiZ!i<6=)%)w)?H zmE@+RpH@KU-yXK8L1H<01$>_y=x>H8TuGoo(KN>4G2T}ku4%n%Udhha&S0&76q7NZ z%=Vpf?OMmv&lOcNM((0dRrx9rGX*ioRe4FsG<<t$q7%X;b9@CZo(Fg4yeaLV04*P4#b z_T?9a@>u7`BU3#|tVB6a`uz30qHzTya{|aHvVZ@ot8lJ(}cvPp794I8ZM>3u^ekN`;odrm+Nf*;1nC#~#OCP^W7RuF5oEjh9Ccw#Ut z1HPJ{;ZITTJV$d=$lu4izD}eG0@1lm*c&Uw)7*Ea0o%&#uzh{{ONZdRNg5wuSKno= z!(tDkGw1=gQlzNjn(uGhi@BG#Xi}CqYx?Y_IqAu!WPeZ%@K7Zn22e*3en}l42R=WG z6rbCzl_0p|xe2&vVaGy}Qt3t0p|ySSECgJkXY9MJ}Eb ze5F-my>MR|9c1xAIRT{THuUXZRZc1hA|P~V-0ywVZM(0Jy6QHAgITV?4;u)r0@1OF3Fxi0fbh}MwV5J4TPD01j4lzf-)|d$iWo}2+ zA(}=7iZY*tCtB&*xR7I-K)&a{?Q2IFk9!^*<6*;)8;@?v3a$#pJf3$YkD7I>ZKH<7 z79volMD~eQP^pV<(z1`r+!XNyo}Z71Mq;OFM}EKUCq60eW1KYD`l(!Z@s^8}bnVTM z4`7!IqJJwY7cK7$0)SWCOBFvG=~rOeA@Le+zDZa3H)BslTAq0$s&Ckm_C;WKmx-C2 z*o{WjmDFqxaV3Ve#k`GmpEnAy@Ek+B_V&>((B_kx@3kS}?qOnOcBeguohF_sy?;>_ zMmr$LPl6a9p9;G91E^*h?aP?x4&2qF1huTzhc3#siSLf`mI=*P$zq`s$f7#a$s(OL zxfYE$mi=|{t$n&z64$Ziw5c~7;%sqjU}YOC)-MTOwalID`Ac}ng|gORvSqCwq*)2B zIDsO(Zu&q_w}at;9eo|JhA=b`M^_PEAr&0`W*F^7n!gN@ zNnRx}T2)R~HwbV+CMen?tq)A0`5jvy16vvJz!hfJw;aMUEUt`eX2}=NRg2%rUhPa| zCl!loQ^WrN5oUQ}64#v$_`cIX@gQwgi|Fr1S~#)cymv9xo6}0r{8xDxS%*p_RKzzTibsrrudMf^p-lgMRP1>)FRm+l^}4!d>Oy6>NhZ;@C}WZ}r!Y*GH>iFp^5&5=t)T zS`9X#%ev8z0_=pnwEN$;r*stAiqMQ}GjOsj%RI3n`m3el#w`tQxD0m0A1lki8|y+= zw6{3kw%(HX$z;gqeo@Oy{{Tr8a`tig7~_2Kxdlg_>~cvOg=*8Ob&e>2(ac4`gM!VhZ*sofvl&k98RaH{|08ISZqcaj& zff2@ww)Uxz`$^~yl19c_(Ufb?=Szkak$~nj51#z~_F8Nm+k&+|I~Qq^-e^Fwa;oeN za}xg(^4b+|T417UZVYq;C@ zM&L8^VKKQ6uDePubEKheQ}a4TrQ2)7mPniFgClEgB5#mW)@@TNUzHT4NW2#dgjfTOaVS)(FX3LR=q7#)(#0 zmqZ_P6;aEGBC<&N8+2QKpF&lkB3HUd$L8dBzoNpkQ+MUjZZ6r$RBT)2&5pZM4>%1CxfEgc#scT;o+>y2@MVZ03FTsyV|w&(GP|+ zVB;`GH3w_u^w(9V<>+?2Q&gUKX^gBcvihqo+2xT`up_}_^*t>&AY6qy@OF0LqmiH8 z)a$;wb_>&f0}F|b?tKv53Fa^LS&nlPe0LQ(^5i2J>RzmWRJMI4nGA|xXrLSbF0vz- z`5$m^I$^xLCI&1$wjShP*XS3W#NqJKN;1DsM7Z%*^B7o{yK33NWTp|DQN<$0iB-gk zC1xeGKu}j;^U(oVf!4G*tStgSC(^6cS~wvfN>1IhR35?nJZch219ye|eCe2uB(~~B zhb^s3983a_W6qoy0-?zVzSAq@?WW6TQn?iPRHn&NyiGU=()Q_yo)yM4h98~9aO zZVWiPgPz2Ghw{Y1m>)T~EJKKFi~NZhmzYGZapg7bDa4a8~~sQ=dZ-`TD&`m zWsm~U;96?*Is@_b=B-h842FTs!WzCkDJZE~Yb0~Eh{Wv`sT8uRmX#t5x+(zn_+J^A ztZZboynatW6FAv$<`5knKi}y}!;YyQUo)MP3!bxxu{l^?IpldGg+oAEM9~4?g9(Bb z;{2JL%w=2AM>Kebkj9dGCNSJJj(3dLZKkSfjz_p-PVDX6r1mC^Vzo+YlNI{7RZ(X{ z3$Z{XXl9XR&?pg?z;79oC{Q#;^sSXKOWad`55lL?S%^`V z6h&l+SPFe`hm#Lc=cyACcB6`w8sa*;{5SalrUz-R{p*qC-`!zHf&4_Y_hyV;8vFaz zKw0g)<~Bc{$P0#$E4tgoQTH$Bj1oTjt7Ov z*SYO=fI1SgSp$Q-nvQ(bPEQK8>@8g7j>t^a#4eSoO!b8pXy!=CF22}FS11>5zR%xw znkcU0a1wPO>*-ds{{R`_$k(;P$Uemj4`s#`5GAsVzHh8 zo_seNL`n9aG{f-LmkB0)k@Nl5d{Gx>l3A#o!PimH^0fDLXRBA5u3Ei{Noos$CW^gT zBd-b>0;HrUF~*Mk~fXiXEu#r7>TO+1fL5?lU>3k*vHb`-{kVDTKzzRKVL)w$WWj?gTc> zvk{3U!b6yWp*r8VuY%T#`m%2q#CgqKMd{F~>`&saW@mB>CL0}<$zMDpc<$E>E5|Cy z!bs(b-Pj2pVWdTM4nQgh)!Nu)aC}TYAs%C;d+TekTv9n)L^1nbw0F~b8>tn{OMe%W zw{fs`l;kniVv-s4VoJ{KByR+VjHA(X{G{z9B{)%I>&3?m6I6x-1I*9|GestU9LX{zdxK{k5rm*v39C9Bu z4Lbh-DeNW^N3rZ{uC)N}KD488G`qhgXElxNyxrPDyYrHjyDC<)IgMT(8!SQ6H?h3% z_Wr#tA(j4c>u+;M;8uPsgT2jbVs$u+?eXNVSQ(XJ&*JV+S@V*xwj{AINgM>^3Z7)~ z97y!Y)`x-_fa=&tStaFm+m3dW!eJWLxtU9gx)9^1MIn&LZ!Kc39JV7Ak&#j1eqT>3 z*nUV)6li{LoOzZ4P*xveKvbo{1IkbHfc(?em=L1k{ zriuK846IPuM5}?w11!kCv`VE<0C+PfDjYE?2+=IZ$Wl6FOjt5H`cX=>cx*N`Cz=x; zj?{4zV!NUd*cAG!-Y zUnZ%S#m5afV6hyQ3c&vW%0T=yELP!&b2JPZZjkI?z7Zl~qdxAel9ial%CSkpM^J$`$Pvi+BidO0y=CHro*-czuC_|HXWm(fKB~?? z6-HvDIN9gOPnL#b1c8W>RSbnWuE6*4U_752Rz7;k;y7n8)3qL&f3?z@1h-&=hrc1s z40UKJ$BvB1vBvT!9+ZMWp&Sn^vT^h0$yOs;>x8Y9z82eRhlS!<+u_xFcjm3fISg1T zSq?WZ+GdmLTWu@XI~-UrAn*f-BS*^b$1a$d#o#_Ro7Y0Nad?I@7qPnc<@OaYXFIk^ zvShHiX`^{wNTGHN%`2%o3ZD!XLZ^N`yBxYoIHmHk^gR{?MpqC5KG%GA!gi)FBbCQV ze$bWTS>C%6UF0gr$hzQovho94Q~7>+^>{dlXNDcOP;GCBX314lq%fV^HOy?e2koBZ z?X0|TpjKr!F@sQUGXRGJYN|BjQE$We!Y+!*(0YOe^gyOg?OsL6%OOg z_Hrm8s?b)7H#oAQp!*5UCHh7SuscKhVJ4d~_NcNuKj z%nhxWlDf$@DO56h^aw4%nN)EEs*jzM(D8VQ8p8n^KV1dauSDk&$C)E+H>msFVSVF| zy?z@tuTYYOX(x7$%!%!euqqTr;kNEd$~gS%M`ZZxIgqj#fqA!IFQUc7@XWYlG=|-E zr!M~h1rOQ%yK}hYpffVdZfuQ7Wwq%^!rBqOB@1imUaGac2yOez>FUc}`l1jvKuPQR>b*I{I%8~Z- z(6JI0Fg>P-`~4PnI}k&3+jYz(26(Ynvvng_*0{#kG+}V@SVJ=zGJqwJ6SYAktdtBpKou(s2Q5$47hpD0D z9dsgGPEg#Vso80qQ<@B7&YYAKn5>2%T$>+K8bvZsB6@}WS#9jdvP0mm#7-H%DBCW# z;d&k(Hn2AI1F=7%9F94fO#n1U;449SsAI9$Y1nGEEsg^uMpvvFM-iJ>@v|G?Z^xwJUYy9az*-723s+TOW_}Qehc{;^1+0!HAr3Ym13~osjd_G z;nmknRPc>JC3WfzkOqN?jyTzFI`>%w7lEdvby`*m^+&6b#-O<*t8!Z6OCcjjQY9$b zap#0fJi1r#OLzqPy3fHGGWc<9H9m;c{GpA~xAaG1tNl)YJKU7>Z;`DcSuV1}Di2gC zidh;Hqr}Ic%GD&A zqMB=9Y9gAGnQei}Jt0713QHZG>%|*h-!TEh=6`O9*dvJKeHwQ#NH_c=l___K%T-Ew zJX9_nqpfwr3viW+L`|P!?L+Jjc;Gd%JlUA&qQw3leNAaxw7MtP^+(~{OyT7wR+4tU zsCaTz`-$%5+)sqP0EW6pA0?35^n;W!rbA<#;i$hK}mhhwf~qF(Rwnli_JU*0n3rtzyDNauy~;*TN!@SZQ7*VhR$6tQqk0 zVdN1p;J2XGzA0&AEs!+Plc@c+PDk9hd$ry(kL@+4W|}B%QQ;i%r>Iejc=aAIhC-Zn zbY=H>9YYMBE@vC|BX0YB=(n)W0>zNwUmj{JAKdv^WsCSr&Mrq;i%Ri=D1rkJu5_r( z7#@C3)d3^P>F3}gZJCV+EbL2}lPGY$eRoL1{x4I0-}?Cuz(tfVnhOHqmsnt zKWg(-14D`v$Z_xnb~6hm2nh|AYp<$T8-bSv4rgk|4Np`2Bw?~JWNdc5NNK@tN)=IE zu6mYV)%uwm)^Nf2NRm5$F?19K*A;532F+N-6$@51*bRh3RJ z61K6=R~|l)O%lY;=^5hQ7^^Jo0nk$+ATK4`4aB}n^3e1n^;qwghbsaQWirYX(egdgK;RXHL|68 zGx%hfSeq1&E;n~}cCCAJ(P;3@0K-Pu+2(77>P3#AbNkUxE&~%%jb^Qe$jg4INTia( za{9<2jyRTo9!!;)l*+p%H*ZsAc`r#lp@ys++7vG@=W(E__?$m;(z9u?FvFP0)P`v5 z#T@3$$v3KFaUyXF#L4K}WJV+@VYXsNLl|7N8tQoI_o@rAUO>=w1W_9mV7d5-8r;s) z%-^-0#?*=!Ya}@jTF9CGKxH8dJe80@Uw-Ef;f8^29z077QZqvBO>^H;I|Z!|7j!04 z@*mkm((i1Ah%y*n-N;qKtHQ|~@Z=(zyTvc3>Ab4jWeFr>nate4d^_BksaAE$- zj#lVFt$8EicGjlP3 z{+LHqCPF;}>L!=T(b)1RUnpa8f-`TRUT+y2V$>3Shb0+>%4B5ERfjd3d+he^T9i{s z6xCZ3%P%KIRp9QfVe&y>k`Q0xtsFz$6Bt-CZ@mqD(%6SKPw$&2r4hf&M4Fh4jy^nk z;i}|2t1T4^)ougArx&jTO%x~Pq>YhMMCLgF9k}cS={zZ#M}sReoww88v`z5Xgw70* z5nz$?Qezp9h-Im+MkKEs(ow$-RsdsyUs@R1L-HbM%M^iULRHzh4kUPM8^fRCG=t?l zhTma&7JpBe+S12mCXeiXDyKhVwXBv)Cy2^rC2E-H61`a?=Ou|?M~Ybuc2$xqT8;FZ zV*Gh|-iWY}2aKeKy7XDth@_F1Im|)-03FoK9i3jrV;^x>7dy*VNZz~23cY@AT#f9< zqs;UDc8p5$Bdh)uk9Y)~c~G(Hk%NUu^Oejd`YL~Q_RUVvjwmO!m%_~?Ur}XBrwZ)I zjIn@Rw2?9y)F@)=+@#sq9WROSqjMPC*8WsJE3t7$0E`erkH^sZD#mxWC{KI3Va4RR zNi(!j$>~;zJb}~GjHC`VatSiJ7dz0;q=qvx!Fd>>A!zfZXjqucLwSlb_f z8=Em2efL@}Upz6U3b(CKT1ShgxRh7nm|6fHDT!_;vDi&>bm+ zJH!6~E~-2kq4UNMzRI&K4=q{Y#Ms8tuN>(D+?E#R<}{IYAycUR;xC>1q-7ris>J5X z@t&Vt>s$5gli~PJ#XP{~+fAL$>crjJ*culj?Y!nbt&Dhynp*rzLo`KJI`eyn8Fb_a z_+cDjypjPi0%lW#bUha9f2W;>r@ge_(5Sngh&gMySGU|ajIErOLZos@2d1D@kt2>$ zwOD%z1hjsilNcm&(hi!%HRd}cXV7omRopoEo+F6_j#@9U-Nvxp$4vdSV8I%{Rs|_c zXOU*$s95L%MuB1h(Hig%K*adZCFE97spLrI@5y=0L=wCiTr>xs{;Rm_6*G4Id_`K9 zs^4)+D)HGKogPak4^4{k^#MZ@1wMUOC6^A;ktS6zTUT@W}j>J zte2vTH**(VmZ*uOSJkKE86p_hUp&`be2)O^Xo6fmHaS1~hg9AN8H6nG@im#d(Fbnp zEz9JWa0x@ z!yVZ=`*Klr`*J!H<#HJA*=4L_5M&Z)SdXaSNdSZ6i5nm<%xB5+0#Z*VQJ8s$!(ONp zL_9q1Zp2y!-P`X)?of{ACeu}AX#~hjGnr*Z_5}ux^^R)$FJ5%Chi zJ09DhIt7(mtp)}LuGMBaSoldTir#C+L`=yS7AN1LT#p5PPmk9UOdCsyfx^z;e#_5G zgalk?U$BbpoUQxS;V_JZ6A>fD52{p-C-O)}v>cJd@*Cv8JbH1w8bK>_(Qi83cdqG- z7X^95hRQ}xws~)&(CbT?rwZ7|lF_vB+o@98dXGh=KKRS>1(a=Drzo1NUDxQ9w+nv05FeDx5SMRwdk0~J+7g< z#g9bO=9QppxKP+$=b>oW#@VfsXO+;vv&g8jC_*$Tkv$x*6t+S*uDy|-9PEWAS#{Ln!m*!xN1LF7zI zB6|*ZYt$to!?nQfe+feoBx~wfzUdS#1kTQ~Gex9?nFt_~ zIEMpYC#=XA(C;pwb1E<#8eGrAk$0<2>9;pxn9k)Pl2n!8onSFT9FZ$G z^E~?tD{q&CVG#SBbnKJIBMS(l)N|~F+y-ddo!L&dM}MOGy?bX7-0dG}5~8#%6?)d9 zpXqGbfCK5IiUCvPgQMen4f^zpK4`DO}0c!}RHx%mTR^%BBlZN_T(&?nm0pT|HZH4xvQ?6axzHt`S+-^k=_ zS6Jl_ETtJ^j0f^nm5G#WGXiu%vw849Rwg8GH^%dSr*n>etfrSAz`sPlo*{U#hOj-gfZoW(f=# zT9dO(CX~BLW)_ds;U~Mx`vV3br~!ck$?Gz19`gSH3Bz@lBTHo3mu380!Q9MclAmqS ze&4jbt^WWrR3jkyIxCE3j8}?n787zoR4+Z?_TQd z{{Z0e2ryUWmIQ&_P(F)!n5p6e$XOA20zeJR-~t>mE-&A=?zJR@i9fh>*HxQW?_8X8 zGIbUtniRD?nB!PU5VOj~ePY^R$?jFr@x%{-)VR6i7{ykUHeP>+<0p-dE!Cj>tw>v! z9{CQ`t76_x1QOI`Ms=1Lqmf!*s|x5gqCkKj%0rKzJ!#L28F~P=4ktTZdT0%E)Pek} zk?m?T=WDg;t(a?Bbyy>^exYHW6joE@G=pHV1eNf>f>)%mCDMW6=y~5nXJMsbB7i)P zGyD#U_gf)X721_(*2m90b>$W2r)o!5Xq}{R?CY`?7EsDg&xIsvG1en6t$&q(gU_O% z!5JgWb?P~*&MPy8za*)XxM<9trFmY}IV5fKIvxl|P0O6of z77$A32`K5IJvu3D>R3!3Xx*^Z`+BBUBC9VD*$DN;N~(V-utEB)VGqv89TOJVof#2% zN8X8NLQFZq@{hf~s$DWUd9r=GCHwX-OH{`?B=Nkm+2s&ulpT&N3o>s^2c%R2bb86h zaELJ(W4B$62B%@S>Zv~ueX>AnpLIKfubT8J`gN(UM<0-}Et-QMBKptejVq~b`=ebe z{GBL2173(Qi9F`=14Y}_YAd4jZEuM?C3v6#{W^VBhb&;j_hEw>nUeM%R(m!rHED}R zWRZ~yK8QL|DwQOXnq#IuOAZsq1ZFKAd3y!7g^klQ$m$1W1K(K=^RGfY9zV0wyYY8b zU6UFZx(RFqjG51ZJ?g4FkR6-ag^xs&0_~3N8!WtL2RZSXunNDC?S9;oH0Gtdy}5HI z0)0)>8CJU-Gpva5D(}JEu8P!n)N@EbC1{?4|lt|G4+YQMz@v^zax5Ldn0eV=|;ku?8SBChK09$2 zv(V$yxhP~Y_3}SY=}q z+0EiOHkLMa$89=msrV%EJQb2;mI0%?0s1S$j$in{s8Rgb(v;$~#?waBJDB-iVcW5;l0bb*D*KGD)F9_IpPak3hc__mvSfps+Vp;aFLay55r#td>(-@8>z{um&o~f_skQdX@L zci&#)_F4FBIEa6IdA1&(u~nyTyf7VbHc&xNF{|zvZo>;R4flB ziPWDU5XY6a9@BigrU`}Zc4lSDH14c;`jqHpsKai>+&)?we^*W_vMW}$A!t$Fcw59q zaX6f|kyI6o70}&$EHfG!23<7+VtaJ=K$8m(hfI0R(0vv=V*Ijaui3ApC z%OsBRuH%)xK&p!=UTUS#tBHIKxdzcc4Fe4F9b3w|BzTS<68``cyUGTqVh~siE+V9P zEcLv_`#2Bc6XYX~mOs_B?(Y#n8n|9ciq;o^4p28eARr9LTLYymoDk!vHK$%{H-Wnj z{8xtel1`&S7NWV!G;@8QDqFwYc?GVM$y()aQoQdJWJe_Ihm36;qFCe{whWA*ZT#3^ zCXPcZEx-#p05#^mkBY;#Pdl{?4u%+`}DsW}+F|I8)aOLQADLH6xBE-XaAx;B{BLvAe<_N%&rZ?jY%MN_96tZ@!xPrht-0 z2}6lHfOfurMV)4QuQ`RWgTvvmc4qEHdo^^8r;w_T<^^&;G`vvr@=4bG^?Xb+$ZkI? zo2K9_J}-}%xmg&y(!WqW)yn~r#M_pxBOtZxprbY}&Po|4tqVycYf8nn4dt38r2#5{ zkkP464#A$o$DDYXe53DW^d1o-q>LE_fIev%+%IcoqsdyvcXZv$nvJJ|quhvtTb(%- zPQw+A%+UHA0p-L@c`nCQ#yPZQipEi3{qXq3OU7_>9Vl%_;8tf{>n2QKsnCG3 z*n#7cVikQQa$;XkT)iGr0wfwbaNFAeJogacqYz7-m|bcddu}%S>b!>#!^<4)e1MxA zwoX<`J-?BKbC)mu1=|w@p>nKfmFTAs&0wb^>YWwz#})D9u#6D9ni(!zIh)g62Hxjo zu?``PIcS>SO%l7K6845qCq{TDo*BrFddmL*Q%)hZe^p8WBnT&I8JUAFnZl?I$(#i8 z$b3h~N29bp%SQ){ZZc05qa_WBe=}OAYIeo?@zBf)Wf~|FCP#={2aNER;zO4#SJWW# z97`YNgV8vbjT?g-qfWKSDU5N$8avj65QE3t!zCr9UYo)y+MVcKSO=>TxjKeYj;!Pr zfC8#{l_U@kN==TMMmR>=ugmo}%`1n;J&;J~hne3q&*Gsj_g(3lSs}*L$Jc=;fu(Z` zLAIxzPooLKuMwNp)sxaApV5=s`8g7hmPRLFrpn55j8Hw{l zifvJ#cNNd(udpZk%E^eMN(nP&MMRd$N-M^bN+jT8b>BTBj(&E3DIk;7V^|!*#`9ZJ z@f<*aHPqjZMspD|CR~a0KW?!{h3sQ)d2clF(3K*E7fll3a3x8f-Psc(GEFgyw z+qy#)E))uVX{N_@U&zwT+n(sF+puG4*qQB0DNeisw9Z;GyW{}$V{ljv`h`^N>!#(B z;>%j@K;)O=5s5(XMuU>BVd-U}?hKR}iSZUPZ71?>S90s>IOdAVJ*&@g$Gwoj%AF7o zSo}W@({6US& zviaE{^-1NDLwe@@YmzQE10!Q$aOA7f;NZ>TZ#hvun`vHg)=iLGQe6{6!T^RyHd* zl2RKNG1d9S1llUHvW`I!SpOyb}VHd5rDf=_w&SY%Ha|@gCu2%_-;zTfPQ#v`SRdnWMPyNSUFh-<@G_989dW4 zg43|(g1-cqs?y{QMaW~IgVM1SM93u~BFQx(vuS>vSeCr`&xT{PVv{FB+@{JRz;i% znS7RrJ1H6@YxEsu<%RshhGcCXaHhDz-7X z9DtwEmMNIlyy}HvpOb8;Mm`tFek7mCzPe|K^c{X4{Z=M35+k_Y0XMln0qxOXSq}cq zcP=M4Hb7XfVrlBqvFl7LNYTHwy)!XZJX9eo9@ve5c1K!G!ZKPi9rv%7%XODD;}Peb z-j~r!cRzH;+x@@V6mMR!PVH-vf51wNBCj(iBB&UG(d@ey2f#Zd@2g1I@Z-V`)N&|i z8pr^*Yp$QVgsGLEHS~~XYGfjBMJ?Lm!17i6t|VVE%ecV>M;7Ja?_EnIjn?@b4R2dt zuT_x`5tYr)Ee&*3JjJ-Pf`s`emZ6Gyewoi1MOBf9f&TzXIRKXOHWT$Hrd%N{w(36l zuR#VhIQWjT4w`TCQSFNQuR$%*vFJ=97370Riz|3{ETEUHg zG}vaD1M-};%>LRaEP-rQ3{uHL#hS|mA{$bpMhI!7M`Z*4U{z<2M0oH|kUG4w=4YIP z>AKE#5ct_bpY1OChY^{pQ!9qFELXCTPw4|B4H%nCBDyYwOr^j&-qbdM-$@9ZeDLZC zv)kLEei-r)B?h%m`q;`6_Z^IFT%486Rm`6buM~U{OYL@LV!LMYb~UfeOQLTHnWW}b zFq}Do8-6na(K+mY|V-l8gAve1?sO^B8*5{PfY_E0|M+?a8ErAuwlI(qY)^K zfw}wA(fGF){`(mlYg6~`sLOk_aQN6{rIO6&@iEI3vrGem#pPx7)Nf@&$)s;SG|V`X zI_V>5X?|L3zsHe1dnjf-rJ15;r48F1%Xqx9{$GFsl>Ns-1~?$iBW^iN8+*P@kcn&T0wW4tSBkL*VlsXgtlSqE%yJ6=_1D^#bkP?*!t}i? zEE1I{YhI<@Fk-5VeJBMvrH)Qwvrjjrsm{whst|Z>fv=Ev*0wqb@iBr8`N(g zf;#jVO&aGLCEIeP?szUG@wC0}uz6oT-4|@$T*XrkNM-9!AxSR7$(h>ZQ)wP4KOzGR zeDpLqNweo$TNf}bbHVXH@#s41>CTY2pAvJTd^y1;vgym{e(hOtcd%HV@5xrLpS|36 zo72gqO-B@Q!2DuZ>p}@&5<@zY-=lF12D-(Y!fOE*M>`qE$g=rBKXc!cacHE}ahVU7&O>^4l8%}Qe0toBswfKzU zNkNUqGB+Fi{%R1xj<1%Z{5LkT41D4v6UPva;u_$#(~AiuV_w3D*dQDowx9#nskyS4 z$gPgN{`qoBaW_RHKeEzZO?MsC?lT2PD}(Pm^$A8w{cBUtTCK}wybh5>Q_+%7F8<3= z4*-zxf(r6IWpM^P0{MjoY<~G9949XxBM4)6BrN(~&hBp1{sRrp=DC~0+exb1T6&60 z9P1>IPaLy1sDa%gh)3?@w*!0uIVTf`Y~Eu|JAXY_K4|<>WAYxUijuy^Nv-4hs&9|PFOOXj`D zGwQ4Oxv5aMQ?R40lU&rMIHd_s(MM?uS6P);@)wf2K|GARU7kQIkapqV)0YV(kkH%F zCl?KvN@SMU2Hm=9o&Gp(Wbs{zjlt%q;J<^?v5&J3In7$G%O9;0JYNc42iQVKwHJsn z1}kE5QwEr&f05cAy{q>?XB#m{V~~PLt08F^to5q)vQgHm-OLw~->)C?Iai9raTsHD zB0pFVADJ5qAS3~>at1nC1v>ZVTMan`{xcUN^2pgX{TDlWYK zzswG-M_N1*IO2%R=TSF9ZTbGeZt%VrF^SHQI_t}~JvoaW%AZb5FWG`_YA7F&UPQadX(cZprONI0GbNZUb=A5CqAh0`?p^zM4ENZd=X?U9Z& zIcPqGX88WqmP>hTmAsE)QL`*|1)OBIOw$uBh}bknvOl|v%d*Fdat*RcVdh+7ls&GH z2D@!ng~T>zIqq?`p8o(v(cBn(R$sgo=;Sk&w{A6F4HI0xw=BYH z$&%!<%doH_XaD_Tf!LUks-~^ysNS5k-}l!iNyE> z<^!65qgY`u*y@;SS8Bzm10{6?7T^lSC~~Ggh3~_)KS&=o*T%~M7VA? z1GxIF&MwB`+R*(8QW=_ANxNeWj=2^dj!H^`?CTLN6e^mDLo$vhl8td* zN*Pp-AfBPPC&d_%=DB~P)hNhkh!?lYPV_ePJvyq^W4o@+XER};x7*gPR;gN>Oj#D& zEDIVWIzmfufg5AmT{gsX*G|3+Oryc&SH7wIJ|7kt;sOZXx}NH~z0sG%XS;g8Y;wrE z;8m=W8J?G>bj-orX;WHY6mUG7KyOhGh+&dR8<;CI*Zjr`~>_**(WgVOE zOcox3VJ5?>&-K&QvdLxB>L+5SgU+m5;w=V0B}TXKa^rl`fnH(>&Cm`+9%Xsy@e|Kt zO@Y?5uJ*Lv+5Q_mnNB!Ks?z#dA&yoGt6AN&WnLrmB8PCN!!qf7l-AecnsvPoMX`j& zNL%8x5(h$c9YN+)s$nL^60!8qFwtSZ`he>?NW*9Y zS_P;lmN^4jK&qlZy>-{>jly=`H!9XlP+GN|y5}1I0Lme~7AIj{xc>kloM^$|vv4c! z1A06@0Yo|9M*IH&rKN`AF*(7qyHI*iC-zksF*$mlh*4LI37VG#l^UIED=3j<_ZL-i ze3KDT{LK{Ls=8KE#q49C@bcDK8=?L`b?GrqixCiw;+`lT{(*K*;)*;?Nqe@`m`tUd zR3Aw?P3ywdg^1%q(*npEV(Q@m2g`r;b)7c}5>s-MlrHa&u3}qjfax4+;c@M}|&{9T^oeaDtIpO8IG>-oO!pOuy z;5zT2)j{5+gRh2#a`qOzI|*TH%@Z>N>GH20q*I~bNC78b%ungorVd~3W_J9(`65Fo zbb!BBxO)5)1h~H2j<03bz-8^?uh6SDIy$n*ftsYr5q@koqE2x}$XIwhhl1V_7`8T7 zu)B4WCMF1GHgz|#Q#owIVkVm{EmppgR$iCm}3;d(Sx_B_?up8d^_WjuZU~Q z>wi7fj{Qe|=Xx0|HOq?}G1sYXDV2o9Js&)S74jr?DXnXMdT$B_udR9g?eIVtLf5)y z2KkAx)9zy3N)lI77P$Bx%>YB=5N}k?pLh?iT?mO0I~UM z@AgUY0OrgLz+D=x=xgcm)nR@47Js=i*=fG1F36Brk=oUf0>x0e$0>;H{3uw^07(bW z$j8t!&A~3 z2S$e(c4*6qABr(jTaV>Dil(-O$UX_`lR1qYNM4dICkwE}hktK>Wme4NF2|4jK%tP9 zEPJ+JqsQhtEcjZ zlRtsOcH&&YU+uTdBToeME6KU+uc7Irh1+V#q!@y4{(=GI4_I+w9M;FJfoS+X6%_RS ztC>-DUneFKXYJogo+djGdhvu-kybDl)NfI|p_K$dM%0;G#(?WaX)~|`$!E{P#Cclh z8YJt`b^Enz%HZ+XjDK|Z2X0gKUM!o}$wyd5B*#D*l_{22(TCOghFHgz2u{Zx^`0bt zkTilj?y_+>e2zJtZM_PC!ClW_JC`$=t9DF(ZPS0ItzG{BGsB>a+5?MkZWwtdag_v( z1o50Hl8`feZ{Rss%?!f!{(rxMzGJWCs9w!ij>`Q=zx6b#*@y_BjU|~{AsN|6Em}ym z$8zwIhlS}}ZUx1`uJX{|?)f4JOmZ>O9Tn#bCNmDw2b#1GZdilPVQHD3cd+Us*1?Ri zKHqk{A8#K%ju07UUQg9H4+C)ITutY@_{c^s2t^3hagxn*g35htvX$)w}~ zV!KIC6;OvoC*7HGn$3=zJFzU*f>@k;a)J# zC$op?&(l?IyWTYMNphxdxigs?sW542*^)4^yfy+&SXfUn%#9pp(+X6Cm3grxy7})P z!AQ{DOl_mJYw=!RiO(b~Xclj%*QZNDVe|MZxiW6sn*JvxGg*1dv~tv)gpo%blvAk~ zH2OY{mQ@msYz>ctHde{uxbx?swVw_wnFLvW8~5Lmi0%9hXfb`DnCv9@3svqkt&5YJ zdeTPh9^!D@dPU!w#!41e*yLA;_FPK@Go0X>9Y+5E9Z$u39An=jyw+Gn9k1C(_r=J-WNF>w8zM>>46!teERI%M>%(E3#>l$g5t|T| zw&pi5Y259i^3ciQIO}BTfB4rmP_D2id17;UEKhDn+fxe2(A0%%WYTEBiWsZ=xP3fg zCXgfeNhg%>1^FF}E+$#n=^e|J&^`XgvZgB@Ul?I=uD<^O6*)Cjp671m>@-&AiYvE1 zj@8aqQc}^ZC}iXbWIn)*-Nx1r&qOJrjyW^PGY(hPT)VP-@6uGY zh?^Q(NO0Ji@(3a$>0_`oUg8Y`UM1xkGaoWD5IBLL?hgVP81P-? zzkhUNfiVG;(9->V(G}wEPvhBYS2A9XGHSOf$wJbCf<}%=mR2aCXGPo~#KaZ!*G&A2 zb)n)i30(nY5_L7p`Ru(kQek7f6OEhHp632ZIjpu7Ge3lWthr1cVTt;t53wmDN$XebGb3Xxi)EDo_dc6u30R>7bb}k zSmBmsm)fOFVU!dhfjM?f zO0a_q5&(BQ95z*BUd%yz!$s)b_2xbOmMokZ@J*I`s{j#NkT0L#x~4a6W+1iOcDs6p zBOltm-D@DrEg58zdNRl)w>)zss%2X0@mp3+@*0FLgDQsvJGOv#Zv9nTz*`$1C3()L zu>BBtoNZp@TqZicKOJMSFI2yhj8!s4^|FSnvYPTS0hwL7JZM#wrSzBG^O)GB5(k5* z*d6{_EUXU%d=r4fx(b%6FU<TPQf}V!Nld zP6s#47MuaaV1U7q5|=dw_D1$i;^PPU=4Cyp6Rd=(*{aQazg9@QXztU=O^hG@g3&`{f$ z+hm?32_(#RZkl!4&elD(PNlr3ZuboRza$4MG?7L8RtTY;A$LNmfDLnf9%WeZ@QJU1 z(+$ApA}~P9@%@o;SUg@C;wR7nw_K?Dbp=jI+;?KL%Ol=5qY?&^z!B^D_2}?&C(PweQ}ueXi{{R(yJEZYVo%P*4g2;aolMh|7^s$v7FFf#1Kzg2u z0x-mt(uE4jU&s!-BpxTN2r*LU$o)2|-`|(2-iL|I(_zNJ-u_6G?R*Yrw=xwW!^3~K z@0shzF`eO=EJ~G3i7blSLnGG;yatrO4#{D*p_IAKA=$P>l&)&dMiy#PgBg$_=|hGALe@qOMw~hQcheXK$Km*e*RJa( zY&=rP>0of7RrXX%Wd5@!i^^B6i;i0|C2K!X33duwkt1i+Qrx*I*#}=eWnyHEI7nCx z^B1b{(u-VaY8R+f2%`RFjREXvyS_$4LqT}Fj+a5rTHy}tQkDnb=6d}$- zvPcGNL5ioWoWIP_AjvFBJ5rtkXyab1QQ*2~9U7hvx z_%S9}fqN?T2e(D^ybl@@Q3N@srGxWQaA5moGdtlk)Bk%h$ftKZbCegn8GVJh9k+OrM2 zfJ)BBFus^j6;()YBbTVHpc+#PmZWTGGNZd!kDrmPQgaHa?mt46VCvv3ie5GcZLJ zymS3B>a^_=EW3>S29N@FK`gt``Rf8a0c3!}{cPQ7%b#V7CJqRi*Ez&jQ)-#`ftH4j zCf+WLvkFbf&pdNDnrmQsvZR|Jg=8*OzjpmK){JqFGYhrlt>0aKhz-RxhbTMi?5bG1 zO_Q;bzjmfK2Tt;pNo`12##Rzc(ZCfzQ8k*y6dJ(l+kw7d4DI+5Q3Xt-kjeXyv5JP)NQyGbOh%$>HAJHR= z#7858Vs5lS)9-a78SVlemKwisP{}Qb#ckD3MydkQud1H(F%lh!I`tPz;GVHKb^yll zZoIbR(|xaNNn!AKj}?xKKt2ik-S{#TD?|KlwT|J6{gq2fH6PSzqxEzM;_eS1`T(nv z2ZOEX-5-f@{!`g*@ixhv7dpurj-BmB*t=EX73YQtDyBxQsoq9MSnI4Y^JAh3Un?OW z^=SOD=y+UDm^tSyU%#pQqy}U2Gb`KqMwO{O3H_BSI#TzXFc!ynoo6kxSvq) zW(pgda))ibaWZJ^k2~^XLr0ufZSVG4_;2zOuXZbW2$nZ%5=k0*1~h-nU8SDn$TU={fKJE{{bR zNXT`_E8piz`<0UcLm`E(zgJ@H7K_OVmS~I($@$m!1E~~F=gVl8Z@KqX_~#jNJYPXu zdM#;0Z>uH8zK7w>MBc*MN*UYcyt!;1J{c`E@XqOG7m%!R%lx8M9w{0xX9id04{x4foV5GPODoBfiJv60L$=K{@AlNN~RkAHz%0wsXa%DrH=fD7`~;1pHUTd zDy|qs6k*S}a%JDa>n2Q8jl&ke;v^>T_DN!9m<+Ky=C0Gzw~~Xm-vG&s?mu0omQ}F9 zJxMlQ%Pze_!6E^Um;@wwB=meVk~{wZ=G|m#)8Ex<;P`~~mDihd`z-FwTDaReYn&gC1By_TMi zLnUCnI)?B;c#|*HJoNyOa{R5wgeT9RgRRB~S=iiTaFBS84tGG>C)ST7lO_=d0!@*p zFZQXOtCor5wUftN$YpTV=WKfwupwI$#3GVsDpk3aWKT~;b?Ps*$!@YSd`Aug*zYNJ zy~nRa%=q}(32R4~ooL_5Z#{>bv3s{E;j#Cg$8Kck3wETH$FZWCSola+Y9rb?1f7pp z%D0d+cvlsY83YlEXr~fC$bUDg(BT|bNZebmGEXklp*zPFjmV{JW&Cs$VvHDHD~+_T zJQg9H~P zYOYVZCbf_5sq!~rTwNJqz4g#gG6iU5^jS4BN4nxTnm%ZSk&J~LjB_*wcSswZy?YJT zb1-ZruMZ9*ZbrR1`lVr{yW73mCCg^}mh~i_JE?LNBs}zK$6iX!VR@Q~3~EfX0P7PC z4=e}_@sRT94X_IW_CLa>5aD=+5j!25wdy^U!?}A`58bq~Ia?KKP|wNr6Us_$a?T9I z#8nAn!ZR}ZQGgYiCPygV$4({e$kOUpaq zZ?|$XLmis%Bx`kA899L?Lgq#b&ae_PC#FlUDLIZUHfS8j#}Tuyq3>U!$C4O~PJC?J zOY7ZcvOYhz1bIHCZ66@>Mj-e-XTJ`}-nvg9mDT=0?6UEAawiVE9QFBjPf?F09ZGoo{#dR@Aw~#o$dd}`CGHSE)W;caBqPNy z5zK8^08hwrdEqZOU^T1W%GATk4U?mQ(uz)3@fj%!v(cn$WZN%N8R}3kx;9ZaTaZ!-xRT0cB0}Yzb3Q*?psZPFFi45$R$w$*i z6*XW<1xP>1c#42LmmF8eTsR%5uMcT9>z@ zlC&nhHl)-dxDp47^>LWeS!J?Hmu1c%MDR z9fy6%3uu$if3fmeoL7vnJUR^pf!}|slaIV0w`AU$Jk5r)n8w8d&s&OAkO`aCk{|=h zrMM8$zZO(=D7+YTzaAj5tntQj;iqrmdyoGBP+|W74AVPDP4+#}IsW~}!ww4>h3*VI z9kYU#zBXvC_S9u&uBX#=ol6(76ssZNkdO+sejotcv_!0iGWkg)jR!B&be|B%;Tap7 zE44i|O3CFRdw6NE*=m?ai=vBUUc4Y0xt;ZFS}FygW-c z;zpIolULI~ym;Ww#671EsO#Uj`tnYt{01mM-P_o<@tF(xo2e(#(OD$MEO1o!G%9wa zySJu&O(>Ek1BoV0%q&mVD9AeNp*{3Eev8x`J0f;>(_{x)v&*Qv_EtX1%zqZ2y}u26 z+qf~Aoc%OmQsvo~S5PGMr&(3y93r34TE=BACG@@AT|nwFcpTB$(1Uu8V0B9I>G4vC z-0;^lI>m2$YjyBMRk0>Z6$Ua`;KNYU3Py};>R1Lc{JD7daM{C} zN6in3;ebw^^wU+F#j(C78Q=x*@ow9{Q?v6~JU!g(RWb-@G|a*@iI7OsanMDP zpJ>EvwzPD1I?8VlEpYPNhUIvs@ktCIzRQQQTX*&gxHFX_wL%({=vG)_xirr!*5Iq_ zNfgWpUTkHNi3B%|kWWiuv6Gxng|uXI_DFx;%#RFk)|O&q?nyg;Cua5{N;y1a@=sD) zazxQ5Cyf$my-)-4UrUh(e3x541>=PQq0HHCVB=_rO!Ibh9Tkfe-j%IjvX*jhEoB!4 zLj+FVo=_|Q04*l3$#%-lNk1b;N66Yune=evmV#{ZK{Fo>(YsASt%{SiabSi9%UevX zYNkYr+^h`tJx66&B|GE>jC&i?vI6I2dh{YjG7>Jx*P?3=i^Al4B+^nv5x5nyj>OB_ z6(6(aUf;mvYuKo9k=L5rAEl)?G-!(Jkl`a01-4O`q1avZOfDdoHSTt#C*{C4VF|l+ ziwBVFefC)TK3@dgzntxx(q!seyB;>D)Y<1^EQD&Rgp^%7I8(+b!4ASxuOp-}IA=`u zxrEreAHwszM+_yEvM^Sr!inx0OP9!07k`UmbG0qSV!&BcB1;=DG?c6GVa21B4u?4Q zbQwq)F}7EeE9?+xa?xf#5j5i@j@xeH{%UhAhs?uT<^~yE?cB3mS8qZ#i_?-tmE(5| z9P^3D1pffZ67lo%*P+8k$2T!x^s4vnSD}@RVetlns*hi#ET%k9bk**>Zf6Z^wkGY! zH%j6Mc9P3zO6;gl@?=nq8;}fm9hN7qd=aw?ZyfAal$4(c!G}IGKrPfBe-&fGO$IVd zwm-MKcwNSQF?Cm&mbyEu11*x<9)}Va#c>3tcQbeaHD9;ruPoC9fEdn(sbuuiOg;XK0?7m znY~k1@?FVexRP$-r()hDW6PhaWtti0hHfzld6hg+KD_v601@ZP)9|K=0kQ>J7Bd1L zAZQtbMx6BTUo~jVSnaOt#ZL3st&5@P&0J3LAX?HB4w*u)E($$X8}|E~#=Z{@F}@yF z06-%2<@@(q{4W;+ULy_Ed=^85?U<_Pu~XHvYb8g7{7bsUDYG1Jsd=dfVbw}SvKge~ zy%D`06$Ch#-5i_iRx9CXoF-_cl2*yo(Cg{YDD=Tem&?r_2+_Mv&9u0YTZN@qNC77(Z^PYJ zZQwKVOM{NPcCIJ5(pwYQdQ&{6NJ^-Ago-?#Kr<|aF5L0(Jm<;bcw{_ny0$wA*x@lh zQhD_YTJ6u^xmq*gV!u61wMy_=6P~>xVHSfQ^ znyi-NYLypEY0ae_pCrrQm2oOJ54OkWVLcuo0KvO2;SyV%rG0;oosKa zPbN@ZV4j1zR}qJjU}LRD>b>0g8R4N7d)8%w^H(i2+bWi1j#uRZC>z*bT0!n1iQc-z zp9b>Gpjm0wyX>+tI9CT%fmDTp$8JxMr)1m5wTUYIC#yL%QEMX1(S_QdY@%ju9VuX> zgR|D27FGy@4*QE*uww&huQmroA&l;4#^W;hIVj1A&eD(6$3kW`+86Z!Qwfhig38PX zo%8ZO!?8G0@aeD2Z}ib4G_5Z(Mr%!u>fejKkIK-T-pff-9;J}YQ6dReC-wF?^4yYa z0k-&9&~HSZkb?{(U>D}2^X#@TGBC%QP<0ijRaVF@HEMP?BMFhlRs z7^C$pMjiNr8c1VpD01FU0n)C*TXFy|pVa_x$yxxaJNkuChqLR!+})Sl*({b)-NwpMA3P@$-k)?&s6b8j`m&1!wR(bUbu}`=A zwtP-X);i^ywU*R(tOk}zvFUEaqB!5uO}X~{Q;4((70YZOB-xbG*(KG#3mwzVX|}fW z0j}!ng~m@uBUG6zBHw&&7FL~*J;*GQ(*<;3A!SJwORu$1ssZwPPZ=ZMK4`^{hq}(h zVcH}z#_>+oLS4Y)Z^w5XUIjR*E&BM&5kTODjs=~h?OlgkE`8{diOQFJm z^JG~i8Yl}R5=b*y<*thV0Fv!``1^6>aaq@zj#k9gt=pN!h$alo;GO%3Q7ovWY_B1$ z4RH=WRyZ}$jZZX>5yY^&#bK)oo7=t7+#Ri!j}kDw&pZDB6|gGSiHz26r>u~)T2aN6 zl@f7b=hS5^G!IJR80MCT-5q=SCE=N_j5g}%+1YJ5Uh}by#bt4nDC6*tPG3s1Q-R2{ zDzmqTACU2{%Wg)wuE8ZsQa&JGI02-7qt$PoB`bi1jla;LvpvmcDQbk*)WvG;FX9tb zhDR_Y!L|IJ+R*R7Y-Q9}}H!dCR#wPm_(Awh$yv z>Z}hlpvnmG?bpVJ`fm!*+GCHKnfe~ccsX2W$Q*y)?a6Gtv)vuLgqEE4h7%!~jou}> zWqFw2L8B4K36XR;Z~K9vUOpR_Ok*W@A&sy8-G{|)!HSMLbgrw?>h;%`qK?UB;lfat zEt#c4jy5|JNiBE-JK8A_mCzmWjhaFL8w@mcut!Zq9N-9b^4Kf83f~OM05#K{tVbhS zw{=@L=C39_=d0@3oh4~%owE@qr{zY7Pvx%4u?2@6j+UFmEpU^O(?q`znm`YP+`Dcs z_1RU2Y2~|Dx3X_nx^fSRmekV1wrEEbaow6&h$batuou!+kntYyRaa-E8-<5Z;cs`& zw^>Z#!ctv9zeE>huYY4C&fqOzvQ;t$5OJ~Afs7Z7yE96RS4Ekll@yH+P=?lt)iD@0 z7=)0J;kMODQ4B*VjDk*@ADX^?Aa?|vvz-3`^nXs@bN2osER3xtUOEvqOpTZ#jci$H z`0M?V9GeNBYKakOM#OJ@Z6!pOC*g67eH^a^!R9G!G{pi{V0LUn$>Lgb&Mr^ z&uis(9!j=KZ=#YY8B9p>ZIBfKITc#6qZMF18N%zE^o(u-IYU4K{s~BNW=t#cI5hmn zZ*^^&Uf;{llWfLGGgb3gdg8uD4qlx(eI}WAAsnI`g$pTHh_|cDiQgRf%PjGhL3b>m5PnW_qnJwFFtvQ95Xc01MC=xD8trUmUU4~$>%H-*N z;hHgsrp66?QKrO+V#-(;dX4=SYPfq6SH<1URLlPW2Cz)dt!iWR#BviXl6yslkz$E} zMpcqKG6r^OSyysr_)N-d05v4&2j0q9BFw;Baf7a5r{6?gTeb5&$J;b6VWEUIycD?q z0HL*6AfMHhq2m>lRV7O-6SkLNqHA2V-64v>HH1BqX66XnuAib$9%F(hct4brKn=Y* zEQ7sUF^a8I2ZF_6>qq|ZT*ARUiqWvCZY2*4_FWN~MTnMJ1bjc29K&QhauK%YhsGpf z14}-f^;y_I4qP~n!%b_Ozcel@@b4?!HQ-zZNXgsmfvj1Ul&>vMr>OQU2_b<&^<{V>?x>lSJ3Z-8mhv*e3gWS>ni6hXnMd?ph?{sMDIuLs6%atd%2RjS(V1(UQypki-H( zEbOG8)KA4Y7~C`7qiPpPBgSNsKqGJh#)+#H>Cwf>PZisjB$}nEuQEsLPaWtbilu!~ z(~}fM5*g!-n6m|&VEF2sd&HIPcOZFn=9=R;ktE=aZ>Lf9PWqJUztOa*UJLC@8#Rb* zagMu>SJG$->xpS5Zd`N>Rv|)_^_VZ}c^e_kS;m*Xo}8DZ z97Ucsd8y~`lE3z^Z+2o=%64CJ_Yz?#sYV!lqVplPgm`(;K^65g2mPU0DBVL6HtPz zaxG@<`jOL)80Ct=8fexz<%Lnyvio8lrvMi~@$)b*jCr|=*YD`JzwYKtFN*5S;b0By z^84h2z`@%XKIH7Iy$Ep_{FX%}wSOZ$Ruaj<=Xj&i`=#^scNKiZ5=DQ_VDzRNh{+^b z9(6WFe8;l$OvmFt2>9fy&G6gigv-Ha5e;||YuC3{thTDvNV(pb zR>TfMJMc+4xpYR>lm!QUBR>w0Gut8Nlf>ZTES5lWfONfyDl@w=7I8U2bGlL(Ey0qj zQe1hv7=zV%@!OTEx#J7*KF!F;7{w}*#gr8>940AdX={boQk9d0wpmy+1LfFy4N;xb zoV%UIt}_vcu{6z*$knegg`|l>%Ob4uOU1oO%qqe)ZYbpySJURFrm%Q9u@1`MS_f_G zqP80kh;(j<3XP|p$I$P;%~1PuxbXe&i|w56Y&B|_{H-W6nAmbru(d&Dv+3xw4KCAi zfW=tHAR1i`l;hky;ap{y>H9A~EG}?%AesR4-v0n@idNrp`mVTM-G?9abF0)!D>8^) zXx=1}HEEY=8J~=RIe*I-eoI8jyp{1-*_sFqC*?|4v%BLTW^5tuOl2!I z=gCKE*!3hZW9C+j$6_=*j86$rr0;&>2ekAYCN5|m*K;T03O517;yiYj^ZgIiU2*-h z_*>p|@}1;bU-zQLU#YZYnUG=?PMKL$ji;u{c^3Axj6(Z(^`dx#B?ZzALDRB*vS8fz zJ^TyZ#Nr-6E%Q9x1F`I?KgQ*bo?^{Qw_}<&tu%5f23u=0JW!+#yH@x*0FP^f zp{;bTA_@Fq6M)V+bO9raYvgr3z&~08=BMlCa*8zEn)N@b$Ep$*g@MUEIJN^Q z;U0l8CPsMCU43iVN47BGU;ejYd{B z0ySVuNDPi8I@wVl5TQ=PuuX@Y2hP)!Y;LdN-}F(#VUlKeuLZywByF$kNcby$Gc}W~ znaO0WV{v%j#EfkjS{dFqNbN%9Wc5@J0eEXg)Sfb)Lu0LGV!TKABwdd$x9qpLek&7% zlfip~fV$JJ!1^n-T(&1ATPxdntUg){g{sqw)lq^-vd1h02#1)19XMch$OhAq)lLDC zyh#?0BVL~cq$6v|cFrQts<2@2Hn4c=_2<7|G2BpDo?#`5jb6pRD#+0)h9I{NEeQ?6 zK&`JJ9)XE~Mo4y~ZC_QBjTtHN>2|{pNB{59X5K zdGPw#JL!Ru>=}l&)iH*{7sz}~2Q73T$?3AL*1%*@86wPgp_Cm;YS`fseGkZlp-=}A z#Ep$>XRPDF$Va1W0|3_$bA)FDmM!P z%^x?6vh7aD9|64dyYfyvD0ByNum|>8e~NUBE&Tn@PQIw>%ZKe8H7Ov=O>ej!0V%Rq zi^p6!3GP09Lgq9G2DF2Z>TebujSgg*oxOhdN?|y3F`Uwp;!O)64ZE+q1tgjtIS9q=93aNc5zLH==hEqXhs0+jG`~xLXVClA>HQA}!Cg>N)+= zz_0gCQ!N#oEqPVZq!7nn)hqR|BB#AbI|UI6kI**uH_#m*F%S*vgFJ<#A0(hHRyz) ze!Wb+DHdp~_Xt|dB&`zq)?<_03cC_m@a2)S?v|`f4`7Ze*K26s z)ch5@C)t^}FWE~FElTz+$!F8qhwGx2Mc<+dk5WkZItAAuz%Gc^@}rr)2nD2&v0fU; zoX0cGxV=a`{yeEhP1=!Gz(AB*#a!&Fh6?EjL3JC{Ld<~fIa_h-XNe`Y2FVi4cyn^J zY%gA2lbB~lLqMQT`YY}S@X}mTcLa5sIql{#5exEEosxRgqjh;Bcvu$GM7)2N2qt1# z!m5z_F)jQyVr!^ca9~?47{#z^dw%Ky$8SfAmmh$mp3GCY)XpZHT-aBbq>f9tMms7w zfIlm*2HuqHEQyqIv{|b5Pvba*al_@+?i7BBb)w7QZRNh6rat8I)paqc2E3ONI8{)- z!9SVXnDWIDS4iaaBmL8+VtK1)YWDM8qm_oQZDtn< zld1*DOe$pcB51u=XJN2?ROPkyqIiA#PgKQ9NA~1#AbY2a1csU~OYhH`wO{U!qr~Ge zj$`fX5Jk!6mfC|WxCJasV#kjDIjqvQ9f?65;Gnn#I2Qfu^^3Ct# z6IHQUW_asC7=N#twO^@_$_~hYsU)it7D?^^vOG~6EL*ty z*BcEh7rv41n@tpzss$|^(hg4~OT8+Mtfzvp90}MAMv1~?d*#aaSZ_W-Ok7F8kn?=2 zm-|<~+3)__?qtr=m$oVH?N+@aq~a;7-*|Y%5ZD_jDk%(9>^Vl*8X9=0Wq^kbL0s3e z%i1&vHDj%f&Z|9)l%2rdm6HlOq%wy|)l8B8NfotOT0SFzLPs}P83uq}KGE_APBtdNOq=qad!Kqu zM(44)BeQD3kxt;fmCIV~_^ae2vbS#0uVP>1oPVigBpdKRbK}$h0If6zn02od5zA6M zYS4uPjC`zf_fegl+=1fx=kFw{K+O%R;m${{RlX=}Qz**|%L`^<$AteihnB zbRm?VP)WpuRsbg)-;_cq^8=r%W?5yD7B!-^=Ab)cD{jmgDXgW-7%E0uaKV#+NRq)H zrUYb3w)9l`jAT+rgX9JStIdgdqah;ey3~?=TN9n52Q81^HA>27j#s&RzZHqOJv(O~ zai~cu0F`RShQq9-baqNfq5bD*!9OHD1-aSXr(}Fz7LsA%Mm6Ls>aCPA7yE-Sad3AI z9|2ZqeG1uAePwDAn-SNRQ(Z^8Leg!y>MkIHLc2FWov&rdvCw|%Cxy|&o*E77K>Fxa z{{RJ=#8tQ!Ua=5j02L(>H^E98_LGwodq?A$T@de z5IzV9mk+7EtFP#*S?=n$-WZ(T123Jkl+ReZ5v^t?giDEaW{h}9)oQvIZwjmAG5H6g zOEi;7{m>lJEcHKTmYi7UNcXwz^1G1s)8wCAO;ckpmCa8p$$6ua%~&hP8$o0U&=_T7 zAuS<PnBi>z36GQ#bUd$;e}~6~Vex>GsNL5K)!5}bxki`P$5cZnfbJwav7&FhI%m%}{tz`SQ z?`zzrL-6Y(ce(7tWv$tY+>ItO&B7s#@o8c-M4g$Xc>>I#LKBzeG!wC`%4F)_WaADbuT9?ATUV=fvlGe&%D`1w(0 zf6^D(#cfP_n8WlChFVP#BO5T#%Or6Pc%b9W@Kd@y9~^;+x!Q`Z`THLP(@H^oED+S2d5o*6SFY3z6KOP!z%sAL zKAKsa@?EC{zk;V?2dmq|m{U(se=!IX;T zM-@YgA0aLvy_^(yEWReb&9-?>c{9-fa`UPZpCFfC_O$U)sD-H#?Oc@^4``@ zs_rL&5(hYd)@gON`h3=JPaN55D`&XqWw5a(Mi{PAzD$D`X0>@FAcGr}WR{#BJeDkm~x)Rwo8tb?x zlEos~Rzhz@PieBHR z-QE8HPD=S%;K=5!s!Fm#))r8O`NUZZmimz5MJQr)Va14Uv~hSQT}E}Ke0K*pXSWbM z#oAFC8sWPc-my_4KHMEQeA6e#RgW!xAlI7|hs zb_WZ74&1AZr*1T(R4)vN4^C-E0^H@3gp)Y|N(mVPp>3U<9w5yqeqw8p<^J|e;o32H zjE-m-c0E7Z#E>*q~Xs zfWHLwp#~EP2{}nE=c%H7Hs9x}t`W__2MF9oeeRFTnqt-qz2uuCa-HaK87QpQ$JCTo zCKlqaz^K=$6H3YzQGc74oVEfasi6tYd@PH{QB|X$~NA|cDs75um1qj zPD8h|_$nF85mdrh&DLsj#cgDUwWi$B6m|D=eoPO-_)_DT-(C*~iXIHDip-nUbkwgI z!?>xEC&mr9oYhC>h{=8{47=00EnI=1jM+(2ucAPioxw=Z@+^UUMwUhlIKRe;A?D&U zIJ#XRpXv?5PE+{ zD@o7!+HJoC5-D}?TYQFxTeycY-{q*Alcnnt1h-tr6WEbm z2ppo|grMK%ZY&rd3$;82?zW8ud-^S=_-~Dp^KqldcK%h11>1GLtmU!`4Zq=&deyS< zSTdKeB2gqiXGs=Cc@z*3>%k{P(}{5>M+jp9y8w#s`*TFaVgo>py5GZfqW3NuJhnr& zu`=cF&rNKtu+*Q^tg6rTV$4CLE|H=!iIO4|hF}Vi4_R_?63K{o*I{2Jm5F51;*ASD zt6jOM8@SVtY`wdfE0t@(NSF*415PIh!Z{0>3OVF-@sp=SU5%ZA{x8e{(48$UEN*PR z9IZLJ-G8MkiIMVo3b$pu4GAk?G1)wQq_F=0$&^fyS$N3b5+X?3hlO)%Oh+Ac*p49> zhDN!Xw9u|<(c+|v7ctE(KD_-oudeqM*gM0vZ(-EF3Z6!+aol*;SFuT&IIKlCk9?AP z(XTP&5;SxGJ%q-bz9ge93Zw0)LuV0ln`BU}dXv}qRgUxTY%go1SE^IW<%?XqBy-DQ z8mub>w1IF-?}k-{4hb)ReL3K zxm?yoGB!JRHHb`9Fw?Uf&a~}vc-Tz}xpzorS7b2|eK{4;oUkXU#Ni+#FdE)~^7rTK zOL9y`9qa+%W;NMfdwQFhE88?&WO6RG>X@tqaNhY18wwAdDV4S#g}Tsg8vT`=31-z9$SJawx180yl5dQs(U+o;swcS)jIS7C&) zl8wezL(9toae}2nS?T+w=8*@8DxvSc^ zVt=f!Vo268J4jWGiwl6$Fp^YfRV%aPC=1gNHRZ!KY19$=73pG#!yJvu3xTa_lqPz` z!FM@t%HnTT%HR%8C+D3w2Qiy^ka;)45aAzNgWQCTVw;^0n$^k9> z#S9m1u;ei4@)otB<8MnV+2JFZtZ#^NgYH#_FIyEt$8>kTM z#bdoAzn1NEOBp*cQLRo%F6HY_EQ=JcG2)TNp3;9blJO-*l(TjiIjuXB$pa7gma^X3 zJiGmcrQ-A1{3mE+^SBu#uaSaxg5q6>N$J5P6Ink=5(y<~8DR8yjYwK$Z6^>q$essI z9?ZhWO?KRJuT-`#2I*W&>^Lb%`$IF?)bsgEmn-0BkNAZuR=%9F*r#G>o<^72eekqa zmK8-DqnWmJx*AwaS!72eZuB4P>Yu{mL{B~snZ#G}6vt%b(+@+m-w#_mB|Edlmdwg2 zS5>DoGqfs@fEd;Gg%X}jvea)2>UCLh*pnBDVYQ`Q>*}Ko#PJW!6Tl>Cn_xSTrF+!| zHZI@6;bqM}26_T^^=`oL4S_hFnzcEQ7mc8j1!gR&$WI`4ps3t@78yH$k+o-Guj}fy zF<99f10jvV#^h{oVd_%5rv4YT`^UX-hHO=uwevAtYgKK_W;)V~C(?yZ&lr6sd6q`v zB#i)lX+T)AXGrFgRCVvtkHKa^FNHg#bYv1J-|PA+FLw;3J9GCA6C#kMQyiFKa@aER zSbHv+^@Ps;G}+LM*QWw^8WyJ)iqXk%hbta ztM>jY6C9Q+RZF(uXxde2q-9dt2)w3iHVP<0#u52~_$*jC;%J4&FHj54nbrqq7L`gP83T< zDH~vOvwt3oG6)|r{5WuRjW6$XHJJN%x3k&a)_RmDxiG$NOJ9u zxdXx3Jp5>2IH|(Aq`afwPKubAn+rS{+h^fb%hgtJleTu(V)kEd!9ujw{+*zBA$hGN z!R7|sQ*Y9CKT8^{s>gx#JdK`JpNa^Cl0Bt^eR&G&^Q0k-CKkptqh7o7=C-cW?yEVw z{o94fc4iX%FPX$WEKF%Mv)-pZKvyF|B=uX;NaYN8om84K6_<#!L{9;YA{{b+4E!4rK^ zk~w399tJHWC8Hyr<8@+v!=!QMVF+u%29lh97kC~E4c3~_+n$4T7Gtt)RR-uD=Cp}4Z_ zN$|QIYhq<&ab;k;(4M}j?-|e$;??zBvzoZSS4hRNuvjhlSw4jzbG#n#U6?C*STi}sQf_iM&MO1S%%?kl0X2l^jX{f z8{{tEuig2Jc}~Z(HKnYW{L-6Mr}ZIt+Si_3EXQI3yj$Aw$UXWzI(gH@8y$vgj%RLq z4fpyg%fe%pLkv#JMz^u_-*0t(o}E0Mnz7HAqaI$w`5G-fdTtO!3f7rby*;veoL*l$ z453wYb~^H0M+m`(d~mvtmgw)Ux^?cnxAhCmF}@bdXFzE3_9y|}eat(9_>8n&E(-uD zNQ5nqhZ5xm-eK{bzuLJR-Q0}{Y0Weln#4#WfYvqIuG(_#84yzgvS%9wGu7+)cSNd=ngjB~<;j#>p7 zNRde-g-Mk0ZEuk4((r6sTb1?aAYQlewd*iUd`tly_0(5Tx`=ArNG^+;7GgB3!>tc14#b4m%M-xjW+PJj@Z5x3!EU_(UR4txj@ z0>hca?OT5RM|Fe6VRIw#m`?uVl0|&2yp%NYb)wG+GHVnK3<;&0UopmF*kKt`N58?- zH(8x^(G!Gl_dak#j-!2uu8SnKkjVEHY|R*8vyH>hd6Yw1%F^Ls zi=>f+eW>*g+=T=UosV!Q)Zwr$e9oFzW*4yJ2<6cFE`JD?X(TwKw!^P`O11o6d|n3+ z+?}CH%{rMysckD-Dk{wqEP~QlR#IV&S($?#1cpMSfza@n7$A~E9$?}KBvqetdUZhH zSP7WdGB#7HuX0Co)kbS>q;Pygs0^ydZMmqkM`m z*ehUg427)^zGqG7aPAr2hc#_`DzXU~iXk?w)Qmu$JYmRLoIgJJY&ySfII^#9Rj} zIj+99@a1+4Q;Tu{yAXH~q;G6|_2_sU!brSlJ4W^!{1>bKp2cU3#P9JJYUDdp9oleI zix+zJ>`C>7g__3+W8l*Ib%QBqWb&L>XJK}Cu3a@IA;6arcde}X@obm-j0V0)EFx2< zVmh{F6-9-w8?;fwH22Sl<@E|T4@+)hWG8K}k*^409UGolTfV8h49pN5!$%!^*ZNW! zT!tRKE7(kY^sF0oQoZPqd+b${#dzg#ykp{(q%H0(D0SE*^`DEwK2e`0T%;bi$R2xp zCULl*#zp|;w%-MY_YNLw84ldXEv$sN>8BL(a2UXfcaxl}6p^qZNM!NDU@&Ac=oKA4 z%rxQH z=a>qNRE>3?i^|!v19|TIX|lw}VPb3Z;oq2S>%IC7H~Dv8VJkz3?Zbwil~|IjvVBY! z;R0#x1IEB<_E5&0)p(FJ6oOcm>pj>}Z5q>g1JAC!kz?VkkYvx1y$$c|v&ZfHt!%DR zgcKypcF*%(38>#T;jGFEmapl1W06cuqyw<)#PVHr>9e-8zw-f0Mcg|Q9p$1bv{T)e zP4EzBZyFRNrYcyoj`b%AYY#KeUUh;R{#BG9o67^FSr@@0tQ6`b3L&XR^$;bU1d zGdOo3kAVw7faGAbkyxdKvnpJ_NtG1B&e4Vds<9v|Fb9ay;H&o?W8)z&Zen!Yc2kWr zVj2rTths^aISW~SXxd6&h!iomv6h7zf^YbXQi71LqFoYBC4FCfT!af}80$C1gI-b4#)Q@aEe%u4_h`?fj=P6eG>2aNZgI-^zCK=1_?&-D)#BSg?2l z3nvx+MMp$cF1#U(e6S^{cyW#!iNG4=zs-6`FmpkLr;P~HEq!%F_Z|m5YcHDaPUEMH z%~PKHSFFz&c%ZK%ul!m~0dX9g;}aLrP9X0`T@D*$A>a(hd*|ujq7Q&sg%VEN2SHbx z_EFuOn9kkpJnWV8^o&1QGgnNj#}h!UBU!T?dI6n`u?{V>$T0l7Bc!;5;#t|{)2_Uh zY?8)tF}0tP`S0(~;IBBI;Jew8%R*Yn=I$0LX|ll|tzFE3%~MYy9K-vMAOI1PTi>J7 z;4?AhuA&dbD`I60h`sujojn%iA8}#^GrhZ;>+;!2E5{XNw6%nmQfXD>i3IN<^sC1l zOoNJY^rH#nxMb-jY>sST8yz;&t*SpCL#)3RO=aMvtC;4UV|uCfEgZKkJ(F(n0?K zrtt;t4RzOlv+S*yn={evX=SlAQ)J(@B(}d(3M|wri$UT|HOR56P zpsEPdhTll$am0w(sXL$1WwVLKXAE|>EbpmA(xZ^ZV*6%l3?ee7X(ehj!Y(+L5v#>1 z+bV)0k(8EI;_4oB!uWWWq)PEK$C5ds7 zMW2G!H`1B_kC8kj^zHJ|jx?5d45ju9j$uF&Y?^2qBMf72T{YIX>Yj@O;*f7zx;h`C zu6Ld@I+o)T|RM{4&UXx+`-qHHQNSjUW(zcV3em`nfyAg@&-RbPU`W63K=h;(uS2A@B5 ziGYM=5^7z_{;LUw597EP#y1g-iixoY(a7=6XR@=oNo+7)EJ&1UP=$D`gO{{})0mh9 zhsAODQtly*lw!-}->qow+kVPlw&|uPwJKwKX9wI;cXn4kwd+-?g{<9~&4`{Dkz)`1 zr8X<7j~<_(c_@jGN#-w*5GyJcB$F&=H(x$_eRtFNR{FqO?YkYn+nvu(D{~%in=Y2) zFtH{S30;&ilDs@niv(=6L58C%%L^a*-01wE8?cSV8#4)R&lFsFS5H-7#r`H+y@knO z@)xc8vPC-;XsyQ@^9IeeX#d&eo`E-smhq;f75r?rwC&Tb!yfWJ6so1{m zz~o~%e)*$Aw=oqZSd#TwrHSjKGFK7C+B`vLPAMX?^D1=5U1{O4rV?XtvCVC_2^(a0 zFHOE{Xz$vXYt3Uj-o3|>&gLbG7;G&rF$-+C_J`4iMkI1)uT+PK$c*d*1t4*wuyIQ7 z9qsd)s_oa7s?ETOp4lTKT`R4A%Q?h%7ii`?YYE;M<;h4S^x=E;Sk{_YV}GIa=1>AE zj$&p)#PgOz%xvx6F$Ao87#ruyeCyR|aR|IOHIA!1@9A3nR6ZXw-&rjArJ13F!{FN) z1?#z4*$y(utBpZKte=z-;pK5`Ruc=J<|~`L`YV>H04{j^WIK@!})5 z8>e2BdF@}ah{0wucpUUWdsf~?ot%v+E3L5_y?GeSE65>28F{@+aTDQxmKgEm4_XZ2 z&htvyEu4dn#B^2R(86CNvOK+{R$hmwpaJ)^&S$qW84mZxXK)s8--8uON-|>%@kaIt zF0mGJ+L6^&)k2-fo{DI)XaSgsnmh>w3jEc3Yg?~B2M`fTTEIaUuABY)EW*7SH*ZtM z?`o)q}H1Azq(nt_p*45Y#SZ4wXr@joK?lO?wfb)J~d=p^a>;x`#!g<)#fkD zO7cYNu5`TQiTod1X-w#_@%|b{mep5JO+6Q$p9sb@Hb)rmwfyYu3Mp5FqsKugFld=X)9wOdef}NNMn)+gv-Syb2p^G zg2AGB0}-+ZnZ~*nO41*k-^6s}yoM)<;IQt52hnlAQ`14F{OM#prP+4IO>X3SV<#2L zR%Co!a?v#^WLCP{j3*f!r}E~mEQ8>1fPca6z!4Wr#6&aZ?T{cw!W)n{34+wouPL(-iu8l_EO)qXsa_qV=8z1M6MATCW7kgKHHqUt z5<5Q!p6!Z_dK@NlAx4F_icU{DHDz5=hTnm3}Vy?09>_BcH6;n0u2UkFPFLdFM|~SYT#?GC3XjW|}3?8b@#szo~0w zEfF_iVC}A(uPrPx%ayxw^;%9cw3e_LOz1dVmU=s{G!BK>!G91?{%esbDJEpN<7B7-ln$q>=lyM zMqKtIFC_)1iqFk*J2$LB6FTEWI-LS9yWi;=suw~%spYm{LHMT+EW?*>O;y?SNbxQn zFPjvQHC%CFjkAgf^jMNoUYV@bRp(Zi2w2`P&wPt2XL$M)(H;oW_(Egdj zIx>84D2>t_2Ms0_#7e;6?adnlsN|78S3mei*i-k;VhEtZt!g676l~2S*_r(|43fB5 ziV+`#Uw^2qLih|+n}$XBk>Lsk&n};Rl<_ymE5yzGq}2=8r*)xF@0<^O-tAL^x0U`r zVyWult(0pJ$n+wTSz?t}+#P`8JQU(l#?@Ja#JG2d7I1F0uhnDm=G$2;P0B&Ddm8!u z>W#tX@%Aib9zz@yYuUL5FwCcU1!poWa>J%r*;q(VedE|UJca4$FKB)vCvaGGil#3YN?R8$ zWZpKJ;Uz=*RopDn>_!z@DK^DiDD{|3Ttp8$TH-FwnsTmR6uX!hz#QXb9d{Lc{{Vys zWX*}WWifcW`OKAR7P`G*zp9F(jxgD#<3?zrl<|;gg)$-J$mM{sfU)JxJ9G8Z??jWZ zrH^50AUGbntxG3~$#))NtFLjIsCllc@#1UlByW89S zEQ7^miR}TpIPZT&MebhMwMQx4_}<&Gi?4`+#IVJ7Rd5FvSms#?-vJ>LvXxK@kTy@k zql*Y$$mJeqa|cTPdac}l6l9V$uNF;RZTu&5@jVRYW4|lSE-HoVQ$i(J%yA7H^5%Xj^@{KO{y)2)wX+%8 z8E)9jMJ6`BX8i+`WuHMx$kqawm4S*jDyq?zJWFV?&f*Y3EH22+N44KE*U&7<@$7S) z_K@?Y?bp413N`I^+>`dy`RX@&dA(}UD&eJIKB`_dh>|Hpp3%+2Ffo#=vV3{LjK&ya zB8_RwUiPwGG;M7FMwxW!`}b9ks_ncUUVL5;JC(B)j9k=V#a_XBUs@~EjZ2x*Ss^GI zH|OLymcj)>JdFV9{{RP>rrn|6WM|VL5=X0fY4t{Dcz*-US;Z-}oWJSEhA$8Xi45XK zk-k)HqVxuLx)T@xld;-{`*Y}{?)JS5 z1xx1}+!zU$96RB2UTxn1sL=PWKe?gFCR-go7aeBgvrN-M7Fw~x3@VJ(!)@IX z5g(>LSC9j2K|z+;0RI3lMTvpM!yMZIeL2@P1!EOzmv`QyUmun4ER<8x$yltl&65Fo zYD9)Y>ZoOfk=z1OGTcgOb=K={L6O^yxh-aY>dvOCPisM7rMr#B;q6hxLEIg&MIQ@V zC21PWs|y#~nKp&UqT;MgrhfsI>>Xyd2f-xK~yrBJ_s^{M;HAJU# z4T!>J#vchzwY%#In-g!;7KkdLeK1~F6%=?yjo5tj#(rO(da9p>yH^W&#qjTO3L_|k7P}K zy~c5>NiL(N-yVxs#8`_6XTU>JT(%O1Q7B|=nM%c7C3TxhyDKzDov6_H z(ed(jX9riYzF#t`Y9gU?&>&PQw$}qUiDe6 z&LBR-hFNS%6VZ`;1uZ=5=li@h@VW#L%Ns^;Xq)}V-pDRwO_jM{LCy}Ynu0-9i~YIV z7@9bVVuBkT-Aa?zLk+1tDnXppa~iKATn1h&Lj_X)MK8wy^hPLN&=VI+*;qj=JC`k#U6VTiIPNO;8(ADRP^RaWF?hEo}@DSc6L+bxC)D9 z6H$uG4?n$<(a$vP@nd#oC;tEzo;%sj_`uYQK06v~ZGg9uc#qUtu2tZj1>|$|(K^;T zh-ukuBh1@XfFBD8jn8=2j-Lgq!X${7%`0-a4LP6TV!3QwcsmvA_Pr5HDUh`aTW7N~ z8DG_BjXftJ1XDOHtcP3nkXR#hIbP69NV1p4x*x;I=JQzf_gdFsQ&}(_!Jd|UT}(7` zu(YzSs6v6S_?CzkU^s|de7*{NOCKC_M~8Ny`*uF7CQMl+pt~R=aHVk=m|?M& zxM2P*k+)3csHCv%vanc=SkXhaxq&?tfLhw`QU(fMHtDuKkG46w4!W;LfyG1|*yN&4 z5$4!R%AWszOJdW>g=$Un3O zVW>Z<*~j4U(8kGQc3%wZ>G#cMc)YC)eLl_YoJVW+^jK_;FDTQs$vsw*ci`iga2J${ zrH_vqMk+oC@qdUhM(4PLUWHZR&i>&6&2Fu}UZdaYqx+M+KMQJ221*lxllYYsiXnRg zAXTd*rK3l8b%}yBZdy23Y*I4G8lYyyY)@o*o7TbJ_1R!!rIL2}X~dsVUW%88?%X!9 z0*-DBgt69qeBsf8!oIY!C`la`^M`2?ROAA`_gIiJF<2=8r+!nM3`+^E%a9(Vmi<6fqY};^35AY$ z^0c+}RMKnQ8&t#K3+BrsY0k1J*dC>3UDTN@mv8qEdiM;q@eNP9@wjMk_^N({Ce*N9 zmPV6I2I6Y)?oKPu)rpxL$lP{d;BjPrS|z5c?_Ou(oZ(y;fav7>jW=NL*nLqsTn&0% z+gB*rJf!j6id*5Kw6en_l1>AUNGJ@furf3p$O1_S1A+sYiNdvy3@jJE+`D&6aW4-J zOd*$Uyxi)7h3*>piE#Jt;_qW=T%|&_uRNg@` zu(vy;aV57^xc(MwP?-svEzlx}&}sUqe2qG|EY?OhiahNcHGGyrNvk(H`6~0s6!Jp6 z^sGc-5o801QoxmrXX8J%T4MlPsNL=CH1#Vhh~lJ=!!ZljQ@I|?R=?fY@55?2uj8@O z&u_Y#u0gIm(;4s6j1g_C$cgKt#p*>VBX7dFDvY4?XT_37Ms+)%eJy%8_>)6g7|`a| znu)Mas2>D;v1M`6FJ#4AAAZI=BS#l4S>liuGTGx)#!Bf~HO<(K1#nrkNf`J%JZ^2Y z1Invg{uh;!7Eb9bHi4l-zb@+KW4bTjubH8b$Vpy%SofV49CJ-#9DCY{BuNxGWc4`A z8<`6Iy7%~8J;nf{T0bc@t#sy8B6g+-;Ob;#%wsO!ikf|0tF*&I z1<83BEJU#oQ*ufdfhINzfG3tcF+L(m2zxclV_y94opeh#4;#EW1BZ!5z-iEWre(xj z?wpQWw)=}0QK7AN)ynrUv$#u=eIm3iEP#OW#JuD6kn5R7(I~^C#7-7wkaIMRdGk#( z4qfL$t_gW4oFNMkDtqM2^=I=h@t4}dhQCV3;B1p;= zEys!o<6^o8iI>MLQV;U=)3WrKOjNlZMc6tGwDjhn^V$5KE4HV%O{{lL0p!Re(UxUg z)tbf#WZOy?+y4MCw15H{MIbQq(|kV>ntYG2(Lh)4^jerMH;nP4WWHAN(|>wZoIm!J zo3^K;oWkOBwXNCLjk@oZhe<2k@IifFIpW^sH(dCSc- zJ3-soH9z6bGx0aOF85X|yYRF!{lA`UTv*q~tPnKo*!lzVRKDWwo0u8%b>r=G zOESp{Ql$(pG?>g{#tf6hvXA8!c%o7A$~k~WxQrZh?tu75ORGGA(_7hiJ|)DafK-|X zbMI(OCQAm7j{4g1HLRRM3~k(eLcG}d=Yq7XiLYsqzMdryAS0ARhzDS?#37hQV)1Wd zcXoRBUXO%u={1U3%dU%Cx4r$+)p1>+_;zx5Uh0P_+!>t8VoZ`rVIR>*(dC7`Xkpo& zarMg^#7H4rx`H&Law6wN8GEj@JiD)1hmKFf+>bsctpdJwsr|`bEVto~UanHcD-(^P zk=4n-*OskXHQ}#jSfqkT+fqbKafq9d^CW0^ZFF203@n|n)}qpwTo{gL33SP??6V4) z3=AFDK3lYKSqh8-SjNL<^H-;B<*tIPOJ$Fx9CE9~5IJXAo=A+2G~nEG0`mb8ZU()F zJ4tbD1>pf`x*op}yR0H_G}{m03+2l7Ff{i23BQHO_N?kZl3ij z$H(FDEssN7tbZ%#(BZJrfJUypRWrE13^35<>08EUr|e9Z(oI@h2-6t-7Ia01;(SP9 zmNnqo>u*)kLOrANax)3yd%a|F8X>?R_HJer6{{VF_GllVUIj^?1zV%UE z&r2Nyv&$wo3NZ~U9AD8SKT$?2h^A=w$g(4u{Xm`%7c4YX9<}gTr_F^0z=QiQSHT(h z+z^fXgFvifAC9rxz4aas7i3{BS;r~J*1rs~#`Qe`xYeEEAS=1%8t_O19{Ug5KPqSl6x z!{W3Nduo$YJ4?Pu{fBYd#7%N%PY!D?K1qm}6uS>--Ov16u2mb&PEb4Df z2FP1Dysl2IX>ioCw&-Lq*RK^ZmUAsk2n>)Wg&CEK&7+{OZ@4Y@-EWWS2!)Z_1srZG&;?d~XkmM^i?s zv+&IC8ATJa5L2_<*?;2|g!J*@0!JFg)4Z?ida?vX(BJc=1nee}en|tNLjxki_)==& zze140%Gq$oJ9KH+zqY|P@Gcv;;_kG_7-zhj`h>Lgi$P}Gwb;cp@e}FG z7?Q#P$N}Se*gDPPd?tA$6E*o`((8Kv0BE?_aU&Ae5rtaBwaEwC_;jpKOK4=CB-3!58~$J0Pa48YjFu#gJYzVMmL$% z6VLrCj&HssOq_7$afb$ZEvQx!q2&^eaRBjbgb6f*$AnT@w0!mFW1kWn8-^Ngbl=ya z@!0M?if9qQz&ZIvSUpi4(UXGc{uqB#hymwP@NqR0qI;DTIlmdweEKKrnqhr@UP&@I zSt{8VaAPU!#zy))LUI$89A4SbD&RtS@nXu%bS7utvEBQJtPG3rmp zUaOsqWKJSFF6gWIY;SmXCSNz6q1oBRlOqWjxmq3l4QT=>j<9JxVpmeg8bIuH0XiV` zmNSIrF=81YWc2xms79m1i}`wmC1Tj;$bFj7WxmjEBHYVFqfDY`j&w&d))m7;uR zR~>)QmAiS|A%-v}og}#|hN}9gA`9xs(Z^%n%2g6)ZakN3 z=-Y>Uk>q=_j#`3#A$l$uhA)nu?6;=nX$rE#b2E;_3~N$I>(Q1NnOwzlbF?g|%vaPZ z(?qSVJk*eM$<^757|8Ox>WJ7x?R-aZt@Z4ouoL%B;to5#=+U>`xC?m8m2cL^XC{s) zt~+vsLms>c>~Yg>MB>-gxT`!_F$#!uL}J9Z&vdX{Spt++^> z#bQ|vcq`)(|L7c6nO zp(Cd}jM13mnn7U5o>EC)M!59t@(-q6kc5Q?r*IgzWuPwizJKfJy$1%yHSw6hIjC~^ zDs+(c{GGrsUEhy-d1^Tc@;Kp)u(fCl+`6!Te!d@hsxfYc2Ib@f*6-oKX5+PB+q;A5>>D8V$f zuJuT?4DJ&{`{ z-FAC}x9#Qgm1ez6K}Jl$N>2+@3ly&zZM-}ysoB#xX?%cA{VxaNMUkJy4LNr`R?qae z^(h&nk-kDSAYQ%JRSq-0GIX$uf(HgT_^3s*k zuY1_;EdKy>CVvTadX2R4a1IQcBs97wM;oYY zeoNB6M?-SBXUZ~~-&1z1AMOl&n-6T^s${3HNni$oz*^0SEG(}awhVlvB^g55nn=NI z5DvnCbKQ$!dqap82p+0&TtrC_^JTF^O^M`DHamwcmhNlvUddR+(H8!uEUHHxQw8m_ z6p@>ksS_ZL(m?y>?5oE_^zIf|gV;^Fj^ky14a8dm8zhdfNd%2St+z%;nC}|$9B*>L zce?3XWQydM87!0%Sl|mWX3~#M(5VhNI)>0Y>FjS4kjW>8Lvo8ExpMfT@g5~HnrTL* zpjRpi!!AY)hh=?G#YZkvC5^RCTQw>zYTmNU$|T_^RtOKIQGO4v>4Fp!(tJmaI7HCW zO$`XMT=nL9F2-@uBrRZeS645JKLr)e=gRi%y~5`2V`S&M7Dg!VNeIWyA$h*Nl!GEf zpUM&}WUx^w1nq-){1nf1oc{ouQ+74$2QGFwRIsS#f;V~$R7dS!%uzo+fuHJgp#!gmQH zaLm!ma-55YLpubnHy|9S1qYbT^Y41r`)@S1qe$itz5$` zn8FsYi6WJaT^Yi!lG{7t4zBJW;g$?fJ-_#QeeziN&K}4xz9uoAQhjfb^wyPYuzODz z*|{04D8SQ#2RNT-lTAaV%`s_;D_Wb#j!Go0g-{A5kzwc z6Jnm%MAkHxfJxKfefn&-_&b5?<8pY0ze=QxvDnK=7llI)31gB;l>2TPR*MbQ(MCdk9oxfhke9`XS%%_*_+jrol^%N4IhC@6EYLgg> zPfRpsD^fb}QiY5oN68x#;Nmd?EQf7G*gmNqBmL(Sm}|_M2h*zN0IOm0_$w{ky}O3V zw76QU1w%oWa!KR)io-JUibN<1E9?&)VPjh)X52_{8=n0}+91ck=mwYOY32{fF)a&! z@7*ryz}?8!t(lHxxk^%yLr&CHDx@=fghp@*tdTPgB4u#Ej-HK-b4YQp-~FfNcKfBD zgW#A}=a3J{x{&S8@W|rxH!#@?_ib2?&+)u{%CM}^WopO~W~}QINx{_eDC7BW70x6T zRUo*$0CWM-R&M;i+R?*cn=DQwYg#KD^gj-N5ijNFW8i}H^W|iiMSVc^Eg_KDtYBfv zCNW9QAgrO)i!aFQJB+d7Ha*6TY64dghjcN3@lFQF?Z_%m;(U0#&G_=tW~usBEJ&|T z#Ux;h94Hw`QLj*XWb)()8V7zl$Ke>9gTVo=j>)e9Bkefk2lavIj5k%F{E5UJS#7&9UB*3|g<>COW)G_W~V@CCYoO*meegnxG1a-1Ws9`g~W_hZIqQ=f`6#q{GOu^H;&xJ zyJ)<#I86AF;xjA8*ITGeW(fBd3LL&RmMW%oq>~|7KQ>C$)6-~O6OyxnvAE>titthc z1J>l2GZVm!+d$U-iOeKW&i2B`Q3Ic4UGChzZ?|$inP(S(?umPu)g5wG6v`^bH9Vf2 zS_*kctR3~pk);T_+4vp`2T1tKgG0ByFQQ|Hm{{jV;rWh^y?s3ux~tTZ%}i3{>QbvV zK+hE`7XF?}b{wSAtFYSpq>XrQdkw&l3FtV6#`8_{Wac*eq@Fj5#Ty+MaSmzUsOYRT z4Ea9A?aZbi!DcL^5Y}lvoQW}h^jD6+eePKb$N>R=mXWAt14At2APe%1Z?f~TVMAbc zHa7wehnM?Roaf?w8g@T~J}1}VlDnCP6U`&5RbC{50K?B1cr;JL9v^GBx``a0Vt0LzmsVgLiU0$41$bf$`T`2_>WOg7q zWr`&{chlGm5r+&Sm{8}f?bs~|p~!OGUqYdOi+3YsyN5f4tNc>lJh#=YUrPKkuLXeC za~nAlGswxV1z7R`f(aXqiLH#ets$?|rFS1twxWEEd2~A+{{E>$yYT|vbG0I~VkV_; zASJIH{;^vrT22Nz!vX0R^mu5N(w&_F)=v`Q4w=k&BA7g+X|JbU(^$;XNF;3>g0=2` zd#b(u`p8wGRKs@0KO-8fkz0x*&bk;Bv{6ROqRYe$=%D1fCy5;&3Bg+|rP7;m-~FU; z{3QAYC0RqE}_fn9X;mdFHa0 zB<=cArQ0+GG%YMM;^czdZzQZeGZQ)BSIaVs8%`_c_*^7-d^Hib)dkeMRKS4mtXa!Sep<@FKS+5@0=DY2>h`i-?JiF#+)V|} z*GjBsY&1z&2xYFtBaPRHjzpE$asE=gIc-?=vBIFjz;d%S)ez!Nqq)+O5aHVtjbwgq zKp)>_WvSjDh#isIIL_F+mbqsm6*w*>Y`#7T>Y_@(rFdeKmkmifl8RTCGT@({s@!vN zvdG5^Xf#3R{4HlmJ|)g;nhP3e-o*ZY6Ba&s`NVIVIxOpM5?TqTJ^ z$&En8g0s88?7)*7|#@7#C+t&{+ntS!tJ`Tqx3N)W5?rloaT6w9yxy#TKw|@(QY?}wV895>E4C+-4Hx2~ zcp=TqNYag0e(Ta>+5qsHz#FC4GCO@#o^Kgrv8-irvEIbyvUz)th^1nJm$fY#nE9cW z!bY2Tp^4VGR3I}mx$?33Uxntx>-mV>9lh6{aSnAi^96Lp_OfDeM>yEjwLu|=A!a#U z#PK|os(R8!IJ>)+vm{L1m7SJNc}^v%_=H|4gc~QA+Lq@G$Hr#x-}!+1^->Ly#rCBL z*Sm9evE9ujm?x6zfGhfcQ2v~Z=mSaoxm3Fq3f|OW7er8jiI4k4klpVSO#EJ@%#5v@ko&%CNXkO>jPKQcM zI|<@Q1ZT`h_EHqPx=Wp-V=3IQ+r-D)azlf$9l0drE6ZLvWOj{#0pha@M&3^%@#{xm zvxtMj%INhuzLY;y{sp+Gux^=z>g=Y^E3G@LuWw;)_C0IOa-B-^T~^IWUVBQwl!%$u zO2i&6R%dXG3O6(dhc2fPiiT*+U=b%#%h70Xyn9<7P)+JhtrxX%sfq4(%0rdK(89d7 ztX!H)kVcjAD=3Ocz$2A_B5B)$GZ7yo*SH>+ggO}Nfh$k?eeG+%5*i%P4{wdGL)=Yg zys~ZFcpMjJ-uhXxd5cuaeIT+b%OgxoK(VBTtgIX&yEdG!DHQdUg~!h9SZ6IwjW+9i zmQ-eG=eB^>?|lJ5;$Xz&yB{5uxY73x3>Xqyp}>9-RzmgWuA`JZBg*jHiq2!05EqHo zj8V9p=B?if-}zawVHjOwk=*UNqi5j1ME5soLk=?pZ`GcwQnfNyvojgsb3CC-%8UG% zB3QUE5xN%Jb8*~LiD4erz~@_az4>jY=(YH!0z$$~WOZJ*x9p~|74SGbm2BlXF!>3a zx1g_+t37QsxgwFHPg7x!FeI-EvD*cNkDU&%O5uyd z;j!2b>hB)t$F>S8)8elzu-aLZ9|ZC@7M1i{`7H%@V7ej~W;+};qb5E!Vi?1%1F0RB zt{tK`wS~Ehw>up*3Uj-!k|g+NZ>N@Fpgrus zZ`e9h2a05_b1Tcwm3CXaKZpiO=04m=9>=e!Q#q_IE3_~W=PTfC<#N^|S>%p8s=~gX z-3oFAiwPry65CdWaQ--+o54B7*#@>gL;WWBW;v0AB!u~mUodw2?6J&lV*dcDdoE7m zpCd~m^LHj21(k{uR!ADdC#CHkq90H{^LOufz-~*h8g>Pkh=vYoy$*sj>fH+ECCJQlAMgCx<#ZN8XC#?3}Z-`A0ZvY$!SOpYRTXqYoG z_JF2Yp7Xxa>3eRm~E8V$E zEFvK>h=M4PwY598GMF6wtKQA%alxe+ZU2-F=(dN2>DJRxGF0StBR%5z_aFdC0@%>B^H6;$Mkl z107YSoAt1hcO#Lda}QOZ^|5&<6DM6}qJl}8;wdyRx$@#B4I-|+J@Pu_>N@mrvSvma z*4=D7a!yG&5r)F+c-#}I^!4PkZ^S(1JoX7~W@pUdaoEX9U3&GEXEw>6B#{xxSpfRT z+C>^AQ2-=z(|jH9c;rahapnB4LH$3+F!+K*k(lJIoG6OucBBSY-*YWK?#(_EA(BcM zi#G34hFRi{^ia`wW)l|FoMvcZ(U1mTQIz>zlsI%C7qpNFKYpv{tz)FlPv-|pOU`z} zWV^#5iisl0_Vpgkxr43zNjRy6<%7~Z^{IoyHMw|6%t$RKB@Us*F&sm|Xawr#4R6-} z0E5XbG7w`9KuO=TC*pOwdcNA}o&r-0Mo3LZ&H|SZ0E)bUxIB7ix;^i4j z4YzXC%_hkxN)`?tF?m@8GLo@Tv_ z!3wk>^k7G-)?6Y9>f1Z?%g4=G3J+04Z^?M_=xxFf;~v4h{j8>O*jb}?N%RA!JJ(eD z_kI!@c4*hTjFt$p^V)(L_bORc^-;YT4#6tO@cLi{4;Hj`HYZ^wjlvw%?GB|64+&(f zZfkb+`h3=njQmiolk86Or-+{&l$Lz14r^EKkEirUJJr}ms7EzvQ*tO_!FF3@jc+m+ zm?n8>E$4r)uR^^+Gl49)fqC>ki$BFs?(7F;TeFq#$)wED$V&zJ%PXv2tTy6Ajvh@R ziTDeEmpY*WUaYMixES=Mpxy|F`|G5ep)g01*^pHs2NN^NBFRV(TMKcRsz9&$_TZwcYs(6ZS>+xM}61wG^?<4APq4 zTXNJ%7Mau4bhee9?kqIo3w1)e1CCX z&Qbm&BvoEX-9TtWo|PE{%ggy}vlT3)F?k}`Vysx>oJq657-&7edMy4w9vr|h&e6xN z-Bmh1>+SyP!IOk~cxme0$IG2HUAT`{(@8X|!acBMnTm$=_8EsI*Dk!b3E_N3Dc>$N z-Xk6?f9a|H{9&_cq0ThkHx?*V3ymw6aTm{%O5q=xg zv37(M@^xdSRPdFXN-}*waQ0W75NFkkIF|_c!o&X{1=_7tcCOZMltbYMj7qS zHwFPl61nZH>(y24VY{ao--XsYX4iG%{{RSR_X=K_AeJ`cN=o(FjjDt)v!e5X)Q%!W zXIBLI^f+!Q9Z3wD*&dd?EO^&86OhxdpDH~60BzMj6W*C@J!$bB*^a>7!`g=>kW)HO zR(GP47%Z3@fCd%g6^P2JxQ1xkORswv?j012&erxcM@>G8^2u%(vf8nfw~^(TbhMuA z?)!OLaeooUTS!{8-%REyV7ZOSL_O_Vba5GtxIm2t;dLWuQM|5K2E(wiu}=J?SiY6Y zx}b3EVGa?0gfJ9&gbFs32POx#)m$~?V@j9Pf zJ}FU+widizwenAPmvu`fYqGl~G4MrUyPlp%ykmqy2sp||0Nz-ZnnTF2E$Ockpzl`? z!rIte2EnK14JJfRZW+#Yp_N|y-+t>4y-yE}%3HJBbIo#Qx|pnn{nAG(?!~zhSru4D z?>%v#N#pA1Z;woHtaD@yWbMB$W}lF?ejkr(n&4YPy;WUsmpkglK8<-NmMTjXU+nJqv5(2w?duJbuMG6otR5?L2Oo{FFq)8c5+*LyI;(eue z#wU!3+f;g|F|RKzaA*SQTAQ+Bt3Pq~rbihDTJAb!!enwSX^_j1B0&Jq9DT?>ME;E?@x}psqq}wIuLbn02=D1`&+v(m~745b`KtvGIjGRG*jtO0_Id$Aiu1T^B#wI> z9Z==6xb{8#O$fUux9wx{n11__nqe$f5_m4#DJw@6m32M}31Vqf{{Z_%@ulU_=fnrM zEJW7A`Cs1X@=E4N@iRfyTs!*2Id%L#%23IFyIsGN`iQ2Mv<)y6;fA`wIEF^@?2jKL zZSwRz+9yXV8p9l}F4PR4J4*~V_k2b;v9{eevHoALy3XP3Ivw-dxNKD#G_H(3I?VX# zZnK7;>uH98mDp4tKh6Y1G-QK*% zy7KRRNtEqbd$T<^Dp_=Ykzv{q6q z*w*>c+-kP*JUxWA0lxRqY8Z@mK;wI>x-!_Dl`61hW37#b8K9EPw?kKvqK-x+LY|HK z$O$@8qBhB{u&~g$2Ic3v4-SAx$2M&Z)|+*+-AeZMXm@@dr)GB@EI92NmhH`B8$u7H zhAM^_-BuA84DZ4>MQL4_1}yB%Kwih_bX~VZazG*COA%)%(MRng_U29%ySF^C+ zh_O=2cXh7i{{VNt4l$VAg`D+j^GevrsIxtYJz6Tk>`GtNiDDa7^n)2taUBuxiM&P) zNyy?(_H-$XE^{Z9$6Zb803DaG6T15o@h9-|zv72+!QMTQa{f42%CBsgRq~=bPVY6i zBqB6tA3)AvkO1;>Sldz#l$!=v?2L6dc3zrJ9fTwCB)P6VD3016o~t#d+*EsC@by0s zyL`=%7amBmH*ZQ=V8{JKtb!Q$dW!B*gMixO$B&)wCj&e4$p93`Z`}GXpTyddNSXPL zxxY;p)_dY^{iWTnQK{6U1bEw-FRSLrsrA+2k|aQ^f9F|QK?HesZR}{Kz+jP%y#UGr zH1bIZ4$W-?rnalu-%GwTxE|28CANH(>8Q_d?3{@z(1PEQh&xwONFOV{wy-#v0DO+x zw(hrZd_yy2byW>U<4r6p-gmqEf4(B_{?W~L?Hry4Sn-#f*AEj*JtwN#kd_3Po7HvJ zl&RL3o~eU$(L6}UQ%FABtd1AN+T2q>7J2gPv06ne6m(8POpZUd?)Fr-7dw@7NlaNR zY<8YeUTWNs`qMYHiZItMJj$w(&&P+$9AsN-(_cmEF+5F%H%8d}jy47CM?Z?Qc9u)C zvi+&}Y9`0zsdr2?XSI;XOFpKlj96)d>ll|(*iYv=`dU%V6mN;y=fk|w!})J*QaF4o zABWD-M)m!>j>ulu#?{JXkY{m^ftozrjlyXJvc^3VXVa9#N-^ONs2O*rW1qWy4Wy0a_rb{W@xr-tUwTckODGwPwtfnxmtlk%6lO3x_ zUymNF$V71D4e~T~)U13%+l#R+yDxh7ST}g%EmrOh>4&*q3>^yi%I7k*nVMSC%WW8} zPP;o~NhA)Z#DXwJm3ZVuhmEa{P&aqQc=lje+bkYZYnGqSb+z{9T0D6l>$5xdUptG=@e=qLM*7GZFw_O+iq3axJZo zC8;BJ8g5w{FJXRy!9W>DQN4Li|MSJfye`w{2r=R_(l|KGaqPmHz;W zXrQs_$YFt4DugQNef+fVy#k<(4iCknc+U_nXx}&Owuzn`V#hMrOHRM-P%z!oe%Ei_ z$KX4c9Qb?gB=@^qoYvI(5#Y6-njV8CJE zkcnMnirasFL$W4Y{jrhkOC8bNn2g`x#x9+@l(G3b_ZK@`A;_H;$JkeT1J@CRlu2$# zd5IKw;T~LZ;Jj*t7KaUc8_*4Q_9LX^SkqsO)2T|}hNK3ffz6!P~T#V4!?aO#r z?Bg<(<}l!Ih;JQHSb4mskA+G~Dxy)FWGz{gBl1AZr65crJcN9*mZE!l6U_ANEpZXZZDK*eec_n+B03fneF_I z-p;j=TGtfhD_3~tep1I2k}MJ0eIHU!T!R?jGsM-t1oP#+)nWVXF|HwcKoGYZ1v`P5hZ9ji*E4n8L`s zSQw8(H9mp zu|3gWxVw)b+4@#|fcklD=Lla}x5*uDmpsVu-YH71)u0 zAc59SKf{raXl<7b&-jkR{U^AzqISFu>1K2=5%;C6tho$D9F6=W(^9o=y~!%F*^((w z)75??s?YRNr>x2CehgG8Bp-p|qQXWUCAhqSf2N$4PxQVz3^T#RgCwpr9Ch^FSbG)m z{{VwH>b>U;I+S~Ir5t(5;~2SzjItS~zt8!v$e-eXA`WUa=wHQ>)w;Yi7~bmOb(^+saCn5uYm14IZRs z^uR^tQN6lh(D-f|XFSE6*m3j~t%0)iF~>ZQY(e^7+?HLRx7yk4C47J3&I-?LcI`}z zbfcqcLKsYBMXZ08#X?7^IVQ*>TuK#F)0oLI5k2pf+1*?AN^z-W;q7!0I>skzc=2AnX9~g!Yb3JQ1JA!T>~K>_B}UQZ zEjyd$v_8P2jv0RyFbzzMr{pb?|dn%KDDP)v*L{+>v04 zLZPZF&sU1qIwiwDHM2j>#Iov(^@s|sh^5@NbM(V=47k%xLk~} z{RP{u)@wdRmNH_oPh>1j5w{EQMg%hXIvsip31hQC0XEw`IezQXV&5dhwn8bkHobz2 z$Wq4REK3eMDJ?G2y@_LA8pdZ7>lqlsTGRxX%+=mEjb1m9G+=xDg;k$|F+mxa4O|WG zd+WbWYd z@*s3R4%baIjhXHiHL5q$e#w97*=NLJpDc#W3iRcD)@_Efhs@*X_Z5Zi+Y#8tL5a#i zID|_)b>&vCZOY13Y(?)xF%UTL1SlHoa~%v()FA8W_2jf9b38{x=J}d0eHMb0GMPT$ zFw*W?Q)aPGD^SRqCLqQ|Lo9MCot3bfJoT{3IffuVSX@eWHU{CcR&MvNTUZ=Ji?&!= zW47LeS*YAmCCX;&DkL(P)_BbGwEl7d0Xi(0(3R_^W9KA>_G4p_2-ABckU` zX)68)LILx?M*go206YR5A^;W%1{vkwurLk)2JSy_I2a^2_U{%%{!beg2M!1D32@!14qMFCK!J4~==ucc zwKkB;SDziQfIC8SLn^z(yL4$u5k+DdifKBhQ65F@E;i-m?i%4$me>4|dn)ES`c#$< zL!<-9-Z@Zc|FVIV^`I{3Vm(e>nF^D08gG}-m}tY8w0l$ozUpTAMS%5d)>2o zEVfrCBRKM4(qB&T!6$4%52i~LhIYAT?C*d@?z$wzP(dTf!6)U9)i@QPiMNML&96=z z&aGnTZKyYs+jN@Ai0PQ=TVCxB8ut4W+F1-8UEYPI^QjlHx`gZ#JDV)6hNVi_PgrBHCkdWB&Q}$V;`=qY?cYtGUCeBhm~#`43xL28-*be&W%XRlqwcFVN4?e#26qT8J3vi;kEPg^+afC^o~B zd{6(A=}zCxNSD3;^h+peeuwB!Msy{-!tCSo^Ek;cMzgSP>xGj`QgU2NELF?ijFyUvgF984d zQ#2*^ytOY7|4+^sDTM;@GMVaLu3vJ(NbT5XkA$NO*5Gdu!qM>ICE+tW2$wz1q2JA= zd1OU-IOF7}iig4`BM!u1ln~be7A0?MISa(aYmSF$JH6&DWOW%VIx7MaF`Egwo`5P*2;j0FVPF zC3;>jb zOk|tnIdz>WS;gM8?|^ih7_mm!tZvi2&5=^GFn_(1B^h z+1+t;nijjg2_>}_);o_&%%Y~JS&~^w-9J@jEJB&ftDE+Dk*e#EKGm-H7L6RzK8RXt zR_se?djN2*uzUhn&uOM6KI>*Z*w9dTs@mhY5UYtYg&8m@Hkcjw#XIeA<#O3ZqR>{W zZOD22AaD7WsY;}9l10&NZCkmfqU>Qr@mP9vmGCjr{vhYpkYJ^$HCHQ335zxNT9vYZ z;ZilCjl(6Tuo6i-bWyy8c)W2xT`~hh&5NC{4A>f7m9k;@WgoH01=5RQDlKA~#QFLsXK^HZm$eI2}T3 z-}oT8yjErD7UAr3%%icu{>?hXl`hc;#6$&U(C{a;tQUpLeDo#WTuvV4D~1h{HZrWK z0JoUg6dGp^g4IloxTaw+W0YXOm7|Ju(P7GyA1+cI1++(WBbX)voFYK*v#+U^ogJOP zjZ}~^IhxwI6RwVp7i3mIuf40%7ryT1(qx6lEy!9uQy7c(yqD>ztjY;*{0>mmD1n`N zHeA}r3T?Ud@XUTCfbtxZltu6Jcfu!eLjT16R#j00$r{Rh-}z)vrllp62r~f}67bn! zUmGI&lrJp0^PO1f%cu;TxwB*km7(sFJJ8$`qW}S+N}bF}TYz{%GU;!EqmcWoyupzs zM(yHT#6!;?zZb`dX=Vxn63#CYl4(F!xu{DxGEp9#OtUqbfm=U6^Y4ojX1Edcu1c2sAW)%aB&oUp&KO=6gBT`8& zVSC)n{Bap}n~6T_I^G`w&*=Sp;9iIxFxrA##~s*ShO z`R2z+wOM#;_TB-Tum{0YD1MW01cFp36{^hv!*vdO-R(S67S;PqzcYmWP9od}qHuAy z9dCNYZJ-+p_VyDj+lKx$FC4WH;f?8McKw)#tEZc!JkrA-Usi9R?aE&9RMNcXSn@M+ zUeCUY+3x^EYv!zRx2<*~Rt#gBN0pf|WshUw+8Pt*!77j~pUkhHPH{EKjcl0Pk{5Sl z3(u2h(}Q#CJf!MMCf@_nL5l zr9j_2qp$(Z_VbWsf||~-CrLodcZpP4WHHRt(mQ^^N}w$tu2zc<|G}f4?k|5bRwKLz z*#`$TEj`}(p})&Gv0wRrc#E7nKbS_ULLv1H#GkcQwuY{<4FtiFJh6F~(Mw)uo^}?Gmh@t#dC56uu$|^^+dZ{VS78L>9xGqXr7{6w3wUfI6Nx|ZeA_zbwjs9T zTHLfQQNMt#0X%cDAB#UB(AbKO&kp_BB&Tfn;T}5+D#oUuT<**L9nI&?PNGxMbISh? z7$3d~ptdM;ebJs|0pBrbuQ`6PY`3ReH#>s)uu*g=ueYSFrlF;PugS)Nl@&j_^P8fi z2$G`BmpKSBa`>rreC^VXGnEY_JrbR<+2ACt9ZRoqLOHu1Gg{<3f`VXv{knW5P;LAX zVhb_CI?$bAp(*hr&d8Nl%G_Apy0~@>dVqRTY3|qh%jk8y1JwQ|p>k0{!sQt828MRn zHRcrSRg#Zj<;#=T5ssQ2#P3IYIO{a#?TT7{J7E5DcYm4HBGNnEsJ_4xly(`5LDOCC z;x=5Cqcd--9iVbkr9R2ZmaHL5-0p*WD#uslFvT=d+LPf!;CFeU$^nH>+AWkuiP##A zDc$cnNKq+G@#$=QdRw@Cxt_eTavL`KxdX0!6X(_O(F5j_KP2OnBvEjwF!Y!8!}~h~4@5nEsy*p) ztARd!-CA^U9L&{PBGbd+3X3yKFnz zRsHr^Fbbjk8rYzm`lyG3?2TrVqit5F+ozPgNlL=T?JFb9O^9<{qOfA1iEp)x`L^1B zMYx{+huA5zLpH}be!6V6|Bk=?FeW0_@XLK>?s|Eu^jU~L@X>=o2vp+RT3c(6_5_KS z(O#cILfgXL zrghQ*e=-hR;png<$D!ymkyy^#1sxZ|A5NL7PebR$aDqGkuXbl`e2s2;mue6y=32 zvsm4@ttNm|LPI+UYCS=mQ5|r`4UdWb+h@OEjBNL%Abj~+2^%T-D@Bjo5)oEOmr&Kq z$e>oW;;N-^(0v(hH0tL?yN&1d-8Cw8fg;oG4gnY~t2HH~$@*^j>ZwgZ$mz6!{xlnS zZ=>I{Z;3qdBqFS3gw3%zH{cym+;+TCVqxA_+{tnsMvov=-kT|5@LCuLv~rj&rx=W} z&%xNJ`o5E+m{UbSPeZd4EFso7LsAaMY(xA-koT(1G97E^u(TvKzvtX<|Ey#!D`H^~ zUCA=TG8cVwaQ#8AzS{ewXM5A)J*mri@_zn;@ zi>~})+KW9ooQfodf4aNHrIrDWd@tn+&tlZ z5^yOAUbuma%H6BF3BTHYnZ#;C^VX8T(@m#6rXj~V*OBz0mdSD%!_{WHxq2ZF{q+%0 zNaulser)Awx~`c`e4OVG@tz4-#{Vw*bMj+?EC5608gBKWHJ*h+9QPz*>&LfQp&WxP za=Mx^#)|rhaEBC|`1#PnFR!j^Hyk;*^JA=J=IOxN<>wTGcL2fBeViy-!QVA(xiJzZ zcS#(Wmx^hWMk=F$XH&%bBGoZ(IcjV7uI`D1DlyYr3Vb^{{i9)w0pHF-D$PfzOy z^Q)`v@v*eSk4|Rost+jxec%EaS$j*6)!|l{|GDGcm_!xWJ|N{pF_^t%V@?S2GV74h zo6G9uS=sG2E;}ez?|3=W)z_!H9Ve*WLo!|Nxz*?LiXm7w*+c?DU>8O^eyq1QhQ{3G zE|y1Sn>zM&*}N(WXPkMn%ujK%)w9-49aSVKSW3F&w2}EeLAqBoy+&OM3yX0?I~Z)6 z#hJ=;Oz3zQL`Y~=RjZlrUtD--LI%%C-fZJ?NzT>gW zByVhn*J}K*wa=64*=P6LEl*yYiC6xTEtB49+cB!#7o$Nl@Zb6#x4YpgfXcxivC`9{ zJ3j<+sjb+afXgkntuS4(r8W~2v?xeIvCZWVY{naV?}x<1zex*y>9x=O`O%USUQ>SB znXCc6QhnyWU8R9fJQH3s`}_7RQ>8sQS*!TrF6K+G`h4Mbov?EV%a=XH?XOpg_6aSr zpG$ZOMR2zKAWpw2fzOl9Q#>*r@!9KMjrMyaj(-!vM}#cX;}#=h^k|(y{3Aj2jt|O3 zbgW1WId-vZwG3lbZjRqJ(k^>H%zazU8)hAfCa41^xeG}8LI%N^1 zBgGV`#B8EH9o#mA_N&VFMSG>7Tc9V?$wdH>d^JUzKw2nL!3%DZeLmOuTTX@I>S{k! zmu=x9x7Z}NZ6UYZX6Y?8r3hF4m!nLeBs6%9{4K>-7o9`9>oXmZpd63k@myLHFYlFH zQHyb9$L)xmM)a;5*^e~k()NA=Rh4uZtI@< z%XZY7eYR_snZ#jXw?j6Cjs9~H6X=1*Rdl{fU;xY3n(gFnn#(OG4p2*T!8UnA(#656 zcQeq{q-e1hau!3~QJ`Sag!RpS>>YqoGTuSJbHWImhI*(b#CF-527P@h7^0G}+f@mg zQ*?L^h=C2Q5jFy69CRHWyaUj#oaoDvdj&YU*R-5flpc*QqPm)}HoDlfM%j+sd{u1@ ze?lz1efX*OXQ?K6g!QBe(xyr8nsM1(*IWX*{En;4mu=0me0mC2?*{SolA87(jHcwY z=oSW#G~7ft-*nIaCj9#FDfKm-Zw6^<Gj*YK`0+de`t_Me2xu z6Dqn|%wa`T!!<_%~Q=aHslCVEsjIo-sQhvdTmTuG=Xd-g~kEVo$V=q+u0C812L4!B#bbCGB~R)cS5oy*eyZvkn!v08?; zuNew-+LS?^Lk_%IG^B#rMBx@vRy=#hIrcVx7QCU>D;Z9k*m1yApAjos5h@8HgB{mW z%dBb>{QV^m$>SCS9KXu`iR!g3QDJpCWt22P@mKJMNQ~PK*A#cM9M6zwij8n$y8c1c z^WLj@@p!p8({R+hWo_8DLZ>;cFE#NQA!sXBSRb+NlT5FYKT2I!>lO#dQXm5S5 zEUG;Wm*J*IDa0Iz-zd(xZd6b@**Of)4c<`G5A5t>=EA0NNay+MzTDGn%Rv%6*MN<) z^Q%u?!6lRC^x(P4>xdcd6K&MLLf_~U%}uywf-Ss@*!CyqPx^OPg8WFcwtrT*yKsR0 z$hE4TtR#i*Vz^_!oRH%v(2WYN-1S_%bZ}56f6vFZoO#p$L+#7*Khnl0tPFADk%2Q8A4r!TE4d0ED^*7G=c>R>QFxQWA5c?hb5m>f~By`@5~{g*BixZrzTk zDMbkzl@{9>wHVg*)$GY9S!S0JFjv%nh55jGm}F2z=9f4`;TNWClB9sv*Hkwlv}ui2 zmd{XK51w^X&WKS!_((pXp{Cszd|l3gr!HJqhrF8{Q1*I2?xVWmc}S~>7(OTq#)zDD z+@;ddf+~md;0FK*Wc`YbLoC9F@jXN(5wvwgU6PrhA2!5(n5Am2iI=oD?QMSybs6YR zKiZARIBeMXZ6&5xFlm_^T`-Dbmr7StYA_afIA{Ldgm6xY>)>hO;%HvZ-#ki4BIHTnF@a+L=E@ znJj-hA-{Wj@qU$Q+|zG`L>hxW5htxddT zhlprh`xXpxl&EBJzKBnYhd5W%rkGEm$Mk+fd!xlxM&0Z>dShAa0~qWK$H%doi<8*Rdm@MwNuW3w*B%S$R*LauTf%t$aKS@pEHoX1 z)@UQAwcmemeU+hzDbBkWbJea1UxV;RZHpgfzX~_WCV*L;wZkND$vzBj^Hmd2zN` zR(|0_1EXsgNonA;tUw%oOkEA%I%}Ay%U%{GVpU=MZ_PKGNe8*MhrLf4Z`oQ+SNR$@ zo~3^~y*d6~3;9({Q|1@r1J2o@?f+KPxEi`P!o*Ij`aI$_7C|C1lmaTrh7ZR~E_7TR zHoizWSURPZ{g~nRFOb%3kFX{}_~H{OrIR^uiKl2mBh}eJdlHN_L`CXJnFmtQyt>0i z(E*c=4@q=Y@NjTd*zqW`C{Bj{3UhHGU{n*RW_>%%;Z<;aPY86 zwz~=E=VvuGOT?G3blE$c4MU6`k#MbCEl@xj>b|xl7Fvhz0P(C2kKO_-o6afYULX~& ztE%;P?K!$6B{oHVOA+Jxa&lC!o@d?Wi(hZi?u_Fs9Vw-9$}G~g!K}AKqqY|r^Pe}n zpQOYqg4D`Zf(Ts5w>WwEI@1X7)|#2tJk_HFc7q)P$!;>CD^he0E6N*?m&7uoy81X+ z&UEvK>ddhba;m(;rlMq0qHVv{S@F1&TKE-BWa3lsD}toMk3_VY3lxiRn~vtM)dlj= z*+^~#7wc#1fsNM!vhqh`92uAWEDz7lm#W6i#<){MqSo1e%S>59y$#4<5e7G%N-C5o zZgN}|jOodbW_mx>0ZFH2=0l0fG$-Jh(YX}YTE~oDFK-1+Z8raQ9(ZWCYDFSlTtsX<)k*j#;T^EFZK_l)wNv4JO>XcC z;&9~mNiYaEk<6HGXTUSR84>`>LcG#h&4N%+RV>_=4p$_gn&WaxRONUlI$R=l{NFJK z|9D4w;w)Ke(#4F#ZtflmRvhDqE&Om6(6)n?>`({d_IEh0*7htIq48KAic>FaARw zGZZrL&Vd{PiT;l5Rrg~=P!&XdvClRTe#^1v3jO@jv0=1a&wy2H5{thoSmzLC7AF)j z*PY%~9RQ^Z_~WXSe^Q70NcSvrM>X@*G4$sLZ~BzA4pKkN^@D9|Ioh%_BuhPJmV>sl zYH^~psj-`d1>V0OqWS8QI2WHykMd`_+Qt`IesXN)6G!viKWQ@Tk`WNV$O8 z8dF5iCP^RpK9(mb*JyZ?dB3gKE&{zvUm=4m@>7UH8gA=g+9OOYIoK4L_RhDgSY4da z070!qBvHNNZImi7m`jc_qJw_jtU?2v74TJ?zkiLtznrZvvihh7wJ|BdLB9QWj8U+T z;!lS$2=+EzKCDkc*l|;7#*dHbaq=)7XYFffd|zt4#yTrp;a*cwRY*3&M~OIozfm3b zGPycZNP9S(#L3$m>h3NrZ#gHXwmP-eu6iOa3~wf>5^PZ5G>-H<^r1W_3c52*RW;RN zloa{I(eQaGCAIYo^ou#yDk&Ps2UCx0E-c9eu8phikoov3D5>A3NS2t$mbKPG`vQ26 z12K!uchWmpjg&)o5o~|^D#rLl=S_2Aaglvlf1>&fjpWTVNB~(LM#8v_s;IF$6I%Vu zMG+??K^=XqHSJ|L!b1n;Z7ZHN{NjXILH#EZ7vpJHkKyA7rDA`Gz> zsD0oZRH~lVmY;6?#)1qJUVj!Un>0#!OoHsL2OUET>9Y?QUqx@qU|yiRYIfq#QETrN zid*oGA(Kdul?$&G3BfNDArj*hkWsDmN^p3PW3J-NXT-Qus~R_M*F8wB5;{->VjY z6cQ(&lT^@)N92_z`$7ME6mla)Vw+G)u!`-Ed`FdcfK5KfcW!3etGz~=sCf+9 zEkCoJow$++_CixxIc)qr}RFkAh)_~?(-UURP#7Z|bUx7y;2Jv@z z0&JTXQR|%JkAs96^@pK>1}zN*5zavodhpMKaL>R35# zfuG}OrkUvzIj63EyPOK8!uJ-;5n}k494_S>s$*0$j_^L1qN!VZX!P*#$UCeVPz>yz zMFcB(jy41BDLMU_PQu!@IPz2J9W7TCXw5hj%pO+)SueJl18F%=*eu}M}9%b*twr(~9mDbGIRvRQGdKiAK+h7Ome zbwWmH^5p?FJKBaynf2(Gk(jP$#0yG1rEcl`0_N`kVuNK*Do10=GDI@^zBW9;bqibb z9!>?pPa@^BO>A8~64oAV)w`X462ZKROCZ$=q=rg@zm93)XbJYe%O^_9D_GFmjU+q> z+o6vTIp74H0~=Lwe#&qodm|XN+c5y1$X}W0;^( z>r!7m_|l&e%K*gRi|dauiF)AqRvbmF*u+O|sBKB573@s~eeyNfj%~s^F-2#(FsvuC zLOD>U!X8%Mpj8vhgzogAD!crPJx%&&`wn5*?*#06?n*$1C^!$INH^3C(WWtG|Jf?{X#->be<8o?GB25>r6D>0bLzSPAtFJ*-#cdvFC79u zWD75K)IUF{+nzF?_798yEUZa&77V5XWoZI4`Fy&Wuin@pU5_Tx6-V6i{hp5woOdsm z<8NgHtSlSHldYP{v+G)_jtWCt{^>falDPA;(ZuOBV3aMxGsmw3d_^}a4q&9KrVaUn z058^}!;AzE9T`m&_;&MiuE3QltK_d?lPXH^4!(LTQ*cZ2U^6rCo-RK~P_Fa?t^ZDI zUTyNKb15sUygtbrCYYrS>qy;O(t*0Zo|BH2x)hFSR!RDg4qZG80pXSZeszt?UiJ`f z=M^clVK+GE>!yPnGmAII$qYIxrm!zFx82wI1cRz;fvdd8-KtG|j{23-&;$j2U$vVj ziK~om)=6e&TX*s!Rs9tf9zbkQ`wQ1pQ0A~migsV}*uAPf#+2SMjVNET+K8x>j&94- z{t-cQC3|a)+QGLl)m+euMV0TRtsZak=-|MFj-?zHg8}U4mLmF|Ho{)wchzE?QdieranJbud)K% zg7t$8QFQ1rC%3cC1XJ=*4~yD!7^}da(K*EcL|V`Mjj4nJRqDCdkb{V%mrTz-lXuZ% z4)N$g&W&WqU6)pnf${#^U&#_4p!!6LGS6i8kvU+MYRaP#w4s_M-tn^BaQCh%x{u7* zCr0$EukH8!d0e_@!ljFINuPFE?AFge<#d%+%1JWE$x#!rA=HUrwcn1}g^vscmkd@T z>ZVuhv!epW%b!{ejd2z1EzRryq*LXx4dhuivFK);5 zFZeW`(GC{0#-A9HbsNYyUN0GUGuj4xY&p}p$-C%UTSr4je>sN8mO`K=+s8;y#CPof8jS~rjboeqxaTW^WVe^TJRoRYr@HK=pt?@ZpQm5fA%N5 zzz;`#(CPbCcfP<1Z89UYz|$iuANX>yfJ7x7V`qs=TjXBR!Vs%me$lYQ!2mA|R=H?MmC0l{r zqaj42653ba-uv+KWEFky+0;6;(Q;oi+?rzPZkc^(Se|1G^o?qLDd}uiGOkz6>hdTr zV5c{+Mb_ViJ1hS=l+`~-DsuEgQ zWwE#QdL6~HDgt?rg^YEr*;}Iwme-;-B=2f_)Kv(E?dZfa$-JHq&N`4B<4kX=621O( z%2{~CrOUeTi)?+z*+I6PC}XFePhVE%E7KGD=4M@p8Uoi4uydw0sGyOeE4+qr^u&>u^OLuG(k_QD-@jbb3!Z) z&OK-yN+Cm)WpkGb9W$M5Xo|~$FD&E#*j!!(WFp%QY-``e?SD-^R8yZhI_}IUV3}_o zg%t$xcP?_S5eUDkEMJ{cg_>iKfbPkCh=xSJq#W^HElV2Pmo}dE?>rYMgPwAWTeeMz z1g;;|m|4)x+jIma^B&?Mgu#?X8XCq~F7qAB&`O&Vzre;p7NhE$R|y-Zhq=2Z2j=4M zMqA-)-BkNyNS7csnC2WocUZ)hVD_1RJgxN`s;ZWB$=WPED7{mXgBPm`F5d6xg|*l6 zcR;x?zJ3_x%;mF^fdZ|og&wnLBY4;_QHE+4W=a>oz(NC9uGyBVz4>J7kdvC@fYYe; zvrShFo}hdDFx)C(L*6{V?o8!b-XO>RH-r)Nw+sQnFy-*3adC2&%P8dSAtBZI_nEDz zx2efpr}bSrWa9S()I%g%xiI209CO$Gi17*A>xRpGba7mRp8Jv&$*4i*q9wV8;VqZL zJZ~v(n+UetK@7ZK+A{u(^d#0ts5YC+Jz)ps3CK~*3X>OFfb*nz ze(N~u0TntkSh*2I#|W#ngxpgrtBwKXdIK-J2edQD+V zN_~ec`(Q&N9o5;aQcFR{T_%CofArNB zpsGW}??ux+C(>!R$kzjQ`4DTf0Te=_#?79;ndQP*8n~o$dqEC8Iof>RFhT9wE$KMf z+1bAkCnf$QmJ0`-N8pgh^l4DuPK$rEm_KS7_?)w9osC@?*!7Reo54&4^jvK{Ew`qt zVuG^6NX#LtWLN;x_Va!rAVR!88G7|qsPaAqaQ*oH4#)+229U5n022vZPB)II{w0YU z8`?z53u+o-g@7y``&BWgO^T)>wmFlf>Fr8>W(OD+mYJY?+jl_s7YAz(My^Xk&Y@X4 zf)CI*Sd#F1|7W;I^CQgS+6#Ms-FnAFOF^RvbbCUO8p4JE&W9@uk*`R~fof$U4*o=+ zYF<{@he(i$gI511puA~JhW`0i6l~d zXfc>j6$sCj{LwvM4>cVKM>3eklbTtRn{sivE?nxh*AMd!k!zmFD*rf-mGi;->y{7T z@yOGqW>%EV&Ac|AAAM)vaQ^l=G7}E=s?yERv$Ow79tkZlM8Hy~(#ax&c@esd)#tzp zwkPYCmYQs!reWGgBl!@reDQ70x62kUz#(pt*ucNh>7IWWlV8&Txv=`^x8zy4(2sC7d(TaBCijoxsk zJ;tiCJfdp8#*7bfSIN9Vp{W0O*sX<({*%jHM@IUUV2S|OSB|!I%FKZqpvGr*GDizO z;B3lfT6-Q16F@tyz4aY{@o$gBNMD;!|7h-9#v&qu`|GQkrq>JNL#(gCU8v$E94*N% z#!(B8bX`3f%uxf;;I>ytI&Wgg;2t^yuckv1C-VcM93&Xq9g`f)kvv5g0!L%9~yDM&Oe}pQvx?smiE6X71|P`)v=R#gPs^w{3Ag zcw(}OQ=(k6np*rqID;3hs#Bn`+{!&Xa9~p~9VZgXCRY&-cGbc)*-c!fLn?we(eJ&k$R{vF|tjjPrdm_B5-?hdve} z4DA(7?V)6lR<_y|UZ8egfO|Y`B|~W8LeCEStGHYCgglxzAnTzb{Hm+VuTf7CnJd{0 zNy+c^G5{~S#NUtuqZ7qmfNN^<0za2yGC*z$%AF%Sl?J3~E-_H=nYsVdCT@SCuUoh* z5&uJy`P38hY^(11?*U)5pj{Y9H=C5+?YIAK=L@EI98}joEzEXOLC@Gc-RbbL+wJS* zu}40J0}D97X+)ghX&-tohvrz!|%%?kd>sMWLqn*};3N2%%m5HGwW_JMj#%II!FZ z-#FAwUpe2y7CcBG5#~XMb9?a!LDIHco-V{sAo4Yk9YYF=iu@*o_>V2hKARw^IG`9o zmi(~4bd!@{r%O8a*ZECz+csXn-B*WCjQ(?Vvpo^i1Md2TYn`r=h<33?MjP zL)csWc)Iv(eHRsMZDY$k4T$APo9pHmMeEPj!Q+!*&ccL!! zND?W;@D~CIuB(CjZN9lH;&Q3BWg(lAj#(-G>jz<;yUVtR1*gmuVNZ;tURl&mzpE>T zX33^HG?RYob;pYt7)3Gk@2(dZQY_}-V4xefdLo{uF3f%^G?*|P>$5Jiw`l%H9&<%> z&H7kTp~lTnjdpQ!H<;;hvoWFp{{B!fPrEBV>OR>8nMsjFscex)%*_j-TBA^8=U^fo zjWl*H{l3!OyCx%Raax8U2?%x2Jr8vLY8g^?AB_B9;d-dS#}}L96GA$t*)&4tTw&_6 z`!F`O(PO(TTqrf|D2O_4yG?EZTibobWR;LlTiScJQH6C<}(bEJ*loP zOlam#NzlC=IYF9<&91RGV_a7%i!Q$hX2#r*SV^W>dEOkKp76$^CA%T{Z`!{Dl<_KW zm8vS+cSgq_d;YrfBg|9Wv=0*G>bw%>Vc)PUY)})s){`6zIXbu*E6z;G$4C-wh=|Qm>Sp z?tZytDuq|(6~z#nT>zX}o)aFn7aS;wrC`4V`=&qI+2->_EU;BuGTc1}Iw#5))V9=M zCo0n2G%Aoy{W{|8n>qdHz*AIeO3ubK2*1is9=p|gabfDehHaXwn{bL6liVu-Q8%)4~WC+Hep2Cq!fuS>*kETzlpb^L|1a- zA)i*Mtt#Q?6sp?sPlkw((OO;$({1v}#LPDR{9E4rD;)HyYx4)^YG+_ z-T{h=O618+DF3?GXd*;$&4_0}2OV8rF1gl4&+9`R##W;Nb02Z#Uj@q27d zt`WAEK)zB(bWYcQr;$kQqt-`3Kg|f!e;-M-ad8|_cpVv?M?>8!Gv^Ea?$4rnf4wmI+cD>+)_YpEhL0&b z40-0YqIa@ZA|x3*I6boOS6G-$nom206v)$-_01XD<3%WZd1K*y43+WhVs*m5@8uIo z?B*nYE<3qX+i?*!Gno|1G_Zwx%H733>5Yl8E9eq^(fjCBW_7mtxgERK@1MFk4@Y{^-o5|QcqQ9|J70E#2A5qO&v`~p9cpu>6EIi`~P>mp?ZO3)bLEM=dt z8=(7^VLv|s6Mr|FT_@#ZBn4ARoQ3FyQHnkI-%)c`n*CAWbF~O-P6_O-7UH+#}RJPHrxN@ zSiJQ;?7;_|72-baPqk3+2D15lFl_Zhac1O+-9t)9(`o4UkJb6UAPoBM5<|zMMz%s6 z*IumSJXsY{uU42AEL+ve(e4L?g_fV;yjA2sE&i@(Hbv^_AQ<|aSB>eRKg4b83|UxH z%O@1;p*6gbAoZEX?+h-rg#WR06=i1EhqvNmpA(^IBVHLO!(S6*ZkXYXBZ=jKar|($ z1~c`+210~4rTV5L;uCL_lORwb+Lpl1v2Zqjv;O)HU~`%6T%7i+c6y;&&}U-Y5(KFl z!~T8&sS$e9UYn;&A&EI`b9mD_XfWGsoV3XRPj?{{A{*lmMtL&nT9Psp?A+jDaD4cW zAag1W^}+RZGUAa=kdP%OAP`$y~4rjcvW_f(_&y$^ODjuNku+&Wtkv8gV&ejE0t8t=#Nqu<)EEU zwC5*NN_w>GB(#lxJ1+)%iHj@e4y$J^Ju4MBCsV=BTYhJWIet79k!KWLVP2ix#v7iR zUTvFoUGDtRJaUS}(x2%bfn-#5B0cUhD$p&59asf&|A4yqL(jyFA&QTw6`9Zok0)uD z{_!E7yLL}KFBIh#Ly3j9%rq>wKo@q|w8ceP)EyLqPWicxK~i#XdC|$V8=FNH+{?{~ zKPdciDcf<-Qc0t86GR0Wwa#)Cz*$yOP-m1BvG?L{c_5@ab!>&4~o;c9K9Y9m4c5fT{6KhHD zvH^qI2cp~rKb5dm+m`ugY+%EWg#*wUwL8Klmx zo7l@;yI>YdEj~bG4t|C+dn_3l-h6%*hbZ(R}AwT-$-g2-vzjKSJACY0?H~ z`iRj$WcDe|*!LZPyv=N`H0P6UMQb1b^&-} zOW{0W%YyN z>+d0C5D0}CE63V>O;4KLZjN1@YCFwAK+_!p@wQLW+f4U>f*CbBxePV8GULDFio zot?)hyK0Bh_gTr6_f9l7J^%Erp-~#{Xc(X-D}A1#QKn|$bJ_^5qvnGEKTZA0-Lg9MS2MP__yoE}IY#Yr zsXjiqJ0X`~(fo;n1Vx~cDg%98yE-=5?u{ss3z9hv-Pd3<5xb>`S_y_G7~Lu<;%f4p z5xKdREO$0x`v9pzeWzdKQt}DwXmqoE?b=)KUi>!k6C#%B@+wr5OjlJ;_5t^TM$CKn z5#%J0F-obC0Mk)&wV^F$d@ZFc%|j0ykQ#T?E!)RvWRSH9k=`SRO3sFwbm=_v4ata% z;Eo*ooB11lu^V)>|6`X`Sb`60EV#P44z7I0Z5Gcr+xEk>o%F41;pW3R0dV3^8PH?1 zvlB|8LE(=cM+Q)^E@BhZUX{!_{QPxVcP!gj9#y7Btmhq2I2fp?N9ywNJ9K#liC(WW z&>z(%Z!(?M)A1|-^oM@SD>>XD{LJ0~pP6+7i5^v!q(*gWsW;aIliJM)NVrY>teCny8cb(fd9PsAHr4+D(LZyN^H; zEv?rU0?=BVYUvWWbjG|gGx8yYXvbzb>!|t5X?ts;AsYn+`q()Gf07GfI-h`NBx-;0 z{`7CUgi!ST7;wF^Bxx}`g4f0!8DxgQQ5nu63XHk}CfvjG7~S72KG8PYnHx3cuFCvAA& zU5uBHDfQeX-(X>u?_U~<>nov9QDcES#uplCnf*U`KC6;ht`rE~FiSI9+W!NIKz6^b zIjtJ`9AA6iWB&l0axSverPOK}QKq);zI}h2D;!a?w`mQEZsKa{{G%w#vr4&EJm>@* zo03@j0rth4QPy2gPaCDgp2t7oCXzP{H5sDJ>g)3Qe8J*+b}PCS@9TVZ?wg(URIPi( zl8TqPro~2XC7Kyh8KbeimfK#~vi{00Zx};GS_6T)QSl>==xK5pX_83Rwpi>`ll(Ak zV}66LTjP^`PpWkt0b@s!vuM(8bhH%Z zrs*mnoHxX`G5Z_-xbBj-wgFYh!7aLlRhiRJ%3Dt{h#(DC-p1SD;S1jwEDIiN({;@r zJZCvX*)qW-s%qQ~0>byb&rh}~UsOnC2x# zv2FTb$s?fi9Hf=*agi|QD-}~m6!uW!+jSoJ=~QyqW0y2!k1~AC z^|`mUEOeD42}N8d+Ng6XTDaw?jYOQG*pAn~^dFWi&`#6JuS*eWNiNUKkO)GmSX$Ql zVE*9Sg$rCSWv)Nsv36sq`K{~ii1#^3;-@I6f+U%4l*HHpwe~oNx(*7K1{*n3+Q`JLpAX~OtiM>v`zET^rld}_T@J~nqmd0;F? z!9e|Sh=j=k&09zsR#;>J*-uk|CpK{?=wk(-sLdN97@I>dHydDKQF5j1wF9W4<`zJ{ zbQf$G*~kbdMU)n*os4$nLQil8_$nITloZf}vzQ5?c*du2H}fsN_+u3Dq5HXCqMfPC zP8b$r{Jyx_p}^d?g)3cgbuwwCux56U9=GlE!sX++3-nbWBPk$*(#NOQ7^nUeVwk@u zGov8vd)wOs)O%5*8DwoF%Of_G>2gn)dkikCn+V!>Z^E$SjsX&&*mc<943#!1yCKFA zDDtpk&?HxoE$(;g)AYuMvny`NL8G8}CU!QCK7_Ax@9BcuQMtQHkVadThG9()B~?bZ zCsp=0{c$991)MD(O}!&KO$iMU4w`Ra(+vd4La6*$Y`%UQte}=NS6?z&Y5J18@9a0l zf2j**RlnZnn@3_YR=@-76S`nTJR@%6?MRni# zg&j6&BD9Ll42q!G?|WnD?LnBs;qMsIN1!zI947Mua)SgmMVGVXJiaO_1JXA zkWjLkVGMjZc=zwhxbn=v!79k|4~GML_w9(aJ`ItyT&{qm;w+|omW~=^G1crE=VOj@ zS4|o?G!9Q@ld;y~2VDdbyjPAsZuYS1j%-?Dy zt~i4O%0k4Q@vG(*!r833OgVJ~t{0oq`;0DqK?doJQ6tmk#q*$m7n_Xm~#WL{Vk6~s`A)RC;WeP zYNn+Hw~S?VX9RFZ3pFfSX`-*FBo=w4FK?~!c!60B$W*wPAyMxED$4H(MO8 zDXP!vd_&^txPF!zMxu8>YF-l4L7?m+eO^$&Z4xu;koGTuKirr1*sUU52UZd-Q>oi8W zsG5C5n*`q`bxU0ug^=m6H!OPFrSPIkS1<;*fSNt~n7OCMkxqYi)X5^s%IFGf4PXi1 zueLe&)Zob>Y<|tZ$})k#3#VM0GKn&pMu}nyVpG%G9S@_awox|89c16UD=Dhko#iG! zD7m??1NHm?#j+R>f?}6y>Z&G3do#o>Yad^6h7b!n$O@x!k~7ANmUrjK%nB)0Cw;&t z7FuMQN439_K&zgbOl>{xqoxdDNqFAj#mH908 zjkKHF<-{|<7!lC&r3oR1XQmY?G+gu(ZZ3#pY%HhGbw$vDeAl?|fL6*xH4;X_ z$SQ=`d*jgC;bLK-WRjm)HzbpYB!0{kL?kINYLVSYQhQ&p#;XxH=2c*>NOA><@9l_R z%9)%gbkj!)YJOZ`4!7R_0NW7C+u3Z7CJ0eTq|g>1iliOA zh60;}bUdd_y^-Qc2@K%dd?~3+;Y_r35x8_!(tW$(WP`~xYc3Q?spRFi@R@)lkUQhg zyRh1^@mO61mRO`xj}nDj-1e~Vf})v3sy;5_N^FUvhMh%DZ#g2GA5wdq5dC1ah9>fZ zZ3`HbDROwgt*p#kROb^Z5<7qKt-e(qv9%;y05ANC(raSeE)e4!tnlxPRMl$)iwuvm z`gv`R8LctR*8|<{St=oR(G^(_8Obc1iT#?jUZ|RSq1pDD>3b}0IF|J+lawL`x zM(e&cZD?ZA)LYg`MLI}TS;W08TKB+{RtqEGg*xSxa|%_8Z9+hFuCDg$isem3Q548Qk0`F?vYX1g?mu=Us7_{7754PA-Xr+#nAeGP?o`TpCtJ0D*<&_nf1xQ1K+;_q$nlp6L9s+Fr z*HB{tkh1l)uWSeeevt?TZdCCQW2ap`O@*v5OjTpj5@?cDd`hx;7fJ3f>xVGT3qea? z${HY*mEnpwGs8+_NM5IN5TR+KQOq* z!tV^{$vCq)GRDTDIW+>w&{*w`SB`8U>0oVbxBW1esA{`3Pmpqs zqmOg0s~!PN(~RSfh`6INs;CX-NZEyu_P67XNz)xC`&)Hf{IxZz)P!Sd=xS<+Rw$rX zvh6n9S8u>#CLNBt1#D+pa8>r(j9veb8!<%Ba8+M#lxRTbm(Y z!iMHTK}j?@vsjQu-8Mg5Orc+7%d-jH)`|wIlqqr}^AMw{wg59_6$~c#L)ssOnh>%H zZZ&V(h2Z*%^CTu0ptX0VkTND?xIkdStm<>nk~*rJk)$s8 zMKw6eDkn7Zj?!oA%#E%j18aam7*Q-Kq;ubtRVx;%W^;5~1HVh(>wvZq!kNy>+YMIE z!lDAVx!U*p<2IY9pCJflVr8fnH%NUz!I8Sy_J?`6Kp|M12_UIyG&Yw~disn{yr>kq z)s5nelPDLq%rA`=y8^&7h?ENlwYL8NoM0d?K(fvl6_oj+3<%iT=koT(k`isTVQ4(5 z?OE__3c!+d>$l;JSY8h+QrioJN(%O9i)mvZV`U>@u=l`|Fkg4IJTEp`B}*MU3*Ofw zrX_SuDrUHj6HZ57isZT18EcKK2^(QGe0I5NZA9=ux__mXCjh3DzqTq9&i0&@Vu_;4 zRMIRih(|P^LT%FnvTL{!w{&2OB_1M{3RonbH4P_a9sQ0aeN%=QRDFj0DuxV=X0DSr z%}PFLF42+(m{-sa$Nq7?kRDHRT#$j9mv;;1m8X(GRInn~JKq*LDujo5{E%#;A=W%D zWAS5z=c?j7lQO2J6R~lq4%Z%-YDr1}Z{{XVG(=ZszS3~6dHJC|9PQFM8OAy25 z+Z|eyREzCcM;_8TiZ?ahDW@*UC8Sb@V>7D(aevba>a{i#;)e><#h{M-Twg1uyi|Cu6aDAx$4Z78dXTrJuuoQH);-2ZnU$-C6AX-KDdscHNj+W zDf@-$A|Ro)#jU<7`h$E5X#>r|wyBm)CR?j5wz=twth4PlDa3KK@)FKs@kFz{^Tz~s zEX>bk01eIXQ!5!9UD|`NA>?;+3=5ffzr{?GFP?m-C5l}4GiLc|;|9ckxZ=An)XHZM zx1$@LJ^Z2Fr9bm=N_kBeiCkw}0k4`K6w3=-$79W9JvZn&Vi{r8^%%&R#x{@Xd#_^b zu-e&OLBgIFb$aWk1 zdf;d(j{9E=SF~EntV#U(t@JHB`uMlrSl9DN{Jv*A4l7uwk&W|ztKvj zCAn@FGgKuv4)}>s?+P5gu<1i>uc!6gHy>OdsrAHkRF9rdBj|h~ z8>N{t0^{x^;cpVS+MkssT^>o1J9%1F7iIRh`MxV!Ho0A|(zWdy8=K%~{{TxzQ}!|P znRsi5Kj|#4JhkOVD|Xbwzpaisw@>JzjvEDDs*`#0M;2+CH)}kJU|6b~Cic1ekTBq| z6%!8L6i2F;ogAgK-ulQreXrl^gJOm^HsmOGlsh$zgg52_#%{XH0 z#Yh_q+iVmkcLbrkLitc+PGYoON!S2wzqU4IRgLb1Fu0p~QmJ@;VIRZ^UNASYZ=cv> zSv4{}qN1X>;Z9m0>$|H?HvnGokFRdOo&*)P_Ks~mxLPVQs#K9*l}F&pc0 zy)gWsmAOPb@7uy0k*7m1kLL&6^@kR;_65q_H&9EN0jj~SPbgSf2ZDbBSPeuCadjk*DF&qnG_mpn^8&G2^+q)$O>lkp*uqT}@z`e7eQX!=?vw zLFH=FLM)kx=K)Nifa}~_+usVG5iPk0xMnGq8O=+lmC`$TtSkY-mfPB9$#HVG^O_l2 zH7v0a-y4R7>z#GFe8rri1bYLw(-C&|oysThzEhxPJE9xLfYb zkjbHBWV>BOuWSoZPrl(7PU01vk#Pje0*OC~Ya81XeNKglQWGsYEh&f=J8!-5;j6!;>!267T;Xz8O6tTb)hGlj(*ZO3`v66W8#{xPWN z`Gt9LF|b>k{)h3$%v#4<*6MYFCpd?0U+61TZ;Cvui z7$)nWI729sRgNiC8<0W0ukDUwuGB^ea2Ecm$x8q>3!%7wh8PNe{khT&&zq(>y~#0VvXfJ1&j?8&DN?tF8(?8h5|;z};7&vbLJd!@g9o)D~cit(-eoSuGqXBdL-l2`b!^ zs>AzX=S|zPZ^{NyWhaR#A!co<4#a+g3~OjxQB3%V$@aXZe!@@6U*Vd3 zzOsPiRq#U{Yyp%2ySnxy{jjs6b$W_0XyrI>9+1^71eYA$CUJ*`w9hn#ol?A9GnYnKugq`ji5;%e|y_JBG z=}C_$f}ALdswSw@dpnKAx{ucYO)ITn5plxXUin6-jS@h4vk8;Ga(}iIPb2;j(6OpK zt&z3Y;%0&0a0nlUHwI0+tfG~TX|P)3p^_A5kSe0CpatyTfWWP(BwX^R6r-D{u8!-rcucgiqD=G8 zZ6Ij?8y{nTz5sh)@TQGPr>}RY65T)^Ta$a=Z|jYWV2c$Za*8ayV=XXgWjiXV=zVZB zj(a#4ShOVH4)UraM#yx4-Ek`0vJ@~Qh)Bw)T$_!z2Hk$0u`66Ghkqzs^Kywm3zOx) zTmJx;{IMe>3Nqk1QR(AVkcAq1k!(ok0v639l8CFUfkTMEzfygAoxYeH$O4&`JSTjs zErt-WDzS65*J1kNy;Z0`caI3DU``(gIE4Z*UgYW6;artXbFhuOFT9LkB>q7a0UWftf^Ojb3jeb5%SB^yreQ-=!4NVPO{^=k0t_q419*+J{L!kfHO z?Pnnu3&C&+!!VwZ)l@@7(#b#=@|l6uSKQ!eAuj&_xNM1gnmIyhr-GerA~3f1z8TZG z&cQ>O+w!+%^QBy9s{`L(UAGvPrp*@iwrhdmK4tVP7_(^91;9N)jNAog#XxK6Qj%9hiG`V1`G?mO%}OCA3UL$m zs)LJs9?IR?uPvGiYO`|1Zg1!<>5fy?T@e(ceLHra(K3#x{x0ECGhrDM_ED^F|j@E>yM&zuBwKz zBJl4bkj+XM`vuY*9ZasN%;sEJtCP^;udYZ*Epl~B6NXnw@a<$QyosTATPQ9YW%oGc zRq;GYaG%qLpUGLdN5d5>B+V)UNI=K+>2A2JRnGQ=dm_IH?i{-4&rx7Q+fzG)Xfxn)cChpdIXSZltWR4Jk~az~Lokvb{U5cSg@0Tzg2P`OuMn!}{QD zS50hzvPbKctWO5}lT{vgmDKUf?%az8^9_a=>5{xfVaQO*!O9()L6>JLV+tZS@|$05 zS*W!l!Q_`o9r#rD5_o(yNi`XdSr#B%T;j_~TXW=tsfXYye=^D|GTDMml0>7Rv2W7& zZrT124PgT*dorvsF^!#h>*XlDzPKtE5;BIJ{{RVQb!KbFdtUeH{jhlL+bAyM!M~(3 zM3Ef1kpKsAbG^EBzQ+){nU3Kf4M{?(s@ZB1qE>Kj0KaeY*oa6BJmeG>Kb>AH4P^m4da6Bt?aao|D^(jdl&Wf*L{_*|rdoD%PdzwA2Qs);x#F0@H z?oWJuKDh!V2v=y&n#A-2t|5Ob5ts^#M(ozHYqsHfZHQ!2Mu|gGsV0R)WW9%Dd`6^3 zBdU0*%e#`~TpL=#{{ZIr7Gaf&GFHR@WGuk#b~i2Wg8M2C^4B(MRTu`a8)G{w&DY9| zk+nlYSsX^~VPk6?YF;D!mxeo(H_E63aT|`{w+na3xvxD51M%6m{X&v zAThU5bA;3CM5ExO39geUmNgTmnC^VO;|XS~DA=LOI+=9uP8F6(m~2P}*8H#or}mF+ zFtQ~_lT#9b;sv{l^u~u!J4yInI+PUECPe_FRE>;E!ski1=Y>(~CP^-e6o3n)%KW+- zNP`4;fi}5qu;MDjG_fUFoVhV7NJmiCzv+gs5p)t=_`xMdE+*zUxF8Dw_~D>snRF!I zlA83wuk7ZM9C?Y;RJi>gHf#M^#XF z)wb9QSob1n-O3`lv&T?og_gt0H?TdhG?crWWK&Iz(+cM8EJ}{e3z7xza7V5a&!+%W z2xPcMXzC+F6R;&u&FnBGcM52s%DeIkYANXi(g@j?a4}7;mEq(L6G)=*!Zgq%@yOQX z04_8VpaItSQt92pl<}~%sktOnRaBE#)5{aY9H={zNH{}PUE6q%<(}%CMIYm@%WGfpIJfNF{hBTE(0}>rXUOJ~iw`*F!pFxHb zzjJQ3V6t?}BDBUr#aV{p_^Z_qB*7Q6Gl)e z5-v@;o`7NHG^MQs@|U^+bUvGhVW_BdSV)g>2o@xI@3(ACHl@PO%Cb05Cdr@`Og@|e@GH0~(e)b&zKDrAj0t}HIPe<6S=W_R(FUvZxZHxX1E zwjN~sn8Dq=y|7EQ7^0^#OPe4inD1O~;wz?onMX@U0?Q%YPL{FrdgJBpx7K3SYfUvK z90>maWoDqMvu^Gc>ETBYW;tF|v1SpfU9JGy!1Tv-=*2OO79O#q%w+> zqY%X+22$6s+Sp^MJGgFEM=h|f9G5UF1ahRxkhuW*;)kh1n8PXIS-C!Pv=p~_l3z1w zYkw)}ilmgG>AVt~rp&Us8mfrIbI;0Uu>q_v(_w`5G>mJDNJTnhbm5iM<}t@1inz!W z*cVX3+w5?fcw@gdUWp08U$cDDntC^mcU{XH#DWy6x$9JLBu>TWJYOXiM1&J5#HbV$5hj`aydz+ zhuWmGju(*uH4zw{M#lYpKc+5pnwd6Ar-f8my#$feNe~u{9{u{_&r4Wd($uZ&u~p<* z&n9}DusIRNY!|0r*9<6~wc8YOekCx`W)Z@gR=|38!*mKg9ep&ha^^*IhE$bnd7;8d z;tm~$G*ie)UgWix`F@8MYHdlN3!o&3Dg%jlO0Jr4Vx~6>eZ_=>{Xmhv95%E+gt_q~ zBM7FcD_75^h&WPKFwLa(>OlMBZug`-(0JS}bW{&rDG|lZ^BpQjRleN@#C@x%jsj%Bn(I`-^y*i7HZnR?ulY^6(!_Wtz;BAd~rdR)JH8GF_Gpr zA;7(@?r-?xpEhSmL*2<%Nm>IesT|I}wpz&~GcsR$Ev<{KFW?dv@~PTr=~Wg-M3r_U z$z`>#vGm8#3zqg4_l-dkDJpySzqhs~WR@0Q_Ef4!nm6-{FI)EfF}C}!Hd$?&WO|K7 zqj%e&=y98^m5X4SY0~cOEx7WIxc9uVZGn}+g{2bTW3|9Nf2JauV6hO2L^7bNSmmd< z*>*UKb9Qd_w`VHRrH?Ebd}&CqsM1f%d-{v^#WGr=WFg6nYYJM`Az-J~8!wcB(BBe1 zEzP=_uCcmn%Bx~@DDo&jDX=|ou2|C;rNVv6j6_0WK&akkK8FY@#_>BV z-8Em<=cm^d$IN%#GmC(RERf4o@CbuUpne#fy6edl*(fKP80Rxd5C-=D07&%2jH(00 zMupckG^;cr1G0ITVP>gxrpfQl4l>8k0RGB=oREM+Vt#6%iS%uM?XV47d5c4Zy(UJ?8H8ypJ&ay}Gxn?Va2>NDMmI<7DNckh9w;ZF}L$>DnX<^B+j)B}Ca%s!Z}YA{Eadq=}3 zm5RJFiD>1dNa`uW%622reLG{H*OxWho9S2~jj{}<+>eK8g%b)YH4(9PEDkF*b>;5L zX$1>yg|ZB&W$s=^V3*%W>4j5GbXz0XEKy(Gl=BGZflNZr9jg8CV^MaJFYDrl75DJ!EYhk)%3DIg}AFAfGLb_5*u?)OEs$o>>0?6*5bY zESkEmI4G&4npQegjg%jAhLxJvWO9@-uX(kT4OfO0j}pgK@Zh%Rp|Qfce!199l%q;> zvQc_J2P!Ek4N7K_N=Y78TYUgJzd?mne^GAxFCC@4ekvnyWo;DFEmVAq9{nHhk6YC2 zk-w@ENFFX6w@Fo(L6)^%U?Zl25nxY2jdd+@8c6%H6m>NTeitxtpBzoZ`IK2MUlR&@ zfGlluaxQlI{y6#n0I7Q7t5KX%(u=gGk?GBgB{F3k1w)psRnx{Kt*{<-`7zjjm~=p* zV`?S*kN*HEeRV+GS`&mUw9W$*SnMnmdSkIj!bvGRMoCQhc4bNoBFqiO;9+e<1;DjT z&Q+9|{Swec8`wIJC{k_L6+@?<;VNWvEzc5orKA2C7qabz)igzkv=e74!OQCwn8&zD z8FpU&m&J0bguTVdgmYycmx=4L9E`h@EK1DbuVO{FAEqf?O&h7HjYByJ%`HFx*=pe$ zx$`c5Xz|n-pU#BZ*7WP|jy=)+AnLk@R@8FjQ|i1`qg|gFvgC#NAPCL;-n$X?wXxZ# zbb(AP)UH~vs!Zu%o|<_hR-Tx)l1K95h%)MVM8ck;F=KKF#iE{}*AlztyldUfCJ^eSs=;hgz zA7rZ+A+F^Pe3A=`8=G!_3=Jfko?HzOtNNE}AH&4NwPZtN}{C6)7*8c#|wUrG*nX+k;oofc>mPSH( zH5zQ<83MURR|-^yD*o~|J7FqlVDMEoYYB#GizBp_u^@K0U!}0oq!W%1J8jCZD?S(E zA6sZ{;0zYd7pjec_AoJNP};)&n{*iZYDWOMd`9S?QK3UvgRt0=Fd>+&oysC4mE$oq zO4jI5AI}=Psm=DZaJt1QB4-l;AeO{$(Cxl7b#twfi4^T4g&4;fm6hX>So@LrVpyty z8AD4IjuReFMH@neQEW|t>xI+RxcgZgcgaPi%B2GFrllQpjllP|AQgZ%=afjKPgxF2 zUklPSq5&5yvF=Iqw@%neT~!$JN77N3UgZ41s4!-wIbrlb1}>yrj^PCx$UbG#M0~KXd`IgC6>;Oa6DpKAULV zx4)!rYFavo)0%a#>Mdb^YjyhLK|6=FuE2+;Q4DnvGD+nFp*9$TNz1ujHZV9wvlwaW z1vE5LR6A%5DzaDue#ZOkJuo)l9dNxY1q>NrT^cF0UAHFpzuyF!=UT+A9~nQ2CUX8u zgCl(>442c%dd5|%zmpHKvkJfGDmHN#^m||jfn>&BB5a^(=N#w5Ki?C9cVWR zq#J+vU#1gHTnOPhpweV_DZ4AL(NM6=%>_V9D#*GueGU`Vv9b;0l=O7d?c5wIpCZf^ z7CMJWS($V#`!M=_aZ;>_;Mj1o5Z02*WGiPTs&-hBWmwwQaHq;gpv5-65po!u(vTbo zMl0&pIO1^&Gauz6-rw65omTO;2-i3sR^{fbmt>OV0SXso!F1y0&RR$+`^>M)z?B_rvbzBAyw(&xCb<#zu74EQ;k=X7+Lg*=1dT054I5x=nRJL7@s zJ#|YNEo-)v@I^5^L@U*vKiVlrgqR52Kd3idCpZ?EYs!-9#Tsfqtr(- z!)xIkZ`28Oc3MMrd~yC1RP=6z+e)u^8-WCJ9P==VCEmyy<-LEtIzQ2kCO1lDk-k2V zI*ZQhCtT4rj$bUrdyqHB)s$}!U~AF}h`@5MYO3d_m7@mC4_3a|eGCAL1ObqPV7F1% z$<0I(6p=;lIum?u>K6PjTQLPc<<%O(Ekv%&b{^PAQ$@7g1Z;AH%CWK{6_Kh5YkMEZ zY**`PcMPJTmgPQD=Fs`fjItFwZ(@D0m{K!>5$rA|;H-F(yuM8X26GIpU;}JNPwR?D zQc(AxbYNjJiS7X1GjR5HXecS*5`3wnNFOov2I9bX8}Eqdv^Gad&l?b;eCL2xoYOln zU7o9EQV)Ib;+INmzaW>*Bd)8sbJoh~>Xqvyk{5D7b8w>lacupb$70J$N|#>lDN8Zp zc_n!fBu9#a)HmC^OTwzHD~Iyj-KdG4sjDHW}G3O)MPoX!l0=Q4SEB-RWLo{sEF!o$0D+l z#M=Afw>2wWAbpWdz_3-da#N~LGpH`boGNeD=HH$kQ&l({1B4{d=HXU#G{$M9lIz#d zVbf|bfh}_9+8CJ`W{`7lxeP8ZkEN%Ta_D(QOe-X}F_b!PG@Y$%3Ma6&kp-74apqDB z#%-$Go$rX{e(%w1+fym336Q~3QO8v-pny9IV0oG2$}SgqDe_X&OBs00$zn(^au1*< zw%8q#5EQSD=%f`9Q%bNraZ|0j0lqbw>lqcYk5Oh6k-Um!ki_eyz4yY&Vt*kS83z_k z`3`YNAebFQMyE>~?sxXWnuwjllNe(bHY0!<4Z>#tbLDcMI8Nkdxk^A(~XiyglM zfvahEGsP1fRgT*x=`;AIk|RRu%uk!XpS}@xUNAyu-3}O9EAx$TJZ!6~P)^tN!>VZR5VAZu0g|xQI-O25k1+n1!K`2&($-CXNM2zi z@h>qN_vzf?M?I$~jim|rDQi_-wqtwke0XXDJ*?PNS#rgt9L81DrsRNehOj#qSXx)w zIBw(J+8IZgpuhm zWZASil(SIEju|#4+x@W}eICZO;nzgK`(EK;R3wg}mIZc83j#i0z6Pdt@s;DwZkTv> zAtZHG@t#?Ta>*N?Fy6!0Y;RKT*uNVqig^l$sFs|Ox5 z;p^p1%vMj`^1sAL0I}2$OAvpiDV<9&YzAMCN>)j`DCG@fe*in{jHn>`;L36&fK1Yh zaU^^%j{g7=P$P|Fvo)?x4r7a05U-CaR8+4`DULu2Td2l@UB=Gzwfs>U1+`L+kf=64 zd}NJj94(n9Q)M+2wQ@9oiDKMo^%la4iGw&asC_~V{tR8+L|bkwOdA7f<1c=wmwYi zU#B7`IG-c)Yb(trtkTeSe|2nD_^p~|P|BIb6fp;Tsaur2t=8Vd6bk(;Q8RFLze^?t zv^;>;E>TTiB?m70Ayxg(#1j$&`Wl-rVJuT4u$M^Kkt14+}< z+~ewQlB8uWn$|S=e5&18+;=3tA)~cafEdeM4Z9Aw>KZ(*AQvQ)a;lu_IHQoUk8*5r z&?uzBSunA>U3#Gj=f-2uJ07;fRx;>UOPeE9Tt!Z*3%bVb@>tsfR8n0N3-Ft=-Ys{L zU8l4?H`@41S*H66c&0~cIEo48R)VdSHodwJd?|}fB#~u5+>q=P#U_6XM@dO6vY6S3 zis0!6*R{p{I^w-uq+Z~J#wz2%MiV*F2t-uYS6c2yBQyc*0Ak8K z6XmfuX%?BWySY(4;mJO;h~Z?OAsOjmz8KQc5bGSEONXMXJok-7E5S<}Ff1)#FQ*6A zMYF_ZK(+l%gk? zOAql6$&D%{vAzEQqM5M^T&+v-RkboBM$l;F8!H1hG_3*6tea>TkQ48M;$b%FZ891dTnd`rzRalY+h68Olk|vf-Ff!=2MW%TCT! zt>4rGi5VMN;7Sv`eidVwWz`TFW06u7{{Xldy8B`$wXr*!sZ5?Z3cahTj*fPT0=Pb6 zZ)=nG!-yvZpxprZGs5ReY4w<5bRb(z)1ms?A47hj@9eq+BX%S z#K|ZU6llpeumh$ydE3g>jt7OgRq7rf^12J$-u5Tg8cj2PRGSK6sG>1N5T#(Z7qJ_A z?|Td{6~22yn`476p+#L$2r(?K0P@@$YWFwmiDYna7g50JE{tWl!$UA?xn^4eFLA%u z3uiTsd%3&Re0qg*_OatueK9SK;&4NhlK@eDXJ2A9K@=`lml(L{kmd( zkN84w2sK=TS3aI}jZXXDrY2;L0>wt=o7@Cin!X_sWOE$DVo-|@>P{n-pxbanLnDRv zA@$kwEFvX&i3Y(}sRO1wZ8Jtxl1<`*{Bl)JjZ@48PS-o{jqPv63}z^c${=-WQlo7w z*A_S(&Lfp9aNCt0r!&`R&tO5o@wtq3?!0qFkTs%OMQH>}0<&BNH^06M6EyIk*bwTzS!R=%Mai%` z_w~U7-@>6q@}(67$^?wSX&d4SnE=J|r({i6@d(2wC*1*>BhX0JX3lr%*Q8 zIiiRYVam}qxgB}wm()Z>iWadyo)mYSuXL2)a{mDAv_&N0x#5+=MGIG3yAh{5+%1$_>FiiuzxB;(B+uV2mqVDLW~jIvQjnHi(XgKAQi zKMut8KB|8%_!_o}uLJ>v4^edg0Nk|C5b_?ETjg~W`Ib#Ki6g6yNXd=S!45kSjxp3a zU=cbussmxz?%S|b&Jk0YWw0#HBa#MWAnXmjzWA&3rERE$GhzP#3wo%{yiwN6=H?Qy zHpbwuPqr;4b_VSyCal8Uok}NX)ad{8>*<2zEF|WUj5^Jip**YF3jhTRLBRoAn-@4*2Eu zT6n0K2^)5N{3nl`HI{Bl0mPg{(L!>0vlyx;McEnlWwop~-1~IJW2t(+i%Dsvq5zZd zprogKul?o~X~P^RE@_xaU08(1$5d)m>^c#I9TB5cR#lqnk)KG)@!M^gm2A&fm1MC` z&8Au8G1)Fo#@+q#^rR9>TGmC76?Sc_oOqUId74FC5w-Pc=n2PS(nuk;NUCEyj@4CX z5JxvKk_v&f@z5y^hEiIVA8M=4n~)WwaKsaFd|0ULUN6E`HZGQ%GenT1DQQKT=e8M7 z13d+c_QW4&w&V;V z1f-je5h`9LF_?v1s8iDYe;ik6OrcyU<$L)hCqbJ4Q)aFpu+;W#+Hjt<LIBmB4q>lJK)B=zmyZB*rn1}ODd}}%2*o< z4_jbqctj)fW(E=?nm2Z~n+E-G7>>ts+&}nAid3^HW{{~Q*bCbdzGW|N%L=&(jSiw^ z1GvYHloMqP?z2f-1kD%-%3+ibn2(g(sKj%gR*=kAfl*S46PJ|3ad12DiFO1^&ZjnL zrjf`pDHj1cDD=h{!kL^X>t9nPP<4@loyvDN`*g>Jtl+JbirS+jXt1dghTXoS8bwcM z?>s1`!%7j%tbo0lrI=WNNx{Rn@PO_jbW`S43elt$O&+W2RW=9I`(P=Ie$jOCJ?99F z5LRh>^L3M?t@k_i>wqL8_)OcTxT!gGRZvzC+|plbH&4iW;u#xorEM{fpK0O=%y6wY zy~X?c94nd|WqAG+eA$*Q2``tSHrpFR_^48>?F{m$5;Rc@kOmktlsah1>tmxS5=0ob z<-gQ04R_>GaQ-Q!1!U93BEie1ZlsTz!>8wkjdhf(81mnaCG8|+e<@SGHgx4|9bqilsEncfZ;v|*r$wNT zXmV#rjKGN%^;`nQl#5=%_>e<{$}KoE#Y}@W5+cSUE~+ix%k{tcwmfrenZrO_d{J6w zkh4oq8FwgkDfvo~+t+>Vh@SA#a-YGbJhTOJ_;bYhrw?jPFISXE2Dk@U*mpzN+QQr3 z+glY)Qkp4FQ!P{JZ|xXwOf2QpoG+W?8J@Sxvnn$o0p*R`mm;5ZYa8R6PoTD+$Sy0c z^p2;ezife89H?F>o|)b4xdYh$0LBtYC8S6sg~a)cp>adTebn+XzhOY%CtQCd)|fWLluo8v>J4pxq=#!4A45lb~Lv&~{Zl}B6= z4w@7usZ@M%#%~QMf}Ja5gvu$|)oh`S_WIZ#!xf&TukC*7G+aEdycp6Y8q_`G)J4hk z>x}80JHSZpN{V@I;u8e1%CgHiWt9&>>5IU1@PTtJl__1U&f!8^dk&!OZ_gS^>o)7y zzaWi864xx|qEO0%E zGAMv`)UV+Q6Vp>0Nz9r;HqtMG)GPDn2~DZyWH!B#+TDMy459KiL-)`Y;<{I?o);+Vf@4lS6^WJs}uQJa{Rh^7|6{0)mww}TzU)QN~+%wwJhC~ zCpM0$WRaxOi*dKxz7Ess!Ru(ilHIGQ?Q za<^>z8b4LCmab<8X;qz+n;xg_fo2xM(fP`oS(!@IeAwi9TH1&pn|oUWqM%E$S5%V5 zR*<3f>~O&c8k$ue=p1hG?V#xO30(BR=S_D!uQOqaYW7}7rJ7Cr1`GQhQMCd z-wU56QElleX~qSKQL5;qs^&15f!4%aIKh$i8>8H#q))DLu5$=phLO{P>-y4Jx-ImaGAnyIq7RfrWMn<&+*)5>-jJ}6gB(Ygi@&}SG( zwR!eum^m{`Gx=-*AO#-Q#QlZRG_48<2kw|kiybXhQIXl1fc)?{so1R)Juvs5FpN=T z%`+5~6=FXOc{ZX8Rl1L(|Y%NhYvaa6PMq4@$()p0b`E zq(^AE(SiN%FKk#NH zcj&rJ$KWu^Jx$JSst1av>U{^L)RJBK6yulpiQ;}qP?VKa5b-oB<#fD4IbTl3(k;7! zE`2ehwEZHahD6<@^Zv`1>;C{oDF6}=W|vv0jxu_z zy9ZJ`f(^Y+0j=l?s7C4u0dK|E8P|TCRzeAhrCyvdUBh|g6IEoH&PkrppwtaCf%!-O z0LSKA{{XlQb8TXlwuRT7h02`m3a&5vfgThgIdeh}DTTloOoweTW>NDB3J0&80%MNB zNgaJ~gIv`OEH9XU3fHt{b%Oc9G*q=5{N8A^*RlQsHpOgCIJZX7y0W5eLQWh-zq)Am zY-nn^>EaXeH3HHNjsF0cp5LxI6;)9V0S(&RZiT*8Le;gQW)AD4R7yc;gDGXYgK>2Q zw*z5@Mzi-}2|N}mzR#!-xT8o^!Wzi`0P4S{9%*&^Se6(S1WN&S0YtPBo84!&uxc%b{!W}8-LLum6lY_X#zveC73BbQU%H1 z7iu{-kgKztrD>@H#7^@8x&HufzATjUh76(96sUN0GZ0t}?bu>o`oub-y$E(BGme1w z7|qwp#4qB^s4M~t-`f*J`*Nd^39MkxBVPCZ_>{~PX_rSS2L49gPr27V++m7%6O0{|`ud*R(93)nBp5?KIpP^ivcqE?Zb z4P89!6#f^(5819-cY>^PgsWLrV+@89aq3Uf*uT}t#aE7c&SxLdxqR6ttQz;vcV)(&cjKkC{=9N-vCPR2a?^6@&O9ZX&$Drk+enwUDz=o zZG!arwuY(ZXO`Ban%c@b84Ln-s9;_V@8s-n1U_0+k7|_gKkpCPV#o&3Q|cmVR)QE%&%}- zorkUi*c9Q! zaEJ3CUU24+^%dBVF*n=`TG&vw7K3n!#|&+}qHXrN zlYt}_;aMqMFNKFMlys|A+WTrlZ^qbPGm5v-N&pI7B7knJ70I^O7ykHK_Y$r26Wf$m zl`e~wM!w*JMgV(`(Bv>E;@a1G><9lBqqZ;i6&?s5}hY4JjGyw@_z6pxC-f%!=Uf`P&HvX8e%TrfC47AsE zy>oS>wCs_kpbM4vGvFzrt&XdKE31-y^tZ&ay}McC0Gv6Z>)4*#Y7DpY3XQFF5&rV zpr|fs2b2Th^6}wRd|wSsT`VS7jw)+}Ag%ZQ*tO_x4R+UhQPi=%f~0tdg;z3Wg(_Ak zSO5qcgX>~Ce!pyVeLq@kX3Do!PVPdaxbMQ};Y`Awo}V+M&Z+7l69<5`;_qS&@zQk8 zpk~}0s@&A4a-y@$z3AkT5;sM$Cf(1zEj0R=lahjx0ys&PG_t5VQLIX*UYklBE(gL=tMSv1@g=agLhndQ0ER)ftiG4p~)> z#ev3-b%Nd_WWx>FVufWgvj71o zv&x?g(xggU7btF7ck_A^{&c`Q0+MaG;i`jtWYw&z@M6%H}<_U6|aTOgw{6jBpT=R1v~ksNzTwWW2U}T!2lw zVdW($2MKhw9`BUBRm2qnU;7uh2No7U>mh#S$)hQ)o}9D8Bod448*2~G5l%_`u)L{NFQ>eFb?}*(9wUo_ejn;K0qc-NSnHB(U z7#+`SZx+bfadi~(84a6)s$Bk%WsJ<`N4XRHP51_;k!kMD!jRa8#3Fna)QC^z1zQ+sRNjF8YqWe_X<#}k9 zS?T@_$sG~=pUUeyDz5rT_Z1bWTL6SS_8B)teV^a*Yy6F zRVcO1m4Xb6Z7*Qmtfn+kM45IxyTK<@om;6+sOkD7YEb)#}+ezF3 z+XKwQb>pN1+MgXjww+~7fxW(C-|)n5ji=Hvj{`SFDdgu!sm`^ZKp=JWI0f+SHVDWb z9C<~dX#+3>unG;Yf#qQKje=dyAf6E>sgflC>qSz!jkX7SemBC&;~s*01i*_UuvEkh zOiZzdV0Q%TK7-Q=CB4zq)9!H=M4ViqGaH*~u(kI80GtByT8?Axv(t7XP$+!81^q_; z#~U(hjufN;>0>g}hiP2})k+5MeZL$`$y|8C)x!S(qSYf+<@8dWCT(&t7wn_~vFmGr zjo9ahZfUVzx5VzccHzz_pDeCeX`SII7g>Rax7Ty|;T<-kQ$jy>Fa1}Q+I2fvL@ZUe7kDI6N%IP3 zq_3p}>ycSbhQG>3=Zj{O*A0=Ol{t6E$Mse3*qz30dlFVhPvR$sfs?~e5jfL;Cfu}i z6^@X|!uvcY$VTV4d|F@A^c8I1Bw+k!gTt za@k)X%pt3q6jM`7BV?MJRqd?^^#oj8d+m-*)V&u~Ms5Lfer;vQwH+E-XYG2hVycE+ z4yJBEC4OsP6-tUJ2ay|3!czp1k+d6?Dz_k~s-}uWsUikDhOrmG^!k(HlWdK#{%CnA zKZuo7W}F=uGfz8*I&8XBV#!IV0_(W|_Je#XJ38Ul6G-(77}KaB(k_3`OkU`9PaUmF zXQU1{RA&_BQO_VULrWCW7DQ4&)@|Dz14Yy@lT}k&l}u;3WAdFx{@8**7PA~&Xe#bf zN5Dd;Yax1h9crXJh1`~GTWO>Pp#=U=N2!ZcyojnK0jv$Yr|*VC$P3{^BgnOsI@*ZD zi6qgol{eU5_5PTdk_Pa%Cl_4L;@xl8tiGPOva(wXAs-%A zVPU4r83( z13IqSqcEtHh@h0Hxn?~u@}FZsB%mG%Qj;pGnM9IQvN7#{`NI#sV8S1=DpS!Bj!gEO12kKWj7mPM2-OXoFhXG?y?oIM)Suk zoaYUu2nWs@ZW1nS zG<9NGW@!tq&7fRqANj+&5N(9AtQk$pScfx;m58T+mA%ZDCdb>*VYJ2X{DKrQto&4p zs=1v5*cJ36udW6W?G{ppUn}Hnh7M$CQGE~RjL)U87f}`wRV%oRFm0@V)BU!@rc-Pz zb1;rlG!RO$M%v{Eby9Zr#08|Bt(aOlMdJ(2Win!0=}amMH0AI7w?D2F%+h#PswvoiB7oLc+TjkHYzKQ{Cd7TKWh0x* zN{dS*&UJF!k+HvgNMTlLNllS=iDiwVDjZ*?BBOgx3d;`9lo*o>5>2EVUf6ON2+Axx zG~5(cn>A{1v6trGYuNr63Z{*w)=jAOeU|{Du;#Ey8z~9}w2}`)?SRc09+SBB!bOTD z9%T#IhE(67KG+so7oGx>_OpIb8hpV64N?bjZij99oDcTr;T|<$?i`CnnFPLqtW=V^ zb_5Qeau4N!Wu|rbM$&3yo1%j-3}kkc+jR)Lk<+QfMw=N&Q)&b_l2qukIbJ;>oRc6u z0J*iWvZ4lnRf3YS#DsPn)dZ~z-Gqc4j@y4O*i|hkJS#kNjlMjlShHAWR+PrpWU`Cc z4%hsxgp<=byr;D0>S9%dDDo4aMqK^9a4RDmBHl8-NiVz$7O*?(+n~phUEhk;lHBKo4wEs4K}6i4B-M_~pf3EdZ>R7L`eHpwf#sYf z!lu$;U0FtPkk(C|d@U|vNkoW=OCXp%WWI$wbhtPo?OJ} zBd}#*akw|sEzn-r3NNdA&Xo4UR~^{ze5&@L(ZS)}mfhpht{N%0H#wnN9wBs^HEHtt z=%(dKBE~G62;?n=-p2!=KvTx{_*q zi^V#0o+BzMXH@a5O&nw>EmIKkxFgNXP!Foy;QpxkNeuCtswamL@V;T{zo!nS{pBNW z(fvQl?hYQ~jJq+0mRz2-Vo%0b**%D2rj^H&1aLKl`$i!$lA{Nl?+R!56URaF^0Dg%nL`1D9jjm{dIm!ws0z@U6JzD@Q zTi*=ie$W<;U>Dw_RKTxeDOG><0Bk;{_=L@V6k)eE3zxh=rCP2$$)Na%mLkBl&-+II z0ErmppHU^*J9luK(Z^t}C}N6^o|HixlB%kM&}!|rI);n2v~2|@b~#zpy2KjJs^lK0 z<-@mt4iqot2A$c#FE}>7>ek<{`6`airo?Ow$J^TxzRng~Gn7V`JBl_1 zp;vS_J9YZ{;2CKF$Wm_!j*l?Qsv`K0gJ_w$`Hk=GgtZjUZy_5I_*qm|QnW%hXu|dv z0RI5aB87(5Q$51yNw0;MlCHjMkPB{oF+XJ5>OSZQMO0Olbu{$UaJ^kiFjQE@*@@d> z_rcJ!V>e5Hf|1r2Q1j|s%PKSE*~}8rSI1z;>7kI@xWfqB<92YM?<$iqs*K3uR3_&3 z_x`v(Cpai%Alk`xI;Hc(s~BT`x8DWWo>XmMwp5Vu+y4M@DKdYwZESn6EU-+OFB9d_ zq<f*EJQFi886`rD&yUdmsfj38$u@e%KZITkHy&T8oRdD`q*& zaIz#-a>^ZvWz)P~ZH4>oVsP%CPc2~FmB~|OgsdGAjZo)zb>CLqJ+UJIYk)i~ITt}H z^K%`dj%9U0q}+@g%5v|)Xn@61W|3MiEN*NR8=v!RGn<6H7&6Rh=8kK`+w9wIh41A| z&J@~e%2%dUc;rb&*0smi5k5B(ET)Y>XeCOXWOF|z$I5#SxGk@4-M-hd942g%fY!B4 zf}$#QShZ`Ai`xrloUuz!0C>8Smo%h?1zmQ%dC z%46k%jp3$>ttMF(`W3IF9^SavRWbQc&lBVJr_w{Bb$G9)*S~Oa3YG{mn(3yeX(K>T z&2VjVvwLlTYEDxIJ->&wBC07yx0OtBcJ43s!qno0ggePD)sW5d)W3c91M7@etv~S# z7^GO)dTwpFxF7S3R+?YM6N0-@0Z9iDwwyC6#R?#li%~-~<6QEk?f~i6^T8rwp{l4Y zC80p9%W5dzHLQ{vBz6p~s7gZG;E;s&BKzNdnDj|>tku5$Dl7^da?)9&u++MN(oQx; zM_nUwO3FH?Ndh{TVbqLbpZ2?!bPAk4&`H})=NM)N9e1e zjgiVUZmwB}U5@xuQA@F0w9Qz!CR$q53Q0PUHvZ!6wh-1sg>9qMN+Tv^etMPYpbKB2 z!l6rHxjbb?;dLS@)dWo((ll)yh-1|E#*b~BL zQPV*hF0CMgp>_h+-{$(9R;Hv5T`H0RPRoREB;p-abk99CJcv*OVQ|CV{q6bT4zs3# z86YNFeDX>A#;-*G0B0`;xI6ZZ$av?3I4uT4<3$}jxrYwZJx!^2o;^k7p{ft%ie$0n z)F}XoJmG>|b81eX`{zCun>=KGs+ZN@Q0n@2c&3{)?<7CvwzrVCJmh~-@OkfwxLz(F z&a-|P&+?4dE6=E#))Bc=&U6V|IZdVuo05wGG zkEb!$j^!}3RfplfiasasHGJ8R59Cz2mk7>DlAcW0m(2#>#Z&-iXH#kY zMd7dqmGZY;{UQ-YWMInfUKjnUI9oNWrpmKc%s6*8c2$k4fHBT(VvOoGH$58HxVL;& zwXdXg3}KcLaK2%z(dVXpoN%pl;(i*6nslssdRZOVU0%ZX$1I;tu7D9Bz)Fmb2XC~$ zQB_5nM$}nj%~rzdR0|89o8#E)g*e>g6u~Ujcpu^>b*0Wk)UZ9m%`~dNmiujqTlH&7 zhuU2&EnCM5yW-#3^NjKwzHG)(3nHTnpf)@H9nKx-e^_+tsrxK)3ZjY3Zb)Z_Ncd3J2&0HGK*Gl0_rV?FylhrCT(#oWDnZ1V zMO7>+(q6>aSne@J`i8>!7*kq)6{nX~r5yw-Q$}S+gmTCFNgZ*}blHFDT9Hk{R;!)M zAlAzzyw@As@WrLBxVjZD$zFo0NC|1d4RS02Cgcys-)u-($_OZ9Dv3NJ&7N#JnaRFT`v*xnUu)F-4NgUU{})zt>TvJ?3_gvOv%hB2G$DK z1Mi3(rv~Lp`Hj>%w5O7;I>oA+Qm@LaK(P9C$FVV@;I9Mk%FQ^LDdvu*o}|Y*5b9Np z)6kE6X(pcOa6POp10_Sx_^!V{t2vHoTQy~4H=0KIn!{`Q;(9tK-(u6e&xDDaRnzL` ztg72=Khy1pF+hV$K-4>P6I5UwK&|x;zBiG!D-@-I2@AA==X=<+idm1}5v)L=(WJU+ zVhxA_<+tmLf=-G}{1injsVKg!U4^bb_=rk3?OMNtB{L~usCnIEX${Ca2T#5jx|;2` z$_P5h)gEHCK^AEiHPduK{NG$IlAX|lZc)sV;>!x9jT2Ivvl0cneQ}V?_38w=LlG22 zAoRmwKgt~%8jLLPS>H{_^uW%LZc={=k3-E#CVHSHjJ3ksU~%m4xE4{t?H8x!O!AWx zs2wfqh#Kn~ltN;mkp{YXBk~x^vh~&PfhrrnghUCJmU!vn1fhmB@{1d4z^;DuL<s>xdrhrp0SCH+9sAl!7C**l&MaL|t{PY}&rFD-xtIYi>Fbj}*-13#?;E zTCR>JnYIVk_&xxIolH!_nJUXP5Wx0LphAjlwz(HKVnJfv$v7TpRIy9)jKN(IJl0ia z>UZ4zum@pG_gvjr8GU|TTSd&8yi-Ulx=NBq(*w@kxJ1#q&bk*`xf;sNCTBHK)3u}6 zekRx%w3jzmY7Kd@@}Q+gOfC%^l`J<6B*k?P{-Y9om|N6!i`n=s6nUKs36dom#AiXNX+utskrqrT;wQG(*(cp%` zGREkwWng!e4Z<7xVV2->-Vv}=9s8V*2&xn;t7#69Z+*x;{{Spvut%v3Ey%I4c?8kK zRROaWB0^7=zyoGJW4@KLo$gc}9?inZ^cC2$n?+kLoo1oLy1M!gY%iLQ>d8T=wSvi> z9MH=kXDeWQz-+eqei%bN9oIn9b$H3aO!T>=FB_R9V8GddZjt>xFqWfECpK3KeQqGo z+oFkI0!LL$tgPs|q6eTJ--*JR^wV^6E21kn>e3WixcP4xC9ZyCJxM;^*vM(}8d1@9 z{{Sne4hyQts%EUG&8r~G>U0wqGj)-=^3I=>u;|^egQ%$G+u#v2THk5*Y8S+n=30>& zKw+f-0Fk}Lh`z6>$C?czn;yv(+xKfcwyGE9eC;2~FR@ea>+6j*N>LTa;W46kxM<;B z9v%3-#Xb}99#h901)Wu7Tv0^JBy~`Obm|Bq<5H2aQfb{uzef29(>RM}Q{{Xp>pm!KZz0dyuHa0vPVRFxiToIP>r41OQDNQ2OYMijW zilMSN?iqjt^|x$tt$Rg{?*9OzZqmA?BfCtxrE~rR;yw|6Wi=$3v<62gnz?NtB>aRC zxb!;`JL0oJSzo19Z$rCZE6X<)>Ra1?6z~9ZWR|eMy z{l2^XXY~I7>u{U?nyAMu~M|3Nj zab-w&vy#I#E?q2WsL;)&TW{3c*A;HKtKUwg(_r$ll~w`E^45-9$Rdo`_VU}P`eNnL z^8Wz(@Re#&dEF=0qsa`!D<4~R#nvg3$s1#2sWH|IEK)H9C~aHcz8Er9q8(Eth$I@A zvyQj3E&Jk7@KzyG%S^H>mLWg`Nx1{w{`=!)iUfyDwv}8c>f0ad{#zJ_S|*Ap=e!jh z(b$Cw4l!bhEp?QIxg%q?H;e^}161Ahx}$BRT-a`XaXUF$zl8;)nWBACyoY`7dkf-a z3L99Q$YC-7Q<$!%*XjCq!Cm085{*@6S!u{JT&Qs7Sw)#r%RJNOanw{bMqsiLqB)V= z#H$sEPFg7;+fid;Aew985TV68Dga3J>4grb${{3DO(aAs*pt_7hrRL8wgp+kw zQp*FnYGHexy?t>Igl^mhR`)i#5ku{d;4> zQqzDJjc#(Y6GDv?%p1&hDh|gHiCj2Sw;Uoll{H+;6mX4b2KH-e{4g{w+HO|wE+2wo z%SjaRB~&ab5b7!3-nQyRuoYZ`aUl~9?YDO*-d>coQoP#OJZF~5Q%#S2FMUJWa<{e3 zl>E+)ik~m1%oj1BmFB3LC!|t&)X0J}&68^cb0G`8{{V*f002*ntaFagiggJL?tCTJ zN;GkNC*AL1~+-EZ&Lwg-|H29mbkROYRzh568@Fe$$H3MRGqUhh8DtHb%c zH890cjI&mhwvwmF-sht2iuH9N4$leY4O@l*Of?kW7X)!l8Bof3iKnln@lTdl!tVoR zdDEq7Aygbg!A}5=dL?Koq;^$}O_YJ$_x8oFN7h_y*PJKrfFCBLoVnhbsVS?G)kn={ zBoCu^UYp;(Ex&Zbkc4o1N}E`#8D!KIK=Lr}wf_Jfm;V5addh)(BkAj&J)zp>jaVZF zkS@DlYXRmTp~S9z`A_M!5&T6+j<#1IUd!Ict^$^vdsbR4MWEoLF;+^fz%UDIUsnGB zd;;oL**=3?Yh9F9n!U=Pd8D|o8}{@k3hHTYpF^*;#0Hd3O#JfaU2*6>TY4X^1#JU& zT&qkv$#ixHC`}e`rIs@>W4UG|`Gv;U_OQb_^yte4!qP28?KcHJ<(aIX1fRTPnKJj< z8iIwaZPB**M&kIT>Trf(xGSUS8kCb|=HW3%Qkh~$Q3!0r%DPo!zs+s!_vzmix~4it zY<^0=(Nspj9Ja@vPg5+EbmNmgkOIrmj^@Pn8yladD|K2?XuE~}KSgcR_2$0u9u?vH zKKS>=UIX}>k@3$Cgso9(dg?-7l~GFUyvW~4+*lh11RY1x<61Ttk9eLCong~(>h#8( zi@VXk7RvsLX?X9$zZZNnn=f)Wv%)O#V9cl`T6n7J^2&&tQXX7^hr~w3<9OQK$lZ|G zNpWZWqa2Le$Un>eU;UTJwVgLvOGs)8ywh!;r{@M-V{sWPI&Zl zjM9#ZSmTE)A?1K_yt*rkq`Rcc=_f7YAN5 z>3li$3+e3oRK@IVg4vb$jmBIPTP{JL7n+V=Ft8Pp7?Xp%8toSLI1Z_2## z9|AKDD*phdqP@u0b0_9R_;Q_|V zr_5N=%Vd@{x6CXy_r;nL;u7L4ma7akG^Qaa)ONVI{P0|DA;6X5U1WHpXztb`!v(*&piB!G00Y!$JHbtU35JZc&xCddOYQNGtC^d9)svA&ie)k@16BvQz4*nziu z`uDe{!yB=IX!1gcle8!JpE&MuCeXCrSJPE@H&Vw=`*hs@0G7tfRr%H^-eV)VzTjya zk5E6it|8u5Hyk0gDtS)&7=ol5jllkxh0ixdv7n2Ur9!f)5;S7nEsr;qDn?nXPT{Yx z+o!%dD`CI2Q|>LYmY2^U5{<6J?{DkV8*JEYx9?)hSuE-hFpS@0ewds)aQ;Y16HZ9c zv~kB#rK~~gw_D&D+iat$xksxWSmQBLtdp}JEtqUDxwv)8A@bXVLnx8ysY29%3pSuM z3z3YShtWjt9|)|K#z>klpn?dv8{4=amj2iUl;y`J$}nzhv}&~>Rx(BlY;hcCBpj*x zU~-7kQr@0LeF+h>GJ|q{_{U5Ez+Sd6P}+sGc8W6agXQ0G@Aknl`6wjuOq?f})n*2I zX^>445x5(lQTk#U>Twvsy7HEL;Dp&)Wr`-2I8kN*t%BQO+ZE{U=Uk&?l!JhPQD)Uh z(ua+pm5I1N%ujqZbPOO}YS|CPmicFrd5X-$2HdDUN7ovNnBO7Fm%iiUd?_(c98jcE z#Kum6hjH)ej|?IH?7c={r;0>IQbX)_!to-LwzbyfvP}?-Noh&i$G5H~Yw)3bc~KrL z!Ch2LWv4(1xE--8Uwm0ENf*_rLs3ya?xR6gR%X13{`7!6d0HVMh><7@q}mTAmQBxQQ&?~A4!qHo;QZyuOx zD45;(gP{O`-=9wS7P3PtLA{Ee7ZxjOmKCQ+nn|Roo}>7H{{XK40M2~}r`Hs{NSB-N zt{Qatx{Y6z##UowM|B(C-q^F#*2g1m9FG;wcjAQ1^;FK$O%N?> zsoKsxSJw>WnT0l|)d*jfx=2p1HNt~s2E_FQUl9g}3@0&afQ*c(QDzkmpq;z=TM)@i z5zuNoauI5J!z4-`#9qujeGlP?T}}YHyXjhn=5D&*ELvllNOY=3E%!Y!>&Y#(lbN*u z!Eu#i@Z?oBd_4_Q{{Zjl)Q~CWEF=2r7P0yp;)Ab8vY-w^=zTA(4&8|U>Lj_j$Rv(B zXreIdGPT%?HMRH4f6^z!!K@&G^Bu7UBB_KV^F02CqNo*B!$J)6VKzb(v{G+Jt& zBc8mgyd)GdNfb}Zk~tMvS-gR7b6~X&z0_fQ8%%s$5A#9vFHS#BjrAga;Ud=CZ|`!i z?63Ag;a?c?OuvZyIO0k^70)v|80+b%z9lLsxsDahG;>N-*4peEL;R#Of>!CYzLaH9 z6AU<|$Lf^YW6X6?7qEN2f1QB;03YbNhs3|x!^RH@AfcPa4-2@Hf}^Xc_$n&u)Q(zd zs#F&UlSJ;UO0J+TE&;boVm_ql>eyf{U@iXudn;c~_11~3&9aJM=UdDF0O#Z4_f@uI z;Qs&$@h(iJww4+^(&UYXwIA(e+fDbe$2Fm^lByR|PBszmpX{X6V5y38uw8@Q*FDtu zMVxqk)ZAUcsRd4LO;#F4Xv0(9#^R4c}3m&5Bq*B!Bt?yNx(fVA6uk;q` zY}n@Q{drd9c&YKXgScxm$+8N{J}#rpMKxS#L;MSpP}9jT^9ypyvFeuh$6=%Ds#uum zi~LXU{{Z&B0qX9RpHHn3k#K#cOqasU_lCSe%yOydrWvFX6_yoow7U&EY&&C|>m5N1 z^xNXVH~#=A+I=Vqd|h$;m#p3n(60&b{4wWp!$`2VI;Ke+D#k8Of={*kW0y%=KI_wG z=lzw@v{131y(*va^TvJv5mwP~K4(RkW_ylgD0IesE=SuJ?FNRXYZ=+&?N;?2MhbSB zAB{~JVhiFNntN5O`7}Jy@iK-XHj(ZBc>GavvEBBizVy2?#|eb z)Qy?t9}7nVQ)Uy?&1*iO2?MRY?QXd3+8sPlz#(YiP-^u#=XKwz;k*1O3R0V7=zkGB$IRI)yHz_(dXs3`E`HFv(^cX$o#^DSk z&8)Z7Ei7PNRJ%2Rx5{iy{{Sp#&`R9{oe>VGzlh$1V8l8XGf5>wsECzf@l#Oh{r7fduUG z0KliOr`r&@hU><(j!-wPiYjR`=@vxHo?wMW_Jofywhw`&4=V}bHDsA&Iddt9R7TPe z_HDp6AM=IvbvuIEjeumPHmWjSmIMnT?sn^Q*8s*^0y;o1gey!Xq?U7e0~;G!_?eQG z1b_|}Ea*xqvg!v=_1_zi>t$-*QTjE6g^qiMx3BAfrj(DxNxUi3!3qNFIV2C|-w|vo zZs=bOtI8y^87<{EvBZtxM(2y6Xxbf)vXzD@%+rwJ z)8+$ld1*d7Z+=bEAK^*n8?-a7IlrUls%YR$rc$;SKcME;tGMHAa7`y0OZQJm` zedF+m-WCzlBnVSbanpQgW-DvoD=6ui>_O56&f~5%bhyfrG+vSl=x)KaLfZ^3khGf> zB5ho;B&L)Z&_+;qxo>gpg%6u+v%pB zRdcf#)>Lb%C;M&G;jEK5F`y!AHAcOpG~FJ{qj@TXu%G?8{zKFo;blSG(j2SNf=*SD zRl!*&7|}yRozZ+uARQ8`XqFFMFW7xS9@tFHVp?}t93~M}IzAO2;s@-X;uc3iE_=ds zl5xim>iK9REmsl^!IB$X+tmwfH}%EOMf#sk`2=+q1v`SG;_H^pC0sH;G^8#YNmmvj zfw2T0;DQM2aBq&C9eXDo$apG2RO0U*7MEZqFUx(0t*&t+99?jIA`N@MwbnHCEVVBi z`4z{O=b`J@?Tom+lieFyEN~JV1XdZ1Ldior2+OjuB=sYp#I1y!g?Fs3A}!~Ia%7pz zE0I>^(P?QpE%P1Ot=kFpO%am2dvc`FI?H6CmsI}%5N9HKDN*G~0=<=Y)IPY^O`{Ec zj|-(%bpetwVw1n>II?V_voMySY0OFjGXO%i`;|R<0f+9;n>(5VtQ8-q`mxls_iM6L ztdqw2tnV)PVUlrfd6m(LnNk{cnPTQ?GP*)rzKulQ_w>SzTj}s*f@s}xxvrb_5J(H( zCQ;r5{h`x^xW^~rP6Ey$TD+pF9Kr}Isl!P{JZubXY2`j^8#!I{sQoyQvw1dM zTcWlqD%#gx!q@DW*k{pG!P3$~!8Ik=i73dx!WmO}C+Hn!8Kp5aQ}kDQyiiXEk=zI^K~L6wjhr51AbGs8a-xR=8&CgZp9qadZ? z-xMLMN(#Kbqe&3U0%_AOpCKwju(v`17dzvAs^}=-0yba|_sZhhUZB<;&N)b)D0t(> zULfX%O#c8eq{=Bu-a0yD(HviEl1{_SPj1*Jr}{RYCW10bgHY9FncjEEXJ0)fdHvc^!F-Q9ai?ew#B-JrLtx+m%bM_kg9GbM~0T5Q_7`?3Wzq< zbJK6b7VRce`5#I-2Zj|J#93`-SOht`{1tCjQri%EW20&FcUyS!lRdUMNL4FL&mSe@ zoyZI{5^sLS_-{RZw_ca~VV>}!OSOuRF>N8X-A7Z}_x_ljjs!12xVjAOqC%{!cGwQ1>w;rpQOFj+ z(FoA1FEgP+cOOBGo(LCFFS<A|>PKOL=Wt9Lk%VHNlB`0yV3OZVEAO>!+jqi8o`Kz>7AS#pevgi4p=spe=uiyDjAo{fRr-HLdzgldT& zm!esDZ(<3+QcJnW)w1%9#FAJNH^z@<)ufVbMKa+bd&r3>-u4(8a&{YXv~0!LQ)H%v zWfCPcLG9Um-&^7+xBDt&PK{YCWO+#j!((BACgFKc!rWvrye$(jVIeGSyAOOu&Jl0r zN336r1n6XPb_7_Dd`%qToTy|_7MDK!Jc4(z|^Ai~QS;*cwW3<%{hURWh{ELJW5s9YF7I zOhGpaZt+jNKa$f=M3K}5_~Lab>C?a0Y*#B~V_a@BjfK}}y0Iv-e}|`Vu%~mcxj$T2 zYBc~z0TRH3!|`!cGDZj?uVK}V@LV=_T(W64H*&jpA`HVcg^;LO_X-HUq3`XArngYW z73>e(GP|e3=<29w=_u;yqnb@Z=)+P2e#dX`ju+HBdz;~XmD5UmZ)J+EynpZq!rnJp zyu&x)$TAKhn55F?^f9C}OxJ7kE#;NE6RCAuzAW7x*Seh>!%5u0q10^{yM3=Yxa0OP z@k1%evpz83YFPY2;d({aP;%)M)>9_qQKBc9$_=h#E_OQ(xbK=*)}1nW8wR1`@8SJ^ zR;HZ3FyOe}rE4kVcqfC*hfAZ4EUXQ!Vm2U-p4jY+sBEzJY5xEMl}p@d!qFu}l?u_s zC61&aAdoJ7$G$g)TPwzkt@l~klhQGjXZ0xIXJuE7fhOeN+}L65H7Ij3lvdRmdBF)6 zH_hBv)dUAiIXe!wI31dBZdJmQsa*B|gVfT~RZ>;cRu-0)c*?j3wfceT4Zj={+i)Sn zfQg;Vs)^CRpGuG8ZUy2)QAuCJRc~0)#qjSM&d^FX)vZ7y{{T4X8cwB5`1U+pub%po zqpNA;GDd9Ftw%-0a2lGt+M6+}uO&?kh0K)%oviEy>;~sm`(u4g&`LHmB>Dsu)befw zuFc`R-fBu{;DWT%sIXvUzV;W#0_trzN_Q3o_a{hel|8OkKya^%wfruVtp;cUIaHRO z3W*hFC#I#j4b+YAu_K|jIjvrUzV5YxxeZuK(AR!S@bN3hoWqZ0;f^hAuP4elo)}t+ zwx=zmN>t2X7cn%c5V3JV@$*;JK9nwNT@Ed}{{Y!vI$K&1HPO$T+RK^zX7Ot@ z$^0amgCU-xmpsqwpD&(hnCp&(W4x-Z)D|qNY;R(5%6^yhG;&rNnT5kXRky49f>8rw zh~TbA;8(89DyXu$YB#K$+Bnf8wTHchvGn=UW|n5fPTVh@x{$l`dh2+6JIpdzvbpQH zS*fI{B$sPzjX=3zI{N$K)h?3VK9#i+ju#fybv^Nz)8_~Hqn}Y`6)m2^^=%zPC0$@+ zt(@+%A5uXCpGSNW7%HPv^XMUmwe5#=ofSMT z$-!CsVXtkz5PGgQ$TRHB(hB2Bh;|ZUC(nf z+o$7>gVU_r9#Uy!EA zXIrV;r*GFEJL-KyQp%#sqkm=vLinZOQUh6ElTs{Gs}*2_=JR$QyW_0%r%}FVd7w24 zeSvX}W62!S!s(@ztiX$JYh$am!N+h(TPhFC6%_?1CM5un$EMh08uNYDwYk*8Npo`< zTM!3L{SUX_8_3(Vg|m56UsF@XQ_F}&dzl-k9-m9!0d_^v^AoWNo@o?GBC}}dJlEU& zwh0jgy-UkM=0zixXVq^@pZwu{V{AxA)9{>^G^3`xH3+6af10C~ZS+5`E6?RIN(&rw zq=+iSGin!IBX4i6FRgyes`|k)+2oQ`tyZ3v=TZ*i{{R>QFigx2_+d;$0mfBrLPzmz2{J)MimaDkkm*sC1 zRu@u|69ki2Q&Z}Z*a;i3QU3s(K<5XIfl80AVQFLL6qOKaRZ(Gn{{Yhq=7^*I;4Eqs zyELk$6R9Kg$C1cdEV46qT}g(OrPK8^_gGzO&QYp*D#`}crDlrYs*Z-;3H)&hnM|K@hlS*g)eyaa z7Cmr=uk=`&a%8GZ$CVV(tc2=tZGO9cSVvd?0BL&{=B|1vmNiN+-0dm|TZ@J7iY%;g zb=sb@g}NGis#=AwQwVz%DyHP)Q#62CY^<&ao=GzpDd^>j7|VmdTVYPEXE(`W>`old zA;}>%62`UlAOIpym0SJd+YE7yP6tf?03~eGKP0`xTt!`+$j3IXq?+5LJgsb-^a9&k z-xE>O2o5+_0~OvK!R%Bt1rW}VxL6Inr-<#lx;x{;|GDNIZoWu-*y1dfvZMnq1 zdKCWvv|{;85yT8>8(K>Xn|8wbh_{4w2T(PKD|~auP8LY42=jcSZvAmwuG5RK6^ah1 zYmKh1ZVcjucv+U6C#NHoR2Op^Soyw(`eK`1)3CVhm|pj?vCwLUNm^R#Sy{9`5OCj$ zTpv@GLeu5By%k$jQB15^No6|Fj`yKG}%uLR_2-LbrCZQ$8reRlVS5;dtnUq&eEkOHWgm2*6Hfmc}ngsA>h6t=w3;<2Z6!^}?Y;twTYS#ESw>AnVQx~5 z7ZTTad7b{}s;k$-vP#j&t}pw#Wnu{z1b`V>GFf1 z=l7ijPG4o3Ibkx!S7nd@4aL1dIQjaoM>NxdRo#{0>|Eu=^Q{(fO%p4~0vjOiFa0so zGzJ$$T&dOH_X_9kGLovMr<*f6AOmu2ZP)G1a7cqKpljeV1%}>C_ZOl||(|m+(__%15q>vRZ)2 z5&*6N+!43+!(9vUViD4Bjd`)h3lw}wUV_UAc2j+=_WNV$%^oYp59q41NwLMKDW!Ck(Y=MFa%uTi(hcPS|t?GfQYW4f!kKgd}76?lIa@> zPO-26`rt|C!kQjYC{_^{FP4bPM!#+QVN092*F+b9Y*2aHN{Wh!C8-5^JHOD+|o-u7ndH{{T(;4}1RrTx!V%SUo7JTjDIN z?j)@6>I|zd$v9^sS@@aZj#+9MEy^lEEH~e$Od)}l@0Hhofc*k4SgD&3@$x^ZOKnOk z(nBR8B|Xi`J?wogZ*hlWa>6r|y{~C$ZL*eg8drukhA7#fQRO$iy|7F(=Wyj~+9-Tf za>|2dUG3ARBy{BRz3jP6icaE zNZ`K;x=L8fR07c+_cv44{{Yh-n2W~P@K!b1%FZgDazOBMg1e|@eb+_z+Zfm!&&=Iz zydtkrP=NAMHHWbV*BBA*xw%@!Ab;V6Dn%&j(^NFBMaaKjY);3UVQTh}Z0=S|PLf6% zXi$sXU$!?BJbooc=7Y-lEYU)t>CNO@-Fpm3)^7ZkotCJQ=2AD7(Ye~g*KA56Z^D(h z;b@3UJCLb)3HboWhTg&#U`D8GB!L|nBPC6a1ev1hSh=z!)r#l=gezY60O4-HjST={ zWTjqcnb?#&8v}da8a!BBFF~@Iog+LDq%2BUowu>Z^qD`r;d{KG`7{}gRb+X5YM`?Z zGo3g0>4S9%n+$hy&@`9WaIYlc6w7JhX=I+Rq^Nrjmfvi1N{*l|kl5ipk4^!h#SP3T z8KhoCIT~+%zStt0Qw2vXO+Sc0D*i5wT1f$LhfrPncH0l&k~s#`?JkpZa-`Am9RC0b zs;U=rYp6vegYW5xe$D&2!jdYM{{RvrmuIW0E@V|OO{j|~H~S0;S4hWj6g}rFLnF>1 znx;A0Nrb_zYnw10rxl$>n1<~NN_V?+XXUl^+s|($Q z?TSvNsP4nco3Q130~IJ?A(ltl>b+mo`{IRNFm`>bg)AFR0*7968fto)s*0Lif`~4o zp+`A@-rl5}9fl!_P0bB@e*)k&V$E{6D6tBfS*S@Q-z6EXHfeLef$$DqRqjzyCw znT160L&#*EY_hLSCi+?JeLmI~CB2S14wYC%jnhbA10`X?^!zu#oHw6%sh?8{s%lv| zR8Z&|t7_y0VTnNECXhQg(_G#f7JkKb0WinEJ z#U3fT4b6s|n+rz)G{{V~C(^MW=mSiXvVk@>A97LZE*4B_;8<4`=)jndOu4^wLQ@VS`BVgRFHI zIEI(6+o;S$@!TqQsZk)q3aWU^i@2{ki5D@b2shNKNnG7Z}{uura&^UU9lq;#gZRt;x8Km7Yi=m=_&|j>h<8Br`(hJJOb# zZIS}I6NWh3is0c|YCa3fxIaJ3XU$tRN{rE^H5psTk;hRLJFd92x<`EyA!ytOQo*!} z-kYwwOq@N#z;djWY&8t=Ia2&X;cp8e;ZNVx(n*u&lcjAV<+VB0IGyt-<|>MmNV?t` z;%Mbr0A05ln6Mo$Lh8sXPH?NWnq%S{naTmdix*`f?+vLvLkJ-b%W76=7%X9qos~|dUiZIS?bPB5 z%6~7>Fon$u_3+b-Gb&1`V;YxAc}p*UZ_6CBs`N1LCUT8*bx%qi zwG9kcQTO%2ofA*mKzF1gX0WhaapF}3^m)vVYAIRV1tEYe;E~aY=r$*QnED^4s#;tXpcm3V%i)ZzYn)UO_+H@(td$jClN&U)-s@w0O$|Hm%81nE z1E+7^E|SL-v9EL>-EH638_OHV1#kBuN|H#lC|8l~u_RvSw%7&G-;`rsM+z2T)6>w& zQ5X)u1~)do*qSIA@s*Et#nRfe6)LjHQxY|;Wg8F2d{6el0%kuc))x!RL}1RUO~+&X zaVFEdZIKt{TyKFHSBmx0K$03m1juX`!v^BKwd@U$zyA~iF`dl~Qcg22Nu%Br7o*d!h zWg|DqsD(OCOi(5FP>4Z!PQ!*n_`&9lrRI2Nt*x zp>%lVL|Qp$j)>g6DnZpV8loqKh3w`KO10{Ob#ry zd#o3n;-et(E%VOT(Rb`Mnr}{E{=Jq-@_cZFK&MJ7d!64+uD7ekEGE=qM$EjaBECMN5-q zzQf;5t@p<~>aA8Pc>_1z>Fo_CblBlMPfBSyO-~aFsX?5yw;tc@OeR z8SF7p^J?=%T+XpsUOGF55wYoVdbRuZJ*+TCbN~oUpkX*ve-tKRPa;j4xRXAdm4cqu zik2`gN`ZSQ2d{EK#e#*qnq74E2sVyYE5!1wRCT6zF~FeH20LjY`px&;TYpQDzk6R62;{S;%W!%Y(tAqQ5>E7OMHv8d4!Buc+1 zTk5lJKLdcZI`;$N!bbLni!Ym3}s;wl}s#Uf-kH{oxjp{QwsMyFS8v88N-W)ZA5!Ym&sLX);`=S)~=X9 zR%vqbZS!8&x8sY16_C5cJtr)8!mM+unVJ`-Sanhxh6G>y?~4T+Hk-8E9(^eLqQn4^ zvb^6v;ad4CIBL2`5Q~@|#aL}{LF=$Sm}ya@!BowJa;B%Mdq0U>nP-d{K58kY%qioc z%_-D~%%~ZnQ`AP~Nek3k`)})tMPEx*!28o2CvDW)_SxY?&-l`#J4rIUvL=Fwm^AW{ zV)y=0dpEzP*q2Jt&G*Rr+w?)y>V3gr+aNJzn*RWcK!PJ;rI_wLzvmW8ixz|n3FRPh ztPU7QA2_-N1x=05sKZ?jch;tOCeQiyv?{C%zk2$J~tB2HAY9 ztgNRxqefqbsQ&=mt)D<`!j7Zwif*Gu_X`w8@R=Jp6)vu`yl#BjNezV#q+@t0B$LOr z6Grs2#ONL3Xb38X>c9i@ck8&fUbwe(520eW?=DYumf$&bU#6h z1yqLj2G!q);;yyqdxBZ>;fc;i=4f6{MnOi4+oJn#^;6wCtQAjbtZ;+?{B{{WaT zUHv=Y$IA1{TOerkfYs1L4O9F~?^hR?s7njjY?g*lO3b1T&x)R=B2wC{A}aaBQwFSKMJV zRZn}jG+|?b9HM+X6cn*m&`M!6aZDIEr(5sy$G zG4?yyb^QHs0G300B3Q;ZpJ?V^nNm};N6dy1V05rIbI_=9u(ssiV{3Q7(wpPjEs*Bn zX{*h$*&tPxc+798N2kmSemmj=3x}ocz~w8wNO{%TSYFF=$F3%H4jhFJ!h|GMiCb2# z`Y9c3m)wGXKYS3<(H?nP2;aKngl=kNr)Za&j=FA0{B%300?PF+6k%;3)>vkr? zuWU=?I9NsSrB4klyz)d2tM$j5SrS7NGN+jN zjgNdv$;iP`Ii~CN>mE}iIzc22FLEt|TQp>Hyx37G8Bi29GHrVw>wvtAu(M~%7PTUw z$u$tNgKsg|A98U&Y3d0We}zw{onr~2UoWk|1o~r1m~5p-Oj5}TyCs3#{{Z6)q;ME3 z(9%{jN?%FRQ_EsUY(U>@-GyqQf#PXoW>z~5x}Uxa?h9FX*8o!tb0eaui~!CLnw-<9#>rDGU(m9lB9h(`=;(?S&aY%DbG+;_!(DG7IiD$Td*ljac#WYl%W zKbf}&>Fw={D;*=5W~KAS6@QuWEc`c|$6J*=61ZR_j1pDFx?9j<#Y0GHA|c$Q4ciVu zS3eEsl-yHFjWWXMRPL*C55IAWUa?6f8_oDf#VcgbwB5rwB(#;{Z{moR?g2JCdtn}_ zsMmcxnI8u53uKh}V$o&=e~W)1LVbSUu0DTuttO#bB@VkjRggj$EIC}im}N$m zDVKPGw=zQ7-S-q2}Dhj_!NTLBD=9F;dm#(XTJyL3Vcp1O`I5)JC5-qIyo&7I{ zF;!fE6F7hYbMF-8)oW2xn9f7-9cqD0tSq$10I?$5DBRnjJL2=FOw!8^RIHZRT))P& zhPJVC8bIqqOuV;~UAdDtnVqeDK}VQ^cVdH}$4SxU5VN`LCbaToU1;IH4p^Ewsi~z5 z<5&!C!JFk)w^P33*7%cF*WDvF-4^G8%DbYXWs;trD9D8Yww2pRAxHlJ;g8(<;-^b6 zBIlH%pocc$Hqz!3bkyQ}$=PG3i0lpe$o`5n?cANPWi318aV{7Ni>}s&w_|@K zA2F!R=<;}S>1NkiGxH_6Hz1qt4*T5o^uuZ}%a=ERt0qS{G^P3AStpHTjX^$9{-eEz zTs(ZY8=JsVy`%VYi&N!wblJT{qN)Zkq1UdPj)K?@yHJmA+pKI(JS&DNpDxSt;Q~Wl zQ1Sp`3QI62p!GPQRR_rH*;wh=*0#=8?+#Ezut!Z$jYTW$;lGi+2tJ|TO zZ^9eIoG$fr)4ow#3REC##&32O{$0IrH5RVmL~r(?m>)?-hL&SM(A7k;NWNVTN|Hw1 zM^UyNNlppe5~*e_I8eSeuO`cLC?r}qsALzC8Ng)i*!?k@Tv9qsvE^w~s5G~0xm-KP z+sP5eH~c#V^Bxl0s7A;cdD1!vRpo zJNHKl2gK&`rG}9TGdwFq0V|Odh zxW_8n$T+hrZB*H%N*Kk8IwKpK4Yh20+j0D)_r)tv>G?pwL`PE_zY@N2o@Tj|QO5@@ zQq~MD(0x1LoeGW6;o{0Vtl%RVcnOuqG|m}Sz_4vMxcu#cY9uAZ1Vj$;utD=|z3bmx zcB-<4QGb=M-`CT88$mNzGs@J)=N#~ZN075-G}QG5I$C)hMz9T|1F1H~RO$}?5QUzY ztr_M?Ol6q-R8lHP5mc{Ly@l*8z53%wYvkg~9LEkqucOIDR%Kx>ksnX9Nb-q%F6%ZlkUUdy70ugKe;g8j5;#j%TT0fwcxczL*h{ z6}wq{s8#$!PYNhCMeaq!V%Oj4gCV9e8wIPSv9e09&Z_DsNa2=FQUY{sdmm3sIf9j} z{Ls@$lwOvyv9vQ5Ti9=V`*px`LJH3MWuwf@fn)M>Q1#SyV0|#X)TZ}5DVaVI%6f;J zmW~mWwTZV(MKp~T4O2$@tZR8R$cLSDCiVkm#B7%4%V!%4sNu|!hajT1>Q8b0UlORh z%Lt-Il(Lr44?%(y>5iI`N{a~9X`>xnk$=Mh%O#vb#S=57%d(Qybu-3*S#>joQclCa zTak|$IrOndmYR(a#>I7;ox#|BZ;wq;XxzPMxw6wY4dqfs(m zwpz%DnS0$iQRVTNrHVLXcd%w_e7j&r)Q~QsFtn2mjnItl!bvR<_i@& zJd&86$8NX28&kV;7U<4F#R|Hh*UKL5isgQm;_~pC(o_%wRgF!V!U8xd&ek{SY$cMA z?I5QOwUOMzF{YA~GlX^{bsnH$eI*snIbOZi7gg?So>D5y0Cp#9D82sxOj+qP*QHa= ztA&NLYL%QZ3dZUOaqE0rV2nb`s`z&Du8$00ZXeARrGx(fWicdy{-QeKmDJNVW)}NQ zsT;J}byPIb<{Y}p7d0&3G6mgs+Z=AJn8Dxpg>Q-w`!8sJVSfx$!<@3K#GWvxVFN_V zOHC?(SlktR`fZPZzx;^nM{0Ew%cbZ#e%QO83e@8MBBXDibgC(THC<+zErd06Nl!GOv0iK0Y5xG+eQY~=;`I$_Qb+Kq{Nf51X{r=G zM2d{zW>b2GxBd4Y=?9{3dst!J4Moar99M1C6T}piRdd$GPNuJlCQ@aUkgT&iEF5qdAg_ZBhx3GVB1$>#!itK3@4-*sR@PUYM=dBvNh@TrWtDo8f2J!HP?tz|DVsfl(Uw=u46;gd z2Im{yJAh9^fa)kV5cMFI;HBO!saklNtQT1n9l_rgJsQ#w9FbN#XeDu{iM}UQO-wSV zDk@Rh;kA-W?mf5b(`{GVaN9esc`F!ME4@p4>1y3Gbk>%-KC>Fkus-O#W>1=Y!?Lpd{e{nmk zUFlrof*N2OY^E&8S5(HyQ$+xkfC;Ha*Y_W6B8mn@e$oDEi=y1ys%MTk6E=8cjUtL7 zS5Z|_=RVlI=p9nnKn_*{xHNm6FMa&|Ku9cmqlCEKKBeCj1 z7T64AQ&_F0fLSfcm%`k-g-9VAg$2HQ4*u9NwLVrrJ}YD;71yqD&1JNNSvMFzwxRoi zxDzhoT-PtFNvWAp)6JwC0uOJ`6zW=z(M-F+T-gta^`tBnQ?tTPEFC+jKi7O(D0RlT z?RN?}8Ms_4N{*!FlhYNbC5gV4axb^GEzGEmqrokbn7f2tT$TeH!8myw+ei`{gYA!7 zSO!9bQW2FRnwUc>v|~fJk!~+*dgDVNepcoL&2*tWs=2A9tY47Ez>kz3$KKchPP2|^ zX&G2VWRbkbQ62ZhPvv4E`@xy*3)!7O0XG8YzBE!sr&R}yR@%W(Nz?k^cK$(34USYe z<*A)O<~zmO*10~|A#J>Hm@?{Sr3qBbglW`;_XB@U_|~FO{uZrn!n3QccaXGUoG(&3 zUmin2;vAuxuIFlqDr1ok{ijCqw!b(Y*6eXKkosD}4ob)443WaJsvS4ia0v$6Z)@E3 z`d|*vl9_!^KuHzGK>Y(N$}Ty^R1d{nCIUT#tHKubdE{{R6vdm{bk9${Hhi<(C;cp@dV zG2Z%y`&;$L9r}?yOthVtO}Ad^;h;BTgO{{9$Bh&`OTt-xN0sHKhFuDbpa6)584Q zFr$Y$&5%bOEKMwpC9O0b?lD2vb^Y>);7n=Tv5TJkc76fO^LmltkX>%273I!?D8Ts)~6ao{|`8qNa#BGKkY= zZ&Gb@_s3nP?TfqN1yfNY+qD7DxE5xm$@7|sYTk~mjT}mqlhZyrY}0$0uM!Qz;we_ zR0$<4_*HN%%C7SXkmY5bF%?vRjU{Ya=M5kk{z^d0gJiK+%cr7&RFN%AsA_|8Wow?DeTFSGx=ecm-i4B*V!b>&@a8@x$`d!vGgpyV zYBA~{G4vKaG0S?Ns0dSZ!P)#HDk zDS>GoEa6Lsg)^EcB(G+96)x7%^M8D9{->nWI2%l;Ue2c7 z0^--E)R$S!*8Yo!aQ=~L}y#Oah|)OnOORdtfm z8JFccKrGhVZ^ISpiuodsw$1`;0PxCik!fI{=d_B#G%75kuiq81TP(5wRQv1_4K*aZ zPg^stlJNs#<7013S|XLO0dthTT7AwybB+mFV|i+ziJ7iVfWcH9O4dJ>prTbL9PqQy z&@!*VCdBDiyBqs@V)fH{xR!9_n^%O{at39Q*3s5AT0{(r2^wv0uhe7c{WDe%iLF%A z0lHn6E^6~xBud{Dk(nj)T<9He{jar;%8l^hS6S9m6zC(SR##$nxEqUgzpe24lB72& zd!h1F*A?Y*)6WP?d^57$m*snl++V5K>_5_RaG{fUN~)n>q01tohB>CE3R*uYD{_9; z#Ljl*syRzpssl`tppihmhuX&7FuJ0Y-*TCpBGnYLW{rto%)L_6Ek6rC z!BNg?qHqeUdCK=7_W)paRR;2=?3JBHLzcxwTTxX3%q$PWv~vV1-mDGp>@B_|j<^?H zK_p7C%qb|Ks*xwlqz~7tbpHVAZHG;)ZIbswZoJ>5s-mQhLp(^eirorq2e+;$l~Os! z$AoWaBJxcHtqo!|LKRzpmI04)Z~ZZ}Z`;C<4@v(3g80s=lD%nUWzxgSP41`G=MN|~ zmofHv!BLj`3!$lVsA|W=Jd+LeHMb!8e@tB9s*U*v3MnEaSShhZ97-qWGcEcXd9T~+ zgQA!J02DE}pRINVPpYs<9$eNdEV+KT(Nd zAo8}}QOXsTv?VVxK{mlj{(rBg1fLu!k(jDw%Bm3tgD*xtm=9ocZsmyEGghLsqC0ww z0@jGl+3jzSJxRXid_U_D!Gb55_s0$sbUf9R~bJxIA}3)k-ld@Ykak1C_fWuB^6`9K7pLJ9l# z$HqNf*04Za_Z*K)pwVgWcnui3?V5iAWZ;av=Dc5-!$}d9Sv0N9hi;!-apTnTYO;2z z1&U_Yhe zo^URXuaE*Giv+HIY^NdM-WsT_nvN4%K|&-2wXJ}-+iP1Fnqc`|V3*3z9&))iHEFny zJd#O>P-M2EI{bi;W3Vo1_5NZ9{}dp_~QjrWm+6Fo{HlA zyNo-JQHg<}zmg7WcQ}hKO5(a#eCIKyj7v)qAuN2L?`xcQK9H#22IKj9NNd{Qc6_DG z?}9R(E8)0uhT)pI?!s7T9`%-ES(DY}v~ovCC^H&l z5y}Vi00#H(z0cnq&ZdU08n-)l?$4_$B{cDmNajJF<*)EE22O73Q*HOypF@h}WfbfO z;W>(+kT#WRH7qq*d=(2&8W-5015rP2n5Me1u*?juE&fB4Ol)x?=L$K@xIcyJvaF)E zzHGNTt^uio#^yE!f&k8&4NO9T*Kvn*nhvF?!6kHLcG>UVO}J9NMz!I9WTP-qq|>mg zw5iN1YwFei02r!NO|jjpdHkZIvE^0XAn>I~ncIO-_J2pDS4b?uor&9FZk=y`Y$30xcy)nKM#LM5@`&M^T{MkO z2F{iid+pPvB%`YW!N_Tv-%7ET2T2`GL`%O$>x&y}8*UQ)fq7AyQ`5;%&U~!HYjnkC zmR+sdMb^pzsgf#+V8~RB?mYnO^~9zkaaE()87~U4!BE) zVF@%L!x&EU^PR+;wvk(*y~Vw8W^90R5M8vz23=1i7nY#v7AE@-#{$h(ckOQrR|^{{ zO);W~tOMp3C3}xddK=vQmNnL226ZJ&CJM!87O*$nkA1I=n@Z4b-a^({EYeUqtkGx| zNtuLkBJ?aeA7k{unz3+Z3XV3HdraT5XBqf|!T$iXCx(1!;b#uF9`W26RB`hp z%qkAc0;t^T-=)5|=6x$&GizN@BR4VMuL7*aW+@s-w^S4hSV9( zPLVEiN5L_?xkg)28Wa?7Un%Ei6{v5_k#y5VepGztFCtx=1X0V}ji`E=0X6}7XBK;% z$&*v?{YMby`Q0pPq#B7B#(_y708YbGv)FYc`vC;>kUC>IZHZgOISkqqg0itzT}w!) z5gc!<`-~FlS~3u#Hw=??u>(>rtCJDh*S`4KvR~5iWl@+#7b&9Dpukh^~^jjf314SxY=aW>>x!gJC`4#!o1>U!Z# zMGe~QFJriPb?{fMKe2a)ej0I(VMU*D-f>A9#r#K#O-p65+Q9YckB6$nI?mVw(=KY}j0`Pw-mn87#E~c){ghND{eob9G%n3HI+uI){Q++zrt6nCo zCqJUKR@b)nW)~W9{{Za~pLmy@OqrHrRZW!;!BK6ur%y}ctaQglQ_!~!&&pFIj&~(i zQuFiIVv-h+4L6ir-sBT*orW!w*RieKFg{dqzy=$X)x&-pX1Rxzlt`M1EEdAv_c*Or z^))ni?Z0s-_^Dle#8@kSmpI}62aY_mFN!0W$#f+a_G@p1RWwpn+E*L|e3Lb{4fd++ z_BzbMrlzf|lLpszy^Zg^{)472S^#TX+5s<^?RC%ku4D0EKbztWJuP!8+@nS}xwhmE znCqQ8r?7cAD$QG*A8_SBQBzE*QJG0IGedULFXp%YacGc&?V$o1=0}rt`zg+|N!F%O zQ7NSlylUGVK~YY|9E3eQq_-%(UsY3ISo9~F)gTwtSbV;hHo)}|G&B~bG~j+odyg_1 z^Ntv=IeaqC;xc-I%WIRj-v{V*ow|m#0jrW&NC^}6V-%G ztW1w5t*d0qvbLzDN~a40%1G8W2HyQ~UXxU5B)jq`sSTa6Sl%UZMnmDZ2+`%W(vRN} zB#6+K5*>ExNF;A=op66lX){&Slbc~_b}(G~URCj56xH!IcU@khI0KXA3vPtlA5~~{ z4X0yRPE|Ws4S6mFZQ$(6pDe8sSCYKqWAh!aZ>PQt)TzvZ%{EG7t?l5ZZY#;SYcHp4 z<2kOUXPj9SUt)cS(BKD3`C$<`xgOPuo{_E_u8@xnE?Oa~%hFn!2OPj-9SQe18n%o| z<702r`X%))bZ)pfL}+X3vc{m2Y{Vi719F(y+wF>FW}7P=wl)m>i~j)WF^06@lC8|U zigLW_DrK#&%c7E+?MpO~sc4BE5Rv8kZgE7ClD3J?G2d&wUmxh2wx%~YIF!3D7DJSZ zxaq4YWt;hJur~C*8^@)IV>FQc2=Q5^1W4IVeV3#!_ctC^GtKeYqQ3QMxDG<{tyXmWrH6a%@wUX~KDR0Qg!&kt#}! zdRW;3zTV$nxT;ZWj&|ofTqX~ra7tO79&f{`4E1!(^y~lxTFdKmhg8+^%q@E$K{qVwyEDsd~vhBjAs_H6)#7k963xR7h3!i?Nu{D_d zQqxl5i!ULnDj2zrF*^_guCASMhB$!bPrNUUT1}AS82Tv$miyvz(ADbI&;A-T^4&-Bso&EZhLWS0coGukX%bY@ zR3MbabvGC5>Gi_RRBmm8k^q`~3gcYk!c4=7Grkh6n;_!a$|*9ceC8H!ipyY=X^krn z`%*gH45Q4dNM5%TofXnI_e^hzMo9o~B^|2Gk=#C)eSTucYn%E4P0zVL__w!Cb48nw zp)PNtqZ;Rthz=r9ZhLM0u@Bncm8+!#+9{W2lBxuq8G^Aoy5H%IUq~7*v9ny+7_O^` zQ#6rDzd?SOJ~}5i@(W$zPZd(~qM8tN8vqFX zMj@G^_EWIoFi_S{H!hU5(R{?-*j*z)!CR&QSFO2dB{w7ieXt{-xxb~eIZgQ^Ii?Xi z6_d92wiMKY4V1~27Y!kLnN^&0-r9x&m~L&@u@s?as6^8Pd>cK3AlM${k>3kEmh8R% z07W*gWaS9bP_n7%(1G>DutMi@6vt>ooYXZ!$_ZsFVXovKx6=f@pfbairtqZAR+RCu znk9}>Y_=p5^caV-%SFaRDsD>iorpGwHe(sxLjn3}1Wm(sm% zdja;veyPy`6*}t0fw}ky*2qr_x4aVYBRI}$DDzzIqN|7UV`YA7ScN-+LjVrrzBrdx zb=w&K0JElT?yVFQp@VX~xQZN~FM;?+AZl6jIh@+AHC48gW81%53|Hu>1Wgmn+Z24V z2mTx?$0+c3FsH4|Gpz2en6iHoBxc>s_rIptbvIhJP$7(3$#B!Ny~?WN`5h^yr>16x z#jmHh7yPks>H5nNE0S$aQs-;~3zPHC8>!CR!pQ5YQRYH#xa;eDbzMJO5w`bBe#kqN zp~c)ZnKUhx(8wK`2Qi0TU#yqnh@@^v}TjzK4%;N;qQ77x$#erqvEKhV%qn{{UQkbM*=bX_bVx zg0D1@hYa$s&Mp1d!~8i(D^&a~Zd7++U_*=dTU=aq>xveG6xFp?V7MrHi!_jVUTE?E z026Tsh`dLbW*L(-p^cYOYZ7jDzk7Gb*&Q>b!9`98{GI;EJxLF?RZ?K&69c{JEhtswhPftkp@3p{1Q^xz*HD)|FRFS4&mGj9U1Zmc7Z(J&d zrU31tJR`d@{HhDYSgUFB$ps9v(^rxQkdQhPzu}IH(=o$4uP6Z|s+H{ga=AA<;=Ilz ztf9>qN0>r&AqP+(Z@E21@z|)e7*FpbNT;kn$AYzGoC#gUG?cl#^fh$QF*@oPX^urw zH3U7+m~K6B=B2N)k-K8&+6b`7K`XUq%q|YmfZ8b4jN+1zyd=JT*@yVP9KORAYbzs%Te2D-Y!t-o)%rw%F&>*VGaL_MOE@ zz%r{G`-asaf#Ik4te~v2M$SZG4w43|`G;IR(lsFYM9vl?(iWyGju!!Vo5J~z3g@rH zIYgA{UYeg$t|c|bYlFoDOL$*;l{1uo*|*l zIq^26N&a8~+^=KTwk<4tbwjxUxJlnAY1-@{*~}0L;j5>wA~p=I9Gf(Q+tS0n89?^~ zfrSH$i?WgG>0y?4b+m)lM&JJc7;@RoxI{3EWUnQu%yjGmE6XnBiQF%+_QEtW9|>&N zG%$0U%0L8fYlF4B5Bb4zov^jbW^$MF-152W246=s$pSD1SD_;X(ZJU*xyZNhjpgzz zbg+pTB$z&{H|d47fq>Wr63Jp{WPL?lT$>+z-q?->iIRc-5xy!pyvg(LY#9clC-4;? zXe%=<;@M%NhgCtaeXRSNj)!fq+M8IFt{cjQ(F>=Hvx*|E9HUU;MbtEr^zYvm`W<>V zVcenWDa(h7Vb%i~H7tORfpF=M4jY0@;P$%3ew}_Inp9UPdTIvRPxr#g?o%p$7QC7_ zg^}fm7qyg@8xQY|VWy5OfTVp!{3nRkog!G)n1=%Qz5VgLk{#Q};-hG=vd)H%YGs(! zRZSc+`APsT%ji$1Ohq+NKZ=p9x-}dTM@(f)Nx1-ef5^lRlH$ri9h3^Ek=|(0R$>=W zB!OdWNltNf>In`>P}(1v$Vd5RSRHifLsiUVBuW`9#G706!rF&e61Qh7?qV9SnI-ePH&f~8Ju##+n<_6?M#M;B4 z-)~cnd8{@!w(=WUS!o5{0`-6PdGJe){7R+El9MH=6!S2>M7~s2Ep1jN_Q%K{QNE^7 zX;PiJaP+!O2T#c}ntd-)I4|~Y;70`ughxQ6b;DbbUiizlk1P0YP$1P*JdoE z77Eh@6!fF_nMQce$7-(?r>n}iS&cSQV_ImRaPnKBu^V^8NHlXn9{S9`^+UPAhhu%9 z**6NW2()?65XzqriqZunYBsUh^uV8X{Yub5$XPS{V+y3=PZYCC{O>lQii@n%4`wd-nFjDmv+^4%U>m zrcJn9yTtHU(dOw_A}r}6f}oE6zpgsIk5iAq^ia6&BUMd{Q+j?{=nC z*&#OP90sfcHH>79%D+5f@mnI}o*ssdmn4RQu4s@}NP3bw+=15jIIHxx zK*>oq;<9HGlDML(6r`D_8t11_G>y*ou>CRIDdf9$d?n~TJhNs~2*n!A%*6s5-Me%G zdK6kzBcT^9i$)FyrPjz6 zaxysb3f-CT^j{3I)73)N9I^rtwf^61X$G*~;w^HI9Mc@XF3)PK5KJlIkxK!#pe=Fj zj+@gGz4M6JRd%hGh`n%5O~X|@Z^e@!B50M)r~d#-kN_C(HJXW`qYOWg3XEj#8~m?9 zxC_JhpC^TL8fYWSU{X0?dRp59(;qnN-BB@+=ap-u)4^aW+m>o*^7@KQx>+d9a0CpI z*rEajleoRFY*7C3&zu=JOyY<&BW2T6Wf>k}UiB3@onJJ`BFx1WA{^;v2IK5--dUS1 zOIpP$r1+zXCY>te%_<{;not=U;Ikg;M`ixr__^sCJ8qQCGUeY9_=ZgCStR(Fg*mu= z0?`hgzS!&CJ47McLP1z}xPrLutBJEt7~%@5tfs9X*1{GmAyX7!vBkd%`r+<0qpPK&&S*;fHBbVspZQ~yTo2G&9M-!*d@>flpGwD1S8-)? zaIX=FdCAXYYifwA*vGLxUtXOt&o!=}bIN&1GH&rBF{I+o3Z<-Z6xp>knJSqBHO0#- z9-tnU!hV@`RTW65l;Ev(ig=vD_65i>S4P5mbe$BiC2m3G*jn8-`(wWfc7myK{wQrF zeQc2uk+jMfjZ4tr-q>3&B()6+4DYOqHsp(T^xp~lrDFL{Jb7|YBxYdDx^~!~p~ka4 z&jFs4%;70zw3SR6d6lmt62y;F>)*B+jjW6SwUIv1(*+lb+AVF@eYV0Xi7srlXDF&u zBumVa;1hnh8BD%IO)8SFEQl9i2lIQMQ}2QnD1~KtwFu^x3zgG-hpyh8aWiGGvVus- zH%xSoB_M`U?x=tOtA4xUc&m(jDIq%nS62+@GFQ^a4QhxnWiwfV=#*TR#m#%-7mfj+jiMT zwIxV0+_T9Ge9e349=M0HRxBdSWob-s9b5PQQSE{|5&WVQmytwrtwUIR%vY(vva|7s56G+lFqDqMvl6LLsgi|wd+NNWyE{Q{!%~8uT$f&j#RsL_S@gLa~bTeTa zi}>17Cn_)Uj`&?8b}19aN0mgc5Siu;s^fmA(+aBU?9vp_M|WL!U+ne6JT+IJWYxSu zMk=WyeNK!4*KVD5^vBNs08zC%p2MN1IDPN^6~jfRX^=enU(hEFe$rWPO~G*Fye+~s z(K>*TyP||b4^Tyo@$kK0K!Z|csedJP6I$oA2Bmtw7UPc^O0`9kZnwhnJwH9it4o7xxDUYWx8Z1^qR%tfx0+d;Fn=*S>iZ78@C9@g zTCBU?Frxd=(XgtQJ>!hekMm0F#E{a2-28EW`TkgY?FSxOWjf z%MGf4&T|Tfs;Qp6mYqSl<}d?)OLfOXhKaqu6uIG4xwUjvl}ii91T;nb$4Ix^7C2#i zQS53{*(g^KNlP45vA|Y%Rlo$1au4*uS~F!BaLSZJ;)5zO<`7n8Z#_JaxRn|^T^iQ7 z>%Qml#iE{fGjMmc91wDv^4R_zp@yk+d4pUX$v*f;UFC9#jv@`!rAeH@PaHID4E1Rn zTTi+7^u=O&0{o&7e9o3y`D3h_0HWF~1-!klg6L_ZVal1#-iMwTNnxG}iit|N79!qX zZ>AoJz`#&C0uYG!BC9Z&>0&If#U1Vmx$F63Puc~JZM~uAh?^)mZw{tkT^(&B=&Yq8 zc;9;~bl>sA$Lj7O4cRMRan8=gUS(ejnzH4|P)D28oC8l%*T{FQ?3G-}mPTtNqp72o zjhJ&)$RSvI-?;0C)5yl=5|wQ-;mOM<;iziq>7~na7%OKt2bOhgx8<_3@>HAH zkasv$rfNd1y~f~=OIP^eb7vIQz|dF0OH&N1BiuhRmN}-7DvQaeGa8o#AJ(nwjr!j)6mRbjNNg#G@Z-4$z zOD@B&eTBEeonuWeH$~G{HQPopS;bs8S=_ks<NSTsKfM1)-p;YNRbbpu|VLxAgC9OG(gBRUf*L`2{QWP}c1!N-WbXO>;*XoJr;i zw^F40Z?*8~(2<0p@7!*+zG+Wzd6m%IUrH^&#(krfi_F@JGsu!eT{jxRrqz0 z30f(LFD$aiW7nY&3yb=n(%5Li0|k`K;cX2pk}b7>NKikg*BHhd5>~P&T0qH58!CYz z`9bKy_*ElD<*PYU(d%OUCh60 zIn47ELd2D8jrZwqrXYOVa1_dTQj%y%BqSZk7=}5IFIb5?qQso}7z^L)h~=0Q;-+T` zOlciRj(RvzkRLUM=GX|%{{UrUnhz+RW0=J{K@28HT?n`$_|`Bt0#?@aq~+1nJeFBu z(muBX)OzoYq>|h$Za7vZM@<|iJG(!dt}B(Y-5nTl*>A#*CF6N1#$T68X?5M4?QM^@wmwz*oz}GUykzBcEgwfOAf7$1 zZ8#6Zz69{=C8V2*XIk3fb`WS+3T=De^1ePpt&+1=kjTdn&xLZHSYX6qQM_;B4Ruz1 zU;hA3ioCXuQL+yx7U}lsj)BviF$6L0kX-($ZAPmkn7X4pNa0`F6OVi<;#fQq&GKBo z#VJC5?3TK56i9+q4|y3|Lzwk|Y;19G&~?o#PO2=_nZ7@Z+x#W%ib-3!ysOi|&kuZC z;SUTrS$uA);o83v>8S$dv*nClo~~sU)QsQ~Yz57Q&Z0K9DSdOS>DrZikJ1^k18t(@ z`WMO1H%C#%@fhyq%KJI}G?bA;l+(nrvW{@E8;_^o9PDY%W3K-I=!<-g`AWI<9$GTG z>AnYC&vNoA8{fUY_;E^KB!PsX&9AtwW#VkF_o~#=tpI8;!1EvGy@onolUgEeoL85O z`bsstBT+g7*6~CM(x8SU9qswz$wfGE z-R%u2a5fw$`D~HW&6h(YH4Pn87=((9!Z#h7-7j&CD`j!MSCE1(O0eH5dSgt}muF-i zQbv$LCfBveBEtPP!Z9nH)3~X^ZGc5lHkA(o?V%Ba0BzHAwlohRNNvh!h6kv5R7A3% z=vZ3A07@AXPVP|+j1Cse(xE+r}z6bkPI!l7JNZHkJtFFtk==r7L8df=0;gB~?w)DfQ2L?BA zL2N1K!FrmX2zcxMvEjVFj#|Sr&M9h+s&p=)O_cnkTK68mY%SJn-y?8V(Nc$-IX-b7 zbD42Z6lax-TS=9sVsBN+h%9m`+^xle-_T)WDq14|^0s4k5(fz;e}jSvp{SCgbk(6W zkNbn~(09HehC*Z;FjlSrjH*+Lsq*Z;DKjO8suqozi8kBs)A7Z>M=o=${Gg@B3YE?) zsB58m#O5@tcTzS2{)c>BXyJPslavI?f#dES%4+EvA<4`ZO-w_=369-|t}h)ms7n)u zQabt;NZhVVsG-jMHO^qqI3I|!UK7tOt$eyds&*}DI}v*V4m!<1qtu}6RYo6wpGhq% z>M3p_b%E#FyyN}0v)bwmzb5fthN<%zkO-SKrIopojkkFHY&Y$>$1kh@0P*#Vm+o}; z?f(Gz=Klcdm`ANK-ZFBPxTBAMppi;rL6<3?HHY1-9wf})FE&5pZ5;`08xUVoIDY0S!n(fr2|J4 z3jmd!fVSg&FP1+msIP3MT6Ca}mUWpb-m!oYGM^%_Al-*?VQX#I8f+>~;@UCwc zc>e&0IAW41o`z||R7i?^pn0vgPJn&z??s~TO=Fb>PB>rErxoRV9s4wX&sn8((Zf#k z^fOB&jBH$m2E$j>4X&|Q%0>)-ySeto`{=Gf1(rBC+76JmV$nH&v zSrX`_2!H@?K(?#<{jfIEyKyRLSP^I@qlJ=pkqno=l!8AD2lt4;q zBwy=~V~Xo%OLKJ^da8=46^nxs3xw%=d*J3q7^8Epw@X??q3mvLr~!TYZRkC*tA)ju zGnI+2)hn8nUP^#bPR8RJcGSr5t5X>T(OpvUok5S#`rtK+4?cg0R@VHZyDj>j{{Yt# z{{RmQ5k)`?x-C3t6IGblo|qFQYUf!Orm3ccy3HX2s_5;1e@sN^&nv+#vt&j(lE~`- zc`klpcVD-B2_-X}iD|ksLj*o@3%iE7ApGBk0-8f*vM-oL1hnY0Aiq$c{{UP=8;>ex zaI>UsFEoov>d20IIO*k%zck+RNMS1moPR!_F3iB;jgWc%+gus#YUX zn|mK~kB@Z?8d|!Z?B{cSJ{LlUw`(>t7DFWBeCvqwGbFOhGLx{=*X%uU4ShX5D?A3! zwGg^TUiT{g@bke8+lpx`GyL)DGVHn)xNX$ABVqb_rWAioJa@= zeoMCJe{1x`m#1`ypkNoyab**j9BzhE=alrZntE1?;#7drT=}inxVYa0)X*2WlZzpy zWvyg>E+(OTu*+0+Dgqlx{+;lmN@s($m@96`waHMR%ra`q8kuP678y;olmrFQo z!zihzV|O^+Z00dm8MIMVvl>d4LP5IrRUJpZE!4G62M93``AB)DRhCag=8r0ITDCS_ zz#hK7_-#w87DlZ5<{^%wkKh?rVFl}(2Id}ByeAnta>KN zavCa_Ya?o^hGIoXBqSjJ0Ho|it?z`AwbMG}qur0o3KcBRQmrH)yak94dy8AI{NSi| zM}-%OHw8hgT6%To^VpNNl~UGj#M|$U+R)>C+13h1VmMjBsnOYpD%i7^2eALLEA3 z9WC4Iftw44T%ezus((A z&q|~$g}2gA%D&{Dm}=PB0l0P41%>$uH;FiY8eG0&Y2K0DY(W?E57WL2(={^rKyktb zRxVZIG@6!CMB<_M6FHLY3lzu@XnSkVAswTYE<&_c& zDyD@8@~*=c%2;EVZjfA{-y?^#4x@^*G9+8HvX3J+pD6&3&kW+yV`>UYmmf(|vzt=V zO&|e7Y9md~4r>E26n(Pc%J~*uNJ03nbEccdpnxQ?2FKFk;{`HPVpJWH-)Ll%BA!}^ za9P}7ZZi1~<&Ral>xdiD3l zy`r}6E(_v1{Fa$yigvG>t@pBnrG4%<`(vNU0WY`-mhhDFw`!UBk-;Y|N0jL|KmP!1 z5a8QcX7HYb5t4*zg|zLp{{Sovw2l^!AxfZ)mZYOonHhRY*9C4ndhLP++hu614jkc( z>x;7pa?GBdX~1O-pcA>;-8~Kd*wzTUhRw?GxDHqJ5Bmdt$*aMcW>v+xq#yqMQo)!w zK25FC-Eq=%4JcD(<0*YrNFxbf{{UBxJ(DS@@b|*_s^)_&mKk#z@U3F-N2bbDf2qoy z$3?|Ut?C_9QebXKwm+iNN{E>Y-NNyUDyJnrI;C~bGZ|POtA5t}I$@@nrZOlRJ)^4J z3$TpH%0xj`BLv)g3_D=B+7N}Liv_u7f;l3Q*<`TjcL(Y{F{_wID2TN?^hAX~MD>lt7OOG-4iat5M4*z>yIl_K5Cf#6ztrMx*xIodk(x-6V`h|*yKR4`(*W27tC~*=Wd$_S z83{s!k-6OU?SUq#U<7+!c3ha`%SuzWhn=dAlv+?P?SX#qDcI6EMDl1QqNR0NWO<5$ z*ZltgrURR4;Yg0Ghsqu21MyrVT2@moBN{ zpAUF@fnbY1&!viKm&}lCNMX|V>M=yBtE{d)wzrhVAsh#N@)4Zd#=4BcjO7_#xG9*B z#dgxTo|~c>Py6SaxkEhWQ+9-mWfftnvkA3Eq$pN9k?Jqk1XG7M#eq)e0m?< zN_@UFNp%EL0lL`wgVz>)H%kO}UyGs4_dY5nQeK*xmZGTL3}m1??dk1<=B5R}HB8rA z@>BB4w5c;w#sxYZPo#AOp12-L5YHkIvdlOfB9xWuPg_xw{4w}Yhg5;=+Pt>g(A|&N z;z`JCcOgaIa)VQs!5lKp3}CQk^Lh*0x4t2b>;}b03>LiL9Wow&Tb^2m9x_GvR3;d{Mh9`SKo`)r7XEm<{ zL{3WT8#>=&Pt(&5TTwW%0cy%<+HZ6=l`1PUN17_HhtLRDu^mOfz7LYPy|#ZV$KTRF zJxy+940ScMX{s}2QzH=LxdXlejp44^d0xz3>^W+XSJT3+Mv~J)=JG~^_=|4-!|B@+ z%TC+elsgDu+jaU0jao)lo_Cp!kO;6R)RBmT`*@Ekc0TCYiYiRC;+Aw31&=Y~Q(#E! zd!72@1I_myR_YvI2}@lZQAIr3BiF6PueWe|;yKwZuWT(`@HtaPQ%g}>D;tm&-8S!tsjD8-;-N^{j!6$LlCp}wG^U<2t8R=tuEO@i>P<<<^5tq{JcPSm zC!()faTQGT_teCWn|J!*^P9c5Aww)qRrY^JNj*WYG>luRjdr>Edtttu*A@^G>0-I_ zz(TU>>L*OXN;+uWHKRy1e>Y40cEHuq5tkv|HpBb8pgcuiM_jfMx&$Cdo%cO3O+7bm zOP)~kI4)%I3nVes&a|Z1wc}CT-=(qEG%As?qUjw&Zb@9d#d&)}X@WAyt!W0EZT?>! zJ4_(*lvKCcqPU_Ysfth-GaxJhJNjdzX`tAAB$EX~=QM;nkf0+Fzf4}V_U&!lmr9fB zqla0zERNP`+f1dcu@y8(h~9tXNjaTPfiFX zAZ%^z_?&KUw1Bn+r)MLtaIk<3Mc#&qL)s~<}>Y&SI zI*p09(*!Lx6uz)#QZuVT9EydTYupb{ez+=EFz}%AOcGR48c1P+c8U34#AdJox9M)C z*1#{1I8#RJ453ZTQbcmhsr4KCA9jx54fonzB+^AW1U*bnn;b41A$0X zo}QK}s3%DxNmZja)o@L{i0}8rFXdt-1QRl}sS?QQZF}Cs8mvt`C6iZiesxL1IWAPy z`L%K6#G1%uCih`u?0(pm8gnay2espkh1c{g`ze0L)SNMsQB-HSb5!P~)ryo0q~72X z4_tI@A38pX}^l#=gb1ET&QJ{ zt)N@5^~KgIQqi@`Cd-QbJ!(To&YnaHH2@EDg6ZKK!X3`Ax)GJjJdnLZ+(!E^x%R}f z!lLgZ)U(K*Rgq4U=CJB;9NZ!yMV4ipHRM~~*cC}J%AHFY1V*IvC;Q?#7m=yrx|y0A zHi-Zw?B1O=#CvarBGEjO&mq#Xa^HJ{yL;nq$XKNsWRfBrbs6^4|_Esf*^^z zW^jrT*|$PXNAFgWDs>4;hsqRwpN1OE35w4?)(I{U9P+9hgE`A#qe)(QkwXpl0A0Fm z*4S@J6J>7adO^SPMClr1PSr9>%~3IB8b#QBv7_4?&eiHYS{@@6OHS1Jba!F`+n=?7 z`d@#xDuuR@5jq0Y@tJ-ins!iD>{NHROX2KtV`)OOg%WB%{hY0L8ki23!3|?aKGw+> zh-#{GsyHiPftgI@T?+UkD(9?i^3(fMm z>Zl&2;#rj&_@Hb-?Qd~_S=;SA0YmxRw9MSOC=p){_CkOq63c}IJHQHi5lCEB{a zWgI1JBu25h-Me(ei&whB=meE73xw66G1%W?eesGhFk5JIN}5%16-z{}ELd-=*4M@< zlo{lLr9bUjOA*j@_5QfUiW^AL5RtJ(1E97sV&!S%_+$;{(glr=LV8~u+p??(8s`(z za^2%Xs@8j+r?|lG7J9_{!*sPgLsLPP2fQ7axH7;P_#5hqm8q$4j&? z=v(#`{fU45KH<^g*N8b?O6Rf|rKN&Mjo~4gdyjB>MI&*iSmDe2>U&EPfnS`$lQbQ9+IfMW<_rx>Q2xECa3JId~ zU&IHFd~XMdJ~()z#}v$EhPN`7Xf1y;}&Y;s%+y+fONazpS6TC64!iBq>bHZt; z<;OHoQz`g#+*{CKPViGUAXm;zu}>nG96j990nuoY`bB9e7( zZVARLOf*s|L>w$m&%Vd)fMooN#i3yjTCX8qSqD(RZ*R*Qt(xEyFqIaX2T2r-N-gPu z-}x+a!NP$iVriy%0*KA~clW_8YSj~@sY#VNfg_L)kYHqAd8m|CF(fjG<&{Z2yI^Tz zyOxCCD6Uyjt00Nw60QAiTj_x&fZ1ZO^2rj~r%1&!5H3dKp17}6LPC3|PyY_C%GsYc1;M}D^T)_P zQZ*`ih7cOMMu7&$Z(fjbZe_=OX`E4Kb4W4k?>1^fEh%UQM_%eI8D?zCl~QJL z&@(YjO2i+V->}C20JH>R@i)m1*dsV4XrG7jdJO|G&0fCj%_wPgE1sZ*=suV-8RnPs z2$sgiB8P}FiduR+zbwh;GNCS6?PMP3wl<4GYT9Yn+N#;J$kMW|ZcQ2>vaaCo)cbe( zVo$epPuSl`Ti+>mk&P`x%L=oNKwNY__-6Rr;0aPjja5)YOf?lCJlb_y{ROXq3+;s> z(!wfw6swf1BTEx=jVV7RiY8+-XSDfMEjf)LXBwN+W7lJizRW?Ep`PvNoSAe~^${#( z-aQsK>UYG-%M{*{kC4egu7N_Ot}0^2+7U5 zrsNj)KVQ!qLk-Q)zr==SAH5$hidZG3gPY_kNz|+CI$@+ydr-`BjAd066qJt?2A(SY z1;36i(jQ~n=rA>3a#;g{h?}WYxs)_<$uzOWDoJB|0#&Whp2ql=Y6nbzR6`+Q7b-n0 zgE5jx5-_e;NcQWDZ6RpdRIQDz{83!8p<`A_5ELz>p8av8(D;?CrwNPr2xol}v{8%u zANjyNl7m6#s8^{JXwpW~qX5F&Uu+i@KEy(S8Tfdq>4_(j!$I{O59Nk%#dd3^}Vnbr%&P>JuQpwsNNyVOcizXtfV%kOZN2N@x{uLr@}XX&JwD& zlF}7TlgMeRs#4F)g|0WXtbg-|6;bz@bh)nW;Gte9OAcj}wQLJ&h=9{>w%-hTVw1Jv zqNsM|%-QfW($h^!MD?K=WM5E7BKGvQI+Y_f*ed-)EbmI{*?nVD@Ol(!|n&rDh%m?a4Yu3OYZQGbhn zDv_$=*ml9!zEm#dE>_0kF(9c97#pIGkl+0LF)VJi)~R}3Ztqgj$_XUhg|2(zPUq^e zYs{$Tg1%}ZW0|6B86#_>ZPXsN`(xhe`B;WS2RTYaRV4!cW26JHAn8*(h7QW7PLmXHmhIT7w(nQTiFvymmsSJ>=*Sp z;k`Ep@l7NXc0I%81c zI9l&3&L90k{{U&Zd@%6;0K`nAEv%N0F!&)tuNt-0ZnCwkh3JUiMS?V3cG7 zxbG$Wo={9xXVC2N1~4uAs_nnji{KuZrekTt0KvccN7cNswrboOo+_J&lI2MP-A>rE zM)Cn*;2}4cHswu@rg>q49$abEC4lHn_s5$-HznZ>BBEvp!B=n;fwx=*Ir2m}S=R{NIgJ1l zX=#Ld-FNc0rTg~4;8|w#Yb})X83@~!TXAf7?iS5?x+W4SRqTq)1<50Dzvb~B@}ysc zMN>-XXoqq)#LE`yc}ua5J2HHR{{8V3k%N`)EQoLqH!G}xg~CH zE!!HF3*Bq5E!6b}smYK=BUiE8b{59VWi~o=FBI{};eZF~ajw9z6pf~hJkfxU+*^I| z8~IyrDDGIiw~5t4m9W?hK{dAJNXK85WaYF~If+K5B#l~*q5u}(r`r{&>KewExiMpJ zg1d9VnksCtQ0h@VU{G0z+wkd*HPw?oXILv%mh#Xny%O+)igS}uO3|W3t9Jucz#9u6 zUZWpA^+g0bPl~!}wK7|1I9+E^{{U6y5K~dfQfi}>IgvzV*q)#p>@mw(OAKx=V{)B2 z?sb|@6U8<~m`Rt@)z-36OA4>>qHElJaHQ%lGZvmdkXy2yrMFQbr;1w1vaHWCpJgR_ zwvv9>KB2xlfI)68a4DxS$nq!4V`*loGs;n8bp?8DasjpQk+oBAusBCf#%#TmdcGXZ z@-(5Nsi9a}q9HVMYD3Qi^koceH~g_-ib28_X)bV~RLcakuuD-QER9rE);R1HR9Fvj zU@%B%CwH~1Z#G%dwN-6*?${z$X0@8(NcZ&Zjc0KUML_G_GbC*cDK%heRmPCQ)*v3k zsOgH+i=BO^D3;sWS*(Tgs-aB@Z-PfDYujQve_y^EM8?G3$CL#`t_Q;jfMt>8^ven# z;s7_qCZM_d4-0k;sA0`ymZHHxRk-^DgUk&aEyRSa4PWpS^#x>k2pUDl^LPD5Bbp8N zC(`t|oG5Ko4NOY)gvAOqkp;++?cdYW)4mFgwir=7dqKofRn+U0Nh>)i6f2|!1b1WK ze@kH3$XdWhDiSZs+gnRlm?Q`!c_u@uC2b&r0owMrOW=xWJ{Ow;fekv<#aRg^Ie+eG zA1#3E^}{wF;vUd)ZV$E5%$f#@4rsc%?7$wx8-H9Xo#(jU)fou_>s1v?v8<(#5>>7Z z{`f8Q?QpSLNhv1Di-+qzBvnB*+97KnPqr0QLKYIUwOwTuTisQ&fKHSCwi;lFj8i zZcpcLwk=v^L-uVZ=|yKMn$4=`sjW=3Owr3Kx&%9d%elGq#omfGhBi_8A)NiA3X;w< zT6~_KWT)lJQzIL?f~{`qyIS41#qK78{H0YVaV}J*bDGNp(^ey1W;*KUUv zy*|R|5>8bg#5u)9JpriZKESD8P5R#!ibxpu2iqxKRBahlKNHte&CY34S!+nBdH_e$ z*y7_wPVg{NX}MIsWMZjFY8Vtz{{Y5!x8Kv-78pt81o*&7RkUd*C8+9{)fOyOmf8nh zju^)&7(+fWZQjz3VFd8hJ5%!`RMH640^Z}G9s2L|!DYh8Hk_dqp&X|)ICJJCAA8^G zalX^a^t%caY{A{oxEHwJwhD?io>rU6+^QAKvc|3r?->Aw`r~bZX7Zy*)a^*n#<8ne zg9{%rk`2Dvjj^;u-pUso`6jLx;hr7L^4ThLt|B=#PdSky_(znO#jM4bYn}GQGE70T MnY2KQ+xxHo+3en*80094Wz|$Ha3V?@=LqBYEi(cN1__86fJusw!_p>$T6tje zho`+LZX##V8Tj)3)cOyOfM-N{a|s2dAS&Y@01XiE|APMy0tgf9ABmd;fPn$T1Y%%f zgZ|If|G=3+|Ddh3PoW-71DIs|X_;lyy%#Ika50_pRY?{eXGRl=zM@>8Wh}FfGsB^<%fm z#tc)eqH1c5lfJgdoxq3GUZ)#Q%eG&P<+Il=m1;A1HDc2!#L+Q~eLYDYlQQJXwfIj@ zze*vz3G-BG&so)#PZFf({_BHI`VfxXStAu={?7b0GrzY!?-7TbhVdK|W#=N08} zS;Rn2Veg8;8CyHx&Rc8g|p;cbu1_oGCbf{GLYd!w9JME6_V zYt?`3JB-$bwIQi8P`-_8H*V)XZG&5A441pxnNHBH3Yr7Q*W|wy zmJFmfQO7&A%C5aOYJx3Gr1|BnKfph8dcj9WPz zgdQZv$McxUB%6c@+E>4;Ev#tqVbyX{I6FMCH;CYDikTz0iaSY`KoFVyF= zcBI)c!IjJ|YE|kD?~6qhjU|$qSYr-LWox{Z)g5Q{L@?;!>@qtY3~5PFX~Jm)?YI1K zc2Ljncf*aSz-0wI3lVcK~4j@-pK zdH(CjA+JwFYBUMle$P#OECo}awbh=ttz4Gn%Y5X-MaxQlbXTfa3)l$=)<@UP&s8<; z-?@xLZ5zy#M%OFEEl83;mwUH1Nq6i4{Q0aOlOXaNc29uNgBXhDMZGB|1SN)>A86|K zpCWzL)}*B9{zScX^|!#o(VWyFBI_C2=r{0+u|tIemD(iyhR@K{!4|`rK#nPJ+cMWb zcM^iX+&->(P_ffqW^L)nGSR1p(nXf()x-f#f(LF_5hguKFY*Pu*%{*(#u~_Nf41_| z4#$a{uoKGI*5`CIY8b7wI0ML}J9?_mOa}_osvE`EtWc7FAJKLJ=9p}b5_sRLBZij! zne0b&p&ZO#A>p2^)29+<@5x>z>6h2j7ZV6LrD!SjZIbaKJ&7-Us%9H!9s0FYeGs96 zo*GyEorL2R$}DMPn^-z!oE!$&Si_8#e}_vm4dENA$o%8O&+K@0B{ieLD5>u{x(Xk3 zXso4QJ+2XgRbijiRXbf?Ib`_v?6|{)Z4aO05@2BfBOpY4y~3JOJj}aghqRj8PXMjW zIrR^1w1fD#vR&U=s^{hG@LxM=gu{Y8DgwnPS6eA8MY8!nrDF_OwSIDo?tE3@zyPO? zr0wUIKmM5%kR4J?7-RqpJNqRc;PKW=T1;F(&!J-a6t{(%>i0s=Uj((>*W3I6ZY+@~ z&?H9q8%rK*zK+4+&mTeMEozi8OmKjIc@B>X2Qx8Ak%^=FCXtCdAjuaMP zgAM!cb{NEgy|Moi6U^D%o|l98-1c|CA>Fgg-k4R666UHb5!=RbC(yXypzXiUYxCz# zf}kFc**Kb0R-!-eD)RPwvrZ_{OF#u~IOW0OT8f#!ChW6^w!S6?&fV6p3dPju8b^yM z!Bv*U>c>*>7g8KC`-P&cymSad$z4YB*Y5|#Sw(p6iTlbh<<8qw>6P8{d`Ylkv|Wvs zvH`LB^bhl$g&#Dy&?7Rghk!Fq%$h zEyk+(hGCTEfNNP^udd6HORaubE=+mz=DQSqxk?rRo1hQ2%15~?kk)&!Y4bbm)}thh zVSsR=l{^>m$l_XHMe zBdfbP8}tb{nDJz|Bsth~QmT^*yreS|>$T!39GlqHBOsCvT5fb1vlN#hg%za&Us93Q z9Lxkz8)EQS3q6OjBsSKKSqFu&c_b-rrejUKM7A(Y7;yL9(7dcvW#RRL`|7)bH`NJjBlAsoU(X>76q1hAx3mEdIt47aONvCD0o-%AU=Y0e;~c&P*I+A+axf- zUzT5{&>22)>07F%YsFlKjp=WbG(4@gc@pm}{hm0!iZDTTH!#>Eo-_N4!2~5VRO5hF zFx8WvW_sYpq=?=*RBU*FKqV2k+P*brQ#&rwL74r>VIKt_Ttz;HzTcsb4oH+$ta7#F zkR&KrIsEv|>x1h44PUjZyesbUVU!-fK1ryzZmQ}q=(EV95j;t+QMz)0t6AM~*k7$C zF7CIBaKGSfX)|Woj!`g3>mE92`3CgEBTKU0N5`>{){StV=Wyh-luJ8jAfjmf`K^4x z;{ic78=ZLkjh?AKEJGwGM@K958Qe{JK~%1wp;k-I0Q+{JljP^;N^1Y?pUI_HJ0@9F zrYmv$gy7`I>;0}QRz)`3tY5ixvix2-yQWwabW*iBD}!lmcTWJ-o#I2|RXn6))9Zz@ zIM!5&<8BSHBN}BgpkH_4xFSy`A^iep<#c`RoLuX{;Yoxtyv%9|@K94aF;{NPqKQ5v z4n17|o^4*eY}sWSn?uGpmKIHOUoUGE6Rq1#${M)Un~}wqm7O7Ebk1MBK-LrUCuY7V zy?-gdMNnrK3%8$`aC+F4{csH^ZTZDrgojmO;MIBm_G8Ct52Z=9rh>Y)Eo6Na;u-8e zB%ZLvkKc0fk%L7WFeXfg66~@8?pODq1dX7F=is8k-N5e#cKNbKP`$iVK}Rr?(DG|P zsitG@g@rn`T5Qa;Yvd!@3Y{Fa$7!)(ZZWiEVlme!RkG36G7>U;9{<308gKJRL90`F zOir9iUGXXWcyr!EBOhJWN~3N;qKr?Ecp-|g4p|s7oVrW$t9sHJo*S%{Jv}xIGtzc#unKDDT(UDPxx+@UN!4z1pOc3QAgf0>K`hekY%l7@){)N zynfWmU!2DK#@Rkqa@i%_Lhchw0B9AP*86>5y!Z2t4Ih@>etZ5X1}#-~%Z6a!R0by#UoyVO{X?b; zKcVxKpr&TxkkcJxABU>(3_wEOpP#g0zm0ioL4I*`tRKYBz~FWG8lNJZiqvi6E3td2 zz^SW!{ZX+spTJ*iM5{&oxH;!9?JZKRRl*}R!-{$>C9YIGS$u2lSd3Swl@Iz@9l-V|ln+!f-39>4f)E1nPSB8R~uX8}vkR2N4#Pvv**3Y3-f1p%);zs1SYg#M$maIViN*kO(Hn?r`x@D{!j90dzM&zC$!DcW z-kD3Fdw@?p50au?Q61zQdxylv`Wq3L_ugu`8XITG+Yo!8jeY)$MDVHSOo0&=?GgnwtVvXd%;ta3(KXm z*CW1vh|Nf<`a3X#eaAAp_Pu$w>zsvN{kJ{pzV^XukXm6hjd&=*S(y`=G@Q~aFz%JY zg*~NLH4S?y$ytDr5bP4|2X0@=n>#YDR9EXlv+#(gVhXzAZlG2b|9hu%6nAboN!x&( zzQODnxN>~_^DP5YnG}`QYIU~2cSQQB@>wcI2EEZqFU^4`Kv!j4zdC81=WE1tg~^y7 zBzYxjDb9XMRIDZ+maopEkx|dN#3P?{kmD(jY7$xX_Mx-pQ+CXps-gTMP`=F5x6N*N>y>EY z;K`IF<{rcJY(Kl^hd|x)Y{``4y!lr~yb~}9gUntu)j&oZfV{}1|0&_Sivk}P=baV%F@z^}Z zwzGGrOX1Ld@*{eo3jB9vWTXdv19)l|uLC;Fj+RlSlmW%==^Eia$zX z@0^HzJeqXxdFZTMuT~$mRTUWvS90GD8v9PS8As~W0Xg84I~{2bjBnrLyetwm;4sxn zVEOP|*;WUFqwBYeM~5mdUR>?LH?E17v7cOg3o)w_H)Fa}yGzs+9C;%arMu^u<#4NS z>D74UjUN~@;?|9jVpBq79@eT}wR%p=i5rz=8N!C+(pZ#_TPz#u|KJyWDQbztP@1<3 zSw~e?W*bKp^2ku;s@Lol9II~Rr1o@o>;?28mF*OWK-`l4Dxz#An;Z}i47oKdS39!# zI&_fuepBwnoP#!IQdxh-Pmtf(%N(;FnCv&SLm_?|X1j<;yKqut$`hc*uu^wKGu8h^ zKc~`d+j<;BefVv!CZ8@pmyV%aIYX90W=zbDTx^pB2D`I@#OaF^)U5^Oe0g3)7Mm8f zB!g@%05>itHW6}Nxjj~^Z}Rr{2%JGbj4dvX+kaKK^(6d!Fv%pnhDz7rj}e)0xQh-> zOIq?1p!8z;x6wNL9kwaBG-yY;d zL?(C?T>Gy2psM9Co*)!0Tt&qSVi?VHiN5hs$)c#%6*q@`Yxz*8vHt41{z0quqe-xI z3xL0M{5MC2jDGtX83UN8XfacFPO`1TGGxRhF0Oq`#1Htv>{E4?%{vy4eb|>n>u2^P zy_B!Hx{55*SqGay;UrRjhpt?3YjM?EvLdL$WL^X}9s5=sA<5j43nIV<_Cq%{9Y4Vz z2Osqm^j|z0+-u2&_0LQzA9M~Cq`WiniV$x)kH!{GO3ZV0Iqt<#Lkr#`wTp=5V7x9J zO($eAV&bQ{=n#mfLkoHyDz=(uI5!E$WNZ2>mXWZ1=w4BUO7 zdQp8bts{>~+ufBfh)3_W_V*ZDTeptx$Jgylx(@n!Km!NjJ~1+kplQvJ%~!x^9M(fB z`f;Mt9(+eGJ=#kWF16=ypPuk1fO@0!Oa6w*y$rR%LM|?v-zuRy0zcfRw!Iv^4V7ZU z7Q#kz1v1m|mZ}RhwoJwxzV!`B5mhD!xq)G+bNHMsvcxoaDseL5VYY;olntv&>I$sG zo8;cPnP4Hca>>c|X}|(bm;oNW1(n6yBf=i>cm?i>8pq5R3PMKn9I{)_sZQ9zbbMO< z^N@(~fpTBTUoIY@hhcB><*Hk$JTV0DodMrsAtHuj1&5f7++%{jB;JPk4$tZmXw+l3zs*t9 z{qeg&hJT3qa(MAlW=Wkq^nvd-(XH#hz{@-Iveey=LXt1%U#4|k2ov?=&!R{|?GjDD zJI`lZ^W44QvF>(aR7z3h+oZkNH~D5=nSSsD$WuCu5@SErW!3`OR=r)_eRK*}+}=59 zBhp*!xg`vsAW^FRT4q97gComL=Th58$C%&J=rb{dWV_cT(C%2h9x=DzgW z7sU>}WM{Aq;CPj$>s3{<^A+{B>;3Dy2fSLHw|&}7!wEWhx}W!ghM!a5JVUONN=f{Q z=%ue${3z`DF6+HRz2>5G@Pj|K@jJB{d|Lz6J!J?Dfk~vR1oAG??esrReaFY8EOC&( z(;Pc$h&$jxWX)N)7w7U$rZKaZ?cx#OxunasNSixeiPkO)B~XtF9KYStOl)1K67c%f zUlr&hEK~EI=?OsGY+0kf_mab^t1#zT`Pf1DdD&t)y5d0Vl(gh7OW?%2uz}WR@d>cN zRww#6#G6cheQEe;U`1KPSdO$}l8b6NC%kdgXP<7d4!qWiKiD$^e3)zg%v=kJ#QnMz|5|icVi*8BXzA47vbjFTPnmgcVls|Li0FQmo*aOCTj% zb_>)>XZ3_sQOnmq{}K$}S#_1M=q0+&?fZ2(;u)RlDoa`uw074tGDMWPe{2Lpm6Q9( zdUa)3b`wlL0jiv(JU;EJ#LP`lP`p^1-gOlW^GY#FB%QuY-FM6?-!{&~@lEC!@+VnFZe`pSn3yJV{=$s6`tU`rK0EE`bi{e*nIfSe#SoOI0i0 zdIBu93nYi~>B>3vR#{WjV*tD39-sG#+Qd`?iLtD)+jjJnL5qNp1CpxgRqo@QdTnE* zz5!H7Xmqs<@T~Pz-?hlTcuB1*8W8C(OzX|06Os`Vi~yKR$d7%1;dG8>aeXm3t&PFc zQ|w_!N~%7~hCGb&uh(VKc|oRvL_aH>(*(HONm<%Bk-Z@#%wL=t6+FCn$2nQ6CGveP z9;iK#c3W^B^8|PpTvVPc=lkzVCa^FtgRRuQcjExBOGN!^?mJtp-6q_%es;|d4R^uS z(yAVYNMD_g2zIsG@$LVbehWV2sb>Rz`Q>e+z>O?U#Jn0zE4*@R+ZI7g;=(p2f)t5pPmh{+U8YJ)(hZz z*2-qv`DV~F!^*Dosz1b2eP|?vlGw!)d(Cn^+kw(XG6Q>mE$!m5l+KQS6)mrf`AT#@ zuy7tOrj^HE{oabNLxdl;Ef?N}j?lQaSmydD&Y#Z8Ki)SDbz=!Oy=o(@J1*1JBa!x$ zpPv3Bfb-Cluct`}8qmV~XF?y(Wpv{cs!iy1x(I*VI33cH7CO;fU0OaL=z&cmv5T>uV*yt`A5*59G~*kwt#QsWIt3w zI9k7Xvp2nvm9ZbSz_^#~dt|c%W=yFSD4l-x7^S~(OVBc>;1FI#Bum-HAiJDPKR!&F3lcY zc#vFnZ()#6nB@tYw-r3<@9=QIiNrv?NBuEGibaXVtFkr}>D?b;b*=|&e+Q$3_}Qht znS;e+9P{0nIG61znLkB9<$XkV#T$ZZmPoLw<}0M8Nc=9|Q|0h!R@rhy9(+-!>nq&H zS@|c0a@O3O+R^m9d51puHY4_1>os4hidcnhuVgui=G08)w%_krPPvx5=h3C~2_EwT1Xl1h3I=zXvAD38+a`Z-DQBUh7DA;r*B+t4{r;83z zsvf?Wt_FTfa+c~#7tD_R+Obt$sSHbG>7Wn#J@dCr`=&yPYq~f#+R?&3Lkc}LScuhxoAXUv5wx;EYPK$(7B{=a#ul~!!$~JD!!Z~bkV5L zsvFJ8b9jg}t_Ba#U){dSNfTL|3x*K!NYebJUQSz5YdQvmPY-Lh-mP!v1Xx07)f9%& z*#&>8cJMy+=L*xv5n$eoq|~YR$c-=x#%oZ|?6a&Aty`ANVaBpsi)P%)j&SzG?r+#P zL5?Zco#m}FD%ip)HEWn_CSG-tFSu~A7EH^shE(=4=}g=HgjXcvRjl^DWDU1|N%vdY z=r6VYQZG%hPSu+|$utqkb&|G)7{RVrCaD(KIg~e@F!0F}z;G`)|BuQYr>?icNB;n? z1(kAyS|LIk(B5_wZ26t{B}c`_uM91^h=ETezb%8|qgB2-g$Vr!mQJaj2X~Ff!=7#{YoE(XQp{aO?1HPBws&eg1wn0=f8_USs@yusgRetK$|r!qvl&C&I!u*1 zfGBKIx+90XmAlQ1AH!h*JD+66G3i|96CG&PPZZ3N_36I~&D$DAoRS1WR4wi6kj#3F z*IFgI<(*lS`?#npxXkY%!vAc`6?+`Axhnqa50l;x={T?Sx(ZlLbOOfDu7**`T#-Bh zlEs4x6-pJ8#J%(Jcwh$JdLlVH3x`R9E$v(^hC2E59~35dRapguBB{tno2Hc^A%5yl z0Foc&^2P5<`l~I_9^+C27h`Y!_$cP9eVTVHgvX(!3*N3VK}&NU-o1L&N#VI93T}P0 z-7{q%iU0I#-_u)Zo_~{4yR3zbe~(j0FxXZjChcBU@$PdF%^ya6flM!Aq=*t#YiE@9} zsyosT^`;BK0RXAKHb!r^x7n5X8u4#aaq@!ql(83_J^g31$BpzVQ!d>9dPpeUgRfnHF#&atrVzi5~hIFs3iz!}L8oS{SXbR{-3lmVi-z z$BP7zfXEdU(w&; zNj7FJj>xKG5vfX|1-P~gqXh@1X67+!?1FmG(}@`&9mvb+PzhA?hhfsC%H2!#*j)94 zwreh(w5KwFxav|39~IAnA72XXkxER)$bX72|l7k}f3XueFu6&`Xa< zOxW4PZ)5BsASL)^2WmYSAK>(PC);n^Ye z#3w)`K>(w=p@0^9tYs$1D8YlQ?$-3Z@T_;1%}Z6~7q_ntOq6dT3RqH+15yItZHh)l zboE-Its&9G$UgQPt9?XZoZ_Kue-4gG!f)2GzTms9x;@f=+B}ibxcb^^LwW^TuBb&V zD?P8?fBa}c<#Sf(w+g&$t&qDz<@dhb(z?NZQ>6!C2*d1O!Ao8_$N5+we3=*+9ib`i z?Hkcbo=wm@P>w#91he-F&yqr^Nl5u55>hl=68Sruw63EZSQ{6xw{UUZ(9?|Q=b1Vd zHtug~@I^D{?fr8K$ymk zQvt$cTHDytVTsgEBuuI-IETGqpoPr!I${RLj;7@KI;Yn|orX%Vw;cyTE8NlO*(!NLfzTnC$ zLZuHfrXJzVH*-eCeg=wA%xHJJQz@kl#Eu<>DrjH(EFaO4PW14Lr&Cll-5-jG>`GU7 zz>K`5*A>d~E(@Z4#nl9o6Zd`=65L7MqmpZEFbt|19rfvZ0x$(JET~a>rW*``!>^=z zBzBNyCiEyjzJ=!2m3rqdjF47w)iWL4&vtIFgc<7uoZ!S5M`hJ8>=NsPRgZ}7929#S z-=fpCV3KChvC;68SQ`=Q^BkAsD;0 z-9%~Sf_gArE&?lD-6HMV5m-!G9?9uyjONHxSc~tbOoo4WFO5ha>?Y+{w z0HGt1Eq4al^=Bg&h3yrL&DXlHGc07aL%7p`wp&@?0}G+#8~Y?-02aYMCF5UFC7oJK zn6@g?0P)FXd_z5jb-Q!*j>|$GENg1z_pj7oivEY1clL|^ROMj#SW-ft%X{-DfLZ{B z9;kMPifm);!5yX~UGhF?R%2cE0z=5+{=L7nK8z2r=CS!T^dzzl7~pM_(%<;{O$#XD zz;gm^P-*Oq(I0`@!`Ljlo#hAm(#7yMxgcZ$T@Dk8-0aW=>$ogdKjfYO*z^IkXK%7@ zRni?6WmQfwWw)xZuSp%sIrPK+8sJ-|qC!SfM-hA5c(`|@rYA}y5c5fq- zy1Jsv)w2ttX!El%N#|LC8#bR0lAZtvcZt&MAKy$exRI6v-x-z}vhBIy)voD+0Sy&%6{f2tNxBxS#)J@}nCLOKst0YP6%<8fl7+P>m zz%l<^*D*oeiz`KpFvO^^^)K~m2CTS9HVo&D)5&z<)ce340B*|wR%su}Z(#R!yU-9F zX7Rkejx~o4f$*|TW5RIjz}oph{IXFK^y~g>ikHh#MugM}QwzsHv z6|vXG8>S3rGOCCOtBxN*(${BkXGR07c$;^5YalzKcTG7Gw@g=K2}W({Wdx^U`zv`q z!W8O8;h1B+F#hmy{{v-6FgA<=VFItz50~WzNWYVO0%$tRA)B<<2c!#kcZ5p0E46z6 ztMI$;y=Gnb0$Y=doDePc@_$vlXa;_ZBDTa!so>D)N~Mml1e;&oy#3JEAXKRVXgr-* zfZ1tcy0}P;v8+)q6$u$(1w*O}`bk_Gq$DhzSV|oSXh`~@-WY^xvkg)cqhgt1l5OZP z;7R-P3YSt`HLPQ?Wz zY|rR=EkWWa53JqIox7R!g_o{~Me<7v%?K|qqd_Y6?K3?m_Uqu`tHBp$+A6I=$`05- zVoOrO0ZDiFpM21C4k{MyE0OysD^2x?trhy?+D9f9g^~O~KL+95>^AU8^L1E4tro>_SJ~35QI(wT`!KbRcTGnzU_U%jH zyo}b}^Ux`p=f+UAFxIP--w0k~qKU=Gg}6=~DL>e=in|>i4ot8BW*k4R)Haf&%=FrQ zOo&ImUXITL<-_G)u>0&QzPK%QC`A|sMzYOcNbE7>_FpBdc2M>;o!9hF?ea2Ub+`!T zD`#&EBpevq3!i<-7jqja_EEhIpo}eCXfHe}X1$rv`z{ z&5xNytK8T#e52mzYtv+FR;-l>C7YD(3~v_@0NfU;2_AlPpR%!wUK~qx@dS?(14l?p zL^AeK66yzmvrm8n>aVipKu4K494$cX5(aAyOCPl-l_Im+5DnckxyC-6*x|_qYm+Si z54ZH%hEk}Ru?^c~Y8_5)NSTr=HezZYD6Wz;1bC5Z7^c~<@n0h^w*#dXNDd%}X_OPD zDUld3v7Zj?Is$AMx&8FiY}rxts0%Bj?j+^)$u~%I^?0L}!cRh(V#TtVa`+Ynn$W+| zitN67C7ja0UA21IGqLsP$3AGdye*a*nBXkSLaxm^fh{JH--j+dLvYNc1uVv;PXZW+ zRtL{K!lp(CZ6aG^*Fq5cKD7?>Sa%+D2|Fh8#6e%@0VyAjkRzT0yR!||626@$aYi!Oz>X$p@Si<4!B{#ll+3Vu z3gi9?`CCAyt>KlFH~uEJIj(~DMZTBP ze?o)U)S8PTx%-bU=vG-bdrp7H7)QRdW3h&))kj%m3?!-uzSFr51B_x9JEc=nx#hh% zj87=8Lwns9pGy$q>AL(vB@-&VJs;?-Yejg<6S+b>5N*8X#c{5Hwbi@Z9ZscTB{G70A|xud|_)>$IdRw16F$d zcImZMd2*!wVQQO&y;1??+BL*p(cG5KLz>b%Kf~L->~1io_A{%%mHHPEUikxUgK`3{ zV_#`sb9{Vf#rcv(z=e#_!e|{&Vh3MP(qp?ufE1)0m*UEIyY)_&r$%M?oIW@fuE?oe zV)RVeo;7?Al)Uj*WDQ4emVy=%4N@f<^XMJ1{jl!y-tH*k^wA#6#S+kQ^#l+ZG3iYq zk6rvyX4(OL9oaPemm%^C2CYgVA_9gC@4yyyoAPj`?8jnhXOHY>e7|EtBQJOYnEfwh zdwW}$=`*zf1hcv-z28BH8*@Xxe_rfr4a`Mq*CX~yFQYQDHe(>es;^IUNCu-8JHk$~ zEf3kY&`a?1h}8k~B`kKG&JFYYni5+P9)V=* zVZ72AGG@3rJa$5ddB{z}Zd0rF3c=}1f-rAoyS^eV=)LmDd@co>ZMh9`Gq>2CJ3Bsa z#N-#0xKWs)%kSXvjkUNoys0H|BTqo=K_Jl@J(kWVAX(^~&u!d5c}o>1pQYwX@b8cV zyiemfaXkCR-32b~3`wIL8bt^wVc@HO@k2HbT2{+!0+17iy2(#wa{{d8i`)e~JZqr9 z5-^ym4(6c^YfS6d(D?882MiHSt3?eENs|AiRJm4gJzEs$8=Sx&E8FDi;k@O((h z<6`43N1U49q3~=ICg7ifD=+(dWH);Fi^!}8x6Z8h6^EQ$!jjZosz+1nX_4#BxGcTr zeVbH5-o|-XYEjRLaUJ546^3u=O%d;ClZ%8LlDdmx(&g6t+wF(+Bq^%8#?8eQezQj6 zR`j|zoL(q*8= z{tk3fnt0Qmjee0JgA=+r%`OkKh4T{rN8Z-TrY0A6Zo&)gH$9%VgxQ^r8)HK@?PUbh zLY|!uctP>phvH{vSs<{|`0M>b z?L$U1%9LwA+)ulP578Z({|U7|h#f~Mw~J^ZBXzYzj(C&%IHkb|eLL<;&qkXIZrzFn z2{XCNCjwWJu}}39&^~AW5&R)zL~JYw~Eum3r6W?+Jyuc$l~u!)68RTbXqf z)Xf@Wd)U}{1%DYM++8%HMsCFGt0FXtaL-Jvfw!+*Bot0RbLrdV`X}enkkY94cWkbJ zld;R+8E|P+SFJ}PZt(gp`n}GdZF5xAS0hOv0437kgEg{haB+BrPr4&EDldn&4!fLK zVSD3~^=!)`81u+63ZvxX|eJh~TBtWszq@nqjT&jtB;&|)dWJJYl0ks<9F#g|x zk(ksB9})-e1S%H={SPS>64K=dnpZxvU;grF&}cuwU(B&hl_QZbLUi)uIE>VK{YwQt zBLW>}E%a7n{I{#QNh2k&XC)q!31cmU%X~jcSgk61ZA=XNsGg_I8Fc&xlECc-xHZMf zVgr&dg}=}!u_1vBgu@6uL^*rlmm@;#lSN4}8B~-9sFTDuuU|gz;8ghFu6F0<)?R_r zKW)F9ZiYcE#~Q&iz@(bCZfUrPClx*L>)9?iSw!v7*IGZmXVGy*Iqyt^dm2Tyjpu#EsJ7j--+0aUvNs0YUq%ir- zAgAo9&;<`ix`gNK+O~NAZB2oO90crzx0keWd=liVJw`mx@Q9N)ZGQzIb?ce2^71=vhW)ngp^-^#5KetuaK??_38sBi^B zN4XV082@t~0w-4 zlIwr`fr4ezf-`x6&T8kupMwGoI>ALvq~MN)4u+eZJJhhPKHsatrNlj(2)R+LAIaRz~zZW38wL$=1Q+@5(L;G_gfM(!WW!>Q_MM1cd_=QKcsb6c$+=HL~;G!@g$g$=e$vG<)X$28Vd9T-llX8 rv>e6FDP@H(tdAt#e!fN^;L`S%i)y%RHku*VXf%38j;xjG>D&JT7fbF( literal 0 HcmV?d00001 diff --git a/ComputerVision/cnns/docs/resnet50_lr_schedule.png b/ComputerVision/cnns/docs/resnet50_lr_schedule.png new file mode 100644 index 0000000000000000000000000000000000000000..4245f44be146fad487c0843a15599f8746f58fe5 GIT binary patch literal 22779 zcma&OWn9!@*DXxP&@gmJcegasATcyZN=S*MbPU}gAdPfN2?!|NB`w|ECDQT!!TWyB zIq&a$IA4GdI#=$!*IsK~6RxHrhXEo1!N9;^D9B5z!@$5H0)LOAAOSz;1Z!$wU?^b} zq$M@oVGo-hox#1${6c>IzNZTOM*9-QZ#1$ROPF!&8viaTbXyulrgc(puQV612T7lU&^Z4A2wtq zX9|>(1N??yr(rAL4Uii!9mr9PkwGL=R?_VVF>a!JVX#!7jK?XlsQg82muc(Qnc;cO zsU4*;AFP!NTa-9{h zkLtoNkkfdtj2@WBvD4x|vX^MwFEMo~e-r4sub;T8nc5$W;em^|OO-Rz{<@=6 zcaqK;mm_GDRwPQs@LfYj3ZW?cjW9$+we(|cM=oXbe)xMUdmG7jYl@Ob<1{{2S`CEm zxP-fr@^-c|&b<_52R;EZ(3OIaM~G%$)vPJ2=T-_Sp8);oD->nm!?!+UmIN?1K;y++ zX)wnEM^oEeU5N!NV#wQnOgnh*iPxQ$aIX`W$EMSZk|9h#&jI>+EqFibN7U=}Ze9`k z-=;n4i$Y&*A_d-pd=f5o6_#WLMS^|H=a9SF&DdYB-U%BP0eZ!NIMWIySL; ztTF@gu(d;jDy`|Y$j-DuzY@OEud1($u8Ol87;M`uOtF{bfCd{w4 z7S5vsbxK_ z@4POq5#rq0RO}JHH>+Kjr$vaUY}6C-om>)42&pG732XzAAkKNAMTzHY_PGCu^!xa6 zfg5H~b@R)@lJ0F2|4{3FENs+^mv0~0zla;hU0xWXzHi85XkkBLaW3qXJNhPmov}6% zOhfj~_<8}2298fobFB1+K^Xbhj#5m8&W0YjiZ zIL=1hLbkH{ZZT(o{9OKV+ixzw#JdyecF_17X7te*ulI1d-^Z`3y53jk1Wy!A$M+P? z!2ZL?eT)8|$Cbz)zJcX057t`oSMrO0{ANvCz4x{oub4y?Z_j5VvpG(7(|P9X#(Wl4 zF=?HpPIo&D8bp|oSp`pOFvG&Q*B45muu~6hhAbYJ7d#K)N_g6;HwzBRtjf-=u(;mn`7V@Y7jZ^lbJ7C zNahSgWvTeNb!f`lc<(A*WF9`Qa>T>5pv1Cr(~Ca{3P@80A%w#jRt7pSw7+^#2vZ{~ zHH}oS>Tu9tR%yNTySRW5Ad2;uTD)we;wBKFxwhS+9|`vEY3j2BXUVlkmy)wFfw&Wj zs@^H_5ameqIgM&>u%=NcJX7)iS zL6|g?jJ`iVsam`;_WGmz1|^OXdrji6>RYHMi#(^A?zdPqa>=UVj^y>JTfK1t#K}Pk zIkxJCKc=_@TRnzC*S73MB7{dg2@R&KN8|m*a_!0vkhn&FXzy`=1zXR6@|&^KJi01Y zT*Qfn#F-dml06eXk(h_XNi#}I;>4dS&|kqV+mcDCB0j6b9dRme{XIb;7Zj+;#d5`* z?k;2Tk~HBVB^)hPh%n)>9PJX9Ek4&4^Blo6q#^p`=2r4#HH?gga7kZz3N-#)wCkSV zrF2D8&@FR?LmBs?O3D8oFg5r%F&tGBtW=bvzBZ@l0^7Ps!$w1vdy=3GkPmz&@9#1u z-((w)RgD_0fN(SSg2T@cxxA!dF=#Yz!g6toIn|H-cTBU5;4^ivwpuILceETvGSs>a zQ3VJPAN0OzXPyRzRqyC=hm(pbwwU3v8Z!Z!z%GbOf5WgI~z1`y2vNSb#B zTmdrS-muHm@Q{A=QNFKXq8h{tF^x$2O>>o-^SxZwI}VeiRzjIfNL^l5C-QEMXhUlS zW~6{$1k2HCU@90%_;csC&$;h8uQXenm^3U37X&-wRLmB|y-Uw{uoyW^PZ9^A>`jCO zHdhKTagKR5JJ29_45iT_nOcEhBfgak>CjEk>3UR^(xm9gojzJ^qh;09JCC!{r% zz}W^2sdyB4co}G)*E$c;>%~dJ9@a*@f78i@Ngb58GYl89r6Lg!*(V~YXiJzE9{cV| zyvK@$MllmyS-5$P{M%F)*fkAIDIvY{$HNjo4gqV6D^B-B9IZAkMgkJWY+?*rq=jbG z&4{3EUFJBS_h5QcsyO;pQ`R{fJjhGKZZ$hP)-sCd_lrcY$4je*xl+4&s|hCG5bVt( zQ7z(#S#GyZXk-sfkPSM6M-qVhN`R=TY}r#Kej&w+@;m9aviIBHO6vF@kc5H!f!B=^ z0iRSbUWCJa8;@N>iC_SsQx7{;t6{vFU;r%tM{`$7UY5 z)CVANR3rw5ck1ibs=^=aq%KWxg9qc3DX&lYYd3!E>13CCsgcAuT!ICs{~lglO;R;w z?KkTNe4gxiss5#L_IaVo4QoyVhZG5o1HeI8D z864v`AJJ9h%UdYmU{3Ly5!mJ*R=nwoxKg8pjYm~tU)_Lz=uCEgI>Z?_BeFAwWl7GG z1&=z&3|2aHQA{MSv4a@QV8%_Pum` z6MYyaEX8GSFxvpChJW>1uo(u^&jVJ*<8()I)ckkZuvI{!3xFTkA#v?Pn-fGNB;Wi( zz4+he)M2xjz1Ujl61@?hdnEf@R!I9fNWBGF%W@!^k8yWWN&@Sv)z<;#WpXh_3b!jo zBOOvSM`mcrL}YO$|(Ra0{0;B?uqP zDM`F!ra!h%*PXl@i);TG)+&&{V>ulTH?0f>uN4{eG2N8=$XP*M}w+*)SwW~(0UQK1ES8t<@i>*pH< zDgLrK8E8E+V)KBQaz6pzB(jB z{V&9>sl}{r{0@84K~a8V4wT<*2OrtX{6q7e~KKEQND#8nnaUAnpbjCrC&<8HQ2+l6%UMk$FXi?ToJnQ@G&FmKkHhJzytBJ8MCNs9w%#9D z!f*tf@IhnA815J9=35&GsFmzzx(9y_iz%Kec8q-$$LAGMO4Tzrf?p@6k; z5OVh$C03(ciD8~!nv^&aZ`+#r;V}O0Sn~8aB8XPfaWH>lFly4<$+M$ zBV%Q!7bx3aPXC5^`x!a0QGx8u&NhDTI1n(ayPdMWQu5YJ3YA~fOl1;ir_48|xbJ!J z^m%y43L4mK)^wlyivLt5X_4kd+E6P!@Tq9x5C%ATw&*~muCw-nXbBSzE^heJx zJeEiLihT=(7vBlZ?H42Zew$Yi{~I8Ae_}N$Rqc` zf8-DqTy<;j6wc|KjDaV=aUpzw+id@RTV@#3gU~O`O58kAH#4m#%zFSm%MXqw*LH~5?_V#@z z9B*w)tY$PihSCJlkR0~-Wv_U>Ona!PS0Ej3n;W(WY%a#8E4%3_E{f!PY@ihdO+9s` zkHx8-ztHI!%79ij>yw9r+&31KYHLlfD}6R2_8W#sL)`9)@V6|R^9|f5w0q^UB5q+{ zRm;4Jf%prc%-6tz^=Vd*mDH5O7J-;zpAKuWGDESuOBGwirf%R((2#z=yc~{@q?~1HrjtSVR$!L88?;~=^b&jFNU64s)E#bW}4N7TA znzvH3tI*UOA_Bcn7?R8}1h%k8v)7wV^Fr6E9EY#w%_>*-^BC?vTbuX+(725<1LhAb z8e7T+zd9{cq7##rLNipM30v&xw6vo8pF*cs_hq!}&qGwQz@MCkvo{$@Ki1hmU3b3s z4;Te&0w=!h*rB>*l!C*Id#@!RFbfn*F~a3C?%53C!~=nBaICBcf-q?x;)r+KeM<2$ zCe{Thj=O#o((}%?YP(!utX*A|kH3B$O*zI8Y&ad>(uGoJK&6%H=z;1@9CSW-c=-KP ze?=M&0VRMzqBf^#Sb()d9+K59ae-1BQP8BDq|l_+p7w;QU(_)+^vCE7rk@J#CPcUI z&;ANA@2q#~ssHCMN-U~p*KhsdF$KvwSR zFHE~^^^VSokc6ffJNV5EryZc2Y8Lc@zk;a(;#636<7K=OpH6x$yJ4G!AZ<%tgSdMy z=`8_#l6a%Bn4g%<9(=dB@n8v9f&LWt*Po5wGjmLqZu>Rc+arSMr}BoEXH7o!W5#1K z!Q*##)d^vd|aQG@m6E~Rgv2YKfP*GOdZBs*;nKwQ!T;yO@?cK5ropyM;9LGLu5wUCW+BqzUP+g zqMk?Z)a$Fnp6AqAW6T+o4jgVIQM~A|J+vL2Y{CfN_mFu?#a+l$nIy=2Y++}>!6=e} z1p>bFMpVjRtX!?NHI;&M!?^Zwm@HgH{RzJ2mgUllDD^wkPH-1fZ>~XG$C*nsb zEP(Z9=-k3PGtI>l-imb7Y-YL@`TjPBiZAm+v9)C6|He>F)nNEmdqEjCyD_59MIp3| znyC;Ztd*T)mm5!W2)6$W$h`nDN|S{|n{rPLf&wq2udf#dPhv!Q3-94hrMY2&aP}s2 zP`<-WttYo=Ad-~Z zRE?aQib)-A3wI=UUa$NRdo`WOTPS;xSLTC}CXD0&8Glha)BuOva;_vqoDY$bSRaH? z_?}9KOLiIBver7_G&AlN^AWU%w^1Kp1qosYa7EyQH*2-F3mx-1bkPJ7+;i@{R!?ye z)`&-)cMc%fk99To)jJptl5LocO$sKX0~(vG0O4j_noClq;r*xuQCP+VN3h zAmLdT$L=Ib6(fp*Q=bWaBwRe5sUIa4N7!!kk6AQoyMl-Nsa3^-ZG50NtIL><=R}^IA zr~&#tKdYAXv&tUGn|`?_H?*EpOL~GTnwLIy*XQ2aMCSAkA6MwU8g8*F>D7~w-*UXX zW@Q7VDH4;;afO?rm=^0YqBGK*(|ocy_1Z6J5G6mI3H|b$_FjLZamxDpvEqyJI**>ReyYF$CDDRynLp<~#%eWsJetIxQI zuSANmBaoKMRzH%sncnS?Ccl7CvMC$1XJTl*#MsyV^CM!C`qR+^^4Z>};iBG0r#q`LQ`3VRp%yeUDqk}eG012AtlJCMBnHvJqC zI@fo^+%eDc1MQ4h-fOII?x2hIHKW&o5o>vrp%Hbbl6%J9z#@f?PiVEma2K;+&X<8WpHrCFPkmD0yzQ>a#E@ z!M1pl(&m1YC(#leNEYXV9)c|dUFyO{Mg=KDCbHPg#6wPeSY>Hy>$Sij<-XBXoiR~( zXf~%N7`#?_rv*-;WF62q!^!pk`1&g!L274}ZXbJh^MxdxCsxN={2$E{=bqem+_?6& z6R5$4ZMY(2k6tRQ=B;}*mrmc2T0XLZjpr}(EPj3J$gwQrjDCw0#E6}u`50lH)ZzfK zd7F|ixTJqzrl5P#{`ADY-_!mS9&B7G<3 z^Ok5vh!v?5_TIfgCzhc*Np*>@*Ef54H=Wq*dKNsG;QR`V62P+PrMB;cd!6goLtO)L zryv$6CC6pcI)+`1FXS9BzC4l%h#;WD&CMncJX@3Dl{I!+hU0+5brVl_LvWK-vvFqbQlT6aOj|d5#098_s&93SDwb9slk-f_&MkyUC z9z}5cqa+j#NAfD{<|LBAh72rj2B|SnFj{CvHnn8e#Eli|eJ~`B%wkDs7|WYnjF)Z? zsyZ9L&OAJN)dikc)f9gB430>Oi`u?0W^cwD-V%;72OGjyG-GMz`dhWc#0OU9H0uqC zWc%RZ_PkceH^fl@A6&h>1Z&>rVDHMDI)pU@KFC3XJ+Z8CXg!t@tG_xic|%s1k_wN+ z%*MFPKKD%lm*Sve~cRYlhBWmRr}?cH=xzU;ZbRXmqUoSAfqyR*=V_6 z0dq;!#U4~T{}!2woSSVzl0U$x-mC0#^t`^(BPK@u%O5jVQg+m){co7$dgUNPr9)s3 z(9TMz%QuQ5Ym4)5F*hfH3^wT0zCF|_jCYj;9JN>RUT@xUYvxlSUl$Wlyi{I%`Me}X z6eE?f@PHNFbFySt1|JXy+oSOT#-slCdsrrTS%usc+21igq}#R7FYV=`w7Jjk=VO*u z%PdY`&{r|@n6AZlUOn-mj9V##x;qP46mBWS6~vKgvo?QTX%Je2^6d4^>Q0OG`hRc} zhzbuyr;%>S{6cG#eInjn!{J0JCyt)LvaEQ1q_z3)ne!g3ET=yQ0wQJ*9xWv!`ILwo z`DPv7+LK>s)oJ#9v^APa_U2?R_P7KSCn;SRW{%Sfcdpz{=byU0QUMgGlVgH>|uOyD2MVzBkP}B7V)IE2a?;$vd9kE)fHq_@NVfE5Wu*Iy!(OQRV#o{evwc$I@-~_{AeUx zOSxXr)2OhJ5)|AZ@WfPzV*vP0E7KH`&3>Cv_C-;G2dm{tM&X2HUA5y`+&C@N^>pM) zuw&deGBW%gg(GIxHk(n(#?$R`WqSlDYLO=nve>pzp-Ecnoi4a|P;6Vj6gNZIvFAY_ zXdA~k48U4+eHQ#H3QYEJvV=3jk#K&Aje`n&wGtmu>=^fBM~b~02boG;?z#qbCs|Vg z=`adzBm)moTAj~N?!wnJ5^heYF>TjLKiToTYnuPE^?E~TOYC*CxZe_me)eH{w@UPd z_HgT?=!Z?R5LL|1kyWx{cxM%G@n1uC9UJfFnETU_!;sz1tY)Jn=8u)&tO&Xdnp}Oe z)hxId!5e>U13XcK+P|jMNoc%h5v^6*7oy>@#3kskz@_M+o=&`Ld|nt_WWapCk;vS5 zz-RT=I@0RR%|$`p8*)XvZ+@aBl+#Z0dMXQ7H7Q}qJi3;^lC#vsm# z8fV1_JG{a=Cts0FvPzR$v{De@vIU>Cxkn#atxiG| z@hm_-DP`OWSAgCW^^J;CbJ+%P+yGzN|9p)B3Zuc5q#0`w)fU3@{rmy8e+;Z%0#?r} zikrC?p|C2JT5RSz5WjTGaDTLBt*ogskrMAI8#T=SCu}Lks|eG4Vl1A5fK=-o)P$mB zetlPH(#*}Uy0)M5R+u4=Q_IE&D+nTpzFzC0Wldr%%C=bDT&A@Lgth$V==2N=K)1&{ zZd;t978y;@v`h6yBU~%jHQ`%pl+u9?5#0!|Lg|hN%SVi7-JUpzarOMxo0-ZJ4%KF3 zd+wIb^GD`j8GJW2frKi}Zy5n+*=HYc1)^lM zUg^~{HUPQ=#ec*aZJ-ZLP|TlQ4VJMAkA+L=Qu~VYxek!gqQ?E`$hCkGAJp?Frtw_M zwD%cBtFLeVGON5Uh?_aB)RpB&#OiizXQMp7M)v^*9*utq+bmyn zq=}1Y9;a2_iKbe|8RkM1X_9-gOlyRq$9GbEfZ6x!y_*^aYj8nMD>tfA-GIV~>?-+_ z02pjRWBhLt1c(42{`>NKWizR(Obzy4wcUN0e7-#lUZ7Q3y$Rn}IaMcI`Pg;$CcOQ$ zv{Ca%{jphru=Vx&4Uy6jrUMDWxpbKsKC9!o*!YqTjB>41h}_Qd??{(9gAf_0AA8>U zu9gaJJ!dZkJ&%#U);tNaI$$K6t?!{_(%~oDn>v2$I>uXCHz?KL&Rh^Z;0+5WOzvu zqtqdhM66>DwmniOJ5 zqgBv3-qO~P-)|@b=*8Fn=*5Ua9POfw5xxi~^}0Md z>Gt=pvlb%{NsoKSh0wIeu;CindTt)jR4T?BvSvcI3JF~3E5IAP^DBfuw?!A*bqqf^+ev#F6#svNk2SojC2Y3;mH{i2^afJrKWxm@BM6n#`{(x3_%Z! zU^{~r*|t7FfLM3PRD97P1JQ!R`YifE20|r@r@3Gb$)@byG=KFHRX!-#6LrIfK%Q(= zEn}V$5)=-I_ePAdPmA8ue}~Hf`3)$ul+oes0MUR}W%uV+Pvj_k+~hkDVPi z6xA=1#Y`E^@*A1TLy}=N|Kc8Xhj$;=wq{P zGam>g6f+iNHfc|9vYHhzUSJ38aiWo~)s_E+ro)F0aMB`_kN{er_V~Q6PXghDuZR#S zo>@H@%0Czv;`ctRx(~cd;_)3DQ7M7N^f<+F%95UBot1TYdNe4Eu3DBZ#dkmUC0?_zW?4`ck`7FOv}EG{O9L&$Oo#M3OCi~}0;hP7&^)CDhYLTc zQ6>K1G0Hf2R@tecolgbNL%`?w&-#N0Rx0U^o1|MA;bSE5s}8w*D*CzXatZEKL68-o zXy6kfVoxATebw-PGAG%}PW&*YrkWB|OV-iy0)1+|Ctq?uA@=6E)4@oy%E&85FpcLX z;B)@ZhZ98FbJ22Zqk9E)?M&S}*S_MoAY~w!= z-tM&5f!^AeY|!_~0+%uImG)jsjLTS^9-ERiR3lVwp>pe~(RlyQ4z>9fCz7i15VM0d zM3bGsbvM+F?+Mf;=K-kYuU*+3WF!lYPfN_8NH%UK;ZiL79u4WN3_J&EkcRSDaQ)N? zkR_7mA=FGgg$_+bR^S56A+caUx{wGCtroXpPi|o!Pz!Pt+?m6J?a<8~CAKA_a9P4- z4DkXQpSaE9!C{~-KC7TgU;~NAo9?PT3aQ6}c@#5^?85r93Sj=}5f!+j88)7%TDPOC zCH$C*vDL+T0^!NmYAQ$FaXYi;HAJ|{2|pf&Lxu828ZR@i)d1R)F%quCXonf9+i7^F zpQJ&aRZ4rL*oE+fd3sW-%LM&abI}YB*_BshhMN`KbGxVyFuUH$pC8u|sVC~1Kip@f zKg~|*7chHMusa}k^1Y=0Q3^nJ75rWE1zID)&7K#$O(4}#LFUb61lIdd*#kXFIaP1N z61ybwSk$JzR8CY?zABWTf$Hg;TJVtum<7Ynx&6P#2juqO8rk%{(tx}>&|L!5a25ry z8lgoU7JinE8TM|ff3OUc5#zoUb(3~fi!?HMQL?TY1=HnU5UF$jH;D9Kfe{wzAj%FILGq3m@_UqH$IdKE}A2f_M|s?YIqF^jt?u3Ce_-Zd&>w$<_7euCHMqMi?D3v z28Xj!PK^yCw%yUB$c8)w_$-zHo_|>~2T_G!dnZftH9{JImD>xIhDxy-NSBdl->L!U zfE1sFs@s?4PY{3ei@_MA%l9Y%B}_#~IGH4g96rj<_={;?G5E5QPk{R)&{xNcKSe73 zbJ$aXIu1UiF!1g@p#lAQGYCSkOF9%J#{`H!Uq(7#{jU9^CxX-e{@F@w^T5}-`J0` z`IQsJ6RTHB$#ld-5m|6sWxU2i5H2}Fzeg_v-CH&L&>pn1qt5QdpN`je9=<(gCt{mI zdIk)({R$EgY|G>>#xy_I44_l@xp6D#aC{*SIQdRE#CP3v`dufoLI3cl<0h94$(0Gf0Bfzc{UdMFXG$V7qE4 z;#I-IDnn~}RZ#;?2U+l`@eW01RXpRytXz|pN-KAdbJCwb(_~-;_e}3VX za56*>Oe#BVT=4p|7k{xsFLBjwP1dBMNBmFjyO$t)UGUEJ_u~eI%1shPgudt^ggf~U zK%#4=KkaapHI$X~$k~1v;PA!S9Su$yOyv9plm z{{!2$&H-n$JGyA$E(tHIx_Fi+oUnptj~g_olqiKp{~G|h6@YgV_d8~p^Jh1$XUk7Y zW5C!Syp;Z4)1g#gHv*h>;PkuWq+xwtPOdqummng=)0^SE{#XBbP)7{fb4m42YH&16 z-}f8;!nZ$rSvo}gCwH3*WDjT_p^SYdd!v7J-#)pv$hbYf@-^lGlapA;Pk_aZ3}7v@ zw;$O2k#Q0wGeY5K0|= zROcx0+48w)Sri%w+K*d9@jQ2IT^mj(LC6KRAcC|{Gk@ESZ4_iA=L%1#B~pXlv76=O zAnq~65lWLRSGDtN=Vt}0_Zn;!YA!V&@o;#4{7*jvN9nxFBhq|_$+}d9<|iT?(@*^6 z9&y)^EY=NRHSy98j9G+kksQ76K8y913Tt%k=wEUQ;ps#i0b#kplpUDv;@PJMHdkRE4knDp0#2TgmDg6%TVnJ!pin@ag9a6Ok;}MYY}0sqxM?RP ze5>;{5Izw=f4aP8OiF5^_qq22*VLtPoD(;6-7r=NfLCzat#w#5*8OGE);H9+^ZH|x zlj=N>lb*m4lgFNNBSxC$UMzX8W>!$d%Xq_v;Xb>Kk+OEQa2OIrhf0rZeU(NM_p`=J zF*8;hUqEccmW47jFcJZ3nkXV{IAStm!~Y-Os@SZ2ky!4-a7EoPm`EX+jjg!gi>WHk zWGvo%!gT>;zhG5!i{oIaW|s88?lqQ*FL4I0BV>r^BeG<*j@!LAdwyOFFAHfzJc%@I zxoudZuf(klRPCf{*7n6j$3wM)e+qePYu>#)E#!}4<_UI0Z2j~?a}GbAB-@bV2$cd7 z{Ho8L8Emm*^}79RGzMPx`i>#z4`kOLIM}nN8V@%b6IHqdKNr}Z7&xe4i2J{8N+{N( zra}eaa^yXui;4E#7F>El!h003|9rtrpi67dJ3%ppC=-x>a-5n)54p~$ZK?|u2vC{z z$+@%iO|f^=0)o*o6uzc9rF2BDbUraQiJ${59BWtUS=?c#mgIyq;eVJ0l^sNXk!R+Z z85(a&PQd1e+pNH4QC-Vu1v0TK#zRcRxxrC@+%I`D*+&M@c(sPHMi*C&Y`R;Ab}f6K z(IqPcx%#nBzsNiL_#m?I=4I^tgyDCS2A4a*X~&B7_-QDByZ_&$ZTrHv))3A&o**kc zT7b+}j<<0gMH@;C1d4XYKgdB8`C}NU3>IDzQW%i;eY7;|PM>D`zNB|WmJV;khlryA zaCc3{EoU9(SABD|(tT{s@DJn>@*kGQ#>DQpf3;}fsd+aS+o2YPW*LwyZL#Zs+53;t)#0_6D zYWrLrAuw8&wK&&JR620naMT4xgHk;jN@R)r07mmyXmWU2GT6s!bhid6Ph*V2D|wfr z9;)D)QoWmQEk8hm zTLJ}&1tbEMfh~LpI=o~L(sC1+`gl*AusgBS_=u^CVSBPbDmv5hV6QucYq#?vf&cY* zrPa&=mw#lVeE^HR%lG0U4k0=X7Kj9MhBWLij*9>5@QE5KZ%t`E^ej$cr8+T9EjgZ+ z-cM^ZP{OmfU||>-2{)S9Wn^b#uyc;N(6bRfUHx5hNWNIAbFMxvV_1*GQX`E-GFNr! z)&yhjCz65Jixd`+e9}aqENRx{8E1()H-W1%CxB6`o)CNmPZBf39+g9-kHm3#_64$m z%AOOT_$vM;c2kiG3$O#H?halF@$H@?U3pa|`w4R66sX@BTiX}A zCGeX%al}YBXBMD?S)vOB>mLk>BD2c=6?lF`4|kpvvU^-)b$TKqf8~d;n4C{w6J-IN`qxa zWFIii`khzBBAv1?7A|NblH}Qr}o8 zGmkxPpb^@5cZZB*r_Nk!o5rqtXV<%b>w5R!b?G}ub>^6VkZ8_clY?7LPd2Xbs4O-q zC1?t(T?8zzRCdpOSyt}KMSo^PufG4!@ARDUsQ`&LhJ(lh*!D1VNyT;kF2QM8E(DXD z>&HEG7Cpc}o+UhFx3e4>uavlVQBm_EqD8_TckmQspwO9(C2O%Y;_whHz(GTZ?q(== zoV6Y@_0QI1KL8{!!G91hkZIl`O4T#MtbBc=R;2<>pAD;cq6(QLh1fp4ZbqyVL&(x! z&puafce<)%njdvoHtwP~sI%w=8zG=QwX(UI5s%8NAqa4Xt=ZosDeJ2y$ReE&M!La9 zDCG*exgGxjDO0+v&IYWY@qYWSReKKG7pn^qArBEP-o`*9MarTDH@ELE4LgfJc>~;d zpvqX1t6i(bLQzARno!uE+Dm|9c}yRO9zcSIkQD1cEiICMs;P6~1+y2PsfT^z*MT@Z z4+I-0HXnGqzgOk{r>J3#LM%nWw94!yt1Z(UQdz5GECApL@Z%q*yBvRx<&-Db`aEfx zTm4|x34wPf^{vJz>Cq9PJODW1dNSicn7bcqprmO&n^{}(aHig!A#hUNYYV|{sTfT` zBZeMSc~7E@X9S!%J59AK-QL$=tA&%VW>yVws`kgy^LrM>HLR@eCWI|c97dW(OFqGc zL)Z#Q4?gExa^D%V%M)101$uR^&)%w}YE;0FO~cL&T(2E1HdI~YWW?vb|GH!M_q7yu z^2nEMH%o-~>WP1a8yK^~&BUdp>=knn2gUyDu3jy}sjOvqYFh&PT5E4by~i4m zrd52k>|HEE8AJ-nfX7A8P~f@MbG7`QoWQB+GEddljAAp%)LL#LaY{vf5Q!KUDf9q+ zL7d}f;Fo5f+P+ql$~SC~86FhBBR@X&9SJ835o^C>=7NCO&NmtXOYw=8g)xqSF&zhtvzmHy^={m8ql$>&Dzc3wTp z=O$|WIbpq=)Yr%a4|~!fFX$pi6s4(RA9Ys8Uan|j@HbNOO`Nxv&zwrnq)^^^cG{71 z5@{o$q>)o<7o4&OZM*~zi3?Jsb5gS6Wcl-SEW!hxJztTdxRnp*oWSPOWyurT)GstJ z*{^Hnjfnnl4993Ex@Gac~W4CM*t)OAVmNXdgmYS;ahwSgxrN`thl zb?im@PEyh0;V_x<@~(E(q15hIQ-+FTBJ%+1^XZf9+Yq{n?-zoH?0B z`t2vBql8>}b>9Xcmo@e$MHAWpW@284UDCV z*~1>zItdimKtmJI;` zGFiFZjp*fx@5ebRWl`2sFM+9m8)~UeRI+2wNgViBV8JI=T)_)J;t?3uz58IBf=yT2 zELX}a_Ue?P@x}9I6W0G54tVjGx$49mOSng#Z3Kr4nzUWvHvu<;CMP6BF*jm^WJZk; z6ZSr6y8hE<8Q0h%GrGgOsAUQs3~R6|7)ECog0?OMxPUTNIBb$#gRlJbBC*S?IuFKF zD|JkV&(AH0F}ol}S@3mfA`qf9Pd&&p{j`sstg-3gc*$5CLSbGl(Tqt;Q2Y*x03Yo3 z;(0fLhe5940cAu-i!r*a1S<@c8gV^;yZCtp>auwp3;fs55^tXO@5>Hm-+F?-S8=_@JJTpehTf3hy+n1m=+hvn)T>4%ws z_MlYk=WDqKn5R0<+_sTqZ?e=bQNoP;hY==~?W>;7ue11)P8zx-=X!jir1eYSPwrN* z0Z{$$21VvONT#Sv-yNE2L#(JtDY#D6d z=QJ!!14^r>a$K|!i4zNKnX=?f#zhqCEak=vGD$N2#&ET&@tE^N3$Grq%g#h`{+G*a zry=0ZeK&BQhotG&a6d5pBP4CX!td;5`Bw3IutT5krZYzrxadGf3@b3cV?V~m1ne48 z_zBndw`%=`J22j$DNodmS>U9nT|DJ4&Tofsb) zdRkwl`EILZF!jYS7Qyv$a{z|^-!hU3Q!}HxOeffg)T|akzS8P+ev=v}Yc>dufQn_8WPg!F8_4&kpC4^ zTy+^cwrQU9n&MpOc>_2;Ib|Jj>C@9cnWKob$NqBu+dv>Y`*ot@;~;4*EiHfP%38kX zdRHXT41Z2zCb!3zZG@19$>Dpu{)Nz-A!574GgpFd(1c(H3}hL}5~L>1C$g9@>wk^8 z>h#v=9DV0l`cyInwn59%zw%7X=Mk*@L_`KbD36CQ&N(>T{Jfa(0C_Rf5@}v zKRN&ZK3@eeOv?Y+BNR(Rm#g%E$E|BGoZDRe_hJ6MZSMFDTaR9HcLEg-)^kx#iooK7 zAHw*PYbkL&;2P36#*^LB=_(8OKC~lAf!COB7L$a(7a9^M#ABcpA9*7)+0y67TpbWJ zDh>*ILviXas~z|o^#O;lYK)nP0P6;bvzL8>5P5X$D|bqB@aekOXk*3fEc#dCeIc*Y z{!_YwT!ygKD0`-02t z_#kSgw_3bXaIJ@K0G{t1$rDOw3G3pY!>)8!C3Bz2#%~GSwiH#2ebL2#6Q>pq7kl|W z@p$u^4K$F-w0gN{-6USUEzKgd-Z@Mt?z4+7Xxy9&!6Vf!m%O!=>VBwY(IQdxSM{Gw zR{!(E)xDvg4McXEvh}fvA4vQaX67cOQ~1|^Q!{p#fJaO_x`BmTnCF=|KU4o{SPZRq z+lxH(djUg{*f37bI1gJ+nU0q!jKB%stWJN~9Z|+yc8wzQX5%Q0l$JbP8vLUR4wJ2D z$laS#>Py--5OTc8XVlzGloSwOquW}V?lAM%d)b*VF~cVwx%|Q#uly*)sHtk<)-!S8 z*z5v#C^WD{I$Qk!J|!kIG&8BziAT+lRn1l7DeRq<`^-9P$s5a;eKZRbOcRm8oJjw zr4+ims>pYaO|^47d3qea$~sKvcN$KpoAc%~VrE?0Az9;I2*2>3Q{tb&k?$4Ny=O)whb@VQ`!aYEF`_oR3p?kXt#P4a!cYwdbV6JLcj#Azrz*xZ+| z{tE0{F?oMp7ztw*)^Z2T5J39vHry*!Pm8plb}X!f|MksOvt3F*<(-z4-j3OKqn95M z#&h44HkBH?C%)UZD4atx|E~Uaoq%Ik+3Eux!Nn)jML=-lQbBU<_~O+UE?e~NP02|2 zJ62J#plK%_ECdeP6eP|yB9q~Ip}gVBr;D&`=Upsvrk$9%*OUxUi(zp0F)=a)d~Rex z1rCyz?;hwX)}-&-Mm{P^3sl*0vA3LnLP6)(SZ8e`^eq|Qe2rd6_NLxf%C*~tcAgu{ zQs%?-^bu7c_@N9=>K7iJhNpK!|1*>^#Cix0Iku^Pr|ine5|VurkzNEiH#x}aDXW%k ze{cwM^%U%Zl5GF73KJTCL!3bC*7@@17-ir9tx}EA+*#PIClpO-WL<{dy$0iu%Wn790fkv+dc8LII%8o{lM2vVdsx?@$`G) zooeo!9h{WPeXu!`M(cU^^rAtQGrJbC5Pq~iV2N}>!w+`_Icjz;&R55d(0_-mHW9LFAJVLX%-ogfj$}%Z@0ZMNDV&dEVUYPqLu_6v$iKTO^Nb( z9`2B&$a%epI>+ZQGUxFkrwJFcK87cW*zIV`Si1G!dV?izdsp^RDl>K@C7rMoEm#zJ zHq`N9lDL@>MNQoMu%*oV7x6(cU{~-4ZaQbf4^H0yehWu-8hRCDG5vf7!GFJp!-Nx_ z6@<=C7Si+I@8!@;fF(fuZJs{y7AeZqgrxuIcNOd4ADw0XuyB1-l`pR@BRq9ke#C=? zxu!vAMT6)=cu2b7p@e`fJ8t-3;NuxL0xO@s@Po(%()QP%I3*c)^-)E#*l*24ypjdS zGZ+l{W&QL&cGotCxZs75;35LTC2N1bDgJOvWY#Y@N3wrt8hZ1YXibV~ngrkaH9a!6 zt=<~C@?>6hIccE6r3At?sWk8oyx$lrL|vdJn-1b&bAVz*_^|f|`&KYq!EkCO6Zp=N zS3GUGl)SEFal|RV(1XB;Y~nq!GBw2fwBeV0S8#}vE8Q*%^ig~ zj-(;<6aLtU(YB-NiCgNm7)DvY5Zh)_VQGj>ASUMjUoBVu5B2x`#oLfwA-ia?kFD%G zgAfWK+l&#FNGSWRu|*=XjwQV*J2Ba382cDYWMs(}vd)a1@O^ndKJ_1bf14j(^L*U1 z-Fwct_dKhlMO-dF23`-F-RP|c*>m6b44{*UZ#kSdxcfdK%Yg5I{eCgc?5tvE_aic` z(@5AD3Od0$6e%6<+@vPX=A{?;PKHp&mR3vYPBI^_IPsy=udB_Q_Tml_q$|DlFqU!Q ztB5*EMPm9Lm+2pR{$NK~*h zD}yKN*Idx2&Fr(vd_C*7NHV^oZ~un zKcc$3OBd-+)ix=usf0i{e-YtfT|u1p+0YV&o&u{i!vg;iG9-j^r8A!m3EezGNBrET zplwGV-juYSN9tLh($2y0-zo35BXg@ohKWko?qG}Dem~#X$|oqk#%W>!$BRjaCL+0{ zQvhA%K}kYW1-c4vxZ|SjnhfqQ7@SGhe>L-t3{_1WpqZLaUpOV?%&vfd@r%b%(J2o= z>EQ-vQlBs56_u0j0)9$&(Y>u{XD9|F&RcwGpK;Db(NtPe7F2euN?cf05 z@cIYs-G6|?KgpsC@;>=^JN=J<2NzZk0868uaB}?tHnRj|ut@bV`749;I{PeC0Bc&FX~nWZN#>6X{~yYs#i8AeL*x>BjAz1l&xnR7 zDn(`~0SunzFY-c-+O8=t;+W26lG4g2%^f?(JD*`D=c zKd*C1Vt3PzmhqliTJ1*Xxb4u*Gz=YPwiL$K5PcfXr9zYp3UpGCmvW?a!{}|lcC|mo zX4MB=2n;=U-~1l-9)` z>|z=IfdLC=sUuVs!}uaZqo4D7-STBw2VU(3KoL_r;7@z?4k9 zoxM607Kq}K^ zx-G~B`3>tIze!=?trSVJnced51_I09dO3A~%m8NmoS(k|+eS9p@CLh3UO9R(TQ4~= zRCA<27$1AO9zHra$Nla^P9CeS zSq<%;lfSO7uCwPo;1p;o5a8>9LEM&tw>oboWwb;&3nlVp$-fsqU^HpjV!H>vA7NP~ z<@xJS1hLmKw6k{o$&@c^itC=!5rW;?0>x0GGTqS=@mV&#J`)SwGxsZ85+^J^s~ehd zjqyEJ;h#R_D!+ZgNHrmVAw%e^e0IM2Efuz1ezr)-^jsspF41-98=30!lj(3Z9e6sp zLohWht!pBk_axUE0-yOdMNn1T;8qvGd@ZZtBn%-&Z`^Z4@vi0upQ|E(c@5rZea!U| zDL1S$a^a24+N@(VE^7#^`nV(l{!VS(L_ z${VG@^tT$R`=QDQ9N*+6QeJJ8!$fumifu`BCX+a{yz#{Gg>O>VBP&8XQ*0fv;;pNY zweZdS4U9b}{}CNds51!g!X67};HSS^2{uKKJ-AS*5 zc2gxkt2R64D7B+Pruchm3BHIf`(}^{uk-JQ2a^0hygONMp*#hr;SFZp>!l349QT=C(Gc!b z$+uGpA^yuSw+me0=WCB)|b1I?z9Gr||-`7|!A&B%CYPeRjt>juUlTl_FN zN3S}tRzpYZO}XP8C{KT|0B|>-Igr6}F zyIvGaLDF^%Yeb!1lM0GTJ)KgK4l;KR0?i-uRH2W_xo4C^)FtT6s|Zv@)PpkY?qs?@ z2$ekbrNTtMt|>u0QlrBO*aOKnVC6nidd~DMbJcan_Qy{`>d)ps*%Hc3k$~zVmr8i! z%s5nVcGyAN^~9U%uoHg%nBc{g@Ls%yb&#V%^6=Vu*~e22K{9FdN9^HWZ+dGnST4Nc zK6V;-RnYp}#({!vTZk`%In}nD>3o%l5X+9qiYPJumM-QL7e)gl4XWL7&t%4=q~2^YoNmGg*<1|O%aL^9a5_kP zz14>1aH6O0$hc_l;sUBaNfXLWEQ;_VzE%saquCo1{kQki@SXZ!E7X%ac#Z2)90&Yz zmx0Xfa{A0Ek%6sA@#c{8ze(JO6cwEgof{h4S6(~~PKAVTK^%y+6`02==I|}yAmU0q zp(;>7J#NaiScFB5(Rbzq`Sqa6wbA%${(Oez-Uy!S74wr$r^n8hG-6Na9o+Qa&U`G! z(BEfrKz|6#a8n#=#@palm?p=9FF4mHvFn4MU8nBL;h6Q=U>k97B|tLR=x(a$St^Su z{3t+6{cC4(5XD7w22wL&wVfVI0)~02rsk8uP&Pj5wob&h9~hY1m{mvkap$@5{4;=;i)Mb@Hz5kGvtkZoFffPp$3yZ%}0XSlP+6^;LMy#qx2=mr8j1M}9bCCRnt4 zf$x|gdT!DVzf*6!p2;a`q^rMw>Yhs?nKOO& zDysIQU}WAAOS9*wp)1r=Q3wWjFxS`%MdN@n;b4~}|1c8>w66g$h>!{*_nq0Awr<97P6<=imlLOTZ}!A4%wC4fPv zdEL5YMt@n!XnqdAZNM$==p*p`#R-VC-?;4m=;Hm5-~4*r%J$m<*1k~7Cjxk+%1fQi zQ|^Iscio&?$^k|swr93N<`Isl1yV3=ieQf)6WToq;pO9QV>vcSyqtPSbKR)_hwvva zRWXKn&4S197o`py<}Ln*G)z8|RDFvZ40n4>iMuW4ijc1s&AnPyi}g~=FRfer6-*Z7 zhk(s$QlC)$n+Z5J`GmdPv<5$a{Q*mnTlco_Bt{l23x-C>@{2RJxYW zJX}*Bv5DHUXK>8ab6Mop1EF9yZ*LVY&Axw+2RWEj#M>{a>yan97?`*7+`3#OeC3Z; zxD{hdUYOpl5+Nqs>J$9|1(AVbsoNXl`aniAq3imj{paOD#=_lG(Aih+G5s{M@6b6+o>2x-OUEK`;GvM z(OyeL-Dsbg{?@*gyM!GU(J*J83-3a(KeTS3TUBnTdg@H6pg-N!TGn*YNWkyhaeJ5N z@-co5q`W=+G>|Ws-(;?OisA?Q=Ys3xlc8K`Wq-ycraf4n;r-A&fF{oe z7D}#Gvy}Eekan;MeGLzmG8HdvFG#f=)F`MC7g@YhKXG;a5ovpGeSei(0k%ZbzFVO2 z!S4{w-;&1;if!zuW10A!Rx@bU<29J7mSoZr9xV{aFXcWSQ(Mp!>Z5UQdQSwosuXi4 z@P08bvUi&$02#@v;X*L3biIovpP!tv=)513Ryq_8`kW&lRWN#SvpsDp z`dK0t;kYJuijLhw!P?1)wM^C$)J)lx$mPQ^eWINe?-4@ZyFd~yWmbE>BrSwFLDF_G zn8@2=)RLet-yAiKfdw6}-|(Z zIlkETcaJZ7yza;58gZZ~$2|poDT0Q)3%y!DV2o@-T21R|e-}r~huR%8|Nf}ga7jgF`=5XdlI|NxR=?L z$tj1D@ot2+WOZIqxg?vE%V##Wuh;-e6jI967Q2aflM+q(_0$pj6_Rzp)`_;m&}sgCtcK2s zhIxA_8U`9#lq(w6uVXYcJ=FK@UlQtr{_k(hLiB%)M*UWZ@yF;ptc93=9AjSIUdG}Q z7>D}8eX3#Rg@#7ScKbosyvK?}LsLN0R8hPSM&HiEfwQS*HM;E!B%?!Vp(0qgDHJ58 zn9S_N_^|T3Z{PM-!YVNs!X>%iH@jhxIhl3bWygfB$IWU2|63$$UUZjpM*3lp7DZoT?9vPjuYCr_HcZ?#=>Umg_P;9IzVaGZWrRss4@E`pEPfRV6h4O0+ZAHI<%Sh%@9=~&5l zm_O%tez>uCJnKR9@U)$({Z)oF$hgvy+G!}4S}h**0A9y?QF0W`kq_7^uhr{tbwBKW zAGxuVC{HgoZ4)5?*Y<%J2f?fR%H3#^-0(cRS3rAx2yK4dsxo(x5jnoqS2bH1~Vf`fU|;<=F3ti^9` zRRl(_b#QYY*J!2+nuPP4*Ky|hOq!X|<~(UIn~(_JPc4Y_2)UTeg0(F|X`GJUJ+jgN zwbwo+v3=SdTW89V7H0nsIF0OLA)j3?G28&>j~g1FdoFc9XZ=xbTFp%BJ)&slkCc#J ziW3$R+&EoIB(m>GARv-GG%$sOJ$+j#1U(U*(KGe1Tvfq?l2pCB+UY!{+~1hKGAb=X z{662I`bu$%yu4kc+&RBFpDBVI_h#3I__wteJ0GKHJm7+s-lMAM9({f-TUJ>DS$ABP z7$Su_C9#J6;7fFiZ2S<-S-UnAW3|hkd?({H+BecIZ@#&{z?=^*aa@WQC%o8g3z;2L z$hutN55WakH-3MnEpa%aEG)RS^Ko}*XRnJtSTNUrv($|4(X8&2igzDdh66Jv;xN|w zut?y^x4MRT1hRu@c$3Y#1y+U(p4+mfN|4%o+b|#1OB_==l_+=aVw`?PGr}2oJmcIU zHv2eL{`*%kM-^E`iQov_cmIGgY-;pKVmK7JIqTU&H;d>~rkd}e58xqtBDN5CpqRdN%!)(w)~wdaaX#_p zyy_-9IB4zph_HRsc%f7Tfh*TKsf{8k*Rlcgpu!ii#KE#SN?i?}FlVm#}WRdIaBMLd~$TE%ov5%U4lzz~r z(W2YK3-e47*L!>EE#G>CNojR+V)|2&-b$fyQh5y$Ywq=iQwZh70q+-{8xU=_A5f4NBXk+1kWNmVH~;Im`5=vS7_p5A0x z^?rmzJKc)fcfj{$GSBye8Z2ivO!1DM=~g|}tkbDC@b|e1EU)$Rr0Tz|h$eO*P?J-p z#NO?lYCW!h(DCL%_U3GO_;m3~tChHwYaw3j+uP0h{9p1p?4_!L;xm^QZ$2cW#KA~B zT09oWR3y`-{1F8PjLfv9n>L=clMGZWLW+}P*b1{aSQ{RWB$i3d=5nrdESGI=Wan>C z+Xu)u!w{YkpNxk6bB4%6-VHBTj~^r1e%B80`9j|&zBU7pH%qqhJRI;+fNSln~}TNPK}PYOpO$7 zE@d7Wy^~p4R9-FVwd%0da{R6A)fz7@%yC$Ov{1vOMJiysx<`x^#4I+dD@{%R!Vx+W zF|BmoiXyNtUb{55As)%=?6(s?!&CAOc|@2S(k-ozi04*Gy21Lb`!A}>K?!6sM8JGc zI6qCjNAN+;;%>-Iz-dOvS%yv~cK`>+%dJnCMBD7fEt?Oj`tvt-gLVV5(5@pGE*WY4 zzI#6Kh)13k+?*9W7=A+r--?cP|CUAo)zA#$t2JMNBK531x`VF|3UJc>Z@EZRblLcv zfV&lEJXmVmU9$q7 zV`X0q2d*CoMBR#RD0x_7$mPcwJ)E0+nukF9(09+9XK z3})hkpF4?|_Cl`LLTdPeOF!!b6U!XW2kZ_imzqZq@A89?FnI_+?Iyrly$amL4SV;_ zbFQ)VsG>Z8H;j1u9i;A%JhDRFIx_ls9aHhjvlKxz~XI&2b&Gn7rM=+Q!=x}u7 ze$}Lag3G6MG5`HOj+5V7jrr+$HaK4wG)G2#tqMLWd;DDk&XBtJ)3=Ml#G!~{?r|!x z?`)ZAhRRNbl+{RTvtl5!8X+owy_YCF%$LBDzVNhzU@n{y_(s!Y>?+o_39Y&;{lvCW zL)$k6EeGpO3L`I_os0&)euH_wm&_ViqkS8NdY(on2>ZL;z!>kv6*Dai>Ym-ErG&wV z6!>V%2N!tNsenSpn!j~Dzy^$sXo-=~6ZeuU{~_25EJ$P8HDVuNveFDKDU+R>NM&Lk zSEYZMyvIXgTSmR~YK%84z=WG&Q}bLGVbwhA{_#O9UycM9MB}y81JS4Qd7-oXA!h^I z?rDbSKW(>7WghQ^4rRC^k|t$#3oe&AIx<=hU&V3l8b>af`&1UxtUmdrq7^3Ma%vn4 z+7xG?wxK{0);;@7>Ok&P9&rTq*oMyeehsu zSHGqdxxQJFzh-e0Sxc}hrpsU-Q0bpoU;r$#d(x62)MdXsr{e-a=62j8NiYjuRtNgeFnm?axbW&oaZvn3}17wfB8ksd(!msjA;A<63<4@=}6if7rtR{Nza=f*#k8@^=jx8xjq*7Hz%I|fO2`g@T6Ec~8mh zZhSsWSf%@Pfx8DBh>iQ|hb0K#NKvP=V{W)Qo^@ux%Pi;gSSF(MUg3>#@vePMBW?c} z;n;^m$gZID31O{68EH6mMtsjHvY4>sAdRk_+1|XnPg;01X^WVGq$PzZkVylPceX0t zCP_E6Ni;tI==z!$K_u6-MN5McTnj>raZ+8Zg7x!@9*IlL%z@aJV?_;m>*Ql!|97qd=7<*#6ND>Q?cF0k0ii)UU0STyckKQw;lskJ9n19nBfy7_0VWm7$a6O zmAtt;5PpeXB?hnGr?+UF_jfBS6P$k$Z(g=hPH}^WQvAvl^{k26515r^d|dmM)>Q;Wj~9%|bn(hU z#B}^Q{q6wkGiG0dwOHS^JU=KLO@mIK8Gz8-6f%eN{bUJdYJNezp%&*bmhT{w2-%aS z<7ff4o6elEeq{nrXdA`UR!zaBV;EeJ#!F{C#2fEB2&H+*(n&&$G9Jx80eDZuJ>%08 zi$ua)dWB=&_kDy(9dwJg3SK;o_>qf`F6EJCq@};vFa+s`No7u+xs8d1JCdeR`!Z46 z>maUR27RUlUD0O57SxTT0RtBEW1`W9&8a6^EBT?S3)?O^sF5~v83+C&`IrA6n9`dZpza>s^F2D_HI!46u@AwZ%zWJs9 ze;Q#eWRw&cn6UhHst|$YQaARgWXqQWNcQqaP`6I4x2z5nhml|eZ!*q4gFQ=QjRbF9 zDeC9P-PXD8vSN}raT)?^{AzxFjWL_o$+5_2;vTW3vWXhwaWihc?q2(LQqY;m@&;cX z+&yNB$$>Rdaz6*u-}SU&n~cg{i?Hr?i6uv@Qk`R(HO`TQ+U>N9$ags;QCf^T`*zAr z3Xz|Qn~06xQDX#>vX#H7oxaL;`gi_@mAWzh#!oeaoohqNz!5VUDze%| zdrY!3UjEHnpG|HjH9xOrz1OJXzdtK2=~U^GJ0pnu5F7~lbUDHI~e@SJ#7 z!*4&on>+a>qXxGc-KSz1{?|;?ug~M&u+HzmR=&sj?Uy~g+Pr*H(;S7v%i!}CvqaqI z!75$1;OU}fUqEJ4>KhIO=PJTb(C0@weZ5?5puNy1?Q1a?y0A;@e(C7e zI*m#x+V&#D5b(ll!IPLZ9J_)O61-jC z<`GJQ;SoH9I#GX^Eg6uAyyM`7bL}87|bE;$0a)O^u6_hn-E9G z&P^Brr+(+WIsl6ED)vRhZ%;wY3dOOW9|b_5IO)s+-t;A~mVhyn-Q9RjP#UDeBA(CX zta1oOAY!}`Y_^@yRS&R^D>bIAE9k}}OaDP~Z-BUSpNwYY?d5S}o7Fd9r*cfU>HacT zcWh?Fd-W*^e0>HPnR|XUcBeI0PCJPln#oMUvFyqsw;qBFUkh`NVH!R@F-8(A!TwOb zP*s)%aBeb3Bspka)4OQ!n``};*{&Sm4Y<^>jrdNY&bQ@^zfidNd zY;2kIf}orrELp5sA)Vr$2WBDq4OJT zu(;|tNZ4!bPt?zl!$4L?^jX9(J6s3rSYt5En*eyZcx3vq(mLrr*KEu900m)Nv$kNY zsqDa5p_fBQ9i)4e(*}!X{Q<4|vXdzQKdd<$rOV!5qlu>ad{>ZkFUJo^|GXtHK3`-x zJ^(3KGW1Fl4(1SQ;KC3-Q?yYoUlnH!8Yz@1tp(rDr|4>T@b+3gsriN@C5M(o)a=gk zqdkTQqmL%ZkGK8dyW(XUl2rfU+Hhdsu0T)B?ok@_QYz?hiF!Do`OWE>?jXb3HPCY{ z(Tis#TFSDHoS|nNOW{lazH8Ixad$XCXzY%5_XI2cFe9E)$?v|8j#!0&YfO;!;9v#H z2^z+v`XkqCXycK<*!s(t3dJv;SHE*9VHIQw$=|VuWuH}lLt1Jh?!*%|TP@OQM%?A+ z289Dyz2&vz**p2!g?`Wy1Y&W3q+nby5g>s&hzG*N3)y^1pGe%PvZD$@jxf?Khe2(! zJc+OXAR9|%dXjrY3G~A8rnM*P07aWHerrKskvplvLAyK42|r#(2~OXBxdap$_QI!Q zP_I+|%#AaHRpa%+PxC1)=azsGh1cKLSGDO_`9LiwZWi;Ia*9(2vM7jHh#z>0HD7fw zT)($iq794pMkpSk+-I*JiB!l)KVXUFKpHD8YpBgIKQ+LCOumf*$iseUKGn1x&)zB7 z=upZg$njhyz6VZ#v_d$@2}n{raUeS+)L`r^c%+EH#+?lW3t*VG2n#{POyH>fU9+%5 z7>`A#4BANNsxfS7jn6UkH9j+uRnw;2mp^~1sE67XGW?bFXP|{)jtsr4Omx^(>Phh~dyXC+=I<4L2N4Ajkvo9}$Nz(;6N^60;Rfow;R{FBs z`AgRDkKi_rYQg8ux>pEs{#RTy$&R zLaMH0b^5Hi@Dt&cJ`Y}oD4VCZ=3To)>Z!}`I1_j);TCGd*KSXRFu+wKNreMU)-)ph z>yytjLzCLW)d|-2@INba`YWD48~V-g){!dbEtoTrS}b@F%>_Ixp` zPjDOMINQu-#X?{EYNY=~ro2gho~`tyDu{ZDSov)UdIlC5Xhr1F-gfi(W?3z^7cWTy zHpAQx0hwUp_x*6i8Z@`-x@RG9X)|P}&eHVam$b;4z{?7Ej?eL12dU}?PMY6!=g#_f zl1~g2-*0l4r4Om?Mun!c>wLOkpJ?+AvTo9_v*7j-?wVQ$jYjT71C^+bVw$4>N^`>j ziWEzaozLGExbjGB3bpG6-(z5B`YcSsLOX1ibpk3P@IfqG|6CAaLQlpaS{E6Y+Cuq) z8Z3-Cshs*>T{B)YslAp`msJT>m{ullXUUF!fvj_4CTXr=9xJJ1er)4dhJql-IsWCKBr!?^N zlR_R>ZH?F04?>D5%~`wbagE&RW0{d#-VDtL9E-v$B!+S=9k@L`k!o?x2`1ugZtx2u zeRQaAVH8?h#@7&uJsKS_B~-jnT6{Mxg67g@Qp4Y$2I?FEXI;u#iohSHqVL=|DOmV= zx%}`_%|4Llt3QPC^J*Hb3iqcJ?chI?Fs{%!$)7? z+ls{3L)Vof?sV95MJI1BdA5U{TvPBtY4s>gK#~yU!sD||t85tLG#~f|xiLR+U8Rk; z!!pGuiI!p0o=@K9NPO?j*EZzmp&!3{dFJ~V1un&V!odvfIIb#zCGZ0~by8Lmt$Q<# z_rz&*_3xfEO5~f922}+?o@7q{pKG>G?$6k~$a*=Tv}C*_iG?7MXL5)I4djz=YW@50wJ6Ui32qaU6vo%v~BgM)MY>}HxO z0ek|BbH=`M3^+2jlQh*y{?JBq(Irckvr^xn8P9yd`L#GYtxIoiJ*E413pN8<;7qhe z$1=)s!r9{R`h%s|XM}qx(H{G2O;mQ^W@kA0TJqjr7c8(D`pN z@HUkD$)TN(foorxpM1CPhJ2YV2&R&`X4QU!!SmE^5fi{bu^Gh3)4kjJD-`EVhzec} zad8{{cFQ9AfDu*R=;RG-2s&EgYXqb-)uGfd`M9jYHH~8+V1dm87mK{%pvZKyvd0JV zIT{L5GsPkTi9m`+<26FnjW?Tf*CC(m877Jo#D0k?9tea%l9$Q-3Jx!s~sXWc~~N#S;r#uB8H>by_4)}r|}F#k5}T_$3Y}q3!$Us zCrCRSOv*AYna_>Im>-6y9mc_8*GJIi8|g?W%i6i%R7x%`R5&ub`-4i7%Cybk4E$=EWc;ON2B1AaNmfL^6G3b|kps%5bx`J8~k90<2>XWfN_$EoPt+i8^$iC-qxXYJni=~Ov>AT^>QLtrd zD@u+Y;wO7C%dK&<{U32{<-f2dBn|BH*>Ma9fc#!mN9ju}Mh+UKFsTClG7|;4bSHLt zJpHN3F`Qj86|$zZtOtLKFa0ufB~jr~=08`?hTw#C`%Jj!&e+z0r}mi6Za`{{D*C17GG^0iu^=I{}3{2{U2c_xHvpg-r;F~1l$an-WWdjsB zc`4a&p!Br)VQ@SwB{Ho>(~sC6Y$AZo?)hM;uU64?Ou#fQQSxjr%leYT2cfZoH)EX(shl|)y2DOE3 z06h(Q+-6u3Wk}@?vW6Y3(n{A*Zt)A@DhHXnsiUeNx9!Q9rQ4$8cmCFF44(yP+t_0 zoHuiCJAmj0&X|Yr=KUoslw(oCV&pe{FP2**;Kh0;n!BZ%P^ij+r=Orkz|VuF5VzL? z%t+Yl%Zy~j4N*;u4Wx2_bH1ZKdpqT#JtZ{DvD7=d?hrI>8}-Uab~4EG=Bt%3|J~O# zQ~fM+_#5+4ucFDud|Y*vNhmvYS*o*Fx@OJkvnDF5eBjC6lg+JQ!sK+3vEEl@QggB- z$;2FjDy8uCNv%1a`P%v5cT^K9pUkHkg@a0I-Eb|>s;^Vt8gmDoc}+yJb&^IZVrg#* zuO!2_r(e^vm?xXS8;LmxrPd1vQ&SEAs%dN;A|-yrb05p*hzxNBS*evsJYPpY8{1nJ zG#4|r-|U~$%G#@B+EO?l7xOrc&}}x__hl#eGQFh z_wZV&ToZ+QM!`QAY2}LGc!<55L!8%64WT#(N zTT2J;&4XLt#UH_XhYto%(}5e#LX2`UpE4IbpkB77 zsliop9bJIBzfudJVkl^TY1O)_hdNbgBmJb!9Gxs83P^rYP7euD zN@yr&n4iY{Ec7W@1QD->88Z_+YYP(}yz8%+TNi=tO{zJ7*onOu&(uEQn@`1d$XZlY ziJ&O1z6v7>EbKXbl3P5gb?xF{vX!shbos&8|BXnt-q^@nCYwdvm{47N2EhnyFlqI{ zoJVx+i{=>@^LtIpk}#ZmwUa}Ki_`$J^hfC`+Cv=r?T>6}WD^?4DNHO4LA0Z(d^3=x zGr9Bi;*W$(I!HMUt13ywlgUTWPf<4EU}zM5zQ1FBXX%#sO2m(_Qy94KY8=?$o%ib6 zM&<@4pfhw-lhIN>`*R~j$2w(t0EdD{mpP3n7qQw3SkdGej?$d{PL`bRhnM=0pzbs0 z3U2{rWD!bL6MzK)^Z~l?j6S^Z`=oHUXlIyVpMBC!Zx^nsO>~Csd`f1nd`}Dbx`~R6 zt^UzQ2Z6o#YyTV>V5vStzx}fIKAd5f1-?`2VVOEl0v{)#lGM9e`CwbbrJ@}il{t8) z%EC$4nPxHPX=fPmaArw8IE7HISD@8h2%(U)jQQYN0)x42_7Zy~(Tgtpk*Hz{ZWmHQ z7dzvy+%rx_2uqQa?aU?}o-m%7*I5wf%sGd*m}8AsFW3EQ%ToI`;Xz>ymFu$oy+(ND z)?C1*3lmAkkLQUD`|85+ass5UY0!a}viHWNa75sZty%>B%L*5;f}qiF@l+}qUwgTs zZoUjvB=BsP`{UE^CLh#UoxHJNj30EEi0tu}Yr95;geN9|tg?e5`D=MZ17g;{dGnU+ zX`Ubv)1d(7(k&+DXCJZpoW{*`{3?P})Uh<<_O;qUN=BaeJ;s|(6#*G}+VM}YNHz^T zw;upGUKWFcq{r2R6v&G%SmyF)_`jjDjG77e%IiCbiKtH~K4W?)s&J{e!|V3xd*Wt$ z542A^<1WS@knwAF0^-)1B|d2S+I?Y|r-t!dY}e{j5{0{Dv5jI@nZv8z!_`@51Ak~( z?T{pKa!;xj=Z<9tba_o2L-d)jMD6mHRm}#8c58@&kr6Z7`!GK^Dz>Y!Z<$W**gKt% zR3{(uyU<0fczO!lPheNCBh!{$mcYF8@4#KGxk} zIh7JW$t7QUpRa~jxilUezhD?s5fvk5d>f#D8?R7KQvk&#m>C}^(abnnz8BJ_e**sS zBl&A@38Ba|unfOLxme=j(M%9XQmq)t>jBX|9m{AB8WzQg%(n=2H zd)60`sq76kFqF2;urlM`6si;zB6 zb(DJ`Ysqx;w>Y__ka!p&qpr$C0K#t=ZG@VPn5U27NYnTn0{5n zVI_#qtWPSjC&D5Nd!R#j@5{PxOrvqu+vh*Jg$GkQ(*tDyT5GvpdKrKW`5rO)mvMJWbuhR`_Pr=^?~&3h&;IZUXi*t%4ITX=A1Y2Q(zds)`4o6 z33{(*iyGrtmC7pZ&OmHlAg7j3TA$NBIj}r)x=^r#9B*kW`EHLih+of?am3_;U|C9z z)E0)^XylbPSRryPX=TI`+WxEnJW~?jC44ZVVQ$lp!y5Szt~_4y`0|)jO-yM-;C9zR zv2T&rFkw{*wIM$hGKTtLS@XrciZamfQwJ4;6%iBX=c_yQvAN zWEPR(S_I}Y)Fk(jXvKoCH~91SG!GR3ib)?(Nhvkd4~-&fwy(SF!B0kyYK@nwQA>>H zIM}2^zn8BFRI({^j^kDnZ+BRhUiczQ=N$j$E`c$A@WR!OUv2e=>&rEHX9QimJm`h@ zX9qD8eDt@RnFjf=;JzRE_)L=VjZi-_;avNQ*TP-1y`Vkp(HJQO&^@V`x%%ib6l80F z_H8piWD8CZ<8fLPpFHsXoog(U0 zL7@7Y_pp|UxV4ze6a2-QC>4x_K0TXBGB+Op+RZCzz{n{$tXG7CdeZUVI*p zJv<+R$)=Ig>u<-pOC7mXWA=G3MJ3LGM`$P1|Uh( z`=w!5I4~T|@XG{036vs2?ICZ>wEi$OVQ8ZC*R$KEtVC3y%l_Uq9YB(E{U=!>+YG|WGbfvczbE+MPx-bqu;XRWK^l~5(LjU z-DK>{VxSyc8&4V+k0MXV7_f<}_9UPL`Hq0AueG;smYyfnJ%SM7_Pb$Oo|y8-)rmfk z(xaxg-RSd7Tnn(eAjj`fd_At0I-L*a^||=JYO=Q|o~pi8%Pbj?BAXL%CEAU6`FJD9 zlAINV>+ZlMIw3y05a6yg{$iRRGxX`O2f&99;zr4FU+YX`Yr7p3!uc@x0!&|uS&vVo z+xa*cGiFI5-6{%)v+cf8!_k{k5xR`KxDyR0WEfF3$7k3@DzLMvj~fdL=){Q zbdxw-R>IlXUGwBK8a_ZPUjVcLxqSlydCqg2S0oqf=^Dy1kVBG(#Y?AbL@Je~&H#Bx zaUfEuE0$r|&|Ml_FUfEA2q2s#}Bm zv!MF5!f&3Hw#*!0M17WwX6Y_0#5=Ehi%79%8tLwQu7P7+^!~FlkyxL0ycfV8yqj#i zpVDX!(Ow)o$eG*#n;RX+dG+Aj>4qwYD#LV^9G(%udx#f}%vMy5oE~@MQ8ST3b@ZOC zW;u(k^l8qi@vO~-Q9b<#Wzv8+=wA2Yxb~1G2)&9UVU1PGC;3k7474EA-@na9%!;C3 zauT|Kr$~3tUO_Pb`WuJG#$0Y22eVf#)FzffUTZHvp(T=FxAXF%cqV|ng9XGqO%ejK z5PQz#0c;cQlg<=D=63{$;`ZV6IJ0_eEE$7nghMJH=P+S_>O~awNq1;k+zUJQF7)Qs z=sHX*WY#VlmMhjB`*%h1OI@b{?aX@n^E%y8y}we4P^p9bS68}=|5AyZ$$%s@o@ISX zp6?fjhSE!K^FA2S0VBX-X#s-$A~YpTn3}YbP4&y(`W8uj`y{?ruojcrSZ{k1!`>LO z5FJJ}N7Z)Pwf$X_BQMQIe!%xx$olygo-aW96tEU0?_46T1&oHj&U@I-bW9;4B`_6g zjxFClwUs_Ocr|_n%Yo9y3#-8FiY1?Km5H9U2i!4?7W%CWGstJxw+Anz(`r8ntMbu_ zhU0@O_t#rxvN#h7Z?;U07)ZW44Q7tAwU39YPjd#ae|T-R!BXi^TKO5)7q?GvL(bk- znbByz`yx>0G0T1A<^Cud%Yx>JV##fONUi%|oNbJtB^rVp%IS#`gN}{^K7p(XZ_ABM zNaWkjC#rl2c9WbUx@m;tO`<=2K5_-aw$+}?2VS0TJ-o?&RV)#R&P=(>8|euD%*Bt- zRFKGbw$s0HrPg?QDUsj#If}CRw>5b!Vj|`z*&kt@O|pVhmBs*OV}xgd ziQT+#ZZ&fjJl5Z$oWFAxw#eIGKAVO!tl|-Ot{`jE3%e{aSWfi+a)WWUV0f+msW{o+ z;E?al2}Y6J{N&lfeZ=|qHMtC3kqgVmOyx!@yWr7j|B=?Lb0S`(UwHFm}blzogUo^2@%!M5X3<|?6T_!KJV|9 z4`m^UFLK5rcoDdi(fz3A5xozLp|9TwZ`HE?;?>r^+n7PTrX1}o(yfH)D~erYVN^^{ z3-Jk6cSpmtv^{q5Zqx?q%*`maoV1K?H~*eDom=D{qA3(+TR--#@^EE*^s!Z0hB%@u z9Ve16lBQc!HPD9EByKHdZxP5rxQ9t}4?YfLW`v|5xK1nmTFSULWEcQZ00x)|IKVpi zY{e`y&~KR4ThN^g`o`*fBwQi0;1ruFKM~EjAjo$r=-m^>?-T^107Y(UJ5YX?++Ww0~qG6-RMR>ADXSv7+lWST8 zjh&&PhOX^;WvoFjM6T(_ooFU4!^Q(>uemmmorjrH4I(DAXhtbBwBwVyUj8T|gwh{=rzT}Yw#OpBj7*N3S0|`0;A&QnXjd>?)zWvQhYHCup68Gqy;>4oj%?` zF~dV9ADPriEV7S^j7y;c!=HXIg`&N1;$wdR6XB0eZ62|bj3x&sFJ8eov$j!bHv^qb zMW;zl2G{LWtw}y!YVUu{B~h`Ge7+}cf#?v9<=gsBwa9|24f{>gRPnTY)is)m`r*&i z>6EcvkfCV2D`YuYJv|{lqkYK?`pQQte-bQ*aD<^nxI} z(B&!#Y^HX81aPjL1U*%V3q711Js{pE%D0rpU)wZ;VL+iF){)@sxYDjoCAhh1Z9*qekufUO;SLO z6%HLFusVBdm}pP0h7!F7g`=ic1$$`8#&Fcw!Ai?3)KItIaK`d(GDmU(!MDLrbX
91Yb<*|#nsu*m? zUJxBgZ14@1=)$~OC^~FZA&asxeoumBI$M8eWH@4(VKrTgV`S93He_ix9l``wBD2~XxZ~ppLUHc`U|Hxqf*I+t5RFO^x-pKMVH^*N`6sDr` zF?{d2W*PtK!ar{3ErGJi2>BIK`F|POfBgLK_YKoyMk$P%uN=*P>H7bv9{FR$$RaA2 zP#TV=`+Ml*kDvcj7$g-P8t%aHBHi`HUtjN+ZzhTi<(olbh@Ac9;lIDqe~Ex1(|?KZ zUn2bfw;jTQ$yoW@F880JjP>WJN(XNVp??Ahblf^E8}BkIG5ewmP){FvV1$m z%5P3|Fjum6bb#P@C*I#|Z+s?&@tRr{B z((QO)9oBi>fN#i(|4^>vl@IssZS?3C>;8g( zDj29T)5p;f^eMcy2h9I4NTZMfL%ChK=7DGfg^l$;-m6ZpaQIH2Hh+uAZQa=Spp!YX z-#k97q`!YWQ}cdQjpq5B-$Kh#TEMG+q^u{_`TZoz56>JWP@WXbEe8{8h@;I6%F{v4 zN=E*Bg5Q5|{SRUT*>A6+6@7I7^fOVgfQ~`7?my0h9-X7URK54$Zz%DLJ_@ra$~F+Z zBKZ|<{R_2FV~$V*CRvst|M-X}C~-6k9fSSxdVi*Qm_KU37Rf&RAE_XQlDSWmT~+?^ zC1p_qjsOtrzgy7TX}H|hzBarR`RDbdM-A|gl=%mli`r80D498H080L+moz{nu{g*o z<^OK9{|zy|-B#~D;f(*s+TXY8r~&j$!~dW-C}2EcK?#1bG_~6_nZM=Tuc!fLiAih! zpcpWQHK6K`AJb^D{A2asl8^|F1L&^;S*!u^W4A`jGz;UI4JxL z`+3*(Z-jUHu9<%Z{T&q*L@~_7Hzn*3_Bjyy%h^8Pt&?YWJl$c#JGA70vIiM@@|BD; z8*DD;e?u9d3>IxcbqNnSrFJ3ymh#<{j^@)ZeVN5RaUQ8qLH&x_&+{^!NoSrvlFKbU`eXM@e2+*$+Qfh|cr$U7OeiKv|B_wr zeoNDt#5e!0UeO|Z>&Ggg4i87GE8fPJSKR6%G2^{|L&SA5jFv1z|2;aU_cF&VT4PAU zT)2tlaRn?5_F~ETzW#CTjmchQ?n!OGgYbm%F#>81t7hu@>ff;4z5n@L0aPyIgh##%zK^FIK z+Re`fp>CahqRea;`jO7Lix$e6@0Ga) z!SPs70+bSDYxLFW{$E&K002O3_O2c`lqb*H%8Uiuw`jD*|D2|n7@~7n`Mr(I%O;ym zfDuJq9ITJxfAuSP1H&e`i@?C1dx4uLo*!6!OIz8FQGOfj=M$NR{@aJdl=F3JXkB>1 zF@-H83hI?)?bubZ`ALS6mb(-cx(ULZnOOi_d|K4|h1u`s{gsO&az52WaU+(DsG^XE z1xluSgJ`d*Mm=Lig*Dz}m5etJ#f^^g+`Q^oQri$}ox#*IqT5`%B5B1bDguCG2=!>WJ;_f|p@yZyaFw}!8 zu>bm)MI9Rfuwnu&Lwkwr$Khx3Hq#Hq>~zRwPTuk4v^KWwYzDCkJibk~pDhw!`t#)i zj{ySqM=2kecv^)c*GzZJKU({T+}IUf97t7{`K+Ebbz?recc`L5{`Hqb6P3haN?x1w zD-!uXw8}6=?LrB&L4>r@C;O*^=hY9F{5|P1Mm?o1rl!|G&D3jM-K=taL5xlzKD#7w z`Jf)VK(pMzl@~7@w_mp;jstJ+jnZbHO;dcJPXCk95QffSP?aM>AJ4to<1jD#Lz5uY z_aV1}-i*Az&~I$`fiE*LaJ|LQ7nt*`f?xkdqn8T%WRuPFn!bvUzqg}^7~%r(SDa*7 zMOhz(nkXYc7elz|FB*Cw6UGsoktU`@9wR=Etbh9*l|xA3F+FOnQD8F`^EX?EHw=X* zrvKidqV|e}AR3bPCSHVt(Ch>Dw2g-O1|g@FLd`N5eHOD!9$)-TnM>iwaixZ))R0;oyJg8MDbj0ZD zv!k4&{K(+(-6$=G*g25CP1mc4HnoRQidliLNs4dk`KPAD3Ud?j4U=w7duv0@ftWW+ zrbGJRwd@A*-&)6k=i>#0w>@i2>s$RZvakB7uq zWfg1$&lS$ZT4$vCdevkq8qu?>pnMrTSRhhX22`IRo|ah;hMxT1nK)|Unij~x>PkZ8 zTuFeqn7{YQ?Bmw6)hx!dY5PPjjmoZ-^#AWdg$=R2w+p6K-^)Jsb#u~D>2`A1z@n+O z1sEL@*gng3v(>U>-zB5z-11fG*DXd}8y3tqV#QVdY|A;nH1J8b2v=}k|IBhfs!tXoCD>v^pmqL%9}wh4Q4 zvu019-DHp%0G2yEN0A}zwbj%@uAa+2CjTt(F!;MyJQAqd%f$~PTN(sfLc~RHQ4gCd z42sp~IFRnx#~}I4q49Ca)q^r)AL)GGhHsC`9#ig=RW|>Y>piAvd)s0MY%~^6LxXaO z+}$+)vvkwyF@P34|~!a1{#$D>J0Gi-OA8TeY93NA>-9?DwtC^{ivAK|Kzb4AIxGL>?^fnrC&G7&5(##ao1W{~H_SPK zxv%sR)C7|2$623EgI?A!8yH9Sf3Q7#2eF-5|0%RrZFR;sKO6K*Ghdg+AizzL-hQt< z*>Zl{T?*Bk%R$4cz6!qIANr#S)t<%r z*XXE7io^VY{g%p>>z`Ep77pZ~<7n1S9I>gmu$pazU$xND{K zrCB4BN4q>!$z?O-DW*L8CeN;#=6rGwwtM07$P0ol=qSOXeCPLQyG@eGB?;yWK+E=LC556tbiq*Xr zTr9qF+iN62_INtmI&H)J&u&mu9IsYl;UCvB`eKH6SMuM`Y~a(S+o?OCYr z_P0eL@8|ZNZ^)|?b#qD)mQ3UbI5Cc|w)|2o3t0ehnX&=LkM4bQX>^9u7ob{Yz5k3& zuO_jb)d$W-Oq6yKNGK@>WSf+&P=^EaE z|3lbUhefr0?@L`lY7h_*r3LAd0m+eWq(KCwK}u?fAq0bv?gpg=0wchovcdfIxP;hko`|Y$7&E$F(IoZfNIr!U=_T!rS z;nub_&W2t3+mheyl9C1+#B{1nMPqKq^&7SJYozO65sEYw#4}!3ds(tAGMRj(o?KA8 zsLW+2Erj9gyvTeOcmT`UC1u~d`^YiKrfMCf_8N2X-G0u{_}}w!7hq*~DeV=13xZNH zAJ)FobJX31x;5sPaRjd4Ld!+kKL?FYaB)o)8>$6Px$`kBX_w2k1u=#7WG*kpl~SYM zDU6ud^f}g3=F;ftSB07CJ^4X?{q89OR5RjQNXPH8rYBIYmjSxF+i`St>onq3c*^et zM{(?Mb57ez1G0o3yT+1?(mZ^5_h>;{)mI94%1b;rng5C-oc+fd_TN1+SY(>_}RqE+x2Xyy07Xaiw5^lRNs{c= zBkBg`OrhEt`ko#x1WUPsu98c1Te%~HTF`>DPlcGjO?0*3-%J|_P(VfdK~SR6uk%De z<~PiF{KlExFe_Q5Ex)DI0IkM`AKjtsYue)M)QJyk9ky#-dCiXa0DJWW)t*2ol~Cq@ z8;yRwUZXrI=IPptKUWK%ce1pNDNPFJr2QdW+Rs{;F)PEsdp|An^=+_jJY`Ed&Rhgzp$lE+ntjyj`8Ed;%&(? znkLtUZC;Gt?~y&ls#Y{O0XLand`>7blvE(=$2!q5@>urX0Jg~V|MB+^dwzAp&)$^7 z=<3IL5jIRj!k!dm1EBWI^9kEqu3tZPC!8m|yGcNGu7JokWJDf9Odh@oLlq;mxtKlX$NT_P;*?bojYgN^kF>$H4oJnvq&eg37~ zMF7KeC!TR~$HgypAd-o9GbY>5X?V+**AtvOFBHb1*1FBKP&aedDdYGypVlxy` zHmlcQ0Ci?vr}5lqrMErXjLkl#LjQ~qly5J9#i}`p^Ix;|qnCW9UqnsLxE@+6WC0){ z6~n{sS3g(&rV`-7rmuTn{8Aet@W51}C77GxFR(1{!XM_LmjJQplLu7~MIi`S@N)bsq&S8LTOOmck5 zxg`_z&w%~HF8Z8#Wy~di!MP__-R)Iz%hhn_CT?HhQ|}a>YB4{qT*q^Soq%II44=r7 zsX+nBMJQ~}U9*8*^2=Fu1M3SzUs@JlDs2g`LQuiAfTv>$Vp0*sg%Tq>H9y$*g=a!8 zU+lD-@sTg@pE1)hmVBuLE%^w&z|jrhvELEG|K?M=j!H70FH$F<=0AbVy>VY(XD^qH zKF&t##vR6A(+dgg{t+g+)T1R6&f`I8-w`C(QB1R@$`6ryPWcf*OJEEy27_v3BVc_* z#vR^bSRn2N*}p^6MU;My_k&FgN;ofd6ZO7Q__sp%>Dh<;<#}utTKu_YZaLz{*soMH zcg3&7z*=sFSqI7o>D~2_^%#HSv|CE6CCaGFO)YwNa!!Qa*6X3os=kX7?if;id$7BW z2N?l^9!s4CPW|(;84I`<3HA#8gky_^|IZnxjKkjAP2MRQ=R817PCTk)dSO}gj)QeE zfsj4Ah)J!pfjkL|m} zL0Y{VE_LHAE{CF!>T#DWEU)JL>;ZN@PdafQzdXpE4;{zJ6tGVRxJ= z{>;ln8%&e!*7~)may^^)vrQSv>(1gH+Mas4M~$*CMDJXwPG0JR&dT2K-aSFJjZ1y@ z^4Zn9DNwpxJ0JOVN3zDVt#aXU&JO8(X~RO6Fk@>DW6{r5iGZ|S&FHG~H*33=j`!0z z9=BiB+kcAd*2w*WzG6JUiO3dr@&UhSG3h&`0awbxLG!eauZxrP2uIlMSCLE43q}ZNUo@~*wbG5+bpWhh9GRI9C zYumod&)qG_01CHE(H2UWN~M))OE!uUDY0@lWB7+73&#Kj`G9LF9X|!g zjBs2I;Cq)Fq%36j+D%_Qd6BVgfF9_%GBAHAc$`{F{Y~Nuixb?1er9Qh-u7G3bhB`B zLA;#0)93@@P8{|34@Kd;%=*(u(KrcAs;*Lxy;9@!Qek$l8@6v8i% zZa5X~_*}?he*aN{SeS9m_+{t8B52Ta7F{a4boIdcZ#Z^}Oxq>^|8{)#x95(92%Mp32-d^Z5ZIZ;-yrEMJ z!P8^X#vYlSRP`#wh{{|_u{{|_zLeWW|6=UpKmhG;nBY8t{tU5JQJ2cE&(gFBcpY(% za6h!10`1o}I54}{`fQHJ9@VX(XAWwF3|w~8Zip3nCO}i)*q}9i1Jk0_Q@rNK)ahVF zhP;BbYNIkIob=u22FS#UbPASJs&b#5ZS)vz zUN!{JxL9a^`Lkgit()3El!O2SSW&4AP|rWqk@Kn^sA1SXw463x1)>q+bbL-=JcK3> z-?u-H9KY$-3-4TjV5c7T2$g?R>g+@Bsn-=skihRP+`TIiT@*isYFf znt5&AQ@Qgt*BV|IIF_scw|{WV`T-y#OURYgnys8P!D%5PVjx5W(;11vTYNv4N=g`r zuKn8^N_q8yjY#t*;r(PINzBhE-N%kIDZUK0a%IDijiolocM72|iz%M8oPdhL5Fy+B z-PELwwr74q)H`ibkG)!&A9qKbx|5O8HkB~EA9yLs4Q3u7A#q(iIATTFQEdCADZqV* z-~oD`zPMv8rSkC-Gp9nZEfeUs`p|R|F(-%6<$3q$f2Bf7|BEp_ev@?T=a`;=AkXU8 zvw)-v>OqIytTIdbQR>m_WnDL7enwT{=ai#F@b%dRvEEgxA$#9oBWLb)53k!a)>W?$ z9w#ZlC%(Behv9e(DY2JZkHMkwv#(0d3f5o#(sHz-hlv}NDFWVOe)#vg`Smh9yY0M5 zMK20-HJ1#>6OmSf*C>zka@hc1nT@)6eAEo(n#3>SY`PqszdQ8~kFv6^F={>X%zQ{+7*PQHz7XNV8POt0Xgeb#;N~JW!IR3QGz{i$R~6ViSt} z=U4iL&D_>7O7YKpTlA;Hi&MW48WmIOCr4QRbU{i6Y}xKKF_GgF31^E9aMnK@)elOl z=j4FvEODa^bmDQEuzEE$DB4C^v5JIa_1bhYSGV#5=i}spJ_a$5^xN*I3}JpX=C?wX zP(guF0pCW4#DUZl_ai3WYg=?}S?EM_yZDj^6L%eG_m8@lAC*~c@zZX}QH zu)hFgSd*D*HrK~Ix$wve?VXUX57xw^S$K(Z{}nD@@nFDhiRV5F*!;i>pypHJWQ>dU zWqxtFY1%oZK8LjJ1*^gC4fs<@GPcCX+R^cs#9rbrV5;k@uJMB<9eCifVdx*|K0dV$%7f5Ml17SNJ?*CUV`aOFhI2mK&WHs6i#92 z9w$Gx{0n*P4nEV5i3L@KE-bz2vs)|UmB$}XB3rAdn!Y8aO6l=c!`wgjc$)~K-qKBq z#lWOqULw72*z^duuSY*QQvvp>#PUYxGhStZpC-)2^BGU*)i0xHU@F=51EJhuH=MWf zLCkU(#>p$zf*!?2vXhtNhZ+)G#9=b7+#eoP-{cj35d?oxGV{jK!+e7Q?n@>+U#hc_ z*fpQUJJ4k_w^#TOF)vU6IHLTuR$5zN>q)N}Zc~reqREkvQif_FfiT!%DT+S9(epL& zOCIZRRNFdI?4SjpaAUUAV)8)JF+eT6ELTkZ(LVmO<-Xl^V(4ZZ>o%fn0Zq;rpo*7F z`tu#G(|w_gB82e$2v-DBm<4ICjg-~jKX6%}>|SW7IAo>gnR0Sy<$p+Rx>?;hI5DLs zrxqGrP+t$oTpD4B3ZD=ql$~u#dnt7Q1Z^hzG3~V}GnYlJDH4pRKb}mec-3K(@Hr=~ z@F7`S)HK-BQ+!lxu|n$YyWId(+Y=?`&{WOi()7k*mH z$LQ9_FBU%Squi$t-AF~~6y@qn&YJ??x@yNPRvc zyGzzKZ06PJotY5)q2M310#@oVCCO8bWMi#yiy!R~*Xf?IOe5vuUq`wW8#cVPWa^>` zmDJw7H2q}@RCWHqbb)g}B)gWea`5hs!H8vO5j5VMIACkICHCv8L_o=W;uCsm5pihr zIOmZjz3oX@>qj)04AIOYUR<^dE_yPi=4+aAX&K+qKhs}sQOxplnXmT-rg+Xtr<{og zS&O{npxr~>vXn%*pFn$|yNdcnN{I(p-2V{``fvNy(gyht35ZE8U{v=N4h*3((v}A! z0d786h>jGhGJ9lD=wk0Ax#MOzm=qdLY`pyFMaelSz3BO-vXyOtbu!DIU^ zFqN73*1yu9m_EF*j{4B~zRj+&B_kZwaZU*2kZ9$l1H1Y0=jvt;ErFY!bE;bGgs!F8 z;of(ix%pA$vTp0$4Jw1p@L?rOhs|d!E5mx1tIm{hVF=2P_@;>QIgwbd)k@JLN*1T| zDfYC;Oy)f>`STr5i)9O)jkgH&c3Qb5>C#O2%MvdmUY8AVANxL2nu|jMewNTb@G$V0 z>~Bm=+}`51Y<(5?BO-hX|B#T|0JU*jc4)N4^x)YJI_>`j&rTLvO~>Ki%v#W3r9g`b3ZKCm^+34PcG2`3Ym+ zg((rt5c<4;#S(TX|An%i0r`?P-U8;9b@Ke`FT`b%l4XwamA+?gKIe}y-6FEpDs->I zd|j&^M1dGg`#en|^Y$&JLif~Xt~wdss09~CpBb6b*E@X+(3Ihv?gXo^Y2igAu*PPsqHg}gvyiAj!ct)!9B9+#M%ecAw{tjeRhuZpBL(A`!+d45NVf%QxA7* z5HL&wUp~)cXlRkFZGua!y z0??60xOBS($6$}d_|En43$^m6{_vRcLP~%2(mw9Ok*SxdSeO#rbrEs09>QGYV(2!_Z>wkvx zePpKc4=#VVHYLpPN0c8IBv6TauIJf&_Va;P?}c_aEY+8nl^`fa--8m>uxO$L+w4c( zmFFY%`nHJ7os!=61d>L-r4)GnMhw}l{prg<~RGAK`Eu( zVoX8{4f?DU6=WVa^C;xa-l@fl_6}GZFZHbYsZj`PV$XFWQ-;LLnbi*x1#d|%#trNg zR)al?LHqU0FM4JkiRCm$^seRYC^KTO_=`a^C+QP$t>Dg20=D1(iwwY{sV=(9biP1sZGl?lqo z!y1JyuBHN9ZxJuS;2g)d$-LA{QtuHK`^YDx9TEGrwEEOwy8)TxqDk|aH>}G1>yZnY zAXn5EHA{XEK3g};?xY6o-FJoN$*E)?fqmRwZl(M-xSQY02}UYKKsn*=2A{*L3lky` z!6f$L4R)kmOGFZe6B*}@hr+E~dK%fUu#L2aN!L#uX_6Or&R1HeqlQBAstx@ho?p}TQr1RYPRX4o_P-S5fNKRmR>9Yd+}way0K zhMrZO(2UI6ExG3c8{3Fd0cOAV4LD7wH`de8OtKo~ZJJ6eR_WgQqcZ)s!4nu@0+J#g z;D%KPJwP#rX9JfbiM-*jOhFUJ6S;Z@blCDrnPCrziG=y}Sk4x8y?F4ebM7nNXmaVc z+v0;V^)t#dtZ658aiB!vwtcB(**5}EfnqR}DJ@1MjrL>aEV1#7+H2jmiEuSM<0qHF52p4OYi7xh-t)XF~QxI0@U)q@*(2;&O&Fden6vk^3nMh8XrKO})a z3AbL#AN>SX6gKFa+p7O|bSkO$bZ@d=Gn`6J>tBBV10Ep}E(9I+^3xX~iANgmLYY_# zHZkj7U!t{A4#CF%h%g!xq-oTT!41fG}H$VA(=@BRy>2oR?6?8ipj zD_mBH`wwljrKcVg=&WlLxK=+w)L9|irp89=hV!-WO|gx7=P_KtEo-NVD8Z4$)o)L$ zUshIbPZfz)j#A)@KIvWN?@e*u1kQHa{E93fUQW5}$Hnm>3dwcy&BFy7w8DUSNGtz{ z)|6(n+uA8sp?sBSg=8mOBjFuSeeJ z8dBk%m3+!X+BU)r?>J8#scHhnX zxGJDaXiE1b{I{pDTzlLBW$~#My^e|dA`mjiVBOF$|B$EeeNvI_Oa?>uEcLChcuyJ! zaTa+*ZsI8s)(Jf8CU*i8w$f0*E- zdCHrmR`*}#4MJy&tygvvTpaAj@C>4NMJryO+94V&@fb7GVz%XR%nFUhT4`mo0(Djh zav45WwlSGK3GIM>x|+(MqW{F-5sSL&8}-jc_zb?hh&H=!B3d1heL{>tZ=N!C_}u=vT0igPl5q*6 zgXr_}D6Wez2K*c`+0`xX{V2hkxXq_}b1ulDuTctf7R{5QzR}&{8n5(qN@R(3%|h*{ z4sQ6?&Qea}*U7ptx0S~jm{B)RFl)pxQ)M4_WonG>X}DS=8Ob?$`O)3EbKPReG1;Zw z#GlABy=?60z-ZTVH4qgyA^2E<=uSBcmWrY&tlWFKLHl^(G)@1NU7W2TTv|ReotOW1 z&sikduSR__pTc_2IHrC)&Y1gtsni44M!bX`!V~oqB#hFX_>J>Y6^jj4X(-MW&9DgB zGZ{t7fjY-20t8so&G6YE*9cJ-0S{GUz$|ThV#@QMbMn)mldnXW!&N+1Z}@T1J$@bm zrnG(@#mVVl%72^E3Xlv!oXg`*(kGxi%xM35kVF1PHwm!)C}9Xl)#8oeW7tC z``&}qZW{(^sDfpq+);5kTZu<<&u5ns#H{^eV7kc-BE(U$VvH@sL}#ZfB!8OPHC#}H zEyneDy8f>?!SPD$DmfO%$l_hWAj2qT0deQP*~%(0wh8RPw75Y_FjVK5ww(WJe5&n! z>%)!nnNli^9K7M2^ttmJVSkt&UB3*DEhH)nY`FV%XB@Xe{)32Ps2dA!gUUBDQuz&Q zKAWkiZT=2k=RPJ&JhRzP`I4*Dr2W)Z7RE#kLri`_`N(3%bL;fXyvJGIGjkUEW-d?U z!eU^IzZ*CmXb=;dN$O~iM+jR|`a^WhQvIYE+u18K^s|cc>!!y-eI-=cup36lRGwpQ z`kBe&=#ruU+wyah0S4=CB@N}`y3w%18Ly`E#7MkPDudUfr(3xMbN_smXOK+Hp3bt= z)YQVmon@O(uLu>Dl!gwr7hL=AS%jA{cLtNQ?;b9v+bs8{DypiEj+dIc0-dzC+1Rix z!~}SuM2x`XCMiB7rFxWH)50}mZ*MIGa|*x{j&NQb9pM;to4Y z$qsDH%(CI4-vTY6S;&P}YKLK9UzZ$w?)rY`?&X(v07N~$GOU##Ezp(a&;3N=kXF$= z`6Rr#H}HlEVg`XjSq0TY)O7`>Vyi6&i&g{>5i8f zk>1DW!H>;g2hPO5eS0^)tSfJaR#eBcVNY8In@#&I&}buIB$N4CoB zw1}h1knWw$5I?~L0)(bA^Cqn#c`eGO`m_?v+gqcXU2_k$&}^GG&T4MBj^g!^NAlUB zNgn)(mXHiQzh{_H$$}31F8n5+apl~kUJ+~$BWEJcI(?3jxxm-q8hsMy^*#rmXxEU{ zv!gjG$)Xs_BF<6%moSlZ_Y)m3!|?ZUXzf6Q%=y;#r9n2b5~f$X6Kp5#^fhvoE+<@C z4NkO}#z(l7^_8tWn=}*LpRQtCFS?@&pKb_0h$f3&vCqZ%12r(PlgMyy)74t`(WuEO zC@6#x+4)~L*f5GZ3pR|i3-3!6(WUh{c%!JO=mKG_h3U5>dT=bh)E9p8(pypZLM8{tK!SJ)zOJ zfIwFK*EJ!S7&uH_U0q_SGP1J5!i5F8y1F8h)H)kiks%=jg%4{rw6!Z?AMFrzBhlj) zAD&?ls(ls2OjY{82y<8(#wpR^UI@75|?zhbnH04cp8Q*|5M-3gFxL%2K zubaT`o1U8u=w0C8x0NsvR6o#~UJw&Qw%L_rSUur!8`tFpL|P@$Bp=LL#b4fyYFi+uVxt9<+_hZ@&}Us;s53 zA-&T89N~B0)y&QMH8P*^d~@Sz3;HDB2-$cdqFXG-pIFoh-v85dS0*tT<-%-9AP|g>x@V@Us$mPvQ`HXWVNFfVn@HDK zhsHx$o3Wx1;H24iz_;zALtenQ2wi{iJ@Q<=#i>`4(b#~x-biA_?l<|xxC-yO&pM;K z)j7v;`s$R9X;gm9gOivj#aV6D&dmzJ{VzHQw$cq#(vW&}@a+k$yr4jSjJDEQ92%8N zd{7B(>6fVY=F~S%tHx~Bl6_Hns^gzFQN!o?uBJcdEVS9JcNrO(+m+F}kL|R56LXwbmD|e7{=3cdY%u zcu(czCszLhhJJCt=J^p7N>#baiEp_Z4fwUc;v zkc9tc!{yh)n&KZi1wDE4q{4mMq)%i0;K2Q+&%s=n?F4wm%2I5SE{oIJ+PV%n;Cc6Cr*Az} zaAvDw!gt&Z9B&9s1WrlToNXn>esF86ha(#0tzJ-vd)7jtk)n^8$}oT*4<4L%kc)il;Z0pIBaAYWR9S znZ}Zk-Nj5vHPwN2PHxfEP0s8NU)G$x239(#8M~EC4=*j-)r&4z5?iK%f|nM#C%H)L zcI=1$0|mR7;JdEnSW&4)FE0}Sd5G7lQuIKciRGn*uq_GG(!4Lmml~=MV(ipLQRjNK zZN3z&atTcWJbt>=8x=}*x`~g?T8L(sr_3jy3eM;3UbLGbg(K$75S#t5>23ebTqPci zc|3>f5<8YHx*Z;)32DpXCYG{9f?YMN|KUv_G9drBXPgyHM6TzSUGdcz4bljksTLLP zr+SStnk>%tDyZ1!V;$>W+|jko;2r6nFYjtNjg>CvUQeLt(OBZDlUQ$^>eg^C*P7A| zLRniV_D0%1tu`)g-oP4ZM4^?xUIv69c^pG*C>QsS#37|ts-kwxuB@T@}@=A;>)GJ zmkRa^h72YMsv6xS3GPM<9aWyLIT+0*0?YLufBqS;tzJGOlushux{doH?^){2RUlU^ zpV)Bv`jit~zOP03SoWX207$KRc)G%|IKhsghG8j(@(VDXza}5mq>nA%u$~u*N+nq} zT;qE>l^9dCcsl0BGx%2}p6uxLZM8oi>CXXy@U>^SjHzNmt#?pv2tjI>@(Gr*Cb(G2 zgSVPJ9F4hIr!&PWAw%QicJoPjUBZ^vkgaL(JX5It{#iP;M7dj5u}QpZ@kyyZvv1z< zI~AYk!wh)pwLc#O!VLxz(+r+L1^AV5Z07Z1$5}p~1heP}mpBu2bBc+7C{}T-ZPoIt z78FaO^?q;4jSQzPVTuO=tBxQTH7zl{Y-K5mOC zo2`#BAoBgdp&#a49pJ2F=CAMXQ;hfC+ZfX(AbFYJwQr*d$B_LsRB852DpF`$EU!9| zkV;-bOm@xLp3c&V=s!MPai6a4<(MNC=1s=?RWg$g4PpjSH;uf*86lmSz za;;~VOYW`lp1(6}L~>(Q-;5;O4?A!^4h#KF_qZ^#ejJ-&e)2h!p}UvuQ+cd9AtX*0kA0hZ8g+ z5UTi?XV`%Cpbw0YwhG5$_Em>HMAy#Rt>pdyZMp=^6AE`8fz<*ecGam2+fgUt{C;`5 znG5m7;@n|=%>PvFD65oT=+%Fm%8uy+@YTM5_7vR}EmS0UdIQB{?VGpx5(WJ)rv{!X zsRLx!?Ty#}(&64hA~jlikDi={cgwB$e#83dJHG@;I#Fy~`B!bQwYtn{xW?qSgyTb4 zI_I9y@WreB$7r5GpW2ih9D93Q`XmEPpX|ltbf4rFJ*_dlIXU)IIpjo|4mNa_{hgnBs$X@L_2~{>KGnaKIs*OAzOm`dT z)1o4i6}BezoAy zx`VPHEx?ncr=!A_uCv1O19GU-5meYhfC5&LWAzY_N&NYa6_Od{m#-PzTd1vg+(S`_ ze0%1J8MQ}tg3IdHgH{6Egr3kB5**_EKQE@lzALG^y@&MNt2 zl#5%u=lkLH%l~WDGL-PNbYt@FSUx{A%X5LnDK;KgHFbSce)#4lT5n@xix3?_Fj{^! zf*_9R6kCmM-7_zLeB#lI!_1_^lJZbM4EzUxfBfe1z)zLdB_!~^i=>+jOLmf)+Kxir zX=*}#f|;h;v~KwRFw!HZr(%lEScn2MYVKrTcwrpv#f)@sJ~cb_Wp$-q_+OdPN283K zd`Vb&llokp3>#ni$31-QGCM=}ZkLUZel2ll&5U#t8h4BE8zDi5v`Mj+wa1|f@qf*t z{^z|kGHjQbNnPIKi*spgzq(b%&md9((z6xx!Hh!6_5fRNl{B{(hsSK3Mb4PNn^5Dc z3vgrqZxF!6^6PAXX;t`?9&+4CFBUDQW4{8eLbT&?RHfQQcrw#bG0E3izl4}Jw=c44 z%;Fmi+>K}WLuh#h;lX|o(@@8w7JCb)`H`ocf0(1#F{`*~%^`uNWV&(Mru#9%@*RWe zy#IFl?tm;H%S_?M*<+DeaZpl?J-U9}cS&Ua&hKaeI2x{WhKyg!TSOWE%_#v`CCkcq z6S!Z#pEp968oUgOAV}67!Mi-E1?UaoSqH|cTg@I!f8JwK4Vdsjj%cF{gwl-m+1O@* z`_L6qz4!J_7})N)38+=Y>y1rO{KP!7n%$OVZ{ejc4W4-!yI#lWDDgB*wJPz$W+dek z8Nk~4kMdcO4mm_2J0BhS*nyl5Ja%WF`F|vQH3^uAp(1kEmh~mf3>J~uZKFcu4HNLtXhk+RyL7p zl1JOF1s$&qq}7S_RV3~Qw!gbJ8;wu$j+Bm0pQYJt>Ix{t*5HxnADE46wd$jZw{@<%od=AuWwX4B0_o$!Av$P<%eWO<0QM?Jo# z;UDQ|;K=;Pcyr0$72Vcc4GT^CV7j``5xZ!XI9r)sR?o@26$3vA75RJm)441U-VhF_PBjd0erI`DeM)N127PE1 z@Dfp`|4|`87ML>BaaIen4m!5X!_DY;}gwmR^}AYKt~UGR!t zna`t=Qmz%NrmhXyIt*1#7Rrg$^LJa%e#0k-E=dVY0ua}g43@=>=OeW3zKyGI2Pv+I zNN#)cj})e#(!6=$lc?C@%)@;u(^oN*EZCiE@W zfBBbq1_Z#m`VVR3=~kzjx`|&Ws2?~OTZpt~6Y>Dz!L|ZJj?`=S1iUvs+*r7oP6NWF z2W*>umroLUo86a#+-v4&jwHmkfnMxSM6H3CJ2ryP7Oo)=4rqI*UlR)NZ{!|?%q{UN z<9WaGXk0+LrN0Rd39>QrO$mi0Tmfc$h+@qCQ}4MDZgaal>sMUs;YZmA#z?S>{fj@M z4x|JJ>V4>7E(U90`{s6l6lTt@uG^zk=^rQtU9PJGxM0y4OGe)Etk)w=OD{K3$zbZo zQNw>%scOhN(yn1hI{gs^ApAI@iG^;qTC4keOVQb{5(~S~8$8X;>WUK%b+-Gfi`{v_ zflqvdvb@kxb1~=CZ`T@E-CUrr7M=|i>z+q*ISh!MK)Zn=Ln7q!+DL)T27l;{yJgX0 z*TaXN_%#${0||j(ngqjf-MYAnV#@tw`YF<970q(~VaLx7UjF`mAX~sd2R26ZlA^y} z5sv$6$9ulIwl`bk^A~8O5U$ZmyNaipqnu*DZ`r-&ywtdqLYy|zO5vb6GUM+ZYSdI0 zepf4zLVQs_4CxxkhKYLzq*rbcnslyxkvRihQB7yKX9yh7t5 zIv*-Y+_~2tA6sozl;72G2CIlYz3f?w-T?HGi7bIny$y2Km(%7q$tFo486<$|hkkLH zkQ%u)ILa~|K8rSCW$XAKypI!f`yu=T>5FNBb60IL)RTL}vxZkm-qfU>iXIELTKac=y;XSoKac6bMB948UVKP1YAF?0iQ# zCVE}P&7?!_e7SPL?zpw-5%=U6-U>&|m>%E|=eN~-Y9LmZyX0qaQO!zxY&gHmEvInH zCMA4wId{;C^j+2;Zcf+#;u#BL6&`ppizj=kTmg{=YilsTV?VCH8u&0C|P-up+! zmTYevEclCTkA}Y?rg}8C(Uq_cxR0fpth8+2CSLrLekws$K5*lz>Ro_wUni&Qf@X>u z?mk8}O*hLc@opt?UHNGGN4e+V>K67*XYjjS_~V7f4AZ#IZ_53pIjv*n7?mwdxva=9 znz7<`aZz$Kl>GvncUi##Qc%3AQ}@2KX}D`>Q~+%T{qo5@1u2%wELahs7fE1tN9&QvV|(T5-Z8KNN`(@vYK#5;FjhJ|V-@wVz;P<5Sw@ly|#Q zmaOLU1HplO1_A0INX8Hzk5t)E!=R4%{keG5<1A#McU# z$*wt4e>*7Xo(>Muc*ALhW}(s2Kf*G9c{o}H^ZM1izX;>QK)A*jQIjvWx~$P}%x9My z&F7^%dL#Z^7Z)nOr2H%8)$^Cr7WqA1&uF-MC~T#PF$|Vt3!nBUuDNb0w`A=S8O`nj z*lJ7Fc*5YzA zFo%6Xwuja7GE15@_I|dIvb(n$(V)E~=&M0u5luXA{$yv?Absayy2$e5Sg(F#^X_CQ(B%(5*bhbg)tfBeCuN z-op!0e1{BBZ|-NZpB1sjSBb9qd<((PS|R(dctFp3zt$~0c$6EQ{&ER8S^k=tOmpwG zZ~;EBkr=VifZ2z%?3f@qc7|Yb7tYp2No>$lpcL!!)TOyIj3WD6VejSez^K0-uKs7R z{d1U5XeMI0)aBT7r$a+QHEwz8jH_$P#0hJ-;zjZl2?iyKEz^*jdz0@vO1FLnHhAz++{dOt>qg;8w&oHO9eJ;SfLFE(173N_$~DLN zb-W^w9ZL*+u$i{|lf7XZW`IE+)p*ieM5?nEtFDr>%5q!0j{QPW1K4u$Mj!}XAdt*F z52VsDJe(9Mo4U=4j4AOX`0Mp=@%u$Gq`*QtDZ}((pHFZfrM>v4n10KIWsw;lG!>f& z<3%+N_r(QCx$i4w$19$!J!LVr&xKX=&Hhc;Z#SX?g5gqkUoP739tvb_8#p+_g^b5{D;^SaY@U7lX#i%c&ojFJd1E5K7 zfC*4N&^Q&>P>HQLq(>XWwWhcxa{h=fHQ1u}+ENJF3h}`{XgjP3a}R^=I6Z+Po1`an zpothz8xWTH@j($A-40{N6Hbp}6$L#jW#zGo_n%}2|2CN}G#GFf&z&Y(t%16i`FUVc z0pSu*;0DCY9#CcJ0leWeGm;S@U^*5@s|+@B-wJX0Q?PhZ3vu3mYP$|>f-^DtaX0)D z<{T4nS;~x#O>5n{O5W2q@BqKDx~V^a^P}E(qY5s&=C+|JEu9ZY9mD6xO$;{BwnjV@ zu;TR0z+FBY$tM#oPl-$$x=F~dZHxU0A`r?eF6|-hfw(Pu|C2`JODVhx0baPG5SZ7h zJ;Kl#v2sR=nl`=zoj-jMl7Lrn7$Oh2AdrDj+cK?CTKGaJxd5X~0j`aJ-Lm7MdsNOC zovSFOX8SyO;MT7`=W@$0%5FV&Z&!d#Z?6`h5=rMP;PLp;M|h{Qx8D>Wx;OHR&6ehQ zQzMJ-`pE;+6%+Lwpq3E$l{@ToiT|^0Vxl-bDm}e;%m~)gr@jhokT&|I`S~f$G6aNu z(i3*W2?i3*#s4*Au5@DJuuBZ(2l(W7zD00azRT0mx35}`Zra6?lK?WKG&*yyS!Gv# zzfO13l8RY#IG7#QD~5q2QJ@>Vr}!NKfl4~opA8f1W5r{~n@z>~6FWa-Hev)hg2trrQC5Dr7C_G~4mL6y})Yp5`AinM66JS>h7 zqM9ylsI9I2px(W76W_a{NWWZmeY9}M?=sE1G%?tb(DR%Oyo2PMiBOGx`+IV~J;@at zaP5kv?bnigl-5|0rbXTgq`v4z4VJzYVeXeKG5~IWyib=w^}R_!G|A8eQ9?k)_gNEB z>umXHN!Ax=2N-ic0ZzSg*cBzJ(s%~YA?(H9=#bUz`}#4t+QcW)I0egswngU%@8Ra_ z-g`U2s!wJ8@2&K1C+k}LK>H;}Y zS~%L{E4(@p@^x~u&+VR~LGgIGl)|Td-Sf@!{7=gDZHhN9h!EY=i&l=WUn`Tz3JS357JxI9AB_wT2Tnv{I98r8S;$pQhq06Vo2~;LbJT(Fd+1KJPvx(SdA*56 zpY~(VG247u6|ArU6+IpiE%e;F(Ue$mIR%>fSE{4wsowKLMsQ{EMlQhZpHFalf45tg zlJAxH#K>E>ZiUT_;;;dyHVG4XYVV^E1wgs?J}WCLa4PZh`mieCyszx64N}S&Smr!h zTdYaZl-X*Ct9;RiLdWQi)-NN&#q;}CnQpx)rPA7Hxu|KcvHF?xvu|{*$9LGQ^M@$uLN1dT3i(3 zs0MnJ@^W)>geSeV#Sgw<#m2_2#%QXlySPBA_eKcqRB)N%yt591&5O#Rx6TJgWG@)W z1vmTt!=)ZV=O@3Zu48YQ=TA|jZtxc~+Gm#nd3wOQX#iUz!9$FkzK4_ZyO;GX04+ur zm-Qz=Ad$`LnX;^GY>N04T*JUN3fk3Lu$g*~;K0EC#g58zwRdmdN**2_DypfuO%GYj zS9Mj|(G6NG5kal3?|{b_aD&bokAh&79h$?wA7%c~uQNVjKZ&=P&xp%id5!$)-OgWiQ-vb z<2Ksph`C8iTl|Sw;vt2RyRq24hYwRM_sx`*mA#Wsw+G~CJuEb$x?7vCo&@)GPikgW zMEm=4drAWc@iS=!YD;$nK@&V4Dy^jyY!T}XSkWDfIq%*+t!8`Ollu-8ZMk-s=J_(W zXZW=;B1JPTJ#($BK|H-cAhE(5D$jVa#E^LMK)nV}*HG^xNW7S?j*h2=$UdOH_^d*u z#FAH-!Qd+6=nVldyvi+O(D7>QDBk!)WS1Hg&3i_O8D&rYYdy$H@FKERqWa?BJw?1_ z-lS?LXoFxztIWJhWFZhe^(0I=T(>Z4S^Z&IH8{2m6&9D75QzS(S1}*myiLyal&EFn zX5MMTWQyf)y>NbDvfFwBY6Uc+ZT!@wrBm2f19ux6#W15u21+|m4nHYMY;bH&Y5ovX zfs;GIbW~eW$ZH6{*OPM38W^YA65;<^G+jS|Uuyc9=K9$;_7SbPF8zh9J?&J^ysx%xVmxCs z31ar#UR2`w&4iFZK-w7?x^v=xnJoPtvz>#(+V>YPqySPL&re}Uzlq43>wSn{5WtG= zzM*=KtC~^Kv_~=63W4Tt?7L4Ww#?Pn-RfP~d^p0xQ~Ond7|5-3gM(EfQdcQchljj0 zp7^rlurW^zlcGm5#av-&*8E8DZG|5^G@}qGwpGR2!uGm0+V`WD#D7fw_vyI9_DiHV z7A-!0_gvs;ZCR}OUOEeQUMb*OS*Vr2zMGq020#%BgsnxO?HldT&r3SL+~$CyB(Xww z2B;x9mwBZP+e}h*)~~3`w0=GmRsC*bmoN<#08L4#$<9LV)y|aZ#=jTeq`M#4Bvrd( zX|r5EF$wpGts|r?+_mN(S^tt4tg!ljY+ZF!l-t)|}(MgdEn%wu*u`qgm`R9`Fu>+{m&_uY3 z`O8871LuFN&g)u1VbN3E@YR~VDuDM|}peeOM)<0@e7@KYuZNRa}#U zEL!8SR>YtKO>d49S$9P1uCOPAd%>WC-A^;lx_i2mRjB7N4G1{Zj3KkUd^rYy^i4}L}jC$3M{{nQU+DkEcG!UERi0QCaQ^2Zh`^G~sO<148Ew^U#@ zxBB>kwYa;H=>x0JvDWWU@;w=7d#Ml=8pO=WaX=tamdy#mPx~`Cw*ef=aQk)Q#F>ei zmn!LZax<3xRmKZ>!ZP&CEj5q6DscUvT2G1I*A%-xE3Y<^r3bJL{mE>5sJr&-8pyNx zM)}ezQJ+*`O|F`f$?AX1yyX^QXANWRqZVDMWbXpJJXi<*;BC$HYrQ|@nz{aqD=&q_XOkfrfcw{$0C69GEIW z(OS?-CE9rEU^z%XA)T$8P;}&KTCOq4pq7dfGU;;ucL&s#p0EL^O80%%2Dz2-Vax*G zx18BKv?M=$-H#iLjO#=STD2J zSfczSK5#NcX)O)f94`FZ;zb^xHY9w8eNNM%P-v2TZZfmU|L<&#P@Qqe3M$>43okoi z&EEl?CHZwK7?%hY?8)59zYYd_wJ?n(h+gd^jfq2Bo%f*6`GeAu+9XVE;u5{hDQ8EL z@iD?8&^m4~q0kolh@#BEvK68s8-mBOrcqnD$BpohQ3BcYPY1OKkS|^*qURk68_F97 zH$97*BL6HqwvtV@9MU=A&@VZ8G2(vgmKWGGRH8ksR3uFT`q%|?)dD6s$f8Q{Mz!wo z7bnu@axOf*nJQ(q^QK(eNL?pr1|xqze#8f@`WF-izER{ilykyVtWKGe&6B(6 z&tG^tMU^0^VD~aXGc?$_##_0bdMMkpXEAlVOul623w! zWwqHzD=xvWOm}@#BUFNCWP_QwYPudxl*A3C5gC(vYzpn*xZf>jajpKFl7DlhWIWfEL%JDTTm7~ z-+IBu5KR@Udc&3A=VH%$d;*w-D}iStVXbqQ3LV4u65c-J*kbw9YD2sz??4-MHt~MB z7bkc$c7L2p@LeYhQ)8H6TRhKlOOdfsb#0ye_Y0H)ULZ{tajCLNZ;fWYvij^xuS+67 zqwDGJ*tWKn@!+#P@!lywKoz5;EWsH%&^Jf{$*S?5sKY|oi4}vO2w$9(C0Q`-Dcg9u zpD{pno64;`r#;x8h^4!1_RQPA8*%>XJbX6bM?a9EWcFWPtY0)GN&<9V#yA*QO@WldAVTGKiFZ5>8X0XvIBj~Q;?27 z0_~M%jB6Rr1DCulxCL3|Uk%Ri)%#=*-i(`<1W5(tWv<%i1FYGv^G0%(Z2se`9I0(u z^d~=B&W?SrKe?)*JOWw0@S6P>Vk%E@>>+fJR`SB+>eXp(yQ%CE)MTK1DlCWV0VFsL0 zZxHBXkC!hi&HjiP$^o6)!WxdHC2fWhOYbEI&NZ60ap*Qo+5U7Wzz%;t1yOfeONS#h zzMG@J`4M?b-bR!D!HSdX$LrCN(AjHZ=lSXhCj&KtOQEUN}`8ax}v0i zFX`cFS-+!h*}=qFv@XIcJJW2UV|yz0==2lm)5_ zL!MFP#G*8AM=ok{fON9>D@(o|qTFO`$Q`M3T+L^g?-;Q6K%0E2aq67Yr@^?oHPwlA zfHKe!yr%Rwq54_xuMH44IjaZ&$%Qm?mEV>Kv{+WvK-$b^e*k=1f+$j(yUFQI63k5{ zySKq!IXhBO&7~L>C9tnbOp!b=TcTg{gx!4WV+T`{fi5s!NhCxeffi>_^6bE&Jn)@b>iz!)d2Szt(K@EX#7*j~lo^ zKmgy|s_(b?UCEm$IuOLu!V!{0#?%B2c6 zA5;Id-BXp{wbPun#>PE0mbsrxOsVUl7KK7)N|0F@hj)|(o+oGN+&}WbEai*jC8_M9 z@#U4ab&E$%ALHp4ub>eRCf$3wt!s@xF8bIMBaBa?bYOVq35oEXmQY)WsHBe8BR4Gb zbV`_4X19|Iz604BbHEP5o_4D=pOjZBI;L`JTY(P7wBxO8j0L%XV9k5sxwVkvE(Y|a z3Nl{n4fddoexfvX_A1ZTK5}$tNbA?rXN_De0rBHwJV6SH1$0Uf`(eVd{wTQ8;;fAn|xgsBuSx_e!PVRNd+tQc z%pc8Fe*EB&zdtO|r1}tmNqVV=O=$l4C~qJe>tjoHpWZyq^ncAB@5KlZn1Nb`LZo6_ zewYz;1gPSjTPi07k!a%HclWZ9V|wrF?Fz{ke_Q;ufzuGTz7=aEngAoV_<1ZCbN*sW z0clGWHkEU1nYB{+wJr=T!`s9za%e``M>)`(c{Y z?4Vm+Da&6m4kN|hg_hHeHxDQ-Qd$kR8UPHqJ1MK@?&Sl~9m+DVAkqqs0RHDI$x{;o`6Q(t0)r z%W$GZ=8P#vI5tY5MXQzTx8j^>9#(-=-}qJViBE{R#@@YUH?9RrG9@{l**Zvn8RS#E zsRPixJx6oGx*%=43dQtlXhsYUlqpVfo6yoOdOl0A zWxQLq3kifH^cr+#iKDa|yPao$@*i6+w9y&3)wG~brH?xsbJH=(3EHemK zhUg-og{3YM))5X>uG8X=>IMS(1ZH4xQRND8Ov9Aj-^fAa;b69WY<_q`Uw&w+sRh2dY1kD+)|2Cici8_ zs4@_NTU*!9dw&MMJs;Vy(xKD8uurdSFsAGsSllr|zm&Q&<=rVuy&Dhr<;_gqa>IeL zNXMfNJMcAQF>926NA#ya%%|(Y&-Pzxjk(EypjCWa;<5IGqo}DW%%1eo~byhwa)$T(FTPu5U?~M+baV06eGm zeAxO-omGD}<$Jx1@`lDu?*$(IB?P=_N~XpP0C1@}0t08VZKA)$^GvKvAib|l6B@8% zclbPM?oUCV`~y5#PD8`ItTk4@r*&F54$Q7Vw(<{|A(eK1QqQM1C@3sUC~&I^50g(X z?F*+r@GYr{^g_)DdH3(9HFsJM*P^2U1>;sJbxW&oNVlBm#o=~&iC9esF(biL>WD5yO(I}3y%hT8uz2^)vErIwiCgfXPC)BEHSgwFd0&1%8B>< zh#gSpujG^NGQ?;MS-+I?+$^g;r?x|=;idCM+y zVw(brWT~?8Ib+pUs7vzv=0AP!^W0KNTT%W&9d~o$1dN&QKUgr9{PDZCE_HY*VQZ?y z6OUG=C^O1h>f@-Sdb`C{AI0f)_3PNx%={PHd(?D~Jbeqj{C7VdXFRvdUKK#kffF-R zRYorvB@@LdPJ61yP&=9q2kMJh@cyOd6_G2%&}A=OCrNFaZw(r&?uC)`H!8k%XdNB! zEw`OGnXpRk5z4;|`SBt6WorL=o%q0(_kz_F4yIYDSBp(dz~lux)jp?E91>hag#9wg*GWx-67e6O>(9P9Kr5)}7V0bnxJUJf+MexLP2 zIJo4Sv{o`;nrc+p_>NkMa98RIW(WFaS`MAMYQQQ}x)S+7koBzg*2*nx%K$5>i<>vBgf$j(~WU zHAe4F8O$J|zc|IytVuIioJI7wgQNb8N1Q5j4yI{UV2tp=P z4Vd;m8=v*n`lfSv+`)d0b?p?~u&%0#EEKnd?(str7v^=k`p-m`7j_*o(>igNPA&pWR@f>BGP4&)(hfv&1=Uq^w2O59IR zZI7kHMM5~M3Vpwudov(_iJm_x55^LrQ>iedT>)e2bzyUg{oZ&~H2#CxDm?#HYl_ox z^J#XBG_|x$uo;wVLVn1oNQNMoyB<28;d^$ryVRY*n}~UFn4}n>66w&F6P17hRxPy} zkS7d7&@zMhw}V2vOT?$SHo>JW(7TCZCugjTj~`ExFqawu{5ElhZxuVJzHS-FEq0tg z{;k3B&^9$-WdCL)rXK=y_hgNH+7~(GpMVtt1u{;n&*~W~ zRKC}KdyOm(z~!o5s2SU7xjQ4y4)mk_B8UN1HF*h`r-^^6X)-G<e@O+m`X%c(!E-|{?y_Zi2A-r;2%*b@iv@vFf(Dvn>Q592jL;K`(= z9MvhoRB^_-Y*A?Yte>hJDW8jz5mUtsBD#WYYevNQ!#XzUzU0X5#Am5h((oBRXlCUThK1a>j_$D#dI%#m-|GPhRnA{YPpE^Q4$iYi<5J@L>= z<@gq5B=dj{gzVmdrA6%p!%ky-*aGP4jzno|>t=Y6-A)aOUs3>wU8GR5@EwC-d{uve z6K`()K;J_Y0comdRq?FgWXXWwedwozRVO}-a_iWqLOqE02~rkN0=pSnkge}$n03nk z9sdEDX!t3$RzSIRmk}DtI!$*VQqOa`gHk^T$FWD0oH(zP;x9|FB=(1c+uqgFj{Wi5 zM~3H~wCD)lUoD=z+(&~8jK66lVSIO6OnVdWRf8~&5!~s6aTgo)X40V4>sORdH36A? z0!}(e0BcVF@aRGU==(ry?y-DY>0!^nmPohSm)bh;b2>#y%RF|eO%bU-tLPb8ZATNh zjD04V?TVs{Ie;F~O!mDhf=uq=Z_fK#uoQGaRo~%7@M{N%<99c6(M$J*-HV7bJj0=b z+jD2O*YF7lXi$O?{g%wVi2H8uEwkZ8x{}9G)Jmdb5xxdixXB?zXck0G2bSi zsDdo;z44W}5MU2s&R(ousko$VWW2C(&vVzcr+Lz{(fQ-#k|1obYBfzwtJ0~Zn^>ax zU2#U}9-zu^7=Usfh_3S@*?yKRe`X9G_NTyP$1i-QN)8yW#=IzE&ObwT3R@Wah;$^6 z`6x>9MICBp@ipWCS$Ilr*_d=ONjA!GLq`UPw<}HD2Oma6s1B_a<3GHoUyqD>@WCao zb9TScD-ab1I4_~1$*QXFdz)9sN55_B*-4g}T45D2fgV7?Ob)vN-2RCOut8wPEN14} ze!RCMc(;iXNX0BSwfXK5dmazhI}w^E_Uv9 zf116%@z+D!)=I4pxTwZ#vjhY>zge9gmnmHel*rd^S3s`rAfP_8(o_4pNI>L+2$*zf z0jff!*pXc8%uec6VQbXFTV;ICS0=KIt;kV?hJD(8=fD%K$ItQFtU%z5Y(UAXc`eGl znR}Sv+IJMySc*7YlI7d0939&(|L}bFHraj#Qe+01(`)3!|7TqqO7sHba+G0o_ZdLW z#kR-gFaUd-rAjm|<`-hKlGRV{WOJ?T5X-?ixHsjNttvm{vkKtnsePqA>vaK`#n$(Y zFkUCz#5sNce)7|v5mjSz8{RU%Imb-pY!a|n%kUMk+-`|xwYS^jGG7KDYGg>Cd@sNa z62xD?%G>vmmcMr#SA^9$RD%N#qpfUw1-XFSwg>C)^(9X($Rz{we$%H;dNF}_Uf~Z; z5Mbjyy#6{EZ&H|`zc)9jt&9lo+Aqe{+dm%G^u*mt(OIWUT1|5v6yprNeWQ_%_KvbNd)9{Y}n1#^I#Y-SfwY0ss28 zuk|{5k9v0zUNpGBXPK-y-NIpIZ6>I_;72-IZ!)N^;-;^e-xxJLXA2Z9%1~1A(~~JR zK;V6D1jj!{MR|M}`div^Ix}rjrjps%ea8)LMAp^xOLw?-KLnwR-1S8QOmN)|C-&|h7C*ovU%g?U-m*{`C4r|nE6RJ4L z*AcPo+JQo>2H3S7NLU~F06toDfTu^F3!_La2>rfo1VxQ!Y6GmEZ7o$Z=;*wg$diwM zRx{ZtfU*dTr`D~m`%}hZv%@Q2(hDiSn>Xm#Oo2)3v&}t7tW&V_GFB2rh;z&;VGc7Q zKqwuXTVK2akTw1EPXPZd*zNe_fNKPX8YinfD`C>H&C`G>#usI#Kqv4C#R+@!?$$gV zl!p189%>V74kk|lQfZ>1*4CEm8C3}e+QJ_HX3K>jW?)I$E6H+2Hu|_lbr~jZ4Q=9! zu~XXy&2+F8K8b*DKK$ox1WVbR&YA;3X3ZI>YMUYjd;1Tg<4}PVGgkp0^Mlot?}^P| z>+}SZyg_@qmQbRqaxYVVQPcUCiROa1F_G;UQfPRtMf1EqjA4v&TnZ}6} zPMho&7o#WYcxE<4xPeN4cDdgGS1$dW$jxn1sxDmL!FewRMH-KNT{jqLDv|b^{xs|A zzpB|qKU;<+g#tD&?S-@bZ+HCQ3+YO%U!iy3olOeliun_Dy^G zgZ0@nXQa+3K9<&6s*ffmyprx2pIyqDcp6hZJ4USGokFVC2<(ZMnT?Gfk4!E5RXh|6 zl(b{uo1c%Q%3rGKdYFeTUU$sf%8;;rHx-Y-rB1_qhh1As_a$~|p#dC!j$-i82JCMO zyAnVI4E(D>->GLf^?bos&jKCv6WgA2ia`IBoXOq`$DzTdr2&w(-k{;??2PrnFda<| z_N9#>)&?j$?ySEw+TwOvli0Yng$}(c-WzM7c}zH}3WV`QBiyW>vZZ6QUs}X84Crbh zS}#Tb)8l|t-d0hYC$^oZUeA@Jm6ngSz3w3if@H7;+5eTylt==`*&*F2| z=y{dRzst)v&HWjR7pVgfykN@-CKx%AN+#5@OETEk^d{hO2fH0Wcl`5X5TZd%l!qKZB2k~%NuGMl*lGjx|>_TO)DA|>cDv!Sia8&Pyz{t zPV79$?0PZwtl6~?V5S#0%JALEck@6zx}Z z7~LRXLS|e~8}|%KF(W)$^?|WKbI#m_M%I0r>z!(&Cm&oeNc_<^eY!&FDrXOmaiD{# zpy;6qO#q8Wg_F9qOPhpz#$r9&vqTq@##u*|XNzn1^5h$jQ%iuWkv34tT+gr#l_m|n zC%$?GKuXEEx6su%3Vut~b)o`F6191}!kxOQ2c}B{uFj+oywvEuF5#yi@O&C`>(AEd z#yF|Av)zCoWfKhAR@c)@d2@xX=wNeV6N`pV0Cc#=lwH1nJ*tmya4o|drvB*Bi`A(Y zF9?8{YRX1DjC##8TL}+4xv&=x1?tQH8lZLlMO&);y{AAC5e#BkI4l1d9DvdT^vD|n zqR7!K>6coDh9zk(t$M%++V8;q!wK)-ukBr@;5QQr&&UjNx@hM2~nD#&upwXvYv(v9; z@`0R;v$dD@`AN& z2y9)Rs1Zn9)(47XoQ8Y3o6nS~#iSQWl?{`p0_cD$is2T2b&FJH_J9Ct05Va-$5sbH z3oQ?%ZBa`>$llYfKl<>G1!whMJQYbd`&Nj2Z z(Z$KZp?Er{3&CVJ-DGL@#xmJ|ON^i316RymdsU@$OJ|r7XERV}?&ng%2OW)09+Zk( zCu^2B18Tb3vID3#F!#V(ZecKh{!)%>ZxDS_#&v+vf81pcP~ZZm#ip;UYIgucU$!Wy zIM4$c)YxHTnD(q6K*68V@Z(-?zREF+2efpj!?&uVgJ?ePM}quGIzcx2{l){bB0^3)CjHy zb%>uFpvl}2aYUz_tVHt}Q1q3OQrk2f)1Q2qHgw{zE|=&x&G**Nsnl!FMk7fqsZjc6~KGoItuTQ4uCCT7#&i z0+-Cd&~6!sv8UR#y3q25mz`cNJ*Txwku-bIrTtspuWlS$3;G#gY?y&s6Sa8gXBx@0TsI3YsbOvyPHv2)p z5Zw01TszoZe=l0VVZ3@}*Q=q{0J^#hcF?>jpaL&5g5N{0vYke5nUIZ^qbV$dx6XR~ z4xg6mH=+&j1NGPCu-hQ8cSRM8cd2pCwhgTC8$A^)^ra3@x_eqrQp?r`&uup23!x{^ zK$5;ww8gHp@WW_>>S8esSBq$`YD|$95?Ur!WjWjQRaIPu#_RoRZKie7BpJnoW!U-B)Q{M5F(GcI_uzh%PazJ_%~x6N#+v%FExS1R4Zdez7< z<0c~tXsi~1$xf<=JI@>{ah}L%qJ}XrN zKAkZ-J3#zWc?FwYrjMr+GJErpPalQf-xQsfA0k{}&&YXe8`N9Dtn%X|RJw_h?hl3f zkRBmHDwDAN=pCRP$L>F4_N;y3z!mi3^nz`+FQeDj*TH^3^z}n;mjXAzcMp_Rdm1>- zCbb4&{8|k#(MfU^1|Yb#5yU!FYp(et2yV9_5rZ%AC<5f#A+#6NJ|#EpwP1ROP`NH(Z+03+oqgi#%R7 zN${HEs1ds5n;_`XYq~T7tftuA=?Ey7fgQ~0QFju{KY3+GfFQ%JW8gnhimDA z_Ne8GJboDHW9QVgPfC$(w(ARc8|0I=#iEVQXgphdN)9wt+|F)9(8%smZ7vrPhw|AE zj081_bm~%qva&(@U>sVga8;#N-fP#j6Lwo9$nvx)1& zgE`1n1{&h~EUn}8TG76{ed%yuSS(1=`?&S0YmETjZ z)6vo*-@lUaBp)$V)7$h_KcI+pf~RFat^^pvxzd-yoS*I%hMvT1H>m~UG4Nh>dAc!C zu+rneAMGTtT&pXgGBCeQZeQHdYHoA0VOjk`7;MRUD4xAHDns(-`ixa;8gm3bcVHJud4>G+srH2;pPOsU-a@38$OwL zvzxAwzG$7!VJG*QD^8W$0d|z!#2tDoXe&U&ZTQhh>kBFypWLA0Wn4O7}N4#P3 z4z7RjKId~P+i+M6YYtW1#r5OOa?0o(1~4!uGZDa|%GTC-eZX|pvWAsZ<1fH`QlX!0=%nQc}`g;NL+uaz)U@kv!G-&9bI4G+lgat0GqM^;S+`^9(J)yW2zhd#(J< zHCjzG%mbLBhr3}l^*m3#rYPdXtsAwl3rgw~b?54^#hF4k95y3gJTysKAiMdN8N&Zb z8RB%{+>@HWU5yYzRWeXtkl4%}jd%8YJPtq56Rtj>8>yhHnYJ2fN&Z&dF{qq6a_2T` zCoe8PiMW$X4fDy+r0%VxHZS_^9>lpX_@u-UyEU;q*D1u^rA6^MP3T0v(|9+4Lln#D zl9@4hOSv&J1&m8mqKcgtH+m5{!oQ;KN$IHTD0PKm$j504QXe9yGF zsAyM*@VqC~T~{}mUr=zEF~Uyp|>qi5xUKfTMV$0 zQcUBwxH;Tis_5G^Lr!r1YkAun1``%lhGyqRsjeS4QV#ZNlK3vD(nY?(3LPeG+gPkHkV;Z2lm|dOH!E9 zxV^C7oX$gxVajf#B9oh%N+`1F-IEmR5|gyy&6@9)q|!WZ)_te& zZF%?-aBtpEeIpPB-kv+FoyCWEWl3x3y0-(~)=U)zRZ>;J-t@ z5cF>*_Z~O#j6URq9BOh%jwl4bt}nEj7RAG_S`A7DLXp=w+jV{VggZ4hW#fYO?acYY zh6$Zjkq}NAWQ$hX^@8KVO^pf4p79Eov}SzEpn`6=alg-3y@~Gn;y_21@bMmuci+ex z8t*Z+2x!KH{f;e(Aqnc8K5x0T?3=3B@%&e843Gakcj_f~){QtOZ74nBl5*o-O)6Y- zr3F%Ar|6wFa}9V?b!}1kka8naYrWhGl|v8p@F?0H69TBLh*C6Dv<)l5NMdvNoYN|7pj&1DulM35N#kDeXiZTpa! zzF9IAixmu~ieq6Rkpa5{>x7E{y$*}b8KdBQi5>32quhoOBZ&}q5$ zL>Iv7-c%NPi*FxwVTZ@YOFVUv>RNo~wbkE;IC4UTP{Rxxp~TJc>Yh)lIF;2}pCLuh zU)O#I`s|7Bt;PpD;qC1t61QMcT+Dh|`R_q{w;r9n5%)3#-Y6}pjPekdBRoC2A;Fw^ z!|Dd5kzy+gNV|#<;y01+P07JWCfN@Mn%qXwxa9zJHgnw_#JpQ)e+)C^pnAD-^Eok% zFkWskBWB_Nq|ougnR_r&B>uEmG5@{$D}V9mj*Ix`E-61Lp1UaPzr!Y zvGXx85eJ%UGaSQoPu0hqo87rz_M}zh*#I|V+{X>7$rmI1ba*bt2ko!JSie-<*XYd~ zYhtjGtZz><W79ume9hpI_Z!b@%(%^D#OCFV8IgwQsQYqqvLHX19mwLPoEx zxq2(j(x`RADCzmRD}{8ks&!dvOw%!dO$wcpx2OIq$TK+sJOs=gU*C8fQ1 z?*VMA05_xRIs9q2Tm!ODK3wbYaw$Tx^N#6W@WV^;a@ZTg>0c~+O4WKvlqD?QJ0s~N zy+1z)7yu)-zES?`q0WR9Tms&th+SJSdG&=eAAtNWgusZK#1eiNk{oS(99e&rxX*fj zb4H^@u;lB~woTAVM#`GdD{qeH9UnVzAEfcy-*^(Q+ra0rG!gNlyJ1!vc&^0KtMEIa zwJppIoM-*M$h>s59|-xK(ELnoOqrw}4HK{yF&CemHv0QA{=v*tZ^+vpCW`nYr(Y=vLd+2__C1-&S+keun zpTFIoBw%5&;DD)HB-A@S$ZQAOXid^vMSXt+eC9P<*r5q@?<8P&A66Ly$Y3@1a@HmX zl>is?PDz4znt&{R;DsAA^hmc9^UdAmW{rQ!-`bjA@h0R0IU^I5GIspx!S|~C%?G#7 zGsaXC*e98P=~<0H%itOZb3R^evsO!95T@+Dz8aufDW`VuruRvc#+4Fm9YX&&UZU#< zE1NbG<&KZPjGrXk7v;ySEYLr<V=`d#il3+8JR1Z8>pg+?e6sLe@3 z+Dpo!o!M97dU@7Lf#G83t;s7+ zMvJ9MEkR>&V3CcO7Atw4Frdyom#jh-H5;?uuaD5J&yjZ<`@>KA|M;htaHcrRz_IP>^ZSq$9uG(&XCMOZ! zK*CA(>N~$KGhU}mu3lVZMb7bTjI%211$i(iK4G9mYnYabiEa_jk^a@P<0F##f>|hj z-v4ib%&$E){YK~r3fU6W%bKYimr--DoY&=^A^GC93!p z8b5!pSEq_BJW3M&EEP-9opB!|_2dJ6&W-pcJT7Qhe=o$l@Z?pwm}ztT?%StV^ZzO( z{ArU9D4t$WOmgfBo2<+trKq*&=&zSy9{RLUUb(C*^k%>8t0{2brS^6Z1__fKV@H0A zw_G^5swlU!W*T}~uh|{%4Beg6T{0arU^04HkG+=F2yIEMaB?*_;y$IBYC{JWX~h4!Pp& zuPJ!4wCA>e)r3OZR|E`Pg=fT|!OIK4y1J*TI~OS5a?et!)wR|9k3BD)+VjDAeaTVz z0qZw8QIA-z6M0E`mm^O0jFOVe;#@T$*od4}a%#SF5ZgX5B2LBtmUIr;a$9xN_`3E< z9;7q?c{5ud-OqdE5VTglnYHCoXndDMsPw#FYrA0*-Tv*#|2Vi{DT31oIVMwSSgHDY z>zOOx_S}V0u_L2X(8Q(o(0>Ymxc%&^d^AodkM1r}7HZrQ~(iqx>eZ?iqxWZW1DWH^QvxA{5kOz8Nj^hD4aDgM0-$EtF~u$L~VoK#`q`9=}~ zZ%{HwcNWj;Dlle`A?ACE?i|sl*x5(;3olgF#YE8dk+e7bUgxhB$2|&uWywXKtu0Lh zW1zZZ*GWrwR=~k^Q4PWv>3}oyt&LrsxdY(9;K^Y`5=MsfCLLb5LLa>4Tom6AIf)Yz zrrLP+eOtFl#iY#0uO~Ndr7r?icwlpCzq=QA=0bPO`_G8S(rNeG*XW}O%FZ!#he|%w)h~jN@eC%hCFVh#W0C(*ymWl1sBWpryPn~GD`)J;hZZs>Y<1$DLz;k4gZA~ZAR*L z#g;irN<}FtMQf4x+O61fCDd9WFXF8tZvK6Mt|GM4+hnwpM{-eF|8GItKc@GJ4KQy0 z{2`EU1mQ)BS{d}m)vWVA@liF?xr>XI**xn7H)1j(L6612F=a9>e6G9P(TeR6d@>u7 zLr?6XsQ1dPJOXN5f}|f{HVx~Py5GJ_`fDRnpm_lmwxg}b^-1KOH=|-+q}X&VctilG zKAN&>bXYz4sX=N^`eep5Ef9MdTgXXaQ0Xwf}>8%xj_unm6`Om zsFkj`zv#W{{DZv?y{GiWn!Lb_qkrDq>2DlNZH-@SC9R98;-DiR18#Q8Fc!3hpp9dT zObj{1%c8OZR74#GyYJAhmr`fw8FPH;;fzFfW*&3Vu-ipl)F z_M5bK5kpCJvaFZVUm|Crw##R!p}3}B{b$6A2)In&s~J{EHOfXN{0qNT_>|VtZq1~EBBY` z>2Fft)ERuH03N06nF&^0?uG(I&4rowOjLK`Za5v_+VjxK-65Vl$|IrW%HGq`BLT(B zoeVR+c@gPB*%8J+BtLRKldmjf?Hr4SIUltu2=qRm!iza@3DIBg=6JI|`5>7qHff_~ ziq~nm9&i`Ds9grx<>S%5;YK0wc&E8nj@;iJc)txg4MR1#TNdk5-$w)RHxY zmGc5IREmQf)iarQq_v+~?@r(tH*XG72=EODY4WkVv(w+TXS2#N_+k*0ST@c!a^G&i zOoJDFNLi`XZ7cJ05FV!yQEjMtjXEbEc$+Zh<{PqE@L)aw zj9{o=!Km1dkrPK1(zNEQPmfS$HP^+(&3J{(s1pqr4L7V&CSOvncgnqhO&8~+5_Nff zon=8!M827JU*6JJqByWXb0#zNe{YNU0NDFwS&mT&9b~j+gI9r{%#>Qc7Q)%#Ci=s< zPQ=5-a#^eZJ&xbHx3IQJ$hulPQ>HU;@x86HXKyAyjPIyY%h)rToX$HiQ>NGf21L!y z-GzKE48?$i8r$s2w;0OYist(BFMQ)yzr7DnR_Kq13q%gjem^C39!Kf##sL(eD&~<> z0qgt*&-1&Yi^?HPQ~$9j0KZBBfc)I6DzQFJCPir)<)RPgQT3v^*=2GfC?`H#QEp4^ z6sEA%TX4I^A8pQGJ_1f;2i$t%iCPBJ_KFA;i%^p_(wtl29(99L<~~O?XdHE9QX>Pn zt|Au1o%ha7C@rQ2*-Ch7q@Xdy$+BJ47C_OPa zISGb!+X;wjaQjAE&ohk>jr4dz+n;hpGU)~C>+p^?}NIVft zjgJCV_jEsKCPxna!nqozEKI=3u_+=na%@IE-*kc8BN1w~^QDS(FpgOv#m818`lmG$GCePXd)^G5cV}cs5zyD_y8te6zSTCzj^M z{+sMn9S??m(dksI$E8unbd?9XLR1v*bvym@EKGEfX+(PW7gf3?{lLqJ&bCDdlK>Ta zFb=HqdKzK^i)HVAqocjmL(kZXM&$5{pL0 z3_j(|1C38QjSd#uo)4j5lnjEfu7=5Kla^k0)Hxbr{^?=%y-)ZE*8QDAB?CXHOi?7)`V7UXZ0$}X;>7e9| zE@#RE`tCMWZuvSTxv5`h!%^$SlMZh0VOQRrP7~!Zp7Qaer3o?5P)qXYjXJ5Pd&kSe zxbK2|nLBBBB){B>|KF(lkrRlB`sq3s6faIaRu)=&2zIVR_^*^@VN^vU2sP#A71XOX zczf?!J=4oY^JxYoMTUplj}}#;e%QH3UL5v*TU0*_&$C9Vwk|(VSN^K$tLY3ltk~Km zeKC6I?vU=+6q9?Lu2hcG=t>Du4RMkK1GE2(zXjmp+C>0!B-u=d9xFgc4sOL3Ts*}o zz)dQ1Szn@0sx70^uO%yXwK-6VS?vUM%!EgJKd4^qNMkF77`PCF?Jcq>g1It+|suP1fd5A@u}96>?iSs@bAT}4s?rRS=MX)hdXJNdpzE~ z@^bAIYJ==V@w5O)*{H+chFV00?KRz+>D82V6rn-eA{P+$b_t|tuDI-^W|pXC^AXvx zR@8g-@Sxdp)Q!d=elva_Ih~4Ym9*#&T7qIDF7Fz$&+flndh$?iy4X6^ zxecz9R8M@x${o}r#-W}IfgLnmHvfC*CeMFjdq7?0w0WTJ69o9^Tm^aT6)1Wmd&+isuPmuA?ty-~l>Nnmi%@yk zaY6|M|>w5q38ZVyM&)#dVxYxbb=DAGfp<&_ZN5LH+)phA2PXcmJ1?uICzWw!UCDfmSw7 z;@N-(ZFI=M+xOQl8gSO|#bw-oeU7+^or0lj!JYo;e2n&A{aSuLK$6b$Fff7B#rK{W zraktc86N6qu1uIEcdi`iKnI~3`ZXUb$&mR0&yz=KL5$w
#FoZp<=0b9|0YKJcF@* zP4#}q<6Ug%6ko>aG6gDSFP@3X;*#Cmgds9Vc13BT#bFYmNR}qM3H(l=y zH5YAv!miB=#w&dP_yi@idDw&YES&84k|BsDXPj^YOl%r?5jbp_yoySg0%&m?BC+#b z-0yCsWA1D1GNoC&k>@NQ0avKhS?b82TQ|a_uVVBNl*Rwh)s^c&TRe4|73A#pnUwDY z^el{kRWJrPz+r7|N)$p?2^LtiViboqGiVbU0ZuCB&inw5e;xzmw21q4&tkVSd5Fd7 zF(>7^_)e96GaF>1^x8TCAjqE6tRlGM!XrQO|4sJzdkHY~XKbaG3ma*|^YS>$0Y&B& z=r^jRt!=b4QeR|0ttveGx|mT!L?jb&?V6A1_peW`ZLo};4wX;K>35$Ntn^Rqqe?X* zp0bi)q@34e%sYfvu<2=%nBmW=+S1!cHeC)&x%!QP_P=TA={Ep9XH@YC$}1=7%b)op^0Vu6I!fQ;U4Y=H=%L)gPj~Y?`&jFCg%|ag=Z{F~(9O(R1ir$tT4h z7kj+ksK<#rw{qEj&nZsPN&m9G`ynYd757W~%75e+sY5`oC~IydUd1oW(wM;gv9)#0 zjOwcWrObfV%oz8@uh+`QqqM6$s80JO*mug=0eYN6AB<1BuQ?Xw0z$1nEv}hH2QP5!EjAoBubqWcT1?$ z&~2=#uGvmqidRL*P5FuA^pL3!>&;yGkB42g*5&aZB{1(KhL}O9;y7HVRHegfqMx>p zrYn;~@G-I|C$T$L>VAH$$#8;4hRcezC4;g*o5KBK`6TJek4W7_WHVulP1>U%Dxt^55KAMC+iQ!#H=io! zT-y?aN8;&SKm#GS@F@8x_Op?Uud}kkl6QYh@;c4y2#@$Pq`i72qvyG4WE~a{3L#v> zV+ot(BP|zFZx_?XfALbB8Fs&MVc12*RcFFz+oxT~X{3;M>6!kKXQpt{o#qcMzmd&0 zfW-3;t~L#nnj5Xn^n9TRx%|nwRiJlOHS4`Vc1N&QRIXrTrka<0H0K&k&I1=07u(J8 z=w@&Ndu|+nOS!WMO`M|Cy#8jw8zLOhw6Jkha5!t3IFo5e5OS;Qcc>D; zB%6Qc2F(~=aJtRU%%B>8=Jr5OMQ`obmA^?DZoU{80mM}Pc`Vv>MGuKiUOKF_EB9ON|TrQ_2?7~!cK=2 zCCI+w(8R~+QI?pL#QEygtD5w6ikKiZ>Tdi+*`V_;))c3_EA?vKWgn4O+l^emI^)#z z8E~PVsI%2oOto|t0-S&H)mT@cVV^(YeQJ3V7!~C+cJ7!6eQd(X`(GllcVEs;^U@l& zlgKsmH=@!?$6w?(y=b-evlj{(yvTa>8v&s2y%Ho5Q~616>6M^yu>IA%`uM zwy^~2{)&}4&+stQHU(BuuxSR|5Mfe+joq^@qAL#%5&E6zus1DdLco+hDslJV$gyBi_90hRF6-W&G#wsV_l!z(G+J<~`Dgln z`Ne$(jPj5Qa7|-H2{Gv#dS^98Wtl1Bhv=DDyxzh4z}}K?fB@8y-rnXgK`^(Ya09(N znOW!Bu4+@cFu^-d;4BFU+m)4H!=UAU9xwIRZDovz_gp$1s9$|b8_-JfC}E2&1-ERGg)Tu&C}lT zb@YN@Y`|uO_kwqo=sB7zcN{g!P;I#({VUn?Zx5FH z9$2bxotkY(g&)3#+X1zR(B@3K`Lb7&=MdlK?6xnu|2Go*)A!_sZrj?sjS1_JzpWB} zN!TN6BMuzlb&Nq_ml+1lU=wYz0ig4pRta+7W{ye`ipS> z^nT8Qh~#8+fqAW`Z}Ig|CIsMgtw7thVt{{=8}e!4f@5Isd>-xz-6vhHk!eBNFg>~l zc5w!T-Ps=7ggCQ6TFB*nS_hbJ`70#V2_FE6^0M$!yy$HOusDB;^J9lMM$CRR*>8Xl>85hcJ|U~OBtMw+XQ|WK zU2ZH>B8=wxyQz*`5Xmy++jDImol1JxNwVZBhc=#b6eRRCr5)a>$o> zG2}2k*bMR>y(2KD49Kj1I;89PbE7O+`c7h=s9Ve7Wwl$KEQ{r)v!Y`SAd>IzlI`yU z-E=EAVBpHlI*R*E_|Mhp?IBd+4ta)AK@`j8qXclbq4dFQXSTnolu65I9Tee^X7qR? zOxBn?zb@TbFe8jR-mFxu6A0@U#B4AWYzLh4ll`@?Kjx!?R+%l>mh zeDuIOs?T}2%N2|dw1mu!Y8IXNU7{uLA)uY}KKULgI+mK^qx35xm^pfTYcH!hq?@y0 z8#P^c#h+V*_cRSb^v}upb;8c50cpQ=p_ZDEUmBd{=h+^d|LdQB-m<3}B4kH6%t$&u zX;va;{p+f| zO=S%<3*PNwo>sMAu|nvnYrg$q(%x;XaC+z>F&%wBZ8E@!8#~&eUE)O)vi;i=!O|{W zl9Vc{%^=PIxY+-^Y9yqV2@521;YA^wp{LUWlDWQN2mr6sHY)K$UX>b^GYKCxRk>I8 zfe!&u9~$UzR{`+7&R4t?OgvRN))Cb+pdMN?<+z{k;SAjQ{$Y~m#T2OEg&(&oM_zxr z9ZQ{+1t(x<{AHm<5R1H$Q#ADEhBAT-Fa^Av-g&|rnGuMcrXTullz7@qaHF7KhN^y| zkFK;rD;}ap4)g~YC+F;^@xO=K0YPa>st_Wba23c({$sKm?H`j8w7Y~D=rwO9j(6#H;PmDvPq&tl%a{qhD$S7)#76z z3SrwZM1Q4|b+X5(aR%54lO0vkMN31`{88`w*?T|3J6az~B@qjI=WKO%cQ*lirV4{_ zkiC3R*!qj;^!$8Osd?|ZOE`XGA$l^&O-bp>x5Kf596pz&DrZ;m7aqS9^b^b{-gxKQ zRhlNu$Fw`ur3jNngEZ=gN&tRfhAN%h77Ru{JWt0{h&aA3)77_Dii*8T5zLb8-bq<8 zSJX`4RPTgU&(R+~bFQ@Cx==^NYs(ZhL6xo#3mgMb@-6@+4ejiTH^^*lZ57H;@$s{k zv{&t$&TUv*^cB3*J~sLI1m_~z`=w#>jp0#%g^!AGnW=&KK)|VoV~pMqNE6*WUL9G& zZ|9_6nUT@Be5c2DUY6EF?PGKE_@G^T=^RP#yDQFqhS;Rb(|u*FEr#;p1gR;f;GLG| z%x6?pDE~zLy0$loBWq$&>4`U_)xX_ouC}h2W}cp!TAW{}?&|EksHv$r^5_Zy(TU1x z0NNIW5{`R6zaiC0)?p*BSnO<3D6IcBtEzQ1H(sbOWooNRX z1=4)exW3)hHuuaJ0X4K$EF70E6^NE=<>jJ}(z@TmdSNZgTmlE(apwA6>-ExazjPTg zGE^!?cN#SFpu#B9@4lu?jE^$Uc%&4&pDI8eBcNyc59W7fSQSUgcE`WfI6Rim#C4$u z=O};sc6dZYgfn(!vOQYaW9Bxq-|o&vZIR9B4V5ES1c75QSD$@4|4Rn7C@n((3T`nwy~J$n;+YmVX<%Kc!3#pqcA){Y7Rym&+Gw@MC=j zp=->fy}8;fpvlGA;gc9}KHzYCiB6H>b0M1yl#>r(Rb1SKg~H^W)eNKWi{F-JNscar zTDbRKG9F!u2?7N^a=e|4QomCLz!nWV3_*;P6+2tA!GkffpyL8tjz)e|ON&CRh*O@9 zU8_L#MtoSMT8)2goe*d2q_o<{q(w*=M)xrzk7ZbvcX zlgENXB6L)o@boVDt>+`tS9QJ(I(4Rcy-~2eOvDwoQUCqdL%jYr{&Z&#tJ%yTO%PjF zm&C+$Z_3MiDB_B1ucx~18hUw@T=Tog{eh1Ws-}&CV0AhQ;d8Y|+Wt#v-80?-J|&sK z5f+C|Er~F4M4Qv{N%TjQL*2yw8@2eH1Llol&ZqLwO^Y1QkfM9lsTVfvD`i@dCkKy* z3JY;x|9R5NzwY(%1(uXz&gRs&lNdnRikwG3NoOlI8OJPUvBd79v=RKkHoi-WF`qI< zXmRv%#@M9y&4t|4kf-{427Vcxk1v!DpX1RaEw%ZBYl6fg#^(d&u!o9B(D(oh6BLZj z=P0+Awt6{+VCATv{bO64go zWWdZ6Ta9s-5sW`aWfvlR1J3mZ9|Qmb)3vXI(zowdE>Qz^$NYEAkruAviklDM)n~#1 zLb)7S!RvgClpJ4ZH6OLO=ddyU>@@zbTO_4`8&KkEaYx3Isxa}@6i8fOu@0RDdMA@`xnpd#)*Lql@`1M|L%ZU`3rj&eKT&5T~g-f1p9p_ym7 zX73Ld8!`U%1`zyFR5D@3@*GXK79GHu#i7C)`^CRuzzNh669aJ<55ST@MZ~m?LrmTW zo~rA%EYv126q`NU{%P;7cX`{c-I^~OU!Lo)ok$))fI4?LehVa&2z&4uKFYU%)6``d zl1}d5moRZRLJL$*ERmHEo(~-#I7r72=Nj)-Abd3_(aNK)JB~e?^97X`btpZjz{I$D zaXMo^{|52L-s?VPrvx)N9)gL4lq->W(}* zu}~AZxD!v`7R!SgeNdLA51&Doq@w^Jz#rl=&=LXH>w8)DfUq>u{3pag&uD#6Fl%=iaCyz^Dvv8C4qLwE(loe*HcJ%gq~~ zF2Qk;A)AF^geJiBbmvJ-)Qp3VNfd}3;K~zzxmK%Mn)eSGORel+3e-VurSTx|V~X$} zA@A**w!1QCb#~fxCDcF7$iHu;rSMXT7P>ko`29(_;Qx}8_5v_T6bQ~%y;8s~F}QUf z>rrs+>c+ylL~-BTG)in@{||w*(C%|B(h`ca@c~U)g)n}T^xdAtpRM!%t+>;GzMtMj z=OLa z0gNDR*MQphGB%2jk%a+ z8GZti6E;FyT7D9ij%Q^Hg~_hvq@uMz$fv;2$5+fW>yOzF#zm=vfh}NMPYgJ_=hh{+ z*`C#|fNnR!YT>5l3X?lwsCj#;>kiN*H7p{Rj##ex0%S~Km=wT8a39nOt)AF}g_Cmn zqoeJYY9)$Z4P2xbPCAY~I0LWT?m|QQ26PDZtD0(+O^d9;OAq-%j$>8c8U5W``M)-O z+D!q-N9q;nBFl{%)6*6!iLLn9q(rV*qtX4cER4m_)OD4{(Nom>8aAVyJWOV`$F{?& z&;3?zy7$Frp)Wpa3D!J79<7beUrEf`2=_JQI->utz3`XYp$c+1X$#jH-Jhia8q;M9 z{OTs0dxrSysgX$gh|TpItJBkt^4Pq!f%C#@eV>0GL<9v}|2V{qWze`+O0|k`K}wOh z&xy0I8i%Gu!Z*6Y^e?wPKD+Ny>p~+UbfRALz>jsQtYS8f)s(8uHkaD5naFTo^n*=W z?s1NK?Cd-kK_)`tT4Yd(aBJZ~bY_8=)N}^e@ zT?|4Uw;8)JxgCMoIW+#S%Iu$lf`XK%YZ9>Mrs^Hc8Mel@+W~JVVK=K3PzPBlI)&Or zic-8E^e+yBJ>_cxIOiG%S;8tB&N%)VrZiDGC)3s`o_{WGdiPHe)z|F7pmu z6ib{iF>61o;&s+4iV$PN$3PWX2j`%iLFfQ60M#%-?`W1ymyP%L7Tg=CdWOWp zvA}^h7d8SaF``y+4AP)ZzNcO0@LvkxUqa(^4n#JlKy|!-Dag^YU?%YbU|gsZzag96S<5z03iEI}f3P;^&y|{vZ--s;wDN^p4^>?{F)DA} zN=MAcNH!yYT&b$5F?MArM~{X|)U?wNV6jG<%i~3+UCb)O%>WSrEi)s)QQK=SgDE)3 zY5FF@sGZ$w8lB7slFJv4!;Av-CLlQ`Os}b~&a^RT7i#b5`01LQzIA)&ClDk}83xw%E4{i9}ueO7|QXH8UMqUE%Z zi@WE4dt&*nYm}@60#5^ZYaF_*cAlXF zZn6*fjFBFjrbYoYA`Bo500&XBexSlcH`yA`GBh+)of5466qoRkLfR=b;h%GPe<~>;Gd@>{kFnC1yKPu4FexWo`D8zB z&=|6Yo}HalT)KBkpbiw@>Tk@iGci9|qmFn}sU)G8wh)^39&L3KUhqPXNNE)f4GzxX zlET9c9ybH_9h!*xs$l?L$ko+#tgLoBHL|$#n z_-34==U@RAXWK~aBgD>us1-d?YfnJ-*Wtz8c zeWg9UrQ4dBAmLRL5gjeBtDE>e>hV!Ax(1QCp;H4C6`zN8!EPXUiz})cN<0B*5*$|YW_eWfCc)*%57wtu zue`M=v_2^grxea0$RMty83rJ0#YR2Z>bAok8yG-uWdki$BOGQwV*qyiK}dRe2fwhv z%n{A5dGWH`8}nYy@|8A`@ed@*5e%WCs%npI`-_Y^2L>)@B)Mh_u?nXlRoKl&AwQ;V zZ2&i>*0!$?sSdsV_$1UoO+CdJH&9ySx@LxHX^AMeoBSxytJ7s3y@#_+Ke|%IQ_8Q+ z#5D|h&uP}UmkUkUUmZ`dYYUSJBwM2qGSq(!$Uy97U1p37Zi9*G+BRd+0mYBf_Ej2W z1pwxEIVYLfoK*QQ5bjX6l+fkrsoKpDmFAigCr(s1S8Z<)VVso9nkZ+kZnODfuTNYc zt+%9~G|woFh2?~_2BAn_PhY~BWg>N1$@>sL!p2ucdeBmJS^M5 ztMM>3dz8pvwq&RmZ|B3SL5~FwA#P+hTV#1^c*LORZ1@x`f3IMH+`+U8NrXB&oEW2? zF&xF`{8D|vB7`bi&;0cH+=Qhn2~~I|4ziPgH36x{$9PCkR#TF$#5goZdceuL^XeqG zv??E*FG7bLAjpbGu5$LDcK+Vx!^Eg<{)JpQbV=!EEk~+z$(7|Grmq(NmG3_dWd|Fw z0$@9U8vnWg6f8F-e2lGbf_1Hd)~kcw5;SrWL-vIhQ_BMHmk}d|eAAjosG+4ch(!Wl zoqqekG+fk+)PkO8udUWkBdJ2E94$YvVac~^W+C_@B{o(y%9&Vd94qO&^SbM+U< ze;DQ2j!QT){-FKiesl+K$(t;UAZmVlDAs_!cva++Thz7D}2iGY*w*5xqU@d5u!Qe+`BEwDtY^zkHm(odPl^>V6)h_uKo>rCI>#}ZAM1TBI?z~hSRW@f;~2!*PHyqJ78c6 zT9?@p_$gc@Ow*Gps+76Dy=g6&df9R7(JlfpEW#0O5qf(1?p64W8bFX0jVyUxK)r)! z5Yy!Z4Nc;__ypq(&js@~!p0eZM4m4>!^D_-*@7r7MX`?aY-k3#s)r3(L?Fjdj3ovZ z;ypkRMZg+^eBDJ)b%^z$!T*@@x9mt)LOG|myyoLPDHJG?R@99^;7h;}nSl?a0DVEw zXOw00V?k189eB-0caIEF?VF~q5`U1R|1(tUh5a%55}wwT0)1YpfOOF{WvC`>aZ&~r z<~#@?0pmR06sW`~d9-Z2gDLC`dwa{#t%0aU9$g0+INRqrtSMJQTA3+iQWf67r<5i4 zCIEAZy?@@Kk7;BnhB5K~F4Ew7EkZfvXoN<%rsT=Tt1rFp4!4H5GSE{LsB|zN*hjUH z5oARoSKC7P+bzz?7W%hZT_X|gmb(`J^~&6TJ7?{=nkhs+-8T^xhrZx5@4a{TO1t`@ zB1Q4(K>a=|?r|*bj#Q_5#_cQeYj-8WP6M)5Js=9)HxPnVbTdZ+SW7fp0iyBr6gYgd z0CVLR|MqV!ao}LSq!|+<2b+bTgmkAXX8ob3Dy(jx>j;$$02fAC_z6pQ?&*`am6t3* z_m2xbL;{tto{c13>Cc7Q)8z(v-JmlhxpqakK71PG*eU}w@c>Q^S&Xu9>ZT;bcyl~? zEO_uDEJk&vfDDoAYp7<7nD1uflg}*3eF3iv-%3FviITB=pHpP1+wsgdt=>8i^u_!| zx&B0V;-KjmI(5PO%FWfgv|%Bx9?ux%(f9)f`}*Y;T)+7oF?Qk`byjxk3pBVr*v{v!o`=#XuYLsZP#pEhw`2wk-=|Injm zPSd!j$e}i1uy+-lLnQj9^_;|Tlb`?*Cdg=*h9nKt2w6-k?HBeRyZh&mo*Bl-qeW(d zeGT8 z?hwFjg3#jXr^yYKhmFt<9%etH%0drFt_Krd)cz&llB$0i%&j-@214?!DxCl^YRK=p z>p<%P)7XpaqIR!C@0dV3ys^7Z^A;!CK4Ty6_u%2jCjeFj7>#KRgO3GoNb%lFO;J3s zPtsxQEFu^{5qJh^{k+_hBCHR)+LfQf&(10r@&edGptmG&KzX#tOR}c)V`yL}k`6eB z;My{oYw-oq77KGSD<1bTXywPsuu>&O0>)s-Zw%@168&@4u#z_=4f${Pffu1yBvwJB z<+zVzq)3|Wt+?OPX`pB2bregDMdB4f4_SzR`+XNTbRvREJ+W~~1Y^j|wM<8JjFIOc z>dgB9x-*BCdHr99svBOj@0U4zj$BiBBPFlk;=GTMjo4%MOXAM{@3X7AkDO8_4Dda0 zkc@Z2WN93_SXJ zsRMYG0(wQ&mb!sF)YM0iiVRLdr-BuabUDKodw>KKfd?=az0yUG<xg{FhXxAYh+}MZ(xp%XbG$}bd$o^D!^}cA4BMB1Frt{1^WI^ zUyKI?&oK#5UQk%cT*4H!z}6rf@FCv2#|^Os-ji$2lb)J-AkTDcKK(^u*1Zc{u#zZA zr<=m#5mpxc(A1PCRCL+j<=a#8mQ0n@77$2V8@DBFt`qRIqpgO_CfX9s$vAZ$uDWjw zISJ8ze|xkAfMyS(+U}|95MhpU_J65B^U-Uno$p9L<{J&Wlbnw`voMl#=~-}A&hZvo zVg>nJmJN#mVeOB<;8nXVY-C( z_6S#h(k)|CW;om(xacTv4XL8s+}1qlXdT%=x7>GT?jHdz)6)4$9@jJoFx-vJ@PVkp zjZpS%?a{mj{*#MZ*0OH#rr2BdL?561(IuLF`pJ@W5ArGOr%&k;=sg*DlN6?nwqWhM z8l7n`#&p7%tlD`dE2AY?=*z=~U`i8veGJkFgJLSoF}KpU_@cs}(Hg|x+{~_DlG$Ha zQyWmbud%M>hz5lwp`YEzZ9u)-0eiokLBid zt{Wj#niE{Z2|oZ6FSePhcJL&nU<*WF`#j7P&j${AdMFB}Q}8I)C*M z8~{wx)@P?Efuvdwr`ps9kWPTL<2&@nNpAh!t=l?)){^G$=L7S z3lBJS^fbRLjZ2#FN()~l0l$zC_DlH8sjQd2X_P+r=PXIwTjU%!EsR|^9fJumx#k+z zbIg;4LYe6`AHRn;5u!(`NKiKgJ*VaMd4Yy71{=_Lb?TFDv{mKZ$pk=00>$wPfG(Jr zW|;a%(KNcqL(z2Vpn-fwWGwKEO{HwVo+m~by@`Q^WhJwL^6AXYDlGgIM6E5JHHiwd z+O+a`UFc`{g9%Gg;ShcdUh1sL7B3i8_FCOL1&(VTz$##$y;rFhkzM3zO>NlFI(-@b zE~gV?BJ`TlL>S9iErm%%z7y-pT}?xZ(xdUwspKtRkHFf}W6p%&u5u4c*2j}#jQ`vA zk{%xuqVKPH7n6uRF1$s=b7NQZ_@M!3xTGGKV@Jj>i8WL238qUHUeH!Vwe0Znw7{CQrgkworEc%p8w7U?0%!JCQDG#g-qr3G) zGK2&rLnuSQqYNC`F-5e>RUVsEW)QT|bq^^$3c1$H>j$H2nut-iTNM2A3V>|NeqLf9+mZpH4+ z9M1-FwZ>3{nO-=~*U(5Y@D=Q&Tq12Uk+Pj6GjOa@c~g4oP>?B==9SzQHqL&|Lv@C* zewW!fa0@TmDQ$S0VVuGXv+jE#Yts()(lgM*@o}AEv%)Ege;I&sC+R1qGy*mDi3+ed zzyY6t!^^SAARK*pJb4S+fuq6R{v11&-`1(Cqfd=Hn0%kFE|(mZL!4feM_B1%W0CBa zTTec`&G=p(c3jyc&?n5JaLl!C2;LM$hf~jMVe!tlvUJIW7%k3zy~>v#a$QQc<7|2fBrlHw$&y3kAA=Ra*$yeNF6)spk4jK7KnLVkT8Azvfd1l8egi98G; zGYV3U>lRc?;s)#6S}xV59SEj}{>ag`-q=yMGa+8`mQd62+w<`6 zoW#(=8kbu)=#s@4n=LE`#&T^KEbK6j7bsU?g?|yMcY6Vp(6K+@RYsE}py(YI*g@e4 z!SmPT?jq$VQ zC(aARw7xA2Kc2os@C&f^i>RAHbw<;@6}%I+II)b_XFI{A)62d8670XpMYo`5hch@z zQgZfkKD-34b?JNo+d!%Qb0iOgg>oO4FW2lo${AuMC7BdoM5-_P|GWgRHmeM_J2(*1pZ%P??c%UueEm;L<3|L(6x zrvLNdHQ>eC=Q|q83Ja)UcW>$O)lJ{AiKwSc&z?|pq<`>*Ul89jQ!9j+@A7Dh`y$sz zA5j1EhF^Z2JFzk6C=FtrHhdqRzlq6lW_NI+{UOU%v_N7k4Ic%^>k7z^}p5b+pF#y{c+6o4JU z83yR0C7_dbn_>jt!>j+tgsc6&hUSCbf}?VXKg=~>AA=Rr^FB54NQ?WvxR~{~@DJi8 zoeC$!P-_duqSv@c-wLkITK^Fouez@VJ#!~TnVC^rn=IjPYsU%&3 zWU>OH;q=40ZHBti%b(%$o!*iFI*CPE1Xp@75@L82eKEgC-#=pGOEMJ?%-vZu3-^1+ zH^%jGzY4(5fcuO;IrK3cY{?v-&Wn21?r(+*2s}7}!&`Tu*rO}wNB~&wuU7vTUG)CM zYPqi=nCvI(gT4H#v$T5A0QtnjB(`@(6gbmSiUQLWrpkB##G3KnrL{)~b*s z+Rv_yZW#o1e-mlpO1vxykEHrPI@sIyja$`h8W$Tilf^g9<@t_%F6D}&))pe~F5OMh z1qM#+#J>8y=)ADQ|Z;!Lpq>&mNBTrGhUf!o%pfRE>t$;7%x2kX0!!KFa5wg zbF=J=YYr4^x=h5HJc!Qf{qXq>URJ3uU+>%VCx4rPUv{ZvGWlYK-&nSKPRsImv!$vE z20_Y1XVRWz={UC+NZul|&97ePCD(c6BMfL?tpJ2lbu4#nc?i@9vGJns^!~fP|CsX{ zQm5SZRj|0x$B4&Tpqmw@Mz7M*^4;oG;2|PW?yVy2{(`;{%a?b04 z({+m*-5ll~3TfZr;>eo(Dz?F~ujOyL@pcwv*~_PzYA72huU3(S`sA|aUSo(sbw3jM zEN*>uU|8XG#Z&w#Y9l>omuj9ZS$Nm`ptVod?F?5gO5K8jW&?Yrv2ytd8ohQE?2r0I+SC0VLufiaxk9;1r8MC+s1DQg^I1m2rqpg39eMb z?_nLMPBom;DfYlS7T>S?gAa5;n=_*-Hcqyf3&^nIsduWN;=|qJ%lfEbr63Rkt6e}t zegZv0Io%=;K-r52WsI?)#P&UvZ44L#HFs9}I%1j`fG zd>;uk2EFmn7p$w6o|#%(3qd8X9v*%7{V1G-oo|YnCs7N%U#Gj#m)9Rj`j49W<=3s} z5O~2R3cw3RSy?~Lf_pv?5<+q1QHt<#6GLmPNm4&)etCKSdJ+})J;~k@Pz^jdXxq%8 zo4+;&h(%@j8=%S77T~Rr^~ZeL{UaP1WV;Ao8rE{;!c{je$4ddTpJK>V#Hf1n^{sD& z(tw^Gj;q%E9g4Sa-?mpRlNjzt_lPdXE;ZO+zj0`xs@r`cR3m2Rke|KVb|%~&IzZrY zP4dZYw+*B{U2t%)@mycwyb;DgS^h@$<8@oyL*62ASnkwwMh5wH8u;aHy7SgN0%wtf z+#VR6rxiAQzdCn_Y+*j z=rCUVK5cXb9!NSspm}@@P)vw>rBMd~HC633EF-|jmS9sE(Xa*ukG43UX;{-?co{kC zYlt=HieDGfV>>X{%inQw&@z92uXO9!*j4)e3%w$??H;oX@^B3_fd6snY?BiRnD>^g z^VmMtrTXx4A_T)=wi#x7(Ejk+`?+Kd31lJ#ofi+^=;OS0AKv41AOt^iy`EQFmsc#!S_lMVeOa#G9w{5v!nD&ab1mzDWJ>j^&kAjPqahbs^0TlXVQkFyLn57f+EHKQKz${@L;F}i1b#9x%!D==gYMU#Hlp3fthr$ z(by(9*(x^K0~7U&P5Q?{>KKK(g?!h&egsY~&oqUCXaAU!N5f@|4*1Z3hJZzl3l}fL z&Yz?wsBoAt(Jx|xos(5(P+%eENv?7Y_Oq6u4%-rV6bG#Hk_@@dhEn4RaNQTy(B!6@@!; zf~?PQ3GbPTS1>%KF=S{SotFJi^{(!h+p8u z6y;-vamc|pHmMX>?H>}372K~2n&;{t7|`Mk-Op9j_fY_;EKAFD{o2kmR&gj4ytO?u zB|;DzQY2>BgzVEp-c%Fh=Z|^!7iz|Ybk}eyR*dtX3AC+)(bh{<4$NeAZ=T_z0L<(Pz!-Z%G`V=Z6&tt z61!EJ#m2#(9%5hIEbZ^RwWJBx5)J5v?}T7VM4`|JA_0VY{V*u@+;;669JH{i-FD== z_trawP_9aI4>k8GwmAn(9Xr`K0r>G5LdOL1Y2AU% zIv*gY2gWK;#`*UXzxD7xIW&YHP=D zj&pgLqOFJZ3dEiqB@#^j{(Ln^y&6cl1O;{p;7lU1!Hc?~rAdAz7n7aoLpi)QoAp~jOLdcC zN1RqMfHz~nLbgxPY;7!9m$9j7+aTnY+_CxE(d`DRq8l48+NG_kBSoLJ$Eg#GJu&J@ z@mvm1KL0Iy$}mA)N)?j`;iJs#>w|X6_=E0Ws$7hxJ6}!E?k>?ju})Mv=``dJy)E^^ zH=GTq*=9!itQ)V11V6nb8o9c(fW}(A1Dun4+cO%qymfv=Ldy}ah)?M6EJx$W(GSJ4 zUFN$4-J_O*6VZ7{oGgC420zayH0)li7!Y(pAe)hXbFq#HJ629S`H9zMc`SegWxBNb zO%0#-27+sq;&_d2$`E2ooV83d*HgpWL8+uAUOarX!eMp}bCc!m6#lB^E}6Akd9V1A z6q*#88UgT&#+7*&knem6g| zi?7|~3&@z}Oj5>k^oj>$;6JQrraM>LE*1^i_-@chXYPn#R2q2f#KQF4K!6B(tI9bktg&5$mO zrmg9EZLh8Sk$5z8O;$h$Cj4mM{h_QO#XIKm5EKkf4DW6aTb}gL(_ncDnyGa&vx$Fy zM>IfNEA1(96WUBoyc~K>D@f(4Ta9GHjx^c1-y2Ri&@2Z}uIzMs%CU*#-kQXgT(PQY zuaGJwtyd#hhEQws&#w!Io7cp9L(k0f<$b|le$gfkCN{}$Rk}DNzO}V=-K}6*$c!?O zoJ$bu?2ki(?WCotB|5xr&Ni{6uO*s$an+?MRjV*?>@t0pVWURPGAY*l8(<)ovNZPP zp60jt`qoEqI`s?p%`-E;&R<+6`_tMrO%jbVjvQAnh*S33>Ozwnzx!}f50n@RGnsop zWH_&#Nw0zH)|i$H%uVw^@`{gE1#(t2W%f>jvqk27Zqa6TKS_%k*^{{3C*Xt7wEaV_ zv$@9L#Dp8Q$Y{112iG2TjmUVMm>5SAF;B0qlP+efW+~V@1`sH}>=3B)^4*sLN)0Ew zFdphLXRsdaxfY@(@}tZPFN8HvtyWq)VvGn_ApKC7nclhHi>MVJXiG?Gq&-TB~wLbnzI&Xw@Xt!J2}ulh$YmzE}13M zv`3_jwp;)tcK8n)JgiCDe(k(g{b`M9j?vH`$d~y7(VC4HJvQBYE58`ktiIxM*#4Sw z`f#4FD3LDkeFZg_dh$Jcs2;sNDCp~Xpj#qxPhd|CZ0cvCQDj_WE(izZK=PTs5p0`u zDe15?ke`|*!=%-nZujJouG2szJbz{6{+Tp8_fk>_+szxE-|J`vlefAv_%Rb#22D}` zYnF9tgMLrhZOx@DTpGrI*|1nZY`@ve-`&c0q-+;mX~`2+@<(5+EOCx3(a+_|O{>36 zz(2O}qGXG)m8*J(+jN>nTzSYm67jvwsm1`1eq&uM0m)ZCRiB_IM!oxmyLQ z1$V8dEUAZ6Ls4{%yE|Wbt5CAGNL{saNdx*kuq`W z$eGt#2`9@YJBv4e|8Ts2z9>k;QhTXiT-WtAjqFvSEPj6eK3cZbLEYysCL<%Xt;*}C zo}|=>l1C#O$#S(Pm4+Hd#THzYd+`@9@B#ZUs}MLDbz<$VX_Z!+bhce*P4mlKM&YMc zY;uMC?UUOmbjTO}+RtcINiMJ*put~Zb!odeelE{2ZKP70Z^|We1!<-HlGeZc$GM(RSV&g8*CV%k=G#o}tn14s?f@i^K5_KRVanSlVH!W(wn+OG}1J zoWX!fuZ#n&@+=L1flMEzb>bG2SI!gfd7f8#MACkzbH|j~wC-5n-G1-_pW0JAb;zGn zw%ceiFWxcpJEzaAc*~o$nO*|Yq157^szO>|Hv82!72u-kRiBPrRqu6mn9d*fo~7iP z8CQy{*wA_f+?~%j*=Wn0H`mPs@MS1V&Jc|sWu+yNBM#FJ<<6Sa<{#_r98S2rwkfpV ztiBm#DN~y_LnCo{t7Gh@7T%#*ed{i#p1qiO^Yv(D*QDB3G&4S8)9G1SOY zQKBr3m+MdGJ<=CwDvnl)^HqKcXk+YlK@jqjZa2N4y<>m!Gx>0us=Rg z^QP{CLh)9yDOuq}x6=|o9%;8CA;G8@ETz(3eG<@c{Cj`9r?Is_D$P^g9&~w|aR51F zp8~B6%GW7%(+5{doPj`$&wLdT(}=dfTiG{_+lR^w&EARzkzYyEI!cYJl)ahDbLm8? z*X4@C@`nblFGxhH&kb+SJ303BFh+FFj1ebP2z8y6rMmC-e@gq#u%@!EZAV8PbkGq* z6a-WZRX_z{=%Ta)=}k(&f>IP1N+^MV9RUGFstmC~ji=v+BT*TL^nGT`R!|Uj3iA)2~OO?EqJ<^UEU8~0qB#3{`(W6GP3RMz5dq_B*Z4xBQ+_CHQoFM(P3c$cdL1Mu@q+a^AsJ z)ybPnxOUs&E|OWhSl5N=+_USscRz-_xN4>waqq;MR^Hb)61*25Qv^j0&+m3!x#QRN z%)+}xEsMDyTWTXS9_oys4aS8$vhsM(U zrgsh61+o*+NY^k{)zSg4wb8;zqIRa{gVjE&yE-@p;uVM|oOG|qFmRkJOz{*VJH4P@ z01AZxe(Z~7T*Fj2I_p3e>rK|lx0{TlEa znzoet8VUJXETbCX?uOndn|?EDhKa;=)ExCh`&{Hk*s!E>tXnlR)0RW#ky9<$k9*z{ z98&W_90 z>E)7Xus4g#3yR3J<4y+(dlRKrZslZtH$rkDQ4;5rd1t8((STo z?E5^NE*HN#70GiK-Nd7tr&FwBA6ootwD8vffzq&2mKISldunnVWJE&!&z)Zpmfh#k z;VvA)HVCtLru$EW@T1aQQl>@STeyY`C|8v1W2K#&QYRomKo@hO)LUmiS**J-oR1xD zmMxzsyT=D@=t0CQwkz~ymtuqh;5GF;554k1@+c!W>BXa2`TR&ZufI0ft{c}PWqXA! z*^9d!7AK{NW=O^7(sw) zEP9CLe7(pVjG##6@(EPIxbO4DZ!qJEZr`hvajelPWWKp!M{2d1>t-3TknbW$<+`-c z@|wpI^oc*g@`3XZ3LSnk1I>?0sLO_)u2?Xm2m_IC-4 zZEVmfh4sZFE32NaV>ZF82Xj$dXne)|t_Ux&Vsv-K9<2BjDU%>eB8q?#oMH*#pzQ&q)x8!i z>hdOZZ+7|fhv4;gqYS8~YBaYR_V5_5nmZ~2eZGJ!IICab=^|ZJi4rPn=kBS2WR)MFTDIHwbGZJ)dwhkV;P_bub@ zx{=P;Cm&O_gnT3O=K(X2+-i-vq2322OeJLPYe~OSU`wu?p?<_HL$tC~e>orB!|b== zju(ASj%ezv1c1(=wI;p+T6uv|6RTGsj7pEDow_>XcQ%>@&V`AfoL|`VG_6qo#V*0@ z=_N^#i*Wck_G3z8(bI15q*QUI#Y5-Dgj9^nIT1x>_QcG1e>q~uMQ40{9OWyjk@;40CqX+PTfqby^tBKG@64&<+bKEiR_d6?^LTLp(87L-*PN+rf_b!=UXF z`x#}6@mhts#L9W0%<^2xk6t9=-U3C_o-JzD1sCSM%p2JA(ZV%lUR~#tn~T|6Hmru? z>e6O)PsggcV*hEA441>@&z4ObAJNyxL&%}Cb>Gr8e^yyvwUy%ax)AbYvG!j4%Ucae zH~!d9+t$H9!`NYBDR9)ykEDP?#nnsKcHUj9Fwkwq--A&4cy;*@z;>^Gn|h8IuVa<4 z2NG>HgW2*C5J{mN8=JAeOFHjdW#&$`IqdvZfS|;vZFx%79+} zFU2*EGVJ*gr(a;EkC(dbxeQWQxxP% zeK2njn-Ydb$6I2(se!*G;)n~ybd#3?lMqPs*0lWU*bXdj+Dk4T(wTu)dR8=^<@-p_ z`4O1~1QT!HZD}NC`hD#mKQKk;p5RV%@u}iYakh?@Q9(^dOHVQf6s07XC6EN7)}b!H+({LNxLA-hI#jq zB8*yIY!p2D{tfqWVqXM}1Ix!B%npf}w8jxGKAY>E-6Xe)AYQN@gBWLIodZ5Gabt9; zEA`ADPju{84qy~5G9DhFowwqHi#^R<0O2-C=8tzHf9A^iO~W zz47!e#G2g*Q}JweO9t1Y`Jc<~jfCio1x8u@tXCt4&Le6l7H#e{Kq^sb(pf1G=LBI1 zED=|=0FJH-o5bS~q%R*@6n$g!AJ3(^6Oa@e;x508WWh#3PGZz;0n@#3! z6h}mDB{pE!=0%tTScz+FZFBp0nYtnq8uhu}Slk&TY7sCpEs8kP%TaJ#)Ui0%@GSRX3yyThuSd`aayMxtBbY5@)XsS|Q{rt549IncBIfAiv_cYj@;5fL> zhCThxZJH+yNc$gqdk?+oz<=^_~P_=zE=kf{YI6B$5KB+Vu_Kukm42Tz@Ip(wJu?JRVwkt6@uVTe^sMU#g0HdY-sD zBBjv2fRppY`OVN5rhq;d{ZZ#ue|7ce#t2qb|4dW4%W#Tw#@dHccMiEBsUm{bDHknf z+uLO3ZP%zu&HYT`QeKw+Q8Mpa;Wee9INdtKR7hl3^hjrQoo;YS>zh4S15&u6;I|7_ zj#@Bc^2M(4T0Cl6OWgG4>TD_^H6YbR)>B*oyrDqS?o%TO&1IbFVwPTfk(GxK(leBj?= zT|Sy@BfeRIzpVo%BDihM@-7QR=|V# zYrpK!D)E4w__qQYm<#HbKF!i9-zuh|`_e#@OM9!&00WXR5r6%(GcA}jjSLcW4V@HH z219khkdrGr5yN3~qz(|EolgEfJQuO7srmb3G@4Oo7@w))2_}M}zz_};u16+TL=OY% za)xRm{SR}1R`(UCHeb*~x`ce%Uhh3*$S*VBuuSSIR4YLAXvKXj746Oju5ILWuS}f? z`|k;fjap>tVH+v4KRrxULPmkI*P9m3v{!7nGJX9EXg}!HWXcpW@6~1F%~8~7Y2RHk zpCSP1nxWuSeNemc(*x0x%o3Ht7-lvkNed{LVsp|j%KlL{@4 z=^5~8Y1_ZnyY}hz{V$qhtMP*kn0ix0;m&*kHN-1qAlU#3hr?`L&kIlyi4@{wz z{`6}-q`J>uq%JVV(0v0SGe?cw*Rn)XQ{={SYJW#lKM=0Y2b~NYw}+<<7-LQX0n>*(T@F{Nh`exyUX5Q%El~J@WI`&sP`y(_j5?q zuBw+|*O*6SWIaPGG1CN0jYmOd7bGF$@Q>H__AF$+!z}54n?HI)ZL90bYvG%771QO7 zqf(bBcR_ja?sQpwr;J`<-h)H|#OV6pQMv@u^Q6NTN=o*s-a~Fr{ScipjIX&8+_zGD zlhQ1@&SzskPk_JoX;^7d8fr;S(pvxfO^3AZDjX`ru9Uo1%yo&G3!l>L0AiV$X{d$4 z7vaX0`=&37j54ZOt)jjJco&2UrBF!}>$x`(+_mIP9IGg=&}dX|r>d z>l4mbHG&o|+LyyTrO-+LWLG6`o>8ePd=#y zx)%@=PctX;n$yvj)})T>LWRzDvy6<4xcU-@=-uoO6wGqCiOMOQer~-|L0@j=^$w8? z`T*Dy-lwg4DGT$0*(>*0hYF4xk7y~_!^uJ6yoKzVXuw{>s7iPr$0&3OerGZIQp6YK z?22hStRY+(IqsNH$)YA-XYB1fRj$ih6bAxvt zT^t%A3$yuHQoP6OtY`kt_wbfZN~BHu%ov?1L7>wx>K}4a9ve~>#Sv}`Nr4O zMgrU#>Eq&@bkjCkv`*90Wggw*GTjhy{=u)Z4kz#tI`fmj@KH06g<--AOdg^5f}Kke zKmH^obEwYm)A^tJk~-v)j@xo=x(-ckXq*!x62quNe zXKnB>c){lc0W890Me2CfpR-Q*M(X4QLWT+Lk{ou{TXOCE?Jg~aT-7owZ%uP3B=5JM+tzP_0mE?qIjbx#?3#C}jv@HHpjHuA> zLr*OiDCa*QAK?3Etu6-F5ejS_lU`Z-o`c1Wqc69Vn&(e0J4gBtrPa#qQ)h>q;}0{ySyb z@QW;iRAqV3!r|kE3NrKJnCv1&^xhl8S)eshSrNXJY4&Z|O&~dA3j=an@Na_66ebU+dqF;w@V%wsOJIKjP~ZKeuynpz7ql@AAvne2=tR z)6_JcIuAQ)^g9f36rFQK`trhz<9}c42s2jQQzLJ6+LFW?;Z7x`QF8VZBeQliSqPXK zygL~8r9?k&#~VM=YM?nh?osJaXOjNz{!0AQM*C&pUW5MOp0d0Tk<9J+xAl`Q*sQx} zWBR0y5k>{ges2mpvKw~o%ZK!V);%P1=kh_FGwLSM$peo$PJ7W);x2b z`J)2nX}gjS+ubpZ7Ul1=EP`}{j&q-uFk zvEEfV_%Aok%Fvu_`NFA2bCR?%8xqo1A{*Pj$gW{N$Lm)yOO_w?<#SFH6>{ZMpxG0J zpBvD-iiPu;&OTW~iHR$a=?vA)K}vewcmb<&g>_Jsd(%CR6pXjO?uGVLe+r84l_I=< z?{-9kSNBm;uY!k1oVSMhzw=FYgQl4S*9O{l{behGdotd?3MI^; zOmiFnY#6!%weC*Fo z^B9f_sfR6NxxX}^uGtcl%28x3A(&}y3rzA%2ka(xA-4+y_J7Ul!qhM)NIYz&f=vCY zWpMT#(WCyMV%hD>Jv%DMU(vezT^&n@f7PFB5G(zYXJdEBv#epfph z;~3oY%SZ6pbkxRc`>aRGsD@8t%(;o}C=aySZE zKs&@|@=D!gx!MG=H(Z*rh5q$8qk-y}KzdEN%OA8^F z{tPmwT1>->jC|8^!y+EP9Zkovn`ab;^|imz0(90^qFcs2H{Y>X$`8fUw_T0_DxuNE z%D(7_9g4PWRR_}v)9+@!{c)S7ZYSUfT1wG2_0Y zJqob|H8ZlzAKn{uw*hXWOVX7;*3~Z_01%IK&D`?G4Lbdy3Di3^pP2rSNBZ__P7QDb z%_xM$pnvQ(+6JzzJ`jEL$L>TDm}}$aJ7`T2{C=YTe_nyxhatC7lbPF(on>?dXv4K< z{j)Lthl}eo)N^J}(6NmFSi1h}UuS)R`D@T=X+QhN#!|k^lP%(Xrrl zj8@_brGKbA|3AL!v$?|$U?wTGxPJo0|FR9G|FW*j(hs;P^GuJo1^mDb%=F97UApuC E0Ac2$1ONa4 literal 0 HcmV?d00001 diff --git a/ComputerVision/cnns/evaluate.sh b/ComputerVision/cnns/evaluate.sh new file mode 100644 index 0000000..b669f18 --- /dev/null +++ b/ComputerVision/cnns/evaluate.sh @@ -0,0 +1,19 @@ +rm -rf core.* + +# Set up dataset root dir +DATA_ROOT=/dataset/ImageNet/ofrecord + +# Set up model path, e.g. : vgg16_of_best_model_val_top1_721 alexnet_of_best_model_val_top1_54762 +MODEL_LOAD_DIR="resnet_v15_of_best_model_val_top1_77318" + + python3 of_cnn_evaluate.py \ + --num_epochs=3 \ + --num_val_examples=50000 \ + --model_load_dir=$MODEL_LOAD_DIR \ + --val_data_dir=$DATA_ROOT/validation \ + --val_data_part_num=256 \ + --num_nodes=1 \ + --node_ips='127.0.0.1' \ + --gpu_num_per_node=4 \ + --val_batch_size_per_device=64 \ + --model="resnet50" diff --git a/ComputerVision/cnns/imagenet1000_clsidx_to_labels.py b/ComputerVision/cnns/imagenet1000_clsidx_to_labels.py new file mode 100755 index 0000000..e5109b3 --- /dev/null +++ b/ComputerVision/cnns/imagenet1000_clsidx_to_labels.py @@ -0,0 +1,1002 @@ +clsidx_2_labels = { + 0: 'tench, Tinca tinca', + 1: 'goldfish, Carassius auratus', + 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', + 3: 'tiger shark, Galeocerdo cuvieri', + 4: 'hammerhead, hammerhead shark', + 5: 'electric ray, crampfish, numbfish, torpedo', + 6: 'stingray', + 7: 'cock', + 8: 'hen', + 9: 'ostrich, Struthio camelus', + 10: 'brambling, Fringilla montifringilla', + 11: 'goldfinch, Carduelis carduelis', + 12: 'house finch, linnet, Carpodacus mexicanus', + 13: 'junco, snowbird', + 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea', + 15: 'robin, American robin, Turdus migratorius', + 16: 'bulbul', + 17: 'jay', + 18: 'magpie', + 19: 'chickadee', + 20: 'water ouzel, dipper', + 21: 'kite', + 22: 'bald eagle, American eagle, Haliaeetus leucocephalus', + 23: 'vulture', + 24: 'great grey owl, great gray owl, Strix nebulosa', + 25: 'European fire salamander, Salamandra salamandra', + 26: 'common newt, Triturus vulgaris', + 27: 'eft', + 28: 'spotted salamander, Ambystoma maculatum', + 29: 'axolotl, mud puppy, Ambystoma mexicanum', + 30: 'bullfrog, Rana catesbeiana', + 31: 'tree frog, tree-frog', + 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', + 33: 'loggerhead, loggerhead turtle, Caretta caretta', + 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', + 35: 'mud turtle', + 36: 'terrapin', + 37: 'box turtle, box tortoise', + 38: 'banded gecko', + 39: 'common iguana, iguana, Iguana iguana', + 40: 'American chameleon, anole, Anolis carolinensis', + 41: 'whiptail, whiptail lizard', + 42: 'agama', + 43: 'frilled lizard, Chlamydosaurus kingi', + 44: 'alligator lizard', + 45: 'Gila monster, Heloderma suspectum', + 46: 'green lizard, Lacerta viridis', + 47: 'African chameleon, Chamaeleo chamaeleon', + 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', + 49: 'African crocodile, Nile crocodile, Crocodylus niloticus', + 50: 'American alligator, Alligator mississipiensis', + 51: 'triceratops', + 52: 'thunder snake, worm snake, Carphophis amoenus', + 53: 'ringneck snake, ring-necked snake, ring snake', + 54: 'hognose snake, puff adder, sand viper', + 55: 'green snake, grass snake', + 56: 'king snake, kingsnake', + 57: 'garter snake, grass snake', + 58: 'water snake', + 59: 'vine snake', + 60: 'night snake, Hypsiglena torquata', + 61: 'boa constrictor, Constrictor constrictor', + 62: 'rock python, rock snake, Python sebae', + 63: 'Indian cobra, Naja naja', + 64: 'green mamba', + 65: 'sea snake', + 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus', + 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus', + 68: 'sidewinder, horned rattlesnake, Crotalus cerastes', + 69: 'trilobite', + 70: 'harvestman, daddy longlegs, Phalangium opilio', + 71: 'scorpion', + 72: 'black and gold garden spider, Argiope aurantia', + 73: 'barn spider, Araneus cavaticus', + 74: 'garden spider, Aranea diademata', + 75: 'black widow, Latrodectus mactans', + 76: 'tarantula', + 77: 'wolf spider, hunting spider', + 78: 'tick', + 79: 'centipede', + 80: 'black grouse', + 81: 'ptarmigan', + 82: 'ruffed grouse, partridge, Bonasa umbellus', + 83: 'prairie chicken, prairie grouse, prairie fowl', + 84: 'peacock', + 85: 'quail', + 86: 'partridge', + 87: 'African grey, African gray, Psittacus erithacus', + 88: 'macaw', + 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', + 90: 'lorikeet', + 91: 'coucal', + 92: 'bee eater', + 93: 'hornbill', + 94: 'hummingbird', + 95: 'jacamar', + 96: 'toucan', + 97: 'drake', + 98: 'red-breasted merganser, Mergus serrator', + 99: 'goose', + 100: 'black swan, Cygnus atratus', + 101: 'tusker', + 102: 'echidna, spiny anteater, anteater', + 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', + 104: 'wallaby, brush kangaroo', + 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', + 106: 'wombat', + 107: 'jellyfish', + 108: 'sea anemone, anemone', + 109: 'brain coral', + 110: 'flatworm, platyhelminth', + 111: 'nematode, nematode worm, roundworm', + 112: 'conch', + 113: 'snail', + 114: 'slug', + 115: 'sea slug, nudibranch', + 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore', + 117: 'chambered nautilus, pearly nautilus, nautilus', + 118: 'Dungeness crab, Cancer magister', + 119: 'rock crab, Cancer irroratus', + 120: 'fiddler crab', + 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', + 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus', + 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', + 124: 'crayfish, crawfish, crawdad, crawdaddy', + 125: 'hermit crab', + 126: 'isopod', + 127: 'white stork, Ciconia ciconia', + 128: 'black stork, Ciconia nigra', + 129: 'spoonbill', + 130: 'flamingo', + 131: 'little blue heron, Egretta caerulea', + 132: 'American egret, great white heron, Egretta albus', + 133: 'bittern', + 134: 'crane', + 135: 'limpkin, Aramus pictus', + 136: 'European gallinule, Porphyrio porphyrio', + 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana', + 138: 'bustard', + 139: 'ruddy turnstone, Arenaria interpres', + 140: 'red-backed sandpiper, dunlin, Erolia alpina', + 141: 'redshank, Tringa totanus', + 142: 'dowitcher', + 143: 'oystercatcher, oyster catcher', + 144: 'pelican', + 145: 'king penguin, Aptenodytes patagonica', + 146: 'albatross, mollymawk', + 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', + 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', + 149: 'dugong, Dugong dugon', + 150: 'sea lion', + 151: 'Chihuahua', + 152: 'Japanese spaniel', + 153: 'Maltese dog, Maltese terrier, Maltese', + 154: 'Pekinese, Pekingese, Peke', + 155: 'Shih-Tzu', + 156: 'Blenheim spaniel', + 157: 'papillon', + 158: 'toy terrier', + 159: 'Rhodesian ridgeback', + 160: 'Afghan hound, Afghan', + 161: 'basset, basset hound', + 162: 'beagle', + 163: 'bloodhound, sleuthhound', + 164: 'bluetick', + 165: 'black-and-tan coonhound', + 166: 'Walker hound, Walker foxhound', + 167: 'English foxhound', + 168: 'redbone', + 169: 'borzoi, Russian wolfhound', + 170: 'Irish wolfhound', + 171: 'Italian greyhound', + 172: 'whippet', + 173: 'Ibizan hound, Ibizan Podenco', + 174: 'Norwegian elkhound, elkhound', + 175: 'otterhound, otter hound', + 176: 'Saluki, gazelle hound', + 177: 'Scottish deerhound, deerhound', + 178: 'Weimaraner', + 179: 'Staffordshire bullterrier, Staffordshire bull terrier', + 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', + 181: 'Bedlington terrier', + 182: 'Border terrier', + 183: 'Kerry blue terrier', + 184: 'Irish terrier', + 185: 'Norfolk terrier', + 186: 'Norwich terrier', + 187: 'Yorkshire terrier', + 188: 'wire-haired fox terrier', + 189: 'Lakeland terrier', + 190: 'Sealyham terrier, Sealyham', + 191: 'Airedale, Airedale terrier', + 192: 'cairn, cairn terrier', + 193: 'Australian terrier', + 194: 'Dandie Dinmont, Dandie Dinmont terrier', + 195: 'Boston bull, Boston terrier', + 196: 'miniature schnauzer', + 197: 'giant schnauzer', + 198: 'standard schnauzer', + 199: 'Scotch terrier, Scottish terrier, Scottie', + 200: 'Tibetan terrier, chrysanthemum dog', + 201: 'silky terrier, Sydney silky', + 202: 'soft-coated wheaten terrier', + 203: 'West Highland white terrier', + 204: 'Lhasa, Lhasa apso', + 205: 'flat-coated retriever', + 206: 'curly-coated retriever', + 207: 'golden retriever', + 208: 'Labrador retriever', + 209: 'Chesapeake Bay retriever', + 210: 'German short-haired pointer', + 211: 'vizsla, Hungarian pointer', + 212: 'English setter', + 213: 'Irish setter, red setter', + 214: 'Gordon setter', + 215: 'Brittany spaniel', + 216: 'clumber, clumber spaniel', + 217: 'English springer, English springer spaniel', + 218: 'Welsh springer spaniel', + 219: 'cocker spaniel, English cocker spaniel, cocker', + 220: 'Sussex spaniel', + 221: 'Irish water spaniel', + 222: 'kuvasz', + 223: 'schipperke', + 224: 'groenendael', + 225: 'malinois', + 226: 'briard', + 227: 'kelpie', + 228: 'komondor', + 229: 'Old English sheepdog, bobtail', + 230: 'Shetland sheepdog, Shetland sheep dog, Shetland', + 231: 'collie', + 232: 'Border collie', + 233: 'Bouvier des Flandres, Bouviers des Flandres', + 234: 'Rottweiler', + 235: 'German shepherd, German shepherd dog, German police dog, alsatian', + 236: 'Doberman, Doberman pinscher', + 237: 'miniature pinscher', + 238: 'Greater Swiss Mountain dog', + 239: 'Bernese mountain dog', + 240: 'Appenzeller', + 241: 'EntleBucher', + 242: 'boxer', + 243: 'bull mastiff', + 244: 'Tibetan mastiff', + 245: 'French bulldog', + 246: 'Great Dane', + 247: 'Saint Bernard, St Bernard', + 248: 'Eskimo dog, husky', + 249: 'malamute, malemute, Alaskan malamute', + 250: 'Siberian husky', + 251: 'dalmatian, coach dog, carriage dog', + 252: 'affenpinscher, monkey pinscher, monkey dog', + 253: 'basenji', + 254: 'pug, pug-dog', + 255: 'Leonberg', + 256: 'Newfoundland, Newfoundland dog', + 257: 'Great Pyrenees', + 258: 'Samoyed, Samoyede', + 259: 'Pomeranian', + 260: 'chow, chow chow', + 261: 'keeshond', + 262: 'Brabancon griffon', + 263: 'Pembroke, Pembroke Welsh corgi', + 264: 'Cardigan, Cardigan Welsh corgi', + 265: 'toy poodle', + 266: 'miniature poodle', + 267: 'standard poodle', + 268: 'Mexican hairless', + 269: 'timber wolf, grey wolf, gray wolf, Canis lupus', + 270: 'white wolf, Arctic wolf, Canis lupus tundrarum', + 271: 'red wolf, maned wolf, Canis rufus, Canis niger', + 272: 'coyote, prairie wolf, brush wolf, Canis latrans', + 273: 'dingo, warrigal, warragal, Canis dingo', + 274: 'dhole, Cuon alpinus', + 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus', + 276: 'hyena, hyaena', + 277: 'red fox, Vulpes vulpes', + 278: 'kit fox, Vulpes macrotis', + 279: 'Arctic fox, white fox, Alopex lagopus', + 280: 'grey fox, gray fox, Urocyon cinereoargenteus', + 281: 'tabby, tabby cat', + 282: 'tiger cat', + 283: 'Persian cat', + 284: 'Siamese cat, Siamese', + 285: 'Egyptian cat', + 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', + 287: 'lynx, catamount', + 288: 'leopard, Panthera pardus', + 289: 'snow leopard, ounce, Panthera uncia', + 290: 'jaguar, panther, Panthera onca, Felis onca', + 291: 'lion, king of beasts, Panthera leo', + 292: 'tiger, Panthera tigris', + 293: 'cheetah, chetah, Acinonyx jubatus', + 294: 'brown bear, bruin, Ursus arctos', + 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus', + 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', + 297: 'sloth bear, Melursus ursinus, Ursus ursinus', + 298: 'mongoose', + 299: 'meerkat, mierkat', + 300: 'tiger beetle', + 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', + 302: 'ground beetle, carabid beetle', + 303: 'long-horned beetle, longicorn, longicorn beetle', + 304: 'leaf beetle, chrysomelid', + 305: 'dung beetle', + 306: 'rhinoceros beetle', + 307: 'weevil', + 308: 'fly', + 309: 'bee', + 310: 'ant, emmet, pismire', + 311: 'grasshopper, hopper', + 312: 'cricket', + 313: 'walking stick, walkingstick, stick insect', + 314: 'cockroach, roach', + 315: 'mantis, mantid', + 316: 'cicada, cicala', + 317: 'leafhopper', + 318: 'lacewing, lacewing fly', + 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", + 320: 'damselfly', + 321: 'admiral', + 322: 'ringlet, ringlet butterfly', + 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', + 324: 'cabbage butterfly', + 325: 'sulphur butterfly, sulfur butterfly', + 326: 'lycaenid, lycaenid butterfly', + 327: 'starfish, sea star', + 328: 'sea urchin', + 329: 'sea cucumber, holothurian', + 330: 'wood rabbit, cottontail, cottontail rabbit', + 331: 'hare', + 332: 'Angora, Angora rabbit', + 333: 'hamster', + 334: 'porcupine, hedgehog', + 335: 'fox squirrel, eastern fox squirrel, Sciurus niger', + 336: 'marmot', + 337: 'beaver', + 338: 'guinea pig, Cavia cobaya', + 339: 'sorrel', + 340: 'zebra', + 341: 'hog, pig, grunter, squealer, Sus scrofa', + 342: 'wild boar, boar, Sus scrofa', + 343: 'warthog', + 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius', + 345: 'ox', + 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', + 347: 'bison', + 348: 'ram, tup', + 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis', + 350: 'ibex, Capra ibex', + 351: 'hartebeest', + 352: 'impala, Aepyceros melampus', + 353: 'gazelle', + 354: 'Arabian camel, dromedary, Camelus dromedarius', + 355: 'llama', + 356: 'weasel', + 357: 'mink', + 358: 'polecat, fitch, foulmart, foumart, Mustela putorius', + 359: 'black-footed ferret, ferret, Mustela nigripes', + 360: 'otter', + 361: 'skunk, polecat, wood pussy', + 362: 'badger', + 363: 'armadillo', + 364: 'three-toed sloth, ai, Bradypus tridactylus', + 365: 'orangutan, orang, orangutang, Pongo pygmaeus', + 366: 'gorilla, Gorilla gorilla', + 367: 'chimpanzee, chimp, Pan troglodytes', + 368: 'gibbon, Hylobates lar', + 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus', + 370: 'guenon, guenon monkey', + 371: 'patas, hussar monkey, Erythrocebus patas', + 372: 'baboon', + 373: 'macaque', + 374: 'langur', + 375: 'colobus, colobus monkey', + 376: 'proboscis monkey, Nasalis larvatus', + 377: 'marmoset', + 378: 'capuchin, ringtail, Cebus capucinus', + 379: 'howler monkey, howler', + 380: 'titi, titi monkey', + 381: 'spider monkey, Ateles geoffroyi', + 382: 'squirrel monkey, Saimiri sciureus', + 383: 'Madagascar cat, ring-tailed lemur, Lemur catta', + 384: 'indri, indris, Indri indri, Indri brevicaudatus', + 385: 'Indian elephant, Elephas maximus', + 386: 'African elephant, Loxodonta africana', + 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', + 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', + 389: 'barracouta, snoek', + 390: 'eel', + 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', + 392: 'rock beauty, Holocanthus tricolor', + 393: 'anemone fish', + 394: 'sturgeon', + 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus', + 396: 'lionfish', + 397: 'puffer, pufferfish, blowfish, globefish', + 398: 'abacus', + 399: 'abaya', + 400: "academic gown, academic robe, judge's robe", + 401: 'accordion, piano accordion, squeeze box', + 402: 'acoustic guitar', + 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier', + 404: 'airliner', + 405: 'airship, dirigible', + 406: 'altar', + 407: 'ambulance', + 408: 'amphibian, amphibious vehicle', + 409: 'analog clock', + 410: 'apiary, bee house', + 411: 'apron', + 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', + 413: 'assault rifle, assault gun', + 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack', + 415: 'bakery, bakeshop, bakehouse', + 416: 'balance beam, beam', + 417: 'balloon', + 418: 'ballpoint, ballpoint pen, ballpen, Biro', + 419: 'Band Aid', + 420: 'banjo', + 421: 'bannister, banister, balustrade, balusters, handrail', + 422: 'barbell', + 423: 'barber chair', + 424: 'barbershop', + 425: 'barn', + 426: 'barometer', + 427: 'barrel, cask', + 428: 'barrow, garden cart, lawn cart, wheelbarrow', + 429: 'baseball', + 430: 'basketball', + 431: 'bassinet', + 432: 'bassoon', + 433: 'bathing cap, swimming cap', + 434: 'bath towel', + 435: 'bathtub, bathing tub, bath, tub', + 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon', + 437: 'beacon, lighthouse, beacon light, pharos', + 438: 'beaker', + 439: 'bearskin, busby, shako', + 440: 'beer bottle', + 441: 'beer glass', + 442: 'bell cote, bell cot', + 443: 'bib', + 444: 'bicycle-built-for-two, tandem bicycle, tandem', + 445: 'bikini, two-piece', + 446: 'binder, ring-binder', + 447: 'binoculars, field glasses, opera glasses', + 448: 'birdhouse', + 449: 'boathouse', + 450: 'bobsled, bobsleigh, bob', + 451: 'bolo tie, bolo, bola tie, bola', + 452: 'bonnet, poke bonnet', + 453: 'bookcase', + 454: 'bookshop, bookstore, bookstall', + 455: 'bottlecap', + 456: 'bow', + 457: 'bow tie, bow-tie, bowtie', + 458: 'brass, memorial tablet, plaque', + 459: 'brassiere, bra, bandeau', + 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty', + 461: 'breastplate, aegis, egis', + 462: 'broom', + 463: 'bucket, pail', + 464: 'buckle', + 465: 'bulletproof vest', + 466: 'bullet train, bullet', + 467: 'butcher shop, meat market', + 468: 'cab, hack, taxi, taxicab', + 469: 'caldron, cauldron', + 470: 'candle, taper, wax light', + 471: 'cannon', + 472: 'canoe', + 473: 'can opener, tin opener', + 474: 'cardigan', + 475: 'car mirror', + 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig', + 477: "carpenter's kit, tool kit", + 478: 'carton', + 479: 'car wheel', + 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', + 481: 'cassette', + 482: 'cassette player', + 483: 'castle', + 484: 'catamaran', + 485: 'CD player', + 486: 'cello, violoncello', + 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone', + 488: 'chain', + 489: 'chainlink fence', + 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', + 491: 'chain saw, chainsaw', + 492: 'chest', + 493: 'chiffonier, commode', + 494: 'chime, bell, gong', + 495: 'china cabinet, china closet', + 496: 'Christmas stocking', + 497: 'church, church building', + 498: 'cinema, movie theater, movie theatre, movie house, picture palace', + 499: 'cleaver, meat cleaver, chopper', + 500: 'cliff dwelling', + 501: 'cloak', + 502: 'clog, geta, patten, sabot', + 503: 'cocktail shaker', + 504: 'coffee mug', + 505: 'coffeepot', + 506: 'coil, spiral, volute, whorl, helix', + 507: 'combination lock', + 508: 'computer keyboard, keypad', + 509: 'confectionery, confectionary, candy store', + 510: 'container ship, containership, container vessel', + 511: 'convertible', + 512: 'corkscrew, bottle screw', + 513: 'cornet, horn, trumpet, trump', + 514: 'cowboy boot', + 515: 'cowboy hat, ten-gallon hat', + 516: 'cradle', + 517: 'crane', + 518: 'crash helmet', + 519: 'crate', + 520: 'crib, cot', + 521: 'Crock Pot', + 522: 'croquet ball', + 523: 'crutch', + 524: 'cuirass', + 525: 'dam, dike, dyke', + 526: 'desk', + 527: 'desktop computer', + 528: 'dial telephone, dial phone', + 529: 'diaper, nappy, napkin', + 530: 'digital clock', + 531: 'digital watch', + 532: 'dining table, board', + 533: 'dishrag, dishcloth', + 534: 'dishwasher, dish washer, dishwashing machine', + 535: 'disk brake, disc brake', + 536: 'dock, dockage, docking facility', + 537: 'dogsled, dog sled, dog sleigh', + 538: 'dome', + 539: 'doormat, welcome mat', + 540: 'drilling platform, offshore rig', + 541: 'drum, membranophone, tympan', + 542: 'drumstick', + 543: 'dumbbell', + 544: 'Dutch oven', + 545: 'electric fan, blower', + 546: 'electric guitar', + 547: 'electric locomotive', + 548: 'entertainment center', + 549: 'envelope', + 550: 'espresso maker', + 551: 'face powder', + 552: 'feather boa, boa', + 553: 'file, file cabinet, filing cabinet', + 554: 'fireboat', + 555: 'fire engine, fire truck', + 556: 'fire screen, fireguard', + 557: 'flagpole, flagstaff', + 558: 'flute, transverse flute', + 559: 'folding chair', + 560: 'football helmet', + 561: 'forklift', + 562: 'fountain', + 563: 'fountain pen', + 564: 'four-poster', + 565: 'freight car', + 566: 'French horn, horn', + 567: 'frying pan, frypan, skillet', + 568: 'fur coat', + 569: 'garbage truck, dustcart', + 570: 'gasmask, respirator, gas helmet', + 571: 'gas pump, gasoline pump, petrol pump, island dispenser', + 572: 'goblet', + 573: 'go-kart', + 574: 'golf ball', + 575: 'golfcart, golf cart', + 576: 'gondola', + 577: 'gong, tam-tam', + 578: 'gown', + 579: 'grand piano, grand', + 580: 'greenhouse, nursery, glasshouse', + 581: 'grille, radiator grille', + 582: 'grocery store, grocery, food market, market', + 583: 'guillotine', + 584: 'hair slide', + 585: 'hair spray', + 586: 'half track', + 587: 'hammer', + 588: 'hamper', + 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier', + 590: 'hand-held computer, hand-held microcomputer', + 591: 'handkerchief, hankie, hanky, hankey', + 592: 'hard disc, hard disk, fixed disk', + 593: 'harmonica, mouth organ, harp, mouth harp', + 594: 'harp', + 595: 'harvester, reaper', + 596: 'hatchet', + 597: 'holster', + 598: 'home theater, home theatre', + 599: 'honeycomb', + 600: 'hook, claw', + 601: 'hoopskirt, crinoline', + 602: 'horizontal bar, high bar', + 603: 'horse cart, horse-cart', + 604: 'hourglass', + 605: 'iPod', + 606: 'iron, smoothing iron', + 607: "jack-o'-lantern", + 608: 'jean, blue jean, denim', + 609: 'jeep, landrover', + 610: 'jersey, T-shirt, tee shirt', + 611: 'jigsaw puzzle', + 612: 'jinrikisha, ricksha, rickshaw', + 613: 'joystick', + 614: 'kimono', + 615: 'knee pad', + 616: 'knot', + 617: 'lab coat, laboratory coat', + 618: 'ladle', + 619: 'lampshade, lamp shade', + 620: 'laptop, laptop computer', + 621: 'lawn mower, mower', + 622: 'lens cap, lens cover', + 623: 'letter opener, paper knife, paperknife', + 624: 'library', + 625: 'lifeboat', + 626: 'lighter, light, igniter, ignitor', + 627: 'limousine, limo', + 628: 'liner, ocean liner', + 629: 'lipstick, lip rouge', + 630: 'Loafer', + 631: 'lotion', + 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', + 633: "loupe, jeweler's loupe", + 634: 'lumbermill, sawmill', + 635: 'magnetic compass', + 636: 'mailbag, postbag', + 637: 'mailbox, letter box', + 638: 'maillot', + 639: 'maillot, tank suit', + 640: 'manhole cover', + 641: 'maraca', + 642: 'marimba, xylophone', + 643: 'mask', + 644: 'matchstick', + 645: 'maypole', + 646: 'maze, labyrinth', + 647: 'measuring cup', + 648: 'medicine chest, medicine cabinet', + 649: 'megalith, megalithic structure', + 650: 'microphone, mike', + 651: 'microwave, microwave oven', + 652: 'military uniform', + 653: 'milk can', + 654: 'minibus', + 655: 'miniskirt, mini', + 656: 'minivan', + 657: 'missile', + 658: 'mitten', + 659: 'mixing bowl', + 660: 'mobile home, manufactured home', + 661: 'Model T', + 662: 'modem', + 663: 'monastery', + 664: 'monitor', + 665: 'moped', + 666: 'mortar', + 667: 'mortarboard', + 668: 'mosque', + 669: 'mosquito net', + 670: 'motor scooter, scooter', + 671: 'mountain bike, all-terrain bike, off-roader', + 672: 'mountain tent', + 673: 'mouse, computer mouse', + 674: 'mousetrap', + 675: 'moving van', + 676: 'muzzle', + 677: 'nail', + 678: 'neck brace', + 679: 'necklace', + 680: 'nipple', + 681: 'notebook, notebook computer', + 682: 'obelisk', + 683: 'oboe, hautboy, hautbois', + 684: 'ocarina, sweet potato', + 685: 'odometer, hodometer, mileometer, milometer', + 686: 'oil filter', + 687: 'organ, pipe organ', + 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO', + 689: 'overskirt', + 690: 'oxcart', + 691: 'oxygen mask', + 692: 'packet', + 693: 'paddle, boat paddle', + 694: 'paddlewheel, paddle wheel', + 695: 'padlock', + 696: 'paintbrush', + 697: "pajama, pyjama, pj's, jammies", + 698: 'palace', + 699: 'panpipe, pandean pipe, syrinx', + 700: 'paper towel', + 701: 'parachute, chute', + 702: 'parallel bars, bars', + 703: 'park bench', + 704: 'parking meter', + 705: 'passenger car, coach, carriage', + 706: 'patio, terrace', + 707: 'pay-phone, pay-station', + 708: 'pedestal, plinth, footstall', + 709: 'pencil box, pencil case', + 710: 'pencil sharpener', + 711: 'perfume, essence', + 712: 'Petri dish', + 713: 'photocopier', + 714: 'pick, plectrum, plectron', + 715: 'pickelhaube', + 716: 'picket fence, paling', + 717: 'pickup, pickup truck', + 718: 'pier', + 719: 'piggy bank, penny bank', + 720: 'pill bottle', + 721: 'pillow', + 722: 'ping-pong ball', + 723: 'pinwheel', + 724: 'pirate, pirate ship', + 725: 'pitcher, ewer', + 726: "plane, carpenter's plane, woodworking plane", + 727: 'planetarium', + 728: 'plastic bag', + 729: 'plate rack', + 730: 'plow, plough', + 731: "plunger, plumber's helper", + 732: 'Polaroid camera, Polaroid Land camera', + 733: 'pole', + 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', + 735: 'poncho', + 736: 'pool table, billiard table, snooker table', + 737: 'pop bottle, soda bottle', + 738: 'pot, flowerpot', + 739: "potter's wheel", + 740: 'power drill', + 741: 'prayer rug, prayer mat', + 742: 'printer', + 743: 'prison, prison house', + 744: 'projectile, missile', + 745: 'projector', + 746: 'puck, hockey puck', + 747: 'punching bag, punch bag, punching ball, punchball', + 748: 'purse', + 749: 'quill, quill pen', + 750: 'quilt, comforter, comfort, puff', + 751: 'racer, race car, racing car', + 752: 'racket, racquet', + 753: 'radiator', + 754: 'radio, wireless', + 755: 'radio telescope, radio reflector', + 756: 'rain barrel', + 757: 'recreational vehicle, RV, R.V.', + 758: 'reel', + 759: 'reflex camera', + 760: 'refrigerator, icebox', + 761: 'remote control, remote', + 762: 'restaurant, eating house, eating place, eatery', + 763: 'revolver, six-gun, six-shooter', + 764: 'rifle', + 765: 'rocking chair, rocker', + 766: 'rotisserie', + 767: 'rubber eraser, rubber, pencil eraser', + 768: 'rugby ball', + 769: 'rule, ruler', + 770: 'running shoe', + 771: 'safe', + 772: 'safety pin', + 773: 'saltshaker, salt shaker', + 774: 'sandal', + 775: 'sarong', + 776: 'sax, saxophone', + 777: 'scabbard', + 778: 'scale, weighing machine', + 779: 'school bus', + 780: 'schooner', + 781: 'scoreboard', + 782: 'screen, CRT screen', + 783: 'screw', + 784: 'screwdriver', + 785: 'seat belt, seatbelt', + 786: 'sewing machine', + 787: 'shield, buckler', + 788: 'shoe shop, shoe-shop, shoe store', + 789: 'shoji', + 790: 'shopping basket', + 791: 'shopping cart', + 792: 'shovel', + 793: 'shower cap', + 794: 'shower curtain', + 795: 'ski', + 796: 'ski mask', + 797: 'sleeping bag', + 798: 'slide rule, slipstick', + 799: 'sliding door', + 800: 'slot, one-armed bandit', + 801: 'snorkel', + 802: 'snowmobile', + 803: 'snowplow, snowplough', + 804: 'soap dispenser', + 805: 'soccer ball', + 806: 'sock', + 807: 'solar dish, solar collector, solar furnace', + 808: 'sombrero', + 809: 'soup bowl', + 810: 'space bar', + 811: 'space heater', + 812: 'space shuttle', + 813: 'spatula', + 814: 'speedboat', + 815: "spider web, spider's web", + 816: 'spindle', + 817: 'sports car, sport car', + 818: 'spotlight, spot', + 819: 'stage', + 820: 'steam locomotive', + 821: 'steel arch bridge', + 822: 'steel drum', + 823: 'stethoscope', + 824: 'stole', + 825: 'stone wall', + 826: 'stopwatch, stop watch', + 827: 'stove', + 828: 'strainer', + 829: 'streetcar, tram, tramcar, trolley, trolley car', + 830: 'stretcher', + 831: 'studio couch, day bed', + 832: 'stupa, tope', + 833: 'submarine, pigboat, sub, U-boat', + 834: 'suit, suit of clothes', + 835: 'sundial', + 836: 'sunglass', + 837: 'sunglasses, dark glasses, shades', + 838: 'sunscreen, sunblock, sun blocker', + 839: 'suspension bridge', + 840: 'swab, swob, mop', + 841: 'sweatshirt', + 842: 'swimming trunks, bathing trunks', + 843: 'swing', + 844: 'switch, electric switch, electrical switch', + 845: 'syringe', + 846: 'table lamp', + 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle', + 848: 'tape player', + 849: 'teapot', + 850: 'teddy, teddy bear', + 851: 'television, television system', + 852: 'tennis ball', + 853: 'thatch, thatched roof', + 854: 'theater curtain, theatre curtain', + 855: 'thimble', + 856: 'thresher, thrasher, threshing machine', + 857: 'throne', + 858: 'tile roof', + 859: 'toaster', + 860: 'tobacco shop, tobacconist shop, tobacconist', + 861: 'toilet seat', + 862: 'torch', + 863: 'totem pole', + 864: 'tow truck, tow car, wrecker', + 865: 'toyshop', + 866: 'tractor', + 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', + 868: 'tray', + 869: 'trench coat', + 870: 'tricycle, trike, velocipede', + 871: 'trimaran', + 872: 'tripod', + 873: 'triumphal arch', + 874: 'trolleybus, trolley coach, trackless trolley', + 875: 'trombone', + 876: 'tub, vat', + 877: 'turnstile', + 878: 'typewriter keyboard', + 879: 'umbrella', + 880: 'unicycle, monocycle', + 881: 'upright, upright piano', + 882: 'vacuum, vacuum cleaner', + 883: 'vase', + 884: 'vault', + 885: 'velvet', + 886: 'vending machine', + 887: 'vestment', + 888: 'viaduct', + 889: 'violin, fiddle', + 890: 'volleyball', + 891: 'waffle iron', + 892: 'wall clock', + 893: 'wallet, billfold, notecase, pocketbook', + 894: 'wardrobe, closet, press', + 895: 'warplane, military plane', + 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin', + 897: 'washer, automatic washer, washing machine', + 898: 'water bottle', + 899: 'water jug', + 900: 'water tower', + 901: 'whiskey jug', + 902: 'whistle', + 903: 'wig', + 904: 'window screen', + 905: 'window shade', + 906: 'Windsor tie', + 907: 'wine bottle', + 908: 'wing', + 909: 'wok', + 910: 'wooden spoon', + 911: 'wool, woolen, woollen', + 912: 'worm fence, snake fence, snake-rail fence, Virginia fence', + 913: 'wreck', + 914: 'yawl', + 915: 'yurt', + 916: 'web site, website, internet site, site', + 917: 'comic book', + 918: 'crossword puzzle, crossword', + 919: 'street sign', + 920: 'traffic light, traffic signal, stoplight', + 921: 'book jacket, dust cover, dust jacket, dust wrapper', + 922: 'menu', + 923: 'plate', + 924: 'guacamole', + 925: 'consomme', + 926: 'hot pot, hotpot', + 927: 'trifle', + 928: 'ice cream, icecream', + 929: 'ice lolly, lolly, lollipop, popsicle', + 930: 'French loaf', + 931: 'bagel, beigel', + 932: 'pretzel', + 933: 'cheeseburger', + 934: 'hotdog, hot dog, red hot', + 935: 'mashed potato', + 936: 'head cabbage', + 937: 'broccoli', + 938: 'cauliflower', + 939: 'zucchini, courgette', + 940: 'spaghetti squash', + 941: 'acorn squash', + 942: 'butternut squash', + 943: 'cucumber, cuke', + 944: 'artichoke, globe artichoke', + 945: 'bell pepper', + 946: 'cardoon', + 947: 'mushroom', + 948: 'Granny Smith', + 949: 'strawberry', + 950: 'orange', + 951: 'lemon', + 952: 'fig', + 953: 'pineapple, ananas', + 954: 'banana', + 955: 'jackfruit, jak, jack', + 956: 'custard apple', + 957: 'pomegranate', + 958: 'hay', + 959: 'carbonara', + 960: 'chocolate sauce, chocolate syrup', + 961: 'dough', + 962: 'meat loaf, meatloaf', + 963: 'pizza, pizza pie', + 964: 'potpie', + 965: 'burrito', + 966: 'red wine', + 967: 'espresso', + 968: 'cup', + 969: 'eggnog', + 970: 'alp', + 971: 'bubble', + 972: 'cliff, drop, drop-off', + 973: 'coral reef', + 974: 'geyser', + 975: 'lakeside, lakeshore', + 976: 'promontory, headland, head, foreland', + 977: 'sandbar, sand bar', + 978: 'seashore, coast, seacoast, sea-coast', + 979: 'valley, vale', + 980: 'volcano', + 981: 'ballplayer, baseball player', + 982: 'groom, bridegroom', + 983: 'scuba diver', + 984: 'rapeseed', + 985: 'daisy', + 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", + 987: 'corn', + 988: 'acorn', + 989: 'hip, rose hip, rosehip', + 990: 'buckeye, horse chestnut, conker', + 991: 'coral fungus', + 992: 'agaric', + 993: 'gyromitra', + 994: 'stinkhorn, carrion fungus', + 995: 'earthstar', + 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', + 997: 'bolete', + 998: 'ear, spike, capitulum', + 999: 'toilet tissue, toilet paper, bathroom tissue' +} diff --git a/ComputerVision/cnns/inception_model.py b/ComputerVision/cnns/inception_model.py new file mode 100644 index 0000000..3167715 --- /dev/null +++ b/ComputerVision/cnns/inception_model.py @@ -0,0 +1,549 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import oneflow as flow + +def _get_kernel_initializer(): + return flow.variance_scaling_initializer(distribution="random_normal", data_format="NCHW") + +def _get_regularizer(): + return flow.regularizers.l2(0.00005) + +def _get_bias_initializer(): + return flow.zeros_initializer() + +def conv2d_layer( + name, + input, + filters, + kernel_size=3, + strides=1, + padding="SAME", + data_format="NCHW", + dilation_rate=1, + activation="Relu", + use_bias=True, + weight_initializer=_get_kernel_initializer(), + bias_initializer=_get_bias_initializer(), + weight_regularizer=_get_regularizer(), + bias_regularizer=_get_regularizer(), +): + if isinstance(kernel_size, int): + kernel_size_1 = kernel_size + kernel_size_2 = kernel_size + if isinstance(kernel_size, list): + kernel_size_1 = kernel_size[0] + kernel_size_2 = kernel_size[1] + + weight_shape = (filters, input.shape[1], kernel_size_1, kernel_size_2) + weight = flow.get_variable( + name + "-weight", + shape=weight_shape, + dtype=input.dtype, + initializer=weight_initializer, + regularizer=weight_regularizer, + ) + output = flow.nn.conv2d( + input, weight, strides, padding, data_format, dilation_rate, name=name + ) + if use_bias: + bias = flow.get_variable( + name + "-bias", + shape=(filters,), + dtype=input.dtype, + initializer=bias_initializer, + regularizer=bias_regularizer, + ) + output = flow.nn.bias_add(output, bias, data_format) + + if activation is not None: + if activation == "Relu": + output = flow.keras.activations.relu(output) + else: + raise NotImplementedError + + return output + + +def conv2d_layer_with_bn( + name, + input, + filters, + kernel_size=3, + strides=1, + padding="SAME", + data_format="NCHW", + dilation_rate=1, + activation="Relu", + use_bias=True, + weight_initializer=_get_kernel_initializer(), + bias_initializer=_get_bias_initializer(), + weight_regularizer=_get_regularizer(), + bias_regularizer=_get_regularizer(), + use_bn=True, +): + output = conv2d_layer(name=name, + input=input, + filters=filters, + kernel_size=kernel_size, + strides=strides, + padding=padding, + data_format=data_format, + dilation_rate=dilation_rate, + activation=activation, + use_bias=use_bias, + weight_initializer=weight_initializer, + bias_initializer=bias_initializer, + weight_regularizer=weight_regularizer, + bias_regularizer=bias_regularizer) + + if use_bn: + output = flow.layers.batch_normalization(inputs=output, + axis=1, + momentum=0.997, + epsilon=1.001e-5, + center=True, + scale=True, + trainable=True, + name=name + "_bn") + return output + +def InceptionA(in_blob, index): + with flow.scope.namespace("mixed_{}".format(index)): + with flow.scope.namespace("branch1x1"): + branch1x1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=64, kernel_size=1, strides=1, padding="SAME" + ) + with flow.scope.namespace("branch5x5"): + branch5x5_1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=48, kernel_size=1, strides=1, padding="SAME" + ) + branch5x5_2 = conv2d_layer_with_bn( + "conv1", + branch5x5_1, + filters=64, + kernel_size=5, + strides=1, + padding="SAME", + ) + with flow.scope.namespace("branch3x3dbl"): + branch3x3dbl_1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=64, kernel_size=1, strides=1, padding="SAME" + ) + branch3x3dbl_2 = conv2d_layer_with_bn( + "conv1", + branch3x3dbl_1, + filters=96, + kernel_size=3, + strides=1, + padding="SAME", + ) + branch3x3dbl_3 = conv2d_layer_with_bn( + "conv2", + branch3x3dbl_2, + filters=96, + kernel_size=3, + strides=1, + padding="SAME", + ) + with flow.scope.namespace("branch_pool"): + branch_pool_1 = flow.nn.avg_pool2d( + in_blob, + ksize=3, + strides=1, + padding="SAME", + data_format="NCHW", + name="pool", + ) + branch_pool_2 = conv2d_layer_with_bn( + "conv", + branch_pool_1, + filters=32 if index == 0 else 64, + kernel_size=1, + strides=1, + padding="SAME", + ) + + inceptionA_bn = [] + inceptionA_bn.append(branch1x1) + inceptionA_bn.append(branch5x5_2) + inceptionA_bn.append(branch3x3dbl_3) + inceptionA_bn.append(branch_pool_2) + + mixed_concat = flow.concat(values=inceptionA_bn, axis=1, name="concat") + + return mixed_concat + + +def InceptionB(in_blob, index): + with flow.scope.namespace("mixed_{}".format(index)): + with flow.scope.namespace("branch3x3"): + branch3x3 = conv2d_layer_with_bn( + "conv0", in_blob, filters=384, kernel_size=3, strides=2, padding="VALID" + ) + with flow.scope.namespace("branch3x3dbl"): + branch3x3dbl_1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=64, kernel_size=1, strides=1, padding="SAME" + ) + branch3x3dbl_2 = conv2d_layer_with_bn( + "conv1", + branch3x3dbl_1, + filters=96, + kernel_size=3, + strides=1, + padding="SAME", + ) + branch3x3dbl_3 = conv2d_layer_with_bn( + "conv2", + branch3x3dbl_2, + filters=96, + kernel_size=3, + strides=2, + padding="VALID", + ) + with flow.scope.namespace("branch_pool"): + branch_pool = flow.nn.max_pool2d( + in_blob, + ksize=3, + strides=2, + padding="VALID", + data_format="NCHW", + name="pool0", + ) + + inceptionB_bn = [] + inceptionB_bn.append(branch3x3) + inceptionB_bn.append(branch3x3dbl_3) + inceptionB_bn.append(branch_pool) + mixed_concat = flow.concat(values=inceptionB_bn, axis=1, name="concat") + + return mixed_concat + + +def InceptionC(in_blob, index, filters): + with flow.scope.namespace("mixed_{}".format(index)): + with flow.scope.namespace("branch1x1"): + branch1x1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=192, kernel_size=1, strides=1, padding="SAME" + ) + with flow.scope.namespace("branch7x7"): + branch7x7_1 = conv2d_layer_with_bn( + "conv0", + in_blob, + filters=filters, + kernel_size=1, + strides=1, + padding="SAME", + ) + branch7x7_2 = conv2d_layer_with_bn( + "conv1", + branch7x7_1, + filters=filters, + kernel_size=[1, 7], + strides=1, + padding="SAME", + ) + branch7x7_3 = conv2d_layer_with_bn( + "conv2", + branch7x7_2, + filters=192, + kernel_size=[7, 1], + strides=[1, 1], + padding="SAME", + ) + with flow.scope.namespace("branch7x7dbl"): + branch7x7dbl_1 = conv2d_layer_with_bn( + "conv0", + in_blob, + filters=filters, + kernel_size=1, + strides=1, + padding="SAME", + ) + branch7x7dbl_2 = conv2d_layer_with_bn( + "conv1", + branch7x7dbl_1, + filters=filters, + kernel_size=[7, 1], + strides=1, + padding="SAME", + ) + branch7x7dbl_3 = conv2d_layer_with_bn( + "conv2", + branch7x7dbl_2, + filters=filters, + kernel_size=[1, 7], + strides=1, + padding="SAME", + ) + branch7x7dbl_4 = conv2d_layer_with_bn( + "conv3", + branch7x7dbl_3, + filters=filters, + kernel_size=[7, 1], + strides=1, + padding="SAME", + ) + branch7x7dbl_5 = conv2d_layer_with_bn( + "conv4", + branch7x7dbl_4, + filters=192, + kernel_size=[1, 7], + strides=1, + padding="SAME", + ) + with flow.scope.namespace("branch_pool"): + branch_pool_1 = flow.nn.avg_pool2d( + in_blob, + ksize=3, + strides=1, + padding="SAME", + data_format="NCHW", + name="pool", + ) + branch_pool_2 = conv2d_layer_with_bn( + "conv", + branch_pool_1, + filters=192, + kernel_size=[1, 1], + strides=1, + padding="SAME", + ) + + inceptionC_bn = [] + inceptionC_bn.append(branch1x1) + inceptionC_bn.append(branch7x7_3) + inceptionC_bn.append(branch7x7dbl_5) + inceptionC_bn.append(branch_pool_2) + mixed_concat = flow.concat(values=inceptionC_bn, axis=1, name="concat") + + return mixed_concat + + +def InceptionD(in_blob, index): + with flow.scope.namespace("mixed_{}".format(index)): + with flow.scope.namespace("branch3x3"): + branch3x3_1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=192, kernel_size=1, strides=1, padding="SAME" + ) + branch3x3_2 = conv2d_layer_with_bn( + "conv1", + branch3x3_1, + filters=320, + kernel_size=3, + strides=2, + padding="VALID", + ) + with flow.scope.namespace("branch7x7x3"): + branch7x7x3_1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=192, kernel_size=1, strides=1, padding="SAME" + ) + branch7x7x3_2 = conv2d_layer_with_bn( + "conv1", + branch7x7x3_1, + filters=192, + kernel_size=[1, 7], + strides=1, + padding="SAME", + ) + branch7x7x3_3 = conv2d_layer_with_bn( + "conv2", + branch7x7x3_2, + filters=192, + kernel_size=[7, 1], + strides=1, + padding="SAME", + ) + branch7x7x3_4 = conv2d_layer_with_bn( + "conv3", + branch7x7x3_3, + filters=192, + kernel_size=3, + strides=2, + padding="VALID", + ) + with flow.scope.namespace("branch_pool"): + branch_pool = flow.nn.max_pool2d( + in_blob, + ksize=3, + strides=2, + padding="VALID", + data_format="NCHW", + name="pool", + ) + + inceptionD_bn = [] + inceptionD_bn.append(branch3x3_2) + inceptionD_bn.append(branch7x7x3_4) + inceptionD_bn.append(branch_pool) + + mixed_concat = flow.concat(values=inceptionD_bn, axis=1, name="concat") + + return mixed_concat + + +def InceptionE(in_blob, index): + with flow.scope.namespace("mixed_{}".format(index)): + with flow.scope.namespace("branch1x1"): + branch1x1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=320, kernel_size=1, strides=1, padding="SAME" + ) + with flow.scope.namespace("branch3x3"): + branch3x3_1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=384, kernel_size=1, strides=1, padding="SAME" + ) + branch3x3_2 = conv2d_layer_with_bn( + "conv1", + branch3x3_1, + filters=384, + kernel_size=[1, 3], + strides=1, + padding="SAME", + ) + branch3x3_3 = conv2d_layer_with_bn( + "conv2", + branch3x3_1, + filters=384, + kernel_size=[3, 1], + strides=[1, 1], + padding="SAME", + ) + inceptionE_1_bn = [] + inceptionE_1_bn.append(branch3x3_2) + inceptionE_1_bn.append(branch3x3_3) + concat_branch3x3 = flow.concat( + values=inceptionE_1_bn, axis=1, name="concat" + ) + with flow.scope.namespace("branch3x3dbl"): + branch3x3dbl_1 = conv2d_layer_with_bn( + "conv0", in_blob, filters=448, kernel_size=1, strides=1, padding="SAME" + ) + branch3x3dbl_2 = conv2d_layer_with_bn( + "conv1", + branch3x3dbl_1, + filters=384, + kernel_size=3, + strides=1, + padding="SAME", + ) + branch3x3dbl_3 = conv2d_layer_with_bn( + "conv2", + branch3x3dbl_2, + filters=384, + kernel_size=[1, 3], + strides=1, + padding="SAME", + ) + branch3x3dbl_4 = conv2d_layer_with_bn( + "conv3", + branch3x3dbl_2, + filters=384, + kernel_size=[3, 1], + strides=1, + padding="SAME", + ) + inceptionE_2_bn = [] + inceptionE_2_bn.append(branch3x3dbl_3) + inceptionE_2_bn.append(branch3x3dbl_4) + concat_branch3x3dbl = flow.concat( + values=inceptionE_2_bn, axis=1, name="concat" + ) + with flow.scope.namespace("branch_pool"): + branch_pool_1 = flow.nn.avg_pool2d( + in_blob, + ksize=3, + strides=1, + padding="SAME", + data_format="NCHW", + name="pool", + ) + branch_pool_2 = conv2d_layer_with_bn( + "conv", + branch_pool_1, + filters=192, + kernel_size=[1, 1], + strides=1, + padding="SAME", + ) + + inceptionE_total_bn = [] + inceptionE_total_bn.append(branch1x1) + inceptionE_total_bn.append(concat_branch3x3) + inceptionE_total_bn.append(concat_branch3x3dbl) + inceptionE_total_bn.append(branch_pool_2) + + concat_total = flow.concat( + values=inceptionE_total_bn, axis=1, name="concat") + + return concat_total + + +def inceptionv3(images, trainable=True, need_transpose=False, channel_last=False): + if need_transpose: + images = flow.transpose(images, name="transpose", perm=[0, 3, 1, 2]) + if channel_last: + # if channel_last=True, then change mode from 'nchw' to 'nhwc' + images = flow.transpose(images, name="transpose", perm=[0, 2, 3, 1]) + with flow.scope.namespace("InceptionV3"): + # conv0: 299 x 299 x 3 + conv0 = conv2d_layer_with_bn( + "conv0", images, filters=32, kernel_size=3, strides=2, padding="VALID" + ) + conv1 = conv2d_layer_with_bn( + "conv1", conv0, filters=32, kernel_size=3, strides=1, padding="VALID" + ) + conv2 = conv2d_layer_with_bn( + "conv2", conv1, filters=64, kernel_size=3, strides=1, padding="SAME" + ) + pool1 = flow.nn.max_pool2d( + conv2, ksize=3, strides=2, padding="VALID", data_format="NCHW", name="pool1" + ) + conv3 = conv2d_layer_with_bn( + "conv3", pool1, filters=80, kernel_size=1, strides=1, padding="VALID" + ) + conv4 = conv2d_layer_with_bn( + "conv4", conv3, filters=192, kernel_size=3, strides=1, padding="VALID" + ) + pool2 = flow.nn.max_pool2d( + conv4, ksize=3, strides=2, padding="VALID", data_format="NCHW", name="pool2" + ) + + # mixed_0 ~ mixed_2 + mixed_0 = InceptionA(pool2, 0) + mixed_1 = InceptionA(mixed_0, 1) + mixed_2 = InceptionA(mixed_1, 2) + # mixed_3 + mixed_3 = InceptionB(mixed_2, 3) + + # mixed_4 ~ mixed_7 + mixed_4 = InceptionC(mixed_3, 4, 128) + mixed_5 = InceptionC(mixed_4, 5, 160) + mixed_6 = InceptionC(mixed_5, 6, 160) + mixed_7 = InceptionC(mixed_6, 7, 192) + + # mixed_8 + mixed_8 = InceptionD(mixed_7, 8) + + # mixed_9 ~ mixed_10 + mixed_9 = InceptionE(mixed_8, 9) + mixed_10 = InceptionE(mixed_9, 10) + + pool3 = flow.nn.avg_pool2d( + mixed_10, ksize=8, strides=1, padding="VALID", data_format="NCHW", name="pool3" + ) + + # TODO: Need to transpose weight when converting model from TF to OF if + # you want to use layers.dense interface. + fc1 = flow.layers.dense( + inputs=flow.reshape(pool3, [pool3.shape[0], -1]), + units=1000, + activation=None, + use_bias=True, + kernel_initializer=flow.truncated_normal(0.816496580927726), + bias_initializer=flow.constant_initializer(), + trainable=trainable, + name="fc1", + ) + + return fc1 diff --git a/ComputerVision/cnns/inference.sh b/ComputerVision/cnns/inference.sh new file mode 100755 index 0000000..bf60068 --- /dev/null +++ b/ComputerVision/cnns/inference.sh @@ -0,0 +1,9 @@ +rm -rf core.* + +# Set up model path, e.g. : vgg16_of_best_model_val_top1_721 alexnet_of_best_model_val_top1_54762 +MODEL_LOAD_DIR="resnet_v15_of_best_model_val_top1_77318" + +python3 of_cnn_inference.py \ + --model="resnet50" \ + --image_path="data/fish.jpg" \ + --model_load_dir=$MODEL_LOAD_DIR \ No newline at end of file diff --git a/ComputerVision/cnns/job_function_util.py b/ComputerVision/cnns/job_function_util.py new file mode 100755 index 0000000..78b4291 --- /dev/null +++ b/ComputerVision/cnns/job_function_util.py @@ -0,0 +1,30 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import oneflow as flow +from optimizer_util import gen_model_update_conf + + +def _default_config(args): + config = flow.function_config() + config.default_logical_view(flow.scope.consistent_view()) + config.default_data_type(flow.float) + if args.use_fp16: + config.enable_auto_mixed_precision(True) + return config + + +def get_train_config(args): + train_config = _default_config(args) + train_config.train.primary_lr(args.learning_rate) + + + train_config.prune_parallel_cast_ops(True) + train_config.train.model_update_conf(gen_model_update_conf(args)) + train_config.enable_inplace(True) + return train_config + + +def get_val_config(args): + return _default_config(args) diff --git a/ComputerVision/cnns/mobilenet_v2_model.py b/ComputerVision/cnns/mobilenet_v2_model.py new file mode 100644 index 0000000..60a26a6 --- /dev/null +++ b/ComputerVision/cnns/mobilenet_v2_model.py @@ -0,0 +1,231 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import oneflow as flow +#ref : https://arxiv.org/pdf/1801.04381.pdf +#ref : https://github.com/liangfu/mxnet-mobilenet-v2/blob/master/symbols/mobilenetv2.py + +def _get_regularizer(model_name): + #all decay + return flow.regularizers.l2(0.00004) + + +def _get_initializer(model_name): + if model_name == "weight": + return flow.variance_scaling_initializer(2.0, mode="fan_out", distribution="random_normal", data_format="NCHW") + elif model_name == "bias": + return flow.zeros_initializer() + elif model_name == "gamma": + return flow.ones_initializer() + elif model_name == "beta": + return flow.zeros_initializer() + elif model_name == "dense_weight": + return flow.random_normal_initializer(0, 0.01) + + +def _batch_norm(inputs, axis, momentum, epsilon, center=True, scale=True, trainable=True, name=None): + return flow.layers.batch_normalization( + inputs=inputs, + axis=axis, + momentum=momentum, + epsilon=epsilon, + center=center, + scale=scale, + beta_initializer = _get_initializer("beta"), + gamma_initializer = _get_initializer("gamma"), + beta_regularizer = _get_regularizer("beta"), + gamma_regularizer = _get_regularizer("gamma"), + trainable=trainable, + name=name + ) + + +def _relu6(data, prefix): + return flow.clip_by_value(data,0,6,name='%s-relu6'%prefix) + + +def mobilenet_unit(data, num_filter=1, kernel=(1, 1), stride=(1, 1), pad=(0, 0), num_group=1, data_format="NCHW", if_act=True, use_bias=False, prefix=''): + conv = flow.layers.conv2d(inputs=data, filters=num_filter, kernel_size=kernel, strides=stride, padding=pad, data_format=data_format, dilation_rate=1, groups=num_group, activation=None, use_bias=use_bias, kernel_initializer=_get_initializer("weight"), bias_initializer=_get_initializer("bias"), kernel_regularizer=_get_regularizer("weight"), bias_regularizer=_get_regularizer("bias"), name=prefix) + bn = _batch_norm(conv, axis=1, momentum=0.9, epsilon=1e-5, name='%s-BatchNorm'%prefix) + if if_act: + act = _relu6(bn, prefix) + return act + else: + return bn + +def shortcut(data_in, data_residual, prefix): + out = flow.math.add(data_in,data_residual) + return out + +def inverted_residual_unit(data, num_in_filter, num_filter, ifshortcut, stride, kernel, pad, expansion_factor, prefix, data_format="NCHW", has_expand = 1): + num_expfilter = int(round(num_in_filter*expansion_factor)) + if has_expand: + channel_expand = mobilenet_unit( + data=data, + num_filter=num_expfilter, + kernel=(1,1), + stride=(1,1), + pad="valid", + num_group=1, + data_format=data_format, + if_act=True, + prefix='%s-expand'%prefix, + ) + else: + channel_expand = data + bottleneck_conv = mobilenet_unit( + data= channel_expand, + num_filter=num_expfilter, + stride=stride, + kernel=kernel, + pad=pad, + num_group=num_expfilter, + data_format=data_format, + if_act=True, + prefix='%s-depthwise'%prefix, + ) + linear_out = mobilenet_unit( + data=bottleneck_conv, + num_filter=num_filter, + kernel=(1, 1), + stride=(1, 1), + pad="valid", + num_group=1, + data_format=data_format, + if_act=False, + prefix='%s-project'%prefix + ) + + if ifshortcut: + out = shortcut( + data_in=data, + data_residual=linear_out, + prefix=prefix, + ) + return out + else: + return linear_out + +MNETV2_CONFIGS_MAP = { + (224,224):{ + 'firstconv_filter_num': 32, + # t, c, s + 'bottleneck_params_list':[ + (1, 16, 1, False), + (6, 24, 2, False), + (6, 24, 1, True), + (6, 32, 2, False), + (6, 32, 1, True), + (6, 32, 1, True), + (6, 64, 2, False), + (6, 64, 1, True), + (6, 64, 1, True), + (6, 64, 1, True), + (6, 96, 1, False), + (6, 96, 1, True), + (6, 96, 1, True), + (6, 160, 2, False), + (6, 160, 1, True), + (6, 160, 1, True), + (6, 320, 1, False), + ], + 'filter_num_before_gp': 1280, + } +} + +class MobileNetV2(object): + def __init__(self, data_wh, multiplier, **kargs): + super(MobileNetV2, self).__init__() + self.data_wh=data_wh + self.multiplier=multiplier + if self.data_wh in MNETV2_CONFIGS_MAP: + self.config_map=MNETV2_CONFIGS_MAP[self.data_wh] + else: + self.config_map=MNETV2_CONFIGS_MAP[(224, 224)] + + def build_network(self, input_data, need_transpose, data_format, class_num=1000, prefix="", **configs): + self.config_map.update(configs) + + if need_transpose: + input_data = flow.transpose(input_data, name="transpose", perm=[0, 3, 1, 2]) + first_c = int(round(self.config_map['firstconv_filter_num']*self.multiplier)) + first_layer = mobilenet_unit( + data=input_data, + num_filter=first_c, + kernel=(3,3), + stride=(2,2), + pad="same", + data_format=data_format, + if_act=True, + prefix= prefix+'-Conv' + ) + + last_bottleneck_layer = first_layer + in_c = first_c + for i, layer_setting in enumerate(self.config_map['bottleneck_params_list']): + t, c, s, sc = layer_setting + if i == 0: + last_bottleneck_layer = inverted_residual_unit( + data=last_bottleneck_layer, + num_in_filter=in_c, + num_filter=int(round(c*self.multiplier)), + ifshortcut=sc, + stride=(s,s), + kernel=(3,3), + pad="same", + expansion_factor=t, + prefix= prefix+'-expanded_conv', + data_format=data_format, + has_expand=0 + ) + in_c = int(round(c*self.multiplier)) + else: + last_bottleneck_layer = inverted_residual_unit( + data=last_bottleneck_layer, + num_in_filter=in_c, + num_filter=int(round(c*self.multiplier)), + ifshortcut=sc, + stride=(s,s), + kernel=(3,3), + pad="same", + expansion_factor=t, + data_format=data_format, + prefix= prefix+'-expanded_conv_%d'%i + ) + in_c = int(round(c*self.multiplier)) + last_fm = mobilenet_unit( + data=last_bottleneck_layer, + num_filter=int(1280 * self.multiplier) if self.multiplier > 1.0 else 1280, + kernel=(1,1), + stride=(1,1), + pad="valid", + data_format=data_format, + if_act=True, + prefix=prefix+'-Conv_1' + ) + # global average pooling + pool_size = int(self.data_wh[0] / 32) + pool = flow.nn.avg_pool2d( + last_fm, ksize=pool_size, strides=1, padding="VALID", data_format="NCHW", name="pool5", + ) + fc = flow.layers.dense( + flow.reshape(pool, (pool.shape[0], -1)), + units=class_num, + use_bias=False, + kernel_initializer=_get_initializer("dense_weight"), + bias_initializer=_get_initializer("bias"), + kernel_regularizer=_get_regularizer("dense_weight"), + bias_regularizer=_get_regularizer("bias"), + name=prefix+'-fc', + ) + return fc + + def __call__(self, input_data, need_transpose, class_num=1000, prefix = "", **configs): + sym = self.build_network(input_data, need_transpose, class_num=class_num, prefix=prefix, **configs) + return sym + +def Mobilenet(input_data, trainable=True, need_transpose=False, training=True, data_format="NCHW", num_classes=1000, multiplier=1.0, prefix = ""): + mobilenetgen = MobileNetV2((224,224), multiplier=multiplier) + out = mobilenetgen(input_data, need_transpose, data_format=data_format, class_num=num_classes, prefix = "MobilenetV2") + return out diff --git a/ComputerVision/cnns/of_cnn_evaluate.py b/ComputerVision/cnns/of_cnn_evaluate.py new file mode 100644 index 0000000..5607213 --- /dev/null +++ b/ComputerVision/cnns/of_cnn_evaluate.py @@ -0,0 +1,76 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os +import time +import math +import numpy as np + +import config as configs +parser = configs.get_parser() +args = parser.parse_args() +configs.print_args(args) + +from util import Snapshot, Summary, InitNodes, Metric +import ofrecord_util +from job_function_util import get_train_config, get_val_config +import oneflow as flow +import vgg_model +import resnet_model +import resnext_model +import alexnet_model +import mobilenet_v2_model + + +total_device_num = args.num_nodes * args.gpu_num_per_node +val_batch_size = total_device_num * args.val_batch_size_per_device +(C, H, W) = args.image_shape +num_val_steps = int(args.num_val_examples / val_batch_size) + + +model_dict = { + "resnet50": resnet_model.resnet50, + "vgg": vgg_model.vgg16bn, + "alexnet": alexnet_model.alexnet, + "mobilenetv2": mobilenet_v2_model.Mobilenet, + "resnext50": resnext_model.resnext50, +} + + +flow.config.gpu_device_num(args.gpu_num_per_node) +flow.config.enable_debug_mode(True) +@flow.global_function("predict", get_val_config(args)) +def InferenceNet(): + assert os.path.exists(args.val_data_dir) + print("Loading data from {}".format(args.val_data_dir)) + (labels, images) = ofrecord_util.load_imagenet_for_validation(args) + + logits = model_dict[args.model](images, + need_transpose=False if args.val_data_dir else True) + predictions = flow.nn.softmax(logits) + outputs = {"predictions": predictions, "labels": labels} + return outputs + + +def main(): + InitNodes(args) + assert args.model_load_dir, 'Must have model load dir!' + + flow.env.grpc_use_no_signal() + flow.env.log_dir(args.log_dir) + summary = Summary(args.log_dir, args) + # snapshot = Snapshot(args.model_save_dir, args.model_load_dir) + print("Restoring model from {}.".format(args.model_load_dir)) + checkpoint = flow.train.CheckPoint() + checkpoint.load(args.model_load_dir) + metric = Metric(desc='validation', calculate_batches=num_val_steps, summary=summary, + save_summary_steps=num_val_steps, batch_size=val_batch_size) + + for i in range(args.num_epochs): + for j in range(num_val_steps): + InferenceNet().async_get(metric.metric_cb(0, j)) + + +if __name__ == "__main__": + main() diff --git a/ComputerVision/cnns/of_cnn_inference.py b/ComputerVision/cnns/of_cnn_inference.py new file mode 100755 index 0000000..53320f6 --- /dev/null +++ b/ComputerVision/cnns/of_cnn_inference.py @@ -0,0 +1,66 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os +import numpy as np +from PIL import Image + +import config as configs + +parser = configs.get_parser() +args = parser.parse_args() +configs.print_args(args) + +import oneflow as flow +import oneflow.typing as tp +from imagenet1000_clsidx_to_labels import clsidx_2_labels + +import resnet_model +import resnext_model +import vgg_model +import alexnet_model +import mobilenet_v2_model + +model_dict = { + "resnet50": resnet_model.resnet50, + "vgg": vgg_model.vgg16bn, + "alexnet": alexnet_model.alexnet, + "mobilenetv2": mobilenet_v2_model.Mobilenet, + "resnext50": resnext_model.resnext50, +} + + +def load_image(image_path='test_img/ILSVRC2012_val_00020287.JPEG'): + print(image_path) + im = Image.open(image_path) + im = im.resize((224, 224)) + im = im.convert('RGB') # 有的图像是单通道的,不加转换会报错 + im = np.array(im).astype('float32') + im = (im - args.rgb_mean) / args.rgb_std + im = np.transpose(im, (2, 0, 1)) + im = np.expand_dims(im, axis=0) + return np.ascontiguousarray(im, 'float32') + + +@flow.global_function("predict", flow.function_config()) +def InferenceNet(images: tp.Numpy.Placeholder((1, 3, 224, 224), dtype=flow.float)) -> tp.Numpy: + logits = model_dict[args.model](images, training=False) + predictions = flow.nn.softmax(logits) + return predictions + + +def main(): + flow.env.log_dir(args.log_dir) + assert os.path.isdir(args.model_load_dir) + check_point = flow.train.CheckPoint() + check_point.load(args.model_load_dir) + + image = load_image(args.image_path) + predictions = InferenceNet(image) + clsidx = predictions.argmax() + print(predictions.max(), clsidx_2_labels[clsidx]) + + +if __name__ == "__main__": + main() diff --git a/ComputerVision/cnns/of_cnn_train_val.py b/ComputerVision/cnns/of_cnn_train_val.py new file mode 100755 index 0000000..8bda734 --- /dev/null +++ b/ComputerVision/cnns/of_cnn_train_val.py @@ -0,0 +1,119 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +import os +import math +import oneflow as flow +import ofrecord_util +import config as configs +from util import Snapshot, Summary, InitNodes, Metric +from job_function_util import get_train_config, get_val_config +import resnet_model +import resnext_model +import vgg_model +import alexnet_model +import inception_model +import mobilenet_v2_model + +parser = configs.get_parser() +args = parser.parse_args() +configs.print_args(args) + +total_device_num = args.num_nodes * args.gpu_num_per_node +train_batch_size = total_device_num * args.batch_size_per_device +val_batch_size = total_device_num * args.val_batch_size_per_device +(C, H, W) = args.image_shape +epoch_size = math.ceil(args.num_examples / train_batch_size) +num_val_steps = int(args.num_val_examples / val_batch_size) + + +model_dict = { + "resnet50": resnet_model.resnet50, + "vgg": vgg_model.vgg16bn, + "alexnet": alexnet_model.alexnet, + "inceptionv3": inception_model.inceptionv3, + "mobilenetv2": mobilenet_v2_model.Mobilenet, + "resnext50": resnext_model.resnext50, +} + + +flow.config.gpu_device_num(args.gpu_num_per_node) +flow.config.enable_debug_mode(True) + + +def label_smoothing(labels, classes, eta, dtype): + assert classes > 0 + assert eta >= 0.0 and eta < 1.0 + + return flow.one_hot(labels, depth=classes, dtype=dtype, + on_value=1 - eta + eta / classes, off_value=eta/classes) + + +@flow.global_function("train", get_train_config(args)) +def TrainNet(): + if args.train_data_dir: + assert os.path.exists(args.train_data_dir) + print("Loading data from {}".format(args.train_data_dir)) + (labels, images) = ofrecord_util.load_imagenet_for_training(args) + + else: + print("Loading synthetic data.") + (labels, images) = ofrecord_util.load_synthetic(args) + logits = model_dict[args.model](images, + need_transpose=False if args.train_data_dir else True, + ) + if args.label_smoothing > 0: + one_hot_labels = label_smoothing(labels, args.num_classes, args.label_smoothing, logits.dtype) + loss = flow.nn.softmax_cross_entropy_with_logits(one_hot_labels, logits, name="softmax_loss") + else: + loss = flow.nn.sparse_softmax_cross_entropy_with_logits(labels, logits, name="softmax_loss") + + flow.losses.add_loss(loss) + predictions = flow.nn.softmax(logits) + outputs = {"loss": loss, "predictions": predictions, "labels": labels} + return outputs + + +@flow.global_function("predict", get_val_config(args)) +def InferenceNet(): + if args.val_data_dir: + assert os.path.exists(args.val_data_dir) + print("Loading data from {}".format(args.val_data_dir)) + (labels, images) = ofrecord_util.load_imagenet_for_validation(args) + + else: + print("Loading synthetic data.") + (labels, images) = ofrecord_util.load_synthetic(args) + + logits = model_dict[args.model]( + images, need_transpose=False if args.val_data_dir else True) + predictions = flow.nn.softmax(logits) + outputs = {"predictions": predictions, "labels": labels} + return outputs + + +def main(): + InitNodes(args) + flow.env.grpc_use_no_signal() + flow.env.log_dir(args.log_dir) + + summary = Summary(args.log_dir, args) + snapshot = Snapshot(args.model_save_dir, args.model_load_dir) + + for epoch in range(args.num_epochs): + metric = Metric(desc='train', calculate_batches=args.loss_print_every_n_iter, + summary=summary, save_summary_steps=epoch_size, + batch_size=train_batch_size, loss_key='loss') + for i in range(epoch_size): + TrainNet().async_get(metric.metric_cb(epoch, i)) + + if args.val_data_dir: + metric = Metric(desc='validation', calculate_batches=num_val_steps, summary=summary, + save_summary_steps=num_val_steps, batch_size=val_batch_size) + for i in range(num_val_steps): + InferenceNet().async_get(metric.metric_cb(epoch, i)) + snapshot.save('epoch_{}'.format(epoch)) + + +if __name__ == "__main__": + main() diff --git a/ComputerVision/cnns/ofrecord_util.py b/ComputerVision/cnns/ofrecord_util.py new file mode 100755 index 0000000..73cf248 --- /dev/null +++ b/ComputerVision/cnns/ofrecord_util.py @@ -0,0 +1,145 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import oneflow as flow + + +def add_ofrecord_args(parser): + parser.add_argument("--image_size", type=int, default=224, + required=False, help="image size") + parser.add_argument("--resize_shorter", type=int, default=256, + required=False, help="resize shorter for validation") + parser.add_argument("--train_data_dir", type=str, + default=None, help="train dataset directory") + parser.add_argument("--train_data_part_num", type=int, + default=256, help="train data part num") + parser.add_argument("--val_data_dir", type=str, + default=None, help="val dataset directory") + parser.add_argument("--val_data_part_num", type=int, + default=256, help="val data part num") + return parser + + +def load_imagenet(args, batch_size, data_dir, data_part_num, codec): + image_blob_conf = flow.data.BlobConf( + "encoded", + shape=(args.image_size, args.image_size, 3), + dtype=flow.float, + codec=codec, + preprocessors=[flow.data.NormByChannelPreprocessor(args.rgb_mean[::-1], + args.rgb_std[::-1])], + # preprocessors=[flow.data.NormByChannelPreprocessor(args.rgb_mean, args.rgb_std)], #bgr2rgb + ) + + label_blob_conf = flow.data.BlobConf( + "class/label", shape=(), dtype=flow.int32, codec=flow.data.RawCodec() + ) + + return flow.data.decode_ofrecord( + data_dir, + (label_blob_conf, image_blob_conf), + batch_size=batch_size, + data_part_num=data_part_num, + part_name_suffix_length=5, + #shuffle = True, + # buffer_size=32768, + name="decode", + ) + + +def load_synthetic(args): + total_device_num = args.num_nodes * args.gpu_num_per_node + batch_size = total_device_num * args.batch_size_per_device + label = flow.data.decode_random( + shape=(), + dtype=flow.int32, + batch_size=batch_size, + initializer=flow.zeros_initializer(flow.int32), + ) + + image = flow.data.decode_random( + shape=(args.image_size, args.image_size, 3), dtype=flow.float, batch_size=batch_size + ) + + return label, image + + +def load_imagenet_for_training(args): + total_device_num = args.num_nodes * args.gpu_num_per_node + train_batch_size = total_device_num * args.batch_size_per_device + + color_space = 'RGB' + ofrecord = flow.data.ofrecord_reader(args.train_data_dir, + batch_size=train_batch_size, + data_part_num=args.train_data_part_num, + part_name_suffix_length=5, + random_shuffle=True, + shuffle_after_epoch=True) + image = flow.data.OFRecordImageDecoderRandomCrop(ofrecord, "encoded", # seed=seed, + color_space=color_space) + label = flow.data.OFRecordRawDecoder( + ofrecord, "class/label", shape=(), dtype=flow.int32) + rsz = flow.image.Resize(image, resize_x=args.image_size, resize_y=args.image_size, + color_space=color_space) + + rng = flow.random.CoinFlip(batch_size=train_batch_size) # , seed=seed) + normal = flow.image.CropMirrorNormalize(rsz, mirror_blob=rng, color_space=color_space, + mean=args.rgb_mean, std=args.rgb_std, output_dtype=flow.float) + return label, normal + + +def load_imagenet_for_validation(args): + total_device_num = args.num_nodes * args.gpu_num_per_node + val_batch_size = total_device_num * args.val_batch_size_per_device + + color_space = 'RGB' + ofrecord = flow.data.ofrecord_reader(args.val_data_dir, + batch_size=val_batch_size, + data_part_num=args.val_data_part_num, + part_name_suffix_length=5, + shuffle_after_epoch=False) + image = flow.data.OFRecordImageDecoder( + ofrecord, "encoded", color_space=color_space) + label = flow.data.OFRecordRawDecoder( + ofrecord, "class/label", shape=(), dtype=flow.int32) + rsz = flow.image.Resize( + image, resize_shorter=args.resize_shorter, color_space=color_space) + + normal = flow.image.CropMirrorNormalize(rsz, color_space=color_space, + crop_h=args.image_size, crop_w=args.image_size, crop_pos_y=0.5, crop_pos_x=0.5, + mean=args.rgb_mean, std=args.rgb_std, output_dtype=flow.float) + return label, normal + + +if __name__ == "__main__": + import os + import config as configs + from util import Summary, InitNodes, Metric + from job_function_util import get_val_config + parser = configs.get_parser() + args = parser.parse_args() + configs.print_args(args) + + flow.config.gpu_device_num(args.gpu_num_per_node) + flow.config.enable_debug_mode(True) + @flow.global_function(get_val_config(args)) + def IOTest(): + if args.train_data_dir: + assert os.path.exists(args.train_data_dir) + print("Loading data from {}".format(args.train_data_dir)) + (labels, images) = load_imagenet_for_training(args) + else: + print("Loading synthetic data.") + (labels, images) = load_synthetic(args) + outputs = {"images": images, "labels": labels} + return outputs + + total_device_num = args.num_nodes * args.gpu_num_per_node + train_batch_size = total_device_num * args.batch_size_per_device + summary = Summary(args.log_dir, args, filename='io_test.csv') + metric = Metric(desc='io_test', calculate_batches=args.loss_print_every_n_iter, + summary=summary, save_summary_steps=args.loss_print_every_n_iter, + batch_size=train_batch_size, prediction_key=None) + for i in range(1000): + IOTest().async_get(metric.metric_cb(0, i)) diff --git a/ComputerVision/cnns/optimizer_util.py b/ComputerVision/cnns/optimizer_util.py new file mode 100755 index 0000000..c4c2150 --- /dev/null +++ b/ComputerVision/cnns/optimizer_util.py @@ -0,0 +1,104 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import math +import pprint + +def add_optimizer_args(parser): + group = parser.add_argument_group('optimizer parameters', + 'entire group applies only to optimizer parameters') + group.add_argument("--model_update", type=str, default="sgd", help="sgd, adam, momentum, rmsprop") + group.add_argument("--learning_rate", type=float, default=0.256) + group.add_argument("--wd", type=float, default=1.0/32768, help="weight decay") + group.add_argument("--mom", type=float, default=0.875, help="momentum") + group.add_argument('--lr_decay', type=str, default='cosine', help='cosine, step, polynomial, exponential, None') + group.add_argument('--lr_decay_rate', type=float, default='0.94', help='exponential learning decay rate') + group.add_argument('--lr_decay_epochs', type=int, default=2, help='exponential learning rate decay every n epochs') + group.add_argument('--warmup_epochs', type=int, default=5, + help='the epochs to ramp-up lr to scaled large-batch value') + group.add_argument('--decay_rate', type=float, default='0.9', help='decay rate of RMSProp') + group.add_argument('--epsilon', type=float, default='1', help='epsilon') + group.add_argument('--gradient_clipping', type=float, default=0.0, help='gradient clipping') + return parser + +def gen_model_update_conf(args): + total_device_num = args.num_nodes * args.gpu_num_per_node + train_batch_size = total_device_num * args.batch_size_per_device + epoch_size = math.ceil(args.num_examples / train_batch_size) + num_train_batches = epoch_size * args.num_epochs + num_warmup_batches = epoch_size * args.warmup_epochs + decay_batches = num_train_batches - num_warmup_batches + lr_decay_rate = args.lr_decay_rate + decay_rate = args.decay_rate + epsilon = args.epsilon + clipping_threshold = args.gradient_clipping + exponential_decay_batches = epoch_size * args.lr_decay_epochs + + model_update_conf = {} + # basic model update + if args.model_update == 'sgd': + model_update_conf["naive_conf"] = {} + elif args.model_update == 'adam': + model_update_conf["adam_conf"] = {"beta1": 0.9} + elif args.model_update == 'momentum': + assert args.mom < 1.0 + assert args.mom > 0.0 + model_update_conf["momentum_conf"] = {"beta": args.mom} + elif args.model_update == 'rmsprop': + model_update_conf["rmsprop_conf"] = {"decay_rate": decay_rate, "epsilon": epsilon} + else: + assert False + + # learning rate warmup + if args.warmup_epochs > 0: #linear warmup only + model_update_conf['warmup_conf'] = {"linear_conf": { + "warmup_batches": num_warmup_batches, + "start_multiplier": 0, + }} + + # learning rate decay + if args.lr_decay == 'cosine': + model_update_conf['learning_rate_decay'] = {"cosine_conf": {"decay_batches": decay_batches}} + elif args.lr_decay == 'step': + boundaries = [x * epoch_size for x in [30, 60, 80]] + scales = [1, 0.1, 0.01, 0.001] + model_update_conf['learning_rate_decay'] = {"piecewise_scaling_conf": { + "boundaries": boundaries, + "scales":scales, + }} + elif args.lr_decay == 'polynomial': + model_update_conf['learning_rate_decay'] = {"polynomial_conf": { + "decay_batches": decay_batches, + "end_learning_rate": 0.00001, + }} + elif args.lr_decay == 'exponential': + model_update_conf['learning_rate_decay'] = {"exponential_conf": { + "decay_batches": exponential_decay_batches, + "decay_rate": lr_decay_rate, + }} + + # gradient_clipping + if args.gradient_clipping > 0: + model_update_conf['clip_conf'] = {"clip_by_global_norm": { + "clip_norm": clipping_threshold + }} + + # weight decay + if args.wd > 0: + assert args.wd < 1.0 + model_update_conf['weight_decay_conf'] = { + "weight_decay_rate": args.wd, + "excludes": {"pattern": ['_bn-']} + } + + pprint.pprint(model_update_conf) + return model_update_conf + + +if __name__ == '__main__': + import config as configs + parser = configs.get_parser() + args = parser.parse_args() + configs.print_args(args) + gen_model_update_conf(args) diff --git a/ComputerVision/cnns/resnet_model.py b/ComputerVision/cnns/resnet_model.py new file mode 100755 index 0000000..6bcfefe --- /dev/null +++ b/ComputerVision/cnns/resnet_model.py @@ -0,0 +1,161 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import oneflow as flow + +BLOCK_COUNTS = [3, 4, 6, 3] +BLOCK_FILTERS = [256, 512, 1024, 2048] +BLOCK_FILTERS_INNER = [64, 128, 256, 512] + + +class ResnetBuilder(object): + def __init__(self, weight_regularizer, trainable=True, training=True, channel_last=False): + self.data_format = "NHWC" if channel_last else "NCHW" + self.weight_initializer = flow.variance_scaling_initializer(2, 'fan_in', 'random_normal', + data_format=self.data_format) + self.weight_regularizer = weight_regularizer + self.trainable = trainable + self.training = training + + def _conv2d( + self, + name, + input, + filters, + kernel_size, + strides=1, + padding="SAME", + dilations=1, + ): + # There are different shapes of weight metric between 'NCHW' and 'NHWC' mode + if self.data_format == "NHWC": + shape = (filters, kernel_size, kernel_size, input.shape[3]) + else: + shape = (filters, input.shape[1], kernel_size, kernel_size) + weight = flow.get_variable( + name + "-weight", + shape=shape, + dtype=input.dtype, + initializer=self.weight_initializer, + regularizer=self.weight_regularizer, + model_name="weight", + trainable=self.trainable, + ) + + return flow.nn.conv2d(input, weight, strides, padding, self.data_format, dilations, name=name) + + def _batch_norm(self, inputs, name=None, last=False): + initializer = flow.zeros_initializer() if last else flow.ones_initializer() + axis = 1 + if self.data_format =="NHWC": + axis = 3 + return flow.layers.batch_normalization( + inputs=inputs, + axis=axis, + momentum=0.9, # 97, + epsilon=1e-5, + center=True, + scale=True, + trainable=self.trainable, + training=self.training, + gamma_initializer=initializer, + moving_variance_initializer=initializer, + gamma_regularizer=self.weight_regularizer, + beta_regularizer=self.weight_regularizer, + name=name, + ) + + def conv2d_affine(self, input, name, filters, kernel_size, strides, activation=None, last=False): + # input data_format must be NCHW, cannot check now + padding = "SAME" if strides > 1 or kernel_size > 1 else "VALID" + output = self._conv2d(name, input, filters, kernel_size, strides, padding) + output = self._batch_norm(output, name + "_bn", last=last) + if activation == "Relu": + output = flow.nn.relu(output) + + return output + + def bottleneck_transformation(self, input, block_name, filters, filters_inner, strides): + a = self.conv2d_affine( + input, block_name + "_branch2a", filters_inner, 1, 1, activation="Relu" + ) + + b = self.conv2d_affine( + a, block_name + "_branch2b", filters_inner, 3, strides, activation="Relu" + ) + + c = self.conv2d_affine(b, block_name + "_branch2c", filters, 1, 1, last=True) + return c + + def residual_block(self, input, block_name, filters, filters_inner, strides_init): + if strides_init != 1 or block_name == "res2_0": + shortcut = self.conv2d_affine( + input, block_name + "_branch1", filters, 1, strides_init + ) + else: + shortcut = input + + bottleneck = self.bottleneck_transformation( + input, block_name, filters, filters_inner, strides_init, + ) + return flow.nn.relu(bottleneck + shortcut) + + def residual_stage(self, input, stage_name, counts, filters, filters_inner, stride_init=2): + output = input + for i in range(counts): + block_name = "%s_%d" % (stage_name, i) + output = self.residual_block( + output, block_name, filters, filters_inner, stride_init if i == 0 else 1 + ) + + return output + + def resnet_conv_x_body(self, input): + output = input + for i, (counts, filters, filters_inner) in enumerate( + zip(BLOCK_COUNTS, BLOCK_FILTERS, BLOCK_FILTERS_INNER) + ): + stage_name = "res%d" % (i + 2) + output = self.residual_stage( + output, stage_name, counts, filters, filters_inner, 1 if i == 0 else 2 + ) + + return output + + def resnet_stem(self, input): + conv1 = self._conv2d("conv1", input, 64, 7, 2) + conv1_bn = flow.nn.relu(self._batch_norm(conv1, "conv1_bn")) + pool1 = flow.nn.max_pool2d( + conv1_bn, ksize=3, strides=2, padding="SAME", data_format=self.data_format, name="pool1", + ) + return pool1 + + +def resnet50(images, trainable=True, need_transpose=False, training=True, wd=1.0 / 32768, channel_last=False): + weight_regularizer = flow.regularizers.l2(wd) if wd > 0.0 and wd < 1.0 else None + builder = ResnetBuilder(weight_regularizer, trainable, training, channel_last) + # note: images.shape = (N C H W) in cc's new dataloader, transpose is not needed anymore + if need_transpose: + images = flow.transpose(images, name="transpose", perm=[0, 3, 1, 2]) + if channel_last: + # if channel_last=True, then change mode from 'nchw' to 'nhwc' + images = flow.transpose(images, name="transpose", perm=[0, 2, 3, 1]) + with flow.scope.namespace("Resnet"): + stem = builder.resnet_stem(images) + body = builder.resnet_conv_x_body(stem) + pool5 = flow.nn.avg_pool2d( + body, ksize=7, strides=1, padding="VALID", data_format=builder.data_format, name="pool5", + ) + fc1001 = flow.layers.dense( + flow.reshape(pool5, (pool5.shape[0], -1)), + units=1000, + use_bias=True, + kernel_initializer=flow.variance_scaling_initializer(2, 'fan_in', 'random_normal'), + bias_initializer=flow.zeros_initializer(), + kernel_regularizer=weight_regularizer, + bias_regularizer=weight_regularizer, + trainable=trainable, + name="fc1001", + ) + return fc1001 \ No newline at end of file diff --git a/ComputerVision/cnns/resnet_to_onnx.py b/ComputerVision/cnns/resnet_to_onnx.py new file mode 100644 index 0000000..33b48a8 --- /dev/null +++ b/ComputerVision/cnns/resnet_to_onnx.py @@ -0,0 +1,100 @@ +# from __future__ import absolute_import +# from __future__ import division +# from __future__ import print_function + +from collections import OrderedDict +import os +from PIL import Image +import time +from typing import Callable, Text + +import numpy as np +import oneflow as flow +import oneflow.typing as tp +import onnx +import onnxruntime as ort + +from resnet_model import resnet50 +from imagenet1000_clsidx_to_labels import clsidx_2_labels + + +def load_image(image_path: Text) -> np.ndarray: + rgb_mean = [123.68, 116.779, 103.939] + rgb_std = [58.393, 57.12, 57.375] + print(image_path) + im = Image.open(image_path) + im = im.resize((224, 224)) + im = im.convert('RGB') # 有的图像是单通道的,不加转换会报错 + im = np.array(im).astype('float32') + im = (im - rgb_mean) / rgb_std + im = np.transpose(im, (2, 0, 1)) + im = np.expand_dims(im, axis=0) + return np.ascontiguousarray(im, 'float32') + + +@flow.global_function("predict") +def InferenceNet(images: tp.Numpy.Placeholder((1, 3, 224, 224), dtype=flow.float)) -> tp.Numpy: + logits = resnet50(images, training=False) + predictions = flow.nn.softmax(logits) + return predictions + + +def onnx_inference(image: np.ndarray, onnx_model: onnx.ModelProto): + """ + test onnx model with onnx runtime + :param image: input image, a numpy array + :param onnx_model: onnx model + :return: + """ + assert os.path.isfile(image_path) + sess = ort.InferenceSession(onnx_model.SerializeToString()) + assert len(sess.get_outputs()) == 1 and len(sess.get_inputs()) <= 1 + ipt_dict = OrderedDict() + for ipt in sess.get_inputs(): + ipt_dict[ipt.name] = image + onnx_res = sess.run([], ipt_dict)[0] + return onnx_res + + +def oneflow_to_onnx(job_func: Callable, flow_weights_path: Text, onnx_model_dir: Text, external_data: bool=False): + """ + convert oneflow model to onnx model + :param job_func: inference function in oneflow + :param flow_weights_path: input oneflow model path + :param onnx_model_dir: output dir path to save model.onnx + :return: onnx model + """ + if not os.path.exists(onnx_model_dir): os.makedirs(onnx_model_dir) + assert os.path.exists(flow_weights_path) and os.path.isdir(onnx_model_dir) + + onnx_model_path = os.path.join(onnx_model_dir, os.path.basename(flow_weights_path) + '.onnx') + flow.onnx.export(job_func, flow_weights_path, onnx_model_path, opset=11, external_data=external_data) + print('Convert to onnx success! >> ', onnx_model_path) + return onnx.load_model(onnx_model_path) + + +def check_equality(job_func: Callable, onnx_model: onnx.ModelProto, image_path: Text) -> (bool, np.ndarray): + image = load_image(image_path) + onnx_res = onnx_inference(image, onnx_model) + oneflow_res = job_func(image) + is_equal = np.allclose(onnx_res, oneflow_res, rtol=1e-4, atol=1e-5) + return is_equal, onnx_res + + +if __name__ == "__main__": + image_path = 'data/tiger.jpg' + # set up your model path + flow_weights_path = 'resnet_v15_of_best_model_val_top1_77318' + onnx_model_dir = 'onnx/model' + + check_point = flow.train.CheckPoint() + check_point.load(flow_weights_path) + + # conver oneflow to onnx + onnx_model = oneflow_to_onnx(InferenceNet, flow_weights_path, onnx_model_dir, external_data=False) + + # check equality + are_equal, onnx_res = check_equality(InferenceNet, onnx_model, image_path) + clsidx_onnx = onnx_res.argmax() + print('Are the results equal? {}'.format('Yes' if are_equal else 'No')) + print('Class: {}; score: {}'.format(clsidx_2_labels[clsidx_onnx], onnx_res.max())) diff --git a/ComputerVision/cnns/resnext_model.py b/ComputerVision/cnns/resnext_model.py new file mode 100755 index 0000000..e759964 --- /dev/null +++ b/ComputerVision/cnns/resnext_model.py @@ -0,0 +1,248 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import oneflow as flow +import collections + + +__all__ = ['ResNeXt', 'resnext18', 'resnext34', 'resnext50', 'resnext101', + 'resnext152'] + +basic_block_expansion = 1 +bottle_neck_expansion = 4 + + +def _conv2d( + inputs, + filters, + kernel_size, + strides=1, + padding="VALID", + groups=1, + use_bias=False, + trainable=True, + name=None +): + if padding != "SAME" and padding != "VALID": + if isinstance(padding, list): + inputs = flow.pad(inputs, (padding)) + padding = "VALID" + elif isinstance(padding, tuple): + inputs = flow.pad(inputs, padding) + padding = "VALID" + else: + raise ValueError("padding must be SAME, VALID or a list/tuple.") + + return flow.layers.conv2d( + inputs, filters, kernel_size, strides, padding, + data_format="NCHW", dilation_rate=1, groups=groups, + activation=None, use_bias=use_bias, + kernel_initializer=flow.random_normal_initializer(), + bias_initializer=flow.zeros_initializer(), + kernel_regularizer=None, bias_regularizer=None, + trainable=trainable, name=name, weight_name=name+"-weight", + bias_name=name+"-bias") + +def conv3x3(in_tensor, filters, strides=1, groups=1, trainable=True, name=""): + return _conv2d(in_tensor, filters=filters, kernel_size=3, + strides=strides, padding=([0, 0], [0, 0], [1, 1], [1, 1]), groups=groups, use_bias=False, + trainable=trainable, name=name) + + +def _batch_norm(inputs, trainable=True, training=True, name=None): + return flow.layers.batch_normalization( + inputs=inputs, + axis=1, + momentum=0.1, + epsilon=1e-5, + center=True, + scale=True, + trainable=trainable, + training=training, + name=name + ) + + +def basic_block(inputs, filters, strides=1, downsample=None, num_group=32, + trainable=True, training=True, layer_block=""): + residual = inputs + conv1 = conv3x3(inputs, filters*2, strides, trainable=trainable, name=layer_block+"conv1") + bn1 = _batch_norm(conv1, trainable=trainable, training=training, name=layer_block+"bn1") + relu = flow.nn.relu(bn1, name=layer_block+"relu1") + conv2 = conv3x3(relu, filters*2, groups=num_group, trainable=trainable, + name=layer_block+"conv2") + bn2 = _batch_norm(conv2, trainable=trainable, training=training, name=layer_block+"bn2") + if downsample is True: + residual = _conv2d(inputs, filters * basic_block_expansion, + kernel_size=1, strides=strides, use_bias=False, + trainable=trainable, name=layer_block+"downsample-0") + residual = _batch_norm(residual, trainable, training=training, name=layer_block+"downsampe-1") + out = flow.math.add(bn2, residual) + out = flow.nn.relu(out) + return out + + +def bottle_neck(inputs, filters, strides, + downsample=None, num_group=32, trainable=True, training=True, layer_block=""): + residual = inputs + conv1 = _conv2d(inputs, filters*2, kernel_size=1, trainable=trainable, name=layer_block+"conv1") + bn1 = _batch_norm(conv1, trainable=trainable, training=training, name=layer_block+"bn1") + relu1 = flow.nn.relu(bn1, name=layer_block+"relu1") + conv2 = _conv2d(relu1, filters*2, kernel_size=3, strides=strides, + padding=([0, 0], [0, 0], [1, 1], [1, 1]), use_bias=False, + groups=num_group, trainable=trainable, + name=layer_block+"conv2") + bn2 = _batch_norm(conv2, trainable=trainable, training=training, name=layer_block+"bn2") + relu2 = flow.nn.relu(bn2, name=layer_block+"relu2") + conv3 = _conv2d(relu2, filters*4, kernel_size=1, padding="VALID", + use_bias=False, trainable=trainable, name=layer_block+"conv3") + bn3 = _batch_norm(conv3, training=training, name=layer_block+"bn3") # pass + if downsample is True: + residual = _conv2d(inputs, filters * bottle_neck_expansion, + kernel_size=1, strides=strides, use_bias=False, + trainable=trainable, + name=layer_block+"downsample-0") + residual = _batch_norm(residual, trainable=trainable, + training=training, name=layer_block+"downsample-1") + out = flow.math.add(bn3, residual) + out = flow.nn.relu(out) + + return out + + +class ResNeXt(): + def __init__(self, images, trainable=True, training=True, + need_transpose=False, channel_last=False, block=None, layers=[], + num_classes=1000, num_group=32): + self.input = 64 + self.images = images + self.trainable = trainable + self.training = training + self.data_format = "NHWC" if channel_last else "NCHW" + self.need_transpose=need_transpose + self.layers = layers + self.block = block + self.num_classes = num_classes + self.num_group = num_group + self.block_expansion = 1 if self.block == basic_block else 4 + super(ResNeXt, self).__init__() + + + def _make_layer(self, inputs, filters, blocks, num_group, strides=1, + layer_num=""): + downsample = None + if strides != 1 or self.input != filters * self.block_expansion: + downsample = True + block_out = self.block(inputs, filters, strides, + downsample, num_group=self.num_group, trainable=self.trainable, + training=self.training, + layer_block=layer_num+"-0-") + + layers = [] + layers.append(block_out) + self.input = filters * self.block_expansion + for i in range(1, blocks): + block_out = self.block(block_out, filters, + strides=1, downsample=False, num_group=num_group, + trainable=self.trainable, training=self.training, + layer_block=layer_num+"-"+str(i)+"-") + layers.append(block_out) + return layers + + def build_network(self): + if self.need_transpose: + images = flow.transpose(self.images, name="transpose", perm=[0, 3, 1, + 2]) + else: + images = self.images + conv1 = _conv2d(images, 64, kernel_size=7, strides=2, + padding=([0, 0], [0, 0], [3, 3], [3, 3]), + groups=1, use_bias=False, trainable=self.trainable, name="conv1") + + bn1 = _batch_norm(conv1, trainable=self.trainable, training=self.training, name="bn1") + + relu = flow.nn.relu(bn1, name="relu1") + pad_before_max_pool = flow.pad(relu, ([0, 0], [0, 0], [1, 1], [1, 1])) + max_pool = flow.nn.max_pool2d(relu, ksize=3, strides=2, + padding="VALID", data_format="NCHW", name="max_pool") + layer1 = self._make_layer(max_pool, 64, self.layers[0], + self.num_group, layer_num="layer1") + layer2 = self._make_layer(layer1[-1], 128, self.layers[1], + self.num_group, strides=2, layer_num="layer2") + layer3 = self._make_layer(layer2[-1], 256, self.layers[2], + self.num_group, strides=2, layer_num="layer3") + layer4 = self._make_layer(layer3[-1], 512, self.layers[3], + self.num_group, strides=2, layer_num="layer4") + + # debug mode: dump data for debugging + # with flow.watch_scope(blob_watcher=blob_watched, + # diff_blob_watcher=diff_blob_watched): + # bn1_identity = flow.identity(layer4[-1], name="layer4_last_out") + + avg_pool = flow.nn.avg_pool2d(layer4[-1], 7, strides=1, padding="VALID", + data_format="NCHW", name="avg_pool") + + reshape = flow.reshape(avg_pool, (avg_pool.shape[0], -1)) + + fc = flow.layers.dense(reshape, units=self.num_classes, use_bias=True, + kernel_initializer=flow.xavier_uniform_initializer(), + bias_initializer=flow.zeros_initializer(), + trainable=self.trainable, + name="fc") + return fc + + +def resnext18(images, trainable=True, training=True, need_transpose=False, + channel_last=False, **kwargs): + """Constructs a ResNeXt-18 model. + """ + resnext_18 = ResNeXt(images, trainable=trainable, training=training, + need_transpose=need_transpose, channel_last=channel_last, + block=basic_block, layers=[2, 2, 2, 2], **kwargs) + model = resnext_18.build_network() + return model + + +def resnext34(images, trainable=True, training=True, need_transpose=False, + channel_last=False, **kwargs): + """Constructs a ResNeXt-34 model. + """ + resnext_34 = ResNeXt(images, trainable=trainable, training=training, + need_transpose=False, channel_last=False, + block=basic_block, layers=[3, 4, 6, 3], **kwargs) + model = resnext_34.build_network() + return model + + +def resnext50(images, trainable=True, training=True, need_transpose=False, + channel_last=False, **kwargs): + """Constructs a ResNeXt-50 model. + """ + resnext_50 = ResNeXt(images, trainable=trainable, training=training, + need_transpose=need_transpose, channel_last=channel_last, + block=bottle_neck, layers=[3, 4, 6, 3], **kwargs) + model = resnext_50.build_network() + return model + + +def resnext101(images, trainable=True, training=True, need_transpose=False, + channel_last=False, **kwargs): + """Constructs a ResNeXt-101 model. + """ + resnext_101 = ResNeXt(images, trainable=trainable, training=training, + need_transpose=False, channel_last=False, + block=bottle_neck, layers=[3, 4, 23, 3], **kwargs) + model = resnex_101.build_network() + return model + + +def resnext152(images, trainable=True, training=True, need_transpose=False, + channel_last=False, **kwargs): + """Constructs a ResNeXt-152 model. + """ + resnext_152 = ResNeXt(images, trainable=trainable, training=training, + need_transpose=need_transpose, channel_last=channel_last, + block=bottle_neck, layers=[3, 8, 36, 3], **kwargs) + model = resnext_152.build_network() + return model diff --git a/ComputerVision/cnns/tools/README.md b/ComputerVision/cnns/tools/README.md new file mode 100644 index 0000000..f961e31 --- /dev/null +++ b/ComputerVision/cnns/tools/README.md @@ -0,0 +1,207 @@ +# Tools使用说明 +## 简介 +tools文件夹中存放的文件和python代码专门用于 **ImageNet(2012)数据集** 制作工具。通过下面的使用说明,你可以将ImageNet(2012)从原始格式转换为通用图像格式的数据集,再转换为可在OneFlow中直接训练的 **OFRecord** 格式。 + +#### 原始数据集 + +往往是由成千上万的图片或文本等文件组成,这些文件被散列存储在不同的文件夹中,一个个读取的时候会非常慢,并且占用大量内存空间。 + +#### OFRecord + **OFRecord提高IO效率** + +内部借助“Protocol Buffer”二进制数据编码方案,它只占用一个内存块,只需要一次性加载一个二进制文件的方式即可,简单,快速,尤其对大型训练数据很友好。另外,当我们的训练数据量比较大的时候,可以将数据分成多个OFRecord文件,来提高处理效率。 + +关于OFRecord的详细说明请参考:[OFRecord数据格式](https://github.com/Oneflow-Inc/oneflow-documentation/cn/docs/basics_topics/ofrecord.md) + + + +## 数据集制作 + +### 将ImageNet转换成OFRecord + +在OneFlow中,提供了将原始ImageNet2012数据集文件转换成OFRecord格式的脚本,如果您已经下载过,且准备好了ImageNet2012通用图像格式的数据集,并且训练集/验证集的格式如下: + +```shell +│ ├── train +│ │ ├── n01440764 +│ │ └── n01443537 + ... +│ └── validation +│ ├── n01440764 +│ └── n01443537 + ... +``` + +那么,您只需要下载:[imagenet_2012_bounding_boxes.csv](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/imagenet_2012_bounding_boxes.zip) + +然后执行以下脚本即可完成训练集/验证集 > OFRecord的转换: + +#### 转换训练集 + +```shell +python3 imagenet_ofrecord.py \ +--train_directory ../data/imagenet/train \ +--output_directory ../data/imagenet/ofrecord/train \ +--label_file imagenet_lsvrc_2015_synsets.txt \ +--shards 256 --num_threads 8 --name train \ +--bounding_box_file imagenet_2012_bounding_boxes.csv \ +--height 224 --width 224 +``` + +#### 转换验证集 + +```shell +python3 imagenet_ofrecord.py \ +--validation_directory ../data/imagenet/validation \ +--output_directory ../data/imagenet/ofrecord/validation \ +--label_file imagenet_lsvrc_2015_synsets.txt --name validation \ +--shards 256 --num_threads 8 --name validation \ +--bounding_box_file imagenet_2012_bounding_boxes.csv \ +--height 224 --width 224 +``` + +#### 参数说明 + +```shell +--train_directory +# 指定待转换的训练集文件夹路径 +--validation_directory +# 指定待转换的验证集文件夹路径 +--name +# 指定转换的是训练集还是验证集 +--output_directory +# 指定转换后的ofrecord存储位置 + --num_threads +# 任务运行线程数 +--shards +# 指定ofrecord分片数量,建议shards = 256 +#(shards数量越大,则转换后的每个ofrecord分片数据量就越少) +--bounding_box_file +# 该参数指定的csv文件中标记了所有目标box的坐标,使转换后的ofrecord同时支持分类和目标检测任务 +``` + +运行以上脚本后,你可以在../data/imagenet/ofrecord/validation、../data/imagenet/ofrecord/train下看到转换好的ofrecord文件: + +```shell +. +├── train +│ ├── part-00000 +│ └── part-00001 + ... +└── validation + ├── part-00000 + └── part-00001 + ... +``` + + + +如果尚未下载/处理过ImageNet,请看下面【ImageNet的下载和预处理】部分的说明。 + +### ImageNet的下载和预处理 + +如果您尚未下载过Imagenet数据集,请准备以下文件: + +- ILSVRC2012_img_train.tar +- ILSVRC2012_img_val.tar +- ILSVRC2012_bbox_train_v2.tar.gz(非必须) + +其中训练集和验证集的图片请自行下载,bbox标注可以点此下载:[ILSVRC2012_bbox_train_v2.tar.gz](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/ILSVRC2012_bbox_train_v2.tar.gz) + +我们将用下面三个步骤,帮您完成数据集的预处理。之后,您就可以使用【将ImageNet转换成OFRecord】部分介绍的转换脚本进行OFReciord的转换了。 + + + +下面假设您已经下载好了原始数据集和bbox标注文件,并存放在data/imagenet目录下: + +```shell +├── data +│ └── imagenet +│ ├── ILSVRC2012_img_train.tar +│ ├── ILSVRC2012_img_val.tar +│ ├── ILSVRC2012_bbox_train_v2.tar.gz +├── tools +│ ├── extract_trainval.sh +│ ├── imagenet_2012_validation_synset_labels.txt +│ ├── imagenet_lsvrc_2015_synsets.txt +│ ├── imagenet_metadata.txt +│ ├── imagenet_ofrecord.py +│ └── preprocess_imagenet_validation_data.py +``` + +#### 步骤一:process_bounding_boxes + +这一步,主要是将标注好的包含bboxs的xml文件提取到一个.csv文件中,方便后面代码中直接使用。完整的转换过程大约需要5分钟。 + +当然,你也可以直接使用我们转换好的文件:[imagenet_2012_bounding_boxes.csv](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/imagenet_2012_bounding_boxes.zip) + +1.解压ILSVRC2012_bbox_train_v2.tar.gz + +```shell +cd data/imagenet && mkdir bounding_boxes && tar -zxvf ILSVRC2012_bbox_train_v2.tar.gz -C bounding_boxes +``` + +2.提取bboxs至.csv文件 + +```shell +cd ../.. && python process_bounding_boxes.py data/imagenet/bounding_boxes imagenet_lsvrc_2015_synsets.txt | sort > imagenet_2012_bounding_boxes.csv +``` + +#### 步骤二:extract imagenet + +这一步主要是将ILSVRC2012_img_train.tar和ILSVRC2012_img_val.tar解压缩,生成train、validation文件夹。train文件夹下是1000个虚拟lebel分类文件夹(如:n01443537),训练集图片解压后根据分类放入这些label文件夹中;validation文件夹下是解压后的原图。 + +```shell +sh extract_trainval.sh ../data/imagenet # 参数指定存放imagenet元素数据的文件夹路径 +``` +```shell +解压后,文件夹结构示意如下: +. +├── extract_trainval.sh +├── imagenet +│ ├── ILSVRC2012_img_train.tar +│ ├── ILSVRC2012_img_val.tar +│ ├── ILSVRC2012_bbox_train_v2.tar.gz +│ ├── bounding_boxes +│ ├── train +│ │ ├── n01440764 +│ │ │ ├── n01440764_10026.JPEG +│ │ │ ├── n01440764_10027.JPEG + ... +│ │ └── n01443537 +│ │ ├── n01443537_10007.JPEG +│ │ ├── n01443537_10014.JPEG + ... +│ └── validation +│ ├── ILSVRC2012_val_00000236.JPEG +│ ├── ILSVRC2012_val_00000262.JPEG + ... +``` + +#### 步骤三:validation数据处理 + +经过上一步,train数据集已经放入了1000个分类label文件夹中形成了规整的格式,而验证集部分的图片还全部堆放在validation文件夹中,这一步,我们就用preprocess_imagenet_validation_data.py对其进行处理,使其也按类别存放到label文件夹下。 +```shell +python3 preprocess_imagenet_validation_data.py ../data/imagenet/validation +# 参数 ../data/imagenet/validation为ILSVRC2012_img_val.tar解压后验证集图像存放的路径。 +``` +处理后项目文件夹格式如下: +```shell +. +├── extract_trainval.sh +├── imagenet +│ ├── ILSVRC2012_img_train.tar +│ ├── ILSVRC2012_img_val.tar +│ ├── ILSVRC2012_bbox_train_v2.tar.gz +│ ├── bounding_boxes +│ ├── train +│ │ ├── n01440764 +│ │ └── n01443537 + ... +│ └── validation +│ ├── n01440764 +│ └── n01443537 + ... +``` + +至此,已经完成了全部的数据预处理,您可以直接跳转至**转换训练集**和**转换验证集**部分,轻松完成ImageNet-2012数据集到OFRecord的转换过程了。 diff --git a/ComputerVision/cnns/tools/extract_trainval.sh b/ComputerVision/cnns/tools/extract_trainval.sh new file mode 100755 index 0000000..0af07b1 --- /dev/null +++ b/ComputerVision/cnns/tools/extract_trainval.sh @@ -0,0 +1,37 @@ +# usage: sh extract_trainval.sh your_path_to/imagenet +# 参数指定存放imagenet元素数据的文件夹路径 + +set -e +ROOT_DIR=$1 # your path to imagenet dataset root dir +echo "Imagenet dataset in dir:${ROOT_DIR}" + +SYNSETS_FILE="imagenet_lsvrc_2015_synsets.txt" +TRAIN_TARBALL="${ROOT_DIR}/ILSVRC2012_img_train.tar" +TRAIN_OUTPUT_PATH="${ROOT_DIR}/train/" +VALIDATION_TARBALL="${ROOT_DIR}/ILSVRC2012_img_val.tar" +VALIDATION_OUTPUT_PATH="${ROOT_DIR}/validation/" + +mkdir -p "${TRAIN_OUTPUT_PATH}" +mkdir -p "${VALIDATION_OUTPUT_PATH}" + +# extract .tar file of validation +tar xf "${VALIDATION_TARBALL}" -C "${VALIDATION_OUTPUT_PATH}" + +# extract .tar file of train +echo "Uncompressing individual train tar-balls in the training data." + +while read SYNSET; do + # Uncompress into the directory. + tar xf "${TRAIN_TARBALL}" "${SYNSET}.tar" + if [ "$?" = "0" ];then + # Create a directory and delete anything there. + mkdir -p "${TRAIN_OUTPUT_PATH}/${SYNSET}" + rm -rf "${TRAIN_OUTPUT_PATH}/${SYNSET}/*" + echo "Processing: ${SYNSET}" + tar xf "${SYNSET}.tar" -C "${TRAIN_OUTPUT_PATH}/${SYNSET}/" + rm -f "${SYNSET}.tar" + echo "Finished processing: ${SYNSET}" + else + echo "${SYNSET}.tar doesn't exist!" + fi +done < "${SYNSETS_FILE}" \ No newline at end of file diff --git a/ComputerVision/cnns/tools/imagenet_2012_validation_synset_labels.txt b/ComputerVision/cnns/tools/imagenet_2012_validation_synset_labels.txt new file mode 100755 index 0000000..0fc3467 --- /dev/null +++ b/ComputerVision/cnns/tools/imagenet_2012_validation_synset_labels.txt @@ -0,0 +1,50000 @@ +n01751748 +n09193705 +n02105855 +n04263257 +n03125729 +n01735189 +n02346627 +n02776631 +n03794056 +n02328150 +n01917289 +n02125311 +n02484975 +n04065272 +n03496892 +n02066245 +n01914609 +n01616318 +n02971356 +n03126707 +n02346627 +n02091244 +n07742313 +n03956157 +n01616318 +n04380533 +n02114548 +n02089973 +n01729977 +n04435653 +n02280649 +n03444034 +n02077923 +n09835506 +n03478589 +n04532106 +n01644900 +n02666196 +n04141327 +n01773797 +n03125729 +n04049303 +n02006656 +n02097209 +n02111277 +n03950228 +n03393912 +n02089973 +n03930630 +n02640242 +n01828970 +n01632777 +n04372370 +n03485794 +n02443114 +n02930766 +n02112018 +n13040303 +n04485082 +n03482405 +n02963159 +n02093859 +n01910747 +n01693334 +n04371430 +n02526121 +n01871265 +n04532106 +n04482393 +n04370456 +n02927161 +n02074367 +n01608432 +n02966193 +n01795545 +n02791270 +n02087394 +n02116738 +n02091635 +n02895154 +n09193705 +n02088094 +n04200800 +n01737021 +n02974003 +n03032252 +n02483708 +n01632458 +n02992529 +n01698640 +n02114548 +n02497673 +n02480855 +n04147183 +n02487347 +n03895866 +n02325366 +n02033041 +n07745940 +n02415577 +n02951585 +n02087394 +n04485082 +n04505470 +n02097658 +n04591157 +n01770081 +n02992211 +n03691459 +n03594734 +n01983481 +n03937543 +n02105412 +n03843555 +n02091244 +n07831146 +n03710637 +n03733281 +n03782006 +n03733131 +n03933933 +n02980441 +n04409515 +n02606052 +n02226429 +n02883205 +n02422699 +n01614925 +n07697537 +n02123394 +n04252077 +n03337140 +n02117135 +n02107142 +n04037443 +n02397096 +n03187595 +n02319095 +n07932039 +n03372029 +n02088466 +n02319095 +n04125021 +n03954731 +n09421951 +n04487394 +n02113624 +n03843555 +n03485407 +n09332890 +n03642806 +n03710193 +n01677366 +n01950731 +n07714990 +n02114855 +n02119022 +n04086273 +n04201297 +n03733281 +n02100877 +n03016953 +n03733805 +n03063599 +n07714990 +n03854065 +n04149813 +n03786901 +n03467068 +n02087046 +n04326547 +n02100735 +n03775546 +n02111500 +n02814533 +n02097047 +n02027492 +n02109961 +n02389026 +n02105855 +n02445715 +n03259280 +n07711569 +n03710637 +n03670208 +n02128757 +n04467665 +n02114855 +n01873310 +n03476684 +n02093428 +n03891251 +n02859443 +n04125021 +n01978287 +n02643566 +n07697537 +n01560419 +n03290653 +n13037406 +n03891332 +n02883205 +n02106382 +n02672831 +n04330267 +n02489166 +n02058221 +n03584829 +n07565083 +n03125729 +n02123597 +n04536866 +n02965783 +n09428293 +n02965783 +n11879895 +n01560419 +n01775062 +n03595614 +n02110958 +n03709823 +n03777754 +n02951585 +n02100877 +n01629819 +n02909870 +n02101388 +n02091244 +n01667114 +n03998194 +n01986214 +n04192698 +n02128757 +n02793495 +n09256479 +n01443537 +n02089973 +n01981276 +n02837789 +n03888605 +n03201208 +n02480855 +n03814639 +n04090263 +n01986214 +n02415577 +n01534433 +n02093256 +n03134739 +n03016953 +n12620546 +n03937543 +n02815834 +n03776460 +n10565667 +n03207743 +n02992529 +n01631663 +n03729826 +n04033995 +n04462240 +n01443537 +n02091831 +n03874293 +n03874599 +n04238763 +n07584110 +n02749479 +n02110185 +n09193705 +n04311004 +n02788148 +n02445715 +n06874185 +n04074963 +n01631663 +n03803284 +n01828970 +n02096437 +n04554684 +n03599486 +n03595614 +n02123394 +n04515003 +n04591157 +n04560804 +n02794156 +n03344393 +n02687172 +n04328186 +n04479046 +n03967562 +n01440764 +n04465501 +n03457902 +n04532670 +n01688243 +n01749939 +n01768244 +n02091831 +n02321529 +n02939185 +n02129604 +n12985857 +n03485794 +n02408429 +n01443537 +n03590841 +n07697537 +n04154565 +n03443371 +n02514041 +n09468604 +n03769881 +n02787622 +n02526121 +n03888605 +n01622779 +n01872401 +n07745940 +n03085013 +n02445715 +n02120505 +n01751748 +n04141327 +n02443484 +n02089078 +n01608432 +n01514668 +n03160309 +n04070727 +n07715103 +n02110958 +n03976657 +n03902125 +n02909870 +n01740131 +n04532106 +n03197337 +n02493509 +n10148035 +n02172182 +n02437616 +n03062245 +n04286575 +n03018349 +n02951358 +n02130308 +n04277352 +n02096585 +n04589890 +n02965783 +n02978881 +n02804414 +n02112137 +n02007558 +n03670208 +n02894605 +n03657121 +n03876231 +n02165105 +n01669191 +n02011460 +n03710193 +n03796401 +n02916936 +n03492542 +n03998194 +n04552348 +n01824575 +n01917289 +n03461385 +n03874293 +n03272010 +n02099712 +n02999410 +n04179913 +n07831146 +n02096177 +n04350905 +n04507155 +n03743016 +n02105505 +n03649909 +n03680355 +n01910747 +n03529860 +n02787622 +n02012849 +n02011460 +n02094114 +n02950826 +n02105855 +n09288635 +n01773797 +n01774750 +n04409515 +n02497673 +n02113799 +n02786058 +n02443484 +n02981792 +n03095699 +n01664065 +n02092002 +n07711569 +n02219486 +n13133613 +n02114548 +n03529860 +n02097298 +n13133613 +n04355933 +n01537544 +n01847000 +n04428191 +n02666196 +n02268443 +n03291819 +n01828970 +n04099969 +n02747177 +n07720875 +n02088094 +n02113624 +n03710637 +n03637318 +n03942813 +n02093859 +n03794056 +n02930766 +n02930766 +n04525038 +n03796401 +n03709823 +n02097047 +n04604644 +n03938244 +n01560419 +n02097298 +n02091635 +n04136333 +n07718747 +n02417914 +n03355925 +n02445715 +n02445715 +n03495258 +n04447861 +n02111500 +n03584829 +n03977966 +n04116512 +n04019541 +n04200800 +n02408429 +n02085936 +n03992509 +n02769748 +n04613696 +n07716906 +n02085782 +n07718472 +n04398044 +n03920288 +n01860187 +n03272010 +n04008634 +n04090263 +n02028035 +n01677366 +n13037406 +n04067472 +n02095889 +n04532670 +n01582220 +n03476684 +n02395406 +n04487394 +n02443484 +n02510455 +n04550184 +n02814860 +n12144580 +n03126707 +n02486410 +n02125311 +n03777754 +n03924679 +n04613696 +n07875152 +n02058221 +n03188531 +n02777292 +n02489166 +n02066245 +n04579432 +n01630670 +n02666196 +n02091635 +n02114548 +n02356798 +n03201208 +n03240683 +n03590841 +n03018349 +n02104029 +n04251144 +n10148035 +n02169497 +n02089867 +n01734418 +n04476259 +n02843684 +n04008634 +n03400231 +n02119022 +n02137549 +n03761084 +n02490219 +n03840681 +n04346328 +n01677366 +n02102318 +n04458633 +n04476259 +n04209239 +n01795545 +n10565667 +n02114367 +n02107574 +n03032252 +n02104365 +n03133878 +n04336792 +n02112137 +n03000684 +n04553703 +n02102480 +n03825788 +n01695060 +n03250847 +n07860988 +n04310018 +n02071294 +n01945685 +n01855672 +n02037110 +n03868863 +n04229816 +n12057211 +n02408429 +n02481823 +n07716358 +n04487394 +n03662601 +n02979186 +n02910353 +n04266014 +n03895866 +n04443257 +n02917067 +n04149813 +n03041632 +n02364673 +n02999410 +n04435653 +n04228054 +n02814860 +n01531178 +n03662601 +n07880968 +n04487081 +n07614500 +n03532672 +n01807496 +n02011460 +n02074367 +n04462240 +n02977058 +n02281406 +n03041632 +n04350905 +n02788148 +n02137549 +n04562935 +n04590129 +n02093991 +n03995372 +n02111889 +n04081281 +n02133161 +n02006656 +n02107908 +n04347754 +n02950826 +n02504013 +n04560804 +n02088364 +n02128385 +n02860847 +n04399382 +n02105412 +n02115641 +n07753592 +n07880968 +n03598930 +n03724870 +n02066245 +n02128925 +n04465501 +n02094258 +n02086646 +n04141076 +n04136333 +n13133613 +n02342885 +n02281406 +n03443371 +n07613480 +n04008634 +n04141327 +n04347754 +n03314780 +n02165456 +n03930313 +n04392985 +n01872401 +n04204238 +n07831146 +n02690373 +n12144580 +n02776631 +n02877765 +n02108089 +n03532672 +n03126707 +n01560419 +n02268853 +n03691459 +n03404251 +n02364673 +n02101556 +n02326432 +n03954731 +n07831146 +n03584254 +n02012849 +n03804744 +n02128385 +n01530575 +n03933933 +n04409515 +n02823428 +n01877812 +n03920288 +n02510455 +n02112350 +n03594945 +n03642806 +n02395406 +n03452741 +n02860847 +n03673027 +n02102040 +n04505470 +n04086273 +n02099849 +n01990800 +n03781244 +n04461696 +n02106166 +n04141076 +n07717556 +n02361337 +n03976657 +n03832673 +n03109150 +n01776313 +n03788195 +n03884397 +n04019541 +n01693334 +n03633091 +n02325366 +n03623198 +n02795169 +n01744401 +n01955084 +n02002556 +n07754684 +n02174001 +n02793495 +n02095889 +n02484975 +n02094433 +n09229709 +n03207941 +n02655020 +n03773504 +n04367480 +n03933933 +n01955084 +n04355933 +n13040303 +n02786058 +n04090263 +n02101006 +n02124075 +n03720891 +n07749582 +n04517823 +n01534433 +n04335435 +n03661043 +n02101556 +n03785016 +n03133878 +n02113978 +n02930766 +n02783161 +n03958227 +n02441942 +n02859443 +n02096437 +n02447366 +n07742313 +n07583066 +n02110063 +n03146219 +n12998815 +n03425413 +n02123394 +n03594734 +n02006656 +n02992211 +n04442312 +n03032252 +n01608432 +n02927161 +n03485794 +n07583066 +n03347037 +n01847000 +n04557648 +n03478589 +n01530575 +n02098105 +n01755581 +n03045698 +n02028035 +n03538406 +n03956157 +n01871265 +n13044778 +n02119789 +n07875152 +n02107908 +n02791124 +n03697007 +n03207743 +n02791270 +n02865351 +n03345487 +n03976467 +n03124043 +n04252225 +n02165105 +n03314780 +n04040759 +n02730930 +n02236044 +n07873807 +n02006656 +n02514041 +n03534580 +n03179701 +n04366367 +n02138441 +n03450230 +n01943899 +n07836838 +n03691459 +n04467665 +n02115641 +n01742172 +n02795169 +n02481823 +n07583066 +n02749479 +n01665541 +n04131690 +n03769881 +n02009229 +n04487081 +n02123159 +n04542943 +n07760859 +n02097658 +n02113799 +n07932039 +n02097474 +n03793489 +n02791124 +n04591713 +n01735189 +n01631663 +n02892767 +n04458633 +n02277742 +n07697537 +n03781244 +n02791270 +n03854065 +n04356056 +n07802026 +n03733131 +n01980166 +n02174001 +n07684084 +n01981276 +n03874293 +n03146219 +n02099267 +n02018207 +n04398044 +n03832673 +n02493509 +n03478589 +n06359193 +n02971356 +n02093754 +n04487081 +n03929855 +n03485407 +n01930112 +n01592084 +n02088238 +n04613696 +n03967562 +n03814639 +n04311174 +n04286575 +n03884397 +n03534580 +n03793489 +n02106382 +n03045698 +n03661043 +n03814906 +n02669723 +n03459775 +n03785016 +n04584207 +n03657121 +n03476991 +n04243546 +n04560804 +n03788365 +n01796340 +n04019541 +n03496892 +n07711569 +n03788195 +n02133161 +n04548362 +n02113712 +n03673027 +n12144580 +n02481823 +n02132136 +n03956157 +n01532829 +n04493381 +n02094258 +n03483316 +n01770081 +n02006656 +n02871525 +n01580077 +n07730033 +n02097474 +n02093647 +n02088466 +n01795545 +n07716906 +n03481172 +n01608432 +n02097209 +n01629819 +n07695742 +n02389026 +n02977058 +n04090263 +n04522168 +n02871525 +n04258138 +n02127052 +n04476259 +n03617480 +n04273569 +n03485794 +n06794110 +n03085013 +n02974003 +n02869837 +n02086240 +n01685808 +n02088466 +n03584829 +n01514668 +n02114367 +n03447447 +n04435653 +n03065424 +n01616318 +n02841315 +n02655020 +n03496892 +n04040759 +n01496331 +n02094258 +n03787032 +n02172182 +n01693334 +n02168699 +n03793489 +n07613480 +n01824575 +n01665541 +n04065272 +n02699494 +n02526121 +n01774750 +n03126707 +n04254777 +n02325366 +n01665541 +n02007558 +n01873310 +n01734418 +n03271574 +n01776313 +n01644373 +n02486410 +n02106662 +n03125729 +n02087394 +n02094433 +n07684084 +n04532670 +n01843383 +n02835271 +n12985857 +n04485082 +n02167151 +n03394916 +n01664065 +n04286575 +n03874293 +n02699494 +n01601694 +n01582220 +n02486261 +n02268853 +n03947888 +n13040303 +n03967562 +n03602883 +n01882714 +n04505470 +n02226429 +n04522168 +n02481823 +n02108422 +n03670208 +n07718747 +n01688243 +n02747177 +n07248320 +n02328150 +n02963159 +n02117135 +n03676483 +n06596364 +n01775062 +n03724870 +n03347037 +n13133613 +n02319095 +n03944341 +n02088238 +n02110185 +n01443537 +n06794110 +n02606052 +n02113186 +n02704792 +n03692522 +n03018349 +n02095314 +n04523525 +n02356798 +n04228054 +n02108000 +n04371430 +n01770393 +n04456115 +n02110958 +n01631663 +n02708093 +n02835271 +n02807133 +n02280649 +n02277742 +n03857828 +n03452741 +n03388043 +n06596364 +n04252225 +n04458633 +n01689811 +n03935335 +n01560419 +n02500267 +n02319095 +n02412080 +n02096437 +n03814639 +n03494278 +n01518878 +n02486261 +n01629819 +n04606251 +n03787032 +n01877812 +n01773157 +n02104365 +n02113978 +n02123394 +n02966687 +n01728920 +n02916936 +n01860187 +n03255030 +n02011460 +n02087394 +n02817516 +n02085620 +n02437616 +n02606052 +n03447721 +n01773157 +n02497673 +n04380533 +n02056570 +n01917289 +n12267677 +n04325704 +n02130308 +n02730930 +n03933933 +n02981792 +n07892512 +n02112018 +n02398521 +n02009912 +n02002724 +n02086079 +n02100236 +n03085013 +n02837789 +n02018795 +n02106382 +n02489166 +n03937543 +n02910353 +n07836838 +n15075141 +n02877765 +n03602883 +n02233338 +n13037406 +n01580077 +n04069434 +n04371774 +n03938244 +n02326432 +n03085013 +n02804610 +n04141975 +n02484975 +n02930766 +n03000134 +n02488702 +n02113023 +n02088632 +n02783161 +n02490219 +n04505470 +n02123394 +n04357314 +n02825657 +n02493509 +n03720891 +n03673027 +n03492542 +n01739381 +n02105056 +n03481172 +n03947888 +n02099601 +n02105505 +n01514859 +n07871810 +n03445924 +n12267677 +n04536866 +n03314780 +n12768682 +n02028035 +n01980166 +n02099601 +n01981276 +n07730033 +n02909870 +n04179913 +n02089973 +n02111277 +n12057211 +n01632458 +n02123394 +n04350905 +n03937543 +n02730930 +n01795545 +n02091244 +n01632777 +n03584829 +n03709823 +n02086646 +n01824575 +n03977966 +n03417042 +n02892201 +n01806143 +n02105855 +n02115913 +n03902125 +n01774384 +n07880968 +n02112137 +n09428293 +n04116512 +n02486410 +n03930630 +n04090263 +n01843383 +n07802026 +n04429376 +n02317335 +n02027492 +n01818515 +n02086646 +n02018207 +n04371430 +n03347037 +n03014705 +n04125021 +n03764736 +n02981792 +n02114367 +n04192698 +n04330267 +n03729826 +n02607072 +n02504458 +n03769881 +n02018207 +n03929855 +n04591157 +n03947888 +n04317175 +n03125729 +n01749939 +n04399382 +n02276258 +n03598930 +n02606052 +n03089624 +n02099601 +n03770439 +n02655020 +n07745940 +n02095314 +n04336792 +n04033995 +n02112018 +n02132136 +n02860847 +n03100240 +n02966687 +n02111129 +n04273569 +n04149813 +n02092002 +n03769881 +n04599235 +n03825788 +n04118776 +n04336792 +n02115641 +n01622779 +n02909870 +n02276258 +n02977058 +n02326432 +n01608432 +n03347037 +n02978881 +n02787622 +n02093256 +n02101556 +n02100735 +n02085782 +n02342885 +n03733281 +n02085782 +n03706229 +n02002724 +n13037406 +n02422106 +n07614500 +n02113712 +n04336792 +n02486261 +n02356798 +n02268443 +n04179913 +n04277352 +n02346627 +n03089624 +n02835271 +n02086240 +n04579432 +n03180011 +n04285008 +n02408429 +n04392985 +n02091244 +n02815834 +n02834397 +n04009552 +n02488291 +n03290653 +n03325584 +n03637318 +n02730930 +n02865351 +n02119789 +n03929855 +n03676483 +n04423845 +n03874293 +n03908618 +n03598930 +n02090379 +n01944390 +n04152593 +n09288635 +n02066245 +n01768244 +n03272010 +n01531178 +n03255030 +n03676483 +n02002556 +n02749479 +n02415577 +n02403003 +n07565083 +n02981792 +n01776313 +n02097474 +n02667093 +n02096177 +n03255030 +n01819313 +n02791124 +n02279972 +n04090263 +n09193705 +n04335435 +n03733131 +n03250847 +n04263257 +n02096585 +n03976467 +n02963159 +n04613696 +n04310018 +n02107574 +n03724870 +n09428293 +n02101006 +n04372370 +n03930630 +n07584110 +n01735189 +n04599235 +n02835271 +n04330267 +n02108915 +n02110185 +n07684084 +n04204347 +n02672831 +n03742115 +n04131690 +n09428293 +n04487394 +n03710193 +n09332890 +n03478589 +n04486054 +n02951358 +n09428293 +n04596742 +n01872401 +n04505470 +n04154565 +n02666196 +n02437616 +n03724870 +n02120079 +n01828970 +n03141823 +n01698640 +n03095699 +n04099969 +n02123045 +n04482393 +n04026417 +n02110806 +n04033901 +n04041544 +n02869837 +n04136333 +n02112350 +n03388043 +n03065424 +n02128757 +n04330267 +n02879718 +n02859443 +n01968897 +n01847000 +n01871265 +n02129165 +n02408429 +n04263257 +n13054560 +n02090379 +n04553703 +n03929660 +n01990800 +n03494278 +n01514859 +n02804610 +n01773157 +n02087046 +n07802026 +n03777754 +n07720875 +n01694178 +n06794110 +n02795169 +n07583066 +n02094114 +n03841143 +n01985128 +n03776460 +n02859443 +n02808304 +n02092339 +n02441942 +n02002724 +n04296562 +n02086910 +n02690373 +n01616318 +n07718472 +n02086240 +n04049303 +n04235860 +n06359193 +n02110958 +n01518878 +n02950826 +n03447721 +n02111129 +n04517823 +n03769881 +n02112350 +n07693725 +n07747607 +n02444819 +n02109047 +n04485082 +n10148035 +n03127925 +n04328186 +n03347037 +n02102480 +n07614500 +n02676566 +n04599235 +n03534580 +n02093256 +n03710721 +n02167151 +n04116512 +n04141975 +n03877472 +n02092339 +n03042490 +n04604644 +n03355925 +n04009552 +n03598930 +n02672831 +n03425413 +n03649909 +n02099429 +n01819313 +n02640242 +n02978881 +n03670208 +n02342885 +n03888257 +n03729826 +n02457408 +n02860847 +n09246464 +n02097298 +n03649909 +n04228054 +n02113624 +n01978287 +n03895866 +n03393912 +n03127925 +n03720891 +n01774384 +n04065272 +n03485407 +n04033901 +n02488291 +n12057211 +n01774750 +n01798484 +n01537544 +n07720875 +n03838899 +n04120489 +n02264363 +n02113978 +n02799071 +n02114367 +n04332243 +n03062245 +n02077923 +n02398521 +n04435653 +n01692333 +n07831146 +n04523525 +n02342885 +n07753275 +n01807496 +n02098413 +n01744401 +n07836838 +n02104029 +n02092339 +n02092339 +n02115913 +n01608432 +n03325584 +n02066245 +n03345487 +n03394916 +n01773797 +n02113186 +n02667093 +n02124075 +n04118538 +n02134084 +n02317335 +n03047690 +n03938244 +n02219486 +n07718747 +n02490219 +n04326547 +n02690373 +n07717556 +n01580077 +n02443484 +n04443257 +n04033995 +n07590611 +n02403003 +n07768694 +n03803284 +n04371774 +n02802426 +n06794110 +n04483307 +n02791270 +n02028035 +n03764736 +n07860988 +n09421951 +n03773504 +n04152593 +n04367480 +n02950826 +n02168699 +n04458633 +n01983481 +n04404412 +n04252225 +n04596742 +n02480495 +n02281787 +n01795545 +n02089867 +n02169497 +n02666196 +n04311004 +n02879718 +n03457902 +n02074367 +n03297495 +n02481823 +n04485082 +n02091244 +n07718747 +n02102480 +n04147183 +n03014705 +n02814860 +n04532670 +n02094114 +n01532829 +n01664065 +n04090263 +n03995372 +n03134739 +n06596364 +n03710637 +n01807496 +n02096294 +n04026417 +n02165105 +n03998194 +n02112706 +n04366367 +n02177972 +n04152593 +n04442312 +n01697457 +n03775071 +n07892512 +n02091831 +n02101388 +n01749939 +n03384352 +n02484975 +n03868242 +n01753488 +n02687172 +n02807133 +n02231487 +n02018795 +n04270147 +n03063599 +n04591713 +n03895866 +n03481172 +n04456115 +n01755581 +n02319095 +n02526121 +n01796340 +n02094433 +n01558993 +n04238763 +n03127925 +n03017168 +n02692877 +n04179913 +n02791124 +n03494278 +n06596364 +n01751748 +n02074367 +n03249569 +n04357314 +n07579787 +n04550184 +n06596364 +n03761084 +n07718472 +n03376595 +n04428191 +n01773157 +n07248320 +n03400231 +n04447861 +n03854065 +n01694178 +n02111500 +n04111531 +n02090622 +n03450230 +n04536866 +n01817953 +n02843684 +n03776460 +n04201297 +n04204238 +n02094114 +n04238763 +n01667114 +n02116738 +n03709823 +n04153751 +n02422699 +n01796340 +n07836838 +n02027492 +n03478589 +n01689811 +n02110958 +n03538406 +n03207743 +n01669191 +n06794110 +n02087394 +n01641577 +n07873807 +n03314780 +n04591157 +n02487347 +n04277352 +n07749582 +n03792782 +n03947888 +n03792782 +n01669191 +n02102318 +n03788365 +n03899768 +n04392985 +n01629819 +n04557648 +n02640242 +n02325366 +n07749582 +n04264628 +n04487081 +n02978881 +n03720891 +n01494475 +n02951358 +n01828970 +n04286575 +n04540053 +n04332243 +n04367480 +n03840681 +n02106662 +n03376595 +n02113186 +n03085013 +n09246464 +n03127747 +n04367480 +n03290653 +n07760859 +n02102973 +n03290653 +n01751748 +n02089973 +n02086910 +n02112350 +n03272562 +n04456115 +n03785016 +n02110341 +n01728920 +n04554684 +n02417914 +n01756291 +n03590841 +n01877812 +n02113186 +n02093256 +n02099849 +n02397096 +n03642806 +n02231487 +n04179913 +n02012849 +n02279972 +n04447861 +n04355933 +n01560419 +n02445715 +n03770679 +n03929855 +n01688243 +n06596364 +n07930864 +n01945685 +n01631663 +n03216828 +n03995372 +n02782093 +n01860187 +n04443257 +n04579432 +n07745940 +n04146614 +n02177972 +n04392985 +n01644373 +n02317335 +n04553703 +n02138441 +n13040303 +n01985128 +n02134418 +n01945685 +n02526121 +n02317335 +n01820546 +n04501370 +n01560419 +n02268443 +n03796401 +n03916031 +n02992211 +n03127747 +n03180011 +n02102480 +n04277352 +n01776313 +n03017168 +n02111129 +n02190166 +n02098413 +n02090721 +n01776313 +n09421951 +n02113023 +n02672831 +n03764736 +n04146614 +n03347037 +n03868242 +n02667093 +n02093647 +n02169497 +n02089973 +n07747607 +n02085782 +n02815834 +n02105412 +n02086910 +n04204238 +n03530642 +n07583066 +n04039381 +n02965783 +n04501370 +n04086273 +n04263257 +n02443484 +n04162706 +n07613480 +n04525038 +n04266014 +n03721384 +n04467665 +n04523525 +n04162706 +n02025239 +n04146614 +n01677366 +n04179913 +n04125021 +n02917067 +n04392985 +n04550184 +n02090721 +n03796401 +n03014705 +n04344873 +n02091635 +n01608432 +n03690938 +n04141975 +n01629819 +n04523525 +n01955084 +n01756291 +n04443257 +n02927161 +n07880968 +n07836838 +n02484975 +n02091032 +n07714571 +n03535780 +n04149813 +n09468604 +n02033041 +n03584254 +n04550184 +n03887697 +n03838899 +n02174001 +n03272010 +n03297495 +n04074963 +n03649909 +n03496892 +n03467068 +n02268853 +n03400231 +n02093256 +n04367480 +n02091134 +n04118776 +n02086646 +n07753592 +n02504013 +n02104365 +n02096177 +n03961711 +n04069434 +n03376595 +n01817953 +n01955084 +n02107142 +n03344393 +n03709823 +n02974003 +n02090379 +n04332243 +n03125729 +n03935335 +n02814860 +n01860187 +n03220513 +n02094114 +n03877472 +n02009912 +n02108000 +n02229544 +n03697007 +n03124170 +n02206856 +n03841143 +n04153751 +n01742172 +n13133613 +n04525305 +n01930112 +n02795169 +n02233338 +n02417914 +n03935335 +n01770393 +n02125311 +n03482405 +n04604644 +n02009912 +n03791053 +n03223299 +n03032252 +n04501370 +n03372029 +n03485794 +n02110341 +n04200800 +n02106166 +n04592741 +n02950826 +n04041544 +n07831146 +n04116512 +n01514859 +n03868242 +n03026506 +n02443484 +n02701002 +n04116512 +n02815834 +n03929855 +n03676483 +n01534433 +n02701002 +n02113978 +n04371430 +n03991062 +n07718472 +n02268853 +n04264628 +n02098105 +n07565083 +n02112706 +n02094114 +n02093991 +n02488291 +n02093859 +n03047690 +n01682714 +n07717410 +n01883070 +n04562935 +n01498041 +n07745940 +n02109525 +n01644900 +n01694178 +n03063689 +n02894605 +n01682714 +n03544143 +n02101556 +n02966687 +n03485407 +n03657121 +n02236044 +n07860988 +n01677366 +n07718747 +n02690373 +n04099969 +n03814639 +n02098413 +n01985128 +n02093647 +n02504458 +n01944390 +n03445924 +n03866082 +n03355925 +n02105855 +n03041632 +n03791053 +n03954731 +n07695742 +n02102040 +n03956157 +n03983396 +n02105855 +n03249569 +n03976467 +n03843555 +n02641379 +n03272562 +n03658185 +n03976467 +n02398521 +n03791053 +n03065424 +n03759954 +n03216828 +n03796401 +n01980166 +n09193705 +n01773797 +n02129604 +n04009552 +n02980441 +n03188531 +n02100735 +n07860988 +n03929855 +n04037443 +n03467068 +n02094114 +n03899768 +n04525038 +n02074367 +n04033901 +n02012849 +n02009229 +n02109961 +n03804744 +n02396427 +n02233338 +n03240683 +n03393912 +n03777568 +n02494079 +n02106662 +n04033995 +n02231487 +n04355338 +n04550184 +n02699494 +n04118538 +n03388043 +n02869837 +n02097047 +n03063689 +n01530575 +n02091032 +n03042490 +n03930313 +n02264363 +n02442845 +n02325366 +n01883070 +n01614925 +n03447721 +n03444034 +n02979186 +n02815834 +n02123394 +n03250847 +n02883205 +n04554684 +n03047690 +n01773157 +n02172182 +n03249569 +n04613696 +n03692522 +n04044716 +n12985857 +n02342885 +n03425413 +n02895154 +n01704323 +n01560419 +n02974003 +n07695742 +n03016953 +n03729826 +n03250847 +n02927161 +n02091635 +n01990800 +n02980441 +n02676566 +n02114548 +n02422699 +n04208210 +n02109961 +n04332243 +n04127249 +n03871628 +n02391049 +n01537544 +n02124075 +n02422106 +n01775062 +n03188531 +n02443114 +n01694178 +n03063689 +n02088364 +n04476259 +n04442312 +n03792972 +n07831146 +n02483708 +n04346328 +n04591713 +n03794056 +n04153751 +n03782006 +n02058221 +n04162706 +n04522168 +n03673027 +n04483307 +n03691459 +n03478589 +n02102318 +n07749582 +n07730033 +n01829413 +n01729977 +n04501370 +n09472597 +n03781244 +n02134084 +n01742172 +n03782006 +n04553703 +n09835506 +n03804744 +n02088238 +n04067472 +n03764736 +n02992529 +n03874599 +n03124043 +n04065272 +n02782093 +n03788195 +n04389033 +n03673027 +n04389033 +n03775071 +n07753113 +n12144580 +n02013706 +n02190166 +n04275548 +n03250847 +n03947888 +n01729977 +n02138441 +n04264628 +n03967562 +n03445924 +n04355338 +n02640242 +n01440764 +n12267677 +n02489166 +n02165105 +n03599486 +n03272010 +n02018207 +n02747177 +n04487081 +n02119789 +n02666196 +n02606052 +n02086646 +n04040759 +n01984695 +n12998815 +n01751748 +n04584207 +n04149813 +n01981276 +n02841315 +n03777754 +n04376876 +n02859443 +n04389033 +n01665541 +n04208210 +n04041544 +n02071294 +n13052670 +n01616318 +n03871628 +n02028035 +n03110669 +n01819313 +n04229816 +n02769748 +n03832673 +n02095889 +n01806143 +n02708093 +n07753113 +n02804610 +n02879718 +n03595614 +n02769748 +n07802026 +n04357314 +n09288635 +n07753592 +n04525038 +n04590129 +n01981276 +n01530575 +n02006656 +n03903868 +n02095570 +n03602883 +n03476991 +n04328186 +n03617480 +n03272562 +n02328150 +n04536866 +n02814860 +n03710193 +n04263257 +n02699494 +n04418357 +n01496331 +n02086079 +n03495258 +n03417042 +n03065424 +n03041632 +n04467665 +n02085936 +n03956157 +n02110341 +n07760859 +n03467068 +n02825657 +n02669723 +n07579787 +n02097658 +n03717622 +n03590841 +n02268443 +n07697313 +n02859443 +n01622779 +n02999410 +n01877812 +n01744401 +n01669191 +n04507155 +n02108000 +n10148035 +n04009552 +n09421951 +n03457902 +n02091032 +n03759954 +n01443537 +n02011460 +n01984695 +n02791270 +n03617480 +n02089973 +n02105641 +n03595614 +n03207941 +n03146219 +n04367480 +n07695742 +n03376595 +n09835506 +n02342885 +n03393912 +n04311004 +n04589890 +n02114367 +n02104029 +n01945685 +n02094114 +n01824575 +n04380533 +n02025239 +n03218198 +n02110627 +n04026417 +n02749479 +n07613480 +n02437312 +n03347037 +n02403003 +n03942813 +n03450230 +n04252225 +n02108000 +n03837869 +n02165105 +n03000247 +n04344873 +n02504458 +n02110185 +n01498041 +n04270147 +n04239074 +n03924679 +n02086646 +n09835506 +n03424325 +n04370456 +n03777754 +n03529860 +n02102040 +n01688243 +n02110627 +n02100735 +n02102177 +n04086273 +n01883070 +n04366367 +n02107574 +n02102480 +n04008634 +n02169497 +n04141327 +n02442845 +n03662601 +n01855032 +n04589890 +n02018795 +n03271574 +n02097298 +n03445777 +n02102040 +n03617480 +n02108422 +n02097474 +n02109525 +n02097474 +n11879895 +n03223299 +n02100583 +n03840681 +n02091032 +n01843065 +n03769881 +n02091467 +n02134418 +n02109047 +n04456115 +n03866082 +n04239074 +n02484975 +n04259630 +n07760859 +n09246464 +n01484850 +n02443114 +n04251144 +n03843555 +n04131690 +n07716906 +n03584254 +n04033901 +n04146614 +n03633091 +n13037406 +n04254680 +n07583066 +n03483316 +n02056570 +n02102177 +n04355338 +n01669191 +n04039381 +n01532829 +n02978881 +n03691459 +n04118776 +n02672831 +n06785654 +n07749582 +n02536864 +n02116738 +n04239074 +n02483708 +n03124170 +n07930864 +n02018207 +n04074963 +n01514859 +n02089867 +n03804744 +n04116512 +n02802426 +n03627232 +n03787032 +n02281406 +n07613480 +n02526121 +n02860847 +n01806143 +n03706229 +n03982430 +n04009552 +n01616318 +n01828970 +n03920288 +n03680355 +n02727426 +n02963159 +n02102973 +n04209133 +n01798484 +n02190166 +n02091635 +n02089078 +n04371774 +n04515003 +n02655020 +n02104029 +n01877812 +n02794156 +n02974003 +n02096585 +n04525305 +n02672831 +n02113712 +n02917067 +n02096437 +n07745940 +n02326432 +n03314780 +n02236044 +n02102973 +n02093428 +n03297495 +n03676483 +n03775071 +n04536866 +n04554684 +n03400231 +n04346328 +n01530575 +n04133789 +n03160309 +n01930112 +n03494278 +n03063599 +n03891332 +n04476259 +n02410509 +n03417042 +n07753113 +n03498962 +n03991062 +n04086273 +n01739381 +n07753275 +n03065424 +n03476991 +n07565083 +n01608432 +n04258138 +n03803284 +n02120079 +n02454379 +n01537544 +n02492035 +n02219486 +n01735189 +n03594734 +n02442845 +n04485082 +n03599486 +n02086079 +n03995372 +n04501370 +n02113712 +n02102480 +n03599486 +n04162706 +n03868242 +n04209133 +n02791124 +n01819313 +n02116738 +n02894605 +n03764736 +n03476684 +n02123159 +n02325366 +n03457902 +n02123597 +n09399592 +n02488291 +n03788365 +n01770081 +n01498041 +n02110341 +n02834397 +n02391049 +n02113023 +n02099712 +n01739381 +n02980441 +n02027492 +n03208938 +n07734744 +n02027492 +n02108000 +n03902125 +n04044716 +n09428293 +n01981276 +n02869837 +n03425413 +n03085013 +n03804744 +n02443114 +n01983481 +n02088466 +n02077923 +n01740131 +n09468604 +n02783161 +n03888257 +n02797295 +n04252225 +n01622779 +n01669191 +n03710637 +n01669191 +n01983481 +n02108422 +n04111531 +n04179913 +n04204238 +n04389033 +n02087046 +n01872401 +n02692877 +n01632777 +n02640242 +n02927161 +n02814860 +n03792972 +n04039381 +n02480855 +n03599486 +n04326547 +n03691459 +n04592741 +n03014705 +n01582220 +n13052670 +n02802426 +n01797886 +n04263257 +n04350905 +n03372029 +n02484975 +n09428293 +n03887697 +n02112350 +n03110669 +n02910353 +n02096294 +n02102177 +n02115913 +n02804610 +n04239074 +n04005630 +n04118538 +n04067472 +n02128757 +n02097658 +n02099849 +n01882714 +n02494079 +n03379051 +n02808440 +n04392985 +n02114548 +n02206856 +n03976657 +n01729322 +n07831146 +n01883070 +n02361337 +n02128757 +n02097130 +n04447861 +n13052670 +n02096177 +n03691459 +n02134084 +n02494079 +n03642806 +n04136333 +n02268853 +n02417914 +n03891332 +n09246464 +n03032252 +n02825657 +n03498962 +n03160309 +n04026417 +n04296562 +n03534580 +n03216828 +n07880968 +n03393912 +n02948072 +n04560804 +n04152593 +n04509417 +n03884397 +n02129604 +n01944390 +n04310018 +n04086273 +n07584110 +n04258138 +n04264628 +n13040303 +n02109525 +n04462240 +n02791270 +n03384352 +n04070727 +n02108422 +n03485407 +n02093647 +n03000134 +n03089624 +n07615774 +n03956157 +n02776631 +n01729977 +n03868242 +n03899768 +n01871265 +n03180011 +n03630383 +n01968897 +n02939185 +n02097474 +n04154565 +n04462240 +n02028035 +n04041544 +n02111129 +n03026506 +n04389033 +n02808440 +n03124170 +n02129165 +n02776631 +n04259630 +n03902125 +n07760859 +n01744401 +n02128757 +n02843684 +n02091134 +n02256656 +n03814639 +n02666196 +n02497673 +n13054560 +n01914609 +n01580077 +n02089867 +n03630383 +n02025239 +n02123597 +n02807133 +n03673027 +n04317175 +n15075141 +n01795545 +n03888257 +n03062245 +n04209133 +n01531178 +n02410509 +n04162706 +n03814639 +n02102177 +n04399382 +n03220513 +n06874185 +n04152593 +n07880968 +n02066245 +n01735189 +n03271574 +n01592084 +n04355933 +n02085936 +n01978455 +n04597913 +n07871810 +n02093859 +n01773549 +n03126707 +n03452741 +n02027492 +n02408429 +n01985128 +n03670208 +n04458633 +n04273569 +n03785016 +n01751748 +n03188531 +n02917067 +n02086240 +n03770439 +n03240683 +n03920288 +n03954731 +n02109525 +n03016953 +n02107683 +n01665541 +n04310018 +n03485407 +n03187595 +n03814639 +n02095570 +n01968897 +n03874599 +n02493509 +n02130308 +n02749479 +n01945685 +n02536864 +n04154565 +n02328150 +n03908618 +n01737021 +n02408429 +n02231487 +n04131690 +n03970156 +n01530575 +n04336792 +n02951358 +n02879718 +n03944341 +n03788195 +n02895154 +n03838899 +n02037110 +n04009552 +n03141823 +n02102973 +n07730033 +n01984695 +n07693725 +n04065272 +n01631663 +n02699494 +n03095699 +n02112350 +n04019541 +n09835506 +n01484850 +n07697313 +n01729322 +n03085013 +n04041544 +n02396427 +n02879718 +n03891332 +n04590129 +n03271574 +n02454379 +n01944390 +n02099267 +n02097658 +n07720875 +n02484975 +n03733805 +n02086240 +n04204238 +n03483316 +n03201208 +n02095570 +n01630670 +n03201208 +n01755581 +n02879718 +n03065424 +n02037110 +n02108915 +n02807133 +n04023962 +n01669191 +n02098286 +n04252225 +n02115641 +n02281787 +n06794110 +n02391049 +n04486054 +n01817953 +n04041544 +n04277352 +n02107574 +n09193705 +n04371774 +n04372370 +n03724870 +n03388183 +n04371430 +n02788148 +n01817953 +n02699494 +n07730033 +n09468604 +n04254777 +n04501370 +n03637318 +n02782093 +n04152593 +n01882714 +n02916936 +n03661043 +n04336792 +n02422699 +n04019541 +n01664065 +n03325584 +n03976657 +n04423845 +n04404412 +n03527444 +n02123045 +n02094114 +n01558993 +n03062245 +n02113712 +n03662601 +n03065424 +n03388183 +n03447721 +n01667778 +n03584254 +n03000247 +n07718747 +n01737021 +n02676566 +n01795545 +n07860988 +n04086273 +n04332243 +n03447721 +n01829413 +n02236044 +n02165105 +n01796340 +n02092339 +n01443537 +n04370456 +n03961711 +n07579787 +n01753488 +n02708093 +n02111277 +n01774750 +n04286575 +n02483708 +n02002724 +n02536864 +n03400231 +n03485794 +n02480495 +n02509815 +n04111531 +n07716358 +n01968897 +n04579145 +n02892201 +n02091134 +n04118776 +n03249569 +n01601694 +n04522168 +n02441942 +n03271574 +n02692877 +n03930313 +n02100735 +n04428191 +n03706229 +n02119789 +n02111277 +n01629819 +n04476259 +n03958227 +n03240683 +n02504458 +n04461696 +n09229709 +n01728920 +n02422106 +n03450230 +n02268853 +n03902125 +n03868863 +n09428293 +n04482393 +n03680355 +n01744401 +n12620546 +n02002556 +n04136333 +n02447366 +n02226429 +n03249569 +n02281406 +n03721384 +n03874599 +n02951585 +n04074963 +n02480495 +n03929855 +n03016953 +n03376595 +n07747607 +n15075141 +n02085620 +n04141975 +n03733805 +n03670208 +n02085620 +n01491361 +n03803284 +n02415577 +n07714571 +n03929855 +n13037406 +n01740131 +n01580077 +n03891251 +n02128925 +n01664065 +n02090379 +n07920052 +n02279972 +n02490219 +n02906734 +n01914609 +n01704323 +n02105412 +n03492542 +n04482393 +n02788148 +n01985128 +n03388549 +n04251144 +n02939185 +n02114548 +n07836838 +n10148035 +n03976467 +n03447721 +n02006656 +n07802026 +n04370456 +n02417914 +n01776313 +n02112018 +n03938244 +n02536864 +n07802026 +n04501370 +n02963159 +n03759954 +n02028035 +n04044716 +n02123394 +n02823428 +n01491361 +n04008634 +n01877812 +n07615774 +n09256479 +n01833805 +n04127249 +n04507155 +n03673027 +n01882714 +n03697007 +n03637318 +n04332243 +n12267677 +n07714571 +n03485794 +n04004767 +n02795169 +n02120505 +n02086646 +n02107908 +n03888257 +n01795545 +n03272010 +n07714571 +n02097047 +n03874293 +n02391049 +n01855672 +n01871265 +n04208210 +n02487347 +n02013706 +n02096051 +n03598930 +n03873416 +n02871525 +n02102973 +n03710637 +n01773157 +n03208938 +n04325704 +n02002724 +n02137549 +n02125311 +n01440764 +n01806567 +n03345487 +n04209239 +n07860988 +n07802026 +n07714571 +n12768682 +n02108422 +n01770393 +n03124043 +n04023962 +n02105056 +n04476259 +n02871525 +n03598930 +n02206856 +n03223299 +n02259212 +n02607072 +n02834397 +n02364673 +n03131574 +n02802426 +n02117135 +n04370456 +n01829413 +n04033901 +n02123159 +n02794156 +n02132136 +n02883205 +n07720875 +n03920288 +n02892201 +n04285008 +n03345487 +n03661043 +n04423845 +n02013706 +n01924916 +n03095699 +n09428293 +n04153751 +n02865351 +n03384352 +n02786058 +n02099429 +n03014705 +n02113712 +n01833805 +n03924679 +n03937543 +n02892767 +n01819313 +n02109047 +n01694178 +n01729322 +n02808440 +n04266014 +n01978287 +n04111531 +n04540053 +n02100735 +n03935335 +n04372370 +n03930630 +n02443114 +n03854065 +n03724870 +n09193705 +n02640242 +n03967562 +n07711569 +n04147183 +n03710721 +n02965783 +n02951585 +n01582220 +n03014705 +n02643566 +n01739381 +n03814906 +n01882714 +n01729322 +n02860847 +n04350905 +n01697457 +n03220513 +n04311004 +n03877472 +n04209239 +n04149813 +n03770679 +n04548362 +n07930864 +n03661043 +n03400231 +n02930766 +n04613696 +n03866082 +n01990800 +n01534433 +n03947888 +n02492660 +n01985128 +n03793489 +n03977966 +n01795545 +n04086273 +n01688243 +n02423022 +n04277352 +n03877472 +n03208938 +n04476259 +n04550184 +n03063599 +n04523525 +n02123597 +n02708093 +n02134418 +n02086079 +n11879895 +n03676483 +n02107574 +n02113978 +n03764736 +n03642806 +n01748264 +n02167151 +n04612504 +n02817516 +n02051845 +n03724870 +n02077923 +n01443537 +n03065424 +n02105505 +n02051845 +n02087394 +n01735189 +n04310018 +n01632458 +n02509815 +n02093859 +n01669191 +n03868242 +n03400231 +n02423022 +n02090622 +n03146219 +n02397096 +n03532672 +n02013706 +n01622779 +n02483708 +n03187595 +n02114712 +n03131574 +n03476991 +n03838899 +n02105162 +n04604644 +n01689811 +n02113624 +n03691459 +n15075141 +n01773797 +n01491361 +n04209133 +n04476259 +n03444034 +n02488291 +n03485407 +n01630670 +n04599235 +n02174001 +n02834397 +n02509815 +n03538406 +n03535780 +n02105855 +n04501370 +n02098105 +n03763968 +n03095699 +n04591713 +n02363005 +n03599486 +n01491361 +n02090622 +n03590841 +n03832673 +n02013706 +n06874185 +n06596364 +n04074963 +n04389033 +n02447366 +n01631663 +n02841315 +n03733805 +n03146219 +n02974003 +n03947888 +n02095570 +n02422106 +n04049303 +n02396427 +n03891251 +n02422106 +n04486054 +n02091831 +n07760859 +n03179701 +n03947888 +n03692522 +n02097298 +n03602883 +n02974003 +n02951585 +n04141327 +n04357314 +n02786058 +n02268853 +n04596742 +n03788365 +n02111277 +n02104365 +n03584254 +n04509417 +n03494278 +n02939185 +n02363005 +n03047690 +n04366367 +n04409515 +n04380533 +n03187595 +n01882714 +n03680355 +n03124170 +n01986214 +n04004767 +n01833805 +n04141076 +n02033041 +n03109150 +n04560804 +n07930864 +n02114548 +n02877765 +n02093754 +n01737021 +n02093647 +n03794056 +n01843383 +n01978287 +n01669191 +n02870880 +n02071294 +n02098286 +n04120489 +n04239074 +n01537544 +n02504013 +n03929855 +n09193705 +n03534580 +n03018349 +n04179913 +n01735189 +n01665541 +n12768682 +n02669723 +n03930313 +n04200800 +n02363005 +n04552348 +n03992509 +n02123159 +n04505470 +n01518878 +n01742172 +n02445715 +n03584254 +n02101556 +n02398521 +n02106166 +n04372370 +n04346328 +n02109047 +n03498962 +n01980166 +n07753275 +n04447861 +n09332890 +n04417672 +n07248320 +n02412080 +n03218198 +n04428191 +n04447861 +n04557648 +n01677366 +n01774750 +n09399592 +n02859443 +n04456115 +n02018795 +n03935335 +n04465501 +n02112706 +n02799071 +n07684084 +n01614925 +n02167151 +n04606251 +n04317175 +n04311004 +n02077923 +n04326547 +n02483708 +n02963159 +n07565083 +n04557648 +n02397096 +n04133789 +n02229544 +n04317175 +n07749582 +n03803284 +n04456115 +n01828970 +n02408429 +n01632458 +n03028079 +n03291819 +n01773797 +n02096585 +n02110341 +n01669191 +n01986214 +n03742115 +n01910747 +n02966687 +n02025239 +n07615774 +n02090721 +n01855672 +n02965783 +n03924679 +n11879895 +n02113186 +n04270147 +n02804610 +n06359193 +n02965783 +n03777754 +n09399592 +n01693334 +n04033901 +n02098413 +n01981276 +n03657121 +n02096437 +n03841143 +n02123394 +n02447366 +n03345487 +n02963159 +n01580077 +n03481172 +n02483362 +n02894605 +n02109525 +n04525038 +n01917289 +n03983396 +n04462240 +n04153751 +n03992509 +n02906734 +n03290653 +n02017213 +n02808440 +n04515003 +n02422106 +n02115913 +n03720891 +n10148035 +n02794156 +n02096294 +n03220513 +n02437312 +n02058221 +n04540053 +n07753592 +n02105641 +n04325704 +n04447861 +n07695742 +n03666591 +n03642806 +n01910747 +n03733281 +n01768244 +n03888605 +n13133613 +n03590841 +n03127925 +n02488291 +n04208210 +n04592741 +n04557648 +n02169497 +n01773549 +n02672831 +n03742115 +n01983481 +n02113978 +n03494278 +n02490219 +n02488291 +n03062245 +n02167151 +n02676566 +n04392985 +n03877472 +n02168699 +n02488291 +n02840245 +n03014705 +n04044716 +n02119022 +n01824575 +n02840245 +n04023962 +n03032252 +n02486410 +n03197337 +n02974003 +n04086273 +n02441942 +n03496892 +n03721384 +n03538406 +n03041632 +n02927161 +n02408429 +n03759954 +n03690938 +n01930112 +n01744401 +n02992529 +n03873416 +n07615774 +n02012849 +n03777568 +n03676483 +n01968897 +n03866082 +n04005630 +n04285008 +n02841315 +n02106030 +n02276258 +n02422106 +n03649909 +n03017168 +n02097474 +n02948072 +n02256656 +n04179913 +n09835506 +n02111889 +n02988304 +n07836838 +n02051845 +n02971356 +n02640242 +n03065424 +n04201297 +n02281406 +n02134418 +n02500267 +n02895154 +n02870880 +n03617480 +n02415577 +n03733131 +n03594734 +n04152593 +n04258138 +n04286575 +n04336792 +n02484975 +n04041544 +n04081281 +n03291819 +n04584207 +n02100877 +n03459775 +n01498041 +n04429376 +n04252077 +n04515003 +n02108089 +n03876231 +n03838899 +n07716358 +n02025239 +n02965783 +n04033901 +n03841143 +n02102318 +n03888605 +n03777568 +n04350905 +n02870880 +n04277352 +n07720875 +n02317335 +n02504458 +n02488291 +n02137549 +n02490219 +n04428191 +n03662601 +n04532670 +n02105412 +n02091831 +n04154565 +n01531178 +n07753275 +n02117135 +n01882714 +n03272010 +n03759954 +n03866082 +n03992509 +n02137549 +n01537544 +n01494475 +n03179701 +n01694178 +n04554684 +n04204347 +n11879895 +n04366367 +n04371430 +n12057211 +n02730930 +n03461385 +n01728572 +n01688243 +n04141975 +n02174001 +n04310018 +n02077923 +n02105505 +n03250847 +n01776313 +n04532106 +n02346627 +n04493381 +n07742313 +n04335435 +n02112018 +n02097298 +n04254120 +n02231487 +n03394916 +n01806143 +n04311004 +n03216828 +n07615774 +n07614500 +n07768694 +n07248320 +n03594734 +n04008634 +n02091134 +n02606052 +n04310018 +n07714990 +n01945685 +n02326432 +n01704323 +n01944390 +n01514668 +n01514668 +n01740131 +n04356056 +n03492542 +n02643566 +n03759954 +n03854065 +n03781244 +n03125729 +n02087394 +n02093754 +n02802426 +n03527444 +n07747607 +n03394916 +n01644373 +n02823428 +n02106550 +n03954731 +n01944390 +n09472597 +n03126707 +n02102973 +n03443371 +n03529860 +n02489166 +n04606251 +n04371774 +n03197337 +n04252225 +n01986214 +n03841143 +n02111129 +n04251144 +n02782093 +n03786901 +n04542943 +n03196217 +n01735189 +n03125729 +n02089867 +n04009552 +n02860847 +n02229544 +n01871265 +n03930313 +n04296562 +n03388549 +n02437616 +n02423022 +n02190166 +n04522168 +n04136333 +n02009229 +n07716358 +n01798484 +n01990800 +n04525038 +n07754684 +n01582220 +n03673027 +n02977058 +n04317175 +n03495258 +n02692877 +n02089973 +n01843065 +n03584254 +n02802426 +n02364673 +n01807496 +n02172182 +n03742115 +n02687172 +n02769748 +n07716358 +n03028079 +n02107142 +n02749479 +n02417914 +n04296562 +n01829413 +n01698640 +n03935335 +n02096294 +n02112706 +n02692877 +n01740131 +n07754684 +n04136333 +n02112137 +n02326432 +n02113624 +n07715103 +n02484975 +n03781244 +n01630670 +n02701002 +n03776460 +n01978455 +n01755581 +n01819313 +n03838899 +n04146614 +n04251144 +n02113023 +n02483362 +n04456115 +n02101006 +n02992211 +n02037110 +n03045698 +n02963159 +n03249569 +n06359193 +n03196217 +n01693334 +n02085936 +n03697007 +n02092002 +n02099712 +n02793495 +n03710721 +n02102318 +n03895866 +n02097209 +n03127747 +n01950731 +n02106166 +n01443537 +n03372029 +n04229816 +n01990800 +n04258138 +n03637318 +n03633091 +n03770439 +n01818515 +n04069434 +n02110063 +n01664065 +n02504458 +n01641577 +n04562935 +n03825788 +n03873416 +n02484975 +n01984695 +n03761084 +n02892201 +n04392985 +n04357314 +n02097130 +n03394916 +n03124170 +n03938244 +n01582220 +n04133789 +n07871810 +n02114855 +n02445715 +n03017168 +n01729977 +n02101006 +n04153751 +n07730033 +n02802426 +n02130308 +n02096585 +n01860187 +n01980166 +n02825657 +n03450230 +n04037443 +n04090263 +n02361337 +n02823750 +n02843684 +n03372029 +n01749939 +n02808440 +n03384352 +n02129165 +n02095570 +n02916936 +n02098105 +n02093256 +n03445777 +n02111500 +n04553703 +n03871628 +n03876231 +n03062245 +n03207941 +n04428191 +n02408429 +n04005630 +n02777292 +n03877845 +n04599235 +n02514041 +n04081281 +n02111889 +n03208938 +n02105855 +n10565667 +n02493793 +n02676566 +n02219486 +n04147183 +n01531178 +n04542943 +n02492660 +n04235860 +n02321529 +n01687978 +n02066245 +n01818515 +n03461385 +n03710637 +n03854065 +n01872401 +n01847000 +n03690938 +n06596364 +n07932039 +n02102973 +n01806567 +n02106382 +n15075141 +n02109047 +n02087394 +n01774750 +n02128385 +n07871810 +n02086240 +n04209239 +n07749582 +n04392985 +n02058221 +n01644373 +n03127925 +n03690938 +n04485082 +n03388183 +n02110627 +n02165105 +n03785016 +n02259212 +n02108915 +n02099267 +n04044716 +n01990800 +n01986214 +n01632777 +n01580077 +n02106030 +n01632458 +n03337140 +n01695060 +n09399592 +n04116512 +n03443371 +n02097658 +n04039381 +n02422699 +n02105855 +n03792782 +n02229544 +n01950731 +n02256656 +n03916031 +n01534433 +n03791053 +n04200800 +n03314780 +n04120489 +n04584207 +n01820546 +n04125021 +n02930766 +n02093647 +n02910353 +n03452741 +n03482405 +n04380533 +n01622779 +n07768694 +n03042490 +n03461385 +n04285008 +n04540053 +n02099267 +n12057211 +n04118776 +n04162706 +n12620546 +n01534433 +n01675722 +n02089078 +n03290653 +n02883205 +n07697537 +n03393912 +n02113186 +n03014705 +n04435653 +n03590841 +n03773504 +n02782093 +n02980441 +n04239074 +n04228054 +n03877845 +n04023962 +n04404412 +n02088238 +n03617480 +n03670208 +n09229709 +n02971356 +n04553703 +n01748264 +n02091467 +n07697537 +n02113186 +n07615774 +n02328150 +n02883205 +n07579787 +n01514668 +n03877845 +n02108915 +n07760859 +n02125311 +n03899768 +n01924916 +n02487347 +n02979186 +n03594945 +n03895866 +n02441942 +n13040303 +n03710193 +n03709823 +n03544143 +n02843684 +n02085782 +n02088466 +n01910747 +n04599235 +n01847000 +n02423022 +n03476991 +n02690373 +n07730033 +n03733281 +n02129604 +n02027492 +n04443257 +n03977966 +n03992509 +n02108422 +n07875152 +n03793489 +n03127925 +n04579145 +n02395406 +n02119022 +n03706229 +n03902125 +n03777568 +n02125311 +n04458633 +n02672831 +n01784675 +n02138441 +n04328186 +n02120505 +n01644373 +n03544143 +n01818515 +n03877472 +n04044716 +n04009552 +n03220513 +n04067472 +n02172182 +n02823750 +n02317335 +n04467665 +n02229544 +n04049303 +n02116738 +n07584110 +n02018795 +n03930313 +n02480495 +n02172182 +n09399592 +n01530575 +n02971356 +n02105641 +n01698640 +n04553703 +n02280649 +n01807496 +n02504458 +n03617480 +n03884397 +n02011460 +n02704792 +n03393912 +n01667114 +n03598930 +n01775062 +n07717410 +n04118776 +n03218198 +n03255030 +n02111129 +n02892201 +n03444034 +n03692522 +n02364673 +n07718747 +n04418357 +n04235860 +n03000684 +n03929660 +n03670208 +n01560419 +n02494079 +n03197337 +n01737021 +n07697313 +n02127052 +n03764736 +n04270147 +n02097474 +n04204347 +n03291819 +n03134739 +n02086240 +n03691459 +n01924916 +n04550184 +n02093754 +n03110669 +n02643566 +n02108422 +n02795169 +n02483362 +n03983396 +n02093647 +n02815834 +n04069434 +n03930313 +n02326432 +n02086079 +n03958227 +n04258138 +n03498962 +n03697007 +n03126707 +n02980441 +n03530642 +n02086910 +n02087394 +n02280649 +n04285008 +n02093256 +n01950731 +n03733131 +n04277352 +n02086240 +n03544143 +n03782006 +n01632777 +n02086646 +n03297495 +n09246464 +n02123597 +n02687172 +n04487081 +n02236044 +n03710193 +n02607072 +n02788148 +n01776313 +n04376876 +n02102973 +n07873807 +n03372029 +n02104029 +n02669723 +n01693334 +n12985857 +n03785016 +n02066245 +n01698640 +n04086273 +n03047690 +n04026417 +n01773797 +n03742115 +n02018207 +n01978455 +n02988304 +n03595614 +n02965783 +n02992529 +n01773157 +n03417042 +n03376595 +n04435653 +n07711569 +n03970156 +n02877765 +n04111531 +n09256479 +n02641379 +n04179913 +n02113023 +n03977966 +n04525038 +n02190166 +n04070727 +n02111277 +n02128757 +n01784675 +n02412080 +n03146219 +n03485794 +n01773157 +n02119022 +n02704792 +n01737021 +n03697007 +n03450230 +n01770081 +n03792782 +n02089867 +n02817516 +n03141823 +n01773157 +n07860988 +n02317335 +n04442312 +n04428191 +n04049303 +n12620546 +n04591157 +n03980874 +n03314780 +n02514041 +n03376595 +n01774384 +n01774384 +n04579432 +n04336792 +n01872401 +n02483708 +n03127925 +n03314780 +n03843555 +n01770081 +n02480855 +n04118776 +n01910747 +n03126707 +n02233338 +n02114855 +n02808304 +n02107683 +n03590841 +n01737021 +n01514859 +n04346328 +n02102480 +n02093754 +n09472597 +n09332890 +n03630383 +n02492035 +n04026417 +n02110185 +n03125729 +n04465501 +n07695742 +n03775546 +n02930766 +n07753275 +n07684084 +n04486054 +n01677366 +n03127747 +n02917067 +n04347754 +n02704792 +n07583066 +n07714990 +n02111500 +n03085013 +n02233338 +n03977966 +n03876231 +n07760859 +n03623198 +n02268853 +n07730033 +n02097047 +n02981792 +n01984695 +n04584207 +n01665541 +n01734418 +n02100877 +n03109150 +n02099712 +n01855672 +n02486410 +n02099267 +n03804744 +n04179913 +n02091032 +n04200800 +n04127249 +n01833805 +n01855672 +n02909870 +n04423845 +n03345487 +n04456115 +n04517823 +n07714990 +n03492542 +n01531178 +n07892512 +n01534433 +n03982430 +n04116512 +n02097130 +n04612504 +n03146219 +n02097130 +n04517823 +n07684084 +n01978455 +n02236044 +n01798484 +n04200800 +n01985128 +n09468604 +n02268853 +n02090622 +n03000684 +n04447861 +n04154565 +n02840245 +n03126707 +n02391049 +n04532106 +n01728572 +n03124043 +n01773549 +n02480855 +n07860988 +n02105056 +n03888605 +n02116738 +n02804610 +n02113799 +n03899768 +n01729322 +n07873807 +n02116738 +n02795169 +n02256656 +n07720875 +n03584829 +n02097209 +n02092002 +n07614500 +n03599486 +n02825657 +n02966687 +n04428191 +n02488702 +n01774384 +n03908618 +n03814639 +n02444819 +n02825657 +n02325366 +n03394916 +n02077923 +n03709823 +n04579432 +n03967562 +n01514668 +n04548280 +n03899768 +n02892201 +n01704323 +n01484850 +n03535780 +n03775546 +n03337140 +n01514859 +n01580077 +n01580077 +n04509417 +n03977966 +n02115641 +n07697313 +n07753275 +n04542943 +n02910353 +n02087046 +n04443257 +n03788365 +n04429376 +n01484850 +n02843684 +n04479046 +n01990800 +n09193705 +n02115641 +n01773549 +n09246464 +n03956157 +n03065424 +n02174001 +n01824575 +n02099267 +n02093647 +n03133878 +n01580077 +n01622779 +n03271574 +n07768694 +n04376876 +n01877812 +n03110669 +n01728920 +n04141327 +n04389033 +n02096294 +n02492035 +n03876231 +n07716906 +n02097474 +n02086240 +n02708093 +n02105641 +n01984695 +n03125729 +n03944341 +n03450230 +n02109525 +n04389033 +n07760859 +n01704323 +n04540053 +n02823428 +n02115641 +n03733281 +n02093754 +n01532829 +n07802026 +n09472597 +n02091134 +n03041632 +n04372370 +n01608432 +n04265275 +n02804414 +n03109150 +n04328186 +n02107312 +n03100240 +n03250847 +n03393912 +n02090622 +n02840245 +n02870880 +n04562935 +n02397096 +n03995372 +n02106662 +n02096177 +n02493509 +n02965783 +n01981276 +n01990800 +n01698640 +n02088238 +n02107908 +n09399592 +n02790996 +n02091134 +n04252225 +n02447366 +n03179701 +n02123394 +n02974003 +n03124170 +n03045698 +n03271574 +n04067472 +n01494475 +n01984695 +n02321529 +n03062245 +n07892512 +n02123045 +n02099849 +n02672831 +n03854065 +n02825657 +n01644900 +n07745940 +n04366367 +n09288635 +n03447447 +n03124043 +n12267677 +n02091244 +n02111277 +n02088632 +n12985857 +n04517823 +n03594945 +n04049303 +n03908714 +n03697007 +n07714571 +n01986214 +n03014705 +n04238763 +n02950826 +n01755581 +n02108089 +n02111500 +n02028035 +n03425413 +n02276258 +n03690938 +n03478589 +n04579432 +n04209133 +n02492035 +n04479046 +n03131574 +n04026417 +n01981276 +n01514668 +n02643566 +n03791053 +n02870880 +n04235860 +n06596364 +n04019541 +n09246464 +n03065424 +n13054560 +n04597913 +n02111500 +n04252077 +n03857828 +n02100236 +n04442312 +n02363005 +n04040759 +n03127925 +n04033995 +n03662601 +n02966193 +n03761084 +n03838899 +n04081281 +n04243546 +n04252077 +n04487081 +n04417672 +n03662601 +n03476991 +n01829413 +n07614500 +n02701002 +n07754684 +n04258138 +n01744401 +n03259280 +n02676566 +n03017168 +n01817953 +n04049303 +n01692333 +n02108551 +n03134739 +n02410509 +n03871628 +n04525305 +n02093754 +n04461696 +n04523525 +n11939491 +n04612504 +n03706229 +n02167151 +n01582220 +n03692522 +n03595614 +n02823428 +n03950228 +n04399382 +n03877845 +n04596742 +n04005630 +n03724870 +n03445924 +n07614500 +n01883070 +n03710637 +n04120489 +n03127925 +n03249569 +n02879718 +n04562935 +n03630383 +n02106662 +n02097474 +n02114855 +n09332890 +n02096051 +n03995372 +n03016953 +n03447447 +n10565667 +n07579787 +n02102040 +n02097298 +n01514668 +n04332243 +n03770679 +n02102040 +n01616318 +n01694178 +n02817516 +n02086240 +n03787032 +n01582220 +n02097130 +n03690938 +n02825657 +n02106662 +n02490219 +n02514041 +n03958227 +n03658185 +n03187595 +n02107908 +n07734744 +n02093859 +n02011460 +n04447861 +n02640242 +n02793495 +n02514041 +n01534433 +n02132136 +n02108422 +n01768244 +n04399382 +n01734418 +n02037110 +n02444819 +n03272562 +n02906734 +n01740131 +n03325584 +n03598930 +n02277742 +n03443371 +n03447721 +n02097130 +n04347754 +n03903868 +n03529860 +n06785654 +n01985128 +n02892767 +n02074367 +n02445715 +n03131574 +n02892201 +n02114548 +n02096294 +n03787032 +n03776460 +n02870880 +n04347754 +n03930313 +n02095889 +n02124075 +n01641577 +n07753592 +n02100583 +n04591157 +n02488291 +n03690938 +n03791053 +n02860847 +n04612504 +n01677366 +n02112350 +n03062245 +n02909870 +n09428293 +n01860187 +n02999410 +n13044778 +n04070727 +n02105855 +n01950731 +n04443257 +n02110341 +n04265275 +n04273569 +n03000247 +n01675722 +n03838899 +n13040303 +n03016953 +n03793489 +n02119022 +n04366367 +n03388549 +n06874185 +n02980441 +n03676483 +n04065272 +n02102040 +n04501370 +n01740131 +n04162706 +n04325704 +n01443537 +n02672831 +n02101006 +n04417672 +n01990800 +n02133161 +n02264363 +n04548280 +n03935335 +n02906734 +n01985128 +n02107574 +n03125729 +n03208938 +n02074367 +n03133878 +n02085782 +n02607072 +n03388043 +n02096585 +n07693725 +n02786058 +n01443537 +n01873310 +n02791124 +n04325704 +n03530642 +n04147183 +n02484975 +n02091635 +n03100240 +n02879718 +n02093991 +n11879895 +n01737021 +n13054560 +n01945685 +n04356056 +n02342885 +n04192698 +n04536866 +n04435653 +n01829413 +n01496331 +n03887697 +n03770679 +n12057211 +n12985857 +n04266014 +n02916936 +n04429376 +n02229544 +n03763968 +n03595614 +n02837789 +n02109047 +n02106030 +n03180011 +n02102973 +n02865351 +n02074367 +n02169497 +n02087046 +n03141823 +n02124075 +n02437312 +n07892512 +n01776313 +n02641379 +n01644900 +n03042490 +n03630383 +n03785016 +n07730033 +n03544143 +n02007558 +n02109047 +n02910353 +n02107312 +n02389026 +n01698640 +n03633091 +n04442312 +n07248320 +n04525038 +n03459775 +n03297495 +n03676483 +n03476991 +n02097658 +n03888257 +n02115913 +n01532829 +n02085936 +n01532829 +n02107312 +n02403003 +n03933933 +n02483362 +n02105162 +n02066245 +n01518878 +n01685808 +n03782006 +n07695742 +n09835506 +n04141076 +n02454379 +n02107683 +n03874293 +n02177972 +n02106166 +n04590129 +n03388549 +n04399382 +n02096585 +n02093256 +n02319095 +n04560804 +n02089973 +n03223299 +n02091244 +n02089867 +n04335435 +n03825788 +n02056570 +n01669191 +n02113978 +n03141823 +n02640242 +n02841315 +n04146614 +n03400231 +n02490219 +n03791053 +n07880968 +n02025239 +n03873416 +n02437616 +n03220513 +n02089973 +n03045698 +n02100735 +n04228054 +n06785654 +n04554684 +n03595614 +n03933933 +n03954731 +n02110806 +n02056570 +n04476259 +n03032252 +n02445715 +n03895866 +n02317335 +n04479046 +n02782093 +n02172182 +n02417914 +n03041632 +n04507155 +n02672831 +n02108000 +n07714990 +n03532672 +n02123597 +n03218198 +n02091134 +n02825657 +n02916936 +n03874599 +n03876231 +n03160309 +n04118538 +n03259280 +n03670208 +n07745940 +n03733805 +n01669191 +n03404251 +n07718747 +n07831146 +n02403003 +n02883205 +n02415577 +n01784675 +n02492035 +n03599486 +n01877812 +n01877812 +n03498962 +n04355338 +n03617480 +n03404251 +n02277742 +n02169497 +n02113624 +n04067472 +n04465501 +n04335435 +n02444819 +n09421951 +n04591157 +n01622779 +n03425413 +n02346627 +n04162706 +n03874293 +n02138441 +n04005630 +n03769881 +n03942813 +n04285008 +n02114855 +n02114712 +n02708093 +n03124170 +n01498041 +n07613480 +n02363005 +n03355925 +n13054560 +n03180011 +n04552348 +n02423022 +n04525038 +n02504013 +n02107312 +n02091467 +n02101006 +n03721384 +n07695742 +n02823428 +n04589890 +n04584207 +n04111531 +n03160309 +n01531178 +n02123394 +n02777292 +n04208210 +n01667114 +n01667114 +n04597913 +n03529860 +n03450230 +n02123045 +n12768682 +n01924916 +n02536864 +n04442312 +n02747177 +n07831146 +n02951358 +n03857828 +n03482405 +n03028079 +n04040759 +n02417914 +n01689811 +n03188531 +n04070727 +n07720875 +n02168699 +n11939491 +n01704323 +n03223299 +n01930112 +n02747177 +n03903868 +n02093428 +n01728572 +n03459775 +n04409515 +n03977966 +n03220513 +n04355933 +n03662601 +n03916031 +n07836838 +n07714571 +n03891332 +n02105251 +n03028079 +n02117135 +n02096585 +n04458633 +n02883205 +n01818515 +n01641577 +n04070727 +n02093428 +n03494278 +n03255030 +n03769881 +n07716358 +n03877845 +n07760859 +n03495258 +n04370456 +n02091134 +n03874293 +n03026506 +n03259280 +n02097209 +n03873416 +n07760859 +n02108422 +n01872401 +n01981276 +n04153751 +n02110185 +n02095570 +n01496331 +n04285008 +n03075370 +n02815834 +n09256479 +n02092339 +n02808304 +n09428293 +n02101006 +n02412080 +n04285008 +n03954731 +n04311004 +n03476991 +n01518878 +n02687172 +n02342885 +n02346627 +n02883205 +n03457902 +n02097658 +n02504458 +n03930313 +n02087394 +n02802426 +n03272010 +n02102318 +n02091467 +n02099849 +n04552348 +n02443114 +n02276258 +n03642806 +n02342885 +n03916031 +n02125311 +n02837789 +n02130308 +n04509417 +n03207941 +n03877845 +n13052670 +n02317335 +n03444034 +n03179701 +n04371774 +n03924679 +n02950826 +n02110958 +n02113978 +n02109961 +n02363005 +n02090622 +n07930864 +n03857828 +n03763968 +n07684084 +n02497673 +n02102480 +n04275548 +n04264628 +n02058221 +n01687978 +n02877765 +n01748264 +n02028035 +n02909870 +n04332243 +n09835506 +n04192698 +n03877845 +n03832673 +n04179913 +n03623198 +n02107908 +n04548362 +n01641577 +n02992211 +n04326547 +n02783161 +n03743016 +n01729977 +n04146614 +n01695060 +n03649909 +n02087394 +n03424325 +n01688243 +n03223299 +n01914609 +n02091032 +n02095570 +n07720875 +n02606052 +n03584829 +n02110185 +n03220513 +n07745940 +n01824575 +n02099601 +n11939491 +n07749582 +n03457902 +n01784675 +n02112018 +n03733131 +n04328186 +n04037443 +n03717622 +n01694178 +n02871525 +n02808440 +n04560804 +n02097474 +n02137549 +n01981276 +n02443114 +n02101006 +n04550184 +n12985857 +n02236044 +n02488291 +n04532106 +n03895866 +n03617480 +n03417042 +n03903868 +n03584254 +n02389026 +n04435653 +n02492035 +n01796340 +n03447721 +n03447447 +n03595614 +n04579145 +n02777292 +n04147183 +n02006656 +n03843555 +n02504458 +n03444034 +n03673027 +n04417672 +n10148035 +n04179913 +n03792972 +n04552348 +n02281406 +n02326432 +n02493509 +n03314780 +n03485407 +n01980166 +n04442312 +n03602883 +n01986214 +n02108915 +n02492660 +n03384352 +n04367480 +n04467665 +n02814860 +n01728572 +n03733281 +n03216828 +n02494079 +n03733805 +n02279972 +n01692333 +n02091635 +n04487081 +n03866082 +n03208938 +n07714990 +n02906734 +n02807133 +n02095570 +n03594945 +n03492542 +n02442845 +n01833805 +n02395406 +n06874185 +n02490219 +n02071294 +n02447366 +n01537544 +n02281787 +n02268443 +n03775546 +n04429376 +n03832673 +n04398044 +n04370456 +n02128757 +n04162706 +n04146614 +n04482393 +n07860988 +n02167151 +n02095889 +n02487347 +n01632777 +n02992211 +n02097658 +n02107683 +n03980874 +n07753592 +n02037110 +n03388183 +n01695060 +n04258138 +n02802426 +n03425413 +n02403003 +n03868242 +n02006656 +n02667093 +n02607072 +n02093647 +n02536864 +n04591713 +n02669723 +n03733805 +n03259280 +n03709823 +n04483307 +n03877472 +n02113023 +n04133789 +n06359193 +n03903868 +n03089624 +n02013706 +n04266014 +n02504013 +n02101006 +n02124075 +n01774750 +n02112350 +n02526121 +n03485407 +n03496892 +n02655020 +n07714571 +n02087394 +n03160309 +n02091831 +n03047690 +n04612504 +n02859443 +n04033995 +n02950826 +n03187595 +n01592084 +n07892512 +n04507155 +n01692333 +n01981276 +n02823750 +n04251144 +n04548362 +n07565083 +n04209133 +n01877812 +n04486054 +n09421951 +n02231487 +n02113799 +n02098413 +n04081281 +n02999410 +n02107312 +n02346627 +n01675722 +n02795169 +n03649909 +n04090263 +n03871628 +n01877812 +n03670208 +n03866082 +n03496892 +n07248320 +n04162706 +n02098413 +n04069434 +n03938244 +n02101006 +n02325366 +n03388549 +n03393912 +n01739381 +n02108089 +n03000134 +n03124170 +n02037110 +n02098105 +n01986214 +n03314780 +n10148035 +n04200800 +n03457902 +n02091831 +n02835271 +n03642806 +n02101388 +n02128757 +n04004767 +n02091635 +n04311004 +n04328186 +n01829413 +n02108000 +n03877845 +n03935335 +n01744401 +n01531178 +n13044778 +n02699494 +n01775062 +n02088364 +n04239074 +n03781244 +n02442845 +n03028079 +n09421951 +n12768682 +n02454379 +n03065424 +n02113023 +n01873310 +n03594945 +n03792782 +n03529860 +n02174001 +n02487347 +n01692333 +n02837789 +n04487394 +n02509815 +n03970156 +n02445715 +n02666196 +n02009912 +n01797886 +n07583066 +n02111500 +n03461385 +n04371774 +n04296562 +n02978881 +n02066245 +n02129604 +n03761084 +n09229709 +n01774750 +n02108915 +n01797886 +n04482393 +n03792782 +n02095314 +n01693334 +n04560804 +n04376876 +n07718747 +n01532829 +n03888605 +n02980441 +n01494475 +n02093754 +n07802026 +n04562935 +n02165456 +n02356798 +n03977966 +n03124170 +n02797295 +n04201297 +n04392985 +n04579432 +n02106550 +n02782093 +n04252077 +n04326547 +n02454379 +n02437312 +n01729977 +n02123045 +n04229816 +n02077923 +n03788195 +n02124075 +n02051845 +n02087394 +n02096437 +n02403003 +n02769748 +n04392985 +n02134084 +n02840245 +n04273569 +n03125729 +n03967562 +n03961711 +n03961711 +n07579787 +n04270147 +n02965783 +n02006656 +n03995372 +n03444034 +n02814860 +n04070727 +n04208210 +n04486054 +n03729826 +n02120079 +n04591713 +n02808304 +n02105641 +n03770439 +n04228054 +n02094114 +n03400231 +n02106166 +n03868863 +n02089078 +n03954731 +n04355338 +n02669723 +n04200800 +n04266014 +n03929855 +n02107312 +n04023962 +n03958227 +n01677366 +n02791124 +n03485407 +n02129165 +n03075370 +n01558993 +n02988304 +n04355933 +n02134418 +n01675722 +n07920052 +n02321529 +n02018795 +n03992509 +n03868863 +n03796401 +n02892767 +n04254120 +n03785016 +n04591157 +n01518878 +n06794110 +n01930112 +n02951585 +n07711569 +n01496331 +n02788148 +n03207743 +n03794056 +n04332243 +n04356056 +n07873807 +n02667093 +n03271574 +n02794156 +n02493793 +n03527444 +n02951585 +n03240683 +n02109961 +n01795545 +n03599486 +n04599235 +n01644900 +n07880968 +n04317175 +n02840245 +n02408429 +n07248320 +n04285008 +n02096585 +n02704792 +n04560804 +n03785016 +n02927161 +n03697007 +n07930864 +n07248320 +n02028035 +n02123597 +n02676566 +n07583066 +n02871525 +n02134084 +n02091032 +n04462240 +n02117135 +n02009912 +n09193705 +n09472597 +n02834397 +n03764736 +n01753488 +n03895866 +n02112018 +n02165105 +n02837789 +n03457902 +n04522168 +n04023962 +n04536866 +n04005630 +n02110627 +n02708093 +n04554684 +n01514668 +n02090379 +n07836838 +n02108089 +n03095699 +n04366367 +n04039381 +n07802026 +n03100240 +n03255030 +n04235860 +n02980441 +n03218198 +n01514668 +n03000684 +n02088094 +n02815834 +n03657121 +n03891251 +n02808440 +n02916936 +n03661043 +n04243546 +n04065272 +n03666591 +n04604644 +n04509417 +n03937543 +n04509417 +n02109961 +n04251144 +n02869837 +n02113712 +n02492660 +n02841315 +n07734744 +n04456115 +n02640242 +n03929855 +n04266014 +n01644900 +n02807133 +n03814639 +n01514859 +n01784675 +n04023962 +n02256656 +n01695060 +n03532672 +n04070727 +n03742115 +n03482405 +n01773797 +n03388183 +n03792782 +n09246464 +n03394916 +n13052670 +n03498962 +n02356798 +n02966193 +n01798484 +n03394916 +n04476259 +n03854065 +n03950228 +n02708093 +n02206856 +n03026506 +n04004767 +n03691459 +n01682714 +n02095570 +n02480855 +n03424325 +n01531178 +n03868863 +n02883205 +n02795169 +n04399382 +n02840245 +n02808304 +n01695060 +n02110063 +n01601694 +n04229816 +n02927161 +n03187595 +n02454379 +n04483307 +n01986214 +n02104029 +n04485082 +n02808304 +n03384352 +n02107574 +n02927161 +n03924679 +n01685808 +n02364673 +n04389033 +n07718472 +n01558993 +n03047690 +n03595614 +n02071294 +n03028079 +n01806143 +n03814639 +n02007558 +n04525038 +n02128385 +n02391049 +n04372370 +n03769881 +n02100877 +n09288635 +n03950228 +n02786058 +n03788365 +n01667114 +n02119789 +n02279972 +n02033041 +n02086910 +n01749939 +n03337140 +n07693725 +n02492660 +n02442845 +n02917067 +n03733281 +n07920052 +n02490219 +n02111277 +n02123394 +n02128757 +n02992211 +n03424325 +n03942813 +n04399382 +n04417672 +n01828970 +n03854065 +n02325366 +n02492035 +n03220513 +n02087046 +n03602883 +n01983481 +n01498041 +n02834397 +n03791053 +n04604644 +n07730033 +n01675722 +n02105056 +n04039381 +n02835271 +n02787622 +n04591157 +n02484975 +n04044716 +n02977058 +n03000247 +n03602883 +n02112018 +n04584207 +n03733281 +n04209133 +n02106662 +n01740131 +n03983396 +n04141327 +n03476684 +n03337140 +n04311174 +n02510455 +n03476991 +n04456115 +n03141823 +n04009552 +n03461385 +n01797886 +n01734418 +n02108915 +n04251144 +n04192698 +n04525038 +n03995372 +n01985128 +n07930864 +n02514041 +n02098413 +n03388183 +n02095889 +n02992529 +n07920052 +n03249569 +n02667093 +n03393912 +n03743016 +n03876231 +n02138441 +n07875152 +n02099601 +n01630670 +n02099429 +n03706229 +n03992509 +n03141823 +n03109150 +n02504013 +n02992529 +n01943899 +n03796401 +n01675722 +n04141327 +n07697537 +n04141327 +n02871525 +n04254680 +n07836838 +n03133878 +n02346627 +n03649909 +n02090622 +n03124170 +n04458633 +n04525305 +n03666591 +n02699494 +n03680355 +n01692333 +n02480495 +n03109150 +n02342885 +n02776631 +n04596742 +n03018349 +n04525305 +n01824575 +n01882714 +n02115641 +n02788148 +n04335435 +n02085936 +n02782093 +n03095699 +n03127925 +n09468604 +n07717410 +n03417042 +n12998815 +n02113023 +n07742313 +n04296562 +n07714571 +n02107312 +n01806143 +n04033995 +n02025239 +n03930313 +n02641379 +n03804744 +n07745940 +n02097658 +n07930864 +n03089624 +n02492035 +n02791124 +n02172182 +n02865351 +n01739381 +n03950228 +n02099429 +n01644900 +n02788148 +n01622779 +n02027492 +n04254120 +n03929855 +n02814533 +n02226429 +n07715103 +n03840681 +n02256656 +n01833805 +n12267677 +n01687978 +n04592741 +n04592741 +n07873807 +n02110627 +n02277742 +n04266014 +n01776313 +n02794156 +n02093428 +n04311004 +n03920288 +n03047690 +n03992509 +n02112350 +n04591157 +n03017168 +n03459775 +n01667778 +n01820546 +n03485794 +n02804610 +n03602883 +n03666591 +n01872401 +n04589890 +n02730930 +n02090379 +n03670208 +n02892201 +n03372029 +n03062245 +n02486410 +n04562935 +n01697457 +n02099429 +n04111531 +n01728920 +n04153751 +n02113624 +n01770393 +n04266014 +n02017213 +n03483316 +n01742172 +n02480855 +n01739381 +n01768244 +n03908714 +n02006656 +n02089867 +n03026506 +n01558993 +n03980874 +n03775546 +n01980166 +n09399592 +n02804610 +n04336792 +n02027492 +n04251144 +n02100735 +n03788365 +n13040303 +n02328150 +n15075141 +n07802026 +n01532829 +n03594734 +n02676566 +n04404412 +n02346627 +n02843684 +n02108000 +n02871525 +n02606052 +n03982430 +n02165456 +n02823750 +n01871265 +n02730930 +n03770679 +n04505470 +n03404251 +n01883070 +n02979186 +n02093991 +n01630670 +n04120489 +n01443537 +n04371774 +n03866082 +n01833805 +n03527444 +n03998194 +n03873416 +n02930766 +n03776460 +n06596364 +n02321529 +n04392985 +n03796401 +n04483307 +n02526121 +n02396427 +n02113023 +n03443371 +n07747607 +n01980166 +n02058221 +n02167151 +n02769748 +n03127925 +n02190166 +n03272562 +n02097130 +n04560804 +n02086240 +n04326547 +n02095314 +n01843383 +n02107312 +n03954731 +n02281406 +n02105641 +n03075370 +n02883205 +n01829413 +n02099849 +n02112137 +n07684084 +n03095699 +n02408429 +n10565667 +n02641379 +n02259212 +n02128757 +n03344393 +n01665541 +n04004767 +n07734744 +n02088364 +n02100583 +n02672831 +n01820546 +n03376595 +n04070727 +n02981792 +n03709823 +n02206856 +n01537544 +n01776313 +n04579145 +n02492035 +n02804414 +n02113799 +n02104365 +n03483316 +n09256479 +n03642806 +n07590611 +n02094433 +n02089973 +n02497673 +n01968897 +n02090721 +n02167151 +n02974003 +n02514041 +n03781244 +n02408429 +n02279972 +n04311174 +n01990800 +n02804610 +n03146219 +n13040303 +n07930864 +n04423845 +n02437616 +n03388043 +n04487394 +n04201297 +n02704792 +n01729322 +n04371430 +n03937543 +n03216828 +n02486261 +n02666196 +n04612504 +n03180011 +n03240683 +n03627232 +n01877812 +n04486054 +n02782093 +n02814533 +n02119022 +n03788195 +n07720875 +n02096051 +n03903868 +n02105162 +n04125021 +n03272010 +n03794056 +n02058221 +n03457902 +n04584207 +n03785016 +n04311004 +n03837869 +n02101556 +n03840681 +n03425413 +n03496892 +n02127052 +n01980166 +n03770439 +n04398044 +n02105412 +n03032252 +n03594734 +n02096437 +n10148035 +n01443537 +n04125021 +n03649909 +n02939185 +n01737021 +n02510455 +n02398521 +n02490219 +n03595614 +n04277352 +n03649909 +n07716906 +n02808440 +n03124170 +n03538406 +n03376595 +n02860847 +n01797886 +n04243546 +n03673027 +n04462240 +n03595614 +n04579432 +n01558993 +n04081281 +n04136333 +n03223299 +n03197337 +n02094114 +n03452741 +n04392985 +n02666196 +n02786058 +n09332890 +n03759954 +n04125021 +n03000684 +n04597913 +n01768244 +n02099601 +n07716358 +n03530642 +n01860187 +n02012849 +n02814860 +n02110063 +n03160309 +n02091032 +n15075141 +n02127052 +n02699494 +n04447861 +n02109961 +n03532672 +n04099969 +n03594945 +n02101556 +n04200800 +n02100236 +n04149813 +n07920052 +n04149813 +n02097209 +n03793489 +n09428293 +n03840681 +n02799071 +n04332243 +n01807496 +n04479046 +n02101388 +n02099849 +n02085620 +n02655020 +n02802426 +n04204347 +n02094433 +n02814533 +n04398044 +n04090263 +n02051845 +n04548362 +n04259630 +n04209133 +n04596742 +n02114855 +n02091635 +n01795545 +n02231487 +n07831146 +n02110341 +n01728920 +n02802426 +n01978455 +n03388043 +n03041632 +n03976657 +n02443484 +n01735189 +n04310018 +n02009229 +n02325366 +n03075370 +n04149813 +n03891251 +n02125311 +n04074963 +n02105855 +n04525038 +n02002724 +n03924679 +n03947888 +n03544143 +n01704323 +n02177972 +n04509417 +n07754684 +n03961711 +n02364673 +n07614500 +n04239074 +n02825657 +n02391049 +n03447721 +n03042490 +n04442312 +n02098105 +n03388043 +n03692522 +n04428191 +n02100236 +n04591157 +n03729826 +n03775071 +n02480855 +n03697007 +n02088094 +n02012849 +n02119789 +n02085782 +n03424325 +n01872401 +n01631663 +n02788148 +n01698640 +n02672831 +n04162706 +n04591157 +n02128385 +n02992529 +n03443371 +n03792782 +n04200800 +n04069434 +n02490219 +n03868242 +n04277352 +n03770439 +n01773157 +n04026417 +n03492542 +n02107908 +n04548362 +n03379051 +n01582220 +n02109047 +n04579145 +n02114548 +n04152593 +n02769748 +n04296562 +n02097209 +n01983481 +n04366367 +n03657121 +n02879718 +n02119789 +n03947888 +n02342885 +n04152593 +n04370456 +n03032252 +n07880968 +n04328186 +n02107574 +n02017213 +n01945685 +n04550184 +n01514859 +n04479046 +n07695742 +n03481172 +n07747607 +n02437312 +n03742115 +n01924916 +n01608432 +n04584207 +n02825657 +n12144580 +n01689811 +n04228054 +n02113624 +n07697313 +n04367480 +n04026417 +n01616318 +n02643566 +n04228054 +n01443537 +n04252077 +n01734418 +n02490219 +n02814533 +n01796340 +n03160309 +n04355933 +n03666591 +n02443114 +n03595614 +n02948072 +n03786901 +n04380533 +n01824575 +n02018207 +n02111500 +n03188531 +n03417042 +n13037406 +n02869837 +n03627232 +n07716906 +n02130308 +n02422106 +n03544143 +n02108551 +n03314780 +n01694178 +n02437312 +n02978881 +n04243546 +n02823428 +n03916031 +n01616318 +n01496331 +n15075141 +n02071294 +n03095699 +n04525305 +n02483362 +n02109047 +n02930766 +n03792972 +n04507155 +n02091032 +n01744401 +n03929660 +n01632458 +n02090622 +n13037406 +n01580077 +n03028079 +n04366367 +n03000247 +n02088094 +n04376876 +n02110341 +n03983396 +n02791124 +n02977058 +n03384352 +n03042490 +n02643566 +n04522168 +n02804414 +n07760859 +n02445715 +n01728920 +n04285008 +n01697457 +n03961711 +n03134739 +n01882714 +n07716358 +n02364673 +n02536864 +n07880968 +n03662601 +n02699494 +n04133789 +n04141076 +n04366367 +n02892201 +n02100877 +n01695060 +n07747607 +n02971356 +n02804414 +n01665541 +n02422699 +n03065424 +n07693725 +n04336792 +n07932039 +n04311174 +n07715103 +n02268853 +n02096585 +n01981276 +n04133789 +n02814860 +n03388183 +n01631663 +n02447366 +n01560419 +n02319095 +n04370456 +n04152593 +n02939185 +n01534433 +n02909870 +n01537544 +n07565083 +n02106030 +n01630670 +n02837789 +n03633091 +n01614925 +n13052670 +n02104029 +n02877765 +n02106166 +n02011460 +n03590841 +n02130308 +n01968897 +n02397096 +n02966193 +n02129165 +n03393912 +n03133878 +n03743016 +n03947888 +n02133161 +n02102480 +n02457408 +n02111889 +n02364673 +n02980441 +n02138441 +n03908714 +n04599235 +n03220513 +n01729977 +n02808304 +n03223299 +n03444034 +n03538406 +n03384352 +n02607072 +n07684084 +n07697537 +n07565083 +n02939185 +n04483307 +n01843065 +n03272010 +n04370456 +n03627232 +n03259280 +n01698640 +n01775062 +n02769748 +n04428191 +n04326547 +n02090721 +n02051845 +n03124170 +n02422106 +n02134418 +n09399592 +n03447721 +n04090263 +n04584207 +n03884397 +n02356798 +n02105641 +n03786901 +n02835271 +n02090379 +n03379051 +n04389033 +n01847000 +n02125311 +n02089078 +n01498041 +n01749939 +n02102177 +n04023962 +n03788365 +n02127052 +n04326547 +n01641577 +n02484975 +n07768694 +n03777754 +n04487394 +n07873807 +n02089078 +n02112137 +n03733281 +n04141975 +n02105251 +n04040759 +n13052670 +n07684084 +n03179701 +n03804744 +n03127747 +n01748264 +n02408429 +n03126707 +n03595614 +n04235860 +n02117135 +n03938244 +n02497673 +n03425413 +n04192698 +n03980874 +n01774384 +n04591157 +n02403003 +n01729322 +n02834397 +n03527444 +n03763968 +n04120489 +n02100735 +n01955084 +n02483362 +n02510455 +n01817953 +n03868242 +n02483362 +n04418357 +n01968897 +n03691459 +n01882714 +n02883205 +n01829413 +n02870880 +n02396427 +n01843383 +n10148035 +n02699494 +n01580077 +n04238763 +n03496892 +n07684084 +n02950826 +n03445777 +n01798484 +n03877845 +n04239074 +n01622779 +n02099712 +n02837789 +n07730033 +n09835506 +n04532106 +n03976467 +n03854065 +n01756291 +n07892512 +n15075141 +n02971356 +n02113023 +n04023962 +n02108551 +n02002724 +n09288635 +n03457902 +n03124170 +n01484850 +n04548362 +n03201208 +n01734418 +n02090622 +n03929660 +n03868863 +n02480855 +n02028035 +n01692333 +n02206856 +n03970156 +n07768694 +n04376876 +n02089973 +n03976467 +n03134739 +n03788195 +n04399382 +n04023962 +n03393912 +n12620546 +n03085013 +n02277742 +n03272562 +n01698640 +n04039381 +n02877765 +n03680355 +n01873310 +n04039381 +n02980441 +n04376876 +n01729322 +n02795169 +n01530575 +n04515003 +n02794156 +n02165105 +n03594945 +n02093991 +n02256656 +n02105412 +n03216828 +n02110806 +n03297495 +n02112137 +n03710721 +n02110185 +n09421951 +n02480855 +n04336792 +n02510455 +n02087046 +n02110627 +n04005630 +n02536864 +n04277352 +n01774750 +n02667093 +n04554684 +n02823750 +n03196217 +n01496331 +n01855032 +n02128757 +n03764736 +n02981792 +n03876231 +n04458633 +n03888257 +n01860187 +n04326547 +n09421951 +n07880968 +n02500267 +n01770081 +n03584254 +n07711569 +n09468604 +n01614925 +n03788365 +n04560804 +n01729977 +n03717622 +n02410509 +n02437312 +n03000684 +n01632777 +n02028035 +n07873807 +n01630670 +n03388183 +n02110185 +n02098413 +n02107142 +n04209133 +n07932039 +n03992509 +n04612504 +n01986214 +n04270147 +n06874185 +n02909870 +n02168699 +n03785016 +n01532829 +n04264628 +n02484975 +n02799071 +n04209133 +n07584110 +n01560419 +n02117135 +n07684084 +n03814906 +n03908618 +n02279972 +n02098413 +n02097658 +n04154565 +n02125311 +n02018795 +n02168699 +n02096177 +n03047690 +n02747177 +n03788365 +n02128385 +n03000134 +n03775546 +n04204238 +n04604644 +n03980874 +n03598930 +n01855672 +n02090721 +n07715103 +n02443114 +n02102177 +n04258138 +n04591713 +n03297495 +n01667778 +n04350905 +n04589890 +n06794110 +n03884397 +n04367480 +n03877845 +n10148035 +n03492542 +n04116512 +n03785016 +n01968897 +n02111889 +n04579432 +n03492542 +n02111277 +n03535780 +n03786901 +n02113799 +n04347754 +n03535780 +n02963159 +n03249569 +n03617480 +n04070727 +n02108000 +n03075370 +n03355925 +n04418357 +n02783161 +n02112137 +n03179701 +n02114367 +n02098286 +n02119022 +n03000684 +n01695060 +n15075141 +n02877765 +n02107683 +n03721384 +n02107142 +n02092339 +n02687172 +n02396427 +n01629819 +n03272010 +n10148035 +n04141076 +n04044716 +n04277352 +n02364673 +n04141975 +n01819313 +n03775546 +n03379051 +n01756291 +n03785016 +n04476259 +n04612504 +n01632777 +n03838899 +n02007558 +n01440764 +n02088094 +n01735189 +n02356798 +n02095889 +n09229709 +n02132136 +n02091635 +n07754684 +n03146219 +n03467068 +n03047690 +n02408429 +n02086910 +n02012849 +n04522168 +n01943899 +n12144580 +n01820546 +n01824575 +n01677366 +n03868242 +n03814639 +n02091635 +n04033901 +n02074367 +n04597913 +n07880968 +n01871265 +n03000684 +n01983481 +n07753592 +n04235860 +n02229544 +n03814906 +n03527444 +n04532106 +n02447366 +n04179913 +n04116512 +n01631663 +n04037443 +n03947888 +n02708093 +n03874293 +n04612504 +n04589890 +n02097130 +n03089624 +n03670208 +n04579145 +n03344393 +n07614500 +n04462240 +n01751748 +n04201297 +n07802026 +n02795169 +n07613480 +n07747607 +n02115913 +n02493793 +n03770679 +n02268443 +n02009912 +n04423845 +n01530575 +n01685808 +n07715103 +n03016953 +n03355925 +n04554684 +n04366367 +n03207941 +n03887697 +n04336792 +n03759954 +n03595614 +n02480855 +n04525038 +n04355338 +n02129165 +n03255030 +n02843684 +n04493381 +n02992211 +n03814906 +n04239074 +n06794110 +n03977966 +n02979186 +n03207941 +n07875152 +n01798484 +n02484975 +n02127052 +n02133161 +n03929660 +n02966687 +n12985857 +n01873310 +n07584110 +n02088094 +n01748264 +n02101006 +n03450230 +n03657121 +n03991062 +n02013706 +n03742115 +n03595614 +n04591713 +n03891251 +n01943899 +n03065424 +n04127249 +n03584829 +n02018207 +n02089973 +n03773504 +n01751748 +n02119022 +n02276258 +n04086273 +n01877812 +n02917067 +n02168699 +n02107574 +n03954731 +n02443114 +n02101556 +n01943899 +n03457902 +n01644900 +n01770081 +n03495258 +n02606052 +n02109047 +n01532829 +n02099429 +n02100735 +n03216828 +n04204347 +n02095889 +n03794056 +n02104365 +n03595614 +n01630670 +n03223299 +n04389033 +n01796340 +n02098286 +n02109525 +n04509417 +n01580077 +n04209239 +n01675722 +n07718747 +n02787622 +n04553703 +n02100877 +n02708093 +n01687978 +n01944390 +n02807133 +n03908714 +n12620546 +n04009552 +n04591713 +n02112350 +n02168699 +n03773504 +n03127747 +n03393912 +n03617480 +n02704792 +n03590841 +n03445924 +n02486261 +n03803284 +n03954731 +n02971356 +n03000247 +n03887697 +n02894605 +n04286575 +n02172182 +n01873310 +n04118538 +n04357314 +n02113624 +n02667093 +n03141823 +n04423845 +n03742115 +n02085620 +n02727426 +n04606251 +n02088466 +n03109150 +n03134739 +n02361337 +n03832673 +n02087394 +n02177972 +n04347754 +n07718747 +n03710721 +n03970156 +n04229816 +n01601694 +n02606052 +n03425413 +n03447447 +n04336792 +n04486054 +n04201297 +n07614500 +n02226429 +n01622779 +n04435653 +n09288635 +n02790996 +n02108000 +n03961711 +n03417042 +n03017168 +n03840681 +n02509815 +n04019541 +n01692333 +n01843065 +n03461385 +n04296562 +n02493509 +n03133878 +n02110627 +n07932039 +n02091831 +n03249569 +n02091467 +n03680355 +n07714990 +n02412080 +n03250847 +n03447721 +n02916936 +n02107683 +n02492035 +n03404251 +n02102177 +n07932039 +n04557648 +n04372370 +n03891251 +n02974003 +n15075141 +n02444819 +n04462240 +n02100236 +n02108551 +n04515003 +n02002556 +n02794156 +n04204238 +n04090263 +n04584207 +n02120505 +n03773504 +n02165456 +n07684084 +n04311174 +n02002556 +n02106382 +n01695060 +n02783161 +n02422699 +n03982430 +n02397096 +n03976657 +n02692877 +n03841143 +n03710637 +n04259630 +n02099601 +n03942813 +n12998815 +n11939491 +n04399382 +n03065424 +n01644373 +n04462240 +n03992509 +n03534580 +n02398521 +n02095889 +n02808440 +n04264628 +n02786058 +n04399382 +n03933933 +n04487081 +n01873310 +n04409515 +n02108089 +n02091831 +n07734744 +n04552348 +n04162706 +n02123045 +n13040303 +n02492035 +n03657121 +n02488291 +n02027492 +n02769748 +n07753113 +n03814639 +n01704323 +n02276258 +n04557648 +n03478589 +n04435653 +n03535780 +n04371774 +n02823750 +n02124075 +n07695742 +n03337140 +n03884397 +n01917289 +n07720875 +n07742313 +n04019541 +n02130308 +n02102040 +n02104365 +n02963159 +n01687978 +n07754684 +n02328150 +n02791124 +n04286575 +n04606251 +n03814639 +n09246464 +n02009229 +n01665541 +n04399382 +n04429376 +n04033995 +n04238763 +n09256479 +n01632458 +n04004767 +n04111531 +n03710637 +n02107908 +n04008634 +n02106382 +n02086079 +n07871810 +n02105505 +n02013706 +n03733131 +n07875152 +n03376595 +n03594945 +n01776313 +n03016953 +n04243546 +n04252225 +n03709823 +n02939185 +n02107574 +n02097047 +n02109525 +n03916031 +n02116738 +n07579787 +n02018795 +n03967562 +n03075370 +n12998815 +n01818515 +n02190166 +n02701002 +n01685808 +n12267677 +n02107683 +n07695742 +n02085782 +n03692522 +n02086646 +n03623198 +n03534580 +n02133161 +n07584110 +n03980874 +n03710721 +n03838899 +n04311174 +n03976467 +n02966687 +n03785016 +n02097658 +n04442312 +n04380533 +n03042490 +n03982430 +n02510455 +n02408429 +n02093859 +n07718472 +n02086079 +n02834397 +n03670208 +n01728572 +n02444819 +n02091467 +n04325704 +n04332243 +n03223299 +n01734418 +n03496892 +n01697457 +n03884397 +n03483316 +n04285008 +n01795545 +n03220513 +n02007558 +n01532829 +n02236044 +n06596364 +n04111531 +n03032252 +n03814639 +n04317175 +n04033995 +n02086079 +n07684084 +n01829413 +n02128757 +n03983396 +n04487081 +n02190166 +n04523525 +n04328186 +n04116512 +n03450230 +n04228054 +n02102177 +n03873416 +n02488702 +n02226429 +n02018207 +n04044716 +n03394916 +n01818515 +n01910747 +n03584829 +n03240683 +n04133789 +n03095699 +n04325704 +n02606052 +n02102318 +n02106382 +n03424325 +n02906734 +n01818515 +n04548362 +n04086273 +n07590611 +n02033041 +n04501370 +n02486261 +n03793489 +n02974003 +n09428293 +n02088466 +n04355933 +n02113712 +n02777292 +n02490219 +n02105056 +n02071294 +n02655020 +n03425413 +n02808440 +n02493509 +n03384352 +n02108422 +n04350905 +n07695742 +n02077923 +n03476991 +n03857828 +n02494079 +n01440764 +n02277742 +n02509815 +n07730033 +n01774384 +n02951585 +n02892201 +n02488702 +n02782093 +n03854065 +n04517823 +n03467068 +n07920052 +n03180011 +n02111129 +n02361337 +n03544143 +n07717556 +n03291819 +n02110063 +n03825788 +n02110185 +n02108422 +n01744401 +n04204347 +n01744401 +n02086079 +n01773549 +n03498962 +n02979186 +n01694178 +n04265275 +n04371774 +n01669191 +n01582220 +n02128925 +n02747177 +n02108551 +n02105056 +n02107312 +n01532829 +n01698640 +n03661043 +n02834397 +n03956157 +n01739381 +n02500267 +n02317335 +n02951358 +n02105505 +n07718747 +n04192698 +n04536866 +n03710637 +n02346627 +n03476684 +n02086910 +n02747177 +n02096177 +n04548280 +n01630670 +n01682714 +n04275548 +n03538406 +n02113712 +n09421951 +n01560419 +n04252225 +n02423022 +n01697457 +n02389026 +n03595614 +n02415577 +n04004767 +n02672831 +n03018349 +n03998194 +n03089624 +n04273569 +n02058221 +n03544143 +n02395406 +n03535780 +n03450230 +n03888605 +n13052670 +n01910747 +n01843065 +n03982430 +n03447721 +n01955084 +n01630670 +n03803284 +n02120079 +n03372029 +n02504458 +n03874599 +n02011460 +n02108089 +n03627232 +n02492660 +n04399382 +n02412080 +n03325584 +n03706229 +n02500267 +n02123159 +n04238763 +n02883205 +n13044778 +n07836838 +n02799071 +n01917289 +n04273569 +n04552348 +n01795545 +n02011460 +n03944341 +n02356798 +n04264628 +n02859443 +n02108915 +n02108422 +n04591713 +n02099849 +n07693725 +n01795545 +n04596742 +n03868242 +n03958227 +n02093991 +n03134739 +n01917289 +n02099712 +n03314780 +n11879895 +n10148035 +n02018795 +n02747177 +n04542943 +n03141823 +n02797295 +n01704323 +n02777292 +n02769748 +n04033995 +n01860187 +n02321529 +n01917289 +n03785016 +n03956157 +n03100240 +n04041544 +n02165105 +n03947888 +n03891251 +n03709823 +n02988304 +n02106030 +n02095570 +n02814860 +n03649909 +n03110669 +n02444819 +n04044716 +n04487394 +n02422106 +n04069434 +n02165456 +n02098105 +n02106382 +n02280649 +n02002556 +n01980166 +n02091032 +n09229709 +n03642806 +n03770679 +n02172182 +n07892512 +n01944390 +n04462240 +n02114548 +n02403003 +n03899768 +n09472597 +n03530642 +n02974003 +n02777292 +n02093428 +n01829413 +n02097298 +n01882714 +n01833805 +n03481172 +n02094114 +n03218198 +n02640242 +n02422699 +n03297495 +n04592741 +n01644373 +n02066245 +n03028079 +n04399382 +n03355925 +n03187595 +n02071294 +n01494475 +n02119789 +n02963159 +n03976657 +n03759954 +n02916936 +n02120079 +n03109150 +n04370456 +n02817516 +n01734418 +n02415577 +n03691459 +n04023962 +n02114712 +n03995372 +n06359193 +n01943899 +n01860187 +n02859443 +n02268443 +n02488702 +n03110669 +n03250847 +n02165105 +n02102480 +n03026506 +n04465501 +n03733131 +n01910747 +n04277352 +n03065424 +n01644900 +n02951358 +n04399382 +n02326432 +n03529860 +n03764736 +n02444819 +n02093256 +n02091134 +n02091635 +n11879895 +n03657121 +n04613696 +n03452741 +n04596742 +n02097474 +n02672831 +n01968897 +n02486410 +n02488291 +n02356798 +n07749582 +n04033995 +n03000684 +n04428191 +n02089078 +n04005630 +n03476991 +n02817516 +n04371774 +n12144580 +n12144580 +n03950228 +n02009912 +n03425413 +n04141975 +n02790996 +n01818515 +n07583066 +n04116512 +n03417042 +n01739381 +n01944390 +n03447721 +n03891332 +n01689811 +n04081281 +n02892767 +n04590129 +n01632777 +n02086910 +n01742172 +n04579145 +n02814860 +n04458633 +n04487394 +n02088632 +n03942813 +n04162706 +n07613480 +n02098413 +n04037443 +n02457408 +n04461696 +n02110185 +n03887697 +n03344393 +n04336792 +n04209239 +n02480495 +n02102480 +n04040759 +n03372029 +n03017168 +n02087046 +n02110185 +n04131690 +n02133161 +n02749479 +n02092002 +n04612504 +n03388183 +n03417042 +n02168699 +n07248320 +n02012849 +n03791053 +n02027492 +n07768694 +n02115913 +n02093428 +n01630670 +n02226429 +n01514859 +n07716358 +n02860847 +n04041544 +n02105505 +n02107683 +n03394916 +n03384352 +n04536866 +n02107312 +n04487081 +n02447366 +n02113186 +n03777754 +n03496892 +n09421951 +n02097298 +n02112706 +n02128757 +n02169497 +n03933933 +n02109961 +n04254120 +n04562935 +n02457408 +n02093754 +n15075141 +n02788148 +n01751748 +n02837789 +n06359193 +n01630670 +n03908618 +n07754684 +n02013706 +n03680355 +n02788148 +n06794110 +n02102040 +n01496331 +n03482405 +n02107312 +n13054560 +n03843555 +n01644373 +n02894605 +n01818515 +n03899768 +n02134084 +n01692333 +n02948072 +n03743016 +n07583066 +n02279972 +n07760859 +n03868863 +n02422699 +n02825657 +n02480855 +n02226429 +n04033901 +n01817953 +n04285008 +n04550184 +n04476259 +n02100877 +n09835506 +n02410509 +n03207743 +n03877845 +n03947888 +n01774750 +n02641379 +n04584207 +n02481823 +n07768694 +n02130308 +n04147183 +n04596742 +n02395406 +n07754684 +n04252225 +n04118538 +n09256479 +n07742313 +n02769748 +n03888257 +n03658185 +n04067472 +n02481823 +n03255030 +n03903868 +n03124043 +n03874599 +n06596364 +n04355933 +n04613696 +n04357314 +n02814860 +n02099601 +n01806567 +n02396427 +n02106166 +n03769881 +n02113023 +n04146614 +n02640242 +n02966193 +n02841315 +n02481823 +n03724870 +n03998194 +n04522168 +n02747177 +n02317335 +n04067472 +n02129165 +n07714571 +n03992509 +n03379051 +n04141975 +n02028035 +n02085936 +n04540053 +n02112137 +n03977966 +n03637318 +n03887697 +n09468604 +n03424325 +n04584207 +n01917289 +n07579787 +n03325584 +n01829413 +n04540053 +n03127925 +n01558993 +n02027492 +n03424325 +n03109150 +n06794110 +n01773797 +n03188531 +n02106382 +n03788365 +n02123159 +n01773797 +n02229544 +n02727426 +n02823428 +n02454379 +n02106030 +n01924916 +n12998815 +n04179913 +n04099969 +n07684084 +n03450230 +n04435653 +n02422106 +n03637318 +n03018349 +n04429376 +n03868863 +n02110806 +n02226429 +n02006656 +n03843555 +n06359193 +n01860187 +n01694178 +n02138441 +n03630383 +n04009552 +n02101006 +n03496892 +n03447721 +n07920052 +n07873807 +n01729977 +n03220513 +n01614925 +n02134084 +n03908618 +n03763968 +n03544143 +n02797295 +n04392985 +n01728920 +n03876231 +n03259280 +n03325584 +n04296562 +n02909870 +n02493793 +n02112706 +n02776631 +n02447366 +n01514859 +n03954731 +n03344393 +n04125021 +n03930630 +n04116512 +n02441942 +n03344393 +n02125311 +n02643566 +n03840681 +n02106662 +n03325584 +n07695742 +n01491361 +n03814906 +n03075370 +n02098286 +n02666196 +n07718472 +n02948072 +n01698640 +n03777754 +n07714571 +n01945685 +n03085013 +n03445777 +n04380533 +n01986214 +n03673027 +n03710193 +n02441942 +n01734418 +n02105412 +n03447447 +n04591157 +n02727426 +n04486054 +n02510455 +n03958227 +n01978455 +n04461696 +n03908618 +n04522168 +n02107908 +n07715103 +n04009552 +n03457902 +n03447447 +n01820546 +n02692877 +n03874599 +n02101388 +n02115641 +n03532672 +n03127925 +n04081281 +n02814533 +n02916936 +n02483708 +n02791124 +n04505470 +n04417672 +n03876231 +n01829413 +n09246464 +n01728920 +n02363005 +n07754684 +n07717556 +n03000247 +n01873310 +n02091635 +n07831146 +n02794156 +n03825788 +n03476991 +n04033901 +n02607072 +n02123394 +n03534580 +n01770081 +n02011460 +n02843684 +n02109525 +n03916031 +n04418357 +n03710637 +n03075370 +n01644900 +n04254680 +n07768694 +n04228054 +n04258138 +n04357314 +n07836838 +n03000134 +n04310018 +n03000134 +n02098413 +n02108000 +n04252077 +n02457408 +n04483307 +n02105505 +n03125729 +n02091467 +n03868242 +n02106166 +n03240683 +n02917067 +n02105056 +n04525305 +n01753488 +n02978881 +n03977966 +n02486261 +n04162706 +n02120079 +n03709823 +n03127747 +n02089973 +n03089624 +n03814906 +n01534433 +n04613696 +n03325584 +n04505470 +n03325584 +n02115641 +n03630383 +n01930112 +n04204238 +n03063689 +n02233338 +n03916031 +n02786058 +n02113799 +n03935335 +n04179913 +n03690938 +n02442845 +n01819313 +n01534433 +n01753488 +n02823750 +n01491361 +n03124043 +n01749939 +n02328150 +n03272562 +n02094258 +n04597913 +n01773549 +n03724870 +n01871265 +n01751748 +n04039381 +n03733805 +n02783161 +n02948072 +n02397096 +n02233338 +n02093647 +n03016953 +n04344873 +n02640242 +n01677366 +n02106166 +n07745940 +n03710637 +n03529860 +n02988304 +n04350905 +n02105056 +n01630670 +n12998815 +n02094258 +n03481172 +n04515003 +n04418357 +n03075370 +n04273569 +n01592084 +n03290653 +n04487394 +n02109047 +n02259212 +n04604644 +n03976467 +n04023962 +n02910353 +n03394916 +n02106662 +n01882714 +n03494278 +n01770393 +n03445924 +n02102177 +n02110958 +n02089973 +n01924916 +n02113799 +n01817953 +n02091134 +n01697457 +n03443371 +n04482393 +n01749939 +n01985128 +n04116512 +n03452741 +n03220513 +n02510455 +n03761084 +n02916936 +n02089867 +n02281406 +n03445777 +n03642806 +n03255030 +n09428293 +n01774750 +n03220513 +n04254777 +n13037406 +n04235860 +n07875152 +n01877812 +n02086240 +n03876231 +n02484975 +n03595614 +n03733805 +n02099712 +n03884397 +n03016953 +n02088632 +n04086273 +n02797295 +n04392985 +n03124043 +n02102480 +n02100583 +n01855032 +n02667093 +n01945685 +n03250847 +n01644373 +n04147183 +n02641379 +n02342885 +n03666591 +n03000134 +n03197337 +n02807133 +n03394916 +n01797886 +n02443114 +n02056570 +n02916936 +n04090263 +n01756291 +n03724870 +n02747177 +n04553703 +n01983481 +n04479046 +n07920052 +n01631663 +n01981276 +n02097474 +n02268443 +n01944390 +n02108422 +n04487081 +n07734744 +n02091244 +n02835271 +n01824575 +n02056570 +n03773504 +n01688243 +n03345487 +n03345487 +n02486410 +n03271574 +n03485407 +n02483362 +n02113712 +n02786058 +n04579145 +n02948072 +n03595614 +n03594734 +n01491361 +n01729977 +n04033995 +n04597913 +n01871265 +n02992211 +n02361337 +n04070727 +n02007558 +n03110669 +n09399592 +n02009912 +n03249569 +n02415577 +n02190166 +n02701002 +n03042490 +n01871265 +n02091467 +n03208938 +n02105505 +n04589890 +n02138441 +n04591157 +n03344393 +n01622779 +n01924916 +n02137549 +n04328186 +n07590611 +n01776313 +n04389033 +n02058221 +n03786901 +n02865351 +n02536864 +n04154565 +n02108422 +n07583066 +n03770439 +n04235860 +n03594945 +n02096051 +n03590841 +n04525038 +n02264363 +n04592741 +n02364673 +n01735189 +n02977058 +n02488291 +n07871810 +n03062245 +n04557648 +n03837869 +n01770081 +n04273569 +n03290653 +n03124043 +n02971356 +n02423022 +n02094114 +n01695060 +n01917289 +n02814533 +n03250847 +n02110063 +n02666196 +n02488291 +n02504013 +n02130308 +n01695060 +n03089624 +n02906734 +n02791124 +n09835506 +n07695742 +n06874185 +n04229816 +n02408429 +n02087394 +n03297495 +n02058221 +n03763968 +n01491361 +n03781244 +n03873416 +n02111277 +n13052670 +n02119022 +n02108000 +n02791124 +n03028079 +n02906734 +n02112350 +n02102318 +n04118776 +n02823428 +n04435653 +n03786901 +n02105505 +n01514859 +n02860847 +n01871265 +n07742313 +n01695060 +n01735189 +n03141823 +n02692877 +n04254680 +n02483708 +n02011460 +n02927161 +n02113978 +n02106166 +n03770679 +n02169497 +n04482393 +n02277742 +n04485082 +n01984695 +n03658185 +n01697457 +n09428293 +n02102480 +n04501370 +n04141975 +n01614925 +n02089078 +n03935335 +n02486410 +n01843065 +n01984695 +n02363005 +n04536866 +n04141076 +n01950731 +n03445777 +n02102040 +n07715103 +n09256479 +n03781244 +n02090379 +n02129165 +n04532670 +n02939185 +n04259630 +n03788365 +n03461385 +n04606251 +n04428191 +n02488702 +n01518878 +n02107142 +n01622779 +n02483708 +n07753113 +n07930864 +n01984695 +n03476684 +n02655020 +n03376595 +n01806143 +n04286575 +n02490219 +n02640242 +n04141975 +n03938244 +n02100735 +n04041544 +n02108915 +n03769881 +n02108551 +n02110185 +n02086646 +n03388043 +n07697313 +n02098105 +n04597913 +n04090263 +n02492660 +n02795169 +n02086240 +n02097130 +n02346627 +n01622779 +n01978287 +n01924916 +n02655020 +n02787622 +n02108551 +n03717622 +n07697313 +n02105505 +n07753113 +n04204347 +n02909870 +n01828970 +n02018795 +n07836838 +n01775062 +n07716358 +n01675722 +n02807133 +n02493793 +n02091467 +n02804414 +n12144580 +n02823428 +n09229709 +n03379051 +n02791270 +n01828970 +n03832673 +n04366367 +n03877845 +n03372029 +n03961711 +n03916031 +n03788365 +n04265275 +n01806143 +n04008634 +n02794156 +n03777754 +n01630670 +n07860988 +n04239074 +n04270147 +n03761084 +n04270147 +n04487081 +n02481823 +n02395406 +n02093859 +n03991062 +n04264628 +n04258138 +n06359193 +n02074367 +n07614500 +n02865351 +n07718747 +n04074963 +n04482393 +n03347037 +n02110063 +n07836838 +n02090379 +n03595614 +n03482405 +n13052670 +n04023962 +n03991062 +n04548280 +n02056570 +n02794156 +n13133613 +n02100877 +n03272010 +n02107683 +n04149813 +n04152593 +n02002556 +n03954731 +n01968897 +n03388043 +n03764736 +n02690373 +n02966193 +n01518878 +n02128385 +n03197337 +n02092002 +n03110669 +n03478589 +n02457408 +n02870880 +n02011460 +n02093428 +n03063689 +n03337140 +n04356056 +n02963159 +n04435653 +n03871628 +n02110627 +n02088238 +n03160309 +n03983396 +n02992529 +n03843555 +n01773549 +n02389026 +n09468604 +n04505470 +n02109961 +n02794156 +n03854065 +n04355338 +n02094433 +n13133613 +n03272010 +n01667778 +n03494278 +n12768682 +n02481823 +n03085013 +n03179701 +n01667778 +n02102040 +n02112706 +n02951585 +n02108089 +n02099601 +n07860988 +n04033995 +n03388183 +n02127052 +n02107142 +n03814639 +n04004767 +n02099712 +n01582220 +n02102177 +n02100735 +n03958227 +n02481823 +n01773549 +n03131574 +n04540053 +n03424325 +n03871628 +n02116738 +n09229709 +n02797295 +n02704792 +n02825657 +n02115913 +n03888605 +n02009229 +n03063689 +n07734744 +n02669723 +n02101556 +n03045698 +n04532106 +n03961711 +n04372370 +n02655020 +n02094433 +n02088466 +n04005630 +n12144580 +n02892767 +n02091244 +n03110669 +n03759954 +n03594945 +n03594945 +n04462240 +n07711569 +n03259280 +n04482393 +n02018207 +n03134739 +n03832673 +n04467665 +n04285008 +n02169497 +n03796401 +n02099267 +n02909870 +n02105412 +n04265275 +n01728572 +n04336792 +n02834397 +n02804414 +n04548362 +n03109150 +n02895154 +n03929660 +n01685808 +n02111500 +n04033995 +n01768244 +n02002556 +n03887697 +n04069434 +n03594734 +n02500267 +n07714990 +n02137549 +n03014705 +n02447366 +n01537544 +n07802026 +n03895866 +n04330267 +n03602883 +n02795169 +n04153751 +n03782006 +n02489166 +n03447721 +n03417042 +n04550184 +n02500267 +n02112706 +n03347037 +n02088364 +n02640242 +n03983396 +n02817516 +n01695060 +n13133613 +n02095314 +n03887697 +n02892767 +n07697313 +n11939491 +n04332243 +n02667093 +n02643566 +n02493509 +n04251144 +n02730930 +n04118776 +n02097209 +n04335435 +n03016953 +n03691459 +n04037443 +n02100583 +n02104029 +n02088466 +n09193705 +n03495258 +n02095314 +n03355925 +n07613480 +n02971356 +n04153751 +n01945685 +n01697457 +n04532106 +n02895154 +n04548362 +n04485082 +n02002724 +n02999410 +n03976467 +n02951358 +n03874293 +n02442845 +n04229816 +n01614925 +n02769748 +n04461696 +n02486410 +n03916031 +n04562935 +n02098413 +n02097474 +n03584829 +n02606052 +n02123394 +n03871628 +n04311004 +n02865351 +n01601694 +n02111129 +n04509417 +n01882714 +n03908714 +n02102973 +n03983396 +n02093859 +n03775071 +n02667093 +n02906734 +n07873807 +n04277352 +n04153751 +n01675722 +n01601694 +n04263257 +n01582220 +n03000134 +n04263257 +n04286575 +n06359193 +n02445715 +n03179701 +n04275548 +n02444819 +n02002724 +n03124170 +n02018795 +n02776631 +n12144580 +n03041632 +n02101556 +n04435653 +n04254120 +n04505470 +n03297495 +n02093256 +n03529860 +n01734418 +n04462240 +n02089867 +n03259280 +n03804744 +n02484975 +n03372029 +n02992529 +n01629819 +n03814639 +n04004767 +n02280649 +n04275548 +n04023962 +n03476684 +n01843383 +n02490219 +n03450230 +n02088238 +n02129165 +n07716906 +n02006656 +n07615774 +n04033901 +n02101388 +n02412080 +n02871525 +n01689811 +n02447366 +n02951585 +n03325584 +n04238763 +n01817953 +n07753275 +n03803284 +n03724870 +n01694178 +n04613696 +n03961711 +n04553703 +n04493381 +n04507155 +n03388183 +n04483307 +n02840245 +n01739381 +n03837869 +n03980874 +n02093647 +n02992529 +n03983396 +n02110958 +n01688243 +n02100236 +n01873310 +n04525038 +n03496892 +n04350905 +n02115913 +n01824575 +n04443257 +n01729322 +n03197337 +n09421951 +n07614500 +n03445777 +n03680355 +n04579145 +n03345487 +n03062245 +n02655020 +n02769748 +n03930630 +n03956157 +n04332243 +n03690938 +n04153751 +n04456115 +n02883205 +n01631663 +n02841315 +n02480495 +n02396427 +n04357314 +n01695060 +n02101556 +n03947888 +n04367480 +n03958227 +n01924916 +n02111129 +n02939185 +n01829413 +n02108915 +n03388183 +n02410509 +n04273569 +n02119789 +n04505470 +n02094258 +n02231487 +n02916936 +n02441942 +n04039381 +n02883205 +n02098413 +n01496331 +n03534580 +n07714990 +n04286575 +n03000247 +n03691459 +n03376595 +n01729322 +n12144580 +n04192698 +n03998194 +n02979186 +n02102973 +n02110627 +n01728572 +n03272010 +n03786901 +n04033901 +n02097047 +n03947888 +n07873807 +n02097047 +n07754684 +n02276258 +n02104365 +n01734418 +n03976467 +n02825657 +n01694178 +n01682714 +n02747177 +n03710193 +n09288635 +n02510455 +n02319095 +n02088364 +n02129604 +n04326547 +n03871628 +n02096177 +n09246464 +n03127925 +n02488702 +n06785654 +n02066245 +n12998815 +n01632777 +n02091244 +n01742172 +n03908618 +n04536866 +n03841143 +n01917289 +n02276258 +n03457902 +n04041544 +n03259280 +n02236044 +n02090379 +n04127249 +n03873416 +n02415577 +n03590841 +n02094258 +n03884397 +n01978287 +n02172182 +n01990800 +n04476259 +n03871628 +n03584829 +n04118776 +n02509815 +n02102480 +n01729977 +n02776631 +n03125729 +n02948072 +n01774384 +n01695060 +n07734744 +n01990800 +n02445715 +n03017168 +n02606052 +n04612504 +n02119789 +n02113978 +n03706229 +n02115913 +n02655020 +n02640242 +n03478589 +n03891251 +n02892201 +n02676566 +n01877812 +n02037110 +n07745940 +n02090721 +n04548280 +n02971356 +n03042490 +n02865351 +n04310018 +n07802026 +n01843065 +n01944390 +n03443371 +n01496331 +n13044778 +n03196217 +n02111889 +n09288635 +n03777568 +n03970156 +n02027492 +n09332890 +n04326547 +n04458633 +n02093428 +n03992509 +n03908618 +n03290653 +n04311004 +n03764736 +n04465501 +n03345487 +n04099969 +n02843684 +n02361337 +n02066245 +n02099601 +n03259280 +n02105641 +n01755581 +n03937543 +n03249569 +n02124075 +n03761084 +n02834397 +n03891251 +n07753275 +n04389033 +n03599486 +n04392985 +n01582220 +n03642806 +n01749939 +n01944390 +n03146219 +n09428293 +n02112350 +n03249569 +n02085936 +n03240683 +n04597913 +n03249569 +n02256656 +n07248320 +n04376876 +n03089624 +n04118538 +n02966687 +n03891332 +n01773157 +n02948072 +n01685808 +n04371430 +n02107312 +n01749939 +n02085936 +n02091831 +n02098105 +n02708093 +n02120505 +n01601694 +n06874185 +n02319095 +n01616318 +n01775062 +n13040303 +n03796401 +n04482393 +n03272562 +n03478589 +n02190166 +n02910353 +n02951358 +n01749939 +n12985857 +n04254120 +n03944341 +n03743016 +n01855672 +n04228054 +n03642806 +n03956157 +n04162706 +n02992211 +n01883070 +n03045698 +n02018207 +n01872401 +n04239074 +n07932039 +n04392985 +n02641379 +n01484850 +n01742172 +n04376876 +n04550184 +n03733805 +n04371774 +n04317175 +n03873416 +n02361337 +n02002556 +n02168699 +n02098413 +n02104365 +n03841143 +n02074367 +n04344873 +n07615774 +n04149813 +n02321529 +n12144580 +n02509815 +n03938244 +n01978455 +n03047690 +n04252077 +n02487347 +n03141823 +n02666196 +n02123045 +n02486410 +n02492660 +n03796401 +n02112350 +n07730033 +n03950228 +n04162706 +n02895154 +n02105641 +n03404251 +n02007558 +n01739381 +n02481823 +n04409515 +n02443114 +n02879718 +n03345487 +n02268853 +n12620546 +n03930313 +n04380533 +n01518878 +n04596742 +n03680355 +n02074367 +n01667778 +n03376595 +n04366367 +n02097047 +n02101006 +n01873310 +n03876231 +n04507155 +n02086910 +n04370456 +n02687172 +n03724870 +n02966193 +n02776631 +n03089624 +n04456115 +n03325584 +n01770081 +n04428191 +n01667778 +n02132136 +n02105162 +n03743016 +n04367480 +n02098105 +n03000134 +n02100236 +n02011460 +n02097047 +n02177972 +n04493381 +n03874293 +n02017213 +n03908714 +n02361337 +n02669723 +n02119022 +n02105505 +n03884397 +n02190166 +n03216828 +n02410509 +n02101556 +n02098286 +n03250847 +n02117135 +n03929660 +n04332243 +n03891332 +n02018207 +n01498041 +n03977966 +n02892767 +n03781244 +n02094433 +n02112137 +n02910353 +n03791053 +n01773157 +n03599486 +n11939491 +n01496331 +n02950826 +n09246464 +n02099429 +n02108551 +n02895154 +n09229709 +n07932039 +n03721384 +n03529860 +n02113186 +n03929660 +n02086646 +n02787622 +n02676566 +n02006656 +n02104365 +n03045698 +n03100240 +n03599486 +n03924679 +n03937543 +n02869837 +n02123394 +n01980166 +n04355933 +n03133878 +n03709823 +n06794110 +n02110341 +n01796340 +n02978881 +n03495258 +n03452741 +n02091032 +n04442312 +n04118776 +n01630670 +n03662601 +n02174001 +n04606251 +n02107142 +n03814906 +n03457902 +n02085782 +n03598930 +n02094258 +n03000247 +n02966193 +n02489166 +n04367480 +n02110063 +n07753275 +n07715103 +n04485082 +n03075370 +n02098105 +n13054560 +n02730930 +n03670208 +n02281787 +n04462240 +n02510455 +n02814860 +n04482393 +n03498962 +n09229709 +n02097130 +n04265275 +n04004767 +n02093647 +n01443537 +n01704323 +n02096437 +n03394916 +n04423845 +n02108422 +n03706229 +n02869837 +n01737021 +n03930313 +n04039381 +n02113186 +n02403003 +n02037110 +n03637318 +n02823750 +n01677366 +n02093256 +n02096294 +n06596364 +n03220513 +n02106030 +n02917067 +n02090622 +n04141076 +n01749939 +n02981792 +n02111889 +n02116738 +n09246464 +n02791124 +n02091244 +n02119022 +n02445715 +n03216828 +n03095699 +n03481172 +n04442312 +n02802426 +n09428293 +n03065424 +n02363005 +n12057211 +n02422106 +n02999410 +n03207743 +n03786901 +n02363005 +n02417914 +n01698640 +n03063599 +n04409515 +n03891251 +n03794056 +n02101388 +n04044716 +n02226429 +n01818515 +n01558993 +n02110806 +n03337140 +n03627232 +n04204238 +n07873807 +n03930630 +n04311174 +n01616318 +n04330267 +n04179913 +n04501370 +n02687172 +n02086079 +n03976467 +n03950228 +n01773797 +n03197337 +n02640242 +n01440764 +n02342885 +n02389026 +n02895154 +n02056570 +n04584207 +n03042490 +n09421951 +n01616318 +n03384352 +n07248320 +n03590841 +n03903868 +n02129165 +n02123159 +n03837869 +n03630383 +n02119789 +n07768694 +n02102973 +n03788195 +n01682714 +n02130308 +n03495258 +n03770439 +n02398521 +n02965783 +n02033041 +n02088094 +n02939185 +n01914609 +n04147183 +n03720891 +n02105641 +n01843383 +n01818515 +n02730930 +n02109961 +n04398044 +n04131690 +n01914609 +n03481172 +n04317175 +n03344393 +n04557648 +n02120505 +n02109961 +n02128385 +n02391049 +n03041632 +n09246464 +n03666591 +n02111129 +n02974003 +n02643566 +n03492542 +n02090622 +n02389026 +n01735189 +n03478589 +n03785016 +n03854065 +n03207743 +n04399382 +n02108422 +n04428191 +n07760859 +n03888605 +n02704792 +n03697007 +n03657121 +n04141975 +n04008634 +n02799071 +n02018795 +n02877765 +n07613480 +n11939491 +n02108089 +n02098413 +n01440764 +n01776313 +n03804744 +n01817953 +n02788148 +n03400231 +n03899768 +n02027492 +n02028035 +n02087394 +n04392985 +n01944390 +n04204238 +n03995372 +n02437616 +n03000684 +n03146219 +n01496331 +n02128925 +n02025239 +n03903868 +n06596364 +n01990800 +n03877845 +n02704792 +n01773549 +n03271574 +n02667093 +n01514668 +n02089867 +n02410509 +n09193705 +n04204238 +n02110806 +n02823428 +n01807496 +n07753592 +n02835271 +n04579432 +n03763968 +n01667114 +n01770393 +n02364673 +n03777568 +n04204238 +n04252077 +n01496331 +n02877765 +n01532829 +n02640242 +n04483307 +n04332243 +n03197337 +n02094433 +n03995372 +n03485407 +n02085782 +n04591157 +n07930864 +n02086079 +n01983481 +n04162706 +n02981792 +n02447366 +n03733805 +n02097298 +n04120489 +n04442312 +n07714990 +n02823428 +n02788148 +n02791270 +n11879895 +n03776460 +n02834397 +n03657121 +n02423022 +n03785016 +n03888257 +n02018207 +n01742172 +n04154565 +n02536864 +n03447721 +n02229544 +n04540053 +n04266014 +n03457902 +n03425413 +n02504013 +n02107312 +n02177972 +n02489166 +n04330267 +n03791053 +n04311004 +n02422699 +n02319095 +n04606251 +n04229816 +n02101556 +n04592741 +n03666591 +n02088094 +n02017213 +n03759954 +n02128925 +n03544143 +n03188531 +n03459775 +n04254680 +n03496892 +n02483362 +n02906734 +n07753275 +n02879718 +n02641379 +n02814860 +n03400231 +n02966687 +n09246464 +n02114712 +n02087046 +n02115913 +n03424325 +n03529860 +n01943899 +n04238763 +n03146219 +n02747177 +n02233338 +n13044778 +n03109150 +n02112350 +n03180011 +n02091831 +n03134739 +n03133878 +n01740131 +n02125311 +n02398521 +n02219486 +n04086273 +n02091244 +n02099849 +n02119789 +n04039381 +n02094114 +n04562935 +n03938244 +n07693725 +n12998815 +n04542943 +n02389026 +n03417042 +n01440764 +n02095889 +n02090379 +n02493509 +n02672831 +n01534433 +n02794156 +n02396427 +n02117135 +n03782006 +n04336792 +n03042490 +n03075370 +n02488291 +n04332243 +n02708093 +n02097209 +n02356798 +n03837869 +n04355338 +n03584829 +n03041632 +n06359193 +n03041632 +n03888257 +n03717622 +n04235860 +n04275548 +n01592084 +n03388549 +n01669191 +n07760859 +n02090622 +n01440764 +n01729322 +n02480495 +n07871810 +n04505470 +n04418357 +n03404251 +n03676483 +n02165105 +n04008634 +n03958227 +n02480855 +n02823750 +n07579787 +n02009912 +n07734744 +n03372029 +n01440764 +n02102177 +n03840681 +n07753275 +n03026506 +n01601694 +n03047690 +n02086079 +n02979186 +n02089078 +n02397096 +n12985857 +n02808304 +n04118538 +n04229816 +n09428293 +n07880968 +n04548280 +n03804744 +n01622779 +n02110063 +n02814860 +n02128385 +n01824575 +n01496331 +n04286575 +n03599486 +n03857828 +n03866082 +n03495258 +n02526121 +n02098105 +n02102973 +n03124043 +n04357314 +n07768694 +n03000134 +n03970156 +n04040759 +n02112706 +n04008634 +n04040759 +n06794110 +n02086646 +n02066245 +n03884397 +n03967562 +n04125021 +n02910353 +n02236044 +n01981276 +n07871810 +n02099849 +n03146219 +n04146614 +n09193705 +n02113023 +n02100236 +n13044778 +n03584829 +n03180011 +n02027492 +n03240683 +n02526121 +n01494475 +n02492660 +n01774750 +n07768694 +n02113712 +n03666591 +n12998815 +n03657121 +n02110806 +n03717622 +n02087394 +n02692877 +n02497673 +n04507155 +n02114855 +n04332243 +n02100877 +n04332243 +n02110627 +n03424325 +n02104365 +n01943899 +n03535780 +n02883205 +n01667778 +n01986214 +n02666196 +n02966687 +n02097658 +n03866082 +n04239074 +n02488702 +n01735189 +n04090263 +n04008634 +n03742115 +n03877472 +n03788195 +n03794056 +n01768244 +n02797295 +n02009229 +n03085013 +n02119789 +n04557648 +n02099267 +n03424325 +n03666591 +n01667778 +n07875152 +n01514668 +n02492660 +n03482405 +n04033901 +n04044716 +n03290653 +n12057211 +n02981792 +n01496331 +n02483362 +n03314780 +n04099969 +n02669723 +n02113799 +n02074367 +n02094258 +n03866082 +n04540053 +n02777292 +n03782006 +n02105251 +n03761084 +n01955084 +n02643566 +n02106662 +n01580077 +n01828970 +n02690373 +n03063599 +n02114548 +n03014705 +n03724870 +n02088364 +n07716358 +n03724870 +n03937543 +n02091635 +n02106382 +n07613480 +n13133613 +n04591157 +n02396427 +n03776460 +n02108089 +n02017213 +n04350905 +n02107683 +n04228054 +n01773549 +n03888257 +n02488291 +n04493381 +n01817953 +n01641577 +n02012849 +n01797886 +n02787622 +n02910353 +n04067472 +n03100240 +n02087046 +n03733131 +n02643566 +n02916936 +n02480495 +n02815834 +n02086079 +n02814860 +n02114712 +n07742313 +n01728920 +n02356798 +n13044778 +n01798484 +n04613696 +n02108915 +n02109047 +n03272010 +n04008634 +n02097209 +n01843065 +n02999410 +n04086273 +n03888257 +n02123394 +n04356056 +n09468604 +n01601694 +n03950228 +n04344873 +n02672831 +n12768682 +n02110341 +n10148035 +n02114367 +n04409515 +n03240683 +n04285008 +n07831146 +n03584254 +n01855672 +n02489166 +n03216828 +n03297495 +n04086273 +n01514859 +n01629819 +n02643566 +n02113023 +n02791270 +n03983396 +n07880968 +n02268853 +n03970156 +n02091831 +n02268853 +n02167151 +n03742115 +n03947888 +n04591157 +n03729826 +n02988304 +n03717622 +n02391049 +n02096585 +n02219486 +n02093647 +n02002556 +n02504458 +n01665541 +n03938244 +n03776460 +n02093256 +n02056570 +n02096051 +n02488702 +n07693725 +n01796340 +n02950826 +n01828970 +n03534580 +n03394916 +n04404412 +n03895866 +n01944390 +n04554684 +n02444819 +n03623198 +n04263257 +n04099969 +n02105855 +n03584829 +n04442312 +n01514668 +n02088364 +n01943899 +n02091831 +n02071294 +n03461385 +n04485082 +n01630670 +n01873310 +n02011460 +n02113978 +n01629819 +n07711569 +n04023962 +n01631663 +n02815834 +n01797886 +n03662601 +n02704792 +n02494079 +n02124075 +n03530642 +n03424325 +n02974003 +n01685808 +n02086910 +n04004767 +n03720891 +n04200800 +n01755581 +n04118776 +n02058221 +n03124170 +n03584829 +n01978455 +n02100583 +n03131574 +n03467068 +n02490219 +n02978881 +n02096051 +n04254120 +n03028079 +n04371774 +n02105641 +n02397096 +n04258138 +n03297495 +n02108000 +n02096585 +n02090721 +n02786058 +n02025239 +n01784675 +n03393912 +n01755581 +n02437616 +n02219486 +n03388549 +n02769748 +n03384352 +n03998194 +n02699494 +n04277352 +n03637318 +n02415577 +n03788365 +n01943899 +n02009229 +n04325704 +n04532670 +n01498041 +n03793489 +n04141076 +n04525038 +n04548362 +n02012849 +n02093754 +n03534580 +n04532670 +n02859443 +n02027492 +n04070727 +n03673027 +n11879895 +n02643566 +n04606251 +n04613696 +n03680355 +n01860187 +n04251144 +n01739381 +n02098413 +n04019541 +n02101556 +n03201208 +n04532106 +n02879718 +n02951585 +n04604644 +n04275548 +n02097474 +n03482405 +n07734744 +n03868242 +n04332243 +n04589890 +n03788365 +n03649909 +n02090721 +n02672831 +n02109525 +n02112018 +n07615774 +n02102480 +n03125729 +n01632458 +n04252225 +n01824575 +n02666196 +n03832673 +n02105641 +n07768694 +n03871628 +n03127925 +n03344393 +n02096177 +n03887697 +n03424325 +n03014705 +n03796401 +n03617480 +n04065272 +n03982430 +n04479046 +n03763968 +n02486410 +n07742313 +n02687172 +n03794056 +n04254680 +n03661043 +n02837789 +n02454379 +n01560419 +n04443257 +n07613480 +n02110806 +n01818515 +n02099712 +n03384352 +n04366367 +n03676483 +n02892767 +n02110627 +n02096294 +n01667778 +n02870880 +n03425413 +n01751748 +n04275548 +n03187595 +n02437312 +n03623198 +n01796340 +n09472597 +n04523525 +n02486261 +n01531178 +n02493509 +n02979186 +n03584829 +n03924679 +n02099601 +n03259280 +n04229816 +n01872401 +n04579432 +n01855672 +n01622779 +n02509815 +n04525305 +n04131690 +n02484975 +n09193705 +n02097658 +n02877765 +n02749479 +n06596364 +n01806567 +n02093428 +n01773157 +n03207941 +n03947888 +n01818515 +n02092339 +n02276258 +n03207743 +n02794156 +n02106166 +n03529860 +n04493381 +n02086079 +n02011460 +n03961711 +n03680355 +n04263257 +n01819313 +n02102177 +n04254120 +n03888257 +n03729826 +n04136333 +n04346328 +n02107908 +n02447366 +n03125729 +n03476684 +n02443114 +n03788195 +n03710637 +n03657121 +n03633091 +n03141823 +n07802026 +n02113978 +n01665541 +n01744401 +n02834397 +n03633091 +n04335435 +n02011460 +n02099712 +n03527444 +n03180011 +n02408429 +n02123394 +n03980874 +n04070727 +n03445777 +n04465501 +n03530642 +n03291819 +n04252077 +n01689811 +n02058221 +n02112137 +n01950731 +n01682714 +n02231487 +n07684084 +n03481172 +n02963159 +n07768694 +n03977966 +n02165456 +n02939185 +n04258138 +n02123045 +n02128757 +n02037110 +n02128925 +n02483362 +n03483316 +n04273569 +n04208210 +n03942813 +n03291819 +n03467068 +n02091467 +n02113624 +n03950228 +n03786901 +n04228054 +n03649909 +n01629819 +n02104365 +n02865351 +n02097047 +n03902125 +n02231487 +n04033995 +n02172182 +n01632777 +n02494079 +n02391049 +n02093256 +n03992509 +n03710721 +n03272010 +n03124043 +n02422699 +n02492035 +n02410509 +n04120489 +n02793495 +n03594734 +n03841143 +n03124043 +n04265275 +n02088466 +n02123159 +n03461385 +n01675722 +n02965783 +n07753113 +n07614500 +n04154565 +n03590841 +n02361337 +n07720875 +n01843383 +n04162706 +n02134418 +n03271574 +n01494475 +n01729977 +n01689811 +n01582220 +n02655020 +n03594945 +n02099712 +n02110627 +n02441942 +n02791124 +n02007558 +n03891332 +n02791270 +n02037110 +n02127052 +n01910747 +n01829413 +n04523525 +n02417914 +n04465501 +n01860187 +n03935335 +n03908714 +n02018207 +n02006656 +n07802026 +n03950228 +n07590611 +n02092002 +n04423845 +n02790996 +n04252225 +n03666591 +n02109961 +n03930630 +n02860847 +n04552348 +n02092339 +n09229709 +n02791270 +n07579787 +n03196217 +n02500267 +n02790996 +n01622779 +n02484975 +n02669723 +n02280649 +n11879895 +n03769881 +n02167151 +n02403003 +n03717622 +n02093991 +n03942813 +n04254680 +n04443257 +n01860187 +n09229709 +n02028035 +n02087394 +n01986214 +n02115641 +n02640242 +n04328186 +n03908618 +n04154565 +n02797295 +n02097209 +n02125311 +n07932039 +n02102973 +n03529860 +n01980166 +n02443114 +n03733131 +n07718472 +n03255030 +n02009912 +n02087394 +n03218198 +n02106550 +n03888605 +n01704323 +n02091635 +n03710721 +n02325366 +n02112350 +n03207743 +n03980874 +n03042490 +n07590611 +n02096051 +n02408429 +n02091244 +n03773504 +n01491361 +n02120505 +n02607072 +n02487347 +n02504458 +n04204347 +n02037110 +n02790996 +n02107312 +n04044716 +n02002556 +n02727426 +n04606251 +n02091831 +n03598930 +n03089624 +n01807496 +n07613480 +n04404412 +n04542943 +n09229709 +n03467068 +n01943899 +n11939491 +n02086646 +n02095314 +n02328150 +n02992529 +n02281787 +n04008634 +n07697313 +n03347037 +n02012849 +n02099429 +n04179913 +n02106662 +n03841143 +n07768694 +n07880968 +n02111129 +n04456115 +n04330267 +n01629819 +n04146614 +n03710193 +n03250847 +n02808304 +n03018349 +n01943899 +n02398521 +n03388549 +n02097658 +n03529860 +n02782093 +n01592084 +n04311174 +n02823750 +n04067472 +n02422699 +n03832673 +n04367480 +n04557648 +n02051845 +n01882714 +n02012849 +n03796401 +n01735189 +n09256479 +n03529860 +n11939491 +n03673027 +n01669191 +n03742115 +n02692877 +n02328150 +n07715103 +n02268443 +n02268853 +n01770393 +n07718747 +n07714571 +n01695060 +n01843065 +n03404251 +n02823750 +n04264628 +n03478589 +n02643566 +n01514859 +n02086646 +n01692333 +n03841143 +n03977966 +n04136333 +n02089973 +n02097298 +n04311174 +n01677366 +n01930112 +n02128925 +n03710721 +n02909870 +n02027492 +n04252077 +n03544143 +n09332890 +n04118776 +n04553703 +n02488702 +n02109525 +n04443257 +n01728572 +n03384352 +n04136333 +n07718472 +n03773504 +n04273569 +n02730930 +n02259212 +n03125729 +n01748264 +n03095699 +n02504458 +n04579432 +n02231487 +n04442312 +n03447447 +n02939185 +n02110341 +n04458633 +n03492542 +n02841315 +n04285008 +n02787622 +n01514668 +n03877472 +n04486054 +n04238763 +n02480495 +n07871810 +n01968897 +n03954731 +n03584829 +n03379051 +n02123394 +n03259280 +n07920052 +n02113712 +n02092002 +n02727426 +n04149813 +n01775062 +n03457902 +n03791053 +n02106550 +n09288635 +n01742172 +n02219486 +n04332243 +n02490219 +n04033901 +n03590841 +n04344873 +n07753592 +n02085936 +n03447721 +n01580077 +n02120505 +n02504458 +n03633091 +n02113023 +n02109525 +n11879895 +n03445924 +n01882714 +n02089867 +n04604644 +n03697007 +n02814533 +n02094114 +n01631663 +n02105251 +n02948072 +n04200800 +n01820546 +n03125729 +n03290653 +n02102480 +n04525038 +n03347037 +n03950228 +n02319095 +n03160309 +n03787032 +n02107574 +n04487394 +n04548280 +n07697537 +n01580077 +n03599486 +n04599235 +n01735189 +n04612504 +n02786058 +n03000247 +n02906734 +n13054560 +n02132136 +n02939185 +n02101006 +n04141975 +n04127249 +n07565083 +n01641577 +n02017213 +n02095889 +n02096585 +n03461385 +n02231487 +n04493381 +n02092339 +n04332243 +n02497673 +n02119022 +n02099601 +n04311004 +n03920288 +n02704792 +n02091032 +n03240683 +n03538406 +n04560804 +n01440764 +n02776631 +n02013706 +n02099849 +n01532829 +n02110341 +n01944390 +n03218198 +n02099712 +n04429376 +n03249569 +n02422106 +n04254777 +n04009552 +n03617480 +n03337140 +n01692333 +n02493509 +n12144580 +n03095699 +n03781244 +n03782006 +n02099429 +n09428293 +n04179913 +n02105251 +n07716358 +n04357314 +n03895866 +n02948072 +n03888257 +n03447447 +n07248320 +n01537544 +n02487347 +n03982430 +n02910353 +n07892512 +n09468604 +n03857828 +n03290653 +n03388043 +n03843555 +n04423845 +n04404412 +n04347754 +n01537544 +n02992529 +n02101388 +n02056570 +n02093859 +n02105412 +n03933933 +n02704792 +n03063599 +n12267677 +n04482393 +n01443537 +n03670208 +n04590129 +n07565083 +n04111531 +n03188531 +n02114712 +n04409515 +n03272010 +n02107312 +n02112018 +n03676483 +n03770439 +n13133613 +n04259630 +n02105641 +n04049303 +n02807133 +n03249569 +n02099267 +n04065272 +n07716906 +n02087394 +n01669191 +n04376876 +n01847000 +n02123597 +n04131690 +n02033041 +n04357314 +n01530575 +n02841315 +n01698640 +n04179913 +n01824575 +n02092002 +n02058221 +n03617480 +n04146614 +n02097130 +n09399592 +n02892201 +n02116738 +n04204347 +n04522168 +n04136333 +n01531178 +n02346627 +n02168699 +n01980166 +n07711569 +n03347037 +n04208210 +n02823750 +n02124075 +n02509815 +n03404251 +n02088364 +n01798484 +n02009912 +n03814639 +n02172182 +n03840681 +n02002556 +n03888257 +n03065424 +n03325584 +n02317335 +n02281406 +n03658185 +n02095570 +n03920288 +n03710637 +n02123597 +n03877472 +n04357314 +n07802026 +n04067472 +n02437616 +n03482405 +n01532829 +n04553703 +n03065424 +n02058221 +n07718472 +n04252225 +n02096585 +n02097658 +n04525305 +n12057211 +n04259630 +n02490219 +n04285008 +n01534433 +n01622779 +n04067472 +n04557648 +n03888257 +n02096051 +n01632458 +n02808304 +n12985857 +n01756291 +n02111500 +n02963159 +n02790996 +n03630383 +n07714990 +n04589890 +n02128757 +n02786058 +n02951358 +n03763968 +n02356798 +n01818515 +n02607072 +n07717410 +n03877472 +n04069434 +n02483362 +n04479046 +n02268853 +n10148035 +n02815834 +n02116738 +n04501370 +n03131574 +n02099712 +n02108915 +n04209239 +n03770439 +n02226429 +n12144580 +n02906734 +n02783161 +n02667093 +n04239074 +n02110063 +n01582220 +n07768694 +n01774750 +n03787032 +n12057211 +n03764736 +n01795545 +n03623198 +n01443537 +n02892201 +n03868242 +n03384352 +n02403003 +n03658185 +n03485794 +n02085782 +n04328186 +n03388183 +n04344873 +n07716358 +n02097047 +n01737021 +n01695060 +n02098286 +n04258138 +n03127747 +n07565083 +n01667114 +n03929660 +n03476684 +n03785016 +n04041544 +n02100236 +n03854065 +n03529860 +n02097209 +n02100236 +n04540053 +n02002556 +n03495258 +n02834397 +n04346328 +n03485407 +n02835271 +n01729977 +n02802426 +n03781244 +n02793495 +n02892767 +n02086240 +n02490219 +n02119022 +n06359193 +n03207743 +n01980166 +n04467665 +n04332243 +n03598930 +n04523525 +n03877472 +n03976657 +n02256656 +n02097130 +n02606052 +n04037443 +n02793495 +n03929855 +n04118776 +n02727426 +n01833805 +n02536864 +n03710721 +n03459775 +n04311004 +n02113712 +n02480495 +n03041632 +n02966193 +n03476684 +n07716358 +n04310018 +n07579787 +n02493793 +n02094433 +n07734744 +n01744401 +n03770679 +n04523525 +n02364673 +n03355925 +n07715103 +n02403003 +n01644900 +n01518878 +n02815834 +n04251144 +n02690373 +n02124075 +n04553703 +n04081281 +n02408429 +n01704323 +n02640242 +n03478589 +n04447861 +n07875152 +n04209133 +n07734744 +n04487081 +n02177972 +n02892767 +n02113624 +n03016953 +n07753275 +n02319095 +n07745940 +n02108000 +n02028035 +n02504458 +n02106550 +n07754684 +n03063599 +n03787032 +n02098105 +n03467068 +n02089867 +n02093428 +n07718747 +n07831146 +n03496892 +n03961711 +n01924916 +n01883070 +n01704323 +n03733281 +n03791053 +n02930766 +n03478589 +n01980166 +n01985128 +n09472597 +n03967562 +n02087394 +n01914609 +n02497673 +n03924679 +n03706229 +n02108089 +n15075141 +n03977966 +n07715103 +n03187595 +n02236044 +n04599235 +n03529860 +n04023962 +n02092339 +n02977058 +n07584110 +n07730033 +n03272010 +n03676483 +n02493509 +n09468604 +n02091467 +n03534580 +n03125729 +n04467665 +n01665541 +n04330267 +n02917067 +n03196217 +n02009229 +n03042490 +n01632458 +n03100240 +n02965783 +n02172182 +n03920288 +n03109150 +n07747607 +n02093859 +n02655020 +n03658185 +n03584254 +n02110806 +n04596742 +n02113799 +n01530575 +n03345487 +n02917067 +n03788195 +n02105162 +n15075141 +n04317175 +n04251144 +n02112018 +n04326547 +n03838899 +n01955084 +n02417914 +n02099849 +n02317335 +n03095699 +n02699494 +n04554684 +n03729826 +n04005630 +n02108422 +n03127925 +n02123045 +n03832673 +n02504013 +n01806567 +n04069434 +n04023962 +n04111531 +n02097209 +n02105056 +n02097209 +n03376595 +n02095314 +n01756291 +n03773504 +n01980166 +n06794110 +n04074963 +n02747177 +n02108551 +n03255030 +n03891251 +n03935335 +n03673027 +n02111277 +n03188531 +n02100236 +n02992529 +n02607072 +n02095889 +n02002556 +n02834397 +n02134084 +n07716906 +n02804414 +n02134084 +n04008634 +n02509815 +n04254120 +n04147183 +n04204238 +n03908714 +n04162706 +n03197337 +n11879895 +n03787032 +n04111531 +n02978881 +n02102177 +n03379051 +n04371774 +n01704323 +n03710721 +n01518878 +n03016953 +n02106382 +n04540053 +n01558993 +n02105412 +n02981792 +n03028079 +n03782006 +n02086079 +n04192698 +n02233338 +n03649909 +n03496892 +n02276258 +n03832673 +n04070727 +n03899768 +n03017168 +n03485794 +n04591157 +n02493509 +n02093754 +n02107683 +n04208210 +n02992529 +n03124043 +n03876231 +n03691459 +n01667778 +n07730033 +n04252225 +n04208210 +n02860847 +n01742172 +n02094114 +n03000134 +n07860988 +n01775062 +n03958227 +n03045698 +n03759954 +n02086240 +n03676483 +n04532670 +n02100583 +n02793495 +n01855032 +n04275548 +n04409515 +n03733131 +n03710193 +n07760859 +n03854065 +n01629819 +n02840245 +n03691459 +n03452741 +n03297495 +n03877472 +n02125311 +n04037443 +n02526121 +n01698640 +n04591713 +n02860847 +n02412080 +n01728572 +n04152593 +n02879718 +n02699494 +n02115913 +n03000134 +n02326432 +n02966193 +n04326547 +n04049303 +n04501370 +n07590611 +n02088466 +n01665541 +n03141823 +n02037110 +n02110958 +n03481172 +n07860988 +n02509815 +n02869837 +n03930313 +n03492542 +n02480855 +n02486261 +n03495258 +n03478589 +n03063599 +n04525038 +n02109525 +n02787622 +n01592084 +n02437616 +n13040303 +n04118776 +n02104365 +n02927161 +n03532672 +n03814639 +n01910747 +n01737021 +n03877845 +n07579787 +n09288635 +n01981276 +n03133878 +n02667093 +n02747177 +n02500267 +n04370456 +n01601694 +n03769881 +n04372370 +n02114712 +n02326432 +n03134739 +n03041632 +n01685808 +n02233338 +n01614925 +n03982430 +n03929855 +n04069434 +n04367480 +n03961711 +n03201208 +n02092002 +n04370456 +n04376876 +n02395406 +n03717622 +n04317175 +n02088094 +n02950826 +n01697457 +n04591157 +n01784675 +n03930630 +n04251144 +n02802426 +n07697537 +n01689811 +n12998815 +n04550184 +n04486054 +n01667778 +n03916031 +n01795545 +n02790996 +n01910747 +n02085936 +n03938244 +n03976467 +n02325366 +n03527444 +n02268443 +n03290653 +n03444034 +n02105056 +n02096437 +n03457902 +n03843555 +n02500267 +n02088094 +n02769748 +n04525038 +n02606052 +n04487081 +n02486261 +n03492542 +n03733131 +n02120505 +n07745940 +n02112137 +n07579787 +n02105505 +n03452741 +n10148035 +n04125021 +n04026417 +n02089867 +n03995372 +n02177972 +n03903868 +n04409515 +n01943899 +n02100236 +n03124170 +n03197337 +n02361337 +n04325704 +n03920288 +n03825788 +n02101388 +n11879895 +n03443371 +n02071294 +n07880968 +n03769881 +n03902125 +n02110806 +n03637318 +n04019541 +n03840681 +n02342885 +n03476684 +n02094114 +n04023962 +n03706229 +n02730930 +n02877765 +n04548362 +n02088632 +n04285008 +n07873807 +n03903868 +n04501370 +n04118538 +n02025239 +n03530642 +n02018207 +n03476684 +n03602883 +n02948072 +n02102040 +n02123394 +n01944390 +n02268853 +n04590129 +n01530575 +n02117135 +n03691459 +n02504013 +n03179701 +n04357314 +n04399382 +n03218198 +n02865351 +n03598930 +n02113978 +n03697007 +n01843383 +n02074367 +n02264363 +n01742172 +n02123045 +n02795169 +n03721384 +n02129165 +n03544143 +n04522168 +n12985857 +n02814860 +n02110958 +n02100735 +n13044778 +n02817516 +n07730033 +n04429376 +n04033995 +n04367480 +n03729826 +n02493793 +n04141975 +n01740131 +n01914609 +n02134418 +n01739381 +n02687172 +n02483362 +n13037406 +n01742172 +n02396427 +n02397096 +n01689811 +n09399592 +n04347754 +n02865351 +n04344873 +n02111889 +n02939185 +n04033995 +n02037110 +n01773157 +n03599486 +n02093647 +n01532829 +n02097209 +n02492660 +n04009552 +n04033901 +n02099429 +n02056570 +n02098413 +n02992211 +n03788195 +n03207743 +n03444034 +n03814639 +n04485082 +n01981276 +n01978455 +n03461385 +n01688243 +n02277742 +n03388043 +n02871525 +n02101556 +n03131574 +n02236044 +n07248320 +n03041632 +n02095314 +n04344873 +n02119022 +n02172182 +n13054560 +n01978287 +n03532672 +n04536866 +n02105412 +n04118538 +n02443484 +n01695060 +n02909870 +n02441942 +n02017213 +n02799071 +n04147183 +n04589890 +n02056570 +n02486261 +n03345487 +n04328186 +n02328150 +n04476259 +n04346328 +n04273569 +n03290653 +n03627232 +n02791124 +n02012849 +n02259212 +n02090379 +n03627232 +n03764736 +n02817516 +n04326547 +n03065424 +n02909870 +n01675722 +n04522168 +n13133613 +n02655020 +n04209133 +n02783161 +n03796401 +n03250847 +n01872401 +n01682714 +n01873310 +n01631663 +n04005630 +n02843684 +n02769748 +n02804610 +n03782006 +n01978455 +n02097298 +n02787622 +n07716906 +n02111129 +n02123045 +n02279972 +n02497673 +n02980441 +n02111129 +n03297495 +n04487081 +n04370456 +n01667778 +n03710193 +n02096294 +n03876231 +n03938244 +n02950826 +n04311174 +n04081281 +n01687978 +n04371774 +n06794110 +n02281406 +n04326547 +n02395406 +n02096051 +n02113186 +n04070727 +n02206856 +n02690373 +n01729977 +n03000684 +n01514859 +n03197337 +n03445924 +n04604644 +n02280649 +n02090379 +n02012849 +n01534433 +n07734744 +n03838899 +n02177972 +n04423845 +n03899768 +n02098105 +n03633091 +n02701002 +n04371430 +n02114367 +n03947888 +n01820546 +n02088238 +n03929855 +n04612504 +n02963159 +n02966193 +n02037110 +n03982430 +n02107574 +n02966193 +n04355933 +n03372029 +n02113978 +n04398044 +n02087046 +n02106166 +n04465501 +n03179701 +n10565667 +n03492542 +n01735189 +n02120079 +n02105251 +n01873310 +n02110063 +n03388183 +n02444819 +n02687172 +n01871265 +n02445715 +n04590129 +n12985857 +n01819313 +n03938244 +n02443114 +n04380533 +n04277352 +n02444819 +n02536864 +n02111277 +n02948072 +n03938244 +n07753113 +n01440764 +n09193705 +n02509815 +n01770393 +n01828970 +n03794056 +n03902125 +n02097474 +n07714571 +n02107908 +n01698640 +n04590129 +n02481823 +n04418357 +n02504013 +n02815834 +n01530575 +n03131574 +n02104365 +n04204238 +n02454379 +n04147183 +n02077923 +n02488291 +n02342885 +n02097474 +n07716358 +n03337140 +n04417672 +n01694178 +n04311004 +n06785654 +n07768694 +n04149813 +n01560419 +n03970156 +n04125021 +n09428293 +n04258138 +n03720891 +n04086273 +n02804610 +n03642806 +n03133878 +n02974003 +n01629819 +n03983396 +n04154565 +n02483362 +n04019541 +n03065424 +n04040759 +n06596364 +n04131690 +n01770393 +n04550184 +n02120079 +n03255030 +n02326432 +n03344393 +n12985857 +n01675722 +n01729322 +n02112137 +n04398044 +n02013706 +n04162706 +n04069434 +n03630383 +n02840245 +n01644900 +n03680355 +n04229816 +n09193705 +n02788148 +n04462240 +n03775546 +n06596364 +n02090721 +n03388183 +n04252077 +n03042490 +n01843065 +n02111129 +n01616318 +n04409515 +n10148035 +n01677366 +n02655020 +n02107683 +n02105162 +n03888257 +n02128925 +n03868863 +n04069434 +n01773797 +n03792782 +n03792782 +n01560419 +n07742313 +n13054560 +n02981792 +n03916031 +n03623198 +n04146614 +n11879895 +n01675722 +n02097130 +n04423845 +n02089973 +n04592741 +n01968897 +n07718747 +n02992529 +n07753275 +n07745940 +n02108422 +n02804414 +n02342885 +n03379051 +n02457408 +n02437312 +n03787032 +n02091032 +n02002556 +n03666591 +n03717622 +n07831146 +n03208938 +n02840245 +n03891332 +n04589890 +n03887697 +n04141076 +n03770439 +n02113023 +n02009912 +n02823750 +n04252077 +n02396427 +n02099601 +n02279972 +n01843383 +n02749479 +n04228054 +n04590129 +n01773797 +n02027492 +n02093428 +n02259212 +n01910747 +n02088364 +n02093754 +n07860988 +n02093428 +n01494475 +n03888605 +n04589890 +n02092339 +n07584110 +n02190166 +n02096051 +n04023962 +n02484975 +n03980874 +n02870880 +n01807496 +n02090721 +n02011460 +n02033041 +n01514668 +n02094114 +n02687172 +n02013706 +n04523525 +n07718747 +n02361337 +n07720875 +n04005630 +n04509417 +n07613480 +n01622779 +n03131574 +n01631663 +n02701002 +n03014705 +n02607072 +n01560419 +n03197337 +n09193705 +n02099849 +n03000134 +n02480495 +n03733805 +n07802026 +n01749939 +n03956157 +n01955084 +n03445777 +n02927161 +n02105162 +n02088238 +n06794110 +n09332890 +n02823428 +n03773504 +n03657121 +n04044716 +n07760859 +n03207941 +n07717410 +n01664065 +n03291819 +n01580077 +n02132136 +n01687978 +n09332890 +n04590129 +n04487081 +n03838899 +n01981276 +n03899768 +n04004767 +n03207743 +n02106166 +n07873807 +n04039381 +n03388549 +n03977966 +n03384352 +n02114367 +n07695742 +n02105412 +n04591157 +n01729322 +n02066245 +n03938244 +n03240683 +n07880968 +n03782006 +n02086646 +n01632777 +n02793495 +n02281406 +n02443484 +n03208938 +n04350905 +n03179701 +n03658185 +n02480855 +n01737021 +n09256479 +n04357314 +n03424325 +n02807133 +n01855032 +n01828970 +n03980874 +n02107683 +n03895866 +n07768694 +n02090721 +n02110958 +n02669723 +n04599235 +n02105641 +n02692877 +n02927161 +n01582220 +n02325366 +n04039381 +n02790996 +n07760859 +n02114712 +n02099712 +n04275548 +n04366367 +n02687172 +n02113624 +n02454379 +n04120489 +n03785016 +n02279972 +n04209239 +n01677366 +n01682714 +n01601694 +n02483708 +n07718747 +n04344873 +n02483362 +n07717556 +n01981276 +n02699494 +n03160309 +n02123597 +n03970156 +n01669191 +n01756291 +n02606052 +n02795169 +n03478589 +n02259212 +n06785654 +n02114712 +n04311174 +n03891332 +n04443257 +n01687978 +n04259630 +n02128925 +n02526121 +n03447721 +n04239074 +n03877472 +n03710637 +n07711569 +n04153751 +n01682714 +n03598930 +n04131690 +n01819313 +n02085620 +n02113023 +n03133878 +n07768694 +n04579432 +n04532670 +n03976467 +n04326547 +n02951358 +n02279972 +n03000247 +n03837869 +n09288635 +n03196217 +n03733805 +n02111889 +n04286575 +n01985128 +n02105056 +n02783161 +n03902125 +n02643566 +n04553703 +n03787032 +n02799071 +n02137549 +n03445777 +n03240683 +n02093256 +n01847000 +n01978455 +n02089973 +n03482405 +n06874185 +n02280649 +n02129604 +n02892767 +n02480495 +n02106662 +n12144580 +n03599486 +n02066245 +n02454379 +n01873310 +n03690938 +n02389026 +n02264363 +n02966193 +n02500267 +n03538406 +n01843065 +n04254680 +n04346328 +n03961711 +n03970156 +n03207941 +n03791053 +n02085936 +n03954731 +n03857828 +n02807133 +n02443114 +n02219486 +n03670208 +n04263257 +n03110669 +n01795545 +n03467068 +n02115913 +n02119789 +n04487081 +n02791124 +n04201297 +n04265275 +n01784675 +n02814533 +n02417914 +n07932039 +n02606052 +n01768244 +n04311004 +n03662601 +n02607072 +n01773549 +n02085620 +n02730930 +n04347754 +n02051845 +n01914609 +n03729826 +n02129165 +n01537544 +n03888605 +n03764736 +n04579145 +n01630670 +n01950731 +n03599486 +n03786901 +n04243546 +n04040759 +n03594945 +n01632458 +n02823750 +n04442312 +n02859443 +n01629819 +n04254777 +n04039381 +n01641577 +n04553703 +n03443371 +n04467665 +n03991062 +n02219486 +n02799071 +n04026417 +n03930313 +n02096585 +n03534580 +n07753113 +n03868863 +n01773549 +n03720891 +n02727426 +n02096177 +n03272562 +n02100236 +n03450230 +n03697007 +n02927161 +n01798484 +n02865351 +n01631663 +n02100236 +n03871628 +n03394916 +n03983396 +n03908714 +n02641379 +n07892512 +n01877812 +n01824575 +n02106030 +n02100583 +n03424325 +n02106166 +n01682714 +n04456115 +n01784675 +n03868242 +n02100877 +n04033901 +n04266014 +n04332243 +n02443114 +n04487081 +n01774750 +n02129165 +n01984695 +n03769881 +n02422106 +n04328186 +n02108915 +n02088364 +n02795169 +n01773157 +n03063689 +n04326547 +n01644900 +n09229709 +n02133161 +n03016953 +n02085620 +n07565083 +n02317335 +n04485082 +n02125311 +n04591157 +n02396427 +n04347754 +n02129604 +n02422699 +n02123597 +n03388183 +n03590841 +n02807133 +n03676483 +n03255030 +n02174001 +n04536866 +n02104029 +n02817516 +n02087046 +n02085782 +n02115641 +n02086910 +n02834397 +n03201208 +n02086240 +n02454379 +n02422699 +n02106662 +n04560804 +n02699494 +n02871525 +n04591157 +n04149813 +n03920288 +n02099267 +n02105412 +n01667778 +n03535780 +n02085936 +n03344393 +n03871628 +n02268853 +n02276258 +n03773504 +n04505470 +n02895154 +n01740131 +n02101388 +n01847000 +n04111531 +n02280649 +n04509417 +n01496331 +n02264363 +n02109525 +n03372029 +n03903868 +n01796340 +n02988304 +n02486261 +n07932039 +n03841143 +n02089867 +n02099429 +n03062245 +n02799071 +n03485794 +n03944341 +n02090379 +n04370456 +n04125021 +n03929855 +n02110063 +n02794156 +n04141076 +n02085936 +n04606251 +n02099712 +n01773549 +n02992529 +n03347037 +n02120505 +n02727426 +n03483316 +n04479046 +n03544143 +n03888605 +n04548362 +n13037406 +n04044716 +n02259212 +n02835271 +n01797886 +n02823428 +n04086273 +n02127052 +n03133878 +n03733281 +n02676566 +n02667093 +n04026417 +n07932039 +n04252077 +n03976467 +n04366367 +n03443371 +n04346328 +n02112018 +n03781244 +n03459775 +n03876231 +n01534433 +n03017168 +n02808304 +n07730033 +n02169497 +n02514041 +n04458633 +n02002556 +n03980874 +n03131574 +n01807496 +n04330267 +n01773549 +n02123159 +n04204347 +n02395406 +n02321529 +n03124043 +n03617480 +n01910747 +n01784675 +n03733131 +n07875152 +n04599235 +n09428293 +n07565083 +n02206856 +n03127747 +n02086240 +n04146614 +n04532670 +n03259280 +n02104365 +n01855032 +n04366367 +n02977058 +n02444819 +n02088632 +n04562935 +n03891251 +n07718747 +n02783161 +n03929855 +n01872401 +n07693725 +n02859443 +n04370456 +n02259212 +n02231487 +n04065272 +n02361337 +n02395406 +n02094433 +n01833805 +n02097474 +n03868242 +n04041544 +n02493793 +n02174001 +n02085620 +n12620546 +n02412080 +n02808440 +n02489166 +n04069434 +n03763968 +n03721384 +n04522168 +n03527444 +n04147183 +n02277742 +n03743016 +n02490219 +n01443537 +n01534433 +n02965783 +n02106382 +n02007558 +n03908618 +n04357314 +n02108089 +n01980166 +n03642806 +n04090263 +n02093256 +n02841315 +n01695060 +n04152593 +n04532670 +n04201297 +n03476684 +n02236044 +n02769748 +n03187595 +n02841315 +n04081281 +n07873807 +n04548362 +n03595614 +n04532670 +n03047690 +n04552348 +n01806143 +n04542943 +n07717556 +n03782006 +n02107574 +n04118776 +n04523525 +n04141327 +n03000684 +n02124075 +n02667093 +n03976467 +n02965783 +n06785654 +n04548280 +n03840681 +n04243546 +n03447721 +n03720891 +n03825788 +n02791270 +n02870880 +n03535780 +n02165456 +n02132136 +n04044716 +n03970156 +n03692522 +n01744401 +n04418357 +n02167151 +n02790996 +n03903868 +n02860847 +n02417914 +n01985128 +n02281787 +n10148035 +n02974003 +n03777754 +n03445777 +n04532106 +n02085782 +n03452741 +n03670208 +n03866082 +n02105162 +n03220513 +n03529860 +n04376876 +n01440764 +n03498962 +n02687172 +n01665541 +n04344873 +n02489166 +n03384352 +n02443484 +n03976657 +n04540053 +n01817953 +n02098105 +n02655020 +n01756291 +n02099267 +n04141327 +n07734744 +n03690938 +n02133161 +n10148035 +n03461385 +n03840681 +n02099267 +n03908618 +n02483708 +n03710637 +n02804610 +n02906734 +n07836838 +n03930313 +n02786058 +n01795545 +n02804610 +n02095570 +n03447721 +n04311004 +n04229816 +n04208210 +n03710193 +n03584829 +n04355338 +n03146219 +n02085620 +n04522168 +n02106030 +n03908618 +n02113624 +n04429376 +n02100877 +n02894605 +n02088632 +n02490219 +n02264363 +n04204238 +n07717556 +n02699494 +n13040303 +n02782093 +n04238763 +n03935335 +n02111889 +n04147183 +n02089078 +n03598930 +n04131690 +n01534433 +n04039381 +n02113023 +n03649909 +n02804610 +n02950826 +n07695742 +n03899768 +n03662601 +n02100877 +n06359193 +n04270147 +n03527444 +n04023962 +n03207743 +n03691459 +n02086646 +n04456115 +n04335435 +n04493381 +n03355925 +n02128757 +n03710637 +n02749479 +n04111531 +n02669723 +n04591157 +n02106550 +n04069434 +n01669191 +n03496892 +n01855672 +n03803284 +n04371774 +n02965783 +n01955084 +n03710637 +n04147183 +n03792782 +n04597913 +n04266014 +n02790996 +n02099601 +n03627232 +n02219486 +n07760859 +n02877765 +n07715103 +n02259212 +n07747607 +n04376876 +n01748264 +n04317175 +n02687172 +n13037406 +n02321529 +n02981792 +n02992211 +n03891332 +n01944390 +n02398521 +n07753275 +n01687978 +n03325584 +n01806143 +n01795545 +n02256656 +n13133613 +n06785654 +n02236044 +n04033901 +n02892767 +n03792972 +n07753592 +n01580077 +n03535780 +n03602883 +n02423022 +n03599486 +n02279972 +n02655020 +n03637318 +n02108000 +n03355925 +n04486054 +n01986214 +n03014705 +n04599235 +n02107312 +n04522168 +n03782006 +n02091244 +n04238763 +n01641577 +n02268853 +n07711569 +n03662601 +n02102318 +n01677366 +n02097209 +n03763968 +n03786901 +n02509815 +n02086910 +n06794110 +n07920052 +n03379051 +n02346627 +n02018795 +n02480495 +n07711569 +n04532670 +n02099712 +n02110806 +n03759954 +n02123597 +n04154565 +n03347037 +n02077923 +n02514041 +n01616318 +n02641379 +n04086273 +n02097298 +n02930766 +n01983481 +n03995372 +n03891332 +n03218198 +n02058221 +n01729322 +n02799071 +n01820546 +n04127249 +n02834397 +n02097209 +n03196217 +n03216828 +n02096585 +n04229816 +n11879895 +n03977966 +n03876231 +n03908618 +n03255030 +n02106662 +n02488702 +n02978881 +n03868242 +n03710721 +n03494278 +n02363005 +n02939185 +n07768694 +n04505470 +n02028035 +n02894605 +n07717410 +n07745940 +n04429376 +n04344873 +n02727426 +n01753488 +n02110806 +n03661043 +n01806567 +n01955084 +n03467068 +n02110063 +n03902125 +n03450230 +n01692333 +n02114855 +n01644900 +n07742313 +n07565083 +n04505470 +n02088364 +n03733131 +n02105056 +n02606052 +n03179701 +n07715103 +n02641379 +n03259280 +n07873807 +n04584207 +n02110063 +n03218198 +n02494079 +n01644373 +n04332243 +n02115913 +n02120079 +n09229709 +n02481823 +n04235860 +n02113799 +n02823428 +n04371774 +n02442845 +n01498041 +n03944341 +n09332890 +n02091134 +n02690373 +n02788148 +n02869837 +n04204238 +n01675722 +n02236044 +n02280649 +n12144580 +n01882714 +n04120489 +n02999410 +n03692522 +n01729322 +n04532670 +n03337140 +n02966193 +n07742313 +n03793489 +n04355933 +n03220513 +n02445715 +n04443257 +n04026417 +n02823428 +n03976467 +n02102177 +n03773504 +n04487394 +n02085936 +n07614500 +n02089078 +n02206856 +n04147183 +n04501370 +n02422699 +n02085782 +n02097130 +n03929660 +n01751748 +n02099849 +n01924916 +n01692333 +n04275548 +n03991062 +n01824575 +n03218198 +n02018207 +n03530642 +n03782006 +n03697007 +n07734744 +n01820546 +n02280649 +n02115913 +n04325704 +n02104029 +n03250847 +n11879895 +n03709823 +n03271574 +n04483307 +n04525038 +n02835271 +n02102318 +n04285008 +n01491361 +n01742172 +n02077923 +n01728572 +n01914609 +n03388549 +n03085013 +n02395406 +n03868863 +n04033901 +n02011460 +n02123159 +n02391049 +n04039381 +n01695060 +n02129165 +n03944341 +n04462240 +n02403003 +n03920288 +n03649909 +n04515003 +n03372029 +n02091467 +n04372370 +n02129165 +n01753488 +n02113712 +n03445777 +n04525305 +n01768244 +n02493509 +n03743016 +n12998815 +n03770439 +n02777292 +n02097298 +n01687978 +n04179913 +n02749479 +n03627232 +n03207743 +n03476991 +n07745940 +n01883070 +n03792972 +n03769881 +n02011460 +n02870880 +n02123045 +n04040759 +n07684084 +n02111277 +n01877812 +n04019541 +n03197337 +n02494079 +n03187595 +n02687172 +n02883205 +n07754684 +n09399592 +n02791270 +n03063689 +n03902125 +n02415577 +n02086240 +n02093991 +n02802426 +n03782006 +n03478589 +n02128385 +n02894605 +n02115641 +n02011460 +n02951358 +n02128757 +n02871525 +n02346627 +n03450230 +n09229709 +n02417914 +n01796340 +n02128925 +n04486054 +n02749479 +n02346627 +n01930112 +n02091032 +n02963159 +n01944390 +n02793495 +n02018207 +n04153751 +n02790996 +n02129165 +n03538406 +n02965783 +n03179701 +n03160309 +n01644373 +n01770393 +n02109961 +n01873310 +n03085013 +n01735189 +n04370456 +n02018207 +n02018795 +n02110627 +n03804744 +n03534580 +n07760859 +n01631663 +n04482393 +n02917067 +n07753592 +n03447447 +n02112706 +n03947888 +n02927161 +n04228054 +n03259280 +n07753275 +n07753592 +n02948072 +n07697313 +n01984695 +n11879895 +n02125311 +n12998815 +n03976657 +n02096294 +n04264628 +n04548362 +n02276258 +n03891251 +n03127925 +n02834397 +n03854065 +n02979186 +n07920052 +n02110627 +n02095314 +n04049303 +n02965783 +n02895154 +n02013706 +n04044716 +n03709823 +n02138441 +n02777292 +n01943899 +n07892512 +n02091831 +n03743016 +n01514668 +n04243546 +n02105251 +n03032252 +n01855032 +n04612504 +n03770679 +n03866082 +n02091134 +n03443371 +n03777568 +n03773504 +n02480855 +n07745940 +n02391049 +n01910747 +n02277742 +n03938244 +n02788148 +n01440764 +n03425413 +n03895866 +n03950228 +n02133161 +n01843065 +n02992211 +n02834397 +n02066245 +n03337140 +n07716358 +n03584829 +n02095314 +n02093991 +n02974003 +n02025239 +n04596742 +n02916936 +n01768244 +n03720891 +n02056570 +n02102177 +n04557648 +n02268853 +n02098105 +n01514859 +n04141975 +n02071294 +n03188531 +n04254777 +n03709823 +n03095699 +n04517823 +n03733131 +n07693725 +n03476684 +n03724870 +n03983396 +n02342885 +n02510455 +n03874293 +n02823428 +n04356056 +n01494475 +n04251144 +n02894605 +n02097658 +n04273569 +n02123045 +n03250847 +n01687978 +n02012849 +n03733131 +n02096294 +n02279972 +n01641577 +n03804744 +n02871525 +n04479046 +n07697313 +n02786058 +n01924916 +n07932039 +n02099712 +n03271574 +n02488702 +n02927161 +n02815834 +n02877765 +n04560804 +n03297495 +n04590129 +n03944341 +n03980874 +n02105056 +n01734418 +n03947888 +n02363005 +n06596364 +n07753275 +n02930766 +n02093859 +n03207941 +n01818515 +n03657121 +n01629819 +n03063689 +n03255030 +n02808440 +n02981792 +n09246464 +n04591713 +n03492542 +n04517823 +n03240683 +n07716358 +n07717556 +n02814533 +n01843383 +n03691459 +n02134418 +n02110185 +n02093754 +n02807133 +n07684084 +n02091244 +n03873416 +n02113624 +n02094433 +n02917067 +n03450230 +n03888605 +n01616318 +n04435653 +n02111277 +n02006656 +n02363005 +n02497673 +n07753592 +n07711569 +n01693334 +n03954731 +n04033995 +n04208210 +n02817516 +n07754684 +n02256656 +n13052670 +n04417672 +n11939491 +n02443114 +n03445777 +n02093859 +n07684084 +n03026506 +n04081281 +n02002724 +n02317335 +n03584829 +n04039381 +n03062245 +n02091134 +n07745940 +n02092002 +n03991062 +n02843684 +n03961711 +n04069434 +n01558993 +n07745940 +n04486054 +n04347754 +n02011460 +n02808304 +n02109961 +n04229816 +n04409515 +n04116512 +n03857828 +n02445715 +n03920288 +n02488702 +n03126707 +n07932039 +n02835271 +n03445924 +n01797886 +n03476684 +n03658185 +n01943899 +n02951358 +n03532672 +n02966193 +n02988304 +n02229544 +n02095570 +n02841315 +n04536866 +n02268853 +n03445924 +n03803284 +n04254777 +n02443484 +n03133878 +n02799071 +n13133613 +n02102040 +n02107908 +n03947888 +n04487394 +n03599486 +n03452741 +n02097298 +n04417672 +n02493793 +n02325366 +n07747607 +n03188531 +n04482393 +n02088632 +n04461696 +n03249569 +n07693725 +n02096437 +n01773797 +n02105162 +n02843684 +n02950826 +n02492660 +n04366367 +n01981276 +n03207941 +n02966193 +n03534580 +n02112018 +n01688243 +n04584207 +n02415577 +n01847000 +n02514041 +n02488291 +n02749479 +n04380533 +n02510455 +n02526121 +n07745940 +n03930313 +n03877845 +n01755581 +n01667114 +n02108000 +n02699494 +n02363005 +n02100877 +n03770439 +n02114712 +n02100735 +n02108000 +n02028035 +n02108551 +n02484975 +n07718747 +n03498962 +n01665541 +n02894605 +n04118776 +n02119022 +n04258138 +n04604644 +n02115641 +n07768694 +n12267677 +n03908714 +n03876231 +n07717556 +n11879895 +n01688243 +n03208938 +n12267677 +n02669723 +n02965783 +n02276258 +n01631663 +n04487394 +n02825657 +n01749939 +n04037443 +n04041544 +n03376595 +n04532670 +n02104365 +n02233338 +n02793495 +n03770439 +n01910747 +n04154565 +n01980166 +n03793489 +n02025239 +n02480495 +n03781244 +n04399382 +n07871810 +n04065272 +n02017213 +n01943899 +n04067472 +n03761084 +n02094433 +n03538406 +n02494079 +n04147183 +n04141076 +n04589890 +n01601694 +n02123394 +n06874185 +n02114548 +n03637318 +n03710193 +n04536866 +n09399592 +n03452741 +n03594945 +n07860988 +n03085013 +n02814533 +n03461385 +n04252077 +n02859443 +n04033901 +n01530575 +n03476684 +n04069434 +n02105056 +n02128385 +n01694178 +n01688243 +n03372029 +n04465501 +n02808440 +n04235860 +n02177972 +n13044778 +n02096177 +n01770081 +n01669191 +n02481823 +n07880968 +n03888605 +n02117135 +n02096437 +n02397096 +n01592084 +n03769881 +n03026506 +n02107574 +n02114367 +n03124170 +n03733281 +n03692522 +n02037110 +n02167151 +n01930112 +n03995372 +n03355925 +n03676483 +n03000247 +n02966193 +n02910353 +n01682714 +n02910353 +n02510455 +n02106550 +n02120079 +n03841143 +n04229816 +n02447366 +n02091467 +n04456115 +n03937543 +n01818515 +n04086273 +n02865351 +n03109150 +n02808304 +n03483316 +n01560419 +n07930864 +n04392985 +n04592741 +n04192698 +n02089973 +n03485794 +n07613480 +n02951585 +n01494475 +n01443537 +n02097298 +n02877765 +n02101388 +n03271574 +n03041632 +n03895866 +n02865351 +n02091134 +n02027492 +n03201208 +n03983396 +n02364673 +n02134084 +n02165105 +n01773549 +n04127249 +n04275548 +n01883070 +n02112706 +n03776460 +n02108000 +n02397096 +n04525305 +n02113624 +n02268853 +n02091134 +n03476991 +n02815834 +n04525305 +n03857828 +n03272010 +n04523525 +n04335435 +n03595614 +n07932039 +n03345487 +n03877472 +n04485082 +n02794156 +n03877472 +n03492542 +n02114712 +n02883205 +n02106662 +n03417042 +n03617480 +n02978881 +n02101556 +n04039381 +n02105641 +n02098413 +n04552348 +n02823750 +n07753113 +n02110063 +n09332890 +n09468604 +n02457408 +n01537544 +n02497673 +n09229709 +n04311004 +n02776631 +n02692877 +n03623198 +n04328186 +n03697007 +n02102177 +n01687978 +n03207743 +n03733131 +n02099429 +n03769881 +n02099601 +n02787622 +n03000134 +n03895866 +n02127052 +n04136333 +n02106662 +n13044778 +n01981276 +n03680355 +n03372029 +n03908618 +n03877472 +n04346328 +n04557648 +n04270147 +n04428191 +n02870880 +n03297495 +n02871525 +n02391049 +n02123045 +n01871265 +n02071294 +n02119022 +n04592741 +n02509815 +n03424325 +n02514041 +n02101006 +n02747177 +n01950731 +n02172182 +n04336792 +n04356056 +n04252077 +n01740131 +n04613696 +n04023962 +n04485082 +n02128925 +n02086079 +n03983396 +n02134084 +n02133161 +n02128925 +n04517823 +n07875152 +n02128385 +n04204347 +n02077923 +n03272010 +n02840245 +n02105641 +n01817953 +n04146614 +n04554684 +n03796401 +n04039381 +n02788148 +n04483307 +n02493793 +n03692522 +n03075370 +n03733281 +n04238763 +n02815834 +n03065424 +n02672831 +n03602883 +n04346328 +n02066245 +n03444034 +n03594734 +n15075141 +n12144580 +n07579787 +n02992529 +n04515003 +n02107142 +n02117135 +n01734418 +n01693334 +n02105505 +n02992211 +n02869837 +n13133613 +n02666196 +n04041544 +n03857828 +n04418357 +n02113978 +n01744401 +n02797295 +n02699494 +n02489166 +n02098286 +n04243546 +n02134418 +n02106662 +n03670208 +n04090263 +n02692877 +n03467068 +n04238763 +n03788365 +n03657121 +n02906734 +n02326432 +n02676566 +n02607072 +n03627232 +n02894605 +n03538406 +n04136333 +n01632458 +n04125021 +n03134739 +n01697457 +n03924679 +n04243546 +n09256479 +n02493793 +n07871810 +n02177972 +n01917289 +n02088466 +n04069434 +n03891251 +n02113799 +n07711569 +n01833805 +n04270147 +n04259630 +n02859443 +n04270147 +n02110063 +n03042490 +n03290653 +n02002724 +n02100583 +n01608432 +n03710193 +n03777754 +n02971356 +n04482393 +n13037406 +n01768244 +n03929855 +n03016953 +n07584110 +n02113023 +n04447861 +n02128925 +n02988304 +n04201297 +n02006656 +n01807496 +n03658185 +n03394916 +n07716358 +n07579787 +n02102177 +n01729322 +n03775071 +n04482393 +n02415577 +n02607072 +n02909870 +n03255030 +n03344393 +n02325366 +n02102480 +n02102177 +n04423845 +n02130308 +n03785016 +n02787622 +n04200800 +n02087046 +n04487394 +n04152593 +n04065272 +n07831146 +n02843684 +n07248320 +n03498962 +n02128757 +n04523525 +n02999410 +n03697007 +n02097209 +n11939491 +n04141327 +n07248320 +n04461696 +n02110185 +n02483708 +n03902125 +n02168699 +n02834397 +n02108915 +n02963159 +n03841143 +n02120505 +n02111129 +n02112350 +n03793489 +n03649909 +n04090263 +n02727426 +n04033995 +n01608432 +n02364673 +n02895154 +n07730033 +n02423022 +n02999410 +n07579787 +n02086079 +n01631663 +n02494079 +n04118776 +n03467068 +n03476684 +n03954731 +n03775546 +n02981792 +n01873310 +n01980166 +n04049303 +n04099969 +n02965783 +n02281787 +n02823750 +n02655020 +n02403003 +n02951358 +n02028035 +n02504458 +n03814639 +n02085620 +n04486054 +n03761084 +n07930864 +n04522168 +n04347754 +n01644373 +n02992211 +n04483307 +n02102973 +n04467665 +n03026506 +n03026506 +n07697537 +n01532829 +n04442312 +n02108551 +n01824575 +n04254777 +n03109150 +n01728920 +n04380533 +n02795169 +n04493381 +n03141823 +n01817953 +n04026417 +n02909870 +n01601694 +n02834397 +n03376595 +n02909870 +n07711569 +n03891251 +n01806567 +n03854065 +n03814906 +n02808304 +n04153751 +n07768694 +n04532106 +n02102973 +n02346627 +n13133613 +n02129604 +n02443484 +n03792972 +n02804414 +n02097298 +n02708093 +n01748264 +n03992509 +n04591713 +n02105162 +n03840681 +n02276258 +n02100583 +n02408429 +n03770679 +n07717556 +n02280649 +n02006656 +n04560804 +n04285008 +n03868863 +n02088238 +n02799071 +n04560804 +n02108551 +n02487347 +n01614925 +n04505470 +n04090263 +n03661043 +n01675722 +n01531178 +n01632458 +n01695060 +n04254777 +n04355933 +n03743016 +n04259630 +n01534433 +n02110958 +n02112350 +n02488702 +n02687172 +n09246464 +n02071294 +n02497673 +n03871628 +n07717556 +n02105412 +n02999410 +n02105412 +n04208210 +n04589890 +n03379051 +n03404251 +n03014705 +n04146614 +n03938244 +n02107142 +n03452741 +n01667114 +n04311174 +n01667778 +n03127747 +n02105412 +n09399592 +n07716906 +n03673027 +n03197337 +n03450230 +n02113186 +n01775062 +n04380533 +n06359193 +n03483316 +n02172182 +n03496892 +n03843555 +n04476259 +n02110806 +n04467665 +n04548280 +n01518878 +n02281787 +n02093647 +n04404412 +n04356056 +n03840681 +n03995372 +n02326432 +n02777292 +n01776313 +n03220513 +n02795169 +n02074367 +n01968897 +n07693725 +n02906734 +n03777754 +n02497673 +n03126707 +n04259630 +n03729826 +n04026417 +n01855032 +n02808440 +n04346328 +n03930313 +n04560804 +n03127925 +n07684084 +n04417672 +n02172182 +n02325366 +n03899768 +n01644900 +n02113186 +n03710637 +n03857828 +n02114548 +n04326547 +n02643566 +n02092002 +n03124170 +n02281406 +n01806567 +n04254680 +n03344393 +n01532829 +n02116738 +n02116738 +n02094258 +n03690938 +n03272562 +n03110669 +n03786901 +n07920052 +n04355933 +n01978455 +n01806143 +n01944390 +n03450230 +n02088364 +n03956157 +n02437312 +n03590841 +n04344873 +n02277742 +n02111277 +n01784675 +n04483307 +n02132136 +n04019541 +n01693334 +n01608432 +n01667114 +n02236044 +n03775546 +n01739381 +n02100583 +n02090622 +n01729322 +n04350905 +n02056570 +n04612504 +n04505470 +n12057211 +n03837869 +n01531178 +n04376876 +n02454379 +n02124075 +n02395406 +n02114367 +n03481172 +n02109047 +n07715103 +n04154565 +n02423022 +n01756291 +n02108089 +n02493793 +n03602883 +n02168699 +n01978455 +n02097298 +n02447366 +n04229816 +n07583066 +n03207743 +n07248320 +n02100583 +n02823750 +n01608432 +n04418357 +n01833805 +n03930630 +n03425413 +n02788148 +n03637318 +n04265275 +n02281787 +n04335435 +n02093428 +n06359193 +n03944341 +n04041544 +n04515003 +n02106550 +n02097130 +n02837789 +n07753275 +n04026417 +n03673027 +n03887697 +n03110669 +n03769881 +n01532829 +n02006656 +n04296562 +n04347754 +n01828970 +n03125729 +n03877472 +n02096051 +n04483307 +n02398521 +n03770679 +n02106662 +n03775546 +n04347754 +n02676566 +n03690938 +n07831146 +n04398044 +n01985128 +n02109047 +n03785016 +n03494278 +n03792972 +n02114367 +n03777754 +n04090263 +n02132136 +n03134739 +n01491361 +n09332890 +n03803284 +n02120079 +n03075370 +n02104365 +n03884397 +n02790996 +n01751748 +n07695742 +n02123045 +n03759954 +n03733131 +n12998815 +n03223299 +n07745940 +n04532106 +n02111889 +n02708093 +n01944390 +n01534433 +n02361337 +n02113624 +n02090721 +n02093256 +n02025239 +n04355933 +n03452741 +n01530575 +n01443537 +n04209239 +n02037110 +n04154565 +n03594945 +n04465501 +n07714990 +n03868863 +n01819313 +n04026417 +n04553703 +n02112706 +n01980166 +n02797295 +n03888257 +n02342885 +n03216828 +n03388043 +n03804744 +n02138441 +n01689811 +n04553703 +n02231487 +n04208210 +n03372029 +n02096177 +n04429376 +n03272010 +n02493509 +n03127747 +n02786058 +n03777568 +n04238763 +n03535780 +n03938244 +n02408429 +n02097658 +n02123159 +n03891251 +n02165105 +n02437312 +n02114712 +n04540053 +n04270147 +n02113186 +n02281406 +n03899768 +n04442312 +n04023962 +n02963159 +n02102973 +n01860187 +n03297495 +n03733805 +n03980874 +n04336792 +n04366367 +n02412080 +n02966687 +n03763968 +n02098286 +n01756291 +n03929855 +n03944341 +n03271574 +n04026417 +n07754684 +n01985128 +n07753113 +n01675722 +n02106166 +n02116738 +n03916031 +n04065272 +n03110669 +n07747607 +n02009912 +n03950228 +n03483316 +n07716358 +n03216828 +n09835506 +n03393912 +n02526121 +n03770439 +n02002724 +n02871525 +n01776313 +n04355933 +n03450230 +n02025239 +n02107312 +n04606251 +n03063599 +n01795545 +n04254777 +n02120079 +n01833805 +n02099601 +n13052670 +n02676566 +n03457902 +n03720891 +n03793489 +n01775062 +n01978287 +n10565667 +n02916936 +n03599486 +n02110958 +n01443537 +n04204238 +n02672831 +n07717410 +n04209239 +n01491361 +n02963159 +n03424325 +n03697007 +n03344393 +n03445777 +n02999410 +n02441942 +n04525038 +n02403003 +n07684084 +n03125729 +n02095570 +n01796340 +n03599486 +n07747607 +n04507155 +n07768694 +n04501370 +n07734744 +n02676566 +n01871265 +n03680355 +n02088466 +n10565667 +n02110958 +n02096437 +n01498041 +n02130308 +n07836838 +n03884397 +n04065272 +n02033041 +n02607072 +n13040303 +n02808304 +n03095699 +n03485407 +n02395406 +n04560804 +n02676566 +n04589890 +n02110958 +n02837789 +n01669191 +n02123045 +n07579787 +n01667778 +n12998815 +n04613696 +n02951585 +n03623198 +n03764736 +n02892767 +n02102318 +n04040759 +n02123045 +n03062245 +n02701002 +n03201208 +n04266014 +n01873310 +n04597913 +n03595614 +n07716906 +n02988304 +n03445924 +n02860847 +n02095889 +n02115913 +n01756291 +n02114548 +n02457408 +n03995372 +n01614925 +n02107312 +n03930630 +n03017168 +n03535780 +n01985128 +n02177972 +n03045698 +n13133613 +n04398044 +n02099267 +n01829413 +n02114712 +n02104029 +n01440764 +n04263257 +n04251144 +n03584254 +n03874599 +n06359193 +n04070727 +n04209133 +n04065272 +n01748264 +n02980441 +n02093754 +n02097658 +n03187595 +n01742172 +n04590129 +n03188531 +n02504013 +n02017213 +n02979186 +n02843684 +n04040759 +n01667778 +n01820546 +n02116738 +n04243546 +n04090263 +n03888605 +n01985128 +n02823750 +n04141975 +n03376595 +n02108915 +n03372029 +n02423022 +n01728920 +n02102973 +n01580077 +n02492660 +n07716906 +n02096294 +n03259280 +n03884397 +n02102973 +n03666591 +n02486410 +n02102480 +n02105162 +n09246464 +n02823750 +n04152593 +n03196217 +n01818515 +n04591157 +n04328186 +n01742172 +n01753488 +n02971356 +n09428293 +n02927161 +n03180011 +n04099969 +n02795169 +n02895154 +n03929660 +n01910747 +n03854065 +n02747177 +n03803284 +n02123394 +n04264628 +n04243546 +n02123159 +n01983481 +n02526121 +n12267677 +n06785654 +n04606251 +n01855672 +n02281406 +n04296562 +n01773549 +n02127052 +n02090622 +n02088094 +n04125021 +n01728920 +n03595614 +n02090622 +n04285008 +n03874293 +n02823428 +n02028035 +n02077923 +n02017213 +n03903868 +n02127052 +n04317175 +n02107683 +n01984695 +n03995372 +n02090721 +n02089867 +n10148035 +n01737021 +n01883070 +n01819313 +n03958227 +n03841143 +n03459775 +n03777568 +n03417042 +n02110185 +n03388549 +n03924679 +n02672831 +n02165456 +n03207743 +n04136333 +n02971356 +n04039381 +n04162706 +n02791124 +n03124170 +n01843065 +n04428191 +n03874599 +n02102480 +n04487394 +n01883070 +n02966193 +n01494475 +n02110341 +n07716358 +n07248320 +n02814860 +n04133789 +n02443114 +n02110063 +n04509417 +n02108089 +n04548362 +n01748264 +n03710637 +n02091467 +n02110341 +n02113624 +n01819313 +n02939185 +n03272562 +n02787622 +n12267677 +n04141327 +n02110958 +n01687978 +n04429376 +n01729322 +n02093647 +n07920052 +n01910747 +n02107908 +n03895866 +n02086079 +n02895154 +n13037406 +n03876231 +n04590129 +n01692333 +n03717622 +n02109525 +n04355338 +n03777568 +n03314780 +n03887697 +n04141975 +n01978287 +n04597913 +n04141975 +n02782093 +n03868242 +n02002724 +n03196217 +n04153751 +n01629819 +n02808440 +n02058221 +n01531178 +n02114712 +n03494278 +n04204347 +n03793489 +n03483316 +n04209239 +n03776460 +n04336792 +n02114548 +n02667093 +n02834397 +n04456115 +n03394916 +n04346328 +n01776313 +n02124075 +n02356798 +n03895866 +n02963159 +n01883070 +n03355925 +n02226429 +n03417042 +n02106550 +n02101388 +n04200800 +n02011460 +n02112706 +n04326547 +n01985128 +n03110669 +n03804744 +n04141327 +n11939491 +n02105251 +n03201208 +n07754684 +n01632777 +n04553703 +n04149813 +n02481823 +n03947888 +n01534433 +n03457902 +n02776631 +n04209239 +n04523525 +n04074963 +n02233338 +n03930313 +n03249569 +n03884397 +n01601694 +n04560804 +n02514041 +n03417042 +n07880968 +n03594734 +n03344393 +n02088632 +n02106662 +n02108551 +n01744401 +n02483708 +n02971356 +n02909870 +n02841315 +n03496892 +n02100583 +n03476684 +n07718472 +n01641577 +n06596364 +n03954731 +n04357314 +n04259630 +n07695742 +n04423845 +n03249569 +n04111531 +n02895154 +n04149813 +n02114712 +n04252225 +n03770679 +n02837789 +n04428191 +n02361337 +n02100236 +n01728920 +n03594945 +n02268443 +n07875152 +n07695742 +n02108551 +n01531178 +n01980166 +n02106382 +n03658185 +n02988304 +n04141076 +n02906734 +n02012849 +n02786058 +n01614925 +n02206856 +n01631663 +n03100240 +n03047690 +n03180011 +n02895154 +n02782093 +n03595614 +n09332890 +n07749582 +n04258138 +n03095699 +n02096177 +n01728920 +n03538406 +n01806143 +n02088238 +n04501370 +n09229709 +n04423845 +n02397096 +n02133161 +n02088238 +n02264363 +n02101006 +n04515003 +n02870880 +n04548280 +n04461696 +n03028079 +n02268853 +n03874599 +n01877812 +n02699494 +n12985857 +n02454379 +n04326547 +n02089867 +n01560419 +n02093256 +n04204347 +n04347754 +n02086240 +n04286575 +n04482393 +n03840681 +n04065272 +n02480855 +n02749479 +n03492542 +n02096437 +n02317335 +n02174001 +n04525305 +n04039381 +n07753592 +n13037406 +n02494079 +n04258138 +n02229544 +n01843383 +n01728920 +n04330267 +n02325366 +n02808304 +n04462240 +n03874293 +n03482405 +n01629819 +n03781244 +n04392985 +n04258138 +n03160309 +n02096585 +n01614925 +n02017213 +n04133789 +n04277352 +n02106030 +n04428191 +n03400231 +n03249569 +n01514668 +n10148035 +n02397096 +n07697313 +n07802026 +n03887697 +n07248320 +n01855032 +n03908618 +n02086910 +n04254680 +n02104365 +n03445777 +n02011460 +n07695742 +n04344873 +n01667778 +n02091244 +n01534433 +n02097474 +n02701002 +n03208938 +n03676483 +n03770439 +n01755581 +n02108915 +n01753488 +n02102480 +n03633091 +n03662601 +n01770393 +n07590611 +n04264628 +n03998194 +n02396427 +n02102040 +n01770393 +n04162706 +n02281406 +n12768682 +n01945685 +n03483316 +n01978287 +n02119022 +n02169497 +n03991062 +n04465501 +n07614500 +n01990800 +n01534433 +n03770679 +n09288635 +n03188531 +n09256479 +n04259630 +n02110627 +n04560804 +n02113978 +n02095889 +n04599235 +n03259280 +n02111277 +n02794156 +n04328186 +n04254680 +n03661043 +n03599486 +n02097130 +n02033041 +n02071294 +n03937543 +n09288635 +n03709823 +n02489166 +n03673027 +n01828970 +n04532106 +n03496892 +n01924916 +n04548280 +n02319095 +n02395406 +n02782093 +n04554684 +n02086240 +n03916031 +n02791270 +n07717410 +n04238763 +n02730930 +n01514859 +n01748264 +n02988304 +n03461385 +n03272562 +n04330267 +n07860988 +n02276258 +n07871810 +n02097474 +n02999410 +n04037443 +n01614925 +n04033901 +n03944341 +n02655020 +n01608432 +n03874599 +n03594945 +n04252225 +n07892512 +n03717622 +n03763968 +n02110627 +n02795169 +n03000134 +n02494079 +n03042490 +n03100240 +n07875152 +n02802426 +n02484975 +n09229709 +n02747177 +n06596364 +n04557648 +n02123394 +n02002724 +n02167151 +n02504013 +n01616318 +n03770439 +n04428191 +n02051845 +n04579145 +n02093754 +n12267677 +n01641577 +n02963159 +n02807133 +n04590129 +n03467068 +n01629819 +n02443484 +n02088238 +n02412080 +n03532672 +n04591157 +n04486054 +n02692877 +n02727426 +n04371774 +n04273569 +n03733131 +n03544143 +n02104365 +n02109961 +n03447447 +n01872401 +n03961711 +n02116738 +n01688243 +n01749939 +n03141823 +n02509815 +n12985857 +n01829413 +n02109047 +n02526121 +n02097658 +n03216828 +n02870880 +n04266014 +n04355338 +n03633091 +n01910747 +n02006656 +n03445924 +n02906734 +n04099969 +n02099712 +n02229544 +n04443257 +n02687172 +n04273569 +n02489166 +n03924679 +n12985857 +n02167151 +n02321529 +n02102040 +n02870880 +n01693334 +n02097298 +n01882714 +n04040759 +n03791053 +n02979186 +n02454379 +n03131574 +n04141327 +n02981792 +n02974003 +n02090721 +n04131690 +n02106030 +n02493793 +n02963159 +n04596742 +n11879895 +n03457902 +n02823750 +n01774750 +n03788365 +n02389026 +n02823750 +n02493509 +n07583066 +n01682714 +n03899768 +n02279972 +n07747607 +n01692333 +n04243546 +n04317175 +n02106550 +n01664065 +n01677366 +n02093754 +n04346328 +n02106550 +n02127052 +n03666591 +n03877845 +n03125729 +n03786901 +n03775071 +n02412080 +n01518878 +n03720891 +n01735189 +n02356798 +n02110806 +n03047690 +n04462240 +n02951585 +n01558993 +n03065424 +n02860847 +n02486410 +n02398521 +n04346328 +n02106030 +n02445715 +n04153751 +n02509815 +n01828970 +n04069434 +n07714571 +n13044778 +n01955084 +n03662601 +n01664065 +n02708093 +n02408429 +n03920288 +n02190166 +n02091635 +n04229816 +n01773549 +n02106662 +n02009912 +n01558993 +n02127052 +n02843684 +n02174001 +n03345487 +n01990800 +n03584254 +n02389026 +n02389026 +n04069434 +n03032252 +n07749582 +n02110627 +n02807133 +n02012849 +n03208938 +n02107142 +n03995372 +n02927161 +n03888257 +n02802426 +n09193705 +n07716906 +n03345487 +n02088094 +n03297495 +n02871525 +n02363005 +n02206856 +n02445715 +n02783161 +n02948072 +n09421951 +n02410509 +n02808304 +n03903868 +n02110063 +n03724870 +n07836838 +n04141975 +n02487347 +n02112137 +n02804610 +n07734744 +n04462240 +n03372029 +n02177972 +n02085620 +n01917289 +n04070727 +n02823428 +n02860847 +n04392985 +n02791124 +n01847000 +n01784675 +n02093991 +n03457902 +n02939185 +n04493381 +n03271574 +n02509815 +n03793489 +n02690373 +n03983396 +n02927161 +n03018349 +n03908618 +n02110341 +n03776460 +n02124075 +n04335435 +n03127747 +n02948072 +n03085013 +n02442845 +n02916936 +n01688243 +n02879718 +n02097298 +n04589890 +n02607072 +n02948072 +n04525038 +n02100735 +n02814533 +n03000134 +n03478589 +n02037110 +n04235860 +n02112137 +n04435653 +n04273569 +n03794056 +n01910747 +n01748264 +n01883070 +n04200800 +n04590129 +n03443371 +n02791124 +n03075370 +n03673027 +n01742172 +n03476684 +n01484850 +n01675722 +n02978881 +n03938244 +n02106166 +n01729977 +n04118776 +n04209239 +n03376595 +n04008634 +n02095889 +n01855032 +n03376595 +n04456115 +n02879718 +n04238763 +n02268443 +n02794156 +n02105505 +n01914609 +n03899768 +n02676566 +n02099601 +n02106382 +n04264628 +n04501370 +n03594734 +n03895866 +n04332243 +n04008634 +n02492035 +n01773797 +n04228054 +n02110958 +n06359193 +n02403003 +n04409515 +n03337140 +n02483708 +n02106166 +n04209133 +n02114367 +n03743016 +n03201208 +n03207941 +n02804414 +n04487081 +n01945685 +n02606052 +n03388043 +n03661043 +n02804610 +n04235860 +n02795169 +n03476991 +n03444034 +n03942813 +n04026417 +n03337140 +n02108422 +n04033995 +n03041632 +n02134418 +n04554684 +n03733131 +n02116738 +n03786901 +n03937543 +n04147183 +n04131690 +n03400231 +n02125311 +n02410509 +n01775062 +n02814533 +n02110185 +n04008634 +n04597913 +n01883070 +n07714990 +n02112350 +n02437616 +n03662601 +n02074367 +n04239074 +n03063689 +n07831146 +n02869837 +n03920288 +n13052670 +n03016953 +n02788148 +n04613696 +n02113023 +n03866082 +n02992529 +n04479046 +n04467665 +n04540053 +n02927161 +n03992509 +n04347754 +n03495258 +n03633091 +n02105251 +n02231487 +n02102318 +n02667093 +n01749939 +n02133161 +n03372029 +n02486261 +n04004767 +n02088466 +n07579787 +n02791270 +n03131574 +n02391049 +n01664065 +n02099429 +n01776313 +n03920288 +n02109047 +n02317335 +n04612504 +n03584254 +n03457902 +n02051845 +n03047690 +n04507155 +n02704792 +n01748264 +n02017213 +n03450230 +n02841315 +n04070727 +n02992211 +n03404251 +n02092339 +n12768682 +n07873807 +n03041632 +n03379051 +n04435653 +n04146614 +n02012849 +n03443371 +n04152593 +n04507155 +n03447447 +n04252225 +n03770439 +n13037406 +n01748264 +n04550184 +n03207941 +n07716906 +n03595614 +n07875152 +n04560804 +n04479046 +n03127925 +n07248320 +n02342885 +n02088466 +n03485407 +n09399592 +n04039381 +n04548280 +n02099267 +n04254777 +n06785654 +n02190166 +n03868242 +n04141076 +n02980441 +n03868863 +n02437312 +n02096177 +n02701002 +n03259280 +n02834397 +n15075141 +n07880968 +n02096585 +n09256479 +n02091032 +n03457902 +n02099849 +n02398521 +n02129165 +n03404251 +n01774384 +n03977966 +n02980441 +n02137549 +n03920288 +n01770081 +n03891332 +n03196217 +n02782093 +n02510455 +n03535780 +n04263257 +n02790996 +n03146219 +n01601694 +n03379051 +n03188531 +n02790996 +n04596742 +n01560419 +n03376595 +n12768682 +n02504013 +n03388043 +n02231487 +n03134739 +n03775071 +n02509815 +n07695742 +n02325366 +n09835506 +n04418357 +n04483307 +n04069434 +n03991062 +n02487347 +n03223299 +n02817516 +n03207743 +n02110627 +n04604644 +n02112350 +n02109961 +n03534580 +n03208938 +n03125729 +n03947888 +n04154565 +n01860187 +n02328150 +n02777292 +n02112018 +n02113978 +n02033041 +n07871810 +n10148035 +n01981276 +n07860988 +n03492542 +n04005630 +n02093428 +n04355933 +n02108089 +n03841143 +n02704792 +n02277742 +n03874599 +n04371774 +n01775062 +n03461385 +n02096585 +n02093754 +n02011460 +n02814533 +n02787622 +n02114367 +n01641577 +n03992509 +n04265275 +n02096051 +n07745940 +n02422106 +n01496331 +n03188531 +n07614500 +n02101006 +n02101006 +n13040303 +n02085936 +n03961711 +n02093991 +n07714571 +n01986214 +n01669191 +n01984695 +n03297495 +n02108422 +n03249569 +n04398044 +n03775546 +n01986214 +n04579432 +n07714571 +n01945685 +n02640242 +n06785654 +n04116512 +n02099429 +n09229709 +n01682714 +n01749939 +n02007558 +n01498041 +n04507155 +n02124075 +n02101006 +n02104029 +n02676566 +n02606052 +n04238763 +n02101388 +n02107312 +n03347037 +n02493509 +n02396427 +n04065272 +n03840681 +n04515003 +n02091635 +n02325366 +n04033901 +n01675722 +n03788365 +n13037406 +n03527444 +n01695060 +n04328186 +n07590611 +n01728572 +n02119022 +n02974003 +n02410509 +n07892512 +n07730033 +n04330267 +n03868863 +n02018207 +n02500267 +n02980441 +n01843065 +n02093859 +n02094114 +n07768694 +n04154565 +n02123394 +n03843555 +n02123159 +n02107574 +n01795545 +n02917067 +n02071294 +n03895866 +n03179701 +n03950228 +n04259630 +n02165105 +n02120079 +n02804610 +n02279972 +n01728920 +n02978881 +n03710637 +n01872401 +n03160309 +n02442845 +n09256479 +n02950826 +n02841315 +n04357314 +n02865351 +n04111531 +n07747607 +n03594945 +n03763968 +n04606251 +n03895866 +n02113978 +n04554684 +n04344873 +n04254120 +n01740131 +n03976467 +n07753275 +n02443484 +n02939185 +n02977058 +n13037406 +n07747607 +n04467665 +n01784675 +n04536866 +n02123159 +n02119789 +n04548362 +n02111129 +n06794110 +n04239074 +n03733805 +n02088466 +n03764736 +n01914609 +n02105505 +n02412080 +n04254680 +n04523525 +n07697537 +n01728920 +n02794156 +n02113978 +n13040303 +n01514859 +n04398044 +n02364673 +n01924916 +n02007558 +n03803284 +n02795169 +n03916031 +n02088238 +n02086646 +n03063689 +n01806143 +n04366367 +n03109150 +n04523525 +n04208210 +n01978287 +n03272010 +n03146219 +n03933933 +n04525305 +n03124043 +n02510455 +n01687978 +n01824575 +n04613696 +n06359193 +n03110669 +n03388183 +n03691459 +n02280649 +n03133878 +n02085782 +n02087046 +n02090721 +n02497673 +n04344873 +n04330267 +n01514859 +n02488702 +n04525038 +n07711569 +n01978455 +n01768244 +n02105855 +n04604644 +n02281406 +n01739381 +n01693334 +n02113978 +n07749582 +n03786901 +n01883070 +n09246464 +n03841143 +n03482405 +n12998815 +n03938244 +n04238763 +n03929855 +n02892201 +n02486261 +n02676566 +n01843065 +n01728920 +n03379051 +n02823750 +n02776631 +n02488291 +n02317335 +n02002724 +n01755581 +n03110669 +n04019541 +n03095699 +n04004767 +n03877845 +n02120505 +n02113624 +n07695742 +n03127747 +n03041632 +n01744401 +n02098286 +n02100735 +n02264363 +n04456115 +n02219486 +n02129165 +n04275548 +n03874599 +n03706229 +n01770081 +n02988304 +n02105505 +n02130308 +n02113799 +n06596364 +n02028035 +n01784675 +n04266014 +n02422106 +n03271574 +n01622779 +n04229816 +n02988304 +n02977058 +n03594734 +n03196217 +n04008634 +n03947888 +n03032252 +n02037110 +n03424325 +n03873416 +n03379051 +n02096437 +n03887697 +n04154565 +n03803284 +n06794110 +n03956157 +n03297495 +n03444034 +n09256479 +n02317335 +n03871628 +n04192698 +n07873807 +n02793495 +n03764736 +n02483362 +n01773797 +n03788195 +n03032252 +n04311174 +n02111889 +n03970156 +n04447861 +n02018795 +n03666591 +n03314780 +n02229544 +n02172182 +n02486410 +n02607072 +n02276258 +n04254777 +n02403003 +n02094114 +n09246464 +n02114367 +n03788365 +n03297495 +n02492660 +n04326547 +n03201208 +n04286575 +n03492542 +n03877472 +n01910747 +n01608432 +n02490219 +n03710637 +n04344873 +n02951358 +n01498041 +n01729322 +n04409515 +n04146614 +n03873416 +n02090721 +n04081281 +n03976467 +n02837789 +n04409515 +n03759954 +n02168699 +n03127925 +n03970156 +n01665541 +n03160309 +n04251144 +n04311174 +n02098413 +n02480855 +n01773549 +n02489166 +n03494278 +n02229544 +n01729977 +n04552348 +n04033995 +n01882714 +n04366367 +n03271574 +n03666591 +n02093428 +n02791124 +n03384352 +n03498962 +n03709823 +n02422699 +n02085782 +n04133789 +n02486261 +n12985857 +n04372370 +n03857828 +n04367480 +n04612504 +n04399382 +n01632458 +n03717622 +n02514041 +n02018207 +n07615774 +n02098413 +n03691459 +n02108915 +n07920052 +n04228054 +n04493381 +n04081281 +n03832673 +n13052670 +n04584207 +n04252225 +n01608432 +n02708093 +n04398044 +n02087046 +n04599235 +n02177972 +n02326432 +n02490219 +n03761084 +n02101556 +n04599235 +n04467665 +n02097658 +n01978287 +n04612504 +n02397096 +n03018349 +n02391049 +n07584110 +n02457408 +n01776313 +n02120079 +n02727426 +n02791270 +n04590129 +n02058221 +n03599486 +n03788365 +n02098105 +n02097047 +n03794056 +n02966193 +n01494475 +n02514041 +n01773157 +n07613480 +n09332890 +n02086910 +n02071294 +n02105412 +n02966193 +n02481823 +n04228054 +n02825657 +n03775071 +n02096177 +n02328150 +n01768244 +n03028079 +n03534580 +n01484850 +n09428293 +n03788365 +n02106550 +n03782006 +n04258138 +n03710637 +n02097298 +n03721384 +n02391049 +n02013706 +n02840245 +n03249569 +n02454379 +n02865351 +n02206856 +n02093991 +n01877812 +n03485407 +n02101388 +n03014705 +n04456115 +n03976657 +n03188531 +n02342885 +n02096437 +n02102318 +n03376595 +n03271574 +n02177972 +n03594945 +n03126707 +n02099712 +n01692333 +n02966687 +n03930313 +n01667778 +n07716906 +n01580077 +n03804744 +n02111277 +n03100240 +n04548280 +n02814533 +n04204347 +n04141327 +n02066245 +n02096585 +n02102480 +n03125729 +n03272010 +n03980874 +n07753592 +n02105412 +n02443114 +n04579432 +n02101556 +n03995372 +n02950826 +n01534433 +n02088238 +n07715103 +n02795169 +n01484850 +n01753488 +n02607072 +n01530575 +n01692333 +n04153751 +n02111500 +n03131574 +n03803284 +n02437312 +n02974003 +n02776631 +n04125021 +n09428293 +n02843684 +n03047690 +n02417914 +n03998194 +n03110669 +n02445715 +n04525305 +n03998194 +n01514668 +n02321529 +n02088466 +n01644373 +n07714571 +n04357314 +n03991062 +n02088094 +n02687172 +n02110185 +n02089078 +n09468604 +n02408429 +n04389033 +n03706229 +n02488702 +n03992509 +n02417914 +n04086273 +n07613480 +n04270147 +n03887697 +n01601694 +n02123159 +n01518878 +n07836838 +n04443257 +n01592084 +n03109150 +n02264363 +n02808304 +n04252225 +n01630670 +n04507155 +n03047690 +n03344393 +n02981792 +n03680355 +n07579787 +n02526121 +n01984695 +n04485082 +n03814639 +n02977058 +n03866082 +n04404412 +n04116512 +n03100240 +n03127925 +n01847000 +n02051845 +n02177972 +n02106030 +n03770679 +n03535780 +n03676483 +n01843383 +n01873310 +n02085936 +n02328150 +n03089624 +n02102318 +n02500267 +n04040759 +n04552348 +n02101006 +n07749582 +n03884397 +n02111129 +n03662601 +n03250847 +n02129604 +n03461385 +n03970156 +n04317175 +n03958227 +n07714990 +n01980166 +n03929660 +n03314780 +n01855032 +n03630383 +n01817953 +n02095889 +n04505470 +n02727426 +n03598930 +n02105855 +n02115913 +n03110669 +n10148035 +n02106550 +n02086079 +n04380533 +n10565667 +n03249569 +n02095889 +n02492660 +n07873807 +n02797295 +n04209239 +n02786058 +n02837789 +n02841315 +n02704792 +n03935335 +n04562935 +n02099429 +n02112137 +n03325584 +n04442312 +n04033995 +n07614500 +n02108089 +n03710721 +n03100240 +n02093859 +n02906734 +n04254777 +n07871810 +n02422106 +n04049303 +n03961711 +n02777292 +n04443257 +n04597913 +n02927161 +n03424325 +n03032252 +n02795169 +n02123394 +n01498041 +n01751748 +n03793489 +n03345487 +n02091635 +n02123159 +n02107142 +n02484975 +n03666591 +n03085013 +n04325704 +n03208938 +n04562935 +n04152593 +n09472597 +n07875152 +n04597913 +n04099969 +n03976657 +n02028035 +n03796401 +n02917067 +n02110958 +n02730930 +n02802426 +n02917067 +n02704792 +n07760859 +n02123597 +n01981276 +n01688243 +n03400231 +n02088238 +n07753275 +n02100583 +n01955084 +n02777292 +n01534433 +n03908714 +n02120079 +n04465501 +n02641379 +n02098286 +n01534433 +n02917067 +n04371774 +n02110958 +n03538406 +n03443371 +n03902125 +n03075370 +n04336792 +n02091831 +n02510455 +n02097047 +n03908618 +n02817516 +n02111889 +n01531178 +n02481823 +n03110669 +n02095570 +n03982430 +n03444034 +n07714571 +n07932039 +n01768244 +n02837789 +n03637318 +n04141975 +n01910747 +n03873416 +n03018349 +n02114548 +n07717556 +n03494278 +n03924679 +n02012849 +n02361337 +n02398521 +n03443371 +n07615774 +n02009912 +n02395406 +n02777292 +n02783161 +n02445715 +n03743016 +n03891332 +n04542943 +n15075141 +n02091244 +n02114367 +n03404251 +n03000134 +n01667114 +n03763968 +n02233338 +n09428293 +n03793489 +n04258138 +n04023962 +n01667778 +n03899768 +n13133613 +n03599486 +n03042490 +n04467665 +n03633091 +n02437616 +n02835271 +n03791053 +n04486054 +n07717410 +n07613480 +n01728920 +n03400231 +n02790996 +n02676566 +n04562935 +n02264363 +n04141975 +n03089624 +n03954731 +n03467068 +n02690373 +n02102040 +n01985128 +n04116512 +n02497673 +n04392985 +n03937543 +n02006656 +n01773549 +n02704792 +n02999410 +n07930864 +n02011460 +n02107312 +n02910353 +n01795545 +n04111531 +n02894605 +n01614925 +n02793495 +n02100877 +n03761084 +n02504013 +n02408429 +n07583066 +n01744401 +n03447447 +n03125729 +n01978287 +n04346328 +n03742115 +n02483708 +n13054560 +n02096177 +n03920288 +n02837789 +n03877472 +n02165105 +n03937543 +n03982430 +n03787032 +n07880968 +n04371774 +n04146614 +n03394916 +n03903868 +n02687172 +n01494475 +n02536864 +n02129165 +n07920052 +n01496331 +n02009912 +n02692877 +n02101006 +n03271574 +n04371774 +n01496331 +n04557648 +n02027492 +n02125311 +n03376595 +n01872401 +n04346328 +n02091134 +n04238763 +n01776313 +n01796340 +n01770081 +n03141823 +n01665541 +n04133789 +n02096437 +n02096051 +n10565667 +n04542943 +n03447447 +n09421951 +n02113624 +n03160309 +n02504458 +n01774750 +n03871628 +n04590129 +n12057211 +n03481172 +n03000247 +n04090263 +n04141076 +n01914609 +n03775071 +n02869837 +n04509417 +n04371430 +n02097209 +n04613696 +n02669723 +n02883205 +n01748264 +n01955084 +n04204238 +n03743016 +n02177972 +n03868863 +n04133789 +n02168699 +n04041544 +n02115913 +n02259212 +n02096177 +n02277742 +n04493381 +n02093859 +n03160309 +n04120489 +n09246464 +n04005630 +n03938244 +n03208938 +n04033901 +n02835271 +n04049303 +n02951585 +n04229816 +n01755581 +n01734418 +n01843065 +n02114367 +n09288635 +n04147183 +n03196217 +n04367480 +n03467068 +n01491361 +n02091831 +n04154565 +n07875152 +n07873807 +n02690373 +n02730930 +n04389033 +n02879718 +n03223299 +n01784675 +n03447721 +n01742172 +n01728572 +n12985857 +n03376595 +n03089624 +n03887697 +n04270147 +n01930112 +n02814533 +n07802026 +n07920052 +n03425413 +n06596364 +n03134739 +n02108422 +n12998815 +n07753113 +n02056570 +n09256479 +n04238763 +n02951585 +n04033901 +n01833805 +n01737021 +n01694178 +n06785654 +n02500267 +n02085782 +n03825788 +n03899768 +n01843383 +n02782093 +n01855672 +n04239074 +n04604644 +n07583066 +n03041632 +n02777292 +n03627232 +n03884397 +n02328150 +n04005630 +n02093859 +n01749939 +n03000134 +n04037443 +n03888257 +n01824575 +n07875152 +n02526121 +n07920052 +n02102040 +n02869837 +n02099849 +n04356056 +n01749939 +n02442845 +n04487081 +n02087046 +n04201297 +n02094433 +n02480495 +n02096585 +n01518878 +n04141975 +n02981792 +n01632458 +n02093647 +n02018207 +n04040759 +n01820546 +n03840681 +n03832673 +n02051845 +n01883070 +n03534580 +n02028035 +n03857828 +n01682714 +n04049303 +n02096585 +n04254120 +n02071294 +n03868863 +n02206856 +n04086273 +n02177972 +n02085782 +n03942813 +n01496331 +n04355933 +n02790996 +n04265275 +n03976467 +n02279972 +n02086240 +n01824575 +n09421951 +n02123159 +n02086079 +n07717410 +n02422106 +n02236044 +n01608432 +n03062245 +n07734744 +n01983481 +n04542943 +n01773797 +n02526121 +n01688243 +n01990800 +n02169497 +n01768244 +n01770393 +n03977966 +n02096585 +n03532672 +n07711569 +n01734418 +n04326547 +n09332890 +n04584207 +n02114712 +n02093754 +n03495258 +n01616318 +n02326432 +n04507155 +n03527444 +n01981276 +n02097298 +n03958227 +n02165105 +n07718472 +n04591157 +n04286575 +n04208210 +n02120505 +n04265275 +n04147183 +n03271574 +n02128385 +n02110958 +n03888257 +n02730930 +n01978455 +n02843684 +n03590841 +n03065424 +n03854065 +n01739381 +n01773797 +n03976657 +n04116512 +n02092339 +n01817953 +n02119789 +n01748264 +n02169497 +n03125729 +n02091467 +n07714571 +n02704792 +n02085936 +n02108915 +n03314780 +n02086646 +n07697537 +n03584829 +n03773504 +n04204347 +n01796340 +n03930313 +n02033041 +n02236044 +n02895154 +n02708093 +n02115641 +n04209239 +n01735189 +n03201208 +n09468604 +n03047690 +n04254777 +n06596364 +n03627232 +n01532829 +n01694178 +n04081281 +n03495258 +n02788148 +n01775062 +n04355933 +n03017168 +n04599235 +n03785016 +n07871810 +n03980874 +n02071294 +n04493381 +n04372370 +n02087046 +n04584207 +n04086273 +n02092339 +n02817516 +n03240683 +n12998815 +n03075370 +n02804414 +n01833805 +n01695060 +n04596742 +n04398044 +n02106382 +n04204238 +n02219486 +n02437312 +n04335435 +n01531178 +n04201297 +n03920288 +n03759954 +n03792782 +n02412080 +n04536866 +n03874293 +n02708093 +n02437312 +n04509417 +n01990800 +n04579145 +n02480495 +n04371430 +n02105056 +n03930630 +n03481172 +n02808440 +n07932039 +n04428191 +n02971356 +n02090379 +n03857828 +n02988304 +n02115913 +n04599235 +n04033901 +n11879895 +n03014705 +n02002724 +n02445715 +n02870880 +n02951585 +n02129604 +n02123394 +n01860187 +n03788195 +n03729826 +n01665541 +n01531178 +n04442312 +n02777292 +n13044778 +n07720875 +n02027492 +n02480855 +n04447861 +n02403003 +n03874599 +n01622779 +n02860847 +n03884397 +n13040303 +n03796401 +n03388549 +n03970156 +n02112137 +n03775071 +n01601694 +n02093991 +n01664065 +n02077923 +n02487347 +n02444819 +n02480855 +n04505470 +n03980874 +n03447447 +n01955084 +n02056570 +n03127747 +n02692877 +n06596364 +n03400231 +n03482405 +n03920288 +n03871628 +n03496892 +n12267677 +n04310018 +n02865351 +n01924916 +n03000247 +n03393912 +n02825657 +n06785654 +n02097474 +n04179913 +n02112350 +n03444034 +n03133878 +n02132136 +n02843684 +n01770393 +n01871265 +n03290653 +n03207941 +n03476991 +n03481172 +n04590129 +n01532829 +n03642806 +n03388183 +n02094258 +n03496892 +n04467665 +n02963159 +n02328150 +n02101388 +n09256479 +n03777568 +n02165456 +n03042490 +n02363005 +n13054560 +n02808440 +n04532670 +n01688243 +n03602883 +n02206856 +n03400231 +n02346627 +n01871265 +n01806567 +n02727426 +n04067472 +n02088094 +n04553703 +n13037406 +n07718472 +n04252077 +n04258138 +n02808440 +n02328150 +n03325584 +n01774750 +n02123159 +n02111277 +n04591157 +n03871628 +n03775071 +n04136333 +n03976467 +n03908618 +n03483316 +n04487394 +n02769748 +n04523525 +n12998815 +n04553703 +n04152593 +n02346627 +n02007558 +n03110669 +n01440764 +n09472597 +n02730930 +n02782093 +n04483307 +n02028035 +n04040759 +n03372029 +n02808440 +n02120505 +n03141823 +n02100236 +n01770393 +n01739381 +n03208938 +n03954731 +n04536866 +n04456115 +n03000247 +n04612504 +n02837789 +n03538406 +n02699494 +n03967562 +n04398044 +n03710721 +n04356056 +n04033995 +n02415577 +n04270147 +n03866082 +n03271574 +n02133161 +n03483316 +n01514668 +n03770679 +n04532670 +n03720891 +n02096437 +n03444034 +n02088632 +n02328150 +n02787622 +n12998815 +n07716358 +n02817516 +n03961711 +n02823428 +n01753488 +n02443114 +n04370456 +n04542943 +n03876231 +n02509815 +n04371430 +n04141975 +n02112350 +n02321529 +n02097474 +n04461696 +n03804744 +n02786058 +n12768682 +n01855032 +n03992509 +n01773797 +n02443484 +n02101006 +n09421951 +n03837869 +n04356056 +n01744401 +n02701002 +n03977966 +n02105056 +n02102318 +n03095699 +n01728572 +n01873310 +n03930313 +n03930630 +n06359193 +n02033041 +n04604644 +n03781244 +n04599235 +n02114548 +n02356798 +n03271574 +n07932039 +n02100735 +n04069434 +n04346328 +n09332890 +n12768682 +n02795169 +n04049303 +n02403003 +n04239074 +n02493793 +n02127052 +n04317175 +n02363005 +n03832673 +n04296562 +n03630383 +n01739381 +n02107683 +n02012849 +n03786901 +n04033995 +n03782006 +n02113624 +n02783161 +n02134418 +n03532672 +n02012849 +n02415577 +n02096437 +n03220513 +n01945685 +n02892201 +n04044716 +n07742313 +n03376595 +n02643566 +n01735189 +n01729977 +n02105251 +n09421951 +n02099712 +n03388043 +n02174001 +n04147183 +n02013706 +n13054560 +n02978881 +n09246464 +n02699494 +n02107312 +n03017168 +n07745940 +n02233338 +n02791270 +n01950731 +n03857828 +n02025239 +n03452741 +n02101388 +n03388549 +n01484850 +n02111277 +n01950731 +n02174001 +n02105162 +n02480855 +n03325584 +n03272562 +n03876231 +n01644373 +n04380533 +n07697537 +n04380533 +n02190166 +n07753592 +n01630670 +n02730930 +n03788195 +n02669723 +n02100735 +n03271574 +n03179701 +n02486261 +n02105412 +n02417914 +n01770081 +n02123394 +n01855672 +n02480495 +n02692877 +n01532829 +n04372370 +n01910747 +n03400231 +n02444819 +n04099969 +n03498962 +n04154565 +n02783161 +n03124170 +n03417042 +n04254120 +n07717410 +n04372370 +n07565083 +n03661043 +n04074963 +n02504458 +n03720891 +n03445924 +n03873416 +n03775071 +n02443114 +n03623198 +n03000247 +n02423022 +n03929660 +n02782093 +n01930112 +n01776313 +n03388183 +n02133161 +n02782093 +n03393912 +n03794056 +n09256479 +n07920052 +n03384352 +n02666196 +n02894605 +n03476684 +n02526121 +n02123045 +n03673027 +n03197337 +n02114548 +n04599235 +n02085936 +n02963159 +n04258138 +n03983396 +n03187595 +n03290653 +n03179701 +n01531178 +n02398521 +n02119789 +n02089867 +n04548362 +n02486410 +n01704323 +n01494475 +n04141327 +n02790996 +n02056570 +n02106166 +n02018795 +n04523525 +n03598930 +n04118776 +n03662601 +n04509417 +n02606052 +n02966193 +n03775071 +n02317335 +n03146219 +n03355925 +n02229544 +n02443114 +n03355925 +n04590129 +n02804414 +n02114367 +n03379051 +n02138441 +n03461385 +n04200800 +n03584829 +n01755581 +n04335435 +n03127747 +n04263257 +n04192698 +n01622779 +n02422699 +n02107683 +n04532670 +n02906734 +n02804414 +n12768682 +n02108089 +n02909870 +n03837869 +n02113186 +n02112350 +n01677366 +n03630383 +n02526121 +n02840245 +n01687978 +n04515003 +n15075141 +n02841315 +n02422106 +n02783161 +n02814533 +n02102177 +n02415577 +n03782006 +n01770081 +n02114548 +n03958227 +n01728920 +n03494278 +n01873310 +n02894605 +n01833805 +n03160309 +n04458633 +n03223299 +n12620546 +n12998815 +n01496331 +n04461696 +n01981276 +n03595614 +n02101388 +n03937543 +n03100240 +n03791053 +n04613696 +n02134084 +n04141975 +n02093859 +n03125729 +n02326432 +n03680355 +n03998194 +n01494475 +n02342885 +n03976657 +n01819313 +n04606251 +n01740131 +n02797295 +n02123394 +n02169497 +n03630383 +n01689811 +n03950228 +n07584110 +n04591713 +n04127249 +n12144580 +n07831146 +n03791053 +n02808440 +n02793495 +n02437312 +n02138441 +n02111500 +n02109961 +n03459775 +n03126707 +n03388549 +n02096294 +n03961711 +n04209133 +n04243546 +n02791270 +n01685808 +n02965783 +n03775546 +n02074367 +n03775546 +n03584254 +n02119789 +n02437312 +n03888257 +n03187595 +n02123045 +n03937543 +n02412080 +n01729322 +n03908714 +n02125311 +n01494475 +n02894605 +n03908618 +n02114855 +n02123159 +n03598930 +n02107142 +n03290653 +n02791124 +n03803284 +n03937543 +n03388043 +n03131574 +n02788148 +n02106382 +n04467665 +n02100877 +n04330267 +n03697007 +n03710721 +n02403003 +n02108089 +n03017168 +n03733281 +n03792972 +n02105056 +n01806567 +n01630670 +n03337140 +n03467068 +n01873310 +n02398521 +n02013706 +n04120489 +n02708093 +n02110341 +n03770679 +n02480495 +n03450230 +n03584254 +n02823750 +n04127249 +n02410509 +n04562935 +n04019541 +n04613696 +n01632777 +n07836838 +n02114855 +n02100236 +n02102318 +n07831146 +n03742115 +n03662601 +n03720891 +n02804610 +n02107142 +n03733131 +n03791053 +n03991062 +n02808304 +n03594945 +n02749479 +n04562935 +n02134084 +n02342885 +n03538406 +n02107683 +n02012849 +n01682714 +n02988304 +n07932039 +n02206856 +n03447447 +n01753488 +n01755581 +n02119022 +n04597913 +n03314780 +n02865351 +n03459775 +n01530575 +n04335435 +n09288635 +n02769748 +n02256656 +n03131574 +n03770439 +n02123045 +n02096177 +n04131690 +n02397096 +n01798484 +n02107574 +n02113186 +n01855672 +n03791053 +n03770679 +n01983481 +n02093256 +n01968897 +n02692877 +n02356798 +n07875152 +n02107312 +n02837789 +n03042490 +n03188531 +n03447721 +n02825657 +n03868242 +n04552348 +n01770081 +n02095314 +n04204347 +n02087394 +n04065272 +n02132136 +n02134418 +n01632777 +n04325704 +n03776460 +n01955084 +n02129604 +n01644900 +n02101006 +n04357314 +n12985857 +n03670208 +n07760859 +n04067472 +n02099849 +n03770679 +n02978881 +n03623198 +n03717622 +n04536866 +n02835271 +n07717410 +n04429376 +n02869837 +n03124170 +n01632458 +n01531178 +n03127925 +n02097047 +n03950228 +n03028079 +n02107312 +n13052670 +n02090721 +n07711569 +n02091831 +n01530575 +n04146614 +n01667114 +n03958227 +n02098286 +n07871810 +n01980166 +n02412080 +n02500267 +n01924916 +n04254680 +n02480495 +n01774384 +n03216828 +n07711569 +n03026506 +n01749939 +n03344393 +n03938244 +n02098105 +n01986214 +n01917289 +n04418357 +n02058221 +n02106030 +n02966193 +n03032252 +n02206856 +n03063599 +n02107312 +n03843555 +n02108551 +n01855672 +n02107142 +n02102040 +n04357314 +n04505470 +n03529860 +n02437312 +n02129604 +n03773504 +n02100877 +n03877472 +n04501370 +n07880968 +n04458633 +n02167151 +n03721384 +n02102480 +n07579787 +n02123394 +n02484975 +n03942813 +n04270147 +n03777568 +n02085782 +n01729977 +n04404412 +n04311174 +n03160309 +n02454379 +n02096294 +n04065272 +n02483362 +n02364673 +n03100240 +n07873807 +n03594734 +n04344873 +n07590611 +n01883070 +n03770439 +n03141823 +n02133161 +n01689811 +n01833805 +n02814860 +n04367480 +n03710637 +n07714571 +n02071294 +n01768244 +n03388183 +n01847000 +n03325584 +n01667114 +n02236044 +n04141327 +n03467068 +n01687978 +n04285008 +n03483316 +n03447447 +n02264363 +n02097209 +n04501370 +n09468604 +n02930766 +n01917289 +n04554684 +n02979186 +n02442845 +n03345487 +n02486410 +n02841315 +n03899768 +n09399592 +n03344393 +n02088364 +n03763968 +n02105162 +n04235860 +n03903868 +n09428293 +n03661043 +n03249569 +n02268443 +n02444819 +n02116738 +n03902125 +n02093991 +n02110185 +n03832673 +n03983396 +n07716358 +n02113712 +n03887697 +n03424325 +n03958227 +n01534433 +n02086646 +n04591713 +n07753113 +n03841143 +n02790996 +n02165456 +n02009229 +n02814860 +n04462240 +n02730930 +n02085620 +n02098413 +n03337140 +n02807133 +n04263257 +n02108422 +n02138441 +n01630670 +n04008634 +n02113799 +n02643566 +n12057211 +n01665541 +n04404412 +n03691459 +n01729977 +n03290653 +n01924916 +n02486410 +n04332243 +n13052670 +n03598930 +n02437616 +n02093991 +n01729977 +n02115641 +n02825657 +n02786058 +n02788148 +n02094258 +n02793495 +n03388043 +n02128757 +n02443484 +n02088094 +n03110669 +n01985128 +n07714990 +n02869837 +n03595614 +n04592741 +n02127052 +n07880968 +n02643566 +n09256479 +n02356798 +n02509815 +n04487394 +n03721384 +n01728572 +n02992211 +n03877845 +n02231487 +n02445715 +n02095570 +n04579145 +n03706229 +n02107574 +n01833805 +n01629819 +n03445777 +n03710721 +n03014705 +n04336792 +n04311174 +n03724870 +n03920288 +n03063689 +n03908618 +n02085620 +n02699494 +n02096437 +n03804744 +n04209239 +n03249569 +n11939491 +n01882714 +n02129165 +n03773504 +n04346328 +n02102040 +n12620546 +n02177972 +n02066245 +n03492542 +n02090721 +n04482393 +n01914609 +n02174001 +n02233338 +n01693334 +n01665541 +n02280649 +n01514668 +n01641577 +n02107683 +n04040759 +n03355925 +n04579432 +n02280649 +n02361337 +n03937543 +n03891251 +n02492035 +n03759954 +n03763968 +n01582220 +n03866082 +n04086273 +n04330267 +n04476259 +n04118776 +n03180011 +n03838899 +n03627232 +n04264628 +n02101006 +n02113624 +n02395406 +n01675722 +n04090263 +n03785016 +n02137549 +n02277742 +n03642806 +n07718472 +n03447447 +n03792782 +n04008634 +n04254777 +n01631663 +n04254680 +n02074367 +n01744401 +n03127747 +n02190166 +n03623198 +n02607072 +n02877765 +n02790996 +n02992529 +n02492660 +n02117135 +n01580077 +n03028079 +n02102040 +n01494475 +n04461696 +n01917289 +n04146614 +n04004767 +n02906734 +n01560419 +n02085936 +n12267677 +n03075370 +n01682714 +n02669723 +n01751748 +n02999410 +n10148035 +n02797295 +n03958227 +n03134739 +n01860187 +n02443114 +n03028079 +n03495258 +n03787032 +n02108089 +n01687978 +n01484850 +n02098105 +n03942813 +n02109525 +n04613696 +n01631663 +n09835506 +n01784675 +n02137549 +n09472597 +n02895154 +n03676483 +n04209239 +n01784675 +n03028079 +n03355925 +n03483316 +n03337140 +n03495258 +n04311004 +n04270147 +n03791053 +n02488702 +n02895154 +n02100583 +n10565667 +n04548280 +n02091134 +n01806567 +n02264363 +n02708093 +n02111277 +n02692877 +n03837869 +n03240683 +n03773504 +n03706229 +n03742115 +n01734418 +n12998815 +n03452741 +n06596364 +n03041632 +n02096585 +n04317175 +n07892512 +n01755581 +n03777568 +n03457902 +n02106382 +n01601694 +n03691459 +n02114855 +n03461385 +n02096294 +n03498962 +n04482393 +n02412080 +n03857828 +n02124075 +n02106550 +n03950228 +n07730033 +n02093991 +n07768694 +n02870880 +n02672831 +n02268443 +n03773504 +n09332890 +n02025239 +n04562935 +n07742313 +n04192698 +n04049303 +n01644900 +n02769748 +n01774384 +n02894605 +n03127747 +n03045698 +n03388549 +n03724870 +n03706229 +n03825788 +n01775062 +n03670208 +n02492035 +n01983481 +n04435653 +n03028079 +n03445924 +n02108000 +n01882714 +n02346627 +n09399592 +n12620546 +n03047690 +n02807133 +n03630383 +n03325584 +n02110063 +n07860988 +n01443537 +n04523525 +n02112706 +n02815834 +n03720891 +n03843555 +n02992211 +n02107908 +n03662601 +n03207743 +n04507155 +n02094433 +n02791270 +n02788148 +n02094258 +n02105162 +n04179913 +n07930864 +n03873416 +n02027492 +n02790996 +n03924679 +n07753275 +n03658185 +n02444819 +n07802026 +n01484850 +n02113186 +n02110341 +n02090622 +n04366367 +n01773157 +n03792972 +n02690373 +n02090622 +n06794110 +n02101388 +n07697313 +n03297495 +n03032252 +n01688243 +n02090379 +n02017213 +n04152593 +n02108551 +n03658185 +n02643566 +n04049303 +n03544143 +n03709823 +n01632458 +n02111500 +n07717556 +n01688243 +n07747607 +n01592084 +n03485794 +n02443114 +n03888257 +n07753592 +n01930112 +n03127747 +n01580077 +n12057211 +n03344393 +n03697007 +n01601694 +n01818515 +n04517823 +n04584207 +n02002724 +n03424325 +n03895866 +n03787032 +n02100236 +n03110669 +n04523525 +n01983481 +n04465501 +n02090721 +n02980441 +n02088094 +n02492035 +n03109150 +n02091635 +n07695742 +n02074367 +n07754684 +n02783161 +n03761084 +n02096585 +n04099969 +n01930112 +n03379051 +n02105412 +n02097298 +n04026417 +n03866082 +n04004767 +n01704323 +n04286575 +n02321529 +n04417672 +n04389033 +n02909870 +n01685808 +n01806143 +n02006656 +n03832673 +n07697313 +n07932039 +n02206856 +n12144580 +n02108422 +n07753113 +n03777754 +n04259630 +n02641379 +n13052670 +n03788365 +n02870880 +n02799071 +n02137549 +n02999410 +n04317175 +n02094114 +n03529860 +n03188531 +n03160309 +n03697007 +n02091831 +n03594734 +n04389033 +n02799071 +n07747607 +n02504458 +n04277352 +n01914609 +n02281787 +n03868863 +n09421951 +n03792782 +n02102318 +n01484850 +n04192698 +n02089867 +n03584254 +n01728572 +n03062245 +n02109047 +n02108422 +n02088632 +n02447366 +n02236044 +n02910353 +n02105056 +n03498962 +n03250847 +n04120489 +n02999410 +n03467068 +n03187595 +n03255030 +n04004767 +n02091635 +n04507155 +n03782006 +n02317335 +n02165456 +n04243546 +n02099849 +n04239074 +n09246464 +n04335435 +n03770439 +n01978455 +n01644373 +n02256656 +n02509815 +n03584254 +n03710721 +n01795545 +n07753592 +n02412080 +n07892512 +n02091032 +n04074963 +n03197337 +n03075370 +n02111129 +n03930630 +n01770081 +n04235860 +n02132136 +n02100735 +n01978287 +n02097658 +n04540053 +n04149813 +n02105251 +n01984695 +n03314780 +n02115641 +n04235860 +n02843684 +n04311004 +n04118776 +n02276258 +n02909870 +n02701002 +n02051845 +n04599235 +n01689811 +n03637318 +n03344393 +n04591713 +n02018795 +n02795169 +n04462240 +n03776460 +n03404251 +n03188531 +n07749582 +n01631663 +n02123597 +n02328150 +n02110958 +n02125311 +n04023962 +n03133878 +n03131574 +n02091467 +n01484850 +n02096177 +n01496331 +n02058221 +n03028079 +n02113023 +n02480855 +n02892201 +n04418357 +n03042490 +n03124170 +n12985857 +n04141975 +n01860187 +n02130308 +n04037443 +n13052670 +n07714571 +n02391049 +n04149813 +n04099969 +n01729977 +n04243546 +n02978881 +n03131574 +n02127052 +n04366367 +n02229544 +n01669191 +n02489166 +n07716906 +n03208938 +n02088466 +n02093754 +n01632777 +n04118538 +n02363005 +n02114855 +n09256479 +n02787622 +n02105412 +n03498962 +n12768682 +n03216828 +n03598930 +n02643566 +n03837869 +n07695742 +n01817953 +n01667778 +n04251144 +n02231487 +n04005630 +n03445777 +n04597913 +n07615774 +n02769748 +n01833805 +n01828970 +n01796340 +n01694178 +n03995372 +n03494278 +n03271574 +n03014705 +n02088632 +n03788195 +n02328150 +n02992529 +n03498962 +n02169497 +n02112137 +n02483362 +n07836838 +n02086240 +n01739381 +n02325366 +n03877472 +n04589890 +n02133161 +n01632777 +n02105162 +n04019541 +n01775062 +n02107574 +n04509417 +n01860187 +n02088632 +n03459775 +n03133878 +n04254680 +n01755581 +n02939185 +n02091134 +n02114712 +n07714990 +n02484975 +n03445924 +n03018349 +n02802426 +n01774384 +n03124043 +n03355925 +n03146219 +n03388183 +n02226429 +n07860988 +n03388183 +n04009552 +n02488291 +n03899768 +n03649909 +n03393912 +n02797295 +n03014705 +n03729826 +n01560419 +n02114367 +n03637318 +n02115641 +n04517823 +n02346627 +n02033041 +n02804414 +n07714990 +n04120489 +n03481172 +n02099267 +n10565667 +n03825788 +n03240683 +n02123597 +n02097130 +n02090721 +n02094433 +n02667093 +n03461385 +n02101388 +n09399592 +n02109047 +n04153751 +n04479046 +n03223299 +n13133613 +n01688243 +n02363005 +n04493381 +n02445715 +n02280649 +n03804744 +n04596742 +n04597913 +n01729322 +n02793495 +n04604644 +n04592741 +n03425413 +n04332243 +n04562935 +n02494079 +n07693725 +n07717410 +n06874185 +n03063689 +n02389026 +n02110627 +n03930630 +n01871265 +n07716358 +n02114712 +n03216828 +n06596364 +n03494278 +n07579787 +n04548280 +n04409515 +n02102040 +n07753113 +n01632777 +n02843684 +n02395406 +n02100583 +n03481172 +n02099849 +n02708093 +n01980166 +n02096294 +n01744401 +n03291819 +n04004767 +n01534433 +n03223299 +n03773504 +n04090263 +n02002724 +n02422106 +n04325704 +n01531178 +n02948072 +n02281787 +n04239074 +n04399382 +n03400231 +n02802426 +n02165456 +n02256656 +n02104029 +n06794110 +n07932039 +n02793495 +n02093754 +n02834397 +n02165456 +n03394916 +n02138441 +n01729977 +n02138441 +n04311174 +n03388043 +n03344393 +n03445924 +n02504013 +n13040303 +n02363005 +n02206856 +n03982430 +n03661043 +n02107574 +n03785016 +n02231487 +n04487394 +n04376876 +n04277352 +n07718472 +n04118776 +n01914609 +n01798484 +n01944390 +n03355925 +n03742115 +n02108089 +n03924679 +n03134739 +n02011460 +n02974003 +n02100583 +n01496331 +n01860187 +n02100236 +n04596742 +n02119789 +n02342885 +n04044716 +n04099969 +n03602883 +n07717556 +n04548280 +n03843555 +n04409515 +n02093647 +n01797886 +n04429376 +n03063599 +n07760859 +n02487347 +n01697457 +n03706229 +n02988304 +n03134739 +n02979186 +n02892201 +n03840681 +n03425413 +n13044778 +n04330267 +n03425413 +n02099849 +n04044716 +n01440764 +n02105251 +n03599486 +n03240683 +n02097130 +n04162706 +n03443371 +n02492660 +n03793489 +n04347754 +n04296562 +n03666591 +n04584207 +n04136333 +n02123159 +n04070727 +n02981792 +n07718472 +n01694178 +n10565667 +n04532670 +n02480495 +n07590611 +n02111277 +n04554684 +n01695060 +n04311004 +n02102480 +n04447861 +n02807133 +n04398044 +n04418357 +n03690938 +n01644373 +n03837869 +n02493793 +n01796340 +n02095889 +n03781244 +n02088466 +n02906734 +n04596742 +n12057211 +n02097658 +n03954731 +n02447366 +n03223299 +n03710637 +n03459775 +n04458633 +n02397096 +n03877472 +n07584110 +n03393912 +n07716906 +n07836838 +n03720891 +n02109961 +n04326547 +n01753488 +n02389026 +n07734744 +n07745940 +n02094114 +n02981792 +n02097298 +n03930630 +n02783161 +n04346328 +n01774750 +n01829413 +n02910353 +n02894605 +n02132136 +n04372370 +n04040759 +n02493509 +n03788195 +n04357314 +n02106166 +n02168699 +n02091831 +n02105056 +n01986214 +n02268443 +n01739381 +n01774384 +n02444819 +n02105641 +n01687978 +n04606251 +n03325584 +n04596742 +n02325366 +n02950826 +n04067472 +n02086646 +n02113799 +n04557648 +n04429376 +n01704323 +n02056570 +n02488291 +n07614500 +n03089624 +n01532829 +n03160309 +n04550184 +n07730033 +n02095570 +n04367480 +n04081281 +n04254120 +n04443257 +n03777568 +n03584829 +n04201297 +n12144580 +n02834397 +n03127925 +n02100735 +n02256656 +n02092002 +n01753488 +n04259630 +n03197337 +n02510455 +n02108422 +n02013706 +n03840681 +n02108089 +n04485082 +n03584829 +n02134084 +n03814639 +n04522168 +n04589890 +n04252225 +n03188531 +n03594945 +n03691459 +n04041544 +n04033901 +n04090263 +n02486410 +n03873416 +n03871628 +n02325366 +n02841315 +n02037110 +n02909870 +n01629819 +n07565083 +n02088094 +n03954731 +n12998815 +n03661043 +n04332243 +n02167151 +n04099969 +n04266014 +n03733131 +n02033041 +n02165456 +n02109047 +n02999410 +n02177972 +n02033041 +n03899768 +n01685808 +n04023962 +n02114712 +n03775546 +n02092002 +n02107142 +n02977058 +n01582220 +n04127249 +n03814906 +n03769881 +n03393912 +n03291819 +n02497673 +n03127925 +n09193705 +n07831146 +n03980874 +n07753113 +n01558993 +n02808304 +n03854065 +n04483307 +n02102040 +n04326547 +n02443484 +n09256479 +n03961711 +n01641577 +n03733131 +n04254680 +n02099601 +n02089078 +n03016953 +n03216828 +n02101388 +n02229544 +n02606052 +n04141076 +n01694178 +n03063689 +n01774384 +n02607072 +n02091244 +n03937543 +n04328186 +n03532672 +n03485407 +n07717556 +n02006656 +n04525305 +n02123597 +n02708093 +n02137549 +n07614500 +n03947888 +n03983396 +n03544143 +n01440764 +n01440764 +n03717622 +n02085620 +n02727426 +n03485794 +n03825788 +n04259630 +n02788148 +n03930630 +n04392985 +n02454379 +n02100236 +n01534433 +n02102318 +n04044716 +n02113186 +n02066245 +n02127052 +n01950731 +n03000684 +n02843684 +n04147183 +n02110063 +n07590611 +n02113712 +n04074963 +n03871628 +n02168699 +n09246464 +n07802026 +n01693334 +n03908714 +n02130308 +n09193705 +n02091244 +n02111500 +n03642806 +n04033901 +n02999410 +n02128925 +n06359193 +n07717410 +n02102318 +n04208210 +n02086079 +n03868863 +n03743016 +n03062245 +n03717622 +n04069434 +n03598930 +n01978287 +n04026417 +n01748264 +n02096294 +n04483307 +n01592084 +n03787032 +n03742115 +n01795545 +n02807133 +n02769748 +n02108915 +n04509417 +n02093754 +n02129604 +n02090622 +n01806567 +n04579432 +n04542943 +n03400231 +n07871810 +n09399592 +n02114367 +n04049303 +n02979186 +n02494079 +n03944341 +n03535780 +n03297495 +n07831146 +n02457408 +n04254680 +n03028079 +n03498962 +n02883205 +n02077923 +n02090721 +n04005630 +n02056570 +n01775062 +n03866082 +n02087394 +n04336792 +n01917289 +n04111531 +n02007558 +n04086273 +n02843684 +n13037406 +n04200800 +n03000684 +n03991062 +n02488702 +n02808440 +n03887697 +n01784675 +n02058221 +n02841315 +n02114367 +n03657121 +n02787622 +n03095699 +n03450230 +n02123394 +n02869837 +n03793489 +n02094258 +n04380533 +n02978881 +n07584110 +n02927161 +n02930766 +n02093428 +n04507155 +n03534580 +n03857828 +n01872401 +n03337140 +n02980441 +n02102177 +n02509815 +n02097047 +n02992529 +n02797295 +n03866082 +n02279972 +n03485794 +n03530642 +n01518878 +n04483307 +n04033901 +n07749582 +n02917067 +n03623198 +n02233338 +n03623198 +n03594945 +n02256656 +n02999410 +n02093991 +n02002724 +n03788365 +n03623198 +n02110063 +n01740131 +n04346328 +n04033995 +n02095889 +n04311174 +n02445715 +n03218198 +n02640242 +n04462240 +n03180011 +n02093256 +n03425413 +n02504013 +n03877472 +n02087046 +n03976467 +n02091134 +n04044716 +n02088364 +n02009912 +n02206856 +n03297495 +n02871525 +n03633091 +n02105855 +n03075370 +n02119789 +n01644373 +n03216828 +n03478589 +n03929855 +n02939185 +n01847000 +n02317335 +n01983481 +n03657121 +n02086910 +n02088238 +n02168699 +n03976467 +n07697313 +n03743016 +n04086273 +n04200800 +n01632777 +n03529860 +n03404251 +n03255030 +n03476991 +n04311174 +n02093991 +n03924679 +n03478589 +n04258138 +n01774384 +n02277742 +n01980166 +n02951358 +n03983396 +n03482405 +n02091244 +n01592084 +n02415577 +n02125311 +n03888257 +n03871628 +n02096437 +n03743016 +n04118776 +n02526121 +n07711569 +n01694178 +n01744401 +n03424325 +n10565667 +n02007558 +n01860187 +n03127925 +n04380533 +n03637318 +n02088238 +n04118538 +n02101006 +n02110958 +n01820546 +n02106550 +n03874293 +n02229544 +n03937543 +n03838899 +n04147183 +n03697007 +n02655020 +n01677366 +n02415577 +n03891332 +n03673027 +n02328150 +n02363005 +n04209133 +n04065272 +n04399382 +n02114548 +n03724870 +n12620546 +n04277352 +n02105855 +n01704323 +n01697457 +n02094433 +n02110958 +n02092339 +n01734418 +n02108915 +n02791270 +n01534433 +n04111531 +n03476684 +n02708093 +n01955084 +n01580077 +n01592084 +n03602883 +n02871525 +n04037443 +n02086910 +n13040303 +n07749582 +n01930112 +n13037406 +n03792972 +n01775062 +n02403003 +n02974003 +n01644373 +n02966193 +n03481172 +n02095570 +n03297495 +n01614925 +n01440764 +n02879718 +n02105641 +n03125729 +n03891332 +n01697457 +n03443371 +n03794056 +n02231487 +n02395406 +n02787622 +n03425413 +n02111889 +n01632458 +n02110806 +n03584829 +n03733805 +n04613696 +n07747607 +n02687172 +n03792782 +n02492035 +n02489166 +n03393912 +n03018349 +n03843555 +n02769748 +n02168699 +n03272010 +n04532106 +n01943899 +n01882714 +n03127747 +n02088632 +n04589890 +n12768682 +n07715103 +n02410509 +n03995372 +n01728920 +n02091134 +n01820546 +n01739381 +n02917067 +n04591157 +n07697313 +n01728920 +n02835271 +n02028035 +n03908714 +n02096294 +n02106030 +n03384352 +n02174001 +n04522168 +n03866082 +n02817516 +n01978287 +n04259630 +n04399382 +n02113978 +n03447721 +n02749479 +n03188531 +n02483708 +n07693725 +n03014705 +n01622779 +n03642806 +n02018207 +n09332890 +n03670208 +n03291819 +n02017213 +n02098286 +n04141327 +n02105251 +n02447366 +n02321529 +n03792782 +n01443537 +n01943899 +n04522168 +n13133613 +n03891251 +n02106166 +n04592741 +n04179913 +n03216828 +n04467665 +n01883070 +n07614500 +n02105162 +n04456115 +n04332243 +n04049303 +n07615774 +n01616318 +n07802026 +n03291819 +n01688243 +n02396427 +n09229709 +n09399592 +n02027492 +n04517823 +n03325584 +n02165456 +n03803284 +n02802426 +n09428293 +n02168699 +n02106662 +n03259280 +n03733131 +n04258138 +n01924916 +n01945685 +n09428293 +n02871525 +n02786058 +n03721384 +n04285008 +n03485794 +n01784675 +n04428191 +n02092002 +n04372370 +n04099969 +n03026506 +n02971356 +n02106030 +n04131690 +n01847000 +n03794056 +n12985857 +n02488702 +n01872401 +n03372029 +n01806567 +n01917289 +n03444034 +n01776313 +n02814533 +n02672831 +n03637318 +n02113978 +n02165456 +n04548280 +n02917067 +n01560419 +n02825657 +n04552348 +n02999410 +n02190166 +n03065424 +n02825657 +n07716358 +n02877765 +n09421951 +n12267677 +n01819313 +n04264628 +n03344393 +n02002724 +n01641577 +n02256656 +n01532829 +n03854065 +n02791270 +n02951585 +n03014705 +n01592084 +n01728572 +n01774750 +n03868242 +n04370456 +n03337140 +n03124043 +n03290653 +n02488291 +n04505470 +n04553703 +n02107574 +n01692333 +n12620546 +n04086273 +n03657121 +n01582220 +n03485407 +n03840681 +n07768694 +n03782006 +n02114548 +n11939491 +n04552348 +n03208938 +n02006656 +n03764736 +n07695742 +n01820546 +n02326432 +n02009229 +n02408429 +n03018349 +n03018349 +n02504458 +n02089973 +n01917289 +n01739381 +n02130308 +n04099969 +n02102040 +n03788195 +n03764736 +n02422699 +n01978287 +n02860847 +n02749479 +n03877845 +n03404251 +n04209133 +n07695742 +n04090263 +n03720891 +n04311174 +n03642806 +n03933933 +n04005630 +n02093991 +n02977058 +n09835506 +n03417042 +n01742172 +n03888257 +n02782093 +n07802026 +n03208938 +n02130308 +n02090622 +n04040759 +n02422699 +n03594945 +n02437616 +n03337140 +n09399592 +n02129604 +n02488291 +n04597913 +n03089624 +n03710193 +n02930766 +n04435653 +n01806567 +n03100240 +n01582220 +n03871628 +n02422106 +n02494079 +n04372370 +n07716358 +n04277352 +n02236044 +n03891332 +n03814639 +n02396427 +n02793495 +n02096437 +n02504458 +n02085936 +n01978287 +n04239074 +n03532672 +n02869837 +n02127052 +n03680355 +n02206856 +n03602883 +n01817953 +n03733805 +n03938244 +n03450230 +n04044716 +n02965783 +n03938244 +n01592084 +n03290653 +n04479046 +n07831146 +n01735189 +n04525305 +n02870880 +n02776631 +n02172182 +n04081281 +n03876231 +n01985128 +n01917289 +n10148035 +n04286575 +n03598930 +n02085782 +n02699494 +n04009552 +n03492542 +n07749582 +n03017168 +n03494278 +n02134418 +n03792782 +n01687978 +n13040303 +n03220513 +n03347037 +n03476684 +n01828970 +n02114367 +n07715103 +n02119789 +n01749939 +n03791053 +n02457408 +n01440764 +n01824575 +n04372370 +n07802026 +n04270147 +n04033901 +n04515003 +n03950228 +n04005630 +n02091032 +n02090379 +n02486410 +n07684084 +n04592741 +n02106382 +n02165456 +n02483708 +n01737021 +n02814533 +n04081281 +n03884397 +n07749582 +n01641577 +n03929855 +n04550184 +n04467665 +n03930313 +n02951585 +n02747177 +n04487394 +n01773549 +n04228054 +n02410509 +n04596742 +n02795169 +n03496892 +n04613696 +n02398521 +n03814906 +n02823750 +n02106550 +n02128385 +n02364673 +n03770679 +n02099429 +n01669191 +n12057211 +n04476259 +n02229544 +n03781244 +n02509815 +n02807133 +n02132136 +n03447721 +n02840245 +n03743016 +n04118776 +n04356056 +n02190166 +n03424325 +n04606251 +n04146614 +n04040759 +n07754684 +n02119022 +n02454379 +n02443484 +n04310018 +n03527444 +n04399382 +n03843555 +n01740131 +n02127052 +n02749479 +n03045698 +n02086240 +n01795545 +n04592741 +n02701002 +n04149813 +n02823750 +n01728920 +n04493381 +n02894605 +n03970156 +n03838899 +n03877845 +n03534580 +n02094258 +n03047690 +n02033041 +n03208938 +n03124043 +n03000134 +n03250847 +n01817953 +n02727426 +n01669191 +n02268443 +n03770439 +n02389026 +n04550184 +n02804610 +n03461385 +n02091244 +n02363005 +n02391049 +n07717410 +n03404251 +n07695742 +n04462240 +n01817953 +n06359193 +n01685808 +n02509815 +n09835506 +n04523525 +n04398044 +n01955084 +n02423022 +n02129604 +n02066245 +n01773797 +n02859443 +n04090263 +n03617480 +n04548280 +n03929855 +n03777754 +n02791270 +n02317335 +n03791053 +n03180011 +n01677366 +n03976467 +n02497673 +n01729322 +n03297495 +n02268853 +n01742172 +n07716906 +n03630383 +n02825657 +n02094258 +n07873807 +n03776460 +n01843383 +n02840245 +n02607072 +n01491361 +n03109150 +n03908618 +n02132136 +n01950731 +n02133161 +n04070727 +n03384352 +n03594945 +n03933933 +n03891332 +n01968897 +n09229709 +n02095314 +n02088364 +n01641577 +n03124170 +n03272562 +n02817516 +n01943899 +n07590611 +n04235860 +n03991062 +n02006656 +n04026417 +n02113799 +n04311004 +n02815834 +n04008634 +n07718472 +n02437616 +n04325704 +n03676483 +n03207941 +n02066245 +n03873416 +n02489166 +n03782006 +n04523525 +n03710637 +n02791270 +n09835506 +n01768244 +n03888257 +n04325704 +n02007558 +n01641577 +n03983396 +n04179913 +n03786901 +n03425413 +n02012849 +n03876231 +n02802426 +n04067472 +n02112350 +n02797295 +n03895866 +n07753113 +n03297495 +n02091635 +n04487394 +n03729826 +n02104029 +n02102973 +n03000247 +n01871265 +n03920288 +n03627232 +n02229544 +n02092339 +n02802426 +n03018349 +n13044778 +n03014705 +n02776631 +n03109150 +n13052670 +n03218198 +n04125021 +n04550184 +n04479046 +n04443257 +n03908618 +n02094433 +n02113186 +n02105162 +n02980441 +n02971356 +n07697313 +n02102177 +n04613696 +n02095889 +n02979186 +n09472597 +n03476684 +n02692877 +n01756291 +n03976657 +n03494278 +n03026506 +n04228054 +n04146614 +n03100240 +n02018795 +n01873310 +n04026417 +n02086910 +n04192698 +n02093991 +n04116512 +n02107908 +n02066245 +n04026417 +n02444819 +n02536864 +n02361337 +n03770439 +n02086646 +n03444034 +n04008634 +n02727426 +n07615774 +n02107908 +n03637318 +n04317175 +n03662601 +n09256479 +n03933933 +n03666591 +n02102318 +n07802026 +n04467665 +n03109150 +n03710721 +n02817516 +n01855672 +n03259280 +n02108089 +n01943899 +n02655020 +n02817516 +n07871810 +n03935335 +n03250847 +n04417672 +n04252077 +n01910747 +n03950228 +n02009912 +n02690373 +n02787622 +n01685808 +n02486410 +n04326547 +n03467068 +n01742172 +n02965783 +n04209133 +n06874185 +n01797886 +n01755581 +n03942813 +n02087394 +n02137549 +n03047690 +n04447861 +n04275548 +n02229544 +n03530642 +n01930112 +n04548362 +n04552348 +n02486261 +n02328150 +n03355925 +n02096177 +n02403003 +n01817953 +n01629819 +n03983396 +n03207941 +n01806567 +n02089973 +n07714990 +n03590841 +n02086646 +n03781244 +n02090622 +n03445924 +n02051845 +n04560804 +n09288635 +n03840681 +n01622779 +n03445924 +n02058221 +n03837869 +n02125311 +n02783161 +n01698640 +n02787622 +n03706229 +n02840245 +n02808440 +n03680355 +n01560419 +n01978287 +n02422699 +n01687978 +n01537544 +n03793489 +n03016953 +n04044716 +n01560419 +n02056570 +n03179701 +n09468604 +n03623198 +n02690373 +n02454379 +n04467665 +n02112018 +n04591157 +n04243546 +n04254777 +n01558993 +n07932039 +n04258138 +n02085936 +n03240683 +n04409515 +n03661043 +n01532829 +n03930630 +n02112350 +n02837789 +n02098286 +n04485082 +n03272562 +n02105505 +n03916031 +n07742313 +n03042490 +n02105855 +n04229816 +n04447861 +n02916936 +n02120505 +n02917067 +n01984695 +n02454379 +n03529860 +n03482405 +n04049303 +n03452741 +n02113023 +n03447721 +n01728572 +n03942813 +n03929855 +n03344393 +n01692333 +n01945685 +n03929660 +n07565083 +n04579432 +n03594734 +n03793489 +n02114712 +n02111129 +n02091244 +n12057211 +n02493793 +n03404251 +n03026506 +n01817953 +n02130308 +n02930766 +n03594734 +n02777292 +n02486410 +n09468604 +n02489166 +n01981276 +n04275548 +n02865351 +n04118538 +n01641577 +n02113624 +n04008634 +n01945685 +n02692877 +n02749479 +n03891332 +n02795169 +n02105641 +n04136333 +n04417672 +n04263257 +n06596364 +n02091032 +n03770679 +n07749582 +n02977058 +n03594734 +n02317335 +n04550184 +n02437312 +n01728572 +n02395406 +n04522168 +n04209133 +n02108000 +n01843383 +n04004767 +n03804744 +n04398044 +n02643566 +n13052670 +n03443371 +n02101388 +n02133161 +n02641379 +n03814906 +n02115913 +n02108915 +n01978287 +n04277352 +n04493381 +n01608432 +n04548280 +n03379051 +n03796401 +n02051845 +n04350905 +n04612504 +n03207743 +n02097298 +n03447447 +n02804610 +n01770393 +n10148035 +n02094258 +n03720891 +n02089078 +n02130308 +n02536864 +n03942813 +n02110341 +n04579432 +n07716358 +n03095699 +n02128925 +n04141975 +n02119789 +n03481172 +n03532672 +n02655020 +n07749582 +n02109961 +n02101556 +n03662601 +n03803284 +n02641379 +n04367480 +n02101388 +n04562935 +n01694178 +n02088466 +n02536864 +n03781244 +n04192698 +n02167151 +n02089078 +n03544143 +n03026506 +n02128925 +n04251144 +n03929855 +n03085013 +n03125729 +n01677366 +n03661043 +n04584207 +n04200800 +n02487347 +n02321529 +n03814906 +n01924916 +n02802426 +n01693334 +n02169497 +n02128925 +n07717556 +n03895866 +n02099429 +n03085013 +n11939491 +n09468604 +n02109047 +n07565083 +n04310018 +n02988304 +n07754684 +n02058221 +n02114367 +n03485794 +n03424325 +n04443257 +n01697457 +n02219486 +n02877765 +n01644900 +n03775071 +n02097047 +n02085620 +n07693725 +n03160309 +n02815834 +n03110669 +n03868863 +n04008634 +n03743016 +n02094114 +n03208938 +n07590611 +n04273569 +n03706229 +n02013706 +n07753592 +n02916936 +n02112137 +n02108089 +n03841143 +n03595614 +n03125729 +n07742313 +n02487347 +n04235860 +n02782093 +n01742172 +n04604644 +n04554684 +n04086273 +n02906734 +n02091635 +n03201208 +n07693725 +n09332890 +n02088364 +n03017168 +n03729826 +n03983396 +n03676483 +n04204347 +n04251144 +n02917067 +n04081281 +n03930313 +n03494278 +n03160309 +n02389026 +n03250847 +n03133878 +n02091635 +n02389026 +n02087394 +n02113799 +n02281787 +n04548280 +n04509417 +n03384352 +n02009229 +n04370456 +n07753275 +n02102177 +n01494475 +n03459775 +n02804610 +n04456115 +n02099712 +n01494475 +n04344873 +n03788195 +n01944390 +n01910747 +n03868242 +n03452741 +n13044778 +n01883070 +n02701002 +n02793495 +n02692877 +n03220513 +n01978287 +n02483362 +n01776313 +n02808304 +n03721384 +n02012849 +n03733281 +n07920052 +n02326432 +n04192698 +n02113799 +n02106550 +n02097298 +n02509815 +n02835271 +n04548280 +n04522168 +n03950228 +n01689811 +n09428293 +n01877812 +n02100583 +n01704323 +n03680355 +n03000247 +n03742115 +n04486054 +n02097298 +n02091635 +n03680355 +n02002556 +n02101388 +n01818515 +n02454379 +n03216828 +n03933933 +n02107683 +n04252077 +n02980441 +n04039381 +n03201208 +n02102177 +n03388549 +n04523525 +n03770439 +n03710193 +n01675722 +n04501370 +n04501370 +n02092002 +n03598930 +n07932039 +n02101006 +n02268853 +n04259630 +n03871628 +n02786058 +n03485794 +n02009912 +n02091244 +n02808304 +n01860187 +n07613480 +n01843065 +n02095889 +n01943899 +n02859443 +n02112350 +n02165456 +n01773797 +n02328150 +n03485407 +n01955084 +n01601694 +n03290653 +n01796340 +n06359193 +n01558993 +n03950228 +n02096437 +n02093859 +n01773549 +n04154565 +n02437616 +n02017213 +n04146614 +n02488702 +n02137549 +n02013706 +n02100735 +n04465501 +n02727426 +n04467665 +n02095889 +n02415577 +n03075370 +n02097298 +n02027492 +n02441942 +n02104029 +n03617480 +n03623198 +n02536864 +n07875152 +n04208210 +n02423022 +n03016953 +n01669191 +n04344873 +n02526121 +n09472597 +n03873416 +n01829413 +n12057211 +n02950826 +n02786058 +n02486410 +n02486261 +n02423022 +n02107574 +n03773504 +n01558993 +n02096177 +n03961711 +n01873310 +n04118538 +n02091032 +n03483316 +n13040303 +n03180011 +n02125311 +n02172182 +n03976657 +n02094258 +n02980441 +n02107312 +n01755581 +n02776631 +n02492660 +n01664065 +n01514668 +n02966193 +n02492035 +n03482405 +n04019541 +n03954731 +n02106550 +n04404412 +n02797295 +n01955084 +n04612504 +n04069434 +n02492035 +n10565667 +n02091134 +n01631663 +n02727426 +n02071294 +n02124075 +n02092002 +n02321529 +n04208210 +n01819313 +n02087046 +n04409515 +n03485794 +n04356056 +n02087046 +n02492035 +n02085782 +n03788365 +n02483708 +n04532106 +n02106030 +n03742115 +n03868242 +n03000684 +n02100236 +n02398521 +n03976657 +n03595614 +n03884397 +n03109150 +n02978881 +n02279972 +n02391049 +n03417042 +n01734418 +n07565083 +n03970156 +n02256656 +n01689811 +n02107683 +n04591713 +n02105855 +n04099969 +n02980441 +n07720875 +n04259630 +n07920052 +n03777754 +n02099429 +n03777568 +n03759954 +n02109525 +n04264628 +n03584829 +n04525305 +n02099712 +n01689811 +n02169497 +n02011460 +n02109961 +n03814906 +n02095314 +n03866082 +n02966687 +n03710721 +n02690373 +n02514041 +n03062245 +n02797295 +n02167151 +n01518878 +n13040303 +n13044778 +n02088364 +n03045698 +n03857828 +n09288635 +n03873416 +n10148035 +n02837789 +n03388183 +n03272010 +n13054560 +n02699494 +n02051845 +n02966193 +n02437312 +n04557648 +n02177972 +n03792782 +n01751748 +n02892767 +n04344873 +n03902125 +n01558993 +n02087394 +n02006656 +n01784675 +n02099601 +n03930313 +n02980441 +n02097209 +n02091032 +n03742115 +n02606052 +n02104365 +n02097130 +n07860988 +n02120079 +n04235860 +n02883205 +n02727426 +n02099267 +n03884397 +n02992211 +n03095699 +n04254777 +n02093859 +n03146219 +n04548362 +n04335435 +n02489166 +n01531178 +n02259212 +n02894605 +n02114855 +n03188531 +n02088466 +n03956157 +n04589890 +n04525038 +n02233338 +n04612504 +n07711569 +n02437312 +n03976657 +n12144580 +n01843065 +n02120505 +n07745940 +n04552348 +n03710721 +n03425413 +n01697457 +n02396427 +n02092339 +n02493509 +n02087046 +n02123159 +n04251144 +n04259630 +n02096051 +n04507155 +n02106662 +n03445777 +n03494278 +n01756291 +n03063689 +n02105162 +n04346328 +n04591713 +n03662601 +n02093428 +n02917067 +n03710721 +n02493509 +n02794156 +n07720875 +n01669191 +n02088364 +n01873310 +n04037443 +n03598930 +n07714571 +n04069434 +n03888257 +n07718472 +n03676483 +n03929660 +n02514041 +n02105056 +n04275548 +n03534580 +n04296562 +n03770439 +n02165456 +n02704792 +n03995372 +n04344873 +n02123159 +n11879895 +n02094114 +n02514041 +n03388549 +n01629819 +n02776631 +n02963159 +n03857828 +n07768694 +n01847000 +n02229544 +n02834397 +n04380533 +n07717410 +n02112706 +n03014705 +n11939491 +n02769748 +n03075370 +n03534580 +n02116738 +n02111277 +n03482405 +n02096294 +n01819313 +n02105056 +n04540053 +n03028079 +n03467068 +n02107683 +n12768682 +n02481823 +n02447366 +n03255030 +n02977058 +n12620546 +n03131574 +n02981792 +n02110063 +n03494278 +n02415577 +n02398521 +n04554684 +n03063599 +n04579145 +n04335435 +n04264628 +n04311004 +n02457408 +n02106550 +n04483307 +n02977058 +n02091244 +n02169497 +n03041632 +n03630383 +n02669723 +n02104029 +n02364673 +n02749479 +n02107312 +n02128925 +n02091831 +n04554684 +n01978287 +n02655020 +n02125311 +n04136333 +n07753113 +n01943899 +n04204347 +n03372029 +n04418357 +n02980441 +n02859443 +n04235860 +n09472597 +n02328150 +n02017213 +n01734418 +n03930313 +n03868242 +n04355338 +n04118538 +n02804610 +n02028035 +n02835271 +n02114548 +n03710193 +n04033901 +n01984695 +n03443371 +n03956157 +n07753113 +n03532672 +n01664065 +n02786058 +n02125311 +n02085620 +n02655020 +n04235860 +n03018349 +n13040303 +n03658185 +n04254680 +n01484850 +n03594945 +n04209133 +n03877845 +n12985857 +n02102040 +n02112018 +n03467068 +n02115641 +n04562935 +n03042490 +n04429376 +n02895154 +n13052670 +n01514668 +n01491361 +n01924916 +n04039381 +n02437616 +n04065272 +n01855672 +n03733281 +n03935335 +n02492035 +n02130308 +n04131690 +n01484850 +n03197337 +n03761084 +n03899768 +n02128385 +n04604644 +n03623198 +n04152593 +n02783161 +n04252225 +n04118538 +n02412080 +n03717622 +n02480495 +n02102480 +n02676566 +n02492035 +n04265275 +n07742313 +n03483316 +n03706229 +n02129165 +n07718747 +n03967562 +n01443537 +n02190166 +n01943899 +n02089078 +n03627232 +n02110958 +n03902125 +n04081281 +n02172182 +n02099849 +n02492035 +n02999410 +n04435653 +n03127925 +n07880968 +n04243546 +n03544143 +n01877812 +n02823750 +n02814533 +n02916936 +n02120505 +n02088632 +n02977058 +n07734744 +n02676566 +n01770081 +n04116512 +n02871525 +n02091032 +n02536864 +n03223299 +n02963159 +n03180011 +n03207743 +n03496892 +n03444034 +n03100240 +n04592741 +n02091831 +n04613696 +n02097130 +n03196217 +n04523525 +n04505470 +n04153751 +n03786901 +n03220513 +n02808440 +n04399382 +n03594945 +n01978455 +n01824575 +n01986214 +n03792782 +n02730930 +n03208938 +n02641379 +n02106030 +n02106550 +n02110063 +n03786901 +n04532670 +n03595614 +n13054560 +n02233338 +n03803284 +n03355925 +n02236044 +n02951585 +n03063599 +n03047690 +n01496331 +n02708093 +n02356798 +n04442312 +n02107574 +n03459775 +n04026417 +n02860847 +n02655020 +n03983396 +n03658185 +n04589890 +n03956157 +n02093991 +n02091032 +n02977058 +n01667114 +n02500267 +n03347037 +n07716906 +n03598930 +n02841315 +n04254777 +n04049303 +n13040303 +n03495258 +n04596742 +n15075141 +n02105251 +n01667114 +n01775062 +n02002724 +n04536866 +n01768244 +n02808440 +n02087046 +n02917067 +n04111531 +n02190166 +n03690938 +n13040303 +n04133789 +n03877845 +n01985128 +n03220513 +n03970156 +n04483307 +n01641577 +n03384352 +n02823750 +n02088238 +n04346328 +n04423845 +n04356056 +n04509417 +n02606052 +n01704323 +n07831146 +n02120505 +n02099601 +n02799071 +n02233338 +n03394916 +n02865351 +n03272562 +n03843555 +n09246464 +n02825657 +n02951585 +n03692522 +n04517823 +n03803284 +n02086910 +n07613480 +n09399592 +n03775071 +n02099429 +n07695742 +n03527444 +n04330267 +n03832673 +n02894605 +n02951585 +n09332890 +n13054560 +n03623198 +n02363005 +n04275548 +n09288635 +n03902125 +n04435653 +n04398044 +n02666196 +n04147183 +n02454379 +n02107574 +n04592741 +n04200800 +n02066245 +n01629819 +n03272562 +n03877472 +n02009229 +n03532672 +n02437312 +n02089078 +n04127249 +n03443371 +n02091635 +n02667093 +n03935335 +n02364673 +n02165105 +n03770439 +n03063599 +n02363005 +n03100240 +n02815834 +n04275548 +n02791270 +n02325366 +n01695060 +n02787622 +n07753113 +n02128385 +n04125021 +n02395406 +n04371430 +n03388043 +n12620546 +n04597913 +n03967562 +n02708093 +n02280649 +n02113978 +n09288635 +n03425413 +n03207941 +n01740131 +n04120489 +n02106382 +n02536864 +n04458633 +n03633091 +n03967562 +n04371430 +n02690373 +n02113186 +n02870880 +n02114855 +n02396427 +n02132136 +n02107908 +n01950731 +n02992529 +n03814639 +n03594734 +n07613480 +n07932039 +n03721384 +n02641379 +n03721384 +n03661043 +n04509417 +n02814533 +n02437616 +n04192698 +n02002724 +n15075141 +n03670208 +n02974003 +n02094433 +n03617480 +n04486054 +n03290653 +n03255030 +n04435653 +n02916936 +n01728572 +n01632777 +n03028079 +n02106382 +n12267677 +n02279972 +n02111129 +n01820546 +n03680355 +n03991062 +n02090721 +n02879718 +n01514668 +n01728572 +n04442312 +n03379051 +n02930766 +n03982430 +n02497673 +n02115641 +n02389026 +n02793495 +n03594945 +n03661043 +n04398044 +n01773797 +n03630383 +n07892512 +n02259212 +n02128757 +n03595614 +n03126707 +n04200800 +n12620546 +n02091032 +n01531178 +n03775071 +n02346627 +n02096294 +n04204347 +n02892201 +n01807496 +n03825788 +n02342885 +n02128385 +n07745940 +n04404412 +n03720891 +n02109961 +n03976657 +n02093256 +n03787032 +n03794056 +n04136333 +n03787032 +n02105855 +n01774384 +n02974003 +n02106030 +n04023962 +n03485794 +n02086910 +n02091134 +n02727426 +n04591157 +n03804744 +n04111531 +n03733805 +n02787622 +n02980441 +n03347037 +n01630670 +n04579432 +n01944390 +n12620546 +n02114712 +n03527444 +n04239074 +n01807496 +n01592084 +n02879718 +n04429376 +n02643566 +n07871810 +n07753113 +n03042490 +n02281787 +n03179701 +n01685808 +n03814906 +n02927161 +n02346627 +n03160309 +n04037443 +n02708093 +n03590841 +n04370456 +n02948072 +n02494079 +n06785654 +n04507155 +n02011460 +n02256656 +n04037443 +n03485794 +n03271574 +n04254777 +n02128757 +n04154565 +n03461385 +n02966193 +n02226429 +n02101006 +n02112018 +n07695742 +n02110341 +n02443114 +n02110185 +n02948072 +n02840245 +n03854065 +n02096294 +n02980441 +n03062245 +n03584829 +n01644900 +n03891251 +n03599486 +n02701002 +n02172182 +n03888605 +n03642806 +n04562935 +n01930112 +n02389026 +n02783161 +n02807133 +n04099969 +n03457902 +n03633091 +n03594945 +n07695742 +n07714990 +n03208938 +n04479046 +n09835506 +n03595614 +n01983481 +n03670208 +n01734418 +n01978455 +n03721384 +n02091635 +n02133161 +n04026417 +n01734418 +n03530642 +n04209133 +n04099969 +n01616318 +n02279972 +n03676483 +n03868863 +n02666196 +n02396427 +n01768244 +n03240683 +n02112018 +n13133613 +n03032252 +n04235860 +n02110627 +n03404251 +n04350905 +n02087046 +n01843383 +n01797886 +n02992211 +n02950826 +n02268853 +n03888605 +n07248320 +n03160309 +n07248320 +n03868242 +n01704323 +n01944390 +n04462240 +n06794110 +n03032252 +n04376876 +n02281406 +n02134418 +n03584829 +n03598930 +n04254777 +n04435653 +n02017213 +n04049303 +n03180011 +n03782006 +n02749479 +n04525305 +n02791270 +n04429376 +n02102318 +n07584110 +n02966687 +n02423022 +n02107142 +n02101556 +n04179913 +n02999410 +n02091134 +n02797295 +n04560804 +n01955084 +n07583066 +n03743016 +n03623198 +n03843555 +n02134084 +n02093256 +n02105505 +n03788195 +n07716906 +n04542943 +n04296562 +n02120079 +n03920288 +n02892767 +n04311174 +n04141327 +n02117135 +n03888605 +n04557648 +n04523525 +n02281787 +n02951358 +n03680355 +n07693725 +n02870880 +n02007558 +n06596364 +n01984695 +n03345487 +n02091244 +n09256479 +n02105162 +n07693725 +n03838899 +n03534580 +n02493509 +n02096177 +n07892512 +n02018795 +n04592741 +n01728920 +n07875152 +n01773797 +n02051845 +n04273569 +n03125729 +n01773549 +n04376876 +n04336792 +n02137549 +n03633091 +n01877812 +n02128757 +n04423845 +n02981792 +n03452741 +n01735189 +n04532106 +n02268853 +n07615774 +n03538406 +n01917289 +n01496331 +n01773549 +n03788195 +n02916936 +n03045698 +n03743016 +n03868863 +n04479046 +n01882714 +n03197337 +n02013706 +n07873807 +n02480855 +n04409515 +n02930766 +n03888257 +n03127925 +n11939491 +n02328150 +n02895154 +n02408429 +n02361337 +n02092339 +n01484850 +n03065424 +n02167151 +n01798484 +n02110341 +n02085620 +n04417672 +n02097047 +n04235860 +n02692877 +n04599235 +n04201297 +n02110341 +n03776460 +n02037110 +n02174001 +n02797295 +n02939185 +n03637318 +n03710721 +n02086646 +n03657121 +n02509815 +n07836838 +n04592741 +n04264628 +n04399382 +n02814533 +n04311174 +n02137549 +n07753113 +n02704792 +n02093859 +n01694178 +n03444034 +n01784675 +n02088466 +n03692522 +n02091244 +n02133161 +n09835506 +n01614925 +n02168699 +n02113624 +n03109150 +n02190166 +n03710721 +n02092002 +n01644373 +n04357314 +n01704323 +n01882714 +n03908618 +n04592741 +n02095570 +n02870880 +n04277352 +n03666591 +n09332890 +n02090721 +n04326547 +n04251144 +n04033901 +n02977058 +n03095699 +n02114548 +n02966193 +n07717410 +n04562935 +n02814860 +n02963159 +n02090721 +n03891251 +n02325366 +n03630383 +n03742115 +n03400231 +n07753275 +n02174001 +n01877812 +n02870880 +n02892201 +n02727426 +n02115913 +n02395406 +n03956157 +n02074367 +n07760859 +n04476259 +n03018349 +n04208210 +n04560804 +n03794056 +n03803284 +n03476684 +n01514668 +n04347754 +n01773157 +n01820546 +n04443257 +n03976657 +n04146614 +n02100583 +n04476259 +n01776313 +n02095570 +n03180011 +n02110806 +n02129165 +n02504013 +n02808304 +n03854065 +n02066245 +n01685808 +n03290653 +n01924916 +n03776460 +n02102973 +n03871628 +n04266014 +n04350905 +n02104029 +n03598930 +n04344873 +n10565667 +n02123045 +n02437312 +n03759954 +n02437616 +n02123159 +n01664065 +n02916936 +n03124170 +n02504013 +n03272562 +n03617480 +n02091244 +n02051845 +n02090622 +n04376876 +n04613696 +n02108551 +n04328186 +n01682714 +n03777754 +n02095570 +n07802026 +n02437616 +n02169497 +n02100735 +n01748264 +n03942813 +n04296562 +n02264363 +n04517823 +n03207743 +n02927161 +n04332243 +n02110185 +n04409515 +n02480495 +n09468604 +n02100735 +n07716358 +n15075141 +n03814639 +n02105251 +n01537544 +n01855672 +n01644900 +n04037443 +n02870880 +n02264363 +n04336792 +n09229709 +n03146219 +n02837789 +n03733281 +n04599235 +n04008634 +n02111500 +n04560804 +n02116738 +n02009229 +n03272562 +n02106030 +n03666591 +n02356798 +n09835506 +n02727426 +n02113712 +n02397096 +n04153751 +n02808304 +n02033041 +n02992529 +n02837789 +n03355925 +n03492542 +n03991062 +n02457408 +n03085013 +n04501370 +n02843684 +n02490219 +n02106382 +n02489166 +n03670208 +n02447366 +n02655020 +n13054560 +n03445924 +n03903868 +n02099601 +n02119022 +n02422106 +n04019541 +n04355933 +n04200800 +n02123597 +n13052670 +n03250847 +n02992529 +n02951585 +n03085013 +n01768244 +n04525305 +n03187595 +n01798484 +n03467068 +n04370456 +n03832673 +n02097130 +n03240683 +n04371430 +n04579432 +n04458633 +n04483307 +n02980441 +n02102318 +n04154565 +n03452741 +n03961711 +n02808440 +n03063689 +n02114855 +n02096051 +n04461696 +n04487394 +n02113186 +n07892512 +n03223299 +n04081281 +n04371774 +n04417672 +n03249569 +n03197337 +n02101006 +n01768244 +n02113186 +n03899768 +n02783161 +n01734418 +n01728920 +n02497673 +n03063599 +n04479046 +n02895154 +n02100877 +n01983481 +n03908618 +n04507155 +n03344393 +n01829413 +n02342885 +n02190166 +n07802026 +n03991062 +n02974003 +n01698640 +n04447861 +n03623198 +n04347754 +n07614500 +n12144580 +n04254680 +n04482393 +n01943899 +n03887697 +n03598930 +n02483362 +n02120079 +n03680355 +n03485407 +n02130308 +n02894605 +n03841143 +n02172182 +n02727426 +n04418357 +n02097209 +n03495258 +n02701002 +n03481172 +n02860847 +n04435653 +n03384352 +n04131690 +n02701002 +n03868863 +n01644373 +n03000247 +n02397096 +n04118776 +n02117135 +n02051845 +n03649909 +n02869837 +n03661043 +n02090622 +n02190166 +n02134084 +n02701002 +n03496892 +n02871525 +n04277352 +n02966193 +n07697313 +n03447447 +n03388183 +n02483708 +n03623198 +n09421951 +n02128925 +n02823428 +n02410509 +n02099429 +n04162706 +n01601694 +n06794110 +n03929660 +n07920052 +n04273569 +n02259212 +n03180011 +n01685808 +n02095889 +n04204347 +n02804414 +n02236044 +n04111531 +n02132136 +n07717556 +n03388183 +n04200800 +n04154565 +n02099601 +n03065424 +n03942813 +n01930112 +n04049303 +n02965783 +n03444034 +n03131574 +n02090721 +n02281787 +n04389033 +n07615774 +n02086240 +n02105412 +n03794056 +n03977966 +n01728572 +n03218198 +n07584110 +n02134084 +n03991062 +n03124170 +n04070727 +n03908618 +n07932039 +n02110806 +n01630670 +n03598930 +n04355338 +n03014705 +n02172182 +n03721384 +n02095314 +n02979186 +n01742172 +n04409515 +n02089973 +n02422699 +n03763968 +n02492660 +n02910353 +n03743016 +n03196217 +n02840245 +n03804744 +n04532106 +n03773504 +n02100236 +n02325366 +n07753275 +n03483316 +n01494475 +n04344873 +n04259630 +n03627232 +n02280649 +n02883205 +n04404412 +n04357314 +n04286575 +n03803284 +n02098413 +n04209239 +n01632777 +n03908618 +n02110185 +n02457408 +n02788148 +n03467068 +n01443537 +n04310018 +n03325584 +n02395406 +n03133878 +n02134084 +n02089867 +n01833805 +n03443371 +n03838899 +n03216828 +n03485794 +n03761084 +n02500267 +n04435653 +n01514668 +n10565667 +n01675722 +n02233338 +n02497673 +n01784675 +n03761084 +n02279972 +n03721384 +n02088238 +n03017168 +n01770081 +n03347037 +n02231487 +n12768682 +n03877472 +n02730930 +n02088238 +n01592084 +n03998194 +n03478589 +n03776460 +n02086910 +n02113624 +n02669723 +n01930112 +n04356056 +n12768682 +n09421951 +n03908618 +n02120079 +n02133161 +n03345487 +n02087046 +n04118538 +n03344393 +n02704792 +n02112018 +n02100583 +n03196217 +n04133789 +n02640242 +n02817516 +n01740131 +n01532829 +n04548362 +n04509417 +n02364673 +n02415577 +n04204347 +n12267677 +n03445777 +n07584110 +n03544143 +n03764736 +n07892512 +n01770393 +n01688243 +n04033995 +n04590129 +n01978287 +n02113712 +n02093428 +n01819313 +n02437312 +n03706229 +n03535780 +n02112137 +n04266014 +n02137549 +n03630383 +n03089624 +n04208210 +n03100240 +n02480495 +n02860847 +n03062245 +n04409515 +n04404412 +n02687172 +n04065272 +n03770439 +n04049303 +n03249569 +n02088238 +n01978287 +n04532106 +n01687978 +n01751748 +n02981792 +n03792972 +n04326547 +n01728920 +n04612504 +n07714990 +n03764736 +n07717410 +n04141327 +n03032252 +n02107574 +n02226429 +n01820546 +n02088364 +n03961711 +n07753113 +n02094114 +n03733805 +n02607072 +n02028035 +n03857828 +n02807133 +n04456115 +n02640242 +n02206856 +n12144580 +n02115913 +n03627232 +n02699494 +n01756291 +n03630383 +n02280649 +n02799071 +n07749582 +n01773157 +n09256479 +n04235860 +n06874185 +n02002556 +n02454379 +n03775546 +n02177972 +n02009229 +n03297495 +n03895866 +n01694178 +n01698640 +n01796340 +n03124043 +n02107683 +n02981792 +n04540053 +n07695742 +n02102318 +n02123597 +n04152593 +n01695060 +n04252077 +n01689811 +n01882714 +n04141327 +n07753592 +n02793495 +n04136333 +n03876231 +n02860847 +n04591157 +n04380533 +n03259280 +n03530642 +n01558993 +n04355338 +n02017213 +n02091032 +n07615774 +n07693725 +n02319095 +n04335435 +n06794110 +n11879895 +n09332890 +n02708093 +n02643566 +n03895866 +n03838899 +n03393912 +n02112137 +n01955084 +n02094433 +n02791124 +n03877472 +n03792782 +n01756291 +n02097474 +n03259280 +n02190166 +n07715103 +n02095889 +n04532106 +n04597913 +n03743016 +n04548362 +n02481823 +n03388549 +n02319095 +n03792972 +n02823750 +n03623198 +n03933933 +n02231487 +n03476684 +n02098286 +n02169497 +n03379051 +n02457408 +n07742313 +n07615774 +n02206856 +n04239074 +n03393912 +n01592084 +n03680355 +n02837789 +n03590841 +n01986214 +n03657121 +n03697007 +n01697457 +n02447366 +n04418357 +n04367480 +n03220513 +n04479046 +n03100240 +n03000684 +n01978287 +n02105855 +n03127925 +n02105855 +n02092002 +n02028035 +n02094258 +n04204347 +n01795545 +n02125311 +n02823750 +n02112137 +n03126707 +n02123597 +n03223299 +n01798484 +n02280649 +n01776313 +n02641379 +n01608432 +n03249569 +n01630670 +n03895866 +n03888257 +n02422106 +n02093859 +n04125021 +n04065272 +n03814906 +n03992509 +n04423845 +n03393912 +n02066245 +n02114548 +n10148035 +n01608432 +n04355338 +n04277352 +n03976467 +n02859443 +n04141076 +n02127052 +n02088466 +n07880968 +n09835506 +n03874293 +n03481172 +n04355338 +n02894605 +n03544143 +n02977058 +n01773157 +n02486261 +n02112137 +n03075370 +n01601694 +n04004767 +n04273569 +n04275548 +n02966193 +n03443371 +n01755581 +n02100877 +n04325704 +n02090379 +n02088466 +n03347037 +n03691459 +n01616318 +n01820546 +n04009552 +n03637318 +n01795545 +n02108000 +n01843383 +n03908618 +n07753275 +n02950826 +n04069434 +n02701002 +n02799071 +n02786058 +n02526121 +n03459775 +n04552348 +n04462240 +n02108915 +n02088364 +n02791270 +n01682714 +n02123394 +n02101388 +n02840245 +n04493381 +n01990800 +n04162706 +n13054560 +n01632777 +n02093859 +n02025239 +n02797295 +n03179701 +n02980441 +n04596742 +n01980166 +n09835506 +n03445777 +n03110669 +n02094114 +n02086079 +n01443537 +n02110063 +n04355338 +n01560419 +n03355925 +n02119022 +n03447447 +n02219486 +n02113624 +n04523525 +n01983481 +n10565667 +n03803284 +n04367480 +n03400231 +n01980166 +n04596742 +n02417914 +n02514041 +n02033041 +n02094114 +n02134084 +n13040303 +n03763968 +n04111531 +n02090622 +n02486261 +n03452741 +n04458633 +n02094114 +n02097658 +n01978455 +n02988304 +n04229816 +n02892767 +n02804414 +n03240683 +n01443537 +n02088632 +n02172182 +n02786058 +n02701002 +n04515003 +n07693725 +n03594945 +n02100735 +n04204347 +n02093754 +n09428293 +n03958227 +n03042490 +n06359193 +n02102177 +n03445924 +n04141975 +n03690938 +n02108089 +n03075370 +n04517823 +n03208938 +n03958227 +n10148035 +n02444819 +n02092002 +n10565667 +n02437312 +n02280649 +n02909870 +n03977966 +n03110669 +n03777568 +n07930864 +n04560804 +n03888605 +n02120505 +n03014705 +n01744401 +n03770439 +n03393912 +n02727426 +n02093754 +n03379051 +n03788195 +n02099601 +n02481823 +n03291819 +n04127249 +n03803284 +n03794056 +n03478589 +n02009912 +n07579787 +n02951358 +n03297495 +n04517823 +n03794056 +n03854065 +n04325704 +n03902125 +n03207941 +n03160309 +n02727426 +n03498962 +n02056570 +n01530575 +n03290653 +n03133878 +n02099267 +n03742115 +n04273569 +n02977058 +n03724870 +n04597913 +n03763968 +n03201208 +n02672831 +n02096437 +n02916936 +n04398044 +n03110669 +n01580077 +n03775546 +n01665541 +n03109150 +n01843383 +n01751748 +n04487394 +n02804414 +n04200800 +n03661043 +n01806143 +n01641577 +n02325366 +n03976467 +n02917067 +n01819313 +n04465501 +n01955084 +n03063599 +n04099969 +n02793495 +n02086079 +n02859443 +n03690938 +n13052670 +n02088238 +n02699494 +n03721384 +n02006656 +n02415577 +n02981792 +n02492035 +n03379051 +n02280649 +n03095699 +n03720891 +n03459775 +n02422106 +n01644373 +n03347037 +n02834397 +n03218198 +n03627232 +n04557648 +n02423022 +n01784675 +n03425413 +n04579432 +n07875152 +n03461385 +n03404251 +n03658185 +n07720875 +n01943899 +n12620546 +n03967562 +n02102480 +n02500267 +n02087046 +n03595614 +n02100236 +n07892512 +n04505470 +n01986214 +n02447366 +n01978455 +n03942813 +n02917067 +n02125311 +n04275548 +n02077923 +n01829413 +n04557648 +n02483362 +n03250847 +n02454379 +n02793495 +n03891251 +n03938244 +n03467068 +n02226429 +n02106166 +n04465501 +n04423845 +n02108422 +n02776631 +n01773797 +n03250847 +n04606251 +n01664065 +n04127249 +n04254777 +n02483362 +n03041632 +n01729322 +n02093859 +n02977058 +n04252225 +n02116738 +n02950826 +n03494278 +n02130308 +n03786901 +n04462240 +n03617480 +n04418357 +n02879718 +n03018349 +n03272010 +n03379051 +n01614925 +n02102040 +n01630670 +n03627232 +n13037406 +n09288635 +n07584110 +n02102177 +n03347037 +n01632458 +n01768244 +n03584254 +n04346328 +n03599486 +n03109150 +n03692522 +n15075141 +n01742172 +n02841315 +n13040303 +n02117135 +n02107142 +n04266014 +n03724870 +n07248320 +n02704792 +n03871628 +n01990800 +n02129604 +n02119789 +n02125311 +n04606251 +n07768694 +n03187595 +n04376876 +n04483307 +n02110063 +n02107142 +n02782093 +n04487081 +n01675722 +n01608432 +n03297495 +n02098105 +n01950731 +n04238763 +n02105855 +n04552348 +n02051845 +n02128925 +n02877765 +n02128385 +n02877765 +n01872401 +n01682714 +n03481172 +n02509815 +n02236044 +n02280649 +n02488702 +n03492542 +n01749939 +n03207743 +n03179701 +n02100877 +n01981276 +n03710637 +n03223299 +n01630670 +n03877472 +n01560419 +n02259212 +n04127249 +n03796401 +n04486054 +n01807496 +n03492542 +n01694178 +n01740131 +n01985128 +n03637318 +n03584254 +n07717556 +n07753592 +n02791124 +n03786901 +n02965783 +n03733131 +n04458633 +n01614925 +n04435653 +n03534580 +n04532106 +n02276258 +n01697457 +n03187595 +n04590129 +n04004767 +n03877472 +n07248320 +n03207743 +n02892767 +n03976467 +n03133878 +n03594734 +n01877812 +n03785016 +n04613696 +n03534580 +n02013706 +n01985128 +n02110806 +n02441942 +n04554684 +n03916031 +n01748264 +n04204347 +n03450230 +n01622779 +n02799071 +n02017213 +n03201208 +n02487347 +n02497673 +n01795545 +n02487347 +n04487081 +n03710637 +n04026417 +n07747607 +n02092002 +n02701002 +n02492660 +n03995372 +n02415577 +n02091831 +n02423022 +n02165456 +n03666591 +n04604644 +n02107142 +n02951358 +n02219486 +n04542943 +n03777568 +n03787032 +n04332243 +n02927161 +n09288635 +n01704323 +n02091244 +n02894605 +n04554684 +n02085936 +n03014705 +n01871265 +n02113799 +n02107683 +n03347037 +n04296562 +n09256479 +n02110341 +n06874185 +n03967562 +n02708093 +n04344873 +n02437616 +n04523525 +n02099712 +n04404412 +n04277352 +n02948072 +n04111531 +n03452741 +n02966193 +n03452741 +n02100735 +n04597913 +n07747607 +n03764736 +n02123159 +n02107574 +n01729977 +n03976467 +n03788195 +n07717556 +n15075141 +n04596742 +n01729977 +n03042490 +n02102040 +n02093991 +n12144580 +n02107908 +n04612504 +n02981792 +n01644900 +n02128385 +n02128925 +n02110806 +n01748264 +n02777292 +n04209239 +n02112350 +n02361337 +n04141327 +n02229544 +n02281406 +n03895866 +n02108915 +n12768682 +n02106030 +n03218198 +n04133789 +n02093428 +n03461385 +n02119789 +n03444034 +n02877765 +n03724870 +n03773504 +n01698640 +n02504013 +n02231487 +n01558993 +n06785654 +n01981276 +n02389026 +n04277352 +n02687172 +n03291819 +n04447861 +n04310018 +n02486410 +n02105855 +n02948072 +n03785016 +n02002724 +n03417042 +n03188531 +n02259212 +n02776631 +n02951585 +n03337140 +n01751748 +n02879718 +n04277352 +n12057211 +n02951585 +n03967562 +n07714571 +n02085620 +n02510455 +n02869837 +n01980166 +n01756291 +n03792972 +n02112137 +n03680355 +n03841143 +n07565083 +n07693725 +n07715103 +n01820546 +n01873310 +n03777568 +n01833805 +n02676566 +n03447721 +n02500267 +n03602883 +n04239074 +n04118538 +n04536866 +n04548362 +n02776631 +n01667778 +n03825788 +n03891332 +n04258138 +n04542943 +n02099849 +n03041632 +n04179913 +n01632458 +n01537544 +n02930766 +n03814639 +n02643566 +n03498962 +n01798484 +n02692877 +n03134739 +n03314780 +n02870880 +n07768694 +n04141076 +n03786901 +n03314780 +n02172182 +n02092339 +n03259280 +n07880968 +n02115641 +n01990800 +n12768682 +n07930864 +n03527444 +n02091244 +n03769881 +n01494475 +n03249569 +n02395406 +n03776460 +n12985857 +n02056570 +n02486410 +n01737021 +n02488702 +n01978455 +n01622779 +n02510455 +n01776313 +n07831146 +n02018207 +n02808304 +n01855032 +n03803284 +n02514041 +n02099849 +n01806143 +n03837869 +n03902125 +n02895154 +n04208210 +n02107142 +n01855672 +n02480495 +n04065272 +n03761084 +n02100236 +n02111277 +n02089867 +n04552348 +n02791124 +n02101556 +n02480855 +n02097658 +n03180011 +n03899768 +n02087394 +n02236044 +n02794156 +n04550184 +n02099849 +n02111129 +n03976657 +n01847000 +n04465501 +n03063599 +n03733131 +n09332890 +n02892767 +n01978455 +n02111129 +n03832673 +n04141327 +n02276258 +n03786901 +n02672831 +n01978455 +n02807133 +n03290653 +n03297495 +n02112350 +n02894605 +n03763968 +n02776631 +n04606251 +n03498962 +n04443257 +n04355933 +n02727426 +n12057211 +n04376876 +n02403003 +n03495258 +n04584207 +n04462240 +n01729322 +n03207941 +n02483708 +n10565667 +n03866082 +n04019541 +n04154565 +n13052670 +n02992211 +n03642806 +n03372029 +n03832673 +n03617480 +n01797886 +n04591157 +n04443257 +n03045698 +n03207941 +n04081281 +n02165105 +n02105412 +n02980441 +n02097658 +n02823750 +n02397096 +n03662601 +n01514859 +n03759954 +n02859443 +n02011460 +n03467068 +n04458633 +n02111277 +n01751748 +n03127747 +n03838899 +n07715103 +n02894605 +n02793495 +n07248320 +n03995372 +n02094258 +n03937543 +n03642806 +n02607072 +n03483316 +n02090622 +n04525305 +n02085936 +n03920288 +n03063599 +n01843065 +n02099267 +n01739381 +n03793489 +n02018207 +n03775071 +n01496331 +n06785654 +n03935335 +n03887697 +n07747607 +n03773504 +n07860988 +n04456115 +n02492035 +n03874293 +n04275548 +n03063689 +n02101006 +n01807496 +n02113978 +n02655020 +n02488702 +n02174001 +n04004767 +n04579432 +n04141975 +n03584254 +n02112706 +n03127747 +n02097047 +n04458633 +n02814533 +n02510455 +n02106166 +n02492035 +n13054560 +n04090263 +n02110341 +n02965783 +n04235860 +n01735189 +n01698640 +n07697313 +n02276258 +n03868242 +n02321529 +n03042490 +n04418357 +n03814906 +n02607072 +n04517823 +n03496892 +n07717556 +n02051845 +n03291819 +n09399592 +n02791124 +n02259212 +n02233338 +n07802026 +n03047690 +n03995372 +n03530642 +n02966687 +n02492035 +n02229544 +n01689811 +n01532829 +n03733805 +n01776313 +n02112137 +n04200800 +n07747607 +n03016953 +n03729826 +n07734744 +n02088094 +n04542943 +n02667093 +n03400231 +n04355933 +n03544143 +n02128385 +n04356056 +n02112018 +n02859443 +n02128925 +n02091032 +n04004767 +n02096051 +n02113712 +n02927161 +n03476991 +n02423022 +n12144580 +n04548280 +n03724870 +n04335435 +n07583066 +n02871525 +n03272010 +n02484975 +n02786058 +n09472597 +n04209133 +n03717622 +n03598930 +n02417914 +n01824575 +n04204238 +n02999410 +n04467665 +n04239074 +n03444034 +n04263257 +n03903868 +n02492035 +n02110627 +n02007558 +n02090379 +n03995372 +n04325704 +n04277352 +n02494079 +n02321529 +n12144580 +n01687978 +n03095699 +n02074367 +n02128925 +n02363005 +n02346627 +n04579145 +n03133878 +n02776631 +n03787032 +n03127747 +n01749939 +n01860187 +n04317175 +n12768682 +n02219486 +n03630383 +n02097130 +n02859443 +n03529860 +n02229544 +n03272562 +n04116512 +n01685808 +n03902125 +n02174001 +n02112706 +n02840245 +n04141975 +n01641577 +n02326432 +n07749582 +n02797295 +n04596742 +n02974003 +n01729977 +n02504013 +n02843684 +n03825788 +n04517823 +n03216828 +n04346328 +n02408429 +n01797886 +n02493509 +n02799071 +n04204347 +n07716906 +n06874185 +n02093647 +n02111889 +n04254777 +n02966687 +n03938244 +n02321529 +n03089624 +n02096585 +n02877765 +n03259280 +n02895154 +n02107574 +n07615774 +n03131574 +n02497673 +n01688243 +n04273569 +n03873416 +n03763968 +n01534433 +n03187595 +n02786058 +n02165105 +n02099601 +n02782093 +n01601694 +n03459775 +n01770081 +n04019541 +n01742172 +n03452741 +n03891251 +n01818515 +n03825788 +n04141975 +n02087394 +n02325366 +n02092339 +n07584110 +n03649909 +n02113712 +n04579145 +n03908714 +n04392985 +n02124075 +n13040303 +n02051845 +n02231487 +n02493509 +n01748264 +n03457902 +n03146219 +n01675722 +n03787032 +n02361337 +n07579787 +n04479046 +n02168699 +n02992211 +n02113624 +n02974003 +n04357314 +n07920052 +n07615774 +n03452741 +n03534580 +n02094258 +n04505470 +n02641379 +n03868863 +n02422699 +n03249569 +n02123394 +n02106662 +n01784675 +n04371430 +n04557648 +n02514041 +n02051845 +n03916031 +n01751748 +n02504458 +n07734744 +n02494079 +n03902125 +n02930766 +n03977966 +n03724870 +n04116512 +n03272010 +n04049303 +n03590841 +n02361337 +n04044716 +n03680355 +n03637318 +n11939491 +n03866082 +n03272010 +n02119789 +n07615774 +n03602883 +n03492542 +n04310018 +n02231487 +n02110185 +n03544143 +n03995372 +n02268443 +n01440764 +n02480855 +n02317335 +n01692333 +n02109961 +n03379051 +n03075370 +n02687172 +n04442312 +n03584254 +n01729977 +n02727426 +n03134739 +n01828970 +n02093428 +n02233338 +n02091831 +n02939185 +n04579432 +n04266014 +n03291819 +n03954731 +n03838899 +n07871810 +n02077923 +n12057211 +n02415577 +n02115641 +n03781244 +n07880968 +n07711569 +n03838899 +n03180011 +n02114712 +n03887697 +n02930766 +n01644900 +n02111277 +n02999410 +n03534580 +n02497673 +n02410509 +n02777292 +n03461385 +n04086273 +n03627232 +n01689811 +n09193705 +n01955084 +n03916031 +n04355338 +n04259630 +n03617480 +n01498041 +n02169497 +n02423022 +n02422106 +n02699494 +n02494079 +n04515003 +n03724870 +n02113799 +n03930630 +n04458633 +n04065272 +n02939185 +n02281787 +n02504458 +n02190166 +n03691459 +n02408429 +n07579787 +n02114712 +n04125021 +n04461696 +n03384352 +n03388183 +n03837869 +n03485407 +n01986214 +n03255030 +n02804610 +n03255030 +n01924916 +n04398044 +n04540053 +n02667093 +n03146219 +n02483708 +n03125729 +n09256479 +n02089078 +n02607072 +n03742115 +n04067472 +n02114712 +n03196217 +n04254120 +n02105412 +n03250847 +n02111500 +n07565083 +n04162706 +n01917289 +n03018349 +n03530642 +n02107908 +n02169497 +n02018795 +n03658185 +n03424325 +n02018207 +n03630383 +n03903868 +n07745940 +n02138441 +n03372029 +n02319095 +n01855672 +n03062245 +n07753592 +n04147183 +n04254777 +n03838899 +n02219486 +n04270147 +n07871810 +n01910747 +n02999410 +n12768682 +n03649909 +n04120489 +n02002724 +n01756291 +n02445715 +n02009912 +n01798484 +n04532670 +n04604644 +n04044716 +n02169497 +n02669723 +n04461696 +n02134084 +n03743016 +n01798484 +n03404251 +n02783161 +n03201208 +n02134084 +n02607072 +n03180011 +n02094433 +n03388549 +n07590611 +n02640242 +n02085782 +n02871525 +n03967562 +n02119789 +n04507155 +n04149813 +n03492542 +n02437312 +n02098105 +n01443537 +n01632458 +n02860847 +n02113023 +n03337140 +n12620546 +n03459775 +n11879895 +n03085013 +n02096585 +n02088466 +n01751748 +n02497673 +n02236044 +n03109150 +n02130308 +n04325704 +n03676483 +n02105412 +n03180011 +n02787622 +n02025239 +n01693334 +n02325366 +n02281787 +n04597913 +n04346328 +n04404412 +n02006656 +n02107312 +n02165456 +n03042490 +n04418357 +n02093428 +n04133789 +n07754684 +n03075370 +n03916031 +n04536866 +n07711569 +n02895154 +n02105251 +n02692877 +n03344393 +n04493381 +n04579145 +n03201208 +n04243546 +n02167151 +n01797886 +n09256479 +n01582220 +n04548362 +n03476684 +n04606251 +n04579432 +n02086910 +n02134084 +n02109525 +n04238763 +n03764736 +n04044716 +n04548362 +n02692877 +n03207941 +n04229816 +n03598930 +n04591157 +n02317335 +n01734418 +n15075141 +n03825788 +n04536866 +n04254777 +n02277742 +n03877845 +n02747177 +n01667778 +n01664065 +n03180011 +n02701002 +n13040303 +n03388549 +n04591713 +n04389033 +n02699494 +n02105162 +n02280649 +n04254777 +n02607072 +n01985128 +n03045698 +n03717622 +n02086240 +n03903868 +n02326432 +n02229544 +n03530642 +n01685808 +n02091467 +n03544143 +n03902125 +n02125311 +n09399592 +n04070727 +n07730033 +n07684084 +n04398044 +n03372029 +n03483316 +n03495258 +n01728572 +n04037443 +n02395406 +n03457902 +n03761084 +n01734418 +n02090721 +n03976657 +n03785016 +n01514668 +n04357314 +n02835271 +n02504013 +n02489166 +n03530642 +n02950826 +n02111889 +n04371774 +n04560804 +n03445924 +n02091831 +n07753592 +n03447721 +n01770081 +n02487347 +n02794156 +n02097209 +n03891251 +n02790996 +n03109150 +n04380533 +n03595614 +n04153751 +n04591713 +n02108915 +n04429376 +n01641577 +n04264628 +n03271574 +n02114367 +n07930864 +n02105641 +n02104365 +n03717622 +n04423845 +n02094258 +n02116738 +n01692333 +n02909870 +n02606052 +n02099849 +n02363005 +n07734744 +n02841315 +n01860187 +n02090721 +n03841143 +n02892201 +n04125021 +n04612504 +n01537544 +n04505470 +n02281406 +n03983396 +n02123045 +n01784675 +n02493509 +n03476991 +n03534580 +n02123159 +n02808440 +n04074963 +n01616318 +n03786901 +n03721384 +n02086240 +n02488702 +n03642806 +n03160309 +n01796340 +n13044778 +n09256479 +n03089624 +n02086910 +n04604644 +n04040759 +n07584110 +n04552348 +n04149813 +n02066245 +n01580077 +n04443257 +n04336792 +n02107683 +n01797886 +n02134418 +n02134418 +n01632777 +n06359193 +n01797886 +n03485407 +n04259630 +n03992509 +n07248320 +n04486054 +n03026506 +n02088632 +n03124043 +n02442845 +n02091467 +n03376595 +n04310018 +n02966687 +n03777568 +n03100240 +n04350905 +n02843684 +n02109961 +n01631663 +n03240683 +n03141823 +n02091635 +n01443537 +n11939491 +n02002724 +n03733281 +n02106662 +n03942813 +n03337140 +n03777568 +n04251144 +n07716906 +n01820546 +n03929660 +n03478589 +n02441942 +n02364673 +n09835506 +n04515003 +n02264363 +n01773157 +n01770393 +n03777568 +n04049303 +n02219486 +n02130308 +n02437312 +n02815834 +n02093647 +n01616318 +n04332243 +n12620546 +n10148035 +n02927161 +n02128757 +n03496892 +n03417042 +n04200800 +n02484975 +n01689811 +n02107574 +n03976657 +n03998194 +n02088632 +n04243546 +n03788365 +n02087046 +n10565667 +n03832673 +n02412080 +n01558993 +n03492542 +n04540053 +n01796340 +n04376876 +n02395406 +n03075370 +n07753592 +n02481823 +n02457408 +n02110806 +n03877472 +n01667778 +n03131574 +n03956157 +n02108422 +n02114548 +n03272010 +n03394916 +n01774384 +n03623198 +n02027492 +n04099969 +n02106662 +n02951358 +n01798484 +n13133613 +n03207743 +n04560804 +n02268443 +n03775071 +n04346328 +n01930112 +n03584254 +n02790996 +n09256479 +n01985128 +n02480495 +n02268853 +n03627232 +n03180011 +n02233338 +n03982430 +n02841315 +n03649909 +n04336792 +n09468604 +n02056570 +n02787622 +n03764736 +n02442845 +n02437616 +n03445924 +n01917289 +n02107312 +n02137549 +n03599486 +n03721384 +n04041544 +n01824575 +n04285008 +n01687978 +n01514668 +n04554684 +n04209239 +n03272562 +n03425413 +n02797295 +n02106382 +n06359193 +n03642806 +n01677366 +n03134739 +n02105641 +n01985128 +n03594945 +n07583066 +n02667093 +n02086646 +n07590611 +n02111889 +n03857828 +n04259630 +n02730930 +n04285008 +n03095699 +n03761084 +n02167151 +n04404412 +n04254120 +n04461696 +n04192698 +n01873310 +n03763968 +n02804414 +n04325704 +n01682714 +n02120505 +n03584829 +n04356056 +n04476259 +n09332890 +n04399382 +n03676483 +n03961711 +n09332890 +n02096294 +n04532106 +n04149813 +n03891251 +n06874185 +n02769748 +n04485082 +n04277352 +n03793489 +n03788365 +n02389026 +n03709823 +n03032252 +n02606052 +n03271574 +n03492542 +n01665541 +n01675722 +n03691459 +n07892512 +n02799071 +n02007558 +n02510455 +n03742115 +n04136333 +n03630383 +n02910353 +n02111129 +n02488702 +n01950731 +n04204238 +n04461696 +n02102318 +n03538406 +n03916031 +n02130308 +n04311174 +n01667114 +n02115641 +n04487394 +n02233338 +n02099267 +n01797886 +n02051845 +n04428191 +n02124075 +n04532670 +n03775546 +n07892512 +n02100877 +n04398044 +n04590129 +n02101388 +n04254680 +n04485082 +n03026506 +n04111531 +n03924679 +n01667778 +n02169497 +n04311004 +n03947888 +n02093754 +n01818515 +n03763968 +n04380533 +n02077923 +n02488702 +n01770393 +n02226429 +n07932039 +n02095314 +n01847000 +n03250847 +n04296562 +n02100236 +n03045698 +n07590611 +n03787032 +n02101006 +n01873310 +n02009912 +n02096051 +n07749582 +n02112018 +n03000134 +n03447721 +n04118776 +n03970156 +n01944390 +n07613480 +n02879718 +n01873310 +n03187595 +n03325584 +n01496331 +n02097298 +n03793489 +n02111500 +n04311174 +n01739381 +n02114548 +n02165105 +n01930112 +n02823428 +n04111531 +n02137549 +n04355338 +n03916031 +n03791053 +n02113186 +n04081281 +n02104029 +n03483316 +n04579145 +n01558993 +n01748264 +n02791270 +n03929660 +n02129604 +n02102040 +n03796401 +n02007558 +n11879895 +n06794110 +n07614500 +n02006656 +n04065272 +n02486261 +n02640242 +n01806143 +n03991062 +n02788148 +n09472597 +n03935335 +n02510455 +n03958227 +n02105641 +n04428191 +n03018349 +n02116738 +n03773504 +n02087046 +n03709823 +n01749939 +n02190166 +n02085782 +n01843065 +n03743016 +n01828970 +n01828970 +n03908714 +n03937543 +n02817516 +n04592741 +n02869837 +n03874293 +n04540053 +n03250847 +n02971356 +n02114548 +n02113023 +n04081281 +n03857828 +n03450230 +n04127249 +n02108089 +n02093428 +n04392985 +n04254120 +n02782093 +n02012849 +n03179701 +n04357314 +n13133613 +n02992211 +n04243546 +n01664065 +n01695060 +n04005630 +n03400231 +n03733131 +n02107142 +n02104365 +n04597913 +n04238763 +n04371430 +n03877472 +n04589890 +n04154565 +n01734418 +n03781244 +n07745940 +n02109961 +n01755581 +n07742313 +n04118776 +n01734418 +n02085782 +n03100240 +n02013706 +n03658185 +n03290653 +n02105505 +n03888257 +n02865351 +n02277742 +n02099849 +n03131574 +n02102177 +n02093428 +n02814860 +n01734418 +n01580077 +n04136333 +n04483307 +n01774384 +n02364673 +n06874185 +n07754684 +n07734744 +n04487081 +n07802026 +n09399592 +n03602883 +n04435653 +n02096437 +n02672831 +n02107683 +n02086646 +n01698640 +n03485794 +n03967562 +n01664065 +n03837869 +n01950731 +n02909870 +n01756291 +n02091467 +n03658185 +n02690373 +n02012849 +n03709823 +n02123597 +n13044778 +n02167151 +n03425413 +n07730033 +n03721384 +n03126707 +n02883205 +n02111889 +n03866082 +n01698640 +n04584207 +n03485407 +n02105251 +n03743016 +n03314780 +n03769881 +n01494475 +n04005630 +n03291819 +n03721384 +n04118776 +n03868242 +n04265275 +n09835506 +n03443371 +n03459775 +n04501370 +n01688243 +n03494278 +n02486410 +n02105251 +n03956157 +n02410509 +n02116738 +n04532106 +n02100236 +n04591157 +n02398521 +n04131690 +n03935335 +n02098105 +n04428191 +n02110627 +n03970156 +n03950228 +n02110341 +n04201297 +n07932039 +n07920052 +n03063689 +n02137549 +n03100240 +n01665541 +n04099969 +n02106382 +n02009912 +n03223299 +n02091635 +n03982430 +n04548362 +n01978455 +n01614925 +n02841315 +n07711569 +n04335435 +n02892767 +n03345487 +n02948072 +n04127249 +n02909870 +n02099712 +n04162706 +n01981276 +n02085620 +n02917067 +n07716358 +n04332243 +n03724870 +n04074963 +n01984695 +n03794056 +n03929855 +n01773157 +n01806567 +n04350905 +n03804744 +n10565667 +n07747607 +n03218198 +n03942813 +n01877812 +n03924679 +n07753592 +n02113799 +n02086079 +n03814639 +n02834397 +n02109525 +n07720875 +n04273569 +n03018349 +n03404251 +n03888257 +n03485407 +n07730033 +n13052670 +n02095889 +n01739381 +n01514859 +n02106030 +n07860988 +n03775546 +n04263257 +n03485794 +n03924679 +n04228054 +n02319095 +n02747177 +n03770679 +n03980874 +n02097658 +n02988304 +n07579787 +n02137549 +n01644373 +n02870880 +n04069434 +n13040303 +n02106550 +n02804414 +n07565083 +n03877845 +n03187595 +n02074367 +n02099712 +n01950731 +n03884397 +n03776460 +n04209133 +n03697007 +n01978287 +n03792972 +n07716906 +n04146614 +n03887697 +n02095889 +n02096177 +n04435653 +n02091032 +n02840245 +n02097658 +n02002724 +n02058221 +n03127747 +n04501370 +n01817953 +n02113186 +n01877812 +n04004767 +n02441942 +n02408429 +n04116512 +n02134418 +n03529860 +n03041632 +n03447447 +n03188531 +n03770439 +n03633091 +n02086646 +n02011460 +n04209133 +n04229816 +n01622779 +n01667114 +n01685808 +n02113186 +n02097047 +n03876231 +n02699494 +n03961711 +n03530642 +n03452741 +n02708093 +n01985128 +n02894605 +n03124170 +n03633091 +n13054560 +n02112137 +n02120505 +n01532829 +n03929660 +n04589890 +n04507155 +n01685808 +n02077923 +n04523525 +n04592741 +n02056570 +n03841143 +n02226429 +n04243546 +n04285008 +n02483708 +n03944341 +n04553703 +n03977966 +n02441942 +n01818515 +n03871628 +n03692522 +n07768694 +n02607072 +n04456115 +n04590129 +n03476991 +n02091134 +n03394916 +n01990800 +n02066245 +n02279972 +n01944390 +n02105251 +n04273569 +n03857828 +n02110185 +n02096051 +n01770081 +n02259212 +n02799071 +n01806143 +n03476684 +n01796340 +n03100240 +n01632777 +n02190166 +n02066245 +n03976657 +n03788365 +n02108422 +n03400231 +n04589890 +n04435653 +n02326432 +n03954731 +n04591157 +n02823428 +n07716358 +n02088632 +n01824575 +n01631663 +n02086079 +n03995372 +n04517823 +n02480855 +n03445777 +n04357314 +n03884397 +n03445924 +n03777754 +n03133878 +n03873416 +n02086240 +n04553703 +n04133789 +n07693725 +n02895154 +n02317335 +n04613696 +n01819313 +n03977966 +n02109047 +n03000247 +n02443114 +n03272010 +n01697457 +n04200800 +n02109047 +n02840245 +n01739381 +n06794110 +n01756291 +n01748264 +n03950228 +n02971356 +n02123159 +n04346328 +n02092339 +n01729977 +n03187595 +n02454379 +n03794056 +n03967562 +n04039381 +n02879718 +n02441942 +n04515003 +n04311174 +n03100240 +n03868242 +n03126707 +n04461696 +n13054560 +n04398044 +n01667114 +n01664065 +n02106382 +n04613696 +n02948072 +n12144580 +n03877472 +n02096585 +n03935335 +n04429376 +n02110185 +n03207941 +n02123045 +n03788195 +n04259630 +n02097209 +n02092002 +n01877812 +n03529860 +n02966687 +n03980874 +n02013706 +n02776631 +n02445715 +n01496331 +n01807496 +n02112137 +n02086646 +n04118776 +n03658185 +n01985128 +n02504013 +n12998815 +n02233338 +n12057211 +n07875152 +n03840681 +n03721384 +n03908714 +n02412080 +n02113799 +n02096437 +n02669723 +n03775546 +n03393912 +n07718472 +n01883070 +n02120079 +n01532829 +n04443257 +n02917067 +n02877765 +n02115913 +n07920052 +n01773797 +n02123159 +n03447447 +n04613696 +n03933933 +n04380533 +n01728572 +n03535780 +n04599235 +n02877765 +n13037406 +n02971356 +n02504458 +n02101388 +n04370456 +n09229709 +n02113624 +n02492035 +n02089867 +n09421951 +n02219486 +n02494079 +n02963159 +n03930630 +n02206856 +n02091831 +n02504013 +n02097298 +n09428293 +n04596742 +n01632777 +n02018207 +n03344393 +n03388549 +n03791053 +n01729322 +n02018207 +n03599486 +n03297495 +n02093859 +n01629819 +n04037443 +n01693334 +n02058221 +n03141823 +n04252225 +n04418357 +n01774384 +n03871628 +n03598930 +n03032252 +n02321529 +n02117135 +n02206856 +n03944341 +n02111129 +n02346627 +n03404251 +n02113023 +n02009229 +n02879718 +n01748264 +n01773549 +n04252077 +n02825657 +n03476991 +n03584254 +n04350905 +n13052670 +n04141076 +n03388549 +n02415577 +n02607072 +n04346328 +n01914609 +n02641379 +n03782006 +n01601694 +n03388183 +n03803284 +n02690373 +n02106662 +n02097047 +n07892512 +n02277742 +n10148035 +n02412080 +n02091635 +n01917289 +n03742115 +n04074963 +n03124043 +n02669723 +n04507155 +n02808304 +n02111500 +n03761084 +n01797886 +n03874599 +n03476991 +n04404412 +n02108915 +n01694178 +n02802426 +n02974003 +n03028079 +n03944341 +n03742115 +n02111500 +n02117135 +n02092339 +n04133789 +n03868242 +n07714990 +n07579787 +n04252077 +n02096051 +n02102480 +n02174001 +n03085013 +n01740131 +n02107312 +n04162706 +n02869837 +n02412080 +n04612504 +n01807496 +n04041544 +n03459775 +n02017213 +n02101006 +n07749582 +n02109047 +n07718472 +n02877765 +n01622779 +n01882714 +n03781244 +n02137549 +n02342885 +n03498962 +n04127249 +n06785654 +n02105412 +n03447447 +n09193705 +n02326432 +n04590129 +n02892201 +n03425413 +n04235860 +n03000247 +n03272562 +n03598930 +n02174001 +n03347037 +n07920052 +n01784675 +n07718747 +n02279972 +n02097298 +n03394916 +n03977966 +n03692522 +n03825788 +n07717556 +n02727426 +n02396427 +n07747607 +n04330267 +n03062245 +n02389026 +n02871525 +n02107142 +n02012849 +n02077923 +n03532672 +n03216828 +n02486261 +n01494475 +n04251144 +n02109047 +n03649909 +n01873310 +n03710637 +n01632458 +n02077923 +n04263257 +n04423845 +n02279972 +n01728572 +n02128757 +n04552348 +n07747607 +n07932039 +n02071294 +n02951585 +n02123159 +n04201297 +n03680355 +n02892767 +n03930630 +n01798484 +n01729977 +n01798484 +n04371430 +n02090379 +n03347037 +n03998194 +n03947888 +n02108422 +n02837789 +n03888257 +n01739381 +n04179913 +n07590611 +n02279972 +n03063599 +n02113712 +n02444819 +n03532672 +n02687172 +n07720875 +n01819313 +n02445715 +n03793489 +n02092002 +n03899768 +n03424325 +n02978881 +n01534433 +n02999410 +n04557648 +n01608432 +n02391049 +n03929660 +n02835271 +n03876231 +n02102318 +n02777292 +n04004767 +n03933933 +n07836838 +n01751748 +n07718472 +n04254777 +n03424325 +n03063599 +n02095570 +n01824575 +n04311004 +n01677366 +n03062245 +n03627232 +n03134739 +n04372370 +n03075370 +n02802426 +n03447721 +n01829413 +n02090379 +n04192698 +n03743016 +n01692333 +n02099601 +n03720891 +n02951585 +n01532829 +n02281406 +n02096177 +n03920288 +n02927161 +n04179913 +n02100236 +n04515003 +n07802026 +n02088632 +n03950228 +n09193705 +n03841143 +n02093647 +n04336792 +n04357314 +n03929660 +n02093647 +n02093428 +n04049303 +n01873310 +n02268853 +n03838899 +n01484850 +n03337140 +n01537544 +n02174001 +n03063599 +n02640242 +n03721384 +n04596742 +n02795169 +n02492660 +n02892201 +n02361337 +n04417672 +n02113624 +n02028035 +n02999410 +n01629819 +n02115913 +n02089078 +n01768244 +n04263257 +n01944390 +n01945685 +n02071294 +n03937543 +n02391049 +n02018207 +n02129165 +n02074367 +n01518878 +n03445777 +n04149813 +n02669723 +n02097047 +n02865351 +n07753592 +n02814533 +n03874599 +n07720875 +n04116512 +n02417914 +n02027492 +n03877845 +n02123159 +n04264628 +n02236044 +n02108089 +n04133789 +n04147183 +n02085620 +n02091134 +n03944341 +n13037406 +n02422106 +n01498041 +n03775071 +n04357314 +n02102040 +n01682714 +n01775062 +n03014705 +n01693334 +n01616318 +n04604644 +n03109150 +n02088238 +n01981276 +n02422106 +n01985128 +n04026417 +n01644900 +n02095570 +n04266014 +n02236044 +n02115913 +n01883070 +n03840681 +n02481823 +n03447721 +n01981276 +n03673027 +n02835271 +n02123159 +n02113186 +n03947888 +n02100877 +n03814639 +n02510455 +n04037443 +n03929660 +n03837869 +n02791270 +n03461385 +n02951585 +n04525305 +n02788148 +n02165105 +n04592741 +n02091467 +n03188531 +n02091134 +n03617480 +n03954731 +n04328186 +n02105162 +n02870880 +n03028079 +n04596742 +n04204347 +n02108422 +n01740131 +n02363005 +n03840681 +n04116512 +n02138441 +n04367480 +n01773797 +n04350905 +n02095314 +n09229709 +n02494079 +n03788365 +n02117135 +n01641577 +n04192698 +n02087046 +n12620546 +n02410509 +n03777568 +n02948072 +n03662601 +n02690373 +n02441942 +n03127925 +n02066245 +n02097130 +n03187595 +n02977058 +n03977966 +n03291819 +n02788148 +n03482405 +n02090721 +n02105641 +n04525038 +n04328186 +n03424325 +n03498962 +n03223299 +n04552348 +n09193705 +n07697537 +n04596742 +n01797886 +n01980166 +n02093991 +n01688243 +n01817953 +n03485407 +n01795545 +n02794156 +n02102480 +n01819313 +n03188531 +n02965783 +n03534580 +n02395406 +n02033041 +n03337140 +n04200800 +n02797295 +n02804414 +n02088364 +n03000247 +n03937543 +n02389026 +n01682714 +n02101388 +n01685808 +n07880968 +n02509815 +n03938244 +n04532670 +n03967562 +n03196217 +n02892767 +n01843383 +n02978881 +n01748264 +n04423845 +n02396427 +n03388043 +n03000134 +n04429376 +n03483316 +n03485407 +n02256656 +n04086273 +n02356798 +n02747177 +n01773157 +n03297495 +n02403003 +n07718472 +n03445924 +n01843383 +n02328150 +n03447447 +n02124075 +n02098105 +n06596364 +n03388183 +n06596364 +n02504013 +n04041544 +n02009912 +n02093859 +n04350905 +n02317335 +n07871810 +n02105855 +n02607072 +n02095570 +n02389026 +n06785654 +n09421951 +n02114855 +n03216828 +n01855032 +n03095699 +n02115641 +n01955084 +n03095699 +n03133878 +n03902125 +n02395406 +n04371774 +n04525305 +n03345487 +n02108551 +n01774750 +n02480495 +n03594945 +n02091635 +n04557648 +n03388549 +n01784675 +n13040303 +n13037406 +n01776313 +n02099601 +n03134739 +n02110185 +n01537544 +n13133613 +n02102040 +n01530575 +n01735189 +n01491361 +n07583066 +n02137549 +n03908714 +n03045698 +n01914609 +n02326432 +n01631663 +n03868242 +n03920288 +n03729826 +n02002724 +n03776460 +n03535780 +n03146219 +n02094258 +n03841143 +n02797295 +n02500267 +n04392985 +n02504458 +n01773797 +n04325704 +n03920288 +n02999410 +n02655020 +n02097474 +n09472597 +n02099712 +n02980441 +n04461696 +n02814533 +n03495258 +n01784675 +n03000684 +n07760859 +n04141327 +n02641379 +n04200800 +n04141327 +n01943899 +n04037443 +n04357314 +n02097474 +n03857828 +n01630670 +n02417914 +n02747177 +n04590129 +n02037110 +n03841143 +n04204238 +n04252225 +n02791270 +n09193705 +n04376876 +n02815834 +n01817953 +n04356056 +n02007558 +n02917067 +n03544143 +n03954731 +n03372029 +n02930766 +n04310018 +n03630383 +n04009552 +n02132136 +n07745940 +n02094114 +n02480855 +n02093991 +n02113624 +n03662601 +n12144580 +n02443114 +n01914609 +n04040759 +n02834397 +n02276258 +n04557648 +n07718472 +n02108915 +n07753113 +n02093428 +n03976467 +n01984695 +n02492035 +n04275548 +n02100877 +n04254777 +n02799071 +n03908618 +n03773504 +n03347037 +n02107574 +n03529860 +n02093256 +n03291819 +n02110958 +n04275548 +n04273569 +n02113023 +n03958227 +n04417672 +n03272562 +n01980166 +n01514668 +n02002556 +n02086079 +n02104365 +n01677366 +n03770679 +n02096177 +n02094258 +n01440764 +n01943899 +n02099849 +n03899768 +n01729322 +n01776313 +n06359193 +n02447366 +n03857828 +n03384352 +n02111277 +n02226429 +n04366367 +n01737021 +n01537544 +n02951358 +n04371430 +n03196217 +n02100236 +n04443257 +n04479046 +n03983396 +n03218198 +n02105505 +n01978287 +n04286575 +n03866082 +n04208210 +n03891332 +n03857828 +n02504013 +n03982430 +n04554684 +n04317175 +n04552348 +n12057211 +n02483362 +n02097474 +n02361337 +n02120505 +n03594945 +n03498962 +n01978455 +n01829413 +n02105505 +n01978455 +n04356056 +n07718472 +n01518878 +n02795169 +n03617480 +n03372029 +n02099267 +n04229816 +n07717410 +n02895154 +n02110185 +n04149813 +n02056570 +n04404412 +n03028079 +n02110341 +n04120489 +n02804414 +n02988304 +n02167151 +n04392985 +n07747607 +n02966687 +n09399592 +n03761084 +n03400231 +n04136333 +n04423845 +n02978881 +n02099429 +n07892512 +n02137549 +n01807496 +n04033995 +n03876231 +n03063599 +n04005630 +n02489166 +n03197337 +n04456115 +n03388043 +n03062245 +n03899768 +n04371430 +n03729826 +n02165456 +n02769748 +n02412080 +n02086240 +n01665541 +n02412080 +n02445715 +n01735189 +n02086079 +n02110185 +n07697537 +n02112350 +n02137549 +n02398521 +n02971356 +n03980874 +n02106030 +n02980441 +n09193705 +n03393912 +n04562935 +n03691459 +n02870880 +n02443484 +n02979186 +n02100735 +n01682714 +n02607072 +n01688243 +n02454379 +n02443484 +n07248320 +n03814639 +n04509417 +n04019541 +n03938244 +n01667114 +n03791053 +n04442312 +n02226429 +n01693334 +n02794156 +n01773549 +n01685808 +n03598930 +n02017213 +n02124075 +n02091134 +n01530575 +n03657121 +n01768244 +n04552348 +n02106030 +n01667114 +n02790996 +n02699494 +n03291819 +n01694178 +n02423022 +n01855672 +n03459775 +n04070727 +n03770439 +n03709823 +n01924916 +n06785654 +n03272562 +n02099429 +n03100240 +n02174001 +n06794110 +n03759954 +n04357314 +n03584829 +n03345487 +n03443371 +n02100236 +n03709823 +n04350905 +n02086910 +n02977058 +n02112018 +n04409515 +n04118776 +n03376595 +n02101556 +n02776631 +n02108551 +n03291819 +n07745940 +n02109047 +n04336792 +n03494278 +n03388183 +n02398521 +n03485794 +n03018349 +n03967562 +n02116738 +n02085620 +n02108551 +n02894605 +n07695742 +n01693334 +n04356056 +n02120079 +n04540053 +n03134739 +n01644900 +n01697457 +n02108000 +n03720891 +n03733281 +n04404412 +n02098105 +n02089867 +n01530575 +n03884397 +n03602883 +n02090721 +n04228054 +n03208938 +n02483708 +n02017213 +n02097047 +n02509815 +n02447366 +n03532672 +n01518878 +n02123045 +n01847000 +n02690373 +n02092002 +n02096177 +n04487081 +n02526121 +n02124075 +n03717622 +n02106030 +n02002724 +n03240683 +n03902125 +n03709823 +n02974003 +n02100583 +n03201208 +n01833805 +n13052670 +n02219486 +n02107574 +n07742313 +n02112018 +n02489166 +n02441942 +n07753275 +n01819313 +n02643566 +n03110669 +n04482393 +n04613696 +n02129604 +n02088466 +n02134418 +n02114855 +n04591157 +n02277742 +n02112350 +n03590841 +n04476259 +n02326432 +n01755581 +n11939491 +n04264628 +n12998815 +n02101388 +n02137549 +n02236044 +n02123394 +n02909870 +n03733805 +n04120489 +n03958227 +n02100877 +n02169497 +n02168699 +n03794056 +n04146614 +n03787032 +n03937543 +n03388549 +n01978455 +n06874185 +n03717622 +n07875152 +n01820546 +n03445777 +n02109961 +n04127249 +n07716358 +n03661043 +n01534433 +n03982430 +n02490219 +n04152593 +n03062245 +n01644373 +n02951358 +n04041544 +n02974003 +n02102318 +n04127249 +n02500267 +n04548280 +n02690373 +n02125311 +n01950731 +n02007558 +n12267677 +n03045698 +n01443537 +n02447366 +n02124075 +n03916031 +n03146219 +n02843684 +n02980441 +n03187595 +n02091134 +n03124170 +n07749582 +n03594734 +n02666196 +n03782006 +n07697537 +n02111889 +n03724870 +n02085620 +n03492542 +n02102177 +n04515003 +n02167151 +n03877472 +n07720875 +n02097209 +n03208938 +n01601694 +n04067472 +n02174001 +n02123394 +n07583066 +n03599486 +n04005630 +n01698640 +n03047690 +n03793489 +n02916936 +n02124075 +n01592084 +n03127747 +n02130308 +n02094114 +n04131690 +n03063599 +n02110341 +n04008634 +n03218198 +n01496331 +n03146219 +n03496892 +n02097047 +n02397096 +n03942813 +n03787032 +n02125311 +n02119789 +n01945685 +n02105162 +n03127747 +n02107142 +n02992529 +n12620546 +n04067472 +n01630670 +n02423022 +n02948072 +n01491361 +n04067472 +n04263257 +n03223299 +n02088238 +n02231487 +n01739381 +n01532829 +n02099849 +n09256479 +n01580077 +n03895866 +n02037110 +n07742313 +n02091032 +n03841143 +n01986214 +n04356056 +n02971356 +n01774384 +n02097474 +n04019541 +n07753275 +n01944390 +n04371774 +n02120079 +n07932039 +n04033901 +n04074963 +n02843684 +n03457902 +n02089078 +n03544143 +n02088238 +n02342885 +n01753488 +n02895154 +n04009552 +n01806143 +n03794056 +n01740131 +n02423022 +n02033041 +n03942813 +n04023962 +n03630383 +n04251144 +n04376876 +n02107142 +n01740131 +n03075370 +n01494475 +n04590129 +n02786058 +n01773549 +n02028035 +n01978287 +n02966193 +n03982430 +n02442845 +n07734744 +n07615774 +n03970156 +n03000134 +n01883070 +n02124075 +n07892512 +n03970156 +n03958227 +n04532670 +n03743016 +n04479046 +n02011460 +n02391049 +n03877845 +n01981276 +n02488291 +n01592084 +n03544143 +n02168699 +n01494475 +n03887697 +n03249569 +n03777754 +n02100236 +n02017213 +n02999410 +n03590841 +n03476991 +n04192698 +n01582220 +n04604644 +n03658185 +n03773504 +n02640242 +n01819313 +n02906734 +n07697537 +n02403003 +n04270147 +n03544143 +n02859443 +n03733131 +n03733131 +n04251144 +n01806143 +n04254120 +n04350905 +n02090379 +n01582220 +n03868242 +n02088466 +n02793495 +n04136333 +n03476684 +n02129604 +n02112137 +n01622779 +n02087046 +n02114548 +n07875152 +n01773549 +n03721384 +n01843065 +n01601694 +n04254680 +n07860988 +n04523525 +n01843383 +n03314780 +n04069434 +n02791270 +n04125021 +n07880968 +n03314780 +n04346328 +n04335435 +n02093647 +n04532106 +n04465501 +n02102177 +n04344873 +n03788195 +n03803284 +n09835506 +n01872401 +n01688243 +n02233338 +n03633091 +n03888605 +n02095570 +n04579145 +n03598930 +n02980441 +n03095699 +n02088466 +n04296562 +n01739381 +n02033041 +n04346328 +n01695060 +n03733281 +n04265275 +n01796340 +n07880968 +n02894605 +n04465501 +n01644900 +n03100240 +n03447721 +n03792782 +n01828970 +n02486261 +n02690373 +n01774750 +n09229709 +n03045698 +n03874293 +n12267677 +n03637318 +n02398521 +n02782093 +n01728572 +n02457408 +n04005630 +n04525305 +n01820546 +n02138441 +n03532672 +n02808440 +n12985857 +n02085620 +n04584207 +n02125311 +n07742313 +n03355925 +n03868242 +n03871628 +n03840681 +n04310018 +n02793495 +n02489166 +n02727426 +n04592741 +n02841315 +n02490219 +n04273569 +n04228054 +n03991062 +n02093647 +n02113023 +n01698640 +n04591713 +n02111277 +n04596742 +n02110627 +n03720891 +n04251144 +n03179701 +n02091244 +n07745940 +n03000247 +n04243546 +n07697313 +n03127925 +n01985128 +n03942813 +n02013706 +n02483708 +n01632458 +n02279972 +n02009912 +n02256656 +n01768244 +n02091635 +n03770679 +n12144580 +n01806567 +n04536866 +n03991062 +n02391049 +n02326432 +n04443257 +n02097047 +n02101006 +n02051845 +n03933933 +n03595614 +n07695742 +n07579787 +n02120079 +n02110627 +n02095314 +n03201208 +n03803284 +n02444819 +n03899768 +n02233338 +n02747177 +n03483316 +n04136333 +n03220513 +n03623198 +n03134739 +n03630383 +n02808440 +n03769881 +n02799071 +n04019541 +n01498041 +n04428191 +n02094433 +n03450230 +n02092002 +n03929660 +n03000134 +n01914609 +n03721384 +n04389033 +n02128385 +n03000247 +n02091244 +n02108000 +n02110063 +n02128385 +n02641379 +n01664065 +n02109525 +n07802026 +n07714571 +n03691459 +n02109961 +n01688243 +n04515003 +n04252225 +n02877765 +n03476991 +n07717410 +n04389033 +n02129165 +n01440764 +n12985857 +n04371430 +n03447721 +n02441942 +n02110958 +n02094433 +n04146614 +n03857828 +n03788195 +n03804744 +n02102040 +n02317335 +n09246464 +n02110958 +n02256656 +n03781244 +n01689811 +n02487347 +n02092002 +n03733805 +n01531178 +n02454379 +n02088238 +n01729322 +n01945685 +n01774384 +n01632458 +n03776460 +n01877812 +n07615774 +n02423022 +n03384352 +n01518878 +n03000684 +n02018207 +n03876231 +n02113799 +n01855032 +n02910353 +n02109047 +n03967562 +n02112018 +n02708093 +n02417914 +n13040303 +n04005630 +n02794156 +n01689811 +n02113186 +n03476991 +n03773504 +n03868863 +n03788365 +n02133161 +n02708093 +n07718747 +n02106030 +n03916031 +n02493793 +n02277742 +n02701002 +n04238763 +n07742313 +n01755581 +n02321529 +n01728572 +n12057211 +n03016953 +n04009552 +n02107312 +n04486054 +n03837869 +n04127249 +n03837869 +n03895866 +n03032252 +n04380533 +n02777292 +n01729322 +n02607072 +n03792972 +n03930630 +n02814533 +n04005630 +n04099969 +n02110806 +n03594734 +n03697007 +n02071294 +n02346627 +n02096294 +n01440764 +n12267677 +n02097658 +n02111889 +n03825788 +n04153751 +n04259630 +n04254680 +n02092002 +n01833805 +n04200800 +n04435653 +n07753113 +n03888257 +n01744401 +n04192698 +n02415577 +n04550184 +n02097474 +n02793495 +n04252225 +n03388549 +n02422106 +n02807133 +n02090622 +n03598930 +n01592084 +n01924916 +n07584110 +n02114712 +n03874599 +n03590841 +n09246464 +n04589890 +n03794056 +n03180011 +n02104029 +n03272562 +n04263257 +n03874599 +n07714990 +n02791124 +n03690938 +n02837789 +n02138441 +n02859443 +n03026506 +n02442845 +n04004767 +n02397096 +n04120489 +n01882714 +n03124170 +n03992509 +n01818515 +n03124170 +n02002724 +n03680355 +n02096051 +n02492660 +n04033995 +n04019541 +n02108915 +n01872401 +n04366367 +n04501370 +n04355338 +n03661043 +n02536864 +n01796340 +n02326432 +n02493509 +n02099849 +n02096051 +n02974003 +n03481172 +n03089624 +n01773157 +n03445777 +n02138441 +n07565083 +n03916031 +n02363005 +n01944390 +n02093754 +n04560804 +n12267677 +n03967562 +n07932039 +n03666591 +n02256656 +n03770439 +n04509417 +n03720891 +n07565083 +n07875152 +n01843383 +n03481172 +n02708093 +n02165105 +n02123394 +n01644900 +n02109961 +n04335435 +n02096177 +n02110185 +n02687172 +n04116512 +n01693334 +n03133878 +n02493793 +n01806143 +n07892512 +n03670208 +n04264628 +n03014705 +n07615774 +n02992211 +n03063599 +n04209239 +n02489166 +n07920052 +n04081281 +n04486054 +n02783161 +n03594734 +n03016953 +n02834397 +n04409515 +n03544143 +n01924916 +n02174001 +n04599235 +n07754684 +n07753275 +n02112706 +n03197337 +n02095570 +n02120079 +n03804744 +n01820546 +n02099849 +n04004767 +n02092339 +n03983396 +n01749939 +n04162706 +n04264628 +n03598930 +n02098286 +n07892512 +n03929660 +n04209133 +n03000684 +n04589890 +n02963159 +n02206856 +n03970156 +n04418357 +n02090379 +n03785016 +n02488291 +n04501370 +n04118538 +n04311174 +n03838899 +n02906734 +n01665541 +n03188531 +n03642806 +n03220513 +n02105855 +n03642806 +n02123394 +n02457408 +n03208938 +n04536866 +n02056570 +n02088466 +n04019541 +n02165456 +n02097209 +n02108000 +n04536866 +n02777292 +n02939185 +n04366367 +n01616318 +n03337140 +n04229816 +n03792782 +n07831146 +n03903868 +n03041632 +n02089867 +n07695742 +n03534580 +n03271574 +n01843383 +n07836838 +n02279972 +n07584110 +n02119789 +n01843065 +n02206856 +n03042490 +n02104029 +n04447861 +n03814906 +n02280649 +n03494278 +n02256656 +n02909870 +n03602883 +n01748264 +n02093428 +n03841143 +n03710193 +n01675722 +n02395406 +n03250847 +n02397096 +n12267677 +n03770679 +n02007558 +n03642806 +n07871810 +n03742115 +n02190166 +n07716358 +n01978455 +n02169497 +n04204347 +n03417042 +n02793495 +n03530642 +n03188531 +n02105505 +n02804414 +n02093754 +n02092339 +n02860847 +n02085936 +n02786058 +n02056570 +n02165456 +n03710637 +n04200800 +n04592741 +n03935335 +n02102973 +n04296562 +n04328186 +n12267677 +n01824575 +n02494079 +n02730930 +n02356798 +n03937543 +n03290653 +n02109047 +n02112137 +n02104365 +n02085620 +n09246464 +n01817953 +n03345487 +n02410509 +n02281787 +n04487081 +n01770393 +n03814906 +n01728920 +n02481823 +n01768244 +n03891251 +n04111531 +n03347037 +n03929660 +n02951585 +n02840245 +n02489166 +n01756291 +n02669723 +n07583066 +n02268443 +n04552348 +n04263257 +n04371774 +n03379051 +n04355338 +n04355933 +n04118538 +n04099969 +n04507155 +n02480495 +n03814639 +n02105855 +n02487347 +n04553703 +n04310018 +n03895866 +n03000247 +n01796340 +n03903868 +n03903868 +n07583066 +n04192698 +n02018795 +n02096177 +n02098286 +n03970156 +n03733281 +n07614500 +n03388043 +n02110958 +n01601694 +n07715103 +n02127052 +n02325366 +n03673027 +n02950826 +n02091467 +n03110669 +n03840681 +n03680355 +n02441942 +n03485407 +n02097474 +n02398521 +n02776631 +n02701002 +n02325366 +n03388043 +n07873807 +n03763968 +n04515003 +n02094258 +n02422699 +n01667114 +n04263257 +n07590611 +n02110185 +n03899768 +n03877845 +n03197337 +n12144580 +n04152593 +n02108089 +n02493793 +n02105855 +n03481172 +n04228054 +n03899768 +n02093754 +n01737021 +n02415577 +n01685808 +n01773157 +n02101388 +n03710721 +n01873310 +n03627232 +n02708093 +n02102318 +n07747607 +n02791124 +n02870880 +n03388549 +n04372370 +n03775071 +n04347754 +n03026506 +n07720875 +n01883070 +n03690938 +n03776460 +n01558993 +n04552348 +n03457902 +n07768694 +n04356056 +n04485082 +n09288635 +n07760859 +n03991062 +n04136333 +n03938244 +n02102177 +n03991062 +n04550184 +n04127249 +n01498041 +n03691459 +n03255030 +n02417914 +n02099429 +n04254777 +n04277352 +n01855032 +n01983481 +n04604644 +n02102973 +n02790996 +n02094258 +n02489166 +n03887697 +n02443114 +n04228054 +n01667778 +n02172182 +n04133789 +n03196217 +n02018207 +n03124170 +n02841315 +n02174001 +n02138441 +n02364673 +n03874599 +n02690373 +n12267677 +n02071294 +n02396427 +n02100236 +n04125021 +n01704323 +n02281406 +n02226429 +n02097298 +n02787622 +n02086910 +n02415577 +n02123597 +n03977966 +n03743016 +n02951585 +n04548280 +n03216828 +n02096437 +n02233338 +n02536864 +n01773157 +n03657121 +n02883205 +n03777754 +n01843065 +n15075141 +n04462240 +n02086240 +n03832673 +n04026417 +n04346328 +n02808440 +n04152593 +n03017168 +n03710193 +n02110341 +n02111500 +n02117135 +n02018207 +n03769881 +n02087394 +n04286575 +n02105855 +n03218198 +n04509417 +n02749479 +n01756291 +n03584254 +n07613480 +n02437312 +n04458633 +n01518878 +n01677366 +n02797295 +n07717410 +n03775071 +n04209133 +n03425413 +n04347754 +n02028035 +n02085936 +n04317175 +n04310018 +n13044778 +n01693334 +n03047690 +n03983396 +n02268443 +n04442312 +n02109961 +n04019541 +n04335435 +n07932039 +n03743016 +n02268443 +n04523525 +n02134418 +n02860847 +n02096051 +n02817516 +n04238763 +n12620546 +n02092002 +n13037406 +n03000134 +n04228054 +n02002724 +n02086079 +n03394916 +n04265275 +n04136333 +n02481823 +n04041544 +n03272562 +n02999410 +n02488702 +n01824575 +n03967562 +n02730930 +n01843383 +n04604644 +n02177972 +n01744401 +n07860988 +n04153751 +n01491361 +n03297495 +n04346328 +n03956157 +n02325366 +n02974003 +n03733281 +n03899768 +n07717556 +n02114367 +n04366367 +n03400231 +n02808440 +n01968897 +n02259212 +n03642806 +n01955084 +n03776460 +n09835506 +n01775062 +n02979186 +n02093991 +n04263257 +n04485082 +n04482393 +n03179701 +n01739381 +n02088238 +n03991062 +n13040303 +n01534433 +n01978455 +n02480495 +n02086910 +n02097209 +n02096294 +n04209133 +n09428293 +n03018349 +n07871810 +n01986214 +n01491361 +n02106662 +n03028079 +n04179913 +n04264628 +n03450230 +n04376876 +n02129165 +n02127052 +n02111500 +n04254680 +n02951358 +n03854065 +n02488702 +n02834397 +n02128757 +n03075370 +n07583066 +n03047690 +n01829413 +n03124043 +n01843065 +n07697537 +n07734744 +n02834397 +n02814860 +n02481823 +n04356056 +n03124043 +n01990800 +n03291819 +n02487347 +n03658185 +n04404412 +n03791053 +n03866082 +n02930766 +n02074367 +n02777292 +n04458633 +n02098286 +n02843684 +n04592741 +n01641577 +n03529860 +n01484850 +n04141076 +n03485407 +n03590841 +n04037443 +n07613480 +n01688243 +n04074963 +n02701002 +n03535780 +n02090379 +n02111889 +n06874185 +n07693725 +n07802026 +n07754684 +n01774384 +n01514668 +n02028035 +n04423845 +n02096051 +n02115641 +n01774384 +n02894605 +n03026506 +n02666196 +n03690938 +n02112706 +n03787032 +n01748264 +n03733131 +n03920288 +n04141076 +n02101006 +n03944341 +n12267677 +n03782006 +n03924679 +n02437616 +n02992529 +n02871525 +n02104029 +n03376595 +n04243546 +n03854065 +n03983396 +n02104029 +n01883070 +n07716906 +n02092002 +n02114855 +n03255030 +n01873310 +n01704323 +n04192698 +n03485407 +n02916936 +n07590611 +n02869837 +n03527444 +n03595614 +n02105412 +n09835506 +n04033901 +n04285008 +n02326432 +n02104029 +n07716906 +n07760859 +n03832673 +n03492542 +n02408429 +n03781244 +n02099849 +n03840681 +n02092339 +n03590841 +n01685808 +n01694178 +n07753592 +n03535780 +n02730930 +n04270147 +n02011460 +n04483307 +n01688243 +n01737021 +n02033041 +n03100240 +n03447447 +n03584829 +n02483362 +n03998194 +n02483362 +n03481172 +n01558993 +n04606251 +n01537544 +n02808440 +n03825788 +n01773157 +n04507155 +n04141076 +n02504013 +n04562935 +n07590611 +n04357314 +n01608432 +n02097658 +n03950228 +n02814860 +n01498041 +n04553703 +n12768682 +n03032252 +n02097474 +n01955084 +n07695742 +n02483708 +n02106550 +n04515003 +n02226429 +n04370456 +n03000684 +n03837869 +n02113799 +n02102480 +n03459775 +n02120079 +n02071294 +n13054560 +n04192698 +n02504458 +n04372370 +n04251144 +n02006656 +n03908618 +n04311174 +n03018349 +n13133613 +n03796401 +n04409515 +n02102480 +n02843684 +n04040759 +n02086646 +n02948072 +n07836838 +n03476684 +n02236044 +n04296562 +n02017213 +n04612504 +n02769748 +n07717410 +n07717410 +n01751748 +n03773504 +n02085782 +n04562935 +n04239074 +n07760859 +n07768694 +n03160309 +n01692333 +n03045698 +n03272562 +n04417672 +n03954731 +n04505470 +n04154565 +n03691459 +n04209239 +n04409515 +n02363005 +n07734744 +n02422699 +n03529860 +n04235860 +n04536866 +n01981276 +n03888257 +n02276258 +n03388043 +n07718472 +n02869837 +n02006656 +n03595614 +n02917067 +n01440764 +n01855032 +n03930630 +n02105505 +n01491361 +n03345487 +n04372370 +n03187595 +n01491361 +n04264628 +n04557648 +n02119022 +n02607072 +n02396427 +n07615774 +n04553703 +n07718472 +n03530642 +n02100583 +n04557648 +n03485407 +n07745940 +n01531178 +n03954731 +n04465501 +n12768682 +n04486054 +n03595614 +n04548362 +n07753113 +n02701002 +n04525038 +n02317335 +n02443484 +n02939185 +n03314780 +n02089078 +n02859443 +n02091467 +n02124075 +n03690938 +n02091831 +n02454379 +n04065272 +n03196217 +n02655020 +n04487394 +n04286575 +n03125729 +n03854065 +n03670208 +n02108422 +n02102480 +n02988304 +n02009229 +n02099267 +n02097209 +n02948072 +n02110806 +n02177972 +n03494278 +n01737021 +n13133613 +n04447861 +n04591713 +n03495258 +n02859443 +n02860847 +n04554684 +n03637318 +n04258138 +n01797886 +n03095699 +n04041544 +n03602883 +n04525038 +n03706229 +n02093859 +n02119022 +n02454379 +n07614500 +n02276258 +n07714571 +n02177972 +n02129604 +n01601694 +n04355338 +n02999410 +n07760859 +n02165456 +n02111129 +n03220513 +n02437616 +n04465501 +n03272010 +n02167151 +n02174001 +n02607072 +n04254120 +n07584110 +n03388549 +n03063599 +n02795169 +n02727426 +n02799071 +n10565667 +n02454379 +n07717410 +n02504013 +n04266014 +n04493381 +n03832673 +n02033041 +n02447366 +n03314780 +n02930766 +n02110806 +n04033901 +n02870880 +n01872401 +n03063689 +n03814906 +n01798484 +n02219486 +n02111129 +n03124170 +n03443371 +n01855672 +n03089624 +n04239074 +n03814906 +n04285008 +n02097474 +n01819313 +n02364673 +n03773504 +n04310018 +n04398044 +n13054560 +n01665541 +n02025239 +n03976657 +n04553703 +n07715103 +n02018795 +n03794056 +n03595614 +n03026506 +n02128925 +n03717622 +n03041632 +n04417672 +n07753275 +n07718747 +n01728920 +n03447447 +n02114548 +n02769748 +n01784675 +n02100877 +n02097658 +n04523525 +n02002556 +n03404251 +n03786901 +n04162706 +n02776631 +n13133613 +n04254777 +n04355338 +n02104029 +n04201297 +n03775071 +n02093754 +n03992509 +n03134739 +n12057211 +n04116512 +n02281787 +n07920052 +n02105641 +n01943899 +n03841143 +n02487347 +n04486054 +n02281787 +n02342885 +n03775546 +n02011460 +n02089078 +n03776460 +n04423845 +n02865351 +n03089624 +n04371774 +n01514859 +n01734418 +n02328150 +n09468604 +n03063689 +n02951585 +n02095314 +n03792972 +n03776460 +n02346627 +n02894605 +n01775062 +n02130308 +n04192698 +n13044778 +n01751748 +n07697537 +n03868242 +n04525038 +n02259212 +n02391049 +n04399382 +n02667093 +n01530575 +n01632777 +n03259280 +n02840245 +n04019541 +n02422699 +n02113712 +n03930630 +n02643566 +n02231487 +n04487394 +n03937543 +n03355925 +n01828970 +n01580077 +n07932039 +n02877765 +n02167151 +n03476991 +n02825657 +n01751748 +n03207941 +n03840681 +n09288635 +n01843383 +n04536866 +n03814906 +n04429376 +n04428191 +n03814906 +n04344873 +n01693334 +n03417042 +n02747177 +n01986214 +n02277742 +n03127747 +n02422699 +n12985857 +n02672831 +n02823428 +n02112018 +n04037443 +n07695742 +n02536864 +n02788148 +n02088364 +n02105251 +n02105641 +n02123159 +n03729826 +n03125729 +n04179913 +n02097474 +n03297495 +n03042490 +n04252225 +n03141823 +n09193705 +n04149813 +n02655020 +n03788365 +n03085013 +n02037110 +n01944390 +n02120505 +n04536866 +n07695742 +n02951358 +n03417042 +n03733131 +n04325704 +n03843555 +n03179701 +n02009229 +n04523525 +n02098413 +n02096585 +n03424325 +n02105162 +n04590129 +n01537544 +n02093991 +n03394916 +n01514668 +n13133613 +n03445924 +n03873416 +n01632458 +n03706229 +n02085782 +n01632777 +n04371430 +n12144580 +n01665541 +n02102040 +n02701002 +n04131690 +n04347754 +n13040303 +n01775062 +n02114712 +n01833805 +n03759954 +n02860847 +n04330267 +n02859443 +n02138441 +n01774384 +n07717556 +n04311004 +n03908714 +n02361337 +n04065272 +n04146614 +n04179913 +n01697457 +n03857828 +n04285008 +n02089078 +n01755581 +n02056570 +n02701002 +n02483708 +n02101556 +n01737021 +n03874599 +n02107683 +n03657121 +n01592084 +n03995372 +n03788195 +n02100877 +n03447447 +n09399592 +n04350905 +n04266014 +n02979186 +n02988304 +n02879718 +n03032252 +n01530575 +n03291819 +n04131690 +n02037110 +n01632458 +n02102177 +n04367480 +n01807496 +n02107908 +n01740131 +n02096585 +n04235860 +n02363005 +n02110958 +n07711569 +n03384352 +n03530642 +n03761084 +n03602883 +n01531178 +n01774384 +n04456115 +n01985128 +n01694178 +n03065424 +n04589890 +n04049303 +n07248320 +n06874185 +n04604644 +n01775062 +n02123597 +n02095570 +n01985128 +n02115913 +n01622779 +n01601694 +n04589890 +n01560419 +n01440764 +n02051845 +n03218198 +n03047690 +n03854065 +n02442845 +n02361337 +n02835271 +n01531178 +n02108422 +n02115913 +n03141823 +n02088238 +n03690938 +n03207941 +n02510455 +n01806143 +n01740131 +n03854065 +n02488291 +n04428191 +n03063599 +n02101556 +n02087046 +n02101556 +n03792972 +n04296562 +n02101006 +n02776631 +n01773797 +n03709823 +n04458633 +n02281406 +n03691459 +n03692522 +n02089867 +n03868863 +n02012849 +n03763968 +n01944390 +n01667114 +n03950228 +n02128385 +n02319095 +n04553703 +n03452741 +n03345487 +n02672831 +n03935335 +n02104365 +n01592084 +n04149813 +n03594734 +n02233338 +n01688243 +n07718472 +n03394916 +n13040303 +n01986214 +n02510455 +n04285008 +n03956157 +n02264363 +n03127747 +n03445777 +n04467665 +n03240683 +n03065424 +n04517823 +n02165105 +n03602883 +n01753488 +n04399382 +n09256479 +n02086910 +n03956157 +n03485794 +n02484975 +n02666196 +n02097209 +n03535780 +n02112018 +n03109150 +n04590129 +n01667778 +n02787622 +n02088364 +n03388549 +n02494079 +n01843065 +n02108551 +n03929855 +n03498962 +n02109525 +n04328186 +n09256479 +n04540053 +n03459775 +n03982430 +n02444819 +n01494475 +n02086079 +n02125311 +n03529860 +n01843383 +n03992509 +n01641577 +n04099969 +n04254777 +n01608432 +n02346627 +n02397096 +n02676566 +n01491361 +n02074367 +n04252225 +n04485082 +n02092002 +n02098286 +n02727426 +n03100240 +n13054560 +n02097298 +n02123045 +n02002724 +n02109047 +n03131574 +n02692877 +n02088632 +n04465501 +n02930766 +n01843065 +n03697007 +n02102973 +n04147183 +n02117135 +n07754684 +n02787622 +n02114548 +n04515003 +n01855672 +n01682714 +n02110063 +n04127249 +n03127925 +n04429376 +n03710193 +n03796401 +n02786058 +n02794156 +n02112018 +n02423022 +n02094114 +n02092339 +n03344393 +n03888605 +n02437312 +n02107574 +n03710637 +n01491361 +n04074963 +n02128385 +n04044716 +n02093991 +n02113186 +n01592084 +n07714990 +n02174001 +n02777292 +n02090379 +n04509417 +n02486261 +n02841315 +n02096051 +n01768244 +n03895866 +n03891332 +n02102177 +n04525038 +n03777754 +n07716906 +n02091244 +n02966687 +n01981276 +n02092339 +n04612504 +n09229709 +n02099429 +n04540053 +n03935335 +n01644373 +n02088466 +n04380533 +n02105162 +n02916936 +n01944390 +n02123159 +n03459775 +n01944390 +n02100735 +n01740131 +n03599486 +n02169497 +n03888605 +n04296562 +n03794056 +n03110669 +n02356798 +n03032252 +n04482393 +n03888605 +n01748264 +n02098413 +n03967562 +n03706229 +n13052670 +n04252225 +n02009229 +n04252225 +n09421951 +n01930112 +n04461696 +n04208210 +n02443484 +n03045698 +n03967562 +n07880968 +n02177972 +n01698640 +n02704792 +n04328186 +n01828970 +n04482393 +n03400231 +n03394916 +n04467665 +n04259630 +n01860187 +n03868863 +n03000134 +n02783161 +n02509815 +n04465501 +n02417914 +n04482393 +n02787622 +n02089867 +n03240683 +n02403003 +n04296562 +n02782093 +n02892201 +n03777754 +n04612504 +n03372029 +n01756291 +n03902125 +n03355925 +n01843383 +n04579432 +n02091134 +n04579432 +n03481172 +n02841315 +n07831146 +n03075370 +n02009912 +n04201297 +n02396427 +n01753488 +n03249569 +n04090263 +n01704323 +n02526121 +n04204347 +n02777292 +n03126707 +n04254120 +n02111277 +n01582220 +n02206856 +n02939185 +n01693334 +n02641379 +n04263257 +n04347754 +n07734744 +n01990800 +n04399382 +n04270147 +n03944341 +n01773549 +n03259280 +n02089078 +n02094433 +n04525305 +n04493381 +n01669191 +n02066245 +n02841315 +n03796401 +n04371430 +n04548362 +n03944341 +n01773157 +n03223299 +n03692522 +n03594945 +n02100877 +n03000134 +n02783161 +n03345487 +n02802426 +n01944390 +n02817516 +n02102973 +n03956157 +n03627232 +n02114712 +n03837869 +n02797295 +n04458633 +n03196217 +n02963159 +n02110341 +n02108551 +n09468604 +n03452741 +n02174001 +n04380533 +n07716358 +n04037443 +n03803284 +n03958227 +n09288635 +n04442312 +n03272562 +n03891251 +n04118776 +n04532670 +n01742172 +n03733281 +n02102177 +n03026506 +n02606052 +n01818515 +n04589890 +n04428191 +n02279972 +n02123045 +n04254120 +n03000684 +n01983481 +n02704792 +n07590611 +n04162706 +n02088632 +n02112706 +n03938244 +n02112018 +n02123597 +n01531178 +n02325366 +n03000684 +n02066245 +n02859443 +n03063599 +n07753113 +n02999410 +n03777568 +n02108089 +n01872401 +n02025239 +n01484850 +n03899768 +n04162706 +n02110341 +n02091467 +n04417672 +n03000134 +n04356056 +n04417672 +n01689811 +n02412080 +n02086646 +n02096294 +n01622779 +n02089973 +n02835271 +n09193705 +n04111531 +n04456115 +n09193705 +n03633091 +n07749582 +n07697537 +n02860847 +n01855672 +n03743016 +n02077923 +n07754684 +n01833805 +n02013706 +n03976657 +n03134739 +n03720891 +n02837789 +n04355933 +n03584829 +n09472597 +n01843065 +n01749939 +n03717622 +n03982430 +n02504458 +n02127052 +n03127747 +n04026417 +n03866082 +n01872401 +n02094258 +n03291819 +n02110627 +n03982430 +n02093256 +n02277742 +n02965783 +n04428191 +n01740131 +n02795169 +n02119789 +n03535780 +n03461385 +n01980166 +n02486410 +n03720891 +n04597913 +n03666591 +n02843684 +n04252225 +n10565667 +n02268443 +n01491361 +n02098105 +n03775071 +n03187595 +n07760859 +n02259212 +n03042490 +n03942813 +n04069434 +n04120489 +n01820546 +n04548280 +n07718472 +n02417914 +n02095314 +n06874185 +n03447447 +n03983396 +n04592741 +n02102177 +n03649909 +n03594945 +n02099712 +n04370456 +n04517823 +n07875152 +n03207941 +n02398521 +n03954731 +n01796340 +n01798484 +n02113712 +n01491361 +n04423845 +n03483316 +n04461696 +n02106550 +n01773157 +n13052670 +n02091244 +n03706229 +n01560419 +n03832673 +n02492660 +n04099969 +n03982430 +n04532670 +n01631663 +n02085782 +n01728920 +n03240683 +n04584207 +n01806567 +n01729977 +n01601694 +n04350905 +n04179913 +n04592741 +n02108422 +n02110806 +n02814533 +n01773797 +n02704792 +n02782093 +n03916031 +n03467068 +n03710721 +n04554684 +n01955084 +n07717556 +n02009229 +n02256656 +n03095699 +n02094258 +n02486410 +n02027492 +n04200800 +n04371430 +n03662601 +n02444819 +n01665541 +n01614925 +n02112018 +n03773504 +n04505470 +n02951358 +n02948072 +n02101556 +n03868242 +n02093256 +n01641577 +n02128385 +n03000684 +n03874293 +n03134739 +n01440764 +n02268853 +n07584110 +n04399382 +n01843065 +n03188531 +n02086240 +n04540053 +n01829413 +n04462240 +n03018349 +n03782006 +n07730033 +n03676483 +n04275548 +n03930630 +n03764736 +n02226429 +n02007558 +n04149813 +n01820546 +n01829413 +n02110185 +n02107683 +n03840681 +n02018207 +n01833805 +n03902125 +n03868863 +n03443371 +n02113978 +n03793489 +n02859443 +n02097047 +n04192698 +n07590611 +n07880968 +n07697537 +n02342885 +n02398521 +n02002724 +n02910353 +n02442845 +n02906734 +n02494079 +n02091831 +n02823750 +n04447861 +n01796340 +n03089624 +n03924679 +n01980166 +n04435653 +n03649909 +n02107142 +n02110063 +n02403003 +n04081281 +n01735189 +n01532829 +n03891251 +n02077923 +n03977966 +n03452741 +n04465501 +n02777292 +n02113799 +n04367480 +n03787032 +n01744401 +n02667093 +n03933933 +n01580077 +n02794156 +n01796340 +n02002556 +n02837789 +n01818515 +n09835506 +n04604644 +n01917289 +n03180011 +n02102480 +n03873416 +n03995372 +n03884397 +n03657121 +n02093754 +n02102318 +n02097658 +n02108422 +n01855672 +n02489166 +n03208938 +n02116738 +n07802026 +n03584254 +n02108000 +n09256479 +n02892767 +n02105162 +n03388549 +n02870880 +n02116738 +n01807496 +n03045698 +n03717622 +n03109150 +n03388549 +n02437616 +n07930864 +n03991062 +n03709823 +n03680355 +n02033041 +n02843684 +n02795169 +n02236044 +n02509815 +n04442312 +n12998815 +n03255030 +n02111889 +n03595614 +n03788195 +n02690373 +n01756291 +n01698640 +n07565083 +n01983481 +n03445777 +n03998194 +n02879718 +n07930864 +n03255030 +n02086646 +n04120489 +n03733281 +n01667114 +n03532672 +n03179701 +n04229816 +n03733281 +n09256479 +n02105251 +n03146219 +n04330267 +n06874185 +n12620546 +n01641577 +n02106550 +n02445715 +n03146219 +n02493793 +n02509815 +n02804610 +n03590841 +n01871265 +n02483362 +n02437616 +n03895866 +n02071294 +n03291819 +n13044778 +n02114855 +n01984695 +n02500267 +n06359193 +n01843065 +n03763968 +n02643566 +n04258138 +n02667093 +n07734744 +n04153751 +n02138441 +n03188531 +n07802026 +n02100583 +n07860988 +n01817953 +n02106166 +n02483708 +n03782006 +n02007558 +n04476259 +n02835271 +n03124170 +n04550184 +n03661043 +n04204238 +n03776460 +n03837869 +n04443257 +n02486261 +n01537544 +n02317335 +n02134418 +n04557648 +n01872401 +n04209239 +n01677366 +n02100735 +n02096437 +n04479046 +n01693334 +n02965783 +n01514859 +n07613480 +n02108422 +n01914609 +n03482405 +n03710637 +n04009552 +n02106166 +n01531178 +n02704792 +n04487394 +n02834397 +n02108915 +n02484975 +n04310018 +n02095570 +n03447721 +n02119022 +n03017168 +n03697007 +n03249569 +n02835271 +n04591713 +n03347037 +n02791124 +n01692333 +n01882714 +n03196217 +n02422699 +n04041544 +n03796401 +n02028035 +n02966193 +n04235860 +n03642806 +n03838899 +n02510455 +n01930112 +n03781244 +n02091032 +n02025239 +n03196217 +n02094114 +n01978455 +n04254120 +n13040303 +n03459775 +n07716358 +n03016953 +n03876231 +n02892767 +n04069434 +n02256656 +n02168699 +n02128757 +n01986214 +n02009229 +n02790996 +n03630383 +n07718747 +n02361337 +n02951585 +n07873807 +n03223299 +n07836838 +n04266014 +n03956157 +n02002724 +n02077923 +n02002556 +n02951358 +n03259280 +n02113186 +n02843684 +n04332243 +n01775062 +n02777292 +n04118538 +n02226429 +n03908618 +n02782093 +n03777568 +n02101556 +n02701002 +n02018795 +n02102318 +n03045698 +n04254680 +n02692877 +n12620546 +n02325366 +n01560419 +n02977058 +n03127925 +n04325704 +n03483316 +n02101556 +n03450230 +n04264628 +n02101556 +n03482405 +n07715103 +n03544143 +n02395406 +n01797886 +n03207941 +n04389033 +n01978455 +n01755581 +n02708093 +n03461385 +n02342885 +n01930112 +n04009552 +n02804610 +n13037406 +n02092339 +n02106550 +n04033995 +n02395406 +n03733131 +n02859443 +n04008634 +n02841315 +n02412080 +n03785016 +n01440764 +n03100240 +n01665541 +n03710721 +n04599235 +n04370456 +n02124075 +n02138441 +n03085013 +n01744401 +n04296562 +n09835506 +n03785016 +n07754684 +n04311004 +n02124075 +n02802426 +n04239074 +n02971356 +n02009229 +n02096177 +n01695060 +n03954731 +n01828970 +n02086240 +n02447366 +n03095699 +n03590841 +n03482405 +n02107574 +n02096294 +n03085013 +n04456115 +n04486054 +n04599235 +n03141823 +n04263257 +n03877845 +n04428191 +n03976657 +n02797295 +n03637318 +n03041632 +n07579787 +n02687172 +n03201208 +n04579145 +n01608432 +n02099849 +n01667114 +n04372370 +n02106166 +n03075370 +n02138441 +n03028079 +n01930112 +n03388183 +n03825788 +n13044778 +n02687172 +n03692522 +n02391049 +n04254120 +n03146219 +n03126707 +n02025239 +n07714571 +n02869837 +n01580077 +n03594945 +n02109525 +n04099969 +n03792972 +n03623198 +n01872401 +n02441942 +n03032252 +n02687172 +n02096294 +n02037110 +n04310018 +n02280649 +n03992509 +n04037443 +n01806567 +n02325366 +n03372029 +n02259212 +n04371430 +n02391049 +n01755581 +n01820546 +n02264363 +n01494475 +n03201208 +n01774750 +n03259280 +n02687172 +n04090263 +n02483708 +n04487081 +n03218198 +n02480495 +n01692333 +n03017168 +n01843065 +n03930630 +n02056570 +n03041632 +n02799071 +n03344393 +n01514859 +n02113978 +n02027492 +n01981276 +n02397096 +n04192698 +n03134739 +n02666196 +n02117135 +n04461696 +n02231487 +n09246464 +n04149813 +n02102040 +n02086910 +n04355338 +n02457408 +n02093428 +n01689811 +n03481172 +n07836838 +n03803284 +n01910747 +n04553703 +n03478589 +n03584829 +n04254777 +n04254120 +n02105505 +n02361337 +n03992509 +n02804610 +n02102318 +n01560419 +n01773549 +n03902125 +n06359193 +n02129165 +n02120079 +n02113712 +n01728920 +n03160309 +n07871810 +n04258138 +n03045698 +n04552348 +n13044778 +n03717622 +n02025239 +n02268443 +n02108915 +n04542943 +n03240683 +n02966687 +n07754684 +n03991062 +n02769748 +n03187595 +n03271574 +n02256656 +n03637318 +n04357314 +n03207941 +n01728920 +n04074963 +n03000684 +n04118538 +n03888257 +n03000134 +n02930766 +n02437616 +n01622779 +n03954731 +n04266014 +n02108915 +n01729977 +n04553703 +n02328150 +n07715103 +n03617480 +n02441942 +n01734418 +n02229544 +n02259212 +n03017168 +n02077923 +n03871628 +n02025239 +n02992211 +n01978287 +n01755581 +n04008634 +n01773797 +n04209239 +n04584207 +n02493793 +n01616318 +n04127249 +n01877812 +n02814860 +n03535780 +n04040759 +n02879718 +n02514041 +n04592741 +n03854065 +n01614925 +n04026417 +n03837869 +n02865351 +n04239074 +n06794110 +n02190166 +n04208210 +n02088238 +n02497673 +n03179701 +n04613696 +n01693334 +n02672831 +n02817516 +n02106662 +n04392985 +n03777754 +n03649909 +n04311004 +n01664065 +n04389033 +n02807133 +n03476991 +n03141823 +n03793489 +n02988304 +n03325584 +n01871265 +n09288635 +n04326547 +n02110063 +n03220513 +n02093859 +n01693334 +n02815834 +n02107574 +n04487081 +n04347754 +n07695742 +n04086273 +n04493381 +n01580077 +n02910353 +n07754684 +n04067472 +n12768682 +n01675722 +n02437312 +n04417672 +n03868863 +n13054560 +n02100735 +n03888605 +n04009552 +n04238763 +n03876231 +n03706229 +n02859443 +n01530575 +n01824575 +n02096437 +n04486054 +n02704792 +n02110185 +n01824575 +n12620546 +n03814906 +n04154565 +n02058221 +n02111129 +n03690938 +n03857828 +n01534433 +n09229709 +n02086910 +n04507155 +n02098105 +n02089078 +n04355933 +n02930766 +n03384352 +n02892201 +n03992509 +n02109961 +n04479046 +n03000247 +n03047690 +n04258138 +n04005630 +n02281787 +n01693334 +n03379051 +n01614925 +n04479046 +n04591713 +n03920288 +n02051845 +n01756291 +n02107312 +n04435653 +n03325584 +n02058221 +n02107683 +n02111277 +n03786901 +n07768694 +n03891332 +n04204347 +n03400231 +n03961711 +n02490219 +n03347037 +n04597913 +n02090721 +n03450230 +n02112137 +n03250847 +n03868242 +n02058221 +n04141327 +n03761084 +n02090379 +n02486261 +n02095570 +n01749939 +n02804610 +n04273569 +n02777292 +n03930630 +n03775546 +n07716906 +n02916936 +n02930766 +n03709823 +n02056570 +n02412080 +n02666196 +n03196217 +n04479046 +n04509417 +n01532829 +n07697313 +n02493793 +n02058221 +n04252077 +n02002556 +n02085936 +n03063599 +n04273569 +n04550184 +n03710193 +n01742172 +n02443484 +n03720891 +n03706229 +n02643566 +n03218198 +n03877845 +n01630670 +n07714990 +n02264363 +n01532829 +n04540053 +n02113712 +n04259630 +n03661043 +n03220513 +n03445924 +n07831146 +n01530575 +n03691459 +n01773157 +n06785654 +n03290653 +n03995372 +n03866082 +n02276258 +n03777568 +n01675722 +n12985857 +n02835271 +n03444034 +n02101006 +n03637318 +n03787032 +n04258138 +n03535780 +n04065272 +n02099267 +n03347037 +n01755581 +n03908714 +n02056570 +n02093647 +n01729977 +n04344873 +n01847000 +n02112350 +n01632458 +n04562935 +n03325584 +n04127249 +n04141076 +n04554684 +n07714571 +n02027492 +n03532672 +n02992529 +n02321529 +n03538406 +n03721384 +n02013706 +n04599235 +n02093991 +n02777292 +n02123394 +n07747607 +n03424325 +n03976657 +n04209239 +n02951585 +n07753592 +n04443257 +n03388183 +n10148035 +n03344393 +n04336792 +n02120505 +n01981276 +n03933933 +n01829413 +n03916031 +n02776631 +n01775062 +n04286575 +n04209239 +n07730033 +n02099712 +n07613480 +n02100583 +n03733805 +n03873416 +n04476259 +n02113799 +n02690373 +n09468604 +n02009912 +n01980166 +n02096294 +n03764736 +n03417042 +n03000134 +n10565667 +n04120489 +n02114855 +n04039381 +n04376876 +n02843684 +n02643566 +n03924679 +n03958227 +n03773504 +n02276258 +n03776460 +n03000684 +n02129165 +n03445924 +n02108089 +n04310018 +n03873416 +n02236044 +n03483316 +n02099601 +n02115913 +n02441942 +n03967562 +n04479046 +n04344873 +n02123597 +n02229544 +n03179701 +n02791124 +n04525305 +n03976657 +n04147183 +n02835271 +n01685808 +n02280649 +n01768244 +n02489166 +n04355338 +n02279972 +n03770679 +n01498041 +n04041544 +n02085620 +n02086240 +n03532672 +n02268853 +n02978881 +n02363005 +n04442312 +n02280649 +n02108915 +n04380533 +n04462240 +n03271574 +n03930630 +n02892767 +n01797886 +n01978287 +n02437616 +n03920288 +n03160309 +n01560419 +n02666196 +n03424325 +n02514041 +n02790996 +n02397096 +n01775062 +n02071294 +n02100583 +n04380533 +n01990800 +n03903868 +n07583066 +n02013706 +n02130308 +n02113023 +n03884397 +n03000684 +n04037443 +n01687978 +n02058221 +n02704792 +n07693725 +n04039381 +n03461385 +n01950731 +n03773504 +n02104365 +n04536866 +n02328150 +n07871810 +n03372029 +n04462240 +n02133161 +n02808304 +n03443371 +n01843065 +n01914609 +n01855032 +n04380533 +n02086646 +n02363005 +n04296562 +n04033995 +n02871525 +n03742115 +n02704792 +n02108915 +n03670208 +n02093428 +n04428191 +n09421951 +n01984695 +n02128757 +n01917289 +n04033901 +n02092002 +n03840681 +n03476684 +n04286575 +n04423845 +n02951358 +n03877845 +n01728572 +n03481172 +n03208938 +n02487347 +n02107908 +n07565083 +n04479046 +n03832673 +n02948072 +n02950826 +n03929660 +n04370456 +n02978881 +n01498041 +n02783161 +n03697007 +n01820546 +n03026506 +n04584207 +n02091467 +n02422699 +n02123045 +n03793489 +n03958227 +n02443484 +n02098286 +n02788148 +n04392985 +n12768682 +n03843555 +n02894605 +n04372370 +n02077923 +n02111889 +n01770393 +n02840245 +n01631663 +n02786058 +n04462240 +n02264363 +n03942813 +n02457408 +n03476991 +n02107312 +n02917067 +n04612504 +n02100583 +n04239074 +n04476259 +n02105855 +n03929855 +n02389026 +n04389033 +n03876231 +n04041544 +n01806143 +n07584110 +n02814533 +n03868863 +n02104365 +n02128925 +n02105251 +n04447861 +n04517823 +n02395406 +n04208210 +n02091831 +n04330267 +n02444819 +n02815834 +n02264363 +n01484850 +n02105641 +n02808440 +n02116738 +n01873310 +n03792972 +n02125311 +n01855032 +n02704792 +n07717556 +n03814906 +n01667114 +n03857828 +n01784675 +n02091032 +n04409515 +n01614925 +n03769881 +n02814533 +n02093754 +n07747607 +n03857828 +n04277352 +n02104029 +n04131690 +n02951358 +n02134084 +n07749582 +n03126707 +n04325704 +n02497673 +n02105412 +n01685808 +n07871810 +n02927161 +n04380533 +n04152593 +n02106382 +n04350905 +n01795545 +n03871628 +n02965783 +n07614500 +n03884397 +n03980874 +n02492035 +n02113712 +n03417042 +n04259630 +n03483316 +n01494475 +n02088238 +n07565083 +n07753113 +n04366367 +n04120489 +n04429376 +n02091467 +n02112350 +n02699494 +n03995372 +n02113186 +n01685808 +n03347037 +n02843684 +n02108089 +n03825788 +n03773504 +n02787622 +n04325704 +n03796401 +n01698640 +n03045698 +n02422699 +n04417672 +n04141327 +n04118538 +n02113624 +n04550184 +n01728572 +n04380533 +n04209133 +n01537544 +n07920052 +n04317175 +n01742172 +n02786058 +n03417042 +n03770679 +n02804414 +n02236044 +n03085013 +n04019541 +n03661043 +n03769881 +n01773797 +n02835271 +n01494475 +n01773797 +n02097298 +n01667114 +n02106030 +n02106030 +n03146219 +n01930112 +n02102177 +n13040303 +n04357314 +n04264628 +n07875152 +n04371774 +n02099849 +n03127925 +n02869837 +n03710193 +n02097130 +n07730033 +n04311004 +n03085013 +n02102040 +n04486054 +n02111889 +n04204238 +n03792972 +n03450230 +n03617480 +n02124075 +n03495258 +n03769881 +n02916936 +n01704323 +n03063599 +n01883070 +n01614925 +n04311004 +n01692333 +n03125729 +n04192698 +n03874293 +n03496892 +n04118776 +n02454379 +n04116512 +n01677366 +n01514668 +n03476991 +n03733805 +n03942813 +n03095699 +n02883205 +n02091467 +n02817516 +n06794110 +n03131574 +n02101388 +n01978455 +n02106382 +n02108915 +n03216828 +n07615774 +n07730033 +n01770393 +n04371430 +n02123159 +n01984695 +n01737021 +n02825657 +n02099267 +n03658185 +n02815834 +n02120079 +n03908714 +n04554684 +n04604644 +n03109150 +n03866082 +n03908714 +n03617480 +n02093647 +n02510455 +n04074963 +n03089624 +n02095314 +n03218198 +n02817516 +n01943899 +n03854065 +n03891251 +n04423845 +n04131690 +n04442312 +n01537544 +n03325584 +n02095889 +n03291819 +n03042490 +n02504013 +n03146219 +n04252077 +n02328150 +n01697457 +n02655020 +n04606251 +n07720875 +n02091831 +n02097209 +n01630670 +n01950731 +n01910747 +n07695742 +n03063689 +n01871265 +n03478589 +n07583066 +n02109525 +n03982430 +n04270147 +n01871265 +n02033041 +n03476991 +n01494475 +n09229709 +n03967562 +n03902125 +n02837789 +n04311004 +n04228054 +n02087394 +n04147183 +n02133161 +n03100240 +n04204238 +n02445715 +n03481172 +n04487394 +n03796401 +n02978881 +n01877812 +n01496331 +n07717410 +n02871525 +n02442845 +n02112706 +n02879718 +n03085013 +n02799071 +n03902125 +n02965783 +n02281406 +n04404412 +n02123159 +n02747177 +n04548280 +n04591713 +n04044716 +n03742115 +n02992211 +n07717410 +n10148035 +n02099429 +n02486261 +n04447861 +n03843555 +n04263257 +n04330267 +n02787622 +n02823750 +n01740131 +n04235860 +n03498962 +n02492660 +n02437312 +n07718747 +n03803284 +n02364673 +n02906734 +n07684084 +n03970156 +n03825788 +n03814906 +n07715103 +n02749479 +n02815834 +n02877765 +n02088364 +n02088632 +n04270147 +n07248320 +n01514668 +n01883070 +n02276258 +n04554684 +n02009229 +n07248320 +n01924916 +n03376595 +n03983396 +n02112018 +n01770393 +n02403003 +n02051845 +n02870880 +n02484975 +n02113799 +n03717622 +n07930864 +n07717410 +n02730930 +n03874599 +n02105162 +n02099712 +n01530575 +n03891332 +n01773157 +n02808440 +n02177972 +n03759954 +n07579787 +n02877765 +n03958227 +n03977966 +n03825788 +n03028079 +n04501370 +n02259212 +n03961711 +n03496892 +n03706229 +n04409515 +n12144580 +n03769881 +n09193705 +n02782093 +n01734418 +n04285008 +n02120505 +n02111277 +n02640242 +n02790996 +n02099267 +n07871810 +n01986214 +n01984695 +n12985857 +n04542943 +n03888605 +n04074963 +n10565667 +n04483307 +n09835506 +n02129165 +n03538406 +n01498041 +n04461696 +n03944341 +n03259280 +n01484850 +n04486054 +n03788195 +n09193705 +n03530642 +n04557648 +n02892201 +n04509417 +n03041632 +n02093256 +n02391049 +n04479046 +n03961711 +n15075141 +n02108915 +n01847000 +n02325366 +n03770439 +n03676483 +n06794110 +n01770393 +n02788148 +n03127925 +n03710721 +n02484975 +n02536864 +n02105855 +n03733131 +n04435653 +n02124075 +n03792782 +n04465501 +n01644373 +n02085620 +n03720891 +n03814639 +n03133878 +n02892201 +n02077923 +n02992211 +n02114712 +n02410509 +n03733131 +n03843555 +n02917067 +n02128385 +n04009552 +n03888605 +n03388043 +n04596742 +n03935335 +n06785654 +n02356798 +n02398521 +n03445924 +n03041632 +n03535780 +n07753113 +n02834397 +n01824575 +n07697313 +n04487081 +n02509815 +n02106550 +n01704323 +n01742172 +n02094433 +n01817953 +n03032252 +n01742172 +n02483362 +n02096437 +n02487347 +n02096294 +n04465501 +n02948072 +n03424325 +n02111500 +n02114367 +n01537544 +n01945685 +n02607072 +n04005630 +n04127249 +n07714990 +n03662601 +n03179701 +n09468604 +n01530575 +n03100240 +n06359193 +n02510455 +n02120079 +n02096437 +n03141823 +n01484850 +n04579432 +n04118538 +n02094433 +n02086910 +n01622779 +n07747607 +n07718747 +n02106030 +n02363005 +n03599486 +n03637318 +n02101388 +n03662601 +n03188531 +n02104029 +n11939491 +n04238763 +n01945685 +n02834397 +n02099712 +n01558993 +n03450230 +n03838899 +n04243546 +n02123159 +n04536866 +n02808304 +n04120489 +n03127925 +n04505470 +n03782006 +n02281406 +n04252225 +n02776631 +n02444819 +n04005630 +n03717622 +n03961711 +n03444034 +n03970156 +n01824575 +n02396427 +n02165456 +n02226429 +n02056570 +n07693725 +n04599235 +n03944341 +n02134418 +n03788365 +n07717410 +n04264628 +n03967562 +n04265275 +n03584254 +n01614925 +n07720875 +n03814639 +n04370456 +n04037443 +n03297495 +n02129604 +n03131574 +n04243546 +n02105855 +n03895866 +n03216828 +n02317335 +n02106030 +n03661043 +n01924916 +n02165456 +n04536866 +n01616318 +n02799071 +n03788195 +n02363005 +n01924916 +n04461696 +n04270147 +n02843684 +n04258138 +n03944341 +n01737021 +n01882714 +n02817516 +n02097298 +n01843383 +n04019541 +n04118776 +n02799071 +n03967562 +n03494278 +n02229544 +n04325704 +n03967562 +n13044778 +n03344393 +n04557648 +n03447721 +n09472597 +n04118538 +n03424325 +n04599235 +n01530575 +n02835271 +n09472597 +n02092002 +n02730930 +n04599235 +n02422699 +n03657121 +n01622779 +n03903868 +n02090721 +n04443257 +n01734418 +n07714571 +n01496331 +n02264363 +n03483316 +n03742115 +n07714990 +n03590841 +n03871628 +n04311174 +n02114548 +n03255030 +n02105505 +n07579787 +n07697313 +n03400231 +n06874185 +n04591713 +n04509417 +n03255030 +n03404251 +n02268853 +n07613480 +n07768694 +n02321529 +n01818515 +n01877812 +n02895154 +n03485794 +n04553703 +n02364673 +n09229709 +n02916936 +n04235860 +n07932039 +n15075141 +n02006656 +n02487347 +n02087394 +n02480855 +n04372370 +n03733805 +n02979186 +n02033041 +n10565667 +n02006656 +n02099267 +n02108915 +n03930630 +n01728572 +n04552348 +n02090721 +n02870880 +n02951585 +n04259630 +n02328150 +n04435653 +n02843684 +n03788195 +n03887697 +n04335435 +n04228054 +n01608432 +n04355933 +n02123045 +n04589890 +n04086273 +n03832673 +n02111277 +n01704323 +n03599486 +n04254680 +n02086240 +n02817516 +n02487347 +n04592741 +n03272010 +n02018795 +n01930112 +n03223299 +n03388043 +n03888605 +n04040759 +n02169497 +n02793495 +n04376876 +n02177972 +n04485082 +n07717410 +n04081281 +n03109150 +n02090622 +n03482405 +n01664065 +n03032252 +n03355925 +n01910747 +n04536866 +n03000247 +n03527444 +n02025239 +n04254777 +n04141975 +n03793489 +n02979186 +n02127052 +n01847000 +n02328150 +n02909870 +n10565667 +n03709823 +n02992211 +n02093859 +n07747607 +n07717410 +n03249569 +n01734418 +n03944341 +n04344873 +n01677366 +n02108000 +n03876231 +n04461696 +n06596364 +n09428293 +n03482405 +n02088094 +n04136333 +n04204238 +n01697457 +n04074963 +n01514859 +n02106662 +n04252225 +n02117135 +n03476684 +n01770393 +n02795169 +n03733131 +n03676483 +n04133789 +n04435653 +n01728920 +n04033995 +n04355933 +n01675722 +n03717622 +n04428191 +n03535780 +n02105162 +n07753275 +n04483307 +n02917067 +n04118776 +n03000684 +n03000134 +n02281787 +n01770393 +n02326432 +n01753488 +n02167151 +n02808304 +n04392985 +n03197337 +n03100240 +n04286575 +n03127925 +n01945685 +n02536864 +n02799071 +n02783161 +n02346627 +n02264363 +n02088364 +n02093754 +n03617480 +n02105162 +n02966687 +n01795545 +n02091831 +n01537544 +n03041632 +n02834397 +n02699494 +n03404251 +n01860187 +n04550184 +n02992211 +n02437312 +n02098105 +n07590611 +n03527444 +n07583066 +n01748264 +n02966687 +n03803284 +n04366367 +n02119022 +n01740131 +n02099601 +n01534433 +n04606251 +n02099601 +n02488702 +n04336792 +n02391049 +n02086646 +n02086079 +n02110806 +n02110341 +n04447861 +n02119789 +n04162706 +n02259212 +n03124043 +n02101388 +n03630383 +n02980441 +n02494079 +n03602883 +n01695060 +n04141327 +n04266014 +n03047690 +n02097209 +n02113023 +n02174001 +n01669191 +n01667778 +n02096051 +n04251144 +n02112706 +n02988304 +n03461385 +n03447447 +n02077923 +n03887697 +n02342885 +n01641577 +n01616318 +n02007558 +n01698640 +n04033995 +n03804744 +n02110063 +n03355925 +n01667114 +n01914609 +n03804744 +n02669723 +n07836838 +n02412080 +n03743016 +n04336792 +n13052670 +n03791053 +n03776460 +n03017168 +n04404412 +n03777754 +n04037443 +n03796401 +n04404412 +n06596364 +n02105412 +n04023962 +n01734418 +n02328150 +n02101006 +n07684084 +n02002556 +n13133613 +n07248320 +n01753488 +n02107908 +n02123394 +n04154565 +n02504458 +n13052670 +n04008634 +n02916936 +n02107683 +n02134084 +n02443484 +n07720875 +n04493381 +n03761084 +n02102040 +n03089624 +n01985128 +n01753488 +n02137549 +n09835506 +n03443371 +n02346627 +n02002556 +n04589890 +n04562935 +n01632777 +n02317335 +n01632458 +n02493509 +n02398521 +n03970156 +n02667093 +n03825788 +n02086646 +n13044778 +n02088238 +n01776313 +n02481823 +n04423845 +n03047690 +n07749582 +n02977058 +n01796340 +n02110627 +n02910353 +n03201208 +n01728572 +n02114367 +n03980874 +n02776631 +n02165456 +n02437312 +n02364673 +n03764736 +n04041544 +n12998815 +n03388043 +n03803284 +n02113624 +n02102318 +n03424325 +n03250847 +n09288635 +n03924679 +n03956157 +n01910747 +n04560804 +n07714990 +n04542943 +n07716906 +n02128925 +n04487394 +n04399382 +n04044716 +n04465501 +n03854065 +n02398521 +n02823750 +n07583066 +n02107312 +n04584207 +n01829413 +n01833805 +n02417914 +n04081281 +n02088364 +n02113799 +n04376876 +n02093991 +n02730930 +n04133789 +n02442845 +n02018207 +n03930630 +n02910353 +n02730930 +n03776460 +n02088364 +n04264628 +n07714990 +n04461696 +n03372029 +n02090379 +n01819313 +n03657121 +n02106662 +n02109525 +n02500267 +n04376876 +n04483307 +n03843555 +n13037406 +n02097047 +n02403003 +n03290653 +n02690373 +n02536864 +n02091467 +n03843555 +n04044716 +n01537544 +n02037110 +n04146614 +n04612504 +n01484850 +n07684084 +n03220513 +n04326547 +n03127925 +n02971356 +n03476991 +n01774384 +n07565083 +n02672831 +n03967562 +n03998194 +n09229709 +n01641577 +n01682714 +n04204347 +n03160309 +n03478589 +n03792972 +n04458633 +n04392985 +n02480855 +n02099429 +n07714571 +n02098105 +n02963159 +n02777292 +n03529860 +n03706229 +n12057211 +n04612504 +n04554684 +n03590841 +n03661043 +n04065272 +n01531178 +n07614500 +n02017213 +n02859443 +n04235860 +n02256656 +n03481172 +n02110063 +n02281787 +n04579432 +n01985128 +n02363005 +n04317175 +n01737021 +n03216828 +n02095570 +n07714571 +n04525305 +n07565083 +n03494278 +n04525038 +n01494475 +n04404412 +n07718747 +n03903868 +n04376876 +n02088632 +n07720875 +n02111277 +n01728920 +n04311004 +n02877765 +n06785654 +n01978455 +n01729977 +n02906734 +n01601694 +n04429376 +n02676566 +n03733281 +n02106382 +n02817516 +n04039381 +n04356056 +n01514859 +n03791053 +n04376876 +n03630383 +n04252077 +n04417672 +n01641577 +n04141076 +n02025239 +n02992529 +n02672831 +n02088466 +n01797886 +n04501370 +n04149813 +n02172182 +n04336792 +n04417672 +n03944341 +n03961711 +n04493381 +n04258138 +n04523525 +n02423022 +n02102177 +n02865351 +n04507155 +n07930864 +n02097047 +n03916031 +n02892201 +n04254680 +n01608432 +n04461696 +n03483316 +n02500267 +n02916936 +n03452741 +n02892201 +n02113186 +n03775546 +n03478589 +n03633091 +n04599235 +n03065424 +n02097209 +n01873310 +n04604644 +n04418357 +n03794056 +n03179701 +n01440764 +n01806143 +n02093859 +n01496331 +n01669191 +n04367480 +n02971356 +n02114548 +n03249569 +n01796340 +n07613480 +n04505470 +n03804744 +n02950826 +n03743016 +n02777292 +n03089624 +n02110341 +n03485407 +n02480855 +n02356798 +n02910353 +n03662601 +n01601694 +n04141076 +n03384352 +n02492660 +n03376595 +n02776631 +n02025239 +n04065272 +n02033041 +n03417042 +n09332890 +n02097658 +n04552348 +n03447447 +n03781244 +n03000684 +n01749939 +n01677366 +n02094114 +n04465501 +n04372370 +n02281787 +n03196217 +n02277742 +n02701002 +n03290653 +n03452741 +n01806143 +n04037443 +n03825788 +n04266014 +n07716906 +n02123597 +n02110063 +n02981792 +n03804744 +n02134418 +n03970156 +n02483362 +n02486261 +n01514668 +n02134084 +n03970156 +n01558993 +n01644373 +n03692522 +n03804744 +n02804414 +n02108551 +n01560419 +n02490219 +n03710637 +n03673027 +n04552348 +n02094114 +n03967562 +n03776460 +n02447366 +n03733805 +n03127925 +n02279972 +n09428293 +n03089624 +n03938244 +n04041544 +n02113712 +n03594734 +n02206856 +n03485794 +n02256656 +n02981792 +n03347037 +n03026506 +n04356056 +n09332890 +n07565083 +n07760859 +n04286575 +n02790996 +n01873310 +n03337140 +n04483307 +n02281787 +n02114548 +n12057211 +n02971356 +n04591713 +n04371774 +n03841143 +n02229544 +n02794156 +n04270147 +n04090263 +n04592741 +n02120505 +n02120505 +n03532672 +n03062245 +n03089624 +n03710193 +n03792972 +n02085936 +n01924916 +n01692333 +n04428191 +n13044778 +n06359193 +n07693725 +n02916936 +n02488702 +n02489166 +n02102318 +n03980874 +n04265275 +n04429376 +n02480855 +n07873807 +n03478589 +n02071294 +n02097298 +n01734418 +n02123159 +n02951585 +n07714990 +n02859443 +n04447861 +n02096585 +n03902125 +n04525038 +n03028079 +n03866082 +n03891332 +n03220513 +n03207743 +n04589890 +n03871628 +n01774750 +n02125311 +n02747177 +n04153751 +n02101556 +n02095570 +n01629819 +n03042490 +n01872401 +n04311004 +n04228054 +n03983396 +n04456115 +n04070727 +n02490219 +n02093256 +n03710193 +n03742115 +n03841143 +n04285008 +n02074367 +n02526121 +n02116738 +n03666591 +n02363005 +n02910353 +n02219486 +n03063599 +n01955084 +n02104029 +n02114855 +n04023962 +n04376876 +n04275548 +n01682714 +n01641577 +n02676566 +n07892512 +n01775062 +n03457902 +n04486054 +n03457902 +n02843684 +n07768694 +n04026417 +n03355925 +n02025239 +n03781244 +n03947888 +n02280649 +n03450230 +n02098286 +n03776460 +n03594945 +n07734744 +n02276258 +n07720875 +n02988304 +n03595614 +n02951358 +n03764736 +n02939185 +n02091134 +n01978287 +n02268443 +n03127747 +n03814639 +n03874293 +n04081281 +n07768694 +n07715103 +n02790996 +n03160309 +n04525038 +n02013706 +n04540053 +n02105056 +n07715103 +n01860187 +n07920052 +n01687978 +n07590611 +n03394916 +n03947888 +n01945685 +n02110063 +n04074963 +n04606251 +n03594945 +n04254120 +n03187595 +n02110958 +n02977058 +n07930864 +n02099601 +n03590841 +n02441942 +n01806567 +n02643566 +n03874293 +n03255030 +n04487394 +n07760859 +n02112137 +n04486054 +n01496331 +n03337140 +n01882714 +n02113978 +n07615774 +n02168699 +n04465501 +n02086910 +n04136333 +n04254120 +n03530642 +n03187595 +n01770393 +n02422106 +n03709823 +n02910353 +n01855672 +n02361337 +n01580077 +n01694178 +n04120489 +n04517823 +n03775546 +n01773157 +n03775546 +n03777568 +n04355933 +n01784675 +n01498041 +n02422699 +n04447861 +n02177972 +n02319095 +n03935335 +n03980874 +n03976657 +n02442845 +n02085782 +n03976467 +n07583066 +n04461696 +n04467665 +n02105641 +n04501370 +n03777754 +n04065272 +n03447721 +n02206856 +n03459775 +n03947888 +n04111531 +n02807133 +n03481172 +n01983481 +n03733131 +n02105641 +n03841143 +n03976467 +n02391049 +n03196217 +n02422699 +n04462240 +n04328186 +n04310018 +n04417672 +n03018349 +n02965783 +n01629819 +n03207941 +n04311174 +n02226429 +n02363005 +n03041632 +n04033901 +n02410509 +n02112137 +n02747177 +n02825657 +n02097298 +n02992529 +n03032252 +n01734418 +n04090263 +n04201297 +n02094258 +n04111531 +n04265275 +n04065272 +n02676566 +n03388043 +n07930864 +n02423022 +n02108551 +n03424325 +n02815834 +n04228054 +n02097209 +n02137549 +n03314780 +n01608432 +n01820546 +n02109961 +n01580077 +n07579787 +n03788365 +n02749479 +n03930313 +n01806567 +n02927161 +n04447861 +n04548362 +n02259212 +n04252225 +n02105162 +n03345487 +n02727426 +n07584110 +n04005630 +n02096294 +n04273569 +n02422106 +n03534580 +n09288635 +n01795545 +n02397096 +n02730930 +n01806143 +n03661043 +n02807133 +n02277742 +n07613480 +n03297495 +n03761084 +n03109150 +n07716906 +n12267677 +n04204238 +n04204347 +n04596742 +n03710637 +n02481823 +n02669723 +n01491361 +n01629819 +n03982430 +n02869837 +n01843065 +n04311174 +n01820546 +n01677366 +n02108089 +n01807496 +n03710721 +n03063599 +n03498962 +n01729322 +n02769748 +n02268853 +n04081281 +n03983396 +n06359193 +n02127052 +n02107142 +n02488702 +n02006656 +n07831146 +n02676566 +n04277352 +n03527444 +n03372029 +n03314780 +n02114712 +n01978287 +n03337140 +n03538406 +n02917067 +n01756291 +n01667778 +n01795545 +n01631663 +n02088364 +n02808304 +n01797886 +n02104029 +n03201208 +n01558993 +n03967562 +n04428191 +n02494079 +n04162706 +n04515003 +n04040759 +n01774750 +n01943899 +n02098413 +n02099601 +n04270147 +n02417914 +n03065424 +n07734744 +n02007558 +n02119789 +n07695742 +n02364673 +n01689811 +n02672831 +n02124075 +n01644900 +n04335435 +n02086646 +n02095889 +n02105251 +n02391049 +n01955084 +n02480495 +n03032252 +n02808440 +n03637318 +n02877765 +n04597913 +n02112706 +n04590129 +n01910747 +n02895154 +n03062245 +n03775546 +n03372029 +n04228054 +n04258138 +n04074963 +n11879895 +n01986214 +n01943899 +n02138441 +n01806143 +n01983481 +n03478589 +n04389033 +n02951358 +n02102318 +n03763968 +n03594734 +n01689811 +n07753113 +n02074367 +n01819313 +n03467068 +n03393912 +n02056570 +n04008634 +n04254777 +n01644900 +n02106166 +n03891251 +n04435653 +n01773549 +n03729826 +n01770081 +n03529860 +n03110669 +n03841143 +n02091244 +n04067472 +n04371430 +n03796401 +n03782006 +n04238763 +n01784675 +n04019541 +n02097209 +n02259212 +n03956157 +n02112706 +n02111889 +n03527444 +n02167151 +n04442312 +n07695742 +n03710193 +n04074963 +n02099849 +n02134418 +n02825657 +n13037406 +n02085782 +n02417914 +n12620546 +n04275548 +n02804610 +n04146614 +n01514668 +n01443537 +n04509417 +n02892201 +n02088466 +n03065424 +n04254120 +n03792972 +n01924916 +n02037110 +n07697537 +n03394916 +n02101006 +n02110806 +n03146219 +n02814860 +n03649909 +n03127747 +n01980166 +n02092002 +n03787032 +n02133161 +n03874599 +n04201297 +n02106550 +n07615774 +n03710637 +n03527444 +n07714990 +n03017168 +n02111500 +n01744401 +n03950228 +n02410509 +n02483708 +n07583066 +n04589890 +n02655020 +n02259212 +n01990800 +n03457902 +n07920052 +n04505470 +n02111129 +n03216828 +n02892767 +n02095314 +n02092002 +n01664065 +n03944341 +n03495258 +n01737021 +n01677366 +n01806567 +n02097298 +n04532670 +n04522168 +n02708093 +n02066245 +n02971356 +n02906734 +n03492542 +n03930313 +n02396427 +n02037110 +n03297495 +n03017168 +n01773797 +n03786901 +n02910353 +n02102177 +n02730930 +n02480495 +n04562935 +n02109525 +n02988304 +n02091467 +n04204238 +n04476259 +n01532829 +n03208938 +n04532106 +n02165105 +n01677366 +n07715103 +n02795169 +n02127052 +n02098286 +n01728572 +n01833805 +n02445715 +n02259212 +n04209133 +n07711569 +n07860988 +n09421951 +n03125729 +n04141076 +n01742172 +n03063689 +n01704323 +n01748264 +n01770393 +n01955084 +n02894605 +n03792972 +n04141975 +n02672831 +n03018349 +n02971356 +n02859443 +n07749582 +n03792782 +n02398521 +n04254777 +n02326432 +n03877472 +n02123045 +n03623198 +n02342885 +n03187595 +n03884397 +n04330267 +n04266014 +n02138441 +n03538406 +n03000247 +n02363005 +n02883205 +n07753592 +n04371430 +n03871628 +n03633091 +n04023962 +n01740131 +n04251144 +n02870880 +n02009912 +n03461385 +n02328150 +n01945685 +n02280649 +n02012849 +n02112137 +n04326547 +n02117135 +n07930864 +n04136333 +n04370456 +n01737021 +n01817953 +n03888605 +n03452741 +n04330267 +n07932039 +n02398521 +n07930864 +n03787032 +n02112350 +n12267677 +n03494278 +n07693725 +n03857828 +n02815834 +n04376876 +n03874293 +n04371774 +n03929855 +n02841315 +n02090721 +n09468604 +n02488291 +n02106662 +n03461385 +n04485082 +n03995372 +n02493793 +n01914609 +n02002556 +n07711569 +n02098286 +n07693725 +n02422106 +n02110958 +n04613696 +n03692522 +n07920052 +n02799071 +n04037443 +n02113978 +n01530575 +n10565667 +n10148035 +n03773504 +n03347037 +n09193705 +n02113978 +n01882714 +n03527444 +n02979186 +n01877812 +n02111129 +n03417042 +n03461385 +n02114855 +n12768682 +n01950731 +n02667093 +n02011460 +n03290653 +n02108000 +n04229816 +n01930112 +n02486261 +n04542943 +n04235860 +n07768694 +n02403003 +n03786901 +n02396427 +n02109047 +n01968897 +n03388043 +n04258138 +n02112137 +n02607072 +n02134084 +n03837869 +n04200800 +n02071294 +n04141076 +n02085620 +n03218198 +n02098286 +n02099601 +n04099969 +n03216828 +n02892767 +n03482405 +n03838899 +n03018349 +n04487394 +n04141076 +n02106382 +n11939491 +n03100240 +n03908714 +n07831146 +n09256479 +n12267677 +n04152593 +n02093428 +n02791270 +n02099429 +n02105056 +n03223299 +n02643566 +n07720875 +n02124075 +n02699494 +n03888605 +n03249569 +n03584254 +n02981792 +n04133789 +n03534580 +n01518878 +n02704792 +n07747607 +n13037406 +n02488291 +n03538406 +n03627232 +n02099429 +n02704792 +n07684084 +n03733805 +n02397096 +n02114367 +n02319095 +n02086646 +n02094433 +n04133789 +n04483307 +n02504013 +n04525038 +n04265275 +n04209239 +n03967562 +n02129165 +n03777754 +n09835506 +n02727426 +n01693334 +n02457408 +n02128925 +n03903868 +n04409515 +n01950731 +n06359193 +n03187595 +n01950731 +n04041544 +n02892767 +n02363005 +n04355338 +n02277742 +n04090263 +n03314780 +n04285008 +n01847000 +n02094433 +n02098105 +n07892512 +n09229709 +n03527444 +n03530642 +n01774384 +n01773157 +n04366367 +n03676483 +n01930112 +n03933933 +n03877845 +n02104365 +n07697537 +n02444819 +n13037406 +n04296562 +n02457408 +n11879895 +n04120489 +n03958227 +n03187595 +n03930630 +n02277742 +n01774750 +n04550184 +n02837789 +n04479046 +n02500267 +n04317175 +n07875152 +n01687978 +n02088094 +n02814533 +n02109961 +n02117135 +n04579145 +n07880968 +n02190166 +n02396427 +n04542943 +n04357314 +n02114855 +n03920288 +n02120079 +n01776313 +n01847000 +n04447861 +n04019541 +n03201208 +n03857828 +n03404251 +n07754684 +n09256479 +n02442845 +n06794110 +n02917067 +n04592741 +n02389026 +n03444034 +n03724870 +n02895154 +n02165456 +n03804744 +n01742172 +n02037110 +n02087046 +n02865351 +n02025239 +n03887697 +n02814533 +n04133789 +n03891332 +n02483708 +n07714571 +n03982430 +n04579145 +n02127052 +n07932039 +n04238763 +n03710637 +n02825657 +n03977966 +n02321529 +n02493509 +n02219486 +n09193705 +n01950731 +n03457902 +n03908714 +n03980874 +n02113624 +n03393912 +n03379051 +n01688243 +n02971356 +n04243546 +n02510455 +n02092002 +n02116738 +n02391049 +n04111531 +n02128925 +n02097047 +n02071294 +n04462240 +n01748264 +n02086910 +n04326547 +n02107908 +n06874185 +n03773504 +n04039381 +n03874293 +n04482393 +n04371774 +n02088094 +n03887697 +n03452741 +n07802026 +n02509815 +n03347037 +n03983396 +n01774750 +n02879718 +n03888257 +n01796340 +n07717556 +n02112706 +n01742172 +n12998815 +n03271574 +n01775062 +n02112706 +n04153751 +n04350905 +n02481823 +n02487347 +n01950731 +n02667093 +n02089973 +n04592741 +n03393912 +n02840245 +n02006656 +n01498041 +n04548362 +n02782093 +n09193705 +n02443114 +n01773549 +n02093428 +n04116512 +n01770393 +n02128925 +n02939185 +n04133789 +n02777292 +n03976657 +n03876231 +n02443114 +n04590129 +n02114855 +n04335435 +n03372029 +n04418357 +n02109961 +n02088094 +n02279972 +n03657121 +n04482393 +n04229816 +n02264363 +n04136333 +n02027492 +n03617480 +n07753592 +n03459775 +n04154565 +n03425413 +n01955084 +n03127925 +n02017213 +n02437616 +n01774384 +n07760859 +n01818515 +n03000684 +n02128385 +n04487081 +n02105505 +n03376595 +n02130308 +n02108000 +n03042490 +n02992211 +n07718472 +n02417914 +n02701002 +n02058221 +n03888605 +n01694178 +n01855672 +n02168699 +n02676566 +n04507155 +n03777754 +n01704323 +n02088094 +n03444034 +n02883205 +n02909870 +n02787622 +n02102973 +n02514041 +n03085013 +n04328186 +n02494079 +n02093428 +n01986214 +n03594945 +n01847000 +n02110958 +n04252077 +n03041632 +n09421951 +n03776460 +n03676483 +n02804610 +n02112350 +n02096294 +n02108089 +n03690938 +n04372370 +n03877845 +n02111500 +n04476259 +n02104029 +n02085782 +n03424325 +n01943899 +n02443114 +n02865351 +n02129604 +n04487394 +n02493509 +n03026506 +n04136333 +n04507155 +n04356056 +n04039381 +n03944341 +n03947888 +n02098105 +n02133161 +n02841315 +n04251144 +n02094114 +n04505470 +n01829413 +n02493509 +n11879895 +n07875152 +n01983481 +n02500267 +n02085620 +n13040303 +n03902125 +n12620546 +n03599486 +n03891332 +n02102480 +n04118538 +n01807496 +n01860187 +n03444034 +n01491361 +n07831146 +n02666196 +n02892767 +n13040303 +n03032252 +n02125311 +n02168699 +n02117135 +n02395406 +n01537544 +n07753275 +n04428191 +n02109961 +n04235860 +n02417914 +n04584207 +n04070727 +n01873310 +n02749479 +n02769748 +n07714571 +n04367480 +n02012849 +n01665541 +n02167151 +n02088466 +n03527444 +n04409515 +n02013706 +n03325584 +n02441942 +n07613480 +n02101006 +n02088632 +n02129604 +n01685808 +n02966687 +n04367480 +n03908618 +n02977058 +n04111531 +n03042490 +n03717622 +n06785654 +n02980441 +n01968897 +n01843065 +n04554684 +n04523525 +n04417672 +n01855672 +n03873416 +n02100877 +n02105505 +n03492542 +n01833805 +n04116512 +n04487394 +n02105505 +n03297495 +n02119022 +n04392985 +n02108422 +n02098413 +n02012849 +n04487394 +n01990800 +n02817516 +n03216828 +n03187595 +n07871810 +n02669723 +n02229544 +n02966687 +n02113712 +n03930313 +n03417042 +n02389026 +n03249569 +n03633091 +n02096294 +n02110627 +n03916031 +n07920052 +n04146614 +n03207743 +n02325366 +n03954731 +n04133789 +n03788195 +n03982430 +n02112706 +n02017213 +n02492660 +n03976467 +n03792782 +n02123159 +n07754684 +n03444034 +n03063599 +n02326432 +n02009912 +n04154565 +n03492542 +n03649909 +n02101388 +n02091134 +n02892201 +n02077923 +n02168699 +n04239074 +n03899768 +n04461696 +n03124170 +n09428293 +n03000247 +n01558993 +n02104365 +n02093991 +n03837869 +n02169497 +n03492542 +n03706229 +n02129165 +n03216828 +n03662601 +n02444819 +n03930313 +n04039381 +n01601694 +n04228054 +n02788148 +n03133878 +n01983481 +n02093859 +n02106166 +n02102973 +n03982430 +n02667093 +n03891332 +n01592084 +n02172182 +n03404251 +n02259212 +n03250847 +n02817516 +n07747607 +n03063599 +n03935335 +n02085620 +n02092002 +n02999410 +n02504458 +n03100240 +n04392985 +n02105855 +n07718747 +n03721384 +n02483362 +n01629819 +n02107683 +n02951358 +n07920052 +n03733805 +n02483362 +n01798484 +n04418357 +n04251144 +n03197337 +n03908618 +n01978287 +n01817953 +n04486054 +n04127249 +n01945685 +n07711569 +n02088238 +n02105641 +n02910353 +n07892512 +n01484850 +n03657121 +n02859443 +n07860988 +n04141327 +n03868863 +n01768244 +n03657121 +n02102973 +n02111500 +n01632458 +n02319095 +n04328186 +n04311004 +n01558993 +n01773549 +n01622779 +n02442845 +n07768694 +n01632777 +n03733805 +n03133878 +n02012849 +n03496892 +n02066245 +n02094433 +n03271574 +n02128757 +n03792782 +n02018795 +n01630670 +n02101006 +n04067472 +n02100583 +n04317175 +n03602883 +n04141327 +n02102040 +n07875152 +n02892201 +n04127249 +n07753275 +n04355338 +n02236044 +n01749939 +n07717556 +n02317335 +n02606052 +n04483307 +n04435653 +n04264628 +n04347754 +n04179913 +n07583066 +n04146614 +n03478589 +n03599486 +n02676566 +n02264363 +n04371430 +n03782006 +n04604644 +n03180011 +n03045698 +n03887697 +n02085936 +n07614500 +n04296562 +n02074367 +n01729977 +n02018795 +n01735189 +n03777568 +n03775546 +n02091244 +n03838899 +n04357314 +n01945685 +n03788365 +n02441942 +n04429376 +n02119022 +n01945685 +n03627232 +n02056570 +n02437616 +n03590841 +n01491361 +n01871265 +n04442312 +n01833805 +n04596742 +n04553703 +n04487394 +n03763968 +n02514041 +n11879895 +n04525038 +n02510455 +n04275548 +n01531178 +n04162706 +n03240683 +n04589890 +n03871628 +n04443257 +n02655020 +n04264628 +n01843383 +n02138441 +n02091032 +n02281406 +n03272010 +n03775546 +n03345487 +n03532672 +n02814860 +n07714571 +n02423022 +n03187595 +n03992509 +n03933933 +n03956157 +n07920052 +n01981276 +n03710721 +n04201297 +n09472597 +n02097130 +n02111889 +n03929660 +n02804610 +n03961711 +n07613480 +n01755581 +n02277742 +n03452741 +n02396427 +n01514859 +n04590129 +n04116512 +n01631663 +n07711569 +n02134084 +n04332243 +n04517823 +n01558993 +n02817516 +n02088632 +n03457902 +n01775062 +n02328150 +n02804610 +n02077923 +n02129604 +n02095314 +n03388183 +n02536864 +n03134739 +n03014705 +n02423022 +n04254120 +n03776460 +n03788195 +n03637318 +n02112706 +n03777568 +n02089078 +n03838899 +n03661043 +n02687172 +n02097658 +n02395406 +n01820546 +n03788365 +n02963159 +n02097298 +n07717556 +n02114367 +n02219486 +n04442312 +n04536866 +n02979186 +n04458633 +n07584110 +n03633091 +n04501370 +n03000684 +n02417914 +n02093859 +n04228054 +n03478589 +n02112137 +n03642806 +n02113712 +n02817516 +n03980874 +n01644900 +n11879895 +n04347754 +n03788195 +n02825657 +n02119789 +n02128925 +n02129604 +n04523525 +n04162706 +n03000247 +n04347754 +n02447366 +n02096294 +n02002724 +n02098413 +n03467068 +n01582220 +n02002556 +n03063689 +n01855672 +n02971356 +n02086240 +n02817516 +n01930112 +n02490219 +n09428293 +n02091467 +n03710637 +n02917067 +n06596364 +n01532829 +n02056570 +n04560804 +n01735189 +n04557648 +n07711569 +n06785654 +n04118776 +n02860847 +n02007558 +n02356798 +n04070727 +n02489166 +n07714990 +n02104365 +n02007558 +n03649909 +n01667114 +n01641577 +n03028079 +n03494278 +n07880968 +n03775071 +n01632458 +n01990800 +n02442845 +n02119022 +n02006656 +n02701002 +n02483362 +n03124170 +n01531178 +n02704792 +n02099849 +n01873310 +n01735189 +n04462240 +n03065424 +n04398044 +n04120489 +n04330267 +n03967562 +n02099601 +n03388043 +n02100583 +n02093991 +n09399592 +n01773797 +n03761084 +n02342885 +n02206856 +n02098286 +n03207743 +n13040303 +n01629819 +n02927161 +n04125021 +n04554684 +n02328150 +n03476684 +n02114367 +n03793489 +n03633091 +n03930630 +n02871525 +n02097474 +n02113799 +n02408429 +n03899768 +n07831146 +n04525038 +n02808304 +n03724870 +n02033041 +n02110063 +n03063689 +n01855672 +n02395406 +n04254680 +n03063689 +n02487347 +n02640242 +n03457902 +n12267677 +n04482393 +n04009552 +n02174001 +n01990800 +n04209133 +n01950731 +n02113186 +n03095699 +n01770081 +n04127249 +n02971356 +n02490219 +n04044716 +n01667778 +n03710721 +n03141823 +n04099969 +n02325366 +n04599235 +n01978455 +n03599486 +n02090622 +n03630383 +n02117135 +n02037110 +n02219486 +n03297495 +n02105505 +n04263257 +n02442845 +n04266014 +n03393912 +n02115641 +n02883205 +n01729977 +n03047690 +n02361337 +n04560804 +n02106662 +n03876231 +n03041632 +n02098105 +n01560419 +n02089078 +n03218198 +n04153751 +n02123597 +n03584829 +n02930766 +n03781244 +n02264363 +n07711569 +n04418357 +n06596364 +n03345487 +n02835271 +n04467665 +n03450230 +n03692522 +n03929660 +n03935335 +n01630670 +n02120505 +n02172182 +n03777754 +n04209133 +n01687978 +n03481172 +n02088094 +n02112350 +n03982430 +n02124075 +n03854065 +n04141076 +n06785654 +n02981792 +n03207941 +n03028079 +n13133613 +n02423022 +n03777568 +n02328150 +n02037110 +n02092002 +n02655020 +n04443257 +n02963159 +n01687978 +n09193705 +n10148035 +n03065424 +n03792972 +n02013706 +n01494475 +n07860988 +n02099267 +n04355933 +n02457408 +n01943899 +n03733131 +n04252077 +n02978881 +n03868863 +n03544143 +n03692522 +n12768682 +n02088094 +n04023962 +n02793495 +n03840681 +n01773549 +n03843555 +n04482393 +n07753592 +n03673027 +n07930864 +n01685808 +n02037110 +n02787622 +n06596364 +n02033041 +n04204238 +n12267677 +n02321529 +n03404251 +n03000684 +n07753592 +n03804744 +n01514668 +n03594945 +n02110627 +n03793489 +n04243546 +n02490219 +n02817516 +n03291819 +n02100877 +n01440764 +n04209239 +n02088364 +n04590129 +n02110806 +n09229709 +n02447366 +n04606251 +n04562935 +n02128385 +n02837789 +n02363005 +n04133789 +n02165456 +n03649909 +n03661043 +n02107683 +n01688243 +n01843383 +n03891251 +n12620546 +n03832673 +n03452741 +n04074963 +n04228054 +n03982430 +n01795545 +n02877765 +n03196217 +n04435653 +n02105505 +n04467665 +n07695742 +n02672831 +n03690938 +n04456115 +n04125021 +n15075141 +n03761084 +n04487394 +n02108089 +n07932039 +n01806567 +n02089078 +n02028035 +n03623198 +n02108551 +n01632458 +n03445924 +n01739381 +n03887697 +n07836838 +n02364673 +n03355925 +n02113799 +n04476259 +n02437312 +n03534580 +n03841143 +n03131574 +n07697537 +n01818515 +n03929660 +n02093647 +n02892767 +n03916031 +n04081281 +n04443257 +n02441942 +n01534433 +n01843383 +n02951358 +n02089078 +n03874293 +n03127925 +n02094258 +n04366367 +n03485407 +n04597913 +n01755581 +n01795545 +n01601694 +n01944390 +n03124170 +n02395406 +n03594734 +n01685808 +n01582220 +n02110627 +n03991062 +n02699494 +n09472597 +n02500267 +n03476991 +n02963159 +n02089867 +n01697457 +n03347037 +n01806143 +n02074367 +n02699494 +n04090263 +n03763968 +n02422699 +n04070727 +n01694178 +n01797886 +n03459775 +n03977966 +n01751748 +n03803284 +n01950731 +n01532829 +n02454379 +n02051845 +n03976657 +n07248320 +n07753275 +n09332890 +n02002556 +n03602883 +n12057211 +n02123045 +n02950826 +n02219486 +n02115641 +n02085936 +n02951585 +n02111889 +n02102480 +n01443537 +n02105162 +n02794156 +n04479046 +n03047690 +n02105412 +n02692877 +n01739381 +n07930864 +n04552348 +n02835271 +n01531178 +n04120489 +n01582220 +n02840245 +n02422106 +n01697457 +n03075370 +n04136333 +n03874599 +n03492542 +n02389026 +n03207743 +n02089867 +n04136333 +n06359193 +n02106382 +n02101006 +n02091467 +n03325584 +n01616318 +n02804610 +n07717556 +n02111500 +n01608432 +n02007558 +n03887697 +n02107142 +n02641379 +n07734744 +n03710193 +n02231487 +n02028035 +n04296562 +n04009552 +n02977058 +n03710721 +n03884397 +n03775546 +n07892512 +n04254777 +n07697537 +n03792782 +n02102480 +n03000247 +n02117135 +n01796340 +n02892201 +n04254680 +n04040759 +n01773549 +n04040759 +n03124170 +n02790996 +n04037443 +n02033041 +n04509417 +n01484850 +n03697007 +n04208210 +n04209133 +n02497673 +n03840681 +n03785016 +n04086273 +n02085936 +n02134084 +n03404251 +n02098286 +n07734744 +n03998194 +n02086910 +n03250847 +n03983396 +n04336792 +n03457902 +n03026506 +n03980874 +n01818515 +n04507155 +n03933933 +n13037406 +n04235860 +n02504013 +n03297495 +n02802426 +n01491361 +n02916936 +n01755581 +n02727426 +n04228054 +n03584254 +n04317175 +n01667114 +n04486054 +n02110341 +n04465501 +n02974003 +n12768682 +n12998815 +n02111129 +n11879895 +n03775546 +n03496892 +n03791053 +n01768244 +n09421951 +n04192698 +n04517823 +n02514041 +n12985857 +n13054560 +n04330267 +n03388549 +n04254120 +n04423845 +n11879895 +n02776631 +n02137549 +n03495258 +n03355925 +n02486410 +n02749479 +n03187595 +n03388043 +n04005630 +n02100877 +n07714990 +n06359193 +n02096051 +n02105641 +n07579787 +n09472597 +n04355338 +n03680355 +n02730930 +n03874599 +n02730930 +n04552348 +n03535780 +n01753488 +n02012849 +n01704323 +n02097209 +n03908714 +n04589890 +n04372370 +n01443537 +n03457902 +n04238763 +n09246464 +n01739381 +n02488702 +n04026417 +n01530575 +n07749582 +n02102480 +n04557648 +n02096585 +n01740131 +n04389033 +n03314780 +n07875152 +n02492660 +n12057211 +n04371430 +n02099267 +n03495258 +n02096051 +n02105162 +n02105641 +n03016953 +n02808440 +n03598930 +n04542943 +n01855672 +n03733281 +n07717410 +n02504013 +n02091831 +n04133789 +n04356056 +n02879718 +n03891251 +n03379051 +n02113978 +n09288635 +n02444819 +n01945685 +n03980874 +n02526121 +n02101556 +n04040759 +n02009229 +n03837869 +n04311174 +n07583066 +n02777292 +n03950228 +n02129165 +n02114548 +n02100735 +n04590129 +n03400231 +n03868242 +n02074367 +n06874185 +n04141327 +n01833805 +n09288635 +n04070727 +n02795169 +n03944341 +n01560419 +n03187595 +n02092339 +n03388043 +n03255030 +n04532670 +n02120505 +n02894605 +n02101388 +n01608432 +n03995372 +n02259212 +n03908618 +n03223299 +n02107683 +n07932039 +n03063689 +n01629819 +n03982430 +n03188531 +n01748264 +n03877472 +n02115913 +n01748264 +n04350905 +n04070727 +n02643566 +n02966193 +n01770393 +n02672831 +n02494079 +n02930766 +n03259280 +n02442845 +n03903868 +n03710721 +n02690373 +n01531178 +n01496331 +n03710721 +n02088094 +n07717556 +n03920288 +n02089078 +n02109525 +n02808304 +n03447447 +n04548280 +n02906734 +n07716358 +n01774384 +n03637318 +n02909870 +n03788195 +n02699494 +n04355338 +n02095889 +n02606052 +n03623198 +n01641577 +n01669191 +n02457408 +n03627232 +n02769748 +n04311004 +n03584254 +n03220513 +n03530642 +n04285008 +n01644373 +n09421951 +n03733281 +n03047690 +n02808304 +n03720891 +n02437616 +n07684084 +n01749939 +n04409515 +n02494079 +n02948072 +n02110806 +n02077923 +n01924916 +n01496331 +n04604644 +n02667093 +n02107142 +n01692333 +n04277352 +n04254777 +n02676566 +n12144580 +n03630383 +n02095889 +n03666591 +n03937543 +n01498041 +n03272562 +n09472597 +n03223299 +n04456115 +n02099601 +n03000134 +n02951585 +n03717622 +n01910747 +n06596364 +n01820546 +n02018795 +n04264628 +n02096177 +n01944390 +n01978287 +n01818515 +n03125729 +n02093256 +n01855032 +n02009912 +n02097047 +n02113712 +n01883070 +n01774750 +n01665541 +n02093428 +n01980166 +n04392985 +n03947888 +n02690373 +n02090721 +n04023962 +n03476684 +n04389033 +n03729826 +n02910353 +n01632458 +n02167151 +n02676566 +n03045698 +n01770081 +n04238763 +n10148035 +n04344873 +n02481823 +n04467665 +n02013706 +n02088238 +n02877765 +n01833805 +n07718747 +n02091467 +n03627232 +n04141076 +n04209239 +n01950731 +n04467665 +n03976657 +n03729826 +n04398044 +n07754684 +n04465501 +n01776313 +n02111129 +n03207743 +n03201208 +n01847000 +n02085936 +n03710721 +n04599235 +n02817516 +n02807133 +n04389033 +n02840245 +n04423845 +n07718472 +n02356798 +n02167151 +n02966687 +n02790996 +n02840245 +n02342885 +n02437312 +n07716906 +n02233338 +n03379051 +n01990800 +n02443114 +n01498041 +n03337140 +n02165105 +n04525305 +n02226429 +n01558993 +n02110341 +n04069434 +n01644900 +n02096177 +n04347754 +n03127747 +n02106382 +n01608432 +n02412080 +n02134084 +n04486054 +n04026417 +n02437616 +n04081281 +n04417672 +n02018207 +n03018349 +n03595614 +n02120079 +n03388183 +n03902125 +n02403003 +n03933933 +n09193705 +n01872401 +n03534580 +n02129165 +n03710193 +n01981276 +n02259212 +n07873807 +n01843065 +n02457408 +n02837789 +n02177972 +n02951585 +n02101006 +n02965783 +n04482393 +n01616318 +n04465501 +n03485407 +n02086646 +n02085620 +n02361337 +n01753488 +n04579145 +n01682714 +n02105641 +n04065272 +n01968897 +n02102973 +n12144580 +n04372370 +n02127052 +n02690373 +n02895154 +n04049303 +n03676483 +n02268443 +n02869837 +n02206856 +n04201297 +n02091244 +n02101556 +n02843684 +n04380533 +n07753275 +n01534433 +n02027492 +n02971356 +n04118538 +n03384352 +n03444034 +n03676483 +n03495258 +n02666196 +n01756291 +n03482405 +n02098413 +n04355933 +n03841143 +n02120079 +n02417914 +n03857828 +n02114712 +n01729977 +n01770081 +n03733131 +n03793489 +n03590841 +n02088364 +n01847000 +n11939491 +n03724870 +n02025239 +n07717556 +n02119789 +n03016953 +n02129165 +n04033901 +n02790996 +n02012849 +n02099429 +n03691459 +n04330267 +n10148035 +n03888257 +n07584110 +n02096437 +n04515003 +n02804610 +n02096437 +n04418357 +n02033041 +n02092339 +n12620546 +n01669191 +n03160309 +n02112137 +n02172182 +n03110669 +n04380533 +n03673027 +n03347037 +n04201297 +n02492660 +n02110958 +n02783161 +n02483708 +n02110958 +n04120489 +n03908618 +n02423022 +n04350905 +n04153751 +n02444819 +n02114548 +n07747607 +n07614500 +n04070727 +n04074963 +n01616318 +n02112706 +n02096437 +n04228054 +n01644900 +n01756291 +n02442845 +n03980874 +n02441942 +n04149813 +n03950228 +n01843383 +n02910353 +n03207743 +n04263257 +n02099429 +n04486054 +n02606052 +n04238763 +n02099601 +n02177972 +n03584829 +n04356056 +n03673027 +n02086646 +n04485082 +n02692877 +n03761084 +n03249569 +n04252077 +n02092339 +n01770081 +n02877765 +n02129604 +n03032252 +n13044778 +n02607072 +n03498962 +n02120505 +n01534433 +n01491361 +n07730033 +n02098413 +n02793495 +n02017213 +n02100877 +n02948072 +n02398521 +n03498962 +n02494079 +n04026417 +n03259280 +n04209133 +n02094258 +n02028035 +n03627232 +n03529860 +n02077923 +n03843555 +n03873416 +n02116738 +n03995372 +n02104365 +n04347754 +n04590129 +n03657121 +n01774384 +n03937543 +n07836838 +n04127249 +n02391049 +n04296562 +n02492035 +n04254120 +n04201297 +n02115641 +n02094258 +n03729826 +n02090379 +n02165456 +n02107142 +n01518878 +n03649909 +n01558993 +n01843383 +n01695060 +n02134084 +n02101556 +n02123045 +n03929855 +n02110185 +n03291819 +n02099601 +n04443257 +n02487347 +n01795545 +n04458633 +n02229544 +n03325584 +n04086273 +n03017168 +n01729977 +n03388043 +n01675722 +n02009229 +n03126707 +n02117135 +n03873416 +n04332243 +n02486410 +n03394916 +n02480855 +n02837789 +n03018349 +n03998194 +n04317175 +n01819313 +n03291819 +n01664065 +n02128385 +n02417914 +n04040759 +n01440764 +n09468604 +n03240683 +n07248320 +n11939491 +n02971356 +n02096437 +n02101556 +n04467665 +n03983396 +n04146614 +n04252077 +n03476684 +n02777292 +n03617480 +n04004767 +n02102177 +n02088632 +n07749582 +n04264628 +n04487081 +n02808440 +n04399382 +n03961711 +n04229816 +n03977966 +n03133878 +n03877845 +n03995372 +n04131690 +n02093754 +n02110806 +n01872401 +n02106662 +n07836838 +n04553703 +n02095314 +n12620546 +n02231487 +n02277742 +n04456115 +n02643566 +n02317335 +n04008634 +n04476259 +n04550184 +n02107908 +n02125311 +n03355925 +n03769881 +n07615774 +n02443114 +n02167151 +n04590129 +n12620546 +n02177972 +n03866082 +n07718472 +n02102318 +n07697313 +n03384352 +n04330267 +n03874293 +n03895866 +n02444819 +n03908714 +n02395406 +n04355933 +n03220513 +n04147183 +n02099267 +n01983481 +n01770081 +n02095570 +n01695060 +n02115641 +n04355338 +n07584110 +n02843684 +n04023962 +n02102480 +n04116512 +n02094258 +n04326547 +n02951358 +n01784675 +n03494278 +n03935335 +n02106662 +n02256656 +n03944341 +n02105641 +n02666196 +n03982430 +n02814533 +n04204238 +n07730033 +n01807496 +n03042490 +n02963159 +n02504458 +n03535780 +n04355933 +n02009229 +n02423022 +n01582220 +n07614500 +n02321529 +n03272562 +n03642806 +n04251144 +n02115913 +n02107312 +n03924679 +n02699494 +n03908714 +n04522168 +n09246464 +n03617480 +n02231487 +n02127052 +n04335435 +n02804610 +n02437616 +n03249569 +n01682714 +n02790996 +n03742115 +n02112350 +n02837789 +n04371774 +n03443371 +n02992529 +n01688243 +n03733281 +n07875152 +n02105641 +n02110958 +n02018795 +n04482393 +n03063689 +n02328150 +n02109525 +n02071294 +n02808304 +n03530642 +n03970156 +n01860187 +n02102973 +n03220513 +n03032252 +n01797886 +n03792782 +n02085936 +n04487394 +n02790996 +n01773157 +n04367480 +n03290653 +n03478589 +n04542943 +n07579787 +n02190166 +n06785654 +n02002724 +n01740131 +n04033995 +n01978287 +n02011460 +n03937543 +n02096437 +n01534433 +n02978881 +n03445924 +n07716358 +n02093428 +n01776313 +n02704792 +n01687978 +n04550184 +n02102973 +n02165456 +n03347037 +n01755581 +n02111889 +n03967562 +n01491361 +n02437616 +n02089078 +n02123597 +n04507155 +n03110669 +n03868242 +n03874599 +n02120505 +n03930313 +n02165105 +n04604644 +n03445777 +n02099712 +n02009229 +n04389033 +n04371774 +n02437616 +n04243546 +n03794056 +n03775071 +n04479046 +n03796401 +n02892767 +n03929660 +n02133161 +n03944341 +n03884397 +n04589890 +n03590841 +n02071294 +n04263257 +n01768244 +n02410509 +n04465501 +n02098286 +n02747177 +n02105162 +n01667114 +n02999410 +n01560419 +n07749582 +n01968897 +n02130308 +n02110806 +n02106382 +n07590611 +n07697537 +n04591157 +n04462240 +n02988304 +n03126707 +n02727426 +n04127249 +n02843684 +n03179701 +n02443484 +n04344873 +n02280649 +n03216828 +n12985857 +n04548280 +n03602883 +n03447721 +n01694178 +n02415577 +n02699494 +n03085013 +n02895154 +n04371774 +n03495258 +n03791053 +n02641379 +n02980441 +n02950826 +n02110063 +n03788195 +n01693334 +n02606052 +n07742313 +n02113624 +n03874293 +n04209239 +n03388043 +n02927161 +n03944341 +n04579432 +n03759954 +n02101388 +n01978287 +n03443371 +n02129604 +n01693334 +n07742313 +n01770393 +n06785654 +n03126707 +n02058221 +n03721384 +n02093647 +n07684084 +n03775546 +n03494278 +n03131574 +n02823428 +n02111889 +n04208210 +n02190166 +n04228054 +n03888257 +n02169497 +n01770081 +n02974003 +n03637318 +n02089078 +n02117135 +n02457408 +n02606052 +n03877845 +n02776631 +n01882714 +n03325584 +n02095314 +n02102973 +n02236044 +n02090622 +n02797295 +n01775062 +n02098286 +n03498962 +n02128385 +n02783161 +n07768694 +n03337140 +n01751748 +n04447861 +n02172182 +n03743016 +n03599486 +n04380533 +n07892512 +n03598930 +n02085782 +n01685808 +n02879718 +n01491361 +n04273569 +n02441942 +n04553703 +n03649909 +n03141823 +n02115641 +n04372370 +n04265275 +n04493381 +n06596364 +n02825657 +n02480495 +n02097298 +n03532672 +n01531178 +n03843555 +n03770679 +n02346627 +n02127052 +n03297495 +n02869837 +n02106166 +n01440764 +n02510455 +n02095570 +n02177972 +n03347037 +n01978455 +n02488702 +n02791124 +n04229816 +n01675722 +n03630383 +n01930112 +n04005630 +n04039381 +n03950228 +n04592741 +n01914609 +n02129165 +n01871265 +n03902125 +n01689811 +n03534580 +n01945685 +n01773549 +n02089867 +n03788195 +n02788148 +n02113023 +n03534580 +n04592741 +n02797295 +n03017168 +n04355933 +n02097209 +n02167151 +n04026417 +n03271574 +n02105251 +n04004767 +n02108000 +n04350905 +n02106662 +n03201208 +n03126707 +n01443537 +n02837789 +n02165456 +n03796401 +n02870880 +n02641379 +n01622779 +n02113023 +n07880968 +n02165456 +n03840681 +n03372029 +n04044716 +n03840681 +n03692522 +n03992509 +n02085620 +n03530642 +n02113186 +n02086079 +n07614500 +n09468604 +n03602883 +n09468604 +n04270147 +n04146614 +n02892201 +n03958227 +n03832673 +n02268443 +n02236044 +n01494475 +n02009912 +n01532829 +n02093754 +n03404251 +n03770439 +n07734744 +n04252077 +n07714571 +n02120079 +n01665541 +n02123394 +n03240683 +n04264628 +n02457408 +n07614500 +n02124075 +n03425413 +n03133878 +n07930864 +n03160309 +n02484975 +n02086240 +n02978881 +n04404412 +n02643566 +n02494079 +n02749479 +n02114855 +n02106166 +n02114712 +n03662601 +n07583066 +n02396427 +n02108089 +n04335435 +n03017168 +n02113186 +n04493381 +n02909870 +n03075370 +n03627232 +n03794056 +n01734418 +n02951358 +n02457408 +n02883205 +n02917067 +n03250847 +n02804610 +n02110958 +n02088364 +n03891251 +n02641379 +n02098105 +n02113624 +n02027492 +n02066245 +n02168699 +n06359193 +n03627232 +n09229709 +n02749479 +n04355338 +n04252225 +n02939185 +n01632777 +n02395406 +n02219486 +n02988304 +n01518878 +n03891332 +n02114548 +n02892767 +n01491361 +n03933933 +n02795169 +n09472597 +n07579787 +n03032252 +n02093754 +n13054560 +n03891251 +n02105505 +n02132136 +n07873807 +n02640242 +n04461696 +n04613696 +n09468604 +n02113186 +n02493509 +n04553703 +n01968897 +n04296562 +n03467068 +n03763968 +n04209239 +n02219486 +n03888257 +n01871265 +n03325584 +n03272562 +n03854065 +n01558993 +n03670208 +n01665541 +n03325584 +n01695060 +n02457408 +n02797295 +n02950826 +n02099429 +n03291819 +n02939185 +n03976467 +n02120079 +n02879718 +n04579145 +n04120489 +n01632458 +n02009912 +n04328186 +n06874185 +n02398521 +n02488291 +n02107312 +n03026506 +n02119022 +n01843383 +n03657121 +n03062245 +n07584110 +n02091032 +n03476991 +n02013706 +n02607072 +n02113712 +n03788365 +n04355338 +n04428191 +n04442312 +n01753488 +n12620546 +n03417042 +n02108089 +n07871810 +n03930313 +n04019541 +n04074963 +n02408429 +n02817516 +n01955084 +n02747177 +n09472597 +n03866082 +n02099267 +n03782006 +n03998194 +n02823428 +n04487081 +n03956157 +n03854065 +n02002556 +n01440764 +n02093256 +n02229544 +n02109047 +n03160309 +n02825657 +n02423022 +n03016953 +n04179913 +n01860187 +n02107574 +n06359193 +n02088094 +n04065272 +n02088632 +n02130308 +n03769881 +n02966193 +n06794110 +n07590611 +n03924679 +n04153751 +n02112706 +n02509815 +n04335435 +n04579432 +n02815834 +n02361337 +n02123159 +n03133878 +n02457408 +n02092002 +n04347754 +n03775071 +n03498962 +n02101388 +n03447447 +n02443114 +n04039381 +n02791124 +n02104365 +n01776313 +n04442312 +n03584254 +n02094258 +n02086646 +n04370456 +n01797886 +n03724870 +n01775062 +n02687172 +n02091244 +n03124043 +n01632777 +n02787622 +n01930112 +n01664065 +n01734418 +n02110063 +n01818515 +n04336792 +n03793489 +n02097298 +n02017213 +n04273569 +n03485794 +n02002724 +n04507155 +n11879895 +n02087046 +n02486410 +n04033995 +n03345487 +n03692522 +n04347754 +n01986214 +n03873416 +n03483316 +n02101556 +n03425413 +n03000684 +n02114367 +n02113712 +n03535780 +n02454379 +n03788195 +n02086240 +n02095889 +n02422699 +n03400231 +n03690938 +n01494475 +n02099601 +n04612504 +n07753275 +n03814639 +n02165105 +n03314780 +n03478589 +n01796340 +n02105641 +n01847000 +n01877812 +n02447366 +n03929660 +n02992529 +n02088094 +n07745940 +n04522168 +n04069434 +n12620546 +n03673027 +n03998194 +n03028079 +n04252225 +n02033041 +n01843065 +n07720875 +n02099712 +n02939185 +n02098413 +n04296562 +n03796401 +n01729977 +n02859443 +n02105251 +n02860847 +n04209133 +n02108000 +n04235860 +n02782093 +n02814533 +n01614925 +n01484850 +n01669191 +n04525305 +n07716906 +n02119022 +n03721384 +n02259212 +n03976657 +n02415577 +n04392985 +n04023962 +n02793495 +n04592741 +n02233338 +n02777292 +n01514859 +n03127747 +n04548362 +n03947888 +n03792782 +n03445777 +n04592741 +n02165105 +n02105056 +n04525038 +n02395406 +n02129604 +n09399592 +n09229709 +n06785654 +n03045698 +n04380533 +n02835271 +n07715103 +n03692522 +n02950826 +n02259212 +n03773504 +n04560804 +n04355933 +n02167151 +n01695060 +n02091635 +n07745940 +n03958227 +n03642806 +n01537544 +n03733131 +n02028035 +n02667093 +n03617480 +n02443484 +n04532106 +n06874185 +n02730930 +n01632458 +n04067472 +n09246464 +n02264363 +n09229709 +n02708093 +n03804744 +n03042490 +n03347037 +n02120079 +n02098105 +n02092339 +n03017168 +n02099429 +n03160309 +n12267677 +n03642806 +n07579787 +n02817516 +n01770393 +n01667114 +n04417672 +n04515003 +n02091134 +n02090721 +n04428191 +n02086646 +n04536866 +n03000684 +n01692333 +n04591157 +n03967562 +n03743016 +n04579145 +n02110063 +n04040759 +n02074367 +n03100240 +n04552348 +n02916936 +n03485407 +n02489166 +n03271574 +n01677366 +n02457408 +n02966193 +n04152593 +n01491361 +n01748264 +n03530642 +n03840681 +n01768244 +n02226429 +n03642806 +n02002556 +n03598930 +n01631663 +n03787032 +n03954731 +n04462240 +n03680355 +n02013706 +n03271574 +n04357314 +n02397096 +n01697457 +n02441942 +n03661043 +n01985128 +n03658185 +n02099267 +n04522168 +n13037406 +n02108422 +n04111531 +n01728920 +n02085620 +n01644373 +n02101388 +n02795169 +n02100877 +n04509417 +n02088466 +n02769748 +n02965783 +n03649909 +n03179701 +n01742172 +n01877812 +n03769881 +n03000247 +n02106662 +n03888605 +n03937543 +n04346328 +n03976467 +n03187595 +n15075141 +n03062245 +n03710721 +n04009552 +n02447366 +n02107574 +n03970156 +n03991062 +n02098413 +n07892512 +n03529860 +n03935335 +n01531178 +n02835271 +n03787032 +n02101388 +n02085620 +n02701002 +n11939491 +n01698640 +n02233338 +n11879895 +n02101556 +n07753592 +n02441942 +n07871810 +n01914609 +n02132136 +n02097658 +n07720875 +n02259212 +n01560419 +n02510455 +n04200800 +n04254777 +n01616318 +n04522168 +n02100236 +n04356056 +n07615774 +n03160309 +n02666196 +n02169497 +n03207941 +n07831146 +n04131690 +n04136333 +n02895154 +n02002556 +n04311174 +n04243546 +n13052670 +n02895154 +n03527444 +n02090622 +n04429376 +n01667778 +n01871265 +n01608432 +n03424325 +n02111129 +n02094114 +n03706229 +n02883205 +n07590611 +n02948072 +n01770393 +n03290653 +n02128925 +n02110185 +n02110341 +n01796340 +n02342885 +n02487347 +n04310018 +n02091635 +n02708093 +n03016953 +n02264363 +n04372370 +n03272562 +n02089078 +n03764736 +n02963159 +n03874599 +n02641379 +n01984695 +n02802426 +n02346627 +n03773504 +n04273569 +n02111889 +n03498962 +n03141823 +n04350905 +n02095314 +n04335435 +n03388183 +n01537544 +n03947888 +n02106662 +n03854065 +n01484850 +n02086079 +n07714571 +n01768244 +n04070727 +n03494278 +n03584829 +n03837869 +n01945685 +n03733281 +n04429376 +n02099601 +n04554684 +n04509417 +n01943899 +n07565083 +n04515003 +n03777754 +n03594734 +n03777568 +n03840681 +n02536864 +n04442312 +n03127747 +n03445777 +n04579432 +n03063599 +n02113978 +n03787032 +n01742172 +n02487347 +n04486054 +n02093859 +n04162706 +n02328150 +n03482405 +n04517823 +n07615774 +n04192698 +n02808304 +n02037110 +n04254120 +n02490219 +n07684084 +n02094258 +n02814533 +n02174001 +n07753275 +n04033901 +n02481823 +n03770679 +n03134739 +n01560419 +n04275548 +n01667778 +n01737021 +n01806567 +n04456115 +n07613480 +n01737021 +n03761084 +n07753592 +n04461696 +n04336792 +n02137549 +n02100735 +n04005630 +n02112706 +n12144580 +n03785016 +n03372029 +n04486054 +n02117135 +n01667778 +n02927161 +n07760859 +n03924679 +n04040759 +n07742313 +n02106030 +n03388549 +n03950228 +n01768244 +n07734744 +n04479046 +n02791124 +n01807496 +n04357314 +n01484850 +n03888605 +n04277352 +n04326547 +n03876231 +n07584110 +n02092002 +n01667778 +n01682714 +n02091831 +n02108089 +n02951585 +n02219486 +n02090379 +n01950731 +n02089867 +n01828970 +n03837869 +n01978287 +n02092002 +n02814533 +n01664065 +n12768682 +n07930864 +n04357314 +n02802426 +n02089867 +n03063689 +n03535780 +n04591713 +n03796401 +n02877765 +n02823428 +n07717410 +n04612504 +n03642806 +n04033995 +n02095889 +n04074963 +n01855032 +n04270147 +n03110669 +n03255030 +n03530642 +n10148035 +n07745940 +n02490219 +n02074367 +n02097130 +n02106662 +n03891332 +n02089973 +n04209239 +n04548280 +n04154565 +n02037110 +n02113978 +n02115913 +n02018795 +n02823428 +n02091032 +n03874293 +n04146614 +n04560804 +n04522168 +n07717556 +n04311004 +n02105855 +n02109961 +n02134084 +n02930766 +n01855032 +n02480495 +n02509815 +n02100877 +n02795169 +n02125311 +n01734418 +n03124043 +n02165105 +n02840245 +n03759954 +n01622779 +n02442845 +n04328186 +n04152593 +n04554684 +n02965783 +n02510455 +n03445777 +n07615774 +n12998815 +n07717410 +n03742115 +n04264628 +n02165456 +n04074963 +n02098105 +n02132136 +n01872401 +n02441942 +n04560804 +n02422699 +n02802426 +n07768694 +n01518878 +n02096051 +n02786058 +n02483708 +n02099601 +n04435653 +n01630670 +n02177972 +n13052670 +n02028035 +n01978455 +n13054560 +n02165105 +n04317175 +n01739381 +n02168699 +n02483362 +n02342885 +n02007558 +n01798484 +n04579145 +n02361337 +n02643566 +n04147183 +n04208210 +n01798484 +n02488291 +n03773504 +n03662601 +n02483708 +n01986214 +n04005630 +n02165105 +n02009229 +n03814639 +n04462240 +n02090379 +n03786901 +n01734418 +n01770081 +n02814533 +n03445777 +n03196217 +n02747177 +n02493793 +n03970156 +n02165105 +n03930313 +n02169497 +n04204347 +n02113712 +n02979186 +n02085782 +n04265275 +n01694178 +n09229709 +n04317175 +n07760859 +n02865351 +n03841143 +n01601694 +n02128925 +n03908714 +n01775062 +n01770393 +n02877765 +n03902125 +n01744401 +n02094114 +n03271574 +n04372370 +n07697313 +n04229816 +n02692877 +n01537544 +n04153751 +n02490219 +n09193705 +n02951585 +n01986214 +n02865351 +n02105855 +n04392985 +n03825788 +n04265275 +n12267677 +n03787032 +n02088632 +n04507155 +n03481172 +n03868242 +n02797295 +n02500267 +n02480855 +n03956157 +n02948072 +n03792782 +n03478589 +n04590129 +n01729322 +n02105056 +n02837789 +n03393912 +n02319095 +n02100735 +n02093256 +n03782006 +n03388043 +n03891251 +n02391049 +n02167151 +n03045698 +n01534433 +n04067472 +n02105641 +n04423845 +n01983481 +n03160309 +n02802426 +n09428293 +n02106382 +n04325704 +n02444819 +n01755581 +n02895154 +n02129604 +n02910353 +n07873807 +n07716358 +n03325584 +n02104029 +n01883070 +n02408429 +n02992529 +n02111277 +n04141327 +n02098105 +n12998815 +n04133789 +n02837789 +n02321529 +n04041544 +n03131574 +n01968897 +n03721384 +n09428293 +n03637318 +n04536866 +n01641577 +n01828970 +n02794156 +n02105855 +n02825657 +n02100735 +n02487347 +n02281406 +n04550184 +n02804414 +n03594734 +n01806143 +n09256479 +n04204238 +n03544143 +n04350905 +n04380533 +n03459775 +n04509417 +n02480495 +n04204347 +n03967562 +n03666591 +n03481172 +n03179701 +n01728920 +n09835506 +n02509815 +n11939491 +n02125311 +n01774750 +n01924916 +n04380533 +n03496892 +n02510455 +n02808304 +n04328186 +n04009552 +n02105505 +n02454379 +n04507155 +n01592084 +n04118538 +n01644373 +n02965783 +n03742115 +n07715103 +n03733281 +n02268853 +n03967562 +n02107574 +n04597913 +n01798484 +n04562935 +n04584207 +n07717556 +n02110958 +n04597913 +n07693725 +n02086910 +n04136333 +n01843383 +n02794156 +n02101556 +n04192698 +n02389026 +n03250847 +n01817953 +n01682714 +n01491361 +n06874185 +n02093647 +n02483362 +n04435653 +n01667778 +n04548280 +n03133878 +n02840245 +n01950731 +n04229816 +n01817953 +n04346328 +n07871810 +n04493381 +n03476684 +n01882714 +n03100240 +n02105505 +n03623198 +n02128925 +n07749582 +n03124170 +n03042490 +n01531178 +n03180011 +n02276258 +n03538406 +n01843383 +n01833805 +n02109047 +n01735189 +n01514859 +n02396427 +n01537544 +n07920052 +n02077923 +n03661043 +n03445924 +n01514859 +n04418357 +n01630670 +n02256656 +n02980441 +n01985128 +n03787032 +n09399592 +n02096177 +n03095699 +n02791270 +n02002556 +n02099429 +n02687172 +n04487081 +n03775071 +n04120489 +n02100877 +n04131690 +n02111277 +n04008634 +n03796401 +n03690938 +n03496892 +n02487347 +n02098286 +n04398044 +n02281787 +n02641379 +n03179701 +n03110669 +n03314780 +n03388549 +n02441942 +n02091831 +n03933933 +n07584110 +n02510455 +n02437312 +n02417914 +n02110806 +n02667093 +n03384352 +n03529860 +n04209239 +n04254120 +n04310018 +n07615774 +n01984695 +n03188531 +n02701002 +n01749939 +n03494278 +n04317175 +n02480855 +n04553703 +n04591713 +n02093991 +n03496892 +n03498962 +n02870880 +n07734744 +n02090622 +n02095889 +n03089624 +n03814906 +n01443537 +n03775546 +n03895866 +n04254680 +n02093991 +n02094433 +n03709823 +n04133789 +n04356056 +n09421951 +n03781244 +n03970156 +n03709823 +n03873416 +n03950228 +n03425413 +n09229709 +n03141823 +n03290653 +n01675722 +n04259630 +n04613696 +n03838899 +n01443537 +n03617480 +n02112350 +n01774384 +n02108915 +n03876231 +n02099429 +n02226429 +n01770393 +n01694178 +n06794110 +n03220513 +n11879895 +n03124043 +n02105855 +n02486410 +n04004767 +n09835506 +n07745940 +n02097047 +n03721384 +n03133878 +n02093647 +n06794110 +n04317175 +n02134418 +n02692877 +n02128757 +n03794056 +n02727426 +n01484850 +n02514041 +n02106382 +n02097298 +n04613696 +n02701002 +n03770439 +n01855672 +n02328150 +n03944341 +n09468604 +n02281787 +n04554684 +n02098105 +n03179701 +n02174001 +n02109961 +n03742115 +n04562935 +n03729826 +n04133789 +n04086273 +n01514859 +n04597913 +n04476259 +n01914609 +n02095889 +n03125729 +n04366367 +n02443114 +n02098413 +n03599486 +n01614925 +n04483307 +n02105412 +n01631663 +n02500267 +n02095889 +n04264628 +n07753592 +n02123597 +n03884397 +n04579432 +n03938244 +n07831146 +n02101006 +n02092002 +n02006656 +n02106166 +n04596742 +n03770679 +n04149813 +n04599235 +n04332243 +n03379051 +n01776313 +n01806567 +n09468604 +n04554684 +n02747177 +n04243546 +n03838899 +n01855032 +n01917289 +n02226429 +n03706229 +n03843555 +n07615774 +n02268853 +n04141975 +n01728920 +n01531178 +n03838899 +n09472597 +n01847000 +n13133613 +n04522168 +n02088466 +n09193705 +n03445924 +n02092002 +n02640242 +n07742313 +n04612504 +n01986214 +n09229709 +n02488291 +n02643566 +n03891251 +n09468604 +n01983481 +n07920052 +n03770679 +n02097130 +n03769881 +n03498962 +n07697537 +n02422699 +n04254777 +n03452741 +n04152593 +n01616318 +n02259212 +n03690938 +n04501370 +n04355933 +n01498041 +n04023962 +n02488702 +n04443257 +n02091134 +n02978881 +n02091244 +n01756291 +n04120489 +n04141327 +n02504458 +n01667778 +n02108089 +n03843555 +n02951358 +n01807496 +n02102318 +n07745940 +n06794110 +n02363005 +n07753113 +n01644900 +n02363005 +n01484850 +n02105056 +n02107312 +n03482405 +n01945685 +n02823750 +n02090622 +n03710193 +n03379051 +n07873807 +n04263257 +n03062245 +n02088632 +n04208210 +n04141327 +n07932039 +n02951358 +n02790996 +n02777292 +n02804414 +n03970156 +n04501370 +n02641379 +n01774750 +n01498041 +n04116512 +n02233338 +n03706229 +n02097047 +n07697537 +n02444819 +n04153751 +n02398521 +n03908714 +n02088632 +n02113712 +n02132136 +n04258138 +n03425413 +n02397096 +n02443484 +n06785654 +n04367480 +n03717622 +n03721384 +n02981792 +n01955084 +n02090721 +n02879718 +n02113712 +n02417914 +n02093859 +n02009912 +n02006656 +n01770393 +n02701002 +n01818515 +n12998815 +n03532672 +n03666591 +n06794110 +n03110669 +n03220513 +n03976467 +n02396427 +n03888257 +n02514041 +n02837789 +n07711569 +n07613480 +n03075370 +n07684084 +n02708093 +n02099267 +n03131574 +n01843383 +n02091032 +n03796401 +n04243546 +n04389033 +n03014705 +n03868863 +n01883070 +n01744401 +n12267677 +n03876231 +n01847000 +n02219486 +n01955084 +n03089624 +n04350905 +n02119022 +n04004767 +n02793495 +n03404251 +n03014705 +n01677366 +n03690938 +n04162706 +n04552348 +n01985128 +n07873807 +n02526121 +n07932039 +n02102973 +n02108000 +n04493381 +n02097130 +n04086273 +n03832673 +n02088364 +n02119789 +n02113712 +n07716906 +n03792972 +n02097658 +n02226429 +n09428293 +n02116738 +n07753113 +n02777292 +n02017213 +n04209239 +n02077923 +n02509815 +n07716906 +n02843684 +n02417914 +n07920052 +n09288635 +n01980166 +n09193705 +n03124043 +n03944341 +n02219486 +n02127052 +n04147183 +n02106550 +n04550184 +n01728572 +n02102480 +n04371430 +n03983396 +n02815834 +n04264628 +n04356056 +n02096294 +n02106382 +n07579787 +n02536864 +n03630383 +n02114367 +n03781244 +n03271574 +n01739381 +n04008634 +n03594734 +n03201208 +n02058221 +n02134418 +n10148035 +n01631663 +n02526121 +n02002556 +n02095314 +n02098105 +n04509417 +n04612504 +n02497673 +n01580077 +n01697457 +n03109150 +n09468604 +n03874293 +n02109961 +n02110627 +n02892201 +n02088364 +n03100240 +n03532672 +n02892767 +n07860988 +n03337140 +n02951358 +n03691459 +n03134739 +n02422106 +n02788148 +n03814906 +n02444819 +n06785654 +n04612504 +n02123394 +n03042490 +n04116512 +n03527444 +n09288635 +n01983481 +n09332890 +n07715103 +n01828970 +n04037443 +n03089624 +n02504458 +n01917289 +n03223299 +n02119022 +n02206856 +n04252077 +n02012849 +n02037110 +n01751748 +n07930864 +n04131690 +n07697313 +n02841315 +n03950228 +n04254680 +n04141975 +n03983396 +n02124075 +n12998815 +n03709823 +n01689811 +n02966687 +n03590841 +n02002556 +n01770393 +n04532106 +n02109961 +n04286575 +n02910353 +n03785016 +n04125021 +n04370456 +n02115641 +n03874293 +n13054560 +n02480855 +n02105855 +n01773157 +n02108915 +n02108000 +n03764736 +n02231487 +n04507155 +n01744401 +n04325704 +n02526121 +n04371774 +n01582220 +n02088094 +n12267677 +n07880968 +n04266014 +n02417914 +n04270147 +n07684084 +n01443537 +n03866082 +n04179913 +n02422106 +n07697537 +n02687172 +n03803284 +n01692333 +n04192698 +n02481823 +n02115913 +n03404251 +n02138441 +n02999410 +n03388183 +n02317335 +n03759954 +n04335435 +n03814906 +n03692522 +n13052670 +n03729826 +n02790996 +n02012849 +n03935335 +n01667114 +n07836838 +n01580077 +n07615774 +n03535780 +n02226429 +n03903868 +n02999410 +n03532672 +n03498962 +n01531178 +n03868242 +n02128757 +n03793489 +n01755581 +n09332890 +n02087394 +n03920288 +n02128385 +n03495258 +n02114712 +n03976467 +n04259630 +n02794156 +n01774384 +n02091467 +n04467665 +n02091635 +n04579432 +n03599486 +n02328150 +n04147183 +n02486410 +n04252077 +n02395406 +n07584110 +n03075370 +n02138441 +n02105505 +n04311004 +n04086273 +n04435653 +n04467665 +n04201297 +n01689811 +n03345487 +n02090379 +n02776631 +n04023962 +n02114367 +n13044778 +n02917067 +n07711569 +n03452741 +n01734418 +n03272010 +n01744401 +n09399592 +n02114855 +n03594734 +n02860847 +n04141076 +n02133161 +n03804744 +n01924916 +n04532106 +n01770081 +n02096177 +n02797295 +n03188531 +n04204347 +n03063689 +n02841315 +n02276258 +n02086646 +n03775071 +n03947888 +n02137549 +n03063599 +n02074367 +n02051845 +n03832673 +n03982430 +n01776313 +n02102177 +n02106550 +n03929855 +n04201297 +n01592084 +n02906734 +n03124043 +n03598930 +n07590611 +n02091635 +n02128757 +n04204347 +n01698640 +n01955084 +n03891251 +n02823428 +n03417042 +n03666591 +n03958227 +n03895866 +n02690373 +n01667778 +n02692877 +n03532672 +n07920052 +n03924679 +n03085013 +n07697313 +n02444819 +n02992211 +n07248320 +n02950826 +n02077923 +n03786901 +n03016953 +n02111889 +n02892201 +n02786058 +n02106382 +n02877765 +n02687172 +n02747177 +n02105412 +n07753113 +n03207743 +n04418357 +n02009912 +n01580077 +n01616318 +n04273569 +n01945685 +n03706229 +n04326547 +n02105056 +n13037406 +n03459775 +n02526121 +n02837789 +n04346328 +n01819313 +n02321529 +n03916031 +n03026506 +n02105251 +n04599235 +n01518878 +n02110627 +n01984695 +n01943899 +n04069434 +n02113023 +n01531178 +n03947888 +n03733805 +n03873416 +n02087394 +n04273569 +n03690938 +n02281787 +n04515003 +n01630670 +n03445924 +n04317175 +n02395406 +n02018207 +n02128385 +n03255030 +n02169497 +n03717622 +n03602883 +n02488291 +n01622779 +n03992509 +n02877765 +n03873416 +n01855672 +n03478589 +n03404251 +n07584110 +n03980874 +n03476684 +n02138441 +n02977058 +n02105162 +n03485407 +n01616318 +n02051845 +n03793489 +n01768244 +n04209239 +n03930630 +n04532106 +n03259280 +n02841315 +n02966193 +n03980874 +n04532106 +n02981792 +n01776313 +n04355338 +n02110341 +n03697007 +n02454379 +n02655020 +n03841143 +n07584110 +n02123394 +n03255030 +n07711569 +n03724870 +n03110669 +n03133878 +n01641577 +n01644373 +n04049303 +n07768694 +n03075370 +n02823428 +n02640242 +n02104365 +n04009552 +n02129604 +n03733805 +n02281787 +n04208210 +n04067472 +n01514859 +n03384352 +n03544143 +n03355925 +n01694178 +n03950228 +n07717556 +n02317335 +n02113799 +n07583066 +n02999410 +n07760859 +n02410509 +n02013706 +n04285008 +n04296562 +n03196217 +n03000134 +n02110627 +n04442312 +n02787622 +n02443484 +n02137549 +n03337140 +n03594734 +n02879718 +n02415577 +n02092339 +n03450230 +n02102040 +n07747607 +n03085013 +n03026506 +n06874185 +n02493793 +n03532672 +n01644900 +n03792782 +n04004767 +n02966193 +n01784675 +n13037406 +n03481172 +n03775546 +n04033995 +n02101556 +n03666591 +n04317175 +n01882714 +n02640242 +n03063689 +n04560804 +n01860187 +n04376876 +n04523525 +n01833805 +n02169497 +n03314780 +n02988304 +n02168699 +n04044716 +n02109961 +n01770393 +n01531178 +n04152593 +n02106662 +n04389033 +n01735189 +n07871810 +n04277352 +n02077923 +n03347037 +n02111500 +n02088238 +n03534580 +n03314780 +n02791270 +n04548280 +n03109150 +n03944341 +n02137549 +n04523525 +n04592741 +n04266014 +n01978455 +n02091032 +n04398044 +n02113624 +n02408429 +n04417672 +n04009552 +n02231487 +n04599235 +n07248320 +n04086273 +n04606251 +n03532672 +n02112137 +n09256479 +n04523525 +n01697457 +n03662601 +n04070727 +n02098286 +n02017213 +n02177972 +n01689811 +n03697007 +n03874599 +n02110185 +n04417672 +n04310018 +n02130308 +n04252077 +n03534580 +n01860187 +n03814906 +n02442845 +n04487394 +n02090379 +n01930112 +n07860988 +n02869837 +n02231487 +n03956157 +n03482405 +n02489166 +n02107683 +n01677366 +n01806143 +n03775071 +n02825657 +n02783161 +n01622779 +n02268853 +n04044716 +n04540053 +n02107142 +n04487394 +n03376595 +n01496331 +n02815834 +n02099267 +n04229816 +n07615774 +n03272562 +n01855672 +n02804414 +n01818515 +n02704792 +n02483708 +n01629819 +n03393912 +n03794056 +n01644373 +n02951585 +n02497673 +n02415577 +n01871265 +n07718747 +n02966193 +n03017168 +n01530575 +n02319095 +n02090379 +n03297495 +n03388183 +n03825788 +n01798484 +n03814906 +n02027492 +n02111889 +n04118538 +n02356798 +n01983481 +n01986214 +n02808440 +n02486261 +n01751748 +n03777568 +n04335435 +n07720875 +n03633091 +n03534580 +n04141975 +n04162706 +n03998194 +n07579787 +n02676566 +n03483316 +n01693334 +n04238763 +n02071294 +n04493381 +n07875152 +n01753488 +n02091635 +n03314780 +n03291819 +n03924679 +n12768682 +n06794110 +n03291819 +n03544143 +n01698640 +n06785654 +n03782006 +n04154565 +n02012849 +n07930864 +n03017168 +n04133789 +n02138441 +n03769881 +n03773504 +n07930864 +n04589890 +n01806143 +n03207743 +n02097474 +n01582220 +n02939185 +n02640242 +n02981792 +n03657121 +n02106166 +n02666196 +n01751748 +n03188531 +n01768244 +n04429376 +n02690373 +n01806567 +n02319095 +n02107683 +n04550184 +n04350905 +n01797886 +n04447861 +n04485082 +n03443371 +n04229816 +n03443371 +n04579145 +n03125729 +n03942813 +n03649909 +n02119022 +n02105251 +n12144580 +n02992529 +n01518878 +n02977058 +n01968897 +n02233338 +n03642806 +n01833805 +n09421951 +n01985128 +n01824575 +n04286575 +n04330267 +n02106166 +n07875152 +n02094258 +n02123394 +n01537544 +n04493381 +n02102480 +n02086240 +n02085782 +n03786901 +n04254680 +n03721384 +n04311174 +n04487394 +n02099267 +n03207941 +n02883205 +n02672831 +n04008634 +n03868863 +n04251144 +n03529860 +n01608432 +n02093647 +n02028035 +n03982430 +n01687978 +n01632458 +n03125729 +n02389026 +n02085782 +n06359193 +n03459775 +n01773797 +n02093754 +n04275548 +n02120505 +n03450230 +n03854065 +n02096177 +n02112706 +n02089867 +n02138441 +n02504458 +n02865351 +n04479046 +n03180011 +n03223299 +n02804414 +n02134418 +n01751748 +n02483708 +n01692333 +n02992211 +n03404251 +n07716906 +n01924916 +n07695742 +n02112137 +n02692877 +n02423022 +n02860847 +n01877812 +n04326547 +n02051845 +n01855672 +n02667093 +n01829413 +n07760859 +n01630670 +n02869837 +n02086910 +n01740131 +n02398521 +n03016953 +n02091134 +n02096585 +n02093647 +n03220513 +n07716906 +n03188531 +n03627232 +n03690938 +n02788148 +n04254680 +n02493509 +n02098413 +n03532672 +n02111889 +n01843065 +n02666196 +n02457408 +n03785016 +n02097474 +n02704792 +n03868863 +n04540053 +n03529860 +n04238763 +n03658185 +n03970156 +n04285008 +n02526121 +n02096585 +n03814639 +n03180011 +n02480855 +n03594945 +n02101006 +n04517823 +n12985857 +n02104029 +n04111531 +n01729322 +n03773504 +n01580077 +n02098413 +n04065272 +n02085936 +n02093859 +n02104365 +n09472597 +n02865351 +n04254680 +n02951358 +n02281787 +n01496331 +n02093256 +n01910747 +n04509417 +n02417914 +n02389026 +n03666591 +n06794110 +n03786901 +n07695742 +n02133161 +n04540053 +n02782093 +n01871265 +n03690938 +n02028035 +n02106550 +n02494079 +n07831146 +n01498041 +n02130308 +n04483307 +n01820546 +n02105056 +n04487081 +n09332890 +n02437312 +n03692522 +n02871525 +n02326432 +n07749582 +n02992211 +n02497673 +n03544143 +n13052670 +n13133613 +n07714571 +n03868863 +n02606052 +n02111129 +n03874293 +n02190166 +n02226429 +n02363005 +n02443484 +n04579145 +n03425413 +n03018349 +n03452741 +n02791124 +n02346627 +n02128757 +n03998194 +n03530642 +n01592084 +n01917289 +n03764736 +n07615774 +n03977966 +n02877765 +n02089973 +n01986214 +n01872401 +n03942813 +n01689811 +n02834397 +n07714990 +n02486261 +n02397096 +n04467665 +n02909870 +n04517823 +n04131690 +n01728572 +n01729322 +n01797886 +n02108551 +n03866082 +n01677366 +n02979186 +n03710637 +n03933933 +n03930313 +n03899768 +n03763968 +n02326432 +n02107142 +n02066245 +n04099969 +n07860988 +n07695742 +n01924916 +n03895866 +n03788365 +n01632777 +n02787622 +n01768244 +n01768244 +n03146219 +n06785654 +n02110341 +n03400231 +n02123045 +n02025239 +n03670208 +n01784675 +n03982430 +n04485082 +n03208938 +n01990800 +n03930313 +n02708093 +n04597913 +n01796340 +n02100236 +n01608432 +n01828970 +n01614925 +n03400231 +n01631663 +n03759954 +n01872401 +n01917289 +n02690373 +n01664065 +n03016953 +n04376876 +n01664065 +n02950826 +n04557648 +n02793495 +n02111129 +n01968897 +n03781244 +n07871810 +n02641379 +n02097209 +n02109047 +n03065424 +n03838899 +n04501370 +n01753488 +n04049303 +n02097047 +n04311004 +n03538406 +n03666591 +n02017213 +n02093647 +n04409515 +n03207743 +n01843065 +n03697007 +n03291819 +n03197337 +n03000247 +n02443484 +n03891251 +n02085782 +n04033901 +n03658185 +n01819313 +n03388549 +n02606052 +n04612504 +n01582220 +n02883205 +n04467665 +n03535780 +n04326547 +n03895866 +n02095889 +n02123045 +n03777568 +n01631663 +n02999410 +n07717410 +n02837789 +n04461696 +n07720875 +n03141823 +n03216828 +n04589890 +n02105641 +n03196217 +n01797886 +n07742313 +n02396427 +n04532106 +n02655020 +n02437312 +n03028079 +n02037110 +n03788365 +n01978455 +n02483362 +n02444819 +n01580077 +n04347754 +n01728572 +n03063689 +n02106662 +n02672831 +n03895866 +n04560804 +n04540053 +n02233338 +n03777754 +n02788148 +n09472597 +n02484975 +n04404412 +n02087046 +n02089078 +n03255030 +n03095699 +n07714990 +n02641379 +n03218198 +n02481823 +n01514859 +n03337140 +n04399382 +n02641379 +n02129604 +n03982430 +n04127249 +n04125021 +n01774384 +n01740131 +n02325366 +n04041544 +n02667093 +n07836838 +n01739381 +n02108000 +n02277742 +n01950731 +n03777754 +n04310018 +n02917067 +n02835271 +n04515003 +n02119789 +n02966687 +n03085013 +n12144580 +n02071294 +n12998815 +n04162706 +n03028079 +n03218198 +n02895154 +n04562935 +n07613480 +n02128925 +n03649909 +n01629819 +n01883070 +n02098413 +n02002724 +n02106382 +n01530575 +n02113978 +n02124075 +n04332243 +n02655020 +n04239074 +n01910747 +n09399592 +n02096051 +n03930630 +n07693725 +n03933933 +n03187595 +n02281787 +n02892201 +n02108000 +n01687978 +n03803284 +n07892512 +n02074367 +n03891251 +n03384352 +n04409515 +n02107574 +n01860187 +n03529860 +n02280649 +n02860847 +n03325584 +n04409515 +n03692522 +n02089973 +n02782093 +n03208938 +n02980441 +n01693334 +n01773157 +n01729977 +n03063689 +n02865351 +n03459775 +n03637318 +n04263257 +n04604644 +n04311004 +n02120079 +n02112018 +n03196217 +n01871265 +n02804610 +n07892512 +n03124043 +n02219486 +n02089973 +n02109047 +n04040759 +n07711569 +n04458633 +n07720875 +n02277742 +n01675722 +n02119022 +n02106030 +n03763968 +n02105412 +n03017168 +n03857828 +n04346328 +n04005630 +n03492542 +n02480495 +n02090622 +n03814906 +n04004767 +n02992529 +n02692877 +n09332890 +n02979186 +n01770393 +n02129165 +n02391049 +n07871810 +n03355925 +n04398044 +n07860988 +n03961711 +n02089973 +n03404251 +n02395406 +n03063689 +n04070727 +n04552348 +n02112137 +n02110958 +n01753488 +n07697537 +n04389033 +n02783161 +n07693725 +n04286575 +n07753113 +n07716358 +n03394916 +n02093256 +n01737021 +n07836838 +n02268853 +n02130308 +n02906734 +n02134418 +n02108000 +n01560419 +n03131574 +n02133161 +n03000247 +n02279972 +n02951585 +n03733805 +n01677366 +n03976467 +n03535780 +n03938244 +n01644373 +n02109525 +n03649909 +n02190166 +n01692333 +n02910353 +n01807496 +n03982430 +n02974003 +n03950228 +n01978287 +n03720891 +n02892767 +n02504013 +n01855032 +n02483362 +n02025239 +n03868242 +n02094114 +n02109047 +n07749582 +n01669191 +n03785016 +n04041544 +n02087046 +n03272010 +n03447447 +n02783161 +n03976657 +n02087394 +n04548280 +n01860187 +n01689811 +n04584207 +n04251144 +n02113023 +n03977966 +n03792972 +n13054560 +n06785654 +n07734744 +n02115641 +n04606251 +n02277742 +n02794156 +n02137549 +n04479046 +n01753488 +n04485082 +n02100735 +n02869837 +n03534580 +n02879718 +n04525305 +n01829413 +n03792782 +n02109961 +n03443371 +n02009229 +n01744401 +n01728572 +n02098413 +n04311004 +n03272010 +n02095570 +n01632458 +n02783161 +n01644900 +n01601694 +n01608432 +n04335435 +n02086910 +n04418357 +n02097658 +n03124170 +n04228054 +n02494079 +n07754684 +n02493793 +n02165105 +n02133161 +n01847000 +n03394916 +n02105162 +n01950731 +n03970156 +n02233338 +n03045698 +n02099601 +n11939491 +n04467665 +n04346328 +n04347754 +n03063689 +n03100240 +n02127052 +n03887697 +n09428293 +n02361337 +n02606052 +n04590129 +n02692877 +n03796401 +n04532106 +n03538406 +n07747607 +n01978455 +n07717556 +n02894605 +n03134739 +n04243546 +n03903868 +n02879718 +n01824575 +n01877812 +n01770081 +n04525305 +n01773549 +n02099712 +n01774384 +n02823428 +n01860187 +n03461385 +n04366367 +n02167151 +n02454379 +n03777568 +n01833805 +n03761084 +n04542943 +n02504458 +n02033041 +n02095314 +n03527444 +n02280649 +n02123045 +n01644373 +n12998815 +n03792972 +n02480495 +n03417042 +n02091467 +n02415577 +n12985857 +n03544143 +n04370456 +n02110806 +n03676483 +n03602883 +n03538406 +n04201297 +n03929855 +n02504013 +n10565667 +n02097130 +n03950228 +n01675722 +n04523525 +n02966687 +n02504458 +n02089973 +n01641577 +n04330267 +n04146614 +n01631663 +n02978881 +n07802026 +n04039381 +n03485794 +n03825788 +n04265275 +n03141823 +n04033995 +n03179701 +n01986214 +n04604644 +n02730930 +n03920288 +n02799071 +n04399382 +n04023962 +n02951358 +n02114367 +n02074367 +n03992509 +n03000134 +n01824575 +n04525305 +n02119789 +n03899768 +n03617480 +n02012849 +n03814639 +n04347754 +n04597913 +n02113799 +n04562935 +n03777754 +n02687172 +n02066245 +n02704792 +n01751748 +n02090622 +n03857828 +n03777754 +n02130308 +n02606052 +n03483316 +n02808440 +n02114712 +n01774384 +n09468604 +n03045698 +n02107574 +n02112706 +n03777754 +n04209239 +n07745940 +n02690373 +n07584110 +n03388549 +n03977966 +n04584207 +n02279972 +n02443114 +n02493509 +n02494079 +n03063599 +n01774750 +n01968897 +n01695060 +n04380533 +n02128757 +n09256479 +n02909870 +n04501370 +n03935335 +n07693725 +n04591713 +n03787032 +n01498041 +n03042490 +n02086910 +n01855672 +n04596742 +n02445715 +n02859443 +n02804610 +n03709823 +n02488291 +n02410509 +n03393912 +n03498962 +n03131574 +n03791053 +n03763968 +n02097130 +n03042490 +n01641577 +n01677366 +n01828970 +n02096051 +n03888605 +n02094114 +n02892201 +n02486261 +n03983396 +n02133161 +n03602883 +n03065424 +n02749479 +n02791124 +n01968897 +n02797295 +n02877765 +n01843065 +n02892201 +n03786901 +n02174001 +n03133878 +n02107908 +n04136333 +n02437616 +n04592741 +n04044716 +n01773157 +n02130308 +n02325366 +n04591713 +n04090263 +n03902125 +n03670208 +n07753113 +n03866082 +n04201297 +n02093859 +n02410509 +n02823750 +n01740131 +n03417042 +n03874293 +n03710193 +n02871525 +n02091467 +n04254120 +n02109525 +n04404412 +n02094433 +n11939491 +n02107683 +n04356056 +n02002556 +n02168699 +n01945685 +n04376876 +n04033901 +n01530575 +n03838899 +n01776313 +n03028079 +n03658185 +n04310018 +n02090379 +n02109525 +n04376876 +n04418357 +n04409515 +n07583066 +n03841143 +n02837789 +n03494278 +n03457902 +n02497673 +n02504013 +n02110063 +n02835271 +n01491361 +n02807133 +n02085782 +n02088364 +n02607072 +n02120505 +n07718472 +n03781244 +n02389026 +n03026506 +n02769748 +n02096177 +n02840245 +n02606052 +n03857828 +n03837869 +n01735189 +n02093256 +n02112706 +n02749479 +n04525038 +n03982430 +n02510455 +n02410509 +n03680355 +n02105505 +n03017168 +n02120079 +n03532672 +n03992509 +n02009229 +n02106166 +n02105056 +n02422699 +n03770439 +n03794056 +n03777568 +n02110806 +n01950731 +n04371430 +n03417042 +n03743016 +n01729977 +n02669723 +n02094433 +n04251144 +n02119022 +n01697457 +n01682714 +n07614500 +n02127052 +n03042490 +n02113799 +n04399382 +n03794056 +n02963159 +n02730930 +n01592084 +n04067472 +n02815834 +n07753592 +n13052670 +n07875152 +n06785654 +n04509417 +n03977966 +n03345487 +n03223299 +n04277352 +n06794110 +n02389026 +n07920052 +n02100877 +n04435653 +n04239074 +n04069434 +n03617480 +n01494475 +n02672831 +n07831146 +n02097047 +n03814639 +n02514041 +n02091635 +n01687978 +n02116738 +n01630670 +n01695060 +n04204238 +n04090263 +n04081281 +n01819313 +n02132136 +n03787032 +n04044716 +n15075141 +n03954731 +n04389033 +n02002556 +n04591157 +n04133789 +n04277352 +n02641379 +n03733805 +n04417672 +n02403003 +n01580077 +n03920288 +n03673027 +n07697537 +n07836838 +n04243546 +n02977058 +n07684084 +n07697537 +n02132136 +n03131574 +n02093647 +n03443371 +n03134739 +n04550184 +n03891251 +n02087394 +n07697537 +n07583066 +n04522168 +n04493381 +n04065272 +n02097130 +n04467665 +n01614925 +n03961711 +n02802426 +n02089078 +n02018207 +n03947888 +n01748264 +n02280649 +n02002556 +n03709823 +n01494475 +n03485794 +n04479046 +n02108551 +n03325584 +n03188531 +n02091032 +n02259212 +n02033041 +n03290653 +n04033995 +n07614500 +n02169497 +n04553703 +n02268443 +n09288635 +n01843383 +n04428191 +n03717622 +n02268853 +n02012849 +n02894605 +n02134418 +n01751748 +n02823750 +n02177972 +n03424325 +n02397096 +n07753275 +n02417914 +n03379051 +n02096585 +n03814639 +n03355925 +n03127747 +n02264363 +n03733131 +n02481823 +n03447447 +n04409515 +n02066245 +n02102318 +n03028079 +n02107574 +n04026417 +n02058221 +n02106662 +n02607072 +n01641577 +n03376595 +n07892512 +n11939491 +n02488702 +n09421951 +n01910747 +n02364673 +n07248320 +n03908714 +n02939185 +n02099601 +n03680355 +n02095889 +n02917067 +n04380533 +n01592084 +n02109525 +n02123394 +n02236044 +n02346627 +n12057211 +n12620546 +n04346328 +n01531178 +n01735189 +n04152593 +n04487394 +n02123597 +n01768244 +n02129604 +n09193705 +n04131690 +n02085936 +n02088238 +n03538406 +n03131574 +n02110185 +n03124043 +n03000247 +n02107574 +n02110958 +n03018349 +n02930766 +n02229544 +n02483362 +n03887697 +n01773797 +n02264363 +n02088364 +n04127249 +n02113023 +n03146219 +n02114855 +n04536866 +n03770679 +n01796340 +n03866082 +n04380533 +n03764736 +n07749582 +n03658185 +n04579145 +n01784675 +n01644373 +n02110063 +n02971356 +n02494079 +n02361337 +n02490219 +n03803284 +n02113624 +n02106550 +n03814906 +n03180011 +n01872401 +n02730930 +n04548280 +n02814860 +n02105162 +n03676483 +n01871265 +n07716358 +n04476259 +n03887697 +n07697537 +n02514041 +n04004767 +n04371774 +n01855032 +n01518878 +n09835506 +n01943899 +n03908714 +n03400231 +n02129604 +n02492035 +n04252225 +n02107312 +n03443371 +n02950826 +n03814639 +n02951585 +n04265275 +n01806567 +n03482405 +n01882714 +n01580077 +n02091831 +n04266014 +n02895154 +n04532106 +n02999410 +n03729826 +n03345487 +n02105162 +n02690373 +n04597913 +n04325704 +n03461385 +n01695060 +n01818515 +n09472597 +n01806567 +n07754684 +n04326547 +n02093859 +n04049303 +n02641379 +n03196217 +n02088466 +n04376876 +n02009229 +n03929855 +n02025239 +n03814906 +n03291819 +n04612504 +n03000134 +n02837789 +n07718747 +n03459775 +n02281406 +n01693334 +n02219486 +n04266014 +n04399382 +n01774750 +n02980441 +n03062245 +n04418357 +n02841315 +n04239074 +n02117135 +n03908714 +n04429376 +n02089867 +n01641577 +n02444819 +n04277352 +n01443537 +n04522168 +n02137549 +n03770439 +n03697007 +n07248320 +n04523525 +n04141975 +n04442312 +n02979186 +n03929855 +n03160309 +n07613480 +n04154565 +n03452741 +n03063689 +n01983481 +n03884397 +n02687172 +n01622779 +n01774750 +n02096051 +n04074963 +n03207941 +n02107908 +n03180011 +n04557648 +n01491361 +n04209239 +n02091467 +n03930313 +n03417042 +n02395406 +n02112350 +n02108915 +n02123597 +n04125021 +n03777754 +n09288635 +n02066245 +n03196217 +n04118538 +n03733281 +n02106550 +n02111889 +n03720891 +n04604644 +n03016953 +n03249569 +n04039381 +n02100735 +n01582220 +n02423022 +n03764736 +n03109150 +n02028035 +n02510455 +n01735189 +n02666196 +n02992211 +n04356056 +n03240683 +n01978455 +n04579145 +n02963159 +n09288635 +n02442845 +n04606251 +n02087046 +n03344393 +n01883070 +n03697007 +n03891251 +n03662601 +n02138441 +n01753488 +n04613696 +n01950731 +n03485794 +n02110341 +n02892767 +n02492035 +n04273569 +n04008634 +n02095314 +n03794056 +n09472597 +n02802426 +n07716906 +n03792972 +n01872401 +n03673027 +n02279972 +n02910353 +n03933933 +n03938244 +n01558993 +n03908714 +n01914609 +n02101006 +n02672831 +n04067472 +n02526121 +n07836838 +n02817516 +n07742313 +n01828970 +n04286575 +n03649909 +n02107683 +n02988304 +n02165456 +n04560804 +n01629819 +n03814906 +n03782006 +n02264363 +n02909870 +n09246464 +n02328150 +n02730930 +n04596742 +n03095699 +n03146219 +n01824575 +n03977966 +n01807496 +n02500267 +n02098105 +n01796340 +n02113978 +n02948072 +n03089624 +n04550184 +n07565083 +n03529860 +n03544143 +n02791270 +n03775071 +n03710721 +n13044778 +n02504458 +n02514041 +n03743016 +n03483316 +n12985857 +n03709823 +n04465501 +n03028079 +n04209239 +n01807496 +n02859443 +n04398044 +n03337140 +n02783161 +n02500267 +n01644373 +n07711569 +n03888257 +n02655020 +n09399592 +n03197337 +n02007558 +n03961711 +n04542943 +n02116738 +n01580077 +n02088632 +n02096294 +n03388183 +n02099267 +n03445924 +n04133789 +n04332243 +n03201208 +n03032252 +n02504458 +n02979186 +n04584207 +n03535780 +n02229544 +n02111500 +n04525305 +n03197337 +n02398521 +n02088238 +n02364673 +n04146614 +n02113186 +n02391049 +n02098286 +n04548362 +n02009229 +n07802026 +n07716906 +n02111889 +n02730930 +n01632777 +n02099601 +n02981792 +n03637318 +n01735189 +n04049303 +n02129165 +n02443484 +n03770679 +n04149813 +n01622779 +n03110669 +n01945685 +n03937543 +n02977058 +n02457408 +n03041632 +n01694178 +n03095699 +n02085936 +n04252077 +n03529860 +n01978455 +n01768244 +n06359193 +n02107908 +n04162706 +n03494278 +n02009912 +n01740131 +n03717622 +n13054560 +n03014705 +n02087394 +n02093991 +n03063689 +n02113023 +n03733131 +n04493381 +n03825788 +n02643566 +n03495258 +n06794110 +n02280649 +n04065272 +n02110958 +n03452741 +n03314780 +n01828970 +n02871525 +n04447861 +n02815834 +n04417672 +n04328186 +n02134418 +n03788365 +n03877845 +n04487081 +n02500267 +n03372029 +n03837869 +n01968897 +n03443371 +n12768682 +n01685808 +n03584829 +n02814860 +n03485407 +n03670208 +n01817953 +n03026506 +n01440764 +n01685808 +n03691459 +n04141076 +n04179913 +n03670208 +n01755581 +n03958227 +n03388043 +n03223299 +n02504013 +n01773549 +n01694178 +n02112018 +n01739381 +n01695060 +n01980166 +n03788365 +n03187595 +n02277742 +n01669191 +n02892201 +n02123045 +n07747607 +n04604644 +n04149813 +n04074963 +n02111277 +n02101006 +n03961711 +n01978287 +n03127747 +n02129604 +n07717410 +n02264363 +n07802026 +n02089973 +n02096585 +n04243546 +n01688243 +n02817516 +n04596742 +n03673027 +n02797295 +n07753113 +n01685808 +n02871525 +n02093991 +n01984695 +n07760859 +n03032252 +n07711569 +n02280649 +n03761084 +n03160309 +n03891332 +n02883205 +n04372370 +n04041544 +n04552348 +n04264628 +n04041544 +n01910747 +n03950228 +n02666196 +n04204347 +n01560419 +n04204238 +n02236044 +n03131574 +n04487081 +n02018795 +n02843684 +n03000684 +n01667778 +n02115641 +n04548362 +n01943899 +n02100877 +n02093256 +n02018207 +n02112137 +n03141823 +n02093754 +n02174001 +n04476259 +n02480495 +n03887697 +n02769748 +n02002724 +n02113978 +n02110627 +n03874293 +n02107574 +n02109047 +n01855032 +n02794156 +n03134739 +n07742313 +n03124043 +n02486261 +n02992529 +n01734418 +n02321529 +n03047690 +n02879718 +n02025239 +n03131574 +n04347754 +n03216828 +n02264363 +n03041632 +n02071294 +n01914609 +n02497673 +n02172182 +n01667778 +n02106550 +n02814860 +n01773549 +n01986214 +n02236044 +n02009912 +n02487347 +n01755581 +n03623198 +n02445715 +n06794110 +n02085620 +n04482393 +n01820546 +n04579145 +n02326432 +n07754684 +n04111531 +n03724870 +n02093256 +n07711569 +n02017213 +n01688243 +n01669191 +n01664065 +n02092339 +n02108551 +n04525305 +n03950228 +n03929660 +n03956157 +n03891332 +n04493381 +n02102973 +n03255030 +n01990800 +n02500267 +n02281406 +n01824575 +n03032252 +n02129165 +n02356798 +n03538406 +n02009229 +n02097658 +n03095699 +n03786901 +n03743016 +n02980441 +n07742313 +n02106166 +n03314780 +n02097209 +n04037443 +n04086273 +n03394916 +n02037110 +n02112018 +n03379051 +n02951585 +n04501370 +n04355338 +n03874293 +n04153751 +n07930864 +n02930766 +n01496331 +n04265275 +n02256656 +n01667114 +n03630383 +n04591713 +n02704792 +n03207743 +n03854065 +n03720891 +n07873807 +n02120505 +n02099849 +n04152593 +n02100877 +n04560804 +n03792972 +n03733131 +n13133613 +n02114548 +n03000247 +n04146614 +n04398044 +n02325366 +n03633091 +n09256479 +n03617480 +n01530575 +n03633091 +n03018349 +n01768244 +n02871525 +n04040759 +n03658185 +n03272562 +n02447366 +n04392985 +n02797295 +n03903868 +n04548362 +n07714571 +n03884397 +n03888605 +n02105505 +n03666591 +n03063599 +n03530642 +n02097474 +n04483307 +n04554684 +n02978881 +n02492660 +n03692522 +n04589890 +n04579432 +n02127052 +n02112706 +n02804610 +n02190166 +n11939491 +n03000134 +n01697457 +n12620546 +n02256656 +n01968897 +n02950826 +n03127925 +n02939185 +n06596364 +n02091134 +n03877472 +n02113799 +n02102973 +n02027492 +n03498962 +n02834397 +n07248320 +n04286575 +n01735189 +n02417914 +n03690938 +n03404251 +n01739381 +n02099267 +n02219486 +n02108089 +n02206856 +n03208938 +n03127747 +n02279972 +n02281406 +n02113023 +n01601694 +n07715103 +n02107908 +n02120079 +n02102318 +n02096051 +n01990800 +n02917067 +n03372029 +n03538406 +n12267677 +n03314780 +n03903868 +n02009229 +n02100236 +n03759954 +n02277742 +n03804744 +n02966687 +n02102318 +n09835506 +n01484850 +n02097047 +n02795169 +n03673027 +n02169497 +n03532672 +n04067472 +n01944390 +n02786058 +n04019541 +n01665541 +n04162706 +n01695060 +n04116512 +n03680355 +n04548280 +n04517823 +n02883205 +n02869837 +n01871265 +n01737021 +n01496331 +n01773797 +n04562935 +n03617480 +n03930630 +n04033901 +n04270147 +n03388183 +n02823428 +n02090622 +n02504013 +n04356056 +n02510455 +n01860187 +n02492660 +n02879718 +n02669723 +n15075141 +n04263257 +n02422106 +n04350905 +n02105056 +n02102973 +n03776460 +n03857828 +n02120505 +n02105412 +n02643566 +n03291819 +n04447861 +n03938244 +n07717556 +n02423022 +n03450230 +n01770393 +n04254680 +n03530642 +n03476991 +n03710721 +n04116512 +n04398044 +n02930766 +n04370456 +n02231487 +n04019541 +n03476991 +n04366367 +n02930766 +n01728920 +n03908618 +n07615774 +n06794110 +n01744401 +n04153751 +n03187595 +n02009912 +n02096437 +n02018207 +n02363005 +n07717410 +n02939185 +n03495258 +n03787032 +n03920288 +n04392985 +n02109961 +n04325704 +n03240683 +n01773157 +n02317335 +n03929660 +n02493509 +n03920288 +n03447721 +n02486261 +n04562935 +n01829413 +n01930112 +n02104365 +n02992211 +n04033901 +n03710193 +n02797295 +n01847000 +n02100583 +n04483307 +n03874599 +n04275548 +n04540053 +n01558993 +n04560804 +n04542943 +n01773549 +n04317175 +n03935335 +n07717410 +n02165456 +n03832673 +n01692333 +n03788195 +n07831146 +n03590841 +n03840681 +n02277742 +n09472597 +n07614500 +n04548280 +n03443371 +n04532670 +n01774750 +n04486054 +n03127747 +n03676483 +n02669723 +n02017213 +n01945685 +n02219486 +n04599235 +n03530642 +n04254777 +n02111500 +n03125729 +n01631663 +n07880968 +n02111277 +n01817953 +n03776460 +n01622779 +n03240683 +n02906734 +n02391049 +n01695060 +n04023962 +n01514668 +n04133789 +n02871525 +n02277742 +n02090721 +n01693334 +n04074963 +n07693725 +n01873310 +n02279972 +n02971356 +n02071294 +n03991062 +n02088238 +n03538406 +n04552348 +n02112706 +n04229816 +n03126707 +n01518878 +n03903868 +n13054560 +n04149813 +n01828970 +n03197337 +n02443114 +n03255030 +n01558993 +n03529860 +n04069434 +n02396427 +n03197337 +n02356798 +n02504013 +n02641379 +n02017213 +n01882714 +n01514859 +n04429376 +n04366367 +n04443257 +n03075370 +n03782006 +n02927161 +n03899768 +n07715103 +n03980874 +n01514668 +n03761084 +n01773797 +n02120079 +n04131690 +n07248320 +n02133161 +n02096051 +n13052670 +n02979186 +n02113023 +n03594945 +n02123045 +n02120505 +n02119022 +n02493793 +n01728572 +n03482405 +n01980166 +n07745940 +n01773549 +n02123394 +n02093754 +n03534580 +n02174001 +n02641379 +n01693334 +n01983481 +n02793495 +n04456115 +n04141327 +n02096585 +n01855672 +n03223299 +n03544143 +n02321529 +n09193705 +n04409515 +n02105162 +n03775546 +n01990800 +n02128757 +n03769881 +n03314780 +n03598930 +n03452741 +n03388183 +n03958227 +n02236044 +n04208210 +n07693725 +n01945685 +n04579432 +n02486410 +n02791270 +n02099429 +n02074367 +n04208210 +n01981276 +n03240683 +n03425413 +n02115913 +n03124043 +n02002724 +n02667093 +n03724870 +n07730033 +n03733281 +n04522168 +n07717556 +n03977966 +n03788365 +n01484850 +n03482405 +n03623198 +n07892512 +n07711569 +n03710637 +n03376595 +n04141975 +n02981792 +n03804744 +n02107312 +n03733131 +n01739381 +n04252077 +n03445924 +n04599235 +n02422699 +n03637318 +n03673027 +n03425413 +n02442845 +n02325366 +n02410509 +n02641379 +n02165105 +n02769748 +n02859443 +n01806567 +n03527444 +n02099601 +n07715103 +n01531178 +n04599235 +n07697313 +n02091244 +n04317175 +n02823428 +n02096437 +n02236044 +n02190166 +n02948072 +n01728920 +n01728572 +n03000684 +n03133878 +n02017213 +n01978287 +n03775071 +n04479046 +n07720875 +n06785654 +n01843383 +n02108089 +n02606052 +n02794156 +n02100583 +n12620546 +n02412080 +n01677366 +n03710637 +n07753275 +n02417914 +n04019541 +n01697457 +n01806143 +n03759954 +n02115913 +n12985857 +n03530642 +n02133161 +n02086240 +n02782093 +n02259212 +n02110806 +n03733131 +n02096294 +n04229816 +n06794110 +n02699494 +n03761084 +n01592084 +n07695742 +n01631663 +n03017168 +n04350905 +n02256656 +n04285008 +n01984695 +n04275548 +n01883070 +n03047690 +n02445715 +n02088094 +n03223299 +n01729322 +n03837869 +n02102480 +n02088364 +n02102177 +n04265275 +n02319095 +n02229544 +n03759954 +n02869837 +n04209133 +n03291819 +n04371774 +n02138441 +n02417914 +n02128757 +n02098286 +n04591157 +n03443371 +n03902125 +n02422106 +n04423845 +n04465501 +n13052670 +n02087394 +n04367480 +n07742313 +n03538406 +n03492542 +n03868863 +n02088632 +n01582220 +n03876231 +n03770439 +n02977058 +n03457902 +n03874293 +n03902125 +n03929855 +n02391049 +n03180011 +n03956157 +n02790996 +n02099712 +n01980166 +n04041544 +n02033041 +n03976657 +n01751748 +n02127052 +n01494475 +n02128385 +n04204347 +n03690938 +n03759954 +n02412080 +n04204238 +n03662601 +n02114855 +n03788365 +n02104029 +n02101556 +n01737021 +n09288635 +n02096177 +n02492035 +n04238763 +n03393912 +n04149813 +n02398521 +n01742172 +n02130308 +n01534433 +n04404412 +n02107683 +n02708093 +n04209239 +n07715103 +n07718747 +n04462240 +n02510455 +n02098105 +n02277742 +n02096437 +n02802426 +n02486261 +n02091134 +n03272010 +n01491361 +n04604644 +n02640242 +n03692522 +n02229544 +n07720875 +n04606251 +n04201297 +n11939491 +n02088364 +n02655020 +n03657121 +n02112350 +n02326432 +n03445777 +n02028035 +n04326547 +n03400231 +n02091032 +n03710193 +n01742172 +n01806567 +n03485407 +n03450230 +n01735189 +n02319095 +n03467068 +n04458633 +n03394916 +n02500267 +n04525038 +n02112137 +n02107908 +n12768682 +n02119789 +n03662601 +n07860988 +n04584207 +n07932039 +n03062245 +n07745940 +n03085013 +n04465501 +n02483708 +n03379051 +n01631663 +n01773157 +n02364673 +n02917067 +n02488702 +n02105412 +n02423022 +n03868242 +n02018207 +n02113624 +n04041544 +n04548280 +n03483316 +n03444034 +n02125311 +n02281406 +n04041544 +n03223299 +n03602883 +n12144580 +n04192698 +n07831146 +n01748264 +n02096177 +n01798484 +n03075370 +n01807496 +n04479046 +n03457902 +n02504013 +n02097047 +n07583066 +n02979186 +n03595614 +n04286575 +n09246464 +n02981792 +n03220513 +n02090379 +n02037110 +n02009912 +n07860988 +n04435653 +n02486261 +n02129604 +n01491361 +n04579432 +n02165456 +n03259280 +n01860187 +n03796401 +n02356798 +n01828970 +n02206856 +n03983396 +n02783161 +n03134739 +n02823428 +n04371430 +n04118776 +n02106166 +n02988304 +n01770081 +n04465501 +n03447447 +n03976467 +n02977058 +n02058221 +n02280649 +n03445777 +n03884397 +n01797886 +n03240683 +n03485794 +n02974003 +n04548280 +n02168699 +n07716906 +n02002556 +n01632777 +n02111129 +n02492035 +n02123159 +n03424325 +n02231487 +n01641577 +n07873807 +n02363005 +n02100877 +n03777568 +n01530575 +n03998194 +n01829413 +n02480855 +n09288635 +n02321529 +n02509815 +n03482405 +n04493381 +n02319095 +n03223299 +n03388549 +n02113186 +n02093859 +n07718747 +n01855032 +n10148035 +n07753113 +n04154565 +n02423022 +n04179913 +n02486410 +n02106382 +n02033041 +n02483708 +n01537544 +n02123597 +n03240683 +n04026417 +n02108422 +n09399592 +n02104365 +n03794056 +n01776313 +n02787622 +n03854065 +n01729977 +n02127052 +n03942813 +n02109047 +n03133878 +n03775071 +n02268443 +n04118776 +n02009912 +n02111889 +n04542943 +n03759954 +n03633091 +n03124043 +n03016953 +n02133161 +n02106030 +n01773797 +n03887697 +n04501370 +n04120489 +n02096051 +n01682714 +n03133878 +n02992211 +n01795545 +n02033041 +n04285008 +n02113978 +n02006656 +n01768244 +n02837789 +n01622779 +n02091831 +n02992529 +n03929660 +n02493793 +n03447447 +n02013706 +n03478589 +n07615774 +n03530642 +n02410509 +n01968897 +n04252077 +n03976467 +n07871810 +n01697457 +n04200800 +n01806567 +n03998194 +n03721384 +n02107683 +n02950826 +n02834397 +n02978881 +n02106166 +n02098413 +n04204238 +n04328186 +n01943899 +n03494278 +n01798484 +n07714990 +n02105056 +n04033995 +n03207743 +n03459775 +n02704792 +n03379051 +n04372370 +n01855032 +n03124170 +n04039381 +n04355338 +n01774384 +n03016953 +n02486261 +n01632777 +n02319095 +n02106550 +n03476684 +n01644900 +n03729826 +n03047690 +n04179913 +n02437312 +n03769881 +n01664065 +n02107683 +n09835506 +n01784675 +n02483362 +n02089867 +n04356056 +n03666591 +n06359193 +n02277742 +n04456115 +n02099267 +n03657121 +n04149813 +n07579787 +n04372370 +n02095314 +n03496892 +n02483708 +n04417672 +n04447861 +n02804610 +n03126707 +n01704323 +n09332890 +n02090379 +n03837869 +n11939491 +n03866082 +n03733131 +n02165456 +n04443257 +n02281787 +n02398521 +n07718472 +n02106382 +n02066245 +n04428191 +n03527444 +n03085013 +n02112350 +n02094433 +n03942813 +n02398521 +n02865351 +n03908618 +n02229544 +n01981276 +n03208938 +n02236044 +n04542943 +n02804610 +n02843684 +n01687978 +n02447366 +n02099849 +n03017168 +n02999410 +n02013706 +n02102040 +n02825657 +n02091831 +n01833805 +n02117135 +n01910747 +n03724870 +n04209133 +n04328186 +n03761084 +n04509417 +n04612504 +n01537544 +n01748264 +n04542943 +n02892767 +n04332243 +n04591713 +n02116738 +n07714990 +n03782006 +n07697313 +n03692522 +n02776631 +n03197337 +n06874185 +n02089867 +n02790996 +n02979186 +n03938244 +n03028079 +n02823428 +n04133789 +n02794156 +n02815834 +n03063599 +n10148035 +n02486261 +n04435653 +n01943899 +n02391049 +n02090622 +n04542943 +n02058221 +n02089867 +n02115641 +n03930313 +n02105412 +n03691459 +n03781244 +n03721384 +n01484850 +n03201208 +n03710721 +n03384352 +n02410509 +n03787032 +n03970156 +n02105251 +n03958227 +n02690373 +n01729322 +n01518878 +n04254680 +n02988304 +n03670208 +n04033901 +n02018795 +n02749479 +n03447721 +n02093428 +n02099712 +n02094114 +n02814860 +n02167151 +n04525305 +n02483362 +n02105251 +n02817516 +n04125021 +n02979186 +n01829413 +n02097658 +n02909870 +n01558993 +n03216828 +n02280649 +n02051845 +n02115913 +n03938244 +n04522168 +n01632458 +n02106382 +n02939185 +n04111531 +n01693334 +n02268853 +n02109525 +n02125311 +n03617480 +n02437616 +n04146614 +n03832673 +n02870880 +n04554684 +n02071294 +n02971356 +n03775071 +n04326547 +n11879895 +n01531178 +n02667093 +n04317175 +n02027492 +n02002556 +n02206856 +n03527444 +n04557648 +n04467665 +n01742172 +n02100236 +n02096437 +n13054560 +n02389026 +n02098105 +n07871810 +n02488291 +n04251144 +n12057211 +n04483307 +n01917289 +n03637318 +n01950731 +n01955084 +n02869837 +n04037443 +n02099267 +n04254120 +n02493793 +n12144580 +n01968897 +n03770679 +n02910353 +n04146614 +n04154565 +n02128757 +n04380533 +n03530642 +n02640242 +n01530575 +n04325704 +n04562935 +n03838899 +n02692877 +n03692522 +n03916031 +n02486261 +n03724870 +n02099267 +n03207941 +n02128925 +n03461385 +n01950731 +n02492660 +n02102973 +n07749582 +n04310018 +n02110806 +n02105056 +n09428293 +n02087394 +n15075141 +n03141823 +n03709823 +n03930630 +n02280649 +n04069434 +n07718747 +n02480495 +n07754684 +n12985857 +n03602883 +n01665541 +n04465501 +n02788148 +n02114548 +n07753275 +n03788195 +n02814860 +n02090379 +n03425413 +n01751748 +n04311174 +n01796340 +n07613480 +n03445777 +n04404412 +n03124170 +n02364673 +n01829413 +n03134739 +n07730033 +n03379051 +n04485082 +n03250847 +n07730033 +n07714571 +n02790996 +n03160309 +n02268443 +n02093859 +n13052670 +n02086910 +n01632458 +n04259630 +n01806567 +n02094433 +n02093647 +n02111500 +n03876231 +n01883070 +n02098286 +n04483307 +n03344393 +n01592084 +n04579432 +n04152593 +n04579145 +n03998194 +n02093256 +n01616318 +n03085013 +n03527444 +n04116512 +n02514041 +n03627232 +n03376595 +n04443257 +n03095699 +n02403003 +n04589890 +n01910747 +n02978881 +n02727426 +n01985128 +n03482405 +n02132136 +n04277352 +n13133613 +n02033041 +n02100877 +n01806143 +n03733805 +n01748264 +n02483362 +n03776460 +n02105412 +n03887697 +n01773157 +n02056570 +n02808440 +n02007558 +n04146614 +n02097130 +n03888605 +n02412080 +n01806567 +n02457408 +n03935335 +n03775071 +n07697313 +n01774750 +n07873807 +n07749582 +n02091134 +n02871525 +n02117135 +n03657121 +n03661043 +n02088632 +n03776460 +n02120505 +n02165456 +n03089624 +n03485794 +n01534433 +n02835271 +n03240683 +n04251144 +n02086910 +n03447447 +n04200800 +n01582220 +n02655020 +n04458633 +n04371430 +n02097047 +n03970156 +n04418357 +n04243546 +n02098413 +n02992529 +n03384352 +n02640242 +n02894605 +n03920288 +n03250847 +n02607072 +n04326547 +n04485082 +n03868863 +n09472597 +n02027492 +n02692877 +n03388549 +n03874599 +n02096051 +n01847000 +n02328150 +n01534433 +n02910353 +n01829413 +n02107142 +n03977966 +n02090622 +n03444034 +n04418357 +n04254680 +n02692877 +n02002724 +n03535780 +n02108551 +n02112350 +n15075141 +n04141975 +n04507155 +n04509417 +n11939491 +n02112706 +n02110627 +n03125729 +n03680355 +n01644373 +n01644373 +n01756291 +n01753488 +n02098105 +n02342885 +n03759954 +n02110958 +n02797295 +n02006656 +n02111500 +n04033901 +n01784675 +n04277352 +n02489166 +n02481823 +n02398521 +n01739381 +n02823428 +n02939185 +n12985857 +n04275548 +n04127249 +n02087394 +n03920288 +n04482393 +n03100240 +n03000684 +n07248320 +n02454379 +n02361337 +n03218198 +n02106030 +n03544143 +n04456115 +n02165105 +n03188531 +n01641577 +n07742313 +n03761084 +n01518878 +n04376876 +n03782006 +n02422699 +n01773797 +n02106550 +n04590129 +n03902125 +n02823750 +n03393912 +n04090263 +n01737021 +n02129165 +n01498041 +n03792782 +n02966687 +n02504458 +n03838899 +n01689811 +n04347754 +n01608432 +n01817953 +n02536864 +n01729977 +n02096437 +n03924679 +n02096437 +n01798484 +n02869837 +n04336792 +n03485407 +n03868863 +n04376876 +n03602883 +n02128925 +n02102973 +n02447366 +n07716358 +n03857828 +n04517823 +n03837869 +n07749582 +n02105162 +n02281787 +n02769748 +n02085620 +n01751748 +n02093647 +n04423845 +n02488702 +n03485794 +n03908714 +n01498041 +n02231487 +n02108551 +n03179701 +n02786058 +n01855032 +n04147183 +n04254680 +n04557648 +n01728572 +n04325704 +n07860988 +n01847000 +n13044778 +n03445777 +n03447447 +n02169497 +n03290653 +n03376595 +n02094114 +n03854065 +n02422699 +n01796340 +n03459775 +n02091244 +n04399382 +n03476684 +n02951585 +n03207941 +n02174001 +n03445777 +n01950731 +n04562935 +n01728572 +n02089973 +n01945685 +n02791270 +n04090263 +n01665541 +n02264363 +n04228054 +n03345487 +n03947888 +n01944390 +n04153751 +n01664065 +n03223299 +n02930766 +n04404412 +n03992509 +n01877812 +n02977058 +n09835506 +n12267677 +n03127747 +n01980166 +n09835506 +n07753113 +n02860847 +n02840245 +n01748264 +n03891251 +n02484975 +n02095314 +n03063689 +n04372370 +n11879895 +n02447366 +n01795545 +n03201208 +n01797886 +n04548362 +n03028079 +n03201208 +n02109047 +n03804744 +n03417042 +n02111500 +n02109047 +n02415577 +n04456115 +n02486410 +n03976657 +n02109525 +n03602883 +n03937543 +n02492660 +n02127052 +n02641379 +n03146219 +n02091635 +n02110185 +n04389033 +n04330267 +n02165456 +n04152593 +n04548362 +n02094433 +n04372370 +n03208938 +n02356798 +n02666196 +n02279972 +n03661043 +n03187595 +n03131574 +n07742313 +n02104029 +n02172182 +n02090622 +n02085782 +n02123159 +n02105855 +n02422106 +n01667114 +n01943899 +n03692522 +n03788195 +n07718472 +n03146219 +n04553703 +n09472597 +n04447861 +n02790996 +n03673027 +n02102040 +n07565083 +n01532829 +n02276258 +n04141327 +n01817953 +n04118538 +n01990800 +n02123597 +n01751748 +n02025239 +n01644373 +n03355925 +n02177972 +n04286575 +n04009552 +n03899768 +n03857828 +n04613696 +n02120079 +n02007558 +n04311174 +n03594945 +n04355338 +n03325584 +n07590611 +n07831146 +n03899768 +n02165105 +n06359193 +n06874185 +n03657121 +n02056570 +n09428293 +n04597913 +n02114855 +n04548280 +n03065424 +n01986214 +n03623198 +n04485082 +n03888605 +n02114855 +n02917067 +n04067472 +n03457902 +n03775071 +n07579787 +n02509815 +n04458633 +n03347037 +n02098105 +n12985857 +n03691459 +n04525305 +n01817953 +n03393912 +n04251144 +n02088364 +n02526121 +n02444819 +n02088238 +n02051845 +n01667114 +n04487394 +n04125021 +n02883205 +n04162706 +n02085936 +n02807133 +n02978881 +n04350905 +n01843383 +n02906734 +n01608432 +n02950826 +n04131690 +n02823428 +n02106030 +n01818515 +n03840681 +n03443371 +n03447447 +n02492660 +n11879895 +n02981792 +n01514668 +n02701002 +n04192698 +n02106030 +n07717410 +n03492542 +n06794110 +n03977966 +n04008634 +n07768694 +n04515003 +n02111889 +n02363005 +n01930112 +n04447861 +n07684084 +n01883070 +n03250847 +n02825657 +n03793489 +n01616318 +n02110341 +n06596364 +n04456115 +n01749939 +n03180011 +n02690373 +n02088094 +n01984695 +n02493793 +n09428293 +n03888605 +n09229709 +n02128757 +n04239074 +n04040759 +n03062245 +n02168699 +n02977058 +n01773157 +n02101388 +n03459775 +n04532106 +n04026417 +n02870880 +n04179913 +n02115913 +n04525038 +n11939491 +n02165105 +n04258138 +n09472597 +n01491361 +n03706229 +n03937543 +n01855672 +n03673027 +n02443484 +n03706229 +n04149813 +n03599486 +n03272562 +n01704323 +n01537544 +n03424325 +n02085782 +n02190166 +n04592741 +n02504458 +n04086273 +n07754684 +n02443484 +n02086910 +n01756291 +n01873310 +n02096437 +n02870880 +n02106166 +n07613480 +n03018349 +n03447721 +n04335435 +n02114855 +n07760859 +n03825788 +n02107142 +n02095570 +n01697457 +n03837869 +n02018795 +n02113624 +n03781244 +n03942813 +n02445715 +n02111129 +n04372370 +n02115641 +n07802026 +n02137549 +n02099429 +n03998194 +n04162706 +n03208938 +n02486410 +n02536864 +n02437616 +n02128757 +n04604644 +n03016953 +n04404412 +n02096585 +n01494475 +n03657121 +n04259630 +n04423845 +n03388549 +n02640242 +n02988304 +n02165456 +n03924679 +n04086273 +n02492660 +n02113624 +n02093859 +n02089867 +n04192698 +n01944390 +n01632777 +n02966687 +n02107908 +n02098286 +n07831146 +n02007558 +n04536866 +n02808304 +n07718472 +n03930630 +n07754684 +n01774750 +n03980874 +n03384352 +n02104029 +n02769748 +n02058221 +n01695060 +n03929660 +n13040303 +n03089624 +n04443257 +n04428191 +n03775546 +n04517823 +n01945685 +n03216828 +n02965783 +n02088466 +n04133789 +n03838899 +n02123597 +n02128385 +n02486410 +n03124170 +n03530642 +n02500267 +n12768682 +n02128385 +n01592084 +n02526121 +n04356056 +n02137549 +n03854065 +n07684084 +n01855032 +n02992211 +n02484975 +n02106030 +n09421951 +n04367480 +n09256479 +n02119022 +n02493509 +n03803284 +n01685808 +n07697537 +n01807496 +n03733281 +n03417042 +n02219486 +n09229709 +n02526121 +n03908714 +n04204347 +n03527444 +n01740131 +n02492035 +n02094258 +n03769881 +n03026506 +n02804414 +n02489166 +n02883205 +n03482405 +n04366367 +n03868863 +n03891332 +n01797886 +n03447447 +n04399382 +n04146614 +n02423022 +n02268443 +n03250847 +n07753592 +n01984695 +n03709823 +n03884397 +n03630383 +n03814639 +n02834397 +n01737021 +n03786901 +n01775062 +n01883070 +n09428293 +n03977966 +n07754684 +n03384352 +n02794156 +n13054560 +n02132136 +n02769748 +n07718747 +n02950826 +n01930112 +n02086240 +n02125311 +n03947888 +n02840245 +n03220513 +n03720891 +n02791270 +n02802426 +n03866082 +n03825788 +n02487347 +n02169497 +n02860847 +n01728920 +n03535780 +n03710193 +n02091467 +n04243546 +n01616318 +n03942813 +n02128757 +n04049303 +n04417672 +n02127052 +n03838899 +n03729826 +n02909870 +n09421951 +n04515003 +n02165105 +n03146219 +n04423845 +n03602883 +n01930112 +n04208210 +n03887697 +n03761084 +n02268853 +n04392985 +n03649909 +n03447721 +n02692877 +n12267677 +n07715103 +n04392985 +n04509417 +n04041544 +n03538406 +n01664065 +n03179701 +n01820546 +n04204347 +n03929660 +n02102973 +n03903868 +n01742172 +n01770081 +n03109150 +n04273569 +n02123045 +n07590611 +n13037406 +n02102177 +n03000247 +n02410509 +n02088632 +n07768694 +n06785654 +n03393912 +n03496892 +n04275548 +n03854065 +n04355933 +n01807496 +n07720875 +n04584207 +n03792782 +n03208938 +n02666196 +n04149813 +n02107683 +n04049303 +n04118538 +n04418357 +n02877765 +n01883070 +n02509815 +n10565667 +n02497673 +n02115913 +n03837869 +n02190166 +n04592741 +n04285008 +n04606251 +n03075370 +n04125021 +n03796401 +n02091134 +n03792972 +n01824575 +n02086079 +n01855032 +n07742313 +n03393912 +n03958227 +n02137549 +n02113978 +n02356798 +n02808440 +n02105412 +n01797886 +n04204347 +n03837869 +n02111277 +n02777292 +n02129604 +n07930864 +n02489166 +n03459775 +n01644900 +n04149813 +n03854065 +n03125729 +n04141076 +n04505470 +n02089973 +n02172182 +n04266014 +n04606251 +n07768694 +n09472597 +n02134418 +n03623198 +n02793495 +n01484850 +n02276258 +n02095889 +n03733281 +n03535780 +n03983396 +n02640242 +n01818515 +n02051845 +n03544143 +n02092002 +n02906734 +n01518878 +n03769881 +n02087046 +n03891332 +n04392985 +n03485794 +n03445777 +n02115913 +n02321529 +n03633091 +n01984695 +n04590129 +n02268443 +n02676566 +n02134084 +n03658185 +n02091134 +n03733805 +n02488702 +n02869837 +n02640242 +n03160309 +n02443484 +n02441942 +n01775062 +n02825657 +n12144580 +n04591713 +n02783161 +n01882714 +n02815834 +n02814860 +n02102177 +n02988304 +n03376595 +n02165105 +n04081281 +n03495258 +n09193705 +n04493381 +n02815834 +n11939491 +n02883205 +n03063689 +n02095570 +n04033901 +n03937543 +n02107908 +n07742313 +n02114712 +n02971356 +n02906734 +n02814860 +n01692333 +n02808440 +n03706229 +n04335435 +n03791053 +n03742115 +n02099429 +n02877765 +n02321529 +n03814639 +n01592084 +n03272562 +n02786058 +n01667114 +n03947888 +n02100735 +n04409515 +n01601694 +n03777568 +n12620546 +n06794110 +n02483708 +n03666591 +n03759954 +n01871265 +n02790996 +n01955084 +n03868863 +n03026506 +n04070727 +n02233338 +n01983481 +n02640242 +n01819313 +n02794156 +n03017168 +n02486261 +n04118776 +n02769748 +n03250847 +n02113799 +n02105056 +n02108422 +n01806567 +n04229816 +n09256479 +n04141327 +n01692333 +n01644373 +n02493509 +n02892201 +n02346627 +n07747607 +n04120489 +n03032252 +n04081281 +n09468604 +n02108422 +n07753113 +n02441942 +n03775071 +n02319095 +n04579145 +n02097474 +n03697007 +n02769748 +n02129604 +n04141076 +n04476259 +n02442845 +n04442312 +n02012849 +n01806567 +n03337140 +n02097209 +n03207941 +n01632458 +n01818515 +n02233338 +n02088094 +n02727426 +n04239074 +n03095699 +n04606251 +n03902125 +n02099267 +n02086240 +n03337140 +n02085782 +n02412080 +n03637318 +n01734418 +n02113023 +n04251144 +n03764736 +n02114855 +n02799071 +n01675722 +n02843684 +n01756291 +n04417672 +n02835271 +n04141076 +n04389033 +n04482393 +n02087394 +n02115641 +n03017168 +n01753488 +n02514041 +n04509417 +n02089973 +n03075370 +n01644373 +n03791053 +n04265275 +n02111500 +n02097209 +n04458633 +n07802026 +n04141076 +n04597913 +n02281787 +n12057211 +n02277742 +n07716906 +n03920288 +n04326547 +n03127747 +n03404251 +n02108915 +n02127052 +n02391049 +n04229816 +n02837789 +n03314780 +n02089973 +n04296562 +n02791270 +n03000134 +n01644900 +n04209133 +n01669191 +n02107142 +n03908714 +n03045698 +n03485794 +n02108551 +n02807133 +n02892767 +n04525305 +n02493509 +n10148035 +n03201208 +n03690938 +n04505470 +n02206856 +n02098105 +n03478589 +n02123597 +n02783161 +n01667114 +n02106550 +n03733805 +n03424325 +n01882714 +n01855672 +n01855672 +n01983481 +n01695060 +n01847000 +n02799071 +n04428191 +n03223299 +n13052670 +n02101556 +n04265275 +n03016953 +n01775062 +n04033901 +n01753488 +n03146219 +n04235860 +n03759954 +n03788195 +n07749582 +n01829413 +n02093256 +n02231487 +n04536866 +n03146219 +n04004767 +n02493793 +n04371774 +n02395406 +n02114712 +n02747177 +n01560419 +n03814906 +n04141327 +n01833805 +n03825788 +n02128925 +n02120079 +n03658185 +n03935335 +n03530642 +n01968897 +n02114548 +n03873416 +n01985128 +n01514859 +n02669723 +n04311174 +n03141823 +n01872401 +n03920288 +n02927161 +n02397096 +n04357314 +n03535780 +n03127925 +n01807496 +n02895154 +n02794156 +n03666591 +n04004767 +n04039381 +n04179913 +n01828970 +n02128385 +n02095570 +n04592741 +n02793495 +n02096177 +n01631663 +n02111500 +n12057211 +n04356056 +n02894605 +n02226429 +n04482393 +n01950731 +n03452741 +n01632777 +n03197337 +n04505470 +n04599235 +n01484850 +n04501370 +n02095570 +n02276258 +n02410509 +n04037443 +n02276258 +n04418357 +n02892767 +n02099267 +n03791053 +n04599235 +n03642806 +n03530642 +n07718472 +n07693725 +n11939491 +n02793495 +n02988304 +n02096051 +n01514668 +n01616318 +n04243546 +n02808440 +n04270147 +n02106030 +n04344873 +n07930864 +n03444034 +n07860988 +n02119022 +n02108000 +n04562935 +n02105162 +n02492035 +n02823750 +n03481172 +n02108000 +n04310018 +n02107142 +n02226429 +n02074367 +n03785016 +n04553703 +n03495258 +n07579787 +n07745940 +n02111277 +n04476259 +n03476684 +n04487081 +n02091134 +n07714571 +n02105251 +n04404412 +n04398044 +n01924916 +n02487347 +n12620546 +n03255030 +n04325704 +n02093647 +n02814533 +n03125729 +n03000247 +n02492035 +n01530575 +n02108915 +n02114367 +n01796340 +n13044778 +n04522168 +n02443114 +n04589890 +n04201297 +n03733805 +n02168699 +n01616318 +n03594945 +n04479046 +n02391049 +n02892201 +n04447861 +n02134084 +n02096294 +n01484850 +n03930630 +n02090721 +n04118538 +n02445715 +n06596364 +n03599486 +n04579145 +n09468604 +n01986214 +n01820546 +n02526121 +n02408429 +n03854065 +n01855032 +n03272562 +n09288635 +n02106550 +n02095314 +n01667778 +n02137549 +n02483708 +n02804610 +n04125021 +n03769881 +n02814533 +n07718472 +n04263257 +n03877472 +n02107312 +n03042490 +n01697457 +n09468604 +n03146219 +n02799071 +n03764736 +n02493793 +n03787032 +n02808304 +n03485407 +n01740131 +n04589890 +n01914609 +n02883205 +n04254680 +n03777568 +n02280649 +n02102040 +n02823750 +n04147183 +n02091467 +n04069434 +n01729977 +n01818515 +n04023962 +n03584254 +n02095314 +n03983396 +n03956157 +n02097209 +n02095314 +n02825657 +n02107142 +n02219486 +n03796401 +n01687978 +n03944341 +n02097658 +n07718747 +n04552348 +n04263257 +n03942813 +n02037110 +n03787032 +n03642806 +n01689811 +n02102973 +n02480495 +n07684084 +n02408429 +n04356056 +n02117135 +n07584110 +n04265275 +n02493793 +n01682714 +n01981276 +n04592741 +n03976467 +n02948072 +n04086273 +n04277352 +n13054560 +n02480495 +n01983481 +n02085782 +n03598930 +n03345487 +n02017213 +n03179701 +n01984695 +n04296562 +n04507155 +n04328186 +n01534433 +n02494079 +n03916031 +n04376876 +n02093428 +n01843383 +n01924916 +n03207743 +n07747607 +n03785016 +n03388549 +n02113624 +n03961711 +n02086646 +n02134084 +n04606251 +n04493381 +n02096585 +n02992529 +n03891332 +n01616318 +n01496331 +n01694178 +n01695060 +n04026417 +n01695060 +n02117135 +n03584254 +n04336792 +n01698640 +n02177972 +n04532670 +n02859443 +n02095889 +n01682714 +n11879895 +n02114855 +n02484975 +n02097047 +n04204238 +n04604644 +n01775062 +n03775071 +n01773549 +n03956157 +n03792972 +n04404412 +n09835506 +n07717556 +n02037110 +n02361337 +n02105412 +n04447861 +n02835271 +n03240683 +n07613480 +n02422699 +n02488702 +n01776313 +n04579432 +n04116512 +n03857828 +n02676566 +n03063599 +n02397096 +n02977058 +n02089867 +n04429376 +n03018349 +n13037406 +n03998194 +n01693334 +n01770081 +n03991062 +n03141823 +n03691459 +n04039381 +n02894605 +n02096177 +n02093256 +n02917067 +n03791053 +n03976467 +n02795169 +n02112706 +n01692333 +n02111129 +n03110669 +n03803284 +n01592084 +n02514041 +n02104365 +n02089867 +n07860988 +n02093256 +n02403003 +n04522168 +n02837789 +n01855032 +n02793495 +n02093991 +n02437312 +n02980441 +n04116512 +n02120079 +n04371774 +n02104365 +n04153751 +n02091635 +n01775062 +n04310018 +n03529860 +n02105162 +n02814860 +n02088364 +n02116738 +n03630383 +n02229544 +n04111531 +n01882714 +n01917289 +n03877472 +n02346627 +n03476991 +n02115641 +n03110669 +n02799071 +n03272562 +n01729322 +n03599486 +n03445777 +n04099969 +n02536864 +n03026506 +n03899768 +n04485082 +n01440764 +n04370456 +n04125021 +n07565083 +n02012849 +n02437616 +n02281406 +n03141823 +n01440764 +n04548362 +n03584254 +n04366367 +n04069434 +n02108551 +n07697313 +n02916936 +n03124043 +n01697457 +n02095570 +n03016953 +n02441942 +n02106382 +n01833805 +n03045698 +n04404412 +n03888605 +n04259630 +n03075370 +n03124170 +n03534580 +n04277352 +n03717622 +n02526121 +n01797886 +n04133789 +n02105855 +n03530642 +n02130308 +n01980166 +n04192698 +n04336792 +n07742313 +n01692333 +n02279972 +n04371430 +n01592084 +n09332890 +n04332243 +n04392985 +n07720875 +n03478589 +n03291819 +n04560804 +n02106030 +n04049303 +n02927161 +n07753113 +n04065272 +n02835271 +n03047690 +n03538406 +n01582220 +n02113624 +n03792782 +n04116512 +n02093859 +n03961711 +n02109047 +n07831146 +n02825657 +n13054560 +n02951585 +n02442845 +n02817516 +n03874599 +n02093859 +n01755581 +n02860847 +n02167151 +n01537544 +n02099601 +n02111500 +n03670208 +n03179701 +n02093647 +n03444034 +n03131574 +n02111500 +n04069434 +n01744401 +n03220513 +n03393912 +n02486261 +n03372029 +n01728572 +n02422106 +n01833805 +n03594734 +n13044778 +n02074367 +n02391049 +n07873807 +n09468604 +n02799071 +n03832673 +n02361337 +n02111277 +n04204238 +n02172182 +n04562935 +n02100735 +n02007558 +n03630383 +n01484850 +n02484975 +n02096051 +n02206856 +n03770679 +n04265275 +n09246464 +n09835506 +n07614500 +n09472597 +n03379051 +n03457902 +n01855032 +n04201297 +n02951585 +n13133613 +n03770439 +n02172182 +n03992509 +n03617480 +n02802426 +n02676566 +n01687978 +n07711569 +n03690938 +n02869837 +n03942813 +n04332243 +n01491361 +n12768682 +n01910747 +n04179913 +n03627232 +n13037406 +n07745940 +n04152593 +n01806143 +n07565083 +n03627232 +n12267677 +n03837869 +n02094433 +n04238763 +n03496892 +n04612504 +n02807133 +n02106166 +n02484975 +n03208938 +n04065272 +n02107574 +n07715103 +n04517823 +n10565667 +n02807133 +n03717622 +n04557648 +n04591157 +n02326432 +n06874185 +n04442312 +n03042490 +n03188531 +n04487394 +n02006656 +n01729322 +n03929660 +n03425413 +n03216828 +n02346627 +n02526121 +n02089078 +n01669191 +n10565667 +n04376876 +n04258138 +n02489166 +n02493793 +n03584829 +n03379051 +n02094114 +n01514668 +n03770439 +n02231487 +n01855032 +n03180011 +n04606251 +n03916031 +n01774750 +n02087394 +n03297495 +n01968897 +n02105056 +n01491361 +n02114712 +n02097130 +n02692877 +n04125021 +n03476684 +n03658185 +n02966687 +n02259212 +n03355925 +n13133613 +n03394916 +n02107312 +n02788148 +n02109961 +n01440764 +n03124043 +n06359193 +n04133789 +n02500267 +n04209133 +n03344393 +n03494278 +n02977058 +n03710637 +n01622779 +n09421951 +n02790996 +n02089078 +n02256656 +n01531178 +n04479046 +n04141327 +n03000134 +n02504013 +n03627232 +n02114712 +n03325584 +n03773504 +n04004767 +n04266014 +n02977058 +n02125311 +n02281406 +n03291819 +n01675722 +n02138441 +n03804744 +n03000684 +n02114367 +n03187595 +n01943899 +n02125311 +n02113624 +n02823428 +n02233338 +n03110669 +n02500267 +n03594734 +n03347037 +n01990800 +n02074367 +n02396427 +n03954731 +n02687172 +n02883205 +n03127925 +n02111500 +n07718747 +n02447366 +n04286575 +n02930766 +n01664065 +n04153751 +n01687978 +n02422699 +n02791270 +n02835271 +n02504458 +n01917289 +n04252077 +n04548280 +n03089624 +n07590611 +n07754684 +n01739381 +n04483307 +n01914609 +n02087046 +n03697007 +n04039381 +n01820546 +n04355338 +n02100735 +n03032252 +n02091467 +n01728572 +n02002556 +n03874599 +n02859443 +n04146614 +n03534580 +n04532106 +n01981276 +n03814639 +n01689811 +n06359193 +n01675722 +n03888605 +n07714990 +n04476259 +n02536864 +n02492035 +n04265275 +n02948072 +n03804744 +n04380533 +n01518878 +n04005630 +n07590611 +n04417672 +n03709823 +n02105412 +n02363005 +n01494475 +n03680355 +n02951358 +n04597913 +n03998194 +n01855032 +n02018795 +n03271574 +n02167151 +n02009912 +n03825788 +n04482393 +n01774750 +n02500267 +n01514859 +n03908618 +n03761084 +n03633091 +n02096177 +n03729826 +n07717556 +n03670208 +n01773797 +n04554684 +n01697457 +n03691459 +n02138441 +n03764736 +n02123394 +n04192698 +n04120489 +n07615774 +n03929855 +n02494079 +n01669191 +n01498041 +n03250847 +n03924679 +n02356798 +n02823750 +n03447721 +n02058221 +n07930864 +n01530575 +n04428191 +n04372370 +n03840681 +n02027492 +n01498041 +n07718472 +n03954731 +n04099969 +n03954731 +n01770081 +n03445924 +n03045698 +n03527444 +n02840245 +n04201297 +n01735189 +n01986214 +n02002724 +n02113978 +n02177972 +n03908714 +n03888257 +n02100236 +n02437312 +n02236044 +n07871810 +n03775071 +n03947888 +n03933933 +n02066245 +n02128385 +n01491361 +n02493509 +n07717556 +n02865351 +n03187595 +n02666196 +n01917289 +n01770081 +n02788148 +n03661043 +n02481823 +n02085620 +n02799071 +n03590841 +n01749939 +n01614925 +n02950826 +n02088632 +n01498041 +n02105162 +n01737021 +n02690373 +n03584254 +n02791124 +n02088238 +n04328186 +n01582220 +n02231487 +n03717622 +n01751748 +n03721384 +n02108422 +n01669191 +n02980441 +n04243546 +n03982430 +n02422106 +n03014705 +n04371774 +n04125021 +n02090622 +n01930112 +n04552348 +n03764736 +n01582220 +n02056570 +n02089973 +n09399592 +n03450230 +n03770679 +n03445924 +n02007558 +n02268443 +n02396427 +n01440764 +n03062245 +n02134418 +n03594734 +n02094433 +n04264628 +n02992211 +n02093428 +n02100735 +n04367480 +n03764736 +n03041632 +n01443537 +n03476684 +n09229709 +n04355338 +n02128385 +n04550184 +n01806567 +n02098413 +n04086273 +n02090379 +n03958227 +n02091467 +n02108000 +n03658185 +n02843684 +n01440764 +n02981792 +n07892512 +n03297495 +n03692522 +n03937543 +n03691459 +n03240683 +n02977058 +n07730033 +n04591713 +n11939491 +n03902125 +n02783161 +n04355338 +n02281406 +n03538406 +n01608432 +n03935335 +n01983481 +n02730930 +n01968897 +n03769881 +n04493381 +n02112018 +n02391049 +n04389033 +n03775546 +n02172182 +n09399592 +n02093991 +n01806143 +n02226429 +n01669191 +n04125021 +n02113712 +n02860847 +n02074367 +n02447366 +n02783161 +n02454379 +n01984695 +n03721384 +n03633091 +n03376595 +n02120505 +n02105505 +n04517823 +n03372029 +n03527444 +n03786901 +n03478589 +n02066245 +n07892512 +n01491361 +n02108089 +n03325584 +n03717622 +n03773504 +n01582220 +n03676483 +n04540053 +n07248320 +n04118538 +n02095314 +n12267677 +n03602883 +n02815834 +n03379051 +n02172182 +n02107142 +n06874185 +n01776313 +n07714571 +n01775062 +n03452741 +n03916031 +n04118538 +n01580077 +n02497673 +n01518878 +n03673027 +n02101388 +n03187595 +n04350905 +n02408429 +n03417042 +n02514041 +n02116738 +n03476684 +n02497673 +n04285008 +n03126707 +n03544143 +n04147183 +n03481172 +n04041544 +n02268443 +n09472597 +n02085782 +n03400231 +n03954731 +n04074963 +n03782006 +n02281787 +n04023962 +n04008634 +n07875152 +n07716906 +n02109525 +n03995372 +n02096177 +n01981276 +n03884397 +n02509815 +n03529860 +n03584829 +n02268853 +n04141975 +n04599235 +n03759954 +n02894605 +n02454379 +n03014705 +n02786058 +n04505470 +n02172182 +n02979186 +n02091635 +n02007558 +n02797295 +n02817516 +n02233338 +n04099969 +n03250847 +n02950826 +n02124075 +n01484850 +n02096294 +n02965783 +n01943899 +n02028035 +n04486054 +n02417914 +n03445777 +n04009552 +n02125311 +n03770439 +n02018207 +n02219486 +n04111531 +n09288635 +n03825788 +n03223299 +n04606251 +n02396427 +n07717410 +n02111277 +n04515003 +n02643566 +n03733131 +n02093428 +n01807496 +n02480855 +n03527444 +n02099849 +n04482393 +n02361337 +n02107574 +n04201297 +n03633091 +n04033995 +n02641379 +n02790996 +n02190166 +n03127747 +n02483362 +n03126707 +n03590841 +n07717410 +n04033901 +n02676566 +n07875152 +n02100236 +n04584207 +n01737021 +n02493509 +n02105251 +n03930630 +n03873416 +n02396427 +n02493793 +n03250847 +n02088466 +n02814533 +n02108000 +n01443537 +n02988304 +n01944390 +n04285008 +n04356056 +n01930112 +n03630383 +n02281406 +n02346627 +n04493381 +n03709823 +n01755581 +n02018795 +n07802026 +n11939491 +n07836838 +n04429376 +n03967562 +n02113023 +n03724870 +n03792972 +n01753488 +n07875152 +n07753592 +n04357314 +n03642806 +n04131690 +n04258138 +n01667114 +n02782093 +n02493509 +n04465501 +n07583066 +n02256656 +n01532829 +n01872401 +n07684084 +n03763968 +n04579145 +n03492542 +n04417672 +n04350905 +n04069434 +n03866082 +n04311174 +n01756291 +n02797295 +n03642806 +n03676483 +n03697007 +n02087046 +n03207941 +n04201297 +n02074367 +n01608432 +n02111500 +n03633091 +n02804610 +n04562935 +n02093859 +n03935335 +n02051845 +n01990800 +n02799071 +n04228054 +n02100877 +n01755581 +n02129604 +n02727426 +n01860187 +n04326547 +n03776460 +n02206856 +n02093256 +n01968897 +n02326432 +n03770679 +n02509815 +n02978881 +n03018349 +n03394916 +n02977058 +n03891332 +n01665541 +n04141327 +n02233338 +n02092339 +n03388549 +n04548362 +n04296562 +n04067472 +n03014705 +n02747177 +n02441942 +n04081281 +n03290653 +n02066245 +n01983481 +n02085936 +n01518878 +n02085620 +n04346328 +n01601694 +n01532829 +n03992509 +n01694178 +n02437616 +n04612504 +n02666196 +n03950228 +n02093754 +n02123597 +n01817953 +n02190166 +n04067472 +n03933933 +n02398521 +n02097130 +n03444034 +n03792972 +n04418357 +n01871265 +n03208938 +n01768244 +n02174001 +n02219486 +n01774384 +n07742313 +n04355933 +n02129165 +n07742313 +n01697457 +n04310018 +n02669723 +n04367480 +n01592084 +n02105251 +n02113799 +n07565083 +n02091032 +n02011460 +n03773504 +n02445715 +n04275548 +n02112018 +n01632458 +n02486261 +n07714990 +n02106550 +n03478589 +n02963159 +n03743016 +n04146614 +n03970156 +n03874293 +n07749582 +n06874185 +n01950731 +n01498041 +n04090263 +n02077923 +n02106662 +n02786058 +n04591157 +n03481172 +n03924679 +n02500267 +n04258138 +n04540053 +n03160309 +n02087394 +n03494278 +n04325704 +n01669191 +n02108551 +n01980166 +n03314780 +n02808440 +n04447861 +n02281787 +n02095889 +n02489166 +n02114367 +n04344873 +n02058221 +n02444819 +n02988304 +n03495258 +n02002556 +n03874293 +n02085782 +n01695060 +n02870880 +n01608432 +n02948072 +n04067472 +n02098286 +n02093428 +n04009552 +n12267677 +n02085782 +n03376595 +n04335435 +n03891332 +n03733281 +n02264363 +n02132136 +n04263257 +n01698640 +n01753488 +n07714990 +n03417042 +n03259280 +n01737021 +n04118538 +n01773797 +n03124170 +n03874293 +n09421951 +n02747177 +n09288635 +n04136333 +n03956157 +n02093256 +n03729826 +n03538406 +n01774384 +n04355338 +n02105251 +n02403003 +n01697457 +n01828970 +n02892767 +n02018207 +n02134084 +n03733805 +n07930864 +n02097474 +n04507155 +n04344873 +n02950826 +n03721384 +n01943899 +n07920052 +n02319095 +n04149813 +n02364673 +n01742172 +n04428191 +n03450230 +n09399592 +n01689811 +n01978287 +n07716358 +n02074367 +n04557648 +n03062245 +n02105251 +n07716906 +n03623198 +n03125729 +n03876231 +n04509417 +n03041632 +n04347754 +n06359193 +n04118538 +n01806143 +n07749582 +n02105855 +n13052670 +n02094114 +n03775071 +n01873310 +n03788195 +n04311004 +n03018349 +n03089624 +n02087046 +n03379051 +n04493381 +n07714990 +n03895866 +n15075141 +n07684084 +n01755581 +n07715103 +n04285008 +n03476991 +n04049303 +n03496892 +n03041632 +n02403003 +n03832673 +n04131690 +n04479046 +n04479046 +n02259212 +n01734418 +n02002556 +n03179701 +n03992509 +n07932039 +n04467665 +n02099712 +n04456115 +n03690938 +n04367480 +n01729322 +n03961711 +n03841143 +n02963159 +n03476991 +n04074963 +n02077923 +n01532829 +n02865351 +n02966687 +n01694178 +n03017168 +n04429376 +n03935335 +n09246464 +n04004767 +n03208938 +n04111531 +n04389033 +n07760859 +n04326547 +n04209239 +n07697537 +n03785016 +n04367480 +n04037443 +n04311174 +n02814533 +n02113799 +n02825657 +n02672831 +n02114855 +n02090622 +n09399592 +n04482393 +n01910747 +n04417672 +n04162706 +n02098413 +n07717556 +n01580077 +n02092002 +n03014705 +n04370456 +n02835271 +n03047690 +n03944341 +n07613480 +n02361337 +n02356798 +n02835271 +n02011460 +n02096051 +n01843065 +n03498962 +n07583066 +n07734744 +n04277352 +n02088632 +n09835506 +n04141327 +n01820546 +n03218198 +n03825788 +n04310018 +n02099849 +n02025239 +n07753275 +n03876231 +n02099267 +n03794056 +n07590611 +n01740131 +n02091032 +n04200800 +n01770081 +n02869837 +n03379051 +n01833805 +n03929855 +n02749479 +n01644900 +n03445777 +n02110627 +n01630670 +n04273569 +n04483307 +n02138441 +n07892512 +n01983481 +n02108422 +n02948072 +n02094258 +n03141823 +n01632458 +n04517823 +n04380533 +n09472597 +n02165456 +n01930112 +n03018349 +n02268853 +n01770081 +n04141975 +n03998194 +n03384352 +n04147183 +n03045698 +n03791053 +n03944341 +n02536864 +n01829413 +n02088466 +n01694178 +n02106382 +n01748264 +n03759954 +n12985857 +n04254680 +n04465501 +n02795169 +n02096177 +n02444819 +n01558993 +n02115641 +n03445924 +n02701002 +n06359193 +n01773549 +n03637318 +n02437312 +n04332243 +n02865351 +n02088632 +n04067472 +n02092002 +n03956157 +n04326547 +n02786058 +n01784675 +n01847000 +n04146614 +n03666591 +n04310018 +n01914609 +n07695742 +n03404251 +n03891251 +n06874185 +n03062245 +n03355925 +n12267677 +n04254120 +n07714990 +n02233338 +n02804414 +n03062245 +n02018795 +n07720875 +n03075370 +n03530642 +n01980166 +n01667114 +n04553703 +n09468604 +n06794110 +n04367480 +n02963159 +n03710193 +n01980166 +n03000134 +n03938244 +n02231487 +n02493509 +n03447721 +n07583066 +n09472597 +n03877845 +n04147183 +n04229816 +n12998815 +n03877472 +n07718472 +n03063599 +n01665541 +n02111889 +n06596364 +n02094433 +n01817953 +n02091635 +n01755581 +n01740131 +n01592084 +n03673027 +n03467068 +n03924679 +n04467665 +n03733805 +n01833805 +n03089624 +n02091635 +n02489166 +n02112350 +n04192698 +n02102040 +n02823428 +n04074963 +n01872401 +n04579145 +n03788365 +n04086273 +n02009229 +n07753113 +n02504458 +n02002724 +n02097474 +n07754684 +n03134739 +n02113978 +n02403003 +n03998194 +n01688243 +n03891332 +n04133789 +n02111500 +n02916936 +n07248320 +n04404412 +n04209239 +n07590611 +n03673027 +n04008634 +n03272010 +n13040303 +n09399592 +n02007558 +n02488291 +n07716906 +n04009552 +n02111889 +n03658185 +n01980166 +n04367480 +n02892201 +n04423845 +n03131574 +n04041544 +n04266014 +n03825788 +n02033041 +n02002724 +n01871265 +n04099969 +n02321529 +n02666196 +n01698640 +n03709823 +n02356798 +n03089624 +n03873416 +n02097130 +n02108089 +n04258138 +n01667778 +n04456115 +n03492542 +n02363005 +n01871265 +n01950731 +n04153751 +n01984695 +n01614925 +n02110958 +n01824575 +n01981276 +n15075141 +n03814906 +n03874599 +n04118776 +n01675722 +n02939185 +n03742115 +n01697457 +n02326432 +n02090622 +n04532106 +n03983396 +n02415577 +n02412080 +n02102480 +n03459775 +n04380533 +n04254777 +n01631663 +n03404251 +n07871810 +n02123045 +n02226429 +n01871265 +n01820546 +n01688243 +n02825657 +n01689811 +n02095570 +n04019541 +n03777754 +n01748264 +n02123045 +n02129604 +n02105056 +n02125311 +n02089973 +n03649909 +n04540053 +n03670208 +n02097209 +n01819313 +n03110669 +n02124075 +n02437616 +n01843383 +n03935335 +n02782093 +n07753113 +n03791053 +n02111129 +n07614500 +n03761084 +n03676483 +n01978455 +n03857828 +n02488702 +n02165456 +n07734744 +n03991062 +n02860847 +n03954731 +n03045698 +n03944341 +n02111129 +n02092002 +n03891251 +n02130308 +n01945685 +n03188531 +n02457408 +n03085013 +n03796401 +n13052670 +n02398521 +n03743016 +n02229544 +n03160309 +n02276258 +n02276258 +n02504013 +n02281406 +n02877765 +n03649909 +n07697313 +n02058221 +n02077923 +n03394916 +n02256656 +n04328186 +n02009229 +n03476684 +n03388549 +n07714571 +n09193705 +n02396427 +n01806567 +n02090379 +n02100583 +n04483307 +n02120079 +n01914609 +n01630670 +n04259630 +n07695742 +n02106030 +n02883205 +n02398521 +n03995372 +n07590611 +n04099969 +n02110063 +n03785016 +n02669723 +n03125729 +n04442312 +n07920052 +n02497673 +n02454379 +n02091831 +n02454379 +n02088632 +n02115641 +n03761084 +n02606052 +n02264363 +n01843065 +n03623198 +n03445777 +n02481823 +n01773157 +n03109150 +n04458633 +n02165456 +n02190166 +n04111531 +n03197337 +n04542943 +n04507155 +n02089867 +n02342885 +n02099601 +n03787032 +n03483316 +n02454379 +n04041544 +n02086079 +n04485082 +n07831146 +n02106030 +n03445777 +n02398521 +n02666196 +n02009912 +n01534433 +n03126707 +n12057211 +n04355933 +n02025239 +n04336792 +n02906734 +n02002556 +n04487394 +n03291819 +n01614925 +n04235860 +n04270147 +n03291819 +n03837869 +n04192698 +n04120489 +n02930766 +n02128385 +n02837789 +n02105505 +n01704323 +n02481823 +n03384352 +n02167151 +n07753592 +n07614500 +n02134084 +n04515003 +n01729322 +n04033901 +n02134418 +n01514668 +n03942813 +n02101556 +n03642806 +n03733131 +n03290653 +n02174001 +n01784675 +n03777754 +n03942813 +n02802426 +n04049303 +n03535780 +n02492035 +n04070727 +n03075370 +n04372370 +n07860988 +n04367480 +n03786901 +n04562935 +n07590611 +n02102973 +n07248320 +n03095699 +n04009552 +n07614500 +n09288635 +n03724870 +n04258138 +n01698640 +n07753113 +n04263257 +n01755581 +n04447861 +n02666196 +n03733281 +n02051845 +n02058221 +n03958227 +n02403003 +n02097474 +n02099429 +n02484975 +n07836838 +n10565667 +n07720875 +n02486261 +n02321529 +n01755581 +n03100240 +n03063599 +n01664065 +n02783161 +n03803284 +n03110669 +n02086240 +n02487347 +n02097209 +n04310018 +n02012849 +n04120489 +n03482405 +n02447366 +n01749939 +n03478589 +n02963159 +n04428191 +n04285008 +n01530575 +n02111129 +n03109150 +n07697313 +n02802426 +n03690938 +n01914609 +n02481823 +n02259212 +n03538406 +n15075141 +n03649909 +n04483307 +n04613696 +n10565667 +n02488702 +n02094258 +n02096585 +n02127052 +n02391049 +n01734418 +n09332890 +n03379051 +n02133161 +n12144580 +n02099429 +n04447861 +n04120489 +n07860988 +n02129604 +n03065424 +n02095314 +n04154565 +n02655020 +n02165105 +n04275548 +n02415577 +n02786058 +n02091467 +n03444034 +n01498041 +n07590611 +n04554684 +n02109047 +n04552348 +n03814639 +n03125729 +n03888257 +n03950228 +n02089973 +n03967562 +n02749479 +n03729826 +n02018207 +n04487081 +n03017168 +n03976657 +n03938244 +n02769748 +n07836838 +n02002724 +n03100240 +n03598930 +n04479046 +n01644373 +n02708093 +n02134418 +n13054560 +n09332890 +n03133878 +n04554684 +n03041632 +n02869837 +n03014705 +n02510455 +n03954731 +n02788148 +n02859443 +n02640242 +n02087046 +n03891332 +n02124075 +n03476684 +n04270147 +n04542943 +n03916031 +n02051845 +n02104029 +n04270147 +n02422106 +n03692522 +n02115641 +n02447366 +n03710721 +n02112018 +n03000134 +n02105162 +n02097047 +n02356798 +n04037443 +n02071294 +n07892512 +n03924679 +n01687978 +n02098286 +n03345487 +n04254777 +n03680355 +n02963159 +n01582220 +n04090263 +n03761084 +n04604644 +n02097209 +n03109150 +n02088632 +n03937543 +n01943899 +n02093647 +n02093428 +n03461385 +n04270147 +n04389033 +n03534580 +n09468604 +n02107312 +n01797886 +n02090379 +n02871525 +n01667778 +n01773549 +n01755581 +n02093991 +n04350905 +n03995372 +n02280649 +n03933933 +n02226429 +n03207941 +n09399592 +n02106030 +n03590841 +n02966193 +n03787032 +n02115913 +n04099969 +n04273569 +n02037110 +n01917289 +n04254777 +n03888257 +n02807133 +n04589890 +n02091032 +n01685808 +n07714571 +n03777568 +n03379051 +n03028079 +n04275548 +n02395406 +n04040759 +n02109961 +n01872401 +n03825788 +n02112706 +n03692522 +n02086910 +n02321529 +n03131574 +n04311004 +n03929855 +n01514859 +n03804744 +n03417042 +n02794156 +n07730033 +n04120489 +n02342885 +n04041544 +n04366367 +n02116738 +n02992211 +n02276258 +n02895154 +n01984695 +n03661043 +n03207941 +n02025239 +n02123045 +n02117135 +n02107908 +n02815834 +n04355933 +n03598930 +n07742313 +n03876231 +n02259212 +n01775062 +n03617480 +n03840681 +n03902125 +n02930766 +n03633091 +n04404412 +n03825788 +n03337140 +n02018795 +n02447366 +n07613480 +n02493793 +n01694178 +n12620546 +n06874185 +n02443484 +n04209133 +n04515003 +n04540053 +n01796340 +n03623198 +n02108551 +n03763968 +n02410509 +n11879895 +n03832673 +n03930630 +n02490219 +n03937543 +n02111889 +n02096437 +n04154565 +n02971356 +n02865351 +n03776460 +n02777292 +n02190166 +n04612504 +n04081281 +n02747177 +n03777754 +n02445715 +n03857828 +n11939491 +n01981276 +n04041544 +n04458633 +n03447721 +n02106030 +n02834397 +n02097474 +n01877812 +n02085936 +n02096051 +n03272562 +n03793489 +n02099849 +n03649909 +n01882714 +n02860847 +n04039381 +n04264628 +n02484975 +n02167151 +n02074367 +n01773549 +n04367480 +n07718747 +n02841315 +n02910353 +n02106550 +n03602883 +n04153751 +n03992509 +n09468604 +n02129604 +n09229709 +n02056570 +n03594734 +n02111277 +n07590611 +n02704792 +n03868863 +n02115641 +n02444819 +n02808304 +n04355338 +n02281787 +n02138441 +n03814906 +n04409515 +n01739381 +n03495258 +n03627232 +n02085620 +n02190166 +n03355925 +n03188531 +n02100735 +n03961711 +n02823428 +n07860988 +n01740131 +n09229709 +n03777568 +n03908618 +n02108551 +n02177972 +n09288635 +n01693334 +n02106382 +n04026417 +n03388183 +n02002724 +n03208938 +n04517823 +n04336792 +n03658185 +n02097474 +n02690373 +n13044778 +n02281787 +n02641379 +n02130308 +n02704792 +n01582220 +n02027492 +n04525305 +n02119789 +n13054560 +n03724870 +n02488291 +n07697313 +n02132136 +n04336792 +n03983396 +n03944341 +n01774384 +n02027492 +n02091134 +n07860988 +n02106550 +n04357314 +n03662601 +n03868242 +n03804744 +n02112350 +n01774750 +n02088238 +n07718472 +n01742172 +n02992529 +n04404412 +n02089867 +n03345487 +n02437312 +n02930766 +n13133613 +n02206856 +n02486410 +n03843555 +n04476259 +n02094433 +n01843065 +n07714571 +n02389026 +n04099969 +n01843065 +n03180011 +n09472597 +n03670208 +n01751748 +n01807496 +n02229544 +n02101006 +n03188531 +n03290653 +n02403003 +n02699494 +n04266014 +n02708093 +n04399382 +n02804414 +n07747607 +n02749479 +n03424325 +n04522168 +n01843065 +n01682714 +n02138441 +n11879895 +n04355338 +n03662601 +n03658185 +n03483316 +n07718747 +n03476684 +n02110958 +n04040759 +n03814906 +n04461696 +n02492660 +n04044716 +n04596742 +n01770081 +n01806143 +n04589890 +n03016953 +n02493793 +n01983481 +n01484850 +n02981792 +n03710637 +n02104029 +n01498041 +n03976657 +n04009552 +n02790996 +n04235860 +n04447861 +n01910747 +n03481172 +n04090263 +n03929660 +n07248320 +n03271574 +n03661043 +n03954731 +n03016953 +n07614500 +n03920288 +n02091244 +n02676566 +n13044778 +n03843555 +n07871810 +n03832673 +n04252225 +n02174001 +n03832673 +n10148035 +n02280649 +n09229709 +n06874185 +n02823428 +n02692877 +n02823428 +n07753592 +n02782093 +n03459775 +n09288635 +n04204347 +n02483708 +n04461696 +n02791124 +n03710193 +n12768682 +n04435653 +n04204347 +n02669723 +n03657121 +n01518878 +n04026417 +n02319095 +n03791053 +n02110063 +n02281787 +n03197337 +n04152593 +n02025239 +n03633091 +n02259212 +n02423022 +n03891332 +n03874293 +n02071294 +n01773797 +n07711569 +n02007558 +n13133613 +n02017213 +n04270147 +n02113624 +n02916936 +n01675722 +n07614500 +n03673027 +n02109961 +n02950826 +n02966193 +n01685808 +n02804610 +n02095314 +n03929855 +n10565667 +n02013706 +n02123394 +n03590841 +n07711569 +n02113799 +n07860988 +n04367480 +n07873807 +n02096585 +n02002724 +n02134418 +n02398521 +n04033901 +n02110063 +n09468604 +n01990800 +n04423845 +n02177972 +n04447861 +n02096585 +n02442845 +n04265275 +n04317175 +n01807496 +n04366367 +n03814906 +n12998815 +n03482405 +n03884397 +n03673027 +n03673027 +n03793489 +n02443114 +n02988304 +n02422106 +n04326547 +n02992529 +n01860187 +n03895866 +n03180011 +n04118776 +n03461385 +n04275548 +n15075141 +n03761084 +n01944390 +n04317175 +n04152593 +n02927161 +n03956157 +n02085620 +n02727426 +n01667114 +n04493381 +n01729322 +n04081281 +n01484850 +n03124043 +n02841315 +n02108089 +n03345487 +n02892201 +n07875152 +n02093991 +n03697007 +n02119789 +n01739381 +n02319095 +n02361337 +n01883070 +n02492035 +n02107312 +n07715103 +n04264628 +n01843065 +n07860988 +n01795545 +n01592084 +n03676483 +n04254120 +n03223299 +n03220513 +n02108915 +n03873416 +n02128925 +n02389026 +n01698640 +n15075141 +n03028079 +n01644900 +n01694178 +n03761084 +n03873416 +n03710637 +n03924679 +n03627232 +n04542943 +n03095699 +n02100236 +n01784675 +n01744401 +n04153751 +n03770439 +n02107142 +n03297495 +n07753275 +n04008634 +n07615774 +n04550184 +n02110806 +n04404412 +n03976467 +n07715103 +n04525038 +n02776631 +n02099267 +n02095314 +n03028079 +n02100236 +n03930630 +n03188531 +n02094258 +n04554684 +n03887697 +n02116738 +n02007558 +n02102973 +n02130308 +n04328186 +n04141076 +n03220513 +n02444819 +n04458633 +n01735189 +n02701002 +n02071294 +n01498041 +n04070727 +n04423845 +n02089973 +n04141975 +n01729322 +n01824575 +n04251144 +n01692333 +n01484850 +n04208210 +n01667114 +n04458633 +n04141076 +n02058221 +n02088466 +n07760859 +n04560804 +n02099267 +n03000134 +n02481823 +n02788148 +n02097047 +n04487081 +n04286575 +n02233338 +n04344873 +n02490219 +n02123159 +n02120079 +n02114855 +n02088238 +n01775062 +n04136333 +n03344393 +n03535780 +n02074367 +n03782006 +n02487347 +n02134418 +n02500267 +n03208938 +n04162706 +n02410509 +n02091635 +n04417672 +n01537544 +n02951358 +n02116738 +n03594734 +n03775071 +n03594945 +n04532670 +n01695060 +n02277742 +n02123597 +n02883205 +n07932039 +n02497673 +n07754684 +n02112018 +n03538406 +n03895866 +n01494475 +n02177972 +n03197337 +n02105641 +n02992529 +n04070727 +n02109525 +n02125311 +n04456115 +n02980441 +n03841143 +n03938244 +n03661043 +n01756291 +n03794056 +n02018207 +n03126707 +n01614925 +n03992509 +n03127925 +n02115913 +n03773504 +n02776631 +n09472597 +n02177972 +n03532672 +n04476259 +n04517823 +n13052670 +n07753275 +n01685808 +n04120489 +n02120079 +n02123159 +n02087046 +n03598930 +n02487347 +n03065424 +n04517823 +n02797295 +n02804414 +n02843684 +n02018795 +n03976657 +n04005630 +n02699494 +n03814906 +n09332890 +n02493793 +n04442312 +n02100877 +n04532670 +n03047690 +n02077923 +n03733281 +n04266014 +n09835506 +n02492660 +n04330267 +n07716358 +n01601694 +n04579432 +n04380533 +n01749939 +n03444034 +n03400231 +n03584254 +n03710721 +n03895866 +n04591713 +n03903868 +n02088364 +n04141975 +n01774384 +n02112018 +n04485082 +n04259630 +n03041632 +n02097130 +n03775546 +n02093991 +n01742172 +n09193705 +n01984695 +n01924916 +n02190166 +n03706229 +n13037406 +n04604644 +n03602883 +n02504458 +n03467068 +n04536866 +n04398044 +n01986214 +n03777754 +n02066245 +n02346627 +n04370456 +n02108551 +n04204238 +n04371430 +n03792972 +n02441942 +n02096294 +n02699494 +n04589890 +n02085936 +n02105056 +n02415577 +n07734744 +n02098286 +n02113186 +n02096294 +n02871525 +n03873416 +n01784675 +n02788148 +n02051845 +n07930864 +n01692333 +n02111889 +n03662601 +n02097474 +n02165456 +n03595614 +n03452741 +n04606251 +n03796401 +n03452741 +n07693725 +n02112018 +n03388549 +n04562935 +n13133613 +n04461696 +n01796340 +n04270147 +n03187595 +n03666591 +n04120489 +n04522168 +n02111500 +n03976467 +n01729322 +n02364673 +n04356056 +n02797295 +n02114855 +n02749479 +n04357314 +n07565083 +n02676566 +n02088466 +n02823750 +n02093256 +n02256656 +n02119022 +n02883205 +n03584254 +n03775071 +n01682714 +n03124170 +n04201297 +n04044716 +n01629819 +n12998815 +n07584110 +n04532106 +n03825788 +n04501370 +n01560419 +n03065424 +n02106030 +n04229816 +n03623198 +n02280649 +n06785654 +n02342885 +n02488291 +n02606052 +n03271574 +n04070727 +n03717622 +n02447366 +n03065424 +n03527444 +n01943899 +n02095889 +n02132136 +n04204347 +n03026506 +n01749939 +n03742115 +n02105162 +n03733281 +n02006656 +n04552348 +n02493793 +n02992211 +n02089867 +n04111531 +n04590129 +n03982430 +n03495258 +n02640242 +n02099429 +n02132136 +n02444819 +n02056570 +n03494278 +n01773157 +n02137549 +n01534433 +n02018795 +n03630383 +n02281787 +n04120489 +n02104029 +n02098413 +n02488702 +n03379051 +n02807133 +n04591713 +n02110185 +n04209239 +n01558993 +n04325704 +n04264628 +n03291819 +n02793495 +n02133161 +n03908714 +n03584254 +n02091831 +n02099429 +n09835506 +n01798484 +n03041632 +n02808304 +n04136333 +n09428293 +n04465501 +n01688243 +n02093428 +n02129165 +n07749582 +n03197337 +n04392985 +n04367480 +n02484975 +n02607072 +n03089624 +n04116512 +n04286575 +n02233338 +n04118538 +n04254777 +n02410509 +n02091244 +n03016953 +n03026506 +n02113978 +n02091032 +n02096585 +n04179913 +n01775062 +n03903868 +n04277352 +n02841315 +n04597913 +n01614925 +n04067472 +n03876231 +n02095889 +n02100877 +n03444034 +n01484850 +n02490219 +n03272010 +n12057211 +n03980874 +n02097474 +n04270147 +n04429376 +n04111531 +n09399592 +n04005630 +n03595614 +n02123045 +n03657121 +n07892512 +n03840681 +n04296562 +n02807133 +n01806567 +n04258138 +n02114367 +n01675722 +n02794156 +n01698640 +n04296562 +n07717556 +n03476991 +n04005630 +n02099712 +n02099429 +n03721384 +n04277352 +n03127925 +n02256656 +n03201208 +n02088466 +n02086079 +n01632458 +n04376876 +n03998194 +n01440764 +n02704792 +n01855032 +n03095699 +n04355933 +n04465501 +n03841143 +n04501370 +n01558993 +n03042490 +n01950731 +n03935335 +n04584207 +n01984695 +n02747177 +n03775546 +n04525038 +n01632777 +n04485082 +n04116512 +n02486410 +n02096585 +n02096051 +n02110627 +n03272010 +n03775546 +n02123597 +n02992529 +n01632458 +n02089078 +n03954731 +n02437616 +n02120505 +n04507155 +n02114712 +n03532672 +n03983396 +n02108000 +n01514859 +n07802026 +n02951358 +n01882714 +n04505470 +n02231487 +n03388043 +n04482393 +n02112018 +n04008634 +n02606052 +n04273569 +n03594734 +n04532670 +n01855032 +n02342885 +n03950228 +n02093859 +n02841315 +n02025239 +n03930630 +n01797886 +n03240683 +n01775062 +n02321529 +n02342885 +n02108551 +n03216828 +n02281406 +n03710721 +n04201297 +n01950731 +n03216828 +n07880968 +n04208210 +n02514041 +n02123597 +n04517823 +n04553703 +n03482405 +n07697313 +n03690938 +n02444819 +n04049303 +n03085013 +n01843065 +n03709823 +n02117135 +n02787622 +n07579787 +n02099601 +n04229816 +n03776460 +n01644900 +n07579787 +n03733281 +n09472597 +n01797886 +n07802026 +n01806567 +n02108551 +n02093754 +n02132136 +n04254120 +n03877472 +n02480855 +n04285008 +n15075141 +n04325704 +n09332890 +n03947888 +n01828970 +n02106030 +n04501370 +n07730033 +n02113186 +n03026506 +n04266014 +n11939491 +n04270147 +n03777754 +n04522168 +n01860187 +n02443484 +n02835271 +n04125021 +n02794156 +n06596364 +n04265275 +n04136333 +n10565667 +n04483307 +n02277742 +n02094433 +n07716906 +n01514859 +n02397096 +n02102318 +n04442312 +n03680355 +n02086240 +n02174001 +n02277742 +n03832673 +n01768244 +n01739381 +n02361337 +n02607072 +n01843383 +n02091467 +n02090721 +n01756291 +n02099429 +n01806567 +n02966687 +n02094258 +n01986214 +n07697537 +n02909870 +n03967562 +n04296562 +n03388043 +n04482393 +n09421951 +n07614500 +n02865351 +n02089973 +n04557648 +n01537544 +n01819313 +n03929855 +n04136333 +n03977966 +n04099969 +n01675722 +n03832673 +n02643566 +n07749582 +n04275548 +n04005630 +n02074367 +n03623198 +n03495258 +n04296562 +n02437312 +n02113799 +n03874599 +n02454379 +n02877765 +n02109525 +n04270147 +n01729977 +n02950826 +n02110063 +n03216828 +n01484850 +n03062245 +n02128385 +n04228054 +n03179701 +n01796340 +n01694178 +n02088094 +n03942813 +n02869837 +n03770439 +n02097658 +n03047690 +n03742115 +n03724870 +n02966687 +n02098286 +n01687978 +n02100236 +n01616318 +n04442312 +n02396427 +n03998194 +n01773549 +n07747607 +n01944390 +n03891332 +n03045698 +n03877472 +n03207941 +n02494079 +n01819313 +n02093754 +n02088238 +n02168699 +n04515003 +n01675722 +n02018207 +n02690373 +n03777568 +n03026506 +n02342885 +n02102040 +n07583066 +n03961711 +n02916936 +n03958227 +n01698640 +n07714990 +n02483708 +n03680355 +n04141975 +n02085936 +n07930864 +n03691459 +n02892767 +n03770679 +n03450230 +n02165456 +n04560804 +n01614925 +n04458633 +n02500267 +n02190166 +n04380533 +n02950826 +n07860988 +n02346627 +n03814906 +n02494079 +n01817953 +n09421951 +n03041632 +n04371430 +n04371430 +n03743016 +n01630670 +n04074963 +n04326547 +n02894605 +n02086910 +n03935335 +n04461696 +n03476991 +n03697007 +n01818515 +n04263257 +n02088238 +n07697313 +n02110806 +n07747607 +n02108422 +n02641379 +n04507155 +n02124075 +n12985857 +n02342885 +n07697537 +n03742115 +n12998815 +n04591713 +n03450230 +n02110185 +n02091831 +n03424325 +n01795545 +n04507155 +n01616318 +n01704323 +n03887697 +n02128925 +n01824575 +n02099712 +n03498962 +n04273569 +n04090263 +n01775062 +n03970156 +n02480855 +n02730930 +n02326432 +n04355933 +n03355925 +n01734418 +n02107908 +n01978287 +n03874599 +n03478589 +n03788365 +n02325366 +n02445715 +n03180011 +n03792782 +n01667778 +n02490219 +n01882714 +n04005630 +n04118538 +n03775071 +n03792782 +n02123045 +n02264363 +n02776631 +n01773157 +n01614925 +n04548362 +n02009912 +n02487347 +n03272562 +n01685808 +n02835271 +n02110063 +n04153751 +n02123045 +n02417914 +n04208210 +n03476684 +n01768244 +n07697313 +n02100583 +n02504013 +n04040759 +n04067472 +n01798484 +n07248320 +n02094258 +n02483708 +n04557648 +n01828970 +n02172182 +n03658185 +n02493509 +n03991062 +n03494278 +n03291819 +n02410509 +n03733805 +n04579432 +n03124043 +n02966193 +n02190166 +n02526121 +n07753592 +n07753592 +n07768694 +n09246464 +n07711569 +n02018795 +n02105056 +n01669191 +n02268853 +n02488291 +n02793495 +n02101556 +n04476259 +n07584110 +n04542943 +n03670208 +n03929855 +n04204347 +n02094433 +n09472597 +n04479046 +n01667778 +n03459775 +n02056570 +n12620546 +n04286575 +n02795169 +n04209239 +n02101556 +n04532670 +n02009229 +n04584207 +n02795169 +n02112350 +n01667778 +n02939185 +n03908618 +n01753488 +n02841315 +n03388183 +n03218198 +n02776631 +n02363005 +n02130308 +n06596364 +n02814860 +n02110063 +n02117135 +n07684084 +n04254680 +n03109150 +n02408429 +n04389033 +n04483307 +n01797886 +n02095889 +n03958227 +n04548280 +n02410509 +n03837869 +n03720891 +n04435653 +n01498041 +n02749479 +n07718747 +n04461696 +n03388043 +n02133161 +n02165105 +n02817516 +n04532670 +n02013706 +n01682714 +n02102177 +n03290653 +n04086273 +n02090379 +n01797886 +n01440764 +n01818515 +n04562935 +n02782093 +n03793489 +n11879895 +n02814860 +n02669723 +n02974003 +n07693725 +n02104029 +n03372029 +n03045698 +n03100240 +n02127052 +n07579787 +n03874599 +n02504458 +n02132136 +n03692522 +n04517823 +n03223299 +n04418357 +n02110806 +n01728572 +n04259630 +n03930313 +n02321529 +n02105251 +n04317175 +n01491361 +n07753275 +n02028035 +n04476259 +n03742115 +n03032252 +n02328150 +n04591713 +n02088094 +n02190166 +n04067472 +n03134739 +n02102318 +n03026506 +n04371430 +n03535780 +n01614925 +n02111889 +n03977966 +n03131574 +n02071294 +n02110627 +n02109961 +n02412080 +n01580077 +n06359193 +n04209133 +n03775546 +n03630383 +n01753488 +n02672831 +n02092339 +n01644900 +n07730033 +n03124043 +n04065272 +n03697007 +n01616318 +n01558993 +n02107683 +n04044716 +n03877472 +n02786058 +n02087046 +n07717410 +n04019541 +n01622779 +n03337140 +n02978881 +n04131690 +n03887697 +n01582220 +n02536864 +n04065272 +n02977058 +n03825788 +n01687978 +n01756291 +n04486054 +n01737021 +n01968897 +n03047690 +n02106166 +n02259212 +n02326432 +n04476259 +n02115913 +n02006656 +n04254120 +n02871525 +n03220513 +n03769881 +n03692522 +n02730930 +n04235860 +n02112018 +n02107142 +n02834397 +n04008634 +n02100583 +n01729977 +n07714571 +n01629819 +n02028035 +n03724870 +n04355933 +n01614925 +n07714571 +n07584110 +n02870880 +n13054560 +n02727426 +n03877472 +n04263257 +n04127249 +n03630383 +n01978287 +n13044778 +n02509815 +n04251144 +n04141327 +n12620546 +n03388043 +n02951358 +n02412080 +n03110669 +n03937543 +n04044716 +n02101388 +n07716358 +n04462240 +n03933933 +n02840245 +n03485407 +n03461385 +n02119789 +n01944390 +n01924916 +n04127249 +n04209239 +n03908618 +n03133878 +n03992509 +n02410509 +n03796401 +n01798484 +n04557648 +n02088632 +n03000247 +n02971356 +n03840681 +n01776313 +n01773157 +n04366367 +n03325584 +n03873416 +n01807496 +n02790996 +n09421951 +n07734744 +n03000247 +n04597913 +n04332243 +n02408429 +n01677366 +n02229544 +n03891251 +n02110063 +n03532672 +n03937543 +n01558993 +n04540053 +n12057211 +n03388183 +n02841315 +n09399592 +n03933933 +n02823428 +n02102040 +n02690373 +n02895154 +n02085936 +n04458633 +n02415577 +n04579432 +n04557648 +n03630383 +n02009912 +n02113978 +n03000247 +n09246464 +n03498962 +n02992211 +n03249569 +n03930313 +n01632458 +n02086910 +n02097209 +n03032252 +n01496331 +n04118538 +n03272010 +n02095314 +n02930766 +n02112137 +n03697007 +n04127249 +n04141076 +n03376595 +n07613480 +n04023962 +n03958227 +n04515003 +n04596742 +n02108000 +n03874599 +n01776313 +n02088238 +n01950731 +n02086910 +n03384352 +n02093859 +n02088632 +n02749479 +n01631663 +n01955084 +n04275548 +n02493793 +n03690938 +n02802426 +n02110341 +n02906734 +n02124075 +n03991062 +n03584254 +n03444034 +n02979186 +n03888605 +n01534433 +n02129165 +n01614925 +n02397096 +n12985857 +n02123159 +n01984695 +n02097047 +n01616318 +n02117135 +n01682714 +n03814906 +n02105251 +n01877812 +n04367480 +n01770081 +n02099849 +n02328150 +n07590611 +n07734744 +n03673027 +n02129165 +n02111500 +n04090263 +n02129604 +n02894605 +n02128757 +n04238763 +n03720891 +n03793489 +n03424325 +n07716358 +n02493509 +n02099849 +n02091244 +n02097658 +n02138441 +n03047690 +n02093647 +n02108915 +n04263257 +n02129165 +n04335435 +n07760859 +n02091831 +n03445924 +n02280649 +n02640242 +n04613696 +n03527444 +n01798484 +n03995372 +n01728572 +n04004767 +n02099267 +n07920052 +n03709823 +n02095570 +n02018795 +n03642806 +n04074963 +n04141327 +n01917289 +n04131690 +n03250847 +n02104365 +n03602883 +n02093428 +n03109150 +n03240683 +n02086079 +n02114712 +n02093256 +n02102040 +n03495258 +n04584207 +n02870880 +n02916936 +n07875152 +n07583066 +n02730930 +n04019541 +n04254120 +n02666196 +n03141823 +n03063689 +n06596364 +n02906734 +n03445777 +n02971356 +n03891332 +n07892512 +n02442845 +n03527444 +n02667093 +n01806143 +n03902125 +n02457408 +n01693334 +n02799071 +n02814533 +n06874185 +n02088466 +n03825788 +n01484850 +n03355925 +n02095889 +n02086646 +n03942813 +n03425413 +n04550184 +n02817516 +n04049303 +n04483307 +n02097209 +n03388549 +n02815834 +n02487347 +n02074367 +n02113186 +n02536864 +n02114855 +n07697313 +n03938244 +n02492035 +n02085620 +n02085620 +n03223299 +n04273569 +n03496892 +n03866082 +n03065424 +n03877845 +n02871525 +n03404251 +n04462240 +n02113799 +n02093859 +n03742115 +n02123045 +n04487081 +n02107312 +n03938244 +n02966687 +n02342885 +n03781244 +n02493509 +n02134084 +n02749479 +n07749582 +n12144580 +n02114548 +n13052670 +n07753113 +n03777754 +n07615774 +n02483708 +n01784675 +n01978287 +n02536864 +n02443484 +n03877472 +n04074963 +n01632777 +n02815834 +n01669191 +n02104029 +n02093859 +n01883070 +n01774750 +n01667778 +n01728920 +n02219486 +n03124170 +n02123394 +n01740131 +n04228054 +n01592084 +n02128925 +n02281787 +n02093647 +n01667778 +n02128925 +n01978287 +n02130308 +n03065424 +n12620546 +n13052670 +n02480855 +n03376595 +n07734744 +n04019541 +n02536864 +n04350905 +n01773549 +n03782006 +n02111129 +n01806567 +n07753275 +n02256656 +n01984695 +n04443257 +n02410509 +n02092339 +n02115913 +n01806143 +n02815834 +n03908618 +n02279972 +n03691459 +n03216828 +n04370456 +n02676566 +n03710721 +n01629819 +n03967562 +n03482405 +n04487081 +n01744401 +n02454379 +n02007558 +n03201208 +n03793489 +n03902125 +n02672831 +n03447447 +n02749479 +n01440764 +n03538406 +n03794056 +n02097130 +n04332243 +n02814860 +n02488291 +n03032252 +n02137549 +n02281406 +n01494475 +n02749479 +n04458633 +n01847000 +n03825788 +n01819313 +n01847000 +n03908618 +n03444034 +n02483362 +n04254680 +n02123597 +n03838899 +n02104029 +n03633091 +n03775546 +n01807496 +n03692522 +n03721384 +n04208210 +n02892767 +n02086240 +n02492660 +n04049303 +n04238763 +n03793489 +n02107574 +n02364673 +n02134084 +n02092339 +n02906734 +n04371774 +n02097658 +n02102040 +n01968897 +n02090622 +n03916031 +n03658185 +n02536864 +n03697007 +n03924679 +n02325366 +n03337140 +n02999410 +n01983481 +n03141823 +n03662601 +n01729322 +n02676566 +n02992211 +n03089624 +n01632777 +n02443484 +n03534580 +n01847000 +n02102318 +n01855032 +n03961711 +n03895866 +n02892767 +n01601694 +n02443484 +n03930313 +n03062245 +n02988304 +n02090622 +n02107908 +n03290653 +n04542943 +n04296562 +n01986214 +n02233338 +n02093991 +n03482405 +n02966193 +n03786901 +n02027492 +n04392985 +n03376595 +n07714990 +n02504013 +n04606251 +n03724870 +n02093991 +n03933933 +n02804414 +n03063599 +n01698640 +n03498962 +n04252225 +n02013706 +n03026506 +n03787032 +n04536866 +n02100583 +n01582220 +n02500267 +n03388183 +n07693725 +n02033041 +n03908714 +n02219486 +n02730930 +n03710193 +n02108915 +n01749939 +n02817516 +n01729977 +n02086910 +n02107908 +n03450230 +n07565083 +n02128385 +n03141823 +n04259630 +n01914609 +n07697537 +n04447861 +n02099849 +n03126707 +n01943899 +n04118776 +n02791124 +n03763968 +n03492542 +n02094433 +n04366367 +n01614925 +n02007558 +n02128757 +n04019541 +n04612504 +n02841315 +n13044778 +n04147183 +n03933933 +n02110627 +n02226429 +n01631663 +n03676483 +n02487347 +n04507155 +n03216828 +n07718472 +n02058221 +n03127747 +n07745940 +n02102177 +n02113712 +n02965783 +n03840681 +n04310018 +n01774384 +n02177972 +n03063599 +n01697457 +n03759954 +n02085620 +n07753113 +n03393912 +n02692877 +n03868242 +n02403003 +n03249569 +n03884397 +n02396427 +n03457902 +n07718747 +n02167151 +n04154565 +n04147183 +n04118538 +n03124043 +n04372370 +n01667114 +n03998194 +n03995372 +n10565667 +n01798484 +n04591157 +n03127747 +n02105641 +n03485407 +n02102177 +n04461696 +n01824575 +n02066245 +n04317175 +n02107312 +n06874185 +n04465501 +n02939185 +n04019541 +n03459775 +n04548280 +n03047690 +n04325704 +n07871810 +n01819313 +n03782006 +n02086079 +n03584254 +n03929660 +n02492035 +n03670208 +n02412080 +n02109525 +n02397096 +n01582220 +n03188531 +n02105641 +n02033041 +n03992509 +n02328150 +n03000684 +n03126707 +n07590611 +n02102480 +n07684084 +n07590611 +n09421951 +n04285008 +n02930766 +n04604644 +n03584829 +n03447721 +n01693334 +n02910353 +n03532672 +n04127249 +n04154565 +n03014705 +n13052670 +n03483316 +n02817516 +n03759954 +n03733805 +n04204238 +n02110341 +n04147183 +n02007558 +n02268443 +n03133878 +n03255030 +n02442845 +n02018207 +n04069434 +n02667093 +n03866082 +n02113978 +n02108000 +n03832673 +n04039381 +n01677366 +n01955084 +n02113023 +n04371430 +n03134739 +n03840681 +n07714571 +n01955084 +n03785016 +n03924679 +n04443257 +n03709823 +n04204347 +n02086079 +n02361337 +n04317175 +n09229709 +n04270147 +n01518878 +n02105412 +n07720875 +n02177972 +n02098105 +n03534580 +n02492660 +n03954731 +n03874599 +n04243546 +n04344873 +n04252077 +n02009229 +n01774384 +n03843555 +n02988304 +n02422699 +n03045698 +n03775071 +n02098105 +n04099969 +n01582220 +n03026506 +n02099849 +n02814860 +n02980441 +n07875152 +n01873310 +n02117135 +n02510455 +n02108422 +n04599235 +n03450230 +n02105505 +n04239074 +n04131690 +n04033995 +n03445924 +n01558993 +n02791270 +n03770679 +n02480855 +n02134084 +n02098286 +n03478589 +n01744401 +n04532670 +n02105412 +n03874599 +n04125021 +n01682714 +n02747177 +n02992211 +n03710193 +n01514859 +n01687978 +n04418357 +n02017213 +n01677366 +n02281406 +n02138441 +n03594945 +n02106030 +n03017168 +n02105251 +n04273569 +n02488291 +n09332890 +n03873416 +n02895154 +n02494079 +n02437616 +n01692333 +n04311004 +n03218198 +n02110185 +n02256656 +n07880968 +n02666196 +n03337140 +n04399382 +n04265275 +n04254120 +n01798484 +n03602883 +n03825788 +n01833805 +n02704792 +n01734418 +n03594734 +n02701002 +n02085620 +n01582220 +n03623198 +n03000134 +n02992211 +n03691459 +n02526121 +n03998194 +n01990800 +n03933933 +n02950826 +n01748264 +n15075141 +n10565667 +n15075141 +n02116738 +n02643566 +n02837789 +n04005630 +n02091134 +n02071294 +n10148035 +n02951358 +n04127249 +n03866082 +n04579145 +n04239074 +n02492035 +n02107683 +n04239074 +n04004767 +n04550184 +n03961711 +n03201208 +n03207941 +n03134739 +n02892767 +n03394916 +n02398521 +n03868863 +n02486410 +n04487394 +n03394916 +n01496331 +n04418357 +n02168699 +n02097209 +n01537544 +n01687978 +n02799071 +n04009552 +n03345487 +n04346328 +n12057211 +n03485794 +n02443484 +n02229544 +n02840245 +n02415577 +n02104029 +n03792782 +n03888605 +n02128925 +n03045698 +n03837869 +n02749479 +n04033995 +n02422106 +n03404251 +n04208210 +n02113712 +n03459775 +n02514041 +n04371430 +n01644373 +n03447721 +n13052670 +n03492542 +n04366367 +n01968897 +n02033041 +n02114712 +n02804414 +n01796340 +n04009552 +n04597913 +n03141823 +n04612504 +n01729322 +n02492660 +n03792972 +n02130308 +n03400231 +n01632777 +n03085013 +n01729322 +n02095570 +n03970156 +n04009552 +n03950228 +n02086646 +n02108000 +n03196217 +n01580077 +n04275548 +n04599235 +n01774750 +n03498962 +n03457902 +n03930630 +n04590129 +n01968897 +n04462240 +n04554684 +n02840245 +n02804414 +n07614500 +n03482405 +n02871525 +n04192698 +n02699494 +n03388183 +n04153751 +n03733281 +n01797886 +n01689811 +n02777292 +n02389026 +n03788365 +n01514859 +n02102480 +n03942813 +n02111129 +n03017168 +n02105855 +n04328186 +n02115641 +n02093647 +n02415577 +n02536864 +n13044778 +n02113712 +n02123394 +n01735189 +n03085013 +n03127747 +n02105641 +n04606251 +n02814533 +n02980441 +n02910353 +n02098105 +n04380533 +n02098286 +n02018795 +n02788148 +n01807496 +n03908714 +n03388549 +n02100877 +n03982430 +n01986214 +n04201297 +n03347037 +n04008634 +n04557648 +n03445924 +n02980441 +n03131574 +n02948072 +n01797886 +n04005630 +n02111889 +n02325366 +n01728920 +n02129165 +n02168699 +n04465501 +n01728572 +n02105641 +n01774384 +n04418357 +n02325366 +n03888605 +n04149813 +n02281406 +n03599486 +n03124170 +n02100583 +n03956157 +n03788195 +n04286575 +n04136333 +n04344873 +n03743016 +n01494475 +n01910747 +n02787622 +n04562935 +n02909870 +n02974003 +n02111500 +n03388549 +n04550184 +n07745940 +n03673027 +n02727426 +n03207743 +n04487081 +n04009552 +n02130308 +n02105412 +n03476991 +n01632458 +n02790996 +n04505470 +n04380533 +n02108422 +n07920052 +n03467068 +n03249569 +n03633091 +n02124075 +n03763968 +n03710637 +n03100240 +n02256656 +n03461385 +n02869837 +n02948072 +n03991062 +n02091244 +n04476259 +n02099429 +n02346627 +n02782093 +n02457408 +n02009229 +n02910353 +n02087046 +n01877812 +n03787032 +n02281406 +n04461696 +n03782006 +n01924916 +n03223299 +n01768244 +n04023962 +n07717410 +n03062245 +n07875152 +n03393912 +n02364673 +n03937543 +n02101388 +n04548280 +n12620546 +n03584829 +n04606251 +n02776631 +n04443257 +n02788148 +n03838899 +n02051845 +n07768694 +n03498962 +n02100583 +n02102177 +n07716358 +n04589890 +n02128757 +n02489166 +n03417042 +n03355925 +n02111889 +n03297495 +n03180011 +n03196217 +n02859443 +n02321529 +n04443257 +n03089624 +n07730033 +n03874293 +n03594945 +n02423022 +n11879895 +n02104029 +n02916936 +n02403003 +n03709823 +n04467665 +n01833805 +n02119022 +n02687172 +n02492660 +n02877765 +n02099429 +n03942813 +n02105855 +n02168699 +n07565083 +n03895866 +n03126707 +n02346627 +n02606052 +n03670208 +n02114548 +n02109047 +n03916031 +n01871265 +n04523525 +n02690373 +n03014705 +n02356798 +n02128385 +n02133161 +n03884397 +n02108915 +n03759954 +n03630383 +n02106382 +n02256656 +n02085936 +n03197337 +n03661043 +n04590129 +n03958227 +n04525038 +n02037110 +n03956157 +n03717622 +n02326432 +n03249569 +n01631663 +n01687978 +n12144580 +n02277742 +n03692522 +n04507155 +n04389033 +n04548280 +n01914609 +n01776313 +n03125729 +n02096051 +n02769748 +n04131690 +n02669723 +n04376876 +n01818515 +n02091244 +n03207743 +n03134739 +n03838899 +n02641379 +n02666196 +n02397096 +n02009229 +n02410509 +n02276258 +n03062245 +n02097130 +n02093754 +n02123045 +n04357314 +n03089624 +n02091244 +n01685808 +n02412080 +n03841143 +n01807496 +n02098286 +n02124075 +n02086646 +n03627232 +n09468604 +n01768244 +n07920052 +n03976467 +n03534580 +n03617480 +n04467665 +n07584110 +n04040759 +n02090379 +n03393912 +n01945685 +n04482393 +n01537544 +n02231487 +n02137549 +n03045698 +n04346328 +n04597913 +n02114367 +n07613480 +n02892767 +n04209133 +n02097047 +n02100877 +n02480855 +n03259280 +n03272010 +n07684084 +n03743016 +n01773549 +n02708093 +n02939185 +n03617480 +n01753488 +n07880968 +n03218198 +n02871525 +n02093256 +n01798484 +n02417914 +n02108915 +n04125021 +n03126707 +n04285008 +n02526121 +n04111531 +n02089078 +n02927161 +n02971356 +n04553703 +n02442845 +n01945685 +n01491361 +n04347754 +n04371774 +n09428293 +n04370456 +n01682714 +n01664065 +n02085620 +n02114855 +n03255030 +n02130308 +n04200800 +n02447366 +n04127249 +n02110185 +n02793495 +n03944341 +n03196217 +n02096294 +n04133789 +n07754684 +n03384352 +n03459775 +n04579145 +n01682714 +n03041632 +n07860988 +n06596364 +n04296562 +n04152593 +n01698640 +n03792972 +n04067472 +n03394916 +n01728920 +n04597913 +n04090263 +n03445777 +n13040303 +n07717556 +n01914609 +n07730033 +n02108089 +n04597913 +n02786058 +n06785654 +n03956157 +n04584207 +n03697007 +n02114712 +n02749479 +n07248320 +n03673027 +n02090379 +n04501370 +n01917289 +n04265275 +n04515003 +n03710721 +n03495258 +n04532670 +n04040759 +n01829413 +n02840245 +n02699494 +n02106550 +n03089624 +n02105056 +n02860847 +n02487347 +n02085782 +n03888257 +n03691459 +n02398521 +n04398044 +n01687978 +n04371774 +n02777292 +n01664065 +n04476259 +n04548280 +n12144580 +n02669723 +n02095314 +n02877765 +n04429376 +n03400231 +n03729826 +n02825657 +n02802426 +n03733281 +n03124043 +n07871810 +n02169497 +n04263257 +n01689811 +n04485082 +n04099969 +n03902125 +n04371430 +n02091635 +n03344393 +n02815834 +n13044778 +n02100877 +n02130308 +n09246464 +n02843684 +n01735189 +n06874185 +n02100583 +n02100877 +n15075141 +n02109525 +n02486410 +n02950826 +n01871265 +n02823750 +n07583066 +n02051845 +n01751748 +n02483362 +n03908618 +n02977058 +n02111889 +n04447861 +n02114855 +n02095314 +n02804414 +n02489166 +n04277352 +n02236044 +n02408429 +n02655020 +n01693334 +n03447721 +n02093647 +n02791124 +n02077923 +n04536866 +n03291819 +n02093859 +n02115641 +n04254680 +n04501370 +n04019541 +n02795169 +n03459775 +n04209133 +n07860988 +n04553703 +n02484975 +n03530642 +n02906734 +n04325704 +n04008634 +n12057211 +n02342885 +n04344873 +n03794056 +n02107142 +n04090263 +n02009229 +n02971356 +n02504458 +n04273569 +n09399592 +n03272562 +n02277742 +n02279972 +n07930864 +n02917067 +n04004767 +n04392985 +n07718747 +n02089078 +n03903868 +n03208938 +n02133161 +n03376595 +n02978881 +n03201208 +n02834397 +n02443484 +n02085620 +n02111889 +n03532672 +n04263257 +n03661043 +n15075141 +n04200800 +n03786901 +n01873310 +n04423845 +n01737021 +n02951358 +n02116738 +n01798484 +n03980874 +n02834397 +n02398521 +n01531178 +n07734744 +n01847000 +n03841143 +n02110185 +n13044778 +n02727426 +n02799071 +n02107908 +n01806143 +n03770679 +n03967562 +n02086646 +n02892767 +n01855032 +n02165105 +n01514859 +n04037443 +n03877472 +n03729826 +n01728920 +n02676566 +n03627232 +n04069434 +n04192698 +n02486261 +n02795169 +n04033901 +n01824575 +n02105641 +n02444819 +n01824575 +n03908714 +n04239074 +n02102480 +n02264363 +n01498041 +n02930766 +n04355933 +n04125021 +n03481172 +n02123159 +n02099712 +n04209239 +n02111889 +n02002556 +n03690938 +n04429376 +n03814906 +n04525305 +n02107908 +n01692333 +n04127249 +n01914609 +n04201297 +n02807133 +n01985128 +n02979186 +n02088238 +n03594945 +n03388043 +n09468604 +n03729826 +n02704792 +n07930864 +n03355925 +n04554684 +n04131690 +n04026417 +n02437616 +n03769881 +n04330267 +n02091831 +n01797886 +n02687172 +n02906734 +n02091635 +n02814533 +n02114712 +n03770439 +n04099969 +n04033995 +n02085936 +n01644900 +n02930766 +n01917289 +n01704323 +n04515003 +n01950731 +n03888257 +n07836838 +n02687172 +n02102318 +n02106030 +n02676566 +n01749939 +n03314780 +n03690938 +n02823750 +n03344393 +n03666591 +n04458633 +n04398044 +n01440764 +n04482393 +n03075370 +n02701002 +n04023962 +n01558993 +n07716358 +n02325366 +n02106382 +n04590129 +n10148035 +n02236044 +n04252077 +n12144580 +n02110627 +n03000134 +n02086079 +n03032252 +n02408429 +n03394916 +n02871525 +n01806567 +n02127052 +n02879718 +n03032252 +n03935335 +n04482393 +n03710721 +n04522168 +n04371430 +n04579145 +n03967562 +n03201208 +n04355338 +n04328186 +n04111531 +n01968897 +n02115913 +n01518878 +n04344873 +n02814533 +n01697457 +n04371430 +n01855032 +n01806143 +n03598930 +n02971356 +n03372029 +n02101388 +n02963159 +n02391049 +n01560419 +n02114367 +n03933933 +n03259280 +n01756291 +n04479046 +n07583066 +n03792972 +n02100877 +n07768694 +n02007558 +n03937543 +n03666591 +n02104029 +n01910747 +n02095889 +n04417672 +n03769881 +n03929855 +n02641379 +n02229544 +n07614500 +n04311174 +n02361337 +n07753592 +n02206856 +n04090263 +n03444034 +n04525305 +n02281406 +n02526121 +n01807496 +n02096294 +n01667778 +n02480855 +n07711569 +n02009229 +n01697457 +n03271574 +n01687978 +n02100236 +n03908714 +n01531178 +n02364673 +n03773504 +n03000684 +n02981792 +n04485082 +n01797886 +n03498962 +n03538406 +n03530642 +n01872401 +n02342885 +n02457408 +n02480495 +n02480855 +n01770393 +n01560419 +n01665541 +n04540053 +n04346328 +n04485082 +n02091635 +n03733805 +n02120505 +n02988304 +n04049303 +n02607072 +n02488702 +n03026506 +n07718472 +n03627232 +n03388043 +n02403003 +n03627232 +n03877845 +n03388043 +n02487347 +n04005630 +n01682714 +n01818515 +n04311174 +n01664065 +n04509417 +n02086910 +n02219486 +n04392985 +n04344873 +n01685808 +n07717410 +n03384352 +n01728920 +n02027492 +n02012849 +n04336792 +n02481823 +n07565083 +n03868863 +n03179701 +n02109525 +n04330267 +n03982430 +n03272010 +n04005630 +n02112137 +n03770439 +n02088094 +n02114548 +n02091032 +n01728572 +n03240683 +n02808440 +n02486410 +n02930766 +n01737021 +n03733805 +n03110669 +n03016953 +n01748264 +n02325366 +n01748264 +n02364673 +n02017213 +n04252077 +n02860847 +n03124043 +n03461385 +n02090721 +n03998194 +n02095570 +n07753113 +n04423845 +n04044716 +n01695060 +n01632458 +n02643566 +n02167151 +n01860187 +n02403003 +n02840245 +n03658185 +n04116512 +n02096294 +n01735189 +n01514859 +n04131690 +n02978881 +n03461385 +n03944341 +n02441942 +n07753113 +n01693334 +n09399592 +n02105412 +n03400231 +n04550184 +n02823428 +n02112137 +n03920288 +n04509417 +n03785016 +n03534580 +n02066245 +n02807133 +n01924916 +n02017213 +n03796401 +n02090721 +n01981276 +n02497673 +n09399592 +n01749939 +n03344393 +n03344393 +n02490219 +n04335435 +n04065272 +n07873807 +n03314780 +n03530642 +n02783161 +n02114548 +n02319095 +n03018349 +n01498041 +n02859443 +n02096051 +n04251144 +n03042490 +n02167151 +n02096294 +n09246464 +n12985857 +n02100583 +n03240683 +n02236044 +n02356798 +n02317335 +n02859443 +n02510455 +n01945685 +n03792972 +n02011460 +n03220513 +n04141076 +n03662601 +n07745940 +n02747177 +n12998815 +n04209133 +n02097130 +n01685808 +n04273569 +n04515003 +n02094258 +n02109047 +n03028079 +n02408429 +n03777754 +n02113186 +n02500267 +n03891251 +n02112018 +n04487081 +n02927161 +n01664065 +n03534580 +n03729826 +n03187595 +n02105505 +n07718747 +n02802426 +n02226429 +n04116512 +n01756291 +n01817953 +n07714990 +n02457408 +n03109150 +n04026417 +n02437312 +n02124075 +n02113978 +n03109150 +n02389026 +n06785654 +n03089624 +n03444034 +n04149813 +n02091032 +n04376876 +n02606052 +n03492542 +n04579145 +n01496331 +n01592084 +n04141975 +n01580077 +n02112706 +n03388043 +n02256656 +n02087394 +n04179913 +n07930864 +n04355338 +n03874293 +n04033995 +n02088364 +n03535780 +n03476991 +n04336792 +n03888257 +n07836838 +n03028079 +n03877845 +n03982430 +n02116738 +n04596742 +n03843555 +n15075141 +n04325704 +n04398044 +n02134084 +n02132136 +n03602883 +n01955084 +n02268853 +n02490219 +n04044716 +n02492660 +n01770393 +n03447447 +n07871810 +n01739381 +n03933933 +n02110958 +n04517823 +n10565667 +n02087046 +n02909870 +n07747607 +n13037406 +n03743016 +n02113023 +n07716358 +n01828970 +n04579145 +n04482393 +n02169497 +n04371430 +n01751748 +n01632777 +n02106382 +n01697457 +n04074963 +n03062245 +n02607072 +n03868863 +n04409515 +n01829413 +n04254680 +n01728920 +n02802426 +n03666591 +n01984695 +n02708093 +n02090721 +n02089973 +n02099849 +n02134084 +n13133613 +n03733281 +n02268853 +n04347754 +n02115641 +n04346328 +n02769748 +n01665541 +n03961711 +n02391049 +n01675722 +n02017213 +n03045698 +n02356798 +n02977058 +n01873310 +n02276258 +n03692522 +n02107908 +n03954731 +n04389033 +n02226429 +n03676483 +n02107908 +n01484850 +n01774750 +n02979186 +n03761084 +n03623198 +n03445777 +n03770679 +n01728572 +n03495258 +n04613696 +n02441942 +n03594734 +n02114855 +n02883205 +n04311174 +n04532670 +n02134418 +n03717622 +n02859443 +n03930313 +n03126707 +n03977966 +n03983396 +n04456115 +n07760859 +n01532829 +n04208210 +n03991062 +n04131690 +n03649909 +n03425413 +n02017213 +n02974003 +n03958227 +n02408429 +n01614925 +n03884397 +n04429376 +n01749939 +n01756291 +n01498041 +n03992509 +n03532672 +n04286575 +n03376595 +n02108000 +n02108551 +n07565083 +n03792782 +n02089867 +n07684084 +n03404251 +n03871628 +n04311004 +n13040303 +n02111129 +n02422699 +n03733281 +n04153751 +n04179913 +n02268443 +n02443114 +n03485794 +n07579787 +n02110063 +n01616318 +n03871628 +n07697537 +n02114367 +n02091134 +n02883205 +n02814533 +n03871628 +n02105056 +n02865351 +n03991062 +n02104365 +n04275548 +n03929660 +n03814639 +n02834397 +n03792782 +n07730033 +n02445715 +n02804610 +n02119789 +n04040759 +n02415577 +n02206856 +n02114367 +n04493381 +n02276258 +n03991062 +n02236044 +n04332243 +n07760859 +n02504013 +n02090379 +n02445715 +n10565667 +n04487081 +n09472597 +n04398044 +n01873310 +n02087046 +n03788365 +n02097658 +n03467068 +n07717410 +n03642806 +n03063689 +n01914609 +n03792782 +n12267677 +n03220513 +n02119789 +n02950826 +n02113712 +n03697007 +n04009552 +n03876231 +n10148035 +n03590841 +n03461385 +n02814860 +n03729826 +n03255030 +n09288635 +n02094114 +n04550184 +n02115913 +n01990800 +n02112350 +n12998815 +n02672831 +n01860187 +n04493381 +n02979186 +n02441942 +n02128757 +n01883070 +n03803284 +n03417042 +n02992211 +n04462240 +n03759954 +n01984695 +n07584110 +n04118538 +n02105412 +n03218198 +n02835271 +n03314780 +n04070727 +n03325584 +n01742172 +n04266014 +n03447447 +n02701002 +n01877812 +n03062245 +n01592084 +n01924916 +n03781244 +n01798484 +n02730930 +n02417914 +n02791124 +n02412080 +n09256479 +n04008634 +n02493793 +n07753275 +n03980874 +n02280649 +n03400231 +n03476991 +n02787622 +n02086240 +n04041544 +n04370456 +n04591713 +n03062245 +n04254120 +n02125311 +n03920288 +n02088364 +n02002724 +n02107683 +n01498041 +n04550184 +n01984695 +n04584207 +n02971356 +n03961711 +n02447366 +n01855672 +n03126707 +n03481172 +n02640242 +n03376595 +n02814860 +n01498041 +n04442312 +n03776460 +n01882714 +n04485082 +n03201208 +n01978455 +n04456115 +n03467068 +n02086240 +n02256656 +n04517823 +n03291819 +n04263257 +n02106662 +n02823750 +n03527444 +n01807496 +n02112018 +n02860847 +n01980166 +n01514859 +n02879718 +n02128925 +n03944341 +n07831146 +n04049303 +n04004767 +n04254120 +n02108422 +n07871810 +n01775062 +n02808304 +n03929660 +n02667093 +n07716906 +n03697007 +n12057211 +n03196217 +n01855032 +n02097047 +n02444819 +n07711569 +n02071294 +n06596364 +n03584829 +n02025239 +n09256479 +n02484975 +n02840245 +n02814533 +n03188531 +n03891332 +n01560419 +n02110185 +n01685808 +n03207941 +n02096294 +n02672831 +n04311004 +n04265275 +n07730033 +n04296562 +n02167151 +n02110341 +n03832673 +n03709823 +n02115641 +n02510455 +n04325704 +n02129604 +n04296562 +n13037406 +n04554684 +n03706229 +n02500267 +n02101388 +n02206856 +n02111889 +n04442312 +n02102973 +n02098105 +n02906734 +n01770081 +n13054560 +n04325704 +n02909870 +n02927161 +n03976467 +n03014705 +n02483362 +n02012849 +n02321529 +n03841143 +n04389033 +n02094258 +n15075141 +n03733805 +n03958227 +n03792972 +n04542943 +n02979186 +n07614500 +n03666591 +n03929855 +n07802026 +n02974003 +n02319095 +n02804414 +n04325704 +n02109525 +n02999410 +n02120079 +n04404412 +n01871265 +n03871628 +n03337140 +n01667778 +n01819313 +n04532670 +n02319095 +n03457902 +n02978881 +n02119789 +n04026417 +n01693334 +n01744401 +n03825788 +n04273569 +n03942813 +n01984695 +n02727426 +n01820546 +n04487081 +n03956157 +n04465501 +n04579145 +n02117135 +n04447861 +n03085013 +n02134084 +n03769881 +n03717622 +n02105251 +n03761084 +n02088466 +n01872401 +n02807133 +n03775546 +n03590841 +n03617480 +n01677366 +n02119789 +n02226429 +n04409515 +n03995372 +n02013706 +n07697537 +n02025239 +n02114712 +n03394916 +n02494079 +n01968897 +n03977966 +n11879895 +n03492542 +n03843555 +n03742115 +n04208210 +n02423022 +n04515003 +n13054560 +n02483708 +n04507155 +n07717410 +n03255030 +n03133878 +n03877845 +n04344873 +n04540053 +n09399592 +n04517823 +n04086273 +n02978881 +n02115641 +n04461696 +n02102973 +n02277742 +n04399382 +n04330267 +n03661043 +n13037406 +n04604644 +n03958227 +n02397096 +n04125021 +n03445924 +n03492542 +n02092339 +n03787032 +n03791053 +n02804414 +n01753488 +n07754684 +n01496331 +n01990800 +n04356056 +n04065272 +n01756291 +n04136333 +n03662601 +n02006656 +n02326432 +n02018795 +n03777568 +n07932039 +n04265275 +n02268853 +n03649909 +n04548362 +n03538406 +n02104365 +n03062245 +n04131690 +n01955084 +n04606251 +n04037443 +n01990800 +n02892767 +n02113023 +n03873416 +n04254680 +n02444819 +n04606251 +n02091032 +n03623198 +n01693334 +n04162706 +n04476259 +n01773157 +n02510455 +n01616318 +n02782093 +n04209133 +n03777568 +n12998815 +n04417672 +n12620546 +n04517823 +n02259212 +n02727426 +n02797295 +n03062245 +n02794156 +n04347754 +n03417042 +n02123159 +n03530642 +n07715103 +n07716906 +n03874599 +n04179913 +n01877812 +n02101388 +n02233338 +n04141327 +n02666196 +n04131690 +n03032252 +n02114367 +n03045698 +n02090721 +n02815834 +n07873807 +n02965783 +n04429376 +n04604644 +n01855032 +n02018795 +n03729826 +n04404412 +n07615774 +n02013706 +n01955084 +n01774750 +n01644373 +n02096177 +n02114712 +n03891332 +n03482405 +n03916031 +n02099849 +n02480855 +n13044778 +n02226429 +n03670208 +n13133613 +n03670208 +n04125021 +n02276258 +n03131574 +n03929855 +n02687172 +n02443484 +n02101006 +n04367480 +n02109525 +n04049303 +n02096051 +n03929660 +n02776631 +n02027492 +n01795545 +n02109525 +n03584829 +n03595614 +n02992211 +n04243546 +n03404251 +n04023962 +n03085013 +n02128385 +n02111129 +n04613696 +n04152593 +n02978881 +n02909870 +n10565667 +n03467068 +n02280649 +n03763968 +n02056570 +n02504458 +n03958227 +n03874599 +n02133161 +n03871628 +n02099849 +n03179701 +n01985128 +n02112137 +n02098413 +n01945685 +n02105505 +n03796401 +n04152593 +n02410509 +n01665541 +n04147183 +n02655020 +n02233338 +n03297495 +n01776313 +n01945685 +n03710193 +n04462240 +n03956157 +n02229544 +n02782093 +n04355338 +n03000684 +n04542943 +n02111277 +n04505470 +n03196217 +n02112706 +n03590841 +n03197337 +n02526121 +n04522168 +n01877812 +n03617480 +n02870880 +n04591713 +n06359193 +n02110958 +n07892512 +n03796401 +n03047690 +n01518878 +n04263257 +n01910747 +n07753275 +n01882714 +n04033901 +n01784675 +n02489166 +n03534580 +n04447861 +n02403003 +n07717556 +n02027492 +n03710721 +n02281787 +n02807133 +n03124170 +n02396427 +n02981792 +n04613696 +n02481823 +n04522168 +n03930313 +n10565667 +n03776460 +n03180011 +n04235860 +n02397096 +n03016953 +n03838899 +n09193705 +n04404412 +n04336792 +n02978881 +n07720875 +n04286575 +n12985857 +n07613480 +n03063689 +n02206856 +n02011460 +n02769748 +n02317335 +n02749479 +n01770081 +n02422699 +n02088094 +n02906734 +n06785654 +n04152593 +n03916031 +n02113186 +n02115913 +n02791124 +n03764736 +n02356798 +n02979186 +n02749479 +n03630383 +n03259280 +n04023962 +n04026417 +n02909870 +n03404251 +n03868863 +n03495258 +n03899768 +n03733805 +n02823750 +n02086079 +n04356056 +n03196217 +n01806143 +n07718472 +n04335435 +n03937543 +n04070727 +n01631663 +n02643566 +n11879895 +n03690938 +n02093428 +n02105641 +n02091134 +n03131574 +n03485407 +n01677366 +n02099601 +n02123045 +n02443114 +n02134418 +n04370456 +n01883070 +n04141076 +n03467068 +n02105162 +n02226429 +n02397096 +n02692877 +n02447366 +n13037406 +n09332890 +n04482393 +n03877845 +n02102480 +n10565667 +n02791270 +n02669723 +n02808304 +n04548362 +n03658185 +n02489166 +n02098286 +n07615774 +n04532106 +n01807496 +n02992529 +n01694178 +n04428191 +n03445924 +n07742313 +n04037443 +n03887697 +n01630670 +n02099267 +n02123597 +n01981276 +n02825657 +n02106662 +n03657121 +n03249569 +n03218198 +n04152593 +n12985857 +n03160309 +n02939185 +n01817953 +n01773157 +n02999410 +n03482405 +n04200800 +n02488702 +n03272562 +n03992509 +n03544143 +n04141327 +n02099712 +n03016953 +n02107142 +n01751748 +n02009912 +n02087394 +n04355933 +n02117135 +n13054560 +n02006656 +n03733805 +n03710193 +n04141076 +n01608432 +n09835506 +n04398044 +n07579787 +n02099712 +n02123597 +n07836838 +n04131690 +n04090263 +n02981792 +n02018795 +n03602883 +n02074367 +n02443484 +n02871525 +n02457408 +n02799071 +n03764736 +n03804744 +n02190166 +n03769881 +n04399382 +n04553703 +n02058221 +n02981792 +n01692333 +n01631663 +n03868242 +n06785654 +n03977966 +n04423845 +n02791124 +n02128385 +n01664065 +n01756291 +n07802026 +n02979186 +n02814533 +n12768682 +n04201297 +n07742313 +n02489166 +n02120079 +n03743016 +n03482405 +n01795545 +n02108551 +n02096051 +n02951358 +n02169497 +n04532106 +n02268443 +n03676483 +n01798484 +n02113712 +n07697313 +n02112018 +n04525038 +n03982430 +n04239074 +n02123597 +n03063689 +n02091134 +n02138441 +n03255030 +n02012849 +n02879718 +n02111277 +n02088466 +n02105056 +n01776313 +n04584207 +n02095314 +n01806567 +n01770393 +n03271574 +n03599486 +n10148035 +n03627232 +n04275548 +n03063689 +n03016953 +n01990800 +n04141076 +n03131574 +n01968897 +n02093256 +n01774750 +n01855672 +n04435653 +n03127747 +n03657121 +n03529860 +n07730033 +n02837789 +n01828970 +n02002556 +n02132136 +n03873416 +n03424325 +n04259630 +n02097130 +n03272562 +n03496892 +n04525305 +n03916031 +n01644373 +n04591713 +n02504013 +n02091831 +n01847000 +n03000684 +n01770393 +n03763968 +n02093754 +n03063689 +n02085782 +n03290653 +n03777568 +n07718472 +n02090721 +n02089078 +n03792782 +n13037406 +n02111889 +n04550184 +n03063599 +n04229816 +n04238763 +n01693334 +n03743016 +n02108551 +n04604644 +n02281787 +n02119789 +n02808304 +n09332890 +n02106550 +n07802026 +n03249569 +n07836838 +n03775546 +n04204347 +n04592741 +n01498041 +n03929660 +n02077923 +n02108089 +n02094433 +n02107574 +n13133613 +n02749479 +n03249569 +n02641379 +n03804744 +n02321529 +n01797886 +n02690373 +n13054560 +n02950826 +n01737021 +n01689811 +n01664065 +n07693725 +n02342885 +n02169497 +n09288635 +n02087394 +n03376595 +n02120505 +n03938244 +n03345487 +n02500267 +n01797886 +n04443257 +n03492542 +n02094258 +n03721384 +n13044778 +n03868863 +n07711569 +n02236044 +n04081281 +n03838899 +n04596742 +n02111500 +n04251144 +n02100583 +n07714571 +n04238763 +n02105412 +n02443484 +n04019541 +n03394916 +n03776460 +n03000134 +n02109525 +n02109525 +n02870880 +n03393912 +n03197337 +n04081281 +n03763968 +n01688243 +n02110806 +n02834397 +n02939185 +n02279972 +n03888605 +n02268443 +n02988304 +n04310018 +n04285008 +n09246464 +n02389026 +n01558993 +n01955084 +n01930112 +n01644373 +n12620546 +n02093256 +n09256479 +n02002724 +n03160309 +n04204238 +n01753488 +n03393912 +n01641577 +n02100735 +n04584207 +n02100236 +n02879718 +n02988304 +n02105162 +n02110806 +n04258138 +n03590841 +n02927161 +n01498041 +n03720891 +n04515003 +n02134418 +n03014705 +n03344393 +n02783161 +n04443257 +n02492660 +n03218198 +n01755581 +n02090622 +n03179701 +n04252225 +n04417672 +n04037443 +n04065272 +n03721384 +n02089973 +n02091635 +n03804744 +n09288635 +n04613696 +n03796401 +n07714990 +n01770393 +n01742172 +n02128385 +n03492542 +n03916031 +n01883070 +n01739381 +n02980441 +n02966687 +n04486054 +n04443257 +n01984695 +n03026506 +n02808440 +n02977058 +n02114367 +n02094114 +n02326432 +n03016953 +n02106166 +n03710193 +n01644373 +n02091134 +n03259280 +n03018349 +n03791053 +n04008634 +n02095570 +n07718747 +n03376595 +n07717410 +n02894605 +n07583066 +n02281787 +n03483316 +n02105505 +n03837869 +n04591713 +n02749479 +n01514668 +n02090379 +n03424325 +n03642806 +n02089973 +n01532829 +n02105641 +n04591713 +n01819313 +n02127052 +n03124043 +n03649909 +n02113186 +n04067472 +n02114548 +n03791053 +n03792782 +n02093991 +n03530642 +n02397096 +n02281787 +n03661043 +n03495258 +n02174001 +n07880968 +n03459775 +n02100236 +n02727426 +n01820546 +n02988304 +n02112350 +n03476684 +n04238763 +n02028035 +n02120505 +n01704323 +n03047690 +n02268443 +n02443114 +n02112137 +n02879718 +n01697457 +n04264628 +n03314780 +n03649909 +n02133161 +n07730033 +n03670208 +n02835271 +n03584829 +n02326432 +n03916031 +n03485794 +n03314780 +n02342885 +n02105412 +n02321529 +n01669191 +n07742313 +n03045698 +n02510455 +n04201297 +n03710721 +n02966687 +n02094258 +n02109047 +n03376595 +n03017168 +n01924916 +n02017213 +n02086079 +n03666591 +n04465501 +n02981792 +n03832673 +n01806567 +n02793495 +n02110806 +n01833805 +n01622779 +n02493509 +n03495258 +n03485407 +n02051845 +n04141975 +n02909870 +n01698640 +n02096294 +n02009912 +n02097658 +n02018207 +n02804414 +n03095699 +n01665541 +n03532672 +n02102177 +n01806143 +n01847000 +n07693725 +n02268853 +n03530642 +n03908618 +n03781244 +n04286575 +n02111129 +n04273569 +n04590129 +n02100583 +n03916031 +n04404412 +n02708093 +n03160309 +n07579787 +n03476991 +n04204238 +n03344393 +n09193705 +n01665541 +n01968897 +n03180011 +n02948072 +n01871265 +n01843383 +n02494079 +n02105505 +n02356798 +n02769748 +n01955084 +n01990800 +n02113712 +n03976657 +n03633091 +n03937543 +n04252225 +n02442845 +n03461385 +n03014705 +n01644900 +n03924679 +n04152593 +n02974003 +n02804414 +n03290653 +n04344873 +n02326432 +n04371430 +n03485794 +n02107142 +n03483316 +n04330267 +n01883070 +n02105505 +n03062245 +n03924679 +n02326432 +n03761084 +n02104029 +n02074367 +n04023962 +n02123597 +n04264628 +n03902125 +n02077923 +n02927161 +n03272562 +n04399382 +n07875152 +n03478589 +n03680355 +n02093428 +n03903868 +n02396427 +n01753488 +n01914609 +n04487081 +n03372029 +n01753488 +n02096585 +n07747607 +n01601694 +n03146219 +n03733131 +n03124043 +n02090622 +n03063599 +n03599486 +n03976657 +n07880968 +n02086910 +n02494079 +n02100735 +n01693334 +n02966193 +n02089973 +n03866082 +n02640242 +n02094433 +n03947888 +n01592084 +n04039381 +n04263257 +n04326547 +n02841315 +n04009552 +n02099712 +n03271574 +n02701002 +n03791053 +n04252077 +n07717410 +n02027492 +n02097474 +n02113799 +n01773797 +n11939491 +n03494278 +n02971356 +n02509815 +n02107683 +n04328186 +n03998194 +n03938244 +n03721384 +n02089973 +n07684084 +n04613696 +n03476991 +n03444034 +n03272010 +n02219486 +n07613480 +n03899768 +n01770393 +n04532106 +n04264628 +n03314780 +n02422106 +n01689811 +n04154565 +n03991062 +n02088094 +n03384352 +n02088632 +n03146219 +n02017213 +n02123597 +n01806567 +n01740131 +n01829413 +n04004767 +n04355338 +n04044716 +n01735189 +n03218198 +n02108422 +n07831146 +n02110185 +n07932039 +n03658185 +n01773797 +n09288635 +n02133161 +n01820546 +n09332890 +n09468604 +n03935335 +n04562935 +n03908714 +n02167151 +n03216828 +n02497673 +n04493381 +n03452741 +n02117135 +n04131690 +n02120505 +n03743016 +n02364673 +n03980874 +n04462240 +n02804414 +n02051845 +n02808440 +n02172182 +n09428293 +n02093428 +n03220513 +n02699494 +n03803284 +n03804744 +n02514041 +n04099969 +n04296562 +n03388549 +n12998815 +n03933933 +n04208210 +n02410509 +n04482393 +n04487081 +n02486261 +n02113799 +n04228054 +n09835506 +n04067472 +n01664065 +n04428191 +n01740131 +n02493509 +n11939491 +n03042490 +n03584254 +n09468604 +n04120489 +n02483708 +n01498041 +n03786901 +n04523525 +n02165105 +n03888605 +n02115913 +n04201297 +n04501370 +n04037443 +n02172182 +n03793489 +n03724870 +n02391049 +n04069434 +n02807133 +n02056570 +n07584110 +n04398044 +n04398044 +n03854065 +n02655020 +n02107312 +n04366367 +n04086273 +n03485407 +n02104029 +n04251144 +n03627232 +n02132136 +n02979186 +n02317335 +n03201208 +n04479046 +n03452741 +n04258138 +n07590611 +n04149813 +n04355933 +n03207941 +n04479046 +n02441942 +n03866082 +n07583066 +n03445777 +n03017168 +n02672831 +n04204238 +n04326547 +n02113712 +n01514668 +n02415577 +n03706229 +n02981792 +n02840245 +n04389033 +n03992509 +n02403003 +n04005630 +n03637318 +n04371430 +n04347754 +n02100583 +n01518878 +n02319095 +n02492035 +n04597913 +n02206856 +n02025239 +n04591157 +n01773549 +n04081281 +n07697537 +n01682714 +n04069434 +n02085782 +n02655020 +n07714571 +n01614925 +n04008634 +n07873807 +n04131690 +n03680355 +n02422699 +n07753592 +n03840681 +n06785654 +n01530575 +n02096051 +n03764736 +n02108089 +n04044716 +n03384352 +n01818515 +n02056570 +n02097130 +n01665541 +n01688243 +n04131690 +n04606251 +n01616318 +n01688243 +n02113186 +n04613696 +n01737021 +n02776631 +n03995372 +n01806143 +n01753488 +n04037443 +n02879718 +n04009552 +n02110806 +n04332243 +n04560804 +n03884397 +n02110958 +n03888605 +n01685808 +n07565083 +n02883205 +n02492660 +n01798484 +n03100240 +n02088094 +n04229816 +n02098286 +n02841315 +n03017168 +n04120489 +n07718747 +n03933933 +n04355933 +n04483307 +n02107142 +n01744401 +n02093991 +n02112137 +n02085936 +n03929855 +n02051845 +n02091831 +n01740131 +n02948072 +n02112706 +n04584207 +n04070727 +n03584254 +n04235860 +n01749939 +n02086079 +n03424325 +n04485082 +n02165456 +n03259280 +n02132136 +n03445924 +n12768682 +n03325584 +n01644373 +n02361337 +n04523525 +n07753592 +n04067472 +n04579145 +n07880968 +n02231487 +n04486054 +n03658185 +n04429376 +n03126707 +n02085620 +n02104365 +n02692877 +n04557648 +n04606251 +n03888605 +n02105412 +n06785654 +n02101388 +n03393912 +n04370456 +n12985857 +n07871810 +n03742115 +n04238763 +n02101006 +n02090379 +n09399592 +n07930864 +n02123597 +n03494278 +n02363005 +n07892512 +n02776631 +n03785016 +n07930864 +n02123394 +n01855032 +n02883205 +n02091831 +n03868242 +n02930766 +n01945685 +n03594734 +n02493793 +n02398521 +n04501370 +n03417042 +n02815834 +n03710637 +n02100583 +n02497673 +n02894605 +n03895866 +n01756291 +n02091032 +n02120505 +n03980874 +n07745940 +n02769748 +n04208210 +n01990800 +n02397096 +n01692333 +n03814639 +n01855672 +n04154565 +n02317335 +n02815834 +n07693725 +n03720891 +n02110627 +n13037406 +n02391049 +n04131690 +n01930112 +n07760859 +n03770679 +n02111500 +n04252225 +n01877812 +n03180011 +n13044778 +n02492660 +n04273569 +n04004767 +n04238763 +n03706229 +n04357314 +n01641577 +n04311174 +n03109150 +n03866082 +n03933933 +n02412080 +n03207743 +n03218198 +n07716906 +n03218198 +n02667093 +n02799071 +n02346627 +n03874293 +n01537544 +n01728572 +n03804744 +n01855672 +n01744401 +n02747177 +n02939185 +n02676566 +n02950826 +n02097298 +n01819313 +n02276258 +n09428293 +n01682714 +n03710637 +n03920288 +n02672831 +n02447366 +n02860847 +n02412080 +n04254680 +n01692333 +n02807133 +n03394916 +n13133613 +n01806567 +n07720875 +n07836838 +n02088094 +n02102040 +n01580077 +n03775546 +n04238763 +n04118776 +n04540053 +n02096294 +n02441942 +n03781244 +n02093256 +n02988304 +n02423022 +n07871810 +n01704323 +n02132136 +n01560419 +n02206856 +n01833805 +n02980441 +n11879895 +n07875152 +n03930313 +n03042490 +n03954731 +n03933933 +n03126707 +n03461385 +n02114855 +n03929660 +n04550184 +n02783161 +n03944341 +n07693725 +n02123045 +n09288635 +n03196217 +n03297495 +n02091831 +n03670208 +n04487394 +n02105251 +n02454379 +n02099849 +n04409515 +n01592084 +n02092002 +n07590611 +n03992509 +n02412080 +n03075370 +n02447366 +n02669723 +n12985857 +n03584254 +n01753488 +n02708093 +n02497673 +n04069434 +n01484850 +n07873807 +n03492542 +n03457902 +n03670208 +n04376876 +n01697457 +n02101556 +n11879895 +n02071294 +n03710193 +n03961711 +n03930313 +n02793495 +n12768682 +n03657121 +n04596742 +n04204238 +n02093754 +n03961711 +n09472597 +n03379051 +n02417914 +n02107312 +n02489166 +n01828970 +n03884397 +n04251144 +n03792782 +n02782093 +n01820546 +n02981792 +n06359193 +n03443371 +n01735189 +n04501370 +n03673027 +n03770679 +n03085013 +n02112706 +n01978287 +n02794156 +n02087394 +n01443537 +n04286575 +n02123394 +n04264628 +n03337140 +n03710721 +n03947888 +n02514041 +n02328150 +n02110185 +n03992509 +n02965783 +n02096177 +n01824575 +n03929855 +n02815834 +n02643566 +n01744401 +n02672831 +n02447366 +n06874185 +n04325704 +n02317335 +n03126707 +n02056570 +n02457408 +n03443371 +n04125021 +n03866082 +n03127747 +n04311004 +n02134084 +n01910747 +n07716358 +n02134418 +n02071294 +n04335435 +n03594734 +n06359193 +n04336792 +n02097474 +n07717410 +n02092339 +n04376876 +n03785016 +n02087394 +n02825657 +n03208938 +n03720891 +n04366367 +n02480855 +n03124043 +n04067472 +n03180011 +n04049303 +n04243546 +n04423845 +n03127747 +n02259212 +n03697007 +n04136333 +n04590129 +n03942813 +n02268443 +n04008634 +n04254680 +n04125021 +n04040759 +n03924679 +n04485082 +n02410509 +n04259630 +n03584829 +n03196217 +n03776460 +n01774750 +n09421951 +n07802026 +n04399382 +n04536866 +n04525038 +n02091467 +n03902125 +n03544143 +n02791270 +n03888605 +n03376595 +n02397096 +n03777754 +n04592741 +n03047690 +n07693725 +n02113978 +n04398044 +n02783161 +n04596742 +n03785016 +n01582220 +n02791270 +n02791124 +n02129165 +n03404251 +n03670208 +n03903868 +n02978881 +n02094433 +n04252225 +n02096177 +n03496892 +n03000684 +n03983396 +n02111277 +n03720891 +n03782006 +n01829413 +n04153751 +n03271574 +n03538406 +n03970156 +n03924679 +n02088094 +n01806143 +n02113978 +n03207941 +n03347037 +n03633091 +n03404251 +n04579145 +n02276258 +n02086240 +n02799071 +n03871628 +n02087394 +n02264363 +n03478589 +n03788365 +n02097658 +n02093647 +n07920052 +n03788195 +n03720891 +n07717556 +n02113023 +n01855032 +n07802026 +n02037110 +n03832673 +n04350905 +n07613480 +n02814860 +n03777754 +n03218198 +n02441942 +n02115913 +n02109961 +n04347754 +n03841143 +n02786058 +n02690373 +n07697313 +n07613480 +n01873310 +n03874599 +n02113624 +n02992211 +n07871810 +n03388183 +n01644900 +n04067472 +n04039381 +n02361337 +n04039381 +n04370456 +n01843065 +n01877812 +n02488291 +n03692522 +n02669723 +n03018349 +n03207743 +n02096177 +n01514859 +n02105056 +n03495258 +n03207743 +n04523525 +n03259280 +n03127747 +n02988304 +n02096437 +n02087394 +n04370456 +n01882714 +n01644900 +n11879895 +n03814639 +n03763968 +n03788365 +n04579145 +n03837869 +n04429376 +n02219486 +n03983396 +n04591157 +n07693725 +n02281787 +n01829413 +n04606251 +n02795169 +n03467068 +n02486410 +n04505470 +n02488702 +n02108089 +n02783161 +n06596364 +n01558993 +n07871810 +n02655020 +n02256656 +n03290653 +n03131574 +n01829413 +n02930766 +n03529860 +n01871265 +n01675722 +n02840245 +n04392985 +n04286575 +n03404251 +n02823428 +n02951585 +n02077923 +n03000247 +n01843065 +n02804414 +n04525038 +n01749939 +n03095699 +n04552348 +n03532672 +n03527444 +n03947888 +n02667093 +n02346627 +n01667114 +n07749582 +n02128385 +n02093754 +n02092002 +n02782093 +n04310018 +n02104365 +n02134418 +n03769881 +n02776631 +n01984695 +n02097658 +n02095570 +n02321529 +n02108000 +n02098413 +n03623198 +n03100240 +n03109150 +n02168699 +n03017168 +n01819313 +n02117135 +n03871628 +n03924679 +n04399382 +n15075141 +n03884397 +n03425413 +n03584829 +n03976467 +n02979186 +n02124075 +n02869837 +n03998194 +n02025239 +n01558993 +n04044716 +n02107908 +n04404412 +n04266014 +n03944341 +n01751748 +n02025239 +n04040759 +n02102973 +n03930630 +n09246464 +n02174001 +n02389026 +n03764736 +n01795545 +n02790996 +n02526121 +n03133878 +n03124043 +n02979186 +n02093754 +n03598930 +n03250847 +n02134084 +n03733281 +n02226429 +n04019541 +n02105855 +n02256656 +n02787622 +n04435653 +n03599486 +n03733131 +n02325366 +n03259280 +n03028079 +n03476684 +n03133878 +n03590841 +n03197337 +n04525038 +n03494278 +n04270147 +n01860187 +n02086910 +n02457408 +n03627232 +n03133878 +n03947888 +n02823428 +n02097298 +n02108000 +n04540053 +n03141823 +n03201208 +n03476991 +n02113023 +n03777754 +n03854065 +n02415577 +n02974003 +n01820546 +n02087046 +n04149813 +n04332243 +n02090379 +n04509417 +n07760859 +n03637318 +n02672831 +n03141823 +n03538406 +n03201208 +n04286575 +n02097658 +n03873416 +n04515003 +n09193705 +n02939185 +n03933933 +n01749939 +n03483316 +n02098105 +n02107908 +n02130308 +n02105641 +n04458633 +n03692522 +n02777292 +n07565083 +n02708093 +n02783161 +n04037443 +n04259630 +n02112706 +n07802026 +n01729977 +n02168699 +n04192698 +n04209133 +n07590611 +n01729322 +n02028035 +n04579432 +n01518878 +n02443484 +n07742313 +n04376876 +n04019541 +n02791270 +n02906734 +n02264363 +n02233338 +n06874185 +n04069434 +n13044778 +n02981792 +n02117135 +n03775071 +n03249569 +n04239074 +n03868242 +n02099267 +n03467068 +n02791270 +n01632777 +n01817953 +n04325704 +n01582220 +n04081281 +n03838899 +n02865351 +n02445715 +n04009552 +n02089867 +n02256656 +n01860187 +n02815834 +n04447861 +n03786901 +n04120489 +n03584254 +n03255030 +n02006656 +n03187595 +n04152593 +n03467068 +n03942813 +n03947888 +n07831146 +n02090721 +n04532670 +n03018349 +n02093991 +n01917289 +n01729322 +n02108422 +n03197337 +n02951585 +n04263257 +n07932039 +n01537544 +n03495258 +n01755581 +n02096051 +n01737021 +n04120489 +n02111500 +n03895866 +n02106166 +n04350905 +n04081281 +n02791124 +n04501370 +n02115913 +n02088466 +n07614500 +n02410509 +n01740131 +n03483316 +n02701002 +n03792782 +n03995372 +n03016953 +n02536864 +n12144580 +n02011460 +n04355933 +n02423022 +n03658185 +n03344393 +n02096177 +n03692522 +n04423845 +n02110185 +n02177972 +n03197337 +n03924679 +n01749939 +n02229544 +n03000247 +n01744401 +n02321529 +n03874293 +n03481172 +n01872401 +n02112018 +n02492035 +n03670208 +n04372370 +n01697457 +n02788148 +n01796340 +n03272562 +n02098286 +n03781244 +n03666591 +n13037406 +n04532670 +n03394916 +n01744401 +n02114855 +n04542943 +n02860847 +n02268443 +n04254120 +n02088466 +n11939491 +n03788195 +n07860988 +n03832673 +n02134084 +n02092339 +n02797295 +n04252077 +n04591713 +n02096177 +n03134739 +n03982430 +n02107574 +n02233338 +n07697313 +n03891332 +n03325584 +n03208938 +n01518878 +n02509815 +n03710721 +n04487394 +n03014705 +n02099429 +n02834397 +n04141975 +n01978455 +n03891332 +n02870880 +n04265275 +n02497673 +n01955084 +n02963159 +n02099712 +n02793495 +n03691459 +n02085782 +n03991062 +n02088094 +n07711569 +n02346627 +n07695742 +n03218198 +n01784675 +n02799071 +n03944341 +n03179701 +n02415577 +n04370456 +n04443257 +n04254777 +n01496331 +n02699494 +n01677366 +n02514041 +n02086240 +n02107908 +n11879895 +n03770679 +n02749479 +n03803284 +n04485082 +n03201208 +n03045698 +n03944341 +n01930112 +n02113186 +n04286575 +n03706229 +n02871525 +n01774384 +n01855032 +n02109047 +n02114548 +n12998815 +n03218198 +n03216828 +n04371774 +n02114712 +n04548280 +n02276258 +n04033995 +n03393912 +n03980874 +n04389033 +n07583066 +n01704323 +n03445924 +n02018795 +n03445777 +n02098286 +n03838899 +n01689811 +n03666591 +n03000247 +n02099712 +n03483316 +n04505470 +n02490219 +n04239074 +n01531178 +n02116738 +n01950731 +n02113624 +n04204238 +n02276258 +n07715103 +n03026506 +n02108551 +n02127052 +n02088466 +n02093256 +n02102040 +n03976657 +n04532670 +n03776460 +n03220513 +n03903868 +n03792972 +n03529860 +n02009229 +n02113624 +n02447366 +n03461385 +n02102318 +n04263257 +n02114855 +n02676566 +n03425413 +n03538406 +n03666591 +n03272010 +n07768694 +n04392985 +n04330267 +n03026506 +n07730033 +n02094258 +n04515003 +n04265275 +n13044778 +n02965783 +n02120505 +n02058221 +n03314780 +n02793495 +n02708093 +n03633091 +n03014705 +n01665541 +n02526121 +n04067472 +n04428191 +n07836838 +n02177972 +n01817953 +n04296562 +n04099969 +n03956157 +n02114367 +n02091635 +n02113978 +n03838899 +n02437616 +n04370456 +n02423022 +n02112706 +n02096585 +n02497673 +n04505470 +n02098286 +n02319095 +n04560804 +n03976657 +n04330267 +n02481823 +n04532670 +n12057211 +n03584254 +n04065272 +n04596742 +n02823428 +n01494475 +n03133878 +n07579787 +n04141975 +n03794056 +n03000684 +n04067472 +n02108422 +n04254777 +n01616318 +n03814906 +n03444034 +n04277352 +n04612504 +n02917067 +n03729826 +n02095314 +n03796401 +n04486054 +n03637318 +n02786058 +n03661043 +n03400231 +n02112350 +n03980874 +n04251144 +n01978287 +n03483316 +n03633091 +n04597913 +n02093647 +n02097474 +n02097130 +n03998194 +n01689811 +n04482393 +n02231487 +n04328186 +n03188531 +n02490219 +n04579432 +n09256479 +n03770439 +n07697537 +n02389026 +n04252225 +n03594945 +n04310018 +n01978455 +n03803284 +n03063689 +n01924916 +n03240683 +n03837869 +n02114712 +n02999410 +n04371774 +n03676483 +n02091467 +n03196217 +n03347037 +n04487081 +n03888257 +n03787032 +n01631663 +n03447721 +n02086079 +n01644373 +n09468604 +n07613480 +n04356056 +n04493381 +n06785654 +n03179701 +n01675722 +n04429376 +n02966193 +n03584254 +n03673027 +n03223299 +n03443371 +n02106382 +n04125021 +n03786901 +n04467665 +n03498962 +n03662601 +n02088632 +n02510455 +n12998815 +n02747177 +n04252077 +n12267677 +n04501370 +n02113978 +n03141823 +n01817953 +n03126707 +n03110669 +n02910353 +n03417042 +n09193705 +n02102318 +n01807496 +n02268443 +n01632777 +n02814533 +n07875152 +n01484850 +n02092339 +n02791124 +n04417672 +n03160309 +n02134418 +n03483316 +n01829413 +n02095889 +n07693725 +n04579145 +n03942813 +n02091134 +n04209239 +n07584110 +n04590129 +n03873416 +n02105056 +n02488291 +n04136333 +n01855032 +n04525305 +n04039381 +n02025239 +n03476991 +n01614925 +n01735189 +n02894605 +n04505470 +n02127052 +n12267677 +n02865351 +n03481172 +n02445715 +n02892767 +n02974003 +n03249569 +n01860187 +n01687978 +n03733805 +n03445777 +n02676566 +n07734744 +n03544143 +n03676483 +n03877845 +n03372029 +n03977966 +n02090721 +n03676483 +n02655020 +n02134418 +n02364673 +n02110627 +n03527444 +n04317175 +n02280649 +n02788148 +n02119789 +n02804610 +n04435653 +n02120505 +n02802426 +n02606052 +n07717410 +n03290653 +n03017168 +n02087046 +n02093647 +n04259630 +n01819313 +n03467068 +n02113712 +n03935335 +n02927161 +n02113186 +n03673027 +n04200800 +n04192698 +n01518878 +n03417042 +n02093754 +n02088364 +n02749479 +n01688243 +n04070727 +n04604644 +n02457408 +n06874185 +n04483307 +n02422106 +n01692333 +n02834397 +n03485794 +n02219486 +n01950731 +n02028035 +n01644900 +n03125729 +n12144580 +n01682714 +n03843555 +n03602883 +n02018795 +n03447447 +n02865351 +n03223299 +n03355925 +n04592741 +n02106662 +n02033041 +n01820546 +n03761084 +n02165105 +n02397096 +n02101556 +n04328186 +n03933933 +n03355925 +n04328186 +n03950228 +n03134739 +n03535780 +n01748264 +n04330267 +n02699494 +n01985128 +n02978881 +n04141327 +n02403003 +n02120079 +n07579787 +n02317335 +n02509815 +n04146614 +n01944390 +n04467665 +n02927161 +n12620546 +n02098286 +n01914609 +n02486410 +n02963159 +n03085013 +n04525305 +n04141076 +n01742172 +n01798484 +n02102480 +n01729322 +n03938244 +n02096585 +n04099969 +n02437616 +n03729826 +n01829413 +n03527444 +n04086273 +n02013706 +n03594734 +n02105855 +n04536866 +n02489166 +n02093991 +n02109525 +n01930112 +n01580077 +n02457408 +n04328186 +n01751748 +n03026506 +n04235860 +n02113023 +n03063689 +n01882714 +n03930630 +n03710721 +n04264628 +n04081281 +n04116512 +n04044716 +n01697457 +n04330267 +n02860847 +n02107908 +n04399382 +n03873416 +n04509417 +n03792972 +n02102318 +n01883070 +n07742313 +n02033041 +n12620546 +n03995372 +n02086646 +n03485794 +n07747607 +n02098413 +n03877472 +n02106550 +n04263257 +n02134418 +n04263257 +n04606251 +n01630670 +n02280649 +n02504013 +n02871525 +n04081281 +n03782006 +n01514668 +n02396427 +n02093428 +n02979186 +n04254777 +n04009552 +n03602883 +n07747607 +n04562935 +n02033041 +n04505470 +n02906734 +n03045698 +n01629819 +n04613696 +n07717556 +n02487347 +n01917289 +n01817953 +n07753275 +n02457408 +n02992529 +n01742172 +n03950228 +n03584254 +n02526121 +n01494475 +n02085936 +n02391049 +n04355933 +n03950228 +n03584829 +n02128385 +n01872401 +n02091467 +n03481172 +n04204347 +n03899768 +n02107312 +n02692877 +n04606251 +n03770679 +n07749582 +n01558993 +n02099712 +n03792782 +n03791053 +n04317175 +n02086079 +n02480855 +n01682714 +n04509417 +n03792972 +n02108551 +n02606052 +n03995372 +n04336792 +n02490219 +n07695742 +n12998815 +n03759954 +n04265275 +n02971356 +n03661043 +n02120505 +n01530575 +n03690938 +n02422106 +n02120079 +n07873807 +n04579432 +n03930313 +n09288635 +n02509815 +n03998194 +n03791053 +n01930112 +n03991062 +n02125311 +n02909870 +n07718747 +n01729322 +n02133161 +n03763968 +n03944341 +n01943899 +n02445715 +n04443257 +n02109047 +n04141327 +n03041632 +n01592084 +n02906734 +n01828970 +n03388549 +n01917289 +n02859443 +n02110958 +n03956157 +n02797295 +n02100583 +n02776631 +n03485407 +n04285008 +n03623198 +n01753488 +n03146219 +n03535780 +n12768682 +n12768682 +n02100583 +n03976657 +n04251144 +n03444034 +n03980874 +n02066245 +n01692333 +n03223299 +n04461696 +n09835506 +n02206856 +n13040303 +n02088094 +n02487347 +n03781244 +n03832673 +n02917067 +n01806567 +n03776460 +n04208210 +n04462240 +n02093428 +n02123045 +n03047690 +n04201297 +n02895154 +n04252225 +n03837869 +n01877812 +n03961711 +n01753488 +n02105505 +n02112018 +n02110627 +n02389026 +n02782093 +n02099712 +n03742115 +n04141076 +n01735189 +n02879718 +n03594734 +n04462240 +n02788148 +n02106166 +n03991062 +n01820546 +n04259630 +n04310018 +n15075141 +n03717622 +n03595614 +n03598930 +n02132136 +n03630383 +n03692522 +n04591157 +n04154565 +n02346627 +n02687172 +n07693725 +n02514041 +n02128757 +n02095314 +n01855032 +n03942813 +n03485407 +n13133613 +n03062245 +n03447447 +n02895154 +n04380533 +n02364673 +n03146219 +n02109961 +n02113799 +n02859443 +n01558993 +n02119789 +n01930112 +n04275548 +n03602883 +n02497673 +n02037110 +n03026506 +n07930864 +n04330267 +n02480495 +n02107683 +n03786901 +n01917289 +n03133878 +n04532670 +n01775062 +n03633091 +n03777568 +n01945685 +n03109150 +n03792972 +n02895154 +n04548362 +n02114855 +n03775071 +n07717556 +n02483362 +n02909870 +n02027492 +n07584110 +n03594734 +n03642806 +n03877845 +n03379051 +n02927161 +n04417672 +n04009552 +n04004767 +n02799071 +n03874599 +n01883070 +n03933933 +n03450230 +n01698640 +n03146219 +n02113023 +n03379051 +n03160309 +n01968897 +n03976467 +n04328186 +n02018207 +n02123597 +n02791124 +n01729977 +n04228054 +n02966687 +n02094258 +n03425413 +n01819313 +n02100236 +n02389026 +n02108551 +n02085620 +n03791053 +n03916031 +n01871265 +n01698640 +n02100877 +n03146219 +n03903868 +n03803284 +n04204238 +n04037443 +n02128925 +n03131574 +n02823428 +n09421951 +n03884397 +n07742313 +n03871628 +n01770081 +n04540053 +n03000134 +n02443114 +n04476259 +n04317175 +n02091032 +n07248320 +n04146614 +n04532106 +n07920052 +n02484975 +n04612504 +n01530575 +n03929660 +n04540053 +n01796340 +n01828970 +n04162706 +n03481172 +n03983396 +n02777292 +n02018795 +n02869837 +n02835271 +n03201208 +n01518878 +n12057211 +n03787032 +n02641379 +n04554684 +n02791124 +n01819313 +n02389026 +n04090263 +n03908618 +n03792972 +n02484975 +n07590611 +n01530575 +n12985857 +n09229709 +n01755581 +n03627232 +n02123159 +n03775546 +n04596742 +n04346328 +n02669723 +n07753592 +n07613480 +n03884397 +n02892201 +n01924916 +n04467665 +n02488291 +n03868242 +n02356798 +n04265275 +n02077923 +n02102973 +n03457902 +n02190166 +n03259280 +n02105162 +n02091831 +n02256656 +n01872401 +n02493793 +n02408429 +n02106550 +n03929660 +n03325584 +n04332243 +n04270147 +n01630670 +n03250847 +n02114367 +n02106166 +n03134739 +n02814860 +n02110063 +n03903868 +n02395406 +n04311174 +n03532672 +n02840245 +n01986214 +n04429376 +n02119022 +n03218198 +n02783161 +n03770439 +n02089867 +n02966687 +n03658185 +n09193705 +n03085013 +n02971356 +n04049303 +n11939491 +n02105641 +n03494278 +n02364673 +n01534433 +n01735189 +n02105855 +n03743016 +n07718472 +n02113799 +n04443257 +n02096294 +n02128925 +n02264363 +n03796401 +n02444819 +n03770679 +n02093647 +n03483316 +n02107574 +n04127249 +n02978881 +n13054560 +n02823750 +n03794056 +n03000684 +n01496331 +n01807496 +n02791270 +n01860187 +n03218198 +n02364673 +n03498962 +n04153751 +n01688243 +n03388183 +n01968897 +n02172182 +n02112018 +n02883205 +n03854065 +n12267677 +n02094258 +n04254120 +n01855672 +n02100877 +n03344393 +n07693725 +n02669723 +n02264363 +n03763968 +n03637318 +n04447861 +n01984695 +n12267677 +n04335435 +n02120505 +n02104365 +n03450230 +n04286575 +n03207941 +n02106166 +n03325584 +n03793489 +n03788365 +n03877845 +n02190166 +n02051845 +n02100583 +n02104029 +n06359193 +n01514859 +n02106550 +n02165456 +n02276258 +n01514859 +n03485407 +n01632777 +n02408429 +n03124043 +n03717622 +n04252225 +n04517823 +n03425413 +n04310018 +n03017168 +n03832673 +n01770081 +n03127925 +n02089867 +n03461385 +n03485407 +n01592084 +n02256656 +n03146219 +n01795545 +n03947888 +n07693725 +n04483307 +n02002556 +n04532670 +n04049303 +n02892201 +n03857828 +n01494475 +n01601694 +n04131690 +n02666196 +n02098286 +n02641379 +n04228054 +n03980874 +n04590129 +n01616318 +n03690938 +n04127249 +n03345487 +n02113023 +n01749939 +n04229816 +n02927161 +n03956157 +n02111500 +n01756291 +n02492035 +n02119022 +n02443114 +n02950826 +n02319095 +n04346328 +n02128757 +n03998194 +n02667093 +n01943899 +n04467665 +n01530575 +n01614925 +n04346328 +n02093754 +n03733805 +n03742115 +n03197337 +n02107908 +n01737021 +n02281787 +n03141823 +n04254120 +n01532829 +n02526121 +n02966687 +n02484975 +n03832673 +n02113799 +n03958227 +n04350905 +n03623198 +n06874185 +n03337140 +n02097658 +n04311174 +n04201297 +n03908714 +n01740131 +n03929855 +n02509815 +n03903868 +n03658185 +n01843065 +n04557648 +n04392985 +n02454379 +n02493793 +n04275548 +n03220513 +n02606052 +n04118776 +n02514041 +n07684084 +n03388183 +n02794156 +n01632777 +n04238763 +n04372370 +n03876231 +n02948072 +n02096437 +n02497673 +n03843555 +n07565083 +n02097130 +n04509417 +n03255030 +n02129165 +n01682714 +n07753275 +n09472597 +n02134418 +n02219486 +n02097047 +n03063689 +n02091467 +n03781244 +n02807133 +n03814906 +n04355338 +n04579145 +n03272010 +n02086646 +n02106662 +n03956157 +n02783161 +n02112137 +n03188531 +n03126707 +n01608432 +n03337140 +n01847000 +n04125021 +n04147183 +n07720875 +n02319095 +n02510455 +n04311174 +n03584254 +n04542943 +n02102480 +n02114712 +n02268443 +n07718472 +n03792972 +n03724870 +n04239074 +n02091134 +n02129604 +n03127925 +n02086646 +n03207941 +n01819313 +n04522168 +n03271574 +n04487394 +n03710193 +n02105855 +n03131574 +n02105251 +n02095889 +n03384352 +n07880968 +n02259212 +n04069434 +n01669191 +n03710193 +n01855672 +n13037406 +n01484850 +n04476259 +n03871628 +n01774750 +n02108551 +n02090622 +n03733281 +n03724870 +n03976657 +n02099267 +n04127249 +n02097474 +n02056570 +n01795545 +n07714571 +n02107142 +n01608432 +n02113023 +n04486054 +n03876231 +n04270147 +n03461385 +n13040303 +n02102318 +n02910353 +n02094114 +n02786058 +n02992211 +n02396427 +n04344873 +n02097130 +n01443537 +n04325704 +n02093428 +n04258138 +n07584110 +n03443371 +n03481172 +n02110341 +n04141975 +n02226429 +n02281406 +n04141327 +n04118538 +n02037110 +n02226429 +n01692333 +n03916031 +n02787622 +n03594945 +n07860988 +n03729826 +n04515003 +n04612504 +n02007558 +n01560419 +n02951358 +n02837789 +n04456115 +n04239074 +n02094433 +n04553703 +n03045698 +n03874599 +n03595614 +n02514041 +n03876231 +n04467665 +n04146614 +n02089973 +n04005630 +n04266014 +n04074963 +n03527444 +n04355338 +n09246464 +n03980874 +n01990800 +n03697007 +n13133613 +n07613480 +n02655020 +n03240683 +n04111531 +n01871265 +n01695060 +n03478589 +n04265275 +n02094433 +n02009229 +n02708093 +n03447447 +n03216828 +n04371430 +n03991062 +n02607072 +n02481823 +n02102318 +n09256479 +n02123597 +n02927161 +n01737021 +n01675722 +n11939491 +n03937543 +n03729826 +n01820546 +n01847000 +n02112137 +n01675722 +n04613696 +n02974003 +n03384352 +n03627232 +n04429376 +n01756291 +n03496892 +n02398521 +n02168699 +n03000247 +n01739381 +n04371430 +n04335435 +n03532672 +n02441942 +n03400231 +n03793489 +n01795545 +n01740131 +n02110806 +n03063599 +n02095314 +n04579432 +n04591157 +n02321529 +n03661043 +n01440764 +n04228054 +n04462240 +n03877472 +n03720891 +n02514041 +n03272562 +n01601694 +n02091467 +n04041544 +n03796401 +n03594734 +n02089078 +n02493793 +n01440764 +n09399592 +n03775071 +n04296562 +n02099849 +n02804610 +n03384352 +n02088632 +n04026417 +n02794156 +n01968897 +n02133161 +n03777754 +n02494079 +n02107142 +n03710193 +n02640242 +n04209133 +n02443114 +n03259280 +n02172182 +n02089078 +n04049303 +n02093647 +n06785654 +n03733131 +n03476991 +n04259630 +n01768244 +n13037406 +n02168699 +n02013706 +n02089078 +n01817953 +n02280649 +n02877765 +n04273569 +n02097209 +n06785654 +n02104365 +n02107908 +n02484975 +n02906734 +n09468604 +n01632777 +n01494475 +n01983481 +n04372370 +n02364673 +n02730930 +n02100583 +n04127249 +n03355925 +n02108089 +n03197337 +n03857828 +n01496331 +n02110341 +n04074963 +n02087046 +n03000684 +n03485794 +n02500267 +n02105162 +n03425413 +n01944390 +n02112018 +n04005630 +n01582220 +n04275548 +n07754684 +n02011460 +n02132136 +n01748264 +n04228054 +n02980441 +n02113624 +n04597913 +n02123159 +n02027492 +n04590129 +n02114548 +n03208938 +n02099267 +n03538406 +n03218198 +n04254120 +n03337140 +n02089078 +n02701002 +n02086240 +n02088632 +n01943899 +n13052670 +n04606251 +n09229709 +n01687978 +n03929660 +n02093754 +n01729322 +n02107908 +n07715103 +n03773504 +n04592741 +n02107908 +n02264363 +n04154565 +n02098105 +n03485794 +n02791270 +n06874185 +n02488702 +n03014705 +n03657121 +n03854065 +n02107574 +n02669723 +n03950228 +n02317335 +n04133789 +n01685808 +n03933933 +n02097047 +n02011460 +n01819313 +n03982430 +n01784675 +n03670208 +n03220513 +n04118538 +n02782093 +n02783161 +n03496892 +n02107574 +n04040759 +n02013706 +n02777292 +n01775062 +n01748264 +n03018349 +n04111531 +n02089867 +n09246464 +n04548280 +n07734744 +n03291819 +n04552348 +n03871628 +n07753113 +n01729322 +n07715103 +n04596742 +n02128385 +n03976467 +n04548280 +n02497673 +n02134418 +n02105251 +n03970156 +n01749939 +n01795545 +n01855032 +n02395406 +n02098413 +n02111500 +n02895154 +n07565083 +n03742115 +n02108089 +n02321529 +n02971356 +n02437616 +n03208938 +n01667114 +n02226429 +n03877845 +n02910353 +n04070727 +n04152593 +n01883070 +n02870880 +n02504458 +n04243546 +n02096051 +n03899768 +n02321529 +n03877845 +n03450230 +n03290653 +n01664065 +n03908714 +n01537544 +n02088238 +n01882714 +n01773549 +n04418357 +n02727426 +n01872401 +n02106382 +n03991062 +n02017213 +n02018207 +n04370456 +n02219486 +n02669723 +n01694178 +n01784675 +n03443371 +n02114548 +n01806567 +n04090263 +n07932039 +n01608432 +n02281406 +n04238763 +n01664065 +n02028035 +n01917289 +n03793489 +n04209239 +n03042490 +n03400231 +n02356798 +n03065424 +n04335435 +n01664065 +n01692333 +n07880968 +n03297495 +n02841315 +n03095699 +n07697313 +n09399592 +n01917289 +n03724870 +n13133613 +n03787032 +n02493793 +n03843555 +n01629819 +n03843555 +n04461696 +n01669191 +n03976657 +n02097047 +n03773504 +n02951585 +n04398044 +n03599486 +n03250847 +n03796401 +n01737021 +n02776631 +n03599486 +n02110806 +n04254680 +n02138441 +n02483362 +n02747177 +n03733805 +n04118538 +n01829413 +n02112137 +n02102318 +n02097474 +n02119789 +n04136333 +n04579432 +n02493509 +n01667778 +n02442845 +n02097209 +n03404251 +n02488291 +n02091032 +n01882714 +n04081281 +n02963159 +n02088632 +n01491361 +n04380533 +n04423845 +n01629819 +n03956157 +n04548362 +n02804610 +n04310018 +n04251144 +n07860988 +n02692877 +n03938244 +n01484850 +n04325704 +n01560419 +n02916936 +n02442845 +n03998194 +n04330267 +n03425413 +n07932039 +n01984695 +n03345487 +n03259280 +n07768694 +n02444819 +n01675722 +n02328150 +n04070727 +n04423845 +n03729826 +n07684084 +n03485794 +n03498962 +n01753488 +n03958227 +n02895154 +n03100240 +n02110806 +n04118776 +n02105056 +n03874293 +n04037443 +n03496892 +n07745940 +n03871628 +n03372029 +n02100735 +n02132136 +n03623198 +n03666591 +n02823750 +n01735189 +n02106382 +n07697537 +n02454379 +n04311004 +n03110669 +n04009552 +n02074367 +n02442845 +n02099601 +n09246464 +n03814906 +n04049303 +n01749939 +n03803284 +n02667093 +n03908714 +n04409515 +n03290653 +n07730033 +n02268443 +n03028079 +n02514041 +n04592741 +n07720875 +n02988304 +n02606052 +n03877472 +n01798484 +n03742115 +n04461696 +n02917067 +n01629819 +n04486054 +n04548362 +n02860847 +n02107683 +n01944390 +n03786901 +n04044716 +n01824575 +n01440764 +n02279972 +n01914609 +n03272562 +n07590611 +n01728572 +n01687978 +n03791053 +n01518878 +n02950826 +n03982430 +n02966193 +n03841143 +n02672831 +n02787622 +n02165105 +n04525038 +n03662601 +n12057211 +n04522168 +n04613696 +n02088632 +n01985128 +n09472597 +n03271574 +n01687978 +n04147183 +n07875152 +n01580077 +n03393912 +n03903868 +n04074963 +n03788365 +n01843065 +n03690938 +n02105056 +n04525305 +n01631663 +n02097047 +n02486410 +n04152593 +n02879718 +n04443257 +n02102040 +n02093859 +n02127052 +n09332890 +n01770393 +n03527444 +n03697007 +n04515003 +n07873807 +n04429376 +n03991062 +n03085013 +n01828970 +n01608432 +n03930313 +n02105641 +n01756291 +n02500267 +n04039381 +n02168699 +n03259280 +n01855032 +n10565667 +n02115641 +n04515003 +n02669723 +n02988304 +n03825788 +n02025239 +n03706229 +n01914609 +n03344393 +n04049303 +n03259280 +n02091244 +n02514041 +n03065424 +n12057211 +n02027492 +n04118538 +n04141076 +n03899768 +n04462240 +n02096051 +n02978881 +n02114855 +n04509417 +n04505470 +n03201208 +n01986214 +n02417914 +n01677366 +n07747607 +n04409515 +n01685808 +n04599235 +n03187595 +n03657121 +n15075141 +n04372370 +n02966687 +n01820546 +n03344393 +n03476991 +n03763968 +n04070727 +n03041632 +n01877812 +n07248320 +n07875152 +n02892767 +n03355925 +n01685808 +n04228054 +n03843555 +n01755581 +n04347754 +n02277742 +n03000247 +n07742313 +n07875152 +n03075370 +n02799071 +n03133878 +n06596364 +n01806143 +n03930313 +n03930313 +n02730930 +n01773797 +n03902125 +n03721384 +n02951358 +n02119022 +n01744401 +n02112706 +n02396427 +n03633091 +n01514668 +n03791053 +n02395406 +n04370456 +n03657121 +n02096585 +n02107312 +n03970156 +n03126707 +n02105251 +n02442845 +n04461696 +n07715103 +n03873416 +n01677366 +n02012849 +n03527444 +n01798484 +n04562935 +n02279972 +n02423022 +n03992509 +n01592084 +n03788195 +n02259212 +n04462240 +n03929660 +n02090622 +n04254120 +n01592084 +n02109961 +n03769881 +n02268443 +n02909870 +n01641577 +n04550184 +n04507155 +n01630670 +n04152593 +n02090379 +n01983481 +n09421951 +n04517823 +n01744401 +n07745940 +n01843383 +n03476684 +n01735189 +n03930313 +n03916031 +n02093991 +n03207743 +n02787622 +n02106166 +n04398044 +n04428191 +n04209133 +n02085620 +n09835506 +n01871265 +n03459775 +n02089973 +n02643566 +n02481823 +n02123159 +n07875152 +n04557648 +n03196217 +n04033995 +n02037110 +n01955084 +n03089624 +n01751748 +n02099429 +n03325584 +n03445777 +n03902125 +n02116738 +n02799071 +n02843684 +n03109150 +n02869837 +n06794110 +n03908618 +n02105251 +n02790996 +n02966687 +n09256479 +n02939185 +n04417672 +n02113624 +n04266014 +n02174001 +n02483362 +n03127925 +n03717622 +n01744401 +n01739381 +n02606052 +n03290653 +n04330267 +n02486410 +n02457408 +n04355338 +n01498041 +n02134418 +n01440764 +n04552348 +n02319095 +n03781244 +n07730033 +n04525038 +n02018795 +n03494278 +n04589890 +n01829413 +n04456115 +n04118776 +n02687172 +n02992529 +n07932039 +n03075370 +n04557648 +n01728920 +n01688243 +n02443484 +n03843555 +n03786901 +n03016953 +n02536864 +n04125021 +n01514668 +n04461696 +n01983481 +n02493509 +n07614500 +n01776313 +n02091467 +n02106030 +n02814860 +n02002556 +n01818515 +n03160309 +n02092339 +n02013706 +n01753488 +n01739381 +n02981792 +n01753488 +n02704792 +n09332890 +n02317335 +n03255030 +n04201297 +n02093256 +n01688243 +n03792782 +n03028079 +n01944390 +n02107908 +n03803284 +n03775546 +n02128757 +n04542943 +n04560804 +n02514041 +n04204347 +n02916936 +n03344393 +n02364673 +n03942813 +n01614925 +n02494079 +n04542943 +n07742313 +n02490219 +n03843555 +n02281406 +n02493793 +n02123597 +n04613696 +n01796340 +n07753592 +n03384352 +n03916031 +n03908714 +n03992509 +n04201297 +n03637318 +n02977058 +n02091032 +n02494079 +n03673027 +n04548362 +n01950731 +n03721384 +n02999410 +n02483362 +n02111277 +n03709823 +n02087046 +n03929660 +n07930864 +n03954731 +n03063599 +n03692522 +n02018207 +n03788195 +n04040759 +n02011460 +n07871810 +n03690938 +n04486054 +n01986214 +n04591713 +n04127249 +n01807496 +n02095570 +n01981276 +n02128925 +n02992529 +n02815834 +n01698640 +n01632458 +n02492660 +n02319095 +n03938244 +n03876231 +n01798484 +n03666591 +n02110806 +n03782006 +n01943899 +n02643566 +n04120489 +n04399382 +n02085782 +n04389033 +n07714571 +n01614925 +n03494278 +n04141076 +n03388043 +n04118776 +n03291819 +n02389026 +n04209133 +n01685808 +n03769881 +n04074963 +n04458633 +n04532670 +n02484975 +n07579787 +n02058221 +n03000134 +n01704323 +n04044716 +n03000684 +n03179701 +n07716906 +n01518878 +n02497673 +n03445924 +n02093647 +n02410509 +n03026506 +n04153751 +n04141076 +n03532672 +n04201297 +n07836838 +n03188531 +n02486410 +n04275548 +n02133161 +n03394916 +n02098105 +n04376876 +n02106382 +n03483316 +n02490219 +n03032252 +n03770439 +n02025239 +n03840681 +n03496892 +n03633091 +n02837789 +n03126707 +n02104365 +n04584207 +n04347754 +n04243546 +n02110185 +n02865351 +n02167151 +n02871525 +n02088466 +n02138441 +n02804610 +n03935335 +n02782093 +n01744401 +n09472597 +n03445924 +n01737021 +n02102480 +n02086646 +n02137549 +n02481823 +n02107574 +n02096437 +n02701002 +n03272562 +n02978881 +n01737021 +n01824575 +n03887697 +n02097298 +n03692522 +n02437312 +n03814639 +n02236044 +n02094433 +n07742313 +n04398044 +n03255030 +n04258138 +n02422106 +n06785654 +n02319095 +n03692522 +n04350905 +n04252077 +n03804744 +n03131574 +n02107312 +n07583066 +n02006656 +n01608432 +n04428191 +n04346328 +n02493793 +n04040759 +n03733281 +n02093754 +n01677366 +n02481823 +n11939491 +n13044778 +n04070727 +n02500267 +n03347037 +n03942813 +n03218198 +n02747177 +n04286575 +n01530575 +n02437312 +n02090379 +n04447861 +n01843383 +n01629819 +n01871265 +n02077923 +n02105162 +n03873416 +n02106662 +n02096437 +n02132136 +n03000684 +n01917289 +n02777292 +n02077923 +n02110063 +n02027492 +n02124075 +n04467665 +n04192698 +n04525305 +n12057211 +n02894605 +n02108551 +n04392985 +n01742172 +n02825657 +n04336792 +n04265275 +n02172182 +n02483362 +n02168699 +n02088094 +n02128925 +n03764736 +n02113712 +n03197337 +n03393912 +n03804744 +n07697313 +n03770679 +n02795169 +n02104365 +n10148035 +n01534433 +n03089624 +n10565667 +n04536866 +n02259212 +n01828970 +n01667114 +n02110958 +n03841143 +n03325584 +n03450230 +n04423845 +n04149813 +n02802426 +n03876231 +n03868242 +n07614500 +n04356056 +n02128925 +n03379051 +n02099712 +n02870880 +n02085936 +n13044778 +n03388043 +n02113712 +n02113624 +n03141823 +n02110627 +n03394916 +n04548362 +n02927161 +n01914609 +n04275548 +n03271574 +n03527444 +n01530575 +n03775546 +n02965783 +n02105505 +n03982430 +n04258138 +n03201208 +n07684084 +n02437616 +n03388043 +n04389033 +n02841315 +n03250847 +n02480495 +n01749939 +n12998815 +n02114712 +n02056570 +n03602883 +n02281406 +n02086079 +n03769881 +n03791053 +n02165456 +n02747177 +n13040303 +n04023962 +n02948072 +n04243546 +n02690373 +n04442312 +n03837869 +n04417672 +n13054560 +n02106166 +n01776313 +n02667093 +n07565083 +n13133613 +n07730033 +n02488291 +n04423845 +n03623198 +n03977966 +n03866082 +n02100735 +n02834397 +n04461696 +n02089078 +n01694178 +n01944390 +n03706229 +n03223299 +n03980874 +n03991062 +n04004767 +n04201297 +n03761084 +n03443371 +n02033041 +n02138441 +n01924916 +n04133789 +n06359193 +n02091032 +n02981792 +n03180011 +n04522168 +n04317175 +n02106662 +n01847000 +n12768682 +n03496892 +n02892767 +n07684084 +n01877812 +n03345487 +n03495258 +n03661043 +n01990800 +n03417042 +n04330267 +n01443537 +n02397096 +n01582220 +n01910747 +n02025239 +n03724870 +n02787622 +n02892201 +n02086079 +n04417672 +n04550184 +n04525305 +n03877845 +n07718472 +n04266014 +n02396427 +n01773797 +n02009912 +n01795545 +n02120079 +n02105505 +n04252077 +n07734744 +n02793495 +n04372370 +n02667093 +n01629819 +n02493793 +n02640242 +n01748264 +n02134418 +n04335435 +n02966687 +n01608432 +n03325584 +n02013706 +n02364673 +n02791124 +n02979186 +n04493381 +n03045698 +n03032252 +n02092339 +n01806143 +n03535780 +n02319095 +n04562935 +n01873310 +n02279972 +n02124075 +n03482405 +n02056570 +n02823750 +n02823428 +n01443537 +n02860847 +n02690373 +n03825788 +n04461696 +n02106030 +n01983481 +n01632777 +n04562935 +n01847000 +n03661043 +n03272010 +n02113978 +n04550184 +n02699494 +n04505470 +n01629819 +n03944341 +n03792782 +n02071294 +n02114367 +n04536866 +n02910353 +n03355925 +n03908618 +n02786058 +n02097047 +n02088094 +n02089867 +n04356056 +n02095570 +n01756291 +n02441942 +n04208210 +n07693725 +n02088094 +n06596364 +n02992529 +n04081281 +n03467068 +n01847000 +n01693334 +n03680355 +n04501370 +n03763968 +n01917289 +n02669723 +n01924916 +n02110958 +n04041544 +n02110806 +n02134084 +n02130308 +n02443484 +n02843684 +n01968897 +n01855672 +n02113799 +n03584829 +n12768682 +n01531178 +n03197337 +n01784675 +n03075370 +n04252077 +n03935335 +n02999410 +n07716358 +n04238763 +n07753275 +n02279972 +n02666196 +n02007558 +n02105251 +n02226429 +n01751748 +n02127052 +n04579145 +n02051845 +n02445715 +n02102177 +n03759954 +n03179701 +n02007558 +n03649909 +n03992509 +n03447721 +n02916936 +n03196217 +n01883070 +n01983481 +n03000684 +n01756291 +n02111277 +n03857828 +n04479046 +n02177972 +n04067472 +n03444034 +n03854065 +n03720891 +n04208210 +n01740131 +n04423845 +n01855672 +n03388549 +n02206856 +n04606251 +n03887697 +n02865351 +n04579145 +n01496331 +n02804414 +n02787622 +n04004767 +n02097047 +n02490219 +n03529860 +n03680355 +n03942813 +n01632458 +n03733281 +n03584829 +n02797295 +n02966687 +n01824575 +n07831146 +n04366367 +n03666591 +n03788195 +n02966193 +n03042490 +n06874185 +n03345487 +n02123597 +n02895154 +n01664065 +n01819313 +n12985857 +n01855672 +n02095314 +n02102973 +n02966193 +n02115913 +n03590841 +n02093991 +n02169497 +n02814860 +n02089078 +n02138441 +n02113712 +n02883205 +n01601694 +n01774384 +n04111531 +n03000134 +n02088364 +n02489166 +n01914609 +n04009552 +n03680355 +n03843555 +n03950228 +n03680355 +n04597913 +n04347754 +n04116512 +n02747177 +n01514668 +n02840245 +n03483316 +n07715103 +n04153751 +n02500267 +n03998194 +n15075141 +n03930313 +n02112706 +n03888257 +n02110063 +n02108000 +n02102973 +n02483708 +n02097474 +n02011460 +n02492035 +n02814860 +n02009229 +n03877845 +n06596364 +n07248320 +n04344873 +n04536866 +n02823750 +n03291819 +n01770081 +n02892767 +n03481172 +n02066245 +n04370456 +n02264363 +n03670208 +n02397096 +n03075370 +n02087394 +n02536864 +n04599235 +n03982430 +n04523525 +n04522168 +n13052670 +n03633091 +n04067472 +n02988304 +n04486054 +n01677366 +n02492660 +n03127747 +n02112350 +n04336792 +n03417042 +n13133613 +n01608432 +n02865351 +n02129165 +n01773157 +n04258138 +n04041544 +n04252077 +n03197337 +n03794056 +n03877845 +n04346328 +n02086910 +n01694178 +n03445924 +n04532670 +n03781244 +n04141975 +n03124170 +n03874293 +n03498962 +n01739381 +n02791270 +n07892512 +n03444034 +n02105162 +n01734418 +n04070727 +n02916936 +n03840681 +n04399382 +n07749582 +n02480495 +n04515003 +n01688243 +n02107142 +n01914609 +n01742172 +n07753113 +n01828970 +n01797886 +n04606251 +n03062245 +n03400231 +n03483316 +n02978881 +n02109047 +n02795169 +n01728920 +n03530642 +n04209133 +n02105641 +n02111277 +n01737021 +n02092339 +n04589890 +n02454379 +n12267677 +n03627232 +n01990800 +n02109047 +n03314780 +n01798484 +n03691459 +n02669723 +n03781244 +n03467068 +n01770081 +n01796340 +n03930313 +n02226429 +n02514041 +n02356798 +n07880968 +n04131690 +n02807133 +n03841143 +n02346627 +n02397096 +n02963159 +n02641379 +n02093428 +n01537544 +n02814860 +n04074963 +n02109525 +n02085782 +n02102973 +n02319095 +n02437616 +n02395406 +n02488291 +n03777568 +n03710193 +n09421951 +n03838899 +n04004767 +n02011460 +n02526121 +n02112018 +n02687172 +n02825657 +n01882714 +n01968897 +n03196217 +n02101556 +n04389033 +n04127249 +n04254680 +n03063689 +n04125021 +n01689811 +n04325704 +n02137549 +n10565667 +n02391049 +n07836838 +n04584207 +n02423022 +n02088364 +n03961711 +n02457408 +n03535780 +n02412080 +n03017168 +n02979186 +n02676566 +n01860187 +n02423022 +n03891332 +n01494475 +n01704323 +n04423845 +n03976467 +n02091831 +n02101006 +n01491361 +n03063689 +n01910747 +n01784675 +n03967562 +n02094114 +n04065272 +n01534433 +n04372370 +n02879718 +n02871525 +n02168699 +n01784675 +n03492542 +n02101388 +n07718472 +n02110185 +n12998815 +n03127925 +n03207743 +n12057211 +n07565083 +n04525038 +n04118776 +n01616318 +n02965783 +n02206856 +n03899768 +n01687978 +n03379051 +n02104029 +n04229816 +n03124170 +n02281406 +n03032252 +n02101556 +n02980441 +n03485794 +n04366367 +n02492035 +n03599486 +n04548362 +n03764736 +n07760859 +n01978287 +n04505470 +n02488291 +n02782093 +n03417042 +n02486261 +n03843555 +n02319095 +n02493509 +n01798484 +n03857828 +n03950228 +n02791124 +n03207941 +n01751748 +n03916031 +n04074963 +n03724870 +n13133613 +n03937543 +n03255030 +n04372370 +n02168699 +n03920288 +n02514041 +n02112350 +n01443537 +n01807496 +n04070727 +n01675722 +n01518878 +n03599486 +n04162706 +n04147183 +n01795545 +n01698640 +n01873310 +n07718472 +n04033995 +n04418357 +n04429376 +n02110806 +n01944390 +n09835506 +n02092339 +n02948072 +n01978455 +n02100236 +n03710193 +n04517823 +n04154565 +n03761084 +n02346627 +n02672831 +n02422106 +n01664065 +n04125021 +n03450230 +n03980874 +n03642806 +n03866082 +n01494475 +n01910747 +n02229544 +n01770393 +n02114367 +n07920052 +n01872401 +n02109047 +n03884397 +n02704792 +n07716906 +n03843555 +n03095699 +n04532106 +n02093754 +n02879718 +n04515003 +n07718747 +n02094258 +n03838899 +n03126707 +n07730033 +n03085013 +n03680355 +n02123045 +n02279972 +n02086240 +n02134418 +n03388549 +n03637318 +n03345487 +n04517823 +n03476991 +n07734744 +n03602883 +n04371774 +n04229816 +n03249569 +n02676566 +n02011460 +n02916936 +n01806567 +n02814533 +n01560419 +n03970156 +n01978455 +n02823750 +n02883205 +n02110627 +n03787032 +n10148035 +n04596742 +n04033995 +n02444819 +n03954731 +n04311174 +n02095889 +n01914609 +n03710193 +n02782093 +n01820546 +n02091134 +n04355933 +n02389026 +n04090263 +n04254120 +n01820546 +n01641577 +n02106550 +n02326432 +n03532672 +n03065424 +n07836838 +n02786058 +n04235860 +n04264628 +n02091244 +n03773504 +n02013706 +n04458633 +n04270147 +n07711569 +n04325704 +n03017168 +n02112350 +n04192698 +n02769748 +n02096051 +n04149813 +n02483708 +n04040759 +n04265275 +n02071294 +n07873807 +n02488702 +n04200800 +n02134084 +n04418357 +n04552348 +n02999410 +n02817516 +n01981276 +n02233338 +n02504458 +n02116738 +n03633091 +n03372029 +n07714990 +n04552348 +n02504458 +n02172182 +n03691459 +n02089078 +n03594734 +n02643566 +n01665541 +n01818515 +n02802426 +n03662601 +n03495258 +n01773797 +n02206856 +n03710721 +n04442312 +n02137549 +n03657121 +n04311004 +n03775071 +n03630383 +n02412080 +n01443537 +n03874293 +n03874599 +n07590611 +n04162706 +n02108551 +n07749582 +n02804414 +n03777754 +n03584829 +n02699494 +n02097298 +n03661043 +n01774750 +n03594945 +n04005630 +n07697313 +n02009229 +n03529860 +n04355933 +n03899768 +n03337140 +n02110958 +n02092339 +n02097130 +n03337140 +n01818515 +n03345487 +n01496331 +n03124043 +n02095570 +n01558993 +n03814906 +n03216828 +n03930630 +n06874185 +n02113799 +n07720875 +n03887697 +n03697007 +n02231487 +n02669723 +n02480855 +n04366367 +n03706229 +n03529860 +n03924679 +n03527444 +n01770393 +n04493381 +n04532670 +n02883205 +n04192698 +n02129604 +n02669723 +n04259630 +n02091831 +n09332890 +n01883070 +n04026417 +n03485407 +n01877812 +n01644900 +n09256479 +n04286575 +n01601694 +n04428191 +n03065424 +n03770439 +n02174001 +n02110341 +n02916936 +n04086273 +n03393912 +n02701002 +n03991062 +n01608432 +n04273569 +n04522168 +n07760859 +n02493793 +n02804414 +n02229544 +n04009552 +n03874599 +n03649909 +n07614500 +n02094433 +n02097298 +n03662601 +n03450230 +n02093256 +n04033995 +n02113023 +n09246464 +n01704323 +n02488702 +n02096294 +n04536866 +n07873807 +n03770439 +n04409515 +n04532106 +n04542943 +n07584110 +n02808304 +n03903868 +n03888605 +n02051845 +n02115641 +n02099267 +n03452741 +n03498962 +n01945685 +n01692333 +n03930630 +n02794156 +n04311004 +n03482405 +n04540053 +n09256479 +n02607072 +n02281406 +n03991062 +n02056570 +n04243546 +n03100240 +n01532829 +n03127747 +n02119022 +n02666196 +n03379051 +n04417672 +n07920052 +n03617480 +n01818515 +n03998194 +n03388183 +n02113799 +n04344873 +n03590841 +n04228054 +n04228054 +n02231487 +n03888257 +n04086273 +n02090622 +n03933933 +n02422106 +n03720891 +n02093991 +n04347754 +n01630670 +n03843555 +n03729826 +n01644900 +n02264363 +n03126707 +n12057211 +n04461696 +n02098286 +n02276258 +n04552348 +n01514668 +n04243546 +n02871525 +n02106382 +n02100583 +n02085936 +n04487081 +n03995372 +n01601694 +n02279972 +n03444034 +n07730033 +n02011460 +n02099601 +n04536866 +n03014705 +n02486261 +n04590129 +n04265275 +n03447447 +n02102177 +n03388043 +n01665541 +n03924679 +n06874185 +n03018349 +n02403003 +n03196217 +n02132136 +n01514859 +n02397096 +n02113186 +n03924679 +n02096437 +n07831146 +n04584207 +n03777568 +n02276258 +n02108915 +n04540053 +n03874293 +n02033041 +n04270147 +n02114367 +n07730033 +n02342885 +n03929660 +n03032252 +n02992211 +n03658185 +n02777292 +n02879718 +n02319095 +n07760859 +n03888257 +n02910353 +n03868863 +n04133789 +n04136333 +n04356056 +n02028035 +n03000134 +n03355925 +n04326547 +n02494079 +n04099969 +n02966193 +n04147183 +n02966193 +n07697313 +n03877472 +n02486261 +n02510455 +n07720875 +n03764736 +n04239074 +n02443484 +n07720875 +n02840245 +n03782006 +n02119789 +n04328186 +n02417914 +n03216828 +n02108551 +n02013706 +n01734418 +n03729826 +n01689811 +n04522168 +n02422106 +n04004767 +n12620546 +n04041544 +n04116512 +n03478589 +n02174001 +n04486054 +n02107142 +n02422699 +n03400231 +n07930864 +n04200800 +n01582220 +n07753592 +n02690373 +n07880968 +n03958227 +n01665541 +n01847000 +n12768682 +n03478589 +n02091467 +n02787622 +n02776631 +n03000247 +n04074963 +n03743016 +n03325584 +n09246464 +n03871628 +n01740131 +n09288635 +n02730930 +n03884397 +n03775546 +n02114712 +n07718472 +n01728920 +n02494079 +n01774750 +n03967562 +n07718747 +n02906734 +n03444034 +n02408429 +n02319095 +n04330267 +n02113624 +n02231487 +n04141076 +n04552348 +n03759954 +n04120489 +n02869837 +n03838899 +n02268443 +n02321529 +n04023962 +n03843555 +n04525038 +n02361337 +n03924679 +n02236044 +n01530575 +n02877765 +n01980166 +n03777568 +n04008634 +n04579145 +n07873807 +n03207743 +n03970156 +n04254680 +n03345487 +n02454379 +n03110669 +n01980166 +n02536864 +n04285008 +n07684084 +n01924916 +n02108915 +n04074963 +n03837869 +n01882714 +n03873416 +n02169497 +n02687172 +n02268853 +n02906734 +n03018349 +n04310018 +n02978881 +n01693334 +n04542943 +n03770679 +n02123045 +n02974003 +n02086646 +n01530575 +n03786901 +n03710193 +n03388183 +n02112350 +n02113186 +n01883070 +n04552348 +n04344873 +n01773157 +n02109961 +n02123159 +n04404412 +n01917289 +n02169497 +n03899768 +n03697007 +n03874599 +n02669723 +n07717556 +n04147183 +n03424325 +n03498962 +n07715103 +n01632777 +n02264363 +n03018349 +n01669191 +n04204238 +n01829413 +n03785016 +n01871265 +n02992529 +n04127249 +n01774384 +n13040303 +n02090721 +n07615774 +n02231487 +n03126707 +n04399382 +n02127052 +n02480495 +n04357314 +n04597913 +n04311174 +n04376876 +n03344393 +n04146614 +n01622779 +n04325704 +n03527444 +n07753275 +n02422699 +n03759954 +n01824575 +n01704323 +n04067472 +n01872401 +n02114712 +n02979186 +n07615774 +n02094433 +n02106550 +n01930112 +n02086079 +n07754684 +n02088238 +n03764736 +n02077923 +n01770081 +n03763968 +n03544143 +n03777568 +n03706229 +n07871810 +n02100583 +n02096585 +n03538406 +n02794156 +n04325704 +n04127249 +n02277742 +n03314780 +n13037406 +n02607072 +n07720875 +n02277742 +n02412080 +n13054560 +n02865351 +n03467068 +n03891251 +n02089973 +n02002724 +n02017213 +n02917067 +n01665541 +n07714990 +n03372029 +n03584254 +n03662601 +n03337140 +n02692877 +n02110627 +n04201297 +n04154565 +n03637318 +n03255030 +n07745940 +n02056570 +n03895866 +n02169497 +n01818515 +n04493381 +n03041632 +n02110627 +n04553703 +n02099429 +n09428293 +n03495258 +n02483708 +n04336792 +n02825657 +n03891251 +n01860187 +n09472597 +n01753488 +n04540053 +n02895154 +n02321529 +n03259280 +n01630670 +n03000134 +n03866082 +n01514859 +n07873807 +n02105056 +n01978455 +n02009912 +n03794056 +n03720891 +n03995372 +n02869837 +n02169497 +n03425413 +n04355338 +n02977058 +n02916936 +n03840681 +n04560804 +n03042490 +n07734744 +n03706229 +n01774384 +n03530642 +n02346627 +n02105251 +n02229544 +n04522168 +n03535780 +n02105505 +n02168699 +n02138441 +n04131690 +n02172182 +n02111129 +n02776631 +n03785016 +n03895866 +n02457408 +n03146219 +n02134084 +n02097130 +n02361337 +n07720875 +n01871265 +n02231487 +n07717556 +n04328186 +n04317175 +n03065424 +n02442845 +n03729826 +n02892201 +n02489166 +n03721384 +n02096437 +n02093647 +n03376595 +n01692333 +n02134084 +n01978287 +n01592084 +n02504458 +n03544143 +n04039381 +n02690373 +n01756291 +n03814639 +n03443371 +n03633091 +n02066245 +n03868242 +n02133161 +n01496331 +n02108915 +n03325584 +n03372029 +n02085782 +n04026417 +n02111500 +n03482405 +n04149813 +n02108551 +n03337140 +n03970156 +n02443484 +n03657121 +n03633091 +n01675722 +n02965783 +n03908714 +n03777754 +n03394916 +n06794110 +n02492660 +n02099429 +n01828970 +n04404412 +n01532829 +n02109047 +n07768694 +n02104365 +n01632777 +n02794156 +n02807133 +n07615774 +n01532829 +n13040303 +n04149813 +n01828970 +n03345487 +n02096585 +n03291819 +n07754684 +n02123597 +n04266014 +n02114855 +n02018207 +n04532106 +n04579432 +n09246464 +n02088364 +n07615774 +n04487394 +n04612504 +n07613480 +n02058221 +n03980874 +n02134418 +n01622779 +n04209239 +n02692877 +n01560419 +n02870880 +n03445924 +n02117135 +n04356056 +n02097047 +n02281406 +n04243546 +n02129604 +n02395406 +n02089973 +n09332890 +n07747607 +n09246464 +n04417672 +n02859443 +n02105251 +n02012849 +n03724870 +n04562935 +n02790996 +n02825657 +n02510455 +n03884397 +n04069434 +n01843383 +n01440764 +n02909870 +n04344873 +n13054560 +n03976657 +n04270147 +n02804610 +n03792972 +n01704323 +n01689811 +n03908714 +n03062245 +n03376595 +n02442845 +n04589890 +n02114855 +n04465501 +n01664065 +n07711569 +n02457408 +n02165105 +n02389026 +n03207743 +n04081281 +n04458633 +n01843065 +n04335435 +n03444034 +n04311174 +n02128385 +n01819313 +n02098413 +n02110341 +n06874185 +n02098413 +n02007558 +n02077923 +n04461696 +n01514859 +n03388549 +n03447721 +n03207743 +n02443114 +n01664065 +n03825788 +n02799071 +n01753488 +n03642806 +n01847000 +n09421951 +n02086910 +n02441942 +n03141823 +n01664065 +n03642806 +n02364673 +n03884397 +n02033041 +n04019541 +n04266014 +n07749582 +n01818515 +n02415577 +n02804414 +n04599235 +n01910747 +n02965783 +n04111531 +n03794056 +n02088364 +n03733805 +n02497673 +n04296562 +n01983481 +n04041544 +n07892512 +n02085936 +n03929855 +n02396427 +n03854065 +n02802426 +n01751748 +n01632458 +n03207941 +n02110627 +n04554684 +n03729826 +n02480495 +n01914609 +n04200800 +n02480495 +n01630670 +n03825788 +n04458633 +n07754684 +n01756291 +n02807133 +n02099712 +n03223299 +n03394916 +n02100735 +n04548362 +n01774750 +n03085013 +n02974003 +n04004767 +n02111129 +n02113799 +n02963159 +n04275548 +n06874185 +n02105855 +n03710193 +n02916936 +n03125729 +n04209239 +n04033995 +n07930864 +n03443371 +n04604644 +n03788195 +n04238763 +n02174001 +n03637318 +n07615774 +n04200800 +n02107142 +n03709823 +n03786901 +n02086079 +n03201208 +n03000684 +n04099969 +n02102480 +n01950731 +n07753113 +n02013706 +n04536866 +n02423022 +n02687172 +n04208210 +n04596742 +n02051845 +n01833805 +n02058221 +n03344393 +n03857828 +n01978287 +n04118538 +n03976657 +n03717622 +n02097130 +n09399592 +n01768244 +n02317335 +n04204238 +n01580077 +n02097298 +n03673027 +n02013706 +n02105251 +n07697313 +n03980874 +n02804610 +n02125311 +n03781244 +n02095570 +n03344393 +n02408429 +n02110627 +n02807133 +n02129604 +n04332243 +n04398044 +n13044778 +n02098413 +n02129604 +n03763968 +n03028079 +n02108000 +n03825788 +n02116738 +n04344873 +n03924679 +n02486261 +n02667093 +n03584254 +n04554684 +n07932039 +n01872401 +n02128757 +n02966687 +n02101556 +n03207941 +n04476259 +n07684084 +n02109525 +n02268443 +n03793489 +n02106662 +n04335435 +n03146219 +n01774384 +n03980874 +n01930112 +n03485794 +n03710193 +n04525305 +n03916031 +n07565083 +n02264363 +n03676483 +n04235860 +n02808304 +n03796401 +n12620546 +n02098286 +n02091831 +n02319095 +n02264363 +n04317175 +n04120489 +n02788148 +n02110341 +n04252077 +n07715103 +n04540053 +n03016953 +n02091244 +n02640242 +n04612504 +n03000134 +n02112706 +n01532829 +n02115913 +n02101556 +n02119789 +n04252225 +n03492542 +n03272010 +n03770679 +n01629819 +n04517823 +n04366367 +n02410509 +n03623198 +n03777754 +n03899768 +n04367480 +n04525305 +n03208938 +n02951358 +n03110669 +n04483307 +n04517823 +n02422699 +n04509417 +n03590841 +n09332890 +n01629819 +n04557648 +n09421951 +n13052670 +n01677366 +n02058221 +n02102318 +n03126707 +n04548280 +n03187595 +n02966687 +n03938244 +n02486261 +n02096177 +n02165105 +n02979186 +n04310018 +n01669191 +n04356056 +n01644373 +n03676483 +n04311174 +n03617480 +n02107908 +n04310018 +n02100236 +n03623198 +n03841143 +n02488702 +n04507155 +n02097130 +n02769748 +n03781244 +n02441942 +n03240683 +n02115641 +n02117135 +n02137549 +n02113023 +n02129165 +n04532106 +n04118538 +n01774750 +n02917067 +n03394916 +n04458633 +n01704323 +n04399382 +n02410509 +n02111277 +n02102177 +n03000247 +n02107683 +n04037443 +n03445777 +n04296562 +n02971356 +n04418357 +n02730930 +n03841143 +n01774384 +n03271574 +n02443114 +n12144580 +n02097298 +n02948072 +n04179913 +n02105251 +n03888605 +n03208938 +n04265275 +n09421951 +n02408429 +n02101388 +n02105056 +n07836838 +n04591713 +n02011460 +n04532106 +n01698640 +n04330267 +n04039381 +n04542943 +n02317335 +n02504013 +n01704323 +n01829413 +n04357314 +n04252077 +n01601694 +n02006656 +n03124043 +n02965783 +n02814533 +n03347037 +n03920288 +n03874599 +n02364673 +n03496892 +n01978455 +n03544143 +n04252077 +n03630383 +n03717622 +n03141823 +n04259630 +n03785016 +n02174001 +n02869837 +n04335435 +n02687172 +n01729977 +n02018795 +n01494475 +n03529860 +n02106166 +n04553703 +n04523525 +n02445715 +n03891332 +n02747177 +n03676483 +n02667093 +n07920052 +n02910353 +n02097209 +n03991062 +n04204238 +n02110341 +n02089867 +n01776313 +n02328150 +n03180011 +n07717410 +n03047690 +n04505470 +n03014705 +n01518878 +n01807496 +n04591713 +n02999410 +n04254777 +n02870880 +n02002556 +n02095889 +n02487347 +n03944341 +n03770679 +n03794056 +n03759954 +n02093991 +n01968897 +n03743016 +n03388183 +n03775546 +n02437312 +n04120489 +n03642806 +n02808440 +n04099969 +n03891332 +n03958227 +n02113799 +n03998194 +n02104029 +n03250847 +n02100877 +n07714990 +n03110669 +n02676566 +n03347037 +n03530642 +n10565667 +n02108000 +n03110669 +n03690938 +n02095314 +n02012849 +n02277742 +n01532829 +n04553703 +n02051845 +n04456115 +n03998194 +n02417914 +n03594734 +n01775062 +n02105855 +n03903868 +n02096294 +n04371774 +n02927161 +n03657121 +n03937543 +n04532106 +n01883070 +n01537544 +n02667093 +n02104029 +n02487347 +n02104365 +n02051845 +n04243546 +n02006656 +n02808304 +n04251144 +n02356798 +n02391049 +n07753275 +n02974003 +n03482405 +n09193705 +n01694178 +n02168699 +n12768682 +n03272562 +n03710193 +n03843555 +n03126707 +n03196217 +n06785654 +n04350905 +n07873807 +n04310018 +n02264363 +n02492660 +n10565667 +n04275548 +n04147183 +n04366367 +n02114855 +n02100236 +n04154565 +n02276258 +n03424325 +n03777568 +n03494278 +n01806143 +n03459775 +n03598930 +n03967562 +n03775546 +n04418357 +n02412080 +n04591157 +n01770081 +n03877472 +n01531178 +n03794056 +n04485082 +n03786901 +n01773797 +n04254680 +n02128925 +n02128757 +n02442845 +n02606052 +n02099429 +n04442312 +n01807496 +n02107312 +n03710637 +n02027492 +n03016953 +n02017213 +n12768682 +n04192698 +n02747177 +n04532106 +n01537544 +n04254777 +n03259280 +n02025239 +n09835506 +n02096437 +n04372370 +n02797295 +n03871628 +n02481823 +n03837869 +n02268443 +n04522168 +n03690938 +n04550184 +n03657121 +n02105251 +n01833805 +n01755581 +n07734744 +n01873310 +n03538406 +n01688243 +n03452741 +n02120505 +n02412080 +n04254120 +n04019541 +n02112706 +n02100735 +n03201208 +n03134739 +n02514041 +n04065272 +n02165105 +n04443257 +n04149813 +n03871628 +n02100236 +n02412080 +n02992211 +n02951358 +n03776460 +n02666196 +n03000134 +n12144580 +n03141823 +n02110341 +n02094114 +n02504458 +n04389033 +n02085936 +n04553703 +n03594734 +n09468604 +n03980874 +n07831146 +n03141823 +n13054560 +n01704323 +n02356798 +n03970156 +n02071294 +n06794110 +n02860847 +n03970156 +n11879895 +n04389033 +n01770393 +n02104365 +n02033041 +n07754684 +n02666196 +n03658185 +n03447447 +n03840681 +n01990800 +n03992509 +n02319095 +n04540053 +n04141975 +n03026506 +n02009229 +n07880968 +n03459775 +n02488291 +n02108551 +n03793489 +n03041632 +n03887697 +n12057211 +n07875152 +n01828970 +n01796340 +n03494278 +n02281787 +n01698640 +n01537544 +n02110185 +n04209133 +n02536864 +n07714990 +n02100236 +n04317175 +n04265275 +n01983481 +n01833805 +n02808440 +n01443537 +n07697313 +n02109525 +n03935335 +n03903868 +n04074963 +n01807496 +n03729826 +n04111531 +n07860988 +n04133789 +n03873416 +n03991062 +n03028079 +n03207743 +n02487347 +n03207941 +n03920288 +n02100735 +n02105855 +n03544143 +n02071294 +n03496892 +n03461385 +n01443537 +n04239074 +n03956157 +n04553703 +n04371430 +n12057211 +n04118776 +n02793495 +n02808304 +n03709823 +n02099267 +n03063599 +n03018349 +n02009912 +n03467068 +n03637318 +n12998815 +n04153751 +n03063599 +n02132136 +n02879718 +n02835271 +n03089624 +n01734418 +n02027492 +n04133789 +n01491361 +n03041632 +n02361337 +n03710637 +n02169497 +n02268443 +n03291819 +n02492660 +n04069434 +n03457902 +n04200800 +n04429376 +n01945685 +n02910353 +n02096177 +n04204347 +n03347037 +n01806567 +n02002724 +n01675722 +n04404412 +n03476684 +n03868242 +n01773157 +n02102040 +n02088094 +n02797295 +n07831146 +n03764736 +n03000684 +n02536864 +n01983481 +n02106550 +n04065272 +n01685808 +n02090622 +n04579432 +n04204238 +n13054560 +n03016953 +n03937543 +n04229816 +n02492660 +n03445924 +n11939491 +n03544143 +n02894605 +n07697537 +n04153751 +n02483362 +n02134084 +n04208210 +n03197337 +n01753488 +n03680355 +n03938244 +n03857828 +n03761084 +n02105162 +n03742115 +n02536864 +n02930766 +n01514668 +n03876231 +n02493509 +n02095314 +n04517823 +n01729977 +n04442312 +n11939491 +n01614925 +n03496892 +n02281787 +n02095570 +n02105505 +n04127249 +n04579432 +n03804744 +n04613696 +n01440764 +n04133789 +n02115641 +n02099849 +n04493381 +n02102480 +n11939491 +n07565083 +n03425413 +n01756291 +n02132136 +n02109525 +n03995372 +n12057211 +n07697537 +n04023962 +n03690938 +n03676483 +n03868863 +n04147183 +n02895154 +n01773549 +n01667114 +n12267677 +n04507155 +n03658185 +n01644373 +n06785654 +n02114548 +n04065272 +n04118538 +n01491361 +n03792782 +n03773504 +n07831146 +n02092002 +n02808304 +n04330267 +n02437312 +n03481172 +n03706229 +n02100583 +n04347754 +n02666196 +n04074963 +n03976467 +n02090721 +n02002556 +n01728572 +n02129165 +n02483362 +n01910747 +n03887697 +n02422106 +n04039381 +n02356798 +n04350905 +n02871525 +n02086079 +n04485082 +n04116512 +n02346627 +n02840245 +n03345487 +n04336792 +n03777568 +n02797295 +n02093428 +n04037443 +n03188531 +n03538406 +n02108089 +n02268853 +n02219486 +n02415577 +n02113978 +n04367480 +n02111277 +n07754684 +n03207941 +n02708093 +n02791124 +n04239074 +n01872401 +n03124043 +n02788148 +n03933933 +n01798484 +n03065424 +n03658185 +n09421951 +n03000247 +n02669723 +n04592741 +n02097130 +n02105641 +n01629819 +n02793495 +n03954731 +n04141327 +n02966687 +n02769748 +n02281787 +n01687978 +n04229816 +n04009552 +n04418357 +n04461696 +n02006656 +n03770439 +n02017213 +n07716358 +n02445715 +n02389026 +n02948072 +n06785654 +n02268443 +n03457902 +n04118776 +n12768682 +n02095314 +n01518878 +n04275548 +n02894605 +n01843383 +n02840245 +n07697313 +n07930864 +n02690373 +n02788148 +n04081281 +n03127925 +n03706229 +n03721384 +n01632458 +n04265275 +n01924916 +n02979186 +n01872401 +n04235860 +n04476259 +n07697537 +n02488702 +n03920288 +n03670208 +n04493381 +n02113712 +n01682714 +n03271574 +n03018349 +n01641577 +n02422699 +n02807133 +n02749479 +n02749479 +n02480495 +n02120505 +n02277742 +n03935335 +n03759954 +n02113186 +n02100236 +n03126707 +n04458633 +n02281406 +n01775062 +n04204347 +n02116738 +n03388043 +n04418357 +n02100583 +n03584829 +n01592084 +n04456115 +n01728920 +n02091635 +n03637318 +n02105056 +n02110627 +n02776631 +n03788365 +n03179701 +n02009912 +n02219486 +n04179913 +n07590611 +n03903868 +n04560804 +n01917289 +n04133789 +n02085620 +n03259280 +n02484975 +n01744401 +n07836838 +n07753592 +n03673027 +n01494475 +n01728572 +n02174001 +n07873807 +n02058221 +n04252225 +n03782006 +n04133789 +n15075141 +n02106662 +n02346627 +n03769881 +n03630383 +n03871628 +n01984695 +n01514668 +n01749939 +n03457902 +n04347754 +n04370456 +n02892201 +n01693334 +n03109150 +n02102973 +n02098413 +n01930112 +n02834397 +n02091032 +n02489166 +n12985857 +n02092339 +n03995372 +n02089078 +n03709823 +n02111500 +n02268443 +n02410509 +n01798484 +n03720891 +n03868863 +n02092002 +n03018349 +n04487394 +n03240683 +n03803284 +n07579787 +n02804414 +n03887697 +n04542943 +n02113023 +n02607072 +n01882714 +n02102040 +n07697537 +n02443114 +n01986214 +n02777292 +n02939185 +n02009229 +n03769881 +n04554684 +n02037110 +n02817516 +n02089078 +n03691459 +n03680355 +n04591713 +n03804744 +n03617480 +n01795545 +n02865351 +n02840245 +n02909870 +n02101006 +n04208210 +n04487081 +n02111889 +n04264628 +n01629819 +n02111129 +n12768682 +n03134739 +n03075370 +n13037406 +n02100735 +n04330267 +n04540053 +n01498041 +n03874599 +n03874599 +n04485082 +n03095699 +n04252225 +n02172182 +n01667114 +n04557648 +n02119022 +n02091467 +n04350905 +n01817953 +n01985128 +n04067472 +n02504013 +n04476259 +n09229709 +n02865351 +n02105251 +n03255030 +n02325366 +n04200800 +n03065424 +n04330267 +n02403003 +n02123159 +n02326432 +n02097130 +n02966687 +n04591157 +n03538406 +n02107908 +n02009912 +n01644900 +n02356798 +n04201297 +n04235860 +n02110185 +n03544143 +n02787622 +n04296562 +n02804414 +n02114367 +n02894605 +n02119022 +n02965783 +n03837869 +n01955084 +n02701002 +n02137549 +n03794056 +n03759954 +n03956157 +n03461385 +n02939185 +n07892512 +n07715103 +n01742172 +n04350905 +n01817953 +n02865351 +n02002556 +n01644900 +n02795169 +n03617480 +n03207743 +n02403003 +n03109150 +n03590841 +n02480855 +n02091032 +n07584110 +n02102318 +n02111277 +n02692877 +n04604644 +n03793489 +n01877812 +n02412080 +n01698640 +n02110806 +n04019541 +n04476259 +n04584207 +n02012849 +n03720891 +n04311174 +n03459775 +n03781244 +n09428293 +n02106550 +n02132136 +n03630383 +n02128925 +n03903868 +n03814639 +n01630670 +n02106550 +n01855672 +n01807496 +n02088364 +n03290653 +n02109525 +n03902125 +n07583066 +n04542943 +n03937543 +n07583066 +n04008634 +n04532670 +n02095314 +n04118538 +n07584110 +n02747177 +n03929855 +n01950731 +n07742313 +n03649909 +n02319095 +n01697457 +n02092339 +n09332890 +n04347754 +n02480495 +n03478589 +n07880968 +n03935335 +n03976657 +n02835271 +n04367480 +n02177972 +n04070727 +n04277352 +n04125021 +n03134739 +n02128757 +n02504013 +n04111531 +n04152593 +n04591713 +n03400231 +n01704323 +n12768682 +n02110806 +n04418357 +n02536864 +n04409515 +n04542943 +n03763968 +n03662601 +n02490219 +n02086240 +n04404412 +n07718747 +n02096051 +n04599235 +n01944390 +n01990800 +n04152593 +n02807133 +n02086910 +n03347037 +n01847000 +n02107683 +n02279972 +n04019541 +n01695060 +n02087046 +n03891251 +n04154565 +n04398044 +n02504013 +n02138441 +n04285008 +n03942813 +n04239074 +n02704792 +n03794056 +n04476259 +n04483307 +n03982430 +n02109047 +n11939491 +n04335435 +n02727426 +n03781244 +n01978455 +n03887697 +n02268853 +n02607072 +n02009229 +n04371774 +n07892512 +n04523525 +n01748264 +n03924679 +n04200800 +n04026417 +n04208210 +n04548362 +n04389033 +n04152593 +n02910353 +n07697313 +n03196217 +n04200800 +n02279972 +n01917289 +n02488291 +n02808304 +n03992509 +n02804414 +n01774750 +n04442312 +n03535780 +n02802426 +n04044716 +n02128385 +n07697313 +n04179913 +n03400231 +n03095699 +n03871628 +n02129165 +n01773797 +n03691459 +n02018795 +n04116512 +n03089624 +n02127052 +n02111129 +n02093256 +n03742115 +n04429376 +n02009229 +n02815834 +n07747607 +n03481172 +n03220513 +n03495258 +n02974003 +n01704323 +n04277352 +n07684084 +n02107574 +n02276258 +n12998815 +n03617480 +n03721384 +n02992529 +n02321529 +n03933933 +n03764736 +n03764736 +n02317335 +n04235860 +n02808440 +n02110341 +n04542943 +n02442845 +n02869837 +n01742172 +n02088632 +n02120079 +n04259630 +n03447447 +n03876231 +n02037110 +n01914609 +n02102040 +n13054560 +n03930630 +n03759954 +n07584110 +n04259630 +n03291819 +n07697537 +n01614925 +n03814906 +n04540053 +n02116738 +n01776313 +n03954731 +n04479046 +n03658185 +n04357314 +n03763968 +n01755581 +n01749939 +n02981792 +n03485407 +n02442845 +n04548280 +n07880968 +n02825657 +n09332890 +n04596742 +n04596742 +n02930766 +n01843383 +n03532672 +n13133613 +n02963159 +n03759954 +n02098413 +n04367480 +n02643566 +n04254777 +n02415577 +n04560804 +n04485082 +n03781244 +n04597913 +n04482393 +n01530575 +n03250847 +n02108089 +n04404412 +n02687172 +n03786901 +n02108000 +n02687172 +n02317335 +n02606052 +n02165105 +n03045698 +n03218198 +n02415577 +n04069434 +n04482393 +n01806143 +n01443537 +n02100735 +n04153751 +n04254777 +n02091467 +n03482405 +n02794156 +n07754684 +n03495258 +n04542943 +n01797886 +n03085013 +n03792972 +n01980166 +n02782093 +n03920288 +n03666591 +n01695060 +n02486410 +n02088364 +n02389026 +n07753592 +n07248320 +n03355925 +n01737021 +n04266014 +n02167151 +n03930630 +n02133161 +n02107142 +n03180011 +n04023962 +n01443537 +n02443114 +n02892201 +n03109150 +n01872401 +n07565083 +n02815834 +n02206856 +n03729826 +n10565667 +n02111129 +n02704792 +n02117135 +n03000247 +n02129604 +n04550184 +n03089624 +n03785016 +n01689811 +n02441942 +n01641577 +n02229544 +n01622779 +n02089973 +n02791270 +n02102177 +n02114855 +n13040303 +n03944341 +n01667114 +n04149813 +n03792972 +n02869837 +n02112706 +n13044778 +n01688243 +n02097658 +n02109961 +n03791053 +n04286575 +n01985128 +n03014705 +n04265275 +n04467665 +n01985128 +n04344873 +n04335435 +n02676566 +n01806143 +n04599235 +n02093859 +n04486054 +n01601694 +n02966193 +n02965783 +n02099712 +n02808440 +n03785016 +n04285008 +n04141076 +n07760859 +n03717622 +n01917289 +n03942813 +n04409515 +n01819313 +n03255030 +n02328150 +n07590611 +n01985128 +n03998194 +n12985857 +n03014705 +n02823428 +n03127747 +n02825657 +n03935335 +n02793495 +n04509417 +n02655020 +n07873807 +n02906734 +n03720891 +n04037443 +n04254120 +n07614500 +n01667114 +n02415577 +n03710637 +n02361337 +n04081281 +n04070727 +n03649909 +n07720875 +n02011460 +n01443537 +n04525305 +n02894605 +n02113712 +n09229709 +n04367480 +n04266014 +n02105056 +n09421951 +n02814860 +n02167151 +n01744401 +n02808304 +n02106030 +n02074367 +n02536864 +n04485082 +n03538406 +n02108915 +n02114548 +n01698640 +n04286575 +n02797295 +n02124075 +n02927161 +n02747177 +n02641379 +n02325366 +n02536864 +n03697007 +n02281406 +n03017168 +n02090721 +n03776460 +n02037110 +n03100240 +n04398044 +n02871525 +n03792782 +n02787622 +n03180011 +n04522168 +n04266014 +n03218198 +n02088094 +n02097298 +n04548362 +n03196217 +n02095889 +n01873310 +n02088466 +n01968897 +n04548280 +n04604644 +n02090379 +n03787032 +n04229816 +n03891251 +n02356798 +n04350905 +n03782006 +n01664065 +n03950228 +n01601694 +n01558993 +n02777292 +n02091134 +n02088632 +n02442845 +n02137549 +n01669191 +n02007558 +n03782006 +n03692522 +n02916936 +n04357314 +n02132136 +n03930630 +n04019541 +n04005630 +n02102480 +n03443371 +n04523525 +n03814906 +n07693725 +n04371774 +n04209239 +n03720891 +n02086079 +n02071294 +n01774384 +n01560419 +n04204238 +n02101556 +n03998194 +n04486054 +n04505470 +n02089867 +n04179913 +n02112018 +n04201297 +n03673027 +n03908714 +n02105056 +n02791270 +n03775071 +n03785016 +n02088238 +n04376876 +n03272562 +n02132136 +n01748264 +n02939185 +n03485794 +n02105412 +n02814860 +n03527444 +n03803284 +n02396427 +n03877845 +n07614500 +n01514859 +n02105056 +n03047690 +n04254120 +n03218198 +n02910353 +n04328186 +n03776460 +n02109961 +n03467068 +n02704792 +n04136333 +n02169497 +n02094114 +n03837869 +n03131574 +n02090622 +n04238763 +n01682714 +n03388043 +n04493381 +n04040759 +n02099601 +n03803284 +n02101388 +n13044778 +n04483307 +n03404251 +n02090622 +n12768682 +n04367480 +n03134739 +n02356798 +n02408429 +n02974003 +n02101388 +n03124170 +n04435653 +n02105855 +n07920052 +n03272010 +n03180011 +n07717556 +n04235860 +n07716358 +n02088094 +n07873807 +n03775071 +n02110341 +n02817516 +n03146219 +n02113186 +n09246464 +n02119022 +n03240683 +n03706229 +n02701002 +n04154565 +n03467068 +n03843555 +n02107683 +n02088094 +n02108915 +n02786058 +n02326432 +n01629819 +n01614925 +n12267677 +n02108422 +n02481823 +n02892201 +n02877765 +n01955084 +n12057211 +n03063689 +n02113978 +n02777292 +n03717622 +n02787622 +n02437312 +n03992509 +n01930112 +n02500267 +n03627232 +n04505470 +n03250847 +n03400231 +n02977058 +n04554684 +n04456115 +n04147183 +n03676483 +n04465501 +n02094114 +n04532106 +n07892512 +n04557648 +n03482405 +n02088238 +n03991062 +n01751748 +n02104029 +n03733281 +n02536864 +n01860187 +n03133878 +n02110627 +n03208938 +n04192698 +n02106166 +n03028079 +n04515003 +n03787032 +n04317175 +n03447721 +n02326432 +n03535780 +n03998194 +n04560804 +n04507155 +n03134739 +n01697457 +n04270147 +n02107683 +n04525305 +n02410509 +n02099712 +n02132136 +n02268853 +n01817953 +n03929855 +n07615774 +n02100735 +n01833805 +n03207743 +n04584207 +n04266014 +n07248320 +n03467068 +n03908618 +n02133161 +n02486410 +n01755581 +n02445715 +n01914609 +n02841315 +n02877765 +n01697457 +n01981276 +n06794110 +n04485082 +n02119022 +n02481823 +n02802426 +n01689811 +n01796340 +n02667093 +n01622779 +n01980166 +n02442845 +n04328186 +n01871265 +n03729826 +n02123394 +n01630670 +n02106166 +n10148035 +n02437616 diff --git a/ComputerVision/cnns/tools/imagenet_lsvrc_2015_synsets.txt b/ComputerVision/cnns/tools/imagenet_lsvrc_2015_synsets.txt new file mode 100644 index 0000000..88aa58f --- /dev/null +++ b/ComputerVision/cnns/tools/imagenet_lsvrc_2015_synsets.txt @@ -0,0 +1,1000 @@ +n01440764 +n01443537 +n01484850 +n01491361 +n01494475 +n01496331 +n01498041 +n01514668 +n01514859 +n01518878 +n01530575 +n01531178 +n01532829 +n01534433 +n01537544 +n01558993 +n01560419 +n01580077 +n01582220 +n01592084 +n01601694 +n01608432 +n01614925 +n01616318 +n01622779 +n01629819 +n01630670 +n01631663 +n01632458 +n01632777 +n01641577 +n01644373 +n01644900 +n01664065 +n01665541 +n01667114 +n01667778 +n01669191 +n01675722 +n01677366 +n01682714 +n01685808 +n01687978 +n01688243 +n01689811 +n01692333 +n01693334 +n01694178 +n01695060 +n01697457 +n01698640 +n01704323 +n01728572 +n01728920 +n01729322 +n01729977 +n01734418 +n01735189 +n01737021 +n01739381 +n01740131 +n01742172 +n01744401 +n01748264 +n01749939 +n01751748 +n01753488 +n01755581 +n01756291 +n01768244 +n01770081 +n01770393 +n01773157 +n01773549 +n01773797 +n01774384 +n01774750 +n01775062 +n01776313 +n01784675 +n01795545 +n01796340 +n01797886 +n01798484 +n01806143 +n01806567 +n01807496 +n01817953 +n01818515 +n01819313 +n01820546 +n01824575 +n01828970 +n01829413 +n01833805 +n01843065 +n01843383 +n01847000 +n01855032 +n01855672 +n01860187 +n01871265 +n01872401 +n01873310 +n01877812 +n01882714 +n01883070 +n01910747 +n01914609 +n01917289 +n01924916 +n01930112 +n01943899 +n01944390 +n01945685 +n01950731 +n01955084 +n01968897 +n01978287 +n01978455 +n01980166 +n01981276 +n01983481 +n01984695 +n01985128 +n01986214 +n01990800 +n02002556 +n02002724 +n02006656 +n02007558 +n02009229 +n02009912 +n02011460 +n02012849 +n02013706 +n02017213 +n02018207 +n02018795 +n02025239 +n02027492 +n02028035 +n02033041 +n02037110 +n02051845 +n02056570 +n02058221 +n02066245 +n02071294 +n02074367 +n02077923 +n02085620 +n02085782 +n02085936 +n02086079 +n02086240 +n02086646 +n02086910 +n02087046 +n02087394 +n02088094 +n02088238 +n02088364 +n02088466 +n02088632 +n02089078 +n02089867 +n02089973 +n02090379 +n02090622 +n02090721 +n02091032 +n02091134 +n02091244 +n02091467 +n02091635 +n02091831 +n02092002 +n02092339 +n02093256 +n02093428 +n02093647 +n02093754 +n02093859 +n02093991 +n02094114 +n02094258 +n02094433 +n02095314 +n02095570 +n02095889 +n02096051 +n02096177 +n02096294 +n02096437 +n02096585 +n02097047 +n02097130 +n02097209 +n02097298 +n02097474 +n02097658 +n02098105 +n02098286 +n02098413 +n02099267 +n02099429 +n02099601 +n02099712 +n02099849 +n02100236 +n02100583 +n02100735 +n02100877 +n02101006 +n02101388 +n02101556 +n02102040 +n02102177 +n02102318 +n02102480 +n02102973 +n02104029 +n02104365 +n02105056 +n02105162 +n02105251 +n02105412 +n02105505 +n02105641 +n02105855 +n02106030 +n02106166 +n02106382 +n02106550 +n02106662 +n02107142 +n02107312 +n02107574 +n02107683 +n02107908 +n02108000 +n02108089 +n02108422 +n02108551 +n02108915 +n02109047 +n02109525 +n02109961 +n02110063 +n02110185 +n02110341 +n02110627 +n02110806 +n02110958 +n02111129 +n02111277 +n02111500 +n02111889 +n02112018 +n02112137 +n02112350 +n02112706 +n02113023 +n02113186 +n02113624 +n02113712 +n02113799 +n02113978 +n02114367 +n02114548 +n02114712 +n02114855 +n02115641 +n02115913 +n02116738 +n02117135 +n02119022 +n02119789 +n02120079 +n02120505 +n02123045 +n02123159 +n02123394 +n02123597 +n02124075 +n02125311 +n02127052 +n02128385 +n02128757 +n02128925 +n02129165 +n02129604 +n02130308 +n02132136 +n02133161 +n02134084 +n02134418 +n02137549 +n02138441 +n02165105 +n02165456 +n02167151 +n02168699 +n02169497 +n02172182 +n02174001 +n02177972 +n02190166 +n02206856 +n02219486 +n02226429 +n02229544 +n02231487 +n02233338 +n02236044 +n02256656 +n02259212 +n02264363 +n02268443 +n02268853 +n02276258 +n02277742 +n02279972 +n02280649 +n02281406 +n02281787 +n02317335 +n02319095 +n02321529 +n02325366 +n02326432 +n02328150 +n02342885 +n02346627 +n02356798 +n02361337 +n02363005 +n02364673 +n02389026 +n02391049 +n02395406 +n02396427 +n02397096 +n02398521 +n02403003 +n02408429 +n02410509 +n02412080 +n02415577 +n02417914 +n02422106 +n02422699 +n02423022 +n02437312 +n02437616 +n02441942 +n02442845 +n02443114 +n02443484 +n02444819 +n02445715 +n02447366 +n02454379 +n02457408 +n02480495 +n02480855 +n02481823 +n02483362 +n02483708 +n02484975 +n02486261 +n02486410 +n02487347 +n02488291 +n02488702 +n02489166 +n02490219 +n02492035 +n02492660 +n02493509 +n02493793 +n02494079 +n02497673 +n02500267 +n02504013 +n02504458 +n02509815 +n02510455 +n02514041 +n02526121 +n02536864 +n02606052 +n02607072 +n02640242 +n02641379 +n02643566 +n02655020 +n02666196 +n02667093 +n02669723 +n02672831 +n02676566 +n02687172 +n02690373 +n02692877 +n02699494 +n02701002 +n02704792 +n02708093 +n02727426 +n02730930 +n02747177 +n02749479 +n02769748 +n02776631 +n02777292 +n02782093 +n02783161 +n02786058 +n02787622 +n02788148 +n02790996 +n02791124 +n02791270 +n02793495 +n02794156 +n02795169 +n02797295 +n02799071 +n02802426 +n02804414 +n02804610 +n02807133 +n02808304 +n02808440 +n02814533 +n02814860 +n02815834 +n02817516 +n02823428 +n02823750 +n02825657 +n02834397 +n02835271 +n02837789 +n02840245 +n02841315 +n02843684 +n02859443 +n02860847 +n02865351 +n02869837 +n02870880 +n02871525 +n02877765 +n02879718 +n02883205 +n02892201 +n02892767 +n02894605 +n02895154 +n02906734 +n02909870 +n02910353 +n02916936 +n02917067 +n02927161 +n02930766 +n02939185 +n02948072 +n02950826 +n02951358 +n02951585 +n02963159 +n02965783 +n02966193 +n02966687 +n02971356 +n02974003 +n02977058 +n02978881 +n02979186 +n02980441 +n02981792 +n02988304 +n02992211 +n02992529 +n02999410 +n03000134 +n03000247 +n03000684 +n03014705 +n03016953 +n03017168 +n03018349 +n03026506 +n03028079 +n03032252 +n03041632 +n03042490 +n03045698 +n03047690 +n03062245 +n03063599 +n03063689 +n03065424 +n03075370 +n03085013 +n03089624 +n03095699 +n03100240 +n03109150 +n03110669 +n03124043 +n03124170 +n03125729 +n03126707 +n03127747 +n03127925 +n03131574 +n03133878 +n03134739 +n03141823 +n03146219 +n03160309 +n03179701 +n03180011 +n03187595 +n03188531 +n03196217 +n03197337 +n03201208 +n03207743 +n03207941 +n03208938 +n03216828 +n03218198 +n03220513 +n03223299 +n03240683 +n03249569 +n03250847 +n03255030 +n03259280 +n03271574 +n03272010 +n03272562 +n03290653 +n03291819 +n03297495 +n03314780 +n03325584 +n03337140 +n03344393 +n03345487 +n03347037 +n03355925 +n03372029 +n03376595 +n03379051 +n03384352 +n03388043 +n03388183 +n03388549 +n03393912 +n03394916 +n03400231 +n03404251 +n03417042 +n03424325 +n03425413 +n03443371 +n03444034 +n03445777 +n03445924 +n03447447 +n03447721 +n03450230 +n03452741 +n03457902 +n03459775 +n03461385 +n03467068 +n03476684 +n03476991 +n03478589 +n03481172 +n03482405 +n03483316 +n03485407 +n03485794 +n03492542 +n03494278 +n03495258 +n03496892 +n03498962 +n03527444 +n03529860 +n03530642 +n03532672 +n03534580 +n03535780 +n03538406 +n03544143 +n03584254 +n03584829 +n03590841 +n03594734 +n03594945 +n03595614 +n03598930 +n03599486 +n03602883 +n03617480 +n03623198 +n03627232 +n03630383 +n03633091 +n03637318 +n03642806 +n03649909 +n03657121 +n03658185 +n03661043 +n03662601 +n03666591 +n03670208 +n03673027 +n03676483 +n03680355 +n03690938 +n03691459 +n03692522 +n03697007 +n03706229 +n03709823 +n03710193 +n03710637 +n03710721 +n03717622 +n03720891 +n03721384 +n03724870 +n03729826 +n03733131 +n03733281 +n03733805 +n03742115 +n03743016 +n03759954 +n03761084 +n03763968 +n03764736 +n03769881 +n03770439 +n03770679 +n03773504 +n03775071 +n03775546 +n03776460 +n03777568 +n03777754 +n03781244 +n03782006 +n03785016 +n03786901 +n03787032 +n03788195 +n03788365 +n03791053 +n03792782 +n03792972 +n03793489 +n03794056 +n03796401 +n03803284 +n03804744 +n03814639 +n03814906 +n03825788 +n03832673 +n03837869 +n03838899 +n03840681 +n03841143 +n03843555 +n03854065 +n03857828 +n03866082 +n03868242 +n03868863 +n03871628 +n03873416 +n03874293 +n03874599 +n03876231 +n03877472 +n03877845 +n03884397 +n03887697 +n03888257 +n03888605 +n03891251 +n03891332 +n03895866 +n03899768 +n03902125 +n03903868 +n03908618 +n03908714 +n03916031 +n03920288 +n03924679 +n03929660 +n03929855 +n03930313 +n03930630 +n03933933 +n03935335 +n03937543 +n03938244 +n03942813 +n03944341 +n03947888 +n03950228 +n03954731 +n03956157 +n03958227 +n03961711 +n03967562 +n03970156 +n03976467 +n03976657 +n03977966 +n03980874 +n03982430 +n03983396 +n03991062 +n03992509 +n03995372 +n03998194 +n04004767 +n04005630 +n04008634 +n04009552 +n04019541 +n04023962 +n04026417 +n04033901 +n04033995 +n04037443 +n04039381 +n04040759 +n04041544 +n04044716 +n04049303 +n04065272 +n04067472 +n04069434 +n04070727 +n04074963 +n04081281 +n04086273 +n04090263 +n04099969 +n04111531 +n04116512 +n04118538 +n04118776 +n04120489 +n04125021 +n04127249 +n04131690 +n04133789 +n04136333 +n04141076 +n04141327 +n04141975 +n04146614 +n04147183 +n04149813 +n04152593 +n04153751 +n04154565 +n04162706 +n04179913 +n04192698 +n04200800 +n04201297 +n04204238 +n04204347 +n04208210 +n04209133 +n04209239 +n04228054 +n04229816 +n04235860 +n04238763 +n04239074 +n04243546 +n04251144 +n04252077 +n04252225 +n04254120 +n04254680 +n04254777 +n04258138 +n04259630 +n04263257 +n04264628 +n04265275 +n04266014 +n04270147 +n04273569 +n04275548 +n04277352 +n04285008 +n04286575 +n04296562 +n04310018 +n04311004 +n04311174 +n04317175 +n04325704 +n04326547 +n04328186 +n04330267 +n04332243 +n04335435 +n04336792 +n04344873 +n04346328 +n04347754 +n04350905 +n04355338 +n04355933 +n04356056 +n04357314 +n04366367 +n04367480 +n04370456 +n04371430 +n04371774 +n04372370 +n04376876 +n04380533 +n04389033 +n04392985 +n04398044 +n04399382 +n04404412 +n04409515 +n04417672 +n04418357 +n04423845 +n04428191 +n04429376 +n04435653 +n04442312 +n04443257 +n04447861 +n04456115 +n04458633 +n04461696 +n04462240 +n04465501 +n04467665 +n04476259 +n04479046 +n04482393 +n04483307 +n04485082 +n04486054 +n04487081 +n04487394 +n04493381 +n04501370 +n04505470 +n04507155 +n04509417 +n04515003 +n04517823 +n04522168 +n04523525 +n04525038 +n04525305 +n04532106 +n04532670 +n04536866 +n04540053 +n04542943 +n04548280 +n04548362 +n04550184 +n04552348 +n04553703 +n04554684 +n04557648 +n04560804 +n04562935 +n04579145 +n04579432 +n04584207 +n04589890 +n04590129 +n04591157 +n04591713 +n04592741 +n04596742 +n04597913 +n04599235 +n04604644 +n04606251 +n04612504 +n04613696 +n06359193 +n06596364 +n06785654 +n06794110 +n06874185 +n07248320 +n07565083 +n07579787 +n07583066 +n07584110 +n07590611 +n07613480 +n07614500 +n07615774 +n07684084 +n07693725 +n07695742 +n07697313 +n07697537 +n07711569 +n07714571 +n07714990 +n07715103 +n07716358 +n07716906 +n07717410 +n07717556 +n07718472 +n07718747 +n07720875 +n07730033 +n07734744 +n07742313 +n07745940 +n07747607 +n07749582 +n07753113 +n07753275 +n07753592 +n07754684 +n07760859 +n07768694 +n07802026 +n07831146 +n07836838 +n07860988 +n07871810 +n07873807 +n07875152 +n07880968 +n07892512 +n07920052 +n07930864 +n07932039 +n09193705 +n09229709 +n09246464 +n09256479 +n09288635 +n09332890 +n09399592 +n09421951 +n09428293 +n09468604 +n09472597 +n09835506 +n10148035 +n10565667 +n11879895 +n11939491 +n12057211 +n12144580 +n12267677 +n12620546 +n12768682 +n12985857 +n12998815 +n13037406 +n13040303 +n13044778 +n13052670 +n13054560 +n13133613 +n15075141 diff --git a/ComputerVision/cnns/tools/imagenet_metadata.txt b/ComputerVision/cnns/tools/imagenet_metadata.txt new file mode 100755 index 0000000..913a237 --- /dev/null +++ b/ComputerVision/cnns/tools/imagenet_metadata.txt @@ -0,0 +1,21842 @@ +n00004475 organism, being +n00005787 benthos +n00006024 heterotroph +n00006484 cell +n00007846 person, individual, someone, somebody, mortal, soul +n00015388 animal, animate being, beast, brute, creature, fauna +n00017222 plant, flora, plant life +n00021265 food, nutrient +n00021939 artifact, artefact +n00120010 hop +n00141669 check-in +n00288000 dressage +n00288190 curvet, vaulting +n00288384 piaffe +n00324978 funambulism, tightrope walking +n00326094 rock climbing +n00433458 contact sport +n00433661 outdoor sport, field sport +n00433802 gymnastics, gymnastic exercise +n00434075 acrobatics, tumbling +n00439826 track and field +n00440039 track, running +n00440218 jumping +n00440382 broad jump, long jump +n00440509 high jump +n00440643 Fosbury flop +n00440747 skiing +n00440941 cross-country skiing +n00441073 ski jumping +n00441824 water sport, aquatics +n00442115 swimming, swim +n00442437 bathe +n00442847 dip, plunge +n00442981 dive, diving +n00443231 floating, natation +n00443375 dead-man's float, prone float +n00443517 belly flop, belly flopper, belly whop, belly whopper +n00443692 cliff diving +n00443803 flip +n00443917 gainer, full gainer +n00444142 half gainer +n00444340 jackknife +n00444490 swan dive, swallow dive +n00444651 skin diving, skin-dive +n00444846 scuba diving +n00444937 snorkeling, snorkel diving +n00445055 surfing, surfboarding, surfriding +n00445226 water-skiing +n00445351 rowing, row +n00445685 sculling +n00445802 boxing, pugilism, fisticuffs +n00446311 professional boxing +n00446411 in-fighting +n00446493 fight +n00446632 rope-a-dope +n00446804 spar, sparring +n00446980 archery +n00447073 sledding +n00447221 tobogganing +n00447361 luging +n00447463 bobsledding +n00447540 wrestling, rassling, grappling +n00447957 Greco-Roman wrestling +n00448126 professional wrestling +n00448232 sumo +n00448466 skating +n00448640 ice skating +n00448748 figure skating +n00448872 rollerblading +n00448958 roller skating +n00449054 skateboarding +n00449168 speed skating +n00449295 racing +n00449517 auto racing, car racing +n00449695 boat racing +n00449796 hydroplane racing +n00449892 camel racing +n00449977 greyhound racing +n00450070 horse racing +n00450335 riding, horseback riding, equitation +n00450700 equestrian sport +n00450866 pony-trekking +n00450998 showjumping, stadium jumping +n00451186 cross-country riding, cross-country jumping +n00451370 cycling +n00451563 bicycling +n00451635 motorcycling +n00451768 dune cycling +n00451866 blood sport +n00452034 bullfighting, tauromachy +n00452152 cockfighting +n00452293 hunt, hunting +n00452734 battue +n00452864 beagling +n00453126 coursing +n00453313 deer hunting, deer hunt +n00453396 ducking, duck hunting +n00453478 fox hunting, foxhunt +n00453631 pigsticking +n00453935 fishing, sportfishing +n00454237 angling +n00454395 fly-fishing +n00454493 troll, trolling +n00454624 casting, cast +n00454855 bait casting +n00454983 fly casting +n00455076 overcast +n00455173 surf casting, surf fishing +n00456465 day game +n00463246 athletic game +n00463543 ice hockey, hockey, hockey game +n00464277 tetherball +n00464478 water polo +n00464651 outdoor game +n00464894 golf, golf game +n00466273 professional golf +n00466377 round of golf, round +n00466524 medal play, stroke play +n00466630 match play +n00466712 miniature golf +n00466880 croquet +n00467320 quoits, horseshoes +n00467536 shuffleboard, shovelboard +n00467719 field game +n00467995 field hockey, hockey +n00468299 shinny, shinney +n00468480 football, football game +n00469651 American football, American football game +n00470554 professional football +n00470682 touch football +n00470830 hurling +n00470966 rugby, rugby football, rugger +n00471437 ball game, ballgame +n00471613 baseball, baseball game +n00474568 ball +n00474657 professional baseball +n00474769 hardball +n00474881 perfect game +n00475014 no-hit game, no-hitter +n00475142 one-hitter, 1-hitter +n00475273 two-hitter, 2-hitter +n00475403 three-hitter, 3-hitter +n00475535 four-hitter, 4-hitter +n00475661 five-hitter, 5-hitter +n00475787 softball, softball game +n00476140 rounders +n00476235 stickball, stickball game +n00476389 cricket +n00477392 lacrosse +n00477639 polo +n00477827 pushball +n00478262 soccer, association football +n00479076 court game +n00479440 handball +n00479616 racquetball +n00479734 fives +n00479887 squash, squash racquets, squash rackets +n00480211 volleyball, volleyball game +n00480366 jai alai, pelota +n00480508 badminton +n00480885 battledore, battledore and shuttlecock +n00480993 basketball, basketball game, hoops +n00481803 professional basketball +n00481938 deck tennis +n00482122 netball +n00482298 tennis, lawn tennis +n00483205 professional tennis +n00483313 singles +n00483409 singles +n00483508 doubles +n00483605 doubles +n00483705 royal tennis, real tennis, court tennis +n00483848 pallone +n00523513 sport, athletics +n00812526 clasp, clench, clutch, clutches, grasp, grip, hold +n00825773 judo +n00887544 team sport +n01035504 Last Supper, Lord's Supper +n01035667 Seder, Passover supper +n01055165 camping, encampment, bivouacking, tenting +n01314388 pest +n01314663 critter +n01314781 creepy-crawly +n01314910 darter +n01315213 peeper +n01315330 homeotherm, homoiotherm, homotherm +n01315581 poikilotherm, ectotherm +n01315805 range animal +n01316422 scavenger +n01316579 bottom-feeder, bottom-dweller +n01316734 bottom-feeder +n01316949 work animal +n01317089 beast of burden, jument +n01317294 draft animal +n01317391 pack animal, sumpter +n01317541 domestic animal, domesticated animal +n01317813 feeder +n01317916 feeder +n01318053 stocker +n01318279 hatchling +n01318381 head +n01318478 migrator +n01318660 molter, moulter +n01318894 pet +n01319001 stayer +n01319187 stunt +n01319467 marine animal, marine creature, sea animal, sea creature +n01319685 by-catch, bycatch +n01320872 female +n01321123 hen +n01321230 male +n01321456 adult +n01321579 young, offspring +n01321770 orphan +n01321854 young mammal +n01322221 baby +n01322343 pup, whelp +n01322508 wolf pup, wolf cub +n01322604 puppy +n01322685 cub, young carnivore +n01322898 lion cub +n01322983 bear cub +n01323068 tiger cub +n01323155 kit +n01323261 suckling +n01323355 sire +n01323493 dam +n01323599 thoroughbred, purebred, pureblood +n01323781 giant +n01324305 mutant +n01324431 carnivore +n01324610 herbivore +n01324799 insectivore +n01324916 acrodont +n01325060 pleurodont +n01326291 microorganism, micro-organism +n01327909 monohybrid +n01329186 arbovirus, arborvirus +n01330126 adenovirus +n01330497 arenavirus +n01332181 Marburg virus +n01333082 Arenaviridae +n01333483 vesiculovirus +n01333610 Reoviridae +n01334217 variola major, variola major virus +n01334690 viroid, virusoid +n01335218 coliphage +n01337191 paramyxovirus +n01337734 poliovirus +n01338685 herpes, herpes virus +n01339083 herpes simplex 1, HS1, HSV-1, HSV-I +n01339336 herpes zoster, herpes zoster virus +n01339471 herpes varicella zoster, herpes varicella zoster virus +n01339801 cytomegalovirus, CMV +n01340014 varicella zoster virus +n01340522 polyoma, polyoma virus +n01340785 lyssavirus +n01340935 reovirus +n01341090 rotavirus +n01342269 moneran, moneron +n01347583 archaebacteria, archaebacterium, archaeobacteria, archeobacteria +n01349735 bacteroid +n01350226 Bacillus anthracis, anthrax bacillus +n01350701 Yersinia pestis +n01351170 Brucella +n01351315 spirillum, spirilla +n01357328 botulinus, botulinum, Clostridium botulinum +n01357507 clostridium perfringens +n01358572 cyanobacteria, blue-green algae +n01359762 trichodesmium +n01362336 nitric bacteria, nitrobacteria +n01363719 spirillum +n01365474 Francisella, genus Francisella +n01365885 gonococcus, Neisseria gonorrhoeae +n01366700 Corynebacterium diphtheriae, C. diphtheriae, Klebs-Loeffler bacillus +n01367772 enteric bacteria, enterobacteria, enterics, entric +n01368672 klebsiella +n01369358 Salmonella typhimurium +n01369484 typhoid bacillus, Salmonella typhosa, Salmonella typhi +n01374703 nitrate bacterium, nitric bacterium +n01374846 nitrite bacterium, nitrous bacterium +n01375204 actinomycete +n01376237 streptomyces +n01376437 Streptomyces erythreus +n01376543 Streptomyces griseus +n01377278 tubercle bacillus, Mycobacterium tuberculosis +n01377510 pus-forming bacteria +n01377694 streptobacillus +n01378545 myxobacteria, myxobacterium, myxobacter, gliding bacteria, slime bacteria +n01379389 staphylococcus, staphylococci, staph +n01380610 diplococcus +n01380754 pneumococcus, Diplococcus pneumoniae +n01381044 streptococcus, streptococci, strep +n01382033 spirochete, spirochaete +n01384084 planktonic algae +n01384164 zooplankton +n01384687 parasite +n01385017 endoparasite, entoparasite, entozoan, entozoon, endozoan +n01385330 ectoparasite, ectozoan, ectozoon, epizoan, epizoon +n01386007 pathogen +n01386182 commensal +n01386354 myrmecophile +n01387065 protoctist +n01389507 protozoan, protozoon +n01390123 sarcodinian, sarcodine +n01390763 heliozoan +n01392275 endameba +n01392380 ameba, amoeba +n01393486 globigerina +n01394040 testacean +n01394492 arcella +n01394771 difflugia +n01395254 ciliate, ciliated protozoan, ciliophoran +n01396048 paramecium, paramecia +n01396617 stentor +n01397114 alga, algae +n01397690 arame +n01397871 seagrass +n01400247 golden algae +n01400391 yellow-green algae +n01402600 brown algae +n01403457 kelp +n01404365 fucoid, fucoid algae +n01404495 fucoid +n01405007 fucus +n01405616 bladderwrack, Ascophyllum nodosum +n01407798 green algae, chlorophyte +n01410457 pond scum +n01411450 chlorella +n01412694 stonewort +n01413457 desmid +n01414216 sea moss +n01415626 eukaryote, eucaryote +n01415920 prokaryote, procaryote +n01416213 zooid +n01418498 Leishmania, genus Leishmania +n01418620 zoomastigote, zooflagellate +n01419332 polymastigote +n01419573 costia, Costia necatrix +n01419888 giardia +n01421333 cryptomonad, cryptophyte +n01421807 sporozoan +n01422185 sporozoite +n01422335 trophozoite +n01422450 merozoite +n01423302 coccidium, eimeria +n01423617 gregarine +n01424420 plasmodium, Plasmodium vivax, malaria parasite +n01425223 leucocytozoan, leucocytozoon +n01427399 microsporidian +n01429172 Ostariophysi, order Ostariophysi +n01438208 cypriniform fish +n01438581 loach +n01439121 cyprinid, cyprinid fish +n01439514 carp +n01439808 domestic carp, Cyprinus carpio +n01440160 leather carp +n01440242 mirror carp +n01440467 European bream, Abramis brama +n01440764 tench, Tinca tinca +n01441117 dace, Leuciscus leuciscus +n01441272 chub, Leuciscus cephalus +n01441425 shiner +n01441910 common shiner, silversides, Notropis cornutus +n01442450 roach, Rutilus rutilus +n01442710 rudd, Scardinius erythrophthalmus +n01442972 minnow, Phoxinus phoxinus +n01443243 gudgeon, Gobio gobio +n01443537 goldfish, Carassius auratus +n01443831 crucian carp, Carassius carassius, Carassius vulgaris +n01444339 electric eel, Electrophorus electric +n01444783 catostomid +n01445429 buffalo fish, buffalofish +n01445593 black buffalo, Ictiobus niger +n01445857 hog sucker, hog molly, Hypentelium nigricans +n01446152 redhorse, redhorse sucker +n01446589 cyprinodont +n01446760 killifish +n01447139 mummichog, Fundulus heteroclitus +n01447331 striped killifish, mayfish, may fish, Fundulus majalis +n01447658 rivulus +n01447946 flagfish, American flagfish, Jordanella floridae +n01448291 swordtail, helleri, topminnow, Xyphophorus helleri +n01448594 guppy, rainbow fish, Lebistes reticulatus +n01448951 topminnow, poeciliid fish, poeciliid, live-bearer +n01449374 mosquitofish, Gambusia affinis +n01449712 platy, Platypoecilus maculatus +n01449980 mollie, molly +n01450661 squirrelfish +n01450950 reef squirrelfish, Holocentrus coruscus +n01451115 deepwater squirrelfish, Holocentrus bullisi +n01451295 Holocentrus ascensionis +n01451426 soldierfish, soldier-fish +n01451863 anomalops, flashlight fish +n01452345 flashlight fish, Photoblepharon palpebratus +n01453087 John Dory, Zeus faber +n01453475 boarfish, Capros aper +n01453742 boarfish +n01454545 cornetfish +n01454856 stickleback, prickleback +n01455317 three-spined stickleback, Gasterosteus aculeatus +n01455461 ten-spined stickleback, Gasterosteus pungitius +n01455778 pipefish, needlefish +n01456137 dwarf pipefish, Syngnathus hildebrandi +n01456454 deepwater pipefish, Cosmocampus profundus +n01456756 seahorse, sea horse +n01457082 snipefish, bellows fish +n01457407 shrimpfish, shrimp-fish +n01457852 trumpetfish, Aulostomus maculatus +n01458746 pellicle +n01458842 embryo, conceptus, fertilized egg +n01459791 fetus, foetus +n01460303 abortus +n01461315 spawn +n01461646 blastula, blastosphere +n01462042 blastocyst, blastodermic vessicle +n01462544 gastrula +n01462803 morula +n01464844 yolk, vitellus +n01466257 chordate +n01467336 cephalochordate +n01467804 lancelet, amphioxus +n01468238 tunicate, urochordate, urochord +n01468712 ascidian +n01469103 sea squirt +n01469723 salp, salpa +n01470145 doliolum +n01470479 larvacean +n01470733 appendicularia +n01470895 ascidian tadpole +n01471682 vertebrate, craniate +n01472303 Amniota +n01472502 amniote +n01473806 aquatic vertebrate +n01474283 jawless vertebrate, jawless fish, agnathan +n01474864 ostracoderm +n01475232 heterostracan +n01475940 anaspid +n01476418 conodont +n01477080 cyclostome +n01477525 lamprey, lamprey eel, lamper eel +n01477875 sea lamprey, Petromyzon marinus +n01478511 hagfish, hag, slime eels +n01478969 Myxine glutinosa +n01479213 eptatretus +n01479820 gnathostome +n01480106 placoderm +n01480516 cartilaginous fish, chondrichthian +n01480880 holocephalan, holocephalian +n01481331 chimaera +n01481498 rabbitfish, Chimaera monstrosa +n01482071 elasmobranch, selachian +n01482330 shark +n01483021 cow shark, six-gilled shark, Hexanchus griseus +n01483522 mackerel shark +n01483830 porbeagle, Lamna nasus +n01484097 mako, mako shark +n01484285 shortfin mako, Isurus oxyrhincus +n01484447 longfin mako, Isurus paucus +n01484562 bonito shark, blue pointed, Isurus glaucus +n01484850 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias +n01485479 basking shark, Cetorhinus maximus +n01486010 thresher, thrasher, thresher shark, fox shark, Alopius vulpinus +n01486540 carpet shark, Orectolobus barbatus +n01486838 nurse shark, Ginglymostoma cirratum +n01487506 sand tiger, sand shark, Carcharias taurus, Odontaspis taurus +n01488038 whale shark, Rhincodon typus +n01488918 requiem shark +n01489501 bull shark, cub shark, Carcharhinus leucas +n01489709 sandbar shark, Carcharhinus plumbeus +n01489920 blacktip shark, sandbar shark, Carcharhinus limbatus +n01490112 whitetip shark, oceanic whitetip shark, white-tipped shark, Carcharinus longimanus +n01490360 dusky shark, Carcharhinus obscurus +n01490670 lemon shark, Negaprion brevirostris +n01491006 blue shark, great blue shark, Prionace glauca +n01491361 tiger shark, Galeocerdo cuvieri +n01491661 soupfin shark, soupfin, soup-fin, Galeorhinus zyopterus +n01491874 dogfish +n01492357 smooth dogfish +n01492569 smoothhound, smoothhound shark, Mustelus mustelus +n01492708 American smooth dogfish, Mustelus canis +n01492860 Florida smoothhound, Mustelus norrisi +n01493146 whitetip shark, reef whitetip shark, Triaenodon obseus +n01493541 spiny dogfish +n01493829 Atlantic spiny dogfish, Squalus acanthias +n01494041 Pacific spiny dogfish, Squalus suckleyi +n01494475 hammerhead, hammerhead shark +n01494757 smooth hammerhead, Sphyrna zygaena +n01494882 smalleye hammerhead, Sphyrna tudes +n01495006 shovelhead, bonnethead, bonnet shark, Sphyrna tiburo +n01495493 angel shark, angelfish, Squatina squatina, monkfish +n01495701 ray +n01496331 electric ray, crampfish, numbfish, torpedo +n01497118 sawfish +n01497413 smalltooth sawfish, Pristis pectinatus +n01497738 guitarfish +n01498041 stingray +n01498406 roughtail stingray, Dasyatis centroura +n01498699 butterfly ray +n01498989 eagle ray +n01499396 spotted eagle ray, spotted ray, Aetobatus narinari +n01499732 cownose ray, cow-nosed ray, Rhinoptera bonasus +n01500091 manta, manta ray, devilfish +n01500476 Atlantic manta, Manta birostris +n01500854 devil ray, Mobula hypostoma +n01501160 skate +n01501641 grey skate, gray skate, Raja batis +n01501777 little skate, Raja erinacea +n01501948 thorny skate, Raja radiata +n01502101 barndoor skate, Raja laevis +n01503061 bird +n01503976 dickeybird, dickey-bird, dickybird, dicky-bird +n01504179 fledgling, fledgeling +n01504344 nestling, baby bird +n01514668 cock +n01514752 gamecock, fighting cock +n01514859 hen +n01514926 nester +n01515078 night bird +n01515217 night raven +n01515303 bird of passage +n01516212 archaeopteryx, archeopteryx, Archaeopteryx lithographica +n01517389 archaeornis +n01517565 ratite, ratite bird, flightless bird +n01517966 carinate, carinate bird, flying bird +n01518878 ostrich, Struthio camelus +n01519563 cassowary +n01519873 emu, Dromaius novaehollandiae, Emu novaehollandiae +n01520576 kiwi, apteryx +n01521399 rhea, Rhea americana +n01521756 rhea, nandu, Pterocnemia pennata +n01522450 elephant bird, aepyornis +n01523105 moa +n01524359 passerine, passeriform bird +n01524761 nonpasserine bird +n01525720 oscine, oscine bird +n01526521 songbird, songster +n01526766 honey eater, honeysucker +n01527194 accentor +n01527347 hedge sparrow, sparrow, dunnock, Prunella modularis +n01527617 lark +n01527917 skylark, Alauda arvensis +n01528396 wagtail +n01528654 pipit, titlark, lark +n01528845 meadow pipit, Anthus pratensis +n01529672 finch +n01530439 chaffinch, Fringilla coelebs +n01530575 brambling, Fringilla montifringilla +n01531178 goldfinch, Carduelis carduelis +n01531344 linnet, lintwhite, Carduelis cannabina +n01531512 siskin, Carduelis spinus +n01531639 red siskin, Carduelis cucullata +n01531811 redpoll, Carduelis flammea +n01531971 redpoll, Carduelis hornemanni +n01532325 New World goldfinch, goldfinch, yellowbird, Spinus tristis +n01532511 pine siskin, pine finch, Spinus pinus +n01532829 house finch, linnet, Carpodacus mexicanus +n01533000 purple finch, Carpodacus purpureus +n01533339 canary, canary bird +n01533481 common canary, Serinus canaria +n01533651 serin +n01533893 crossbill, Loxia curvirostra +n01534155 bullfinch, Pyrrhula pyrrhula +n01534433 junco, snowbird +n01534582 dark-eyed junco, slate-colored junco, Junco hyemalis +n01534762 New World sparrow +n01535140 vesper sparrow, grass finch, Pooecetes gramineus +n01535469 white-throated sparrow, whitethroat, Zonotrichia albicollis +n01535690 white-crowned sparrow, Zonotrichia leucophrys +n01536035 chipping sparrow, Spizella passerina +n01536186 field sparrow, Spizella pusilla +n01536334 tree sparrow, Spizella arborea +n01536644 song sparrow, Melospiza melodia +n01536780 swamp sparrow, Melospiza georgiana +n01537134 bunting +n01537544 indigo bunting, indigo finch, indigo bird, Passerina cyanea +n01537895 ortolan, ortolan bunting, Emberiza hortulana +n01538059 reed bunting, Emberiza schoeniclus +n01538200 yellowhammer, yellow bunting, Emberiza citrinella +n01538362 yellow-breasted bunting, Emberiza aureola +n01538630 snow bunting, snowbird, snowflake, Plectrophenax nivalis +n01538955 honeycreeper +n01539272 banana quit +n01539573 sparrow, true sparrow +n01539925 English sparrow, house sparrow, Passer domesticus +n01540090 tree sparrow, Passer montanus +n01540233 grosbeak, grossbeak +n01540566 evening grosbeak, Hesperiphona vespertina +n01540832 hawfinch, Coccothraustes coccothraustes +n01541102 pine grosbeak, Pinicola enucleator +n01541386 cardinal, cardinal grosbeak, Richmondena Cardinalis, Cardinalis cardinalis, redbird +n01541760 pyrrhuloxia, Pyrrhuloxia sinuata +n01541922 towhee +n01542168 chewink, cheewink, Pipilo erythrophthalmus +n01542433 green-tailed towhee, Chlorura chlorura +n01542786 weaver, weaverbird, weaver finch +n01543175 baya, Ploceus philippinus +n01543383 whydah, whidah, widow bird +n01543632 Java sparrow, Java finch, ricebird, Padda oryzivora +n01543936 avadavat, amadavat +n01544208 grassfinch, grass finch +n01544389 zebra finch, Poephila castanotis +n01544704 honeycreeper, Hawaiian honeycreeper +n01545574 lyrebird +n01546039 scrubbird, scrub-bird, scrub bird +n01546506 broadbill +n01546921 tyrannid +n01547832 New World flycatcher, flycatcher, tyrant flycatcher, tyrant bird +n01548301 kingbird, Tyrannus tyrannus +n01548492 Arkansas kingbird, western kingbird +n01548694 Cassin's kingbird, Tyrannus vociferans +n01548865 eastern kingbird +n01549053 grey kingbird, gray kingbird, petchary, Tyrannus domenicensis domenicensis +n01549430 pewee, peewee, peewit, pewit, wood pewee, Contopus virens +n01549641 western wood pewee, Contopus sordidulus +n01549886 phoebe, phoebe bird, Sayornis phoebe +n01550172 vermillion flycatcher, firebird, Pyrocephalus rubinus mexicanus +n01550761 cotinga, chatterer +n01551080 cock of the rock, Rupicola rupicola +n01551300 cock of the rock, Rupicola peruviana +n01551711 manakin +n01552034 bellbird +n01552333 umbrella bird, Cephalopterus ornatus +n01552813 ovenbird +n01553142 antbird, ant bird +n01553527 ant thrush +n01553762 ant shrike +n01554017 spotted antbird, Hylophylax naevioides +n01554448 woodhewer, woodcreeper, wood-creeper, tree creeper +n01555004 pitta +n01555305 scissortail, scissortailed flycatcher, Muscivora-forficata +n01555809 Old World flycatcher, true flycatcher, flycatcher +n01556182 spotted flycatcher, Muscicapa striata, Muscicapa grisola +n01556514 thickhead, whistler +n01557185 thrush +n01557962 missel thrush, mistle thrush, mistletoe thrush, Turdus viscivorus +n01558149 song thrush, mavis, throstle, Turdus philomelos +n01558307 fieldfare, snowbird, Turdus pilaris +n01558461 redwing, Turdus iliacus +n01558594 blackbird, merl, merle, ouzel, ousel, European blackbird, Turdus merula +n01558765 ring ouzel, ring blackbird, ring thrush, Turdus torquatus +n01558993 robin, American robin, Turdus migratorius +n01559160 clay-colored robin, Turdus greyi +n01559477 hermit thrush, Hylocichla guttata +n01559639 veery, Wilson's thrush, Hylocichla fuscescens +n01559804 wood thrush, Hylocichla mustelina +n01560105 nightingale, Luscinia megarhynchos +n01560280 thrush nightingale, Luscinia luscinia +n01560419 bulbul +n01560636 Old World chat, chat +n01560793 stonechat, Saxicola torquata +n01560935 whinchat, Saxicola rubetra +n01561181 solitaire +n01561452 redstart, redtail +n01561732 wheatear +n01562014 bluebird +n01562265 robin, redbreast, robin redbreast, Old World robin, Erithacus rubecola +n01562451 bluethroat, Erithacus svecicus +n01563128 warbler +n01563449 gnatcatcher +n01563746 kinglet +n01563945 goldcrest, golden-crested kinglet, Regulus regulus +n01564101 gold-crowned kinglet, Regulus satrata +n01564217 ruby-crowned kinglet, ruby-crowned wren, Regulus calendula +n01564394 Old World warbler, true warbler +n01564773 blackcap, Silvia atricapilla +n01564914 greater whitethroat, whitethroat, Sylvia communis +n01565078 lesser whitethroat, whitethroat, Sylvia curruca +n01565345 wood warbler, Phylloscopus sibilatrix +n01565599 sedge warbler, sedge bird, sedge wren, reedbird, Acrocephalus schoenobaenus +n01565930 wren warbler +n01566207 tailorbird, Orthotomus sutorius +n01566645 babbler, cackler +n01567133 New World warbler, wood warbler +n01567678 parula warbler, northern parula, Parula americana +n01567879 Wilson's warbler, Wilson's blackcap, Wilsonia pusilla +n01568132 flycatching warbler +n01568294 American redstart, redstart, Setophaga ruticilla +n01568720 Cape May warbler, Dendroica tigrina +n01568892 yellow warbler, golden warbler, yellowbird, Dendroica petechia +n01569060 Blackburn, Blackburnian warbler, Dendroica fusca +n01569262 Audubon's warbler, Audubon warbler, Dendroica auduboni +n01569423 myrtle warbler, myrtle bird, Dendroica coronata +n01569566 blackpoll, Dendroica striate +n01569836 New World chat, chat +n01569971 yellow-breasted chat, Icteria virens +n01570267 ovenbird, Seiurus aurocapillus +n01570421 water thrush +n01570676 yellowthroat +n01570839 common yellowthroat, Maryland yellowthroat, Geothlypis trichas +n01571410 riflebird, Ptloris paradisea +n01571904 New World oriole, American oriole, oriole +n01572328 northern oriole, Icterus galbula +n01572489 Baltimore oriole, Baltimore bird, hangbird, firebird, Icterus galbula galbula +n01572654 Bullock's oriole, Icterus galbula bullockii +n01572782 orchard oriole, Icterus spurius +n01573074 meadowlark, lark +n01573240 eastern meadowlark, Sturnella magna +n01573360 western meadowlark, Sturnella neglecta +n01573627 cacique, cazique +n01573898 bobolink, ricebird, reedbird, Dolichonyx oryzivorus +n01574045 New World blackbird, blackbird +n01574390 grackle, crow blackbird +n01574560 purple grackle, Quiscalus quiscula +n01574801 rusty blackbird, rusty grackle, Euphagus carilonus +n01575117 cowbird +n01575401 red-winged blackbird, redwing, Agelaius phoeniceus +n01575745 Old World oriole, oriole +n01576076 golden oriole, Oriolus oriolus +n01576358 fig-bird +n01576695 starling +n01577035 common starling, Sturnus vulgaris +n01577458 rose-colored starling, rose-colored pastor, Pastor sturnus, Pastor roseus +n01577659 myna, mynah, mina, minah, myna bird, mynah bird +n01577941 crested myna, Acridotheres tristis +n01578180 hill myna, Indian grackle, grackle, Gracula religiosa +n01578575 corvine bird +n01579028 crow +n01579149 American crow, Corvus brachyrhyncos +n01579260 raven, Corvus corax +n01579410 rook, Corvus frugilegus +n01579578 jackdaw, daw, Corvus monedula +n01579729 chough +n01580077 jay +n01580379 Old World jay +n01580490 common European jay, Garullus garullus +n01580772 New World jay +n01580870 blue jay, jaybird, Cyanocitta cristata +n01581166 Canada jay, grey jay, gray jay, camp robber, whisker jack, Perisoreus canadensis +n01581434 Rocky Mountain jay, Perisoreus canadensis capitalis +n01581730 nutcracker +n01581874 common nutcracker, Nucifraga caryocatactes +n01581984 Clark's nutcracker, Nucifraga columbiana +n01582220 magpie +n01582398 European magpie, Pica pica +n01582498 American magpie, Pica pica hudsonia +n01582856 Australian magpie +n01583209 butcherbird +n01583495 currawong, bell magpie +n01583828 piping crow, piping crow-shrike, Gymnorhina tibicen +n01584225 wren, jenny wren +n01584695 winter wren, Troglodytes troglodytes +n01584853 house wren, Troglodytes aedon +n01585121 marsh wren +n01585287 long-billed marsh wren, Cistothorus palustris +n01585422 sedge wren, short-billed marsh wren, Cistothorus platensis +n01585715 rock wren, Salpinctes obsoletus +n01586020 Carolina wren, Thryothorus ludovicianus +n01586374 cactus wren +n01586941 mockingbird, mocker, Mimus polyglotktos +n01587278 blue mockingbird, Melanotis caerulescens +n01587526 catbird, grey catbird, gray catbird, Dumetella carolinensis +n01587834 thrasher, mocking thrush +n01588002 brown thrasher, brown thrush, Toxostoma rufums +n01588431 New Zealand wren +n01588725 rock wren, Xenicus gilviventris +n01588996 rifleman bird, Acanthisitta chloris +n01589286 creeper, tree creeper +n01589718 brown creeper, American creeper, Certhia americana +n01589893 European creeper, Certhia familiaris +n01590220 wall creeper, tichodrome, Tichodroma muriaria +n01591005 European nuthatch, Sitta europaea +n01591123 red-breasted nuthatch, Sitta canadensis +n01591301 white-breasted nuthatch, Sitta carolinensis +n01591697 titmouse, tit +n01592084 chickadee +n01592257 black-capped chickadee, blackcap, Parus atricapillus +n01592387 tufted titmouse, Parus bicolor +n01592540 Carolina chickadee, Parus carolinensis +n01592694 blue tit, tomtit, Parus caeruleus +n01593028 bushtit, bush tit +n01593282 wren-tit, Chamaea fasciata +n01593553 verdin, Auriparus flaviceps +n01594004 fairy bluebird, bluebird +n01594372 swallow +n01594787 barn swallow, chimney swallow, Hirundo rustica +n01594968 cliff swallow, Hirundo pyrrhonota +n01595168 tree swallow, tree martin, Hirundo nigricans +n01595450 white-bellied swallow, tree swallow, Iridoprocne bicolor +n01595624 martin +n01595974 house martin, Delichon urbica +n01596273 bank martin, bank swallow, sand martin, Riparia riparia +n01596608 purple martin, Progne subis +n01597022 wood swallow, swallow shrike +n01597336 tanager +n01597737 scarlet tanager, Piranga olivacea, redbird, firebird +n01597906 western tanager, Piranga ludoviciana +n01598074 summer tanager, summer redbird, Piranga rubra +n01598271 hepatic tanager, Piranga flava hepatica +n01598588 shrike +n01598988 butcherbird +n01599159 European shrike, Lanius excubitor +n01599269 northern shrike, Lanius borealis +n01599388 white-rumped shrike, Lanius ludovicianus excubitorides +n01599556 loggerhead shrike, Lanius lucovicianus +n01599741 migrant shrike, Lanius ludovicianus migrans +n01600085 bush shrike +n01600341 black-fronted bush shrike, Chlorophoneus nigrifrons +n01600657 bowerbird, catbird +n01601068 satin bowerbird, satin bird, Ptilonorhynchus violaceus +n01601410 great bowerbird, Chlamydera nuchalis +n01601694 water ouzel, dipper +n01602080 European water ouzel, Cinclus aquaticus +n01602209 American water ouzel, Cinclus mexicanus +n01602630 vireo +n01602832 red-eyed vireo, Vireo olivaceous +n01603000 solitary vireo, Vireo solitarius +n01603152 blue-headed vireo, Vireo solitarius solitarius +n01603600 waxwing +n01603812 cedar waxwing, cedarbird, Bombycilla cedrorun +n01603953 Bohemian waxwing, Bombycilla garrulus +n01604330 bird of prey, raptor, raptorial bird +n01604968 Accipitriformes, order Accipitriformes +n01605630 hawk +n01606097 eyas +n01606177 tiercel, tercel, tercelet +n01606522 goshawk, Accipiter gentilis +n01606672 sparrow hawk, Accipiter nisus +n01606809 Cooper's hawk, blue darter, Accipiter cooperii +n01606978 chicken hawk, hen hawk +n01607309 buteonine +n01607429 redtail, red-tailed hawk, Buteo jamaicensis +n01607600 rough-legged hawk, roughleg, Buteo lagopus +n01607812 red-shouldered hawk, Buteo lineatus +n01607962 buzzard, Buteo buteo +n01608265 honey buzzard, Pernis apivorus +n01608432 kite +n01608814 black kite, Milvus migrans +n01609062 swallow-tailed kite, swallow-tailed hawk, Elanoides forficatus +n01609391 white-tailed kite, Elanus leucurus +n01609751 harrier +n01609956 marsh harrier, Circus Aeruginosus +n01610100 Montagu's harrier, Circus pygargus +n01610226 marsh hawk, northern harrier, hen harrier, Circus cyaneus +n01610552 harrier eagle, short-toed eagle +n01610955 falcon +n01611472 peregrine, peregrine falcon, Falco peregrinus +n01611674 falcon-gentle, falcon-gentil +n01611800 gyrfalcon, gerfalcon, Falco rusticolus +n01611969 kestrel, Falco tinnunculus +n01612122 sparrow hawk, American kestrel, kestrel, Falco sparverius +n01612275 pigeon hawk, merlin, Falco columbarius +n01612476 hobby, Falco subbuteo +n01612628 caracara +n01612955 Audubon's caracara, Polyborus cheriway audubonii +n01613177 carancha, Polyborus plancus +n01613294 eagle, bird of Jove +n01613615 young bird +n01613807 eaglet +n01614038 harpy, harpy eagle, Harpia harpyja +n01614343 golden eagle, Aquila chrysaetos +n01614556 tawny eagle, Aquila rapax +n01614925 bald eagle, American eagle, Haliaeetus leucocephalus +n01615121 sea eagle +n01615303 Kamchatkan sea eagle, Stellar's sea eagle, Haliaeetus pelagicus +n01615458 ern, erne, grey sea eagle, gray sea eagle, European sea eagle, white-tailed sea eagle, Haliatus albicilla +n01615703 fishing eagle, Haliaeetus leucorhyphus +n01616086 osprey, fish hawk, fish eagle, sea eagle, Pandion haliaetus +n01616318 vulture +n01616551 Aegypiidae, family Aegypiidae +n01616764 Old World vulture +n01617095 griffon vulture, griffon, Gyps fulvus +n01617443 bearded vulture, lammergeier, lammergeyer, Gypaetus barbatus +n01617766 Egyptian vulture, Pharaoh's chicken, Neophron percnopterus +n01618082 black vulture, Aegypius monachus +n01618503 secretary bird, Sagittarius serpentarius +n01618922 New World vulture, cathartid +n01619310 buzzard, turkey buzzard, turkey vulture, Cathartes aura +n01619536 condor +n01619835 Andean condor, Vultur gryphus +n01620135 California condor, Gymnogyps californianus +n01620414 black vulture, carrion crow, Coragyps atratus +n01620735 king vulture, Sarcorhamphus papa +n01621127 owl, bird of Minerva, bird of night, hooter +n01621635 owlet +n01622120 little owl, Athene noctua +n01622352 horned owl +n01622483 great horned owl, Bubo virginianus +n01622779 great grey owl, great gray owl, Strix nebulosa +n01622959 tawny owl, Strix aluco +n01623110 barred owl, Strix varia +n01623425 screech owl, Otus asio +n01623615 screech owl +n01623706 scops owl +n01623880 spotted owl, Strix occidentalis +n01624115 Old World scops owl, Otus scops +n01624212 Oriental scops owl, Otus sunia +n01624305 hoot owl +n01624537 hawk owl, Surnia ulula +n01624833 long-eared owl, Asio otus +n01625121 laughing owl, laughing jackass, Sceloglaux albifacies +n01625562 barn owl, Tyto alba +n01627424 amphibian +n01628331 Ichyostega +n01628770 urodele, caudate +n01629276 salamander +n01629819 European fire salamander, Salamandra salamandra +n01629962 spotted salamander, fire salamander, Salamandra maculosa +n01630148 alpine salamander, Salamandra atra +n01630284 newt, triton +n01630670 common newt, Triturus vulgaris +n01630901 red eft, Notophthalmus viridescens +n01631175 Pacific newt +n01631354 rough-skinned newt, Taricha granulosa +n01631512 California newt, Taricha torosa +n01631663 eft +n01632047 ambystomid, ambystomid salamander +n01632308 mole salamander, Ambystoma talpoideum +n01632458 spotted salamander, Ambystoma maculatum +n01632601 tiger salamander, Ambystoma tigrinum +n01632777 axolotl, mud puppy, Ambystoma mexicanum +n01632952 waterdog +n01633406 hellbender, mud puppy, Cryptobranchus alleganiensis +n01633781 giant salamander, Megalobatrachus maximus +n01634227 olm, Proteus anguinus +n01634522 mud puppy, Necturus maculosus +n01635027 dicamptodon, dicamptodontid +n01635176 Pacific giant salamander, Dicamptodon ensatus +n01635480 olympic salamander, Rhyacotriton olympicus +n01636127 lungless salamander, plethodont +n01636352 eastern red-backed salamander, Plethodon cinereus +n01636510 western red-backed salamander, Plethodon vehiculum +n01636829 dusky salamander +n01637112 climbing salamander +n01637338 arboreal salamander, Aneides lugubris +n01637615 slender salamander, worm salamander +n01637932 web-toed salamander +n01638194 Shasta salamander, Hydromantes shastae +n01638329 limestone salamander, Hydromantes brunus +n01638722 amphiuma, congo snake, congo eel, blind eel +n01639187 siren +n01639765 frog, toad, toad frog, anuran, batrachian, salientian +n01640846 true frog, ranid +n01641206 wood-frog, wood frog, Rana sylvatica +n01641391 leopard frog, spring frog, Rana pipiens +n01641577 bullfrog, Rana catesbeiana +n01641739 green frog, spring frog, Rana clamitans +n01641930 cascades frog, Rana cascadae +n01642097 goliath frog, Rana goliath +n01642257 pickerel frog, Rana palustris +n01642391 tarahumara frog, Rana tarahumarae +n01642539 grass frog, Rana temporaria +n01642943 leptodactylid frog, leptodactylid +n01643255 robber frog +n01643507 barking frog, robber frog, Hylactophryne augusti +n01643896 crapaud, South American bullfrog, Leptodactylus pentadactylus +n01644373 tree frog, tree-frog +n01644900 tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui +n01645466 Liopelma hamiltoni +n01645776 true toad +n01646292 bufo +n01646388 agua, agua toad, Bufo marinus +n01646555 European toad, Bufo bufo +n01646648 natterjack, Bufo calamita +n01646802 American toad, Bufo americanus +n01646902 Eurasian green toad, Bufo viridis +n01647033 American green toad, Bufo debilis +n01647180 Yosemite toad, Bufo canorus +n01647303 Texas toad, Bufo speciosus +n01647466 southwestern toad, Bufo microscaphus +n01647640 western toad, Bufo boreas +n01648139 obstetrical toad, midwife toad, Alytes obstetricans +n01648356 midwife toad, Alytes cisternasi +n01648620 fire-bellied toad, Bombina bombina +n01649170 spadefoot, spadefoot toad +n01649412 western spadefoot, Scaphiopus hammondii +n01649556 southern spadefoot, Scaphiopus multiplicatus +n01649726 plains spadefoot, Scaphiopus bombifrons +n01650167 tree toad, tree frog, tree-frog +n01650690 spring peeper, Hyla crucifer +n01650901 Pacific tree toad, Hyla regilla +n01651059 canyon treefrog, Hyla arenicolor +n01651285 chameleon tree frog +n01651487 cricket frog +n01651641 northern cricket frog, Acris crepitans +n01651778 eastern cricket frog, Acris gryllus +n01652026 chorus frog +n01652297 lowland burrowing treefrog, northern casque-headed frog, Pternohyla fodiens +n01653026 western narrow-mouthed toad, Gastrophryne olivacea +n01653223 eastern narrow-mouthed toad, Gastrophryne carolinensis +n01653509 sheep frog +n01653773 tongueless frog +n01654083 Surinam toad, Pipa pipa, Pipa americana +n01654637 African clawed frog, Xenopus laevis +n01654863 South American poison toad +n01655344 caecilian, blindworm +n01661091 reptile, reptilian +n01661592 anapsid, anapsid reptile +n01661818 diapsid, diapsid reptile +n01662060 Diapsida, subclass Diapsida +n01662622 chelonian, chelonian reptile +n01662784 turtle +n01663401 sea turtle, marine turtle +n01663782 green turtle, Chelonia mydas +n01664065 loggerhead, loggerhead turtle, Caretta caretta +n01664369 ridley +n01664492 Atlantic ridley, bastard ridley, bastard turtle, Lepidochelys kempii +n01664674 Pacific ridley, olive ridley, Lepidochelys olivacea +n01664990 hawksbill turtle, hawksbill, hawkbill, tortoiseshell turtle, Eretmochelys imbricata +n01665541 leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea +n01665932 snapping turtle +n01666228 common snapping turtle, snapper, Chelydra serpentina +n01666585 alligator snapping turtle, alligator snapper, Macroclemys temmincki +n01667114 mud turtle +n01667432 musk turtle, stinkpot +n01667778 terrapin +n01668091 diamondback terrapin, Malaclemys centrata +n01668436 red-bellied terrapin, red-bellied turtle, redbelly, Pseudemys rubriventris +n01668665 slider, yellow-bellied terrapin, Pseudemys scripta +n01668892 cooter, river cooter, Pseudemys concinna +n01669191 box turtle, box tortoise +n01669372 Western box turtle, Terrapene ornata +n01669654 painted turtle, painted terrapin, painted tortoise, Chrysemys picta +n01670092 tortoise +n01670535 European tortoise, Testudo graeca +n01670802 giant tortoise +n01671125 gopher tortoise, gopher turtle, gopher, Gopherus polypemus +n01671479 desert tortoise, Gopherus agassizii +n01671705 Texas tortoise +n01672032 soft-shelled turtle, pancake turtle +n01672432 spiny softshell, Trionyx spiniferus +n01672611 smooth softshell, Trionyx muticus +n01673282 tuatara, Sphenodon punctatum +n01674216 saurian +n01674464 lizard +n01674990 gecko +n01675352 flying gecko, fringed gecko, Ptychozoon homalocephalum +n01675722 banded gecko +n01676755 iguanid, iguanid lizard +n01677366 common iguana, iguana, Iguana iguana +n01677747 marine iguana, Amblyrhynchus cristatus +n01678043 desert iguana, Dipsosaurus dorsalis +n01678343 chuckwalla, Sauromalus obesus +n01678657 zebra-tailed lizard, gridiron-tailed lizard, Callisaurus draconoides +n01679005 fringe-toed lizard, Uma notata +n01679307 earless lizard +n01679626 collared lizard +n01679962 leopard lizard +n01680264 spiny lizard +n01680478 fence lizard +n01680655 western fence lizard, swift, blue-belly, Sceloporus occidentalis +n01680813 eastern fence lizard, pine lizard, Sceloporus undulatus +n01680983 sagebrush lizard, Sceloporus graciosus +n01681328 side-blotched lizard, sand lizard, Uta stansburiana +n01681653 tree lizard, Urosaurus ornatus +n01681940 horned lizard, horned toad, horny frog +n01682172 Texas horned lizard, Phrynosoma cornutum +n01682435 basilisk +n01682714 American chameleon, anole, Anolis carolinensis +n01683201 worm lizard +n01683558 night lizard +n01684133 skink, scincid, scincid lizard +n01684578 western skink, Eumeces skiltonianus +n01684741 mountain skink, Eumeces callicephalus +n01685439 teiid lizard, teiid +n01685808 whiptail, whiptail lizard +n01686044 racerunner, race runner, six-lined racerunner, Cnemidophorus sexlineatus +n01686220 plateau striped whiptail, Cnemidophorus velox +n01686403 Chihuahuan spotted whiptail, Cnemidophorus exsanguis +n01686609 western whiptail, Cnemidophorus tigris +n01686808 checkered whiptail, Cnemidophorus tesselatus +n01687128 teju +n01687290 caiman lizard +n01687665 agamid, agamid lizard +n01687978 agama +n01688243 frilled lizard, Chlamydosaurus kingi +n01688961 moloch +n01689081 mountain devil, spiny lizard, Moloch horridus +n01689411 anguid lizard +n01689811 alligator lizard +n01690149 blindworm, slowworm, Anguis fragilis +n01690466 glass lizard, glass snake, joint snake +n01691217 legless lizard +n01691652 Lanthanotus borneensis +n01691951 venomous lizard +n01692333 Gila monster, Heloderma suspectum +n01692523 beaded lizard, Mexican beaded lizard, Heloderma horridum +n01692864 lacertid lizard, lacertid +n01693175 sand lizard, Lacerta agilis +n01693334 green lizard, Lacerta viridis +n01693783 chameleon, chamaeleon +n01694178 African chameleon, Chamaeleo chamaeleon +n01694311 horned chameleon, Chamaeleo oweni +n01694709 monitor, monitor lizard, varan +n01694955 African monitor, Varanus niloticus +n01695060 Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis +n01696633 crocodilian reptile, crocodilian +n01697178 crocodile +n01697457 African crocodile, Nile crocodile, Crocodylus niloticus +n01697611 Asian crocodile, Crocodylus porosus +n01697749 Morlett's crocodile +n01697978 false gavial, Tomistoma schlegeli +n01698434 alligator, gator +n01698640 American alligator, Alligator mississipiensis +n01698782 Chinese alligator, Alligator sinensis +n01699040 caiman, cayman +n01699254 spectacled caiman, Caiman sclerops +n01699675 gavial, Gavialis gangeticus +n01701551 armored dinosaur +n01701859 stegosaur, stegosaurus, Stegosaur stenops +n01702256 ankylosaur, ankylosaurus +n01702479 Edmontonia +n01703011 bone-headed dinosaur +n01703161 pachycephalosaur, pachycephalosaurus +n01703569 ceratopsian, horned dinosaur +n01704103 protoceratops +n01704323 triceratops +n01704626 styracosaur, styracosaurus +n01705010 psittacosaur, psittacosaurus +n01705591 ornithopod, ornithopod dinosaur +n01705934 hadrosaur, hadrosaurus, duck-billed dinosaur +n01707294 trachodon, trachodont +n01708106 saurischian, saurischian dinosaur +n01708998 sauropod, sauropod dinosaur +n01709484 apatosaur, apatosaurus, brontosaur, brontosaurus, thunder lizard, Apatosaurus excelsus +n01709876 barosaur, barosaurus +n01710177 diplodocus +n01711160 argentinosaur +n01712008 theropod, theropod dinosaur, bird-footed dinosaur +n01712752 ceratosaur, ceratosaurus +n01713170 coelophysis +n01713764 tyrannosaur, tyrannosaurus, Tyrannosaurus rex +n01714231 allosaur, allosaurus +n01715888 ornithomimid +n01717016 maniraptor +n01717229 oviraptorid +n01717467 velociraptor +n01718096 deinonychus +n01718414 utahraptor, superslasher +n01719403 synapsid, synapsid reptile +n01721174 dicynodont +n01721898 pelycosaur +n01722670 dimetrodon +n01722998 pterosaur, flying reptile +n01723579 pterodactyl +n01724231 ichthyosaur +n01724840 ichthyosaurus +n01725086 stenopterygius, Stenopterygius quadrisicissus +n01725713 plesiosaur, plesiosaurus +n01726203 nothosaur +n01726692 snake, serpent, ophidian +n01727646 colubrid snake, colubrid +n01728266 hoop snake +n01728572 thunder snake, worm snake, Carphophis amoenus +n01728920 ringneck snake, ring-necked snake, ring snake +n01729322 hognose snake, puff adder, sand viper +n01729672 leaf-nosed snake +n01729977 green snake, grass snake +n01730185 smooth green snake, Opheodrys vernalis +n01730307 rough green snake, Opheodrys aestivus +n01730563 green snake +n01730812 racer +n01730960 blacksnake, black racer, Coluber constrictor +n01731137 blue racer, Coluber constrictor flaviventris +n01731277 horseshoe whipsnake, Coluber hippocrepis +n01731545 whip-snake, whip snake, whipsnake +n01731764 coachwhip, coachwhip snake, Masticophis flagellum +n01731941 California whipsnake, striped racer, Masticophis lateralis +n01732093 Sonoran whipsnake, Masticophis bilineatus +n01732244 rat snake +n01732614 corn snake, red rat snake, Elaphe guttata +n01732789 black rat snake, blacksnake, pilot blacksnake, mountain blacksnake, Elaphe obsoleta +n01732989 chicken snake +n01733214 Indian rat snake, Ptyas mucosus +n01733466 glossy snake, Arizona elegans +n01733757 bull snake, bull-snake +n01733957 gopher snake, Pituophis melanoleucus +n01734104 pine snake +n01734418 king snake, kingsnake +n01734637 common kingsnake, Lampropeltis getulus +n01734808 milk snake, house snake, milk adder, checkered adder, Lampropeltis triangulum +n01735189 garter snake, grass snake +n01735439 common garter snake, Thamnophis sirtalis +n01735577 ribbon snake, Thamnophis sauritus +n01735728 Western ribbon snake, Thamnophis proximus +n01736032 lined snake, Tropidoclonion lineatum +n01736375 ground snake, Sonora semiannulata +n01736796 eastern ground snake, Potamophis striatula, Haldea striatula +n01737021 water snake +n01737472 common water snake, banded water snake, Natrix sipedon, Nerodia sipedon +n01737728 water moccasin +n01737875 grass snake, ring snake, ringed snake, Natrix natrix +n01738065 viperine grass snake, Natrix maura +n01738306 red-bellied snake, Storeria occipitamaculata +n01738601 sand snake +n01738731 banded sand snake, Chilomeniscus cinctus +n01739094 black-headed snake +n01739381 vine snake +n01739647 lyre snake +n01739871 Sonoran lyre snake, Trimorphodon lambda +n01740131 night snake, Hypsiglena torquata +n01740551 blind snake, worm snake +n01740885 western blind snake, Leptotyphlops humilis +n01741232 indigo snake, gopher snake, Drymarchon corais +n01741442 eastern indigo snake, Drymarchon corais couperi +n01741562 constrictor +n01741943 boa +n01742172 boa constrictor, Constrictor constrictor +n01742447 rubber boa, tow-headed snake, Charina bottae +n01742821 rosy boa, Lichanura trivirgata +n01743086 anaconda, Eunectes murinus +n01743605 python +n01743936 carpet snake, Python variegatus, Morelia spilotes variegatus +n01744100 reticulated python, Python reticulatus +n01744270 Indian python, Python molurus +n01744401 rock python, rock snake, Python sebae +n01744555 amethystine python +n01745125 elapid, elapid snake +n01745484 coral snake, harlequin-snake, New World coral snake +n01745902 eastern coral snake, Micrurus fulvius +n01746191 western coral snake, Micruroides euryxanthus +n01746359 coral snake, Old World coral snake +n01746952 African coral snake, Aspidelaps lubricus +n01747285 Australian coral snake, Rhynchoelaps australis +n01747589 copperhead, Denisonia superba +n01747885 cobra +n01748264 Indian cobra, Naja naja +n01748389 asp, Egyptian cobra, Naja haje +n01748686 black-necked cobra, spitting cobra, Naja nigricollis +n01748906 hamadryad, king cobra, Ophiophagus hannah, Naja hannah +n01749244 ringhals, rinkhals, spitting snake, Hemachatus haemachatus +n01749582 mamba +n01749742 black mamba, Dendroaspis augusticeps +n01749939 green mamba +n01750167 death adder, Acanthophis antarcticus +n01750437 tiger snake, Notechis scutatus +n01750743 Australian blacksnake, Pseudechis porphyriacus +n01751036 krait +n01751215 banded krait, banded adder, Bungarus fasciatus +n01751472 taipan, Oxyuranus scutellatus +n01751748 sea snake +n01752165 viper +n01752585 adder, common viper, Vipera berus +n01752736 asp, asp viper, Vipera aspis +n01753032 puff adder, Bitis arietans +n01753180 gaboon viper, Bitis gabonica +n01753488 horned viper, cerastes, sand viper, horned asp, Cerastes cornutus +n01753959 pit viper +n01754370 copperhead, Agkistrodon contortrix +n01754533 water moccasin, cottonmouth, cottonmouth moccasin, Agkistrodon piscivorus +n01754876 rattlesnake, rattler +n01755581 diamondback, diamondback rattlesnake, Crotalus adamanteus +n01755740 timber rattlesnake, banded rattlesnake, Crotalus horridus horridus +n01755952 canebrake rattlesnake, canebrake rattler, Crotalus horridus atricaudatus +n01756089 prairie rattlesnake, prairie rattler, Western rattlesnake, Crotalus viridis +n01756291 sidewinder, horned rattlesnake, Crotalus cerastes +n01756508 Western diamondback, Western diamondback rattlesnake, Crotalus atrox +n01756733 rock rattlesnake, Crotalus lepidus +n01756916 tiger rattlesnake, Crotalus tigris +n01757115 Mojave rattlesnake, Crotalus scutulatus +n01757343 speckled rattlesnake, Crotalus mitchellii +n01757677 massasauga, massasauga rattler, Sistrurus catenatus +n01757901 ground rattler, massasauga, Sistrurus miliaris +n01758141 fer-de-lance, Bothrops atrops +n01758757 carcase, carcass +n01758895 carrion +n01767661 arthropod +n01768244 trilobite +n01769347 arachnid, arachnoid +n01770081 harvestman, daddy longlegs, Phalangium opilio +n01770393 scorpion +n01770795 false scorpion, pseudoscorpion +n01771100 book scorpion, Chelifer cancroides +n01771417 whip-scorpion, whip scorpion +n01771766 vinegarroon, Mastigoproctus giganteus +n01772222 spider +n01772664 orb-weaving spider +n01773157 black and gold garden spider, Argiope aurantia +n01773549 barn spider, Araneus cavaticus +n01773797 garden spider, Aranea diademata +n01774097 comb-footed spider, theridiid +n01774384 black widow, Latrodectus mactans +n01774750 tarantula +n01775062 wolf spider, hunting spider +n01775370 European wolf spider, tarantula, Lycosa tarentula +n01775730 trap-door spider +n01776192 acarine +n01776313 tick +n01776705 hard tick, ixodid +n01777304 Ixodes dammini, deer tick +n01777467 Ixodes neotomae +n01777649 Ixodes pacificus, western black-legged tick +n01777909 Ixodes scapularis, black-legged tick +n01778217 sheep-tick, sheep tick, Ixodes ricinus +n01778487 Ixodes persulcatus +n01778621 Ixodes dentatus +n01778801 Ixodes spinipalpis +n01779148 wood tick, American dog tick, Dermacentor variabilis +n01779463 soft tick, argasid +n01779629 mite +n01779939 web-spinning mite +n01780142 acarid +n01780426 trombidiid +n01780696 trombiculid +n01781071 harvest mite, chigger, jigger, redbug +n01781570 acarus, genus Acarus +n01781698 itch mite, sarcoptid +n01781875 rust mite +n01782209 spider mite, tetranychid +n01782516 red spider, red spider mite, Panonychus ulmi +n01783017 myriapod +n01783706 garden centipede, garden symphilid, symphilid, Scutigerella immaculata +n01784293 tardigrade +n01784675 centipede +n01785667 house centipede, Scutigera coleoptrata +n01786646 millipede, millepede, milliped +n01787006 sea spider, pycnogonid +n01787191 Merostomata, class Merostomata +n01787835 horseshoe crab, king crab, Limulus polyphemus, Xiphosurus polyphemus +n01788291 Asian horseshoe crab +n01788579 eurypterid +n01788864 tongue worm, pentastomid +n01789386 gallinaceous bird, gallinacean +n01789740 domestic fowl, fowl, poultry +n01790171 Dorking +n01790304 Plymouth Rock +n01790398 Cornish, Cornish fowl +n01790557 Rock Cornish +n01790711 game fowl +n01790812 cochin, cochin china +n01791107 jungle fowl, gallina +n01791314 jungle cock +n01791388 jungle hen +n01791463 red jungle fowl, Gallus gallus +n01791625 chicken, Gallus gallus +n01791954 bantam +n01792042 chick, biddy +n01792158 cock, rooster +n01792429 cockerel +n01792530 capon +n01792640 hen, biddy +n01792808 cackler +n01792955 brood hen, broody, broody hen, setting hen, sitter +n01793085 mother hen +n01793159 layer +n01793249 pullet +n01793340 spring chicken +n01793435 Rhode Island red +n01793565 Dominique, Dominick +n01793715 Orpington +n01794158 turkey, Meleagris gallopavo +n01794344 turkey cock, gobbler, tom, tom turkey +n01794651 ocellated turkey, Agriocharis ocellata +n01795088 grouse +n01795545 black grouse +n01795735 European black grouse, heathfowl, Lyrurus tetrix +n01795900 Asian black grouse, Lyrurus mlokosiewiczi +n01796019 blackcock, black cock +n01796105 greyhen, grayhen, grey hen, gray hen, heath hen +n01796340 ptarmigan +n01796519 red grouse, moorfowl, moorbird, moor-bird, moorgame, Lagopus scoticus +n01796729 moorhen +n01797020 capercaillie, capercailzie, horse of the wood, Tetrao urogallus +n01797307 spruce grouse, Canachites canadensis +n01797601 sage grouse, sage hen, Centrocercus urophasianus +n01797886 ruffed grouse, partridge, Bonasa umbellus +n01798168 sharp-tailed grouse, sprigtail, sprig tail, Pedioecetes phasianellus +n01798484 prairie chicken, prairie grouse, prairie fowl +n01798706 greater prairie chicken, Tympanuchus cupido +n01798839 lesser prairie chicken, Tympanuchus pallidicinctus +n01798979 heath hen, Tympanuchus cupido cupido +n01799302 guan +n01799679 curassow +n01800195 piping guan +n01800424 chachalaca +n01800633 Texas chachalaca, Ortilis vetula macalli +n01801088 megapode, mound bird, mound-bird, mound builder, scrub fowl +n01801479 mallee fowl, leipoa, lowan, Leipoa ocellata +n01801672 mallee hen +n01801876 brush turkey, Alectura lathami +n01802159 maleo, Macrocephalon maleo +n01802721 phasianid +n01803078 pheasant +n01803362 ring-necked pheasant, Phasianus colchicus +n01803641 afropavo, Congo peafowl, Afropavo congensis +n01803893 argus, argus pheasant +n01804163 golden pheasant, Chrysolophus pictus +n01804478 bobwhite, bobwhite quail, partridge +n01804653 northern bobwhite, Colinus virginianus +n01804921 Old World quail +n01805070 migratory quail, Coturnix coturnix, Coturnix communis +n01805321 monal, monaul +n01805801 peafowl, bird of Juno +n01806061 peachick, pea-chick +n01806143 peacock +n01806297 peahen +n01806364 blue peafowl, Pavo cristatus +n01806467 green peafowl, Pavo muticus +n01806567 quail +n01806847 California quail, Lofortyx californicus +n01807105 tragopan +n01807496 partridge +n01807828 Hungarian partridge, grey partridge, gray partridge, Perdix perdix +n01808140 red-legged partridge, Alectoris ruffa +n01808291 Greek partridge, rock partridge, Alectoris graeca +n01808596 mountain quail, mountain partridge, Oreortyx picta palmeri +n01809106 guinea fowl, guinea, Numida meleagris +n01809371 guinea hen +n01809752 hoatzin, hoactzin, stinkbird, Opisthocomus hoazin +n01810268 tinamou, partridge +n01810700 columbiform bird +n01811243 dodo, Raphus cucullatus +n01811909 pigeon +n01812187 pouter pigeon, pouter +n01812337 dove +n01812662 rock dove, rock pigeon, Columba livia +n01812866 band-tailed pigeon, band-tail pigeon, bandtail, Columba fasciata +n01813088 wood pigeon, ringdove, cushat, Columba palumbus +n01813385 turtledove +n01813532 Streptopelia turtur +n01813658 ringdove, Streptopelia risoria +n01813948 Australian turtledove, turtledove, Stictopelia cuneata +n01814217 mourning dove, Zenaidura macroura +n01814370 domestic pigeon +n01814549 squab +n01814620 fairy swallow +n01814755 roller, tumbler, tumbler pigeon +n01814921 homing pigeon, homer +n01815036 carrier pigeon +n01815270 passenger pigeon, Ectopistes migratorius +n01815601 sandgrouse, sand grouse +n01816017 painted sandgrouse, Pterocles indicus +n01816140 pin-tailed sandgrouse, pin-tailed grouse, Pterocles alchata +n01816474 pallas's sandgrouse, Syrrhaptes paradoxus +n01816887 parrot +n01817263 popinjay +n01817346 poll, poll parrot +n01817953 African grey, African gray, Psittacus erithacus +n01818299 amazon +n01818515 macaw +n01818832 kea, Nestor notabilis +n01819115 cockatoo +n01819313 sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita +n01819465 pink cockatoo, Kakatoe leadbeateri +n01819734 cockateel, cockatiel, cockatoo parrot, Nymphicus hollandicus +n01820052 lovebird +n01820348 lory +n01820546 lorikeet +n01820801 varied Lorikeet, Glossopsitta versicolor +n01821076 rainbow lorikeet, Trichoglossus moluccanus +n01821203 parakeet, parrakeet, parroket, paraquet, paroquet, parroquet +n01821554 Carolina parakeet, Conuropsis carolinensis +n01821869 budgerigar, budgereegah, budgerygah, budgie, grass parakeet, lovebird, shell parakeet, Melopsittacus undulatus +n01822300 ring-necked parakeet, Psittacula krameri +n01822602 cuculiform bird +n01823013 cuckoo +n01823414 European cuckoo, Cuculus canorus +n01823740 black-billed cuckoo, Coccyzus erythropthalmus +n01824035 roadrunner, chaparral cock, Geococcyx californianus +n01824344 ani +n01824575 coucal +n01824749 crow pheasant, Centropus sinensis +n01825278 touraco, turaco, turacou, turakoo +n01825930 coraciiform bird +n01826364 roller +n01826680 European roller, Coracias garrulus +n01826844 ground roller +n01827403 kingfisher +n01827793 Eurasian kingfisher, Alcedo atthis +n01828096 belted kingfisher, Ceryle alcyon +n01828556 kookaburra, laughing jackass, Dacelo gigas +n01828970 bee eater +n01829413 hornbill +n01829869 hoopoe, hoopoo +n01830042 Euopean hoopoe, Upupa epops +n01830479 wood hoopoe +n01830915 motmot, momot +n01831360 tody +n01831712 apodiform bird +n01832167 swift +n01832493 European swift, Apus apus +n01832813 chimney swift, chimney swallow, Chateura pelagica +n01833112 swiftlet, Collocalia inexpectata +n01833415 tree swift, crested swift +n01833805 hummingbird +n01834177 Archilochus colubris +n01834540 thornbill +n01835276 goatsucker, nightjar, caprimulgid +n01835769 European goatsucker, European nightjar, Caprimulgus europaeus +n01835918 chuck-will's-widow, Caprimulgus carolinensis +n01836087 whippoorwill, Caprimulgus vociferus +n01836673 poorwill, Phalaenoptilus nuttallii +n01837072 frogmouth +n01837526 oilbird, guacharo, Steatornis caripensis +n01838038 piciform bird +n01838598 woodpecker, peckerwood, pecker +n01839086 green woodpecker, Picus viridis +n01839330 downy woodpecker +n01839598 flicker +n01839750 yellow-shafted flicker, Colaptes auratus, yellowhammer +n01839949 gilded flicker, Colaptes chrysoides +n01840120 red-shafted flicker, Colaptes caper collaris +n01840412 ivorybill, ivory-billed woodpecker, Campephilus principalis +n01840775 redheaded woodpecker, redhead, Melanerpes erythrocephalus +n01841102 sapsucker +n01841288 yellow-bellied sapsucker, Sphyrapicus varius +n01841441 red-breasted sapsucker, Sphyrapicus varius ruber +n01841679 wryneck +n01841943 piculet +n01842235 barbet +n01842504 puffbird +n01842788 honey guide +n01843065 jacamar +n01843383 toucan +n01843719 toucanet +n01844231 trogon +n01844551 quetzal, quetzal bird +n01844746 resplendent quetzel, resplendent trogon, Pharomacrus mocino +n01844917 aquatic bird +n01845132 waterfowl, water bird, waterbird +n01845477 anseriform bird +n01846331 duck +n01847000 drake +n01847089 quack-quack +n01847170 duckling +n01847253 diving duck +n01847407 dabbling duck, dabbler +n01847806 mallard, Anas platyrhynchos +n01847978 black duck, Anas rubripes +n01848123 teal +n01848323 greenwing, green-winged teal, Anas crecca +n01848453 bluewing, blue-winged teal, Anas discors +n01848555 garganey, Anas querquedula +n01848648 widgeon, wigeon, Anas penelope +n01848840 American widgeon, baldpate, Anas americana +n01848976 shoveler, shoveller, broadbill, Anas clypeata +n01849157 pintail, pin-tailed duck, Anas acuta +n01849466 sheldrake +n01849676 shelduck +n01849863 ruddy duck, Oxyura jamaicensis +n01850192 bufflehead, butterball, dipper, Bucephela albeola +n01850373 goldeneye, whistler, Bucephela clangula +n01850553 Barrow's goldeneye, Bucephala islandica +n01850873 canvasback, canvasback duck, Aythya valisineria +n01851038 pochard, Aythya ferina +n01851207 redhead, Aythya americana +n01851375 scaup, scaup duck, bluebill, broadbill +n01851573 greater scaup, Aythya marila +n01851731 lesser scaup, lesser scaup duck, lake duck, Aythya affinis +n01851895 wild duck +n01852142 wood duck, summer duck, wood widgeon, Aix sponsa +n01852329 wood drake +n01852400 mandarin duck, Aix galericulata +n01852671 muscovy duck, musk duck, Cairina moschata +n01852861 sea duck +n01853195 eider, eider duck +n01853498 scoter, scooter +n01853666 common scoter, Melanitta nigra +n01853870 old squaw, oldwife, Clangula hyemalis +n01854415 merganser, fish duck, sawbill, sheldrake +n01854700 goosander, Mergus merganser +n01854838 American merganser, Mergus merganser americanus +n01855032 red-breasted merganser, Mergus serrator +n01855188 smew, Mergus albellus +n01855476 hooded merganser, hooded sheldrake, Lophodytes cucullatus +n01855672 goose +n01856072 gosling +n01856155 gander +n01856380 Chinese goose, Anser cygnoides +n01856553 greylag, graylag, greylag goose, graylag goose, Anser anser +n01856890 blue goose, Chen caerulescens +n01857079 snow goose +n01857325 brant, brant goose, brent, brent goose +n01857512 common brant goose, Branta bernicla +n01857632 honker, Canada goose, Canadian goose, Branta canadensis +n01857851 barnacle goose, barnacle, Branta leucopsis +n01858281 coscoroba +n01858441 swan +n01858780 cob +n01858845 pen +n01858906 cygnet +n01859190 mute swan, Cygnus olor +n01859325 whooper, whooper swan, Cygnus cygnus +n01859496 tundra swan, Cygnus columbianus +n01859689 whistling swan, Cygnus columbianus columbianus +n01859852 Bewick's swan, Cygnus columbianus bewickii +n01860002 trumpeter, trumpeter swan, Cygnus buccinator +n01860187 black swan, Cygnus atratus +n01860497 screamer +n01860864 horned screamer, Anhima cornuta +n01861148 crested screamer +n01861330 chaja, Chauna torquata +n01861778 mammal, mammalian +n01862399 female mammal +n01871265 tusker +n01871543 prototherian +n01871875 monotreme, egg-laying mammal +n01872401 echidna, spiny anteater, anteater +n01872772 echidna, spiny anteater, anteater +n01873310 platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus +n01874434 marsupial, pouched mammal +n01874928 opossum, possum +n01875313 common opossum, Didelphis virginiana, Didelphis marsupialis +n01875610 crab-eating opossum +n01876034 opossum rat +n01876326 bandicoot +n01876667 rabbit-eared bandicoot, rabbit bandicoot, bilby, Macrotis lagotis +n01877134 kangaroo +n01877606 giant kangaroo, great grey kangaroo, Macropus giganteus +n01877812 wallaby, brush kangaroo +n01878061 common wallaby, Macropus agiles +n01878335 hare wallaby, kangaroo hare +n01878639 nail-tailed wallaby, nail-tailed kangaroo +n01878929 rock wallaby, rock kangaroo +n01879217 pademelon, paddymelon +n01879509 tree wallaby, tree kangaroo +n01879837 musk kangaroo, Hypsiprymnodon moschatus +n01880152 rat kangaroo, kangaroo rat +n01880473 potoroo +n01880716 bettong +n01880813 jerboa kangaroo, kangaroo jerboa +n01881171 phalanger, opossum, possum +n01881564 cuscus +n01881857 brush-tailed phalanger, Trichosurus vulpecula +n01882125 flying phalanger, flying opossum, flying squirrel +n01882714 koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus +n01883070 wombat +n01883513 dasyurid marsupial, dasyurid +n01883920 dasyure +n01884104 eastern dasyure, Dasyurus quoll +n01884203 native cat, Dasyurus viverrinus +n01884476 thylacine, Tasmanian wolf, Tasmanian tiger, Thylacinus cynocephalus +n01884834 Tasmanian devil, ursine dasyure, Sarcophilus hariisi +n01885158 pouched mouse, marsupial mouse, marsupial rat +n01885498 numbat, banded anteater, anteater, Myrmecobius fasciatus +n01886045 pouched mole, marsupial mole, Notoryctus typhlops +n01886756 placental, placental mammal, eutherian, eutherian mammal +n01887474 livestock, stock, farm animal +n01887623 bull +n01887787 cow +n01887896 calf +n01888045 calf +n01888181 yearling +n01888264 buck +n01888411 doe +n01889074 insectivore +n01889520 mole +n01889849 starnose mole, star-nosed mole, Condylura cristata +n01890144 brewer's mole, hair-tailed mole, Parascalops breweri +n01890564 golden mole +n01890860 shrew mole +n01891013 Asiatic shrew mole, Uropsilus soricipes +n01891274 American shrew mole, Neurotrichus gibbsii +n01891633 shrew, shrewmouse +n01892030 common shrew, Sorex araneus +n01892145 masked shrew, Sorex cinereus +n01892385 short-tailed shrew, Blarina brevicauda +n01892551 water shrew +n01892744 American water shrew, Sorex palustris +n01893021 European water shrew, Neomys fodiens +n01893164 Mediterranean water shrew, Neomys anomalus +n01893399 least shrew, Cryptotis parva +n01893825 hedgehog, Erinaceus europaeus, Erinaceus europeaeus +n01894207 tenrec, tendrac +n01894522 tailless tenrec, Tenrec ecaudatus +n01894956 otter shrew, potamogale, Potamogale velox +n01896844 eiderdown +n01897257 aftershaft +n01897426 sickle feather +n01897536 contour feather +n01897667 bastard wing, alula, spurious wing +n01898593 saddle hackle, saddle feather +n01899894 encolure +n01900150 hair +n01903234 squama +n01903346 scute +n01903498 sclerite +n01904029 plastron +n01904806 scallop shell +n01904886 oyster shell +n01905321 theca +n01905661 invertebrate +n01906749 sponge, poriferan, parazoan +n01907287 choanocyte, collar cell +n01907738 glass sponge +n01908042 Venus's flower basket +n01908958 metazoan +n01909422 coelenterate, cnidarian +n01909788 planula +n01909906 polyp +n01910252 medusa, medusoid, medusan +n01910747 jellyfish +n01911063 scyphozoan +n01911403 Chrysaora quinquecirrha +n01911839 hydrozoan, hydroid +n01912152 hydra +n01912454 siphonophore +n01912809 nanomia +n01913166 Portuguese man-of-war, man-of-war, jellyfish +n01913346 praya +n01913440 apolemia +n01914163 anthozoan, actinozoan +n01914609 sea anemone, anemone +n01914830 actinia, actinian, actiniarian +n01915700 sea pen +n01915811 coral +n01916187 gorgonian, gorgonian coral +n01916388 sea feather +n01916481 sea fan +n01916588 red coral +n01916925 stony coral, madrepore, madriporian coral +n01917289 brain coral +n01917611 staghorn coral, stag's-horn coral +n01917882 mushroom coral +n01918744 ctenophore, comb jelly +n01919385 beroe +n01920051 platyctenean +n01920438 sea gooseberry +n01921059 Venus's girdle, Cestum veneris +n01922303 worm +n01922717 helminth, parasitic worm +n01922948 woodworm +n01923025 woodborer, borer +n01923404 acanthocephalan, spiny-headed worm +n01923890 arrowworm, chaetognath +n01924800 bladder worm +n01924916 flatworm, platyhelminth +n01925270 planarian, planaria +n01925695 fluke, trematode, trematode worm +n01925916 cercaria +n01926379 liver fluke, Fasciola hepatica +n01926689 Fasciolopsis buski +n01927159 schistosome, blood fluke +n01927456 tapeworm, cestode +n01927928 echinococcus +n01928215 taenia +n01928517 ribbon worm, nemertean, nemertine, proboscis worm +n01928865 beard worm, pogonophoran +n01929186 rotifer +n01930112 nematode, nematode worm, roundworm +n01930852 common roundworm, Ascaris lumbricoides +n01931140 chicken roundworm, Ascaridia galli +n01931520 pinworm, threadworm, Enterobius vermicularis +n01931714 eelworm +n01932151 vinegar eel, vinegar worm, Anguillula aceti, Turbatrix aceti +n01932936 trichina, Trichinella spiralis +n01933151 hookworm +n01933478 filaria +n01933988 Guinea worm, Dracunculus medinensis +n01934440 annelid, annelid worm, segmented worm +n01934844 archiannelid +n01935176 oligochaete, oligochaete worm +n01935395 earthworm, angleworm, fishworm, fishing worm, wiggler, nightwalker, nightcrawler, crawler, dew worm, red worm +n01936391 polychaete, polychete, polychaete worm, polychete worm +n01936671 lugworm, lug, lobworm +n01936858 sea mouse +n01937579 bloodworm +n01937909 leech, bloodsucker, hirudinean +n01938454 medicinal leech, Hirudo medicinalis +n01938735 horseleech +n01940736 mollusk, mollusc, shellfish +n01941223 scaphopod +n01941340 tooth shell, tusk shell +n01942177 gastropod, univalve +n01942869 abalone, ear-shell +n01943087 ormer, sea-ear, Haliotis tuberculata +n01943541 scorpion shell +n01943899 conch +n01944118 giant conch, Strombus gigas +n01944390 snail +n01944812 edible snail, Helix pomatia +n01944955 garden snail +n01945143 brown snail, Helix aspersa +n01945340 Helix hortensis +n01945685 slug +n01945845 seasnail +n01946277 neritid, neritid gastropod +n01946630 nerita +n01946827 bleeding tooth, Nerita peloronta +n01947139 neritina +n01947396 whelk +n01947997 moon shell, moonshell +n01948446 periwinkle, winkle +n01948573 limpet +n01949085 common limpet, Patella vulgata +n01949499 keyhole limpet, Fissurella apertura, Diodora apertura +n01949973 river limpet, freshwater limpet, Ancylus fluviatilis +n01950731 sea slug, nudibranch +n01951274 sea hare, Aplysia punctata +n01951613 Hermissenda crassicornis +n01952029 bubble shell +n01952712 physa +n01953361 cowrie, cowry +n01953594 money cowrie, Cypraea moneta +n01953762 tiger cowrie, Cypraea tigris +n01954516 solenogaster, aplacophoran +n01955084 chiton, coat-of-mail shell, sea cradle, polyplacophore +n01955933 bivalve, pelecypod, lamellibranch +n01956344 spat +n01956481 clam +n01956764 seashell +n01957335 soft-shell clam, steamer, steamer clam, long-neck clam, Mya arenaria +n01958038 quahog, quahaug, hard-shell clam, hard clam, round clam, Venus mercenaria, Mercenaria mercenaria +n01958346 littleneck, littleneck clam +n01958435 cherrystone, cherrystone clam +n01958531 geoduck +n01959029 razor clam, jackknife clam, knife-handle +n01959492 giant clam, Tridacna gigas +n01959985 cockle +n01960177 edible cockle, Cardium edule +n01960459 oyster +n01961234 Japanese oyster, Ostrea gigas +n01961600 Virginia oyster +n01961985 pearl oyster, Pinctada margaritifera +n01962506 saddle oyster, Anomia ephippium +n01962788 window oyster, windowpane oyster, capiz, Placuna placenta +n01963317 ark shell +n01963479 blood clam +n01963571 mussel +n01964049 marine mussel, mytilid +n01964271 edible mussel, Mytilus edulis +n01964441 freshwater mussel, freshwater clam +n01964957 pearly-shelled mussel +n01965252 thin-shelled mussel +n01965529 zebra mussel, Dreissena polymorpha +n01965889 scallop, scollop, escallop +n01966377 bay scallop, Pecten irradians +n01966586 sea scallop, giant scallop, Pecten magellanicus +n01967094 shipworm, teredinid +n01967308 teredo +n01967963 piddock +n01968315 cephalopod, cephalopod mollusk +n01968897 chambered nautilus, pearly nautilus, nautilus +n01969726 octopod +n01970164 octopus, devilfish +n01970667 paper nautilus, nautilus, Argonaut, Argonauta argo +n01971094 decapod +n01971280 squid +n01971620 loligo +n01971850 ommastrephes +n01972131 architeuthis, giant squid +n01972541 cuttlefish, cuttle +n01973148 spirula, Spirula peronii +n01974773 crustacean +n01975687 malacostracan crustacean +n01976146 decapod crustacean, decapod +n01976868 brachyuran +n01976957 crab +n01977485 stone crab, Menippe mercenaria +n01978010 hard-shell crab +n01978136 soft-shell crab, soft-shelled crab +n01978287 Dungeness crab, Cancer magister +n01978455 rock crab, Cancer irroratus +n01978587 Jonah crab, Cancer borealis +n01978930 swimming crab +n01979269 English lady crab, Portunus puber +n01979526 American lady crab, lady crab, calico crab, Ovalipes ocellatus +n01979874 blue crab, Callinectes sapidus +n01980166 fiddler crab +n01980655 pea crab +n01981276 king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica +n01981702 spider crab +n01982068 European spider crab, king crab, Maja squinado +n01982347 giant crab, Macrocheira kaempferi +n01982650 lobster +n01983048 true lobster +n01983481 American lobster, Northern lobster, Maine lobster, Homarus americanus +n01983674 European lobster, Homarus vulgaris +n01983829 Cape lobster, Homarus capensis +n01984245 Norway lobster, Nephrops norvegicus +n01984695 spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish +n01985128 crayfish, crawfish, crawdad, crawdaddy +n01985493 Old World crayfish, ecrevisse +n01985797 American crayfish +n01986214 hermit crab +n01986806 shrimp +n01987076 snapping shrimp, pistol shrimp +n01987545 prawn +n01987727 long-clawed prawn, river prawn, Palaemon australis +n01988203 tropical prawn +n01988701 krill +n01988869 Euphausia pacifica +n01989516 opossum shrimp +n01989869 stomatopod, stomatopod crustacean +n01990007 mantis shrimp, mantis crab +n01990516 squilla, mantis prawn +n01990800 isopod +n01991028 woodlouse, slater +n01991520 pill bug +n01992262 sow bug +n01992423 sea louse, sea slater +n01992773 amphipod +n01993525 skeleton shrimp +n01993830 whale louse +n01994910 daphnia, water flea +n01995514 fairy shrimp +n01995686 brine shrimp, Artemia salina +n01996280 tadpole shrimp +n01996585 copepod, copepod crustacean +n01997119 cyclops, water flea +n01997825 seed shrimp, mussel shrimp, ostracod +n01998183 barnacle, cirriped, cirripede +n01998741 acorn barnacle, rock barnacle, Balanus balanoides +n01999186 goose barnacle, gooseneck barnacle, Lepas fascicularis +n01999767 onychophoran, velvet worm, peripatus +n02000954 wading bird, wader +n02002075 stork +n02002556 white stork, Ciconia ciconia +n02002724 black stork, Ciconia nigra +n02003037 adjutant bird, adjutant, adjutant stork, Leptoptilus dubius +n02003204 marabou, marabout, marabou stork, Leptoptilus crumeniferus +n02003577 openbill +n02003839 jabiru, Jabiru mycteria +n02004131 saddlebill, jabiru, Ephippiorhynchus senegalensis +n02004492 policeman bird, black-necked stork, jabiru, Xenorhyncus asiaticus +n02004855 wood ibis, wood stork, flinthead, Mycteria americana +n02005399 shoebill, shoebird, Balaeniceps rex +n02005790 ibis +n02006063 wood ibis, wood stork, Ibis ibis +n02006364 sacred ibis, Threskiornis aethiopica +n02006656 spoonbill +n02006985 common spoonbill, Platalea leucorodia +n02007284 roseate spoonbill, Ajaia ajaja +n02007558 flamingo +n02008041 heron +n02008497 great blue heron, Ardea herodius +n02008643 great white heron, Ardea occidentalis +n02008796 egret +n02009229 little blue heron, Egretta caerulea +n02009380 snowy egret, snowy heron, Egretta thula +n02009508 little egret, Egretta garzetta +n02009750 great white heron, Casmerodius albus +n02009912 American egret, great white heron, Egretta albus +n02010272 cattle egret, Bubulcus ibis +n02010453 night heron, night raven +n02010728 black-crowned night heron, Nycticorax nycticorax +n02011016 yellow-crowned night heron, Nyctanassa violacea +n02011281 boatbill, boat-billed heron, broadbill, Cochlearius cochlearius +n02011460 bittern +n02011805 American bittern, stake driver, Botaurus lentiginosus +n02011943 European bittern, Botaurus stellaris +n02012185 least bittern, Ixobrychus exilis +n02012849 crane +n02013177 whooping crane, whooper, Grus americana +n02013567 courlan, Aramus guarauna +n02013706 limpkin, Aramus pictus +n02014237 crested cariama, seriema, Cariama cristata +n02014524 chunga, seriema, Chunga burmeisteri +n02014941 rail +n02015357 weka, maori hen, wood hen +n02015554 crake +n02015797 corncrake, land rail, Crex crex +n02016066 spotted crake, Porzana porzana +n02016358 gallinule, marsh hen, water hen, swamphen +n02016659 Florida gallinule, Gallinula chloropus cachinnans +n02016816 moorhen, Gallinula chloropus +n02016956 purple gallinule +n02017213 European gallinule, Porphyrio porphyrio +n02017475 American gallinule, Porphyrula martinica +n02017725 notornis, takahe, Notornis mantelli +n02018027 coot +n02018207 American coot, marsh hen, mud hen, water hen, Fulica americana +n02018368 Old World coot, Fulica atra +n02018795 bustard +n02019190 great bustard, Otis tarda +n02019438 plain turkey, Choriotis australis +n02019929 button quail, button-quail, bustard quail, hemipode +n02020219 striped button quail, Turnix sylvatica +n02020578 plain wanderer, Pedionomus torquatus +n02021050 trumpeter +n02021281 Brazilian trumpeter, Psophia crepitans +n02021795 seabird, sea bird, seafowl +n02022684 shorebird, shore bird, limicoline bird +n02023341 plover +n02023855 piping plover, Charadrius melodus +n02023992 killdeer, kildeer, killdeer plover, Charadrius vociferus +n02024185 dotterel, dotrel, Charadrius morinellus, Eudromias morinellus +n02024479 golden plover +n02024763 lapwing, green plover, peewit, pewit +n02025043 turnstone +n02025239 ruddy turnstone, Arenaria interpres +n02025389 black turnstone, Arenaria-Melanocephala +n02026059 sandpiper +n02026629 surfbird, Aphriza virgata +n02026948 European sandpiper, Actitis hypoleucos +n02027075 spotted sandpiper, Actitis macularia +n02027357 least sandpiper, stint, Erolia minutilla +n02027492 red-backed sandpiper, dunlin, Erolia alpina +n02027897 greenshank, Tringa nebularia +n02028035 redshank, Tringa totanus +n02028175 yellowlegs +n02028342 greater yellowlegs, Tringa melanoleuca +n02028451 lesser yellowlegs, Tringa flavipes +n02028727 pectoral sandpiper, jacksnipe, Calidris melanotos +n02028900 knot, greyback, grayback, Calidris canutus +n02029087 curlew sandpiper, Calidris Ferruginea +n02029378 sanderling, Crocethia alba +n02029706 upland sandpiper, upland plover, Bartramian sandpiper, Bartramia longicauda +n02030035 ruff, Philomachus pugnax +n02030224 reeve +n02030287 tattler +n02030568 Polynesian tattler, Heteroscelus incanus +n02030837 willet, Catoptrophorus semipalmatus +n02030996 woodcock +n02031298 Eurasian woodcock, Scolopax rusticola +n02031585 American woodcock, woodcock snipe, Philohela minor +n02031934 snipe +n02032222 whole snipe, Gallinago gallinago +n02032355 Wilson's snipe, Gallinago gallinago delicata +n02032480 great snipe, woodcock snipe, Gallinago media +n02032769 jacksnipe, half snipe, Limnocryptes minima +n02033041 dowitcher +n02033208 greyback, grayback, Limnodromus griseus +n02033324 red-breasted snipe, Limnodromus scolopaceus +n02033561 curlew +n02033779 European curlew, Numenius arquata +n02033882 Eskimo curlew, Numenius borealis +n02034129 godwit +n02034295 Hudsonian godwit, Limosa haemastica +n02034661 stilt, stiltbird, longlegs, long-legs, stilt plover, Himantopus stilt +n02034971 black-necked stilt, Himantopus mexicanus +n02035210 black-winged stilt, Himantopus himantopus +n02035402 white-headed stilt, Himantopus himantopus leucocephalus +n02035656 kaki, Himantopus novae-zelandiae +n02036053 stilt, Australian stilt +n02036228 banded stilt, Cladorhyncus leucocephalum +n02036711 avocet +n02037110 oystercatcher, oyster catcher +n02037464 phalarope +n02037869 red phalarope, Phalaropus fulicarius +n02038141 northern phalarope, Lobipes lobatus +n02038466 Wilson's phalarope, Steganopus tricolor +n02038993 pratincole, glareole +n02039171 courser +n02039497 cream-colored courser, Cursorius cursor +n02039780 crocodile bird, Pluvianus aegyptius +n02040266 stone curlew, thick-knee, Burhinus oedicnemus +n02040505 coastal diving bird +n02041085 larid +n02041246 gull, seagull, sea gull +n02041678 mew, mew gull, sea mew, Larus canus +n02041875 black-backed gull, great black-backed gull, cob, Larus marinus +n02042046 herring gull, Larus argentatus +n02042180 laughing gull, blackcap, pewit, pewit gull, Larus ridibundus +n02042472 ivory gull, Pagophila eburnea +n02042759 kittiwake +n02043063 tern +n02043333 sea swallow, Sterna hirundo +n02043808 skimmer +n02044178 jaeger +n02044517 parasitic jaeger, arctic skua, Stercorarius parasiticus +n02044778 skua, bonxie +n02044908 great skua, Catharacta skua +n02045369 auk +n02045596 auklet +n02045864 razorbill, razor-billed auk, Alca torda +n02046171 little auk, dovekie, Plautus alle +n02046759 guillemot +n02046939 black guillemot, Cepphus grylle +n02047045 pigeon guillemot, Cepphus columba +n02047260 murre +n02047411 common murre, Uria aalge +n02047517 thick-billed murre, Uria lomvia +n02047614 puffin +n02047975 Atlantic puffin, Fratercula arctica +n02048115 horned puffin, Fratercula corniculata +n02048353 tufted puffin, Lunda cirrhata +n02048698 gaviiform seabird +n02049088 loon, diver +n02049532 podicipitiform seabird +n02050004 grebe +n02050313 great crested grebe, Podiceps cristatus +n02050442 red-necked grebe, Podiceps grisegena +n02050586 black-necked grebe, eared grebe, Podiceps nigricollis +n02050809 dabchick, little grebe, Podiceps ruficollis +n02051059 pied-billed grebe, Podilymbus podiceps +n02051474 pelecaniform seabird +n02051845 pelican +n02052204 white pelican, Pelecanus erythrorhynchos +n02052365 Old world white pelican, Pelecanus onocrotalus +n02052775 frigate bird, man-of-war bird +n02053083 gannet +n02053425 solan, solan goose, solant goose, Sula bassana +n02053584 booby +n02054036 cormorant, Phalacrocorax carbo +n02054502 snakebird, anhinga, darter +n02054711 water turkey, Anhinga anhinga +n02055107 tropic bird, tropicbird, boatswain bird +n02055658 sphenisciform seabird +n02055803 penguin +n02056228 Adelie, Adelie penguin, Pygoscelis adeliae +n02056570 king penguin, Aptenodytes patagonica +n02056728 emperor penguin, Aptenodytes forsteri +n02057035 jackass penguin, Spheniscus demersus +n02057330 rock hopper, crested penguin +n02057731 pelagic bird, oceanic bird +n02057898 procellariiform seabird +n02058221 albatross, mollymawk +n02058594 wandering albatross, Diomedea exulans +n02058747 black-footed albatross, gooney, gooney bird, goonie, goony, Diomedea nigripes +n02059162 petrel +n02059541 white-chinned petrel, Procellaria aequinoctialis +n02059852 giant petrel, giant fulmar, Macronectes giganteus +n02060133 fulmar, fulmar petrel, Fulmarus glacialis +n02060411 shearwater +n02060569 Manx shearwater, Puffinus puffinus +n02060889 storm petrel +n02061217 stormy petrel, northern storm petrel, Hydrobates pelagicus +n02061560 Mother Carey's chicken, Mother Carey's hen, Oceanites oceanicus +n02061853 diving petrel +n02062017 aquatic mammal +n02062430 cetacean, cetacean mammal, blower +n02062744 whale +n02063224 baleen whale, whalebone whale +n02063662 right whale +n02064000 bowhead, bowhead whale, Greenland whale, Balaena mysticetus +n02064338 rorqual, razorback +n02064816 blue whale, sulfur bottom, Balaenoptera musculus +n02065026 finback, finback whale, fin whale, common rorqual, Balaenoptera physalus +n02065263 sei whale, Balaenoptera borealis +n02065407 lesser rorqual, piked whale, minke whale, Balaenoptera acutorostrata +n02065726 humpback, humpback whale, Megaptera novaeangliae +n02066245 grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus +n02066707 toothed whale +n02067240 sperm whale, cachalot, black whale, Physeter catodon +n02067603 pygmy sperm whale, Kogia breviceps +n02067768 dwarf sperm whale, Kogia simus +n02068206 beaked whale +n02068541 bottle-nosed whale, bottlenose whale, bottlenose, Hyperoodon ampullatus +n02068974 dolphin +n02069412 common dolphin, Delphinus delphis +n02069701 bottlenose dolphin, bottle-nosed dolphin, bottlenose +n02069974 Atlantic bottlenose dolphin, Tursiops truncatus +n02070174 Pacific bottlenose dolphin, Tursiops gilli +n02070430 porpoise +n02070624 harbor porpoise, herring hog, Phocoena phocoena +n02070776 vaquita, Phocoena sinus +n02071028 grampus, Grampus griseus +n02071294 killer whale, killer, orca, grampus, sea wolf, Orcinus orca +n02071636 pilot whale, black whale, common blackfish, blackfish, Globicephala melaena +n02072040 river dolphin +n02072493 narwhal, narwal, narwhale, Monodon monoceros +n02072798 white whale, beluga, Delphinapterus leucas +n02073250 sea cow, sirenian mammal, sirenian +n02073831 manatee, Trichechus manatus +n02074367 dugong, Dugong dugon +n02074726 Steller's sea cow, Hydrodamalis gigas +n02075296 carnivore +n02075612 omnivore +n02075927 pinniped mammal, pinniped, pinnatiped +n02076196 seal +n02076402 crabeater seal, crab-eating seal +n02076779 eared seal +n02077152 fur seal +n02077384 guadalupe fur seal, Arctocephalus philippi +n02077658 fur seal +n02077787 Alaska fur seal, Callorhinus ursinus +n02077923 sea lion +n02078292 South American sea lion, Otaria Byronia +n02078574 California sea lion, Zalophus californianus, Zalophus californicus +n02078738 Australian sea lion, Zalophus lobatus +n02079005 Steller sea lion, Steller's sea lion, Eumetopias jubatus +n02079389 earless seal, true seal, hair seal +n02079851 harbor seal, common seal, Phoca vitulina +n02080146 harp seal, Pagophilus groenlandicus +n02080415 elephant seal, sea elephant +n02080713 bearded seal, squareflipper square flipper, Erignathus barbatus +n02081060 hooded seal, bladdernose, Cystophora cristata +n02081571 walrus, seahorse, sea horse +n02081798 Atlantic walrus, Odobenus rosmarus +n02081927 Pacific walrus, Odobenus divergens +n02082056 Fissipedia +n02082190 fissiped mammal, fissiped +n02082791 aardvark, ant bear, anteater, Orycteropus afer +n02083346 canine, canid +n02083672 bitch +n02083780 brood bitch +n02084071 dog, domestic dog, Canis familiaris +n02084732 pooch, doggie, doggy, barker, bow-wow +n02084861 cur, mongrel, mutt +n02085019 feist, fice +n02085118 pariah dog, pye-dog, pie-dog +n02085272 lapdog +n02085374 toy dog, toy +n02085620 Chihuahua +n02085782 Japanese spaniel +n02085936 Maltese dog, Maltese terrier, Maltese +n02086079 Pekinese, Pekingese, Peke +n02086240 Shih-Tzu +n02086346 toy spaniel +n02086478 English toy spaniel +n02086646 Blenheim spaniel +n02086753 King Charles spaniel +n02086910 papillon +n02087046 toy terrier +n02087122 hunting dog +n02087314 courser +n02087394 Rhodesian ridgeback +n02087551 hound, hound dog +n02088094 Afghan hound, Afghan +n02088238 basset, basset hound +n02088364 beagle +n02088466 bloodhound, sleuthhound +n02088632 bluetick +n02088745 boarhound +n02088839 coonhound +n02088992 coondog +n02089078 black-and-tan coonhound +n02089232 dachshund, dachsie, badger dog +n02089468 sausage dog, sausage hound +n02089555 foxhound +n02089725 American foxhound +n02089867 Walker hound, Walker foxhound +n02089973 English foxhound +n02090129 harrier +n02090253 Plott hound +n02090379 redbone +n02090475 wolfhound +n02090622 borzoi, Russian wolfhound +n02090721 Irish wolfhound +n02090827 greyhound +n02091032 Italian greyhound +n02091134 whippet +n02091244 Ibizan hound, Ibizan Podenco +n02091467 Norwegian elkhound, elkhound +n02091635 otterhound, otter hound +n02091831 Saluki, gazelle hound +n02092002 Scottish deerhound, deerhound +n02092173 staghound +n02092339 Weimaraner +n02092468 terrier +n02093056 bullterrier, bull terrier +n02093256 Staffordshire bullterrier, Staffordshire bull terrier +n02093428 American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier +n02093647 Bedlington terrier +n02093754 Border terrier +n02093859 Kerry blue terrier +n02093991 Irish terrier +n02094114 Norfolk terrier +n02094258 Norwich terrier +n02094433 Yorkshire terrier +n02094562 rat terrier, ratter +n02094721 Manchester terrier, black-and-tan terrier +n02094931 toy Manchester, toy Manchester terrier +n02095050 fox terrier +n02095212 smooth-haired fox terrier +n02095314 wire-haired fox terrier +n02095412 wirehair, wirehaired terrier, wire-haired terrier +n02095570 Lakeland terrier +n02095727 Welsh terrier +n02095889 Sealyham terrier, Sealyham +n02096051 Airedale, Airedale terrier +n02096177 cairn, cairn terrier +n02096294 Australian terrier +n02096437 Dandie Dinmont, Dandie Dinmont terrier +n02096585 Boston bull, Boston terrier +n02096756 schnauzer +n02097047 miniature schnauzer +n02097130 giant schnauzer +n02097209 standard schnauzer +n02097298 Scotch terrier, Scottish terrier, Scottie +n02097474 Tibetan terrier, chrysanthemum dog +n02097658 silky terrier, Sydney silky +n02097786 Skye terrier +n02097967 Clydesdale terrier +n02098105 soft-coated wheaten terrier +n02098286 West Highland white terrier +n02098413 Lhasa, Lhasa apso +n02098550 sporting dog, gun dog +n02098806 bird dog +n02098906 water dog +n02099029 retriever +n02099267 flat-coated retriever +n02099429 curly-coated retriever +n02099601 golden retriever +n02099712 Labrador retriever +n02099849 Chesapeake Bay retriever +n02099997 pointer, Spanish pointer +n02100236 German short-haired pointer +n02100399 setter +n02100583 vizsla, Hungarian pointer +n02100735 English setter +n02100877 Irish setter, red setter +n02101006 Gordon setter +n02101108 spaniel +n02101388 Brittany spaniel +n02101556 clumber, clumber spaniel +n02101670 field spaniel +n02101861 springer spaniel, springer +n02102040 English springer, English springer spaniel +n02102177 Welsh springer spaniel +n02102318 cocker spaniel, English cocker spaniel, cocker +n02102480 Sussex spaniel +n02102605 water spaniel +n02102806 American water spaniel +n02102973 Irish water spaniel +n02103181 griffon, wire-haired pointing griffon +n02103406 working dog +n02103841 watchdog, guard dog +n02104029 kuvasz +n02104184 attack dog +n02104280 housedog +n02104365 schipperke +n02104523 shepherd dog, sheepdog, sheep dog +n02104882 Belgian sheepdog, Belgian shepherd +n02105056 groenendael +n02105162 malinois +n02105251 briard +n02105412 kelpie +n02105505 komondor +n02105641 Old English sheepdog, bobtail +n02105855 Shetland sheepdog, Shetland sheep dog, Shetland +n02106030 collie +n02106166 Border collie +n02106382 Bouvier des Flandres, Bouviers des Flandres +n02106550 Rottweiler +n02106662 German shepherd, German shepherd dog, German police dog, alsatian +n02106854 police dog +n02106966 pinscher +n02107142 Doberman, Doberman pinscher +n02107312 miniature pinscher +n02107420 Sennenhunde +n02107574 Greater Swiss Mountain dog +n02107683 Bernese mountain dog +n02107908 Appenzeller +n02108000 EntleBucher +n02108089 boxer +n02108254 mastiff +n02108422 bull mastiff +n02108551 Tibetan mastiff +n02108672 bulldog, English bulldog +n02108915 French bulldog +n02109047 Great Dane +n02109150 guide dog +n02109256 Seeing Eye dog +n02109391 hearing dog +n02109525 Saint Bernard, St Bernard +n02109687 seizure-alert dog +n02109811 sled dog, sledge dog +n02109961 Eskimo dog, husky +n02110063 malamute, malemute, Alaskan malamute +n02110185 Siberian husky +n02110341 dalmatian, coach dog, carriage dog +n02110532 liver-spotted dalmatian +n02110627 affenpinscher, monkey pinscher, monkey dog +n02110806 basenji +n02110958 pug, pug-dog +n02111129 Leonberg +n02111277 Newfoundland, Newfoundland dog +n02111500 Great Pyrenees +n02111626 spitz +n02111889 Samoyed, Samoyede +n02112018 Pomeranian +n02112137 chow, chow chow +n02112350 keeshond +n02112497 griffon, Brussels griffon, Belgian griffon +n02112706 Brabancon griffon +n02112826 corgi, Welsh corgi +n02113023 Pembroke, Pembroke Welsh corgi +n02113186 Cardigan, Cardigan Welsh corgi +n02113335 poodle, poodle dog +n02113624 toy poodle +n02113712 miniature poodle +n02113799 standard poodle +n02113892 large poodle +n02113978 Mexican hairless +n02114100 wolf +n02114367 timber wolf, grey wolf, gray wolf, Canis lupus +n02114548 white wolf, Arctic wolf, Canis lupus tundrarum +n02114712 red wolf, maned wolf, Canis rufus, Canis niger +n02114855 coyote, prairie wolf, brush wolf, Canis latrans +n02115012 coydog +n02115096 jackal, Canis aureus +n02115335 wild dog +n02115641 dingo, warrigal, warragal, Canis dingo +n02115913 dhole, Cuon alpinus +n02116185 crab-eating dog, crab-eating fox, Dusicyon cancrivorus +n02116450 raccoon dog, Nyctereutes procyonides +n02116738 African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus +n02117135 hyena, hyaena +n02117512 striped hyena, Hyaena hyaena +n02117646 brown hyena, strand wolf, Hyaena brunnea +n02117900 spotted hyena, laughing hyena, Crocuta crocuta +n02118176 aardwolf, Proteles cristata +n02118333 fox +n02118643 vixen +n02118707 Reynard +n02119022 red fox, Vulpes vulpes +n02119247 black fox +n02119359 silver fox +n02119477 red fox, Vulpes fulva +n02119634 kit fox, prairie fox, Vulpes velox +n02119789 kit fox, Vulpes macrotis +n02120079 Arctic fox, white fox, Alopex lagopus +n02120278 blue fox +n02120505 grey fox, gray fox, Urocyon cinereoargenteus +n02120997 feline, felid +n02121620 cat, true cat +n02121808 domestic cat, house cat, Felis domesticus, Felis catus +n02122298 kitty, kitty-cat, puss, pussy, pussycat +n02122430 mouser +n02122510 alley cat +n02122580 stray +n02122725 tom, tomcat +n02122810 gib +n02122878 tabby, queen +n02122948 kitten, kitty +n02123045 tabby, tabby cat +n02123159 tiger cat +n02123242 tortoiseshell, tortoiseshell-cat, calico cat +n02123394 Persian cat +n02123478 Angora, Angora cat +n02123597 Siamese cat, Siamese +n02123785 blue point Siamese +n02123917 Burmese cat +n02124075 Egyptian cat +n02124157 Maltese, Maltese cat +n02124313 Abyssinian, Abyssinian cat +n02124484 Manx, Manx cat +n02124623 wildcat +n02125010 sand cat +n02125081 European wildcat, catamountain, Felis silvestris +n02125311 cougar, puma, catamount, mountain lion, painter, panther, Felis concolor +n02125494 ocelot, panther cat, Felis pardalis +n02125689 jaguarundi, jaguarundi cat, jaguarondi, eyra, Felis yagouaroundi +n02125872 kaffir cat, caffer cat, Felis ocreata +n02126028 jungle cat, Felis chaus +n02126139 serval, Felis serval +n02126317 leopard cat, Felis bengalensis +n02126640 margay, margay cat, Felis wiedi +n02126787 manul, Pallas's cat, Felis manul +n02127052 lynx, catamount +n02127292 common lynx, Lynx lynx +n02127381 Canada lynx, Lynx canadensis +n02127482 bobcat, bay lynx, Lynx rufus +n02127586 spotted lynx, Lynx pardina +n02127678 caracal, desert lynx, Lynx caracal +n02127808 big cat, cat +n02128385 leopard, Panthera pardus +n02128598 leopardess +n02128669 panther +n02128757 snow leopard, ounce, Panthera uncia +n02128925 jaguar, panther, Panthera onca, Felis onca +n02129165 lion, king of beasts, Panthera leo +n02129463 lioness +n02129530 lionet +n02129604 tiger, Panthera tigris +n02129837 Bengal tiger +n02129923 tigress +n02129991 liger +n02130086 tiglon, tigon +n02130308 cheetah, chetah, Acinonyx jubatus +n02130545 saber-toothed tiger, sabertooth +n02130925 Smiledon californicus +n02131653 bear +n02132136 brown bear, bruin, Ursus arctos +n02132320 bruin +n02132466 Syrian bear, Ursus arctos syriacus +n02132580 grizzly, grizzly bear, silvertip, silver-tip, Ursus horribilis, Ursus arctos horribilis +n02132788 Alaskan brown bear, Kodiak bear, Kodiak, Ursus middendorffi, Ursus arctos middendorffi +n02133161 American black bear, black bear, Ursus americanus, Euarctos americanus +n02133400 cinnamon bear +n02133704 Asiatic black bear, black bear, Ursus thibetanus, Selenarctos thibetanus +n02134084 ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus +n02134418 sloth bear, Melursus ursinus, Ursus ursinus +n02134971 viverrine, viverrine mammal +n02135220 civet, civet cat +n02135610 large civet, Viverra zibetha +n02135844 small civet, Viverricula indica, Viverricula malaccensis +n02136103 binturong, bearcat, Arctictis bintourong +n02136285 Cryptoprocta, genus Cryptoprocta +n02136452 fossa, fossa cat, Cryptoprocta ferox +n02136794 fanaloka, Fossa fossa +n02137015 genet, Genetta genetta +n02137302 banded palm civet, Hemigalus hardwickii +n02137549 mongoose +n02137722 Indian mongoose, Herpestes nyula +n02137888 ichneumon, Herpestes ichneumon +n02138169 palm cat, palm civet +n02138441 meerkat, mierkat +n02138647 slender-tailed meerkat, Suricata suricatta +n02138777 suricate, Suricata tetradactyla +n02139199 bat, chiropteran +n02139671 fruit bat, megabat +n02140049 flying fox +n02140179 Pteropus capestratus +n02140268 Pteropus hypomelanus +n02140491 harpy, harpy bat, tube-nosed bat, tube-nosed fruit bat +n02140858 Cynopterus sphinx +n02141306 carnivorous bat, microbat +n02141611 mouse-eared bat +n02141713 leafnose bat, leaf-nosed bat +n02142407 macrotus, Macrotus californicus +n02142734 spearnose bat +n02142898 Phyllostomus hastatus +n02143142 hognose bat, Choeronycteris mexicana +n02143439 horseshoe bat +n02143891 horseshoe bat +n02144251 orange bat, orange horseshoe bat, Rhinonicteris aurantius +n02144593 false vampire, false vampire bat +n02144936 big-eared bat, Megaderma lyra +n02145424 vespertilian bat, vespertilionid +n02145910 frosted bat, Vespertilio murinus +n02146201 red bat, Lasiurus borealis +n02146371 brown bat +n02146700 little brown bat, little brown myotis, Myotis leucifugus +n02146879 cave myotis, Myotis velifer +n02147173 big brown bat, Eptesicus fuscus +n02147328 serotine, European brown bat, Eptesicus serotinus +n02147591 pallid bat, cave bat, Antrozous pallidus +n02147947 pipistrelle, pipistrel, Pipistrellus pipistrellus +n02148088 eastern pipistrel, Pipistrellus subflavus +n02148512 jackass bat, spotted bat, Euderma maculata +n02148835 long-eared bat +n02148991 western big-eared bat, Plecotus townsendi +n02149420 freetail, free-tailed bat, freetailed bat +n02149653 guano bat, Mexican freetail bat, Tadarida brasiliensis +n02149861 pocketed bat, pocketed freetail bat, Tadirida femorosacca +n02150134 mastiff bat +n02150482 vampire bat, true vampire bat +n02150885 Desmodus rotundus +n02151230 hairy-legged vampire bat, Diphylla ecaudata +n02152740 predator, predatory animal +n02152881 prey, quarry +n02152991 game +n02153109 big game +n02153203 game bird +n02153809 fossorial mammal +n02156732 tetrapod +n02156871 quadruped +n02157206 hexapod +n02157285 biped +n02159955 insect +n02160947 social insect +n02161225 holometabola, metabola +n02161338 defoliator +n02161457 pollinator +n02161588 gallfly +n02162561 scorpion fly +n02163008 hanging fly +n02163297 collembolan, springtail +n02164464 beetle +n02165105 tiger beetle +n02165456 ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle +n02165877 two-spotted ladybug, Adalia bipunctata +n02166229 Mexican bean beetle, bean beetle, Epilachna varivestis +n02166567 Hippodamia convergens +n02166826 vedalia, Rodolia cardinalis +n02167151 ground beetle, carabid beetle +n02167505 bombardier beetle +n02167820 calosoma +n02167944 searcher, searcher beetle, Calosoma scrutator +n02168245 firefly, lightning bug +n02168427 glowworm +n02168699 long-horned beetle, longicorn, longicorn beetle +n02169023 sawyer, sawyer beetle +n02169218 pine sawyer +n02169497 leaf beetle, chrysomelid +n02169705 flea beetle +n02169974 Colorado potato beetle, Colorado beetle, potato bug, potato beetle, Leptinotarsa decemlineata +n02170400 carpet beetle, carpet bug +n02170599 buffalo carpet beetle, Anthrenus scrophulariae +n02170738 black carpet beetle +n02170993 clerid beetle, clerid +n02171164 bee beetle +n02171453 lamellicorn beetle +n02171869 scarabaeid beetle, scarabaeid, scarabaean +n02172182 dung beetle +n02172518 scarab, scarabaeus, Scarabaeus sacer +n02172678 tumblebug +n02172761 dorbeetle +n02172870 June beetle, June bug, May bug, May beetle +n02173113 green June beetle, figeater +n02173373 Japanese beetle, Popillia japonica +n02173784 Oriental beetle, Asiatic beetle, Anomala orientalis +n02174001 rhinoceros beetle +n02174355 melolonthid beetle +n02174659 cockchafer, May bug, May beetle, Melolontha melolontha +n02175014 rose chafer, rose bug, Macrodactylus subspinosus +n02175569 rose chafer, rose beetle, Cetonia aurata +n02175916 stag beetle +n02176261 elaterid beetle, elater, elaterid +n02176439 click beetle, skipjack, snapping beetle +n02176747 firefly, fire beetle, Pyrophorus noctiluca +n02176916 wireworm +n02177196 water beetle +n02177506 whirligig beetle +n02177775 deathwatch beetle, deathwatch, Xestobium rufovillosum +n02177972 weevil +n02178411 snout beetle +n02178717 boll weevil, Anthonomus grandis +n02179012 blister beetle, meloid +n02179192 oil beetle +n02179340 Spanish fly +n02179891 Dutch-elm beetle, Scolytus multistriatus +n02180233 bark beetle +n02180427 spruce bark beetle, Dendroctonus rufipennis +n02180875 rove beetle +n02181235 darkling beetle, darkling groung beetle, tenebrionid +n02181477 mealworm +n02181724 flour beetle, flour weevil +n02182045 seed beetle, seed weevil +n02182355 pea weevil, Bruchus pisorum +n02182642 bean weevil, Acanthoscelides obtectus +n02182930 rice weevil, black weevil, Sitophylus oryzae +n02183096 Asian longhorned beetle, Anoplophora glabripennis +n02183507 web spinner +n02183857 louse, sucking louse +n02184473 common louse, Pediculus humanus +n02184589 head louse, Pediculus capitis +n02184720 body louse, cootie, Pediculus corporis +n02185167 crab louse, pubic louse, crab, Phthirius pubis +n02185481 bird louse, biting louse, louse +n02186153 flea +n02186717 Pulex irritans +n02187150 dog flea, Ctenocephalides canis +n02187279 cat flea, Ctenocephalides felis +n02187554 chigoe, chigger, chigoe flea, Tunga penetrans +n02187900 sticktight, sticktight flea, Echidnophaga gallinacea +n02188699 dipterous insect, two-winged insects, dipteran, dipteron +n02189363 gall midge, gallfly, gall gnat +n02189670 Hessian fly, Mayetiola destructor +n02190166 fly +n02190790 housefly, house fly, Musca domestica +n02191273 tsetse fly, tsetse, tzetze fly, tzetze, glossina +n02191773 blowfly, blow fly +n02191979 bluebottle, Calliphora vicina +n02192252 greenbottle, greenbottle fly +n02192513 flesh fly, Sarcophaga carnaria +n02192814 tachina fly +n02193009 gadfly +n02193163 botfly +n02194249 human botfly, Dermatobia hominis +n02194750 sheep botfly, sheep gadfly, Oestrus ovis +n02195091 warble fly +n02195526 horsefly, cleg, clegg, horse fly +n02195819 bee fly +n02196119 robber fly, bee killer +n02196344 fruit fly, pomace fly +n02196896 apple maggot, railroad worm, Rhagoletis pomonella +n02197185 Mediterranean fruit fly, medfly, Ceratitis capitata +n02197689 drosophila, Drosophila melanogaster +n02197877 vinegar fly +n02198129 leaf miner, leaf-miner +n02198532 louse fly, hippoboscid +n02198859 horse tick, horsefly, Hippobosca equina +n02199170 sheep ked, sheep-tick, sheep tick, Melophagus Ovinus +n02199502 horn fly, Haematobia irritans +n02200198 mosquito +n02200509 wiggler, wriggler +n02200630 gnat +n02200850 yellow-fever mosquito, Aedes aegypti +n02201000 Asian tiger mosquito, Aedes albopictus +n02201497 anopheline +n02201626 malarial mosquito, malaria mosquito +n02202006 common mosquito, Culex pipiens +n02202124 Culex quinquefasciatus, Culex fatigans +n02202287 gnat +n02202678 punkie, punky, punkey, no-see-um, biting midge +n02203152 midge +n02203592 fungus gnat +n02203978 psychodid +n02204249 sand fly, sandfly, Phlebotomus papatasii +n02204722 fungus gnat, sciara, sciarid +n02204907 armyworm +n02205219 crane fly, daddy longlegs +n02205673 blackfly, black fly, buffalo gnat +n02206270 hymenopterous insect, hymenopteran, hymenopteron, hymenopter +n02206856 bee +n02207179 drone +n02207345 queen bee +n02207449 worker +n02207647 soldier +n02207805 worker bee +n02208280 honeybee, Apis mellifera +n02208498 Africanized bee, Africanized honey bee, killer bee, Apis mellifera scutellata, Apis mellifera adansonii +n02208848 black bee, German bee +n02208979 Carniolan bee +n02209111 Italian bee +n02209354 carpenter bee +n02209624 bumblebee, humblebee +n02209964 cuckoo-bumblebee +n02210427 andrena, andrenid, mining bee +n02210921 Nomia melanderi, alkali bee +n02211444 leaf-cutting bee, leaf-cutter, leaf-cutter bee +n02211627 mason bee +n02211896 potter bee +n02212062 wasp +n02212602 vespid, vespid wasp +n02212958 paper wasp +n02213107 hornet +n02213239 giant hornet, Vespa crabro +n02213543 common wasp, Vespula vulgaris +n02213663 bald-faced hornet, white-faced hornet, Vespula maculata +n02213788 yellow jacket, yellow hornet, Vespula maculifrons +n02214096 Polistes annularis +n02214341 mason wasp +n02214499 potter wasp +n02214660 Mutillidae, family Mutillidae +n02214773 velvet ant +n02215161 sphecoid wasp, sphecoid +n02215621 mason wasp +n02215770 digger wasp +n02216211 cicada killer, Sphecius speciosis +n02216365 mud dauber +n02216740 gall wasp, gallfly, cynipid wasp, cynipid gall wasp +n02217563 chalcid fly, chalcidfly, chalcid, chalcid wasp +n02217839 strawworm, jointworm +n02218134 chalcis fly +n02218371 ichneumon fly +n02218713 sawfly +n02219015 birch leaf miner, Fenusa pusilla +n02219486 ant, emmet, pismire +n02220055 pharaoh ant, pharaoh's ant, Monomorium pharaonis +n02220225 little black ant, Monomorium minimum +n02220518 army ant, driver ant, legionary ant +n02220804 carpenter ant +n02221083 fire ant +n02221414 wood ant, Formica rufa +n02221571 slave ant +n02221715 Formica fusca +n02221820 slave-making ant, slave-maker +n02222035 sanguinary ant, Formica sanguinea +n02222321 bulldog ant +n02222582 Amazon ant, Polyergus rufescens +n02223266 termite, white ant +n02223520 dry-wood termite +n02224023 Reticulitermes lucifugus +n02224713 Mastotermes darwiniensis +n02225081 Mastotermes electrodominicus +n02225798 powder-post termite, Cryptotermes brevis +n02226183 orthopterous insect, orthopteron, orthopteran +n02226429 grasshopper, hopper +n02226821 short-horned grasshopper, acridid +n02226970 locust +n02227247 migratory locust, Locusta migratoria +n02227604 migratory grasshopper +n02227966 long-horned grasshopper, tettigoniid +n02228341 katydid +n02228697 mormon cricket, Anabrus simplex +n02229156 sand cricket, Jerusalem cricket, Stenopelmatus fuscus +n02229544 cricket +n02229765 mole cricket +n02230023 European house cricket, Acheta domestica +n02230187 field cricket, Acheta assimilis +n02230480 tree cricket +n02230634 snowy tree cricket, Oecanthus fultoni +n02231052 phasmid, phasmid insect +n02231487 walking stick, walkingstick, stick insect +n02231803 diapheromera, Diapheromera femorata +n02232223 walking leaf, leaf insect +n02233338 cockroach, roach +n02233943 oriental cockroach, oriental roach, Asiatic cockroach, blackbeetle, Blatta orientalis +n02234355 American cockroach, Periplaneta americana +n02234570 Australian cockroach, Periplaneta australasiae +n02234848 German cockroach, Croton bug, crotonbug, water bug, Blattella germanica +n02235205 giant cockroach +n02236044 mantis, mantid +n02236241 praying mantis, praying mantid, Mantis religioso +n02236355 bug +n02236896 hemipterous insect, bug, hemipteran, hemipteron +n02237424 leaf bug, plant bug +n02237581 mirid bug, mirid, capsid +n02237868 four-lined plant bug, four-lined leaf bug, Poecilocapsus lineatus +n02238235 lygus bug +n02238358 tarnished plant bug, Lygus lineolaris +n02238594 lace bug +n02238887 lygaeid, lygaeid bug +n02239192 chinch bug, Blissus leucopterus +n02239528 coreid bug, coreid +n02239774 squash bug, Anasa tristis +n02240068 leaf-footed bug, leaf-foot bug +n02240517 bedbug, bed bug, chinch, Cimex lectularius +n02241008 backswimmer, Notonecta undulata +n02241426 true bug +n02241569 heteropterous insect +n02241799 water bug +n02242137 giant water bug +n02242455 water scorpion +n02243209 water boatman, boat bug +n02243562 water strider, pond-skater, water skater +n02243878 common pond-skater, Gerris lacustris +n02244173 assassin bug, reduviid +n02244515 conenose, cone-nosed bug, conenose bug, big bedbug, kissing bug +n02244797 wheel bug, Arilus cristatus +n02245111 firebug +n02245443 cotton stainer +n02246011 homopterous insect, homopteran +n02246628 whitefly +n02246941 citrus whitefly, Dialeurodes citri +n02247216 greenhouse whitefly, Trialeurodes vaporariorum +n02247511 sweet-potato whitefly +n02247655 superbug, Bemisia tabaci, poinsettia strain +n02248062 cotton strain +n02248368 coccid insect +n02248510 scale insect +n02248887 soft scale +n02249134 brown soft scale, Coccus hesperidum +n02249515 armored scale +n02249809 San Jose scale, Aspidiotus perniciosus +n02250280 cochineal insect, cochineal, Dactylopius coccus +n02250822 mealybug, mealy bug +n02251067 citrophilous mealybug, citrophilus mealybug, Pseudococcus fragilis +n02251233 Comstock mealybug, Comstock's mealybug, Pseudococcus comstocki +n02251593 citrus mealybug, Planococcus citri +n02251775 plant louse, louse +n02252226 aphid +n02252799 apple aphid, green apple aphid, Aphis pomi +n02252972 blackfly, bean aphid, Aphis fabae +n02253127 greenfly +n02253264 green peach aphid +n02253494 ant cow +n02253715 woolly aphid, woolly plant louse +n02253913 woolly apple aphid, American blight, Eriosoma lanigerum +n02254246 woolly alder aphid, Prociphilus tessellatus +n02254697 adelgid +n02254901 balsam woolly aphid, Adelges piceae +n02255023 spruce gall aphid, Adelges abietis +n02255391 woolly adelgid +n02256172 jumping plant louse, psylla, psyllid +n02256656 cicada, cicala +n02257003 dog-day cicada, harvest fly +n02257284 seventeen-year locust, periodical cicada, Magicicada septendecim +n02257715 spittle insect, spittlebug +n02257985 froghopper +n02258198 meadow spittlebug, Philaenus spumarius +n02258508 pine spittlebug +n02258629 Saratoga spittlebug, Aphrophora saratogensis +n02259212 leafhopper +n02259377 plant hopper, planthopper +n02259708 treehopper +n02259987 lantern fly, lantern-fly +n02260421 psocopterous insect +n02260863 psocid +n02261063 bark-louse, bark louse +n02261419 booklouse, book louse, deathwatch, Liposcelis divinatorius +n02261757 common booklouse, Trogium pulsatorium +n02262178 ephemerid, ephemeropteran +n02262449 mayfly, dayfly, shadfly +n02262803 stonefly, stone fly, plecopteran +n02263378 neuropteron, neuropteran, neuropterous insect +n02264021 ant lion, antlion, antlion fly +n02264232 doodlebug, ant lion, antlion +n02264363 lacewing, lacewing fly +n02264591 aphid lion, aphis lion +n02264885 green lacewing, chrysopid, stink fly +n02265330 brown lacewing, hemerobiid, hemerobiid fly +n02266050 dobson, dobsonfly, dobson fly, Corydalus cornutus +n02266269 hellgrammiate, dobson +n02266421 fish fly, fish-fly +n02266864 alderfly, alder fly, Sialis lutaria +n02267208 snakefly +n02267483 mantispid +n02268148 odonate +n02268443 dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk +n02268853 damselfly +n02269196 trichopterous insect, trichopteran, trichopteron +n02269340 caddis fly, caddis-fly, caddice fly, caddice-fly +n02269522 caseworm +n02269657 caddisworm, strawworm +n02270011 thysanuran insect, thysanuron +n02270200 bristletail +n02270623 silverfish, Lepisma saccharina +n02270945 firebrat, Thermobia domestica +n02271222 jumping bristletail, machilid +n02271570 thysanopter, thysanopteron, thysanopterous insect +n02271897 thrips, thrip, thripid +n02272286 tobacco thrips, Frankliniella fusca +n02272552 onion thrips, onion louse, Thrips tobaci +n02272871 earwig +n02273392 common European earwig, Forficula auricularia +n02274024 lepidopterous insect, lepidopteron, lepidopteran +n02274259 butterfly +n02274822 nymphalid, nymphalid butterfly, brush-footed butterfly, four-footed butterfly +n02275560 mourning cloak, mourning cloak butterfly, Camberwell beauty, Nymphalis antiopa +n02275773 tortoiseshell, tortoiseshell butterfly +n02276078 painted beauty, Vanessa virginiensis +n02276258 admiral +n02276355 red admiral, Vanessa atalanta +n02276749 white admiral, Limenitis camilla +n02276902 banded purple, white admiral, Limenitis arthemis +n02277094 red-spotted purple, Limenitis astyanax +n02277268 viceroy, Limenitis archippus +n02277422 anglewing +n02277742 ringlet, ringlet butterfly +n02278024 comma, comma butterfly, Polygonia comma +n02278210 fritillary +n02278463 silverspot +n02278839 emperor butterfly, emperor +n02278980 purple emperor, Apatura iris +n02279257 peacock, peacock butterfly, Inachis io +n02279637 danaid, danaid butterfly +n02279972 monarch, monarch butterfly, milkweed butterfly, Danaus plexippus +n02280458 pierid, pierid butterfly +n02280649 cabbage butterfly +n02281015 small white, Pieris rapae +n02281136 large white, Pieris brassicae +n02281267 southern cabbage butterfly, Pieris protodice +n02281406 sulphur butterfly, sulfur butterfly +n02281787 lycaenid, lycaenid butterfly +n02282257 blue +n02282385 copper +n02282553 American copper, Lycaena hypophlaeas +n02282903 hairstreak, hairstreak butterfly +n02283077 Strymon melinus +n02283201 moth +n02283617 moth miller, miller +n02283951 tortricid, tortricid moth +n02284224 leaf roller, leaf-roller +n02284611 tea tortrix, tortrix, Homona coffearia +n02284884 orange tortrix, tortrix, Argyrotaenia citrana +n02285179 codling moth, codlin moth, Carpocapsa pomonella +n02285548 lymantriid, tussock moth +n02285801 tussock caterpillar +n02286089 gypsy moth, gipsy moth, Lymantria dispar +n02286425 browntail, brown-tail moth, Euproctis phaeorrhoea +n02286654 gold-tail moth, Euproctis chrysorrhoea +n02287004 geometrid, geometrid moth +n02287352 Paleacrita vernata +n02287622 Alsophila pometaria +n02287799 cankerworm +n02287987 spring cankerworm +n02288122 fall cankerworm +n02288268 measuring worm, inchworm, looper +n02288789 pyralid, pyralid moth +n02289307 bee moth, wax moth, Galleria mellonella +n02289610 corn borer, European corn borer moth, corn borer moth, Pyrausta nubilalis +n02289988 Mediterranean flour moth, Anagasta kuehniella +n02290340 tobacco moth, cacao moth, Ephestia elutella +n02290664 almond moth, fig moth, Cadra cautella +n02290870 raisin moth, Cadra figulilella +n02291220 tineoid, tineoid moth +n02291572 tineid, tineid moth +n02291748 clothes moth +n02292085 casemaking clothes moth, Tinea pellionella +n02292401 webbing clothes moth, webbing moth, Tineola bisselliella +n02292692 carpet moth, tapestry moth, Trichophaga tapetzella +n02293352 gelechiid, gelechiid moth +n02293868 grain moth +n02294097 angoumois moth, angoumois grain moth, Sitotroga cerealella +n02294407 potato moth, potato tuber moth, splitworm, Phthorimaea operculella +n02294577 potato tuberworm, Phthorimaea operculella +n02295064 noctuid moth, noctuid, owlet moth +n02295390 cutworm +n02295870 underwing +n02296021 red underwing, Catocala nupta +n02296276 antler moth, Cerapteryx graminis +n02296612 heliothis moth, Heliothis zia +n02296912 army cutworm, Chorizagrotis auxiliaris +n02297294 armyworm, Pseudaletia unipuncta +n02297442 armyworm, army worm, Pseudaletia unipuncta +n02297819 Spodoptera exigua +n02297938 beet armyworm, Spodoptera exigua +n02298095 Spodoptera frugiperda +n02298218 fall armyworm, Spodoptera frugiperda +n02298541 hawkmoth, hawk moth, sphingid, sphinx moth, hummingbird moth +n02299039 Manduca sexta +n02299157 tobacco hornworm, tomato worm, Manduca sexta +n02299378 Manduca quinquemaculata +n02299505 tomato hornworm, potato worm, Manduca quinquemaculata +n02299846 death's-head moth, Acherontia atropos +n02300173 bombycid, bombycid moth, silkworm moth +n02300554 domestic silkworm moth, domesticated silkworm moth, Bombyx mori +n02300797 silkworm +n02301452 saturniid, saturniid moth +n02301935 emperor, emperor moth, Saturnia pavonia +n02302244 imperial moth, Eacles imperialis +n02302459 giant silkworm moth, silkworm moth +n02302620 silkworm, giant silkworm, wild wilkworm +n02302969 luna moth, Actias luna +n02303284 cecropia, cecropia moth, Hyalophora cecropia +n02303585 cynthia moth, Samia cynthia, Samia walkeri +n02303777 ailanthus silkworm, Samia cynthia +n02304036 io moth, Automeris io +n02304432 polyphemus moth, Antheraea polyphemus +n02304657 pernyi moth, Antheraea pernyi +n02304797 tussah, tusseh, tussur, tussore, tusser, Antheraea mylitta +n02305085 atlas moth, Atticus atlas +n02305407 arctiid, arctiid moth +n02305636 tiger moth +n02305929 cinnabar, cinnabar moth, Callimorpha jacobeae +n02306433 lasiocampid, lasiocampid moth +n02306825 eggar, egger +n02307176 tent-caterpillar moth, Malacosoma americana +n02307325 tent caterpillar +n02307515 tent-caterpillar moth, Malacosoma disstria +n02307681 forest tent caterpillar, Malacosoma disstria +n02307910 lappet, lappet moth +n02308033 lappet caterpillar +n02308139 webworm +n02308471 webworm moth +n02308618 Hyphantria cunea +n02308735 fall webworm, Hyphantria cunea +n02309120 garden webworm, Loxostege similalis +n02309242 instar +n02309337 caterpillar +n02309841 corn borer, Pyrausta nubilalis +n02310000 bollworm +n02310149 pink bollworm, Gelechia gossypiella +n02310334 corn earworm, cotton bollworm, tomato fruitworm, tobacco budworm, vetchworm, Heliothis zia +n02310585 cabbageworm, Pieris rapae +n02310717 woolly bear, woolly bear caterpillar +n02310941 woolly bear moth +n02311060 larva +n02311617 nymph +n02311748 leptocephalus +n02312006 grub +n02312175 maggot +n02312325 leatherjacket +n02312427 pupa +n02312640 chrysalis +n02312912 imago +n02313008 queen +n02313360 phoronid +n02313709 bryozoan, polyzoan, sea mat, sea moss, moss animal +n02315487 brachiopod, lamp shell, lampshell +n02315821 peanut worm, sipunculid +n02316707 echinoderm +n02317335 starfish, sea star +n02317781 brittle star, brittle-star, serpent star +n02318167 basket star, basket fish +n02318687 Astrophyton muricatum +n02319095 sea urchin +n02319308 edible sea urchin, Echinus esculentus +n02319555 sand dollar +n02319829 heart urchin +n02320127 crinoid +n02320465 sea lily +n02321170 feather star, comatulid +n02321529 sea cucumber, holothurian +n02322047 trepang, Holothuria edulis +n02322992 Duplicidentata +n02323449 lagomorph, gnawing mammal +n02323902 leporid, leporid mammal +n02324045 rabbit, coney, cony +n02324431 rabbit ears +n02324514 lapin +n02324587 bunny, bunny rabbit +n02324850 European rabbit, Old World rabbit, Oryctolagus cuniculus +n02325366 wood rabbit, cottontail, cottontail rabbit +n02325722 eastern cottontail, Sylvilagus floridanus +n02325884 swamp rabbit, canecutter, swamp hare, Sylvilagus aquaticus +n02326074 marsh hare, swamp rabbit, Sylvilagus palustris +n02326432 hare +n02326763 leveret +n02326862 European hare, Lepus europaeus +n02327028 jackrabbit +n02327175 white-tailed jackrabbit, whitetail jackrabbit, Lepus townsendi +n02327435 blacktail jackrabbit, Lepus californicus +n02327656 polar hare, Arctic hare, Lepus arcticus +n02327842 snowshoe hare, snowshoe rabbit, varying hare, Lepus americanus +n02328009 Belgian hare, leporide +n02328150 Angora, Angora rabbit +n02328429 pika, mouse hare, rock rabbit, coney, cony +n02328820 little chief hare, Ochotona princeps +n02328942 collared pika, Ochotona collaris +n02329401 rodent, gnawer +n02330245 mouse +n02331046 rat +n02331309 pocket rat +n02331842 murine +n02332156 house mouse, Mus musculus +n02332447 harvest mouse, Micromyx minutus +n02332755 field mouse, fieldmouse +n02332954 nude mouse +n02333190 European wood mouse, Apodemus sylvaticus +n02333546 brown rat, Norway rat, Rattus norvegicus +n02333733 wharf rat +n02333819 sewer rat +n02333909 black rat, roof rat, Rattus rattus +n02334201 bandicoot rat, mole rat +n02334460 jerboa rat +n02334728 kangaroo mouse +n02335127 water rat +n02335231 beaver rat +n02336011 New World mouse +n02336275 American harvest mouse, harvest mouse +n02336641 wood mouse +n02336826 white-footed mouse, vesper mouse, Peromyscus leucopus +n02337001 deer mouse, Peromyscus maniculatus +n02337171 cactus mouse, Peromyscus eremicus +n02337332 cotton mouse, Peromyscus gossypinus +n02337598 pygmy mouse, Baiomys taylori +n02337902 grasshopper mouse +n02338145 muskrat, musquash, Ondatra zibethica +n02338449 round-tailed muskrat, Florida water rat, Neofiber alleni +n02338722 cotton rat, Sigmodon hispidus +n02338901 wood rat, wood-rat +n02339282 dusky-footed wood rat +n02339376 vole, field mouse +n02339922 packrat, pack rat, trade rat, bushytail woodrat, Neotoma cinerea +n02340186 dusky-footed woodrat, Neotoma fuscipes +n02340358 eastern woodrat, Neotoma floridana +n02340640 rice rat, Oryzomys palustris +n02340930 pine vole, pine mouse, Pitymys pinetorum +n02341288 meadow vole, meadow mouse, Microtus pennsylvaticus +n02341475 water vole, Richardson vole, Microtus richardsoni +n02341616 prairie vole, Microtus ochrogaster +n02341974 water vole, water rat, Arvicola amphibius +n02342250 red-backed mouse, redback vole +n02342534 phenacomys +n02342885 hamster +n02343058 Eurasian hamster, Cricetus cricetus +n02343320 golden hamster, Syrian hamster, Mesocricetus auratus +n02343772 gerbil, gerbille +n02344175 jird +n02344270 tamarisk gerbil, Meriones unguiculatus +n02344408 sand rat, Meriones longifrons +n02344528 lemming +n02344918 European lemming, Lemmus lemmus +n02345078 brown lemming, Lemmus trimucronatus +n02345340 grey lemming, gray lemming, red-backed lemming +n02345600 pied lemming +n02345774 Hudson bay collared lemming, Dicrostonyx hudsonius +n02345997 southern bog lemming, Synaptomys cooperi +n02346170 northern bog lemming, Synaptomys borealis +n02346627 porcupine, hedgehog +n02346998 Old World porcupine +n02347274 brush-tailed porcupine, brush-tail porcupine +n02347573 long-tailed porcupine, Trichys lipura +n02347744 New World porcupine +n02348173 Canada porcupine, Erethizon dorsatum +n02348788 pocket mouse +n02349205 silky pocket mouse, Perognathus flavus +n02349390 plains pocket mouse, Perognathus flavescens +n02349557 hispid pocket mouse, Perognathus hispidus +n02349847 Mexican pocket mouse, Liomys irroratus +n02350105 kangaroo rat, desert rat, Dipodomys phillipsii +n02350357 Ord kangaroo rat, Dipodomys ordi +n02350670 kangaroo mouse, dwarf pocket rat +n02350989 jumping mouse +n02351343 meadow jumping mouse, Zapus hudsonius +n02351870 jerboa +n02352002 typical jerboa +n02352290 Jaculus jaculus +n02352591 dormouse +n02352932 loir, Glis glis +n02353172 hazel mouse, Muscardinus avellanarius +n02353411 lerot +n02353861 gopher, pocket gopher, pouched rat +n02354162 plains pocket gopher, Geomys bursarius +n02354320 southeastern pocket gopher, Geomys pinetis +n02354621 valley pocket gopher, Thomomys bottae +n02354781 northern pocket gopher, Thomomys talpoides +n02355227 squirrel +n02355477 tree squirrel +n02356381 eastern grey squirrel, eastern gray squirrel, cat squirrel, Sciurus carolinensis +n02356612 western grey squirrel, western gray squirrel, Sciurus griseus +n02356798 fox squirrel, eastern fox squirrel, Sciurus niger +n02356977 black squirrel +n02357111 red squirrel, cat squirrel, Sciurus vulgaris +n02357401 American red squirrel, spruce squirrel, red squirrel, Sciurus hudsonicus, Tamiasciurus hudsonicus +n02357585 chickeree, Douglas squirrel, Tamiasciurus douglasi +n02357911 antelope squirrel, whitetail antelope squirrel, antelope chipmunk, Citellus leucurus +n02358091 ground squirrel, gopher, spermophile +n02358390 mantled ground squirrel, Citellus lateralis +n02358584 suslik, souslik, Citellus citellus +n02358712 flickertail, Richardson ground squirrel, Citellus richardsoni +n02358890 rock squirrel, Citellus variegatus +n02359047 Arctic ground squirrel, parka squirrel, Citellus parryi +n02359324 prairie dog, prairie marmot +n02359556 blacktail prairie dog, Cynomys ludovicianus +n02359667 whitetail prairie dog, Cynomys gunnisoni +n02359915 eastern chipmunk, hackee, striped squirrel, ground squirrel, Tamias striatus +n02360282 chipmunk +n02360480 baronduki, baranduki, barunduki, burunduki, Eutamius asiaticus, Eutamius sibiricus +n02360781 American flying squirrel +n02360933 southern flying squirrel, Glaucomys volans +n02361090 northern flying squirrel, Glaucomys sabrinus +n02361337 marmot +n02361587 groundhog, woodchuck, Marmota monax +n02361706 hoary marmot, whistler, whistling marmot, Marmota caligata +n02361850 yellowbelly marmot, rockchuck, Marmota flaviventris +n02362194 Asiatic flying squirrel +n02363005 beaver +n02363245 Old World beaver, Castor fiber +n02363351 New World beaver, Castor canadensis +n02363996 mountain beaver, sewellel, Aplodontia rufa +n02364520 cavy +n02364673 guinea pig, Cavia cobaya +n02364840 aperea, wild cavy, Cavia porcellus +n02365108 mara, Dolichotis patagonum +n02365480 capybara, capibara, Hydrochoerus hydrochaeris +n02366002 agouti, Dasyprocta aguti +n02366301 paca, Cuniculus paca +n02366579 mountain paca +n02366959 coypu, nutria, Myocastor coypus +n02367492 chinchilla, Chinchilla laniger +n02367812 mountain chinchilla, mountain viscacha +n02368116 viscacha, chinchillon, Lagostomus maximus +n02368399 abrocome, chinchilla rat, rat chinchilla +n02368821 mole rat +n02369293 mole rat +n02369555 sand rat +n02369680 naked mole rat +n02369935 queen, queen mole rat +n02370137 Damaraland mole rat +n02370525 Ungulata +n02370806 ungulate, hoofed mammal +n02371344 unguiculate, unguiculate mammal +n02372140 dinoceras, uintathere +n02372584 hyrax, coney, cony, dassie, das +n02372952 rock hyrax, rock rabbit, Procavia capensis +n02373336 odd-toed ungulate, perissodactyl, perissodactyl mammal +n02374149 equine, equid +n02374451 horse, Equus caballus +n02375302 roan +n02375438 stablemate, stable companion +n02375757 gee-gee +n02375862 eohippus, dawn horse +n02376542 foal +n02376679 filly +n02376791 colt +n02376918 male horse +n02377063 ridgeling, ridgling, ridgel, ridgil +n02377181 stallion, entire +n02377291 stud, studhorse +n02377388 gelding +n02377480 mare, female horse +n02377603 broodmare, stud mare +n02377703 saddle horse, riding horse, mount +n02378149 remount +n02378299 palfrey +n02378415 warhorse +n02378541 cavalry horse +n02378625 charger, courser +n02378755 steed +n02378870 prancer +n02378969 hack +n02379081 cow pony +n02379183 quarter horse +n02379329 Morgan +n02379430 Tennessee walker, Tennessee walking horse, Walking horse, Plantation walking horse +n02379630 American saddle horse +n02379743 Appaloosa +n02379908 Arabian, Arab +n02380052 Lippizan, Lipizzan, Lippizaner +n02380335 pony +n02380464 polo pony +n02380583 mustang +n02380745 bronco, bronc, broncho +n02380875 bucking bronco +n02381004 buckskin +n02381119 crowbait, crow-bait +n02381261 dun +n02381364 grey, gray +n02381460 wild horse +n02381609 tarpan, Equus caballus gomelini +n02381831 Przewalski's horse, Przevalski's horse, Equus caballus przewalskii, Equus caballus przevalskii +n02382039 cayuse, Indian pony +n02382132 hack +n02382204 hack, jade, nag, plug +n02382338 plow horse, plough horse +n02382437 pony +n02382635 Shetland pony +n02382750 Welsh pony +n02382850 Exmoor +n02382948 racehorse, race horse, bangtail +n02383231 thoroughbred +n02384741 steeplechaser +n02384858 racer +n02385002 finisher +n02385098 pony +n02385214 yearling +n02385580 dark horse +n02385676 mudder +n02385776 nonstarter +n02385898 stalking-horse +n02386014 harness horse +n02386141 cob +n02386224 hackney +n02386310 workhorse +n02386496 draft horse, draught horse, dray horse +n02386746 packhorse +n02386853 carthorse, cart horse, drayhorse +n02386968 Clydesdale +n02387093 Percheron +n02387254 farm horse, dobbin +n02387346 shire, shire horse +n02387452 pole horse, poler +n02387722 post horse, post-horse, poster +n02387887 coach horse +n02387983 pacer +n02388143 pacer, pacemaker, pacesetter +n02388276 trotting horse, trotter +n02388453 pole horse +n02388588 stepper, high stepper +n02388735 chestnut +n02388832 liver chestnut +n02388917 bay +n02389026 sorrel +n02389128 palomino +n02389261 pinto +n02389346 ass +n02389559 domestic ass, donkey, Equus asinus +n02389779 burro +n02389865 moke +n02389943 jack, jackass +n02390015 jennet, jenny, jenny ass +n02390101 mule +n02390258 hinny +n02390454 wild ass +n02390640 African wild ass, Equus asinus +n02390738 kiang, Equus kiang +n02390834 onager, Equus hemionus +n02390938 chigetai, dziggetai, Equus hemionus hemionus +n02391049 zebra +n02391234 common zebra, Burchell's zebra, Equus Burchelli +n02391373 mountain zebra, Equus zebra zebra +n02391508 grevy's zebra, Equus grevyi +n02391617 quagga, Equus quagga +n02391994 rhinoceros, rhino +n02392434 Indian rhinoceros, Rhinoceros unicornis +n02392555 woolly rhinoceros, Rhinoceros antiquitatis +n02392824 white rhinoceros, Ceratotherium simum, Diceros simus +n02393161 black rhinoceros, Diceros bicornis +n02393580 tapir +n02393807 New World tapir, Tapirus terrestris +n02393940 Malayan tapir, Indian tapir, Tapirus indicus +n02394477 even-toed ungulate, artiodactyl, artiodactyl mammal +n02395003 swine +n02395406 hog, pig, grunter, squealer, Sus scrofa +n02395694 piglet, piggy, shoat, shote +n02395855 sucking pig +n02395931 porker +n02396014 boar +n02396088 sow +n02396157 razorback, razorback hog, razorbacked hog +n02396427 wild boar, boar, Sus scrofa +n02396796 babirusa, babiroussa, babirussa, Babyrousa Babyrussa +n02397096 warthog +n02397529 peccary, musk hog +n02397744 collared peccary, javelina, Tayassu angulatus, Tayassu tajacu, Peccari angulatus +n02397987 white-lipped peccary, Tayassu pecari +n02398521 hippopotamus, hippo, river horse, Hippopotamus amphibius +n02399000 ruminant +n02401031 bovid +n02402010 bovine +n02402175 ox, wild ox +n02402425 cattle, cows, kine, oxen, Bos taurus +n02403003 ox +n02403153 stirk +n02403231 bullock, steer +n02403325 bull +n02403454 cow, moo-cow +n02403740 heifer +n02403820 bullock +n02403920 dogie, dogy, leppy +n02404028 maverick +n02404186 beef, beef cattle +n02404432 longhorn, Texas longhorn +n02404573 Brahman, Brahma, Brahmin, Bos indicus +n02404906 zebu +n02405101 aurochs, urus, Bos primigenius +n02405302 yak, Bos grunniens +n02405440 banteng, banting, tsine, Bos banteng +n02405577 Welsh, Welsh Black +n02405692 red poll +n02405799 Santa Gertrudis +n02405929 Aberdeen Angus, Angus, black Angus +n02406046 Africander +n02406174 dairy cattle, dairy cow, milch cow, milk cow, milcher, milker +n02406432 Ayrshire +n02406533 Brown Swiss +n02406647 Charolais +n02406749 Jersey +n02406859 Devon +n02406952 grade +n02407071 Durham, shorthorn +n02407172 milking shorthorn +n02407276 Galloway +n02407390 Friesian, Holstein, Holstein-Friesian +n02407521 Guernsey +n02407625 Hereford, whiteface +n02407763 cattalo, beefalo +n02407959 Old World buffalo, buffalo +n02408429 water buffalo, water ox, Asiatic buffalo, Bubalus bubalis +n02408660 Indian buffalo +n02408817 carabao +n02409038 anoa, dwarf buffalo, Anoa depressicornis +n02409202 tamarau, tamarao, Bubalus mindorensis, Anoa mindorensis +n02409508 Cape buffalo, Synercus caffer +n02409870 Asian wild ox +n02410011 gaur, Bibos gaurus +n02410141 gayal, mithan, Bibos frontalis +n02410509 bison +n02410702 American bison, American buffalo, buffalo, Bison bison +n02410900 wisent, aurochs, Bison bonasus +n02411206 musk ox, musk sheep, Ovibos moschatus +n02411705 sheep +n02411999 ewe +n02412080 ram, tup +n02412210 wether +n02412440 lamb +n02412629 lambkin +n02412700 baa-lamb +n02412787 hog, hogget, hogg +n02412909 teg +n02412977 Persian lamb +n02413050 black sheep +n02413131 domestic sheep, Ovis aries +n02413484 Cotswold +n02413593 Hampshire, Hampshire down +n02413717 Lincoln +n02413824 Exmoor +n02413917 Cheviot +n02414043 broadtail, caracul, karakul +n02414209 longwool +n02414290 merino, merino sheep +n02414442 Rambouillet +n02414578 wild sheep +n02414763 argali, argal, Ovis ammon +n02414904 Marco Polo sheep, Marco Polo's sheep, Ovis poli +n02415130 urial, Ovis vignei +n02415253 Dall sheep, Dall's sheep, white sheep, Ovis montana dalli +n02415435 mountain sheep +n02415577 bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis +n02415829 mouflon, moufflon, Ovis musimon +n02416104 aoudad, arui, audad, Barbary sheep, maned sheep, Ammotragus lervia +n02416519 goat, caprine animal +n02416820 kid +n02416880 billy, billy goat, he-goat +n02416964 nanny, nanny-goat, she-goat +n02417070 domestic goat, Capra hircus +n02417242 Cashmere goat, Kashmir goat +n02417387 Angora, Angora goat +n02417534 wild goat +n02417663 bezoar goat, pasang, Capra aegagrus +n02417785 markhor, markhoor, Capra falconeri +n02417914 ibex, Capra ibex +n02418064 goat antelope +n02418465 mountain goat, Rocky Mountain goat, Oreamnos americanus +n02418770 goral, Naemorhedus goral +n02419056 serow +n02419336 chamois, Rupicapra rupicapra +n02419634 takin, gnu goat, Budorcas taxicolor +n02419796 antelope +n02420509 blackbuck, black buck, Antilope cervicapra +n02420828 gerenuk, Litocranius walleri +n02421136 addax, Addax nasomaculatus +n02421449 gnu, wildebeest +n02421792 dik-dik +n02422106 hartebeest +n02422391 sassaby, topi, Damaliscus lunatus +n02422699 impala, Aepyceros melampus +n02423022 gazelle +n02423218 Thomson's gazelle, Gazella thomsoni +n02423362 Gazella subgutturosa +n02423589 springbok, springbuck, Antidorcas marsupialis, Antidorcas euchore +n02424085 bongo, Tragelaphus eurycerus, Boocercus eurycerus +n02424305 kudu, koodoo, koudou +n02424486 greater kudu, Tragelaphus strepsiceros +n02424589 lesser kudu, Tragelaphus imberbis +n02424695 harnessed antelope +n02424909 nyala, Tragelaphus angasi +n02425086 mountain nyala, Tragelaphus buxtoni +n02425228 bushbuck, guib, Tragelaphus scriptus +n02425532 nilgai, nylghai, nylghau, blue bull, Boselaphus tragocamelus +n02425887 sable antelope, Hippotragus niger +n02426176 saiga, Saiga tatarica +n02426481 steenbok, steinbok, Raphicerus campestris +n02426813 eland +n02427032 common eland, Taurotragus oryx +n02427183 giant eland, Taurotragus derbianus +n02427470 kob, Kobus kob +n02427576 lechwe, Kobus leche +n02427724 waterbuck +n02428089 puku, Adenota vardoni +n02428349 oryx, pasang +n02428508 gemsbok, gemsbuck, Oryx gazella +n02428842 forest goat, spindle horn, Pseudoryx nghetinhensis +n02429456 pronghorn, prongbuck, pronghorn antelope, American antelope, Antilocapra americana +n02430045 deer, cervid +n02430559 stag +n02430643 royal, royal stag +n02430748 pricket +n02430830 fawn +n02431122 red deer, elk, American elk, wapiti, Cervus elaphus +n02431337 hart, stag +n02431441 hind +n02431542 brocket +n02431628 sambar, sambur, Cervus unicolor +n02431785 wapiti, elk, American elk, Cervus elaphus canadensis +n02431976 Japanese deer, sika, Cervus nipon, Cervus sika +n02432291 Virginia deer, white tail, whitetail, white-tailed deer, whitetail deer, Odocoileus Virginianus +n02432511 mule deer, burro deer, Odocoileus hemionus +n02432704 black-tailed deer, blacktail deer, blacktail, Odocoileus hemionus columbianus +n02432983 elk, European elk, moose, Alces alces +n02433318 fallow deer, Dama dama +n02433546 roe deer, Capreolus capreolus +n02433729 roebuck +n02433925 caribou, reindeer, Greenland caribou, Rangifer tarandus +n02434190 woodland caribou, Rangifer caribou +n02434415 barren ground caribou, Rangifer arcticus +n02434712 brocket +n02434954 muntjac, barking deer +n02435216 musk deer, Moschus moschiferus +n02435517 pere david's deer, elaphure, Elaphurus davidianus +n02435853 chevrotain, mouse deer +n02436224 kanchil, Tragulus kanchil +n02436353 napu, Tragulus Javanicus +n02436645 water chevrotain, water deer, Hyemoschus aquaticus +n02437136 camel +n02437312 Arabian camel, dromedary, Camelus dromedarius +n02437482 Bactrian camel, Camelus bactrianus +n02437616 llama +n02437971 domestic llama, Lama peruana +n02438173 guanaco, Lama guanicoe +n02438272 alpaca, Lama pacos +n02438580 vicuna, Vicugna vicugna +n02439033 giraffe, camelopard, Giraffa camelopardalis +n02439398 okapi, Okapia johnstoni +n02441326 musteline mammal, mustelid, musteline +n02441942 weasel +n02442172 ermine, shorttail weasel, Mustela erminea +n02442336 stoat +n02442446 New World least weasel, Mustela rixosa +n02442572 Old World least weasel, Mustela nivalis +n02442668 longtail weasel, long-tailed weasel, Mustela frenata +n02442845 mink +n02443015 American mink, Mustela vison +n02443114 polecat, fitch, foulmart, foumart, Mustela putorius +n02443346 ferret +n02443484 black-footed ferret, ferret, Mustela nigripes +n02443808 muishond +n02443959 snake muishond, Poecilogale albinucha +n02444251 striped muishond, Ictonyx striata +n02444819 otter +n02445004 river otter, Lutra canadensis +n02445171 Eurasian otter, Lutra lutra +n02445394 sea otter, Enhydra lutris +n02445715 skunk, polecat, wood pussy +n02446206 striped skunk, Mephitis mephitis +n02446352 hooded skunk, Mephitis macroura +n02446645 hog-nosed skunk, hognosed skunk, badger skunk, rooter skunk, Conepatus leuconotus +n02447021 spotted skunk, little spotted skunk, Spilogale putorius +n02447366 badger +n02447762 American badger, Taxidea taxus +n02448060 Eurasian badger, Meles meles +n02448318 ratel, honey badger, Mellivora capensis +n02448633 ferret badger +n02448885 hog badger, hog-nosed badger, sand badger, Arctonyx collaris +n02449183 wolverine, carcajou, skunk bear, Gulo luscus +n02449350 glutton, Gulo gulo, wolverine +n02449699 grison, Grison vittatus, Galictis vittatus +n02450034 marten, marten cat +n02450295 pine marten, Martes martes +n02450426 sable, Martes zibellina +n02450561 American marten, American sable, Martes americana +n02450677 stone marten, beech marten, Martes foina +n02450829 fisher, pekan, fisher cat, black cat, Martes pennanti +n02451125 yellow-throated marten, Charronia flavigula +n02451415 tayra, taira, Eira barbara +n02451575 fictional animal +n02453108 pachyderm +n02453611 edentate +n02454379 armadillo +n02454794 peba, nine-banded armadillo, Texas armadillo, Dasypus novemcinctus +n02455135 apar, three-banded armadillo, Tolypeutes tricinctus +n02455428 tatouay, cabassous, Cabassous unicinctus +n02455720 peludo, poyou, Euphractus sexcinctus +n02456008 giant armadillo, tatou, tatu, Priodontes giganteus +n02456275 pichiciago, pichiciego, fairy armadillo, chlamyphore, Chlamyphorus truncatus +n02456962 sloth, tree sloth +n02457408 three-toed sloth, ai, Bradypus tridactylus +n02457945 two-toed sloth, unau, unai, Choloepus didactylus +n02458135 two-toed sloth, unau, unai, Choloepus hoffmanni +n02458517 megatherian, megatheriid, megatherian mammal +n02459190 mylodontid +n02460009 anteater, New World anteater +n02460451 ant bear, giant anteater, great anteater, tamanoir, Myrmecophaga jubata +n02460817 silky anteater, two-toed anteater, Cyclopes didactylus +n02461128 tamandua, tamandu, lesser anteater, Tamandua tetradactyla +n02461830 pangolin, scaly anteater, anteater +n02462213 coronet +n02469248 scapular +n02469472 tadpole, polliwog, pollywog +n02469914 primate +n02470238 simian +n02470325 ape +n02470709 anthropoid +n02470899 anthropoid ape +n02471300 hominoid +n02471762 hominid +n02472293 homo, man, human being, human +n02472987 world, human race, humanity, humankind, human beings, humans, mankind, man +n02473307 Homo erectus +n02473554 Pithecanthropus, Pithecanthropus erectus, genus Pithecanthropus +n02473720 Java man, Trinil man +n02473857 Peking man +n02473983 Sinanthropus, genus Sinanthropus +n02474110 Homo soloensis +n02474282 Javanthropus, genus Javanthropus +n02474605 Homo habilis +n02474777 Homo sapiens +n02475078 Neandertal man, Neanderthal man, Neandertal, Neanderthal, Homo sapiens neanderthalensis +n02475358 Cro-magnon +n02475669 Homo sapiens sapiens, modern man +n02476219 australopithecine +n02476567 Australopithecus afarensis +n02476870 Australopithecus africanus +n02477028 Australopithecus boisei +n02477187 Zinjanthropus, genus Zinjanthropus +n02477329 Australopithecus robustus +n02477516 Paranthropus, genus Paranthropus +n02477782 Sivapithecus +n02478239 rudapithecus, Dryopithecus Rudapithecus hungaricus +n02478875 proconsul +n02479332 Aegyptopithecus +n02480153 great ape, pongid +n02480495 orangutan, orang, orangutang, Pongo pygmaeus +n02480855 gorilla, Gorilla gorilla +n02481103 western lowland gorilla, Gorilla gorilla gorilla +n02481235 eastern lowland gorilla, Gorilla gorilla grauri +n02481366 mountain gorilla, Gorilla gorilla beringei +n02481500 silverback +n02481823 chimpanzee, chimp, Pan troglodytes +n02482060 western chimpanzee, Pan troglodytes verus +n02482286 eastern chimpanzee, Pan troglodytes schweinfurthii +n02482474 central chimpanzee, Pan troglodytes troglodytes +n02482650 pygmy chimpanzee, bonobo, Pan paniscus +n02483092 lesser ape +n02483362 gibbon, Hylobates lar +n02483708 siamang, Hylobates syndactylus, Symphalangus syndactylus +n02484322 monkey +n02484473 Old World monkey, catarrhine +n02484975 guenon, guenon monkey +n02485225 talapoin, Cercopithecus talapoin +n02485371 grivet, Cercopithecus aethiops +n02485536 vervet, vervet monkey, Cercopithecus aethiops pygerythrus +n02485688 green monkey, African green monkey, Cercopithecus aethiops sabaeus +n02485988 mangabey +n02486261 patas, hussar monkey, Erythrocebus patas +n02486410 baboon +n02486657 chacma, chacma baboon, Papio ursinus +n02486908 mandrill, Mandrillus sphinx +n02487079 drill, Mandrillus leucophaeus +n02487347 macaque +n02487547 rhesus, rhesus monkey, Macaca mulatta +n02487675 bonnet macaque, bonnet monkey, capped macaque, crown monkey, Macaca radiata +n02487847 Barbary ape, Macaca sylvana +n02488003 crab-eating macaque, croo monkey, Macaca irus +n02488291 langur +n02488415 entellus, hanuman, Presbytes entellus, Semnopithecus entellus +n02488702 colobus, colobus monkey +n02488894 guereza, Colobus guereza +n02489166 proboscis monkey, Nasalis larvatus +n02489589 New World monkey, platyrrhine, platyrrhinian +n02490219 marmoset +n02490597 true marmoset +n02490811 pygmy marmoset, Cebuella pygmaea +n02491107 tamarin, lion monkey, lion marmoset, leoncita +n02491329 silky tamarin, Leontocebus rosalia +n02491474 pinche, Leontocebus oedipus +n02492035 capuchin, ringtail, Cebus capucinus +n02492356 douroucouli, Aotus trivirgatus +n02492660 howler monkey, howler +n02492948 saki +n02493224 uakari +n02493509 titi, titi monkey +n02493793 spider monkey, Ateles geoffroyi +n02494079 squirrel monkey, Saimiri sciureus +n02494383 woolly monkey +n02495242 tree shrew +n02496052 prosimian +n02496913 lemur +n02497673 Madagascar cat, ring-tailed lemur, Lemur catta +n02498153 aye-aye, Daubentonia madagascariensis +n02498743 slender loris, Loris gracilis +n02499022 slow loris, Nycticebus tardigradua, Nycticebus pygmaeus +n02499316 potto, kinkajou, Perodicticus potto +n02499568 angwantibo, golden potto, Arctocebus calabarensis +n02499808 galago, bushbaby, bush baby +n02500267 indri, indris, Indri indri, Indri brevicaudatus +n02500596 woolly indris, Avahi laniger +n02501583 tarsier +n02501923 Tarsius syrichta +n02502006 Tarsius glis +n02502514 flying lemur, flying cat, colugo +n02502807 Cynocephalus variegatus +n02503127 proboscidean, proboscidian +n02503517 elephant +n02503756 rogue elephant +n02504013 Indian elephant, Elephas maximus +n02504458 African elephant, Loxodonta africana +n02504770 mammoth +n02505063 woolly mammoth, northern mammoth, Mammuthus primigenius +n02505238 columbian mammoth, Mammuthus columbi +n02505485 imperial mammoth, imperial elephant, Archidiskidon imperator +n02505998 mastodon, mastodont +n02506947 plantigrade mammal, plantigrade +n02507148 digitigrade mammal, digitigrade +n02507649 procyonid +n02508021 raccoon, racoon +n02508213 common raccoon, common racoon, coon, ringtail, Procyon lotor +n02508346 crab-eating raccoon, Procyon cancrivorus +n02508742 bassarisk, cacomistle, cacomixle, coon cat, raccoon fox, ringtail, ring-tailed cat, civet cat, miner's cat, Bassariscus astutus +n02509197 kinkajou, honey bear, potto, Potos flavus, Potos caudivolvulus +n02509515 coati, coati-mondi, coati-mundi, coon cat, Nasua narica +n02509815 lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens +n02510455 giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca +n02511730 twitterer +n02512053 fish +n02512752 fingerling +n02512830 game fish, sport fish +n02512938 food fish +n02513248 rough fish +n02513355 groundfish, bottom fish +n02513560 young fish +n02513727 parr +n02513805 mouthbreeder +n02513939 spawner +n02514041 barracouta, snoek +n02515214 crossopterygian, lobefin, lobe-finned fish +n02515713 coelacanth, Latimeria chalumnae +n02516188 lungfish +n02516776 ceratodus +n02517442 catfish, siluriform fish +n02517938 silurid, silurid fish +n02518324 European catfish, sheatfish, Silurus glanis +n02518622 electric catfish, Malopterurus electricus +n02519148 bullhead, bullhead catfish +n02519340 horned pout, hornpout, pout, Ameiurus Melas +n02519472 brown bullhead +n02519686 channel catfish, channel cat, Ictalurus punctatus +n02519862 blue catfish, blue cat, blue channel catfish, blue channel cat +n02520147 flathead catfish, mudcat, goujon, shovelnose catfish, spoonbill catfish, Pylodictus olivaris +n02520525 armored catfish +n02520810 sea catfish +n02521646 gadoid, gadoid fish +n02522399 cod, codfish +n02522637 codling +n02522722 Atlantic cod, Gadus morhua +n02522866 Pacific cod, Alaska cod, Gadus macrocephalus +n02523110 whiting, Merlangus merlangus, Gadus merlangus +n02523427 burbot, eelpout, ling, cusk, Lota lota +n02523877 haddock, Melanogrammus aeglefinus +n02524202 pollack, pollock, Pollachius pollachius +n02524524 hake +n02524659 silver hake, Merluccius bilinearis, whiting +n02524928 ling +n02525382 cusk, torsk, Brosme brosme +n02525703 grenadier, rattail, rattail fish +n02526121 eel +n02526425 elver +n02526818 common eel, freshwater eel +n02527057 tuna, Anguilla sucklandii +n02527271 moray, moray eel +n02527622 conger, conger eel +n02528163 teleost fish, teleost, teleostan +n02529293 beaked salmon, sandfish, Gonorhynchus gonorhynchus +n02529772 clupeid fish, clupeid +n02530052 whitebait +n02530188 brit, britt +n02530421 shad +n02530637 common American shad, Alosa sapidissima +n02530831 river shad, Alosa chrysocloris +n02530999 allice shad, allis shad, allice, allis, Alosa alosa +n02531114 alewife, Alosa pseudoharengus, Pomolobus pseudoharengus +n02531625 menhaden, Brevoortia tyrannis +n02532028 herring, Clupea harangus +n02532272 Atlantic herring, Clupea harengus harengus +n02532451 Pacific herring, Clupea harengus pallasii +n02532602 sardine +n02532786 sild +n02532918 brisling, sprat, Clupea sprattus +n02533209 pilchard, sardine, Sardina pilchardus +n02533545 Pacific sardine, Sardinops caerulea +n02533834 anchovy +n02534165 mediterranean anchovy, Engraulis encrasicholus +n02534559 salmonid +n02534734 salmon +n02535080 parr +n02535163 blackfish +n02535258 redfish +n02535537 Atlantic salmon, Salmo salar +n02535759 landlocked salmon, lake salmon +n02536165 sockeye, sockeye salmon, red salmon, blueback salmon, Oncorhynchus nerka +n02536456 chinook, chinook salmon, king salmon, quinnat salmon, Oncorhynchus tshawytscha +n02536864 coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch +n02537085 trout +n02537319 brown trout, salmon trout, Salmo trutta +n02537525 rainbow trout, Salmo gairdneri +n02537716 sea trout +n02538010 lake trout, salmon trout, Salvelinus namaycush +n02538216 brook trout, speckled trout, Salvelinus fontinalis +n02538406 char, charr +n02538562 Arctic char, Salvelinus alpinus +n02538985 whitefish +n02539424 lake whitefish, Coregonus clupeaformis +n02539573 cisco, lake herring, Coregonus artedi +n02539894 round whitefish, Menominee whitefish, Prosopium cylindraceum +n02540412 smelt +n02540983 sparling, European smelt, Osmerus eperlanus +n02541257 capelin, capelan, caplin +n02541687 tarpon, Tarpon atlanticus +n02542017 ladyfish, tenpounder, Elops saurus +n02542432 bonefish, Albula vulpes +n02542958 argentine +n02543255 lanternfish +n02543565 lizardfish, snakefish, snake-fish +n02544274 lancetfish, lancet fish, wolffish +n02545841 opah, moonfish, Lampris regius +n02546028 New World opah, Lampris guttatus +n02546331 ribbonfish +n02546627 dealfish, Trachipterus arcticus +n02547014 oarfish, king of the herring, ribbonfish, Regalecus glesne +n02547733 batfish +n02548247 goosefish, angler, anglerfish, angler fish, monkfish, lotte, allmouth, Lophius Americanus +n02548689 toadfish, Opsanus tau +n02548884 oyster fish, oyster-fish, oysterfish +n02549248 frogfish +n02549376 sargassum fish +n02549989 needlefish, gar, billfish +n02550203 timucu +n02550460 flying fish +n02550655 monoplane flying fish, two-wing flying fish +n02551134 halfbeak +n02551668 saury, billfish, Scomberesox saurus +n02552171 spiny-finned fish, acanthopterygian +n02553028 lingcod, Ophiodon elongatus +n02554730 percoid fish, percoid, percoidean +n02555863 perch +n02556373 climbing perch, Anabas testudineus, A. testudineus +n02556846 perch +n02557182 yellow perch, Perca flavescens +n02557318 European perch, Perca fluviatilis +n02557591 pike-perch, pike perch +n02557749 walleye, walleyed pike, jack salmon, dory, Stizostedion vitreum +n02557909 blue pike, blue pickerel, blue pikeperch, blue walleye, Strizostedion vitreum glaucum +n02558206 snail darter, Percina tanasi +n02558860 cusk-eel +n02559144 brotula +n02559383 pearlfish, pearl-fish +n02559862 robalo +n02560110 snook +n02561108 pike +n02561381 northern pike, Esox lucius +n02561514 muskellunge, Esox masquinongy +n02561661 pickerel +n02561803 chain pickerel, chain pike, Esox niger +n02561937 redfin pickerel, barred pickerel, Esox americanus +n02562315 sunfish, centrarchid +n02562796 crappie +n02562971 black crappie, Pomoxis nigromaculatus +n02563079 white crappie, Pomoxis annularis +n02563182 freshwater bream, bream +n02563648 pumpkinseed, Lepomis gibbosus +n02563792 bluegill, Lepomis macrochirus +n02563949 spotted sunfish, stumpknocker, Lepomis punctatus +n02564270 freshwater bass +n02564403 rock bass, rock sunfish, Ambloplites rupestris +n02564720 black bass +n02564935 Kentucky black bass, spotted black bass, Micropterus pseudoplites +n02565072 smallmouth, smallmouth bass, smallmouthed bass, smallmouth black bass, smallmouthed black bass, Micropterus dolomieu +n02565324 largemouth, largemouth bass, largemouthed bass, largemouth black bass, largemouthed black bass, Micropterus salmoides +n02565573 bass +n02566109 serranid fish, serranid +n02566489 white perch, silver perch, Morone americana +n02566665 yellow bass, Morone interrupta +n02567334 blackmouth bass, Synagrops bellus +n02567633 rock sea bass, rock bass, Centropristis philadelphica +n02568087 striped bass, striper, Roccus saxatilis, rockfish +n02568447 stone bass, wreckfish, Polyprion americanus +n02568959 grouper +n02569484 hind +n02569631 rock hind, Epinephelus adscensionis +n02569905 creole-fish, Paranthias furcifer +n02570164 jewfish, Mycteroperca bonaci +n02570484 soapfish +n02570838 surfperch, surffish, surf fish +n02571167 rainbow seaperch, rainbow perch, Hipsurus caryi +n02571652 bigeye +n02571810 catalufa, Priacanthus arenatus +n02572196 cardinalfish +n02572484 flame fish, flamefish, Apogon maculatus +n02573249 tilefish, Lopholatilus chamaeleonticeps +n02573704 bluefish, Pomatomus saltatrix +n02574271 cobia, Rachycentron canadum, sergeant fish +n02574910 remora, suckerfish, sucking fish +n02575325 sharksucker, Echeneis naucrates +n02575590 whale sucker, whalesucker, Remilegia australis +n02576223 carangid fish, carangid +n02576575 jack +n02576906 crevalle jack, jack crevalle, Caranx hippos +n02577041 yellow jack, Caranx bartholomaei +n02577164 runner, blue runner, Caranx crysos +n02577403 rainbow runner, Elagatis bipinnulata +n02577662 leatherjacket, leatherjack +n02577952 threadfish, thread-fish, Alectis ciliaris +n02578233 moonfish, Atlantic moonfish, horsefish, horsehead, horse-head, dollarfish, Selene setapinnis +n02578454 lookdown, lookdown fish, Selene vomer +n02578771 amberjack, amberfish +n02578928 yellowtail, Seriola dorsalis +n02579303 kingfish, Seriola grandis +n02579557 pompano +n02579762 Florida pompano, Trachinotus carolinus +n02579928 permit, Trachinotus falcatus +n02580336 scad +n02580679 horse mackerel, jack mackerel, Spanish mackerel, saurel, Trachurus symmetricus +n02580830 horse mackerel, saurel, Trachurus trachurus +n02581108 bigeye scad, big-eyed scad, goggle-eye, Selar crumenophthalmus +n02581482 mackerel scad, mackerel shad, Decapterus macarellus +n02581642 round scad, cigarfish, quiaquia, Decapterus punctatus +n02581957 dolphinfish, dolphin, mahimahi +n02582220 Coryphaena hippurus +n02582349 Coryphaena equisetis +n02582721 pomfret, Brama raii +n02583567 characin, characin fish, characid +n02583890 tetra +n02584145 cardinal tetra, Paracheirodon axelrodi +n02584449 piranha, pirana, caribe +n02585872 cichlid, cichlid fish +n02586238 bolti, Tilapia nilotica +n02586543 snapper +n02587051 red snapper, Lutjanus blackfordi +n02587300 grey snapper, gray snapper, mangrove snapper, Lutjanus griseus +n02587479 mutton snapper, muttonfish, Lutjanus analis +n02587618 schoolmaster, Lutjanus apodus +n02587877 yellowtail, yellowtail snapper, Ocyurus chrysurus +n02588286 grunt +n02588794 margate, Haemulon album +n02588945 Spanish grunt, Haemulon macrostomum +n02589062 tomtate, Haemulon aurolineatum +n02589196 cottonwick, Haemulon malanurum +n02589316 sailor's-choice, sailors choice, Haemulon parra +n02589623 porkfish, pork-fish, Anisotremus virginicus +n02589796 pompon, black margate, Anisotremus surinamensis +n02590094 pigfish, hogfish, Orthopristis chrysopterus +n02590495 sparid, sparid fish +n02590702 sea bream, bream +n02590987 porgy +n02591330 red porgy, Pagrus pagrus +n02591613 European sea bream, Pagellus centrodontus +n02591911 Atlantic sea bream, Archosargus rhomboidalis +n02592055 sheepshead, Archosargus probatocephalus +n02592371 pinfish, sailor's-choice, squirrelfish, Lagodon rhomboides +n02592734 sheepshead porgy, Calamus penna +n02593019 snapper, Chrysophrys auratus +n02593191 black bream, Chrysophrys australis +n02593453 scup, northern porgy, northern scup, Stenotomus chrysops +n02593679 scup, southern porgy, southern scup, Stenotomus aculeatus +n02594250 sciaenid fish, sciaenid +n02594942 striped drum, Equetus pulcher +n02595056 jackknife-fish, Equetus lanceolatus +n02595339 silver perch, mademoiselle, Bairdiella chrysoura +n02595702 red drum, channel bass, redfish, Sciaenops ocellatus +n02596067 mulloway, jewfish, Sciaena antarctica +n02596252 maigre, maiger, Sciaena aquila +n02596381 croaker +n02596720 Atlantic croaker, Micropogonias undulatus +n02597004 yellowfin croaker, surffish, surf fish, Umbrina roncador +n02597367 whiting +n02597608 kingfish +n02597818 king whiting, Menticirrhus americanus +n02597972 northern whiting, Menticirrhus saxatilis +n02598134 corbina, Menticirrhus undulatus +n02598573 white croaker, chenfish, kingfish, Genyonemus lineatus +n02598878 white croaker, queenfish, Seriphus politus +n02599052 sea trout +n02599347 weakfish, Cynoscion regalis +n02599557 spotted weakfish, spotted sea trout, spotted squeateague, Cynoscion nebulosus +n02599958 mullet +n02600298 goatfish, red mullet, surmullet, Mullus surmuletus +n02600503 red goatfish, Mullus auratus +n02600798 yellow goatfish, Mulloidichthys martinicus +n02601344 mullet, grey mullet, gray mullet +n02601767 striped mullet, Mugil cephalus +n02601921 white mullet, Mugil curema +n02602059 liza, Mugil liza +n02602405 silversides, silverside +n02602760 jacksmelt, Atherinopsis californiensis +n02603317 barracuda +n02603540 great barracuda, Sphyraena barracuda +n02603862 sweeper +n02604157 sea chub +n02604480 Bermuda chub, rudderfish, Kyphosus sectatrix +n02604954 spadefish, angelfish, Chaetodipterus faber +n02605316 butterfly fish +n02605703 chaetodon +n02605936 angelfish +n02606052 rock beauty, Holocanthus tricolor +n02606384 damselfish, demoiselle +n02606751 beaugregory, Pomacentrus leucostictus +n02607072 anemone fish +n02607201 clown anemone fish, Amphiprion percula +n02607470 sergeant major, Abudefduf saxatilis +n02607862 wrasse +n02608284 pigfish, giant pigfish, Achoerodus gouldii +n02608547 hogfish, hog snapper, Lachnolaimus maximus +n02608860 slippery dick, Halicoeres bivittatus +n02608996 puddingwife, pudding-wife, Halicoeres radiatus +n02609302 bluehead, Thalassoma bifasciatum +n02609823 pearly razorfish, Hemipteronatus novacula +n02610066 tautog, blackfish, Tautoga onitis +n02610373 cunner, bergall, Tautogolabrus adspersus +n02610664 parrotfish, polly fish, pollyfish +n02610980 threadfin +n02611561 jawfish +n02611898 stargazer +n02612167 sand stargazer +n02613181 blenny, combtooth blenny +n02613572 shanny, Blennius pholis +n02613820 Molly Miller, Scartella cristata +n02614140 clinid, clinid fish +n02614482 pikeblenny +n02614653 bluethroat pikeblenny, Chaenopsis ocellata +n02614978 gunnel, bracketed blenny +n02615298 rock gunnel, butterfish, Pholis gunnellus +n02616128 eelblenny +n02616397 wrymouth, ghostfish, Cryptacanthodes maculatus +n02616851 wolffish, wolf fish, catfish +n02617537 viviparous eelpout, Zoarces viviparus +n02618094 ocean pout, Macrozoarces americanus +n02618513 sand lance, sand launce, sand eel, launce +n02618827 dragonet +n02619165 goby, gudgeon +n02619550 mudskipper, mudspringer +n02619861 sleeper, sleeper goby +n02620167 flathead +n02620578 archerfish, Toxotes jaculatrix +n02621258 surgeonfish +n02621908 gempylid +n02622249 snake mackerel, Gempylus serpens +n02622547 escolar, Lepidocybium flavobrunneum +n02622712 oilfish, Ruvettus pretiosus +n02622955 cutlassfish, frost fish, hairtail +n02623445 scombroid, scombroid fish +n02624167 mackerel +n02624551 common mackerel, shiner, Scomber scombrus +n02624807 Spanish mackerel, Scomber colias +n02624987 chub mackerel, tinker, Scomber japonicus +n02625258 wahoo, Acanthocybium solandri +n02625612 Spanish mackerel +n02625851 king mackerel, cavalla, cero, Scomberomorus cavalla +n02626089 Scomberomorus maculatus +n02626265 cero, pintado, kingfish, Scomberomorus regalis +n02626471 sierra, Scomberomorus sierra +n02626762 tuna, tunny +n02627037 albacore, long-fin tunny, Thunnus alalunga +n02627292 bluefin, bluefin tuna, horse mackerel, Thunnus thynnus +n02627532 yellowfin, yellowfin tuna, Thunnus albacares +n02627835 bonito +n02628062 skipjack, Atlantic bonito, Sarda sarda +n02628259 Chile bonito, Chilean bonito, Pacific bonito, Sarda chiliensis +n02628600 skipjack, skipjack tuna, Euthynnus pelamis +n02629230 bonito, oceanic bonito, Katsuwonus pelamis +n02629716 swordfish, Xiphias gladius +n02630281 sailfish +n02630615 Atlantic sailfish, Istiophorus albicans +n02630739 billfish +n02631041 marlin +n02631330 blue marlin, Makaira nigricans +n02631475 black marlin, Makaira mazara, Makaira marlina +n02631628 striped marlin, Makaira mitsukurii +n02631775 white marlin, Makaira albida +n02632039 spearfish +n02632494 louvar, Luvarus imperialis +n02633422 dollarfish, Poronotus triacanthus +n02633677 palometa, California pompano, Palometa simillima +n02633977 harvestfish, Paprilus alepidotus +n02634545 driftfish +n02635154 barrelfish, black rudderfish, Hyperglyphe perciformis +n02635580 clingfish +n02636170 tripletail +n02636405 Atlantic tripletail, Lobotes surinamensis +n02636550 Pacific tripletail, Lobotes pacificus +n02636854 mojarra +n02637179 yellowfin mojarra, Gerres cinereus +n02637475 silver jenny, Eucinostomus gula +n02637977 whiting +n02638596 ganoid, ganoid fish +n02639087 bowfin, grindle, dogfish, Amia calva +n02639605 paddlefish, duckbill, Polyodon spathula +n02639922 Chinese paddlefish, Psephurus gladis +n02640242 sturgeon +n02640626 Pacific sturgeon, white sturgeon, Sacramento sturgeon, Acipenser transmontanus +n02640857 beluga, hausen, white sturgeon, Acipenser huso +n02641379 gar, garfish, garpike, billfish, Lepisosteus osseus +n02642107 scorpaenoid, scorpaenoid fish +n02642644 scorpaenid, scorpaenid fish +n02643112 scorpionfish, scorpion fish, sea scorpion +n02643316 plumed scorpionfish, Scorpaena grandicornis +n02643566 lionfish +n02643836 stonefish, Synanceja verrucosa +n02644113 rockfish +n02644360 copper rockfish, Sebastodes caurinus +n02644501 vermillion rockfish, rasher, Sebastodes miniatus +n02644665 red rockfish, Sebastodes ruberrimus +n02644817 rosefish, ocean perch, Sebastodes marinus +n02645538 bullhead +n02645691 miller's-thumb +n02645953 sea raven, Hemitripterus americanus +n02646667 lumpfish, Cyclopterus lumpus +n02646892 lumpsucker +n02648035 pogge, armed bullhead, Agonus cataphractus +n02648625 greenling +n02648916 kelp greenling, Hexagrammos decagrammus +n02649218 painted greenling, convict fish, convictfish, Oxylebius pictus +n02649546 flathead +n02650050 gurnard +n02650413 tub gurnard, yellow gurnard, Trigla lucerna +n02650541 sea robin, searobin +n02651060 northern sea robin, Prionotus carolinus +n02652132 flying gurnard, flying robin, butterflyfish +n02652668 plectognath, plectognath fish +n02653145 triggerfish +n02653497 queen triggerfish, Bessy cerca, oldwench, oldwife, Balistes vetula +n02653786 filefish +n02654112 leatherjacket, leatherfish +n02654425 boxfish, trunkfish +n02654745 cowfish, Lactophrys quadricornis +n02655020 puffer, pufferfish, blowfish, globefish +n02655523 spiny puffer +n02655848 porcupinefish, porcupine fish, Diodon hystrix +n02656032 balloonfish, Diodon holocanthus +n02656301 burrfish +n02656670 ocean sunfish, sunfish, mola, headfish +n02656969 sharptail mola, Mola lanceolata +n02657368 flatfish +n02657694 flounder +n02658079 righteye flounder, righteyed flounder +n02658531 plaice, Pleuronectes platessa +n02658811 European flatfish, Platichthys flesus +n02659176 yellowtail flounder, Limanda ferruginea +n02659478 winter flounder, blackback flounder, lemon sole, Pseudopleuronectes americanus +n02659808 lemon sole, Microstomus kitt +n02660091 American plaice, Hippoglossoides platessoides +n02660208 halibut, holibut +n02660519 Atlantic halibut, Hippoglossus hippoglossus +n02660640 Pacific halibut, Hippoglossus stenolepsis +n02661017 lefteye flounder, lefteyed flounder +n02661473 southern flounder, Paralichthys lethostigmus +n02661618 summer flounder, Paralichthys dentatus +n02662239 whiff +n02662397 horned whiff, Citharichthys cornutus +n02662559 sand dab +n02662825 windowpane, Scophthalmus aquosus +n02662993 brill, Scophthalmus rhombus +n02663211 turbot, Psetta maxima +n02663485 tonguefish, tongue-fish +n02663849 sole +n02664285 European sole, Solea solea +n02664642 English sole, lemon sole, Parophrys vitulus +n02665250 hogchoker, Trinectes maculatus +n02665985 aba +n02666196 abacus +n02666501 abandoned ship, derelict +n02666624 A battery +n02666943 abattoir, butchery, shambles, slaughterhouse +n02667093 abaya +n02667244 Abbe condenser +n02667379 abbey +n02667478 abbey +n02667576 abbey +n02667693 Abney level +n02668393 abrader, abradant +n02668613 abrading stone +n02669295 abutment +n02669442 abutment arch +n02669534 academic costume +n02669723 academic gown, academic robe, judge's robe +n02670186 accelerator, throttle, throttle valve +n02670382 accelerator, particle accelerator, atom smasher +n02670683 accelerator, accelerator pedal, gas pedal, gas, throttle, gun +n02670935 accelerometer +n02671780 accessory, accoutrement, accouterment +n02672152 accommodating lens implant, accommodating IOL +n02672371 accommodation +n02672831 accordion, piano accordion, squeeze box +n02675077 acetate disk, phonograph recording disk +n02675219 acetate rayon, acetate +n02675522 achromatic lens +n02676097 acoustic delay line, sonic delay line +n02676261 acoustic device +n02676566 acoustic guitar +n02676670 acoustic modem +n02676938 acropolis +n02677028 acrylic +n02677136 acrylic, acrylic paint +n02677436 actinometer +n02677718 action, action mechanism +n02678010 active matrix screen +n02678384 actuator +n02678897 adapter, adaptor +n02679142 adder +n02679257 adding machine, totalizer, totaliser +n02679961 addressing machine, Addressograph +n02680110 adhesive bandage +n02680512 adit +n02680638 adjoining room +n02680754 adjustable wrench, adjustable spanner +n02681392 adobe, adobe brick +n02682311 adz, adze +n02682407 aeolian harp, aeolian lyre, wind harp +n02682569 aerator +n02682811 aerial torpedo +n02682922 aerosol, aerosol container, aerosol can, aerosol bomb, spray can +n02683183 Aertex +n02683323 afghan +n02683454 Afro-wig +n02683558 afterburner +n02683791 after-shave, after-shave lotion +n02684248 agateware +n02684356 agglomerator +n02684515 aglet, aiglet, aiguilette +n02684649 aglet, aiglet +n02684962 agora, public square +n02685082 aigrette, aigret +n02685253 aileron +n02685365 air bag +n02685701 airbrake +n02685995 airbrush +n02686121 airbus +n02686227 air compressor +n02686379 air conditioner, air conditioning +n02686568 aircraft +n02687172 aircraft carrier, carrier, flattop, attack aircraft carrier +n02687423 aircraft engine +n02687682 air cushion, air spring +n02687821 airdock, hangar, repair shed +n02687992 airfield, landing field, flying field, field +n02688273 air filter, air cleaner +n02688443 airfoil, aerofoil, control surface, surface +n02689144 airframe +n02689274 air gun, airgun, air rifle +n02689434 air hammer, jackhammer, pneumatic hammer +n02689748 air horn +n02689819 airing cupboard +n02690373 airliner +n02690715 airmailer +n02691156 airplane, aeroplane, plane +n02692086 airplane propeller, airscrew, prop +n02692232 airport, airdrome, aerodrome, drome +n02692513 air pump, vacuum pump +n02692680 air search radar +n02692877 airship, dirigible +n02693246 air terminal, airport terminal +n02693413 air-to-air missile +n02693540 air-to-ground missile, air-to-surface missile +n02694045 aisle +n02694279 Aladdin's lamp +n02694426 alarm, warning device, alarm system +n02694662 alarm clock, alarm +n02694966 alb +n02695627 alcazar +n02695762 alcohol thermometer, alcohol-in-glass thermometer +n02696165 alehouse +n02696246 alembic +n02696569 algometer +n02696843 alidade, alidad +n02697022 alidade, alidad +n02697221 A-line +n02697576 Allen screw +n02697675 Allen wrench +n02697876 alligator wrench +n02698244 alms dish, alms tray +n02698473 alpaca +n02698634 alpenstock +n02699494 altar +n02699629 altar, communion table, Lord's table +n02699770 altarpiece, reredos +n02699915 altazimuth +n02700064 alternator +n02700258 altimeter +n02700895 Amati +n02701002 ambulance +n02701260 amen corner +n02701730 American organ +n02702989 ammeter +n02703124 ammonia clock +n02703275 ammunition, ammo +n02704645 amphibian, amphibious aircraft +n02704792 amphibian, amphibious vehicle +n02704949 amphitheater, amphitheatre, coliseum +n02705201 amphitheater, amphitheatre +n02705429 amphora +n02705944 amplifier +n02706221 ampulla +n02706806 amusement arcade +n02708093 analog clock +n02708224 analog computer, analogue computer +n02708433 analog watch +n02708555 analytical balance, chemical balance +n02708711 analyzer, analyser +n02708885 anamorphosis, anamorphism +n02709101 anastigmat +n02709367 anchor, ground tackle +n02709637 anchor chain, anchor rope +n02709763 anchor light, riding light, riding lamp +n02709908 AND circuit, AND gate +n02710044 andiron, firedog, dog, dog-iron +n02710201 android, humanoid, mechanical man +n02710324 anechoic chamber +n02710429 anemometer, wind gauge, wind gage +n02710600 aneroid barometer, aneroid +n02711237 angiocardiogram +n02711780 angioscope +n02712545 angle bracket, angle iron +n02712643 angledozer +n02713003 ankle brace +n02713218 anklet, anklets, bobbysock, bobbysocks +n02713364 anklet +n02713496 ankus +n02714315 anode +n02714535 anode +n02714751 answering machine +n02715229 antenna, aerial, transmitting aerial +n02715513 anteroom, antechamber, entrance hall, hall, foyer, lobby, vestibule +n02715712 antiaircraft, antiaircraft gun, flak, flack, pom-pom, ack-ack, ack-ack gun +n02716626 antiballistic missile, ABM +n02720048 antifouling paint +n02720576 anti-G suit, G suit +n02721813 antimacassar +n02723165 antiperspirant +n02724722 anti-submarine rocket +n02725872 anvil +n02726017 ao dai +n02726210 apadana +n02726305 apartment, flat +n02726681 apartment building, apartment house +n02727016 aperture +n02727141 aperture +n02727426 apiary, bee house +n02727825 apparatus, setup +n02728440 apparel, wearing apparel, dress, clothes +n02729222 applecart +n02729837 appliance +n02729965 appliance, contraption, contrivance, convenience, gadget, gizmo, gismo, widget +n02730265 applicator, applier +n02730568 appointment, fitting +n02730930 apron +n02731251 apron string +n02731398 apse, apsis +n02731629 aqualung, Aqua-Lung, scuba +n02731900 aquaplane +n02732072 aquarium, fish tank, marine museum +n02732572 arabesque +n02732827 arbor, arbour, bower, pergola +n02733213 arcade, colonnade +n02733524 arch +n02734725 architecture +n02734835 architrave +n02735268 arch support +n02735361 arc lamp, arc light +n02735538 arctic, galosh, golosh, rubber, gumshoe +n02735688 area +n02736396 areaway +n02736798 argyle, argyll +n02737351 ark +n02737660 arm +n02738031 armament +n02738271 armature +n02738449 armband +n02738535 armchair +n02738741 armet +n02738859 arm guard, arm pad +n02738978 armhole +n02739123 armilla +n02739427 armlet, arm band +n02739550 armoire +n02739668 armor, armour +n02739889 armored car, armoured car +n02740061 armored car, armoured car +n02740300 armored personnel carrier, armoured personnel carrier, APC +n02740533 armored vehicle, armoured vehicle +n02740764 armor plate, armour plate, armor plating, plate armor, plate armour +n02741367 armory, armoury, arsenal +n02741475 armrest +n02742070 arquebus, harquebus, hackbut, hagbut +n02742194 array +n02742322 array, raiment, regalia +n02742468 arrester, arrester hook +n02742753 arrow +n02743426 arsenal, armory, armoury +n02744323 arterial road +n02744844 arthrogram +n02744961 arthroscope +n02745492 artificial heart +n02745611 artificial horizon, gyro horizon, flight indicator +n02745816 artificial joint +n02746008 artificial kidney, hemodialyzer +n02746225 artificial skin +n02746365 artillery, heavy weapon, gun, ordnance +n02746595 artillery shell +n02746683 artist's loft +n02746978 art school +n02747063 ascot +n02747177 ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin +n02747672 ash-pan +n02747802 ashtray +n02748183 aspergill, aspersorium +n02748359 aspersorium +n02748491 aspirator +n02749169 aspirin powder, headache powder +n02749292 assault gun +n02749479 assault rifle, assault gun +n02749670 assegai, assagai +n02749790 assembly +n02749953 assembly +n02750070 assembly hall +n02750169 assembly plant +n02750320 astatic coils +n02750652 astatic galvanometer +n02751067 astrodome +n02751215 astrolabe +n02751295 astronomical telescope +n02751490 astronomy satellite +n02752199 athenaeum, atheneum +n02752496 athletic sock, sweat sock, varsity sock +n02752615 athletic supporter, supporter, suspensor, jockstrap, jock +n02752810 atlas, telamon +n02752917 atmometer, evaporometer +n02753044 atom bomb, atomic bomb, A-bomb, fission bomb, plutonium bomb +n02753394 atomic clock +n02753710 atomic pile, atomic reactor, pile, chain reactor +n02754103 atomizer, atomiser, spray, sprayer, nebulizer, nebuliser +n02754656 atrium +n02755140 attache case, attache +n02755352 attachment, bond +n02755529 attack submarine +n02755675 attenuator +n02755823 attic +n02755984 attic fan +n02756098 attire, garb, dress +n02756854 audio amplifier +n02756977 audiocassette +n02757061 audio CD, audio compact disc +n02757337 audiometer, sonometer +n02757462 audio system, sound system +n02757714 audiotape +n02757810 audiotape +n02757927 audiovisual, audiovisual aid +n02758134 auditorium +n02758490 auger, gimlet, screw auger, wimble +n02758863 autobahn +n02758960 autoclave, sterilizer, steriliser +n02759257 autofocus +n02759387 autogiro, autogyro, gyroplane +n02759700 autoinjector +n02759963 autoloader, self-loader +n02760099 automat +n02760199 automat +n02760298 automatic choke +n02760429 automatic firearm, automatic gun, automatic weapon +n02760658 automatic pistol, automatic +n02760855 automatic rifle, automatic, machine rifle +n02761034 automatic transmission, automatic drive +n02761206 automation +n02761392 automaton, robot, golem +n02761557 automobile engine +n02761696 automobile factory, auto factory, car factory +n02761834 automobile horn, car horn, motor horn, horn, hooter +n02762169 autopilot, automatic pilot, robot pilot +n02762371 autoradiograph +n02762508 autostrada +n02762725 auxiliary boiler, donkey boiler +n02762909 auxiliary engine, donkey engine +n02763083 auxiliary pump, donkey pump +n02763198 auxiliary research submarine +n02763306 auxiliary storage, external storage, secondary storage +n02763604 aviary, bird sanctuary, volary +n02763714 awl +n02763901 awning, sunshade, sunblind +n02764044 ax, axe +n02764398 ax handle, axe handle +n02764505 ax head, axe head +n02764614 axis, axis of rotation +n02764779 axle +n02764935 axle bar +n02765028 axletree +n02766168 babushka +n02766320 baby bed, baby's bed +n02766534 baby buggy, baby carriage, carriage, perambulator, pram, stroller, go-cart, pushchair, pusher +n02766792 baby grand, baby grand piano, parlor grand, parlor grand piano, parlour grand, parlour grand piano +n02767038 baby powder +n02767147 baby shoe +n02767433 back, backrest +n02767665 back +n02767956 backbench +n02768114 backboard +n02768226 backboard, basketball backboard +n02768433 backbone +n02768655 back brace +n02768973 backgammon board +n02769075 background, desktop, screen background +n02769290 backhoe +n02769669 backlighting +n02769748 backpack, back pack, knapsack, packsack, rucksack, haversack +n02769963 backpacking tent, pack tent +n02770078 backplate +n02770211 back porch +n02770585 backsaw, back saw +n02770721 backscratcher +n02770830 backseat +n02771004 backspace key, backspace, backspacer +n02771166 backstairs +n02771286 backstay +n02771547 backstop +n02771750 backsword +n02772101 backup system +n02772435 badminton court +n02772554 badminton equipment +n02772700 badminton racket, badminton racquet, battledore +n02773037 bag +n02773838 bag, traveling bag, travelling bag, grip, suitcase +n02774152 bag, handbag, pocketbook, purse +n02774630 baggage, luggage +n02774921 baggage +n02775039 baggage car, luggage van +n02775178 baggage claim +n02775483 bagpipe +n02775689 bailey +n02775813 bailey +n02775897 Bailey bridge +n02776007 bain-marie +n02776205 bait, decoy, lure +n02776505 baize +n02776631 bakery, bakeshop, bakehouse +n02776825 balaclava, balaclava helmet +n02776978 balalaika +n02777100 balance +n02777292 balance beam, beam +n02777402 balance wheel, balance +n02777638 balbriggan +n02777734 balcony +n02777927 balcony +n02778131 baldachin +n02778294 baldric, baldrick +n02778456 bale +n02778588 baling wire +n02778669 ball +n02779435 ball +n02779609 ball and chain +n02779719 ball-and-socket joint +n02779971 ballast, light ballast +n02780315 ball bearing, needle bearing, roller bearing +n02780445 ball cartridge +n02780588 ballcock, ball cock +n02780704 balldress +n02780815 ballet skirt, tutu +n02781121 ball gown +n02781213 ballistic galvanometer +n02781338 ballistic missile +n02781517 ballistic pendulum +n02781764 ballistocardiograph, cardiograph +n02782093 balloon +n02782432 balloon bomb, Fugo +n02782602 balloon sail +n02782681 ballot box +n02782778 ballpark, park +n02783035 ball-peen hammer +n02783161 ballpoint, ballpoint pen, ballpen, Biro +n02783324 ballroom, dance hall, dance palace +n02783459 ball valve +n02783900 balsa raft, Kon Tiki +n02783994 baluster +n02784124 banana boat +n02784998 band +n02785648 bandage, patch +n02786058 Band Aid +n02786198 bandanna, bandana +n02786331 bandbox +n02786463 banderilla +n02786611 bandoleer, bandolier +n02786736 bandoneon +n02786837 bandsaw, band saw +n02787120 bandwagon +n02787269 bangalore torpedo +n02787435 bangle, bauble, gaud, gewgaw, novelty, fallal, trinket +n02787622 banjo +n02788021 banner, streamer +n02788148 bannister, banister, balustrade, balusters, handrail +n02788386 banquette +n02788462 banyan, banian +n02788572 baptismal font, baptistry, baptistery, font +n02788689 bar +n02789487 bar +n02790669 barbecue, barbeque +n02790823 barbed wire, barbwire +n02790996 barbell +n02791124 barber chair +n02791270 barbershop +n02791532 barbette carriage +n02791665 barbican, barbacan +n02791795 bar bit +n02792409 bareboat +n02792552 barge, flatboat, hoy, lighter +n02792948 barge pole +n02793089 baritone, baritone horn +n02793199 bark, barque +n02793296 bar magnet +n02793414 bar mask +n02793495 barn +n02793684 barndoor +n02793842 barn door +n02793930 barnyard +n02794008 barograph +n02794156 barometer +n02794368 barong +n02794474 barouche +n02794664 bar printer +n02794779 barrack +n02794972 barrage balloon +n02795169 barrel, cask +n02795528 barrel, gun barrel +n02795670 barrelhouse, honky-tonk +n02795783 barrel knot, blood knot +n02795978 barrel organ, grind organ, hand organ, hurdy gurdy, hurdy-gurdy, street organ +n02796207 barrel vault +n02796318 barrette +n02796412 barricade +n02796623 barrier +n02796995 barroom, bar, saloon, ginmill, taproom +n02797295 barrow, garden cart, lawn cart, wheelbarrow +n02797535 bascule +n02797692 base, pedestal, stand +n02797881 base, bag +n02799071 baseball +n02799175 baseball bat, lumber +n02799323 baseball cap, jockey cap, golf cap +n02799897 baseball equipment +n02800213 baseball glove, glove, baseball mitt, mitt +n02800497 basement, cellar +n02800675 basement +n02800940 basic point defense missile system +n02801047 basilica, Roman basilica +n02801184 basilica +n02801450 basilisk +n02801525 basin +n02801823 basinet +n02801938 basket, handbasket +n02802215 basket, basketball hoop, hoop +n02802426 basketball +n02802544 basketball court +n02802721 basketball equipment +n02802990 basket weave +n02803349 bass +n02803539 bass clarinet +n02803666 bass drum, gran casa +n02803809 basset horn +n02803934 bass fiddle, bass viol, bull fiddle, double bass, contrabass, string bass +n02804123 bass guitar +n02804252 bass horn, sousaphone, tuba +n02804414 bassinet +n02804515 bassinet +n02804610 bassoon +n02805283 baster +n02805845 bastinado +n02805983 bastion +n02806088 bastion, citadel +n02806379 bat +n02806530 bath +n02806762 bath chair +n02806875 bathhouse, bagnio +n02806992 bathhouse, bathing machine +n02807133 bathing cap, swimming cap +n02807523 bath oil +n02807616 bathrobe +n02807731 bathroom, bath +n02808185 bath salts +n02808304 bath towel +n02808440 bathtub, bathing tub, bath, tub +n02808829 bathyscaphe, bathyscaph, bathyscape +n02808968 bathysphere +n02809105 batik +n02809241 batiste +n02809364 baton, wand +n02809491 baton +n02809605 baton +n02809736 baton +n02810139 battering ram +n02810270 batter's box +n02810471 battery, electric battery +n02810782 battery, stamp battery +n02811059 batting cage, cage +n02811204 batting glove +n02811350 batting helmet +n02811468 battle-ax, battle-axe +n02811618 battle cruiser +n02811719 battle dress +n02811936 battlement, crenelation, crenellation +n02812201 battleship, battlewagon +n02812342 battle sight, battlesight +n02812631 bay +n02812785 bay +n02812949 bayonet +n02813252 bay rum +n02813399 bay window, bow window +n02813544 bazaar, bazar +n02813645 bazaar, bazar +n02813752 bazooka +n02813981 B battery +n02814116 BB gun +n02814338 beach house +n02814428 beach towel +n02814533 beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon +n02814774 beachwear +n02814860 beacon, lighthouse, beacon light, pharos +n02815478 beading plane +n02815749 beaker +n02815834 beaker +n02815950 beam +n02816494 beam balance +n02816656 beanbag +n02816768 beanie, beany +n02817031 bearing +n02817251 bearing rein, checkrein +n02817386 bearing wall +n02817516 bearskin, busby, shako +n02817650 beater +n02817799 beating-reed instrument, reed instrument, reed +n02818135 beaver, castor +n02818254 beaver +n02818687 Beckman thermometer +n02818832 bed +n02819697 bed +n02820085 bed and breakfast, bed-and-breakfast +n02820210 bedclothes, bed clothing, bedding +n02820556 Bedford cord +n02820675 bed jacket +n02821202 bedpan +n02821415 bedpost +n02821543 bedroll +n02821627 bedroom, sleeping room, sleeping accommodation, chamber, bedchamber +n02821943 bedroom furniture +n02822064 bedsitting room, bedsitter, bedsit +n02822220 bedspread, bedcover, bed cover, bed covering, counterpane, spread +n02822399 bedspring +n02822579 bedstead, bedframe +n02822762 beefcake +n02822865 beehive, hive +n02823124 beeper, pager +n02823335 beer barrel, beer keg +n02823428 beer bottle +n02823510 beer can +n02823586 beer garden +n02823750 beer glass +n02823848 beer hall +n02823964 beer mat +n02824058 beer mug, stein +n02824152 belaying pin +n02824319 belfry +n02824448 bell +n02825153 bell arch +n02825240 bellarmine, longbeard, long-beard, greybeard +n02825442 bellbottom trousers, bell-bottoms, bellbottom pants +n02825657 bell cote, bell cot +n02825872 bell foundry +n02825961 bell gable +n02826068 bell jar, bell glass +n02826259 bellows +n02826459 bellpull +n02826589 bell push +n02826683 bell seat, balloon seat +n02826812 bell tent +n02826886 bell tower +n02827148 bellyband +n02827606 belt +n02828115 belt, belt ammunition, belted ammunition +n02828299 belt buckle +n02828427 belting +n02828884 bench +n02829246 bench clamp +n02829353 bench hook +n02829510 bench lathe +n02829596 bench press +n02830157 bender +n02831237 beret +n02831335 berlin +n02831595 Bermuda shorts, Jamaica shorts +n02831724 berth, bunk, built in bed +n02831894 besom +n02831998 Bessemer converter +n02833040 bethel +n02833140 betting shop +n02833275 bevatron +n02833403 bevel, bevel square +n02833793 bevel gear, pinion and crown wheel, pinion and ring gear +n02834027 B-flat clarinet, licorice stick +n02834397 bib +n02834506 bib-and-tucker +n02834642 bicorn, bicorne +n02834778 bicycle, bike, wheel, cycle +n02835271 bicycle-built-for-two, tandem bicycle, tandem +n02835412 bicycle chain +n02835551 bicycle clip, trouser clip +n02835724 bicycle pump +n02835829 bicycle rack +n02835915 bicycle seat, saddle +n02836035 bicycle wheel +n02836174 bidet +n02836268 bier +n02836392 bier +n02836513 bi-fold door +n02836607 bifocals +n02836900 Big Blue, BLU-82 +n02837134 big board +n02837567 bight +n02837789 bikini, two-piece +n02837887 bikini pants +n02838014 bilge +n02838178 bilge keel +n02838345 bilge pump +n02838577 bilge well +n02838728 bill, peak, eyeshade, visor, vizor +n02838958 bill, billhook +n02839110 billboard, hoarding +n02839351 billiard ball +n02839592 billiard room, billiard saloon, billiard parlor, billiard parlour, billiard hall +n02839910 bin +n02840134 binder, ligature +n02840245 binder, ring-binder +n02840515 bindery +n02840619 binding, book binding, cover, back +n02841063 bin liner +n02841187 binnacle +n02841315 binoculars, field glasses, opera glasses +n02841506 binocular microscope +n02841641 biochip +n02841847 biohazard suit +n02842133 bioscope +n02842573 biplane +n02842809 birch, birch rod +n02843029 birchbark canoe, birchbark, birch bark +n02843158 birdbath +n02843276 birdcage +n02843465 birdcall +n02843553 bird feeder, birdfeeder, feeder +n02843684 birdhouse +n02843777 bird shot, buckshot, duck shot +n02843909 biretta, berretta, birretta +n02844056 bishop +n02844214 bistro +n02844307 bit +n02844714 bit +n02845130 bite plate, biteplate +n02845293 bitewing +n02845985 bitumastic +n02846141 black +n02846260 black +n02846511 blackboard, chalkboard +n02846619 blackboard eraser +n02846733 black box +n02846874 blackface +n02847461 blackjack, cosh, sap +n02847631 black tie +n02847852 blackwash +n02848118 bladder +n02848216 blade +n02848523 blade, vane +n02848806 blade +n02848921 blank, dummy, blank shell +n02849154 blanket, cover +n02849885 blast furnace +n02850060 blasting cap +n02850358 blazer, sport jacket, sport coat, sports jacket, sports coat +n02850732 blender, liquidizer, liquidiser +n02850950 blimp, sausage balloon, sausage +n02851099 blind, screen +n02851795 blind curve, blind bend +n02851939 blindfold +n02852043 bling, bling bling +n02852173 blinker, flasher +n02852360 blister pack, bubble pack +n02853016 block +n02853218 blockade +n02853336 blockade-runner +n02853745 block and tackle +n02853870 blockbuster +n02854378 blockhouse +n02854532 block plane +n02854630 bloodmobile +n02854739 bloomers, pants, drawers, knickers +n02854926 blouse +n02855089 blower +n02855390 blowtorch, torch, blowlamp +n02855701 blucher +n02855793 bludgeon +n02855925 blue +n02856013 blue chip +n02856237 blunderbuss +n02856362 blunt file +n02857365 boarding +n02857477 boarding house, boardinghouse +n02857644 boardroom, council chamber +n02857907 boards +n02858304 boat +n02859184 boater, leghorn, Panama, Panama hat, sailor, skimmer, straw hat +n02859343 boat hook +n02859443 boathouse +n02859557 boatswain's chair, bosun's chair +n02859729 boat train +n02859955 boatyard +n02860415 bobbin, spool, reel +n02860640 bobby pin, hairgrip, grip +n02860847 bobsled, bobsleigh, bob +n02861022 bobsled, bobsleigh +n02861147 bocce ball, bocci ball, boccie ball +n02861286 bodega +n02861387 bodice +n02861509 bodkin, threader +n02861658 bodkin +n02861777 bodkin +n02861886 body +n02862048 body armor, body armour, suit of armor, suit of armour, coat of mail, cataphract +n02862916 body lotion +n02863014 body stocking +n02863176 body plethysmograph +n02863340 body pad +n02863426 bodywork +n02863536 Bofors gun +n02863638 bogy, bogie, bogey +n02863750 boiler, steam boiler +n02864122 boiling water reactor, BWR +n02864504 bolero +n02864593 bollard, bitt +n02864987 bolo, bolo knife +n02865351 bolo tie, bolo, bola tie, bola +n02865665 bolt +n02865931 bolt, deadbolt +n02866106 bolt +n02866386 bolt cutter +n02866578 bomb +n02867401 bombazine +n02867592 bomb calorimeter, bomb +n02867715 bomber +n02867966 bomber jacket +n02868240 bomblet, cluster bomblet +n02868429 bomb rack +n02868546 bombshell +n02868638 bomb shelter, air-raid shelter, bombproof +n02868975 bone-ash cup, cupel, refractory pot +n02869155 bone china +n02869249 bones, castanets, clappers, finger cymbals +n02869563 boneshaker +n02869737 bongo, bongo drum +n02869837 bonnet, poke bonnet +n02870526 book +n02870676 book bag +n02870772 bookbindery +n02870880 bookcase +n02871005 bookend +n02871147 bookmark, bookmarker +n02871314 bookmobile +n02871439 bookshelf +n02871525 bookshop, bookstore, bookstall +n02871631 boom +n02871824 boom, microphone boom +n02871963 boomerang, throwing stick, throw stick +n02872333 booster, booster rocket, booster unit, takeoff booster, takeoff rocket +n02872529 booster, booster amplifier, booster station, relay link, relay station, relay transmitter +n02872752 boot +n02873520 boot +n02873623 boot camp +n02873733 bootee, bootie +n02873839 booth, cubicle, stall, kiosk +n02874086 booth +n02874214 booth +n02874336 boothose +n02874442 bootjack +n02874537 bootlace +n02874642 bootleg +n02874750 bootstrap +n02875436 bore bit, borer, rock drill, stone drill +n02875626 boron chamber +n02875948 borstal +n02876084 bosom +n02876326 Boston rocker +n02876457 bota +n02876657 bottle +n02877266 bottle, feeding bottle, nursing bottle +n02877513 bottle bank +n02877642 bottlebrush +n02877765 bottlecap +n02877962 bottle opener +n02878107 bottling plant +n02878222 bottom, freighter, merchantman, merchant ship +n02878425 boucle +n02878534 boudoir +n02878628 boulle, boule, buhl +n02878796 bouncing betty +n02879087 bouquet, corsage, posy, nosegay +n02879309 boutique, dress shop +n02879422 boutonniere +n02879517 bow +n02879718 bow +n02880189 bow, bowknot +n02880393 bow and arrow +n02880546 bowed stringed instrument, string +n02880842 Bowie knife +n02880940 bowl +n02881193 bowl +n02881546 bowl +n02881757 bowler hat, bowler, derby hat, derby, plug hat +n02881906 bowline, bowline knot +n02882190 bowling alley +n02882301 bowling ball, bowl +n02882483 bowling equipment +n02882647 bowling pin, pin +n02882894 bowling shoe +n02883004 bowsprit +n02883101 bowstring +n02883205 bow tie, bow-tie, bowtie +n02883344 box +n02884225 box, loge +n02884450 box, box seat +n02884859 box beam, box girder +n02884994 box camera, box Kodak +n02885108 boxcar +n02885233 box coat +n02885338 boxing equipment +n02885462 boxing glove, glove +n02885882 box office, ticket office, ticket booth +n02886321 box spring +n02886434 box wrench, box end wrench +n02886599 brace, bracing +n02887079 brace, braces, orthodontic braces +n02887209 brace +n02887489 brace, suspender, gallus +n02887832 brace and bit +n02887970 bracelet, bangle +n02888270 bracer, armguard +n02888429 brace wrench +n02888569 bracket, wall bracket +n02888898 bradawl, pricker +n02889425 brake +n02889646 brake +n02889856 brake band +n02889996 brake cylinder, hydraulic brake cylinder, master cylinder +n02890188 brake disk +n02890351 brake drum, drum +n02890513 brake lining +n02890662 brake pad +n02890804 brake pedal +n02890940 brake shoe, shoe, skid +n02891188 brake system, brakes +n02891788 brass, brass instrument +n02892201 brass, memorial tablet, plaque +n02892304 brass +n02892392 brassard +n02892499 brasserie +n02892626 brassie +n02892767 brassiere, bra, bandeau +n02892948 brass knucks, knucks, brass knuckles, knuckles, knuckle duster +n02893269 brattice +n02893418 brazier, brasier +n02893608 breadbasket +n02893692 bread-bin, breadbox +n02893941 bread knife +n02894024 breakable +n02894158 breakfast area, breakfast nook +n02894337 breakfast table +n02894605 breakwater, groin, groyne, mole, bulwark, seawall, jetty +n02894847 breast drill +n02895008 breast implant +n02895154 breastplate, aegis, egis +n02895328 breast pocket +n02895438 breathalyzer, breathalyser +n02896074 breechblock, breech closer +n02896294 breechcloth, breechclout, loincloth +n02896442 breeches, knee breeches, knee pants, knickerbockers, knickers +n02896694 breeches buoy +n02896856 breechloader +n02896949 breeder reactor +n02897097 Bren, Bren gun +n02897389 brewpub +n02897820 brick +n02898093 brickkiln +n02898173 bricklayer's hammer +n02898269 brick trowel, mason's trowel +n02898369 brickwork +n02898585 bridal gown, wedding gown, wedding dress +n02898711 bridge, span +n02899439 bridge, nosepiece +n02900160 bridle +n02900459 bridle path, bridle road +n02900594 bridoon +n02900705 briefcase +n02900857 briefcase bomb +n02900987 briefcase computer +n02901114 briefs, Jockey shorts +n02901259 brig +n02901377 brig +n02901481 brigandine +n02901620 brigantine, hermaphrodite brig +n02901793 brilliantine +n02901901 brilliant pebble +n02902079 brim +n02902687 bristle brush +n02902816 britches +n02902916 broad arrow +n02903006 broadax, broadaxe +n02903126 brochette +n02903204 broadcaster, spreader +n02903727 broadcloth +n02903852 broadcloth +n02904109 broad hatchet +n02904233 broadloom +n02904505 broadside +n02904640 broadsword +n02904803 brocade +n02904927 brogan, brogue, clodhopper, work shoe +n02905036 broiler +n02905152 broken arch +n02905886 bronchoscope +n02906734 broom +n02906963 broom closet +n02907082 broomstick, broom handle +n02907296 brougham +n02907391 Browning automatic rifle, BAR +n02907656 Browning machine gun, Peacemaker +n02907873 brownstone +n02908123 brunch coat +n02908217 brush +n02908773 Brussels carpet +n02908951 Brussels lace +n02909053 bubble +n02909165 bubble chamber +n02909285 bubble jet printer, bubble-jet printer, bubblejet +n02909706 buckboard +n02909870 bucket, pail +n02910145 bucket seat +n02910241 bucket shop +n02910353 buckle +n02910542 buckram +n02910701 bucksaw +n02910864 buckskins +n02910964 buff, buffer +n02911332 buffer, polisher +n02911485 buffer, buffer storage, buffer store +n02912065 buffet, counter, sideboard +n02912319 buffing wheel +n02912557 buggy, roadster +n02912894 bugle +n02913152 building, edifice +n02914991 building complex, complex +n02915904 bulldog clip, alligator clip +n02916065 bulldog wrench +n02916179 bulldozer, dozer +n02916350 bullet, slug +n02916936 bulletproof vest +n02917067 bullet train, bullet +n02917377 bullhorn, loud hailer, loud-hailer +n02917521 bullion +n02917607 bullnose, bullnosed plane +n02917742 bullpen, detention cell, detention centre +n02917964 bullpen +n02918112 bullring +n02918330 bulwark +n02918455 bumboat +n02918595 bumper +n02918831 bumper +n02918964 bumper car, Dodgem +n02919148 bumper guard +n02919308 bumper jack +n02919414 bundle, sheaf +n02919648 bung, spile +n02919792 bungalow, cottage +n02919890 bungee, bungee cord +n02919976 bunghole +n02920083 bunk +n02920164 bunk, feed bunk +n02920259 bunk bed, bunk +n02920369 bunker, sand trap, trap +n02920503 bunker, dugout +n02920658 bunker +n02921029 bunsen burner, bunsen, etna +n02921195 bunting +n02921292 bur, burr +n02921406 Burberry +n02921592 burette, buret +n02921756 burglar alarm +n02921884 burial chamber, sepulcher, sepulchre, sepulture +n02922159 burial garment +n02922292 burial mound, grave mound, barrow, tumulus +n02922461 burin +n02922578 burqa, burka +n02922798 burlap, gunny +n02922877 burn bag +n02923129 burner +n02923535 burnous, burnoose, burnouse +n02923682 burp gun, machine pistol +n02923915 burr +n02924116 bus, autobus, coach, charabanc, double-decker, jitney, motorbus, motorcoach, omnibus, passenger vehicle +n02925009 bushel basket +n02925107 bushing, cylindrical lining +n02925385 bush jacket +n02925519 business suit +n02925666 buskin, combat boot, desert boot, half boot, top boot +n02926426 bustier +n02926591 bustle +n02927053 butcher knife +n02927161 butcher shop, meat market +n02927764 butter dish +n02927887 butterfly valve +n02928049 butter knife +n02928299 butt hinge +n02928413 butt joint, butt +n02928608 button +n02929184 buttonhook +n02929289 buttress, buttressing +n02929462 butt shaft +n02929582 butt weld, butt-weld +n02929923 buzz bomb, robot bomb, flying bomb, doodlebug, V-1 +n02930080 buzzer +n02930214 BVD, BVD's +n02930339 bypass condenser, bypass capacitor +n02930645 byway, bypath, byroad +n02930766 cab, hack, taxi, taxicab +n02931013 cab, cabriolet +n02931148 cab +n02931294 cabana +n02931417 cabaret, nightclub, night club, club, nightspot +n02931836 caber +n02932019 cabin +n02932400 cabin +n02932523 cabin car, caboose +n02932693 cabin class, second class, economy class +n02932891 cabin cruiser, cruiser, pleasure boat, pleasure craft +n02933112 cabinet +n02933340 cabinet, console +n02933462 cabinet, locker, storage locker +n02933649 cabinetwork +n02933750 cabin liner +n02933990 cable, cable television, cable system, cable television service +n02934168 cable, line, transmission line +n02934451 cable car, car +n02935017 cache, memory cache +n02935387 caddy, tea caddy +n02935490 caesium clock +n02935658 cafe, coffeehouse, coffee shop, coffee bar +n02935891 cafeteria +n02936176 cafeteria tray +n02936281 caff +n02936402 caftan, kaftan +n02936570 caftan, kaftan +n02936714 cage, coop +n02936921 cage +n02937010 cagoule +n02937336 caisson +n02937958 calash, caleche, calash top +n02938218 calceus +n02938321 calcimine +n02938886 calculator, calculating machine +n02939185 caldron, cauldron +n02939763 calico +n02939866 caliper, calliper +n02940289 call-board +n02940385 call center, call centre +n02940570 caller ID +n02940706 calliope, steam organ +n02941095 calorimeter +n02941228 calpac, calpack, kalpac +n02941845 camail, aventail, ventail +n02942015 camber arch +n02942147 cambric +n02942349 camcorder +n02942460 camel's hair, camelhair +n02942699 camera, photographic camera +n02943241 camera lens, optical lens +n02943465 camera lucida +n02943686 camera obscura +n02943871 camera tripod +n02943964 camise +n02944075 camisole +n02944146 camisole, underbodice +n02944256 camlet +n02944459 camouflage +n02944579 camouflage, camo +n02944826 camp, encampment, cantonment, bivouac +n02945161 camp +n02945813 camp, refugee camp +n02945964 campaign hat +n02946127 campanile, belfry +n02946270 camp chair +n02946348 camper, camping bus, motor home +n02946509 camper trailer +n02946753 campstool +n02946824 camshaft +n02946921 can, tin, tin can +n02947212 canal +n02947660 canal boat, narrow boat, narrowboat +n02947818 candelabrum, candelabra +n02947977 candid camera +n02948072 candle, taper, wax light +n02948293 candlepin +n02948403 candlesnuffer +n02948557 candlestick, candle holder +n02948834 candlewick +n02948942 candy thermometer +n02949084 cane +n02949202 cane +n02949356 cangue +n02949542 canister, cannister, tin +n02950018 cannery +n02950120 cannikin +n02950186 cannikin +n02950256 cannon +n02950482 cannon +n02950632 cannon +n02950826 cannon +n02950943 cannonball, cannon ball, round shot +n02951358 canoe +n02951585 can opener, tin opener +n02951703 canopic jar, canopic vase +n02951843 canopy +n02952109 canopy +n02952237 canopy +n02952374 canteen +n02952485 canteen +n02952585 canteen +n02952674 canteen, mobile canteen +n02952798 canteen +n02952935 cant hook +n02953056 cantilever +n02953197 cantilever bridge +n02953455 cantle +n02953552 Canton crepe +n02953673 canvas, canvass +n02953850 canvas, canvass +n02954163 canvas tent, canvas, canvass +n02954340 cap +n02954938 cap +n02955065 cap +n02955247 capacitor, capacitance, condenser, electrical condenser +n02955540 caparison, trapping, housing +n02955767 cape, mantle +n02956393 capital ship +n02956699 capitol +n02956795 cap opener +n02956883 capote, hooded cloak +n02957008 capote, hooded coat +n02957135 cap screw +n02957252 capstan +n02957427 capstone, copestone, coping stone, stretcher +n02957755 capsule +n02957862 captain's chair +n02958343 car, auto, automobile, machine, motorcar +n02959942 car, railcar, railway car, railroad car +n02960352 car, elevator car +n02960690 carabiner, karabiner, snap ring +n02960903 carafe, decanter +n02961035 caravansary, caravanserai, khan, caravan inn +n02961225 car battery, automobile battery +n02961451 carbine +n02961544 car bomb +n02961947 carbon arc lamp, carbon arc +n02962061 carboy +n02962200 carburetor, carburettor +n02962414 car carrier +n02962843 cardcase +n02962938 cardiac monitor, heart monitor +n02963159 cardigan +n02963302 card index, card catalog, card catalogue +n02963503 cardiograph, electrocardiograph +n02963692 cardioid microphone +n02963821 car door +n02963987 cardroom +n02964075 card table +n02964196 card table +n02964295 car-ferry +n02964634 cargo area, cargo deck, cargo hold, hold, storage area +n02964843 cargo container +n02964934 cargo door +n02965024 cargo hatch +n02965122 cargo helicopter +n02965216 cargo liner +n02965300 cargo ship, cargo vessel +n02965529 carillon +n02965783 car mirror +n02966068 caroche +n02966193 carousel, carrousel, merry-go-round, roundabout, whirligig +n02966545 carpenter's hammer, claw hammer, clawhammer +n02966687 carpenter's kit, tool kit +n02966786 carpenter's level +n02966942 carpenter's mallet +n02967081 carpenter's rule +n02967170 carpenter's square +n02967294 carpetbag +n02967407 carpet beater, rug beater +n02967540 carpet loom +n02967626 carpet pad, rug pad, underlay, underlayment +n02967782 carpet sweeper, sweeper +n02967991 carpet tack +n02968074 carport, car port +n02968210 carrack, carack +n02968333 carrel, carrell, cubicle, stall +n02968473 carriage, equipage, rig +n02969010 carriage +n02969163 carriage bolt +n02969323 carriageway +n02969527 carriage wrench +n02969634 carrick bend +n02969886 carrier +n02970408 carryall, holdall, tote, tote bag +n02970534 carrycot +n02970685 car seat +n02970849 cart +n02971167 car tire, automobile tire, auto tire, rubber tire +n02971356 carton +n02971473 cartouche, cartouch +n02971579 car train +n02971691 cartridge +n02971940 cartridge, pickup +n02972397 cartridge belt +n02972714 cartridge extractor, cartridge remover, extractor +n02972934 cartridge fuse +n02973017 cartridge holder, cartridge clip, clip, magazine +n02973236 cartwheel +n02973805 carving fork +n02973904 carving knife +n02974003 car wheel +n02974348 caryatid +n02974454 cascade liquefier +n02974565 cascade transformer +n02974697 case +n02975212 case, display case, showcase, vitrine +n02975589 case, compositor's case, typesetter's case +n02975994 casein paint, casein +n02976123 case knife, sheath knife +n02976249 case knife +n02976350 casement +n02976455 casement window +n02976552 casern +n02976641 case shot, canister, canister shot +n02976815 cash bar +n02976939 cashbox, money box, till +n02977058 cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM +n02977330 cashmere +n02977438 cash register, register +n02977619 casing, case +n02977936 casino, gambling casino +n02978055 casket, jewel casket +n02978205 casque +n02978367 casquet, casquetel +n02978478 Cassegrainian telescope, Gregorian telescope +n02978753 casserole +n02978881 cassette +n02979074 cassette deck +n02979186 cassette player +n02979290 cassette recorder +n02979399 cassette tape +n02979516 cassock +n02979836 cast, plaster cast, plaster bandage +n02980036 caster, castor +n02980203 caster, castor +n02980441 castle +n02980625 castle, rook +n02981024 catacomb +n02981198 catafalque +n02981321 catalytic converter +n02981565 catalytic cracker, cat cracker +n02981792 catamaran +n02981911 catapult, arbalest, arbalist, ballista, bricole, mangonel, onager, trebuchet, trebucket +n02982232 catapult, launcher +n02982416 catboat +n02982515 cat box +n02982599 catch +n02983072 catchall +n02983189 catcher's mask +n02983357 catchment +n02983507 Caterpillar, cat +n02983904 cathedra, bishop's throne +n02984061 cathedral +n02984203 cathedral, duomo +n02984469 catheter +n02984699 cathode +n02985137 cathode-ray tube, CRT +n02985606 cat-o'-nine-tails, cat +n02985828 cat's-paw +n02985963 catsup bottle, ketchup bottle +n02986066 cattle car +n02986160 cattle guard, cattle grid +n02986348 cattleship, cattle boat +n02987047 cautery, cauterant +n02987379 cavalier hat, slouch hat +n02987492 cavalry sword, saber, sabre +n02987706 cavetto +n02987823 cavity wall +n02987950 C battery +n02988066 C-clamp +n02988156 CD drive +n02988304 CD player +n02988486 CD-R, compact disc recordable, CD-WO, compact disc write-once +n02988679 CD-ROM, compact disc read-only memory +n02988963 CD-ROM drive +n02989099 cedar chest +n02990373 ceiling +n02990758 celesta +n02991048 cell, electric cell +n02991302 cell, jail cell, prison cell +n02991847 cellar, wine cellar +n02992032 cellblock, ward +n02992211 cello, violoncello +n02992368 cellophane +n02992529 cellular telephone, cellular phone, cellphone, cell, mobile phone +n02992795 cellulose tape, Scotch tape, Sellotape +n02993194 cenotaph, empty tomb +n02993368 censer, thurible +n02993546 center, centre +n02994573 center punch +n02994743 Centigrade thermometer +n02995345 central processing unit, CPU, C.P.U., central processor, processor, mainframe +n02995871 centrifugal pump +n02995998 centrifuge, extractor, separator +n02997391 ceramic +n02997607 ceramic ware +n02997910 cereal bowl +n02998003 cereal box +n02998107 cerecloth +n02998563 cesspool, cesspit, sink, sump +n02998696 chachka, tsatske, tshatshke, tchotchke +n02998841 chador, chadar, chaddar, chuddar +n02999138 chafing dish +n02999410 chain +n02999936 chain +n03000134 chainlink fence +n03000247 chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour +n03000530 chain printer +n03000684 chain saw, chainsaw +n03001115 chain store +n03001282 chain tongs +n03001540 chain wrench +n03001627 chair +n03002096 chair +n03002210 chair of state +n03002341 chairlift, chair lift +n03002555 chaise, shay +n03002711 chaise longue, chaise, daybed +n03002816 chalet +n03002948 chalice, goblet +n03003091 chalk +n03003633 challis +n03004275 chamberpot, potty, thunder mug +n03004409 chambray +n03004531 chamfer bit +n03004620 chamfer plane +n03004713 chamois cloth +n03004824 chancel, sanctuary, bema +n03005033 chancellery +n03005147 chancery +n03005285 chandelier, pendant, pendent +n03005515 chandlery +n03005619 chanfron, chamfron, testiere, frontstall, front-stall +n03006626 chanter, melody pipe +n03006788 chantry +n03006903 chap +n03007130 chapel +n03007297 chapterhouse, fraternity house, frat house +n03007444 chapterhouse +n03007591 character printer, character-at-a-time printer, serial printer +n03008177 charcuterie +n03008817 charge-exchange accelerator +n03008976 charger, battery charger +n03009111 chariot +n03009269 chariot +n03009794 charnel house, charnel +n03010473 chassis +n03010656 chassis +n03010795 chasuble +n03010915 chateau +n03011018 chatelaine +n03011355 checker, chequer +n03011741 checkout, checkout counter +n03012013 cheekpiece +n03012159 cheeseboard, cheese tray +n03012373 cheesecloth +n03012499 cheese cutter +n03012644 cheese press +n03012734 chemical bomb, gas bomb +n03012897 chemical plant +n03013006 chemical reactor +n03013438 chemise, sack, shift +n03013580 chemise, shimmy, shift, slip, teddy +n03013850 chenille +n03014440 chessman, chess piece +n03014705 chest +n03015149 chesterfield +n03015254 chest of drawers, chest, bureau, dresser +n03015478 chest protector +n03015631 cheval-de-frise, chevaux-de-frise +n03015851 cheval glass +n03016209 chicane +n03016389 chicken coop, coop, hencoop, henhouse +n03016609 chicken wire +n03016737 chicken yard, hen yard, chicken run, fowl run +n03016868 chiffon +n03016953 chiffonier, commode +n03017070 child's room +n03017168 chime, bell, gong +n03017698 chimney breast +n03017835 chimney corner, inglenook +n03018209 china +n03018349 china cabinet, china closet +n03018614 chinchilla +n03018712 Chinese lantern +n03018848 Chinese puzzle +n03019198 chinning bar +n03019304 chino +n03019434 chino +n03019685 chin rest +n03019806 chin strap +n03019938 chintz +n03020034 chip, microchip, micro chip, silicon chip, microprocessor chip +n03020416 chip, poker chip +n03020692 chisel +n03021228 chlamys +n03024064 choir +n03024233 choir loft +n03024333 choke +n03024518 choke, choke coil, choking coil +n03025070 chokey, choky +n03025165 choo-choo +n03025250 chopine, platform +n03025886 chordophone +n03026506 Christmas stocking +n03026907 chronograph +n03027001 chronometer +n03027108 chronoscope +n03027250 chuck +n03027505 chuck wagon +n03027625 chukka, chukka boot +n03028079 church, church building +n03028596 church bell +n03028785 church hat +n03029066 church key +n03029197 church tower +n03029296 churidars +n03029445 churn, butter churn +n03029925 ciderpress +n03030262 cigar band +n03030353 cigar box +n03030557 cigar cutter +n03030880 cigarette butt +n03031012 cigarette case +n03031152 cigarette holder +n03031422 cigar lighter, cigarette lighter, pocket lighter +n03031756 cinch, girth +n03032252 cinema, movie theater, movie theatre, movie house, picture palace +n03032453 cinquefoil +n03032811 circle, round +n03033267 circlet +n03033362 circuit, electrical circuit, electric circuit +n03033986 circuit board, circuit card, board, card, plug-in, add-in +n03034244 circuit breaker, breaker +n03034405 circuitry +n03034516 circular plane, compass plane +n03034663 circular saw, buzz saw +n03035252 circus tent, big top, round top, top +n03035510 cistern +n03035715 cistern, water tank +n03035832 cittern, cithern, cither, citole, gittern +n03036022 city hall +n03036149 cityscape +n03036244 city university +n03036341 civies, civvies +n03036469 civilian clothing, civilian dress, civilian garb, plain clothes +n03036701 clack valve, clack, clapper valve +n03036866 clamp, clinch +n03037108 clamshell, grapple +n03037228 clapper, tongue +n03037404 clapperboard +n03037590 clarence +n03037709 clarinet +n03038041 Clark cell, Clark standard cell +n03038281 clasp +n03038480 clasp knife, jackknife +n03038685 classroom, schoolroom +n03038870 clavichord +n03039015 clavier, Klavier +n03039259 clay pigeon +n03039353 claymore mine, claymore +n03039493 claymore +n03039827 cleaners, dry cleaners +n03039947 cleaning implement, cleaning device, cleaning equipment +n03040229 cleaning pad +n03040376 clean room, white room +n03040836 clearway +n03041114 cleat +n03041265 cleat +n03041449 cleats +n03041632 cleaver, meat cleaver, chopper +n03041810 clerestory, clearstory +n03042139 clevis +n03042384 clews +n03042490 cliff dwelling +n03042697 climbing frame +n03042829 clinch +n03042984 clinch, clench +n03043173 clincher +n03043274 clinic +n03043423 clinical thermometer, mercury-in-glass clinical thermometer +n03043693 clinker, clinker brick +n03043798 clinometer, inclinometer +n03043958 clip +n03044671 clip lead +n03044801 clip-on +n03044934 clipper +n03045074 clipper +n03045228 clipper, clipper ship +n03045337 cloak +n03045698 cloak +n03045800 cloakroom, coatroom +n03046029 cloche +n03046133 cloche +n03046257 clock +n03046802 clock pendulum +n03046921 clock radio +n03047052 clock tower +n03047171 clockwork +n03047690 clog, geta, patten, sabot +n03047799 cloisonne +n03047941 cloister +n03048883 closed circuit, loop +n03049066 closed-circuit television +n03049326 closed loop, closed-loop system +n03049457 closet +n03049782 closeup lens +n03049924 cloth cap, flat cap +n03050026 cloth covering +n03050453 clothesbrush +n03050546 clothes closet, clothespress +n03050655 clothes dryer, clothes drier +n03050864 clothes hamper, laundry basket, clothes basket, voider +n03051041 clotheshorse +n03051249 clothespin, clothes pin, clothes peg +n03051396 clothes tree, coat tree, coat stand +n03051540 clothing, article of clothing, vesture, wear, wearable, habiliment +n03052464 clothing store, haberdashery, haberdashery store, mens store +n03052917 clout nail, clout +n03053047 clove hitch +n03053976 club car, lounge car +n03054491 clubroom +n03054605 cluster bomb +n03054901 clutch +n03055159 clutch, clutch pedal +n03055418 clutch bag, clutch +n03055670 coach, four-in-hand, coach-and-four +n03055857 coach house, carriage house, remise +n03056097 coal car +n03056215 coal chute +n03056288 coal house +n03056493 coal shovel +n03056583 coaming +n03056873 coaster brake +n03057021 coat +n03057541 coat button +n03057636 coat closet +n03057724 coatdress +n03057841 coatee +n03057920 coat hanger, clothes hanger, dress hanger +n03058107 coating, coat +n03058603 coating +n03058949 coat of paint +n03059103 coatrack, coat rack, hatrack +n03059236 coattail +n03059366 coaxial cable, coax, coax cable +n03059685 cobweb +n03059934 cobweb +n03060728 Cockcroft and Walton accelerator, Cockcroft-Walton accelerator, Cockcroft and Walton voltage multiplier, Cockcroft-Walton voltage multiplier +n03061050 cocked hat +n03061211 cockhorse +n03061345 cockleshell +n03061505 cockpit +n03061674 cockpit +n03061819 cockpit +n03061893 cockscomb, coxcomb +n03062015 cocktail dress, sheath +n03062122 cocktail lounge +n03062245 cocktail shaker +n03062336 cocotte +n03062651 codpiece +n03062798 coelostat +n03062985 coffee can +n03063073 coffee cup +n03063199 coffee filter +n03063338 coffee maker +n03063485 coffee mill, coffee grinder +n03063599 coffee mug +n03063689 coffeepot +n03063834 coffee stall +n03063968 coffee table, cocktail table +n03064250 coffee urn +n03064350 coffer +n03064562 Coffey still +n03064758 coffin, casket +n03064935 cog, sprocket +n03065243 coif +n03065424 coil, spiral, volute, whorl, helix +n03065708 coil +n03066232 coil +n03066359 coil spring, volute spring +n03066464 coin box +n03066849 colander, cullender +n03067093 cold cathode +n03067212 cold chisel, set chisel +n03067339 cold cream, coldcream, face cream, vanishing cream +n03067518 cold frame +n03068181 collar, neckband +n03068998 collar +n03069752 college +n03070059 collet, collet chuck +n03070193 collider +n03070396 colliery, pit +n03070587 collimator +n03070854 collimator +n03071021 cologne, cologne water, eau de cologne +n03071160 colonnade +n03071288 colonoscope +n03071552 colorimeter, tintometer +n03072056 colors, colours +n03072201 color television, colour television, color television system, colour television system, color TV, colour TV +n03072440 color tube, colour tube, color television tube, colour television tube, color TV tube, colour TV tube +n03072682 color wash, colour wash +n03073296 Colt +n03073384 colter, coulter +n03073545 columbarium +n03073694 columbarium, cinerarium +n03073977 column, pillar +n03074380 column, pillar +n03074855 comb +n03075097 comb +n03075248 comber +n03075370 combination lock +n03075500 combination plane +n03075634 combine +n03075768 comforter, pacifier, baby's dummy, teething ring +n03075946 command module +n03076411 commissary +n03076623 commissary +n03076708 commodity, trade good, good +n03077442 common ax, common axe, Dayton ax, Dayton axe +n03077616 common room +n03077741 communications satellite +n03078287 communication system +n03078506 community center, civic center +n03078670 commutator +n03078802 commuter, commuter train +n03078995 compact, powder compact +n03079136 compact, compact car +n03079230 compact disk, compact disc, CD +n03079494 compact-disk burner, CD burner +n03079616 companionway +n03079741 compartment +n03080309 compartment +n03080497 compass +n03080633 compass +n03080731 compass card, mariner's compass +n03080904 compass saw +n03081859 compound +n03081986 compound lens +n03082127 compound lever +n03082280 compound microscope +n03082450 compress +n03082656 compression bandage, tourniquet +n03082807 compressor +n03082979 computer, computing machine, computing device, data processor, electronic computer, information processing system +n03084420 computer circuit +n03084834 computerized axial tomography scanner, CAT scanner +n03085013 computer keyboard, keypad +n03085219 computer monitor +n03085333 computer network +n03085602 computer screen, computer display +n03085781 computer store +n03085915 computer system, computing system, automatic data processing system, ADP system, ADPS +n03086183 concentration camp, stockade +n03086457 concert grand, concert piano +n03086580 concert hall +n03086670 concertina +n03086868 concertina +n03087069 concrete mixer, cement mixer +n03087245 condensation pump, diffusion pump +n03087366 condenser, optical condenser +n03087521 condenser +n03087643 condenser +n03087816 condenser microphone, capacitor microphone +n03088389 condominium +n03088580 condominium, condo +n03088707 conductor +n03089477 cone clutch, cone friction clutch +n03089624 confectionery, confectionary, candy store +n03089753 conference center, conference house +n03089879 conference room +n03090000 conference table, council table, council board +n03090172 confessional +n03090437 conformal projection, orthomorphic projection +n03090710 congress boot, congress shoe, congress gaiter +n03090856 conic projection, conical projection +n03091044 connecting rod +n03091223 connecting room +n03091374 connection, connexion, connector, connecter, connective +n03091907 conning tower +n03092053 conning tower +n03092166 conservatory, hothouse, indoor garden +n03092314 conservatory, conservatoire +n03092476 console +n03092656 console +n03092883 console table, console +n03093427 consulate +n03093792 contact, tangency +n03094159 contact, contact lens +n03094503 container +n03095699 container ship, containership, container vessel +n03095965 containment +n03096439 contrabassoon, contrafagotto, double bassoon +n03096960 control, controller +n03097362 control center +n03097535 control circuit, negative feedback circuit +n03097673 control key, command key +n03098140 control panel, instrument panel, control board, board, panel +n03098515 control rod +n03098688 control room +n03098806 control system +n03098959 control tower +n03099147 convector +n03099274 convenience store +n03099454 convent +n03099622 conventicle, meetinghouse +n03099771 converging lens, convex lens +n03099945 converter, convertor +n03100240 convertible +n03100346 convertible, sofa bed +n03100490 conveyance, transport +n03100897 conveyer belt, conveyor belt, conveyer, conveyor, transporter +n03101156 cooker +n03101302 cookfire +n03101375 cookhouse +n03101517 cookie cutter +n03101664 cookie jar, cooky jar +n03101796 cookie sheet, baking tray +n03101986 cooking utensil, cookware +n03102371 cookstove +n03102516 coolant system +n03102654 cooler, ice chest +n03102859 cooling system, cooling +n03103128 cooling system, engine cooling system +n03103396 cooling tower +n03103563 coonskin cap, coonskin +n03103904 cope +n03104019 coping saw +n03104512 copperware +n03105088 copyholder +n03105214 coquille +n03105306 coracle +n03105467 corbel, truss +n03105645 corbel arch +n03105810 corbel step, corbie-step, corbiestep, crow step +n03105974 corbie gable +n03106722 cord, corduroy +n03106898 cord, electric cord +n03107046 cordage +n03107488 cords, corduroys +n03107716 core +n03108455 core bit +n03108624 core drill +n03108759 corer +n03108853 cork, bottle cork +n03109033 corker +n03109150 corkscrew, bottle screw +n03109253 corncrib +n03109693 corner, quoin +n03109881 corner, nook +n03110202 corner post +n03110669 cornet, horn, trumpet, trump +n03111041 cornice +n03111177 cornice +n03111296 cornice, valance, valance board, pelmet +n03111690 correctional institution +n03112240 corrugated fastener, wiggle nail +n03112719 corselet, corslet +n03112869 corset, girdle, stays +n03113152 cosmetic +n03113505 cosmotron +n03113657 costume +n03113835 costume +n03114041 costume +n03114236 costume +n03114379 cosy, tea cosy, cozy, tea cozy +n03114504 cot, camp bed +n03114743 cottage tent +n03114839 cotter, cottar +n03115014 cotter pin +n03115180 cotton +n03115400 cotton flannel, Canton flannel +n03115663 cotton mill +n03115762 couch +n03115897 couch +n03116008 couchette +n03116163 coude telescope, coude system +n03116530 counter +n03116767 counter, tabulator +n03117199 counter +n03117642 counterbore, countersink, countersink bit +n03118346 counter tube +n03118969 country house +n03119203 country store, general store, trading post +n03119396 coupe +n03119510 coupling, coupler +n03120198 court, courtyard +n03120491 court +n03120778 court, courtroom +n03121040 court +n03121190 Courtelle +n03121298 courthouse +n03121431 courthouse +n03121897 coverall +n03122073 covered bridge +n03122202 covered couch +n03122295 covered wagon, Conestoga wagon, Conestoga, prairie wagon, prairie schooner +n03122748 covering +n03123553 coverlet +n03123666 cover plate +n03123809 cowbarn, cowshed, cow barn, cowhouse, byre +n03123917 cowbell +n03124043 cowboy boot +n03124170 cowboy hat, ten-gallon hat +n03124313 cowhide +n03124474 cowl +n03124590 cow pen, cattle pen, corral +n03125057 CPU board, mother board +n03125588 crackle, crackleware, crackle china +n03125729 cradle +n03125870 craft +n03126090 cramp, cramp iron +n03126385 crampon, crampoon, climbing iron, climber +n03126580 crampon, crampoon +n03126707 crane +n03126927 craniometer +n03127024 crank, starter +n03127203 crankcase +n03127408 crankshaft +n03127531 crash barrier +n03127747 crash helmet +n03127925 crate +n03128085 cravat +n03128248 crayon, wax crayon +n03128427 crazy quilt +n03128519 cream, ointment, emollient +n03129001 cream pitcher, creamer +n03129471 creche, foundling hospital +n03129636 creche +n03129753 credenza, credence +n03129848 creel +n03130066 crematory, crematorium, cremation chamber +n03130233 crematory, crematorium +n03130563 crepe, crape +n03130761 crepe de Chine +n03130866 crescent wrench +n03131193 cretonne +n03131574 crib, cot +n03131669 crib +n03131967 cricket ball +n03132076 cricket bat, bat +n03132261 cricket equipment +n03132438 cringle, eyelet, loop, grommet, grummet +n03132666 crinoline +n03132776 crinoline +n03133050 crochet needle, crochet hook +n03133415 crock, earthenware jar +n03133878 Crock Pot +n03134118 crook, shepherd's crook +n03134232 Crookes radiometer +n03134394 Crookes tube +n03134739 croquet ball +n03134853 croquet equipment +n03135030 croquet mallet +n03135532 cross +n03135656 crossbar +n03135788 crossbar +n03135917 crossbar +n03136051 crossbench +n03136254 cross bit +n03136369 crossbow +n03136504 crosscut saw, crosscut handsaw, cutoff saw +n03137473 crossjack, mizzen course +n03137579 crosspiece +n03138128 crotchet +n03138217 croupier's rake +n03138344 crowbar, wrecking bar, pry, pry bar +n03138669 crown, diadem +n03139089 crown, crownwork, jacket, jacket crown, cap +n03139464 crown jewels +n03139640 crown lens +n03139998 crow's nest +n03140126 crucible, melting pot +n03140292 crucifix, rood, rood-tree +n03140431 cruet, crewet +n03140546 cruet-stand +n03140652 cruise control +n03140771 cruise missile +n03140900 cruiser +n03141065 cruiser, police cruiser, patrol car, police car, prowl car, squad car +n03141327 cruise ship, cruise liner +n03141455 crupper +n03141612 cruse +n03141702 crusher +n03141823 crutch +n03142099 cryometer +n03142205 cryoscope +n03142325 cryostat +n03142431 crypt +n03142679 crystal, watch crystal, watch glass +n03143400 crystal detector +n03143572 crystal microphone +n03143754 crystal oscillator, quartz oscillator +n03144156 crystal set +n03144873 cubitiere +n03144982 cucking stool, ducking stool +n03145147 cuckoo clock +n03145277 cuddy +n03145384 cudgel +n03145522 cue, cue stick, pool cue, pool stick +n03145719 cue ball +n03145843 cuff, turnup +n03146219 cuirass +n03146342 cuisse +n03146449 cul, cul de sac, dead end +n03146560 culdoscope +n03146687 cullis +n03146777 culotte +n03146846 cultivator, tiller +n03147084 culverin +n03147156 culverin +n03147280 culvert +n03147509 cup +n03148324 cupboard, closet +n03148518 cup hook +n03148727 cupola +n03148808 cupola +n03149135 curb, curb bit +n03149401 curb roof +n03149686 curbstone, kerbstone +n03149810 curette, curet +n03150232 curler, hair curler, roller, crimper +n03150511 curling iron +n03150661 currycomb +n03150795 cursor, pointer +n03151077 curtain, drape, drapery, mantle, pall +n03152303 customhouse, customshouse +n03152951 cutaway, cutaway drawing, cutaway model +n03153246 cutlas, cutlass +n03153585 cutoff +n03153948 cutout +n03154073 cutter, cutlery, cutting tool +n03154316 cutter +n03154446 cutting implement +n03154616 cutting room +n03154745 cutty stool +n03154895 cutwork +n03155178 cybercafe +n03155502 cyclopean masonry +n03155915 cyclostyle +n03156071 cyclotron +n03156279 cylinder +n03156405 cylinder, piston chamber +n03156767 cylinder lock +n03157348 cymbal +n03158186 dacha +n03158414 Dacron, Terylene +n03158668 dado +n03158796 dado plane +n03158885 dagger, sticker +n03159535 dairy, dairy farm +n03159640 dais, podium, pulpit, rostrum, ambo, stump, soapbox +n03160001 daisy print wheel, daisy wheel +n03160186 daisywheel printer +n03160309 dam, dike, dyke +n03160740 damask +n03161016 dampener, moistener +n03161450 damper, muffler +n03161893 damper block, piano damper +n03162297 dark lantern, bull's-eye +n03162460 darkroom +n03162556 darning needle, embroidery needle +n03162714 dart +n03162818 dart +n03163222 dashboard, fascia +n03163381 dashiki, daishiki +n03163488 dash-pot +n03163798 data converter +n03163973 data input device, input device +n03164192 data multiplexer +n03164344 data system, information system +n03164605 davenport +n03164722 davenport +n03164929 davit +n03165096 daybed, divan bed +n03165211 daybook, ledger +n03165466 day nursery, day care center +n03165616 day school +n03165823 dead axle +n03165955 deadeye +n03166120 deadhead +n03166514 deanery +n03166600 deathbed +n03166685 death camp +n03166809 death house, death row +n03166951 death knell, death bell +n03167153 death seat +n03167978 deck +n03168107 deck +n03168217 deck chair, beach chair +n03168543 deck-house +n03168663 deckle +n03168774 deckle edge, deckle +n03168933 declinometer, transit declinometer +n03169063 decoder +n03169176 decolletage +n03170292 decoupage +n03170459 dedicated file server +n03170635 deep-freeze, Deepfreeze, deep freezer, freezer +n03170872 deerstalker +n03171228 defense system, defence system +n03171356 defensive structure, defense, defence +n03171635 defibrillator +n03171910 defilade +n03172038 deflector +n03172738 delayed action +n03172965 delay line +n03173270 delft +n03173387 delicatessen, deli, food shop +n03173929 delivery truck, delivery van, panel truck +n03174079 delta wing +n03174450 demijohn +n03174731 demitasse +n03175081 den +n03175189 denim, dungaree, jean +n03175301 densimeter, densitometer +n03175457 densitometer +n03175604 dental appliance +n03175843 dental floss, floss +n03175983 dental implant +n03176238 dentist's drill, burr drill +n03176386 denture, dental plate, plate +n03176594 deodorant, deodourant +n03176763 department store, emporium +n03177059 departure lounge +n03177165 depilatory, depilator, epilator +n03177708 depressor +n03178000 depth finder +n03178173 depth gauge, depth gage +n03178430 derrick +n03178538 derrick +n03178674 derringer +n03179701 desk +n03179910 desk phone +n03180011 desktop computer +n03180384 dessert spoon +n03180504 destroyer, guided missile destroyer +n03180732 destroyer escort +n03180865 detached house, single dwelling +n03180969 detector, sensor, sensing element +n03181293 detector +n03181667 detention home, detention house, house of detention, detention camp +n03182140 detonating fuse +n03182232 detonator, detonating device, cap +n03182912 developer +n03183080 device +n03185868 Dewar flask, Dewar +n03186199 dhoti +n03186285 dhow +n03186818 dial, telephone dial +n03187037 dial +n03187153 dial +n03187268 dialog box, panel +n03187595 dial telephone, dial phone +n03187751 dialyzer, dialysis machine +n03188290 diamante +n03188531 diaper, nappy, napkin +n03188725 diaper +n03188871 diaphone +n03189083 diaphragm, stop +n03189311 diaphragm +n03189818 diathermy machine +n03190458 dibble, dibber +n03191286 dice cup, dice box +n03191451 dicer +n03191561 dickey, dickie, dicky, shirtfront +n03191776 dickey, dickie, dicky, dickey-seat, dickie-seat, dicky-seat +n03192543 Dictaphone +n03192907 die +n03193107 diesel, diesel engine, diesel motor +n03193260 diesel-electric locomotive, diesel-electric +n03193423 diesel-hydraulic locomotive, diesel-hydraulic +n03193597 diesel locomotive +n03193754 diestock +n03194170 differential analyzer +n03194297 differential gear, differential +n03194812 diffuser, diffusor +n03194992 diffuser, diffusor +n03195332 digester +n03195485 diggings, digs, domiciliation, lodgings, pad +n03195799 digital-analog converter, digital-to-analog converter +n03195959 digital audiotape, DAT +n03196062 digital camera +n03196217 digital clock +n03196324 digital computer +n03196598 digital display, alphanumeric display +n03196990 digital subscriber line, DSL +n03197201 digital voltmeter +n03197337 digital watch +n03197446 digitizer, digitiser, analog-digital converter, analog-to-digital converter +n03198223 dilator, dilater +n03198500 dildo +n03199358 dimity +n03199488 dimmer +n03199647 diner +n03199775 dinette +n03199901 dinghy, dory, rowboat +n03200231 dining area +n03200357 dining car, diner, dining compartment, buffet car +n03200539 dining-hall +n03200701 dining room, dining-room +n03200906 dining-room furniture +n03201035 dining-room table +n03201208 dining table, board +n03201529 dinner bell +n03201638 dinner dress, dinner gown, formal, evening gown +n03201776 dinner jacket, tux, tuxedo, black tie +n03201895 dinner napkin +n03201996 dinner pail, dinner bucket +n03202354 dinner table +n03202481 dinner theater, dinner theatre +n03202760 diode, semiconductor diode, junction rectifier, crystal rectifier +n03202940 diode, rectifying tube, rectifying valve +n03203089 dip +n03203806 diplomatic building +n03204134 dipole, dipole antenna +n03204306 dipper +n03204436 dipstick +n03204558 DIP switch, dual inline package switch +n03204955 directional antenna +n03205143 directional microphone +n03205304 direction finder +n03205458 dirk +n03205574 dirndl +n03205669 dirndl +n03205903 dirty bomb +n03206023 discharge lamp +n03206158 discharge pipe +n03206282 disco, discotheque +n03206405 discount house, discount store, discounter, wholesale house +n03206602 discus, saucer +n03206718 disguise +n03206908 dish +n03207305 dish, dish aerial, dish antenna, saucer +n03207548 dishpan +n03207630 dish rack +n03207743 dishrag, dishcloth +n03207835 dishtowel, dish towel, tea towel +n03207941 dishwasher, dish washer, dishwashing machine +n03208556 disk, disc +n03208938 disk brake, disc brake +n03209359 disk clutch +n03209477 disk controller +n03209666 disk drive, disc drive, hard drive, Winchester drive +n03209910 diskette, floppy, floppy disk +n03210245 disk harrow, disc harrow +n03210372 dispatch case, dispatch box +n03210552 dispensary +n03210683 dispenser +n03211117 display, video display +n03211413 display adapter, display adaptor +n03211616 display panel, display board, board +n03211789 display window, shop window, shopwindow, show window +n03212114 disposal, electric pig, garbage disposal +n03212247 disrupting explosive, bursting explosive +n03212406 distaff +n03212811 distillery, still +n03213014 distributor, distributer, electrical distributor +n03213361 distributor cam +n03213538 distributor cap +n03213715 distributor housing +n03213826 distributor point, breaker point, point +n03214253 ditch +n03214450 ditch spade, long-handled spade +n03214582 ditty bag +n03214966 divan +n03215076 divan, diwan +n03215191 dive bomber +n03215337 diverging lens, concave lens +n03215508 divided highway, dual carriageway +n03215749 divider +n03215930 diving bell +n03216199 divining rod, dowser, dowsing rod, waterfinder, water finder +n03216402 diving suit, diving dress +n03216562 dixie +n03216710 Dixie cup, paper cup +n03216828 dock, dockage, docking facility +n03217653 doeskin +n03217739 dogcart +n03217889 doggie bag, doggy bag +n03218198 dogsled, dog sled, dog sleigh +n03218446 dog wrench +n03219010 doily, doyley, doyly +n03219135 doll, dolly +n03219483 dollhouse, doll's house +n03219612 dolly +n03219859 dolman +n03219966 dolman, dolman jacket +n03220095 dolman sleeve +n03220237 dolmen, cromlech, portal tomb +n03220513 dome +n03220692 dome, domed stadium, covered stadium +n03221059 domino, half mask, eye mask +n03221351 dongle +n03221540 donkey jacket +n03221720 door +n03222176 door +n03222318 door +n03222516 doorbell, bell, buzzer +n03222722 doorframe, doorcase +n03222857 doorjamb, doorpost +n03223162 doorlock +n03223299 doormat, welcome mat +n03223441 doornail +n03223553 doorplate +n03223686 doorsill, doorstep, threshold +n03223923 doorstop, doorstopper +n03224490 Doppler radar +n03224603 dormer, dormer window +n03224753 dormer window +n03224893 dormitory, dorm, residence hall, hall, student residence +n03225108 dormitory, dormitory room, dorm room +n03225458 dosemeter, dosimeter +n03225616 dossal, dossel +n03225777 dot matrix printer, matrix printer, dot printer +n03225988 double bed +n03226090 double-bitted ax, double-bitted axe, Western ax, Western axe +n03226254 double boiler, double saucepan +n03226375 double-breasted jacket +n03226538 double-breasted suit +n03226880 double door +n03227010 double glazing +n03227184 double-hung window +n03227317 double knit +n03227721 doubler +n03227856 double reed +n03228016 double-reed instrument, double reed +n03228254 doublet +n03228365 doubletree +n03228533 douche, douche bag +n03228692 dovecote, columbarium, columbary +n03228796 Dover's powder +n03228967 dovetail, dovetail joint +n03229115 dovetail plane +n03229244 dowel, dowel pin, joggle +n03229526 downstage +n03231160 drafting instrument +n03231368 drafting table, drawing table +n03231819 Dragunov +n03232309 drainage ditch +n03232417 drainage system +n03232543 drain basket +n03232815 drainplug +n03232923 drape +n03233123 drapery +n03233624 drawbar +n03233744 drawbridge, lift bridge +n03233905 drawer +n03234164 drawers, underdrawers, shorts, boxers, boxershorts +n03234952 drawing chalk +n03235042 drawing room, withdrawing room +n03235180 drawing room +n03235327 drawknife, drawshave +n03235796 drawstring bag +n03235979 dray, camion +n03236093 dreadnought, dreadnaught +n03236217 dredge +n03236423 dredger +n03236580 dredging bucket +n03236735 dress, frock +n03237212 dress blues, dress whites +n03237340 dresser +n03237416 dress hat, high hat, opera hat, silk hat, stovepipe, top hat, topper, beaver +n03237639 dressing, medical dressing +n03237839 dressing case +n03237992 dressing gown, robe-de-chambre, lounging robe +n03238131 dressing room +n03238286 dressing sack, dressing sacque +n03238586 dressing table, dresser, vanity, toilet table +n03238762 dress rack +n03238879 dress shirt, evening shirt +n03239054 dress suit, full dress, tailcoat, tail coat, tails, white tie, white tie and tails +n03239259 dress uniform +n03239607 drift net +n03239726 drill +n03240140 electric drill +n03240683 drilling platform, offshore rig +n03240892 drill press +n03241093 drill rig, drilling rig, oilrig, oil rig +n03241335 drinking fountain, water fountain, bubbler +n03241496 drinking vessel +n03241903 drip loop +n03242120 drip mat +n03242264 drip pan +n03242390 dripping pan, drip pan +n03242506 drip pot +n03242995 drive +n03243218 drive +n03243625 drive line, drive line system +n03244047 driver, number one wood +n03244231 driveshaft +n03244388 driveway, drive, private road +n03244775 driving iron, one iron +n03244919 driving wheel +n03245271 drogue, drogue chute, drogue parachute +n03245421 drogue parachute +n03245724 drone, drone pipe, bourdon +n03245889 drone, pilotless aircraft, radio-controlled aircraft +n03246197 drop arch +n03246312 drop cloth +n03246454 drop curtain, drop cloth, drop +n03246653 drop forge, drop hammer, drop press +n03246933 drop-leaf table +n03247083 dropper, eye dropper +n03247351 droshky, drosky +n03247495 drove, drove chisel +n03248835 drugget +n03249342 drugstore, apothecary's shop, chemist's, chemist's shop, pharmacy +n03249569 drum, membranophone, tympan +n03249956 drum, metal drum +n03250089 drum brake +n03250279 drumhead, head +n03250405 drum printer +n03250588 drum sander, electric sander, sander, smoother +n03250847 drumstick +n03250952 dry battery +n03251100 dry-bulb thermometer +n03251280 dry cell +n03251533 dry dock, drydock, graving dock +n03251766 dryer, drier +n03251932 dry fly +n03252231 dry kiln +n03252324 dry masonry +n03252422 dry point +n03252637 dry wall, dry-stone wall +n03252787 dual scan display +n03253071 duck +n03253187 duckboard +n03253279 duckpin +n03253714 dudeen +n03253796 duffel, duffle +n03253886 duffel bag, duffle bag, duffel, duffle +n03254046 duffel coat, duffle coat +n03254189 dugout +n03254374 dugout canoe, dugout, pirogue +n03254625 dulciana +n03254737 dulcimer +n03254862 dulcimer +n03255030 dumbbell +n03255167 dumb bomb, gravity bomb +n03255322 dumbwaiter, food elevator +n03255488 dumdum, dumdum bullet +n03255899 dumpcart +n03256032 Dumpster +n03256166 dump truck, dumper, tipper truck, tipper lorry, tip truck, tipper +n03256472 Dumpy level +n03256631 dunce cap, dunce's cap, fool's cap +n03256788 dune buggy, beach buggy +n03256928 dungeon +n03257065 duplex apartment, duplex +n03257210 duplex house, duplex, semidetached house +n03257586 duplicator, copier +n03258192 dust bag, vacuum bag +n03258330 dustcloth, dustrag, duster +n03258456 dust cover +n03258577 dust cover, dust sheet +n03258905 dustmop, dust mop, dry mop +n03259009 dustpan +n03259280 Dutch oven +n03259401 Dutch oven +n03259505 dwelling, home, domicile, abode, habitation, dwelling house +n03260206 dye-works +n03260504 dynamo +n03260733 dynamometer, ergometer +n03260849 Eames chair +n03261019 earflap, earlap +n03261263 early warning radar +n03261395 early warning system +n03261603 earmuff +n03261776 earphone, earpiece, headphone, phone +n03262072 earplug +n03262248 earplug +n03262519 earthenware +n03262717 earthwork +n03262809 easel +n03262932 easy chair, lounge chair, overstuffed chair +n03263076 eaves +n03263338 ecclesiastical attire, ecclesiastical robe +n03263640 echinus +n03263758 echocardiograph +n03264906 edger +n03265032 edge tool +n03265754 efficiency apartment +n03266195 egg-and-dart, egg-and-anchor, egg-and-tongue +n03266371 eggbeater, eggwhisk +n03266620 egg timer +n03266749 eiderdown, duvet, continental quilt +n03267113 eight ball +n03267468 ejection seat, ejector seat, capsule +n03267696 elastic +n03267821 elastic bandage +n03268142 Elastoplast +n03268311 elbow +n03268645 elbow pad +n03268790 electric, electric automobile, electric car +n03268918 electrical cable +n03269073 electrical contact +n03269203 electrical converter +n03269401 electrical device +n03270165 electrical system +n03270695 electric bell +n03270854 electric blanket +n03271030 electric chair, chair, death chair, hot seat +n03271260 electric clock +n03271376 electric-discharge lamp, gas-discharge lamp +n03271574 electric fan, blower +n03271765 electric frying pan +n03271865 electric furnace +n03272010 electric guitar +n03272125 electric hammer +n03272239 electric heater, electric fire +n03272383 electric lamp +n03272562 electric locomotive +n03272810 electric meter, power meter +n03272940 electric mixer +n03273061 electric motor +n03273551 electric organ, electronic organ, Hammond organ, organ +n03273740 electric range +n03273913 electric refrigerator, fridge +n03274265 electric toothbrush +n03274435 electric typewriter +n03274561 electro-acoustic transducer +n03274796 electrode +n03275125 electrodynamometer +n03275311 electroencephalograph +n03275566 electrograph +n03275681 electrolytic, electrolytic capacitor, electrolytic condenser +n03275864 electrolytic cell +n03276179 electromagnet +n03276696 electrometer +n03276839 electromyograph +n03277004 electron accelerator +n03277149 electron gun +n03277459 electronic balance +n03277602 electronic converter +n03277771 electronic device +n03278248 electronic equipment +n03278914 electronic fetal monitor, electronic foetal monitor, fetal monitor, foetal monitor +n03279153 electronic instrument, electronic musical instrument +n03279364 electronic voltmeter +n03279508 electron microscope +n03279804 electron multiplier +n03279918 electrophorus +n03280216 electroscope +n03280394 electrostatic generator, electrostatic machine, Wimshurst machine, Van de Graaff generator +n03280644 electrostatic printer +n03281145 elevator, lift +n03281524 elevator +n03281673 elevator shaft +n03282060 embankment +n03282295 embassy +n03282401 embellishment +n03283221 emergency room, ER +n03283413 emesis basin +n03283827 emitter +n03284308 empty +n03284482 emulsion, photographic emulsion +n03284743 enamel +n03284886 enamel +n03284981 enamelware +n03285578 encaustic +n03285730 encephalogram, pneumoencephalogram +n03285912 enclosure +n03286572 endoscope +n03287351 energizer, energiser +n03287733 engine +n03288003 engine +n03288500 engineering, engine room +n03288643 enginery +n03288742 English horn, cor anglais +n03288886 English saddle, English cavalry saddle +n03289660 enlarger +n03289985 ensemble +n03290096 ensign +n03290195 entablature +n03290653 entertainment center +n03291413 entrenching tool, trenching spade +n03291551 entrenchment, intrenchment +n03291741 envelope +n03291819 envelope +n03291963 envelope, gasbag +n03292085 eolith +n03292362 epauliere +n03292475 epee +n03292603 epergne +n03292736 epicyclic train, epicyclic gear train +n03292960 epidiascope +n03293095 epilating wax +n03293741 equalizer, equaliser +n03293863 equatorial +n03294048 equipment +n03294604 erasable programmable read-only memory, EPROM +n03294833 eraser +n03295012 erecting prism +n03295140 erection +n03295246 Erlenmeyer flask +n03295928 escape hatch +n03296081 escapement +n03296217 escape wheel +n03296328 escarpment, escarp, scarp, protective embankment +n03296478 escutcheon, scutcheon +n03296963 esophagoscope, oesophagoscope +n03297103 espadrille +n03297226 espalier +n03297495 espresso maker +n03297644 espresso shop +n03297735 establishment +n03298089 estaminet +n03298352 estradiol patch +n03298716 etagere +n03298858 etamine, etamin +n03299406 etching +n03300216 ethernet +n03300443 ethernet cable +n03301175 Eton jacket +n03301291 etui +n03301389 eudiometer +n03301568 euphonium +n03301833 evaporative cooler +n03301940 evening bag +n03302671 exercise bike, exercycle +n03302790 exercise device +n03302938 exhaust, exhaust system +n03303217 exhaust fan +n03303669 exhaust valve +n03303831 exhibition hall, exhibition area +n03304197 Exocet +n03304323 expansion bit, expansive bit +n03304465 expansion bolt +n03305300 explosive detection system, EDS +n03305522 explosive device +n03305953 explosive trace detection, ETD +n03306385 express, limited +n03306869 extension, telephone extension, extension phone +n03307037 extension cord +n03307573 external-combustion engine +n03307792 external drive +n03308152 extractor +n03308481 eyebrow pencil +n03308614 eyecup, eyebath, eye cup +n03309110 eyeliner +n03309356 eyepatch, patch +n03309465 eyepiece, ocular +n03309687 eyeshadow +n03309808 fabric, cloth, material, textile +n03313333 facade, frontage, frontal +n03314227 face guard +n03314378 face mask +n03314608 faceplate +n03314780 face powder +n03314884 face veil +n03315644 facing, cladding +n03315805 facing +n03315990 facing, veneer +n03316105 facsimile, facsimile machine, fax +n03316406 factory, mill, manufacturing plant, manufactory +n03316873 factory ship +n03317233 fagot, faggot +n03317510 fagot stitch, faggot stitch +n03317673 Fahrenheit thermometer +n03317788 faience +n03317889 faille +n03318136 fairlead +n03318294 fairy light +n03318865 falchion +n03318983 fallboard, fall-board +n03319167 fallout shelter +n03319457 false face +n03319576 false teeth +n03319745 family room +n03320046 fan +n03320262 fan belt +n03320421 fan blade +n03320519 fancy dress, masquerade, masquerade costume +n03320845 fanion +n03320959 fanlight +n03321103 fanjet, fan-jet, fanjet engine, turbojet, turbojet engine, turbofan, turbofan engine +n03321419 fanjet, fan-jet, turbofan, turbojet +n03321563 fanny pack, butt pack +n03321843 fan tracery +n03321954 fan vaulting +n03322570 farm building +n03322704 farmer's market, green market, greenmarket +n03322836 farmhouse +n03322940 farm machine +n03323096 farmplace, farm-place, farmstead +n03323211 farmyard +n03323319 farthingale +n03323703 fastener, fastening, holdfast, fixing +n03324629 fast reactor +n03324814 fat farm +n03324928 fatigues +n03325088 faucet, spigot +n03325288 fauld +n03325403 fauteuil +n03325584 feather boa, boa +n03325691 featheredge +n03325941 fedora, felt hat, homburg, Stetson, trilby +n03326073 feedback circuit, feedback loop +n03326371 feedlot +n03326475 fell, felled seam +n03326660 felloe, felly +n03326795 felt +n03326948 felt-tip pen, felt-tipped pen, felt tip, Magic Marker +n03327133 felucca +n03327234 fence, fencing +n03327553 fencing mask, fencer's mask +n03327691 fencing sword +n03327841 fender, wing +n03328201 fender, buffer, cowcatcher, pilot +n03329302 Ferris wheel +n03329536 ferrule, collet +n03329663 ferry, ferryboat +n03330002 ferule +n03330665 festoon +n03330792 fetoscope, foetoscope +n03330947 fetter, hobble +n03331077 fez, tarboosh +n03331244 fiber, fibre, vulcanized fiber +n03331599 fiber optic cable, fibre optic cable +n03332005 fiberscope +n03332173 fichu +n03332271 fiddlestick, violin bow +n03332393 field artillery, field gun +n03332591 field coil, field winding +n03332784 field-effect transistor, FET +n03332989 field-emission microscope +n03333129 field glass, glass, spyglass +n03333252 field hockey ball +n03333349 field hospital +n03333610 field house, sports arena +n03333711 field lens +n03333851 field magnet +n03334017 field-sequential color television, field-sequential color TV, field-sequential color television system, field-sequential color TV system +n03334291 field tent +n03334382 fieldwork +n03334492 fife +n03334912 fifth wheel, spare +n03335030 fighter, fighter aircraft, attack aircraft +n03335333 fighting chair +n03335461 fig leaf +n03335846 figure eight, figure of eight +n03336168 figure loom, figured-fabric loom +n03336282 figure skate +n03336575 filament +n03336742 filature +n03336839 file +n03337140 file, file cabinet, filing cabinet +n03337383 file folder +n03337494 file server +n03337822 filigree, filagree, fillagree +n03338287 filling +n03338821 film, photographic film +n03339296 film, plastic film +n03339529 film advance +n03339643 filter +n03340009 filter +n03340723 finder, viewfinder, view finder +n03340923 finery +n03341035 fine-tooth comb, fine-toothed comb +n03341153 finger +n03341297 fingerboard +n03341606 finger bowl +n03342015 finger paint, fingerpaint +n03342127 finger-painting +n03342262 finger plate, escutcheon, scutcheon +n03342432 fingerstall, cot +n03342657 finish coat, finishing coat +n03342863 finish coat, finishing coat +n03342961 finisher +n03343047 fin keel +n03343234 fipple +n03343354 fipple flute, fipple pipe, recorder, vertical flute +n03343560 fire +n03343737 fire alarm, smoke alarm +n03343853 firearm, piece, small-arm +n03344305 fire bell +n03344393 fireboat +n03344509 firebox +n03344642 firebrick +n03344784 fire control radar +n03344935 fire control system +n03345487 fire engine, fire truck +n03345837 fire extinguisher, extinguisher, asphyxiator +n03346135 fire iron +n03346289 fireman's ax, fireman's axe +n03346455 fireplace, hearth, open fireplace +n03347037 fire screen, fireguard +n03347472 fire tongs, coal tongs +n03347617 fire tower +n03348142 firewall +n03348868 firing chamber, gun chamber +n03349020 firing pin +n03349296 firkin +n03349367 firmer chisel +n03349469 first-aid kit +n03349599 first-aid station +n03349771 first base +n03349892 first class +n03350204 fishbowl, fish bowl, goldfish bowl +n03350352 fisherman's bend +n03350456 fisherman's knot, true lover's knot, truelove knot +n03350602 fisherman's lure, fish lure +n03351151 fishhook +n03351262 fishing boat, fishing smack, fishing vessel +n03351434 fishing gear, tackle, fishing tackle, fishing rig, rig +n03351979 fishing rod, fishing pole +n03352232 fish joint +n03352366 fish knife +n03352628 fishnet, fishing net +n03352961 fish slice +n03353281 fitment +n03353951 fixative +n03354207 fixer-upper +n03354903 flag +n03355468 flageolet, treble recorder, shepherd's pipe +n03355768 flagon +n03355925 flagpole, flagstaff +n03356038 flagship +n03356279 flail +n03356446 flambeau +n03356559 flamethrower +n03356858 flange, rim +n03356982 flannel +n03357081 flannel, gabardine, tweed, white +n03357267 flannelette +n03357716 flap, flaps +n03358172 flash, photoflash, flash lamp, flashgun, flashbulb, flash bulb +n03358380 flash +n03358726 flash camera +n03358841 flasher +n03359137 flashlight, torch +n03359285 flashlight battery +n03359436 flash memory +n03359566 flask +n03360133 flat arch, straight arch +n03360300 flatbed +n03360431 flatbed press, cylinder press +n03360622 flat bench +n03360731 flatcar, flatbed, flat +n03361109 flat file +n03361297 flatlet +n03361380 flat panel display, FPD +n03361550 flats +n03361683 flat tip screwdriver +n03362639 fleece +n03362771 fleet ballistic missile submarine +n03362890 fleur-de-lis, fleur-de-lys +n03363363 flight simulator, trainer +n03363549 flintlock +n03363749 flintlock, firelock +n03364008 flip-flop, thong +n03364156 flipper, fin +n03364599 float, plasterer's float +n03364937 floating dock, floating dry dock +n03365231 floatplane, pontoon plane +n03365374 flood, floodlight, flood lamp, photoflood +n03365592 floor, flooring +n03365991 floor, level, storey, story +n03366464 floor +n03366721 floorboard +n03366823 floor cover, floor covering +n03366974 floor joist +n03367059 floor lamp +n03367321 flophouse, dosshouse +n03367410 florist, florist shop, flower store +n03367545 floss +n03367875 flotsam, jetsam +n03367969 flour bin +n03368048 flour mill +n03368352 flowerbed, flower bed, bed of flowers +n03369276 flugelhorn, fluegelhorn +n03369407 fluid drive +n03369512 fluid flywheel +n03369866 flume +n03370387 fluorescent lamp +n03370646 fluoroscope, roentgenoscope +n03371875 flush toilet, lavatory +n03372029 flute, transverse flute +n03372549 flute, flute glass, champagne flute +n03372822 flux applicator +n03372933 fluxmeter +n03373237 fly +n03373611 flying boat +n03373943 flying buttress, arc-boutant +n03374102 flying carpet +n03374282 flying jib +n03374372 fly rod +n03374473 fly tent +n03374570 flytrap +n03374649 flywheel +n03374838 fob, watch chain, watch guard +n03375171 foghorn +n03375329 foglamp +n03375575 foil +n03376159 fold, sheepfold, sheep pen, sheepcote +n03376279 folder +n03376595 folding chair +n03376771 folding door, accordion door +n03376938 folding saw +n03378005 food court +n03378174 food processor +n03378342 food hamper +n03378442 foot +n03378593 footage +n03378765 football +n03379051 football helmet +n03379204 football stadium +n03379343 footbath +n03379719 foot brake +n03379828 footbridge, overcrossing, pedestrian bridge +n03379989 foothold, footing +n03380301 footlocker, locker +n03380647 foot rule +n03380724 footstool, footrest, ottoman, tuffet +n03380867 footwear, footgear +n03381126 footwear +n03381231 forceps +n03381450 force pump +n03381565 fore-and-after +n03381776 fore-and-aft sail +n03382104 forecastle, fo'c'sle +n03382292 forecourt +n03382413 foredeck +n03382533 fore edge, foredge +n03382708 foreground +n03382856 foremast +n03382969 fore plane +n03383099 foresail +n03383211 forestay +n03383378 foretop +n03383468 fore-topmast +n03383562 fore-topsail +n03383821 forge +n03384167 fork +n03384352 forklift +n03384891 formalwear, eveningwear, evening dress, evening clothes +n03385295 Formica +n03385557 fortification, munition +n03386011 fortress, fort +n03386343 forty-five +n03386544 Foucault pendulum +n03386726 foulard +n03386870 foul-weather gear +n03387323 foundation garment, foundation +n03387653 foundry, metalworks +n03388043 fountain +n03388183 fountain pen +n03388323 four-in-hand +n03388549 four-poster +n03388711 four-pounder +n03388990 four-stroke engine, four-stroke internal-combustion engine +n03389611 four-wheel drive, 4WD +n03389761 four-wheel drive, 4WD +n03389889 four-wheeler +n03389983 fowling piece +n03390075 foxhole, fox hole +n03390327 fragmentation bomb, antipersonnel bomb, anti-personnel bomb, daisy cutter +n03390673 frail +n03390786 fraise +n03390983 frame, framing +n03391301 frame +n03391613 frame buffer +n03391770 framework +n03392648 Francis turbine +n03392741 franking machine +n03393017 free house +n03393199 free-reed +n03393324 free-reed instrument +n03393761 freewheel +n03393912 freight car +n03394149 freight elevator, service elevator +n03394272 freight liner, liner train +n03394480 freight train, rattler +n03394649 French door +n03394916 French horn, horn +n03395256 French polish, French polish shellac +n03395401 French roof +n03395514 French window +n03395859 Fresnel lens +n03396074 fret +n03396580 friary +n03396654 friction clutch +n03396997 frieze +n03397087 frieze +n03397266 frigate +n03397412 frigate +n03397532 frill, flounce, ruffle, furbelow +n03397947 Frisbee +n03398153 frock +n03398228 frock coat +n03399579 frontlet, frontal +n03399677 front porch +n03399761 front projector +n03399971 fruit machine +n03400231 frying pan, frypan, skillet +n03400972 fuel filter +n03401129 fuel gauge, fuel indicator +n03401279 fuel injection, fuel injection system +n03401721 fuel system +n03402188 full-dress uniform +n03402369 full metal jacket +n03402511 full skirt +n03402785 fumigator +n03402941 funeral home, funeral parlor, funeral parlour, funeral chapel, funeral church, funeral-residence +n03403643 funnel +n03404012 funny wagon +n03404149 fur +n03404251 fur coat +n03404360 fur hat +n03404449 furnace +n03404900 furnace lining, refractory +n03405111 furnace room +n03405265 furnishing +n03405595 furnishing, trappings +n03405725 furniture, piece of furniture, article of furniture +n03406759 fur-piece +n03406966 furrow +n03407369 fuse, electrical fuse, safety fuse +n03407865 fusee drive, fusee +n03408054 fuselage +n03408264 fusil +n03408340 fustian +n03408444 futon +n03409297 gabardine +n03409393 gable, gable end, gable wall +n03409591 gable roof, saddle roof, saddleback, saddleback roof +n03409920 gadgetry +n03410022 gaff +n03410147 gaff +n03410303 gaff +n03410423 gaffsail, gaff-headed sail +n03410571 gaff topsail, fore-and-aft topsail +n03410740 gag, muzzle +n03410938 gaiter +n03411079 gaiter +n03411208 Galilean telescope +n03411339 galleon +n03411927 gallery +n03412058 gallery, art gallery, picture gallery +n03412220 galley, ship's galley, caboose, cookhouse +n03412387 galley +n03412511 galley +n03412906 gallows +n03413124 gallows tree, gallows-tree, gibbet, gallous +n03413264 galvanometer +n03413428 gambling house, gambling den, gambling hell, gaming house +n03413684 gambrel, gambrel roof +n03413828 game +n03414029 gamebag +n03414162 game equipment +n03414676 gaming table +n03415252 gamp, brolly +n03415486 gangplank, gangboard, gangway +n03415626 gangsaw +n03415749 gangway +n03415868 gantlet +n03416094 gantry, gauntry +n03416489 garage +n03416640 garage, service department +n03416775 Garand rifle, Garand, M-1, M-1 rifle +n03416900 garbage +n03417042 garbage truck, dustcart +n03417202 garboard, garboard plank, garboard strake +n03417345 garden +n03417749 garden +n03417970 garden rake +n03418158 garden spade +n03418242 garden tool, lawn tool +n03418402 garden trowel +n03418618 gargoyle +n03418749 garibaldi +n03418915 garlic press +n03419014 garment +n03420345 garment bag +n03420801 garrison cap, overseas cap +n03420935 garrote, garotte, garrotte, iron collar +n03421117 garter, supporter +n03421324 garter belt, suspender belt +n03421485 garter stitch +n03421669 gas guzzler +n03421768 gas shell +n03421960 gas bracket +n03422072 gas burner, gas jet +n03422484 gas-cooled reactor +n03422589 gas-discharge tube +n03422771 gas engine +n03423099 gas fixture +n03423224 gas furnace +n03423306 gas gun +n03423479 gas heater +n03423568 gas holder, gasometer +n03423719 gasket +n03423877 gas lamp +n03424204 gas maser +n03424325 gasmask, respirator, gas helmet +n03424489 gas meter, gasometer +n03424630 gasoline engine, petrol engine +n03424862 gasoline gauge, gasoline gage, gas gauge, gas gage, petrol gauge, petrol gage +n03425241 gas oven +n03425325 gas oven +n03425413 gas pump, gasoline pump, petrol pump, island dispenser +n03425595 gas range, gas stove, gas cooker +n03425769 gas ring +n03426134 gas tank, gasoline tank, petrol tank +n03426285 gas thermometer, air thermometer +n03426462 gastroscope +n03426574 gas turbine +n03426871 gas-turbine ship +n03427202 gat, rod +n03427296 gate +n03428090 gatehouse +n03428226 gateleg table +n03428349 gatepost +n03429003 gathered skirt +n03429137 Gatling gun +n03429288 gauge, gage +n03429682 gauntlet, gantlet +n03429771 gauntlet, gantlet, metal glove +n03429914 gauze, netting, veiling +n03430091 gauze, gauze bandage +n03430313 gavel +n03430418 gazebo, summerhouse +n03430551 gear, gear wheel, geared wheel, cogwheel +n03430959 gear, paraphernalia, appurtenance +n03431243 gear, gear mechanism +n03431570 gearbox, gear box, gear case +n03431745 gearing, gear, geartrain, power train, train +n03432061 gearset +n03432129 gearshift, gearstick, shifter, gear lever +n03432360 Geiger counter, Geiger-Muller counter +n03432509 Geiger tube, Geiger-Muller tube +n03433247 gene chip, DNA chip +n03433637 general-purpose bomb, GP bomb +n03433877 generator +n03434188 generator +n03434285 generator +n03434830 Geneva gown +n03435593 geodesic dome +n03435743 georgette +n03435991 gharry +n03436075 ghat +n03436182 ghetto blaster, boom box +n03436417 gift shop, novelty shop +n03436549 gift wrapping +n03436656 gig +n03436772 gig +n03436891 gig +n03436990 gig +n03437184 gildhall +n03437295 gill net +n03437430 gilt, gilding +n03437581 gimbal +n03437741 gingham +n03437829 girandole, girandola +n03437941 girder +n03438071 girdle, cincture, sash, waistband, waistcloth +n03438257 glass, drinking glass +n03438661 glass +n03438780 glass cutter +n03438863 glasses case +n03439348 glebe house +n03439631 Glengarry +n03439814 glider, sailplane +n03440216 Global Positioning System, GPS +n03440682 glockenspiel, orchestral bells +n03440876 glory hole, lazaretto +n03441112 glove +n03441345 glove compartment +n03441465 glow lamp +n03441582 glow tube +n03442288 glyptic art, glyptography +n03442487 glyptics, lithoglyptics +n03442597 gnomon +n03442756 goal +n03443005 goalmouth +n03443149 goalpost +n03443371 goblet +n03443543 godown +n03443912 goggles +n03444034 go-kart +n03445326 gold plate +n03445617 golf bag +n03445777 golf ball +n03445924 golfcart, golf cart +n03446070 golf club, golf-club, club +n03446268 golf-club head, club head, club-head, clubhead +n03446832 golf equipment +n03447075 golf glove +n03447358 golliwog, golliwogg +n03447447 gondola +n03447721 gong, tam-tam +n03447894 goniometer +n03448031 Gordian knot +n03448590 gorget +n03448696 gossamer +n03448956 Gothic arch +n03449217 gouache +n03449309 gouge +n03449451 gourd, calabash +n03449564 government building +n03449858 government office +n03450230 gown +n03450516 gown, robe +n03450734 gown, surgical gown, scrubs +n03450881 grab +n03450974 grab bag +n03451120 grab bar +n03451253 grace cup +n03451365 grade separation +n03451711 graduated cylinder +n03451798 graffito, graffiti +n03452267 gramophone, acoustic gramophone +n03452449 granary, garner +n03452594 grandfather clock, longcase clock +n03452741 grand piano, grand +n03453231 graniteware +n03453320 granny knot, granny +n03453443 grape arbor, grape arbour +n03454110 grapnel, grapnel anchor +n03454211 grapnel, grapple, grappler, grappling hook, grappling iron +n03454442 grass skirt +n03454536 grate, grating +n03454707 grate, grating +n03454885 grater +n03455355 graver, graving tool, pointel, pointrel +n03455488 gravestone, headstone, tombstone +n03455642 gravimeter, gravity meter +n03455802 gravure, photogravure, heliogravure +n03456024 gravy boat, gravy holder, sauceboat, boat +n03456186 grey, gray +n03456299 grease-gun, gun +n03456447 greasepaint +n03456548 greasy spoon +n03456665 greatcoat, overcoat, topcoat +n03457008 great hall +n03457451 greave, jambeau +n03457686 greengrocery +n03457902 greenhouse, nursery, glasshouse +n03458271 grenade +n03458422 grid, gridiron +n03459328 griddle +n03459591 grill, grille, grillwork +n03459775 grille, radiator grille +n03459914 grillroom, grill +n03460040 grinder +n03460147 grinding wheel, emery wheel +n03460297 grindstone +n03460455 gripsack +n03460899 gristmill +n03461288 grocery bag +n03461385 grocery store, grocery, food market, market +n03461651 grogram +n03461882 groined vault +n03461988 groover +n03462110 grosgrain +n03462315 gros point +n03462747 ground, earth +n03462972 ground bait +n03463185 ground control +n03463381 ground floor, first floor, ground level +n03463666 groundsheet, ground cloth +n03464053 G-string, thong +n03464467 guard, safety, safety device +n03464628 guard boat +n03464952 guardroom +n03465040 guardroom +n03465151 guard ship +n03465320 guard's van +n03465426 gueridon +n03465500 Guarnerius +n03465605 guesthouse +n03465718 guestroom +n03465818 guidance system, guidance device +n03466162 guided missile +n03466493 guided missile cruiser +n03466600 guided missile frigate +n03466839 guildhall +n03466947 guilloche +n03467068 guillotine +n03467254 guimpe +n03467380 guimpe +n03467517 guitar +n03467796 guitar pick +n03467887 gulag +n03467984 gun +n03468570 gunboat +n03468696 gun carriage +n03468821 gun case +n03469031 gun emplacement, weapons emplacement +n03469175 gun enclosure, gun turret, turret +n03469493 gunlock, firing mechanism +n03469832 gunnery +n03469903 gunnysack, gunny sack, burlap bag +n03470005 gun pendulum +n03470222 gun room +n03470387 gunsight, gun-sight +n03470629 gun trigger, trigger +n03470948 gurney +n03471030 gusher +n03471190 gusset, inset +n03471347 gusset, gusset plate +n03471779 guy, guy cable, guy wire, guy rope +n03472232 gymnastic apparatus, exerciser +n03472535 gym shoe, sneaker, tennis shoe +n03472672 gym suit +n03472796 gymslip +n03472937 gypsy cab +n03473078 gyrocompass +n03473227 gyroscope, gyro +n03473465 gyrostabilizer, gyrostabiliser +n03473817 habergeon +n03473966 habit +n03474167 habit, riding habit +n03474352 hacienda +n03474779 hacksaw, hack saw, metal saw +n03474896 haft, helve +n03475581 hairbrush +n03475674 haircloth, hair +n03475823 hairdressing, hair tonic, hair oil, hair grease +n03475961 hairnet +n03476083 hairpiece, false hair, postiche +n03476313 hairpin +n03476542 hair shirt +n03476684 hair slide +n03476991 hair spray +n03477143 hairspring +n03477303 hair trigger +n03477410 halberd +n03477512 half binding +n03477773 half hatchet +n03477902 half hitch +n03478589 half track +n03478756 hall +n03478907 hall +n03479121 hall +n03479266 Hall of Fame +n03479397 hall of residence +n03479502 hallstand +n03480579 halter +n03480719 halter, hackamore +n03480973 hame +n03481172 hammer +n03481521 hammer, power hammer +n03482001 hammer +n03482128 hammerhead +n03482252 hammock, sack +n03482405 hamper +n03482523 hand +n03482877 handball +n03483086 handbarrow +n03483230 handbell +n03483316 hand blower, blow dryer, blow drier, hair dryer, hair drier +n03483531 handbow +n03483637 hand brake, emergency, emergency brake, parking brake +n03483823 hand calculator, pocket calculator +n03483971 handcar +n03484083 handcart, pushcart, cart, go-cart +n03484487 hand cream +n03484576 handcuff, cuff, handlock, manacle +n03484809 hand drill, handheld drill +n03484931 hand glass, simple microscope, magnifying glass +n03485198 hand glass, hand mirror +n03485309 hand grenade +n03485407 hand-held computer, hand-held microcomputer +n03485575 handhold +n03485794 handkerchief, hankie, hanky, hankey +n03487090 handlebar +n03487331 handloom +n03487444 hand lotion +n03487533 hand luggage +n03487642 hand-me-down +n03487774 hand mower +n03487886 hand pump +n03488111 handrest +n03488188 handsaw, hand saw, carpenter's saw +n03488438 handset, French telephone +n03488603 hand shovel +n03488784 handspike +n03488887 handstamp, rubber stamp +n03489048 hand throttle +n03489162 hand tool +n03490006 hand towel, face towel +n03490119 hand truck, truck +n03490324 handwear, hand wear +n03490449 handwheel +n03490649 handwheel +n03490784 hangar queen +n03490884 hanger +n03491032 hang glider +n03491724 hangman's rope, hangman's halter, halter, hemp, hempen necktie +n03491988 hank +n03492087 hansom, hansom cab +n03492250 harbor, harbour +n03492542 hard disc, hard disk, fixed disk +n03492922 hard hat, tin hat, safety hat +n03493219 hardtop +n03493792 hardware, ironware +n03493911 hardware store, ironmonger, ironmonger's shop +n03494278 harmonica, mouth organ, harp, mouth harp +n03494537 harmonium, organ, reed organ +n03494706 harness +n03495039 harness +n03495258 harp +n03495570 harp +n03495671 harpoon +n03495941 harpoon gun +n03496183 harpoon log +n03496296 harpsichord, cembalo +n03496486 Harris Tweed +n03496612 harrow +n03496892 harvester, reaper +n03497100 hash house +n03497352 hasp +n03497657 hat, chapeau, lid +n03498441 hatbox +n03498536 hatch +n03498662 hatchback, hatchback door +n03498781 hatchback +n03498866 hatchel, heckle +n03498962 hatchet +n03499354 hatpin +n03499468 hauberk, byrnie +n03499907 Hawaiian guitar, steel guitar +n03500090 hawse, hawsehole, hawsepipe +n03500209 hawser +n03500295 hawser bend +n03500389 hay bale +n03500457 hayfork +n03500557 hayloft, haymow, mow +n03500699 haymaker, hay conditioner +n03500838 hayrack, hayrig +n03500971 hayrack +n03501152 hazard +n03501288 head +n03501520 head +n03501614 head +n03502200 headboard +n03502331 head covering, veil +n03502509 headdress, headgear +n03502777 header +n03502897 header +n03503097 header, coping, cope +n03503233 header, lintel +n03503358 headfast +n03503477 head gasket +n03503567 head gate +n03503718 headgear +n03503997 headlight, headlamp +n03504205 headpiece +n03504293 headpin, kingpin +n03504723 headquarters, central office, main office, home office, home base +n03505015 headrace +n03505133 headrest +n03505383 headsail +n03505504 headscarf +n03505667 headset +n03505764 head shop +n03506028 headstall, headpiece +n03506184 headstock +n03506370 health spa, spa, health club +n03506560 hearing aid, ear trumpet +n03506727 hearing aid, deaf-aid +n03506880 hearse +n03507241 hearth, fireside +n03507458 hearthrug +n03507658 heart-lung machine +n03507963 heat engine +n03508101 heater, warmer +n03508485 heat exchanger +n03508881 heating pad, hot pad +n03509394 heat lamp, infrared lamp +n03509608 heat pump +n03509843 heat-seeking missile +n03510072 heat shield +n03510244 heat sink +n03510384 heaume +n03510487 heaver +n03510583 heavier-than-air craft +n03510866 heckelphone, basset oboe +n03510987 hectograph, heliotype +n03511175 hedge, hedgerow +n03511333 hedge trimmer +n03512030 helicon, bombardon +n03512147 helicopter, chopper, whirlybird, eggbeater +n03512452 heliograph +n03512624 heliometer +n03512911 helm +n03513137 helmet +n03513376 helmet +n03514129 hematocrit, haematocrit +n03514340 hemming-stitch +n03514451 hemostat, haemostat +n03514693 hemstitch, hemstitching +n03514894 henroost +n03515338 heraldry +n03515934 hermitage +n03516266 herringbone +n03516367 herringbone, herringbone pattern +n03516647 Herschelian telescope, off-axis reflector +n03516844 Hessian boot, hessian, jackboot, Wellington, Wellington boot +n03516996 heterodyne receiver, superheterodyne receiver, superhet +n03517509 hibachi +n03517647 hideaway, retreat +n03517760 hi-fi, high fidelity sound system +n03517899 high altar +n03517982 high-angle gun +n03518135 highball glass +n03518230 highboard +n03518305 highboy, tallboy +n03518445 highchair, feeding chair +n03518631 high gear, high +n03518829 high-hat cymbal, high hat +n03518943 highlighter +n03519081 highlighter +n03519226 high-pass filter +n03519387 high-rise, tower block +n03519674 high table +n03519848 high-warp loom +n03520493 hijab +n03521076 hinge, flexible joint +n03521431 hinging post, swinging post +n03521544 hip boot, thigh boot +n03521675 hipflask, pocket flask +n03521771 hip pad +n03521899 hip pocket +n03522003 hippodrome +n03522100 hip roof, hipped roof +n03522634 hitch +n03522863 hitch +n03522990 hitching post +n03523134 hitchrack, hitching bar +n03523398 hob +n03523506 hobble skirt +n03523987 hockey skate +n03524150 hockey stick +n03524287 hod +n03524425 hodoscope +n03524574 hoe +n03524745 hoe handle +n03524976 hogshead +n03525074 hoist +n03525252 hold, keep +n03525454 holder +n03525693 holding cell +n03525827 holding device +n03526062 holding pen, holding paddock, holding yard +n03527149 hollowware, holloware +n03527444 holster +n03527565 holster +n03527675 holy of holies, sanctum sanctorum +n03528100 home, nursing home, rest home +n03528263 home appliance, household appliance +n03528523 home computer +n03528901 home plate, home base, home, plate +n03529175 home room, homeroom +n03529444 homespun +n03529629 homestead +n03529860 home theater, home theatre +n03530189 homing torpedo +n03530511 hone +n03530642 honeycomb +n03530910 hood, bonnet, cowl, cowling +n03531281 hood +n03531447 hood +n03531546 hood, exhaust hood +n03531691 hood +n03531982 hood latch +n03532342 hook +n03532672 hook, claw +n03532919 hook +n03533014 hookah, narghile, nargileh, sheesha, shisha, chicha, calean, kalian, water pipe, hubble-bubble, hubbly-bubbly +n03533392 hook and eye +n03533486 hookup, assemblage +n03533654 hookup +n03533845 hook wrench, hook spanner +n03534580 hoopskirt, crinoline +n03534695 hoosegow, hoosgow +n03534776 Hoover +n03535024 hope chest, wedding chest +n03535284 hopper +n03535647 hopsacking, hopsack +n03535780 horizontal bar, high bar +n03536122 horizontal stabilizer, horizontal stabiliser, tailplane +n03536568 horizontal tail +n03536761 horn +n03537085 horn +n03537241 horn +n03537412 horn button +n03537550 hornpipe, pibgorn, stockhorn +n03538037 horse, gymnastic horse +n03538179 horsebox +n03538300 horsecar +n03538406 horse cart, horse-cart +n03538542 horsecloth +n03538634 horse-drawn vehicle +n03538817 horsehair +n03538957 horsehair wig +n03539103 horseless carriage +n03539293 horse pistol, horse-pistol +n03539433 horseshoe, shoe +n03539546 horseshoe +n03539678 horse-trail +n03539754 horsewhip +n03540090 hose +n03540267 hosiery, hose +n03540476 hospice +n03540595 hospital, infirmary +n03540914 hospital bed +n03541091 hospital room +n03541269 hospital ship +n03541393 hospital train +n03541537 hostel, youth hostel, student lodging +n03541696 hostel, hostelry, inn, lodge, auberge +n03541923 hot-air balloon +n03542333 hotel +n03542605 hotel-casino, casino-hotel +n03542727 hotel-casino, casino-hotel +n03542860 hotel room +n03543012 hot line +n03543112 hot pants +n03543254 hot plate, hotplate +n03543394 hot rod, hot-rod +n03543511 hot spot, hotspot +n03543603 hot tub +n03543735 hot-water bottle, hot-water bag +n03543945 houndstooth check, hound's-tooth check, dogstooth check, dogs-tooth check, dog's-tooth check +n03544143 hourglass +n03544238 hour hand, little hand +n03544360 house +n03545150 house +n03545470 houseboat +n03545585 houselights +n03545756 house of cards, cardhouse, card-house, cardcastle +n03545961 house of correction +n03546112 house paint, housepaint +n03546235 housetop +n03546340 housing, lodging, living accommodations +n03547054 hovel, hut, hutch, shack, shanty +n03547229 hovercraft, ground-effect machine +n03547397 howdah, houdah +n03547530 huarache, huaraches +n03547861 hub-and-spoke, hub-and-spoke system +n03548086 hubcap +n03548195 huck, huckaback +n03548320 hug-me-tight +n03548402 hula-hoop +n03548533 hulk +n03548626 hull +n03548930 humeral veil, veil +n03549199 Humvee, Hum-Vee +n03549350 hunter, hunting watch +n03549473 hunting knife +n03549589 hurdle +n03549732 hurricane deck, hurricane roof, promenade deck, awning deck +n03549897 hurricane lamp, hurricane lantern, tornado lantern, storm lantern, storm lamp +n03550153 hut, army hut, field hut +n03550289 hutch +n03550420 hutment +n03551084 hydraulic brake, hydraulic brakes +n03551395 hydraulic press +n03551582 hydraulic pump, hydraulic ram +n03551790 hydraulic system +n03552001 hydraulic transmission, hydraulic transmission system +n03552449 hydroelectric turbine +n03552749 hydrofoil, hydroplane +n03553019 hydrofoil, foil +n03553248 hydrogen bomb, H-bomb, fusion bomb, thermonuclear bomb +n03553486 hydrometer, gravimeter +n03554375 hygrodeik +n03554460 hygrometer +n03554645 hygroscope +n03555006 hyperbaric chamber +n03555217 hypercoaster +n03555426 hypermarket +n03555564 hypodermic needle +n03555662 hypodermic syringe, hypodermic, hypo +n03555862 hypsometer +n03555996 hysterosalpingogram +n03556173 I-beam +n03556679 ice ax, ice axe, piolet +n03556811 iceboat, ice yacht, scooter +n03556992 icebreaker, iceboat +n03557270 iced-tea spoon +n03557360 ice hockey rink, ice-hockey rink +n03557590 ice machine +n03557692 ice maker +n03557840 ice pack, ice bag +n03558007 icepick, ice pick +n03558176 ice rink, ice-skating rink, ice +n03558404 ice skate +n03558633 ice tongs +n03558739 icetray +n03559373 iconoscope +n03559531 Identikit, Identikit picture +n03559999 idle pulley, idler pulley, idle wheel +n03560430 igloo, iglu +n03560860 ignition coil +n03561047 ignition key +n03561169 ignition switch +n03561573 imaret +n03562565 immovable bandage +n03563200 impact printer +n03563460 impeller +n03563710 implant +n03563967 implement +n03564849 impression +n03565288 imprint +n03565565 improvised explosive device, I.E.D., IED +n03565710 impulse turbine +n03565830 in-basket, in-tray +n03565991 incendiary bomb, incendiary, firebomb +n03566193 incinerator +n03566329 inclined plane +n03566555 inclinometer, dip circle +n03566730 inclinometer +n03566860 incrustation, encrustation +n03567066 incubator, brooder +n03567635 index register +n03567788 Indiaman +n03567912 Indian club +n03568117 indicator +n03568818 induction coil +n03569014 inductor, inductance +n03569174 industrial watercourse +n03569293 inertial guidance system, inertial navigation system +n03569494 inflater, inflator +n03571280 inhaler, inhalator +n03571439 injector +n03571625 ink bottle, inkpot +n03571853 ink eraser +n03571942 ink-jet printer +n03572107 inkle +n03572205 inkstand +n03572321 inkwell, inkstand +n03572631 inlay +n03573574 inside caliper +n03573848 insole, innersole +n03574243 instep +n03574416 instillator +n03574555 institution +n03574816 instrument +n03575958 instrument of punishment +n03576215 instrument of torture +n03576443 intaglio, diaglyph +n03576955 intake valve +n03577090 integrated circuit, microcircuit +n03577312 integrator, planimeter +n03577474 Intelnet +n03577672 interceptor +n03577818 interchange +n03578055 intercommunication system, intercom +n03578251 intercontinental ballistic missile, ICBM +n03578656 interface, port +n03578981 interferometer +n03579538 interior door +n03579982 internal-combustion engine, ICE +n03580518 internal drive +n03580615 internet, net, cyberspace +n03580845 interphone +n03580990 interrupter +n03581125 intersection, crossroad, crossway, crossing, carrefour +n03581531 interstice +n03581897 intraocular lens +n03582508 intravenous pyelogram, IVP +n03582959 inverter +n03583419 ion engine +n03583621 ionization chamber, ionization tube +n03584254 iPod +n03584400 video iPod +n03584829 iron, smoothing iron +n03585073 iron +n03585337 iron, branding iron +n03585438 irons, chains +n03585551 ironclad +n03585682 iron foundry +n03585778 iron horse +n03585875 ironing +n03586219 iron lung +n03586631 ironmongery +n03586911 ironworks +n03587205 irrigation ditch +n03588216 izar +n03588841 jabot +n03588951 jack +n03589313 jack, jackstones +n03589513 jack +n03589672 jack +n03589791 jacket +n03590306 jacket +n03590475 jacket +n03590588 jack-in-the-box +n03590841 jack-o'-lantern +n03590932 jack plane +n03591116 Jacob's ladder, jack ladder, pilot ladder +n03591313 jaconet +n03591592 Jacquard loom, Jacquard +n03591798 jacquard +n03591901 jag, dag +n03592245 jail, jailhouse, gaol, clink, slammer, poky, pokey +n03592669 jalousie +n03592773 jamb +n03592931 jammer +n03593122 jampot, jamjar +n03593222 japan +n03593526 jar +n03593862 Jarvik heart, Jarvik artificial heart +n03594010 jaunting car, jaunty car +n03594148 javelin +n03594277 jaw +n03594523 Jaws of Life +n03594734 jean, blue jean, denim +n03594945 jeep, landrover +n03595055 jellaba +n03595264 jerkin +n03595409 jeroboam, double-magnum +n03595523 jersey +n03595614 jersey, T-shirt, tee shirt +n03595860 jet, jet plane, jet-propelled plane +n03596099 jet bridge +n03596285 jet engine +n03596543 jetliner +n03597147 jeweler's glass +n03597317 jewelled headdress, jeweled headdress +n03597916 jew's harp, jews' harp, mouth bow +n03598151 jib +n03598299 jibboom +n03598385 jig +n03598515 jig +n03598646 jiggermast, jigger +n03598783 jigsaw, scroll saw, fretsaw +n03598930 jigsaw puzzle +n03599486 jinrikisha, ricksha, rickshaw +n03599964 jobcentre +n03600285 jodhpurs, jodhpur breeches, riding breeches +n03600475 jodhpur, jodhpur boot, jodhpur shoe +n03600722 joinery +n03600977 joint +n03601442 Joint Direct Attack Munition, JDAM +n03601638 jointer, jointer plane, jointing plane, long plane +n03601840 joist +n03602081 jolly boat, jolly +n03602194 jorum +n03602365 joss house +n03602686 journal bearing +n03602790 journal box +n03602883 joystick +n03603442 jungle gym +n03603594 junk +n03603722 jug +n03604156 jukebox, nickelodeon +n03604311 jumbojet, jumbo jet +n03604400 jumper, pinafore, pinny +n03604536 jumper +n03604629 jumper +n03604763 jumper +n03604843 jumper cable, jumper lead, lead, booster cable +n03605417 jump seat +n03605504 jump suit +n03605598 jump suit, jumpsuit +n03605722 junction +n03605915 junction, conjunction +n03606106 junction barrier, barrier strip +n03606251 junk shop +n03606347 jury box +n03606465 jury mast +n03607029 kachina +n03607186 kaffiyeh +n03607527 kalansuwa +n03607659 Kalashnikov +n03607923 kameez +n03608504 kanzu +n03609147 katharometer +n03609235 kayak +n03609397 kazoo +n03609542 keel +n03609786 keelboat +n03609959 keelson +n03610098 keep, donjon, dungeon +n03610418 keg +n03610524 kennel, doghouse, dog house +n03610682 kepi, peaked cap, service cap, yachting cap +n03610836 keratoscope +n03610992 kerchief +n03612010 ketch +n03612814 kettle, boiler +n03612965 kettle, kettledrum, tympanum, tympani, timpani +n03613294 key +n03613592 key +n03614007 keyboard +n03614383 keyboard buffer +n03614532 keyboard instrument +n03614782 keyhole +n03614887 keyhole saw +n03615300 khadi, khaddar +n03615406 khaki +n03615563 khakis +n03615655 khimar +n03615790 khukuri +n03616091 kick pleat +n03616225 kicksorter, pulse height analyzer +n03616428 kickstand +n03616763 kick starter, kick start +n03616979 kid glove, suede glove +n03617095 kiln +n03617312 kilt +n03617480 kimono +n03617594 kinescope, picture tube, television tube +n03617834 Kinetoscope +n03618101 king +n03618339 king +n03618546 kingbolt, kingpin, swivel pin +n03618678 king post +n03618797 Kipp's apparatus +n03618982 kirk +n03619050 kirpan +n03619196 kirtle +n03619275 kirtle +n03619396 kit, outfit +n03619650 kit +n03619793 kitbag, kit bag +n03619890 kitchen +n03620052 kitchen appliance +n03620353 kitchenette +n03620967 kitchen table +n03621049 kitchen utensil +n03621377 kitchenware +n03621694 kite balloon +n03622058 klaxon, claxon +n03622401 klieg light +n03622526 klystron +n03622839 knee brace +n03622931 knee-high, knee-hi +n03623198 knee pad +n03623338 knee piece +n03623556 knife +n03624134 knife +n03624400 knife blade +n03624767 knight, horse +n03625355 knit +n03625539 knitting machine +n03625646 knitting needle +n03625943 knitwear +n03626115 knob, boss +n03626272 knob, pommel +n03626418 knobble +n03626502 knobkerrie, knobkerry +n03626760 knocker, doorknocker, rapper +n03627232 knot +n03627954 knuckle joint, hinge joint +n03628071 kohl +n03628215 koto +n03628421 kraal +n03628511 kremlin +n03628728 kris, creese, crease +n03628831 krummhorn, crumhorn, cromorne +n03628984 Kundt's tube +n03629100 Kurdistan +n03629231 kurta +n03629520 kylix, cylix +n03629643 kymograph, cymograph +n03630262 lab bench, laboratory bench +n03630383 lab coat, laboratory coat +n03631177 lace +n03631811 lacquer +n03631922 lacquerware +n03632100 lacrosse ball +n03632577 ladder-back +n03632729 ladder-back, ladder-back chair +n03632852 ladder truck, aerial ladder truck +n03632963 ladies' room, powder room +n03633091 ladle +n03633341 lady chapel +n03633632 lagerphone +n03633886 lag screw, lag bolt +n03634034 lake dwelling, pile dwelling +n03634899 lally, lally column +n03635032 lamasery +n03635108 lambrequin +n03635330 lame +n03635516 laminar flow clean room +n03635668 laminate +n03635932 lamination +n03636248 lamp +n03636649 lamp +n03637027 lamp house, lamphouse, lamp housing +n03637181 lamppost +n03637318 lampshade, lamp shade +n03637480 lanai +n03637787 lancet arch, lancet +n03637898 lancet window +n03638014 landau +n03638180 lander +n03638623 landing craft +n03638743 landing flap +n03638883 landing gear +n03639077 landing net +n03639230 landing skid +n03639497 land line, landline +n03639675 land mine, ground-emplaced mine, booby trap +n03639880 land office +n03640850 lanolin +n03640988 lantern +n03641569 lanyard, laniard +n03641947 lap, lap covering +n03642144 laparoscope +n03642341 lapboard +n03642444 lapel +n03642573 lap joint, splice +n03642806 laptop, laptop computer +n03643149 laryngoscope +n03643253 laser, optical maser +n03643491 laser-guided bomb, LGB +n03643737 laser printer +n03643907 lash, thong +n03644073 lashing +n03644378 lasso, lariat, riata, reata +n03644858 latch +n03645011 latch, door latch +n03645168 latchet +n03645290 latchkey +n03645577 lateen, lateen sail +n03646020 latex paint, latex, rubber-base paint +n03646148 lath +n03646296 lathe +n03646809 latrine +n03646916 lattice, latticework, fretwork +n03647423 launch +n03647520 launcher, rocket launcher +n03648219 laundry, wash, washing, washables +n03648431 laundry cart +n03648667 laundry truck +n03649003 lavalava +n03649161 lavaliere, lavalier, lavalliere +n03649288 laver +n03649674 lawn chair, garden chair +n03649797 lawn furniture +n03649909 lawn mower, mower +n03650551 layette +n03651388 lead-acid battery, lead-acid accumulator +n03651605 lead-in +n03651843 leading rein +n03652100 lead pencil +n03652389 leaf spring +n03652729 lean-to +n03652826 lean-to tent +n03652932 leash, tether, lead +n03653110 leatherette, imitation leather +n03653220 leather strip +n03653454 Leclanche cell +n03653583 lectern, reading desk +n03653740 lecture room +n03653833 lederhosen +n03653975 ledger board +n03654576 leg +n03654826 leg +n03655072 legging, leging, leg covering +n03655470 Leiden jar, Leyden jar +n03655720 leisure wear +n03656484 lens, lense, lens system +n03656957 lens, electron lens +n03657121 lens cap, lens cover +n03657239 lens implant, interocular lens implant, IOL +n03657511 leotard, unitard, body suit, cat suit +n03658102 letter case +n03658185 letter opener, paper knife, paperknife +n03658635 levee +n03658858 level, spirit level +n03659292 lever +n03659686 lever, lever tumbler +n03659809 lever +n03659950 lever lock +n03660124 Levi's, levis +n03660562 Liberty ship +n03660909 library +n03661043 library +n03661340 lid +n03662301 Liebig condenser +n03662452 lie detector +n03662601 lifeboat +n03662719 life buoy, lifesaver, life belt, life ring +n03662887 life jacket, life vest, cork jacket +n03663433 life office +n03663531 life preserver, preserver, flotation device +n03663910 life-support system, life support +n03664159 life-support system, life support +n03664675 lifting device +n03664840 lift pump +n03664943 ligament +n03665232 ligature +n03665366 light, light source +n03665851 light arm +n03665924 light bulb, lightbulb, bulb, incandescent lamp, electric light, electric-light bulb +n03666238 light circuit, lighting circuit +n03666362 light-emitting diode, LED +n03666591 lighter, light, igniter, ignitor +n03666917 lighter-than-air craft +n03667060 light filter, diffusing screen +n03667235 lighting +n03667552 light machine gun +n03667664 light meter, exposure meter, photometer +n03667829 light microscope +n03668067 lightning rod, lightning conductor +n03668279 light pen, electronic stylus +n03668488 lightship +n03668803 Lilo +n03669245 limber +n03669534 limekiln +n03669886 limiter, clipper +n03670208 limousine, limo +n03671914 linear accelerator, linac +n03672521 linen +n03672827 line printer, line-at-a-time printer +n03673027 liner, ocean liner +n03673270 liner, lining +n03673450 lingerie, intimate apparel +n03673767 lining, liner +n03674270 link, data link +n03674440 linkage +n03674731 Link trainer +n03674842 linocut +n03675076 linoleum knife, linoleum cutter +n03675235 Linotype, Linotype machine +n03675445 linsey-woolsey +n03675558 linstock +n03675907 lion-jaw forceps +n03676087 lip-gloss +n03676483 lipstick, lip rouge +n03676623 liqueur glass +n03676759 liquid crystal display, LCD +n03677115 liquid metal reactor +n03677682 lisle +n03677766 lister, lister plow, lister plough, middlebreaker, middle buster +n03678558 litterbin, litter basket, litter-basket +n03678729 little theater, little theatre +n03678879 live axle, driving axle +n03679384 living quarters, quarters +n03679712 living room, living-room, sitting room, front room, parlor, parlour +n03680248 load +n03680355 Loafer +n03680512 loaner +n03680734 lobe +n03680858 lobster pot +n03680942 local +n03681477 local area network, LAN +n03681813 local oscillator, heterodyne oscillator +n03682380 Lochaber ax +n03682487 lock +n03682877 lock, ignition lock +n03683079 lock, lock chamber +n03683341 lock +n03683457 lockage +n03683606 locker +n03683708 locker room +n03683995 locket +n03684143 lock-gate +n03684224 locking pliers +n03684489 lockring, lock ring, lock washer +n03684611 lockstitch +n03684740 lockup +n03684823 locomotive, engine, locomotive engine, railway locomotive +n03685307 lodge, indian lodge +n03685486 lodge, hunting lodge +n03685640 lodge +n03685820 lodging house, rooming house +n03686130 loft, attic, garret +n03686363 loft, pigeon loft +n03686470 loft +n03686924 log cabin +n03687137 loggia +n03687928 longbow +n03688066 long iron +n03688192 long johns +n03688405 long sleeve +n03688504 long tom +n03688605 long trousers, long pants +n03688707 long underwear, union suit +n03688832 looking glass, glass +n03688943 lookout, observation tower, lookout station, observatory +n03689157 loom +n03689570 loop knot +n03690168 lorgnette +n03690279 Lorraine cross, cross of Lorraine +n03690473 lorry, camion +n03690851 lota +n03690938 lotion +n03691459 loudspeaker, speaker, speaker unit, loudspeaker system, speaker system +n03691817 lounge, waiting room, waiting area +n03692004 lounger +n03692136 lounging jacket, smoking jacket +n03692272 lounging pajama, lounging pyjama +n03692379 loungewear +n03692522 loupe, jeweler's loupe +n03692842 louvered window, jalousie +n03693293 love knot, lovers' knot, lover's knot, true lovers' knot, true lover's knot +n03693474 love seat, loveseat, tete-a-tete, vis-a-vis +n03693707 loving cup +n03693860 lowboy +n03694196 low-pass filter +n03694356 low-warp-loom +n03694639 LP, L-P +n03694761 L-plate +n03694949 lubber's hole +n03695122 lubricating system, force-feed lubricating system, force feed, pressure-feed lubricating system, pressure feed +n03695452 luff +n03695616 lug +n03695753 luge +n03695857 Luger +n03695957 luggage carrier +n03696065 luggage compartment, automobile trunk, trunk +n03696301 luggage rack, roof rack +n03696445 lugger +n03696568 lugsail, lug +n03696746 lug wrench +n03696909 lumberjack, lumber jacket +n03697007 lumbermill, sawmill +n03697366 lunar excursion module, lunar module, LEM +n03697552 lunchroom +n03697812 lunette +n03697913 lungi, lungyi, longyi +n03698123 lunula +n03698226 lusterware +n03698360 lute +n03698604 luxury liner, express luxury liner +n03698723 lyceum +n03698815 lychgate, lichgate +n03699280 lyre +n03699591 machete, matchet, panga +n03699754 machicolation +n03699975 machine +n03700963 machine, simple machine +n03701191 machine bolt +n03701391 machine gun +n03701640 machinery +n03701790 machine screw +n03702248 machine tool +n03702440 machinist's vise, metalworking vise +n03702582 machmeter +n03703075 mackinaw +n03703203 mackinaw, Mackinaw boat +n03703463 mackinaw, Mackinaw coat +n03703590 mackintosh, macintosh +n03703730 macrame +n03703862 madras +n03703945 Mae West, air jacket +n03704549 magazine rack +n03704834 magic lantern +n03705379 magnet +n03705808 magnetic bottle +n03706229 magnetic compass +n03706415 magnetic core memory, core memory +n03706653 magnetic disk, magnetic disc, disk, disc +n03706939 magnetic head +n03707171 magnetic mine +n03707372 magnetic needle +n03707597 magnetic recorder +n03707766 magnetic stripe +n03708036 magnetic tape, mag tape, tape +n03708425 magneto, magnetoelectric machine +n03708843 magnetometer, gaussmeter +n03708962 magnetron +n03709206 magnifier +n03709363 magnum +n03709545 magnus hitch +n03709644 mail +n03709823 mailbag, postbag +n03709960 mailbag, mail pouch +n03710079 mailboat, mail boat, packet, packet boat +n03710193 mailbox, letter box +n03710294 mail car +n03710421 maildrop +n03710528 mailer +n03710637 maillot +n03710721 maillot, tank suit +n03710937 mailsorter +n03711044 mail train +n03711711 mainframe, mainframe computer +n03711999 mainmast +n03712111 main rotor +n03712337 mainsail +n03712444 mainspring +n03712887 main-topmast +n03712981 main-topsail +n03713069 main yard +n03713151 maisonette, maisonnette +n03713436 majolica, maiolica +n03714235 makeup, make-up, war paint +n03715114 Maksutov telescope +n03715275 malacca, malacca cane +n03715386 mallet, beetle +n03715669 mallet, hammer +n03715892 mallet +n03716228 mammogram +n03716887 mandola +n03716966 mandolin +n03717131 manger, trough +n03717285 mangle +n03717447 manhole +n03717622 manhole cover +n03718212 man-of-war, ship of the line +n03718335 manometer +n03718458 manor, manor house +n03718581 manor hall, hall +n03718699 MANPAD +n03718789 mansard, mansard roof +n03718935 manse +n03719053 mansion, mansion house, manse, hall, residence +n03719343 mantel, mantelpiece, mantle, mantlepiece, chimneypiece +n03719560 mantelet, mantilla +n03719743 mantilla +n03720005 Mao jacket +n03720163 map +n03720665 maquiladora +n03720891 maraca +n03721047 marble +n03721252 marching order +n03721384 marimba, xylophone +n03721590 marina +n03722007 marker +n03722288 marketplace, market place, mart, market +n03722646 marlinespike, marlinspike, marlingspike +n03722944 marocain, crepe marocain +n03723153 marquee, marquise +n03723267 marquetry, marqueterie +n03723439 marriage bed +n03723781 martello tower +n03723885 martingale +n03724066 mascara +n03724176 maser +n03724417 masher +n03724538 mashie, five iron +n03724623 mashie niblick, seven iron +n03724756 masjid, musjid +n03724870 mask +n03725035 mask +n03725506 Masonite +n03725600 Mason jar +n03725717 masonry +n03725869 mason's level +n03726116 massage parlor +n03726233 massage parlor +n03726371 mass spectrograph +n03726516 mass spectrometer, spectrometer +n03726760 mast +n03726993 mast +n03727067 mastaba, mastabah +n03727465 master bedroom +n03727605 masterpiece, chef-d'oeuvre +n03727837 mat +n03727946 mat, gym mat +n03728437 match, lucifer, friction match +n03728982 match +n03729131 matchboard +n03729308 matchbook +n03729402 matchbox +n03729482 matchlock +n03729647 match plane, tonguing and grooving plane +n03729826 matchstick +n03729951 material +n03730153 materiel, equipage +n03730334 maternity hospital +n03730494 maternity ward +n03730655 matrix +n03730788 Matthew Walker, Matthew Walker knot +n03730893 matting +n03731019 mattock +n03731483 mattress cover +n03731695 maul, sledge, sledgehammer +n03731882 maulstick, mahlstick +n03732020 Mauser +n03732114 mausoleum +n03732458 maxi +n03732543 Maxim gun +n03732658 maximum and minimum thermometer +n03733131 maypole +n03733281 maze, labyrinth +n03733465 mazer +n03733547 means +n03733644 measure +n03733805 measuring cup +n03733925 measuring instrument, measuring system, measuring device +n03735637 measuring stick, measure, measuring rod +n03735963 meat counter +n03736064 meat grinder +n03736147 meat hook +n03736269 meat house +n03736372 meat safe +n03736470 meat thermometer +n03736970 mechanical device +n03738066 mechanical piano, Pianola, player piano +n03738241 mechanical system +n03738472 mechanism +n03739518 medical building, health facility, healthcare facility +n03739693 medical instrument +n03742019 medicine ball +n03742115 medicine chest, medicine cabinet +n03742238 MEDLINE +n03743016 megalith, megalithic structure +n03743279 megaphone +n03743902 memorial, monument +n03744276 memory, computer memory, storage, computer storage, store, memory board +n03744684 memory chip +n03744840 memory device, storage device +n03745146 menagerie, zoo, zoological garden +n03745487 mending +n03745571 menhir, standing stone +n03746005 menorah +n03746155 Menorah +n03746330 man's clothing +n03746486 men's room, men's +n03748162 mercantile establishment, retail store, sales outlet, outlet +n03749504 mercury barometer +n03749634 mercury cell +n03749807 mercury thermometer, mercury-in-glass thermometer +n03750206 mercury-vapor lamp +n03750437 mercy seat +n03750614 merlon +n03751065 mess, mess hall +n03751269 mess jacket, monkey jacket, shell jacket +n03751458 mess kit +n03751590 messuage +n03751757 metal detector +n03752071 metallic +n03752185 metal screw +n03752398 metal wood +n03752922 meteorological balloon +n03753077 meter +n03753514 meterstick, metrestick +n03757604 metronome +n03758089 mezzanine, mezzanine floor, entresol +n03758220 mezzanine, first balcony +n03758894 microbalance +n03758992 microbrewery +n03759243 microfiche +n03759432 microfilm +n03759661 micrometer, micrometer gauge, micrometer caliper +n03759954 microphone, mike +n03760310 microprocessor +n03760671 microscope +n03760944 microtome +n03761084 microwave, microwave oven +n03761588 microwave diathermy machine +n03761731 microwave linear accelerator +n03762238 middy, middy blouse +n03762332 midiron, two iron +n03762434 mihrab +n03762602 mihrab +n03762982 military hospital +n03763727 military quarters +n03763968 military uniform +n03764276 military vehicle +n03764606 milk bar +n03764736 milk can +n03764822 milk float +n03764995 milking machine +n03765128 milking stool +n03765467 milk wagon, milkwagon +n03765561 mill, grinder, milling machinery +n03765934 milldam +n03766044 miller, milling machine +n03766218 milliammeter +n03766322 millinery, woman's hat +n03766508 millinery, hat shop +n03766600 milling +n03766697 millivoltmeter +n03766935 millstone +n03767112 millstone +n03767203 millwheel, mill wheel +n03767459 mimeograph, mimeo, mimeograph machine, Roneo, Roneograph +n03767745 minaret +n03767966 mincer, mincing machine +n03768132 mine +n03768683 mine detector +n03768823 minelayer +n03768916 mineshaft +n03769610 minibar, cellaret +n03769722 minibike, motorbike +n03769881 minibus +n03770085 minicar +n03770224 minicomputer +n03770316 ministry +n03770439 miniskirt, mini +n03770520 minisub, minisubmarine +n03770679 minivan +n03770834 miniver +n03770954 mink, mink coat +n03772077 minster +n03772269 mint +n03772584 minute hand, big hand +n03772674 Minuteman +n03773035 mirror +n03773504 missile +n03773835 missile defense system, missile defence system +n03774327 miter box, mitre box +n03774461 miter joint, mitre joint, miter, mitre +n03775071 mitten +n03775199 mixer +n03775388 mixer +n03775546 mixing bowl +n03775636 mixing faucet +n03775747 mizzen, mizen +n03775847 mizzenmast, mizenmast, mizzen, mizen +n03776167 mobcap +n03776460 mobile home, manufactured home +n03776877 moccasin, mocassin +n03776997 mock-up +n03777126 mod con +n03777568 Model T +n03777754 modem +n03778459 modillion +n03778817 module +n03779000 module +n03779128 mohair +n03779246 moire, watered-silk +n03779370 mold, mould, cast +n03779884 moldboard, mouldboard +n03780047 moldboard plow, mouldboard plough +n03780799 moleskin +n03781055 Molotov cocktail, petrol bomb, gasoline bomb +n03781244 monastery +n03781467 monastic habit +n03781594 moneybag +n03781683 money belt +n03781787 monitor +n03782006 monitor +n03782190 monitor, monitoring device +n03782794 monkey-wrench, monkey wrench +n03782929 monk's cloth +n03783304 monochrome +n03783430 monocle, eyeglass +n03783575 monofocal lens implant, monofocal IOL +n03783873 monoplane +n03784139 monotype +n03784270 monstrance, ostensorium +n03784793 mooring tower, mooring mast +n03784896 Moorish arch, horseshoe arch +n03785016 moped +n03785142 mop handle +n03785237 moquette +n03785499 morgue, mortuary, dead room +n03785721 morion, cabasset +n03786096 morning dress +n03786194 morning dress +n03786313 morning room +n03786621 Morris chair +n03786715 mortar, howitzer, trench mortar +n03786901 mortar +n03787032 mortarboard +n03787523 mortise joint, mortise-and-tenon joint +n03788047 mosaic +n03788195 mosque +n03788365 mosquito net +n03788498 motel +n03788601 motel room +n03788914 Mother Hubbard, muumuu +n03789171 motion-picture camera, movie camera, cine-camera +n03789400 motion-picture film, movie film, cine-film +n03789603 motley +n03789794 motley +n03789946 motor +n03790230 motorboat, powerboat +n03790512 motorcycle, bike +n03790755 motor hotel, motor inn, motor lodge, tourist court, court +n03790953 motorized wheelchair +n03791053 motor scooter, scooter +n03791235 motor vehicle, automotive vehicle +n03792048 mound, hill +n03792334 mound, hill, pitcher's mound +n03792526 mount, setting +n03792782 mountain bike, all-terrain bike, off-roader +n03792972 mountain tent +n03793489 mouse, computer mouse +n03793850 mouse button +n03794056 mousetrap +n03794136 mousse, hair mousse, hair gel +n03794798 mouthpiece, embouchure +n03795123 mouthpiece +n03795269 mouthpiece, gumshield +n03795758 movement +n03795976 movie projector, cine projector, film projector +n03796181 moving-coil galvanometer +n03796401 moving van +n03796522 mud brick +n03796605 mudguard, splash guard, splash-guard +n03796848 mudhif +n03796974 muff +n03797062 muffle +n03797182 muffler +n03797264 mufti +n03797390 mug +n03797896 mulch +n03798061 mule, scuff +n03798442 multichannel recorder +n03798610 multiengine airplane, multiengine plane +n03798982 multiplex +n03799113 multiplexer +n03799240 multiprocessor +n03799375 multistage rocket, step rocket +n03799610 munition, ordnance, ordnance store +n03799876 Murphy bed +n03800371 musette, shepherd's pipe +n03800485 musette pipe +n03800563 museum +n03800772 mushroom anchor +n03800933 musical instrument, instrument +n03801353 music box, musical box +n03801533 music hall, vaudeville theater, vaudeville theatre +n03801671 music school +n03801760 music stand, music rack +n03801880 music stool, piano stool +n03802007 musket +n03802228 musket ball, ball +n03802393 muslin +n03802643 mustache cup, moustache cup +n03802800 mustard plaster, sinapism +n03802973 mute +n03803116 muzzle loader +n03803284 muzzle +n03803780 myelogram +n03804211 nacelle +n03804744 nail +n03805180 nailbrush +n03805280 nailfile +n03805374 nailhead +n03805503 nailhead +n03805725 nail polish, nail enamel, nail varnish +n03805933 nainsook +n03807334 Napier's bones, Napier's rods +n03809211 nard, spikenard +n03809312 narrowbody aircraft, narrow-body aircraft, narrow-body +n03809603 narrow wale +n03809686 narthex +n03809802 narthex +n03810412 nasotracheal tube +n03810952 national monument +n03811295 nautilus, nuclear submarine, nuclear-powered submarine +n03811444 navigational system +n03811847 naval equipment +n03811965 naval gun +n03812263 naval missile +n03812382 naval radar +n03812789 naval tactical data system +n03812924 naval weaponry +n03813078 nave +n03813176 navigational instrument +n03813946 nebuchadnezzar +n03814528 neckband +n03814639 neck brace +n03814727 neckcloth, stock +n03814817 neckerchief +n03814906 necklace +n03815149 necklet +n03815278 neckline +n03815482 neckpiece +n03815615 necktie, tie +n03816005 neckwear +n03816136 needle +n03816394 needle +n03816530 needlenose pliers +n03816849 needlework, needlecraft +n03817191 negative +n03817331 negative magnetic pole, negative pole, south-seeking pole +n03817522 negative pole +n03817647 negligee, neglige, peignoir, wrapper, housecoat +n03818001 neolith +n03818343 neon lamp, neon induction lamp, neon tube +n03819047 nephoscope +n03819336 nest +n03819448 nest egg +n03819595 net, network, mesh, meshing, meshwork +n03819994 net +n03820154 net +n03820318 net +n03820728 network, electronic network +n03820950 network +n03821145 neutron bomb +n03821424 newel +n03821518 newel post, newel +n03822171 newspaper, paper +n03822361 newsroom +n03822504 newsroom +n03822656 newsstand +n03822767 Newtonian telescope, Newtonian reflector +n03823111 nib, pen nib +n03823216 niblick, nine iron +n03823312 nicad, nickel-cadmium accumulator +n03823673 nickel-iron battery, nickel-iron accumulator +n03823906 Nicol prism +n03824197 night bell +n03824284 nightcap +n03824381 nightgown, gown, nightie, night-robe, nightdress +n03824589 night latch +n03824713 night-light +n03824999 nightshirt +n03825080 nightwear, sleepwear, nightclothes +n03825271 ninepin, skittle, skittle pin +n03825442 ninepin ball, skittle ball +n03825673 ninon +n03825788 nipple +n03825913 nipple shield +n03826039 niqab +n03826186 Nissen hut, Quonset hut +n03827420 nogging +n03827536 noisemaker +n03828020 nonsmoker, nonsmoking car +n03829340 non-volatile storage, nonvolatile storage +n03829857 Norfolk jacket +n03829954 noria +n03831203 nosebag, feedbag +n03831382 noseband, nosepiece +n03831757 nose flute +n03832144 nosewheel +n03832673 notebook, notebook computer +n03833907 nuclear-powered ship +n03834040 nuclear reactor, reactor +n03834472 nuclear rocket +n03834604 nuclear weapon, atomic weapon +n03835197 nude, nude painting +n03835729 numdah, numdah rug, nammad +n03835941 nun's habit +n03836062 nursery, baby's room +n03836451 nut and bolt +n03836602 nutcracker +n03836906 nylon +n03836976 nylons, nylon stocking, rayons, rayon stocking, silk stocking +n03837422 oar +n03837606 oast +n03837698 oast house +n03837869 obelisk +n03838024 object ball +n03838298 objective, objective lens, object lens, object glass +n03838748 oblique bandage +n03838899 oboe, hautboy, hautbois +n03839172 oboe da caccia +n03839276 oboe d'amore +n03839424 observation dome +n03839671 observatory +n03839795 obstacle +n03840327 obturator +n03840681 ocarina, sweet potato +n03840823 octant +n03841011 odd-leg caliper +n03841143 odometer, hodometer, mileometer, milometer +n03841290 oeil de boeuf +n03841666 office, business office +n03842012 office building, office block +n03842156 office furniture +n03842276 officer's mess +n03842377 off-line equipment, auxiliary equipment +n03842585 ogee, cyma reversa +n03842754 ogee arch, keel arch +n03842986 ohmmeter +n03843092 oil, oil color, oil colour +n03843316 oilcan +n03843438 oilcloth +n03843555 oil filter +n03843883 oil heater, oilstove, kerosene heater, kerosine heater +n03844045 oil lamp, kerosene lamp, kerosine lamp +n03844233 oil paint +n03844550 oil pump +n03844673 oil refinery, petroleum refinery +n03844815 oilskin, slicker +n03844965 oil slick +n03845107 oilstone +n03845190 oil tanker, oiler, tanker, tank ship +n03845990 old school tie +n03846100 olive drab +n03846234 olive drab, olive-drab uniform +n03846431 Olympian Zeus +n03846677 omelet pan, omelette pan +n03846772 omnidirectional antenna, nondirectional antenna +n03846970 omnirange, omnidirectional range, omnidirectional radio range +n03847471 onion dome +n03847823 open-air market, open-air marketplace, market square +n03848033 open circuit +n03848168 open-end wrench, tappet wrench +n03848348 opener +n03848537 open-hearth furnace +n03849275 openside plane, rabbet plane +n03849412 open sight +n03849679 openwork +n03849814 opera, opera house +n03849943 opera cloak, opera hood +n03850053 operating microscope +n03850245 operating room, OR, operating theater, operating theatre, surgery +n03850492 operating table +n03850613 ophthalmoscope +n03851341 optical device +n03851787 optical disk, optical disc +n03852280 optical instrument +n03852544 optical pyrometer, pyroscope +n03852688 optical telescope +n03853291 orchestra pit, pit +n03853924 ordinary, ordinary bicycle +n03854065 organ, pipe organ +n03854421 organdy, organdie +n03854506 organic light-emitting diode, OLED +n03854722 organ loft +n03854815 organ pipe, pipe, pipework +n03855214 organza +n03855333 oriel, oriel window +n03855464 oriflamme +n03855604 O ring +n03855756 Orlon +n03855908 orlop deck, orlop, fourth deck +n03856012 orphanage, orphans' asylum +n03856335 orphrey +n03856465 orrery +n03856728 orthicon, image orthicon +n03857026 orthochromatic film +n03857156 orthopter, ornithopter +n03857291 orthoscope +n03857687 oscillograph +n03857828 oscilloscope, scope, cathode-ray oscilloscope, CRO +n03858085 ossuary +n03858183 otoscope, auriscope, auroscope +n03858418 ottoman, pouf, pouffe, puff, hassock +n03858533 oubliette +n03858837 out-basket, out-tray +n03859000 outboard motor, outboard +n03859170 outboard motorboat, outboard +n03859280 outbuilding +n03859495 outerwear, overclothes +n03859608 outfall +n03859958 outfit, getup, rig, turnout +n03860234 outfitter +n03860404 outhouse, privy, earth-closet, jakes +n03861048 output device +n03861271 outrigger +n03861430 outrigger canoe +n03861596 outside caliper +n03861842 outside mirror +n03862379 outwork +n03862676 oven +n03862862 oven thermometer +n03863108 overall +n03863262 overall, boilersuit, boilers suit +n03863657 overcoat, overcoating +n03863783 overdrive +n03863923 overgarment, outer garment +n03864139 overhand knot +n03864356 overhang +n03864692 overhead projector +n03865288 overmantel +n03865371 overnighter, overnight bag, overnight case +n03865557 overpass, flyover +n03865820 override +n03865949 overshoe +n03866082 overskirt +n03867854 oxbow +n03868044 Oxbridge +n03868242 oxcart +n03868324 oxeye +n03868406 oxford +n03868643 oximeter +n03868763 oxyacetylene torch +n03868863 oxygen mask +n03869838 oyster bar +n03869976 oyster bed, oyster bank, oyster park +n03870105 pace car +n03870290 pacemaker, artificial pacemaker +n03870546 pack +n03870672 pack +n03870980 pack, face pack +n03871083 package, parcel +n03871371 package store, liquor store, off-licence +n03871524 packaging +n03871628 packet +n03871724 packing box, packing case +n03871860 packinghouse, packing plant +n03872016 packinghouse +n03872167 packing needle +n03872273 packsaddle +n03873416 paddle, boat paddle +n03873699 paddle +n03873848 paddle +n03873996 paddle box, paddle-box +n03874138 paddle steamer, paddle-wheeler +n03874293 paddlewheel, paddle wheel +n03874487 paddock +n03874599 padlock +n03874823 page printer, page-at-a-time printer +n03875218 paint, pigment +n03875806 paintball +n03875955 paintball gun +n03876111 paintbox +n03876231 paintbrush +n03877351 paisley +n03877472 pajama, pyjama, pj's, jammies +n03877674 pajama, pyjama +n03877845 palace +n03878066 palace, castle +n03878211 palace +n03878294 palanquin, palankeen +n03878418 paleolith +n03878511 palestra, palaestra +n03878674 palette, pallet +n03878828 palette knife +n03878963 palisade +n03879456 pallet +n03879705 pallette, palette +n03880032 pallium +n03880129 pallium +n03880323 pan +n03880531 pan, cooking pan +n03881305 pancake turner +n03881404 panchromatic film +n03881534 panda car +n03882611 paneling, panelling, pane +n03882960 panhandle +n03883054 panic button +n03883385 pannier +n03883524 pannier +n03883664 pannikin +n03883773 panopticon +n03883944 panopticon +n03884397 panpipe, pandean pipe, syrinx +n03884554 pantaloon +n03884639 pantechnicon +n03884778 pantheon +n03884926 pantheon +n03885028 pantie, panty, scanty, step-in +n03885194 panting, trousering +n03885293 pant leg, trouser leg +n03885410 pantograph +n03885535 pantry, larder, buttery +n03885669 pants suit, pantsuit +n03885788 panty girdle +n03885904 pantyhose +n03886053 panzer +n03886641 paper chain +n03886762 paper clip, paperclip, gem clip +n03886940 paper cutter +n03887185 paper fastener +n03887330 paper feed +n03887512 paper mill +n03887697 paper towel +n03887899 parabolic mirror +n03888022 parabolic reflector, paraboloid reflector +n03888257 parachute, chute +n03888605 parallel bars, bars +n03888808 parallel circuit, shunt circuit +n03888998 parallel interface, parallel port +n03889397 parang +n03889503 parapet, breastwork +n03889626 parapet +n03889726 parasail +n03889871 parasol, sunshade +n03890093 parer, paring knife +n03890233 parfait glass +n03890358 pargeting, pargetting, pargetry +n03890514 pari-mutuel machine, totalizer, totaliser, totalizator, totalisator +n03891051 parka, windbreaker, windcheater, anorak +n03891251 park bench +n03891332 parking meter +n03891538 parlor, parlour +n03892178 parquet, parquet floor +n03892425 parquetry, parqueterie +n03892557 parsonage, vicarage, rectory +n03892728 Parsons table +n03893935 partial denture +n03894051 particle detector +n03894379 partition, divider +n03894677 parts bin +n03894933 party line +n03895038 party wall +n03895170 parvis +n03895866 passenger car, coach, carriage +n03896103 passenger ship +n03896233 passenger train +n03896419 passenger van +n03896526 passe-partout +n03896628 passive matrix display +n03896984 passkey, passe-partout, master key, master +n03897130 pass-through +n03897634 pastry cart +n03897943 patch +n03898129 patchcord +n03898271 patchouli, patchouly, pachouli +n03898395 patch pocket +n03898633 patchwork, patchwork quilt +n03898787 patent log, screw log, taffrail log +n03899100 paternoster +n03899612 patina +n03899768 patio, terrace +n03899933 patisserie +n03900028 patka +n03900194 patrol boat, patrol ship +n03900301 patty-pan +n03900393 pave +n03900979 pavilion, marquee +n03901229 pavior, paviour, paving machine +n03901338 pavis, pavise +n03901750 pawn +n03901974 pawnbroker's shop, pawnshop, loan office +n03902125 pay-phone, pay-station +n03902220 PC board +n03902482 peach orchard +n03902756 pea jacket, peacoat +n03903133 peavey, peavy, cant dog, dog hook +n03903290 pectoral, pectoral medallion +n03903424 pedal, treadle, foot pedal, foot lever +n03903733 pedal pusher, toreador pants +n03903868 pedestal, plinth, footstall +n03904060 pedestal table +n03904183 pedestrian crossing, zebra crossing +n03904433 pedicab, cycle rickshaw +n03904657 pediment +n03904782 pedometer +n03904909 peeler +n03905361 peep sight +n03905540 peg, nog +n03905730 peg, pin, thole, tholepin, rowlock, oarlock +n03905947 peg +n03906106 peg, wooden leg, leg, pegleg +n03906224 pegboard +n03906463 Pelham +n03906590 pelican crossing +n03906789 pelisse +n03906894 pelvimeter +n03906997 pen +n03907475 penal colony +n03907654 penal institution, penal facility +n03907908 penalty box +n03908111 pen-and-ink +n03908204 pencil +n03908456 pencil +n03908618 pencil box, pencil case +n03908714 pencil sharpener +n03909020 pendant earring, drop earring, eardrop +n03909160 pendulum +n03909406 pendulum clock +n03909516 pendulum watch +n03909658 penetration bomb +n03911406 penile implant +n03911513 penitentiary, pen +n03911658 penknife +n03911767 penlight +n03911866 pennant, pennon, streamer, waft +n03912218 pennywhistle, tin whistle, whistle +n03912821 penthouse +n03913343 pentode +n03913930 peplos, peplus, peplum +n03914106 peplum +n03914337 pepper mill, pepper grinder +n03914438 pepper shaker, pepper box, pepper pot +n03914583 pepper spray +n03914831 percale +n03915118 percolator +n03915320 percussion cap +n03915437 percussion instrument, percussive instrument +n03915900 perforation +n03916031 perfume, essence +n03916289 perfumery +n03916385 perfumery +n03916470 perfumery +n03916720 peripheral, computer peripheral, peripheral device +n03917048 periscope +n03917198 peristyle +n03917327 periwig, peruke +n03917814 permanent press, durable press +n03918074 perpetual motion machine +n03918480 personal computer, PC, microcomputer +n03918737 personal digital assistant, PDA, personal organizer, personal organiser, organizer, organiser +n03919096 personnel carrier +n03919289 pestle +n03919430 pestle, muller, pounder +n03919808 petcock +n03920288 Petri dish +n03920384 petrolatum gauze +n03920641 pet shop +n03920737 petticoat, half-slip, underskirt +n03920867 pew, church bench +n03923379 phial, vial, ampule, ampul, ampoule +n03923564 Phillips screw +n03923692 Phillips screwdriver +n03923918 phonograph needle, needle +n03924069 phonograph record, phonograph recording, record, disk, disc, platter +n03924407 photocathode +n03924532 photocoagulator +n03924679 photocopier +n03926148 photographic equipment +n03926412 photographic paper, photographic material +n03926876 photometer +n03927091 photomicrograph +n03927299 Photostat, Photostat machine +n03927539 photostat +n03927792 physical pendulum, compound pendulum +n03928116 piano, pianoforte, forte-piano +n03928589 piano action +n03928814 piano keyboard, fingerboard, clavier +n03928994 piano wire +n03929091 piccolo +n03929202 pick, pickax, pickaxe +n03929443 pick +n03929660 pick, plectrum, plectron +n03929855 pickelhaube +n03930229 picket boat +n03930313 picket fence, paling +n03930431 picket ship +n03930515 pickle barrel +n03930630 pickup, pickup truck +n03931765 picture frame +n03931885 picture hat +n03931980 picture rail +n03932080 picture window +n03932670 piece of cloth, piece of material +n03933391 pied-a-terre +n03933933 pier +n03934042 pier +n03934229 pier arch +n03934311 pier glass, pier mirror +n03934565 pier table +n03934656 pieta +n03934890 piezometer +n03935116 pig bed, pig +n03935234 piggery, pig farm +n03935335 piggy bank, penny bank +n03935883 pilaster +n03936269 pile, spile, piling, stilt +n03936466 pile driver +n03937543 pill bottle +n03937835 pillbox, toque, turban +n03937931 pillion +n03938037 pillory +n03938244 pillow +n03938401 pillow block +n03938522 pillow lace, bobbin lace +n03938725 pillow sham +n03939062 pilot bit +n03939178 pilot boat +n03939281 pilot burner, pilot light, pilot +n03939440 pilot cloth +n03939565 pilot engine +n03939677 pilothouse, wheelhouse +n03939844 pilot light, pilot lamp, indicator lamp +n03940256 pin +n03940894 pin, flag +n03941013 pin, pin tumbler +n03941231 pinata +n03941417 pinball machine, pin table +n03941586 pince-nez +n03941684 pincer, pair of pincers, tweezer, pair of tweezers +n03941887 pinch bar +n03942028 pincurl clip +n03942600 pinfold +n03942813 ping-pong ball +n03942920 pinhead +n03943115 pinion +n03943266 pinnacle +n03943623 pinprick +n03943714 pinstripe +n03943833 pinstripe +n03943920 pinstripe +n03944024 pintle +n03944138 pinwheel, pinwheel wind collector +n03944341 pinwheel +n03945459 tabor pipe +n03945615 pipe +n03945817 pipe bomb +n03945928 pipe cleaner +n03946076 pipe cutter +n03946162 pipefitting, pipe fitting +n03947111 pipet, pipette +n03947343 pipe vise, pipe clamp +n03947466 pipe wrench, tube wrench +n03947798 pique +n03947888 pirate, pirate ship +n03948242 piste +n03948459 pistol, handgun, side arm, shooting iron +n03948830 pistol grip +n03948950 piston, plunger +n03949145 piston ring +n03949317 piston rod +n03949761 pit +n03950228 pitcher, ewer +n03950359 pitchfork +n03950537 pitching wedge +n03950647 pitch pipe +n03950899 pith hat, pith helmet, sun helmet, topee, topi +n03951068 piton +n03951213 Pitot-static tube, Pitot head, Pitot tube +n03951453 Pitot tube, Pitot +n03951800 pitsaw +n03951971 pivot, pin +n03952150 pivoting window +n03952576 pizzeria, pizza shop, pizza parlor +n03953020 place of business, business establishment +n03953416 place of worship, house of prayer, house of God, house of worship +n03953901 placket +n03954393 planchet, coin blank +n03954731 plane, carpenter's plane, woodworking plane +n03955296 plane, planer, planing machine +n03955489 plane seat +n03955809 planetarium +n03955941 planetarium +n03956157 planetarium +n03956331 planetary gear, epicyclic gear, planet wheel, planet gear +n03956531 plank-bed +n03956623 planking +n03956785 planner +n03956922 plant, works, industrial plant +n03957315 planter +n03957420 plaster, adhesive plaster, sticking plaster +n03957762 plasterboard, gypsum board +n03957991 plastering trowel +n03958227 plastic bag +n03958338 plastic bomb +n03958630 plastic laminate +n03958752 plastic wrap +n03959014 plastron +n03959123 plastron +n03959227 plastron +n03959701 plate, scale, shell +n03960374 plate, collection plate +n03960490 plate +n03961394 platen +n03961630 platen +n03961711 plate rack +n03961828 plate rail +n03961939 platform +n03962525 platform, weapons platform +n03962685 platform +n03962852 platform bed +n03962932 platform rocker +n03963028 plating, metal plating +n03963198 platter +n03963294 playback +n03963483 playbox, play-box +n03963645 playground +n03964495 playpen, pen +n03964611 playsuit +n03965456 plaza, mall, center, shopping mall, shopping center, shopping centre +n03965907 pleat, plait +n03966206 plenum +n03966325 plethysmograph +n03966582 pleximeter, plessimeter +n03966751 plexor, plessor, percussor +n03966976 pliers, pair of pliers, plyers +n03967270 plimsoll +n03967396 plotter +n03967562 plow, plough +n03967942 plug, stopper, stopple +n03968293 plug, male plug +n03968479 plug fuse +n03968581 plughole +n03968728 plumb bob, plumb, plummet +n03969510 plumb level +n03970156 plunger, plumber's helper +n03970363 plus fours +n03970546 plush +n03971218 plywood, plyboard +n03971321 pneumatic drill +n03971960 p-n junction +n03972146 p-n-p transistor +n03972372 poacher +n03972524 pocket +n03973003 pocket battleship +n03973285 pocketcomb, pocket comb +n03973402 pocket flap +n03973520 pocket-handkerchief +n03973628 pocketknife, pocket knife +n03973839 pocket watch +n03973945 pod, fuel pod +n03974070 pogo stick +n03974915 point-and-shoot camera +n03975035 pointed arch +n03975657 pointing trowel +n03975788 point lace, needlepoint +n03975926 poker, stove poker, fire hook, salamander +n03976105 polarimeter, polariscope +n03976268 Polaroid +n03976467 Polaroid camera, Polaroid Land camera +n03976657 pole +n03977158 pole +n03977266 poleax, poleaxe +n03977430 poleax, poleaxe +n03977592 police boat +n03977966 police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria +n03978421 polling booth +n03978575 polo ball +n03978686 polo mallet, polo stick +n03978815 polonaise +n03978966 polo shirt, sport shirt +n03979377 polyester +n03979492 polygraph +n03980026 pomade, pomatum +n03980478 pommel horse, side horse +n03980874 poncho +n03980986 pongee +n03981094 poniard, bodkin +n03981340 pontifical +n03981566 pontoon +n03981760 pontoon bridge, bateau bridge, floating bridge +n03981924 pony cart, ponycart, donkey cart, tub-cart +n03982232 pool ball +n03982331 poolroom +n03982430 pool table, billiard table, snooker table +n03982642 poop deck +n03982767 poor box, alms box, mite box +n03982895 poorhouse +n03983396 pop bottle, soda bottle +n03983499 popgun +n03983612 poplin +n03983712 popper +n03983928 poppet, poppet valve +n03984125 pop tent +n03984234 porcelain +n03984381 porch +n03984643 porkpie, porkpie hat +n03984759 porringer +n03985069 portable +n03985232 portable computer +n03985441 portable circular saw, portable saw +n03985881 portcullis +n03986071 porte-cochere +n03986224 porte-cochere +n03986355 portfolio +n03986562 porthole +n03986704 portico +n03986857 portiere +n03986949 portmanteau, Gladstone, Gladstone bag +n03987266 portrait camera +n03987376 portrait lens +n03987674 positive pole, positive magnetic pole, north-seeking pole +n03987865 positive pole +n03987990 positron emission tomography scanner, PET scanner +n03988170 post +n03988758 postage meter +n03988926 post and lintel +n03989199 post chaise +n03989349 postern +n03989447 post exchange, PX +n03989665 posthole digger, post-hole digger +n03989777 post horn +n03989898 posthouse, post house +n03990474 pot +n03991062 pot, flowerpot +n03991202 potbelly, potbelly stove +n03991321 Potemkin village +n03991443 potential divider, voltage divider +n03991646 potentiometer, pot +n03991837 potentiometer +n03992325 potpourri +n03992436 potsherd +n03992509 potter's wheel +n03992703 pottery, clayware +n03992975 pottle +n03993053 potty seat, potty chair +n03993180 pouch +n03993403 poultice, cataplasm, plaster +n03993703 pound, dog pound +n03993878 pound net +n03994008 powder +n03994297 powder and shot +n03994417 powdered mustard, dry mustard +n03994614 powder horn, powder flask +n03994757 powder keg +n03995018 power brake +n03995265 power cord +n03995372 power drill +n03995535 power line, power cable +n03995661 power loom +n03995856 power mower, motor mower +n03996004 power pack +n03996145 power saw, saw, sawing machine +n03996416 power shovel, excavator, digger, shovel +n03996849 power steering, power-assisted steering +n03997274 power takeoff, PTO +n03997484 power tool +n03997875 praetorium, pretorium +n03998194 prayer rug, prayer mat +n03998333 prayer shawl, tallith, tallis +n03998673 precipitator, electrostatic precipitator, Cottrell precipitator +n03999064 prefab +n03999160 presbytery +n03999621 presence chamber +n03999992 press, mechanical press +n04000311 press, printing press +n04000480 press +n04000592 press box +n04000716 press gallery +n04000998 press of sail, press of canvas +n04001132 pressure cabin +n04001265 pressure cooker +n04001397 pressure dome +n04001499 pressure gauge, pressure gage +n04001661 pressurized water reactor, PWR +n04001845 pressure suit +n04002262 pricket +n04002371 prie-dieu +n04002629 primary coil, primary winding, primary +n04003241 Primus stove, Primus +n04003359 Prince Albert +n04003856 print +n04004099 print buffer +n04004210 printed circuit +n04004475 printer, printing machine +n04004767 printer +n04004990 printer cable +n04005197 priory +n04005630 prison, prison house +n04005912 prison camp, internment camp, prisoner of war camp, POW camp +n04006067 privateer +n04006227 private line +n04006330 privet hedge +n04006411 probe +n04007415 proctoscope +n04007664 prod, goad +n04008385 production line, assembly line, line +n04008634 projectile, missile +n04009552 projector +n04009801 projector +n04009923 prolonge +n04010057 prolonge knot, sailor's breastplate +n04010779 prompter, autocue +n04010927 prong +n04011827 propeller, propellor +n04012084 propeller plane +n04012482 propjet, turboprop, turbo-propeller plane +n04012665 proportional counter tube, proportional counter +n04013060 propulsion system +n04013176 proscenium, proscenium wall +n04013600 proscenium arch +n04013729 prosthesis, prosthetic device +n04014297 protective covering, protective cover, protection +n04015204 protective garment +n04015786 proton accelerator +n04015908 protractor +n04016240 pruner, pruning hook, lopper +n04016479 pruning knife +n04016576 pruning saw +n04016684 pruning shears +n04016846 psaltery +n04017571 psychrometer +n04017807 PT boat, mosquito boat, mosquito craft, motor torpedo boat +n04018155 public address system, P.A. system, PA system, P.A., PA +n04018399 public house, pub, saloon, pothouse, gin mill, taphouse +n04018667 public toilet, comfort station, public convenience, convenience, public lavatory, restroom, toilet facility, wash room +n04019101 public transport +n04019335 public works +n04019541 puck, hockey puck +n04019696 pull +n04019881 pullback, tieback +n04020087 pull chain +n04020298 pulley, pulley-block, pulley block, block +n04020744 pull-off, rest area, rest stop, layby, lay-by +n04020912 Pullman, Pullman car +n04021028 pullover, slipover +n04021164 pull-through +n04021362 pulse counter +n04021503 pulse generator +n04021704 pulse timing circuit +n04021798 pump +n04022332 pump +n04022434 pump action, slide action +n04022708 pump house, pumping station +n04022866 pump room +n04023021 pump-type pliers +n04023119 pump well +n04023249 punch, puncher +n04023422 punchboard +n04023695 punch bowl +n04023962 punching bag, punch bag, punching ball, punchball +n04024137 punch pliers +n04024274 punch press +n04024862 punnet +n04024983 punt +n04025508 pup tent, shelter tent +n04025633 purdah +n04026053 purifier +n04026180 purl, purl stitch +n04026417 purse +n04026813 push-bike +n04026918 push broom +n04027023 push button, push, button +n04027367 push-button radio +n04027706 pusher, zori +n04027820 put-put +n04027935 puttee +n04028074 putter, putting iron +n04028221 putty knife +n04028315 puzzle +n04028581 pylon, power pylon +n04028764 pylon +n04029416 pyramidal tent +n04029647 pyrograph +n04029734 pyrometer +n04029913 pyrometric cone +n04030054 pyrostat +n04030161 pyx, pix +n04030274 pyx, pix, pyx chest, pix chest +n04030414 pyxis +n04030518 quad, quadrangle +n04030846 quadrant +n04030965 quadraphony, quadraphonic system, quadriphonic system +n04031884 quartering +n04032509 quarterstaff +n04032603 quartz battery, quartz mill +n04032936 quartz lamp +n04033287 queen +n04033425 queen +n04033557 queen post +n04033801 quern +n04033901 quill, quill pen +n04033995 quilt, comforter, comfort, puff +n04034262 quilted bedspread +n04034367 quilting +n04035231 quipu +n04035634 quirk molding, quirk moulding +n04035748 quirt +n04035836 quiver +n04035912 quoin, coign, coigne +n04036155 quoit +n04036303 QWERTY keyboard +n04036776 rabbet, rebate +n04036963 rabbet joint +n04037076 rabbit ears +n04037220 rabbit hutch +n04037298 raceabout +n04037443 racer, race car, racing car +n04037873 raceway, race +n04037964 racing boat +n04038231 racing gig +n04038338 racing skiff, single shell +n04038440 rack, stand +n04038727 rack +n04039041 rack, wheel +n04039209 rack and pinion +n04039381 racket, racquet +n04039742 racquetball +n04039848 radar, microwave radar, radio detection and ranging, radiolocation +n04040247 radial, radial tire, radial-ply tire +n04040373 radial engine, rotary engine +n04040540 radiation pyrometer +n04040759 radiator +n04041069 radiator +n04041243 radiator cap +n04041408 radiator hose +n04041544 radio, wireless +n04041747 radio antenna, radio aerial +n04042076 radio chassis +n04042204 radio compass +n04042358 radiogram, radiograph, shadowgraph, skiagraph, skiagram +n04042632 radio interferometer +n04042795 radio link, link +n04042985 radiometer +n04043168 radiomicrometer +n04043411 radio-phonograph, radio-gramophone +n04043733 radio receiver, receiving set, radio set, radio, tuner, wireless +n04044307 radiotelegraph, radiotelegraphy, wireless telegraph, wireless telegraphy +n04044498 radiotelephone, radiophone, wireless telephone +n04044716 radio telescope, radio reflector +n04044955 radiotherapy equipment +n04045085 radio transmitter +n04045255 radome, radar dome +n04045397 raft +n04045644 rafter, balk, baulk +n04045787 raft foundation +n04045941 rag, shred, tag, tag end, tatter +n04046091 ragbag +n04046277 raglan +n04046400 raglan sleeve +n04046590 rail +n04046974 rail fence +n04047139 railhead +n04047401 railing, rail +n04047733 railing +n04047834 railroad bed +n04048441 railroad tunnel +n04049303 rain barrel +n04049405 raincoat, waterproof +n04049585 rain gauge, rain gage, pluviometer, udometer +n04049753 rain stick +n04050066 rake +n04050313 rake handle +n04050600 RAM disk +n04050933 ramekin, ramequin +n04051269 ramjet, ramjet engine, atherodyde, athodyd, flying drainpipe +n04051439 rammer +n04051549 ramp, incline +n04051705 rampant arch +n04051825 rampart, bulwark, wall +n04052235 ramrod +n04052346 ramrod +n04052442 ranch, spread, cattle ranch, cattle farm +n04052658 ranch house +n04052757 random-access memory, random access memory, random memory, RAM, read/write memory +n04053508 rangefinder, range finder +n04053677 range hood +n04053767 range pole, ranging pole, flagpole +n04054361 rapier, tuck +n04054566 rariora +n04054670 rasp, wood file +n04055180 ratchet, rachet, ratch +n04055447 ratchet wheel +n04055700 rathskeller +n04055861 ratline, ratlin +n04056073 rat-tail file +n04056180 rattan, ratan +n04056413 rattrap +n04056932 rayon +n04057047 razor +n04057215 razorblade +n04057435 reaction-propulsion engine, reaction engine +n04057673 reaction turbine +n04057846 reactor +n04057981 reading lamp +n04058096 reading room +n04058239 read-only memory, ROM, read-only storage, fixed storage +n04058486 read-only memory chip +n04058594 readout, read-out +n04058721 read/write head, head +n04059157 ready-to-wear +n04059298 real storage +n04059399 reamer +n04059516 reamer, juicer, juice reamer +n04059947 rearview mirror +n04060198 Reaumur thermometer +n04060448 rebozo +n04060647 receiver, receiving system +n04060904 receptacle +n04061681 reception desk +n04061793 reception room +n04061969 recess, niche +n04062179 reciprocating engine +n04062428 recliner, reclining chair, lounger +n04062644 reconnaissance plane +n04062807 reconnaissance vehicle, scout car +n04063154 record changer, auto-changer, changer +n04063373 recorder, recording equipment, recording machine +n04063868 recording +n04064213 recording system +n04064401 record player, phonograph +n04064747 record sleeve, record cover +n04064862 recovery room +n04065272 recreational vehicle, RV, R.V. +n04065464 recreation room, rec room +n04065789 recycling bin +n04065909 recycling plant +n04066023 redbrick university +n04066270 red carpet +n04066388 redoubt +n04066476 redoubt +n04066767 reduction gear +n04067143 reed pipe +n04067231 reed stop +n04067353 reef knot, flat knot +n04067472 reel +n04067658 reel +n04067818 refectory +n04067921 refectory table +n04068441 refinery +n04068601 reflecting telescope, reflector +n04069166 reflectometer +n04069276 reflector +n04069434 reflex camera +n04069582 reflux condenser +n04069777 reformatory, reform school, training school +n04070003 reformer +n04070207 refracting telescope +n04070415 refractometer +n04070545 refrigeration system +n04070727 refrigerator, icebox +n04070964 refrigerator car +n04071102 refuge, sanctuary, asylum +n04071263 regalia +n04071393 regimentals +n04072193 regulator +n04072551 rein +n04072960 relay, electrical relay +n04073425 release, button +n04073948 religious residence, cloister +n04074185 reliquary +n04074963 remote control, remote +n04075291 remote terminal, link-attached terminal, remote station, link-attached station +n04075468 removable disk +n04075715 rendering +n04075813 rep, repp +n04075916 repair shop, fix-it shop +n04076052 repeater +n04076284 repeating firearm, repeater +n04076713 repository, monument +n04077430 reproducer +n04077594 rerebrace, upper cannon +n04077734 rescue equipment +n04077889 research center, research facility +n04078002 reseau +n04078574 reservoir +n04078955 reset +n04079106 reset button +n04079244 residence +n04079603 resistance pyrometer +n04079933 resistor, resistance +n04080138 resonator +n04080454 resonator, cavity resonator, resonating chamber +n04080705 resort hotel, spa +n04080833 respirator, inhalator +n04081281 restaurant, eating house, eating place, eatery +n04081699 rest house +n04081844 restraint, constraint +n04082344 resuscitator +n04082562 retainer +n04082710 retaining wall +n04082886 reticle, reticule, graticule +n04083113 reticulation +n04083309 reticule +n04083649 retort +n04083800 retractor +n04084517 return key, return +n04084682 reverberatory furnace +n04084889 revers, revere +n04085017 reverse, reverse gear +n04085574 reversible +n04085873 revetment, revetement, stone facing +n04086066 revetment +n04086273 revolver, six-gun, six-shooter +n04086446 revolving door, revolver +n04086663 rheometer +n04086794 rheostat, variable resistor +n04086937 rhinoscope +n04087126 rib +n04087432 riband, ribband +n04087709 ribbed vault +n04087826 ribbing +n04088229 ribbon development +n04088343 rib joint pliers +n04088441 ricer +n04088696 riddle +n04088797 ride +n04089152 ridge, ridgepole, rooftree +n04089376 ridge rope +n04089666 riding boot +n04089836 riding crop, hunting crop +n04089976 riding mower +n04090263 rifle +n04090548 rifle ball +n04090781 rifle grenade +n04091097 rig +n04091466 rigger, rigger brush +n04091584 rigger +n04091693 rigging, tackle +n04092168 rigout +n04093157 ringlet +n04093223 rings +n04093625 rink, skating rink +n04093775 riot gun +n04093915 ripcord +n04094060 ripcord +n04094250 ripping bar +n04094438 ripping chisel +n04094608 ripsaw, splitsaw +n04094720 riser +n04094859 riser, riser pipe, riser pipeline, riser main +n04095109 Ritz +n04095210 river boat +n04095342 rivet +n04095577 riveting machine, riveter, rivetter +n04095938 roach clip, roach holder +n04096066 road, route +n04096733 roadbed +n04096848 roadblock, barricade +n04097085 roadhouse +n04097373 roadster, runabout, two-seater +n04097622 roadway +n04097760 roaster +n04097866 robe +n04098169 robotics equipment +n04098260 Rochon prism, Wollaston prism +n04098399 rock bit, roller bit +n04098513 rocker +n04098795 rocker, cradle +n04099003 rocker arm, valve rocker +n04099175 rocket, rocket engine +n04099429 rocket, projectile +n04099969 rocking chair, rocker +n04100174 rod +n04100519 rodeo +n04101375 roll +n04101497 roller +n04101701 roller +n04101860 roller bandage +n04102037 in-line skate +n04102162 Rollerblade +n04102285 roller blind +n04102406 roller coaster, big dipper, chute-the-chute +n04102618 roller skate +n04102760 roller towel +n04102872 roll film +n04102962 rolling hitch +n04103094 rolling mill +n04103206 rolling pin +n04103364 rolling stock +n04103665 roll-on +n04103769 roll-on +n04103918 roll-on roll-off +n04104147 Rolodex +n04104384 Roman arch, semicircular arch +n04104500 Roman building +n04104770 romper, romper suit +n04104925 rood screen +n04105068 roof +n04105438 roof +n04105704 roofing +n04105893 room +n04107598 roomette +n04107743 room light +n04107984 roost +n04108268 rope +n04108822 rope bridge +n04108999 rope tow +n04110068 rose water +n04110178 rose window, rosette +n04110281 rosin bag +n04110439 rotary actuator, positioner +n04110654 rotary engine +n04110841 rotary press +n04110955 rotating mechanism +n04111190 rotating shaft, shaft +n04111414 rotisserie +n04111531 rotisserie +n04111668 rotor +n04111962 rotor, rotor coil +n04112147 rotor +n04112252 rotor blade, rotary wing +n04112430 rotor head, rotor shaft +n04112579 rotunda +n04112654 rotunda +n04112752 rouge, paint, blusher +n04112921 roughcast +n04113038 rouleau +n04113194 roulette, toothed wheel +n04113316 roulette ball +n04113406 roulette wheel, wheel +n04113641 round, unit of ammunition, one shot +n04113765 round arch +n04113968 round-bottom flask +n04114069 roundel +n04114301 round file +n04114428 roundhouse +n04114719 router +n04114844 router +n04114996 router plane +n04115144 rowel +n04115256 row house, town house +n04115456 rowing boat +n04115542 rowlock arch +n04115802 royal +n04115996 royal mast +n04116098 rubber band, elastic band, elastic +n04116294 rubber boot, gum boot +n04116389 rubber bullet +n04116512 rubber eraser, rubber, pencil eraser +n04117216 rudder +n04117464 rudder +n04117639 rudder blade +n04118021 rug, carpet, carpeting +n04118538 rugby ball +n04118635 ruin +n04118776 rule, ruler +n04119091 rumble +n04119230 rumble seat +n04119360 rummer +n04119478 rumpus room, playroom, game room +n04119630 runcible spoon +n04119751 rundle, spoke, rung +n04120489 running shoe +n04120695 running suit +n04120842 runway +n04121228 rushlight, rush candle +n04121342 russet +n04121426 rya, rya rug +n04121511 saber, sabre +n04121728 saber saw, jigsaw, reciprocating saw +n04122262 sable +n04122349 sable, sable brush, sable's hair pencil +n04122492 sable coat +n04122578 sabot, wooden shoe +n04122685 sachet +n04122825 sack, poke, paper bag, carrier bag +n04123026 sack, sacque +n04123123 sackbut +n04123228 sackcloth +n04123317 sackcloth +n04123448 sack coat +n04123567 sacking, bagging +n04123740 saddle +n04124098 saddlebag +n04124202 saddle blanket, saddlecloth, horse blanket +n04124370 saddle oxford, saddle shoe +n04124488 saddlery +n04124573 saddle seat +n04124887 saddle stitch +n04125021 safe +n04125116 safe +n04125257 safe-deposit, safe-deposit box, safety-deposit, safety deposit box, deposit box, lockbox +n04125541 safe house +n04125692 safety arch +n04125853 safety belt, life belt, safety harness +n04126066 safety bicycle, safety bike +n04126244 safety bolt, safety lock +n04126541 safety curtain +n04126659 safety fuse +n04126852 safety lamp, Davy lamp +n04126980 safety match, book matches +n04127117 safety net +n04127249 safety pin +n04127395 safety rail, guardrail +n04127521 safety razor +n04127633 safety valve, relief valve, escape valve, escape cock, escape +n04127904 sail, canvas, canvass, sheet +n04128413 sail +n04128499 sailboat, sailing boat +n04128710 sailcloth +n04128837 sailing vessel, sailing ship +n04129490 sailing warship +n04129688 sailor cap +n04129766 sailor suit +n04130143 salad bar +n04130257 salad bowl +n04130566 salinometer +n04130907 sallet, salade +n04131015 salon +n04131113 salon +n04131208 salon, beauty salon, beauty parlor, beauty parlour, beauty shop +n04131368 saltbox +n04131499 saltcellar +n04131690 saltshaker, salt shaker +n04131811 saltworks +n04131929 salver +n04132158 salwar, shalwar +n04132465 Sam Browne belt +n04132603 samisen, shamisen +n04132829 samite +n04132985 samovar +n04133114 sampan +n04133789 sandal +n04134008 sandbag +n04134170 sandblaster +n04134523 sandbox +n04134632 sandglass +n04135024 sand wedge +n04135118 sandwich board +n04135315 sanitary napkin, sanitary towel, Kotex +n04135710 cling film, clingfilm, Saran Wrap +n04135933 sarcenet, sarsenet +n04136045 sarcophagus +n04136161 sari, saree +n04136333 sarong +n04136510 sash, window sash +n04136800 sash fastener, sash lock, window lock +n04137089 sash window +n04137217 satchel +n04137355 sateen +n04137444 satellite, artificial satellite, orbiter +n04137773 satellite receiver +n04137897 satellite television, satellite TV +n04138131 satellite transmitter +n04138261 satin +n04138869 Saturday night special +n04138977 saucepan +n04139140 saucepot +n04139395 sauna, sweat room +n04139859 savings bank, coin bank, money box, bank +n04140064 saw +n04140539 sawed-off shotgun +n04140631 sawhorse, horse, sawbuck, buck +n04140777 sawmill +n04140853 saw set +n04141076 sax, saxophone +n04141198 saxhorn +n04141327 scabbard +n04141712 scaffolding, staging +n04141838 scale +n04141975 scale, weighing machine +n04142175 scaler +n04142327 scaling ladder +n04142434 scalpel +n04142731 scanner, electronic scanner +n04142999 scanner +n04143140 scanner, digital scanner, image scanner +n04143365 scantling, stud +n04143897 scarf +n04144241 scarf joint, scarf +n04144539 scatter rug, throw rug +n04144651 scauper, scorper +n04145863 Schmidt telescope, Schmidt camera +n04146050 school, schoolhouse +n04146343 schoolbag +n04146504 school bell +n04146614 school bus +n04146862 school ship, training ship +n04146976 school system +n04147183 schooner +n04147291 schooner +n04147495 scientific instrument +n04147793 scimitar +n04147916 scintillation counter +n04148054 scissors, pair of scissors +n04148285 sclerometer +n04148464 scoinson arch, sconcheon arch +n04148579 sconce +n04148703 sconce +n04149083 scoop +n04149374 scooter +n04149813 scoreboard +n04150153 scouring pad +n04150273 scow +n04150371 scow +n04150980 scraper +n04151108 scratcher +n04151581 screen +n04151940 screen, cover, covert, concealment +n04152387 screen +n04152593 screen, CRT screen +n04153025 screen door, screen +n04153330 screening +n04153751 screw +n04154152 screw, screw propeller +n04154340 screw +n04154565 screwdriver +n04154753 screw eye +n04154854 screw key +n04154938 screw thread, thread +n04155068 screwtop +n04155177 screw wrench +n04155457 scriber, scribe, scratch awl +n04155625 scrim +n04155735 scrimshaw +n04155889 scriptorium +n04156040 scrubber +n04156140 scrub brush, scrubbing brush, scrubber +n04156297 scrub plane +n04156411 scuffer +n04156591 scuffle, scuffle hoe, Dutch hoe +n04156814 scull +n04156946 scull +n04157099 scullery +n04157320 sculpture +n04158002 scuttle, coal scuttle +n04158138 scyphus +n04158250 scythe +n04158672 seabag +n04158807 sea boat +n04158956 sea chest +n04160036 sealing wax, seal +n04160261 sealskin +n04160372 seam +n04160586 seaplane, hydroplane +n04160847 searchlight +n04161010 searing iron +n04161358 seat +n04161981 seat +n04162433 seat +n04162706 seat belt, seatbelt +n04163530 secateurs +n04164002 secondary coil, secondary winding, secondary +n04164199 second balcony, family circle, upper balcony, peanut gallery +n04164406 second base +n04164757 second hand +n04164868 secretary, writing table, escritoire, secretaire +n04165409 sectional +n04165675 security blanket +n04165945 security system, security measure, security +n04166111 security system +n04166281 sedan, saloon +n04166436 sedan, sedan chair +n04167346 seeder +n04167489 seeker +n04167661 seersucker +n04168084 segmental arch +n04168199 Segway, Segway Human Transporter, Segway HT +n04168472 seidel +n04168541 seine +n04168840 seismograph +n04169437 selector, selector switch +n04169597 selenium cell +n04170037 self-propelled vehicle +n04170384 self-registering thermometer +n04170515 self-starter +n04170694 selsyn, synchro +n04170933 selvage, selvedge +n04171208 semaphore +n04171459 semiautomatic firearm +n04171629 semiautomatic pistol, semiautomatic +n04171831 semiconductor device, semiconductor unit, semiconductor +n04172107 semi-detached house +n04172230 semigloss +n04172342 semitrailer, semi +n04172512 sennit +n04172607 sensitometer +n04172776 sentry box +n04172904 separate +n04173046 septic tank +n04173172 sequence, episode +n04173511 sequencer, sequenator +n04173907 serape, sarape +n04174026 serge +n04174101 serger +n04174234 serial port +n04174500 serpent +n04174705 serration +n04175039 server +n04175147 server, host +n04175574 service club +n04176068 serving cart +n04176190 serving dish +n04176295 servo, servomechanism, servosystem +n04176528 set +n04177041 set gun, spring gun +n04177329 setscrew +n04177545 setscrew +n04177654 set square +n04177755 settee +n04177820 settle, settee +n04177931 settlement house +n04178190 seventy-eight, 78 +n04178329 Seven Wonders of the Ancient World, Seven Wonders of the World +n04178668 sewage disposal plant, disposal plant +n04179126 sewer, sewerage, cloaca +n04179712 sewing basket +n04179824 sewing kit +n04179913 sewing machine +n04180063 sewing needle +n04180229 sewing room +n04180888 sextant +n04181083 sgraffito +n04181228 shackle, bond, hamper, trammel +n04181561 shackle +n04181718 shade +n04182152 shadow box +n04182322 shaft +n04183217 shag rug +n04183329 shaker +n04183957 shank +n04184095 shank, stem +n04184316 shantung +n04184435 shaper, shaping machine +n04184600 shaping tool +n04184880 sharkskin +n04185071 sharpener +n04185529 Sharpie +n04185804 shaver, electric shaver, electric razor +n04185946 shaving brush +n04186051 shaving cream, shaving soap +n04186268 shaving foam +n04186455 shawl +n04186624 shawm +n04186848 shears +n04187061 sheath +n04187233 sheathing, overlay, overlayer +n04187547 shed +n04187751 sheep bell +n04187885 sheepshank +n04187970 sheepskin coat, afghan +n04188064 sheepwalk, sheeprun +n04188179 sheet, bed sheet +n04189092 sheet bend, becket bend, weaver's knot, weaver's hitch +n04189282 sheeting +n04189651 sheet pile, sheath pile, sheet piling +n04189816 Sheetrock +n04190052 shelf +n04190376 shelf bracket +n04190464 shell +n04190747 shell, case, casing +n04190997 shell, racing shell +n04191150 shellac, shellac varnish +n04191595 shelter +n04191943 shelter +n04192238 shelter +n04192361 sheltered workshop +n04192521 Sheraton +n04192698 shield, buckler +n04192858 shield +n04193179 shielding +n04193377 shift key, shift +n04193742 shillelagh, shillalah +n04193883 shim +n04194009 shingle +n04194127 shin guard, shinpad +n04194289 ship +n04196080 shipboard system +n04196502 shipping, cargo ships, merchant marine, merchant vessels +n04196803 shipping room +n04196925 ship-towed long-range acoustic detection system +n04197110 shipwreck +n04197391 shirt +n04197781 shirt button +n04197878 shirtdress +n04198015 shirtfront +n04198233 shirting +n04198355 shirtsleeve +n04198453 shirttail +n04198562 shirtwaist, shirtwaister +n04198722 shiv +n04198797 shock absorber, shock, cushion +n04199027 shoe +n04200000 shoe +n04200258 shoebox +n04200537 shoehorn +n04200800 shoe shop, shoe-shop, shoe store +n04200908 shoetree +n04201064 shofar, shophar +n04201297 shoji +n04201733 shooting brake +n04202142 shooting lodge, shooting box +n04202282 shooting stick +n04202417 shop, store +n04203356 shop bell +n04204081 shopping bag +n04204238 shopping basket +n04204347 shopping cart +n04204755 short circuit, short +n04205062 short iron +n04205318 short pants, shorts, trunks +n04205505 short sleeve +n04205613 shortwave diathermy machine +n04206070 shot +n04206225 shot glass, jigger, pony +n04206356 shotgun, scattergun +n04206570 shotgun shell +n04206790 shot tower +n04207151 shoulder +n04207343 shoulder bag +n04207596 shouldered arch +n04207763 shoulder holster +n04207903 shoulder pad +n04208065 shoulder patch +n04208210 shovel +n04208427 shovel +n04208582 shovel hat +n04208760 showboat +n04208936 shower +n04209133 shower cap +n04209239 shower curtain +n04209509 shower room +n04209613 shower stall, shower bath +n04209811 showroom, salesroom, saleroom +n04210012 shrapnel +n04210120 shredder +n04210288 shrimper +n04210390 shrine +n04210591 shrink-wrap +n04210858 shunt +n04211001 shunt, electrical shunt, bypass +n04211219 shunter +n04211356 shutter +n04211528 shutter +n04211857 shuttle +n04211970 shuttle +n04212165 shuttle bus +n04212282 shuttlecock, bird, birdie, shuttle +n04212467 shuttle helicopter +n04212810 Sibley tent +n04213105 sickbay, sick berth +n04213264 sickbed +n04213353 sickle, reaping hook, reap hook +n04213530 sickroom +n04214046 sideboard +n04214282 sidecar +n04214413 side chapel +n04214649 sidelight, running light +n04215153 sidesaddle +n04215402 sidewalk, pavement +n04215588 sidewall +n04215800 side-wheeler +n04215910 sidewinder +n04216634 sieve, screen +n04216860 sifter +n04216963 sights +n04217387 sigmoidoscope, flexible sigmoidoscope +n04217546 signal box, signal tower +n04217718 signaling device +n04217882 signboard, sign +n04218564 silencer, muffler +n04218921 silent butler +n04219185 Silex +n04219424 silk +n04219580 silks +n04220250 silo +n04220805 silver plate +n04221076 silverpoint +n04221673 simple pendulum +n04221823 simulator +n04222210 single bed +n04222307 single-breasted jacket +n04222470 single-breasted suit +n04222723 single prop, single-propeller plane +n04222847 single-reed instrument, single-reed woodwind +n04223066 single-rotor helicopter +n04223170 singlestick, fencing stick, backsword +n04223299 singlet, vest, undershirt +n04224395 siren +n04224543 sister ship +n04224842 sitar +n04225031 sitz bath, hip bath +n04225222 six-pack, six pack, sixpack +n04225729 skate +n04225987 skateboard +n04226322 skeg +n04226464 skein +n04226537 skeleton, skeletal frame, frame, underframe +n04226826 skeleton key +n04226962 skep +n04227050 skep +n04227144 sketch, study +n04227519 sketcher +n04227787 skew arch +n04227900 skewer +n04228054 ski +n04228215 ski binding, binding +n04228422 skibob +n04228581 ski boot +n04228693 ski cap, stocking cap, toboggan cap +n04229007 skidder +n04229107 skid lid +n04229480 skiff +n04229620 ski jump +n04229737 ski lodge +n04229816 ski mask +n04229959 skimmer +n04230387 ski parka, ski jacket +n04230487 ski-plane +n04230603 ski pole +n04230707 ski rack +n04230808 skirt +n04231272 skirt +n04231693 ski tow, ski lift, lift +n04231905 Skivvies +n04232153 skullcap +n04232312 skybox +n04232437 skyhook +n04232800 skylight, fanlight +n04233027 skysail +n04233124 skyscraper +n04233295 skywalk +n04233715 slacks +n04233832 slack suit +n04234160 slasher +n04234260 slash pocket +n04234455 slat, spline +n04234670 slate +n04234763 slate pencil +n04234887 slate roof +n04235291 sled, sledge, sleigh +n04235646 sleeper +n04235771 sleeper +n04235860 sleeping bag +n04236001 sleeping car, sleeper, wagon-lit +n04236377 sleeve, arm +n04236702 sleeve +n04236809 sleigh bed +n04236935 sleigh bell, cascabel +n04237174 slice bar +n04237287 slicer +n04237423 slicer +n04238128 slide, playground slide, sliding board +n04238321 slide fastener, zip, zipper, zip fastener +n04238617 slide projector +n04238763 slide rule, slipstick +n04238953 slide valve +n04239074 sliding door +n04239218 sliding seat +n04239333 sliding window +n04239436 sling, scarf bandage, triangular bandage +n04239639 sling +n04239786 slingback, sling +n04239900 slinger ring +n04240434 slip clutch, slip friction clutch +n04240752 slipcover +n04240867 slip-joint pliers +n04241042 slipknot +n04241249 slip-on +n04241394 slipper, carpet slipper +n04241573 slip ring +n04242084 slit lamp +n04242315 slit trench +n04242408 sloop +n04242587 sloop of war +n04242704 slop basin, slop bowl +n04243003 slop pail, slop jar +n04243142 slops +n04243251 slopshop, slopseller's shop +n04243546 slot, one-armed bandit +n04243941 slot machine, coin machine +n04244379 sluice, sluiceway, penstock +n04244847 smack +n04244997 small boat +n04245218 small computer system interface, SCSI +n04245412 small ship +n04245508 small stores +n04245847 smart bomb +n04246060 smelling bottle +n04246271 smocking +n04246459 smoke bomb, smoke grenade +n04246731 smokehouse, meat house +n04246855 smoker, smoking car, smoking carriage, smoking compartment +n04247011 smoke screen, smokescreen +n04247440 smoking room +n04247544 smoothbore +n04247630 smooth plane, smoothing plane +n04247736 snack bar, snack counter, buffet +n04247876 snaffle, snaffle bit +n04248209 snap, snap fastener, press stud +n04248396 snap brim +n04248507 snap-brim hat +n04248851 snare, gin, noose +n04249415 snare drum, snare, side drum +n04249582 snatch block +n04249882 snifter, brandy snifter, brandy glass +n04250224 sniper rifle, precision rifle +n04250473 snips, tinsnips +n04250599 Sno-cat +n04250692 snood +n04250850 snorkel, schnorkel, schnorchel, snorkel breather, breather +n04251144 snorkel +n04251701 snowbank, snow bank +n04251791 snowboard +n04252077 snowmobile +n04252225 snowplow, snowplough +n04252331 snowshoe +n04252560 snowsuit +n04252653 snow thrower, snow blower +n04253057 snuffbox +n04253168 snuffer +n04253304 snuffers +n04253931 soapbox +n04254009 soap dish +n04254120 soap dispenser +n04254450 soap pad +n04254680 soccer ball +n04254777 sock +n04255163 socket +n04255346 socket wrench +n04255499 socle +n04255586 soda can +n04255670 soda fountain +n04255768 soda fountain +n04255899 sod house, soddy, adobe house +n04256318 sodium-vapor lamp, sodium-vapour lamp +n04256520 sofa, couch, lounge +n04256758 soffit +n04256891 softball, playground ball +n04257223 soft pedal +n04257684 soil pipe +n04257790 solar array, solar battery, solar panel +n04257986 solar cell, photovoltaic cell +n04258138 solar dish, solar collector, solar furnace +n04258333 solar heater +n04258438 solar house +n04258618 solar telescope +n04258732 solar thermal system +n04258859 soldering iron +n04259202 solenoid +n04259468 solleret, sabaton +n04259630 sombrero +n04260192 sonic depth finder, fathometer +n04260364 sonogram, echogram +n04260589 sonograph +n04261116 sorter +n04261281 souk +n04261369 sound bow +n04261506 soundbox, body +n04261638 sound camera +n04261767 sounder +n04261868 sound film +n04262161 sounding board, soundboard +n04262530 sounding rocket +n04262678 sound recording, audio recording, audio +n04262869 sound spectrograph +n04263257 soup bowl +n04263336 soup ladle +n04263502 soupspoon, soup spoon +n04263760 source of illumination +n04263950 sourdine +n04264134 soutache +n04264233 soutane +n04264361 sou'wester +n04264485 soybean future +n04264628 space bar +n04264765 space capsule, capsule +n04264914 spacecraft, ballistic capsule, space vehicle +n04265275 space heater +n04265428 space helmet +n04265904 space rocket +n04266014 space shuttle +n04266162 space station, space platform, space laboratory +n04266375 spacesuit +n04266486 spade +n04266849 spade bit +n04266968 spaghetti junction +n04267091 Spandau +n04267165 spandex +n04267246 spandrel, spandril +n04267435 spanker +n04267577 spar +n04267985 sparge pipe +n04268142 spark arrester, sparker +n04268275 spark arrester +n04268418 spark chamber, spark counter +n04268565 spark coil +n04268799 spark gap +n04269086 spark lever +n04269270 spark plug, sparking plug, plug +n04269502 sparkplug wrench +n04269668 spark transmitter +n04269822 spat, gaiter +n04269944 spatula +n04270147 spatula +n04270371 speakerphone +n04270576 speaking trumpet +n04270891 spear, lance, shaft +n04271148 spear, gig, fizgig, fishgig, lance +n04271531 specialty store +n04271793 specimen bottle +n04271891 spectacle +n04272054 spectacles, specs, eyeglasses, glasses +n04272389 spectator pump, spectator +n04272782 spectrograph +n04272928 spectrophotometer +n04273064 spectroscope, prism spectroscope +n04273285 speculum +n04273569 speedboat +n04273659 speed bump +n04273796 speedometer, speed indicator +n04273972 speed skate, racing skate +n04274686 spherometer +n04274985 sphygmomanometer +n04275093 spicemill +n04275175 spice rack +n04275283 spider +n04275548 spider web, spider's web +n04275661 spike +n04275904 spike +n04277352 spindle +n04277493 spindle, mandrel, mandril, arbor +n04277669 spindle +n04277826 spin dryer, spin drier +n04278247 spinet +n04278353 spinet +n04278447 spinnaker +n04278605 spinner +n04278932 spinning frame +n04279063 spinning jenny +n04279172 spinning machine +n04279353 spinning rod +n04279462 spinning wheel +n04279858 spiral bandage +n04279987 spiral ratchet screwdriver, ratchet screwdriver +n04280259 spiral spring +n04280373 spirit lamp +n04280487 spirit stove +n04280845 spirometer +n04280970 spit +n04281260 spittoon, cuspidor +n04281375 splashboard, splasher, dashboard +n04281571 splasher +n04281998 splice, splicing +n04282231 splicer +n04282494 splint +n04282872 split rail, fence rail +n04282992 Spode +n04283096 spoiler +n04283255 spoiler +n04283378 spoke, wheel spoke, radius +n04283585 spokeshave +n04283784 sponge cloth +n04283905 sponge mop +n04284002 spoon +n04284341 spoon +n04284438 Spork +n04284572 sporran +n04284869 sport kite, stunt kite +n04285008 sports car, sport car +n04285146 sports equipment +n04285622 sports implement +n04285803 sportswear, athletic wear, activewear +n04285965 sport utility, sport utility vehicle, S.U.V., SUV +n04286128 spot +n04286575 spotlight, spot +n04286960 spot weld, spot-weld +n04287351 spouter +n04287451 sprag +n04287747 spray gun +n04287898 spray paint +n04287986 spreader +n04288165 sprig +n04288272 spring +n04288533 spring balance, spring scale +n04288673 springboard +n04289027 sprinkler +n04289195 sprinkler system +n04289449 sprit +n04289576 spritsail +n04289690 sprocket, sprocket wheel +n04289827 sprocket +n04290079 spun yarn +n04290259 spur, gad +n04290507 spur gear, spur wheel +n04290615 sputnik +n04290762 spy satellite +n04291069 squad room +n04291242 square +n04291759 square knot +n04291992 square-rigger +n04292080 square sail +n04292221 squash ball +n04292414 squash racket, squash racquet, bat +n04292572 squawk box, squawker, intercom speaker +n04292921 squeegee +n04293119 squeezer +n04293258 squelch circuit, squelch, squelcher +n04293744 squinch +n04294212 stabilizer, stabiliser +n04294426 stabilizer +n04294614 stabilizer bar, anti-sway bar +n04294879 stable, stalls, horse barn +n04295081 stable gear, saddlery, tack +n04295353 stabling +n04295571 stacks +n04295777 staddle +n04295881 stadium, bowl, arena, sports stadium +n04296562 stage +n04297098 stagecoach, stage +n04297750 stained-glass window +n04297847 stair-carpet +n04298053 stair-rod +n04298661 stairwell +n04298765 stake +n04299215 stall, stand, sales booth +n04299370 stall +n04299963 stamp +n04300358 stamp mill, stamping mill +n04300509 stamping machine, stamper +n04300643 stanchion +n04301000 stand +n04301242 standard +n04301474 standard cell +n04301760 standard transmission, stick shift +n04302200 standing press +n04302863 stanhope +n04302988 Stanley Steamer +n04303095 staple +n04303258 staple +n04303357 staple gun, staplegun, tacker +n04303497 stapler, stapling machine +n04304215 starship, spaceship +n04304375 starter, starter motor, starting motor +n04304680 starting gate, starting stall +n04305016 Stassano furnace, electric-arc furnace +n04305210 Statehouse +n04305323 stately home +n04305471 state prison +n04305572 stateroom +n04305947 static tube +n04306080 station +n04306592 stator, stator coil +n04306847 statue +n04307419 stay +n04307767 staysail +n04307878 steakhouse, chophouse +n04307986 steak knife +n04308084 stealth aircraft +n04308273 stealth bomber +n04308397 stealth fighter +n04308583 steam bath, steam room, vapor bath, vapour bath +n04308807 steamboat +n04308915 steam chest +n04309049 steam engine +n04309348 steamer, steamship +n04309548 steamer +n04309833 steam iron +n04310018 steam locomotive +n04310157 steamroller, road roller +n04310507 steam shovel +n04310604 steam turbine +n04310721 steam whistle +n04310904 steel +n04311004 steel arch bridge +n04311174 steel drum +n04311595 steel mill, steelworks, steel plant, steel factory +n04312020 steel-wool pad +n04312154 steelyard, lever scale, beam scale +n04312432 steeple, spire +n04312654 steerage +n04312756 steering gear +n04312916 steering linkage +n04313220 steering system, steering mechanism +n04313503 steering wheel, wheel +n04313628 stele, stela +n04314107 stem-winder +n04314216 stencil +n04314522 Sten gun +n04314632 stenograph +n04314914 step, stair +n04315342 step-down transformer +n04315713 step stool +n04315828 step-up transformer +n04315948 stereo, stereophony, stereo system, stereophonic system +n04316498 stereoscope +n04316815 stern chaser +n04316924 sternpost +n04317063 sternwheeler +n04317175 stethoscope +n04317325 stewing pan, stewpan +n04317420 stick +n04317833 stick +n04317976 stick, control stick, joystick +n04318131 stick +n04318787 stile +n04318892 stiletto +n04318982 still +n04319545 stillroom, still room +n04319774 Stillson wrench +n04319937 stilt +n04320405 Stinger +n04320598 stink bomb, stench bomb +n04320871 stirrer +n04320973 stirrup, stirrup iron +n04321121 stirrup pump +n04321453 stob +n04322026 stock, gunstock +n04322531 stockade +n04322692 stockcar +n04322801 stock car +n04323519 stockinet, stockinette +n04323819 stocking +n04324120 stock-in-trade +n04324297 stockpot +n04324387 stockroom, stock room +n04324515 stocks +n04325041 stock saddle, Western saddle +n04325208 stockyard +n04325704 stole +n04325804 stomacher +n04325968 stomach pump +n04326547 stone wall +n04326676 stoneware +n04326799 stonework +n04326896 stool +n04327204 stoop, stoep +n04327544 stop bath, short-stop, short-stop bath +n04327682 stopcock, cock, turncock +n04328054 stopper knot +n04328186 stopwatch, stop watch +n04328329 storage battery, accumulator +n04328580 storage cell, secondary cell +n04328703 storage ring +n04328946 storage space +n04329477 storeroom, storage room, stowage +n04329681 storm cellar, cyclone cellar, tornado cellar +n04329834 storm door +n04329958 storm window, storm sash +n04330109 stoup, stoop +n04330189 stoup +n04330267 stove +n04330340 stove, kitchen stove, range, kitchen range, cooking stove +n04330669 stove bolt +n04330746 stovepipe +n04330896 stovepipe iron +n04330998 Stradavarius, Strad +n04331277 straight chair, side chair +n04331443 straightedge +n04331639 straightener +n04331765 straight flute, straight-fluted drill +n04331892 straight pin +n04332074 straight razor +n04332243 strainer +n04332580 straitjacket, straightjacket +n04332987 strap +n04333129 strap +n04333869 strap hinge, joint hinge +n04334105 strapless +n04334365 streamer fly +n04334504 streamliner +n04334599 street +n04335209 street +n04335435 streetcar, tram, tramcar, trolley, trolley car +n04335693 street clothes +n04335886 streetlight, street lamp +n04336792 stretcher +n04337157 stretcher +n04337287 stretch pants +n04337503 strickle +n04337650 strickle +n04338517 stringed instrument +n04338963 stringer +n04339062 stringer +n04339191 string tie +n04339638 strip +n04339879 strip lighting +n04340019 strip mall +n04340521 stroboscope, strobe, strobe light +n04340750 strongbox, deedbox +n04340935 stronghold, fastness +n04341133 strongroom +n04341288 strop +n04341414 structural member +n04341686 structure, construction +n04343511 student center +n04343630 student lamp +n04343740 student union +n04344003 stud finder +n04344734 studio apartment, studio +n04344873 studio couch, day bed +n04345028 study +n04345201 study hall +n04345787 stuffing nut, packing nut +n04346003 stump +n04346157 stun gun, stun baton +n04346328 stupa, tope +n04346428 sty, pigsty, pigpen +n04346511 stylus, style +n04346679 stylus +n04346855 sub-assembly +n04347119 subcompact, subcompact car +n04347519 submachine gun +n04347754 submarine, pigboat, sub, U-boat +n04348070 submarine torpedo +n04348184 submersible, submersible warship +n04348359 submersible +n04348988 subtracter +n04349189 subway token +n04349306 subway train +n04349401 subwoofer +n04349913 suction cup +n04350104 suction pump +n04350235 sudatorium, sudatory +n04350458 suede cloth, suede +n04350581 sugar bowl +n04350688 sugar refinery +n04350769 sugar spoon, sugar shell +n04350905 suit, suit of clothes +n04351550 suite, rooms +n04351699 suiting +n04353573 sulky +n04354026 summer house +n04354182 sumo ring +n04354387 sump +n04354487 sump pump +n04354589 sunbonnet +n04355115 Sunday best, Sunday clothes +n04355267 sun deck +n04355338 sundial +n04355511 sundress +n04355684 sundries +n04355821 sun gear +n04355933 sunglass +n04356056 sunglasses, dark glasses, shades +n04356595 sunhat, sun hat +n04356772 sunlamp, sun lamp, sunray lamp, sun-ray lamp +n04356925 sun parlor, sun parlour, sun porch, sunporch, sunroom, sun lounge, solarium +n04357121 sunroof, sunshine-roof +n04357314 sunscreen, sunblock, sun blocker +n04357531 sunsuit +n04357930 supercharger +n04358117 supercomputer +n04358256 superconducting supercollider +n04358491 superhighway, information superhighway +n04358707 supermarket +n04358874 superstructure +n04359034 supertanker +n04359124 supper club +n04359217 supplejack +n04359335 supply chamber +n04359500 supply closet +n04359589 support +n04360501 support +n04360798 support column +n04360914 support hose, support stocking +n04361095 supporting structure +n04361260 supporting tower +n04361937 surcoat +n04362624 surface gauge, surface gage, scribing block +n04362821 surface lift +n04362972 surface search radar +n04363082 surface ship +n04363210 surface-to-air missile, SAM +n04363412 surface-to-air missile system +n04363671 surfboat +n04363777 surcoat +n04363874 surgeon's knot +n04363991 surgery +n04364160 surge suppressor, surge protector, spike suppressor, spike arrester, lightning arrester +n04364397 surgical dressing +n04364545 surgical instrument +n04364827 surgical knife +n04364994 surplice +n04365112 surrey +n04365229 surtout +n04365328 surveillance system +n04365484 surveying instrument, surveyor's instrument +n04365751 surveyor's level +n04366033 sushi bar +n04366116 suspension, suspension system +n04366367 suspension bridge +n04366832 suspensory, suspensory bandage +n04367011 sustaining pedal, loud pedal +n04367371 suture, surgical seam +n04367480 swab, swob, mop +n04367746 swab +n04367950 swaddling clothes, swaddling bands +n04368109 swag +n04368235 swage block +n04368365 swagger stick +n04368496 swallow-tailed coat, swallowtail, morning coat +n04368695 swamp buggy, marsh buggy +n04368840 swan's down +n04369025 swathe, wrapping +n04369282 swatter, flyswatter, flyswat +n04369485 sweat bag +n04369618 sweatband +n04370048 sweater, jumper +n04370288 sweat pants, sweatpants +n04370456 sweatshirt +n04370600 sweatshop +n04370774 sweat suit, sweatsuit, sweats, workout suit +n04370955 sweep, sweep oar +n04371050 sweep hand, sweep-second +n04371430 swimming trunks, bathing trunks +n04371563 swimsuit, swimwear, bathing suit, swimming costume, bathing costume +n04371774 swing +n04371979 swing door, swinging door +n04372370 switch, electric switch, electrical switch +n04373089 switchblade, switchblade knife, flick-knife, flick knife +n04373428 switch engine, donkey engine +n04373563 swivel +n04373704 swivel chair +n04373795 swizzle stick +n04373894 sword, blade, brand, steel +n04374315 sword cane, sword stick +n04374521 S wrench +n04374735 synagogue, temple, tabernacle +n04374907 synchrocyclotron +n04375080 synchroflash +n04375241 synchromesh +n04375405 synchronous converter, rotary, rotary converter +n04375615 synchronous motor +n04375775 synchrotron +n04375926 synchroscope, synchronoscope, synchronizer, synchroniser +n04376400 synthesizer, synthesiser +n04376876 syringe +n04377057 system +n04378489 tabard +n04378651 Tabernacle +n04378956 tabi, tabis +n04379096 tab key, tab +n04379243 table +n04379964 table +n04380255 tablefork +n04380346 table knife +n04380533 table lamp +n04380916 table saw +n04381073 tablespoon +n04381450 tablet-armed chair +n04381587 table-tennis table, ping-pong table, pingpong table +n04381724 table-tennis racquet, table-tennis bat, pingpong paddle +n04381860 tabletop +n04381994 tableware +n04382334 tabor, tabour +n04382438 taboret, tabouret +n04382537 tachistoscope, t-scope +n04382695 tachograph +n04382880 tachometer, tach +n04383015 tachymeter, tacheometer +n04383130 tack +n04383301 tack hammer +n04383839 taffeta +n04383923 taffrail +n04384593 tailgate, tailboard +n04384910 taillight, tail lamp, rear light, rear lamp +n04385079 tailor-made +n04385157 tailor's chalk +n04385536 tailpipe +n04385799 tail rotor, anti-torque rotor +n04386051 tailstock +n04386456 take-up +n04386664 talaria +n04386792 talcum, talcum powder +n04387095 tam, tam-o'-shanter, tammy +n04387201 tambour +n04387261 tambour, embroidery frame, embroidery hoop +n04387400 tambourine +n04387531 tammy +n04387706 tamp, tamper, tamping bar +n04387932 Tampax +n04388040 tampion, tompion +n04388162 tampon +n04388473 tandoor +n04388574 tangram +n04388743 tank, storage tank +n04389033 tank, army tank, armored combat vehicle, armoured combat vehicle +n04389430 tankard +n04389521 tank car, tank +n04389718 tank destroyer +n04389854 tank engine, tank locomotive +n04389999 tanker plane +n04390483 tank shell +n04390577 tank top +n04390873 tannoy +n04390977 tap, spigot +n04391445 tapa, tappa +n04391838 tape, tape recording, taping +n04392113 tape, tapeline, tape measure +n04392526 tape deck +n04392764 tape drive, tape transport, transport +n04392985 tape player +n04393095 tape recorder, tape machine +n04393301 taper file +n04393549 tapestry, tapis +n04393808 tappet +n04393913 tap wrench +n04394031 tare +n04394261 target, butt +n04394421 target acquisition system +n04394630 tarmacadam, tarmac, macadam +n04395024 tarpaulin, tarp +n04395106 tartan, plaid +n04395332 tasset, tasse +n04395651 tattoo +n04395875 tavern, tap house +n04396226 tawse +n04396335 taximeter +n04396650 T-bar lift, T-bar, Alpine lift +n04396808 tea bag +n04396902 tea ball +n04397027 tea cart, teacart, tea trolley, tea wagon +n04397168 tea chest +n04397261 teaching aid +n04397452 teacup +n04397645 tea gown +n04397768 teakettle +n04397860 tea maker +n04398044 teapot +n04398497 teashop, teahouse, tearoom, tea parlor, tea parlour +n04398688 teaspoon +n04398834 tea-strainer +n04398951 tea table +n04399046 tea tray +n04399158 tea urn +n04399382 teddy, teddy bear +n04399537 tee, golf tee +n04399846 tee hinge, T hinge +n04400109 telecom hotel, telco building +n04400289 telecommunication system, telecom system, telecommunication equipment, telecom equipment +n04400499 telegraph, telegraphy +n04400737 telegraph key +n04400899 telemeter +n04401088 telephone, phone, telephone set +n04401578 telephone bell +n04401680 telephone booth, phone booth, call box, telephone box, telephone kiosk +n04401828 telephone cord, phone cord +n04401949 telephone jack, phone jack +n04402057 telephone line, phone line, telephone circuit, subscriber line, line +n04402342 telephone plug, phone plug +n04402449 telephone pole, telegraph pole, telegraph post +n04402580 telephone receiver, receiver +n04402746 telephone system, phone system +n04402984 telephone wire, telephone line, telegraph wire, telegraph line +n04403413 telephoto lens, zoom lens +n04403524 Teleprompter +n04403638 telescope, scope +n04403925 telescopic sight, telescope sight +n04404072 telethermometer +n04404200 teletypewriter, teleprinter, teletype machine, telex, telex machine +n04404412 television, television system +n04404817 television antenna, tv-antenna +n04404997 television camera, tv camera, camera +n04405540 television equipment, video equipment +n04405762 television monitor, tv monitor +n04405907 television receiver, television, television set, tv, tv set, idiot box, boob tube, telly, goggle box +n04406239 television room, tv room +n04406552 television transmitter +n04406687 telpher, telfer +n04406817 telpherage, telferage +n04407257 tempera, poster paint, poster color, poster colour +n04407435 temple +n04407686 temple +n04408871 temporary hookup, patch +n04409011 tender, supply ship +n04409128 tender, ship's boat, pinnace, cutter +n04409279 tender +n04409384 tenement, tenement house +n04409515 tennis ball +n04409625 tennis camp +n04409806 tennis racket, tennis racquet +n04409911 tenon +n04410086 tenor drum, tom-tom +n04410365 tenoroon +n04410485 tenpenny nail +n04410565 tenpin +n04410663 tensimeter +n04410760 tensiometer +n04410886 tensiometer +n04411019 tensiometer +n04411264 tent, collapsible shelter +n04411835 tenter +n04411966 tenterhook +n04412097 tent-fly, rainfly, fly sheet, fly, tent flap +n04412300 tent peg +n04412416 tepee, tipi, teepee +n04413151 terminal, pole +n04413419 terminal +n04413969 terraced house +n04414101 terra cotta +n04414199 terrarium +n04414319 terra sigillata, Samian ware +n04414476 terry, terry cloth, terrycloth +n04414675 Tesla coil +n04414909 tessera +n04415257 test equipment +n04415663 test rocket, research rocket, test instrument vehicle +n04415815 test room, testing room +n04416005 testudo +n04416901 tetraskelion, tetraskele +n04417086 tetrode +n04417180 textile machine +n04417361 textile mill +n04417672 thatch, thatched roof +n04417809 theater, theatre, house +n04418357 theater curtain, theatre curtain +n04418644 theater light +n04419073 theodolite, transit +n04419642 theremin +n04419868 thermal printer +n04420024 thermal reactor +n04420720 thermocouple, thermocouple junction +n04421083 thermoelectric thermometer, thermel, electric thermometer +n04421258 thermograph, thermometrograph +n04421417 thermograph +n04421582 thermohydrometer, thermogravimeter +n04421740 thermojunction +n04421872 thermometer +n04422409 thermonuclear reactor, fusion reactor +n04422566 thermopile +n04422727 thermos, thermos bottle, thermos flask +n04422875 thermostat, thermoregulator +n04423552 thigh pad +n04423687 thill +n04423845 thimble +n04424692 thinning shears +n04425804 third base, third +n04425977 third gear, third +n04426184 third rail +n04426316 thong +n04426427 thong +n04427216 three-centered arch, basket-handle arch +n04427473 three-decker +n04427559 three-dimensional radar, 3d radar +n04427715 three-piece suit +n04427857 three-quarter binding +n04428008 three-way switch, three-point switch +n04428191 thresher, thrasher, threshing machine +n04428382 threshing floor +n04428634 thriftshop, second-hand store +n04429038 throat protector +n04429376 throne +n04430475 thrust bearing +n04430605 thruster +n04430896 thumb +n04431025 thumbhole +n04431436 thumbscrew +n04431648 thumbstall +n04431745 thumbtack, drawing pin, pushpin +n04431925 thunderer +n04432043 thwart, cross thwart +n04432203 tiara +n04432662 ticking +n04432785 tickler coil +n04433377 tie, tie beam +n04433585 tie, railroad tie, crosstie, sleeper +n04434207 tie rack +n04434531 tie rod +n04434932 tights, leotards +n04435180 tile +n04435552 tile cutter +n04435653 tile roof +n04435759 tiller +n04435870 tilter +n04436012 tilt-top table, tip-top table, tip table +n04436185 timber +n04436329 timber +n04436401 timber hitch +n04436542 timbrel +n04436832 time bomb, infernal machine +n04436992 time capsule +n04437276 time clock +n04437380 time-delay measuring instrument, time-delay measuring system +n04437670 time-fuse +n04437953 timepiece, timekeeper, horologe +n04438304 timer +n04438507 timer +n04438643 time-switch +n04438897 tin +n04439505 tinderbox +n04439585 tine +n04439712 tinfoil, tin foil +n04440597 tippet +n04440963 tire chain, snow chain +n04441093 tire iron, tire tool +n04441528 titfer +n04441662 tithe barn +n04441790 titrator +n04442312 toaster +n04442441 toaster oven +n04442582 toasting fork +n04442741 toastrack +n04443164 tobacco pouch +n04443257 tobacco shop, tobacconist shop, tobacconist +n04443433 toboggan +n04443766 toby, toby jug, toby fillpot jug +n04444121 tocsin, warning bell +n04444218 toe +n04444749 toecap +n04444953 toehold +n04445040 toga +n04445154 toga virilis +n04445327 toggle +n04445610 toggle bolt +n04445782 toggle joint +n04445952 toggle switch, toggle, on-off switch, on/off switch +n04446162 togs, threads, duds +n04446276 toilet, lavatory, lav, can, john, privy, bathroom +n04446844 toilet bag, sponge bag +n04447028 toilet bowl +n04447156 toilet kit, travel kit +n04447276 toilet powder, bath powder, dusting powder +n04447443 toiletry, toilet articles +n04447861 toilet seat +n04448070 toilet water, eau de toilette +n04448185 tokamak +n04448361 token +n04449290 tollbooth, tolbooth, tollhouse +n04449449 toll bridge +n04449550 tollgate, tollbar +n04449700 toll line +n04449966 tomahawk, hatchet +n04450133 Tommy gun, Thompson submachine gun +n04450243 tomograph +n04450465 tone arm, pickup, pickup arm +n04450640 toner +n04450749 tongs, pair of tongs +n04450994 tongue +n04451139 tongue and groove joint +n04451318 tongue depressor +n04451636 tonometer +n04451818 tool +n04452528 tool bag +n04452615 toolbox, tool chest, tool cabinet, tool case +n04452757 toolshed, toolhouse +n04452848 tooth +n04453037 tooth +n04453156 toothbrush +n04453390 toothpick +n04453666 top +n04453910 top, cover +n04454654 topgallant, topgallant mast +n04454792 topgallant, topgallant sail +n04454908 topiary +n04455048 topknot +n04455250 topmast +n04455579 topper +n04455652 topsail +n04456011 toque +n04456115 torch +n04456472 torpedo +n04456734 torpedo +n04457157 torpedo +n04457326 torpedo boat +n04457474 torpedo-boat destroyer +n04457638 torpedo tube +n04457767 torque converter +n04457910 torque wrench +n04458201 torture chamber +n04458633 totem pole +n04458843 touch screen, touchscreen +n04459018 toupee, toupe +n04459122 touring car, phaeton, tourer +n04459243 tourist class, third class +n04459362 towel +n04459610 toweling, towelling +n04459773 towel rack, towel horse +n04459909 towel rail, towel bar +n04460130 tower +n04461437 town hall +n04461570 towpath, towing path +n04461696 tow truck, tow car, wrecker +n04461879 toy +n04462011 toy box, toy chest +n04462240 toyshop +n04462576 trace detector +n04463679 track, rail, rails, runway +n04464125 track +n04464615 trackball +n04464852 tracked vehicle +n04465050 tract house +n04465203 tract housing +n04465358 traction engine +n04465501 tractor +n04465666 tractor +n04466871 trail bike, dirt bike, scrambler +n04467099 trailer, house trailer +n04467307 trailer +n04467506 trailer camp, trailer park +n04467665 trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi +n04467899 trailing edge +n04468005 train, railroad train +n04469003 tramline, tramway, streetcar track +n04469251 trammel +n04469514 trampoline +n04469684 tramp steamer, tramp +n04469813 tramway, tram, aerial tramway, cable tramway, ropeway +n04470741 transdermal patch, skin patch +n04471148 transept +n04471315 transformer +n04471632 transistor, junction transistor, electronic transistor +n04471912 transit instrument +n04472243 transmission, transmission system +n04472563 transmission shaft +n04472726 transmitter, sender +n04472961 transom, traverse +n04473108 transom, transom window, fanlight +n04473275 transponder +n04473884 transporter +n04474035 transporter, car transporter +n04474187 transport ship +n04474466 trap +n04475309 trap door +n04475411 trapeze +n04475496 trave, traverse, crossbeam, crosspiece +n04475631 travel iron +n04475749 trawl, dragnet, trawl net +n04475900 trawl, trawl line, spiller, setline, trotline +n04476116 trawler, dragger +n04476259 tray +n04476526 tray cloth +n04476831 tread +n04476972 tread +n04477219 treadmill, treadwheel, tread-wheel +n04477387 treadmill +n04477548 treasure chest +n04477725 treasure ship +n04478066 treenail, trenail, trunnel +n04478383 trefoil arch +n04478512 trellis, treillage +n04478657 trench +n04479046 trench coat +n04479287 trench knife +n04479405 trepan +n04479526 trepan, trephine +n04479694 trestle +n04479823 trestle +n04479939 trestle bridge +n04480033 trestle table +n04480141 trestlework +n04480303 trews +n04480527 trial balloon +n04480853 triangle +n04480995 triangle +n04481524 triclinium +n04481642 triclinium +n04482177 tricorn, tricorne +n04482297 tricot +n04482393 tricycle, trike, velocipede +n04482975 trident +n04483073 trigger +n04483307 trimaran +n04483925 trimmer +n04484024 trimmer arch +n04484432 triode +n04485082 tripod +n04485423 triptych +n04485586 trip wire +n04485750 trireme +n04485884 triskelion, triskele +n04486054 triumphal arch +n04486213 trivet +n04486322 trivet +n04486616 troika +n04486934 troll +n04487081 trolleybus, trolley coach, trackless trolley +n04487394 trombone +n04487724 troop carrier, troop transport +n04487894 troopship +n04488202 trophy case +n04488427 trough +n04488530 trouser +n04488742 trouser cuff +n04488857 trouser press, pants presser +n04489008 trouser, pant +n04489695 trousseau +n04489817 trowel +n04490091 truck, motortruck +n04491312 trumpet arch +n04491388 truncheon, nightstick, baton, billy, billystick, billy club +n04491638 trundle bed, trundle, truckle bed, truckle +n04491769 trunk +n04491934 trunk hose +n04492060 trunk lid +n04492157 trunk line +n04492375 truss +n04492749 truss bridge +n04493109 try square +n04493259 T-square +n04493381 tub, vat +n04494204 tube, vacuum tube, thermionic vacuum tube, thermionic tube, electron tube, thermionic valve +n04495051 tuck box +n04495183 tucker +n04495310 tucker-bag +n04495450 tuck shop +n04495555 Tudor arch, four-centered arch +n04495698 tudung +n04495843 tugboat, tug, towboat, tower +n04496614 tulle +n04496726 tumble-dryer, tumble drier +n04496872 tumbler +n04497249 tumbrel, tumbril +n04497442 tun +n04497570 tunic +n04497801 tuning fork +n04498275 tupik, tupek, sealskin tent +n04498389 turban +n04498523 turbine +n04498873 turbogenerator +n04499062 tureen +n04499300 Turkish bath +n04499446 Turkish towel, terry towel +n04499554 Turk's head +n04499810 turnbuckle +n04500060 turner, food turner +n04500390 turnery +n04501127 turnpike +n04501281 turnspit +n04501370 turnstile +n04501550 turntable +n04501837 turntable, lazy Susan +n04501947 turret +n04502059 turret clock +n04502197 turtleneck, turtle, polo-neck +n04502502 tweed +n04502670 tweeter +n04502851 twenty-two, .22 +n04502989 twenty-two pistol +n04503073 twenty-two rifle +n04503155 twill +n04503269 twill, twill weave +n04503413 twin bed +n04503499 twinjet +n04503593 twist bit, twist drill +n04503705 two-by-four +n04504038 two-man tent +n04504141 two-piece, two-piece suit, lounge suit +n04504770 typesetting machine +n04505036 typewriter +n04505345 typewriter carriage +n04505470 typewriter keyboard +n04505888 tyrolean, tirolean +n04506289 uke, ukulele +n04506402 ulster +n04506506 ultracentrifuge +n04506688 ultramicroscope, dark-field microscope +n04506895 Ultrasuede +n04506994 ultraviolet lamp, ultraviolet source +n04507155 umbrella +n04507326 umbrella tent +n04507453 undercarriage +n04507689 undercoat, underseal +n04508163 undergarment, unmentionable +n04508489 underpants +n04508949 underwear, underclothes, underclothing +n04509171 undies +n04509260 uneven parallel bars, uneven bars +n04509417 unicycle, monocycle +n04509592 uniform +n04510706 universal joint, universal +n04511002 university +n04513827 upholstery +n04513998 upholstery material +n04514095 upholstery needle +n04514241 uplift +n04514648 upper berth, upper +n04515003 upright, upright piano +n04515444 upset, swage +n04515729 upstairs +n04515890 urceole +n04516116 urn +n04516214 urn +n04516354 used-car, secondhand car +n04516672 utensil +n04517211 Uzi +n04517408 vacation home +n04517823 vacuum, vacuum cleaner +n04517999 vacuum chamber +n04518132 vacuum flask, vacuum bottle +n04518343 vacuum gauge, vacuum gage +n04518643 Valenciennes, Valenciennes lace +n04518764 valise +n04519153 valve +n04519536 valve +n04519728 valve-in-head engine +n04519887 vambrace, lower cannon +n04520170 van +n04520382 van, caravan +n04520784 vane +n04520962 vaporizer, vaporiser +n04521571 variable-pitch propeller +n04521863 variometer +n04521987 varnish +n04522168 vase +n04523525 vault +n04523831 vault, bank vault +n04524142 vaulting horse, long horse, buck +n04524313 vehicle +n04524594 Velcro +n04524716 velocipede +n04524941 velour, velours +n04525038 velvet +n04525191 velveteen +n04525305 vending machine +n04525417 veneer, veneering +n04525584 Venetian blind +n04525821 Venn diagram, Venn's diagram +n04526520 ventilation, ventilation system, ventilating system +n04526800 ventilation shaft +n04526964 ventilator +n04527648 veranda, verandah, gallery +n04528079 verdigris +n04528968 vernier caliper, vernier micrometer +n04529108 vernier scale, vernier +n04529681 vertical file +n04529962 vertical stabilizer, vertical stabiliser, vertical fin, tail fin, tailfin +n04530283 vertical tail +n04530456 Very pistol, Verey pistol +n04530566 vessel, watercraft +n04531098 vessel +n04531873 vest, waistcoat +n04532022 vestiture +n04532106 vestment +n04532398 vest pocket +n04532504 vestry, sacristy +n04532670 viaduct +n04532831 vibraphone, vibraharp, vibes +n04533042 vibrator +n04533199 vibrator +n04533499 Victrola +n04533594 vicuna +n04533700 videocassette +n04533802 videocassette recorder, VCR +n04533946 videodisk, videodisc, DVD +n04534127 video recording, video +n04534359 videotape +n04534520 videotape +n04534895 vigil light, vigil candle +n04535252 villa +n04535370 villa +n04535524 villa +n04536153 viol +n04536335 viola +n04536465 viola da braccio +n04536595 viola da gamba, gamba, bass viol +n04536765 viola d'amore +n04536866 violin, fiddle +n04537436 virginal, pair of virginals +n04538249 viscometer, viscosimeter +n04538403 viscose rayon, viscose +n04538552 vise, bench vise +n04538878 visor, vizor +n04539053 visual display unit, VDU +n04539203 vivarium +n04539407 Viyella +n04539794 voile +n04540053 volleyball +n04540255 volleyball net +n04540397 voltage regulator +n04540761 voltaic cell, galvanic cell, primary cell +n04541136 voltaic pile, pile, galvanic pile +n04541320 voltmeter +n04541662 vomitory +n04541777 von Neumann machine +n04541987 voting booth +n04542095 voting machine +n04542329 voussoir +n04542474 vox angelica, voix celeste +n04542595 vox humana +n04542715 waders +n04542858 wading pool +n04542943 waffle iron +n04543158 wagon, waggon +n04543509 wagon, coaster wagon +n04543636 wagon tire +n04543772 wagon wheel +n04543924 wain +n04543996 wainscot, wainscoting, wainscotting +n04544325 wainscoting, wainscotting +n04544450 waist pack, belt bag +n04545305 walker, baby-walker, go-cart +n04545471 walker, Zimmer, Zimmer frame +n04545748 walker +n04545858 walkie-talkie, walky-talky +n04545984 walk-in +n04546081 walking shoe +n04546194 walking stick +n04546340 Walkman +n04546595 walk-up apartment, walk-up +n04546855 wall +n04547592 wall +n04548280 wall clock +n04548362 wallet, billfold, notecase, pocketbook +n04549028 wall tent +n04549122 wall unit +n04549629 wand +n04549721 Wankel engine, Wankel rotary engine, epitrochoidal engine +n04549919 ward, hospital ward +n04550184 wardrobe, closet, press +n04550676 wardroom +n04551055 warehouse, storage warehouse +n04551833 warming pan +n04552097 war paint +n04552348 warplane, military plane +n04552551 war room +n04552696 warship, war vessel, combat ship +n04553389 wash +n04553561 wash-and-wear +n04553703 washbasin, handbasin, washbowl, lavabo, wash-hand basin +n04554211 washboard, splashboard +n04554406 washboard +n04554684 washer, automatic washer, washing machine +n04554871 washer +n04554998 washhouse +n04555291 washroom +n04555400 washstand, wash-hand stand +n04555600 washtub +n04555700 wastepaper basket, waste-paper basket, wastebasket, waste basket, circular file +n04555897 watch, ticker +n04556408 watch cap +n04556533 watch case +n04556664 watch glass +n04556948 watchtower +n04557308 water-base paint +n04557522 water bed +n04557648 water bottle +n04557751 water butt +n04558059 water cart +n04558199 water chute +n04558478 water closet, closet, W.C., loo +n04558804 watercolor, water-color, watercolour, water-colour +n04559023 water-cooled reactor +n04559166 water cooler +n04559451 water faucet, water tap, tap, hydrant +n04559620 water filter +n04559730 water gauge, water gage, water glass +n04559910 water glass +n04559994 water hazard +n04560113 water heater, hot-water heater, hot-water tank +n04560292 watering can, watering pot +n04560502 watering cart +n04560619 water jacket +n04560804 water jug +n04560882 water jump +n04561010 water level +n04561287 water meter +n04561422 water mill +n04561734 waterproof +n04561857 waterproofing +n04561965 water pump +n04562122 water scooter, sea scooter, scooter +n04562262 water ski +n04562496 waterspout +n04562935 water tower +n04563020 water wagon, water waggon +n04563204 waterwheel, water wheel +n04563413 waterwheel, water wheel +n04563560 water wings +n04563790 waterworks +n04564278 wattmeter +n04564581 waxwork, wax figure +n04565039 ways, shipway, slipway +n04565375 weapon, arm, weapon system +n04566257 weaponry, arms, implements of war, weapons system, munition +n04566561 weapons carrier +n04566756 weathercock +n04567098 weatherglass +n04567593 weather satellite, meteorological satellite +n04567746 weather ship +n04568069 weathervane, weather vane, vane, wind vane +n04568557 web, entanglement +n04568713 web +n04568841 webbing +n04569063 webcam +n04569520 wedge +n04569822 wedge +n04570118 wedgie +n04570214 Wedgwood +n04570416 weeder, weed-whacker +n04570532 weeds, widow's weeds +n04570815 weekender +n04570958 weighbridge +n04571292 weight, free weight, exercising weight +n04571566 weir +n04571686 weir +n04571800 welcome wagon +n04571958 weld +n04572121 welder's mask +n04572235 weldment +n04572935 well +n04573045 wellhead +n04573281 welt +n04573379 Weston cell, cadmium cell +n04573513 wet bar +n04573625 wet-bulb thermometer +n04573832 wet cell +n04573937 wet fly +n04574067 wet suit +n04574348 whaleboat +n04574471 whaler, whaling ship +n04574606 whaling gun +n04574999 wheel +n04575723 wheel +n04575824 wheel and axle +n04576002 wheelchair +n04576211 wheeled vehicle +n04576971 wheelwork +n04577139 wherry +n04577293 wherry, Norfolk wherry +n04577426 whetstone +n04577567 whiffletree, whippletree, swingletree +n04577769 whip +n04578112 whipcord +n04578329 whipping post +n04578559 whipstitch, whipping, whipstitching +n04578708 whirler +n04578801 whisk, whisk broom +n04578934 whisk +n04579056 whiskey bottle +n04579145 whiskey jug +n04579230 whispering gallery, whispering dome +n04579432 whistle +n04579667 whistle +n04579986 white +n04580493 white goods +n04581102 whitewash +n04581595 whorehouse, brothel, bordello, bagnio, house of prostitution, house of ill repute, bawdyhouse, cathouse, sporting house +n04581829 wick, taper +n04582205 wicker, wickerwork, caning +n04582349 wicker basket +n04582771 wicket, hoop +n04582869 wicket +n04583022 wickiup, wikiup +n04583212 wide-angle lens, fisheye lens +n04583620 widebody aircraft, wide-body aircraft, wide-body, twin-aisle airplane +n04583888 wide wale +n04583967 widow's walk +n04584056 Wiffle, Wiffle Ball +n04584207 wig +n04584373 wigwam +n04585128 Wilton, Wilton carpet +n04585318 wimple +n04585456 wincey +n04585626 winceyette +n04585745 winch, windlass +n04585980 Winchester +n04586072 windbreak, shelterbelt +n04586581 winder, key +n04586932 wind instrument, wind +n04587327 windjammer +n04587404 windmill, aerogenerator, wind generator +n04587559 windmill +n04587648 window +n04588739 window +n04589190 window blind +n04589325 window box +n04589434 window envelope +n04589593 window frame +n04589890 window screen +n04590021 window seat +n04590129 window shade +n04590263 windowsill +n04590553 windshield, windscreen +n04590746 windshield wiper, windscreen wiper, wiper, wiper blade +n04590933 Windsor chair +n04591056 Windsor knot +n04591157 Windsor tie +n04591249 wind tee +n04591359 wind tunnel +n04591517 wind turbine +n04591631 wine bar +n04591713 wine bottle +n04591887 wine bucket, wine cooler +n04592005 wine cask, wine barrel +n04592099 wineglass +n04592356 winepress +n04592465 winery, wine maker +n04592596 wineskin +n04592741 wing +n04593077 wing chair +n04593185 wing nut, wing-nut, wing screw, butterfly nut, thumbnut +n04593376 wing tip +n04593524 wing tip +n04593629 winker, blinker, blinder +n04593866 wiper, wiper arm, contact arm +n04594114 wiper motor +n04594218 wire +n04594489 wire, conducting wire +n04594742 wire cloth +n04594828 wire cutter +n04594919 wire gauge, wire gage +n04595028 wireless local area network, WLAN, wireless fidelity, WiFi +n04595285 wire matrix printer, wire printer, stylus printer +n04595501 wire recorder +n04595611 wire stripper +n04595762 wirework, grillwork +n04595855 wiring +n04596116 wishing cap +n04596492 witness box, witness stand +n04596742 wok +n04596852 woman's clothing +n04597066 wood +n04597309 woodcarving +n04597400 wood chisel +n04597804 woodenware +n04597913 wooden spoon +n04598136 woodscrew +n04598318 woodshed +n04598416 wood vise, woodworking vise, shoulder vise +n04598582 woodwind, woodwind instrument, wood +n04598965 woof, weft, filling, pick +n04599124 woofer +n04599235 wool, woolen, woollen +n04600312 workbasket, workbox, workbag +n04600486 workbench, work bench, bench +n04600912 work-clothing, work-clothes +n04601041 workhouse +n04601159 workhouse +n04601938 workpiece +n04602762 workroom +n04602840 works, workings +n04602956 work-shirt +n04603399 workstation +n04603729 worktable, work table +n04603872 workwear +n04604276 World Wide Web, WWW, web +n04604644 worm fence, snake fence, snake-rail fence, Virginia fence +n04604806 worm gear +n04605057 worm wheel +n04605163 worsted +n04605321 worsted, worsted yarn +n04605446 wrap, wrapper +n04605572 wraparound +n04605726 wrapping, wrap, wrapper +n04606251 wreck +n04606574 wrench, spanner +n04607035 wrestling mat +n04607242 wringer +n04607640 wrist pad +n04607759 wrist pin, gudgeon pin +n04607869 wristwatch, wrist watch +n04607982 writing arm +n04608329 writing desk +n04608435 writing desk +n04608567 writing implement +n04608809 xerographic printer +n04608923 Xerox, xerographic copier, Xerox machine +n04609531 X-ray film +n04609651 X-ray machine +n04609811 X-ray tube +n04610013 yacht, racing yacht +n04610176 yacht chair +n04610274 yagi, Yagi aerial +n04610503 yard +n04610676 yard +n04611351 yardarm +n04611795 yard marker +n04611916 yardstick, yard measure +n04612026 yarmulke, yarmulka, yarmelke +n04612159 yashmak, yashmac +n04612257 yataghan +n04612373 yawl, dandy +n04612504 yawl +n04612840 yoke +n04613015 yoke +n04613158 yoke, coupling +n04613696 yurt +n04613939 Zamboni +n04614505 zero +n04614655 ziggurat, zikkurat, zikurat +n04614844 zill +n04615149 zip gun +n04615226 zither, cither, zithern +n04615644 zoot suit +n04682018 shading +n04950713 grain +n04950952 wood grain, woodgrain, woodiness +n04951071 graining, woodgraining +n04951186 marbleization, marbleisation, marbleizing, marbleising +n04951373 light, lightness +n04951716 aura, aureole, halo, nimbus, glory, gloriole +n04951875 sunniness +n04953296 glint +n04953678 opalescence, iridescence +n04955160 polish, gloss, glossiness, burnish +n04957356 primary color for pigments, primary colour for pigments +n04957589 primary color for light, primary colour for light +n04958634 colorlessness, colourlessness, achromatism, achromaticity +n04958865 mottle +n04959061 achromia +n04959230 shade, tint, tincture, tone +n04959672 chromatic color, chromatic colour, spectral color, spectral colour +n04960277 black, blackness, inkiness +n04960582 coal black, ebony, jet black, pitch black, sable, soot black +n04961062 alabaster +n04961331 bone, ivory, pearl, off-white +n04961691 gray, grayness, grey, greyness +n04962062 ash grey, ash gray, silver, silver grey, silver gray +n04962240 charcoal, charcoal grey, charcoal gray, oxford grey, oxford gray +n04963111 sanguine +n04963307 Turkey red, alizarine red +n04963588 crimson, ruby, deep red +n04963740 dark red +n04964001 claret +n04964799 fuschia +n04964878 maroon +n04965179 orange, orangeness +n04965451 reddish orange +n04965661 yellow, yellowness +n04966543 gamboge, lemon, lemon yellow, maize +n04966941 pale yellow, straw, wheat +n04967191 green, greenness, viridity +n04967561 greenishness +n04967674 sea green +n04967801 sage green +n04967882 bottle green +n04968056 emerald +n04968139 olive green, olive-green +n04968749 jade green, jade +n04968895 blue, blueness +n04969242 azure, cerulean, sapphire, lazuline, sky-blue +n04969540 steel blue +n04969798 greenish blue, aqua, aquamarine, turquoise, cobalt blue, peacock blue +n04969952 purplish blue, royal blue +n04970059 purple, purpleness +n04970312 Tyrian purple +n04970398 indigo +n04970470 lavender +n04970631 reddish purple, royal purple +n04970916 pink +n04971211 carnation +n04971313 rose, rosiness +n04972350 chestnut +n04972451 chocolate, coffee, deep brown, umber, burnt umber +n04972801 light brown +n04973020 tan, topaz +n04973291 beige, ecru +n04973386 reddish brown, sepia, burnt sienna, Venetian red, mahogany +n04973585 brick red +n04973669 copper, copper color +n04973816 Indian red +n04974145 puce +n04974340 olive +n04974859 ultramarine +n04975739 complementary color, complementary +n04976319 pigmentation +n04976952 complexion, skin color, skin colour +n04977412 ruddiness, rosiness +n04978561 nonsolid color, nonsolid colour, dithered color, dithered colour +n04979002 aposematic coloration, warning coloration +n04979307 cryptic coloration +n04981658 ring +n05102764 center of curvature, centre of curvature +n05218119 cadaver, corpse, stiff, clay, remains +n05233741 mandibular notch +n05235879 rib +n05238282 skin, tegument, cutis +n05239437 skin graft +n05241218 epidermal cell +n05241485 melanocyte +n05241662 prickle cell +n05242070 columnar cell, columnar epithelial cell +n05242239 spongioblast +n05242928 squamous cell +n05244421 amyloid plaque, amyloid protein plaque +n05244755 dental plaque, bacterial plaque +n05244934 macule, macula +n05245192 freckle, lentigo +n05257476 bouffant +n05257967 sausage curl +n05258051 forelock +n05258627 spit curl, kiss curl +n05259914 pigtail +n05260127 pageboy +n05260240 pompadour +n05261310 thatch +n05262422 soup-strainer, toothbrush +n05262534 mustachio, moustachio, handle-bars +n05262698 walrus mustache, walrus moustache +n05263183 stubble +n05263316 vandyke beard, vandyke +n05263448 soul patch, Attilio +n05265736 esophageal smear +n05266096 paraduodenal smear, duodenal smear +n05266879 specimen +n05278922 punctum +n05279953 glenoid fossa, glenoid cavity +n05282652 diastema +n05285623 marrow, bone marrow +n05302499 mouth, oral cavity, oral fissure, rima oris +n05314075 canthus +n05399034 milk +n05399243 mother's milk +n05399356 colostrum, foremilk +n05418717 vein, vena, venous blood vessel +n05427346 ganglion cell, gangliocyte +n05442594 X chromosome +n05447757 embryonic cell, formative cell +n05448704 myeloblast +n05448827 sideroblast +n05449196 osteocyte +n05449661 megalocyte, macrocyte +n05449959 leukocyte, leucocyte, white blood cell, white cell, white blood corpuscle, white corpuscle, WBC +n05450617 histiocyte +n05451099 fixed phagocyte +n05451384 lymphocyte, lymph cell +n05453412 monoblast +n05453657 neutrophil, neutrophile +n05453815 microphage +n05454833 sickle cell +n05454978 siderocyte +n05455113 spherocyte +n05458173 ootid +n05458576 oocyte +n05459101 spermatid +n05459457 Leydig cell, Leydig's cell +n05459769 striated muscle cell, striated muscle fiber +n05460759 smooth muscle cell +n05464534 Ranvier's nodes, nodes of Ranvier +n05467054 neuroglia, glia +n05467758 astrocyte +n05468098 protoplasmic astrocyte +n05468739 oligodendrocyte +n05469664 proprioceptor +n05469861 dendrite +n05475397 sensory fiber, afferent fiber +n05482922 subarachnoid space +n05486510 cerebral cortex, cerebral mantle, pallium, cortex +n05491154 renal cortex +n05526957 prepuce, foreskin +n05538625 head, caput +n05539947 scalp +n05541509 frontal eminence +n05542893 suture, sutura, fibrous joint +n05545879 foramen magnum +n05571341 esophagogastric junction, oesophagogastric junction +n05578095 heel +n05581932 cuticle +n05584746 hangnail, agnail +n05586759 exoskeleton +n05604434 abdominal wall +n05716342 lemon +n06008896 coordinate axis +n06209940 landscape +n06254669 medium +n06255081 vehicle +n06255613 paper +n06259898 channel, transmission channel +n06262567 film, cinema, celluloid +n06262943 silver screen +n06263202 free press +n06263369 press, public press +n06263609 print media +n06263762 storage medium, data-storage medium +n06263895 magnetic storage medium, magnetic medium, magnetic storage +n06266417 journalism, news media +n06266633 Fleet Street +n06266710 photojournalism +n06266878 news photography +n06266973 rotogravure +n06267145 newspaper, paper +n06267564 daily +n06267655 gazette +n06267758 school newspaper, school paper +n06267893 tabloid, rag, sheet +n06267991 yellow journalism, tabloid, tab +n06271778 telecommunication, telecom +n06272290 telephone, telephony +n06272612 voice mail, voicemail +n06272803 call, phone call, telephone call +n06273207 call-back +n06273294 collect call +n06273414 call forwarding +n06273555 call-in +n06273743 call waiting +n06273890 crank call +n06273986 local call +n06274092 long distance, long-distance call, trunk call +n06274292 toll call +n06274546 wake-up call +n06274760 three-way calling +n06274921 telegraphy +n06275095 cable, cablegram, overseas telegram +n06275353 wireless +n06275471 radiotelegraph, radiotelegraphy, wireless telegraphy +n06276501 radiotelephone, radiotelephony, wireless telephone +n06276697 broadcasting +n06276902 Rediffusion +n06277025 multiplex +n06277135 radio, radiocommunication, wireless +n06277280 television, telecasting, TV, video +n06278338 cable television, cable +n06278475 high-definition television, HDTV +n06281040 reception +n06281175 signal detection, detection +n06340977 Hakham +n06359193 web site, website, internet site, site +n06359467 chat room, chatroom +n06359657 portal site, portal +n06415688 jotter +n06417096 breviary +n06418693 wordbook +n06419354 desk dictionary, collegiate dictionary +n06423496 reckoner, ready reckoner +n06470073 document, written document, papers +n06591815 album, record album +n06592078 concept album +n06592281 rock opera +n06592421 tribute album, benefit album +n06595351 magazine, mag +n06596179 colour supplement +n06596364 comic book +n06596474 news magazine +n06596607 pulp, pulp magazine +n06596727 slick, slick magazine, glossy +n06596845 trade magazine +n06613686 movie, film, picture, moving picture, moving-picture show, motion picture, motion-picture show, picture show, pic, flick +n06614901 outtake +n06616216 shoot-'em-up +n06618653 spaghetti Western +n06625062 encyclical, encyclical letter +n06785654 crossword puzzle, crossword +n06793231 sign +n06794110 street sign +n06874185 traffic light, traffic signal, stoplight +n06883725 swastika, Hakenkreuz +n06892775 concert +n06998748 artwork, art, graphics, nontextual matter +n07005523 lobe +n07248320 book jacket, dust cover, dust jacket, dust wrapper +n07273802 cairn +n07461050 three-day event +n07556406 comfort food +n07556637 comestible, edible, eatable, pabulum, victual, victuals +n07556872 tuck +n07556970 course +n07557165 dainty, delicacy, goody, kickshaw, treat +n07557434 dish +n07560193 fast food +n07560331 finger food +n07560422 ingesta +n07560542 kosher +n07560652 fare +n07560903 diet +n07561112 diet +n07561590 dietary +n07561848 balanced diet +n07562017 bland diet, ulcer diet +n07562172 clear liquid diet +n07562379 diabetic diet +n07562495 dietary supplement +n07562651 carbohydrate loading, carbo loading +n07562881 fad diet +n07562984 gluten-free diet +n07563207 high-protein diet +n07563366 high-vitamin diet, vitamin-deficiency diet +n07563642 light diet +n07563800 liquid diet +n07564008 low-calorie diet +n07564101 low-fat diet +n07564292 low-sodium diet, low-salt diet, salt-free diet +n07564515 macrobiotic diet +n07564629 reducing diet, obesity diet +n07564796 soft diet, pap, spoon food +n07564971 vegetarianism +n07565083 menu +n07565161 chow, chuck, eats, grub +n07565259 board, table +n07565608 mess +n07565725 ration +n07565945 field ration +n07566092 K ration +n07566231 C-ration +n07566340 foodstuff, food product +n07566863 starches +n07567039 breadstuff +n07567139 coloring, colouring, food coloring, food colouring, food color, food colour +n07567390 concentrate +n07567611 tomato concentrate +n07567707 meal +n07567980 kibble +n07568095 cornmeal, Indian meal +n07568241 farina +n07568389 matzo meal, matzoh meal, matzah meal +n07568502 oatmeal, rolled oats +n07568625 pea flour +n07568818 roughage, fiber +n07568991 bran +n07569106 flour +n07569423 plain flour +n07569543 wheat flour +n07569644 whole wheat flour, graham flour, graham, whole meal flour +n07569873 soybean meal, soybean flour, soy flour +n07570021 semolina +n07570530 corn gluten feed +n07570720 nutriment, nourishment, nutrition, sustenance, aliment, alimentation, victuals +n07572353 commissariat, provisions, provender, viands, victuals +n07572616 larder +n07572858 frozen food, frozen foods +n07572957 canned food, canned foods, canned goods, tinned goods +n07573103 canned meat, tinned meat +n07573347 Spam +n07573453 dehydrated food, dehydrated foods +n07573563 square meal +n07573696 meal, repast +n07574176 potluck +n07574426 refection +n07574504 refreshment +n07574602 breakfast +n07574780 continental breakfast, petit dejeuner +n07574923 brunch +n07575076 lunch, luncheon, tiffin, dejeuner +n07575226 business lunch +n07575392 high tea +n07575510 tea, afternoon tea, teatime +n07575726 dinner +n07575984 supper +n07576182 buffet +n07576438 picnic +n07576577 cookout +n07576781 barbecue, barbeque +n07576969 clambake +n07577144 fish fry +n07577374 bite, collation, snack +n07577538 nosh +n07577657 nosh-up +n07577772 ploughman's lunch +n07577918 coffee break, tea break +n07578093 banquet, feast, spread +n07579575 entree, main course +n07579688 piece de resistance +n07579787 plate +n07579917 adobo +n07580053 side dish, side order, entremets +n07580253 special +n07580359 casserole +n07580470 chicken casserole +n07580592 chicken cacciatore, chicken cacciatora, hunter's chicken +n07581249 antipasto +n07581346 appetizer, appetiser, starter +n07581607 canape +n07581775 cocktail +n07581931 fruit cocktail +n07582027 crab cocktail +n07582152 shrimp cocktail +n07582277 hors d'oeuvre +n07582441 relish +n07582609 dip +n07582811 bean dip +n07582892 cheese dip +n07582970 clam dip +n07583066 guacamole +n07583197 soup +n07583865 soup du jour +n07583978 alphabet soup +n07584110 consomme +n07584228 madrilene +n07584332 bisque +n07584423 borsch, borsh, borscht, borsht, borshch, bortsch +n07584593 broth +n07584859 barley water +n07584938 bouillon +n07585015 beef broth, beef stock +n07585107 chicken broth, chicken stock +n07585208 broth, stock +n07585474 stock cube +n07585557 chicken soup +n07585644 cock-a-leekie, cocky-leeky +n07585758 gazpacho +n07585906 gumbo +n07585997 julienne +n07586099 marmite +n07586179 mock turtle soup +n07586318 mulligatawny +n07586485 oxtail soup +n07586604 pea soup +n07586718 pepper pot, Philadelphia pepper pot +n07586894 petite marmite, minestrone, vegetable soup +n07587023 potage, pottage +n07587111 pottage +n07587206 turtle soup, green turtle soup +n07587331 eggdrop soup +n07587441 chowder +n07587618 corn chowder +n07587700 clam chowder +n07587819 Manhattan clam chowder +n07587962 New England clam chowder +n07588111 fish chowder +n07588193 won ton, wonton, wonton soup +n07588299 split-pea soup +n07588419 green pea soup, potage St. Germain +n07588574 lentil soup +n07588688 Scotch broth +n07588817 vichyssoise +n07588947 stew +n07589458 bigos +n07589543 Brunswick stew +n07589724 burgoo +n07589872 burgoo +n07589967 olla podrida, Spanish burgoo +n07590068 mulligan stew, mulligan, Irish burgoo +n07590177 purloo, chicken purloo, poilu +n07590320 goulash, Hungarian goulash, gulyas +n07590502 hotchpotch +n07590611 hot pot, hotpot +n07590752 beef goulash +n07590841 pork-and-veal goulash +n07590974 porkholt +n07591049 Irish stew +n07591162 oyster stew +n07591236 lobster stew +n07591330 lobscouse, lobscuse, scouse +n07591473 fish stew +n07591586 bouillabaisse +n07591813 matelote +n07591961 paella +n07592094 fricassee +n07592317 chicken stew +n07592400 turkey stew +n07592481 beef stew +n07592656 ragout +n07592768 ratatouille +n07592922 salmi +n07593004 pot-au-feu +n07593107 slumgullion +n07593199 smorgasbord +n07593471 viand +n07593774 ready-mix +n07593972 brownie mix +n07594066 cake mix +n07594155 lemonade mix +n07594250 self-rising flour, self-raising flour +n07594737 choice morsel, tidbit, titbit +n07594840 savory, savoury +n07595051 calf's-foot jelly +n07595180 caramel, caramelized sugar +n07595368 lump sugar +n07595649 cane sugar +n07595751 castor sugar, caster sugar +n07595914 powdered sugar +n07596046 granulated sugar +n07596160 icing sugar +n07596362 corn sugar +n07596452 brown sugar +n07596566 demerara, demerara sugar +n07596684 sweet, confection +n07596967 confectionery +n07597145 confiture +n07597263 sweetmeat +n07597365 candy, confect +n07598256 candy bar +n07598529 carob bar +n07598622 hardbake +n07598734 hard candy +n07598928 barley-sugar, barley candy +n07599068 brandyball +n07599161 jawbreaker +n07599242 lemon drop +n07599383 sourball +n07599468 patty +n07599554 peppermint patty +n07599649 bonbon +n07599783 brittle, toffee, toffy +n07599911 peanut brittle +n07599998 chewing gum, gum +n07600177 gum ball +n07600285 bubble gum +n07600394 butterscotch +n07600506 candied fruit, succade, crystallized fruit +n07600696 candied apple, candy apple, taffy apple, caramel apple, toffee apple +n07600895 crystallized ginger +n07601025 grapefruit peel +n07601175 lemon peel +n07601290 orange peel +n07601407 candied citrus peel +n07601572 candy cane +n07601686 candy corn +n07601809 caramel +n07602650 center, centre +n07604956 comfit +n07605040 cotton candy, spun sugar, candyfloss +n07605198 dragee +n07605282 dragee +n07605380 fondant +n07605474 fudge +n07605597 chocolate fudge +n07605693 divinity, divinity fudge +n07605804 penuche, penoche, panoche, panocha +n07605944 gumdrop +n07606058 jujube +n07606191 honey crisp +n07606278 mint, mint candy +n07606419 horehound +n07606538 peppermint, peppermint candy +n07606669 jelly bean, jelly egg +n07606764 kiss, candy kiss +n07606933 molasses kiss +n07607027 meringue kiss +n07607138 chocolate kiss +n07607361 licorice, liquorice +n07607492 Life Saver +n07607605 lollipop, sucker, all-day sucker +n07607707 lozenge +n07607832 cachou +n07607967 cough drop, troche, pastille, pastil +n07608098 marshmallow +n07608245 marzipan, marchpane +n07608339 nougat +n07608429 nougat bar +n07608533 nut bar +n07608641 peanut bar +n07608721 popcorn ball +n07608866 praline +n07608980 rock candy +n07609083 rock candy, rock +n07609215 sugar candy +n07609316 sugarplum +n07609407 taffy +n07609549 molasses taffy +n07609632 truffle, chocolate truffle +n07609728 Turkish Delight +n07609840 dessert, sweet, afters +n07610295 ambrosia, nectar +n07610502 ambrosia +n07610620 baked Alaska +n07610746 blancmange +n07610890 charlotte +n07611046 compote, fruit compote +n07611148 dumpling +n07611267 flan +n07611358 frozen dessert +n07611733 junket +n07611839 mousse +n07611991 mousse +n07612137 pavlova +n07612273 peach melba +n07612367 whip +n07612530 prune whip +n07612632 pudding +n07612996 pudding, pud +n07613158 syllabub, sillabub +n07613266 tiramisu +n07613480 trifle +n07613671 tipsy cake +n07613815 jello, Jell-O +n07614103 apple dumpling +n07614198 ice, frappe +n07614348 water ice, sorbet +n07614500 ice cream, icecream +n07614730 ice-cream cone +n07614825 chocolate ice cream +n07615052 Neapolitan ice cream +n07615190 peach ice cream +n07615289 sherbert, sherbet +n07615460 strawberry ice cream +n07615569 tutti-frutti +n07615671 vanilla ice cream +n07615774 ice lolly, lolly, lollipop, popsicle +n07615954 ice milk +n07616046 frozen yogurt +n07616174 snowball +n07616265 snowball +n07616386 parfait +n07616487 ice-cream sundae, sundae +n07616590 split +n07616748 banana split +n07616906 frozen pudding +n07617051 frozen custard, soft ice cream +n07617188 pudding +n07617344 flummery +n07617447 fish mousse +n07617526 chicken mousse +n07617611 chocolate mousse +n07617708 plum pudding, Christmas pudding +n07617839 carrot pudding +n07617932 corn pudding +n07618029 steamed pudding +n07618119 duff, plum duff +n07618281 vanilla pudding +n07618432 chocolate pudding +n07618587 brown Betty +n07618684 Nesselrode, Nesselrode pudding +n07618871 pease pudding +n07619004 custard +n07619208 creme caramel +n07619301 creme anglais +n07619409 creme brulee +n07619508 fruit custard +n07619881 tapioca +n07620047 tapioca pudding +n07620145 roly-poly, roly-poly pudding +n07620327 suet pudding +n07620597 Bavarian cream +n07620689 maraschino, maraschino cherry +n07621264 nonpareil +n07621497 zabaglione, sabayon +n07621618 garnish +n07623136 pastry, pastry dough +n07624466 turnover +n07624666 apple turnover +n07624757 knish +n07624924 pirogi, piroshki, pirozhki +n07625061 samosa +n07625324 timbale +n07627931 puff paste, pate feuillete +n07628068 phyllo +n07628181 puff batter, pouf paste, pate a choux +n07631926 ice-cream cake, icebox cake +n07639069 doughnut, donut, sinker +n07641928 fish cake, fish ball +n07642361 fish stick, fish finger +n07642471 conserve, preserve, conserves, preserves +n07642742 apple butter +n07642833 chowchow +n07642933 jam +n07643026 lemon curd, lemon cheese +n07643200 strawberry jam, strawberry preserves +n07643306 jelly +n07643474 apple jelly +n07643577 crabapple jelly +n07643679 grape jelly +n07643764 marmalade +n07643891 orange marmalade +n07643981 gelatin, jelly +n07644244 gelatin dessert +n07648913 buffalo wing +n07648997 barbecued wing +n07650792 mess +n07650903 mince +n07651025 puree +n07654148 barbecue, barbeque +n07654298 biryani, biriani +n07655067 escalope de veau Orloff +n07655263 saute +n07663899 patty, cake +n07665438 veal parmesan, veal parmigiana +n07666176 veal cordon bleu +n07672914 margarine, margarin, oleo, oleomargarine, marge +n07678586 mincemeat +n07678729 stuffing, dressing +n07678953 turkey stuffing +n07679034 oyster stuffing, oyster dressing +n07679140 forcemeat, farce +n07679356 bread, breadstuff, staff of life +n07680168 anadama bread +n07680313 bap +n07680416 barmbrack +n07680517 breadstick, bread-stick +n07680655 grissino +n07680761 brown bread, Boston brown bread +n07680932 bun, roll +n07681264 tea bread +n07681355 caraway seed bread +n07681450 challah, hallah +n07681691 cinnamon bread +n07681805 cracked-wheat bread +n07681926 cracker +n07682197 crouton +n07682316 dark bread, whole wheat bread, whole meal bread, brown bread +n07682477 English muffin +n07682624 flatbread +n07682808 garlic bread +n07682952 gluten bread +n07683039 graham bread +n07683138 Host +n07683265 flatbrod +n07683360 bannock +n07683490 chapatti, chapati +n07683617 pita, pocket bread +n07683786 loaf of bread, loaf +n07684084 French loaf +n07684164 matzo, matzoh, matzah, unleavened bread +n07684289 nan, naan +n07684422 onion bread +n07684517 raisin bread +n07684600 quick bread +n07684938 banana bread +n07685031 date bread +n07685118 date-nut bread +n07685218 nut bread +n07685303 oatcake +n07685399 Irish soda bread +n07685546 skillet bread, fry bread +n07685730 rye bread +n07685918 black bread, pumpernickel +n07686021 Jewish rye bread, Jewish rye +n07686202 limpa +n07686299 Swedish rye bread, Swedish rye +n07686461 salt-rising bread +n07686634 simnel +n07686720 sour bread, sourdough bread +n07686873 toast +n07687053 wafer +n07687211 white bread, light bread +n07687381 baguet, baguette +n07687469 French bread +n07687626 Italian bread +n07687789 cornbread +n07688021 corn cake +n07688130 skillet corn bread +n07688265 ashcake, ash cake, corn tash +n07688412 hoecake +n07688624 cornpone, pone +n07688757 corn dab, corn dodger, dodger +n07688898 hush puppy, hushpuppy +n07689003 johnnycake, johnny cake, journey cake +n07689217 Shawnee cake +n07689313 spoon bread, batter bread +n07689490 cinnamon toast +n07689624 orange toast +n07689757 Melba toast +n07689842 zwieback, rusk, Brussels biscuit, twice-baked bread +n07690019 frankfurter bun, hotdog bun +n07690152 hamburger bun, hamburger roll +n07690273 muffin, gem +n07690431 bran muffin +n07690511 corn muffin +n07690585 Yorkshire pudding +n07690739 popover +n07690892 scone +n07691091 drop scone, griddlecake, Scotch pancake +n07691237 cross bun, hot cross bun +n07691539 brioche +n07691650 crescent roll, croissant +n07691758 hard roll, Vienna roll +n07691863 soft roll +n07691954 kaiser roll +n07692114 Parker House roll +n07692248 clover-leaf roll +n07692405 onion roll +n07692517 bialy, bialystoker +n07692614 sweet roll, coffee roll +n07692887 bear claw, bear paw +n07693048 cinnamon roll, cinnamon bun, cinnamon snail +n07693223 honey bun, sticky bun, caramel bun, schnecken +n07693439 pinwheel roll +n07693590 danish, danish pastry +n07693725 bagel, beigel +n07693889 onion bagel +n07693972 biscuit +n07694169 rolled biscuit +n07694403 baking-powder biscuit +n07694516 buttermilk biscuit, soda biscuit +n07694659 shortcake +n07694839 hardtack, pilot biscuit, pilot bread, sea biscuit, ship biscuit +n07695187 saltine +n07695284 soda cracker +n07695410 oyster cracker +n07695504 water biscuit +n07695652 graham cracker +n07695742 pretzel +n07695878 soft pretzel +n07695965 sandwich +n07696403 sandwich plate +n07696527 butty +n07696625 ham sandwich +n07696728 chicken sandwich +n07696839 club sandwich, three-decker, triple-decker +n07696977 open-face sandwich, open sandwich +n07697100 hamburger, beefburger, burger +n07697313 cheeseburger +n07697408 tunaburger +n07697537 hotdog, hot dog, red hot +n07697699 Sloppy Joe +n07697825 bomber, grinder, hero, hero sandwich, hoagie, hoagy, Cuban sandwich, Italian sandwich, poor boy, sub, submarine, submarine sandwich, torpedo, wedge, zep +n07698250 gyro +n07698401 bacon-lettuce-tomato sandwich, BLT +n07698543 Reuben +n07698672 western, western sandwich +n07698782 wrap +n07700003 spaghetti +n07703889 hasty pudding +n07704054 gruel +n07704205 congee, jook +n07704305 skilly +n07705931 edible fruit +n07707451 vegetable, veggie, veg +n07708124 julienne, julienne vegetable +n07708398 raw vegetable, rabbit food +n07708512 crudites +n07708685 celery stick +n07708798 legume +n07709046 pulse +n07709172 potherb +n07709333 greens, green, leafy vegetable +n07709701 chop-suey greens +n07709881 bean curd, tofu +n07710007 solanaceous vegetable +n07710283 root vegetable +n07710616 potato, white potato, Irish potato, murphy, spud, tater +n07710952 baked potato +n07711080 french fries, french-fried potatoes, fries, chips +n07711232 home fries, home-fried potatoes +n07711371 jacket potato +n07711569 mashed potato +n07711683 potato skin, potato peel, potato peelings +n07711799 Uruguay potato +n07711907 yam +n07712063 sweet potato +n07712267 yam +n07712382 snack food +n07712559 chip, crisp, potato chip, Saratoga chip +n07712748 corn chip +n07712856 tortilla chip +n07712959 nacho +n07713074 eggplant, aubergine, mad apple +n07713267 pieplant, rhubarb +n07713395 cruciferous vegetable +n07713763 mustard, mustard greens, leaf mustard, Indian mustard +n07713895 cabbage, chou +n07714078 kale, kail, cole +n07714188 collards, collard greens +n07714287 Chinese cabbage, celery cabbage, Chinese celery +n07714448 bok choy, bok choi +n07714571 head cabbage +n07714802 red cabbage +n07714895 savoy cabbage, savoy +n07714990 broccoli +n07715103 cauliflower +n07715221 brussels sprouts +n07715407 broccoli rabe, broccoli raab +n07715561 squash +n07715721 summer squash +n07716034 yellow squash +n07716203 crookneck, crookneck squash, summer crookneck +n07716358 zucchini, courgette +n07716504 marrow, vegetable marrow +n07716649 cocozelle +n07716750 pattypan squash +n07716906 spaghetti squash +n07717070 winter squash +n07717410 acorn squash +n07717556 butternut squash +n07717714 hubbard squash +n07717858 turban squash +n07718068 buttercup squash +n07718195 cushaw +n07718329 winter crookneck squash +n07718472 cucumber, cuke +n07718671 gherkin +n07718747 artichoke, globe artichoke +n07718920 artichoke heart +n07719058 Jerusalem artichoke, sunchoke +n07719213 asparagus +n07719330 bamboo shoot +n07719437 sprout +n07719616 bean sprout +n07719756 alfalfa sprout +n07719839 beet, beetroot +n07719980 beet green +n07720084 sugar beet +n07720185 mangel-wurzel +n07720277 chard, Swiss chard, spinach beet, leaf beet +n07720442 pepper +n07720615 sweet pepper +n07720875 bell pepper +n07721018 green pepper +n07721118 globe pepper +n07721195 pimento, pimiento +n07721325 hot pepper +n07721456 chili, chili pepper, chilli, chilly, chile +n07721678 jalapeno, jalapeno pepper +n07721833 chipotle +n07721942 cayenne, cayenne pepper +n07722052 tabasco, red pepper +n07722217 onion +n07722390 Bermuda onion +n07722485 green onion, spring onion, scallion +n07722666 Vidalia onion +n07722763 Spanish onion +n07722888 purple onion, red onion +n07723039 leek +n07723177 shallot +n07723330 salad green, salad greens +n07723559 lettuce +n07723753 butterhead lettuce +n07723968 buttercrunch +n07724078 Bibb lettuce +n07724173 Boston lettuce +n07724269 crisphead lettuce, iceberg lettuce, iceberg +n07724492 cos, cos lettuce, romaine, romaine lettuce +n07724654 leaf lettuce, loose-leaf lettuce +n07724819 celtuce +n07724943 bean, edible bean +n07725158 goa bean +n07725255 lentil +n07725376 pea +n07725531 green pea, garden pea +n07725663 marrowfat pea +n07725789 snow pea, sugar pea +n07725888 sugar snap pea +n07726009 split-pea +n07726095 chickpea, garbanzo +n07726230 cajan pea, pigeon pea, dahl +n07726386 field pea +n07726525 mushy peas +n07726672 black-eyed pea, cowpea +n07726796 common bean +n07727048 kidney bean +n07727140 navy bean, pea bean, white bean +n07727252 pinto bean +n07727377 frijole +n07727458 black bean, turtle bean +n07727578 fresh bean +n07727741 flageolet, haricot +n07727868 green bean +n07728053 snap bean, snap +n07728181 string bean +n07728284 Kentucky wonder, Kentucky wonder bean +n07728391 scarlet runner, scarlet runner bean, runner bean, English runner bean +n07728585 haricot vert, haricots verts, French bean +n07728708 wax bean, yellow bean +n07728804 shell bean +n07729000 lima bean +n07729142 Fordhooks +n07729225 sieva bean, butter bean, butterbean, civet bean +n07729384 fava bean, broad bean +n07729485 soy, soybean, soya, soya bean +n07729828 green soybean +n07729926 field soybean +n07730033 cardoon +n07730207 carrot +n07730320 carrot stick +n07730406 celery +n07730562 pascal celery, Paschal celery +n07730708 celeriac, celery root +n07730855 chicory, curly endive +n07731006 radicchio +n07731122 coffee substitute +n07731284 chicory, chicory root +n07731436 Postum +n07731587 chicory escarole, endive, escarole +n07731767 Belgian endive, French endive, witloof +n07731952 corn, edible corn +n07732168 sweet corn, green corn +n07732302 hominy +n07732433 lye hominy +n07732525 pearl hominy +n07732636 popcorn +n07732747 cress +n07732904 watercress +n07733005 garden cress +n07733124 winter cress +n07733217 dandelion green +n07733394 gumbo, okra +n07733567 kohlrabi, turnip cabbage +n07733712 lamb's-quarter, pigweed, wild spinach +n07733847 wild spinach +n07734017 tomato +n07734183 beefsteak tomato +n07734292 cherry tomato +n07734417 plum tomato +n07734555 tomatillo, husk tomato, Mexican husk tomato +n07734744 mushroom +n07734879 stuffed mushroom +n07735052 salsify +n07735179 oyster plant, vegetable oyster +n07735294 scorzonera, black salsify +n07735404 parsnip +n07735510 pumpkin +n07735687 radish +n07735803 turnip +n07735981 white turnip +n07736087 rutabaga, swede, swedish turnip, yellow turnip +n07736256 turnip greens +n07736371 sorrel, common sorrel +n07736527 French sorrel +n07736692 spinach +n07736813 taro, taro root, cocoyam, dasheen, edda +n07736971 truffle, earthnut +n07737081 edible nut +n07737594 bunya bunya +n07737745 peanut, earthnut, goober, goober pea, groundnut, monkey nut +n07738105 freestone +n07738224 cling, clingstone +n07739035 windfall +n07739125 apple +n07739344 crab apple, crabapple +n07739506 eating apple, dessert apple +n07739923 Baldwin +n07740033 Cortland +n07740115 Cox's Orange Pippin +n07740220 Delicious +n07740342 Golden Delicious, Yellow Delicious +n07740461 Red Delicious +n07740597 Empire +n07740744 Grimes' golden +n07740855 Jonathan +n07740954 McIntosh +n07741138 Macoun +n07741235 Northern Spy +n07741357 Pearmain +n07741461 Pippin +n07741623 Prima +n07741706 Stayman +n07741804 Winesap +n07741888 Stayman Winesap +n07742012 cooking apple +n07742224 Bramley's Seedling +n07742313 Granny Smith +n07742415 Lane's Prince Albert +n07742513 Newtown Wonder +n07742605 Rome Beauty +n07742704 berry +n07743224 bilberry, whortleberry, European blueberry +n07743384 huckleberry +n07743544 blueberry +n07743723 wintergreen, boxberry, checkerberry, teaberry, spiceberry +n07743902 cranberry +n07744057 lingonberry, mountain cranberry, cowberry, lowbush cranberry +n07744246 currant +n07744430 gooseberry +n07744559 black currant +n07744682 red currant +n07744811 blackberry +n07745046 boysenberry +n07745197 dewberry +n07745357 loganberry +n07745466 raspberry +n07745661 saskatoon, serviceberry, shadberry, juneberry +n07745940 strawberry +n07746038 sugarberry, hackberry +n07746186 persimmon +n07746334 acerola, barbados cherry, surinam cherry, West Indian cherry +n07746551 carambola, star fruit +n07746749 ceriman, monstera +n07746910 carissa plum, natal plum +n07747055 citrus, citrus fruit, citrous fruit +n07747607 orange +n07747811 temple orange +n07747951 mandarin, mandarin orange +n07748157 clementine +n07748276 satsuma +n07748416 tangerine +n07748574 tangelo, ugli, ugli fruit +n07748753 bitter orange, Seville orange, sour orange +n07748912 sweet orange +n07749095 Jaffa orange +n07749192 navel orange +n07749312 Valencia orange +n07749446 kumquat +n07749582 lemon +n07749731 lime +n07749870 key lime +n07749969 grapefruit +n07750146 pomelo, shaddock +n07750299 citrange +n07750449 citron +n07750586 almond +n07750736 Jordan almond +n07750872 apricot +n07751004 peach +n07751148 nectarine +n07751280 pitahaya +n07751451 plum +n07751737 damson, damson plum +n07751858 greengage, greengage plum +n07751977 beach plum +n07752109 sloe +n07752264 Victoria plum +n07752377 dried fruit +n07752514 dried apricot +n07752602 prune +n07752664 raisin +n07752782 seedless raisin, sultana +n07752874 seeded raisin +n07752966 currant +n07753113 fig +n07753275 pineapple, ananas +n07753448 anchovy pear, river pear +n07753592 banana +n07753743 passion fruit +n07753980 granadilla +n07754155 sweet calabash +n07754279 bell apple, sweet cup, water lemon, yellow granadilla +n07754451 breadfruit +n07754684 jackfruit, jak, jack +n07754894 cacao bean, cocoa bean +n07755089 cocoa +n07755262 canistel, eggfruit +n07755411 melon +n07755619 melon ball +n07755707 muskmelon, sweet melon +n07755929 cantaloup, cantaloupe +n07756096 winter melon +n07756325 honeydew, honeydew melon +n07756499 Persian melon +n07756641 net melon, netted melon, nutmeg melon +n07756838 casaba, casaba melon +n07756951 watermelon +n07757132 cherry +n07757312 sweet cherry, black cherry +n07757511 bing cherry +n07757602 heart cherry, oxheart, oxheart cherry +n07757753 blackheart, blackheart cherry +n07757874 capulin, Mexican black cherry +n07757990 sour cherry +n07758125 amarelle +n07758260 morello +n07758407 cocoa plum, coco plum, icaco +n07758582 gherkin +n07758680 grape +n07758950 fox grape +n07759194 Concord grape +n07759324 Catawba +n07759424 muscadine, bullace grape +n07759576 scuppernong +n07759691 slipskin grape +n07759816 vinifera grape +n07760070 emperor +n07760153 muscat, muscatel, muscat grape +n07760297 ribier +n07760395 sultana +n07760501 Tokay +n07760673 flame tokay +n07760755 Thompson Seedless +n07760859 custard apple +n07761141 cherimoya, cherimolla +n07761309 soursop, guanabana +n07761611 sweetsop, annon, sugar apple +n07761777 ilama +n07761954 pond apple +n07762114 papaw, pawpaw +n07762244 papaya +n07762373 kai apple +n07762534 ketembilla, kitembilla, kitambilla +n07762740 ackee, akee +n07762913 durian +n07763107 feijoa, pineapple guava +n07763290 genip, Spanish lime +n07763483 genipap, genipap fruit +n07763629 kiwi, kiwi fruit, Chinese gooseberry +n07763792 loquat, Japanese plum +n07763987 mangosteen +n07764155 mango +n07764315 sapodilla, sapodilla plum, sapota +n07764486 sapote, mammee, marmalade plum +n07764630 tamarind, tamarindo +n07764847 avocado, alligator pear, avocado pear, aguacate +n07765073 date +n07765208 elderberry +n07765361 guava +n07765517 mombin +n07765612 hog plum, yellow mombin +n07765728 hog plum, wild plum +n07765862 jaboticaba +n07765999 jujube, Chinese date, Chinese jujube +n07766173 litchi, litchi nut, litchee, lichi, leechee, lichee, lychee +n07766409 longanberry, dragon's eye +n07766530 mamey, mammee, mammee apple +n07766723 marang +n07766891 medlar +n07767002 medlar +n07767171 mulberry +n07767344 olive +n07767549 black olive, ripe olive +n07767709 green olive +n07767847 pear +n07768068 bosc +n07768139 anjou +n07768230 bartlett, bartlett pear +n07768318 seckel, seckel pear +n07768423 plantain +n07768590 plumcot +n07768694 pomegranate +n07768858 prickly pear +n07769102 Barbados gooseberry, blade apple +n07769306 quandong, quandang, quantong, native peach +n07769465 quandong nut +n07769584 quince +n07769731 rambutan, rambotan +n07769886 pulasan, pulassan +n07770034 rose apple +n07770180 sorb, sorb apple +n07770439 sour gourd, monkey bread +n07770571 edible seed +n07770763 pumpkin seed +n07770869 betel nut, areca nut +n07771082 beechnut +n07771212 walnut +n07771405 black walnut +n07771539 English walnut +n07771731 brazil nut, brazil +n07771891 butternut +n07772026 souari nut +n07772147 cashew, cashew nut +n07772274 chestnut +n07772413 chincapin, chinkapin, chinquapin +n07772788 hazelnut, filbert, cobnut, cob +n07772935 coconut, cocoanut +n07773428 coconut milk, coconut water +n07774182 grugru nut +n07774295 hickory nut +n07774479 cola extract +n07774596 macadamia nut +n07774719 pecan +n07774842 pine nut, pignolia, pinon nut +n07775050 pistachio, pistachio nut +n07775197 sunflower seed +n07783827 anchovy paste +n07785487 rollmops +n07800091 feed, provender +n07800487 cattle cake +n07800636 creep feed +n07800740 fodder +n07801007 feed grain +n07801091 eatage, forage, pasture, pasturage, grass +n07801342 silage, ensilage +n07801508 oil cake +n07801709 oil meal +n07801779 alfalfa +n07801892 broad bean, horse bean +n07802026 hay +n07802152 timothy +n07802246 stover +n07802417 grain, food grain, cereal +n07802767 grist +n07802863 groats +n07802963 millet +n07803093 barley, barleycorn +n07803213 pearl barley +n07803310 buckwheat +n07803408 bulgur, bulghur, bulgur wheat +n07803545 wheat, wheat berry +n07803779 cracked wheat +n07803895 stodge +n07803992 wheat germ +n07804152 oat +n07804323 rice +n07804543 brown rice +n07804657 white rice, polished rice +n07804771 wild rice, Indian rice +n07804900 paddy +n07805006 slop, slops, swill, pigswill, pigwash +n07805254 mash +n07805389 chicken feed, scratch +n07805478 cud, rechewed food +n07805594 bird feed, bird food, birdseed +n07805731 petfood, pet-food, pet food +n07805966 dog food +n07806043 cat food +n07806120 canary seed +n07806221 salad +n07806633 tossed salad +n07806774 green salad +n07806879 Caesar salad +n07807002 salmagundi +n07807171 salad nicoise +n07807317 combination salad +n07807472 chef's salad +n07807594 potato salad +n07807710 pasta salad +n07807834 macaroni salad +n07807922 fruit salad +n07808022 Waldorf salad +n07808166 crab Louis +n07808268 herring salad +n07808352 tuna fish salad, tuna salad +n07808479 chicken salad +n07808587 coleslaw, slaw +n07808675 aspic +n07808806 molded salad +n07808904 tabbouleh, tabooli +n07809096 ingredient, fixings +n07809368 flavorer, flavourer, flavoring, flavouring, seasoner, seasoning +n07810531 bouillon cube +n07810907 condiment +n07811416 herb +n07812046 fines herbes +n07812184 spice +n07812662 spearmint oil +n07812790 lemon oil +n07812913 wintergreen oil, oil of wintergreen +n07813107 salt, table salt, common salt +n07813324 celery salt +n07813495 onion salt +n07813579 seasoned salt +n07813717 sour salt +n07813833 five spice powder +n07814007 allspice +n07814203 cinnamon +n07814390 stick cinnamon +n07814487 clove +n07814634 cumin, cumin seed +n07814790 fennel +n07814925 ginger, gingerroot +n07815163 ginger, powdered ginger +n07815294 mace +n07815424 nutmeg +n07815588 pepper, peppercorn +n07815839 black pepper +n07815956 white pepper +n07816052 sassafras +n07816164 basil, sweet basil +n07816296 bay leaf +n07816398 borage +n07816575 hyssop +n07816726 caraway +n07816839 chervil +n07817024 chives +n07817160 comfrey, healing herb +n07817315 coriander, Chinese parsley, cilantro +n07817465 coriander, coriander seed +n07817599 costmary +n07817758 fennel, common fennel +n07817871 fennel, Florence fennel, finocchio +n07818029 fennel seed +n07818133 fenugreek, fenugreek seed +n07818277 garlic, ail +n07818422 clove, garlic clove +n07818572 garlic chive +n07818689 lemon balm +n07818825 lovage +n07818995 marjoram, oregano +n07819166 mint +n07819303 mustard seed +n07819480 mustard, table mustard +n07819682 Chinese mustard +n07819769 nasturtium +n07819896 parsley +n07820036 salad burnet +n07820145 rosemary +n07820297 rue +n07820497 sage +n07820683 clary sage +n07820814 savory, savoury +n07820960 summer savory, summer savoury +n07821107 winter savory, winter savoury +n07821260 sweet woodruff, waldmeister +n07821404 sweet cicely +n07821610 tarragon, estragon +n07821758 thyme +n07821919 turmeric +n07822053 caper +n07822197 catsup, ketchup, cetchup, tomato ketchup +n07822323 cardamom, cardamon, cardamum +n07822518 cayenne, cayenne pepper, red pepper +n07822687 chili powder +n07822845 chili sauce +n07823105 chutney, Indian relish +n07823280 steak sauce +n07823369 taco sauce +n07823460 salsa +n07823591 mint sauce +n07823698 cranberry sauce +n07823814 curry powder +n07823951 curry +n07824191 lamb curry +n07824268 duck sauce, hoisin sauce +n07824383 horseradish +n07824502 marinade +n07824702 paprika +n07824863 Spanish paprika +n07824988 pickle +n07825194 dill pickle +n07825399 bread and butter pickle +n07825496 pickle relish +n07825597 piccalilli +n07825717 sweet pickle +n07825850 applesauce, apple sauce +n07825972 soy sauce, soy +n07826091 Tabasco, Tabasco sauce +n07826250 tomato paste +n07826340 angelica +n07826453 angelica +n07826544 almond extract +n07826653 anise, aniseed, anise seed +n07826930 Chinese anise, star anise, star aniseed +n07827130 juniper berries +n07827284 saffron +n07827410 sesame seed, benniseed +n07827554 caraway seed +n07827750 poppy seed +n07827896 dill, dill weed +n07828041 dill seed +n07828156 celery seed +n07828275 lemon extract +n07828378 monosodium glutamate, MSG +n07828642 vanilla bean +n07828987 vinegar, acetum +n07829248 cider vinegar +n07829331 wine vinegar +n07829412 sauce +n07830493 anchovy sauce +n07830593 hot sauce +n07830690 hard sauce +n07830841 horseradish sauce, sauce Albert +n07830986 bolognese pasta sauce +n07831146 carbonara +n07831267 tomato sauce +n07831450 tartare sauce, tartar sauce +n07831663 wine sauce +n07831821 marchand de vin, mushroom wine sauce +n07831955 bread sauce +n07832099 plum sauce +n07832202 peach sauce +n07832307 apricot sauce +n07832416 pesto +n07832592 ravigote, ravigotte +n07832741 remoulade sauce +n07832902 dressing, salad dressing +n07833333 sauce Louis +n07833535 bleu cheese dressing, blue cheese dressing +n07833672 blue cheese dressing, Roquefort dressing +n07833816 French dressing, vinaigrette, sauce vinaigrette +n07833951 Lorenzo dressing +n07834065 anchovy dressing +n07834160 Italian dressing +n07834286 half-and-half dressing +n07834507 mayonnaise, mayo +n07834618 green mayonnaise, sauce verte +n07834774 aioli, aioli sauce, garlic sauce +n07834872 Russian dressing, Russian mayonnaise +n07835051 salad cream +n07835173 Thousand Island dressing +n07835331 barbecue sauce +n07835457 hollandaise +n07835547 bearnaise +n07835701 Bercy, Bercy butter +n07835823 bordelaise +n07835921 bourguignon, bourguignon sauce, Burgundy sauce +n07836077 brown sauce, sauce Espagnole +n07836269 Espagnole, sauce Espagnole +n07836456 Chinese brown sauce, brown sauce +n07836600 blanc +n07836731 cheese sauce +n07836838 chocolate sauce, chocolate syrup +n07837002 hot-fudge sauce, fudge sauce +n07837110 cocktail sauce, seafood sauce +n07837234 Colbert, Colbert butter +n07837362 white sauce, bechamel sauce, bechamel +n07837545 cream sauce +n07837630 Mornay sauce +n07837755 demiglace, demi-glaze +n07837912 gravy, pan gravy +n07838073 gravy +n07838233 spaghetti sauce, pasta sauce +n07838441 marinara +n07838551 mole +n07838659 hunter's sauce, sauce chausseur +n07838811 mushroom sauce +n07838905 mustard sauce +n07839055 Nantua, shrimp sauce +n07839172 Hungarian sauce, paprika sauce +n07839312 pepper sauce, Poivrade +n07839478 roux +n07839593 Smitane +n07839730 Soubise, white onion sauce +n07839864 Lyonnaise sauce, brown onion sauce +n07840027 veloute +n07840124 allemande, allemande sauce +n07840219 caper sauce +n07840304 poulette +n07840395 curry sauce +n07840520 Worcester sauce, Worcestershire, Worcestershire sauce +n07840672 coconut milk, coconut cream +n07840804 egg, eggs +n07841037 egg white, white, albumen, ovalbumin +n07841345 egg yolk, yolk +n07841495 boiled egg, coddled egg +n07841639 hard-boiled egg, hard-cooked egg +n07841800 Easter egg +n07841907 Easter egg +n07842044 chocolate egg +n07842130 candy egg +n07842202 poached egg, dropped egg +n07842308 scrambled eggs +n07842433 deviled egg, stuffed egg +n07842605 shirred egg, baked egg, egg en cocotte +n07842753 omelet, omelette +n07842972 firm omelet +n07843117 French omelet +n07843220 fluffy omelet +n07843348 western omelet +n07843464 souffle +n07843636 fried egg +n07843775 dairy product +n07844042 milk +n07844604 milk +n07844786 sour milk +n07844867 soya milk, soybean milk, soymilk +n07845087 formula +n07845166 pasteurized milk +n07845335 cows' milk +n07845421 yak's milk +n07845495 goats' milk +n07845571 acidophilus milk +n07845702 raw milk +n07845775 scalded milk +n07845863 homogenized milk +n07846014 certified milk +n07846143 powdered milk, dry milk, dried milk, milk powder +n07846274 nonfat dry milk +n07846359 evaporated milk +n07846471 condensed milk +n07846557 skim milk, skimmed milk +n07846688 semi-skimmed milk +n07846802 whole milk +n07846938 low-fat milk +n07847047 buttermilk +n07847198 cream +n07847453 clotted cream, Devonshire cream +n07847585 double creme, heavy whipping cream +n07847706 half-and-half +n07847827 heavy cream +n07847917 light cream, coffee cream, single cream +n07848093 sour cream, soured cream +n07848196 whipping cream, light whipping cream +n07848338 butter +n07848771 clarified butter, drawn butter +n07848936 ghee +n07849026 brown butter, beurre noisette +n07849186 Meuniere butter, lemon butter +n07849336 yogurt, yoghurt, yoghourt +n07849506 blueberry yogurt +n07849619 raita +n07849733 whey +n07849912 curd +n07850083 curd +n07850219 clabber +n07850329 cheese +n07851054 paring +n07851298 cream cheese +n07851443 double cream +n07851554 mascarpone +n07851641 triple cream, triple creme +n07851767 cottage cheese, pot cheese, farm cheese, farmer's cheese +n07851926 process cheese, processed cheese +n07852045 bleu, blue cheese +n07852229 Stilton +n07852302 Roquefort +n07852376 gorgonzola +n07852452 Danish blue +n07852532 Bavarian blue +n07852614 Brie +n07852712 brick cheese +n07852833 Camembert +n07852919 cheddar, cheddar cheese, Armerican cheddar, American cheese +n07853125 rat cheese, store cheese +n07853232 Cheshire cheese +n07853345 double Gloucester +n07853445 Edam +n07853560 goat cheese, chevre +n07853648 Gouda, Gouda cheese +n07853762 grated cheese +n07853852 hand cheese +n07853946 Liederkranz +n07854066 Limburger +n07854184 mozzarella +n07854266 Muenster +n07854348 Parmesan +n07854455 quark cheese, quark +n07854614 ricotta +n07854707 string cheese +n07854813 Swiss cheese +n07854982 Emmenthal, Emmental, Emmenthaler, Emmentaler +n07855105 Gruyere +n07855188 sapsago +n07855317 Velveeta +n07855413 nut butter +n07855510 peanut butter +n07855603 marshmallow fluff +n07855721 onion butter +n07855812 pimento butter +n07855907 shrimp butter +n07856045 lobster butter +n07856186 yak butter +n07856270 spread, paste +n07856756 cheese spread +n07856895 anchovy butter +n07856992 fishpaste +n07857076 garlic butter +n07857170 miso +n07857356 wasabi +n07857598 snail butter +n07857731 hummus, humus, hommos, hoummos, humous +n07857959 pate +n07858114 duck pate +n07858197 foie gras, pate de foie gras +n07858336 tapenade +n07858484 tahini +n07858595 sweetening, sweetener +n07858841 aspartame +n07858978 honey +n07859142 saccharin +n07859284 sugar, refined sugar +n07859583 syrup, sirup +n07859796 sugar syrup +n07859951 molasses +n07860103 sorghum, sorghum molasses +n07860208 treacle, golden syrup +n07860331 grenadine +n07860447 maple syrup +n07860548 corn syrup +n07860629 miraculous food, manna, manna from heaven +n07860805 batter +n07860988 dough +n07861158 bread dough +n07861247 pancake batter +n07861334 fritter batter +n07861557 coq au vin +n07861681 chicken provencale +n07861813 chicken and rice +n07861983 moo goo gai pan +n07862095 arroz con pollo +n07862244 bacon and eggs +n07862348 barbecued spareribs, spareribs +n07862461 beef Bourguignonne, boeuf Bourguignonne +n07862611 beef Wellington, filet de boeuf en croute +n07862770 bitok +n07862946 boiled dinner, New England boiled dinner +n07863107 Boston baked beans +n07863229 bubble and squeak +n07863374 pasta +n07863547 cannelloni +n07863644 carbonnade flamande, Belgian beef stew +n07863802 cheese souffle +n07863935 chicken Marengo +n07864065 chicken cordon bleu +n07864198 Maryland chicken +n07864317 chicken paprika, chicken paprikash +n07864475 chicken Tetrazzini +n07864638 Tetrazzini +n07864756 chicken Kiev +n07864934 chili, chili con carne +n07865105 chili dog +n07865196 chop suey +n07865484 chow mein +n07865575 codfish ball, codfish cake +n07865700 coquille +n07865788 coquilles Saint-Jacques +n07866015 croquette +n07866151 cottage pie +n07866277 rissole +n07866409 dolmas, stuffed grape leaves +n07866571 egg foo yong, egg fu yung +n07866723 egg roll, spring roll +n07866868 eggs Benedict +n07867021 enchilada +n07867164 falafel, felafel +n07867324 fish and chips +n07867421 fondue, fondu +n07867616 cheese fondue +n07867751 chocolate fondue +n07867883 fondue, fondu +n07868045 beef fondue, boeuf fondu bourguignon +n07868200 French toast +n07868340 fried rice, Chinese fried rice +n07868508 frittata +n07868684 frog legs +n07868830 galantine +n07868955 gefilte fish, fish ball +n07869111 haggis +n07869291 ham and eggs +n07869391 hash +n07869522 corned beef hash +n07869611 jambalaya +n07869775 kabob, kebab, shish kebab +n07869937 kedgeree +n07870069 souvlaki, souvlakia +n07870167 lasagna, lasagne +n07870313 seafood Newburg +n07870478 lobster Newburg, lobster a la Newburg +n07870620 shrimp Newburg +n07870734 Newburg sauce +n07870894 lobster thermidor +n07871065 lutefisk, lutfisk +n07871234 macaroni and cheese +n07871335 macedoine +n07871436 meatball +n07871588 porcupine ball, porcupines +n07871720 Swedish meatball +n07871810 meat loaf, meatloaf +n07872593 moussaka +n07872748 osso buco +n07873057 marrow, bone marrow +n07873198 pheasant under glass +n07873348 pigs in blankets +n07873464 pilaf, pilaff, pilau, pilaw +n07873679 bulgur pilaf +n07873807 pizza, pizza pie +n07874063 sausage pizza +n07874159 pepperoni pizza +n07874259 cheese pizza +n07874343 anchovy pizza +n07874441 Sicilian pizza +n07874531 poi +n07874674 pork and beans +n07874780 porridge +n07874995 oatmeal, burgoo +n07875086 loblolly +n07875152 potpie +n07875267 rijsttaffel, rijstaffel, rijstafel +n07875436 risotto, Italian rice +n07875560 roulade +n07875693 fish loaf +n07875835 salmon loaf +n07875926 Salisbury steak +n07876026 sauerbraten +n07876189 sauerkraut +n07876281 scallopine, scallopini +n07876460 veal scallopini +n07876550 scampi +n07876651 Scotch egg +n07876775 Scotch woodcock +n07876893 scrapple +n07877187 spaghetti and meatballs +n07877299 Spanish rice +n07877675 steak tartare, tartar steak, cannibal mound +n07877849 pepper steak +n07877961 steak au poivre, peppered steak, pepper steak +n07878145 beef Stroganoff +n07878283 stuffed cabbage +n07878479 kishke, stuffed derma +n07878647 stuffed peppers +n07878785 stuffed tomato, hot stuffed tomato +n07878926 stuffed tomato, cold stuffed tomato +n07879072 succotash +n07879174 sukiyaki +n07879350 sashimi +n07879450 sushi +n07879560 Swiss steak +n07879659 tamale +n07879821 tamale pie +n07879953 tempura +n07880080 teriyaki +n07880213 terrine +n07880325 Welsh rarebit, Welsh rabbit, rarebit +n07880458 schnitzel, Wiener schnitzel +n07880751 taco +n07880880 chicken taco +n07880968 burrito +n07881117 beef burrito +n07881205 quesadilla +n07881404 tostada +n07881525 bean tostada +n07881625 refried beans, frijoles refritos +n07881800 beverage, drink, drinkable, potable +n07882420 wish-wash +n07882497 concoction, mixture, intermixture +n07882886 mix, premix +n07883031 filling +n07883156 lekvar +n07883251 potion +n07883384 elixir +n07883510 elixir of life +n07883661 philter, philtre, love-potion, love-philter, love-philtre +n07884567 alcohol, alcoholic drink, alcoholic beverage, intoxicant, inebriant +n07885705 proof spirit +n07886057 home brew, homebrew +n07886176 hooch, hootch +n07886317 kava, kavakava +n07886463 aperitif +n07886572 brew, brewage +n07886849 beer +n07887099 draft beer, draught beer +n07887192 suds +n07887304 Munich beer, Munchener +n07887461 bock, bock beer +n07887634 lager, lager beer +n07887967 light beer +n07888058 Oktoberfest, Octoberfest +n07888229 Pilsner, Pilsener +n07888378 shebeen +n07888465 Weissbier, white beer, wheat beer +n07888816 Weizenbock +n07888909 malt +n07889193 wort +n07889274 malt, malt liquor +n07889510 ale +n07889814 bitter +n07889990 Burton +n07890068 pale ale +n07890226 porter, porter's beer +n07890352 stout +n07890540 Guinness +n07890617 kvass +n07890750 mead +n07890890 metheglin +n07890970 hydromel +n07891095 oenomel +n07891189 near beer +n07891309 ginger beer +n07891433 sake, saki, rice beer +n07891726 wine, vino +n07892418 vintage +n07892512 red wine +n07892813 white wine +n07893253 blush wine, pink wine, rose, rose wine +n07893425 altar wine, sacramental wine +n07893528 sparkling wine +n07893642 champagne, bubbly +n07893792 cold duck +n07893891 Burgundy, Burgundy wine +n07894102 Beaujolais +n07894298 Medoc +n07894451 Canary wine +n07894551 Chablis, white Burgundy +n07894703 Montrachet +n07894799 Chardonnay, Pinot Chardonnay +n07894965 Pinot noir +n07895100 Pinot blanc +n07895237 Bordeaux, Bordeaux wine +n07895435 claret, red Bordeaux +n07895595 Chianti +n07895710 Cabernet, Cabernet Sauvignon +n07895839 Merlot +n07895962 Sauvignon blanc +n07896060 California wine +n07896165 Cotes de Provence +n07896287 dessert wine +n07896422 Dubonnet +n07896560 jug wine +n07896661 macon, maconnais +n07896765 Moselle +n07896893 Muscadet +n07896994 plonk +n07897116 retsina +n07897200 Rhine wine, Rhenish, hock +n07897438 Riesling +n07897600 liebfraumilch +n07897750 Rhone wine +n07897865 Rioja +n07897975 sack +n07898117 Saint Emilion +n07898247 Soave +n07898333 zinfandel +n07898443 Sauterne, Sauternes +n07898617 straw wine +n07898745 table wine +n07898895 Tokay +n07899003 vin ordinaire +n07899108 vermouth +n07899292 sweet vermouth, Italian vermouth +n07899434 dry vermouth, French vermouth +n07899533 Chenin blanc +n07899660 Verdicchio +n07899769 Vouvray +n07899899 Yquem +n07899976 generic, generic wine +n07900225 varietal, varietal wine +n07900406 fortified wine +n07900616 Madeira +n07900734 malmsey +n07900825 port, port wine +n07900958 sherry +n07901355 Marsala +n07901457 muscat, muscatel, muscadel, muscadelle +n07901587 liquor, spirits, booze, hard drink, hard liquor, John Barleycorn, strong drink +n07902121 neutral spirits, ethyl alcohol +n07902336 aqua vitae, ardent spirits +n07902443 eau de vie +n07902520 moonshine, bootleg, corn liquor +n07902698 bathtub gin +n07902799 aquavit, akvavit +n07902937 arrack, arak +n07903101 bitters +n07903208 brandy +n07903543 applejack +n07903643 Calvados +n07903731 Armagnac +n07903841 Cognac +n07903962 grappa +n07904072 kirsch +n07904293 slivovitz +n07904395 gin +n07904637 sloe gin +n07904760 geneva, Holland gin, Hollands +n07904865 grog +n07904934 ouzo +n07905038 rum +n07905296 demerara, demerara rum +n07905386 Jamaica rum +n07905474 schnapps, schnaps +n07905618 pulque +n07905770 mescal +n07905979 tequila +n07906111 vodka +n07906284 whiskey, whisky +n07906572 blended whiskey, blended whisky +n07906718 bourbon +n07906877 corn whiskey, corn whisky, corn +n07907037 firewater +n07907161 Irish, Irish whiskey, Irish whisky +n07907342 poteen +n07907429 rye, rye whiskey, rye whisky +n07907548 Scotch, Scotch whiskey, Scotch whisky, malt whiskey, malt whisky, Scotch malt whiskey, Scotch malt whisky +n07907831 sour mash, sour mash whiskey +n07907943 liqueur, cordial +n07908411 absinth, absinthe +n07908567 amaretto +n07908647 anisette, anisette de Bordeaux +n07908812 benedictine +n07908923 Chartreuse +n07909129 coffee liqueur +n07909231 creme de cacao +n07909362 creme de menthe +n07909504 creme de fraise +n07909593 Drambuie +n07909714 Galliano +n07909811 orange liqueur +n07909954 curacao, curacoa +n07910048 triple sec +n07910152 Grand Marnier +n07910245 kummel +n07910379 maraschino, maraschino liqueur +n07910538 pastis +n07910656 Pernod +n07910799 pousse-cafe +n07910970 Kahlua +n07911061 ratafia, ratafee +n07911249 sambuca +n07911371 mixed drink +n07911677 cocktail +n07912093 Dom Pedro +n07912211 highball +n07913180 mixer +n07913300 bishop +n07913393 Bloody Mary +n07913537 Virgin Mary, bloody shame +n07913644 bullshot +n07913774 cobbler +n07913882 collins, Tom Collins +n07914006 cooler +n07914128 refresher +n07914271 smoothie +n07914413 daiquiri, rum cocktail +n07914586 strawberry daiquiri +n07914686 NADA daiquiri +n07914777 spritzer +n07914887 flip +n07914995 gimlet +n07915094 gin and tonic +n07915213 grasshopper +n07915366 Harvey Wallbanger +n07915491 julep, mint julep +n07915618 manhattan +n07915800 Rob Roy +n07915918 margarita +n07916041 martini +n07916183 gin and it +n07916319 vodka martini +n07916437 old fashioned +n07916582 pink lady +n07917133 Sazerac +n07917272 screwdriver +n07917392 sidecar +n07917507 Scotch and soda +n07917618 sling +n07917791 brandy sling +n07917874 gin sling +n07917951 rum sling +n07918028 sour +n07918193 whiskey sour, whisky sour +n07918309 stinger +n07918706 swizzle +n07918879 hot toddy, toddy +n07919165 zombie, zombi +n07919310 fizz +n07919441 Irish coffee +n07919572 cafe au lait +n07919665 cafe noir, demitasse +n07919787 decaffeinated coffee, decaf +n07919894 drip coffee +n07920052 espresso +n07920222 caffe latte, latte +n07920349 cappuccino, cappuccino coffee, coffee cappuccino +n07920540 iced coffee, ice coffee +n07920663 instant coffee +n07920872 mocha, mocha coffee +n07920989 mocha +n07921090 cassareep +n07921239 Turkish coffee +n07921360 chocolate milk +n07921455 cider, cyder +n07921615 hard cider +n07921834 scrumpy +n07921948 sweet cider +n07922041 mulled cider +n07922147 perry +n07922512 rotgut +n07922607 slug +n07922764 cocoa, chocolate, hot chocolate, drinking chocolate +n07922955 criollo +n07923748 juice +n07924033 fruit juice, fruit crush +n07924276 nectar +n07924366 apple juice +n07924443 cranberry juice +n07924560 grape juice +n07924655 must +n07924747 grapefruit juice +n07924834 orange juice +n07924955 frozen orange juice, orange-juice concentrate +n07925116 pineapple juice +n07925229 lemon juice +n07925327 lime juice +n07925423 papaya juice +n07925500 tomato juice +n07925608 carrot juice +n07925708 V-8 juice +n07925808 koumiss, kumis +n07925966 fruit drink, ade +n07926250 lemonade +n07926346 limeade +n07926442 orangeade +n07926540 malted milk +n07926785 mate +n07926920 mulled wine +n07927070 negus +n07927197 soft drink +n07927512 pop, soda, soda pop, soda water, tonic +n07927716 birch beer +n07927836 bitter lemon +n07927931 cola, dope +n07928163 cream soda +n07928264 egg cream +n07928367 ginger ale, ginger pop +n07928488 orange soda +n07928578 phosphate +n07928696 Coca Cola, Coke +n07928790 Pepsi, Pepsi Cola +n07928887 root beer +n07928998 sarsaparilla +n07929172 tonic, tonic water, quinine water +n07929351 coffee bean, coffee berry, coffee +n07929519 coffee, java +n07929940 cafe royale, coffee royal +n07930062 fruit punch +n07930205 milk punch +n07930315 mimosa, buck's fizz +n07930433 pina colada +n07930554 punch +n07930864 cup +n07931001 champagne cup +n07931096 claret cup +n07931280 wassail +n07931452 planter's punch +n07931612 White Russian +n07931733 fish house punch +n07931870 May wine +n07932039 eggnog +n07932323 cassiri +n07932454 spruce beer +n07932614 rickey +n07932762 gin rickey +n07932841 tea, tea leaf +n07933154 tea bag +n07933274 tea +n07933530 tea-like drink +n07933652 cambric tea +n07933799 cuppa, cupper +n07933891 herb tea, herbal tea, herbal +n07934032 tisane +n07934152 camomile tea +n07934282 ice tea, iced tea +n07934373 sun tea +n07934530 black tea +n07934678 congou, congo, congou tea, English breakfast tea +n07934800 Darjeeling +n07934908 orange pekoe, pekoe +n07935043 souchong, soochong +n07935152 green tea +n07935288 hyson +n07935379 oolong +n07935504 water +n07935737 bottled water +n07935878 branch water +n07936015 spring water +n07936093 sugar water +n07936263 drinking water +n07936459 ice water +n07936548 soda water, carbonated water, club soda, seltzer, sparkling water +n07936745 mineral water +n07936979 seltzer +n07937069 Vichy water +n07937344 perishable, spoilable +n07937461 couscous +n07937621 ramekin, ramequin +n07938007 multivitamin, multivitamin pill +n07938149 vitamin pill +n07938313 soul food +n07938594 mold, mould +n07942152 people +n07951464 collection, aggregation, accumulation, assemblage +n07954211 book, rule book +n07977870 library +n08079613 baseball club, ball club, club, nine +n08182379 crowd +n08238463 class, form, grade, course +n08242223 core, nucleus, core group +n08249459 concert band, military band +n08253141 dance +n08256735 wedding, wedding party +n08376250 chain, concatenation +n08385989 power breakfast +n08492354 aerie, aery, eyrie, eyry +n08492461 agora +n08494231 amusement park, funfair, pleasure ground +n08495908 aphelion +n08496334 apron +n08500819 interplanetary space +n08500989 interstellar space +n08501887 intergalactic space +n08505018 bush +n08506347 semidesert +n08511017 beam-ends +n08517010 bridgehead +n08517676 bus stop +n08518171 campsite, campground, camping site, camping ground, bivouac, encampment, camping area +n08519299 detention basin +n08521623 cemetery, graveyard, burial site, burial ground, burying ground, memorial park, necropolis +n08523340 trichion, crinion +n08524735 city, metropolis, urban center +n08539072 business district, downtown +n08539276 outskirts +n08540532 borough +n08547468 cow pasture +n08547544 crest +n08551296 eparchy, exarchate +n08554440 suburb, suburbia, suburban area +n08555333 stockbroker belt +n08555710 crawlspace, crawl space +n08558770 sheikdom, sheikhdom +n08558963 residence, abode +n08559155 domicile, legal residence +n08560295 dude ranch +n08569482 farmland, farming area +n08571275 midfield +n08571642 firebreak, fireguard +n08571898 flea market +n08573674 battlefront, front, front line +n08573842 garbage heap, junk heap, rubbish heap, scrapheap, trash heap, junk pile, trash pile, refuse heap +n08578517 benthos, benthic division, benthonic zone +n08579266 goldfield +n08579352 grainfield, grain field +n08580944 half-mast, half-staff +n08583292 hemline +n08583455 heronry +n08583554 hipline +n08583682 hipline +n08584914 hole-in-the-wall +n08586978 junkyard +n08589670 isoclinic line, isoclinal +n08596076 littoral, litoral, littoral zone, sands +n08597579 magnetic pole +n08598301 grassland +n08598568 mecca +n08599174 observer's meridian +n08599292 prime meridian +n08611339 nombril +n08611421 no-parking zone +n08613733 outdoors, out-of-doors, open air, open +n08614632 fairground +n08616050 pasture, pastureland, grazing land, lea, ley +n08618831 perihelion +n08619112 periselene, perilune +n08623676 locus of infection +n08628141 kasbah, casbah +n08633683 waterfront +n08640531 resort, resort hotel, holiday resort +n08640739 resort area, playground, vacation spot +n08640962 rough +n08643267 ashram +n08644045 harborage, harbourage +n08645104 scrubland +n08645212 weald +n08645318 wold +n08647264 schoolyard +n08648917 showplace +n08649711 bedside +n08651104 sideline, out of bounds +n08652376 ski resort +n08658309 soil horizon +n08658918 geological horizon +n08659242 coal seam +n08659331 coalface +n08659446 field +n08659861 oilfield +n08661878 Temperate Zone +n08662427 terreplein +n08663051 three-mile limit +n08663703 desktop +n08663860 top +n08673039 kampong, campong +n08674344 subtropics, semitropics +n08676253 barrio +n08677424 veld, veldt +n08677801 vertex, peak, apex, acme +n08678783 waterline, water line, water level +n08679167 high-water mark +n08679269 low-water mark +n08679562 continental divide +n08685188 zodiac +n08782627 Aegean island +n08896327 sultanate +n09032191 Swiss canton +n09186592 abyssal zone +n09189157 aerie, aery, eyrie, eyry +n09191635 air bubble +n09193551 alluvial flat, alluvial plain +n09193705 alp +n09194227 Alpine glacier, Alpine type of glacier +n09199101 anthill, formicary +n09201998 aquifer +n09203827 archipelago +n09205509 arete +n09206896 arroyo +n09206985 ascent, acclivity, rise, raise, climb, upgrade +n09208496 asterism +n09209025 asthenosphere +n09210862 atoll +n09213434 bank +n09213565 bank +n09214060 bar +n09214269 barbecue pit +n09214916 barrier reef +n09215023 baryon, heavy particle +n09215437 basin +n09217230 beach +n09218315 honeycomb +n09218494 belay +n09218641 ben +n09219233 berm +n09223487 bladder stone, cystolith +n09224725 bluff +n09226869 borrow pit +n09228055 brae +n09229709 bubble +n09230041 burrow, tunnel +n09230202 butte +n09231117 caldera +n09233446 canyon, canon +n09233603 canyonside +n09238926 cave +n09239302 cavern +n09242389 chasm +n09245515 cirque, corrie, cwm +n09246464 cliff, drop, drop-off +n09247410 cloud +n09248153 coast +n09248399 coastland +n09249034 col, gap +n09249155 collector +n09251407 comet +n09255070 continental glacier +n09256479 coral reef +n09257843 cove +n09259025 crag +n09259219 crater +n09260907 cultivated land, farmland, plowland, ploughland, tilled land, tillage, tilth +n09262690 dale +n09263912 defile, gorge +n09264803 delta +n09265620 descent, declivity, fall, decline, declination, declension, downslope +n09266604 diapir +n09267854 divot +n09268007 divot +n09269341 down +n09269472 downhill +n09269882 draw +n09270160 drey +n09270657 drumlin +n09270735 dune, sand dune +n09274152 escarpment, scarp +n09274305 esker +n09279986 fireball +n09281252 flare star +n09282208 floor +n09283193 fomite, vehicle +n09283405 foothill +n09283514 footwall +n09283767 foreland +n09283866 foreshore +n09287415 gauge boson +n09287968 geological formation, formation +n09288635 geyser +n09289331 glacier +n09289596 glen +n09290350 gopher hole +n09290444 gorge +n09294877 grotto, grot +n09295210 growler +n09295946 gulch, flume +n09300306 gully +n09300905 hail +n09302616 highland, upland +n09303008 hill +n09303528 hillside +n09304750 hole, hollow +n09305031 hollow, holler +n09305898 hot spring, thermal spring +n09308572 iceberg, berg +n09308743 icecap, ice cap +n09309046 ice field +n09309168 ice floe, floe +n09309292 ice mass +n09310616 inclined fault +n09315159 ion +n09319604 isthmus +n09325824 kidney stone, urinary calculus, nephrolith, renal calculus +n09326662 knoll, mound, hillock, hummock, hammock +n09327077 kopje, koppie +n09327538 Kuiper belt, Edgeworth-Kuiper belt +n09330378 lake bed, lake bottom +n09331251 lakefront +n09332890 lakeside, lakeshore +n09335693 landfall +n09335809 landfill +n09336555 lather +n09337048 leak +n09337253 ledge, shelf +n09338013 lepton +n09339810 lithosphere, geosphere +n09344198 lowland +n09344324 lunar crater +n09344724 maar +n09348460 massif +n09349648 meander +n09351905 mesa, table +n09352849 meteorite +n09353815 microfossil +n09354511 midstream +n09357346 molehill +n09357447 monocline +n09359803 mountain, mount +n09361517 mountainside, versant +n09362316 mouth +n09362945 mull +n09366017 natural depression, depression +n09366317 natural elevation, elevation +n09375606 nullah +n09376198 ocean +n09376526 ocean floor, sea floor, ocean bottom, seabed, sea bottom, Davy Jones's locker, Davy Jones +n09376786 oceanfront +n09381242 outcrop, outcropping, rock outcrop +n09382099 oxbow +n09384106 pallasite +n09389867 perforation +n09391386 photosphere +n09391644 piedmont +n09391774 Piedmont glacier, Piedmont type of glacier +n09392402 pinetum +n09393524 plage +n09393605 plain, field, champaign +n09396465 point +n09396608 polar glacier +n09398076 pothole, chuckhole +n09398677 precipice +n09399592 promontory, headland, head, foreland +n09400584 ptyalith +n09400987 pulsar +n09402944 quicksand +n09403086 rabbit burrow, rabbit hole +n09403211 radiator +n09403427 rainbow +n09403734 range, mountain range, range of mountains, chain, mountain chain, chain of mountains +n09405078 rangeland +n09405787 ravine +n09406793 reef +n09409512 ridge +n09409752 ridge, ridgeline +n09410224 rift valley +n09411189 riparian forest +n09411295 ripple mark +n09415584 riverbank, riverside +n09415671 riverbed, river bottom +n09416076 rock, stone +n09416890 roof +n09421031 saltpan +n09421799 sandbank +n09421951 sandbar, sand bar +n09422190 sandpit +n09422631 sanitary landfill +n09425019 sawpit +n09425344 scablands +n09428293 seashore, coast, seacoast, sea-coast +n09428628 seaside, seaboard +n09429630 seif dune +n09432283 shell +n09432990 shiner +n09433312 shoal +n09433442 shore +n09433839 shoreline +n09435739 sinkhole, sink, swallow hole +n09436444 ski slope +n09436708 sky +n09437454 slope, incline, side +n09438844 snowcap +n09438940 snowdrift +n09439032 snowfield +n09439213 soapsuds, suds, lather +n09442595 spit, tongue +n09443281 spoor +n09443641 spume +n09444783 star +n09445008 steep +n09445289 steppe +n09447666 strand +n09448690 streambed, creek bed +n09450163 sun, Sun +n09451237 supernova +n09452291 swale +n09452395 swamp, swampland +n09452760 swell +n09453008 tableland, plateau +n09454153 talus, scree +n09454412 tangle +n09454744 tar pit +n09456207 terrace, bench +n09457979 tidal basin +n09458269 tideland +n09459979 tor +n09460046 tor +n09461069 Trapezium +n09462600 troposphere +n09463226 tundra +n09464486 twinkler +n09466678 uphill +n09467696 urolith +n09468604 valley, vale +n09470027 vehicle-borne transmission +n09470222 vein, mineral vein +n09472413 volcanic crater, crater +n09472597 volcano +n09474010 wadi +n09474412 wall +n09474765 warren, rabbit warren +n09475044 wasp's nest, wasps' nest, hornet's nest, hornets' nest +n09475179 watercourse +n09475925 waterside +n09476123 water table, water level, groundwater level +n09478210 whinstone, whin +n09480959 wormcast +n09481120 xenolith +n09493983 Circe +n09495962 gryphon, griffin, griffon +n09505153 spiritual leader +n09537660 messiah, christ +n09556121 Rhea Silvia, Rea Silvia +n09605110 number one +n09606009 adventurer, venturer +n09606527 anomaly, unusual person +n09607630 appointee, appointment +n09607782 argonaut +n09607903 Ashkenazi +n09608709 benefactor, helper +n09610255 color-blind person +n09610405 commoner, common man, common person +n09611722 conservator +n09612700 contrarian +n09613118 contadino +n09613191 contestant +n09613690 cosigner, cosignatory +n09615336 discussant +n09616573 enologist, oenologist, fermentologist +n09616922 entertainer +n09617161 eulogist, panegyrist +n09617435 ex-gambler +n09617577 experimenter +n09617696 experimenter +n09618760 exponent +n09618880 ex-president +n09618957 face +n09619168 female, female person +n09619452 finisher +n09620078 inhabitant, habitant, dweller, denizen, indweller +n09620794 native, indigen, indigene, aborigine, aboriginal +n09621232 native +n09622049 juvenile, juvenile person +n09622302 lover +n09624168 male, male person +n09624559 mediator, go-between, intermediator, intermediary, intercessor +n09624899 mediatrix +n09625401 national, subject +n09626238 peer, equal, match, compeer +n09627807 prize winner, lottery winner +n09627906 recipient, receiver +n09629065 religionist +n09629246 sensualist +n09629752 traveler, traveller +n09631129 unwelcome person, persona non grata +n09632274 unskilled person +n09632518 worker +n09633969 wrongdoer, offender +n09635534 Black African +n09635635 Afrikaner, Afrikander, Boer +n09635973 Aryan +n09636339 Black, Black person, blackamoor, Negro, Negroid +n09637339 Black woman +n09638454 mulatto +n09638875 White, White person, Caucasian +n09639382 Circassian +n09639919 Semite +n09640327 Chaldean, Chaldaean, Chaldee +n09640715 Elamite +n09641002 white man +n09641578 WASP, white Anglo-Saxon Protestant +n09643799 gook, slant-eye +n09644152 Mongol, Mongolian +n09644657 Tatar, Tartar, Mongol Tatar +n09648743 Nahuatl +n09648911 Aztec +n09649067 Olmec +n09650729 Biloxi +n09650839 Blackfoot +n09650989 Brule +n09651123 Caddo +n09651968 Cheyenne +n09652149 Chickasaw +n09653144 Cocopa, Cocopah +n09653438 Comanche +n09654079 Creek +n09654518 Delaware +n09654898 Diegueno +n09655213 Esselen +n09655466 Eyeish +n09656077 Havasupai +n09657206 Hunkpapa +n09657748 Iowa, Ioway +n09658254 Kalapooia, Kalapuya, Calapooya, Calapuya +n09658398 Kamia +n09658815 Kekchi +n09658921 Kichai +n09659039 Kickapoo +n09659188 Kiliwa, Kiliwi +n09660010 Malecite +n09660240 Maricopa +n09661873 Mohican, Mahican +n09662038 Muskhogean, Muskogean +n09662661 Navaho, Navajo +n09662951 Nootka +n09663248 Oglala, Ogalala +n09663786 Osage +n09663999 Oneida +n09664556 Paiute, Piute +n09664908 Passamaquody +n09665367 Penobscot +n09665545 Penutian +n09666349 Potawatomi +n09666476 Powhatan +n09666883 kachina +n09667358 Salish +n09668199 Shahaptian, Sahaptin, Sahaptino +n09668437 Shasta +n09668562 Shawnee +n09668988 Sihasapa +n09669631 Teton, Lakota, Teton Sioux, Teton Dakota +n09670280 Taracahitian +n09670521 Tarahumara +n09670909 Tuscarora +n09671089 Tutelo +n09672590 Yana +n09672725 Yavapai +n09672840 Yokuts +n09673091 Yuma +n09674412 Gadaba +n09674786 Kolam +n09675045 Kui +n09675673 Toda +n09675799 Tulu +n09675922 Gujarati, Gujerati +n09676021 Kashmiri +n09676247 Punjabi, Panjabi +n09676884 Slav +n09677427 Anabaptist +n09678747 Adventist, Second Adventist +n09679028 gentile, non-Jew, goy +n09679170 gentile +n09679925 Catholic +n09680908 Old Catholic +n09681107 Uniat, Uniate, Uniate Christian +n09681234 Copt +n09681973 Jewess +n09683180 Jihadist +n09683757 Buddhist +n09683924 Zen Buddhist +n09684082 Mahayanist +n09684901 swami +n09685233 Hare Krishna +n09685806 Shintoist +n09686262 Eurafrican +n09686401 Eurasian +n09688233 Gael +n09688804 Frank +n09689435 Afghan, Afghanistani +n09689958 Albanian +n09690083 Algerian +n09690208 Altaic +n09690496 Andorran +n09690621 Angolan +n09690864 Anguillan +n09691604 Austrian +n09691729 Bahamian +n09691858 Bahraini, Bahreini +n09692125 Basotho +n09692915 Herero +n09693244 Luba, Chiluba +n09693982 Barbadian +n09694664 Bolivian +n09694771 Bornean +n09695019 Carioca +n09695132 Tupi +n09695514 Bruneian +n09695620 Bulgarian +n09695979 Byelorussian, Belorussian, White Russian +n09696456 Cameroonian +n09696585 Canadian +n09696763 French Canadian +n09697401 Central American +n09697986 Chilean +n09698644 Congolese +n09699020 Cypriot, Cypriote, Cyprian +n09699642 Dane +n09700125 Djiboutian +n09700964 Britisher, Briton, Brit +n09701148 English person +n09701833 Englishwoman +n09702134 Anglo-Saxon +n09702673 Angle +n09703101 West Saxon +n09703344 Lombard, Langobard +n09703485 limey, John Bull +n09703708 Cantabrigian +n09703809 Cornishman +n09703932 Cornishwoman +n09704057 Lancastrian +n09704157 Lancastrian +n09704283 Geordie +n09705003 Oxonian +n09705124 Ethiopian +n09705671 Amhara +n09705784 Eritrean +n09706029 Finn +n09706255 Komi +n09707061 Livonian +n09707289 Lithuanian +n09707735 Selkup, Ostyak-Samoyed +n09708750 Parisian +n09708889 Parisienne +n09709531 Creole +n09709673 Creole +n09710041 Gabonese +n09710164 Greek, Hellene +n09710886 Dorian +n09711132 Athenian +n09711435 Laconian +n09712324 Guyanese +n09712448 Haitian +n09712696 Malay, Malayan +n09712967 Moro +n09713108 Netherlander, Dutchman, Hollander +n09714120 Icelander +n09714694 Iraqi, Iraki +n09715165 Irishman +n09715303 Irishwoman +n09715427 Dubliner +n09716047 Italian +n09716933 Roman +n09717233 Sabine +n09718217 Japanese, Nipponese +n09718811 Jordanian +n09718936 Korean +n09719309 Kenyan +n09719794 Lao, Laotian +n09720033 Lapp, Lapplander, Sami, Saami, Same, Saame +n09720256 Latin American, Latino +n09720595 Lebanese +n09720702 Levantine +n09720842 Liberian +n09721244 Luxemburger, Luxembourger +n09721444 Macedonian +n09722064 Sabahan +n09722658 Mexican +n09722817 Chicano +n09723067 Mexican-American, Mexicano +n09723819 Namibian +n09723944 Nauruan +n09724234 Gurkha +n09724533 New Zealander, Kiwi +n09724656 Nicaraguan +n09724785 Nigerian +n09725000 Hausa, Haussa +n09725229 North American +n09725546 Nova Scotian, bluenose +n09725653 Omani +n09725772 Pakistani +n09725935 Brahui +n09726621 South American Indian +n09726811 Carib, Carib Indian +n09727440 Filipino +n09727826 Polynesian +n09728137 Qatari, Katari +n09728285 Romanian, Rumanian +n09729062 Muscovite +n09729156 Georgian +n09730077 Sarawakian +n09730204 Scandinavian, Norse, Northman +n09730824 Senegalese +n09731343 Slovene +n09731436 South African +n09731571 South American +n09732170 Sudanese +n09733459 Syrian +n09733793 Tahitian +n09734185 Tanzanian +n09734450 Tibetan +n09734535 Togolese +n09734639 Tuareg +n09735258 Turki +n09735654 Chuvash +n09736485 Turkoman, Turkmen, Turcoman +n09736798 Uzbek, Uzbeg, Uzbak, Usbek, Usbeg +n09736945 Ugandan +n09737050 Ukranian +n09737161 Yakut +n09737453 Tungus, Evenk +n09738121 Igbo +n09738400 American +n09740724 Anglo-American +n09741074 Alaska Native, Alaskan Native, Native Alaskan +n09741331 Arkansan, Arkansawyer +n09741722 Carolinian +n09741816 Coloradan +n09741904 Connecticuter +n09741999 Delawarean, Delawarian +n09742101 Floridian +n09742315 German American +n09742927 Illinoisan +n09743487 Mainer, Down Easter +n09743601 Marylander +n09743792 Minnesotan, Gopher +n09744161 Nebraskan, Cornhusker +n09744346 New Hampshirite, Granite Stater +n09744462 New Jerseyan, New Jerseyite, Garden Stater +n09744679 New Yorker +n09744834 North Carolinian, Tarheel +n09745229 Oregonian, Beaver +n09745324 Pennsylvanian, Keystone Stater +n09745834 Texan +n09745933 Utahan +n09746936 Uruguayan +n09747191 Vietnamese, Annamese +n09747495 Gambian +n09748101 East German +n09748408 Berliner +n09748648 Prussian +n09748889 Ghanian +n09749386 Guinean +n09750282 Papuan +n09750641 Walloon +n09750770 Yemeni +n09750891 Yugoslav, Jugoslav, Yugoslavian, Jugoslavian +n09751076 Serbian, Serb +n09751496 Xhosa +n09751622 Zairese, Zairean +n09751895 Zimbabwean +n09752023 Zulu +n09752519 Gemini, Twin +n09753348 Sagittarius, Archer +n09753792 Pisces, Fish +n09754152 abbe +n09754217 abbess, mother superior, prioress +n09754633 abnegator +n09754907 abridger, abbreviator +n09755086 abstractor, abstracter +n09755241 absconder +n09755555 absolver +n09755788 abecedarian +n09755893 aberrant +n09756049 abettor, abetter +n09756195 abhorrer +n09756961 abomination +n09757449 abseiler, rappeller +n09758173 abstainer, ascetic +n09758885 academic administrator +n09759501 academician +n09760290 accessory before the fact +n09760609 companion +n09760913 accompanist, accompanyist +n09761068 accomplice, confederate +n09761753 account executive, account representative, registered representative, customer's broker, customer's man +n09762011 accused +n09762385 accuser +n09763272 acid head +n09763784 acquaintance, friend +n09764201 acquirer +n09764598 aerialist +n09764732 action officer +n09764900 active +n09765118 active citizen +n09765278 actor, histrion, player, thespian, role player +n09767197 actor, doer, worker +n09769076 addict, nut, freak, junkie, junky +n09769525 adducer +n09769929 adjuster, adjustor, claims adjuster, claims adjustor, claim agent +n09770179 adjutant, aide, aide-de-camp +n09770359 adjutant general +n09771435 admirer, adorer +n09772330 adoptee +n09772746 adulterer, fornicator +n09772930 adulteress, fornicatress, hussy, jade, loose woman, slut, strumpet, trollop +n09773962 advertiser, advertizer, adman +n09774167 advisee +n09774783 advocate, advocator, proponent, exponent +n09775907 aeronautical engineer +n09776346 affiliate +n09776642 affluent +n09776807 aficionado +n09777870 buck sergeant +n09778266 agent-in-place +n09778537 aggravator, annoyance +n09778783 agitator, fomenter +n09778927 agnostic +n09779124 agnostic, doubter +n09779280 agonist +n09779461 agony aunt +n09779790 agriculturist, agriculturalist, cultivator, grower, raiser +n09780395 air attache +n09780828 air force officer, commander +n09780984 airhead +n09781398 air traveler, air traveller +n09781504 alarmist +n09781650 albino +n09782167 alcoholic, alky, dipsomaniac, boozer, lush, soaker, souse +n09782397 alderman +n09782855 alexic +n09783537 alienee, grantee +n09783776 alienor +n09783884 aliterate, aliterate person +n09784043 algebraist +n09784160 allegorizer, allegoriser +n09784564 alliterator +n09785236 almoner, medical social worker +n09785659 alpinist +n09785891 altar boy +n09786115 alto +n09787534 ambassador, embassador +n09787765 ambassador +n09788073 ambusher +n09788237 amicus curiae, friend of the court +n09789150 amoralist +n09789566 amputee +n09789898 analogist +n09790047 analphabet, analphabetic +n09790482 analyst +n09791014 industry analyst +n09791419 market strategist +n09791816 anarchist, nihilist, syndicalist +n09792125 anathema, bete noire +n09792555 ancestor, ascendant, ascendent, antecedent, root +n09792969 anchor, anchorman, anchorperson +n09793141 ancient +n09793352 anecdotist, raconteur +n09793946 angler, troller +n09794550 animator +n09794668 animist +n09795010 annotator +n09795124 announcer +n09795334 announcer +n09796809 anti +n09796974 anti-American +n09797742 anti-Semite, Jew-baiter +n09797873 Anzac +n09797998 ape-man +n09798096 aphakic +n09800469 appellant, plaintiff in error +n09800964 appointee +n09801102 apprehender +n09801275 April fool +n09801533 aspirant, aspirer, hopeful, wannabe, wannabee +n09802445 appreciator +n09802641 appropriator +n09802951 Arabist +n09804230 archaist +n09805151 archbishop +n09805324 archer, bowman +n09805475 architect, designer +n09806944 archivist +n09807075 archpriest, hierarch, high priest, prelate, primate +n09808080 Aristotelian, Aristotelean, Peripatetic +n09808591 armiger +n09809279 army attache +n09809538 army engineer, military engineer +n09809749 army officer +n09809925 arranger, adapter, transcriber +n09810166 arrival, arriver, comer +n09811568 arthritic +n09811712 articulator +n09811852 artilleryman, cannoneer, gunner, machine gunner +n09813219 artist's model, sitter +n09814252 assayer +n09814381 assemblyman +n09814488 assemblywoman +n09814567 assenter +n09814660 asserter, declarer, affirmer, asseverator, avower +n09815455 assignee +n09815790 assistant, helper, help, supporter +n09816654 assistant professor +n09816771 associate +n09817174 associate +n09817386 associate professor +n09818022 astronaut, spaceman, cosmonaut +n09819477 cosmographer, cosmographist +n09820044 atheist +n09820263 athlete, jock +n09821831 attendant, attender, tender +n09822830 attorney general +n09823153 auditor +n09823287 augur, auspex +n09823502 aunt, auntie, aunty +n09823832 au pair girl +n09824135 authoritarian, dictator +n09824609 authority +n09825096 authorizer, authoriser +n09825750 automobile mechanic, auto-mechanic, car-mechanic, mechanic, grease monkey +n09826204 aviator, aeronaut, airman, flier, flyer +n09826605 aviatrix, airwoman, aviatress +n09826821 ayah +n09827246 babu, baboo +n09827363 baby, babe, sister +n09828216 baby +n09828403 baby boomer, boomer +n09828988 baby farmer +n09830194 back +n09830400 backbencher +n09830629 backpacker, packer +n09830759 backroom boy, brain truster +n09830926 backscratcher +n09831962 bad person +n09832456 baggage +n09832633 bag lady +n09832978 bailee +n09833111 bailiff +n09833275 bailor +n09833441 bairn +n09833536 baker, bread maker +n09833751 balancer +n09833997 balker, baulker, noncompliant +n09834258 ball-buster, ball-breaker +n09834378 ball carrier, runner +n09834699 ballet dancer +n09834885 ballet master +n09835017 ballet mistress +n09835153 balletomane +n09835230 ball hawk +n09835348 balloonist +n09835506 ballplayer, baseball player +n09836160 bullfighter, toreador +n09836343 banderillero +n09836519 matador +n09836786 picador +n09837459 bandsman +n09837720 banker +n09838295 bank robber +n09838370 bankrupt, insolvent +n09838621 bantamweight +n09839702 barmaid +n09840217 baron, big businessman, business leader, king, magnate, mogul, power, top executive, tycoon +n09840435 baron +n09840520 baron +n09841188 bartender, barman, barkeep, barkeeper, mixologist +n09841515 baseball coach, baseball manager +n09841696 base runner, runner +n09842047 basketball player, basketeer, cager +n09842288 basketweaver, basketmaker +n09842395 Basket Maker +n09842528 bass, basso +n09842823 bastard, by-blow, love child, illegitimate child, illegitimate, whoreson +n09843443 bat boy +n09843602 bather +n09843716 batman +n09843824 baton twirler, twirler +n09844457 Bavarian +n09844898 beadsman, bedesman +n09845401 beard +n09845849 beatnik, beat +n09846142 beauty consultant +n09846469 Bedouin, Beduin +n09846586 bedwetter, bed wetter, wetter +n09846755 beekeeper, apiarist, apiculturist +n09846894 beer drinker, ale drinker +n09847267 beggarman +n09847344 beggarwoman +n09847543 beldam, beldame +n09848110 theist +n09848489 believer, truster +n09849167 bell founder +n09849990 benedick, benedict +n09850760 berserker, berserk +n09850974 besieger +n09851165 best, topper +n09851575 betrothed +n09853541 Big Brother +n09853645 bigot +n09853881 big shot, big gun, big wheel, big cheese, big deal, big enchilada, big fish, head honcho +n09854218 big sister +n09854421 billiard player +n09854915 biochemist +n09855433 biographer +n09856401 bird fancier +n09856671 birth +n09856827 birth-control campaigner, birth-control reformer +n09857007 bisexual, bisexual person +n09858165 black belt +n09858299 blackmailer, extortioner, extortionist +n09858733 Black Muslim +n09859152 blacksmith +n09859285 blade +n09859975 blind date +n09861287 bluecoat +n09861599 bluestocking, bas bleu +n09861863 boatbuilder +n09861946 boatman, boater, waterman +n09862183 boatswain, bos'n, bo's'n, bosun, bo'sun +n09862621 bobby +n09863031 bodyguard, escort +n09863339 boffin +n09863749 Bolshevik, Marxist, red, bolshie, bolshy +n09863936 Bolshevik, Bolshevist +n09864632 bombshell +n09864968 bondman, bondsman +n09865068 bondwoman, bondswoman, bondmaid +n09865162 bondwoman, bondswoman, bondmaid +n09865398 bond servant +n09865672 book agent +n09865744 bookbinder +n09866115 bookkeeper +n09866354 bookmaker +n09866559 bookworm +n09866661 booster, shoplifter, lifter +n09866817 bootblack, shoeblack +n09866922 bootlegger, moonshiner +n09867069 bootmaker, boot maker +n09867154 borderer +n09867311 border patrolman +n09868270 botanist, phytologist, plant scientist +n09868782 bottom feeder +n09868899 boulevardier +n09869317 bounty hunter +n09869447 bounty hunter +n09869578 Bourbon +n09870096 bowler +n09871095 slugger, slogger +n09871229 cub, lad, laddie, sonny, sonny boy +n09871681 Boy Scout +n09871867 boy scout +n09871952 boy wonder +n09872066 bragger, braggart, boaster, blowhard, line-shooter, vaunter +n09872557 brahman, brahmin +n09873348 brawler +n09873473 breadwinner +n09873769 breaststroker +n09873899 breeder, stock breeder +n09874428 brick +n09874725 bride +n09874862 bridesmaid, maid of honor +n09875025 bridge agent +n09875979 broadcast journalist +n09876701 Brother +n09877288 brother-in-law +n09877587 browser +n09877750 Brummie, Brummy +n09877951 buddy, brother, chum, crony, pal, sidekick +n09878921 bull +n09879552 bully +n09880189 bunny, bunny girl +n09880741 burglar +n09881265 bursar +n09881358 busboy, waiter's assistant +n09881895 business editor +n09883047 business traveler +n09883452 buster +n09883807 busybody, nosy-parker, nosey-parker, quidnunc +n09885059 buttinsky +n09885866 cabinetmaker, furniture maker +n09886403 caddie, golf caddie +n09886540 cadet, plebe +n09888635 caller, caller-out +n09889065 call girl +n09889170 calligrapher, calligraphist +n09889691 campaigner, candidate, nominee +n09889941 camper +n09890192 camp follower +n09890749 candidate, prospect +n09891730 canonist +n09892262 capitalist +n09892513 captain, headwaiter, maitre d'hotel, maitre d' +n09892693 captain, senior pilot +n09893191 captain +n09893344 captain, chieftain +n09893502 captive +n09893600 captive +n09894143 cardinal +n09894445 cardiologist, heart specialist, heart surgeon +n09894654 card player +n09894909 cardsharp, card sharp, cardsharper, card sharper, sharper, sharpie, sharpy, card shark +n09895222 careerist +n09895480 career man +n09895561 caregiver +n09895701 caretaker +n09895902 caretaker +n09896170 caricaturist +n09896311 carillonneur +n09896401 caroler, caroller +n09896685 carpenter +n09896826 carper, niggler +n09898020 Cartesian +n09899289 cashier +n09899671 casualty, injured party +n09899782 casualty +n09899929 casuist, sophist +n09901337 catechist +n09901502 catechumen, neophyte +n09901642 caterer +n09901786 Catholicos +n09901921 cat fancier +n09902128 Cavalier, Royalist +n09902353 cavalryman, trooper +n09902731 caveman, cave man, cave dweller, troglodyte +n09902851 celebrant +n09902954 celebrant, celebrator, celebrater +n09903153 celebrity, famous person +n09903501 cellist, violoncellist +n09903639 censor +n09903936 censor +n09904208 centenarian +n09904837 centrist, middle of the roader, moderate, moderationist +n09905050 centurion +n09905185 certified public accountant, CPA +n09905530 chachka, tsatske, tshatshke, tchotchke, tchotchkeleh +n09906293 chambermaid, fille de chambre +n09906449 chameleon +n09906704 champion, champ, title-holder +n09907804 chandler +n09908769 prison chaplain +n09909660 charcoal burner +n09909929 charge d'affaires +n09910222 charioteer +n09910374 charmer, beguiler +n09910556 chartered accountant +n09910840 chartist, technical analyst +n09911226 charwoman, char, cleaning woman, cleaning lady, woman +n09912431 male chauvinist, sexist +n09912681 cheapskate, tightwad +n09912907 Chechen +n09912995 checker +n09913329 cheerer +n09913455 cheerleader +n09913593 cheerleader +n09915434 Cheops, Khufu +n09915651 chess master +n09916348 chief executive officer, CEO, chief operating officer +n09917214 chief of staff +n09917345 chief petty officer +n09917481 Chief Secretary +n09917593 child, kid, youngster, minor, shaver, nipper, small fry, tiddler, tike, tyke, fry, nestling +n09918248 child, kid +n09918554 child, baby +n09918867 child prodigy, infant prodigy, wonder child +n09919061 chimneysweeper, chimneysweep, sweep +n09919200 chiropractor +n09919451 chit +n09919899 choker +n09920106 choragus +n09920283 choreographer +n09920901 chorus girl, showgirl, chorine +n09921034 chosen +n09923003 cicerone +n09923186 cigar smoker +n09923418 cipher, cypher, nobody, nonentity +n09923561 circus acrobat +n09923673 citizen +n09923996 city editor +n09924106 city father +n09924195 city man +n09924313 city slicker, city boy +n09924437 civic leader, civil leader +n09924996 civil rights leader, civil rights worker, civil rights activist +n09927089 cleaner +n09927451 clergyman, reverend, man of the cloth +n09928136 cleric, churchman, divine, ecclesiastic +n09928451 clerk +n09928845 clever Dick, clever clogs +n09929202 climatologist +n09929298 climber +n09929577 clinician +n09930257 closer, finisher +n09930628 closet queen +n09930876 clown, buffoon, goof, goofball, merry andrew +n09931165 clown, buffoon +n09931418 coach, private instructor, tutor +n09931640 coach, manager, handler +n09932098 pitching coach +n09932336 coachman +n09932508 coal miner, collier, pitman +n09932788 coastguardsman +n09933020 cobber +n09933098 cobbler, shoemaker +n09933842 codger, old codger +n09933972 co-beneficiary +n09934337 cog +n09934488 cognitive neuroscientist +n09934774 coiffeur +n09935107 coiner +n09935434 collaborator, cooperator, partner, pardner +n09936825 colleen +n09936892 college student, university student +n09937056 collegian, college man, college boy +n09937688 colonial +n09937802 colonialist +n09937903 colonizer, coloniser +n09938080 coloratura, coloratura soprano +n09938449 color guard +n09938991 colossus, behemoth, giant, heavyweight, titan +n09940725 comedian +n09940818 comedienne +n09941089 comer +n09941571 commander +n09941787 commander in chief, generalissimo +n09941964 commanding officer, commandant, commander +n09942697 commissar, political commissar +n09942970 commissioned officer +n09943239 commissioned military officer +n09943811 commissioner +n09944022 commissioner +n09944160 committee member +n09944430 committeewoman +n09945021 commodore +n09945223 communicant +n09945319 communist, commie +n09945603 Communist +n09945745 commuter +n09946814 compere +n09947127 complexifier +n09950457 compulsive +n09950728 computational linguist +n09951070 computer scientist +n09951274 computer user +n09951524 Comrade +n09951616 concert-goer, music lover +n09952163 conciliator, make-peace, pacifier, peacemaker, reconciler +n09953052 conductor +n09953350 confectioner, candymaker +n09953615 Confederate +n09954355 confessor +n09954639 confidant, intimate +n09955406 Confucian, Confucianist +n09955944 rep +n09956578 conqueror, vanquisher +n09957523 Conservative +n09958133 Nonconformist, chapelgoer +n09958292 Anglican +n09958447 consignee +n09958569 consigner, consignor +n09959142 constable +n09959658 constructivist +n09960688 contractor +n09961198 contralto +n09961331 contributor +n09961469 control freak +n09961605 convalescent +n09961739 convener +n09962966 convict, con, inmate, yard bird, yardbird +n09964202 copilot, co-pilot +n09964411 copycat, imitator, emulator, ape, aper +n09965515 coreligionist +n09965787 cornerback +n09966470 corporatist +n09966554 correspondent, letter writer +n09967063 cosmetician +n09967406 cosmopolitan, cosmopolite +n09967555 Cossack +n09967816 cost accountant +n09967967 co-star +n09968259 costumier, costumer, costume designer +n09968652 cotter, cottier +n09968741 cotter, cottar +n09968845 counselor, counsellor +n09970088 counterterrorist +n09970192 counterspy, mole +n09970402 countess +n09970822 compromiser +n09971273 countrywoman +n09971385 county agent, agricultural agent, extension agent +n09971839 courtier +n09972010 cousin, first cousin, cousin-german, full cousin +n09972458 cover girl, pin-up, lovely +n09972587 cow +n09974648 craftsman, artisan, journeyman, artificer +n09975425 craftsman, crafter +n09976024 crapshooter +n09976283 crazy, loony, looney, nutcase, weirdo +n09976429 creature, wight +n09976728 creditor +n09976917 creep, weirdo, weirdie, weirdy, spook +n09978442 criminologist +n09979321 critic +n09979913 Croesus +n09980458 cross-examiner, cross-questioner +n09980805 crossover voter, crossover +n09980985 croupier +n09981092 crown prince +n09981278 crown princess +n09981540 cryptanalyst, cryptographer, cryptologist +n09981939 Cub Scout +n09982152 cuckold +n09982525 cultist +n09983314 curandera +n09983572 curate, minister of religion, minister, parson, pastor, rector +n09983889 curator, conservator +n09984960 customer agent +n09985470 cutter, carver +n09985809 cyberpunk +n09985978 cyborg, bionic man, bionic woman +n09986450 cymbalist +n09986700 Cynic +n09986904 cytogeneticist +n09987045 cytologist +n09987161 czar +n09987239 czar, tsar, tzar +n09988063 dad, dada, daddy, pa, papa, pappa, pop +n09988311 dairyman +n09988493 Dalai Lama, Grand Lama +n09988703 dallier, dillydallier, dilly-dallier, mope, lounger +n09989502 dancer, professional dancer, terpsichorean +n09990415 dancer, social dancer +n09990690 clog dancer +n09990777 dancing-master, dance master +n09991740 dark horse +n09991867 darling, favorite, favourite, pet, dearie, deary, ducky +n09992538 date, escort +n09992837 daughter, girl +n09993252 dawdler, drone, laggard, lagger, trailer, poke +n09993651 day boarder +n09994400 day laborer, day labourer +n09994673 deacon, Protestant deacon +n09994808 deaconess +n09994878 deadeye +n09995829 deipnosophist +n09996039 dropout +n09996304 deadhead +n09996481 deaf person +n09997622 debtor, debitor +n09998788 deckhand, roustabout +n09999135 defamer, maligner, slanderer, vilifier, libeler, backbiter, traducer +n10000294 defense contractor +n10000459 deist, freethinker +n10000787 delegate +n10001217 deliveryman, delivery boy, deliverer +n10001481 demagogue, demagog, rabble-rouser +n10001764 demigod, superman, Ubermensch +n10002257 demographer, demographist, population scientist +n10002760 demonstrator, protester +n10003476 den mother +n10004718 department head +n10005006 depositor +n10005934 deputy +n10006177 dermatologist, skin doctor +n10006748 descender +n10007684 designated hitter +n10007809 designer, intriguer +n10007995 desk clerk, hotel desk clerk, hotel clerk +n10008123 desk officer +n10008254 desk sergeant, deskman, station keeper +n10009162 detainee, political detainee +n10009276 detective, investigator, tec, police detective +n10009484 detective +n10009671 detractor, disparager, depreciator, knocker +n10010062 developer +n10010243 deviationist +n10010632 devisee +n10010767 devisor +n10010864 devourer +n10011360 dialectician +n10011486 diarist, diary keeper, journalist +n10012484 dietician, dietitian, nutritionist +n10013811 diocesan +n10015215 director, theater director, theatre director +n10015485 director +n10015792 dirty old man +n10015897 disbeliever, nonbeliever, unbeliever +n10017272 disk jockey, disc jockey, dj +n10017422 dispatcher +n10018747 distortionist +n10018861 distributor, distributer +n10019072 district attorney, DA +n10019187 district manager +n10019406 diver, plunger +n10020366 divorcee, grass widow +n10020533 ex-wife, ex +n10020670 divorce lawyer +n10020807 docent +n10020890 doctor, doc, physician, MD, Dr., medico +n10022908 dodo, fogy, fogey, fossil +n10023264 doge +n10023506 dog in the manger +n10023656 dogmatist, doctrinaire +n10024025 dolichocephalic +n10024362 domestic partner, significant other, spousal equivalent, spouse equivalent +n10024937 Dominican +n10025060 dominus, dominie, domine, dominee +n10025295 don, father +n10025391 Donatist +n10025635 donna +n10026976 dosser, street person +n10027246 double, image, look-alike +n10027590 double-crosser, double-dealer, two-timer, betrayer, traitor +n10028402 down-and-out +n10028541 doyenne +n10029068 draftsman, drawer +n10030277 dramatist, playwright +n10032987 dreamer +n10033412 dressmaker, modiste, needlewoman, seamstress, sempstress +n10033572 dressmaker's model +n10033663 dribbler, driveller, slobberer, drooler +n10033888 dribbler +n10034201 drinker, imbiber, toper, juicer +n10034614 drinker +n10035952 drug addict, junkie, junky +n10036266 drug user, substance abuser, user +n10036444 Druid +n10036692 drum majorette, majorette +n10036929 drummer +n10037080 drunk +n10037385 drunkard, drunk, rummy, sot, inebriate, wino +n10037588 Druze, Druse +n10037922 dry, prohibitionist +n10038119 dry nurse +n10038409 duchess +n10038620 duke +n10039271 duffer +n10039946 dunker +n10040240 Dutch uncle +n10040698 dyspeptic +n10040945 eager beaver, busy bee, live wire, sharpie, sharpy +n10041373 earl +n10041887 earner, wage earner +n10042690 eavesdropper +n10042845 eccentric, eccentric person, flake, oddball, geek +n10043024 eclectic, eclecticist +n10043491 econometrician, econometrist +n10043643 economist, economic expert +n10044682 ectomorph +n10044879 editor, editor in chief +n10047199 egocentric, egoist +n10047459 egotist, egoist, swellhead +n10048117 ejaculator +n10048367 elder +n10048612 elder statesman +n10048836 elected official +n10049363 electrician, lineman, linesman +n10050043 elegist +n10050880 elocutionist +n10051026 emancipator, manumitter +n10051761 embryologist +n10051861 emeritus +n10051975 emigrant, emigre, emigree, outgoer +n10052694 emissary, envoy +n10053439 empress +n10053808 employee +n10054657 employer +n10055297 enchantress, witch +n10055410 enchantress, temptress, siren, Delilah, femme fatale +n10055566 encyclopedist, encyclopaedist +n10055730 endomorph +n10055847 enemy, foe, foeman, opposition +n10056103 energizer, energiser, vitalizer, vitaliser, animator +n10056611 end man +n10056719 end man, corner man +n10057271 endorser, indorser +n10058411 enjoyer +n10058962 enlisted woman +n10059067 enophile, oenophile +n10060075 entrant +n10060175 entrant +n10060352 entrepreneur, enterpriser +n10061043 envoy, envoy extraordinary, minister plenipotentiary +n10061195 enzymologist +n10061431 eparch +n10061882 epidemiologist +n10062042 epigone, epigon +n10062176 epileptic +n10062275 Episcopalian +n10062492 equerry +n10062594 equerry +n10062716 erotic +n10062905 escapee +n10062996 escapist, dreamer, wishful thinker +n10063635 Eskimo, Esquimau, Inuit +n10063919 espionage agent +n10064831 esthetician, aesthetician +n10064977 etcher +n10065758 ethnologist +n10066206 Etonian +n10066314 etymologist +n10067011 evangelist, revivalist, gospeler, gospeller +n10067305 Evangelist +n10067600 event planner +n10067968 examiner, inspector +n10068234 examiner, tester, quizzer +n10068425 exarch +n10069296 executant +n10069981 executive secretary +n10070108 executive vice president +n10070377 executrix +n10070449 exegete +n10070563 exhibitor, exhibitioner, shower +n10070711 exhibitionist, show-off +n10071332 exile, expatriate, expat +n10071557 existentialist, existentialist philosopher, existential philosopher +n10072054 exorcist, exorciser +n10074249 ex-spouse +n10074578 extern, medical extern +n10074735 extremist +n10074841 extrovert, extravert +n10075299 eyewitness +n10075693 facilitator +n10076224 fairy godmother +n10076483 falangist, phalangist +n10076604 falconer, hawker +n10076957 falsifier +n10077106 familiar +n10077593 fan, buff, devotee, lover +n10077879 fanatic, fiend +n10078131 fancier, enthusiast +n10078719 farm boy +n10078806 farmer, husbandman, granger, sodbuster +n10079399 farmhand, fieldhand, field hand, farm worker +n10079893 fascist +n10080117 fascista +n10080508 fatalist, determinist, predestinarian, predestinationist +n10080869 father, male parent, begetter +n10081204 Father, Padre +n10081842 father-figure +n10082043 father-in-law +n10082299 Fauntleroy, Little Lord Fauntleroy +n10082423 Fauve, fauvist +n10082562 favorite son +n10082687 featherweight +n10082997 federalist +n10083677 fellow traveler, fellow traveller +n10083823 female aristocrat +n10084043 female offspring +n10084295 female child, girl, little girl +n10085101 fence +n10085869 fiance, groom-to-be +n10086383 fielder, fieldsman +n10086744 field judge +n10087434 fighter pilot +n10087736 filer +n10088200 film director, director +n10090745 finder +n10091349 fire chief, fire marshal +n10091450 fire-eater, fire-swallower +n10091564 fire-eater, hothead +n10091651 fireman, firefighter, fire fighter, fire-eater +n10091861 fire marshall +n10091997 fire walker +n10092488 first baseman, first sacker +n10092643 firstborn, eldest +n10092794 first lady +n10092978 first lieutenant, 1st lieutenant +n10093167 first offender +n10093475 first sergeant, sergeant first class +n10093818 fishmonger, fishwife +n10094320 flagellant +n10094584 flag officer +n10094782 flak catcher, flak, flack catcher, flack +n10095265 flanker back, flanker +n10095420 flapper +n10095769 flatmate +n10095869 flatterer, adulator +n10096126 flibbertigibbet, foolish woman +n10096508 flight surgeon +n10097262 floorwalker, shopwalker +n10097477 flop, dud, washout +n10097590 Florentine +n10097842 flower girl +n10097995 flower girl +n10098245 flutist, flautist, flute player +n10098388 fly-by-night +n10098517 flyweight +n10098624 flyweight +n10098710 foe, enemy +n10098862 folk dancer +n10099002 folk poet +n10099375 follower +n10101308 football hero +n10101634 football player, footballer +n10101981 footman +n10102800 forefather, father, sire +n10103155 foremother +n10103228 foreign agent +n10103921 foreigner, outsider +n10104064 boss +n10104487 foreman +n10104756 forester, tree farmer, arboriculturist +n10104888 forewoman +n10105085 forger, counterfeiter +n10105733 forward +n10105906 foster-brother, foster brother +n10106387 foster-father, foster father +n10106509 foster-mother, foster mother +n10106995 foster-sister, foster sister +n10107173 foster-son, foster son +n10107303 founder, beginner, founding father, father +n10108018 foundress +n10108089 four-minute man +n10108464 framer +n10108832 Francophobe +n10109443 freak, monster, monstrosity, lusus naturae +n10109662 free agent, free spirit, freewheeler +n10109826 free agent +n10110093 freedom rider +n10110731 free-liver +n10110893 freeloader +n10111358 free trader +n10111779 Freudian +n10111903 friar, mendicant +n10112129 monk, monastic +n10113249 frontierswoman +n10113583 front man, front, figurehead, nominal head, straw man, strawman +n10113869 frotteur +n10114476 fucker +n10114550 fucker +n10114662 fuddy-duddy +n10115430 fullback +n10115946 funambulist, tightrope walker +n10116370 fundamentalist +n10116478 fundraiser +n10116702 futurist +n10117017 gadgeteer +n10117267 gagman, gagster, gagwriter +n10117415 gagman, standup comedian +n10117739 gainer, weight gainer +n10117851 gal +n10118301 galoot +n10118743 gambist +n10118844 gambler +n10119609 gamine +n10120330 garbage man, garbageman, garbage collector, garbage carter, garbage hauler, refuse collector, dustman +n10120671 gardener +n10121026 garment cutter +n10121246 garroter, garrotter, strangler, throttler, choker +n10121714 gasman +n10121800 gastroenterologist +n10122300 gatherer +n10122531 gawker +n10123122 gendarme +n10123844 general, full general +n10126177 generator, source, author +n10126424 geneticist +n10126708 genitor +n10127186 gent +n10127689 geologist +n10128519 geophysicist +n10128748 ghostwriter, ghost +n10129338 Gibson girl +n10129825 girl, miss, missy, young lady, young woman, fille +n10130686 girlfriend, girl, lady friend +n10130877 girlfriend +n10131151 girl wonder +n10131268 Girondist, Girondin +n10131590 gitano +n10131815 gladiator +n10132035 glassblower +n10132502 gleaner +n10134178 goat herder, goatherd +n10134396 godchild +n10134760 godfather +n10134982 godparent +n10135129 godson +n10135197 gofer +n10135297 goffer, gopher +n10136615 goldsmith, goldworker, gold-worker +n10136959 golfer, golf player, linksman +n10137825 gondolier, gondoliere +n10138369 good guy +n10138472 good old boy, good ole boy, good ol' boy +n10139077 good Samaritan +n10139651 gossip columnist +n10140051 gouger +n10140597 governor general +n10140683 grabber +n10140783 grader +n10140929 graduate nurse, trained nurse +n10141364 grammarian, syntactician +n10141732 granddaughter +n10142166 grande dame +n10142391 grandfather, gramps, granddad, grandad, granddaddy, grandpa +n10142537 Grand Inquisitor +n10142747 grandma, grandmother, granny, grannie, gran, nan, nanna +n10142946 grandmaster +n10143172 grandparent +n10143595 grantee +n10143725 granter +n10144338 grass widower, divorced man +n10145239 great-aunt, grandaunt +n10145340 great grandchild +n10145480 great granddaughter +n10145590 great grandmother +n10145774 great grandparent +n10145902 great grandson +n10146002 great-nephew, grandnephew +n10146104 great-niece, grandniece +n10146416 Green Beret +n10146816 grenadier, grenade thrower +n10146927 greeter, saluter, welcomer +n10147121 gringo +n10147262 grinner +n10147710 grocer +n10147935 groom, bridegroom +n10148035 groom, bridegroom +n10148305 grouch, grump, crank, churl, crosspatch +n10148825 group captain +n10149436 grunter +n10149867 prison guard, jailer, jailor, gaoler, screw, turnkey +n10150071 guard +n10150794 guesser +n10150940 guest, invitee +n10151133 guest +n10151261 guest of honor +n10151367 guest worker, guestworker +n10151570 guide +n10151760 guitarist, guitar player +n10152306 gunnery sergeant +n10152616 guru +n10152763 guru +n10153155 guvnor +n10153414 guy, cat, hombre, bozo +n10153594 gymnast +n10153865 gym rat +n10154013 gynecologist, gynaecologist, woman's doctor +n10154186 Gypsy, Gipsy, Romany, Rommany, Romani, Roma, Bohemian +n10154601 hack, drudge, hacker +n10155222 hacker, cyber-terrorist, cyberpunk +n10155600 haggler +n10155849 hairdresser, hairstylist, stylist, styler +n10156629 hakim, hakeem +n10156831 Hakka +n10157016 halberdier +n10157128 halfback +n10157271 half blood +n10158506 hand +n10159045 animal trainer, handler +n10159289 handyman, jack of all trades, odd-job man +n10159533 hang glider +n10160188 hardliner +n10160280 harlequin +n10160412 harmonizer, harmoniser +n10161622 hash head +n10162016 hatchet man, iceman +n10162194 hater +n10162354 hatmaker, hatter, milliner, modiste +n10164025 headman, tribal chief, chieftain, chief +n10164233 headmaster, schoolmaster, master +n10164492 head nurse +n10165448 hearer, listener, auditor, attender +n10166189 heartbreaker +n10166394 heathen, pagan, gentile, infidel +n10167152 heavyweight +n10167361 heavy +n10167565 heckler, badgerer +n10167838 hedger +n10168012 hedger, equivocator, tergiversator +n10168183 hedonist, pagan, pleasure seeker +n10168584 heir, inheritor, heritor +n10168837 heir apparent +n10169147 heiress, inheritress, inheritrix +n10169241 heir presumptive +n10169419 hellion, heller, devil +n10169796 helmsman, steersman, steerer +n10170060 hire +n10170681 hematologist, haematologist +n10170866 hemiplegic +n10171219 herald, trumpeter +n10171456 herbalist, herb doctor +n10171567 herder, herdsman, drover +n10172080 hermaphrodite, intersex, gynandromorph, androgyne, epicene, epicene person +n10173410 heroine +n10173579 heroin addict +n10173665 hero worshiper, hero worshipper +n10173771 Herr +n10174253 highbinder +n10174330 highbrow +n10174445 high commissioner +n10174589 highflier, highflyer +n10174695 Highlander, Scottish Highlander, Highland Scot +n10174971 high-muck-a-muck, pooh-bah +n10175248 high priest +n10175725 highjacker, hijacker +n10176913 hireling, pensionary +n10177150 historian, historiographer +n10178077 hitchhiker +n10178216 hitter, striker +n10179069 hobbyist +n10180580 holdout +n10180791 holdover, hangover +n10180923 holdup man, stickup man +n10181445 homeboy +n10181547 homeboy +n10181799 home buyer +n10181878 homegirl +n10182190 homeless, homeless person +n10182402 homeopath, homoeopath +n10183347 honest woman +n10183931 honor guard, guard of honor +n10184505 hooker +n10185148 hoper +n10185483 hornist +n10185793 horseman, equestrian, horseback rider +n10186068 horse trader +n10186143 horsewoman +n10186216 horse wrangler, wrangler +n10186350 horticulturist, plantsman +n10186686 hospital chaplain +n10186774 host, innkeeper, boniface +n10187130 host +n10187491 hostess +n10187990 hotelier, hotelkeeper, hotel manager, hotelman, hosteller +n10188715 housekeeper +n10188856 housemaster +n10188957 housemate +n10189278 house physician, resident, resident physician +n10189597 house sitter +n10190122 housing commissioner +n10190516 huckster, cheap-jack +n10191001 hugger +n10191388 humanist, humanitarian +n10191613 humanitarian, do-gooder, improver +n10192839 hunk +n10193650 huntress +n10194231 ex-husband, ex +n10194775 hydrologist +n10195056 hyperope +n10195155 hypertensive +n10195261 hypnotist, hypnotizer, hypnotiser, mesmerist, mesmerizer +n10195593 hypocrite, dissembler, dissimulator, phony, phoney, pretender +n10196404 iceman +n10196725 iconoclast +n10197392 ideologist, ideologue +n10198437 idol, matinee idol +n10198832 idolizer, idoliser +n10199251 imam, imaum +n10200246 imperialist +n10200781 important person, influential person, personage +n10202225 inamorato +n10202624 incumbent, officeholder +n10202763 incurable +n10203949 inductee +n10204177 industrialist +n10204833 infanticide +n10205231 inferior +n10205344 infernal +n10205457 infielder +n10205714 infiltrator +n10206173 informer, betrayer, rat, squealer, blabber +n10206506 ingenue +n10206629 ingenue +n10207077 polymath +n10207169 in-law, relative-in-law +n10208189 inquiry agent +n10208847 inspector +n10208950 inspector general +n10209082 instigator, initiator +n10209731 insurance broker, insurance agent, general agent, underwriter +n10210137 insurgent, insurrectionist, freedom fighter, rebel +n10210512 intelligence analyst +n10210648 interior designer, designer, interior decorator, house decorator, room decorator, decorator +n10210911 interlocutor, conversational partner +n10211036 interlocutor, middleman +n10211666 International Grandmaster +n10211830 internationalist +n10212231 internist +n10212501 interpreter, translator +n10212780 interpreter +n10213034 intervenor +n10213429 introvert +n10214062 invader, encroacher +n10214390 invalidator, voider, nullifier +n10215623 investigator +n10216106 investor +n10216403 invigilator +n10217208 irreligionist +n10218043 Ivy Leaguer +n10218164 Jack of all trades +n10218292 Jacksonian +n10219240 Jane Doe +n10219453 janissary +n10219879 Jat +n10220080 Javanese, Javan +n10220924 Jekyll and Hyde +n10221312 jester, fool, motley fool +n10221520 Jesuit +n10222170 jezebel +n10222259 jilt +n10222497 jobber, middleman, wholesaler +n10222716 job candidate +n10223069 Job's comforter +n10223177 jockey +n10223606 John Doe +n10224578 journalist +n10225219 judge, justice, jurist +n10225931 judge advocate +n10226413 juggler +n10227166 Jungian +n10227266 junior +n10227393 junior +n10227490 Junior, Jr, Jnr +n10227698 junior lightweight +n10227793 junior middleweight +n10227985 jurist, legal expert +n10228278 juror, juryman, jurywoman +n10228468 justice of the peace +n10228592 justiciar, justiciary +n10228712 kachina +n10229883 keyboardist +n10230216 Khedive +n10233248 kingmaker +n10235024 king, queen, world-beater +n10235269 King's Counsel +n10235385 Counsel to the Crown +n10236304 kin, kinsperson, family +n10236521 enate, matrikin, matrilineal kin, matrisib, matrilineal sib +n10236842 kink +n10237069 kinswoman +n10237196 kisser, osculator +n10237464 kitchen help +n10237556 kitchen police, KP +n10237676 Klansman, Ku Kluxer, Kluxer +n10237799 kleptomaniac +n10238272 kneeler +n10238375 knight +n10239928 knocker +n10240082 knower, apprehender +n10240235 know-it-all, know-all +n10240417 kolkhoznik +n10240821 Kshatriya +n10241024 labor coach, birthing coach, doula, monitrice +n10241300 laborer, manual laborer, labourer, jack +n10242328 Labourite +n10243137 lady +n10243273 lady-in-waiting +n10243483 lady's maid +n10243664 lama +n10243872 lamb, dear +n10244108 lame duck +n10244359 lamplighter +n10244913 land agent +n10245029 landgrave +n10245341 landlubber, lubber, landsman +n10245507 landlubber, landsman, landman +n10245639 landowner, landholder, property owner +n10245863 landscape architect, landscape gardener, landscaper, landscapist +n10246317 langlaufer +n10246395 languisher +n10246703 lapidary, lapidarist +n10247358 lass, lassie, young girl, jeune fille +n10247880 Latin +n10248008 Latin +n10248198 latitudinarian +n10248377 Jehovah's Witness +n10249191 law agent +n10249270 lawgiver, lawmaker +n10249459 lawman, law officer, peace officer +n10249869 law student +n10249950 lawyer, attorney +n10250712 lay reader +n10251329 lazybones +n10251612 leaker +n10252075 leaseholder, lessee +n10252222 lector, lecturer, reader +n10252354 lector, reader +n10252547 lecturer +n10253122 left-hander, lefty, southpaw +n10253296 legal representative +n10253479 legate, official emissary +n10253611 legatee +n10253703 legionnaire, legionary +n10255459 letterman +n10257221 liberator +n10258602 licenser +n10258786 licentiate +n10259348 lieutenant +n10259780 lieutenant colonel, light colonel +n10259997 lieutenant commander +n10260473 lieutenant junior grade, lieutenant JG +n10260706 life +n10260800 lifeguard, lifesaver +n10261211 life tenant +n10261511 light flyweight +n10261624 light heavyweight, cruiserweight +n10261862 light heavyweight +n10262343 light-o'-love, light-of-love +n10262445 lightweight +n10262561 lightweight +n10262655 lightweight +n10262880 lilliputian +n10263146 limnologist +n10263411 lineman +n10263790 line officer +n10265281 lion-hunter +n10265801 lisper +n10265891 lister +n10266016 literary critic +n10266328 literate, literate person +n10266848 litigant, litigator +n10267166 litterer, litterbug, litter lout +n10267311 little brother +n10267865 little sister +n10268629 lobbyist +n10269199 locksmith +n10269289 locum tenens, locum +n10271677 Lord, noble, nobleman +n10272782 loser +n10272913 loser, also-ran +n10273064 failure, loser, nonstarter, unsuccessful person +n10274173 Lothario +n10274318 loudmouth, blusterer +n10274815 lowerclassman, underclassman +n10275249 Lowlander, Scottish Lowlander, Lowland Scot +n10275395 loyalist, stalwart +n10275848 Luddite +n10276045 lumberman, lumberjack, logger, feller, faller +n10276477 lumper +n10276942 bedlamite +n10277027 pyromaniac +n10277638 lutist, lutanist, lutenist +n10277815 Lutheran +n10277912 lyricist, lyrist +n10278456 macebearer, mace, macer +n10279018 machinist, mechanic, shop mechanic +n10279778 madame +n10280034 maenad +n10280130 maestro, master +n10280598 magdalen +n10280674 magician, prestidigitator, conjurer, conjuror, illusionist +n10281546 magus +n10281770 maharani, maharanee +n10281896 mahatma +n10282482 maid, maiden +n10282672 maid, maidservant, housemaid, amah +n10283170 major +n10283366 major +n10283546 major-domo, seneschal +n10284064 maker, shaper +n10284871 malahini +n10284965 malcontent +n10286282 malik +n10286539 malingerer, skulker, shammer +n10286749 Malthusian +n10288964 adonis +n10289039 man +n10289176 man +n10289462 manageress +n10289766 mandarin +n10290422 maneuverer, manoeuvrer +n10290541 maniac +n10290813 Manichaean, Manichean, Manichee +n10290919 manicurist +n10291110 manipulator +n10291469 man-at-arms +n10291822 man of action, man of deeds +n10291942 man of letters +n10292316 manufacturer, producer +n10293332 marcher, parader +n10293590 marchioness, marquise +n10293861 margrave +n10294020 margrave +n10294139 Marine, devil dog, leatherneck, shipboard soldier +n10295371 marquess +n10295479 marquis, marquess +n10296176 marshal, marshall +n10296444 martinet, disciplinarian, moralist +n10297234 mascot +n10297367 masochist +n10297531 mason, stonemason +n10297841 masquerader, masker, masquer +n10298202 masseur +n10298271 masseuse +n10298647 master +n10298912 master, captain, sea captain, skipper +n10299125 master-at-arms +n10299250 master of ceremonies, emcee, host +n10299700 masturbator, onanist +n10299875 matchmaker, matcher, marriage broker +n10300041 mate, first mate +n10300154 mate +n10300303 mate +n10300500 mater +n10300654 material +n10300829 materialist +n10302576 matriarch, materfamilias +n10302700 matriarch +n10302905 matriculate +n10303037 matron +n10303814 mayor, city manager +n10304086 mayoress +n10304650 mechanical engineer +n10304914 medalist, medallist, medal winner +n10305635 medical officer, medic +n10305802 medical practitioner, medical man +n10306004 medical scientist +n10306279 medium, spiritualist, sensitive +n10306496 megalomaniac +n10306595 melancholic, melancholiac +n10306890 Melkite, Melchite +n10307114 melter +n10308066 nonmember +n10308168 board member +n10308275 clansman, clanswoman, clan member +n10308504 memorizer, memoriser +n10308653 Mendelian +n10308732 mender, repairer, fixer +n10310783 Mesoamerican +n10311506 messmate +n10311661 mestiza +n10312287 meteorologist +n10312491 meter maid +n10312600 Methodist +n10313000 Metis +n10313239 metropolitan +n10313441 mezzo-soprano, mezzo +n10313724 microeconomist, microeconomic expert +n10314054 middle-aged man +n10314182 middlebrow +n10314517 middleweight +n10314836 midwife, accoucheuse +n10315217 mikado, tenno +n10315456 Milanese +n10315561 miler +n10315730 miles gloriosus +n10316360 military attache +n10316527 military chaplain, padre, Holy Joe, sky pilot +n10316862 military leader +n10317007 military officer, officer +n10317500 military policeman, MP +n10317963 mill agent +n10318293 mill-hand, factory worker +n10318607 millionairess +n10318686 millwright +n10319313 minder +n10320484 mining engineer +n10320863 minister, government minister +n10321126 ministrant +n10321340 minor leaguer, bush leaguer +n10321632 Minuteman +n10321882 misanthrope, misanthropist +n10322238 misfit +n10323634 mistress +n10323752 mistress, kept woman, fancy woman +n10323999 mixed-blood +n10324560 model, poser +n10325549 class act +n10325774 modeler, modeller +n10326776 modifier +n10327143 molecular biologist +n10327987 Monegasque, Monacan +n10328123 monetarist +n10328328 moneygrubber +n10328437 moneymaker +n10328696 Mongoloid +n10328941 monolingual +n10329035 monologist +n10330593 moonlighter +n10330931 moralist +n10331098 morosoph +n10331167 morris dancer +n10331258 mortal enemy +n10331347 mortgagee, mortgage holder +n10331841 mortician, undertaker, funeral undertaker, funeral director +n10332110 moss-trooper +n10332385 mother, female parent +n10332861 mother +n10332953 mother +n10333044 mother figure +n10333165 mother hen +n10333317 mother-in-law +n10333439 mother's boy, mamma's boy, mama's boy +n10333601 mother's daughter +n10333838 motorcycle cop, motorcycle policeman, speed cop +n10334009 motorcyclist +n10334461 Mound Builder +n10334782 mountebank, charlatan +n10335246 mourner, griever, sorrower, lamenter +n10335801 mouthpiece, mouth +n10335931 mover +n10336411 moviegoer, motion-picture fan +n10336904 muffin man +n10337488 mugwump, independent, fencesitter +n10338231 Mullah, Mollah, Mulla +n10338391 muncher +n10339179 murderess +n10339251 murder suspect +n10339717 musher +n10340312 musician, instrumentalist, player +n10341243 musicologist +n10341343 music teacher +n10341446 musketeer +n10341573 Muslimah +n10341955 mutilator, maimer, mangler +n10342180 mutineer +n10342367 mute, deaf-mute, deaf-and-dumb person +n10342543 mutterer, mumbler, murmurer +n10342893 muzzler +n10342992 Mycenaen +n10343088 mycologist +n10343355 myope +n10343449 myrmidon +n10343554 mystic, religious mystic +n10343869 mythologist +n10344121 naif +n10344203 nailer +n10344319 namby-pamby +n10344656 name dropper +n10344774 namer +n10345015 nan +n10345100 nanny, nursemaid, nurse +n10345302 narc, nark, narcotics agent +n10345422 narcissist, narcist +n10345659 nark, copper's nark +n10346015 nationalist +n10347204 nautch girl +n10347446 naval commander +n10348526 Navy SEAL, SEAL +n10349243 obstructionist, obstructor, obstructer, resister, thwarter +n10349750 Nazarene +n10349836 Nazarene, Ebionite +n10350220 Nazi, German Nazi +n10350774 nebbish, nebbech +n10351064 necker +n10353016 neonate, newborn, newborn infant, newborn baby +n10353355 nephew +n10353928 neurobiologist +n10354265 neurologist, brain doctor +n10354754 neurosurgeon, brain surgeon +n10355142 neutral +n10355306 neutralist +n10355449 newcomer, fledgling, fledgeling, starter, neophyte, freshman, newbie, entrant +n10355688 newcomer +n10355806 New Dealer +n10356450 newspaper editor +n10356877 newsreader, news reader +n10357012 Newtonian +n10357613 niece +n10357737 niggard, skinflint, scrooge, churl +n10358032 night porter +n10358124 night rider, nightrider +n10358575 NIMBY +n10359117 niqaabi +n10359422 nitpicker +n10359546 Nobelist, Nobel Laureate +n10359659 NOC +n10360366 noncandidate +n10360747 noncommissioned officer, noncom, enlisted officer +n10361060 nondescript +n10361194 nondriver +n10361296 nonparticipant +n10361525 nonperson, unperson +n10362003 nonresident +n10362319 nonsmoker +n10362557 Northern Baptist +n10363445 noticer +n10363573 novelist +n10364198 novitiate, novice +n10364502 nuclear chemist, radiochemist +n10365514 nudger +n10366145 nullipara +n10366276 number theorist +n10366966 nurse +n10368291 nursling, nurseling, suckling +n10368528 nymph, houri +n10368624 nymphet +n10368711 nympholept +n10368798 nymphomaniac, nympho +n10369095 oarswoman +n10369317 oboist +n10369417 obscurantist +n10369528 observer, commentator +n10369699 obstetrician, accoucheur +n10369955 occupier +n10370381 occultist +n10370955 wine lover +n10371052 offerer, offeror +n10371221 office-bearer +n10371330 office boy +n10371450 officeholder, officer +n10373390 officiant +n10373525 Federal, Fed, federal official +n10374541 oilman +n10374849 oil tycoon +n10374943 old-age pensioner +n10375052 old boy +n10375314 old lady +n10375402 old man +n10376523 oldster, old person, senior citizen, golden ager +n10376890 old-timer, oldtimer, gaffer, old geezer, antique +n10377021 old woman +n10377185 oligarch +n10377291 Olympian +n10377542 omnivore +n10377633 oncologist +n10378026 onlooker, looker-on +n10378113 onomancer +n10378780 operator +n10379376 opportunist, self-seeker +n10380126 optimist +n10380499 Orangeman +n10380672 orator, speechmaker, rhetorician, public speaker, speechifier +n10381804 orderly, hospital attendant +n10381981 orderly +n10382157 orderly sergeant +n10382302 ordinand +n10382480 ordinary +n10382710 organ-grinder +n10382825 organist +n10383094 organization man +n10383237 organizer, organiser, arranger +n10383505 organizer, organiser, labor organizer +n10383816 originator, conceiver, mastermind +n10384214 ornithologist, bird watcher +n10384392 orphan +n10384496 orphan +n10385566 osteopath, osteopathist +n10386196 out-and-outer +n10386754 outdoorswoman +n10386874 outfielder +n10386984 outfielder +n10387196 right fielder +n10387324 right-handed pitcher, right-hander +n10387836 outlier +n10389865 owner-occupier +n10389976 oyabun +n10390600 packrat +n10390698 padrone +n10390807 padrone +n10391416 page, pageboy +n10393909 painter +n10394434 Paleo-American, Paleo-Amerind, Paleo-Indian +n10394786 paleontologist, palaeontologist, fossilist +n10395073 pallbearer, bearer +n10395209 palmist, palmister, chiromancer +n10395390 pamperer, spoiler, coddler, mollycoddler +n10395828 Panchen Lama +n10396106 panelist, panellist +n10396337 panhandler +n10396727 paparazzo +n10396908 paperboy +n10397001 paperhanger, paperer +n10397142 paperhanger +n10397392 papoose, pappoose +n10399130 pardoner +n10400003 paretic +n10400108 parishioner +n10400205 park commissioner +n10400437 Parliamentarian, Member of Parliament +n10400618 parliamentary agent +n10400998 parodist, lampooner +n10401204 parricide +n10401331 parrot +n10401639 partaker, sharer +n10402709 part-timer +n10402824 party +n10403633 party man, party liner +n10403876 passenger, rider +n10404426 passer +n10404998 paster +n10405540 pater +n10405694 patient +n10406266 patriarch +n10406391 patriarch +n10406765 patriarch, paterfamilias +n10407310 patriot, nationalist +n10407954 patron, sponsor, supporter +n10408809 patternmaker +n10409459 pawnbroker +n10409752 payer, remunerator +n10410246 peacekeeper +n10410996 peasant +n10411356 pedant, bookworm, scholastic +n10411551 peddler, pedlar, packman, hawker, pitchman +n10411867 pederast, paederast, child molester +n10414239 penologist +n10414768 pentathlete +n10414865 Pentecostal, Pentecostalist +n10415037 percussionist +n10416567 periodontist +n10417288 peshmerga +n10417424 personality +n10417551 personal representative +n10417682 personage +n10417843 persona grata +n10417969 persona non grata +n10418101 personification +n10418735 perspirer, sweater +n10419047 pervert, deviant, deviate, degenerate +n10419472 pessimist +n10419630 pest, blighter, cuss, pesterer, gadfly +n10419785 Peter Pan +n10420031 petitioner, suppliant, supplicant, requester +n10420277 petit juror, petty juror +n10420507 pet sitter, critter sitter +n10420649 petter, fondler +n10421016 Pharaoh, Pharaoh of Egypt +n10421470 pharmacist, druggist, chemist, apothecary, pill pusher, pill roller +n10421956 philanthropist, altruist +n10422405 philatelist, stamp collector +n10425946 philosopher +n10426454 phonetician +n10426630 phonologist +n10427223 photojournalist +n10427359 photometrist, photometrician +n10427764 physical therapist, physiotherapist +n10428004 physicist +n10431122 piano maker +n10431625 picker, chooser, selector +n10432189 picnicker, picknicker +n10432441 pilgrim +n10432875 pill +n10432957 pillar, mainstay +n10433077 pill head +n10433452 pilot +n10433610 Piltdown man, Piltdown hoax +n10433737 pimp, procurer, panderer, pander, pandar, fancy man, ponce +n10435169 pipe smoker +n10435251 pip-squeak, squirt, small fry +n10435716 pisser, urinator +n10435988 pitcher, hurler, twirler +n10436334 pitchman +n10437014 placeman, placeseeker +n10437137 placer miner +n10437262 plagiarist, plagiarizer, plagiariser, literary pirate, pirate +n10437698 plainsman +n10438172 planner, contriver, deviser +n10438619 planter, plantation owner +n10438842 plasterer +n10439373 platinum blond, platinum blonde +n10439523 platitudinarian +n10439727 playboy, man-about-town, Corinthian +n10439851 player, participant +n10441037 playmate, playfellow +n10441124 pleaser +n10441694 pledger +n10441962 plenipotentiary +n10442093 plier, plyer +n10442232 plodder, slowpoke, stick-in-the-mud, slowcoach +n10442417 plodder, slogger +n10442573 plotter, mapper +n10443032 plumber, pipe fitter +n10443659 pluralist +n10443830 pluralist +n10444194 poet +n10448322 pointsman +n10448455 point woman +n10449664 policyholder +n10450038 political prisoner +n10450161 political scientist +n10450303 politician, politico, pol, political leader +n10451450 politician +n10451590 pollster, poll taker, headcounter, canvasser +n10451858 polluter, defiler +n10453184 pool player +n10455619 portraitist, portrait painter, portrayer, limner +n10456070 poseuse +n10456138 positivist, rationalist +n10456696 postdoc, post doc +n10457214 poster girl +n10457444 postulator +n10457903 private citizen +n10458111 problem solver, solver, convergent thinker +n10458356 pro-lifer +n10458596 prosthetist +n10459882 postulant +n10460033 potboy, potman +n10461060 poultryman, poulterer +n10462588 power user +n10462751 power worker, power-station worker +n10462860 practitioner, practician +n10464052 prayer, supplicant +n10464542 preceptor, don +n10464711 predecessor +n10464870 preemptor, pre-emptor +n10465002 preemptor, pre-emptor +n10465451 premature baby, preterm baby, premature infant, preterm infant, preemie, premie +n10465831 presbyter +n10466198 presenter, sponsor +n10466564 presentist +n10466918 preserver +n10467179 president +n10467395 President of the United States, United States President, President, Chief Executive +n10468750 president, prexy +n10469611 press agent, publicity man, public relations man, PR man +n10469874 press photographer +n10470779 priest +n10471640 prima ballerina +n10471732 prima donna, diva +n10471859 prima donna +n10472129 primigravida, gravida I +n10472447 primordial dwarf, hypoplastic dwarf, true dwarf, normal dwarf +n10473453 prince charming +n10473562 prince consort +n10473789 princeling +n10473917 Prince of Wales +n10474064 princess +n10474343 princess royal +n10474446 principal, dealer +n10474645 principal, school principal, head teacher, head +n10475835 print seller +n10475940 prior +n10476467 private, buck private, common soldier +n10477713 probationer, student nurse +n10477955 processor +n10478118 process-server +n10478293 proconsul +n10478462 proconsul +n10478827 proctologist +n10478960 proctor, monitor +n10479135 procurator +n10479328 procurer, securer +n10481167 profit taker +n10481268 programmer, computer programmer, coder, software engineer +n10482054 promiser, promisor +n10482220 promoter, booster, plugger +n10482587 promulgator +n10482921 propagandist +n10483138 propagator, disseminator +n10483395 property man, propman, property master +n10483799 prophetess +n10483890 prophet +n10484858 prosecutor, public prosecutor, prosecuting officer, prosecuting attorney +n10485298 prospector +n10485883 protectionist +n10486166 protegee +n10486236 protozoologist +n10486561 provost marshal +n10487182 pruner, trimmer +n10487363 psalmist +n10487592 psephologist +n10488016 psychiatrist, head-shrinker, shrink +n10488309 psychic +n10488656 psycholinguist +n10489426 psychophysicist +n10490421 publican, tavern keeper +n10491998 pudge +n10492086 puerpera +n10492727 punching bag +n10493199 punter +n10493419 punter +n10493685 puppeteer +n10493835 puppy, pup +n10493922 purchasing agent +n10494195 puritan +n10494373 Puritan +n10495167 pursuer +n10495421 pusher, shover +n10495555 pusher, drug peddler, peddler, drug dealer, drug trafficker +n10495756 pusher, thruster +n10496393 putz +n10496489 Pygmy, Pigmy +n10497135 qadi +n10497534 quadriplegic +n10497645 quadruplet, quad +n10498046 quaker, trembler +n10498699 quarter +n10498816 quarterback, signal caller, field general +n10498986 quartermaster +n10499110 quartermaster general +n10499232 Quebecois +n10499355 queen, queen regnant, female monarch +n10499631 Queen of England +n10499857 queen +n10500217 queen +n10500419 queen consort +n10500603 queen mother +n10500824 Queen's Counsel +n10500942 question master, quizmaster +n10501453 quick study, sponge +n10501635 quietist +n10502046 quitter +n10502329 rabbi +n10502950 racist, racialist +n10503818 radiobiologist +n10504090 radiologic technologist +n10504206 radiologist, radiotherapist +n10505347 rainmaker +n10505613 raiser +n10505732 raja, rajah +n10505942 rake, rakehell, profligate, rip, blood, roue +n10506336 ramrod +n10506544 ranch hand +n10506915 ranker +n10507070 ranter, raver +n10507380 rape suspect +n10507482 rapper +n10507565 rapporteur +n10507692 rare bird, rara avis +n10508141 ratepayer +n10508379 raw recruit +n10508710 reader +n10509063 reading teacher +n10509161 realist +n10509810 real estate broker, real estate agent, estate agent, land agent, house agent +n10510245 rear admiral +n10510974 receiver +n10511771 reciter +n10512201 recruit, enlistee +n10512372 recruit, military recruit +n10512708 recruiter +n10512859 recruiting-sergeant +n10513509 redcap +n10513823 redhead, redheader, red-header, carrottop +n10513938 redneck, cracker +n10514051 reeler +n10514121 reenactor +n10514255 referral +n10514429 referee, ref +n10514784 refiner +n10515863 Reform Jew +n10516527 registered nurse, RN +n10517137 registrar +n10517283 Regius professor +n10518349 reliever, allayer, comforter +n10519126 anchorite, hermit +n10519494 religious leader +n10519984 remover +n10520286 Renaissance man, generalist +n10520544 renegade +n10520964 rentier +n10521100 repairman, maintenance man, service man +n10521662 reporter, newsman, newsperson +n10521853 newswoman +n10522035 representative +n10522324 reprobate, miscreant +n10522759 rescuer, recoverer, saver +n10523341 reservist +n10524076 resident commissioner +n10524223 respecter +n10524869 restaurateur, restauranter +n10525134 restrainer, controller +n10525436 retailer, retail merchant +n10525617 retiree, retired person +n10525878 returning officer +n10526534 revenant +n10527147 revisionist +n10527334 revolutionist, revolutionary, subversive, subverter +n10528023 rheumatologist +n10528148 Rhodesian man, Homo rhodesiensis +n10528493 rhymer, rhymester, versifier, poetizer, poetiser +n10529231 rich person, wealthy person, have +n10530150 rider +n10530383 riding master +n10530571 rifleman +n10530959 right-hander, right hander, righthander +n10531109 right-hand man, chief assistant, man Friday +n10531445 ringer +n10531838 ringleader +n10533874 roadman, road mender +n10533983 roarer, bawler, bellower, screamer, screecher, shouter, yeller +n10536134 rocket engineer, rocket scientist +n10536274 rocket scientist +n10536416 rock star +n10537708 Romanov, Romanoff +n10537906 romanticist, romantic +n10538629 ropemaker, rope-maker, roper +n10538733 roper +n10538853 roper +n10539015 ropewalker, ropedancer +n10539160 rosebud +n10539278 Rosicrucian +n10540114 Mountie +n10540252 Rough Rider +n10540656 roundhead +n10541833 civil authority, civil officer +n10542608 runner +n10542761 runner +n10542888 runner +n10543161 running back +n10543937 rusher +n10544232 rustic +n10544748 saboteur, wrecker, diversionist +n10545792 sadist +n10546428 sailing master, navigator +n10546633 sailor, crewman +n10548419 salesgirl, saleswoman, saleslady +n10548537 salesman +n10548681 salesperson, sales representative, sales rep +n10549510 salvager, salvor +n10550252 sandwichman +n10550369 sangoma +n10550468 sannup +n10551576 sapper +n10552393 Sassenach +n10553140 satrap +n10553235 saunterer, stroller, ambler +n10554024 Savoyard +n10554141 sawyer +n10554846 scalper +n10555059 scandalmonger +n10555430 scapegrace, black sheep +n10556033 scene painter +n10556518 schemer, plotter +n10556704 schizophrenic +n10556825 schlemiel, shlemiel +n10557246 schlockmeister, shlockmeister +n10557854 scholar, scholarly person, bookman, student +n10559009 scholiast +n10559288 schoolchild, school-age child, pupil +n10559508 schoolfriend +n10559683 Schoolman, medieval Schoolman +n10559996 schoolmaster +n10560106 schoolmate, classmate, schoolfellow, class fellow +n10560637 scientist +n10561222 scion +n10561320 scoffer, flouter, mocker, jeerer +n10561736 scofflaw +n10562135 scorekeeper, scorer +n10562283 scorer +n10562509 scourer +n10562968 scout, talent scout +n10563314 scoutmaster +n10563403 scrambler +n10563711 scratcher +n10564098 screen actor, movie actor +n10565502 scrutineer, canvasser +n10565667 scuba diver +n10566072 sculptor, sculpturer, carver, statue maker +n10567613 Sea Scout +n10567722 seasonal worker, seasonal +n10567848 seasoner +n10568200 second baseman, second sacker +n10568358 second cousin +n10568443 seconder +n10568608 second fiddle, second banana +n10568915 second-in-command +n10569011 second lieutenant, 2nd lieutenant +n10569179 second-rater, mediocrity +n10570019 secretary +n10570704 Secretary of Agriculture, Agriculture Secretary +n10571907 Secretary of Health and Human Services +n10572706 Secretary of State +n10572889 Secretary of the Interior, Interior Secretary +n10573957 sectarian, sectary, sectarist +n10574311 section hand +n10574538 secularist +n10574840 security consultant +n10575463 seeded player, seed +n10575594 seeder, cloud seeder +n10575787 seeker, searcher, quester +n10576223 segregate +n10576316 segregator, segregationist +n10576676 selectman +n10576818 selectwoman +n10576962 selfish person +n10577182 self-starter +n10577284 seller, marketer, vender, vendor, trafficker +n10577710 selling agent +n10577820 semanticist, semiotician +n10578021 semifinalist +n10578162 seminarian, seminarist +n10578471 senator +n10578656 sendee +n10579062 senior +n10579549 senior vice president +n10580030 separatist, separationist +n10580437 septuagenarian +n10580535 serf, helot, villein +n10581648 spree killer +n10581890 serjeant-at-law, serjeant, sergeant-at-law, sergeant +n10582604 server +n10582746 serviceman, military man, man, military personnel +n10583387 settler, colonist +n10583790 settler +n10585077 sex symbol +n10585217 sexton, sacristan +n10585628 shaheed +n10586166 Shakespearian, Shakespearean +n10586265 shanghaier, seizer +n10586444 sharecropper, cropper, sharecrop farmer +n10586903 shaver +n10586998 Shavian +n10588074 sheep +n10588357 sheik, tribal sheik, sheikh, tribal sheikh, Arab chief +n10588724 shelver +n10588965 shepherd +n10589666 ship-breaker +n10590146 shipmate +n10590239 shipowner +n10590452 shipping agent +n10590903 shirtmaker +n10591072 shogun +n10591811 shopaholic +n10592049 shop girl +n10592811 shop steward, steward +n10593521 shot putter +n10594147 shrew, termagant +n10594523 shuffler +n10594857 shyster, pettifogger +n10595164 sibling, sib +n10595647 sick person, diseased person, sufferer +n10596517 sightreader +n10596899 signaler, signaller +n10597505 signer +n10597745 signor, signior +n10597889 signora +n10598013 signore +n10598181 signorina +n10598459 silent partner, sleeping partner +n10598904 addle-head, addlehead, loon, birdbrain +n10599215 simperer +n10599806 singer, vocalist, vocalizer, vocaliser +n10601234 Sinologist +n10601362 sipper +n10602119 sirrah +n10602470 Sister +n10602985 sister, sis +n10603528 waverer, vacillator, hesitator, hesitater +n10603851 sitar player +n10604275 sixth-former +n10604380 skateboarder +n10604634 skeptic, sceptic, doubter +n10604880 sketcher +n10604979 skidder +n10605253 skier +n10605737 skinny-dipper +n10607291 skin-diver, aquanaut +n10607478 skinhead +n10609092 slasher +n10609198 slattern, slut, slovenly woman, trollop +n10610465 sleeper, slumberer +n10610850 sleeper +n10611267 sleeping beauty +n10611613 sleuth, sleuthhound +n10612210 slob, sloven, pig, slovenly person +n10612373 sloganeer +n10612518 slopseller, slop-seller +n10613996 smasher, stunner, knockout, beauty, ravisher, sweetheart, peach, lulu, looker, mantrap, dish +n10614507 smirker +n10614629 smith, metalworker +n10615179 smoothie, smoothy, sweet talker, charmer +n10615334 smuggler, runner, contrabandist, moon curser, moon-curser +n10616578 sneezer +n10617024 snob, prig, snot, snoot +n10617193 snoop, snooper +n10617397 snorer +n10618234 sob sister +n10618342 soccer player +n10618465 social anthropologist, cultural anthropologist +n10618685 social climber, climber +n10618848 socialist +n10619492 socializer, socialiser +n10619642 social scientist +n10619888 social secretary +n10620212 Socinian +n10620586 sociolinguist +n10620758 sociologist +n10621294 soda jerk, soda jerker +n10621400 sodalist +n10621514 sodomite, sodomist, sod, bugger +n10622053 soldier +n10624074 son, boy +n10624310 songster +n10624437 songstress +n10624540 songwriter, songster, ballad maker +n10625860 sorcerer, magician, wizard, necromancer, thaumaturge, thaumaturgist +n10626630 sorehead +n10627252 soul mate +n10628097 Southern Baptist +n10628644 sovereign, crowned head, monarch +n10629329 spacewalker +n10629647 Spanish American, Hispanic American, Hispanic +n10629939 sparring partner, sparring mate +n10630093 spastic +n10630188 speaker, talker, utterer, verbalizer, verbaliser +n10631131 native speaker +n10631309 Speaker +n10631654 speechwriter +n10632576 specialist, medical specialist +n10633298 specifier +n10633450 spectator, witness, viewer, watcher, looker +n10634464 speech therapist +n10634849 speedskater, speed skater +n10634990 spellbinder +n10635788 sphinx +n10636488 spinster, old maid +n10637483 split end +n10638922 sport, sportsman, sportswoman +n10639238 sport, summercater +n10639359 sporting man, outdoor man +n10639637 sports announcer, sportscaster, sports commentator +n10639817 sports editor +n10641223 sprog +n10642596 square dancer +n10642705 square shooter, straight shooter, straight arrow +n10643095 squatter +n10643837 squire +n10643937 squire +n10644598 staff member, staffer +n10645017 staff sergeant +n10645223 stage director +n10646032 stainer +n10646140 stakeholder +n10646433 stalker +n10646641 stalking-horse +n10646780 stammerer, stutterer +n10646942 stamper, stomper, tramper, trampler +n10647745 standee +n10648237 stand-in, substitute, relief, reliever, backup, backup man, fill-in +n10648696 star, principal, lead +n10649197 starlet +n10649308 starter, dispatcher +n10650162 statesman, solon, national leader +n10652605 state treasurer +n10652703 stationer, stationery seller +n10654015 stenographer, amanuensis, shorthand typist +n10654211 stentor +n10654321 stepbrother, half-brother, half brother +n10654827 stepmother +n10654932 stepparent +n10655169 stevedore, loader, longshoreman, docker, dockhand, dock worker, dockworker, dock-walloper, lumper +n10655442 steward +n10655594 steward, flight attendant +n10655730 steward +n10655986 stickler +n10656120 stiff +n10656223 stifler, smotherer +n10656969 stipendiary, stipendiary magistrate +n10657306 stitcher +n10657556 stockjobber +n10657835 stock trader +n10658304 stockist +n10659042 stoker, fireman +n10659762 stooper +n10660128 store detective +n10660621 strafer +n10660883 straight man, second banana +n10661002 stranger, alien, unknown +n10661216 stranger +n10661563 strategist, strategian +n10661732 straw boss, assistant foreman +n10663315 streetwalker, street girl, hooker, hustler, floozy, floozie, slattern +n10663549 stretcher-bearer, litter-bearer +n10665302 struggler +n10665587 stud, he-man, macho-man +n10665698 student, pupil, educatee +n10666752 stumblebum, palooka +n10667477 stylist +n10667709 subaltern +n10667863 subcontractor +n10668450 subduer, surmounter, overcomer +n10668666 subject, case, guinea pig +n10669991 subordinate, subsidiary, underling, foot soldier +n10671042 substitute, reserve, second-stringer +n10671613 successor, heir +n10671736 successor, replacement +n10671898 succorer, succourer +n10672371 Sufi +n10672540 suffragan, suffragan bishop +n10672662 suffragette +n10673296 sugar daddy +n10673776 suicide bomber +n10674130 suitor, suer, wooer +n10674713 sumo wrestler +n10675010 sunbather +n10675142 sundowner +n10675609 super heavyweight +n10676018 superior, higher-up, superordinate +n10676434 supermom +n10676569 supernumerary, spear carrier, extra +n10678937 supremo +n10679174 surgeon, operating surgeon, sawbones +n10679503 Surgeon General +n10679610 Surgeon General +n10679723 surpriser +n10680609 surveyor +n10680796 surveyor +n10681194 survivor, subsister +n10681557 sutler, victualer, victualler, provisioner +n10682713 sweeper +n10682953 sweetheart, sweetie, steady, truelove +n10683675 swinger, tramp +n10684146 switcher, whipper +n10684630 swot, grind, nerd, wonk, dweeb +n10684827 sycophant, toady, crawler, lackey, ass-kisser +n10685398 sylph +n10686073 sympathizer, sympathiser, well-wisher +n10686517 symphonist +n10686694 syncopator +n10686885 syndic +n10688356 tactician +n10688811 tagger +n10689306 tailback +n10690268 tallyman, tally clerk +n10690421 tallyman +n10690648 tanker, tank driver +n10691318 tapper, wiretapper, phone tapper +n10691937 Tartuffe, Tartufe +n10692090 Tarzan +n10692482 taster, taste tester, taste-tester, sampler +n10692883 tax assessor, assessor +n10693235 taxer +n10693334 taxi dancer +n10693824 taxonomist, taxonomer, systematist +n10694258 teacher, instructor +n10694939 teaching fellow +n10695450 tearaway +n10696101 technical sergeant +n10696508 technician +n10697135 Ted, Teddy boy +n10697282 teetotaler, teetotaller, teetotalist +n10698368 television reporter, television newscaster, TV reporter, TV newsman +n10699558 temporizer, temporiser +n10699752 tempter +n10699981 term infant +n10700105 toiler +n10700201 tenant, renter +n10700640 tenant +n10700963 tenderfoot +n10701180 tennis player +n10701644 tennis pro, professional tennis player +n10701962 tenor saxophonist, tenorist +n10702167 termer +n10702615 terror, scourge, threat +n10703221 tertigravida, gravida III +n10703336 testator, testate +n10703480 testatrix +n10703692 testee, examinee +n10704238 test-tube baby +n10704712 Texas Ranger, Ranger +n10704886 thane +n10705448 theatrical producer +n10705615 theologian, theologist, theologizer, theologiser +n10706812 theorist, theoretician, theorizer, theoriser, idealogue +n10707134 theosophist +n10707233 therapist, healer +n10707707 Thessalonian +n10708292 thinker, creative thinker, mind +n10708454 thinker +n10709529 thrower +n10710171 thurifer +n10710259 ticket collector, ticket taker +n10710778 tight end +n10710913 tiler +n10711483 timekeeper, timer +n10711766 Timorese +n10712229 tinkerer, fiddler +n10712374 tinsmith, tinner +n10712474 tinter +n10712690 tippler, social drinker +n10712835 tipster, tout +n10713254 T-man +n10713686 toastmaster, symposiarch +n10713843 toast mistress +n10714195 tobogganist +n10715030 tomboy, romp, hoyden +n10715347 toolmaker +n10715789 torchbearer +n10716576 Tory +n10716864 Tory +n10717055 tosser +n10717196 tosser, jerk-off, wanker +n10717337 totalitarian +n10718131 tourist, tourer, holidaymaker +n10718349 tout, touter +n10718509 tout, ticket tout +n10718665 tovarich, tovarisch +n10718952 towhead +n10719036 town clerk +n10719132 town crier, crier +n10719267 townsman, towner +n10719807 toxicologist +n10720197 track star +n10720453 trader, bargainer, dealer, monger +n10720964 trade unionist, unionist, union member +n10721124 traditionalist, diehard +n10721321 traffic cop +n10721612 tragedian +n10721708 tragedian +n10721819 tragedienne +n10722029 trail boss +n10722575 trainer +n10722965 traitor, treasonist +n10723230 traitress +n10723597 transactor +n10724132 transcriber +n10724372 transfer, transferee +n10724570 transferee +n10725280 translator, transcriber +n10726031 transvestite, cross-dresser +n10726786 traveling salesman, travelling salesman, commercial traveler, commercial traveller, roadman, bagman +n10727016 traverser +n10727171 trawler +n10727458 Treasury, First Lord of the Treasury +n10728117 trencher +n10728233 trend-setter, taste-maker, fashion arbiter +n10728624 tribesman +n10728998 trier, attempter, essayer +n10729330 trifler +n10730542 trooper +n10730728 trooper, state trooper +n10731013 Trotskyite, Trotskyist, Trot +n10731732 truant, hooky player +n10732010 trumpeter, cornetist +n10732521 trusty +n10732854 Tudor +n10732967 tumbler +n10733820 tutee +n10734394 twin +n10734741 two-timer +n10734891 Tyke +n10734963 tympanist, timpanist +n10735173 typist +n10735298 tyrant, autocrat, despot +n10735984 umpire, ump +n10737103 understudy, standby +n10737264 undesirable +n10738111 unicyclist +n10738215 unilateralist +n10738670 Unitarian +n10738871 Arminian +n10739135 universal donor +n10739297 UNIX guru +n10739391 Unknown Soldier +n10740594 upsetter +n10740732 upstager +n10740868 upstart, parvenu, nouveau-riche, arriviste +n10741152 upstart +n10741367 urchin +n10741493 urologist +n10742005 usherette +n10742111 usher, doorkeeper +n10742546 usurper, supplanter +n10742997 utility man +n10743124 utilizer, utiliser +n10743356 Utopian +n10744078 uxoricide +n10744164 vacationer, vacationist +n10745006 valedictorian, valedictory speaker +n10745770 valley girl +n10746931 vaulter, pole vaulter, pole jumper +n10747119 vegetarian +n10747424 vegan +n10747548 venerator +n10747965 venture capitalist +n10748142 venturer, merchant-venturer +n10748506 vermin, varmint +n10748620 very important person, VIP, high-up, dignitary, panjandrum, high muckamuck +n10749928 vibist, vibraphonist +n10750031 vicar +n10750188 vicar +n10750640 vicar-general +n10751026 vice chancellor +n10751152 vicegerent +n10751265 vice president, V.P. +n10751710 vice-regent +n10752480 victim, dupe +n10753061 Victorian +n10753182 victualer, victualler +n10753339 vigilante, vigilance man +n10753442 villager +n10753989 vintager +n10754189 vintner, wine merchant +n10754281 violator, debaucher, ravisher +n10754449 violator, lawbreaker, law offender +n10755080 violist +n10755164 virago +n10755394 virologist +n10755648 Visayan, Bisayan +n10756061 viscountess +n10756148 viscount +n10756261 Visigoth +n10756641 visionary +n10756837 visiting fireman +n10757050 visiting professor +n10757492 visualizer, visualiser +n10758337 vixen, harpy, hellcat +n10758445 vizier +n10758949 voicer +n10759151 volunteer, unpaid worker +n10759331 volunteer, military volunteer, voluntary +n10759982 votary +n10760199 votary +n10760622 vouchee +n10760951 vower +n10761190 voyager +n10761326 voyeur, Peeping Tom, peeper +n10761519 vulcanizer, vulcaniser +n10762212 waffler +n10762480 Wagnerian +n10763075 waif, street child +n10763245 wailer +n10763383 waiter, server +n10763620 waitress +n10764465 walking delegate +n10764622 walk-on +n10764719 wallah +n10765305 wally +n10765587 waltzer +n10765679 wanderer, roamer, rover, bird of passage +n10765885 Wandering Jew +n10766260 wanton +n10768148 warrantee +n10768272 warrantee +n10768903 washer +n10769084 washerman, laundryman +n10769188 washwoman, washerwoman, laundrywoman, laundress +n10769321 wassailer, carouser +n10769459 wastrel, waster +n10771066 Wave +n10772092 weatherman, weather forecaster +n10772580 weekend warrior +n10772937 weeder +n10773665 welder +n10773800 welfare case, charity case +n10774329 westerner +n10774756 West-sider +n10775003 wetter +n10775128 whaler +n10776052 Whig +n10776339 whiner, complainer, moaner, sniveller, crybaby, bellyacher, grumbler, squawker +n10776887 whipper-in +n10777299 whisperer +n10778044 whiteface +n10778148 Carmelite, White Friar +n10778711 Augustinian +n10778999 white hope, great white hope +n10779610 white supremacist +n10779897 whoremaster, whoremonger +n10779995 whoremaster, whoremonger, john, trick +n10780284 widow, widow woman +n10780632 wife, married woman +n10781236 wiggler, wriggler, squirmer +n10781817 wimp, chicken, crybaby +n10782362 wing commander +n10782471 winger +n10782791 winner +n10782940 winner, victor +n10783240 window dresser, window trimmer +n10783539 winker +n10783646 wiper +n10783734 wireman, wirer +n10784113 wise guy, smart aleck, wiseacre, wisenheimer, weisenheimer +n10784544 witch doctor +n10784922 withdrawer +n10785480 withdrawer +n10787470 woman, adult female +n10788852 woman +n10789415 wonder boy, golden boy +n10789709 wonderer +n10791115 working girl +n10791221 workman, workingman, working man, working person +n10791820 workmate +n10791890 worldling +n10792335 worshiper, worshipper +n10792506 worthy +n10792856 wrecker +n10793570 wright +n10793799 write-in candidate, write-in +n10794014 writer, author +n10801561 Wykehamist +n10801802 yakuza +n10802507 yard bird, yardbird +n10802621 yardie +n10802953 yardman +n10803031 yardmaster, trainmaster, train dispatcher +n10803282 yenta +n10803978 yogi +n10804287 young buck, young man +n10804636 young Turk +n10804732 Young Turk +n10805501 Zionist +n10806113 zoo keeper +n10994097 Genet, Edmund Charles Edouard Genet, Citizen Genet +n11100798 Kennan, George F. Kennan, George Frost Kennan +n11196627 Munro, H. H. Munro, Hector Hugh Munro, Saki +n11242849 Popper, Karl Popper, Sir Karl Raimund Popper +n11318824 Stoker, Bram Stoker, Abraham Stoker +n11346873 Townes, Charles Townes, Charles Hard Townes +n11448153 dust storm, duster, sandstorm, sirocco +n11487732 parhelion, mock sun, sundog +n11508382 snow, snowfall +n11511327 facula +n11524451 wave +n11530008 microflora +n11531193 wilding +n11531334 semi-climber +n11532682 volva +n11533212 basidiocarp +n11533999 domatium +n11536567 apomict +n11536673 aquatic +n11537327 bryophyte, nonvascular plant +n11539289 acrocarp, acrocarpous moss +n11542137 sphagnum, sphagnum moss, peat moss, bog moss +n11542640 liverwort, hepatic +n11544015 hepatica, Marchantia polymorpha +n11545350 pecopteris +n11545524 pteridophyte, nonflowering plant +n11545714 fern +n11547562 fern ally +n11547855 spore +n11548728 carpospore +n11548870 chlamydospore +n11549009 conidium, conidiospore +n11549245 oospore +n11549779 tetraspore +n11549895 zoospore +n11552133 cryptogam +n11552386 spermatophyte, phanerogam, seed plant +n11552594 seedling +n11552806 annual +n11552976 biennial +n11553240 perennial +n11553522 hygrophyte +n11596108 gymnosperm +n11597657 gnetum, Gnetum gnemon +n11598287 Catha edulis +n11598686 ephedra, joint fir +n11598886 mahuang, Ephedra sinica +n11599324 welwitschia, Welwitschia mirabilis +n11600372 cycad +n11601177 sago palm, Cycas revoluta +n11601333 false sago, fern palm, Cycas circinalis +n11601918 zamia +n11602091 coontie, Florida arrowroot, Seminole bread, Zamia pumila +n11602478 ceratozamia +n11602873 dioon +n11603246 encephalartos +n11603462 kaffir bread, Encephalartos caffer +n11603835 macrozamia +n11604046 burrawong, Macrozamia communis, Macrozamia spiralis +n11608250 pine, pine tree, true pine +n11609475 pinon, pinyon +n11609684 nut pine +n11609862 pinon pine, Mexican nut pine, Pinus cembroides +n11610047 Rocky mountain pinon, Pinus edulis +n11610215 single-leaf, single-leaf pine, single-leaf pinyon, Pinus monophylla +n11610437 bishop pine, bishop's pine, Pinus muricata +n11610602 California single-leaf pinyon, Pinus californiarum +n11610823 Parry's pinyon, Pinus quadrifolia, Pinus parryana +n11611087 spruce pine, Pinus glabra +n11611233 black pine, Pinus nigra +n11611356 pitch pine, northern pitch pine, Pinus rigida +n11611561 pond pine, Pinus serotina +n11611758 stone pine, umbrella pine, European nut pine, Pinus pinea +n11612018 Swiss pine, Swiss stone pine, arolla pine, cembra nut tree, Pinus cembra +n11612235 cembra nut, cedar nut +n11612349 Swiss mountain pine, mountain pine, dwarf mountain pine, mugho pine, mugo pine, Pinus mugo +n11612575 ancient pine, Pinus longaeva +n11612923 white pine +n11613219 American white pine, eastern white pine, weymouth pine, Pinus strobus +n11613459 western white pine, silver pine, mountain pine, Pinus monticola +n11613692 southwestern white pine, Pinus strobiformis +n11613867 limber pine, Pinus flexilis +n11614039 whitebark pine, whitebarked pine, Pinus albicaulis +n11614250 yellow pine +n11614420 ponderosa, ponderosa pine, western yellow pine, bull pine, Pinus ponderosa +n11614713 Jeffrey pine, Jeffrey's pine, black pine, Pinus jeffreyi +n11615026 shore pine, lodgepole, lodgepole pine, spruce pine, Pinus contorta +n11615259 Sierra lodgepole pine, Pinus contorta murrayana +n11615387 loblolly pine, frankincense pine, Pinus taeda +n11615607 jack pine, Pinus banksiana +n11615812 swamp pine +n11615967 longleaf pine, pitch pine, southern yellow pine, Georgia pine, Pinus palustris +n11616260 shortleaf pine, short-leaf pine, shortleaf yellow pine, Pinus echinata +n11616486 red pine, Canadian red pine, Pinus resinosa +n11616662 Scotch pine, Scots pine, Scotch fir, Pinus sylvestris +n11616852 scrub pine, Virginia pine, Jersey pine, Pinus virginiana +n11617090 Monterey pine, Pinus radiata +n11617272 bristlecone pine, Rocky Mountain bristlecone pine, Pinus aristata +n11617631 table-mountain pine, prickly pine, hickory pine, Pinus pungens +n11617878 knobcone pine, Pinus attenuata +n11618079 Japanese red pine, Japanese table pine, Pinus densiflora +n11618290 Japanese black pine, black pine, Pinus thunbergii +n11618525 Torrey pine, Torrey's pine, soledad pine, grey-leaf pine, sabine pine, Pinus torreyana +n11618861 larch, larch tree +n11619227 American larch, tamarack, black larch, Larix laricina +n11619455 western larch, western tamarack, Oregon larch, Larix occidentalis +n11619687 subalpine larch, Larix lyallii +n11619845 European larch, Larix decidua +n11620016 Siberian larch, Larix siberica, Larix russica +n11620389 golden larch, Pseudolarix amabilis +n11620673 fir, fir tree, true fir +n11621029 silver fir +n11621281 amabilis fir, white fir, Pacific silver fir, red silver fir, Christmas tree, Abies amabilis +n11621547 European silver fir, Christmas tree, Abies alba +n11621727 white fir, Colorado fir, California white fir, Abies concolor, Abies lowiana +n11621950 balsam fir, balm of Gilead, Canada balsam, Abies balsamea +n11622184 Fraser fir, Abies fraseri +n11622368 lowland fir, lowland white fir, giant fir, grand fir, Abies grandis +n11622591 Alpine fir, subalpine fir, Abies lasiocarpa +n11622771 Santa Lucia fir, bristlecone fir, Abies bracteata, Abies venusta +n11623105 cedar, cedar tree, true cedar +n11623815 cedar of Lebanon, Cedrus libani +n11623967 deodar, deodar cedar, Himalayan cedar, Cedrus deodara +n11624192 Atlas cedar, Cedrus atlantica +n11624531 spruce +n11625003 Norway spruce, Picea abies +n11625223 weeping spruce, Brewer's spruce, Picea breweriana +n11625391 Engelmann spruce, Engelmann's spruce, Picea engelmannii +n11625632 white spruce, Picea glauca +n11625804 black spruce, Picea mariana, spruce pine +n11626010 Siberian spruce, Picea obovata +n11626152 Sitka spruce, Picea sitchensis +n11626409 oriental spruce, Picea orientalis +n11626585 Colorado spruce, Colorado blue spruce, silver spruce, Picea pungens +n11626826 red spruce, eastern spruce, yellow spruce, Picea rubens +n11627168 hemlock, hemlock tree +n11627512 eastern hemlock, Canadian hemlock, spruce pine, Tsuga canadensis +n11627714 Carolina hemlock, Tsuga caroliniana +n11627908 mountain hemlock, black hemlock, Tsuga mertensiana +n11628087 western hemlock, Pacific hemlock, west coast hemlock, Tsuga heterophylla +n11628456 douglas fir +n11628793 green douglas fir, douglas spruce, douglas pine, douglas hemlock, Oregon fir, Oregon pine, Pseudotsuga menziesii +n11629047 big-cone spruce, big-cone douglas fir, Pseudotsuga macrocarpa +n11629354 Cathaya +n11630017 cedar, cedar tree +n11630489 cypress, cypress tree +n11631159 gowen cypress, Cupressus goveniana +n11631405 pygmy cypress, Cupressus pigmaea, Cupressus goveniana pigmaea +n11631619 Santa Cruz cypress, Cupressus abramsiana, Cupressus goveniana abramsiana +n11631854 Arizona cypress, Cupressus arizonica +n11631985 Guadalupe cypress, Cupressus guadalupensis +n11632167 Monterey cypress, Cupressus macrocarpa +n11632376 Mexican cypress, cedar of Goa, Portuguese cypress, Cupressus lusitanica +n11632619 Italian cypress, Mediterranean cypress, Cupressus sempervirens +n11632929 King William pine, Athrotaxis selaginoides +n11633284 Chilean cedar, Austrocedrus chilensis +n11634736 incense cedar, red cedar, Calocedrus decurrens, Libocedrus decurrens +n11635152 southern white cedar, coast white cedar, Atlantic white cedar, white cypress, white cedar, Chamaecyparis thyoides +n11635433 Oregon cedar, Port Orford cedar, Lawson's cypress, Lawson's cedar, Chamaecyparis lawsoniana +n11635830 yellow cypress, yellow cedar, Nootka cypress, Alaska cedar, Chamaecyparis nootkatensis +n11636204 Japanese cedar, Japan cedar, sugi, Cryptomeria japonica +n11636835 juniper berry +n11639084 incense cedar +n11639306 kawaka, Libocedrus plumosa +n11639445 pahautea, Libocedrus bidwillii, mountain pine +n11640132 metasequoia, dawn redwood, Metasequoia glyptostrodoides +n11643835 arborvitae +n11644046 western red cedar, red cedar, canoe cedar, Thuja plicata +n11644226 American arborvitae, northern white cedar, white cedar, Thuja occidentalis +n11644462 Oriental arborvitae, Thuja orientalis, Platycladus orientalis +n11644872 hiba arborvitae, Thujopsis dolobrata +n11645163 keteleeria +n11645590 Wollemi pine +n11645914 araucaria +n11646167 monkey puzzle, chile pine, Araucaria araucana +n11646344 norfolk island pine, Araucaria heterophylla, Araucaria excelsa +n11646517 new caledonian pine, Araucaria columnaris +n11646694 bunya bunya, bunya bunya tree, Araucaria bidwillii +n11646955 hoop pine, Moreton Bay pine, Araucaria cunninghamii +n11647306 kauri pine, dammar pine +n11647703 kauri, kaury, Agathis australis +n11647868 amboina pine, amboyna pine, Agathis dammara, Agathis alba +n11648039 dundathu pine, queensland kauri, smooth bark kauri, Agathis robusta +n11648268 red kauri, Agathis lanceolata +n11648776 plum-yew +n11649150 California nutmeg, nutmeg-yew, Torreya californica +n11649359 stinking cedar, stinking yew, Torrey tree, Torreya taxifolia +n11649878 celery pine +n11650160 celery top pine, celery-topped pine, Phyllocladus asplenifolius +n11650307 tanekaha, Phyllocladus trichomanoides +n11650430 Alpine celery pine, Phyllocladus alpinus +n11650558 yellowwood, yellowwood tree +n11650759 gymnospermous yellowwood +n11652039 podocarp +n11652217 yacca, yacca podocarp, Podocarpus coriaceus +n11652376 brown pine, Rockingham podocarp, Podocarpus elatus +n11652578 cape yellowwood, African yellowwood, Podocarpus elongatus +n11652753 South-African yellowwood, Podocarpus latifolius +n11652966 alpine totara, Podocarpus nivalis +n11653126 totara, Podocarpus totara +n11653570 common yellowwood, bastard yellowwood, Afrocarpus falcata +n11653904 kahikatea, New Zealand Dacryberry, New Zealand white pine, Dacrycarpus dacrydioides, Podocarpus dacrydioides +n11654293 rimu, imou pine, red pine, Dacrydium cupressinum +n11654438 tarwood, tar-wood, Dacrydium colensoi +n11654984 common sickle pine, Falcatifolium falciforme +n11655152 yellow-leaf sickle pine, Falcatifolium taxoides +n11655592 tarwood, tar-wood, New Zealand mountain pine, Halocarpus bidwilli, Dacrydium bidwilli +n11655974 westland pine, silver pine, Lagarostrobus colensoi +n11656123 huon pine, Lagarostrobus franklinii, Dacrydium franklinii +n11656549 Chilean rimu, Lepidothamnus fonkii +n11656771 mountain rimu, Lepidothamnus laxifolius, Dacridium laxifolius +n11657585 nagi, Nageia nagi +n11658331 miro, black pine, Prumnopitys ferruginea, Podocarpus ferruginea +n11658544 matai, black pine, Prumnopitys taxifolia, Podocarpus spicata +n11658709 plum-fruited yew, Prumnopitys andina, Prumnopitys elegans +n11659248 Prince Albert yew, Prince Albert's yew, Saxe-gothea conspicua +n11659627 Sundacarpus amara, Prumnopitys amara, Podocarpus amara +n11660300 Japanese umbrella pine, Sciadopitys verticillata +n11661372 yew +n11661909 Old World yew, English yew, Taxus baccata +n11662128 Pacific yew, California yew, western yew, Taxus brevifolia +n11662371 Japanese yew, Taxus cuspidata +n11662585 Florida yew, Taxus floridana +n11662937 New Caledonian yew, Austrotaxus spicata +n11663263 white-berry yew, Pseudotaxus chienii +n11664418 ginkgo, gingko, maidenhair tree, Ginkgo biloba +n11665372 angiosperm, flowering plant +n11666854 dicot, dicotyledon, magnoliopsid, exogen +n11668117 monocot, monocotyledon, liliopsid, endogen +n11669786 floret, floweret +n11669921 flower +n11672269 bloomer +n11672400 wildflower, wild flower +n11674019 apetalous flower +n11674332 inflorescence +n11675025 rosebud +n11675404 gynostegium +n11675738 pollinium +n11676500 pistil +n11676743 gynobase +n11676850 gynophore +n11677485 stylopodium +n11677902 carpophore +n11678010 cornstalk, corn stalk +n11678299 petiolule +n11678377 mericarp +n11679378 micropyle +n11680457 germ tube +n11680596 pollen tube +n11682659 gemma +n11683216 galbulus +n11683838 nectary, honey gland +n11684264 pericarp, seed vessel +n11684499 epicarp, exocarp +n11684654 mesocarp +n11685091 pip +n11685621 silique, siliqua +n11686195 cataphyll +n11686652 perisperm +n11686780 monocarp, monocarpic plant, monocarpous plant +n11686912 sporophyte +n11687071 gametophyte +n11687432 megasporangium, macrosporangium +n11687789 microspore +n11687964 microsporangium +n11688069 microsporophyll +n11688378 archespore, archesporium +n11689197 bonduc nut, nicker nut, nicker seed +n11689367 Job's tears +n11689483 oilseed, oil-rich seed +n11689678 castor bean +n11689815 cottonseed +n11689957 candlenut +n11690088 peach pit +n11690254 hypanthium, floral cup, calyx tube +n11690455 petal, flower petal +n11691046 corolla +n11691857 lip +n11692265 perianth, chlamys, floral envelope, perigone, perigonium +n11692792 thistledown +n11693981 custard apple, custard apple tree +n11694300 cherimoya, cherimoya tree, Annona cherimola +n11694469 ilama, ilama tree, Annona diversifolia +n11694664 soursop, prickly custard apple, soursop tree, Annona muricata +n11694866 bullock's heart, bullock's heart tree, bullock heart, Annona reticulata +n11695085 sweetsop, sweetsop tree, Annona squamosa +n11695285 pond apple, pond-apple tree, Annona glabra +n11695599 pawpaw, papaw, papaw tree, Asimina triloba +n11695974 ilang-ilang, ylang-ylang, Cananga odorata +n11696450 lancewood, lancewood tree, Oxandra lanceolata +n11696935 Guinea pepper, negro pepper, Xylopia aethiopica +n11697560 barberry +n11697802 American barberry, Berberis canadensis +n11698042 common barberry, European barberry, Berberis vulgaris +n11698245 Japanese barberry, Berberis thunbergii +n11699442 Oregon grape, Oregon holly grape, hollygrape, mountain grape, holly-leaves barberry, Mahonia aquifolium +n11699751 Oregon grape, Mahonia nervosa +n11700058 mayapple, May apple, wild mandrake, Podophyllum peltatum +n11700279 May apple +n11700864 allspice +n11701066 Carolina allspice, strawberry shrub, strawberry bush, sweet shrub, Calycanthus floridus +n11701302 spicebush, California allspice, Calycanthus occidentalis +n11702713 katsura tree, Cercidiphyllum japonicum +n11703669 laurel +n11704093 true laurel, bay, bay laurel, bay tree, Laurus nobilis +n11704620 camphor tree, Cinnamomum camphora +n11704791 cinnamon, Ceylon cinnamon, Ceylon cinnamon tree, Cinnamomum zeylanicum +n11705171 cassia, cassia-bark tree, Cinnamomum cassia +n11705387 cassia bark, Chinese cinnamon +n11705573 Saigon cinnamon, Cinnamomum loureirii +n11705776 cinnamon bark +n11706325 spicebush, spice bush, American spicebush, Benjamin bush, Lindera benzoin, Benzoin odoriferum +n11706761 avocado, avocado tree, Persea Americana +n11706942 laurel-tree, red bay, Persea borbonia +n11707229 sassafras, sassafras tree, Sassafras albidum +n11707827 California laurel, California bay tree, Oregon myrtle, pepperwood, spice tree, sassafras laurel, California olive, mountain laurel, Umbellularia californica +n11708658 anise tree +n11708857 purple anise, Illicium floridanum +n11709045 star anise, Illicium anisatum +n11709205 star anise, Chinese anise, Illicium verum +n11709674 magnolia +n11710136 southern magnolia, evergreen magnolia, large-flowering magnolia, bull bay, Magnolia grandiflora +n11710393 umbrella tree, umbrella magnolia, elkwood, elk-wood, Magnolia tripetala +n11710658 earleaved umbrella tree, Magnolia fraseri +n11710827 cucumber tree, Magnolia acuminata +n11710987 large-leaved magnolia, large-leaved cucumber tree, great-leaved macrophylla, Magnolia macrophylla +n11711289 saucer magnolia, Chinese magnolia, Magnolia soulangiana +n11711537 star magnolia, Magnolia stellata +n11711764 sweet bay, swamp bay, swamp laurel, Magnolia virginiana +n11711971 manglietia, genus Manglietia +n11712282 tulip tree, tulip poplar, yellow poplar, canary whitewood, Liriodendron tulipifera +n11713164 moonseed +n11713370 common moonseed, Canada moonseed, yellow parilla, Menispermum canadense +n11713763 Carolina moonseed, Cocculus carolinus +n11714382 nutmeg, nutmeg tree, Myristica fragrans +n11715430 water nymph, fragrant water lily, pond lily, Nymphaea odorata +n11715678 European white lily, Nymphaea alba +n11716698 southern spatterdock, Nuphar sagittifolium +n11717399 lotus, Indian lotus, sacred lotus, Nelumbo nucifera +n11717577 water chinquapin, American lotus, yanquapin, Nelumbo lutea +n11718296 water-shield, fanwort, Cabomba caroliniana +n11718681 water-shield, Brasenia schreberi, water-target +n11719286 peony, paeony +n11720353 buttercup, butterflower, butter-flower, crowfoot, goldcup, kingcup +n11720643 meadow buttercup, tall buttercup, tall crowfoot, tall field buttercup, Ranunculus acris +n11720891 water crowfoot, water buttercup, Ranunculus aquatilis +n11721337 lesser celandine, pilewort, Ranunculus ficaria +n11721642 lesser spearwort, Ranunculus flammula +n11722036 greater spearwort, Ranunculus lingua +n11722342 western buttercup, Ranunculus occidentalis +n11722466 creeping buttercup, creeping crowfoot, Ranunculus repens +n11722621 cursed crowfoot, celery-leaved buttercup, Ranunculus sceleratus +n11722982 aconite +n11723227 monkshood, helmetflower, helmet flower, Aconitum napellus +n11723452 wolfsbane, wolfbane, wolf's bane, Aconitum lycoctonum +n11723770 baneberry, cohosh, herb Christopher +n11723986 baneberry +n11724109 red baneberry, redberry, red-berry, snakeberry, Actaea rubra +n11724660 pheasant's-eye, Adonis annua +n11725015 anemone, windflower +n11725311 Alpine anemone, mountain anemone, Anemone tetonensis +n11725480 Canada anemone, Anemone Canadensis +n11725623 thimbleweed, Anemone cylindrica +n11725821 wood anemone, Anemone nemorosa +n11725973 wood anemone, snowdrop, Anemone quinquefolia +n11726145 longheaded thimbleweed, Anemone riparia +n11726269 snowdrop anemone, snowdrop windflower, Anemone sylvestris +n11726433 Virginia thimbleweed, Anemone virginiana +n11726707 rue anemone, Anemonella thalictroides +n11727091 columbine, aquilegia, aquilege +n11727358 meeting house, honeysuckle, Aquilegia canadensis +n11727540 blue columbine, Aquilegia caerulea, Aquilegia scopulorum calcarea +n11727738 granny's bonnets, Aquilegia vulgaris +n11728099 marsh marigold, kingcup, meadow bright, May blob, cowslip, water dragon, Caltha palustris +n11728769 American bugbane, summer cohosh, Cimicifuga americana +n11728945 black cohosh, black snakeroot, rattle-top, Cimicifuga racemosa +n11729142 fetid bugbane, foetid bugbane, Cimicifuga foetida +n11729478 clematis +n11729860 pine hyacinth, Clematis baldwinii, Viorna baldwinii +n11730015 blue jasmine, blue jessamine, curly clematis, marsh clematis, Clematis crispa +n11730458 golden clematis, Clematis tangutica +n11730602 scarlet clematis, Clematis texensis +n11730750 leather flower, Clematis versicolor +n11730933 leather flower, vase-fine, vase vine, Clematis viorna +n11731157 virgin's bower, old man's beard, devil's darning needle, Clematis virginiana +n11731659 purple clematis, purple virgin's bower, mountain clematis, Clematis verticillaris +n11732052 goldthread, golden thread, Coptis groenlandica, Coptis trifolia groenlandica +n11732567 rocket larkspur, Consolida ambigua, Delphinium ajacis +n11733054 delphinium +n11733312 larkspur +n11733548 winter aconite, Eranthis hyemalis +n11734493 lenten rose, black hellebore, Helleborus orientalis +n11734698 green hellebore, Helleborus viridis +n11735053 hepatica, liverleaf +n11735570 goldenseal, golden seal, yellow root, turmeric root, Hydrastis Canadensis +n11735977 false rue anemone, false rue, Isopyrum biternatum +n11736362 giant buttercup, Laccopetalum giganteum +n11736694 nigella +n11736851 love-in-a-mist, Nigella damascena +n11737009 fennel flower, Nigella hispanica +n11737125 black caraway, nutmeg flower, Roman coriander, Nigella sativa +n11737534 pasqueflower, pasque flower +n11738547 meadow rue +n11738997 false bugbane, Trautvetteria carolinensis +n11739365 globeflower, globe flower +n11739978 winter's bark, winter's bark tree, Drimys winteri +n11740414 pepper shrub, Pseudowintera colorata, Wintera colorata +n11741175 sweet gale, Scotch gale, Myrica gale +n11741350 wax myrtle +n11741575 bay myrtle, puckerbush, Myrica cerifera +n11741797 bayberry, candleberry, swamp candleberry, waxberry, Myrica pensylvanica +n11742310 sweet fern, Comptonia peregrina, Comptonia asplenifolia +n11742878 corkwood, corkwood tree, Leitneria floridana +n11744011 jointed rush, Juncus articulatus +n11744108 toad rush, Juncus bufonius +n11744471 slender rush, Juncus tenuis +n11745817 zebrawood, zebrawood tree +n11746600 Connarus guianensis +n11747468 legume, leguminous plant +n11748002 legume +n11748811 peanut +n11749112 granadilla tree, granadillo, Brya ebenus +n11749603 arariba, Centrolobium robustum +n11750173 tonka bean, coumara nut +n11750508 courbaril, Hymenaea courbaril +n11750989 melilotus, melilot, sweet clover +n11751765 darling pea, poison bush +n11751974 smooth darling pea, Swainsona galegifolia +n11752578 clover, trefoil +n11752798 alpine clover, Trifolium alpinum +n11752937 hop clover, shamrock, lesser yellow trefoil, Trifolium dubium +n11753143 crimson clover, Italian clover, Trifolium incarnatum +n11753355 red clover, purple clover, Trifolium pratense +n11753562 buffalo clover, Trifolium reflexum, Trifolium stoloniferum +n11753700 white clover, dutch clover, shamrock, Trifolium repens +n11754893 mimosa +n11756092 acacia +n11756329 shittah, shittah tree +n11756669 wattle +n11756870 black wattle, Acacia auriculiformis +n11757017 gidgee, stinking wattle, Acacia cambegei +n11757190 catechu, Jerusalem thorn, Acacia catechu +n11757653 silver wattle, mimosa, Acacia dealbata +n11757851 huisache, cassie, mimosa bush, sweet wattle, sweet acacia, scented wattle, flame tree, Acacia farnesiana +n11758122 lightwood, Acacia melanoxylon +n11758276 golden wattle, Acacia pycnantha +n11758483 fever tree, Acacia xanthophloea +n11758799 coralwood, coral-wood, red sandalwood, Barbados pride, peacock flower fence, Adenanthera pavonina +n11759224 albizzia, albizia +n11759404 silk tree, Albizia julibrissin, Albizzia julibrissin +n11759609 siris, siris tree, Albizia lebbeck, Albizzia lebbeck +n11759853 rain tree, saman, monkeypod, monkey pod, zaman, zamang, Albizia saman +n11760785 calliandra +n11761202 conacaste, elephant's ear, Enterolobium cyclocarpa +n11761650 inga +n11761836 ice-cream bean, Inga edulis +n11762018 guama, Inga laurina +n11762433 lead tree, white popinac, Leucaena glauca, Leucaena leucocephala +n11762927 wild tamarind, Lysiloma latisiliqua, Lysiloma bahamensis +n11763142 sabicu, Lysiloma sabicu +n11763625 nitta tree +n11763874 Parkia javanica +n11764478 manila tamarind, camachile, huamachil, wild tamarind, Pithecellobium dulce +n11764814 cat's-claw, catclaw, black bead, Pithecellodium unguis-cati +n11765568 honey mesquite, Western honey mesquite, Prosopis glandulosa +n11766046 algarroba, algarrobilla, algarobilla +n11766189 screw bean, screwbean, tornillo, screwbean mesquite, Prosopis pubescens +n11766432 screw bean +n11767354 dogbane +n11767877 Indian hemp, rheumatism weed, Apocynum cannabinum +n11768816 bushman's poison, ordeal tree, Acocanthera oppositifolia, Acocanthera venenata +n11769176 impala lily, mock azalia, desert rose, kudu lily, Adenium obesum, Adenium multiflorum +n11769621 allamanda +n11769803 common allamanda, golden trumpet, Allamanda cathartica +n11770256 dita, dita bark, devil tree, Alstonia scholaris +n11771147 Nepal trumpet flower, Easter lily vine, Beaumontia grandiflora +n11771539 carissa +n11771746 hedge thorn, natal plum, Carissa bispinosa +n11771924 natal plum, amatungulu, Carissa macrocarpa, Carissa grandiflora +n11772408 periwinkle, rose periwinkle, Madagascar periwinkle, old maid, Cape periwinkle, red periwinkle, cayenne jasmine, Catharanthus roseus, Vinca rosea +n11772879 ivory tree, conessi, kurchi, kurchee, Holarrhena pubescens, Holarrhena antidysenterica +n11773408 white dipladenia, Mandevilla boliviensis, Dipladenia boliviensis +n11773628 Chilean jasmine, Mandevilla laxa +n11773987 oleander, rose bay, Nerium oleander +n11774513 frangipani, frangipanni +n11774972 West Indian jasmine, pagoda tree, Plumeria alba +n11775340 rauwolfia, rauvolfia +n11775626 snakewood, Rauwolfia serpentina +n11776234 Strophanthus kombe +n11777080 yellow oleander, Thevetia peruviana, Thevetia neriifolia +n11778092 myrtle, Vinca minor +n11778257 large periwinkle, Vinca major +n11779300 arum, aroid +n11780148 cuckoopint, lords-and-ladies, jack-in-the-pulpit, Arum maculatum +n11780424 black calla, Arum palaestinum +n11781176 calamus +n11782036 alocasia, elephant's ear, elephant ear +n11782266 giant taro, Alocasia macrorrhiza +n11782761 amorphophallus +n11782878 pungapung, telingo potato, elephant yam, Amorphophallus paeonifolius, Amorphophallus campanulatus +n11783162 devil's tongue, snake palm, umbrella arum, Amorphophallus rivieri +n11783920 anthurium, tailflower, tail-flower +n11784126 flamingo flower, flamingo plant, Anthurium andraeanum, Anthurium scherzerianum +n11784497 jack-in-the-pulpit, Indian turnip, wake-robin, Arisaema triphyllum, Arisaema atrorubens +n11785276 friar's-cowl, Arisarum vulgare +n11785668 caladium +n11785875 Caladium bicolor +n11786131 wild calla, water arum, Calla palustris +n11786539 taro, taro plant, dalo, dasheen, Colocasia esculenta +n11786843 taro, cocoyam, dasheen, eddo +n11787190 cryptocoryne, water trumpet +n11788039 dracontium +n11788727 golden pothos, pothos, ivy arum, Epipremnum aureum, Scindapsus aureus +n11789066 skunk cabbage, Lysichiton americanum +n11789438 monstera +n11789589 ceriman, Monstera deliciosa +n11789962 nephthytis +n11790089 Nephthytis afzelii +n11790788 arrow arum +n11790936 green arrow arum, tuckahoe, Peltandra virginica +n11791341 philodendron +n11791569 pistia, water lettuce, water cabbage, Pistia stratiotes, Pistia stratoites +n11792029 pothos +n11792341 spathiphyllum, peace lily, spathe flower +n11792742 skunk cabbage, polecat weed, foetid pothos, Symplocarpus foetidus +n11793403 yautia, tannia, spoonflower, malanga, Xanthosoma sagittifolium, Xanthosoma atrovirens +n11793779 calla lily, calla, arum lily, Zantedeschia aethiopica +n11794024 pink calla, Zantedeschia rehmanii +n11794139 golden calla +n11794519 duckweed +n11795049 common duckweed, lesser duckweed, Lemna minor +n11795216 star-duckweed, Lemna trisulca +n11795580 great duckweed, water flaxseed, Spirodela polyrrhiza +n11796005 watermeal +n11796188 common wolffia, Wolffia columbiana +n11797321 aralia +n11797508 American angelica tree, devil's walking stick, Hercules'-club, Aralia spinosa +n11797981 American spikenard, petty morel, life-of-man, Aralia racemosa +n11798270 bristly sarsaparilla, bristly sarsparilla, dwarf elder, Aralia hispida +n11798496 Japanese angelica tree, Aralia elata +n11798688 Chinese angelica, Chinese angelica tree, Aralia stipulata +n11798978 ivy, common ivy, English ivy, Hedera helix +n11799331 puka, Meryta sinclairii +n11799732 ginseng, nin-sin, Panax ginseng, Panax schinseng, Panax pseudoginseng +n11800236 ginseng +n11800565 umbrella tree, Schefflera actinophylla, Brassaia actinophylla +n11801392 birthwort, Aristolochia clematitis +n11801665 Dutchman's-pipe, pipe vine, Aristolochia macrophylla, Aristolochia durior +n11801891 Virginia snakeroot, Virginia serpentaria, Virginia serpentary, Aristolochia serpentaria +n11802410 Canada ginger, black snakeroot, Asarum canadense +n11802586 heartleaf, heart-leaf, Asarum virginicum +n11802800 heartleaf, heart-leaf, Asarum shuttleworthii +n11802995 asarabacca, Asarum europaeum +n11805255 caryophyllaceous plant +n11805544 corn cockle, corn campion, crown-of-the-field, Agrostemma githago +n11805956 sandwort +n11806219 mountain sandwort, mountain starwort, mountain daisy, Arenaria groenlandica +n11806369 pine-barren sandwort, longroot, Arenaria caroliniana +n11806521 seabeach sandwort, Arenaria peploides +n11806679 rock sandwort, Arenaria stricta +n11806814 thyme-leaved sandwort, Arenaria serpyllifolia +n11807108 mouse-ear chickweed, mouse eared chickweed, mouse ear, clammy chickweed, chickweed +n11807525 snow-in-summer, love-in-a-mist, Cerastium tomentosum +n11807696 Alpine mouse-ear, Arctic mouse-ear, Cerastium alpinum +n11807979 pink, garden pink +n11808299 sweet William, Dianthus barbatus +n11808468 carnation, clove pink, gillyflower, Dianthus caryophyllus +n11808721 china pink, rainbow pink, Dianthus chinensis +n11808932 Japanese pink, Dianthus chinensis heddewigii +n11809094 maiden pink, Dianthus deltoides +n11809271 cheddar pink, Diangus gratianopolitanus +n11809437 button pink, Dianthus latifolius +n11809594 cottage pink, grass pink, Dianthus plumarius +n11809754 fringed pink, Dianthus supurbus +n11810030 drypis +n11810358 baby's breath, babies'-breath, Gypsophila paniculata +n11811059 coral necklace, Illecebrum verticullatum +n11811473 lychnis, catchfly +n11811706 ragged robin, cuckoo flower, Lychnis flos-cuculi, Lychins floscuculi +n11811921 scarlet lychnis, maltese cross, Lychins chalcedonica +n11812094 mullein pink, rose campion, gardener's delight, dusty miller, Lychnis coronaria +n11812910 sandwort, Moehringia lateriflora +n11813077 sandwort, Moehringia mucosa +n11814584 soapwort, hedge pink, bouncing Bet, bouncing Bess, Saponaria officinalis +n11814996 knawel, knawe, Scleranthus annuus +n11815491 silene, campion, catchfly +n11815721 moss campion, Silene acaulis +n11815918 wild pink, Silene caroliniana +n11816121 red campion, red bird's eye, Silene dioica, Lychnis dioica +n11816336 white campion, evening lychnis, white cockle, bladder campion, Silene latifolia, Lychnis alba +n11816649 fire pink, Silene virginica +n11816829 bladder campion, Silene uniflora, Silene vulgaris +n11817160 corn spurry, corn spurrey, Spergula arvensis +n11817501 sand spurry, sea spurry, Spergularia rubra +n11817914 chickweed +n11818069 common chickweed, Stellaria media +n11818636 cowherb, cow cockle, Vaccaria hispanica, Vaccaria pyramidata, Saponaria vaccaria +n11819509 Hottentot fig, Hottentot's fig, sour fig, Carpobrotus edulis, Mesembryanthemum edule +n11819912 livingstone daisy, Dorotheanthus bellidiformis +n11820965 fig marigold, pebble plant +n11821184 ice plant, icicle plant, Mesembryanthemum crystallinum +n11822300 New Zealand spinach, Tetragonia tetragonioides, Tetragonia expansa +n11823043 amaranth +n11823305 amaranth +n11823436 tumbleweed, Amaranthus albus, Amaranthus graecizans +n11823756 prince's-feather, gentleman's-cane, prince's-plume, red amaranth, purple amaranth, Amaranthus cruentus, Amaranthus hybridus hypochondriacus, Amaranthus hybridus erythrostachys +n11824146 pigweed, Amaranthus hypochondriacus +n11824344 thorny amaranth, Amaranthus spinosus +n11824747 alligator weed, alligator grass, Alternanthera philoxeroides +n11825351 cockscomb, common cockscomb, Celosia cristata, Celosia argentea cristata +n11825749 cottonweed +n11826198 globe amaranth, bachelor's button, Gomphrena globosa +n11826569 bloodleaf +n11827541 saltwort, Batis maritima +n11828577 lamb's-quarters, pigweed, wild spinach, Chenopodium album +n11828973 good-king-henry, allgood, fat hen, wild spinach, Chenopodium bonus-henricus +n11829205 Jerusalem oak, feather geranium, Mexican tea, Chenopodium botrys, Atriplex mexicana +n11829672 oak-leaved goosefoot, oakleaf goosefoot, Chenopodium glaucum +n11829922 sowbane, red goosefoot, Chenopodium hybridum +n11830045 nettle-leaved goosefoot, nettleleaf goosefoot, Chenopodium murale +n11830252 red goosefoot, French spinach, Chenopodium rubrum +n11830400 stinking goosefoot, Chenopodium vulvaria +n11830714 orach, orache +n11830906 saltbush +n11831100 garden orache, mountain spinach, Atriplex hortensis +n11831297 desert holly, Atriplex hymenelytra +n11831521 quail bush, quail brush, white thistle, Atriplex lentiformis +n11832214 beet, common beet, Beta vulgaris +n11832480 beetroot, Beta vulgaris rubra +n11832671 chard, Swiss chard, spinach beet, leaf beet, chard plant, Beta vulgaris cicla +n11832899 mangel-wurzel, mangold-wurzel, mangold, Beta vulgaris vulgaris +n11833373 winged pigweed, tumbleweed, Cycloloma atriplicifolium +n11833749 halogeton, Halogeton glomeratus +n11834272 glasswort, samphire, Salicornia europaea +n11834654 saltwort, barilla, glasswort, kali, kelpwort, Salsola kali, Salsola soda +n11834890 Russian thistle, Russian tumbleweed, Russian cactus, tumbleweed, Salsola kali tenuifolia +n11835251 greasewood, black greasewood, Sarcobatus vermiculatus +n11836327 scarlet musk flower, Nyctaginia capitata +n11836722 sand verbena +n11837204 sweet sand verbena, Abronia fragrans +n11837351 yellow sand verbena, Abronia latifolia +n11837562 beach pancake, Abronia maritima +n11837743 beach sand verbena, pink sand verbena, Abronia umbellata +n11837970 desert sand verbena, Abronia villosa +n11838413 trailing four o'clock, trailing windmills, Allionia incarnata +n11838916 bougainvillea +n11839460 umbrellawort +n11839568 four o'clock +n11839823 common four-o'clock, marvel-of-Peru, Mirabilis jalapa, Mirabilis uniflora +n11840067 California four o'clock, Mirabilis laevis, Mirabilis californica +n11840246 sweet four o'clock, maravilla, Mirabilis longiflora +n11840476 desert four o'clock, Colorado four o'clock, maravilla, Mirabilis multiflora +n11840764 mountain four o'clock, Mirabilis oblongifolia +n11841247 cockspur, Pisonia aculeata +n11843441 rattail cactus, rat's-tail cactus, Aporocactus flagelliformis +n11844371 saguaro, sahuaro, Carnegiea gigantea +n11844892 night-blooming cereus +n11845557 echinocactus, barrel cactus +n11845793 hedgehog cactus +n11845913 golden barrel cactus, Echinocactus grusonii +n11846312 hedgehog cereus +n11846425 rainbow cactus +n11846765 epiphyllum, orchid cactus +n11847169 barrel cactus +n11848479 night-blooming cereus +n11848867 chichipe, Lemaireocereus chichipe +n11849271 mescal, mezcal, peyote, Lophophora williamsii +n11849467 mescal button, sacred mushroom, magic mushroom +n11849871 mammillaria +n11849983 feather ball, Mammillaria plumosa +n11850521 garambulla, garambulla cactus, Myrtillocactus geometrizans +n11850918 Knowlton's cactus, Pediocactus knowltonii +n11851258 nopal +n11851578 prickly pear, prickly pear cactus +n11851839 cholla, Opuntia cholla +n11852028 nopal, Opuntia lindheimeri +n11852148 tuna, Opuntia tuna +n11852531 Barbados gooseberry, Barbados-gooseberry vine, Pereskia aculeata +n11853079 mistletoe cactus +n11853356 Christmas cactus, Schlumbergera buckleyi, Schlumbergera baridgesii +n11853813 night-blooming cereus +n11854479 crab cactus, Thanksgiving cactus, Zygocactus truncatus, Schlumbergera truncatus +n11855274 pokeweed +n11855435 Indian poke, Phytolacca acinosa +n11855553 poke, pigeon berry, garget, scoke, Phytolacca americana +n11855842 ombu, bella sombra, Phytolacca dioica +n11856573 bloodberry, blood berry, rougeberry, rouge plant, Rivina humilis +n11857696 portulaca +n11857875 rose moss, sun plant, Portulaca grandiflora +n11858077 common purslane, pussley, pussly, verdolagas, Portulaca oleracea +n11858703 rock purslane +n11858814 red maids, redmaids, Calandrinia ciliata +n11859275 Carolina spring beauty, Claytonia caroliniana +n11859472 spring beauty, Clatonia lanceolata +n11859737 Virginia spring beauty, Claytonia virginica +n11860208 siskiyou lewisia, Lewisia cotyledon +n11860555 bitterroot, Lewisia rediviva +n11861238 broad-leaved montia, Montia cordifolia +n11861487 blinks, blinking chickweed, water chickweed, Montia lamprosperma +n11861641 toad lily, Montia chamissoi +n11861853 winter purslane, miner's lettuce, Cuban spinach, Montia perfoliata +n11862835 flame flower, flame-flower, flameflower, Talinum aurantiacum +n11863467 pigmy talinum, Talinum brevifolium +n11863877 jewels-of-opar, Talinum paniculatum +n11865071 caper +n11865276 native pomegranate, Capparis arborea +n11865429 caper tree, Jamaica caper tree, Capparis cynophallophora +n11865574 caper tree, bay-leaved caper, Capparis flexuosa +n11865874 common caper, Capparis spinosa +n11866248 spiderflower, cleome +n11866706 Rocky Mountain bee plant, stinking clover, Cleome serrulata +n11867311 clammyweed, Polanisia graveolens, Polanisia dodecandra +n11868814 crucifer, cruciferous plant +n11869351 cress, cress plant +n11869689 watercress +n11870044 stonecress, stone cress +n11870418 garlic mustard, hedge garlic, sauce-alone, jack-by-the-hedge, Alliaria officinalis +n11870747 alyssum, madwort +n11871059 rose of Jericho, resurrection plant, Anastatica hierochuntica +n11871496 Arabidopsis thaliana, mouse-ear cress +n11871748 Arabidopsis lyrata +n11872146 rock cress, rockcress +n11872324 sicklepod, Arabis Canadensis +n11872658 tower mustard, tower cress, Turritis glabra, Arabis glabra +n11873182 horseradish, horseradish root +n11873612 winter cress, St. Barbara's herb, scurvy grass +n11874081 yellow rocket, rockcress, rocket cress, Barbarea vulgaris, Sisymbrium barbarea +n11874423 hoary alison, hoary alyssum, Berteroa incana +n11874878 buckler mustard, Biscutalla laevigata +n11875523 wild cabbage, Brassica oleracea +n11875691 cabbage, cultivated cabbage, Brassica oleracea +n11875938 head cabbage, head cabbage plant, Brassica oleracea capitata +n11876204 savoy cabbage +n11876432 brussels sprout, Brassica oleracea gemmifera +n11876634 cauliflower, Brassica oleracea botrytis +n11876803 broccoli, Brassica oleracea italica +n11877193 collard +n11877283 kohlrabi, Brassica oleracea gongylodes +n11877473 turnip plant +n11877646 turnip, white turnip, Brassica rapa +n11877860 rutabaga, turnip cabbage, swede, Swedish turnip, rutabaga plant, Brassica napus napobrassica +n11878101 broccoli raab, broccoli rabe, Brassica rapa ruvo +n11878283 mustard +n11878633 chinese mustard, indian mustard, leaf mustard, gai choi, Brassica juncea +n11879054 bok choy, bok choi, pakchoi, pak choi, Chinese white cabbage, Brassica rapa chinensis +n11879722 rape, colza, Brassica napus +n11879895 rapeseed +n11881189 shepherd's purse, shepherd's pouch, Capsella bursa-pastoris +n11882074 lady's smock, cuckooflower, cuckoo flower, meadow cress, Cardamine pratensis +n11882237 coral-root bittercress, coralroot, coralwort, Cardamine bulbifera, Dentaria bulbifera +n11882426 crinkleroot, crinkle-root, crinkle root, pepper root, toothwort, Cardamine diphylla, Dentaria diphylla +n11882636 American watercress, mountain watercress, Cardamine rotundifolia +n11882821 spring cress, Cardamine bulbosa +n11882972 purple cress, Cardamine douglasii +n11883328 wallflower, Cheiranthus cheiri, Erysimum cheiri +n11883628 prairie rocket +n11883945 scurvy grass, common scurvy grass, Cochlearia officinalis +n11884384 sea kale, sea cole, Crambe maritima +n11884967 tansy mustard, Descurainia pinnata +n11885856 draba +n11887119 wallflower +n11887310 prairie rocket +n11887476 Siberian wall flower, Erysimum allionii, Cheiranthus allionii +n11887750 western wall flower, Erysimum asperum, Cheiranthus asperus, Erysimum arkansanum +n11888061 wormseed mustard, Erysimum cheiranthoides +n11888424 heliophila +n11888800 damask violet, Dame's violet, sweet rocket, Hesperis matronalis +n11889205 tansy-leaved rocket, Hugueninia tanacetifolia, Sisymbrium tanacetifolia +n11889619 candytuft +n11890022 woad +n11890150 dyer's woad, Isatis tinctoria +n11890884 bladderpod +n11891175 sweet alyssum, sweet alison, Lobularia maritima +n11892029 Malcolm stock, stock +n11892181 Virginian stock, Virginia stock, Malcolmia maritima +n11892637 stock, gillyflower +n11892817 brompton stock, Matthiola incana +n11893640 bladderpod +n11893916 chamois cress, Pritzelago alpina, Lepidium alpina +n11894327 radish plant, radish +n11894558 jointed charlock, wild radish, wild rape, runch, Raphanus raphanistrum +n11894770 radish, Raphanus sativus +n11895092 radish, daikon, Japanese radish, Raphanus sativus longipinnatus +n11895472 marsh cress, yellow watercress, Rorippa islandica +n11895714 great yellowcress, Rorippa amphibia, Nasturtium amphibium +n11896141 schizopetalon, Schizopetalon walkeri +n11896722 field mustard, wild mustard, charlock, chadlock, Brassica kaber, Sinapis arvensis +n11897116 hedge mustard, Sisymbrium officinale +n11897466 desert plume, prince's-plume, Stanleya pinnata, Cleome pinnata +n11898639 pennycress +n11898775 field pennycress, French weed, fanweed, penny grass, stinkweed, mithridate mustard, Thlaspi arvense +n11899223 fringepod, lacepod +n11899762 bladderpod +n11899921 wasabi +n11900569 poppy +n11901294 Iceland poppy, Papaver alpinum +n11901452 western poppy, Papaver californicum +n11901597 prickly poppy, Papaver argemone +n11901759 Iceland poppy, arctic poppy, Papaver nudicaule +n11901977 oriental poppy, Papaver orientale +n11902200 corn poppy, field poppy, Flanders poppy, Papaver rhoeas +n11902389 opium poppy, Papaver somniferum +n11902709 prickly poppy, argemone, white thistle, devil's fig +n11902982 Mexican poppy, Argemone mexicana +n11903333 bocconia, tree celandine, Bocconia frutescens +n11903671 celandine, greater celandine, swallowwort, swallow wort, Chelidonium majus +n11904109 corydalis +n11904274 climbing corydalis, Corydalis claviculata, Fumaria claviculata +n11905392 California poppy, Eschscholtzia californica +n11905749 horn poppy, horned poppy, yellow horned poppy, sea poppy, Glaucium flavum +n11906127 golden cup, Mexican tulip poppy, Hunnemania fumariifolia +n11906514 plume poppy, bocconia, Macleaya cordata +n11906917 blue poppy, Meconopsis betonicifolia +n11907100 Welsh poppy, Meconopsis cambrica +n11907405 creamcups, Platystemon californicus +n11907689 matilija poppy, California tree poppy, Romneya coulteri +n11908549 wind poppy, flaming poppy, Stylomecon heterophyllum, Papaver heterophyllum +n11908846 celandine poppy, wood poppy, Stylophorum diphyllum +n11909864 climbing fumitory, Allegheny vine, Adlumia fungosa, Fumaria fungosa +n11910271 bleeding heart, lyreflower, lyre-flower, Dicentra spectabilis +n11910460 Dutchman's breeches, Dicentra cucullaria +n11910666 squirrel corn, Dicentra canadensis +n11915214 composite, composite plant +n11915658 compass plant, compass flower +n11915899 everlasting, everlasting flower +n11916467 achillea +n11916696 yarrow, milfoil, Achillea millefolium +n11917407 pink-and-white everlasting, pink paper daisy, Acroclinium roseum +n11917835 white snakeroot, white sanicle, Ageratina altissima, Eupatorium rugosum +n11918286 ageratum +n11918473 common ageratum, Ageratum houstonianum +n11918808 sweet sultan, Amberboa moschata, Centaurea moschata +n11919447 ragweed, ambrosia, bitterweed +n11919761 common ragweed, Ambrosia artemisiifolia +n11919975 great ragweed, Ambrosia trifida +n11920133 western ragweed, perennial ragweed, Ambrosia psilostachya +n11920498 ammobium +n11920663 winged everlasting, Ammobium alatum +n11920998 pellitory, pellitory-of-Spain, Anacyclus pyrethrum +n11921395 pearly everlasting, cottonweed, Anaphalis margaritacea +n11921792 andryala +n11922661 plantain-leaved pussytoes +n11922755 field pussytoes +n11922839 solitary pussytoes +n11922926 mountain everlasting +n11923174 mayweed, dog fennel, stinking mayweed, stinking chamomile, Anthemis cotula +n11923397 yellow chamomile, golden marguerite, dyers' chamomile, Anthemis tinctoria +n11923637 corn chamomile, field chamomile, corn mayweed, Anthemis arvensis +n11924014 woolly daisy, dwarf daisy, Antheropeas wallacei, Eriophyllum wallacei +n11924445 burdock, clotbur +n11924849 great burdock, greater burdock, cocklebur, Arctium lappa +n11925303 African daisy +n11925450 blue-eyed African daisy, Arctotis stoechadifolia, Arctotis venusta +n11925898 marguerite, marguerite daisy, Paris daisy, Chrysanthemum frutescens, Argyranthemum frutescens +n11926365 silversword, Argyroxiphium sandwicense +n11926833 arnica +n11926976 heartleaf arnica, Arnica cordifolia +n11927215 Arnica montana +n11927740 lamb succory, dwarf nipplewort, Arnoseris minima +n11928352 artemisia +n11928858 mugwort +n11929743 sweet wormwood, Artemisia annua +n11930038 field wormwood, Artemisia campestris +n11930203 tarragon, estragon, Artemisia dracunculus +n11930353 sand sage, silvery wormwood, Artemisia filifolia +n11930571 wormwood sage, prairie sagewort, Artemisia frigida +n11930788 western mugwort, white sage, cudweed, prairie sage, Artemisia ludoviciana, Artemisia gnaphalodes +n11930994 Roman wormwood, Artemis pontica +n11931135 bud brush, bud sagebrush, Artemis spinescens +n11931540 common mugwort, Artemisia vulgaris +n11931918 aster +n11932745 wood aster +n11932927 whorled aster, Aster acuminatus +n11933099 heath aster, Aster arenosus +n11933257 heart-leaved aster, Aster cordifolius +n11933387 white wood aster, Aster divaricatus +n11933546 bushy aster, Aster dumosus +n11933728 heath aster, Aster ericoides +n11933903 white prairie aster, Aster falcatus +n11934041 stiff aster, Aster linarifolius +n11934239 goldilocks, goldilocks aster, Aster linosyris, Linosyris vulgaris +n11934463 large-leaved aster, Aster macrophyllus +n11934616 New England aster, Aster novae-angliae +n11934807 Michaelmas daisy, New York aster, Aster novi-belgii +n11935027 upland white aster, Aster ptarmicoides +n11935187 Short's aster, Aster shortii +n11935330 sea aster, sea starwort, Aster tripolium +n11935469 prairie aster, Aster turbinellis +n11935627 annual salt-marsh aster +n11935715 aromatic aster +n11935794 arrow leaved aster +n11935877 azure aster +n11935953 bog aster +n11936027 crooked-stemmed aster +n11936113 Eastern silvery aster +n11936199 flat-topped white aster +n11936287 late purple aster +n11936369 panicled aster +n11936448 perennial salt marsh aster +n11936539 purple-stemmed aster +n11936624 rough-leaved aster +n11936707 rush aster +n11936782 Schreiber's aster +n11936864 small white aster +n11936946 smooth aster +n11937023 southern aster +n11937102 starved aster, calico aster +n11937195 tradescant's aster +n11937278 wavy-leaved aster +n11937360 Western silvery aster +n11937446 willow aster +n11937692 ayapana, Ayapana triplinervis, Eupatorium aya-pana +n11938556 mule fat, Baccharis viminea +n11939180 balsamroot +n11939491 daisy +n11939699 common daisy, English daisy, Bellis perennis +n11940006 bur marigold, burr marigold, beggar-ticks, beggar's-ticks, sticktight +n11940349 Spanish needles, Bidens bipinnata +n11940599 tickseed sunflower, Bidens coronata, Bidens trichosperma +n11940750 European beggar-ticks, trifid beggar-ticks, trifid bur marigold, Bidens tripartita +n11941094 slender knapweed +n11941478 false chamomile +n11941924 Swan River daisy, Brachycome Iberidifolia +n11942659 woodland oxeye, Buphthalmum salicifolium +n11943133 Indian plantain +n11943407 calendula +n11943660 common marigold, pot marigold, ruddles, Scotch marigold, Calendula officinalis +n11943992 China aster, Callistephus chinensis +n11944196 thistle +n11944751 welted thistle, Carduus crispus +n11944954 musk thistle, nodding thistle, Carduus nutans +n11945367 carline thistle +n11945514 stemless carline thistle, Carlina acaulis +n11945783 common carline thistle, Carlina vulgaris +n11946051 safflower, false saffron, Carthamus tinctorius +n11946313 safflower seed +n11946727 catananche +n11946918 blue succory, cupid's dart, Catananche caerulea +n11947251 centaury +n11947629 dusty miller, Centaurea cineraria, Centaurea gymnocarpa +n11947802 cornflower, bachelor's button, bluebottle, Centaurea cyanus +n11948044 star-thistle, caltrop, Centauria calcitrapa +n11948264 knapweed +n11948469 sweet sultan, Centaurea imperialis +n11948864 great knapweed, greater knapweed, Centaurea scabiosa +n11949015 Barnaby's thistle, yellow star-thistle, Centaurea solstitialis +n11949402 chamomile, camomile, Chamaemelum nobilis, Anthemis nobilis +n11949857 chaenactis +n11950345 chrysanthemum +n11950686 corn marigold, field marigold, Chrysanthemum segetum +n11950877 crown daisy, Chrysanthemum coronarium +n11951052 chop-suey greens, tong ho, shun giku, Chrysanthemum coronarium spatiosum +n11951511 golden aster +n11951820 Maryland golden aster, Chrysopsis mariana +n11952346 goldenbush +n11952541 rabbit brush, rabbit bush, Chrysothamnus nauseosus +n11953038 chicory, succory, chicory plant, Cichorium intybus +n11953339 endive, witloof, Cichorium endivia +n11953610 chicory, chicory root +n11953884 plume thistle, plumed thistle +n11954161 Canada thistle, creeping thistle, Cirsium arvense +n11954345 field thistle, Cirsium discolor +n11954484 woolly thistle, Cirsium flodmanii +n11954642 European woolly thistle, Cirsium eriophorum +n11954798 melancholy thistle, Cirsium heterophylum, Cirsium helenioides +n11955040 brook thistle, Cirsium rivulare +n11955153 bull thistle, boar thistle, spear thistle, Cirsium vulgare, Cirsium lanceolatum +n11955532 blessed thistle, sweet sultan, Cnicus benedictus +n11955896 mistflower, mist-flower, ageratum, Conoclinium coelestinum, Eupatorium coelestinum +n11956348 horseweed, Canadian fleabane, fleabane, Conyza canadensis, Erigeron canadensis +n11956850 coreopsis, tickseed, tickweed, tick-weed +n11957317 giant coreopsis, Coreopsis gigantea +n11957514 sea dahlia, Coreopsis maritima +n11957678 calliopsis, Coreopsis tinctoria +n11958080 cosmos, cosmea +n11958499 brass buttons, Cotula coronopifolia +n11958888 billy buttons +n11959259 hawk's-beard, hawk's-beards +n11959632 artichoke, globe artichoke, artichoke plant, Cynara scolymus +n11959862 cardoon, Cynara cardunculus +n11960245 dahlia, Dahlia pinnata +n11960673 German ivy, Delairea odorata, Senecio milkanioides +n11961100 florist's chrysanthemum, florists' chrysanthemum, mum, Dendranthema grandifloruom, Chrysanthemum morifolium +n11961446 cape marigold, sun marigold, star of the veldt +n11961871 leopard's-bane, leopardbane +n11962272 coneflower +n11962667 globe thistle +n11962994 elephant's-foot +n11963572 tassel flower, Emilia sagitta +n11963932 brittlebush, brittle bush, incienso, Encelia farinosa +n11964446 sunray, Enceliopsis nudicaulis +n11964848 engelmannia +n11965218 fireweed, Erechtites hieracifolia +n11965627 fleabane +n11965962 blue fleabane, Erigeron acer +n11966083 daisy fleabane, Erigeron annuus +n11966215 orange daisy, orange fleabane, Erigeron aurantiacus +n11966385 spreading fleabane, Erigeron divergens +n11966617 seaside daisy, beach aster, Erigeron glaucous +n11966896 Philadelphia fleabane, Erigeron philadelphicus +n11967142 robin's plantain, Erigeron pulchellus +n11967315 showy daisy, Erigeron speciosus +n11967744 woolly sunflower +n11967878 golden yarrow, Eriophyllum lanatum +n11968519 dog fennel, Eupatorium capillifolium +n11968704 Joe-Pye weed, spotted Joe-Pye weed, Eupatorium maculatum +n11968931 boneset, agueweed, thoroughwort, Eupatorium perfoliatum +n11969166 Joe-Pye weed, purple boneset, trumpet weed, marsh milkweed, Eupatorium purpureum +n11969607 blue daisy, blue marguerite, Felicia amelloides +n11969806 kingfisher daisy, Felicia bergeriana +n11970101 cotton rose, cudweed, filago +n11970298 herba impia, Filago germanica +n11970586 gaillardia +n11971248 gazania +n11971406 treasure flower, Gazania rigens +n11971783 African daisy +n11971927 Barberton daisy, Transvaal daisy, Gerbera jamesonii +n11972291 desert sunflower, Gerea canescens +n11972759 cudweed +n11972959 chafeweed, wood cudweed, Gnaphalium sylvaticum +n11973341 gumweed, gum plant, tarweed, rosinweed +n11973634 Grindelia robusta +n11973749 curlycup gumweed, Grindelia squarrosa +n11974373 little-head snakeweed, Gutierrezia microcephala +n11974557 rabbitweed, rabbit-weed, snakeweed, broom snakeweed, broom snakeroot, turpentine weed, Gutierrezia sarothrae +n11974888 broomweed, broom-weed, Gutierrezia texana +n11975254 velvet plant, purple velvet plant, royal velvet plant, Gynura aurantiaca +n11976170 goldenbush +n11976314 camphor daisy, Haplopappus phyllocephalus +n11976511 yellow spiny daisy, Haplopappus spinulosus +n11976933 hoary golden bush, Hazardia cana +n11977303 sneezeweed +n11977660 orange sneezeweed, owlclaws, Helenium hoopesii +n11977887 rosilla, Helenium puberulum +n11978233 sunflower, helianthus +n11978551 swamp sunflower, Helianthus angustifolius +n11978713 common sunflower, mirasol, Helianthus annuus +n11978961 giant sunflower, tall sunflower, Indian potato, Helianthus giganteus +n11979187 showy sunflower, Helianthus laetiflorus +n11979354 Maximilian's sunflower, Helianthus maximilianii +n11979527 prairie sunflower, Helianthus petiolaris +n11979715 Jerusalem artichoke, girasol, Jerusalem artichoke sunflower, Helianthus tuberosus +n11979964 Jerusalem artichoke +n11980318 strawflower, golden everlasting, yellow paper daisy, Helichrysum bracteatum +n11980682 heliopsis, oxeye +n11981192 strawflower +n11981475 hairy golden aster, prairie golden aster, Heterotheca villosa, Chrysopsis villosa +n11982115 hawkweed +n11982545 rattlesnake weed, Hieracium venosum +n11982939 alpine coltsfoot, Homogyne alpina, Tussilago alpina +n11983375 alpine gold, alpine hulsea, Hulsea algida +n11983606 dwarf hulsea, Hulsea nana +n11984144 cat's-ear, California dandelion, capeweed, gosmore, Hypochaeris radicata +n11984542 inula +n11985053 marsh elder, iva +n11985321 burweed marsh elder, false ragweed, Iva xanthifolia +n11985739 krigia +n11985903 dwarf dandelion, Krigia dandelion, Krigia bulbosa +n11986511 garden lettuce, common lettuce, Lactuca sativa +n11986729 cos lettuce, romaine lettuce, Lactuca sativa longifolia +n11987126 leaf lettuce, Lactuca sativa crispa +n11987349 celtuce, stem lettuce, Lactuca sativa asparagina +n11987511 prickly lettuce, horse thistle, Lactuca serriola, Lactuca scariola +n11988132 goldfields, Lasthenia chrysostoma +n11988596 tidytips, tidy tips, Layia platyglossa +n11988893 hawkbit +n11989087 fall dandelion, arnica bud, Leontodon autumnalis +n11989393 edelweiss, Leontopodium alpinum +n11989869 oxeye daisy, ox-eyed daisy, marguerite, moon daisy, white daisy, Leucanthemum vulgare, Chrysanthemum leucanthemum +n11990167 oxeye daisy, Leucanthemum maximum, Chrysanthemum maximum +n11990313 shasta daisy, Leucanthemum superbum, Chrysanthemum maximum maximum +n11990627 Pyrenees daisy, Leucanthemum lacustre, Chrysanthemum lacustre +n11990920 north island edelweiss, Leucogenes leontopodium +n11991263 blazing star, button snakeroot, gayfeather, gay-feather, snakeroot +n11991549 dotted gayfeather, Liatris punctata +n11991777 dense blazing star, Liatris pycnostachya +n11992479 Texas star, Lindheimera texana +n11992806 African daisy, yellow ageratum, Lonas inodora, Lonas annua +n11993203 tahoka daisy, tansy leaf aster, Machaeranthera tanacetifolia +n11993444 sticky aster, Machaeranthera bigelovii +n11993675 Mojave aster, Machaeranthera tortifoloia +n11994150 tarweed +n11995092 sweet false chamomile, wild chamomile, German chamomile, Matricaria recutita, Matricaria chamomilla +n11995396 pineapple weed, rayless chamomile, Matricaria matricarioides +n11996251 climbing hempweed, climbing boneset, wild climbing hempweed, climbing hemp-vine, Mikania scandens +n11996677 mutisia +n11997032 rattlesnake root +n11997160 white lettuce, cankerweed, Nabalus alba, Prenanthes alba +n11997969 daisybush, daisy-bush, daisy bush +n11998492 New Zealand daisybush, Olearia haastii +n11998888 cotton thistle, woolly thistle, Scotch thistle, Onopordum acanthium, Onopordon acanthium +n11999278 othonna +n11999656 cascade everlasting, Ozothamnus secundiflorus, Helichrysum secundiflorum +n12000191 butterweed +n12001294 American feverfew, wild quinine, prairie dock, Parthenium integrifolium +n12001707 cineraria, Pericallis cruenta, Senecio cruentus +n12001924 florest's cineraria, Pericallis hybrida +n12002428 butterbur, bog rhubarb, Petasites hybridus, Petasites vulgaris +n12002651 winter heliotrope, sweet coltsfoot, Petasites fragrans +n12002826 sweet coltsfoot, Petasites sagitattus +n12003167 oxtongue, bristly oxtongue, bitterweed, bugloss, Picris echioides +n12003696 hawkweed +n12004120 mouse-ear hawkweed, Pilosella officinarum, Hieracium pilocella +n12004547 stevia +n12004987 rattlesnake root, Prenanthes purpurea +n12005656 fleabane, feabane mullet, Pulicaria dysenterica +n12006306 sheep plant, vegetable sheep, Raoulia lutescens, Raoulia australis +n12006766 coneflower +n12006930 Mexican hat, Ratibida columnaris +n12007196 long-head coneflower, prairie coneflower, Ratibida columnifera +n12007406 prairie coneflower, Ratibida tagetes +n12007766 Swan River everlasting, rhodanthe, Rhodanthe manglesii, Helipterum manglesii +n12008252 coneflower +n12008487 black-eyed Susan, Rudbeckia hirta, Rudbeckia serotina +n12008749 cutleaved coneflower, Rudbeckia laciniata +n12009047 golden glow, double gold, hortensia, Rudbeckia laciniata hortensia +n12009420 lavender cotton, Santolina chamaecyparissus +n12009792 creeping zinnia, Sanvitalia procumbens +n12010628 golden thistle +n12010815 Spanish oyster plant, Scolymus hispanicus +n12011370 nodding groundsel, Senecio bigelovii +n12011620 dusty miller, Senecio cineraria, Cineraria maritima +n12012111 butterweed, ragwort, Senecio glabellus +n12012253 ragwort, tansy ragwort, ragweed, benweed, Senecio jacobaea +n12012510 arrowleaf groundsel, Senecio triangularis +n12013035 black salsify, viper's grass, scorzonera, Scorzonera hispanica +n12013511 white-topped aster +n12013701 narrow-leaved white-topped aster +n12014085 silver sage, silver sagebrush, grey sage, gray sage, Seriphidium canum, Artemisia cana +n12014355 sea wormwood, Seriphidium maritimum, Artemisia maritima +n12014923 sawwort, Serratula tinctoria +n12015221 rosinweed, Silphium laciniatum +n12015525 milk thistle, lady's thistle, Our Lady's mild thistle, holy thistle, blessed thistle, Silybum marianum +n12015959 goldenrod +n12016434 silverrod, Solidago bicolor +n12016567 meadow goldenrod, Canadian goldenrod, Solidago canadensis +n12016777 Missouri goldenrod, Solidago missouriensis +n12016914 alpine goldenrod, Solidago multiradiata +n12017127 grey goldenrod, gray goldenrod, Solidago nemoralis +n12017326 Blue Mountain tea, sweet goldenrod, Solidago odora +n12017511 dyer's weed, Solidago rugosa +n12017664 seaside goldenrod, beach goldenrod, Solidago sempervirens +n12017853 narrow goldenrod, Solidago spathulata +n12018014 Boott's goldenrod +n12018100 Elliott's goldenrod +n12018188 Ohio goldenrod +n12018271 rough-stemmed goldenrod +n12018363 showy goldenrod +n12018447 tall goldenrod +n12018530 zigzag goldenrod, broad leaved goldenrod +n12018760 sow thistle, milk thistle +n12019035 milkweed, Sonchus oleraceus +n12019827 stevia +n12020184 stokes' aster, cornflower aster, Stokesia laevis +n12020507 marigold +n12020736 African marigold, big marigold, Aztec marigold, Tagetes erecta +n12020941 French marigold, Tagetes patula +n12022054 painted daisy, pyrethrum, Tanacetum coccineum, Chrysanthemum coccineum +n12022382 pyrethrum, Dalmatian pyrethrum, Dalmatia pyrethrum, Tanacetum cinerariifolium, Chrysanthemum cinerariifolium +n12022821 northern dune tansy, Tanacetum douglasii +n12023108 feverfew, Tanacetum parthenium, Chrysanthemum parthenium +n12023407 dusty miller, silver-lace, silver lace, Tanacetum ptarmiciflorum, Chrysanthemum ptarmiciflorum +n12023726 tansy, golden buttons, scented fern, Tanacetum vulgare +n12024176 dandelion, blowball +n12024445 common dandelion, Taraxacum ruderalia, Taraxacum officinale +n12024690 dandelion green +n12024805 Russian dandelion, kok-saghyz, kok-sagyz, Taraxacum kok-saghyz +n12025220 stemless hymenoxys, Tetraneuris acaulis, Hymenoxys acaulis +n12026018 Mexican sunflower, tithonia +n12026476 Easter daisy, stemless daisy, Townsendia Exscapa +n12026981 yellow salsify, Tragopogon dubius +n12027222 salsify, oyster plant, vegetable oyster, Tragopogon porrifolius +n12027658 meadow salsify, goatsbeard, shepherd's clock, Tragopogon pratensis +n12028424 scentless camomile, scentless false camomile, scentless mayweed, scentless hayweed, corn mayweed, Tripleurospermum inodorum, Matricaria inodorum +n12029039 turfing daisy, Tripleurospermum tchihatchewii, Matricaria tchihatchewii +n12029635 coltsfoot, Tussilago farfara +n12030092 ursinia +n12030654 crownbeard, crown-beard, crown beard +n12030908 wingstem, golden ironweed, yellow ironweed, golden honey plant, Verbesina alternifolia, Actinomeris alternifolia +n12031139 cowpen daisy, golden crownbeard, golden crown beard, butter daisy, Verbesina encelioides, Ximenesia encelioides +n12031388 gravelweed, Verbesina helianthoides +n12031547 Virginia crownbeard, frostweed, frost-weed, Verbesina virginica +n12031927 ironweed, vernonia +n12032429 mule's ears, Wyethia amplexicaulis +n12032686 white-rayed mule's ears, Wyethia helianthoides +n12033139 cocklebur, cockle-bur, cockleburr, cockle-burr +n12033504 xeranthemum +n12033709 immortelle, Xeranthemum annuum +n12034141 zinnia, old maid, old maid flower +n12034384 white zinnia, Zinnia acerosa +n12034594 little golden zinnia, Zinnia grandiflora +n12035631 blazing star, Mentzelia livicaulis, Mentzelia laevicaulis +n12035907 bartonia, Mentzelia lindleyi +n12036067 achene +n12036226 samara, key fruit, key +n12036939 campanula, bellflower +n12037499 creeping bellflower, Campanula rapunculoides +n12037691 Canterbury bell, cup and saucer, Campanula medium +n12038038 tall bellflower, Campanula americana +n12038208 marsh bellflower, Campanula aparinoides +n12038406 clustered bellflower, Campanula glomerata +n12038585 peach bells, peach bell, willow bell, Campanula persicifolia +n12038760 chimney plant, chimney bellflower, Campanula pyramidalis +n12038898 rampion, rampion bellflower, Campanula rapunculus +n12039317 tussock bellflower, spreading bellflower, Campanula carpatica +n12041446 orchid, orchidaceous plant +n12043444 orchis +n12043673 male orchis, early purple orchid, Orchis mascula +n12043836 butterfly orchid, butterfly orchis, Orchis papilionaceae +n12044041 showy orchis, purple orchis, purple-hooded orchis, Orchis spectabilis +n12044467 aerides +n12044784 angrecum +n12045157 jewel orchid +n12045514 puttyroot, adam-and-eve, Aplectrum hyemale +n12045860 arethusa +n12046028 bog rose, wild pink, dragon's mouth, Arethusa bulbosa +n12046428 bletia +n12046815 Bletilla striata, Bletia striata +n12047345 brassavola +n12047884 spider orchid, Brassia lawrenceana +n12048056 spider orchid, Brassia verrucosa +n12048399 caladenia +n12048928 calanthe +n12049282 grass pink, Calopogon pulchellum, Calopogon tuberosum +n12049562 calypso, fairy-slipper, Calypso bulbosa +n12050533 cattleya +n12050959 helleborine +n12051103 red helleborine, Cephalanthera rubra +n12051514 spreading pogonia, funnel-crest rosebud orchid, Cleistes divaricata, Pogonia divaricata +n12051792 rosebud orchid, Cleistes rosea, Pogonia rosea +n12052267 satyr orchid, Coeloglossum bracteatum +n12052447 frog orchid, Coeloglossum viride +n12052787 coelogyne +n12053405 coral root +n12053690 spotted coral root, Corallorhiza maculata +n12053962 striped coral root, Corallorhiza striata +n12054195 early coral root, pale coral root, Corallorhiza trifida +n12055073 swan orchid, swanflower, swan-flower, swanneck, swan-neck +n12055516 cymbid, cymbidium +n12056099 cypripedia +n12056217 lady's slipper, lady-slipper, ladies' slipper, slipper orchid +n12056601 moccasin flower, nerveroot, Cypripedium acaule +n12056758 common lady's-slipper, showy lady's-slipper, showy lady slipper, Cypripedium reginae, Cypripedium album +n12056990 ram's-head, ram's-head lady's slipper, Cypripedium arietinum +n12057211 yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum +n12057447 large yellow lady's slipper, Cypripedium calceolus pubescens +n12057660 California lady's slipper, Cypripedium californicum +n12057895 clustered lady's slipper, Cypripedium fasciculatum +n12058192 mountain lady's slipper, Cypripedium montanum +n12058630 marsh orchid +n12058822 common spotted orchid, Dactylorhiza fuchsii, Dactylorhiza maculata fuchsii +n12059314 dendrobium +n12059625 disa +n12060546 phantom orchid, snow orchid, Eburophyton austinae +n12061104 tulip orchid, Encyclia citrina, Cattleya citrina +n12061380 butterfly orchid, Encyclia tampensis, Epidendrum tampense +n12061614 butterfly orchid, butterfly orchis, Epidendrum venosum, Encyclia venosa +n12062105 epidendron +n12062468 helleborine +n12062626 Epipactis helleborine +n12062781 stream orchid, chatterbox, giant helleborine, Epipactis gigantea +n12063211 tongueflower, tongue-flower +n12063639 rattlesnake plantain, helleborine +n12064389 fragrant orchid, Gymnadenia conopsea +n12064591 short-spurred fragrant orchid, Gymnadenia odoratissima +n12065316 fringed orchis, fringed orchid +n12065649 frog orchid +n12065777 rein orchid, rein orchis +n12066018 bog rein orchid, bog candles, Habenaria dilatata +n12066261 white fringed orchis, white fringed orchid, Habenaria albiflora +n12066451 elegant Habenaria, Habenaria elegans +n12066630 purple-fringed orchid, purple-fringed orchis, Habenaria fimbriata +n12066821 coastal rein orchid, Habenaria greenei +n12067029 Hooker's orchid, Habenaria hookeri +n12067193 ragged orchid, ragged orchis, ragged-fringed orchid, green fringed orchis, Habenaria lacera +n12067433 prairie orchid, prairie white-fringed orchis, Habenaria leucophaea +n12067672 snowy orchid, Habenaria nivea +n12067817 round-leaved rein orchid, Habenaria orbiculata +n12068138 purple fringeless orchid, purple fringeless orchis, Habenaria peramoena +n12068432 purple-fringed orchid, purple-fringed orchis, Habenaria psycodes +n12068615 Alaska rein orchid, Habenaria unalascensis +n12069009 crested coral root, Hexalectris spicata +n12069217 Texas purple spike, Hexalectris warnockii +n12069679 lizard orchid, Himantoglossum hircinum +n12070016 laelia +n12070381 liparis +n12070583 twayblade +n12070712 fen orchid, fen orchis, Liparis loeselii +n12071259 broad-leaved twayblade, Listera convallarioides +n12071477 lesser twayblade, Listera cordata +n12071744 twayblade, Listera ovata +n12072210 green adder's mouth, Malaxis-unifolia, Malaxis ophioglossoides +n12072722 masdevallia +n12073217 maxillaria +n12073554 pansy orchid +n12073991 odontoglossum +n12074408 oncidium, dancing lady orchid, butterfly plant, butterfly orchid +n12074867 bee orchid, Ophrys apifera +n12075010 fly orchid, Ophrys insectifera, Ophrys muscifera +n12075151 spider orchid +n12075299 early spider orchid, Ophrys sphegodes +n12075830 Venus' slipper, Venus's slipper, Venus's shoe +n12076223 phaius +n12076577 moth orchid, moth plant +n12076852 butterfly plant, Phalaenopsis amabilis +n12077244 rattlesnake orchid +n12077944 lesser butterfly orchid, Platanthera bifolia, Habenaria bifolia +n12078172 greater butterfly orchid, Platanthera chlorantha, Habenaria chlorantha +n12078451 prairie white-fringed orchid, Platanthera leucophea +n12078747 tangle orchid +n12079120 Indian crocus +n12079523 pleurothallis +n12079963 pogonia +n12080395 butterfly orchid +n12080588 Psychopsis krameriana, Oncidium papilio kramerianum +n12080820 Psychopsis papilio, Oncidium papilio +n12081215 helmet orchid, greenhood +n12081649 foxtail orchid +n12082131 orange-blossom orchid, Sarcochilus falcatus +n12083113 sobralia +n12083591 ladies' tresses, lady's tresses +n12083847 screw augur, Spiranthes cernua +n12084158 hooded ladies' tresses, Spiranthes romanzoffiana +n12084400 western ladies' tresses, Spiranthes porrifolia +n12084555 European ladies' tresses, Spiranthes spiralis +n12084890 stanhopea +n12085267 stelis +n12085664 fly orchid +n12086012 vanda +n12086192 blue orchid, Vanda caerulea +n12086539 vanilla +n12086778 vanilla orchid, Vanilla planifolia +n12087961 yam, yam plant +n12088223 yam +n12088327 white yam, water yam, Dioscorea alata +n12088495 cinnamon vine, Chinese yam, Dioscorea batata +n12088909 elephant's-foot, tortoise plant, Hottentot bread vine, Hottentot's bread vine, Dioscorea elephantipes +n12089320 wild yam, Dioscorea paniculata +n12089496 cush-cush, Dioscorea trifida +n12089846 black bryony, black bindweed, Tamus communis +n12090890 primrose, primula +n12091213 English primrose, Primula vulgaris +n12091377 cowslip, paigle, Primula veris +n12091550 oxlip, paigle, Primula elatior +n12091697 Chinese primrose, Primula sinensis +n12091953 polyanthus, Primula polyantha +n12092262 pimpernel +n12092417 scarlet pimpernel, red pimpernel, poor man's weatherglass, Anagallis arvensis +n12092629 bog pimpernel, Anagallis tenella +n12092930 chaffweed, bastard pimpernel, false pimpernel +n12093329 cyclamen, Cyclamen purpurascens +n12093600 sowbread, Cyclamen hederifolium, Cyclamen neopolitanum +n12093885 sea milkwort, sea trifoly, black saltwort, Glaux maritima +n12094244 featherfoil, feather-foil +n12094401 water gillyflower, American featherfoil, Hottonia inflata +n12094612 water violet, Hottonia palustris +n12095020 loosestrife +n12095281 gooseneck loosestrife, Lysimachia clethroides Duby +n12095412 yellow pimpernel, Lysimachia nemorum +n12095543 fringed loosestrife, Lysimachia ciliatum +n12095647 moneywort, creeping Jenny, creeping Charlie, Lysimachia nummularia +n12095934 swamp candles, Lysimachia terrestris +n12096089 whorled loosestrife, Lysimachia quadrifolia +n12096395 water pimpernel +n12096563 brookweed, Samolus valerandii +n12096674 brookweed, Samolus parviflorus, Samolus floribundus +n12097396 coralberry, spiceberry, Ardisia crenata +n12097556 marlberry, Ardisia escallonoides, Ardisia paniculata +n12098403 plumbago +n12098524 leadwort, Plumbago europaea +n12098827 thrift +n12099342 sea lavender, marsh rosemary, statice +n12100187 barbasco, joewood, Jacquinia keyensis +n12101870 gramineous plant, graminaceous plant +n12102133 grass +n12103680 midgrass +n12103894 shortgrass, short-grass +n12104104 sword grass +n12104238 tallgrass, tall-grass +n12104501 herbage, pasturage +n12104734 goat grass, Aegilops triuncalis +n12105125 wheatgrass, wheat-grass +n12105353 crested wheatgrass, crested wheat grass, fairway crested wheat grass, Agropyron cristatum +n12105828 bearded wheatgrass, Agropyron subsecundum +n12105981 western wheatgrass, bluestem wheatgrass, Agropyron smithii +n12106134 intermediate wheatgrass, Agropyron intermedium, Elymus hispidus +n12106323 slender wheatgrass, Agropyron trachycaulum, Agropyron pauciflorum, Elymus trachycaulos +n12107002 velvet bent, velvet bent grass, brown bent, Rhode Island bent, dog bent, Agrostis canina +n12107191 cloud grass, Agrostis nebulosa +n12107710 meadow foxtail, Alopecurus pratensis +n12107970 foxtail, foxtail grass +n12108432 broom grass +n12108613 broom sedge, Andropogon virginicus +n12108871 tall oat grass, tall meadow grass, evergreen grass, false oat, French rye, Arrhenatherum elatius +n12109365 toetoe, toitoi, Arundo conspicua, Chionochloa conspicua +n12109827 oat +n12110085 cereal oat, Avena sativa +n12110236 wild oat, wild oat grass, Avena fatua +n12110352 slender wild oat, Avena barbata +n12110475 wild red oat, animated oat, Avene sterilis +n12110778 brome, bromegrass +n12111238 chess, cheat, Bromus secalinus +n12111627 field brome, Bromus arvensis +n12112008 grama, grama grass, gramma, gramma grass +n12112337 black grama, Bouteloua eriopoda +n12112609 buffalo grass, Buchloe dactyloides +n12112918 reed grass +n12113195 feather reed grass, feathertop, Calamagrostis acutiflora +n12113323 Australian reed grass, Calamagrostic quadriseta +n12113657 burgrass, bur grass +n12114010 buffel grass, Cenchrus ciliaris, Pennisetum cenchroides +n12114590 Rhodes grass, Chloris gayana +n12115180 pampas grass, Cortaderia selloana +n12116058 giant star grass, Cynodon plectostachyum +n12116429 orchard grass, cocksfoot, cockspur, Dactylis glomerata +n12116734 Egyptian grass, crowfoot grass, Dactyloctenium aegypticum +n12117017 crabgrass, crab grass, finger grass +n12117235 smooth crabgrass, Digitaria ischaemum +n12117326 large crabgrass, hairy finger grass, Digitaria sanguinalis +n12117695 barnyard grass, barn grass, barn millet, Echinochloa crusgalli +n12117912 Japanese millet, billion-dollar grass, Japanese barnyard millet, sanwa millet, Echinochloa frumentacea +n12118414 yardgrass, yard grass, wire grass, goose grass, Eleusine indica +n12118661 finger millet, ragi, ragee, African millet, coracan, corakan, kurakkan, Eleusine coracana +n12119099 lyme grass +n12119238 wild rye +n12119390 giant ryegrass, Elymus condensatus, Leymus condensatus +n12119539 sea lyme grass, European dune grass, Elymus arenarius, Leymus arenaria +n12119717 Canada wild rye, Elymus canadensis +n12120347 teff, teff grass, Eragrostis tef, Eragrostic abyssinica +n12120578 weeping love grass, African love grass, Eragrostis curvula +n12121033 plume grass +n12121187 Ravenna grass, wool grass, Erianthus ravennae +n12121610 fescue, fescue grass, meadow fescue, Festuca elatior +n12122442 reed meadow grass, Glyceria grandis +n12122725 velvet grass, Yorkshire fog, Holcus lanatus +n12122918 creeping soft grass, Holcus mollis +n12123648 barleycorn +n12123741 barley grass, wall barley, Hordeum murinum +n12124172 little barley, Hordeum pusillum +n12124627 rye grass, ryegrass +n12124818 perennial ryegrass, English ryegrass, Lolium perenne +n12125001 Italian ryegrass, Italian rye, Lolium multiflorum +n12125183 darnel, tare, bearded darnel, cheat, Lolium temulentum +n12125584 nimblewill, nimble Will, Muhlenbergia schreberi +n12126084 cultivated rice, Oryza sativa +n12126360 ricegrass, rice grass +n12126736 smilo, smilo grass, Oryzopsis miliacea +n12127460 switch grass, Panicum virgatum +n12127575 broomcorn millet, hog millet, Panicum miliaceum +n12127768 goose grass, Texas millet, Panicum Texanum +n12128071 dallisgrass, dallis grass, paspalum, Paspalum dilatatum +n12128306 Bahia grass, Paspalum notatum +n12128490 knotgrass, Paspalum distichum +n12129134 fountain grass, Pennisetum ruppelii, Pennisetum setaceum +n12129738 reed canary grass, gardener's garters, lady's laces, ribbon grass, Phalaris arundinacea +n12129986 canary grass, birdseed grass, Phalaris canariensis +n12130549 timothy, herd's grass, Phleum pratense +n12131405 bluegrass, blue grass +n12131550 meadowgrass, meadow grass +n12132092 wood meadowgrass, Poa nemoralis, Agrostis alba +n12132956 noble cane +n12133151 munj, munja, Saccharum bengalense, Saccharum munja +n12133462 broom beard grass, prairie grass, wire grass, Andropogon scoparius, Schizachyrium scoparium +n12133682 bluestem, blue stem, Andropogon furcatus, Andropogon gerardii +n12134025 rye, Secale cereale +n12134486 bristlegrass, bristle grass +n12134695 giant foxtail +n12134836 yellow bristlegrass, yellow bristle grass, yellow foxtail, glaucous bristlegrass, Setaria glauca +n12135049 green bristlegrass, green foxtail, rough bristlegrass, bottle-grass, bottle grass, Setaria viridis +n12135576 Siberian millet, Setaria italica rubrofructa +n12135729 German millet, golden wonder millet, Setaria italica stramineofructa +n12135898 millet +n12136392 rattan, rattan cane +n12136581 malacca +n12136720 reed +n12137120 sorghum +n12137569 grain sorghum +n12137791 durra, doura, dourah, Egyptian corn, Indian millet, Guinea corn +n12137954 feterita, federita, Sorghum vulgare caudatum +n12138110 hegari +n12138248 kaoliang +n12138444 milo, milo maize +n12138578 shallu, Sorghum vulgare rosburghii +n12139196 broomcorn, Sorghum vulgare technicum +n12139575 cordgrass, cord grass +n12139793 salt reed grass, Spartina cynosuroides +n12139921 prairie cordgrass, freshwater cordgrass, slough grass, Spartina pectinmata +n12140511 smut grass, blackseed, carpet grass, Sporobolus poiretii +n12140759 sand dropseed, Sporobolus cryptandrus +n12140903 rush grass, rush-grass +n12141167 St. Augustine grass, Stenotaphrum secundatum, buffalo grass +n12141385 grain +n12141495 cereal, cereal grass +n12142085 wheat +n12142357 wheat berry +n12142450 durum, durum wheat, hard wheat, Triticum durum, Triticum turgidum, macaroni wheat +n12143065 spelt, Triticum spelta, Triticum aestivum spelta +n12143215 emmer, starch wheat, two-grain spelt, Triticum dicoccum +n12143405 wild wheat, wild emmer, Triticum dicoccum dicoccoides +n12143676 corn, maize, Indian corn, Zea mays +n12144313 mealie +n12144580 corn +n12144987 dent corn, Zea mays indentata +n12145148 flint corn, flint maize, Yankee corn, Zea mays indurata +n12145477 popcorn, Zea mays everta +n12146311 zoysia +n12146488 Manila grass, Japanese carpet grass, Zoysia matrella +n12146654 Korean lawn grass, Japanese lawn grass, Zoysia japonica +n12147226 bamboo +n12147835 common bamboo, Bambusa vulgaris +n12148757 giant bamboo, kyo-chiku, Dendrocalamus giganteus +n12150722 umbrella plant, umbrella sedge, Cyperus alternifolius +n12150969 chufa, yellow nutgrass, earth almond, ground almond, rush nut, Cyperus esculentus +n12151170 galingale, galangal, Cyperus longus +n12151615 nutgrass, nut grass, nutsedge, nut sedge, Cyperus rotundus +n12152031 sand sedge, sand reed, Carex arenaria +n12152251 cypress sedge, Carex pseudocyperus +n12152532 cotton grass, cotton rush +n12152722 common cotton grass, Eriophorum angustifolium +n12153033 hardstem bulrush, hardstemmed bulrush, Scirpus acutus +n12153224 wool grass, Scirpus cyperinus +n12153580 spike rush +n12153741 water chestnut, Chinese water chestnut, Eleocharis dulcis +n12153914 needle spike rush, needle rush, slender spike rush, hair grass, Eleocharis acicularis +n12154114 creeping spike rush, Eleocharis palustris +n12154773 pandanus, screw pine +n12155009 textile screw pine, lauhala, Pandanus tectorius +n12155583 cattail +n12155773 cat's-tail, bullrush, bulrush, nailrod, reed mace, reedmace, Typha latifolia +n12156679 bur reed +n12156819 grain, caryopsis +n12157056 kernel +n12157179 rye +n12157769 gourd, gourd vine +n12158031 gourd +n12158443 pumpkin, pumpkin vine, autumn pumpkin, Cucurbita pepo +n12158798 squash, squash vine +n12159055 summer squash, summer squash vine, Cucurbita pepo melopepo +n12159388 yellow squash +n12159555 marrow, marrow squash, vegetable marrow +n12159804 zucchini, courgette +n12159942 cocozelle, Italian vegetable marrow +n12160125 cymling, pattypan squash +n12160303 spaghetti squash +n12160490 winter squash, winter squash plant +n12160857 acorn squash +n12161056 hubbard squash, Cucurbita maxima +n12161285 turban squash, Cucurbita maxima turbaniformis +n12161577 buttercup squash +n12161744 butternut squash, Cucurbita maxima +n12161969 winter crookneck, winter crookneck squash, Cucurbita moschata +n12162181 cushaw, Cucurbita mixta, Cucurbita argyrosperma +n12162425 prairie gourd, prairie gourd vine, Missouri gourd, wild pumpkin, buffalo gourd, calabazilla, Cucurbita foetidissima +n12162758 prairie gourd +n12163035 bryony, briony +n12163279 white bryony, devil's turnip, Bryonia alba +n12164363 sweet melon, muskmelon, sweet melon vine, Cucumis melo +n12164656 cantaloupe, cantaloup, cantaloupe vine, cantaloup vine, Cucumis melo cantalupensis +n12164881 winter melon, Persian melon, honeydew melon, winter melon vine, Cucumis melo inodorus +n12165170 net melon, netted melon, nutmeg melon, Cucumis melo reticulatus +n12165384 cucumber, cucumber vine, Cucumis sativus +n12165758 squirting cucumber, exploding cucumber, touch-me-not, Ecballium elaterium +n12166128 bottle gourd, calabash, Lagenaria siceraria +n12166424 luffa, dishcloth gourd, sponge gourd, rag gourd, strainer vine +n12166793 loofah, vegetable sponge, Luffa cylindrica +n12166929 angled loofah, sing-kwa, Luffa acutangula +n12167075 loofa, loofah, luffa, loufah sponge +n12167436 balsam apple, Momordica balsamina +n12167602 balsam pear, Momordica charantia +n12168565 lobelia +n12169099 water lobelia, Lobelia dortmanna +n12170585 mallow +n12171098 musk mallow, mus rose, Malva moschata +n12171316 common mallow, Malva neglecta +n12171966 okra, gumbo, okra plant, lady's-finger, Abelmoschus esculentus, Hibiscus esculentus +n12172364 okra +n12172481 abelmosk, musk mallow, Abelmoschus moschatus, Hibiscus moschatus +n12172906 flowering maple +n12173069 velvetleaf, velvet-leaf, velvetweed, Indian mallow, butter-print, China jute, Abutilon theophrasti +n12173664 hollyhock +n12173912 rose mallow, Alcea rosea, Althea rosea +n12174311 althea, althaea, hollyhock +n12174521 marsh mallow, white mallow, Althea officinalis +n12174926 poppy mallow +n12175181 fringed poppy mallow, Callirhoe digitata +n12175370 purple poppy mallow, Callirhoe involucrata +n12175598 clustered poppy mallow, Callirhoe triangulata +n12176453 sea island cotton, tree cotton, Gossypium barbadense +n12176709 Levant cotton, Gossypium herbaceum +n12176953 upland cotton, Gossypium hirsutum +n12177129 Peruvian cotton, Gossypium peruvianum +n12177455 wild cotton, Arizona wild cotton, Gossypium thurberi +n12178129 kenaf, kanaf, deccan hemp, bimli, bimli hemp, Indian hemp, Bombay hemp, Hibiscus cannabinus +n12178780 sorrel tree, Hibiscus heterophyllus +n12178896 rose mallow, swamp mallow, common rose mallow, swamp rose mallow, Hibiscus moscheutos +n12179122 cotton rose, Confederate rose, Confederate rose mallow, Hibiscus mutabilis +n12179632 roselle, rozelle, sorrel, red sorrel, Jamaica sorrel, Hibiscus sabdariffa +n12180168 mahoe, majagua, mahagua, balibago, purau, Hibiscus tiliaceus +n12180456 flower-of-an-hour, flowers-of-an-hour, bladder ketmia, black-eyed Susan, Hibiscus trionum +n12180885 lacebark, ribbonwood, houhere, Hoheria populnea +n12181352 wild hollyhock, Iliamna remota, Sphaeralcea remota +n12181612 mountain hollyhock, Iliamna ruvularis, Iliamna acerifolia +n12182049 seashore mallow +n12182276 salt marsh mallow, Kosteletzya virginica +n12183026 chaparral mallow, Malacothamnus fasciculatus, Sphaeralcea fasciculata +n12183452 malope, Malope trifida +n12183816 false mallow +n12184095 waxmallow, wax mallow, sleeping hibiscus +n12184468 glade mallow, Napaea dioica +n12184912 pavonia +n12185254 ribbon tree, ribbonwood, Plagianthus regius, Plagianthus betulinus +n12185859 bush hibiscus, Radyera farragei, Hibiscus farragei +n12186352 Virginia mallow, Sida hermaphrodita +n12186554 Queensland hemp, jellyleaf, Sida rhombifolia +n12186839 Indian mallow, Sida spinosa +n12187247 checkerbloom, wild hollyhock, Sidalcea malviflora +n12187663 globe mallow, false mallow +n12187891 prairie mallow, red false mallow, Sphaeralcea coccinea, Malvastrum coccineum +n12188289 tulipwood tree +n12188635 portia tree, bendy tree, seaside mahoe, Thespesia populnea +n12189429 red silk-cotton tree, simal, Bombax ceiba, Bombax malabarica +n12189779 cream-of-tartar tree, sour gourd, Adansonia gregorii +n12189987 baobab, monkey-bread tree, Adansonia digitata +n12190410 kapok, ceiba tree, silk-cotton tree, white silk-cotton tree, Bombay ceiba, God tree, Ceiba pentandra +n12190869 durian, durion, durian tree, Durio zibethinus +n12191240 Montezuma +n12192132 shaving-brush tree, Pseudobombax ellipticum +n12192877 quandong, quandong tree, Brisbane quandong, silver quandong tree, blue fig, Elaeocarpus grandis +n12193334 quandong, blue fig +n12193665 makomako, New Zealand wine berry, wineberry, Aristotelia serrata, Aristotelia racemosa +n12194147 Jamaican cherry, calabur tree, calabura, silk wood, silkwood, Muntingia calabura +n12194613 breakax, breakaxe, break-axe, Sloanea jamaicensis +n12195391 sterculia +n12195533 Panama tree, Sterculia apetala +n12195734 kalumpang, Java olives, Sterculia foetida +n12196129 bottle-tree, bottle tree +n12196336 flame tree, flame durrajong, Brachychiton acerifolius, Sterculia acerifolia +n12196527 flame tree, broad-leaved bottletree, Brachychiton australis +n12196694 kurrajong, currajong, Brachychiton populneus +n12196954 Queensland bottletree, narrow-leaved bottletree, Brachychiton rupestris, Sterculia rupestris +n12197359 kola, kola nut, kola nut tree, goora nut, Cola acuminata +n12197601 kola nut, cola nut +n12198286 Chinese parasol tree, Chinese parasol, Japanese varnish tree, phoenix tree, Firmiana simplex +n12198793 flannelbush, flannel bush, California beauty +n12199266 screw tree +n12199399 nut-leaved screw tree, Helicteres isora +n12199790 red beech, brown oak, booyong, crow's foot, stave wood, silky elm, Heritiera trifoliolata, Terrietia trifoliolata +n12199982 looking glass tree, Heritiera macrophylla +n12200143 looking-glass plant, Heritiera littoralis +n12200504 honey bell, honeybells, Hermannia verticillata, Mahernia verticillata +n12200905 mayeng, maple-leaved bayur, Pterospermum acerifolium +n12201331 silver tree, Tarrietia argyrodendron +n12201580 cacao, cacao tree, chocolate tree, Theobroma cacao +n12201938 obeche, obechi, arere, samba, Triplochiton scleroxcylon +n12202936 linden, linden tree, basswood, lime, lime tree +n12203529 American basswood, American lime, Tilia americana +n12203699 small-leaved linden, small-leaved lime, Tilia cordata +n12203896 white basswood, cottonwood, Tilia heterophylla +n12204032 Japanese linden, Japanese lime, Tilia japonica +n12204175 silver lime, silver linden, Tilia tomentosa +n12204730 corchorus +n12205460 African hemp, Sparmannia africana +n12205694 herb, herbaceous plant +n12214789 protea +n12215022 honeypot, king protea, Protea cynaroides +n12215210 honeyflower, honey-flower, Protea mellifera +n12215579 banksia +n12215824 honeysuckle, Australian honeysuckle, coast banksia, Banksia integrifolia +n12216215 smoke bush +n12216628 Chilean firebush, Chilean flameflower, Embothrium coccineum +n12216968 Chilean nut, Chile nut, Chile hazel, Chilean hazelnut, Guevina heterophylla, Guevina avellana +n12217453 grevillea +n12217851 red-flowered silky oak, Grevillea banksii +n12218274 silky oak, Grevillea robusta +n12218490 beefwood, Grevillea striata +n12218868 cushion flower, pincushion hakea, Hakea laurina +n12219668 rewa-rewa, New Zealand honeysuckle +n12220019 honeyflower, honey-flower, mountain devil, Lambertia formosa +n12220496 silver tree, Leucadendron argenteum +n12220829 lomatia +n12221191 macadamia, macadamia tree +n12221368 Macadamia integrifolia +n12221522 macadamia nut, macadamia nut tree, Macadamia ternifolia +n12221801 Queensland nut, Macadamia tetraphylla +n12222090 prickly ash, Orites excelsa +n12222493 geebung +n12222900 wheel tree, firewheel tree, Stenocarpus sinuatus +n12223160 scrub beefwood, beefwood, Stenocarpus salignus +n12223569 waratah, Telopea Oreades +n12223764 waratah, Telopea speciosissima +n12224978 casuarina +n12225222 she-oak +n12225349 beefwood +n12225563 Australian pine, Casuarina equisetfolia +n12226932 heath +n12227658 tree heath, briar, brier, Erica arborea +n12227909 briarroot +n12228229 winter heath, spring heath, Erica carnea +n12228387 bell heather, heather bell, fine-leaved heath, Erica cinerea +n12228689 Cornish heath, Erica vagans +n12228886 Spanish heath, Portuguese heath, Erica lusitanica +n12229111 Prince-of-Wales'-heath, Prince of Wales heath, Erica perspicua +n12229651 bog rosemary, moorwort, Andromeda glaucophylla +n12229887 marsh andromeda, common bog rosemary, Andromeda polifolia +n12230540 madrona, madrono, manzanita, Arbutus menziesii +n12230794 strawberry tree, Irish strawberry, Arbutus unedo +n12231192 bearberry +n12231709 alpine bearberry, black bearberry, Arctostaphylos alpina +n12232114 heartleaf manzanita, Arctostaphylos andersonii +n12232280 Parry manzanita, Arctostaphylos manzanita +n12232851 spike heath, Bruckenthalia spiculifolia +n12233249 bryanthus +n12234318 leatherleaf, Chamaedaphne calyculata +n12234669 Connemara heath, St. Dabeoc's heath, Daboecia cantabrica +n12235051 trailing arbutus, mayflower, Epigaea repens +n12235479 creeping snowberry, moxie plum, maidenhair berry, Gaultheria hispidula +n12236160 salal, shallon, Gaultheria shallon +n12236546 huckleberry +n12236768 black huckleberry, Gaylussacia baccata +n12236977 dangleberry, dangle-berry, Gaylussacia frondosa +n12237152 box huckleberry, Gaylussacia brachycera +n12237486 kalmia +n12237641 mountain laurel, wood laurel, American laurel, calico bush, Kalmia latifolia +n12237855 swamp laurel, bog laurel, bog kalmia, Kalmia polifolia +n12238756 trapper's tea, glandular Labrador tea +n12238913 wild rosemary, marsh tea, Ledum palustre +n12239240 sand myrtle, Leiophyllum buxifolium +n12239647 leucothoe +n12239880 dog laurel, dog hobble, switch-ivy, Leucothoe fontanesiana, Leucothoe editorum +n12240150 sweet bells, Leucothoe racemosa +n12240477 alpine azalea, mountain azalea, Loiseleuria procumbens +n12240965 staggerbush, stagger bush, Lyonia mariana +n12241192 maleberry, male berry, privet andromeda, he-huckleberry, Lyonia ligustrina +n12241426 fetterbush, fetter bush, shiny lyonia, Lyonia lucida +n12241880 false azalea, fool's huckleberry, Menziesia ferruginea +n12242123 minniebush, minnie bush, Menziesia pilosa +n12242409 sorrel tree, sourwood, titi, Oxydendrum arboreum +n12242850 mountain heath, Phyllodoce caerulea, Bryanthus taxifolius +n12243109 purple heather, Brewer's mountain heather, Phyllodoce breweri +n12243693 fetterbush, mountain fetterbush, mountain andromeda, Pieris floribunda +n12244153 rhododendron +n12244458 coast rhododendron, Rhododendron californicum +n12244650 rosebay, Rhododendron maxima +n12244819 swamp azalea, swamp honeysuckle, white honeysuckle, Rhododendron viscosum +n12245319 azalea +n12245695 cranberry +n12245885 American cranberry, large cranberry, Vaccinium macrocarpon +n12246037 European cranberry, small cranberry, Vaccinium oxycoccus +n12246232 blueberry, blueberry bush +n12246773 farkleberry, sparkleberry, Vaccinium arboreum +n12246941 low-bush blueberry, low blueberry, Vaccinium angustifolium, Vaccinium pennsylvanicum +n12247202 rabbiteye blueberry, rabbit-eye blueberry, rabbiteye, Vaccinium ashei +n12247407 dwarf bilberry, dwarf blueberry, Vaccinium caespitosum +n12247963 evergreen blueberry, Vaccinium myrsinites +n12248141 evergreen huckleberry, Vaccinium ovatum +n12248359 bilberry, thin-leaved bilberry, mountain blue berry, Viccinium membranaceum +n12248574 bilberry, whortleberry, whinberry, blaeberry, Viccinium myrtillus +n12248780 bog bilberry, bog whortleberry, moor berry, Vaccinium uliginosum alpinum +n12248941 dryland blueberry, dryland berry, Vaccinium pallidum +n12249122 grouseberry, grouse-berry, grouse whortleberry, Vaccinium scoparium +n12249294 deerberry, squaw huckleberry, Vaccinium stamineum +n12249542 cowberry, mountain cranberry, lingonberry, lingenberry, lingberry, foxberry, Vaccinium vitis-idaea +n12251001 diapensia +n12251278 galax, galaxy, wandflower, beetleweed, coltsfoot, Galax urceolata +n12251740 pyxie, pixie, pixy, Pyxidanthera barbulata +n12252168 shortia +n12252383 oconee bells, Shortia galacifolia +n12252866 Australian heath +n12253229 epacris +n12253487 common heath, Epacris impressa +n12253664 common heath, blunt-leaf heath, Epacris obtusifolia +n12253835 Port Jackson heath, Epacris purpurascens +n12254168 native cranberry, groundberry, ground-berry, cranberry heath, Astroloma humifusum, Styphelia humifusum +n12255225 pink fivecorner, Styphelia triflora +n12256112 wintergreen, pyrola +n12256325 false wintergreen, Pyrola americana, Pyrola rotundifolia americana +n12256522 lesser wintergreen, Pyrola minor +n12256708 wild lily of the valley, shinleaf, Pyrola elliptica +n12256920 wild lily of the valley, Pyrola rotundifolia +n12257570 pipsissewa, prince's pine +n12257725 love-in-winter, western prince's pine, Chimaphila umbellata, Chimaphila corymbosa +n12258101 one-flowered wintergreen, one-flowered pyrola, Moneses uniflora, Pyrola uniflora +n12258885 Indian pipe, waxflower, Monotropa uniflora +n12259316 pinesap, false beachdrops, Monotropa hypopithys +n12260799 beech, beech tree +n12261359 common beech, European beech, Fagus sylvatica +n12261571 copper beech, purple beech, Fagus sylvatica atropunicea, Fagus purpurea, Fagus sylvatica purpurea +n12261808 American beech, white beech, red beech, Fagus grandifolia, Fagus americana +n12262018 weeping beech, Fagus pendula, Fagus sylvatica pendula +n12262185 Japanese beech +n12262553 chestnut, chestnut tree +n12263038 American chestnut, American sweet chestnut, Castanea dentata +n12263204 European chestnut, sweet chestnut, Spanish chestnut, Castanea sativa +n12263410 Chinese chestnut, Castanea mollissima +n12263588 Japanese chestnut, Castanea crenata +n12263738 Allegheny chinkapin, eastern chinquapin, chinquapin, dwarf chestnut, Castanea pumila +n12263987 Ozark chinkapin, Ozark chinquapin, chinquapin, Castanea ozarkensis +n12264512 oak chestnut +n12264786 giant chinkapin, golden chinkapin, Chrysolepis chrysophylla, Castanea chrysophylla, Castanopsis chrysophylla +n12265083 dwarf golden chinkapin, Chrysolepis sempervirens +n12265394 tanbark oak, Lithocarpus densiflorus +n12265600 Japanese oak, Lithocarpus glabra, Lithocarpus glaber +n12266217 southern beech, evergreen beech +n12266528 myrtle beech, Nothofagus cuninghamii +n12266644 Coigue, Nothofagus dombeyi +n12266796 New Zealand beech +n12266984 silver beech, Nothofagus menziesii +n12267133 roble beech, Nothofagus obliqua +n12267265 rauli beech, Nothofagus procera +n12267411 black beech, Nothofagus solanderi +n12267534 hard beech, Nothofagus truncata +n12267677 acorn +n12267931 cupule, acorn cup +n12268246 oak, oak tree +n12269241 live oak +n12269406 coast live oak, California live oak, Quercus agrifolia +n12269652 white oak +n12270027 American white oak, Quercus alba +n12270278 Arizona white oak, Quercus arizonica +n12270460 swamp white oak, swamp oak, Quercus bicolor +n12270741 European turkey oak, turkey oak, Quercus cerris +n12270946 canyon oak, canyon live oak, maul oak, iron oak, Quercus chrysolepis +n12271187 scarlet oak, Quercus coccinea +n12271451 jack oak, northern pin oak, Quercus ellipsoidalis +n12271643 red oak +n12271933 southern red oak, swamp red oak, turkey oak, Quercus falcata +n12272239 Oregon white oak, Oregon oak, Garry oak, Quercus garryana +n12272432 holm oak, holm tree, holly-leaved oak, evergreen oak, Quercus ilex +n12272735 bear oak, Quercus ilicifolia +n12272883 shingle oak, laurel oak, Quercus imbricaria +n12273114 bluejack oak, turkey oak, Quercus incana +n12273344 California black oak, Quercus kelloggii +n12273515 American turkey oak, turkey oak, Quercus laevis +n12273768 laurel oak, pin oak, Quercus laurifolia +n12273939 California white oak, valley oak, valley white oak, roble, Quercus lobata +n12274151 overcup oak, Quercus lyrata +n12274358 bur oak, burr oak, mossy-cup oak, mossycup oak, Quercus macrocarpa +n12274630 scrub oak +n12274863 blackjack oak, blackjack, jack oak, Quercus marilandica +n12275131 swamp chestnut oak, Quercus michauxii +n12275317 Japanese oak, Quercus mongolica, Quercus grosseserrata +n12275489 chestnut oak +n12275675 chinquapin oak, chinkapin oak, yellow chestnut oak, Quercus muehlenbergii +n12275888 myrtle oak, seaside scrub oak, Quercus myrtifolia +n12276110 water oak, possum oak, Quercus nigra +n12276314 Nuttall oak, Nuttall's oak, Quercus nuttalli +n12276477 durmast, Quercus petraea, Quercus sessiliflora +n12276628 basket oak, cow oak, Quercus prinus, Quercus montana +n12276872 pin oak, swamp oak, Quercus palustris +n12277150 willow oak, Quercus phellos +n12277334 dwarf chinkapin oak, dwarf chinquapin oak, dwarf oak, Quercus prinoides +n12277578 common oak, English oak, pedunculate oak, Quercus robur +n12277800 northern red oak, Quercus rubra, Quercus borealis +n12278107 Shumard oak, Shumard red oak, Quercus shumardii +n12278371 post oak, box white oak, brash oak, iron oak, Quercus stellata +n12278650 cork oak, Quercus suber +n12278865 Spanish oak, Quercus texana +n12279060 huckleberry oak, Quercus vaccinifolia +n12279293 Chinese cork oak, Quercus variabilis +n12279458 black oak, yellow oak, quercitron, quercitron oak, Quercus velutina +n12279772 southern live oak, Quercus virginiana +n12280060 interior live oak, Quercus wislizenii, Quercus wizlizenii +n12280364 mast +n12281241 birch, birch tree +n12281788 yellow birch, Betula alleghaniensis, Betula leutea +n12281974 American white birch, paper birch, paperbark birch, canoe birch, Betula cordifolia, Betula papyrifera +n12282235 grey birch, gray birch, American grey birch, American gray birch, Betula populifolia +n12282527 silver birch, common birch, European white birch, Betula pendula +n12282737 downy birch, white birch, Betula pubescens +n12282933 black birch, river birch, red birch, Betula nigra +n12283147 sweet birch, cherry birch, black birch, Betula lenta +n12283395 Yukon white birch, Betula neoalaskana +n12283542 swamp birch, water birch, mountain birch, Western paper birch, Western birch, Betula fontinalis +n12283790 Newfoundland dwarf birch, American dwarf birch, Betula glandulosa +n12284262 alder, alder tree +n12284821 common alder, European black alder, Alnus glutinosa, Alnus vulgaris +n12285049 grey alder, gray alder, Alnus incana +n12285195 seaside alder, Alnus maritima +n12285369 white alder, mountain alder, Alnus rhombifolia +n12285512 red alder, Oregon alder, Alnus rubra +n12285705 speckled alder, Alnus rugosa +n12285900 smooth alder, hazel alder, Alnus serrulata +n12286068 green alder, Alnus veridis +n12286197 green alder, Alnus veridis crispa, Alnus crispa +n12286826 hornbeam +n12286988 European hornbeam, Carpinus betulus +n12287195 American hornbeam, Carpinus caroliniana +n12287642 hop hornbeam +n12287836 Old World hop hornbeam, Ostrya carpinifolia +n12288005 Eastern hop hornbeam, ironwood, ironwood tree, Ostrya virginiana +n12288823 hazelnut, hazel, hazelnut tree +n12289310 American hazel, Corylus americana +n12289433 cobnut, filbert, Corylus avellana, Corylus avellana grandis +n12289585 beaked hazelnut, Corylus cornuta +n12290748 centaury +n12290975 rosita, Centaurium calycosum +n12291143 lesser centaury, Centaurium minus +n12291459 seaside centaury +n12291671 slender centaury +n12291959 prairie gentian, tulip gentian, bluebell, Eustoma grandiflorum +n12292463 Persian violet, Exacum affine +n12292877 columbo, American columbo, deer's-ear, deer's-ears, pyramid plant, American gentian +n12293723 gentian +n12294124 gentianella, Gentiana acaulis +n12294331 closed gentian, blind gentian, bottle gentian, Gentiana andrewsii +n12294542 explorer's gentian, Gentiana calycosa +n12294723 closed gentian, blind gentian, Gentiana clausa +n12294871 great yellow gentian, Gentiana lutea +n12295033 marsh gentian, calathian violet, Gentiana pneumonanthe +n12295237 soapwort gentian, Gentiana saponaria +n12295429 striped gentian, Gentiana villosa +n12295796 agueweed, ague weed, five-flowered gentian, stiff gentian, Gentianella quinquefolia, Gentiana quinquefolia +n12296045 felwort, gentianella amarella +n12296432 fringed gentian +n12296735 Gentianopsis crinita, Gentiana crinita +n12296929 Gentianopsis detonsa, Gentiana detonsa +n12297110 Gentianopsid procera, Gentiana procera +n12297280 Gentianopsis thermalis, Gentiana thermalis +n12297507 tufted gentian, Gentianopsis holopetala, Gentiana holopetala +n12297846 spurred gentian +n12298165 sabbatia +n12299640 toothbrush tree, mustard tree, Salvadora persica +n12300840 olive tree +n12301180 olive, European olive tree, Olea europaea +n12301445 olive +n12301613 black maire, Olea cunninghamii +n12301766 white maire, Olea lanceolata +n12302071 fringe tree +n12302248 fringe bush, Chionanthus virginicus +n12302565 forestiera +n12303083 forsythia +n12303462 ash, ash tree +n12304115 white ash, Fraxinus Americana +n12304286 swamp ash, Fraxinus caroliniana +n12304420 flowering ash, Fraxinus cuspidata +n12304703 European ash, common European ash, Fraxinus excelsior +n12304899 Oregon ash, Fraxinus latifolia, Fraxinus oregona +n12305089 black ash, basket ash, brown ash, hoop ash, Fraxinus nigra +n12305293 manna ash, flowering ash, Fraxinus ornus +n12305475 red ash, downy ash, Fraxinus pennsylvanica +n12305654 green ash, Fraxinus pennsylvanica subintegerrima +n12305819 blue ash, Fraxinus quadrangulata +n12305986 mountain ash, Fraxinus texensis +n12306089 pumpkin ash, Fraxinus tomentosa +n12306270 Arizona ash, Fraxinus velutina +n12306717 jasmine +n12306938 primrose jasmine, Jasminum mesnyi +n12307076 winter jasmine, Jasminum nudiflorum +n12307240 common jasmine, true jasmine, jessamine, Jasminum officinale +n12307756 privet +n12308112 Amur privet, Ligustrum amurense +n12308447 Japanese privet, Ligustrum japonicum +n12308907 Ligustrum obtusifolium +n12309277 common privet, Ligustrum vulgare +n12309630 devilwood, American olive, Osmanthus americanus +n12310021 mock privet +n12310349 lilac +n12310638 Himalayan lilac, Syringa emodi +n12311045 Persian lilac, Syringa persica +n12311224 Japanese tree lilac, Syringa reticulata, Syringa amurensis japonica +n12311413 Japanese lilac, Syringa villosa +n12311579 common lilac, Syringa vulgaris +n12312110 bloodwort +n12312728 kangaroo paw, kangaroo's paw, kangaroo's-foot, kangaroo-foot plant, Australian sword lily, Anigozanthus manglesii +n12315060 Virginian witch hazel, Hamamelis virginiana +n12315245 vernal witch hazel, Hamamelis vernalis +n12315598 winter hazel, flowering hazel +n12315999 fothergilla, witch alder +n12316444 liquidambar +n12316572 sweet gum, sweet gum tree, bilsted, red gum, American sweet gum, Liquidambar styraciflua +n12317296 iron tree, iron-tree, ironwood, ironwood tree +n12318378 walnut, walnut tree +n12318782 California black walnut, Juglans californica +n12318965 butternut, butternut tree, white walnut, Juglans cinerea +n12319204 black walnut, black walnut tree, black hickory, Juglans nigra +n12319414 English walnut, English walnut tree, Circassian walnut, Persian walnut, Juglans regia +n12320010 hickory, hickory tree +n12320414 water hickory, bitter pecan, water bitternut, Carya aquatica +n12320627 pignut, pignut hickory, brown hickory, black hickory, Carya glabra +n12320806 bitternut, bitternut hickory, bitter hickory, bitter pignut, swamp hickory, Carya cordiformis +n12321077 pecan, pecan tree, Carya illinoensis, Carya illinoinsis +n12321395 big shellbark, big shellbark hickory, big shagbark, king nut, king nut hickory, Carya laciniosa +n12321669 nutmeg hickory, Carya myristicaeformis, Carya myristiciformis +n12321873 shagbark, shagbark hickory, shellbark, shellbark hickory, Carya ovata +n12322099 mockernut, mockernut hickory, black hickory, white-heart hickory, big-bud hickory, Carya tomentosa +n12322501 wing nut, wing-nut +n12322699 Caucasian walnut, Pterocarya fraxinifolia +n12323665 dhawa, dhava +n12324056 combretum +n12324222 hiccup nut, hiccough nut, Combretum bracteosum +n12324388 bush willow, Combretum appiculatum +n12324558 bush willow, Combretum erythrophyllum +n12324906 button tree, button mangrove, Conocarpus erectus +n12325234 white mangrove, Laguncularia racemosa +n12325787 oleaster +n12327022 water milfoil +n12327528 anchovy pear, anchovy pear tree, Grias cauliflora +n12327846 brazil nut, brazil-nut tree, Bertholletia excelsa +n12328398 loosestrife +n12328567 purple loosestrife, spiked loosestrife, Lythrum salicaria +n12328801 grass poly, hyssop loosestrife, Lythrum hyssopifolia +n12329260 crape myrtle, crepe myrtle, crepe flower, Lagerstroemia indica +n12329473 Queen's crape myrtle, pride-of-India, Lagerstroemia speciosa +n12330239 myrtaceous tree +n12330469 myrtle +n12330587 common myrtle, Myrtus communis +n12330891 bayberry, bay-rum tree, Jamaica bayberry, wild cinnamon, Pimenta acris +n12331066 allspice, allspice tree, pimento tree, Pimenta dioica +n12331263 allspice tree, Pimenta officinalis +n12331655 sour cherry, Eugenia corynantha +n12331788 nakedwood, Eugenia dicrana +n12332030 Surinam cherry, pitanga, Eugenia uniflora +n12332218 rose apple, rose-apple tree, jambosa, Eugenia jambos +n12332555 feijoa, feijoa bush +n12333053 jaboticaba, jaboticaba tree, Myrciaria cauliflora +n12333530 guava, true guava, guava bush, Psidium guajava +n12333771 guava, strawberry guava, yellow cattley guava, Psidium littorale +n12333961 cattley guava, purple strawberry guava, Psidium cattleianum, Psidium littorale longipes +n12334153 Brazilian guava, Psidium guineense +n12334293 gum tree, gum +n12334891 eucalyptus, eucalypt, eucalyptus tree +n12335483 flooded gum +n12335664 mallee +n12335800 stringybark +n12335937 smoothbark +n12336092 red gum, peppermint, peppermint gum, Eucalyptus amygdalina +n12336224 red gum, marri, Eucalyptus calophylla +n12336333 river red gum, river gum, Eucalyptus camaldulensis, Eucalyptus rostrata +n12336586 mountain swamp gum, Eucalyptus camphora +n12336727 snow gum, ghost gum, white ash, Eucalyptus coriacea, Eucalyptus pauciflora +n12336973 alpine ash, mountain oak, Eucalyptus delegatensis +n12337131 white mallee, congoo mallee, Eucalyptus dumosa +n12337246 white stringybark, thin-leaved stringybark, Eucalyptusd eugenioides +n12337391 white mountain ash, Eucalyptus fraxinoides +n12337617 blue gum, fever tree, Eucalyptus globulus +n12337800 rose gum, Eucalypt grandis +n12337922 cider gum, Eucalypt gunnii +n12338034 swamp gum, Eucalypt ovata +n12338146 spotted gum, Eucalyptus maculata +n12338258 lemon-scented gum, Eucalyptus citriodora, Eucalyptus maculata citriodora +n12338454 black mallee, black sally, black gum, Eucalytus stellulata +n12338655 forest red gum, Eucalypt tereticornis +n12338796 mountain ash, Eucalyptus regnans +n12338979 manna gum, Eucalyptus viminalis +n12339526 clove, clove tree, Syzygium aromaticum, Eugenia aromaticum, Eugenia caryophyllatum +n12339831 clove +n12340383 tupelo, tupelo tree +n12340581 water gum, Nyssa aquatica +n12340755 sour gum, black gum, pepperidge, Nyssa sylvatica +n12341542 enchanter's nightshade +n12341931 Circaea lutetiana +n12342299 willowherb +n12342498 fireweed, giant willowherb, rosebay willowherb, wickup, Epilobium angustifolium +n12342852 California fuchsia, humming bird's trumpet, Epilobium canum canum, Zauschneria californica +n12343480 fuchsia +n12343753 lady's-eardrop, ladies'-eardrop, lady's-eardrops, ladies'-eardrops, Fuchsia coccinea +n12344283 evening primrose +n12344483 common evening primrose, German rampion, Oenothera biennis +n12344700 sundrops, Oenothera fruticosa +n12344837 Missouri primrose, Ozark sundrops, Oenothera macrocarpa +n12345280 pomegranate, pomegranate tree, Punica granatum +n12345899 mangrove, Rhizophora mangle +n12346578 daphne +n12346813 garland flower, Daphne cneorum +n12346986 spurge laurel, wood laurel, Daphne laureola +n12347158 mezereon, February daphne, Daphne mezereum +n12349315 Indian rhododendron, Melastoma malabathricum +n12349711 Medinilla magnifica +n12350032 deer grass, meadow beauty +n12350758 canna +n12351091 achira, indian shot, arrowroot, Canna indica, Canna edulis +n12351790 arrowroot, American arrowroot, obedience plant, Maranta arundinaceae +n12352287 banana, banana tree +n12352639 dwarf banana, Musa acuminata +n12352844 Japanese banana, Musa basjoo +n12352990 plantain, plantain tree, Musa paradisiaca +n12353203 edible banana, Musa paradisiaca sapientum +n12353431 abaca, Manila hemp, Musa textilis +n12353754 Abyssinian banana, Ethiopian banana, Ensete ventricosum, Musa ensete +n12355760 ginger +n12356023 common ginger, Canton ginger, stem ginger, Zingiber officinale +n12356395 turmeric, Curcuma longa, Curcuma domestica +n12356960 galangal, Alpinia galanga +n12357485 shellflower, shall-flower, shell ginger, Alpinia Zerumbet, Alpinia speciosa, Languas speciosa +n12357968 grains of paradise, Guinea grains, Guinea pepper, melagueta pepper, Aframomum melegueta +n12358293 cardamom, cardamon, Elettaria cardamomum +n12360108 begonia +n12360534 fibrous-rooted begonia +n12360684 tuberous begonia +n12360817 rhizomatous begonia +n12360958 Christmas begonia, blooming-fool begonia, Begonia cheimantha +n12361135 angel-wing begonia, Begonia cocchinea +n12361560 beefsteak begonia, kidney begonia, Begonia erythrophylla, Begonia feastii +n12361754 star begonia, star-leaf begonia, Begonia heracleifolia +n12361946 rex begonia, king begonia, painted-leaf begonia, beefsteak geranium, Begonia rex +n12362274 wax begonia, Begonia semperflorens +n12362514 Socotra begonia, Begonia socotrana +n12362668 hybrid tuberous begonia, Begonia tuberhybrida +n12363301 dillenia +n12363768 guinea gold vine, guinea flower +n12364604 poon +n12364940 calaba, Santa Maria tree, Calophyllum calaba +n12365158 Maria, Calophyllum longifolium +n12365285 laurelwood, lancewood tree, Calophyllum candidissimum +n12365462 Alexandrian laurel, Calophyllum inophyllum +n12365900 clusia +n12366053 wild fig, Clusia flava +n12366186 waxflower, Clusia insignis +n12366313 pitch apple, strangler fig, Clusia rosea, Clusia major +n12366675 mangosteen, mangosteen tree, Garcinia mangostana +n12366870 gamboge tree, Garcinia hanburyi, Garcinia cambogia, Garcinia gummi-gutta +n12367611 St John's wort +n12368028 common St John's wort, tutsan, Hypericum androsaemum +n12368257 great St John's wort, Hypericum ascyron, Hypericum pyramidatum +n12368451 creeping St John's wort, Hypericum calycinum +n12369066 low St Andrew's cross, Hypericum hypericoides +n12369309 klammath weed, Hypericum perforatum +n12369476 shrubby St John's wort, Hypericum prolificum, Hypericum spathulatum +n12369665 St Peter's wort, Hypericum tetrapterum, Hypericum maculatum +n12369845 marsh St-John's wort, Hypericum virginianum +n12370174 mammee apple, mammee, mamey, mammee tree, Mammea americana +n12370549 rose chestnut, ironwood, ironwood tree, Mesua ferrea +n12371202 bower actinidia, tara vine, Actinidia arguta +n12371439 Chinese gooseberry, kiwi, kiwi vine, Actinidia chinensis, Actinidia deliciosa +n12371704 silvervine, silver vine, Actinidia polygama +n12372233 wild cinnamon, white cinnamon tree, Canella winterana, Canella-alba +n12373100 papaya, papaia, pawpaw, papaya tree, melon tree, Carica papaya +n12373739 souari, souari nut, souari tree, Caryocar nuciferum +n12374418 rockrose, rock rose +n12374705 white-leaved rockrose, Cistus albidus +n12374862 common gum cistus, Cistus ladanifer, Cistus ladanum +n12375769 frostweed, frost-weed, frostwort, Helianthemum canadense, Crocanthemum canadense +n12377198 dipterocarp +n12377494 red lauan, red lauan tree, Shorea teysmanniana +n12378249 governor's plum, governor plum, Madagascar plum, ramontchi, batoko palm, Flacourtia indica +n12378753 kei apple, kei apple bush, Dovyalis caffra +n12378963 ketembilla, kitembilla, kitambilla, ketembilla tree, Ceylon gooseberry, Dovyalis hebecarpa +n12379531 chaulmoogra, chaulmoogra tree, chaulmugra, Hydnocarpus kurzii, Taraktagenos kurzii, Taraktogenos kurzii +n12380761 wild peach, Kiggelaria africana +n12381511 candlewood +n12382233 boojum tree, cirio, Fouquieria columnaris, Idria columnaris +n12382875 bird's-eye bush, Ochna serrulata +n12383737 granadilla, purple granadillo, Passiflora edulis +n12383894 granadilla, sweet granadilla, Passiflora ligularis +n12384037 granadilla, giant granadilla, Passiflora quadrangularis +n12384227 maypop, Passiflora incarnata +n12384375 Jamaica honeysuckle, yellow granadilla, Passiflora laurifolia +n12384569 banana passion fruit, Passiflora mollissima +n12384680 sweet calabash, Passiflora maliformis +n12384839 love-in-a-mist, running pop, wild water lemon, Passiflora foetida +n12385429 reseda +n12385566 mignonette, sweet reseda, Reseda odorata +n12385830 dyer's rocket, dyer's mignonette, weld, Reseda luteola +n12386945 false tamarisk, German tamarisk, Myricaria germanica +n12387103 halophyte +n12387633 viola +n12387839 violet +n12388143 field pansy, heartsease, Viola arvensis +n12388293 American dog violet, Viola conspersa +n12388858 dog violet, heath violet, Viola canina +n12388989 horned violet, tufted pansy, Viola cornuta +n12389130 two-eyed violet, heartsease, Viola ocellata +n12389501 bird's-foot violet, pansy violet, Johnny-jump-up, wood violet, Viola pedata +n12389727 downy yellow violet, Viola pubescens +n12389932 long-spurred violet, Viola rostrata +n12390099 pale violet, striped violet, cream violet, Viola striata +n12390314 hedge violet, wood violet, Viola sylvatica, Viola reichenbachiana +n12392070 nettle +n12392549 stinging nettle, Urtica dioica +n12392765 Roman nettle, Urtica pipulifera +n12393269 ramie, ramee, Chinese silk plant, China grass, Boehmeria nivea +n12394118 wood nettle, Laportea canadensis +n12394328 Australian nettle, Australian nettle tree +n12394638 pellitory-of-the-wall, wall pellitory, pellitory, Parietaria difussa +n12395068 richweed, clearweed, dead nettle, Pilea pumilla +n12395289 artillery plant, Pilea microphylla +n12395463 friendship plant, panamica, panamiga, Pilea involucrata +n12395906 Queensland grass-cloth plant, Pipturus argenteus +n12396091 Pipturus albidus +n12396924 cannabis, hemp +n12397431 Indian hemp, Cannabis indica +n12399132 mulberry, mulberry tree +n12399384 white mulberry, Morus alba +n12399534 black mulberry, Morus nigra +n12399656 red mulberry, Morus rubra +n12399899 osage orange, bow wood, mock orange, Maclura pomifera +n12400489 breadfruit, breadfruit tree, Artocarpus communis, Artocarpus altilis +n12400720 jackfruit, jackfruit tree, Artocarpus heterophyllus +n12400924 marang, marang tree, Artocarpus odoratissima +n12401335 fig tree +n12401684 fig, common fig, common fig tree, Ficus carica +n12401893 caprifig, Ficus carica sylvestris +n12402051 golden fig, Florida strangler fig, strangler fig, wild fig, Ficus aurea +n12402348 banyan, banyan tree, banian, banian tree, Indian banyan, East Indian fig tree, Ficus bengalensis +n12402596 pipal, pipal tree, pipul, peepul, sacred fig, bo tree, Ficus religiosa +n12402840 India-rubber tree, India-rubber plant, India-rubber fig, rubber plant, Assam rubber, Ficus elastica +n12403075 mistletoe fig, mistletoe rubber plant, Ficus diversifolia, Ficus deltoidea +n12403276 Port Jackson fig, rusty rig, little-leaf fig, Botany Bay fig, Ficus rubiginosa +n12403513 sycamore, sycamore fig, mulberry fig, Ficus sycomorus +n12403994 paper mulberry, Broussonetia papyrifera +n12404729 trumpetwood, trumpet-wood, trumpet tree, snake wood, imbauba, Cecropia peltata +n12405714 elm, elm tree +n12406304 winged elm, wing elm, Ulmus alata +n12406488 American elm, white elm, water elm, rock elm, Ulmus americana +n12406715 smooth-leaved elm, European field elm, Ulmus carpinifolia +n12406902 cedar elm, Ulmus crassifolia +n12407079 witch elm, wych elm, Ulmus glabra +n12407222 Dutch elm, Ulmus hollandica +n12407396 Huntingdon elm, Ulmus hollandica vegetata +n12407545 water elm, Ulmus laevis +n12407715 Chinese elm, Ulmus parvifolia +n12407890 English elm, European elm, Ulmus procera +n12408077 Siberian elm, Chinese elm, dwarf elm, Ulmus pumila +n12408280 slippery elm, red elm, Ulmus rubra +n12408466 Jersey elm, guernsey elm, wheately elm, Ulmus sarniensis, Ulmus campestris sarniensis, Ulmus campestris wheatleyi +n12408717 September elm, red elm, Ulmus serotina +n12408873 rock elm, Ulmus thomasii +n12409231 hackberry, nettle tree +n12409470 European hackberry, Mediterranean hackberry, Celtis australis +n12409651 American hackberry, Celtis occidentalis +n12409840 sugarberry, Celtis laevigata +n12411461 iridaceous plant +n12412355 bearded iris +n12412606 beardless iris +n12412987 orrisroot, orris +n12413165 dwarf iris, Iris cristata +n12413301 Dutch iris, Iris filifolia +n12413419 Florentine iris, orris, Iris germanica florentina, Iris florentina +n12413642 stinking iris, gladdon, gladdon iris, stinking gladwyn, roast beef plant, Iris foetidissima +n12413880 German iris, Iris germanica +n12414035 Japanese iris, Iris kaempferi +n12414159 German iris, Iris kochii +n12414329 Dalmatian iris, Iris pallida +n12414449 Persian iris, Iris persica +n12414818 Dutch iris, Iris tingitana +n12414932 dwarf iris, vernal iris, Iris verna +n12415595 Spanish iris, xiphium iris, Iris xiphium +n12416073 blackberry-lily, leopard lily, Belamcanda chinensis +n12416423 crocus +n12416703 saffron, saffron crocus, Crocus sativus +n12417836 corn lily +n12418221 blue-eyed grass +n12418507 wandflower, Sparaxis tricolor +n12419037 amaryllis +n12419878 salsilla, Bomarea edulis +n12420124 salsilla, Bomarea salsilla +n12420535 blood lily +n12420722 Cape tulip, Haemanthus coccineus +n12421137 hippeastrum, Hippeastrum puniceum +n12421467 narcissus +n12421683 daffodil, Narcissus pseudonarcissus +n12421917 jonquil, Narcissus jonquilla +n12422129 jonquil +n12422559 Jacobean lily, Aztec lily, Strekelia formosissima +n12425281 liliaceous plant +n12426623 mountain lily, Lilium auratum +n12426749 Canada lily, wild yellow lily, meadow lily, wild meadow lily, Lilium canadense +n12427184 tiger lily, leopard lily, pine lily, Lilium catesbaei +n12427391 Columbia tiger lily, Oregon lily, Lilium columbianum +n12427566 tiger lily, devil lily, kentan, Lilium lancifolium +n12427757 Easter lily, Bermuda lily, white trumpet lily, Lilium longiflorum +n12427946 coast lily, Lilium maritinum +n12428076 Turk's-cap, martagon, Lilium martagon +n12428242 Michigan lily, Lilium michiganense +n12428412 leopard lily, panther lily, Lilium pardalinum +n12428747 Turk's-cap, Turk's cap-lily, Lilium superbum +n12429352 African lily, African tulip, blue African lily, Agapanthus africanus +n12430198 colicroot, colic root, crow corn, star grass, unicorn root +n12430471 ague root, ague grass, Aletris farinosa +n12430675 yellow colicroot, Aletris aurea +n12431434 alliaceous plant +n12432069 Hooker's onion, Allium acuminatum +n12432356 wild leek, Levant garlic, kurrat, Allium ampeloprasum +n12432574 Canada garlic, meadow leek, rose leek, Allium canadense +n12432707 keeled garlic, Allium carinatum +n12433081 onion +n12433178 shallot, eschalot, multiplier onion, Allium cepa aggregatum, Allium ascalonicum +n12433769 nodding onion, nodding wild onion, lady's leek, Allium cernuum +n12433952 Welsh onion, Japanese leek, Allium fistulosum +n12434106 red-skinned onion, Allium haematochiton +n12434483 daffodil garlic, flowering onion, Naples garlic, Allium neopolitanum +n12434634 few-flowered leek, Allium paradoxum +n12434775 garlic, Allium sativum +n12434985 sand leek, giant garlic, Spanish garlic, rocambole, Allium scorodoprasum +n12435152 chives, chive, cive, schnittlaugh, Allium schoenoprasum +n12435486 crow garlic, false garlic, field garlic, stag's garlic, wild garlic, Allium vineale +n12435649 wild garlic, wood garlic, Ramsons, Allium ursinum +n12435777 garlic chive, Chinese chive, Oriental garlic, Allium tuberosum +n12435965 round-headed leek, Allium sphaerocephalum +n12436090 three-cornered leek, triquetrous leek, Allium triquetrum +n12436907 cape aloe, Aloe ferox +n12437513 kniphofia, tritoma, flame flower, flame-flower, flameflower +n12437769 poker plant, Kniphofia uvaria +n12437930 red-hot poker, Kniphofia praecox +n12439154 fly poison, Amianthum muscaetoxicum, Amianthum muscitoxicum +n12439830 amber lily, Anthericum torreyi +n12441183 asparagus, edible asparagus, Asparagus officinales +n12441390 asparagus fern, Asparagus setaceous, Asparagus plumosus +n12441552 smilax, Asparagus asparagoides +n12441958 asphodel +n12442548 Jacob's rod +n12443323 aspidistra, cast-iron plant, bar-room plant, Aspidistra elatio +n12443736 coral drops, Bessera elegans +n12444095 Christmas bells +n12444898 climbing onion, Bowiea volubilis +n12446200 mariposa, mariposa tulip, mariposa lily +n12446519 globe lily, fairy lantern +n12446737 cat's-ear +n12446908 white globe lily, white fairy lantern, Calochortus albus +n12447121 yellow globe lily, golden fairy lantern, Calochortus amabilis +n12447346 rose globe lily, Calochortus amoenus +n12447581 star tulip, elegant cat's ears, Calochortus elegans +n12447891 desert mariposa tulip, Calochortus kennedyi +n12448136 yellow mariposa tulip, Calochortus luteus +n12448361 sagebrush mariposa tulip, Calochortus macrocarpus +n12448700 sego lily, Calochortus nuttallii +n12449296 camas, camass, quamash, camosh, camash +n12449526 common camas, Camassia quamash +n12449784 Leichtlin's camas, Camassia leichtlinii +n12449934 wild hyacinth, indigo squill, Camassia scilloides +n12450344 dogtooth violet, dogtooth, dog's-tooth violet +n12450607 white dogtooth violet, white dog's-tooth violet, blonde lilian, Erythronium albidum +n12450840 yellow adder's tongue, trout lily, amberbell, Erythronium americanum +n12451070 European dogtooth, Erythronium dens-canis +n12451240 fawn lily, Erythronium californicum +n12451399 glacier lily, snow lily, Erythronium grandiflorum +n12451566 avalanche lily, Erythronium montanum +n12451915 fritillary, checkered lily +n12452256 mission bells, rice-grain fritillary, Fritillaria affinis, Fritillaria lanceolata, Fritillaria mutica +n12452480 mission bells, black fritillary, Fritillaria biflora +n12452673 stink bell, Fritillaria agrestis +n12452836 crown imperial, Fritillaria imperialis +n12453018 white fritillary, Fritillaria liliaceae +n12453186 snake's head fritillary, guinea-hen flower, checkered daffodil, leper lily, Fritillaria meleagris +n12453714 adobe lily, pink fritillary, Fritillaria pluriflora +n12453857 scarlet fritillary, Fritillaria recurva +n12454159 tulip +n12454436 dwarf tulip, Tulipa armena, Tulipa suaveolens +n12454556 lady tulip, candlestick tulip, Tulipa clusiana +n12454705 Tulipa gesneriana +n12454793 cottage tulip +n12454949 Darwin tulip +n12455950 gloriosa, glory lily, climbing lily, creeping lily, Gloriosa superba +n12457091 lemon lily, Hemerocallis lilio-asphodelus, Hemerocallis flava +n12458550 common hyacinth, Hyacinthus orientalis +n12458713 Roman hyacinth, Hyacinthus orientalis albulus +n12458874 summer hyacinth, cape hyacinth, Hyacinthus candicans, Galtonia candicans +n12459629 star-of-Bethlehem +n12460146 bath asparagus, Prussian asparagus, Ornithogalum pyrenaicum +n12460697 grape hyacinth +n12460957 common grape hyacinth, Muscari neglectum +n12461109 tassel hyacinth, Muscari comosum +n12461466 scilla, squill +n12461673 spring squill, Scilla verna, sea onion +n12462032 false asphodel +n12462221 Scotch asphodel, Tofieldia pusilla +n12462582 sea squill, sea onion, squill, Urginea maritima +n12462805 squill +n12463134 butcher's broom, Ruscus aculeatus +n12463743 bog asphodel +n12463975 European bog asphodel, Narthecium ossifragum +n12464128 American bog asphodel, Narthecium americanum +n12464476 hellebore, false hellebore +n12464649 white hellebore, American hellebore, Indian poke, bugbane, Veratrum viride +n12465557 squaw grass, bear grass, Xerophyllum tenax +n12466727 death camas, zigadene +n12467018 alkali grass, Zigadenus elegans +n12467197 white camas, Zigadenus glaucus +n12467433 poison camas, Zigadenus nuttalli +n12467592 grassy death camas, Zigadenus venenosus, Zigadenus venenosus gramineus +n12468545 prairie wake-robin, prairie trillium, Trillium recurvatum +n12468719 dwarf-white trillium, snow trillium, early wake-robin +n12469517 herb Paris, Paris quadrifolia +n12470092 sarsaparilla +n12470512 bullbrier, greenbrier, catbrier, horse brier, horse-brier, brier, briar, Smilax rotundifolia +n12470907 rough bindweed, Smilax aspera +n12472024 clintonia, Clinton's lily +n12473608 false lily of the valley, Maianthemum canadense +n12473840 false lily of the valley, Maianthemum bifolium +n12474167 Solomon's-seal +n12474418 great Solomon's-seal, Polygonatum biflorum, Polygonatum commutatum +n12475035 bellwort, merry bells, wild oats +n12475242 strawflower, cornflower, Uvularia grandiflora +n12475774 pia, Indian arrowroot, Tacca leontopetaloides, Tacca pinnatifida +n12476510 agave, century plant, American aloe +n12477163 American agave, Agave americana +n12477401 sisal, Agave sisalana +n12477583 maguey, cantala, Agave cantala +n12477747 maguey, Agave atrovirens +n12477983 Agave tequilana +n12478768 cabbage tree, grass tree, Cordyline australis +n12479537 dracaena +n12480456 tuberose, Polianthes tuberosa +n12480895 sansevieria, bowstring hemp +n12481150 African bowstring hemp, African hemp, Sansevieria guineensis +n12481289 Ceylon bowstring hemp, Sansevieria zeylanica +n12481458 mother-in-law's tongue, snake plant, Sansevieria trifasciata +n12482437 Spanish bayonet, Yucca aloifolia +n12482668 Spanish bayonet, Yucca baccata +n12482893 Joshua tree, Yucca brevifolia +n12483282 soapweed, soap-weed, soap tree, Yucca elata +n12483427 Adam's needle, Adam's needle-and-thread, spoonleaf yucca, needle palm, Yucca filamentosa +n12483625 bear grass, Yucca glauca +n12483841 Spanish dagger, Yucca gloriosa +n12484244 Our Lord's candle, Yucca whipplei +n12484784 water shamrock, buckbean, bogbean, bog myrtle, marsh trefoil, Menyanthes trifoliata +n12485653 butterfly bush, buddleia +n12485981 yellow jasmine, yellow jessamine, Carolina jasmine, evening trumpet flower, Gelsemium sempervirens +n12486574 flax +n12487058 calabar bean, ordeal bean +n12488454 bonduc, bonduc tree, Caesalpinia bonduc, Caesalpinia bonducella +n12488709 divi-divi, Caesalpinia coriaria +n12489046 Mysore thorn, Caesalpinia decapetala, Caesalpinia sepiaria +n12489676 brazilian ironwood, Caesalpinia ferrea +n12489815 bird of paradise, poinciana, Caesalpinia gilliesii, Poinciana gilliesii +n12490490 shingle tree, Acrocarpus fraxinifolius +n12491017 mountain ebony, orchid tree, Bauhinia variegata +n12491435 msasa, Brachystegia speciformis +n12491826 cassia +n12492106 golden shower tree, drumstick tree, purging cassia, pudding pipe tree, canafistola, canafistula, Cassia fistula +n12492460 pink shower, pink shower tree, horse cassia, Cassia grandis +n12492682 rainbow shower, Cassia javonica +n12492900 horse cassia, Cassia roxburghii, Cassia marginata +n12493208 carob, carob tree, carob bean tree, algarroba, Ceratonia siliqua +n12493426 carob, carob bean, algarroba bean, algarroba, locust bean, locust pod +n12493868 paloverde +n12494794 royal poinciana, flamboyant, flame tree, peacock flower, Delonix regia, Poinciana regia +n12495146 locust tree, locust +n12495670 water locust, swamp locust, Gleditsia aquatica +n12495895 honey locust, Gleditsia triacanthos +n12496427 Kentucky coffee tree, bonduc, chicot, Gymnocladus dioica +n12496949 logwood, logwood tree, campeachy, bloodwood tree, Haematoxylum campechianum +n12497669 Jerusalem thorn, horsebean, Parkinsonia aculeata +n12498055 palo verde, Parkinsonia florida, Cercidium floridum +n12498457 Dalmatian laburnum, Petteria ramentacea, Cytisus ramentaceus +n12499163 senna +n12499757 avaram, tanner's cassia, Senna auriculata, Cassia auriculata +n12499979 Alexandria senna, Alexandrian senna, true senna, tinnevelly senna, Indian senna, Senna alexandrina, Cassia acutifolia, Cassia augustifolia +n12500309 wild senna, Senna marilandica, Cassia marilandica +n12500518 sicklepod, Senna obtusifolia, Cassia tora +n12500751 coffee senna, mogdad coffee, styptic weed, stinking weed, Senna occidentalis, Cassia occidentalis +n12501202 tamarind, tamarind tree, tamarindo, Tamarindus indica +n12504570 false indigo, bastard indigo, Amorpha californica +n12504783 false indigo, bastard indigo, Amorpha fruticosa +n12505253 hog peanut, wild peanut, Amphicarpaea bracteata, Amphicarpa bracteata +n12506181 angelim, andelmin +n12506341 cabbage bark, cabbage-bark tree, cabbage tree, Andira inermis +n12506991 kidney vetch, Anthyllis vulneraria +n12507379 groundnut, groundnut vine, Indian potato, potato bean, wild bean, Apios americana, Apios tuberosa +n12507823 rooibos, Aspalathus linearis, Aspalathus cedcarbergensis +n12508309 milk vetch, milk-vetch +n12508618 alpine milk vetch, Astragalus alpinus +n12508762 purple milk vetch, Astragalus danicus +n12509109 camwood, African sandalwood, Baphia nitida +n12509476 wild indigo, false indigo +n12509665 blue false indigo, Baptisia australis +n12509821 white false indigo, Baptisia lactea +n12509993 indigo broom, horsefly weed, rattle weed, Baptisia tinctoria +n12510343 dhak, dak, palas, Butea frondosa, Butea monosperma +n12510774 pigeon pea, pigeon-pea plant, cajan pea, catjang pea, red gram, dhal, dahl, Cajanus cajan +n12511488 sword bean, Canavalia gladiata +n12511856 pea tree, caragana +n12512095 Siberian pea tree, Caragana arborescens +n12512294 Chinese pea tree, Caragana sinica +n12512674 Moreton Bay chestnut, Australian chestnut +n12513172 butterfly pea, Centrosema virginianum +n12513613 Judas tree, love tree, Circis siliquastrum +n12513933 redbud, Cercis canadensis +n12514138 western redbud, California redbud, Cercis occidentalis +n12514592 tagasaste, Chamaecytisus palmensis, Cytesis proliferus +n12514992 weeping tree broom +n12515393 flame pea +n12515711 chickpea, chickpea plant, Egyptian pea, Cicer arietinum +n12515925 chickpea, garbanzo +n12516165 Kentucky yellowwood, gopherwood, Cladrastis lutea, Cladrastis kentukea +n12516584 glory pea, clianthus +n12516828 desert pea, Sturt pea, Sturt's desert pea, Clianthus formosus, Clianthus speciosus +n12517077 parrot's beak, parrot's bill, Clianthus puniceus +n12517445 butterfly pea, Clitoria mariana +n12517642 blue pea, butterfly pea, Clitoria turnatea +n12518013 telegraph plant, semaphore plant, Codariocalyx motorius, Desmodium motorium, Desmodium gyrans +n12518481 bladder senna, Colutea arborescens +n12519089 axseed, crown vetch, Coronilla varia +n12519563 crotalaria, rattlebox +n12520406 guar, cluster bean, Cyamopsis tetragonolobus, Cyamopsis psoraloides +n12521186 white broom, white Spanish broom, Cytisus albus, Cytisus multiflorus +n12521394 common broom, Scotch broom, green broom, Cytisus scoparius +n12522188 rosewood, rosewood tree +n12522678 Indian blackwood, East Indian rosewood, East India rosewood, Indian rosewood, Dalbergia latifolia +n12522894 sissoo, sissu, sisham, Dalbergia sissoo +n12523141 kingwood, kingwood tree, Dalbergia cearensis +n12523475 Brazilian rosewood, caviuna wood, jacaranda, Dalbergia nigra +n12523850 cocobolo, Dalbergia retusa +n12524188 blackwood, blackwood tree +n12525168 bitter pea +n12525513 derris +n12525753 derris root, tuba root, Derris elliptica +n12526178 prairie mimosa, prickle-weed, Desmanthus ilinoensis +n12526516 tick trefoil, beggar lice, beggar's lice +n12526754 beggarweed, Desmodium tortuosum, Desmodium purpureum +n12527081 Australian pea, Dipogon lignosus, Dolichos lignosus +n12527738 coral tree, erythrina +n12528109 kaffir boom, Cape kafferboom, Erythrina caffra +n12528382 coral bean tree, Erythrina corallodendrum +n12528549 ceibo, crybaby tree, cry-baby tree, common coral tree, Erythrina crista-galli +n12528768 kaffir boom, Transvaal kafferboom, Erythrina lysistemon +n12528974 Indian coral tree, Erythrina variegata, Erythrina Indica +n12529220 cork tree, Erythrina vespertilio +n12529500 goat's rue, goat rue, Galega officinalis +n12529905 poison bush, poison pea, gastrolobium +n12530629 Spanish broom, Spanish gorse, Genista hispanica +n12530818 woodwaxen, dyer's greenweed, dyer's-broom, dyeweed, greenweed, whin, woadwaxen, Genista tinctoria +n12531328 chanar, chanal, Geoffroea decorticans +n12531727 gliricidia +n12532564 soy, soybean, soya bean +n12532886 licorice, liquorice, Glycyrrhiza glabra +n12533190 wild licorice, wild liquorice, American licorice, American liquorice, Glycyrrhiza lepidota +n12533437 licorice root +n12534208 Western Australia coral pea, Hardenbergia comnptoniana +n12534625 sweet vetch, Hedysarum boreale +n12534862 French honeysuckle, sulla, Hedysarum coronarium +n12536291 anil, Indigofera suffruticosa, Indigofera anil +n12537253 scarlet runner, running postman, Kennedia prostrata +n12537569 hyacinth bean, bonavist, Indian bean, Egyptian bean, Lablab purpureus, Dolichos lablab +n12538209 Scotch laburnum, Alpine golden chain, Laburnum alpinum +n12539074 vetchling +n12539306 wild pea +n12539832 everlasting pea +n12540250 beach pea, sea pea, Lathyrus maritimus, Lathyrus japonicus +n12540647 grass vetch, grass vetchling, Lathyrus nissolia +n12540966 marsh pea, Lathyrus palustris +n12541157 common vetchling, meadow pea, yellow vetchling, Lathyrus pratensis +n12541403 grass pea, Indian pea, khesari, Lathyrus sativus +n12542043 Tangier pea, Tangier peavine, Lalthyrus tingitanus +n12542240 heath pea, earth-nut pea, earthnut pea, tuberous vetch, Lathyrus tuberosus +n12543186 bicolor lespediza, ezo-yama-hagi, Lespedeza bicolor +n12543455 japanese clover, japan clover, jap clover, Lespedeza striata +n12543639 Korean lespedeza, Lespedeza stipulacea +n12543826 sericea lespedeza, Lespedeza sericea, Lespedeza cuneata +n12544240 lentil, lentil plant, Lens culinaris +n12544539 lentil +n12545232 prairie bird's-foot trefoil, compass plant, prairie lotus, prairie trefoil, Lotus americanus +n12545635 bird's foot trefoil, bird's foot clover, babies' slippers, bacon and eggs, Lotus corniculatus +n12545865 winged pea, asparagus pea, Lotus tetragonolobus +n12546183 lupine, lupin +n12546420 white lupine, field lupine, wolf bean, Egyptian lupine, Lupinus albus +n12546617 tree lupine, Lupinus arboreus +n12546962 wild lupine, sundial lupine, Indian beet, old-maid's bonnet, Lupinus perennis +n12547215 bluebonnet, buffalo clover, Texas bluebonnet, Lupinus subcarnosus +n12547503 Texas bluebonnet, Lupinus texensis +n12548280 medic, medick, trefoil +n12548564 moon trefoil, Medicago arborea +n12548804 sickle alfalfa, sickle lucerne, sickle medick, Medicago falcata +n12549005 Calvary clover, Medicago intertexta, Medicago echinus +n12549192 black medick, hop clover, yellow trefoil, nonesuch clover, Medicago lupulina +n12549420 alfalfa, lucerne, Medicago sativa +n12549799 millettia +n12550210 mucuna +n12550408 cowage, velvet bean, Bengal bean, Benghal bean, Florida bean, Mucuna pruriens utilis, Mucuna deeringiana, Mucuna aterrima, Stizolobium deeringiana +n12551173 tolu tree, tolu balsam tree, Myroxylon balsamum, Myroxylon toluiferum +n12551457 Peruvian balsam, Myroxylon pereirae, Myroxylon balsamum pereirae +n12552309 sainfoin, sanfoin, holy clover, esparcet, Onobrychis viciifolia, Onobrychis viciaefolia +n12552893 restharrow, rest-harrow, Ononis repens +n12553742 bead tree, jumby bean, jumby tree, Ormosia monosperma +n12554029 jumby bead, jumbie bead, Ormosia coarctata +n12554526 locoweed, crazyweed, crazy weed +n12554729 purple locoweed, purple loco, Oxytropis lambertii +n12554911 tumbleweed +n12555255 yam bean, Pachyrhizus erosus +n12555859 shamrock pea, Parochetus communis +n12556656 pole bean +n12557064 kidney bean, frijol, frijole +n12557438 haricot +n12557556 wax bean +n12557681 scarlet runner, scarlet runner bean, Dutch case-knife bean, runner bean, Phaseolus coccineus, Phaseolus multiflorus +n12558230 lima bean, lima bean plant, Phaseolus limensis +n12558425 sieva bean, butter bean, butter-bean plant, lima bean, Phaseolus lunatus +n12558680 tepary bean, Phaseolus acutifolius latifolius +n12559044 chaparral pea, stingaree-bush, Pickeringia montana +n12559518 Jamaica dogwood, fish fuddle, Piscidia piscipula, Piscidia erythrina +n12560282 pea +n12560621 garden pea +n12560775 edible-pod pea, edible-podded pea, Pisum sativum macrocarpon +n12561169 sugar snap pea, snap pea +n12561309 field pea, field-pea plant, Austrian winter pea, Pisum sativum arvense, Pisum arvense +n12561594 field pea +n12562141 common flat pea, native holly, Playlobium obtusangulum +n12562577 quira +n12562785 roble, Platymiscium trinitatis +n12563045 Panama redwood tree, Panama redwood, Platymiscium pinnatum +n12563702 Indian beech, Pongamia glabra +n12564083 winged bean, winged pea, goa bean, goa bean vine, Manila bean, Psophocarpus tetragonolobus +n12564613 breadroot, Indian breadroot, pomme blanche, pomme de prairie, Psoralea esculenta +n12565102 bloodwood tree, kiaat, Pterocarpus angolensis +n12565912 kino, Pterocarpus marsupium +n12566331 red sandalwood, red sanders, red sanderswood, red saunders, Pterocarpus santalinus +n12566954 kudzu, kudzu vine, Pueraria lobata +n12567950 bristly locust, rose acacia, moss locust, Robinia hispida +n12568186 black locust, yellow locust, Robinia pseudoacacia +n12568649 clammy locust, Robinia viscosa +n12569037 carib wood, Sabinea carinalis +n12569616 Colorado River hemp, Sesbania exaltata +n12569851 scarlet wisteria tree, vegetable hummingbird, Sesbania grandiflora +n12570394 Japanese pagoda tree, Chinese scholartree, Chinese scholar tree, Sophora japonica, Sophora sinensis +n12570703 mescal bean, coral bean, frijolito, frijolillo, Sophora secundiflora +n12570972 kowhai, Sophora tetraptera +n12571781 jade vine, emerald creeper, Strongylodon macrobotrys +n12572546 hoary pea +n12572759 bastard indigo, Tephrosia purpurea +n12572858 catgut, goat's rue, wild sweet pea, Tephrosia virginiana +n12573256 bush pea +n12573474 false lupine, golden pea, yellow pea, Thermopsis macrophylla +n12573647 Carolina lupine, Thermopsis villosa +n12573911 tipu, tipu tree, yellow jacaranda, pride of Bolivia +n12574320 bird's foot trefoil, Trigonella ornithopodioides +n12574470 fenugreek, Greek clover, Trigonella foenumgraecum +n12574866 gorse, furze, whin, Irish gorse, Ulex europaeus +n12575322 vetch +n12575812 tufted vetch, bird vetch, Calnada pea, Vicia cracca +n12576323 broad bean, fava bean, horsebean +n12576451 bitter betch, Vicia orobus +n12576695 bush vetch, Vicia sepium +n12577362 moth bean, Vigna aconitifolia, Phaseolus aconitifolius +n12577895 snailflower, snail-flower, snail flower, snail bean, corkscrew flower, Vigna caracalla, Phaseolus caracalla +n12578255 mung, mung bean, green gram, golden gram, Vigna radiata, Phaseolus aureus +n12578626 cowpea, cowpea plant, black-eyed pea, Vigna unguiculata, Vigna sinensis +n12578916 cowpea, black-eyed pea +n12579038 asparagus bean, yard-long bean, Vigna unguiculata sesquipedalis, Vigna sesquipedalis +n12579404 swamp oak, Viminaria juncea, Viminaria denudata +n12579822 keurboom, Virgilia capensis, Virgilia oroboides +n12580012 keurboom, Virgilia divaricata +n12580654 Japanese wistaria, Wisteria floribunda +n12580786 Chinese wistaria, Wisteria chinensis +n12580896 American wistaria, American wisteria, Wisteria frutescens +n12581110 silky wisteria, Wisteria venusta +n12582231 palm, palm tree +n12582665 sago palm +n12582846 feather palm +n12583126 fan palm +n12583401 palmetto +n12583681 coyol, coyol palm, Acrocomia vinifera +n12583855 grugru, gri-gri, grugru palm, macamba, Acrocomia aculeata +n12584191 areca +n12584365 betel palm, Areca catechu +n12584715 sugar palm, gomuti, gomuti palm, Arenga pinnata +n12585137 piassava palm, pissaba palm, Bahia piassava, bahia coquilla, Attalea funifera +n12585373 coquilla nut +n12585629 palmyra, palmyra palm, toddy palm, wine palm, lontar, longar palm, Borassus flabellifer +n12586298 calamus +n12586499 rattan, rattan palm, Calamus rotang +n12586725 lawyer cane, Calamus australis +n12586989 fishtail palm +n12587132 wine palm, jaggery palm, kitul, kittul, kitul tree, toddy palm, Caryota urens +n12587487 wax palm, Ceroxylon andicola, Ceroxylon alpinum +n12587803 coconut, coconut palm, coco palm, coco, cocoa palm, coconut tree, Cocos nucifera +n12588320 carnauba, carnauba palm, wax palm, Copernicia prunifera, Copernicia cerifera +n12588780 caranday, caranda, caranda palm, wax palm, Copernicia australis, Copernicia alba +n12589142 corozo, corozo palm +n12589458 gebang palm, Corypha utan, Corypha gebanga +n12589687 latanier, latanier palm +n12589841 talipot, talipot palm, Corypha umbraculifera +n12590232 oil palm +n12590499 African oil palm, Elaeis guineensis +n12590600 American oil palm, Elaeis oleifera +n12590715 palm nut, palm kernel +n12591017 cabbage palm, Euterpe oleracea +n12591351 cabbage palm, cabbage tree, Livistona australis +n12591702 true sago palm, Metroxylon sagu +n12592058 nipa palm, Nipa fruticans +n12592544 babassu, babassu palm, coco de macao, Orbignya phalerata, Orbignya spesiosa, Orbignya martiana +n12592839 babassu nut +n12593122 cohune palm, Orbignya cohune, cohune +n12593341 cohune nut +n12593994 date palm, Phoenix dactylifera +n12594324 ivory palm, ivory-nut palm, ivory plant, Phytelephas macrocarpa +n12594989 raffia palm, Raffia farinifera, Raffia ruffia +n12595699 bamboo palm, Raffia vinifera +n12595964 lady palm +n12596148 miniature fan palm, bamboo palm, fern rhapis, Rhapis excelsa +n12596345 reed rhapis, slender lady palm, Rhapis humilis +n12596709 royal palm, Roystonea regia +n12596849 cabbage palm, Roystonea oleracea +n12597134 cabbage palmetto, cabbage palm, Sabal palmetto +n12597466 saw palmetto, scrub palmetto, Serenoa repens +n12597798 thatch palm, thatch tree, silver thatch, broom palm, Thrinax parviflora +n12598027 key palm, silvertop palmetto, silver thatch, Thrinax microcarpa, Thrinax morrisii, Thrinax keyensis +n12599185 English plantain, narrow-leaved plantain, ribgrass, ribwort, ripple-grass, buckthorn, Plantago lanceolata +n12599435 broad-leaved plantain, common plantain, white-man's foot, whiteman's foot, cart-track plant, Plantago major +n12599661 hoary plantain, Plantago media +n12599874 fleawort, psyllium, Spanish psyllium, Plantago psyllium +n12600095 rugel's plantain, broad-leaved plantain, Plantago rugelii +n12600267 hoary plantain, Plantago virginica +n12601494 buckwheat, Polygonum fagopyrum, Fagopyrum esculentum +n12601805 prince's-feather, princess feather, kiss-me-over-the-garden-gate, prince's-plume, Polygonum orientale +n12602262 eriogonum +n12602434 umbrella plant, Eriogonum allenii +n12602612 wild buckwheat, California buckwheat, Erigonum fasciculatum +n12602980 rhubarb, rhubarb plant +n12603273 Himalayan rhubarb, Indian rhubarb, red-veined pie plant, Rheum australe, Rheum emodi +n12603449 pie plant, garden rhubarb, Rheum cultorum, Rheum rhabarbarum, Rheum rhaponticum +n12603672 Chinese rhubarb, Rheum palmatum +n12604228 sour dock, garden sorrel, Rumex acetosa +n12604460 sheep sorrel, sheep's sorrel, Rumex acetosella +n12604639 bitter dock, broad-leaved dock, yellow dock, Rumex obtusifolius +n12604845 French sorrel, garden sorrel, Rumex scutatus +n12605683 yellow-eyed grass +n12606438 commelina +n12606545 spiderwort, dayflower +n12607456 pineapple, pineapple plant, Ananas comosus +n12609379 pipewort, Eriocaulon aquaticum +n12610328 water hyacinth, water orchid, Eichhornia crassipes, Eichhornia spesiosa +n12610740 water star grass, mud plantain, Heteranthera dubia +n12611640 naiad, water nymph +n12612170 water plantain, Alisma plantago-aquatica +n12612811 narrow-leaved water plantain +n12613706 hydrilla, Hydrilla verticillata +n12614096 American frogbit, Limnodium spongia +n12614477 waterweed +n12614625 Canadian pondweed, Elodea canadensis +n12615232 tape grass, eelgrass, wild celery, Vallisneria spiralis +n12615710 pondweed +n12616248 curled leaf pondweed, curly pondweed, Potamogeton crispus +n12616630 loddon pondweed, Potamogeton nodosus, Potamogeton americanus +n12616996 frog's lettuce +n12617559 arrow grass, Triglochin maritima +n12618146 horned pondweed, Zannichellia palustris +n12618727 eelgrass, grass wrack, sea wrack, Zostera marina +n12620196 rose, rosebush +n12620546 hip, rose hip, rosehip +n12620969 banksia rose, Rosa banksia +n12621410 damask rose, summer damask rose, Rosa damascena +n12621619 sweetbrier, sweetbriar, brier, briar, eglantine, Rosa eglanteria +n12621945 Cherokee rose, Rosa laevigata +n12622297 musk rose, Rosa moschata +n12622875 agrimonia, agrimony +n12623077 harvest-lice, Agrimonia eupatoria +n12623211 fragrant agrimony, Agrimonia procera +n12623818 alderleaf Juneberry, alder-leaved serviceberry, Amelanchier alnifolia +n12624381 flowering quince +n12624568 japonica, maule's quince, Chaenomeles japonica +n12625003 coco plum, coco plum tree, cocoa plum, icaco, Chrysobalanus icaco +n12625383 cotoneaster +n12625670 Cotoneaster dammeri +n12625823 Cotoneaster horizontalis +n12626674 parsley haw, parsley-leaved thorn, Crataegus apiifolia, Crataegus marshallii +n12626878 scarlet haw, Crataegus biltmoreana +n12627119 blackthorn, pear haw, pear hawthorn, Crataegus calpodendron, Crataegus tomentosa +n12627347 cockspur thorn, cockspur hawthorn, Crataegus crus-galli +n12627526 mayhaw, summer haw, Crataegus aestivalis +n12628356 red haw, downy haw, Crataegus mollis, Crataegus coccinea mollis +n12628705 red haw, Crataegus pedicellata, Crataegus coccinea +n12628986 quince, quince bush, Cydonia oblonga +n12629305 mountain avens, Dryas octopetala +n12629666 loquat, loquat tree, Japanese medlar, Japanese plum, Eriobotrya japonica +n12630763 beach strawberry, Chilean strawberry, Fragaria chiloensis +n12630999 Virginia strawberry, scarlet strawberry, Fragaria virginiana +n12631331 avens +n12631637 yellow avens, Geum alleppicum strictum, Geum strictum +n12631932 yellow avens, Geum macrophyllum +n12632335 prairie smoke, purple avens, Geum triflorum +n12632733 bennet, white avens, Geum virginianum +n12633061 toyon, tollon, Christmasberry, Christmas berry, Heteromeles arbutifolia, Photinia arbutifolia +n12633638 apple tree +n12633994 apple, orchard apple tree, Malus pumila +n12634211 wild apple, crab apple, crabapple +n12634429 crab apple, crabapple, cultivated crab apple +n12634734 Siberian crab, Siberian crab apple, cherry apple, cherry crab, Malus baccata +n12634986 wild crab, Malus sylvestris +n12635151 American crab apple, garland crab, Malus coronaria +n12635359 Oregon crab apple, Malus fusca +n12635532 Southern crab apple, flowering crab, Malus angustifolia +n12635744 Iowa crab, Iowa crab apple, prairie crab, western crab apple, Malus ioensis +n12635955 Bechtel crab, flowering crab +n12636224 medlar, medlar tree, Mespilus germanica +n12636885 cinquefoil, five-finger +n12637123 silverweed, goose-tansy, goose grass, Potentilla anserina +n12637485 salad burnet, burnet bloodwort, pimpernel, Poterium sanguisorba +n12638218 plum, plum tree +n12638556 wild plum, wild plum tree +n12638753 Allegheny plum, Alleghany plum, sloe, Prunus alleghaniensis +n12638964 American red plum, August plum, goose plum, Prunus americana +n12639168 chickasaw plum, hog plum, hog plum bush, Prunus angustifolia +n12639376 beach plum, beach plum bush, Prunus maritima +n12639584 common plum, Prunus domestica +n12639736 bullace, Prunus insititia +n12639910 damson plum, damson plum tree, Prunus domestica insititia +n12640081 big-tree plum, Prunus mexicana +n12640284 Canada plum, Prunus nigra +n12640435 plumcot, plumcot tree +n12640607 apricot, apricot tree +n12640839 Japanese apricot, mei, Prunus mume +n12641007 common apricot, Prunus armeniaca +n12641180 purple apricot, black apricot, Prunus dasycarpa +n12641413 cherry, cherry tree +n12641931 wild cherry, wild cherry tree +n12642090 wild cherry +n12642200 sweet cherry, Prunus avium +n12642435 heart cherry, oxheart, oxheart cherry +n12642600 gean, mazzard, mazzard cherry +n12642964 capulin, capulin tree, Prunus capuli +n12643113 cherry laurel, laurel cherry, mock orange, wild orange, Prunus caroliniana +n12643313 cherry plum, myrobalan, myrobalan plum, Prunus cerasifera +n12643473 sour cherry, sour cherry tree, Prunus cerasus +n12643688 amarelle, Prunus cerasus caproniana +n12643877 morello, Prunus cerasus austera +n12644283 marasca +n12644902 almond tree +n12645174 almond, sweet almond, Prunus dulcis, Prunus amygdalus, Amygdalus communis +n12645530 bitter almond, Prunus dulcis amara, Amygdalus communis amara +n12646072 jordan almond +n12646197 dwarf flowering almond, Prunus glandulosa +n12646397 holly-leaved cherry, holly-leaf cherry, evergreen cherry, islay, Prunus ilicifolia +n12646605 fuji, fuji cherry, Prunus incisa +n12646740 flowering almond, oriental bush cherry, Prunus japonica +n12646950 cherry laurel, laurel cherry, Prunus laurocerasus +n12647231 Catalina cherry, Prunus lyonii +n12647376 bird cherry, bird cherry tree +n12647560 hagberry tree, European bird cherry, common bird cherry, Prunus padus +n12647787 hagberry +n12647893 pin cherry, Prunus pensylvanica +n12648045 peach, peach tree, Prunus persica +n12648196 nectarine, nectarine tree, Prunus persica nectarina +n12648424 sand cherry, Prunus pumila, Prunus pumilla susquehanae, Prunus susquehanae, Prunus cuneata +n12648693 Japanese plum, Prunus salicina +n12648888 black cherry, black cherry tree, rum cherry, Prunus serotina +n12649065 flowering cherry +n12649317 oriental cherry, Japanese cherry, Japanese flowering cherry, Prunus serrulata +n12649539 Japanese flowering cherry, Prunus sieboldii +n12649866 Sierra plum, Pacific plum, Prunus subcordata +n12650038 rosebud cherry, winter flowering cherry, Prunus subhirtella +n12650229 Russian almond, dwarf Russian almond, Prunus tenella +n12650379 flowering almond, Prunus triloba +n12650556 chokecherry, chokecherry tree, Prunus virginiana +n12650805 chokecherry +n12650915 western chokecherry, Prunus virginiana demissa, Prunus demissa +n12651229 Pyracantha, pyracanth, fire thorn, firethorn +n12651611 pear, pear tree, Pyrus communis +n12651821 fruit tree +n12653218 bramble bush +n12653436 lawyerbush, lawyer bush, bush lawyer, Rubus cissoides, Rubus australis +n12653633 stone bramble, Rubus saxatilis +n12654227 sand blackberry, Rubus cuneifolius +n12654857 boysenberry, boysenberry bush +n12655062 loganberry, Rubus loganobaccus, Rubus ursinus loganobaccus +n12655245 American dewberry, Rubus canadensis +n12655351 Northern dewberry, American dewberry, Rubus flagellaris +n12655498 Southern dewberry, Rubus trivialis +n12655605 swamp dewberry, swamp blackberry, Rubus hispidus +n12655726 European dewberry, Rubus caesius +n12655869 raspberry, raspberry bush +n12656369 wild raspberry, European raspberry, framboise, Rubus idaeus +n12656528 American raspberry, Rubus strigosus, Rubus idaeus strigosus +n12656685 black raspberry, blackcap, blackcap raspberry, thimbleberry, Rubus occidentalis +n12656909 salmonberry, Rubus spectabilis +n12657082 salmonberry, salmon berry, thimbleberry, Rubus parviflorus +n12657755 wineberry, Rubus phoenicolasius +n12658118 mountain ash +n12658308 rowan, rowan tree, European mountain ash, Sorbus aucuparia +n12658481 rowanberry +n12658603 American mountain ash, Sorbus americana +n12658715 Western mountain ash, Sorbus sitchensis +n12658846 service tree, sorb apple, sorb apple tree, Sorbus domestica +n12659064 wild service tree, Sorbus torminalis +n12659356 spirea, spiraea +n12659539 bridal wreath, bridal-wreath, Saint Peter's wreath, St. Peter's wreath, Spiraea prunifolia +n12660601 madderwort, rubiaceous plant +n12661045 Indian madder, munjeet, Rubia cordifolia +n12661227 madder, Rubia tinctorum +n12661538 woodruff +n12662074 dagame, lemonwood tree, Calycophyllum candidissimum +n12662379 blolly, West Indian snowberry, Chiococca alba +n12662772 coffee, coffee tree +n12663023 Arabian coffee, Coffea arabica +n12663254 Liberian coffee, Coffea liberica +n12663359 robusta coffee, Rio Nunez coffee, Coffea robusta, Coffea canephora +n12663804 cinchona, chinchona +n12664005 Cartagena bark, Cinchona cordifolia, Cinchona lancifolia +n12664187 calisaya, Cinchona officinalis, Cinchona ledgeriana, Cinchona calisaya +n12664469 cinchona tree, Cinchona pubescens +n12664710 cinchona, cinchona bark, Peruvian bark, Jesuit's bark +n12665048 bedstraw +n12665271 sweet woodruff, waldmeister, woodruff, fragrant bedstraw, Galium odoratum, Asperula odorata +n12665659 Northern bedstraw, Northern snow bedstraw, Galium boreale +n12665857 yellow bedstraw, yellow cleavers, Our Lady's bedstraw, Galium verum +n12666050 wild licorice, Galium lanceolatum +n12666159 cleavers, clivers, goose grass, catchweed, spring cleavers, Galium aparine +n12666369 wild madder, white madder, white bedstraw, infant's-breath, false baby's breath, Galium mollugo +n12666965 cape jasmine, cape jessamine, Gardenia jasminoides, Gardenia augusta +n12667406 genipa +n12667582 genipap fruit, jagua, marmalade box, Genipa Americana +n12667964 hamelia +n12668131 scarlet bush, scarlet hamelia, coloradillo, Hamelia patens, Hamelia erecta +n12669803 lemonwood, lemon-wood, lemonwood tree, lemon-wood tree, Psychotria capensis +n12670334 negro peach, Sarcocephalus latifolius, Sarcocephalus esculentus +n12670758 wild medlar, wild medlar tree, medlar, Vangueria infausta +n12670962 Spanish tamarind, Vangueria madagascariensis +n12671651 abelia +n12672289 bush honeysuckle, Diervilla sessilifolia +n12673588 American twinflower, Linnaea borealis americana +n12674120 honeysuckle +n12674685 American fly honeysuckle, fly honeysuckle, Lonicera canadensis +n12674895 Italian honeysuckle, Italian woodbine, Lonicera caprifolium +n12675299 yellow honeysuckle, Lonicera flava +n12675515 hairy honeysuckle, Lonicera hirsuta +n12675876 Japanese honeysuckle, Lonicera japonica +n12676134 Hall's honeysuckle, Lonicera japonica halliana +n12676370 Morrow's honeysuckle, Lonicera morrowii +n12676534 woodbine, Lonicera periclymenum +n12676703 trumpet honeysuckle, coral honeysuckle, trumpet flower, trumpet vine, Lonicera sempervirens +n12677120 European fly honeysuckle, European honeysuckle, Lonicera xylosteum +n12677331 swamp fly honeysuckle +n12677612 snowberry, common snowberry, waxberry, Symphoricarpos alba +n12677841 coralberry, Indian currant, Symphoricarpos orbiculatus +n12678794 blue elder, blue elderberry, Sambucus caerulea +n12679023 dwarf elder, danewort, Sambucus ebulus +n12679432 American red elder, red-berried elder, stinking elder, Sambucus pubens +n12679593 European red elder, red-berried elder, Sambucus racemosa +n12679876 feverroot, horse gentian, tinker's root, wild coffee, Triostium perfoliatum +n12680402 cranberry bush, cranberry tree, American cranberry bush, highbush cranberry, Viburnum trilobum +n12680652 wayfaring tree, twist wood, twistwood, Viburnum lantana +n12680864 guelder rose, European cranberrybush, European cranberry bush, crampbark, cranberry tree, Viburnum opulus +n12681376 arrow wood, Viburnum recognitum +n12681579 black haw, Viburnum prunifolium +n12681893 weigela, Weigela florida +n12682411 teasel, teazel, teasle +n12682668 common teasel, Dipsacus fullonum +n12682882 fuller's teasel, Dipsacus sativus +n12683096 wild teasel, Dipsacus sylvestris +n12683407 scabious, scabiosa +n12683571 sweet scabious, pincushion flower, mournful widow, Scabiosa atropurpurea +n12683791 field scabious, Scabiosa arvensis +n12684379 jewelweed, lady's earrings, orange balsam, celandine, touch-me-not, Impatiens capensis +n12685431 geranium +n12685831 cranesbill, crane's bill +n12686077 wild geranium, spotted cranesbill, Geranium maculatum +n12686274 meadow cranesbill, Geranium pratense +n12686496 Richardson's geranium, Geranium richardsonii +n12686676 herb robert, herbs robert, herb roberts, Geranium robertianum +n12686877 sticky geranium, Geranium viscosissimum +n12687044 dove's foot geranium, Geranium molle +n12687462 rose geranium, sweet-scented geranium, Pelargonium graveolens +n12687698 fish geranium, bedding geranium, zonal pelargonium, Pelargonium hortorum +n12687957 ivy geranium, ivy-leaved geranium, hanging geranium, Pelargonium peltatum +n12688187 apple geranium, nutmeg geranium, Pelargonium odoratissimum +n12688372 lemon geranium, Pelargonium limoneum +n12688716 storksbill, heron's bill +n12689305 musk clover, muskus grass, white-stemmed filaree, Erodium moschatum +n12690653 incense tree +n12691428 elephant tree, Bursera microphylla +n12691661 gumbo-limbo, Bursera simaruba +n12692024 Boswellia carteri +n12692160 salai, Boswellia serrata +n12692521 balm of gilead, Commiphora meccanensis +n12692714 myrrh tree, Commiphora myrrha +n12693244 Protium heptaphyllum +n12693352 Protium guianense +n12693865 water starwort +n12694486 barbados cherry, acerola, Surinam cherry, West Indian cherry, Malpighia glabra +n12695144 mahogany, mahogany tree +n12695975 chinaberry, chinaberry tree, China tree, Persian lilac, pride-of-India, azederach, azedarach, Melia azederach, Melia azedarach +n12696492 neem, neem tree, nim tree, margosa, arishth, Azadirachta indica, Melia Azadirachta +n12696830 neem seed +n12697152 Spanish cedar, Spanish cedar tree, Cedrela odorata +n12697514 satinwood, satinwood tree, Chloroxylon swietenia +n12698027 African scented mahogany, cedar mahogany, sapele mahogany, Entandrophragma cylindricum +n12698435 silver ash +n12698598 native beech, flindosa, flindosy, Flindersia australis +n12698774 bunji-bunji, Flindersia schottiana +n12699031 African mahogany +n12699301 lanseh tree, langsat, langset, Lansium domesticum +n12699922 true mahogany, Cuban mahogany, Dominican mahogany, Swietinia mahogani +n12700088 Honduras mahogany, Swietinia macrophylla +n12700357 Philippine mahogany, Philippine cedar, kalantas, Toona calantas, Cedrela calantas +n12702124 caracolito, Ruptiliocarpon caracolito +n12703190 common wood sorrel, cuckoo bread, shamrock, Oxalis acetosella +n12703383 Bermuda buttercup, English-weed, Oxalis pes-caprae, Oxalis cernua +n12703557 creeping oxalis, creeping wood sorrel, Oxalis corniculata +n12703716 goatsfoot, goat's foot, Oxalis caprina +n12703856 violet wood sorrel, Oxalis violacea +n12704041 oca, oka, Oxalis tuberosa, Oxalis crenata +n12704343 carambola, carambola tree, Averrhoa carambola +n12704513 bilimbi, Averrhoa bilimbi +n12705013 milkwort +n12705220 senega, Polygala alba +n12705458 orange milkwort, yellow milkwort, candyweed, yellow bachelor's button, Polygala lutea +n12705698 flowering wintergreen, gaywings, bird-on-the-wing, fringed polygala, Polygala paucifolia +n12705978 Seneca snakeroot, Seneka snakeroot, senga root, senega root, senega snakeroot, Polygala senega +n12706410 common milkwort, gand flower, Polygala vulgaris +n12707199 rue, herb of grace, Ruta graveolens +n12707781 citrus, citrus tree +n12708293 orange, orange tree +n12708654 sour orange, Seville orange, bitter orange, bitter orange tree, bigarade, marmalade orange, Citrus aurantium +n12708941 bergamot, bergamot orange, Citrus bergamia +n12709103 pomelo, pomelo tree, pummelo, shaddock, Citrus maxima, Citrus grandis, Citrus decumana +n12709349 citron, citron tree, Citrus medica +n12709688 grapefruit, Citrus paradisi +n12709901 mandarin, mandarin orange, mandarin orange tree, Citrus reticulata +n12710295 tangerine, tangerine tree +n12710415 clementine, clementine tree +n12710577 satsuma, satsuma tree +n12710693 sweet orange, sweet orange tree, Citrus sinensis +n12710917 temple orange, temple orange tree, tangor, king orange, Citrus nobilis +n12711182 tangelo, tangelo tree, ugli fruit, Citrus tangelo +n12711398 rangpur, rangpur lime, lemanderin, Citrus limonia +n12711596 lemon, lemon tree, Citrus limon +n12711817 sweet lemon, sweet lime, Citrus limetta +n12711984 lime, lime tree, Citrus aurantifolia +n12712320 citrange, citrange tree, Citroncirus webberi +n12712626 fraxinella, dittany, burning bush, gas plant, Dictamnus alba +n12713063 kumquat, cumquat, kumquat tree +n12713358 marumi, marumi kumquat, round kumquat, Fortunella japonica +n12713521 nagami, nagami kumquat, oval kumquat, Fortunella margarita +n12713866 cork tree, Phellodendron amurense +n12714254 trifoliate orange, trifoliata, wild orange, Poncirus trifoliata +n12714755 prickly ash +n12714949 toothache tree, sea ash, Zanthoxylum americanum, Zanthoxylum fraxineum +n12715195 Hercules'-club, Hercules'-clubs, Hercules-club, Zanthoxylum clava-herculis +n12715914 bitterwood tree +n12716400 marupa, Simarouba amara +n12716594 paradise tree, bitterwood, Simarouba glauca +n12717072 ailanthus +n12717224 tree of heaven, tree of the gods, Ailanthus altissima +n12717644 wild mango, dika, wild mango tree, Irvingia gabonensis +n12718074 pepper tree, Kirkia wilmsii +n12718483 Jamaica quassia, bitterwood, Picrasma excelsa, Picrasma excelsum +n12718995 quassia, bitterwood, Quassia amara +n12719684 nasturtium +n12719944 garden nasturtium, Indian cress, Tropaeolum majus +n12720200 bush nasturtium, Tropaeolum minus +n12720354 canarybird flower, canarybird vine, canary creeper, Tropaeolum peregrinum +n12721122 bean caper, Syrian bean caper, Zygophyllum fabago +n12721477 palo santo, Bulnesia sarmienti +n12722071 lignum vitae, Guaiacum officinale +n12723062 creosote bush, coville, hediondilla, Larrea tridentata +n12723610 caltrop, devil's weed, Tribulus terestris +n12724942 willow, willow tree +n12725521 osier +n12725738 white willow, Huntingdon willow, Salix alba +n12725940 silver willow, silky willow, Salix alba sericea, Salix sericea +n12726159 golden willow, Salix alba vitellina, Salix vitellina +n12726357 cricket-bat willow, Salix alba caerulea +n12726528 arctic willow, Salix arctica +n12726670 weeping willow, Babylonian weeping willow, Salix babylonica +n12726902 Wisconsin weeping willow, Salix pendulina, Salix blanda, Salix pendulina blanda +n12727101 pussy willow, Salix discolor +n12727301 sallow +n12727518 goat willow, florist's willow, pussy willow, Salix caprea +n12727729 peachleaf willow, peach-leaved willow, almond-leaves willow, Salix amygdaloides +n12727960 almond willow, black Hollander, Salix triandra, Salix amygdalina +n12728164 hoary willow, sage willow, Salix candida +n12728322 crack willow, brittle willow, snap willow, Salix fragilis +n12728508 prairie willow, Salix humilis +n12728656 dwarf willow, Salix herbacea +n12728864 grey willow, gray willow, Salix cinerea +n12729023 arroyo willow, Salix lasiolepis +n12729164 shining willow, Salix lucida +n12729315 swamp willow, black willow, Salix nigra +n12729521 bay willow, laurel willow, Salix pentandra +n12729729 purple willow, red willow, red osier, basket willow, purple osier, Salix purpurea +n12729950 balsam willow, Salix pyrifolia +n12730143 creeping willow, Salix repens +n12730370 Sitka willow, silky willow, Salix sitchensis +n12730544 dwarf grey willow, dwarf gray willow, sage willow, Salix tristis +n12730776 bearberry willow, Salix uva-ursi +n12731029 common osier, hemp willow, velvet osier, Salix viminalis +n12731401 poplar, poplar tree +n12731835 balsam poplar, hackmatack, tacamahac, Populus balsamifera +n12732009 white poplar, white aspen, abele, aspen poplar, silver-leaved poplar, Populus alba +n12732252 grey poplar, gray poplar, Populus canescens +n12732491 black poplar, Populus nigra +n12732605 Lombardy poplar, Populus nigra italica +n12732756 cottonwood +n12732966 Eastern cottonwood, necklace poplar, Populus deltoides +n12733218 black cottonwood, Western balsam poplar, Populus trichocarpa +n12733428 swamp cottonwood, black cottonwood, downy poplar, swamp poplar, Populus heterophylla +n12733647 aspen +n12733870 quaking aspen, European quaking aspen, Populus tremula +n12734070 American quaking aspen, American aspen, Populus tremuloides +n12734215 Canadian aspen, bigtooth aspen, bigtoothed aspen, big-toothed aspen, large-toothed aspen, large tooth aspen, Populus grandidentata +n12735160 sandalwood tree, true sandalwood, Santalum album +n12736603 quandong, quandang, quandong tree, Eucarya acuminata, Fusanus acuminatus +n12736999 rabbitwood, buffalo nut, Pyrularia pubera +n12737383 Loranthaceae, family Loranthaceae, mistletoe family +n12737898 mistletoe, Loranthus europaeus +n12738259 American mistletoe, Arceuthobium pusillum +n12739332 mistletoe, Viscum album, Old World mistletoe +n12739966 American mistletoe, Phoradendron serotinum, Phoradendron flavescens +n12740967 aalii +n12741222 soapberry, soapberry tree +n12741586 wild China tree, Sapindus drumondii, Sapindus marginatus +n12741792 China tree, false dogwood, jaboncillo, chinaberry, Sapindus saponaria +n12742290 akee, akee tree, Blighia sapida +n12742741 soapberry vine +n12742878 heartseed, Cardiospermum grandiflorum +n12743009 balloon vine, heart pea, Cardiospermum halicacabum +n12743352 longan, lungen, longanberry, Dimocarpus longan, Euphorbia litchi, Nephelium longana +n12743823 harpullia +n12743976 harpulla, Harpullia cupanioides +n12744142 Moreton Bay tulipwood, Harpullia pendula +n12744387 litchi, lichee, litchi tree, Litchi chinensis, Nephelium litchi +n12744850 Spanish lime, Spanish lime tree, honey berry, mamoncillo, genip, ginep, Melicocca bijuga, Melicocca bijugatus +n12745386 rambutan, rambotan, rambutan tree, Nephelium lappaceum +n12745564 pulasan, pulassan, pulasan tree, Nephelium mutabile +n12746884 pachysandra +n12747120 Allegheny spurge, Allegheny mountain spurge, Pachysandra procumbens +n12748248 bittersweet, American bittersweet, climbing bittersweet, false bittersweet, staff vine, waxwork, shrubby bittersweet, Celastrus scandens +n12749049 spindle tree, spindleberry, spindleberry tree +n12749456 winged spindle tree, Euonymous alatus +n12749679 wahoo, burning bush, Euonymus atropurpureus +n12749852 strawberry bush, wahoo, Euonymus americanus +n12750076 evergreen bittersweet, Euonymus fortunei radicans, Euonymus radicans vegetus +n12750767 cyrilla, leatherwood, white titi, Cyrilla racemiflora +n12751172 titi, buckwheat tree, Cliftonia monophylla +n12751675 crowberry +n12752205 maple +n12753007 silver maple, Acer saccharinum +n12753245 sugar maple, rock maple, Acer saccharum +n12753573 red maple, scarlet maple, swamp maple, Acer rubrum +n12753762 moosewood, moose-wood, striped maple, striped dogwood, goosefoot maple, Acer pennsylvanicum +n12754003 Oregon maple, big-leaf maple, Acer macrophyllum +n12754174 dwarf maple, Rocky-mountain maple, Acer glabrum +n12754311 mountain maple, mountain alder, Acer spicatum +n12754468 vine maple, Acer circinatum +n12754648 hedge maple, field maple, Acer campestre +n12754781 Norway maple, Acer platanoides +n12754981 sycamore, great maple, scottish maple, Acer pseudoplatanus +n12755225 box elder, ash-leaved maple, Acer negundo +n12755387 California box elder, Acer negundo Californicum +n12755559 pointed-leaf maple, Acer argutum +n12755727 Japanese maple, full moon maple, Acer japonicum +n12755876 Japanese maple, Acer palmatum +n12756457 holly +n12757115 Chinese holly, Ilex cornuta +n12757303 bearberry, possum haw, winterberry, Ilex decidua +n12757458 inkberry, gallberry, gall-berry, evergreen winterberry, Ilex glabra +n12757668 mate, Paraguay tea, Ilex paraguariensis +n12757816 American holly, Christmas holly +n12757930 low gallberry holly +n12758014 tall gallberry holly +n12758099 yaupon holly +n12758176 deciduous holly +n12758250 juneberry holly +n12758325 largeleaf holly +n12758399 Geogia holly +n12758471 common winterberry holly +n12758555 smooth winterberry holly +n12759273 cashew, cashew tree, Anacardium occidentale +n12759668 goncalo alves, Astronium fraxinifolium +n12760539 Venetian sumac, wig tree, Cotinus coggygria +n12760875 laurel sumac, Malosma laurina, Rhus laurina +n12761284 mango, mango tree, Mangifera indica +n12761702 pistachio, Pistacia vera, pistachio tree +n12761905 terebinth, Pistacia terebinthus +n12762049 mastic, mastic tree, lentisk, Pistacia lentiscus +n12762405 Australian sumac, Rhodosphaera rhodanthema, Rhus rhodanthema +n12762896 sumac, sumach, shumac +n12763529 smooth sumac, scarlet sumac, vinegar tree, Rhus glabra +n12764008 sugar-bush, sugar sumac, Rhus ovata +n12764202 staghorn sumac, velvet sumac, Virginian sumac, vinegar tree, Rhus typhina +n12764507 squawbush, squaw-bush, skunkbush, Rhus trilobata +n12764978 aroeira blanca, Schinus chichita +n12765115 pepper tree, molle, Peruvian mastic tree, Schinus molle +n12765402 Brazilian pepper tree, Schinus terebinthifolius +n12765846 hog plum, yellow mombin, yellow mombin tree, Spondias mombin +n12766043 mombin, mombin tree, jocote, Spondias purpurea +n12766595 poison ash, poison dogwood, poison sumac, Toxicodendron vernix, Rhus vernix +n12766869 poison ivy, markweed, poison mercury, poison oak, Toxicodendron radicans, Rhus radicans +n12767208 western poison oak, Toxicodendron diversilobum, Rhus diversiloba +n12767423 eastern poison oak, Toxicodendron quercifolium, Rhus quercifolia, Rhus toxicodenedron +n12767648 varnish tree, lacquer tree, Chinese lacquer tree, Japanese lacquer tree, Japanese varnish tree, Japanese sumac, Toxicodendron vernicifluum, Rhus verniciflua +n12768369 horse chestnut, buckeye, Aesculus hippocastanum +n12768682 buckeye, horse chestnut, conker +n12768809 sweet buckeye +n12768933 Ohio buckeye +n12769065 dwarf buckeye, bottlebrush buckeye +n12769219 red buckeye +n12769318 particolored buckeye +n12770529 ebony, ebony tree, Diospyros ebenum +n12770892 marblewood, marble-wood, Andaman marble, Diospyros kurzii +n12771085 marblewood, marble-wood +n12771192 persimmon, persimmon tree +n12771390 Japanese persimmon, kaki, Diospyros kaki +n12771597 American persimmon, possumwood, Diospyros virginiana +n12771890 date plum, Diospyros lotus +n12772753 buckthorn +n12772908 southern buckthorn, shittimwood, shittim, mock orange, Bumelia lycioides +n12773142 false buckthorn, chittamwood, chittimwood, shittimwood, black haw, Bumelia lanuginosa +n12773651 star apple, caimito, Chrysophyllum cainito +n12773917 satinleaf, satin leaf, caimitillo, damson plum, Chrysophyllum oliviforme +n12774299 balata, balata tree, beefwood, bully tree, Manilkara bidentata +n12774641 sapodilla, sapodilla tree, Manilkara zapota, Achras zapota +n12775070 gutta-percha tree, Palaquium gutta +n12775393 gutta-percha tree +n12775717 canistel, canistel tree, Pouteria campechiana nervosa +n12775919 marmalade tree, mammee, sapote, Pouteria zapota, Calocarpum zapota +n12776558 sweetleaf, Symplocus tinctoria +n12776774 Asiatic sweetleaf, sapphire berry, Symplocus paniculata +n12777436 styrax +n12777680 snowbell, Styrax obassia +n12777778 Japanese snowbell, Styrax japonicum +n12777892 Texas snowbell, Texas snowbells, Styrax texana +n12778398 silver-bell tree, silverbell tree, snowdrop tree, opossum wood, Halesia carolina, Halesia tetraptera +n12778605 carnivorous plant +n12779603 pitcher plant +n12779851 common pitcher plant, huntsman's cup, huntsman's cups, Sarracenia purpurea +n12780325 hooded pitcher plant, Sarracenia minor +n12780563 huntsman's horn, huntsman's horns, yellow trumpet, yellow pitcher plant, trumpets, Sarracenia flava +n12781940 tropical pitcher plant +n12782530 sundew, sundew plant, daily dew +n12782915 Venus's flytrap, Venus's flytraps, Dionaea muscipula +n12783316 waterwheel plant, Aldrovanda vesiculosa +n12783730 Drosophyllum lusitanicum +n12784371 roridula +n12784889 Australian pitcher plant, Cephalotus follicularis +n12785724 sedum +n12785889 stonecrop +n12786273 rose-root, midsummer-men, Sedum rosea +n12786464 orpine, orpin, livelong, live-forever, Sedum telephium +n12786836 pinwheel, Aeonium haworthii +n12787364 Christmas bush, Christmas tree, Ceratopetalum gummiferum +n12788854 hortensia, Hydrangea macrophylla hortensis +n12789054 fall-blooming hydrangea, Hydrangea paniculata +n12789554 carpenteria, Carpenteria californica +n12789977 decumary, Decumaria barbata, Decumaria barbara +n12790430 deutzia +n12791064 philadelphus +n12791329 mock orange, syringa, Philadelphus coronarius +n12793015 saxifrage, breakstone, rockfoil +n12793284 yellow mountain saxifrage, Saxifraga aizoides +n12793494 meadow saxifrage, fair-maids-of-France, Saxifraga granulata +n12793695 mossy saxifrage, Saxifraga hypnoides +n12793886 western saxifrage, Saxifraga occidentalis +n12794135 purple saxifrage, Saxifraga oppositifolia +n12794367 star saxifrage, starry saxifrage, Saxifraga stellaris +n12794568 strawberry geranium, strawberry saxifrage, mother-of-thousands, Saxifraga stolonifera, Saxifraga sarmentosam +n12794985 astilbe +n12795209 false goatsbeard, Astilbe biternata +n12795352 dwarf astilbe, Astilbe chinensis pumila +n12795555 spirea, spiraea, Astilbe japonica +n12796022 bergenia +n12796385 coast boykinia, Boykinia elata, Boykinia occidentalis +n12796849 golden saxifrage, golden spleen +n12797368 umbrella plant, Indian rhubarb, Darmera peltata, Peltiphyllum peltatum +n12797860 bridal wreath, bridal-wreath, Francoa ramosa +n12798284 alumroot, alumbloom +n12798910 coralbells, Heuchera sanguinea +n12799269 leatherleaf saxifrage, Leptarrhena pyrolifolia +n12799776 woodland star, Lithophragma affine, Lithophragma affinis, Tellima affinis +n12800049 prairie star, Lithophragma parviflorum +n12800586 miterwort, mitrewort, bishop's cap +n12801072 five-point bishop's cap, Mitella pentandra +n12801520 parnassia, grass-of-Parnassus +n12801781 bog star, Parnassia palustris +n12801966 fringed grass of Parnassus, Parnassia fimbriata +n12803226 false alumroot, fringe cups, Tellima grandiflora +n12803754 foamflower, coolwart, false miterwort, false mitrewort, Tiarella cordifolia +n12803958 false miterwort, false mitrewort, Tiarella unifoliata +n12804352 pickaback plant, piggyback plant, youth-on-age, Tolmiea menziesii +n12805146 currant, currant bush +n12805561 black currant, European black currant, Ribes nigrum +n12805762 white currant, Ribes sativum +n12806015 gooseberry, gooseberry bush, Ribes uva-crispa, Ribes grossularia +n12806732 plane tree, sycamore, platan +n12807251 London plane, Platanus acerifolia +n12807409 American sycamore, American plane, buttonwood, Platanus occidentalis +n12807624 oriental plane, Platanus orientalis +n12807773 California sycamore, Platanus racemosa +n12808007 Arizona sycamore, Platanus wrightii +n12809868 Greek valerian, Polemonium reptans +n12810007 northern Jacob's ladder, Polemonium boreale +n12810151 skunkweed, skunk-weed, Polemonium viscosum +n12810595 phlox +n12811027 moss pink, mountain phlox, moss phlox, dwarf phlox, Phlox subulata +n12811713 evening-snow, Linanthus dichotomus +n12812235 acanthus +n12812478 bear's breech, bear's breeches, sea holly, Acanthus mollis +n12812801 caricature plant, Graptophyllum pictum +n12813189 black-eyed Susan, black-eyed Susan vine, Thunbergia alata +n12814643 catalpa, Indian bean +n12814857 Catalpa bignioides +n12814960 Catalpa speciosa +n12815198 desert willow, Chilopsis linearis +n12815668 calabash, calabash tree, Crescentia cujete +n12815838 calabash +n12816508 borage, tailwort, Borago officinalis +n12816942 common amsinckia, Amsinckia intermedia +n12817464 anchusa +n12817694 bugloss, alkanet, Anchusa officinalis +n12817855 cape forget-me-not, Anchusa capensis +n12818004 cape forget-me-not, Anchusa riparia +n12818346 Spanish elm, Equador laurel, salmwood, cypre, princewood, Cordia alliodora +n12818601 princewood, Spanish elm, Cordia gerascanthus +n12818966 Chinese forget-me-not, Cynoglossum amabile +n12819141 hound's-tongue, Cynoglossum officinale +n12819354 hound's-tongue, Cynoglossum virginaticum +n12819728 blueweed, blue devil, blue thistle, viper's bugloss, Echium vulgare +n12820113 beggar's lice, beggar lice +n12820669 gromwell, Lithospermum officinale +n12820853 puccoon, Lithospermum caroliniense +n12821505 Virginia bluebell, Virginia cowslip, Mertensia virginica +n12821895 garden forget-me-not, Myosotis sylvatica +n12822115 forget-me-not, mouse ear, Myosotis scorpiodes +n12822466 false gromwell +n12822769 comfrey, cumfrey +n12822955 common comfrey, boneset, Symphytum officinale +n12823717 convolvulus +n12823859 bindweed +n12824053 field bindweed, wild morning-glory, Convolvulus arvensis +n12824289 scammony, Convolvulus scammonia +n12824735 silverweed +n12825497 dodder +n12826143 dichondra, Dichondra micrantha +n12827270 cypress vine, star-glory, Indian pink, Ipomoea quamoclit, Quamoclit pennata +n12827537 moonflower, belle de nuit, Ipomoea alba +n12827907 wild potato vine, wild sweet potato vine, man-of-the-earth, manroot, scammonyroot, Ipomoea panurata, Ipomoea fastigiata +n12828220 red morning-glory, star ipomoea, Ipomoea coccinea +n12828379 man-of-the-earth, Ipomoea leptophylla +n12828520 scammony, Ipomoea orizabensis +n12828791 Japanese morning glory, Ipomoea nil +n12828977 imperial Japanese morning glory, Ipomoea imperialis +n12829582 gesneriad +n12829975 gesneria +n12830222 achimenes, hot water plant +n12830568 aeschynanthus +n12831141 lace-flower vine, Alsobia dianthiflora, Episcia dianthiflora +n12831535 columnea +n12831932 episcia +n12832315 gloxinia +n12832538 Canterbury bell, Gloxinia perennis +n12832822 kohleria +n12833149 African violet, Saintpaulia ionantha +n12833985 streptocarpus +n12834190 Cape primrose +n12834798 waterleaf +n12834938 Virginia waterleaf, Shawnee salad, shawny, Indian salad, John's cabbage, Hydrophyllum virginianum +n12835331 yellow bells, California yellow bells, whispering bells, Emmanthe penduliflora +n12835766 yerba santa, Eriodictyon californicum +n12836212 nemophila +n12836337 baby blue-eyes, Nemophila menziesii +n12836508 five-spot, Nemophila maculata +n12836862 scorpionweed, scorpion weed, phacelia +n12837052 California bluebell, Phacelia campanularia +n12837259 California bluebell, whitlavia, Phacelia minor, Phacelia whitlavia +n12837466 fiddleneck, Phacelia tanacetifolia +n12837803 fiesta flower, Pholistoma auritum, Nemophila aurita +n12839574 basil thyme, basil balm, mother of thyme, Acinos arvensis, Satureja acinos +n12839979 giant hyssop +n12840168 yellow giant hyssop, Agastache nepetoides +n12840362 anise hyssop, Agastache foeniculum +n12840502 Mexican hyssop, Agastache mexicana +n12840749 bugle, bugleweed +n12841007 creeping bugle, Ajuga reptans +n12841193 erect bugle, blue bugle, Ajuga genevensis +n12841354 pyramid bugle, Ajuga pyramidalis +n12842302 wood mint +n12842519 hairy wood mint, Blephilia hirsuta +n12842642 downy wood mint, Blephilia celiata +n12842887 calamint +n12843144 common calamint, Calamintha sylvatica, Satureja calamintha officinalis +n12843316 large-flowered calamint, Calamintha grandiflora, Clinopodium grandiflorum, Satureja grandiflora +n12843557 lesser calamint, field balm, Calamintha nepeta, Calamintha nepeta glantulosa, Satureja nepeta, Satureja calamintha glandulosa +n12843970 wild basil, cushion calamint, Clinopodium vulgare, Satureja vulgaris +n12844409 horse balm, horseweed, stoneroot, stone-root, richweed, stone root, Collinsonia canadensis +n12844939 coleus, flame nettle +n12845187 country borage, Coleus aromaticus, Coleus amboinicus, Plectranthus amboinicus +n12845413 painted nettle, Joseph's coat, Coleus blumei, Solenostemon blumei, Solenostemon scutellarioides +n12845908 Apalachicola rosemary, Conradina glabra +n12846335 dragonhead, dragon's head, Dracocephalum parviflorum +n12846690 elsholtzia +n12847008 hemp nettle, dead nettle, Galeopsis tetrahit +n12847374 ground ivy, alehoof, field balm, gill-over-the-ground, runaway robin, Glechoma hederaceae, Nepeta hederaceae +n12847927 pennyroyal, American pennyroyal, Hedeoma pulegioides +n12848499 hyssop, Hyssopus officinalis +n12849061 dead nettle +n12849279 white dead nettle, Lamium album +n12849416 henbit, Lamium amplexicaule +n12849952 English lavender, Lavandula angustifolia, Lavandula officinalis +n12850168 French lavender, Lavandula stoechas +n12850336 spike lavender, French lavender, Lavandula latifolia +n12850906 dagga, Cape dagga, red dagga, wilde dagga, Leonotis leonurus +n12851094 lion's-ear, Leonotis nepetaefolia, Leonotis nepetifolia +n12851469 motherwort, Leonurus cardiaca +n12851860 pitcher sage, Lepechinia calycina, Sphacele calycina +n12852234 bugleweed, Lycopus virginicus +n12852428 water horehound, Lycopus americanus +n12852570 gipsywort, gypsywort, Lycopus europaeus +n12853080 origanum +n12853287 oregano, marjoram, pot marjoram, wild marjoram, winter sweet, Origanum vulgare +n12853482 sweet marjoram, knotted marjoram, Origanum majorana, Majorana hortensis +n12854048 horehound +n12854193 common horehound, white horehound, Marrubium vulgare +n12854600 lemon balm, garden balm, sweet balm, bee balm, beebalm, Melissa officinalis +n12855365 corn mint, field mint, Mentha arvensis +n12855494 water-mint, water mint, Mentha aquatica +n12855710 bergamot mint, lemon mint, eau de cologne mint, Mentha citrata +n12855886 horsemint, Mentha longifolia +n12856091 peppermint, Mentha piperita +n12856287 spearmint, Mentha spicata +n12856479 apple mint, applemint, Mentha rotundifolia, Mentha suaveolens +n12856680 pennyroyal, Mentha pulegium +n12857204 yerba buena, Micromeria chamissonis, Micromeria douglasii, Satureja douglasii +n12857779 molucca balm, bells of Ireland, Molucella laevis +n12858150 monarda, wild bergamot +n12858397 bee balm, beebalm, bergamot mint, oswego tea, Monarda didyma +n12858618 horsemint, Monarda punctata +n12858871 bee balm, beebalm, Monarda fistulosa +n12858987 lemon mint, horsemint, Monarda citriodora +n12859153 plains lemon monarda, Monarda pectinata +n12859272 basil balm, Monarda clinopodia +n12859679 mustang mint, Monardella lanceolata +n12859986 catmint, catnip, Nepeta cataria +n12860365 basil +n12860978 beefsteak plant, Perilla frutescens crispa +n12861345 phlomis +n12861541 Jerusalem sage, Phlomis fruticosa +n12861892 physostegia +n12862512 plectranthus +n12862828 patchouli, patchouly, pachouli, Pogostemon cablin +n12863234 self-heal, heal all, Prunella vulgaris +n12863624 mountain mint +n12864160 rosemary, Rosmarinus officinalis +n12865037 clary sage, Salvia clarea +n12865562 purple sage, chaparral sage, Salvia leucophylla +n12865708 cancerweed, cancer weed, Salvia lyrata +n12865824 common sage, ramona, Salvia officinalis +n12866002 meadow clary, Salvia pratensis +n12866162 clary, Salvia sclarea +n12866333 pitcher sage, Salvia spathacea +n12866459 Mexican mint, Salvia divinorum +n12866635 wild sage, wild clary, vervain sage, Salvia verbenaca +n12866968 savory +n12867184 summer savory, Satureja hortensis, Satureia hortensis +n12867449 winter savory, Satureja montana, Satureia montana +n12867826 skullcap, helmetflower +n12868019 blue pimpernel, blue skullcap, mad-dog skullcap, mad-dog weed, Scutellaria lateriflora +n12868880 hedge nettle, dead nettle, Stachys sylvatica +n12869061 hedge nettle, Stachys palustris +n12869478 germander +n12869668 American germander, wood sage, Teucrium canadense +n12870048 cat thyme, marum, Teucrium marum +n12870225 wood sage, Teucrium scorodonia +n12870535 thyme +n12870682 common thyme, Thymus vulgaris +n12870891 wild thyme, creeping thyme, Thymus serpyllum +n12871272 blue curls +n12871696 turpentine camphor weed, camphorweed, vinegarweed, Trichostema lanceolatum +n12871859 bastard pennyroyal, Trichostema dichotomum +n12872458 bladderwort +n12872914 butterwort +n12873341 genlisea +n12873984 martynia, Martynia annua +n12875269 common unicorn plant, devil's claw, common devil's claw, elephant-tusk, proboscis flower, ram's horn, Proboscidea louisianica +n12875697 sand devil's claw, Proboscidea arenaria, Martynia arenaria +n12875861 sweet unicorn plant, Proboscidea fragrans, Martynia fragrans +n12876899 figwort +n12877244 snapdragon +n12877493 white snapdragon, Antirrhinum coulterianum +n12877637 yellow twining snapdragon, Antirrhinum filipes +n12877838 Mediterranean snapdragon, Antirrhinum majus +n12878169 kitten-tails +n12878325 Alpine besseya, Besseya alpina +n12878784 false foxglove, Aureolaria pedicularia, Gerardia pedicularia +n12879068 false foxglove, Aureolaria virginica, Gerardia virginica +n12879527 calceolaria, slipperwort +n12879963 Indian paintbrush, painted cup +n12880244 desert paintbrush, Castilleja chromosa +n12880462 giant red paintbrush, Castilleja miniata +n12880638 great plains paintbrush, Castilleja sessiliflora +n12880799 sulfur paintbrush, Castilleja sulphurea +n12881105 shellflower, shell-flower, turtlehead, snakehead, snake-head, Chelone glabra +n12881913 maiden blue-eyed Mary, Collinsia parviflora +n12882158 blue-eyed Mary, Collinsia verna +n12882779 foxglove, digitalis +n12882945 common foxglove, fairy bell, fingerflower, finger-flower, fingerroot, finger-root, Digitalis purpurea +n12883265 yellow foxglove, straw foxglove, Digitalis lutea +n12883628 gerardia +n12884100 blue toadflax, old-field toadflax, Linaria canadensis +n12884260 toadflax, butter-and-eggs, wild snapdragon, devil's flax, Linaria vulgaris +n12885045 golden-beard penstemon, Penstemon barbatus +n12885265 scarlet bugler, Penstemon centranthifolius +n12885510 red shrubby penstemon, redwood penstemon +n12885754 Platte River penstemon, Penstemon cyananthus +n12886185 hot-rock penstemon, Penstemon deustus +n12886402 Jones' penstemon, Penstemon dolius +n12886600 shrubby penstemon, lowbush penstemon, Penstemon fruticosus +n12886831 narrow-leaf penstemon, Penstemon linarioides +n12887293 balloon flower, scented penstemon, Penstemon palmeri +n12887532 Parry's penstemon, Penstemon parryi +n12887713 rock penstemon, cliff penstemon, Penstemon rupicola +n12888016 Rydberg's penstemon, Penstemon rydbergii +n12888234 cascade penstemon, Penstemon serrulatus +n12888457 Whipple's penstemon, Penstemon whippleanus +n12889219 moth mullein, Verbascum blattaria +n12889412 white mullein, Verbascum lychnitis +n12889579 purple mullein, Verbascum phoeniceum +n12889713 common mullein, great mullein, Aaron's rod, flannel mullein, woolly mullein, torch, Verbascum thapsus +n12890265 veronica, speedwell +n12890490 field speedwell, Veronica agrestis +n12890685 brooklime, American brooklime, Veronica americana +n12890928 corn speedwell, Veronica arvensis +n12891093 brooklime, European brooklime, Veronica beccabunga +n12891305 germander speedwell, bird's eye, Veronica chamaedrys +n12891469 water speedwell, Veronica michauxii, Veronica anagallis-aquatica +n12891643 common speedwell, gypsyweed, Veronica officinalis +n12891824 purslane speedwell, Veronica peregrina +n12892013 thyme-leaved speedwell, Veronica serpyllifolia +n12893463 nightshade +n12893993 horse nettle, ball nettle, bull nettle, ball nightshade, Solanum carolinense +n12895298 African holly, Solanum giganteum +n12895811 potato vine, Solanum jasmoides +n12896615 garden huckleberry, wonderberry, sunberry, Solanum nigrum guineese, Solanum melanocerasum, Solanum burbankii +n12897118 naranjilla, Solanum quitoense +n12897788 potato vine, giant potato creeper, Solanum wendlandii +n12897999 potato tree, Brazilian potato tree, Solanum wrightii, Solanum macranthum +n12898342 belladonna, belladonna plant, deadly nightshade, Atropa belladonna +n12898774 bush violet, browallia +n12899166 lady-of-the-night, Brunfelsia americana +n12899537 angel's trumpet, maikoa, Brugmansia arborea, Datura arborea +n12899752 angel's trumpet, Brugmansia suaveolens, Datura suaveolens +n12899971 red angel's trumpet, Brugmansia sanguinea, Datura sanguinea +n12900783 cone pepper, Capsicum annuum conoides +n12901724 bird pepper, Capsicum frutescens baccatum, Capsicum baccatum +n12902466 day jessamine, Cestrum diurnum +n12902662 night jasmine, night jessamine, Cestrum nocturnum +n12903014 tree tomato, tamarillo +n12903367 thorn apple +n12903503 jimsonweed, jimson weed, Jamestown weed, common thorn apple, apple of Peru, Datura stramonium +n12903964 pichi, Fabiana imbricata +n12904314 henbane, black henbane, stinking nightshade, Hyoscyamus niger +n12904562 Egyptian henbane, Hyoscyamus muticus +n12904938 matrimony vine, boxthorn +n12905135 common matrimony vine, Duke of Argyll's tea tree, Lycium barbarum, Lycium halimifolium +n12905412 Christmasberry, Christmas berry, Lycium carolinianum +n12906214 plum tomato +n12906498 mandrake, devil's apples, Mandragora officinarum +n12906771 mandrake root, mandrake +n12907057 apple of Peru, shoo fly, Nicandra physaloides +n12907671 flowering tobacco, Jasmine tobacco, Nicotiana alata +n12907857 common tobacco, Nicotiana tabacum +n12908093 wild tobacco, Indian tobacco, Nicotiana rustica +n12908645 cupflower, nierembergia +n12908854 whitecup, Nierembergia repens, Nierembergia rivularis +n12909421 petunia +n12909614 large white petunia, Petunia axillaris +n12909759 violet-flowered petunia, Petunia integrifolia +n12909917 hybrid petunia, Petunia hybrida +n12911079 cape gooseberry, purple ground cherry, Physalis peruviana +n12911264 strawberry tomato, dwarf cape gooseberry, Physalis pruinosa +n12911440 tomatillo, jamberry, Mexican husk tomato, Physalis ixocarpa +n12911673 tomatillo, miltomate, purple ground cherry, jamberry, Physalis philadelphica +n12911914 yellow henbane, Physalis viscosa +n12912274 cock's eggs, Salpichroa organifolia, Salpichroa rhomboidea +n12912670 salpiglossis +n12912801 painted tongue, Salpiglossis sinuata +n12913144 butterfly flower, poor man's orchid, schizanthus +n12913524 Scopolia carniolica +n12913791 chalice vine, trumpet flower, cupflower, Solandra guttata +n12914923 verbena, vervain +n12915140 lantana +n12915568 black mangrove, Avicennia marina +n12915811 white mangrove, Avicennia officinalis +n12916179 black mangrove, Aegiceras majus +n12916511 teak, Tectona grandis +n12917901 spurge +n12918609 sun spurge, wartweed, wartwort, devil's milk, Euphorbia helioscopia +n12918810 petty spurge, devil's milk, Euphorbia peplus +n12918991 medusa's head, Euphorbia medusae, Euphorbia caput-medusae +n12919195 wild spurge, flowering spurge, tramp's spurge, Euphorbia corollata +n12919403 snow-on-the-mountain, snow-in-summer, ghost weed, Euphorbia marginata +n12919646 cypress spurge, Euphorbia cyparissias +n12919847 leafy spurge, wolf's milk, Euphorbia esula +n12920043 hairy spurge, Euphorbia hirsuta +n12920204 poinsettia, Christmas star, Christmas flower, lobster plant, Mexican flameleaf, painted leaf, Euphorbia pulcherrima +n12920521 Japanese poinsettia, mole plant, paint leaf, Euphorbia heterophylla +n12920719 fire-on-the-mountain, painted leaf, Mexican fire plant, Euphorbia cyathophora +n12920955 wood spurge, Euphorbia amygdaloides +n12921315 dwarf spurge, Euphorbia exigua +n12921499 scarlet plume, Euphorbia fulgens +n12921660 naboom, cactus euphorbia, Euphorbia ingens +n12921868 crown of thorns, Christ thorn, Christ plant, Euphorbia milii +n12922119 toothed spurge, Euphorbia dentata +n12922458 three-seeded mercury, Acalypha virginica +n12922763 croton, Croton tiglium +n12923108 cascarilla, Croton eluteria +n12923257 cascarilla bark, eleuthera bark, sweetwood bark +n12924623 castor-oil plant, castor bean plant, palma christi, palma christ, Ricinus communis +n12925179 spurge nettle, tread-softly, devil nettle, pica-pica, Cnidoscolus urens, Jatropha urens, Jatropha stimulosus +n12925583 physic nut, Jatropha curcus +n12926039 Para rubber tree, caoutchouc tree, Hevea brasiliensis +n12926480 cassava, casava +n12926689 bitter cassava, manioc, mandioc, mandioca, tapioca plant, gari, Manihot esculenta, Manihot utilissima +n12927013 cassava, manioc +n12927194 sweet cassava, Manihot dulcis +n12927494 candlenut, varnish tree, Aleurites moluccana +n12927758 tung tree, tung, tung-oil tree, Aleurites fordii +n12928071 slipper spurge, slipper plant +n12928307 candelilla, Pedilanthus bracteatus, Pedilanthus pavonis +n12928491 Jewbush, Jew-bush, Jew bush, redbird cactus, redbird flower, Pedilanthus tithymaloides +n12928819 jumping bean, jumping seed, Mexican jumping bean +n12929403 camellia, camelia +n12929600 japonica, Camellia japonica +n12930778 umbellifer, umbelliferous plant +n12930951 wild parsley +n12931231 fool's parsley, lesser hemlock, Aethusa cynapium +n12931542 dill, Anethum graveolens +n12931906 angelica, angelique +n12932173 garden angelica, archangel, Angelica Archangelica +n12932365 wild angelica, Angelica sylvestris +n12932706 chervil, beaked parsley, Anthriscus cereifolium +n12932966 cow parsley, wild chervil, Anthriscus sylvestris +n12933274 wild celery, Apium graveolens +n12934036 astrantia, masterwort +n12934174 greater masterwort, Astrantia major +n12934479 caraway, Carum carvi +n12934685 whorled caraway +n12934985 water hemlock, Cicuta verosa +n12935166 spotted cowbane, spotted hemlock, spotted water hemlock +n12935609 hemlock, poison hemlock, poison parsley, California fern, Nebraska fern, winter fern, Conium maculatum +n12936155 earthnut, Conopodium denudatum +n12936826 cumin, Cuminum cyminum +n12937130 wild carrot, Queen Anne's lace, Daucus carota +n12938081 eryngo, eringo +n12938193 sea holly, sea holm, sea eryngium, Eryngium maritimum +n12938445 button snakeroot, Eryngium aquaticum +n12938667 rattlesnake master, rattlesnake's master, button snakeroot, Eryngium yuccifolium +n12939104 fennel +n12939282 common fennel, Foeniculum vulgare +n12939479 Florence fennel, Foeniculum dulce, Foeniculum vulgare dulce +n12939874 cow parsnip, hogweed, Heracleum sphondylium +n12940226 lovage, Levisticum officinale +n12940609 sweet cicely, Myrrhis odorata +n12941220 water fennel, Oenanthe aquatica +n12941536 parsnip, Pastinaca sativa +n12941717 cultivated parsnip +n12942025 wild parsnip, madnep +n12942395 parsley, Petroselinum crispum +n12942572 Italian parsley, flat-leaf parsley, Petroselinum crispum neapolitanum +n12942729 Hamburg parsley, turnip-rooted parsley, Petroselinum crispum tuberosum +n12943049 anise, anise plant, Pimpinella anisum +n12943443 sanicle, snakeroot +n12943912 purple sanicle, Sanicula bipinnatifida +n12944095 European sanicle, Sanicula Europaea +n12945177 water parsnip, Sium suave +n12945366 greater water parsnip, Sium latifolium +n12945549 skirret, Sium sisarum +n12946849 dogwood, dogwood tree, cornel +n12947313 common white dogwood, eastern flowering dogwood, Cornus florida +n12947544 red osier, red osier dogwood, red dogwood, American dogwood, redbrush, Cornus stolonifera +n12947756 silky dogwood, Cornus obliqua +n12947895 silky cornel, silky dogwood, Cornus amomum +n12948053 common European dogwood, red dogwood, blood-twig, pedwood, Cornus sanguinea +n12948251 bunchberry, dwarf cornel, crackerberry, pudding berry, Cornus canadensis +n12948495 cornelian cherry, Cornus mas +n12949160 puka, Griselinia lucida +n12949361 kapuka, Griselinia littoralis +n12950126 valerian +n12950314 common valerian, garden heliotrope, Valeriana officinalis +n12950796 common corn salad, lamb's lettuce, Valerianella olitoria, Valerianella locusta +n12951146 red valerian, French honeysuckle, Centranthus ruber +n12951835 filmy fern, film fern +n12952165 bristle fern, filmy fern +n12952469 hare's-foot bristle fern, Trichomanes boschianum +n12952590 Killarney fern, Trichomanes speciosum +n12952717 kidney fern, Trichomanes reniforme +n12953206 flowering fern, osmund +n12953484 royal fern, royal osmund, king fern, ditch fern, French bracken, Osmunda regalis +n12953712 interrupted fern, Osmunda clatonia +n12954353 crape fern, Prince-of-Wales fern, Prince-of-Wales feather, Prince-of-Wales plume, Leptopteris superba, Todea superba +n12954799 crepe fern, king fern, Todea barbara +n12955414 curly grass, curly grass fern, Schizaea pusilla +n12955840 pine fern, Anemia adiantifolia +n12956170 climbing fern +n12956367 creeping fern, Hartford fern, Lygodium palmatum +n12956588 climbing maidenhair, climbing maidenhair fern, snake fern, Lygodium microphyllum +n12956922 scented fern, Mohria caffrorum +n12957608 clover fern, pepperwort +n12957803 nardoo, nardo, common nardoo, Marsilea drummondii +n12957924 water clover, Marsilea quadrifolia +n12958261 pillwort, Pilularia globulifera +n12958615 regnellidium, Regnellidium diphyllum +n12959074 floating-moss, Salvinia rotundifolia, Salvinia auriculata +n12959538 mosquito fern, floating fern, Carolina pond fern, Azolla caroliniana +n12960378 adder's tongue, adder's tongue fern +n12960552 ribbon fern, Ophioglossum pendulum +n12960863 grape fern +n12961242 daisyleaf grape fern, daisy-leaved grape fern, Botrychium matricariifolium +n12961393 leathery grape fern, Botrychium multifidum +n12961536 rattlesnake fern, Botrychium virginianum +n12961879 flowering fern, Helminthostachys zeylanica +n12963628 powdery mildew +n12964920 Dutch elm fungus, Ceratostomella ulmi +n12965626 ergot, Claviceps purpurea +n12965951 rye ergot +n12966804 black root rot fungus, Xylaria mali +n12966945 dead-man's-fingers, dead-men's-fingers, Xylaria polymorpha +n12968136 sclerotinia +n12968309 brown cup +n12969131 earthball, false truffle, puffball, hard-skinned puffball +n12969425 Scleroderma citrinum, Scleroderma aurantium +n12969670 Scleroderma flavidium, star earthball +n12969927 Scleroderma bovista, smooth earthball +n12970193 Podaxaceae +n12970293 stalked puffball +n12970733 stalked puffball +n12971400 false truffle +n12971804 Rhizopogon idahoensis +n12972136 Truncocolumella citrina +n12973443 mucor +n12973791 rhizopus +n12973937 bread mold, Rhizopus nigricans +n12974987 slime mold, slime mould +n12975804 true slime mold, acellular slime mold, plasmodial slime mold, myxomycete +n12976198 cellular slime mold +n12976554 dictostylium +n12978076 pond-scum parasite +n12979316 potato wart fungus, Synchytrium endobioticum +n12979829 white fungus, Saprolegnia ferax +n12980080 water mold +n12980840 downy mildew, false mildew +n12981086 blue mold fungus, Peronospora tabacina +n12981301 onion mildew, Peronospora destructor +n12981443 tobacco mildew, Peronospora hyoscyami +n12981954 white rust +n12982468 pythium +n12982590 damping off fungus, Pythium debaryanum +n12982915 Phytophthora citrophthora +n12983048 Phytophthora infestans +n12983654 clubroot fungus, Plasmodiophora brassicae +n12983873 Geglossaceae +n12983961 Sarcosomataceae +n12984267 Rufous rubber cup +n12984489 devil's cigar +n12984595 devil's urn +n12985420 truffle, earthnut, earth-ball +n12985773 club fungus +n12985857 coral fungus +n12986227 tooth fungus +n12987056 lichen +n12987423 ascolichen +n12987535 basidiolichen +n12988158 lecanora +n12988341 manna lichen +n12988572 archil, orchil +n12989007 roccella, Roccella tinctoria +n12989938 beard lichen, beard moss, Usnea barbata +n12990597 horsehair lichen, horsetail lichen +n12991184 reindeer moss, reindeer lichen, arctic moss, Cladonia rangiferina +n12991837 crottle, crottal, crotal +n12992177 Iceland moss, Iceland lichen, Cetraria islandica +n12992868 fungus +n12994892 promycelium +n12995601 true fungus +n12997654 basidiomycete, basidiomycetous fungi +n12997919 mushroom +n12998815 agaric +n13000891 mushroom +n13001041 mushroom +n13001206 toadstool +n13001366 horse mushroom, Agaricus arvensis +n13001529 meadow mushroom, field mushroom, Agaricus campestris +n13001930 shiitake, shiitake mushroom, Chinese black mushroom, golden oak mushroom, Oriental black mushroom, Lentinus edodes +n13002209 scaly lentinus, Lentinus lepideus +n13002750 royal agaric, Caesar's agaric, Amanita caesarea +n13002925 false deathcap, Amanita mappa +n13003061 fly agaric, Amanita muscaria +n13003254 death cap, death cup, death angel, destroying angel, Amanita phalloides +n13003522 blushing mushroom, blusher, Amanita rubescens +n13003712 destroying angel, Amanita verna +n13004423 chanterelle, chantarelle, Cantharellus cibarius +n13004640 floccose chanterelle, Cantharellus floccosus +n13004826 pig's ears, Cantharellus clavatus +n13004992 cinnabar chanterelle, Cantharellus cinnabarinus +n13005329 jack-o-lantern fungus, jack-o-lantern, jack-a-lantern, Omphalotus illudens +n13005984 inky cap, inky-cap mushroom, Coprinus atramentarius +n13006171 shaggymane, shaggy cap, shaggymane mushroom, Coprinus comatus +n13006631 milkcap, Lactarius delicioso +n13006894 fairy-ring mushroom, Marasmius oreades +n13007034 fairy ring, fairy circle +n13007417 oyster mushroom, oyster fungus, oyster agaric, Pleurotus ostreatus +n13007629 olive-tree agaric, Pleurotus phosphoreus +n13008157 Pholiota astragalina +n13008315 Pholiota aurea, golden pholiota +n13008485 Pholiota destruens +n13008689 Pholiota flammans +n13008839 Pholiota flavida +n13009085 nameko, viscid mushroom, Pholiota nameko +n13009244 Pholiota squarrosa-adiposa +n13009429 Pholiota squarrosa, scaly pholiota +n13009656 Pholiota squarrosoides +n13010694 Stropharia ambigua +n13010951 Stropharia hornemannii +n13011221 Stropharia rugoso-annulata +n13011595 gill fungus +n13012253 Entoloma lividum, Entoloma sinuatum +n13012469 Entoloma aprile +n13012973 Chlorophyllum molybdites +n13013534 lepiota +n13013764 parasol mushroom, Lepiota procera +n13013965 poisonous parasol, Lepiota morgani +n13014097 Lepiota naucina +n13014265 Lepiota rhacodes +n13014409 American parasol, Lepiota americana +n13014581 Lepiota rubrotincta +n13014741 Lepiota clypeolaria +n13014879 onion stem, Lepiota cepaestipes +n13015509 pink disease fungus, Corticium salmonicolor +n13015688 bottom rot fungus, Corticium solani +n13016076 potato fungus, Pellicularia filamentosa, Rhizoctinia solani +n13016289 coffee fungus, Pellicularia koleroga +n13017102 blewits, Clitocybe nuda +n13017240 sandy mushroom, Tricholoma populinum +n13017439 Tricholoma pessundatum +n13017610 Tricholoma sejunctum +n13017789 man-on-a-horse, Tricholoma flavovirens +n13017979 Tricholoma venenata +n13018088 Tricholoma pardinum +n13018232 Tricholoma vaccinum +n13018407 Tricholoma aurantium +n13018906 Volvaria bombycina +n13019496 Pluteus aurantiorugosus +n13019643 Pluteus magnus, sawdust mushroom +n13019835 deer mushroom, Pluteus cervinus +n13020191 straw mushroom, Chinese mushroom, Volvariella volvacea +n13020481 Volvariella bombycina +n13020964 Clitocybe clavipes +n13021166 Clitocybe dealbata +n13021332 Clitocybe inornata +n13021543 Clitocybe robusta, Clytocybe alba +n13021689 Clitocybe irina, Tricholoma irinum, Lepista irina +n13021867 Clitocybe subconnexa +n13022210 winter mushroom, Flammulina velutipes +n13022709 mycelium +n13022903 sclerotium +n13023134 sac fungus +n13024012 ascomycete, ascomycetous fungus +n13024500 Clavicipitaceae, grainy club mushrooms +n13024653 grainy club +n13025647 yeast +n13025854 baker's yeast, brewer's yeast, Saccharomyces cerevisiae +n13026015 wine-maker's yeast, Saccharomyces ellipsoides +n13027557 Aspergillus fumigatus +n13027879 brown root rot fungus, Thielavia basicola +n13028611 discomycete, cup fungus +n13028937 Leotia lubrica +n13029122 Mitrula elegans +n13029326 Sarcoscypha coccinea, scarlet cup +n13029610 Caloscypha fulgens +n13029760 Aleuria aurantia, orange peel fungus +n13030337 elf cup +n13030616 Peziza domicilina +n13030852 blood cup, fairy cup, Peziza coccinea +n13031193 Urnula craterium, urn fungus +n13031323 Galiella rufa +n13031474 Jafnea semitosta +n13032115 morel +n13032381 common morel, Morchella esculenta, sponge mushroom, sponge morel +n13032618 Disciotis venosa, cup morel +n13032923 Verpa, bell morel +n13033134 Verpa bohemica, early morel +n13033396 Verpa conica, conic Verpa +n13033577 black morel, Morchella conica, conic morel, Morchella angusticeps, narrowhead morel +n13033879 Morchella crassipes, thick-footed morel +n13034062 Morchella semilibera, half-free morel, cow's head +n13034555 Wynnea americana +n13034788 Wynnea sparassoides +n13035241 false morel +n13035389 lorchel +n13035707 helvella +n13035925 Helvella crispa, miter mushroom +n13036116 Helvella acetabulum +n13036312 Helvella sulcata +n13036804 discina +n13037406 gyromitra +n13037585 Gyromitra californica, California false morel +n13037805 Gyromitra sphaerospora, round-spored gyromitra +n13038068 Gyromitra esculenta, brain mushroom, beefsteak morel +n13038376 Gyromitra infula, saddled-shaped false morel +n13038577 Gyromitra fastigiata, Gyromitra brunnea +n13038744 Gyromitra gigas +n13039349 gasteromycete, gastromycete +n13040303 stinkhorn, carrion fungus +n13040629 common stinkhorn, Phallus impudicus +n13040796 Phallus ravenelii +n13041312 dog stinkhorn, Mutinus caninus +n13041943 Calostoma lutescens +n13042134 Calostoma cinnabarina +n13042316 Calostoma ravenelii +n13042982 stinky squid, Pseudocolus fusiformis +n13043926 puffball, true puffball +n13044375 giant puffball, Calvatia gigantea +n13044778 earthstar +n13045210 Geastrum coronatum +n13045594 Radiigera fuscogleba +n13045975 Astreus pteridis +n13046130 Astreus hygrometricus +n13046669 bird's-nest fungus +n13047862 Gastrocybe lateritia +n13048447 Macowanites americanus +n13049953 polypore, pore fungus, pore mushroom +n13050397 bracket fungus, shelf fungus +n13050705 Albatrellus dispansus +n13050940 Albatrellus ovinus, sheep polypore +n13051346 Neolentinus ponderosus +n13052014 Oligoporus leucospongia +n13052248 Polyporus tenuiculus +n13052670 hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa +n13052931 Polyporus squamosus, scaly polypore +n13053608 beefsteak fungus, Fistulina hepatica +n13054073 agaric, Fomes igniarius +n13054560 bolete +n13055423 Boletus chrysenteron +n13055577 Boletus edulis +n13055792 Frost's bolete, Boletus frostii +n13055949 Boletus luridus +n13056135 Boletus mirabilis +n13056349 Boletus pallidus +n13056607 Boletus pulcherrimus +n13056799 Boletus pulverulentus +n13057054 Boletus roxanae +n13057242 Boletus subvelutipes +n13057422 Boletus variipes +n13057639 Boletus zelleri +n13058037 Fuscoboletinus paluster +n13058272 Fuscoboletinus serotinus +n13058608 Leccinum fibrillosum +n13059298 Suillus albivelatus +n13059657 old-man-of-the-woods, Strobilomyces floccopus +n13060017 Boletellus russellii +n13060190 jelly fungus +n13061172 snow mushroom, Tremella fuciformis +n13061348 witches' butter, Tremella lutescens +n13061471 Tremella foliacea +n13061704 Tremella reticulata +n13062421 Jew's-ear, Jew's-ears, ear fungus, Auricularia auricula +n13063269 rust, rust fungus +n13063514 aecium +n13064111 flax rust, flax rust fungus, Melampsora lini +n13064457 blister rust, Cronartium ribicola +n13065089 wheat rust, Puccinia graminis +n13065514 apple rust, cedar-apple rust, Gymnosporangium juniperi-virginianae +n13066129 smut, smut fungus +n13066448 covered smut +n13066979 loose smut +n13067191 cornsmut, corn smut +n13067330 boil smut, Ustilago maydis +n13067532 Sphacelotheca, genus Sphacelotheca +n13067672 head smut, Sphacelotheca reiliana +n13068255 bunt, Tilletia caries +n13068434 bunt, stinking smut, Tilletia foetida +n13068735 onion smut, Urocystis cepulae +n13068917 flag smut fungus +n13069224 wheat flag smut, Urocystis tritici +n13069773 felt fungus, Septobasidium pseudopedicellatum +n13070308 waxycap +n13070875 Hygrocybe acutoconica, conic waxycap +n13071371 Hygrophorus borealis +n13071553 Hygrophorus caeruleus +n13071815 Hygrophorus inocybiformis +n13072031 Hygrophorus kauffmanii +n13072209 Hygrophorus marzuolus +n13072350 Hygrophorus purpurascens +n13072528 Hygrophorus russula +n13072706 Hygrophorus sordidus +n13072863 Hygrophorus tennesseensis +n13073055 Hygrophorus turundus +n13073703 Neohygrophorus angelesianus +n13074619 Cortinarius armillatus +n13074814 Cortinarius atkinsonianus +n13075020 Cortinarius corrugatus +n13075272 Cortinarius gentilis +n13075441 Cortinarius mutabilis, purple-staining Cortinarius +n13075684 Cortinarius semisanguineus +n13075847 Cortinarius subfoetidus +n13076041 Cortinarius violaceus +n13076405 Gymnopilus spectabilis +n13076643 Gymnopilus validipes +n13076831 Gymnopilus ventricosus +n13077033 mold, mould +n13077295 mildew +n13078021 verticillium +n13079073 monilia +n13079419 candida +n13079567 Candida albicans, Monilia albicans +n13080306 blastomycete +n13080866 yellow spot fungus, Cercospora kopkei +n13081229 green smut fungus, Ustilaginoidea virens +n13081999 dry rot +n13082568 rhizoctinia +n13083023 houseplant +n13083461 bedder, bedding plant +n13084184 succulent +n13084834 cultivar +n13085113 weed +n13085747 wort +n13090018 brier +n13090871 aril +n13091620 sporophyll, sporophyl +n13091774 sporangium, spore case, spore sac +n13091982 sporangiophore +n13092078 ascus +n13092240 ascospore +n13092385 arthrospore +n13092987 eusporangium +n13093275 tetrasporangium +n13093629 gametangium +n13094145 sorus +n13094273 sorus +n13095013 partial veil +n13096779 lignum +n13098515 vascular ray, medullary ray +n13098962 phloem, bast +n13099833 evergreen, evergreen plant +n13099999 deciduous plant +n13100156 poisonous plant +n13100677 vine +n13102648 creeper +n13102775 tendril +n13103023 root climber +n13103660 lignosae +n13103750 arborescent plant +n13103877 snag +n13104059 tree +n13107694 timber tree +n13107807 treelet +n13107891 arbor +n13108131 bean tree +n13108323 pollard +n13108481 sapling +n13108545 shade tree +n13108662 gymnospermous tree +n13108841 conifer, coniferous tree +n13109733 angiospermous tree, flowering tree +n13110915 nut tree +n13111174 spice tree +n13111340 fever tree +n13111504 stump, tree stump +n13111881 bonsai +n13112035 ming tree +n13112201 ming tree +n13118330 undershrub +n13118707 subshrub, suffrutex +n13119870 bramble +n13120211 liana +n13120958 geophyte +n13121104 desert plant, xerophyte, xerophytic plant, xerophile, xerophilous plant +n13121349 mesophyte, mesophytic plant +n13122364 marsh plant, bog plant, swamp plant +n13123309 hemiepiphyte, semiepiphyte +n13123431 strangler, strangler tree +n13123841 lithophyte, lithophytic plant +n13124358 saprobe +n13124654 autophyte, autophytic plant, autotroph, autotrophic organism +n13125117 root +n13126050 taproot +n13126856 prop root +n13127001 prophyll +n13127303 rootstock +n13127666 quickset +n13127843 stolon, runner, offset +n13128278 tuberous plant +n13128582 rhizome, rootstock, rootstalk +n13128976 rachis +n13129078 caudex +n13130014 cladode, cladophyll, phylloclad, phylloclade +n13130161 receptacle +n13130726 scape, flower stalk +n13131028 umbel +n13131618 petiole, leafstalk +n13132034 peduncle +n13132156 pedicel, pedicle +n13132338 flower cluster +n13132486 raceme +n13132656 panicle +n13132756 thyrse, thyrsus +n13132940 cyme +n13133140 cymule +n13133233 glomerule +n13133316 scorpioid cyme +n13133613 ear, spike, capitulum +n13133932 spadix +n13134302 bulbous plant +n13134531 bulbil, bulblet +n13134844 cormous plant +n13134947 fruit +n13135692 fruitlet +n13135832 seed +n13136316 bean +n13136556 nut +n13136781 nutlet +n13137010 kernel, meat +n13137225 syconium +n13137409 berry +n13137672 aggregate fruit, multiple fruit, syncarp +n13137951 simple fruit, bacca +n13138155 acinus +n13138308 drupe, stone fruit +n13138658 drupelet +n13138842 pome, false fruit +n13139055 pod, seedpod +n13139321 loment +n13139482 pyxidium, pyxis +n13139647 husk +n13139837 cornhusk +n13140049 pod, cod, seedcase +n13140367 accessory fruit, pseudocarp +n13141141 buckthorn +n13141415 buckthorn berry, yellow berry +n13141564 cascara buckthorn, bearberry, bearwood, chittamwood, chittimwood, Rhamnus purshianus +n13141797 cascara, cascara sagrada, chittam bark, chittem bark +n13141972 Carolina buckthorn, indian cherry, Rhamnus carolinianus +n13142182 coffeeberry, California buckthorn, California coffee, Rhamnus californicus +n13142504 redberry, red-berry, Rhamnus croceus +n13142907 nakedwood +n13143285 jujube, jujube bush, Christ's-thorn, Jerusalem thorn, Ziziphus jujuba +n13143758 Christ's-thorn, Jerusalem thorn, Paliurus spina-christi +n13144084 hazel, hazel tree, Pomaderris apetala +n13145040 fox grape, Vitis labrusca +n13145250 muscadine, Vitis rotundifolia +n13145444 vinifera, vinifera grape, common grape vine, Vitis vinifera +n13146403 Pinot blanc +n13146583 Sauvignon grape +n13146928 Sauvignon blanc +n13147153 Muscadet +n13147270 Riesling +n13147386 Zinfandel +n13147532 Chenin blanc +n13147689 malvasia +n13147918 Verdicchio +n13148208 Boston ivy, Japanese ivy, Parthenocissus tricuspidata +n13148384 Virginia creeper, American ivy, woodbine, Parthenocissus quinquefolia +n13149296 true pepper, pepper vine +n13149970 betel, betel pepper, Piper betel +n13150378 cubeb +n13150592 schizocarp +n13150894 peperomia +n13151082 watermelon begonia, Peperomia argyreia, Peperomia sandersii +n13152339 yerba mansa, Anemopsis californica +n13154388 pinna, pinnule +n13154494 frond +n13154841 bract +n13155095 bracteole, bractlet +n13155305 involucre +n13155611 glume +n13156986 palmate leaf +n13157137 pinnate leaf +n13157346 bijugate leaf, bijugous leaf, twice-pinnate +n13157481 decompound leaf +n13157684 acuminate leaf +n13157971 deltoid leaf +n13158167 ensiform leaf +n13158512 linear leaf, elongate leaf +n13158605 lyrate leaf +n13158714 obtuse leaf +n13158815 oblanceolate leaf +n13159357 pandurate leaf, panduriform leaf +n13159691 reniform leaf +n13159890 spatulate leaf +n13160116 even-pinnate leaf, abruptly-pinnate leaf +n13160254 odd-pinnate leaf +n13160365 pedate leaf +n13160604 crenate leaf +n13160831 dentate leaf +n13160938 denticulate leaf +n13161151 erose leaf +n13161254 runcinate leaf +n13161904 prickly-edged leaf +n13163553 deadwood +n13163649 haulm, halm +n13163991 branchlet, twig, sprig +n13164501 osier +n13170840 giant scrambling fern, Diplopterygium longissimum +n13171210 umbrella fern, fan fern, Sticherus flabellatus, Gleichenia flabellata +n13171797 floating fern, water sprite, Ceratopteris pteridioides +n13172923 polypody +n13173132 licorice fern, Polypodium glycyrrhiza +n13173259 grey polypody, gray polypody, resurrection fern, Polypodium polypodioides +n13173488 leatherleaf, leathery polypody, coast polypody, Polypodium scouleri +n13173697 rock polypody, rock brake, American wall fern, Polypodium virgianum +n13173882 common polypody, adder's fern, wall fern, golden maidenhair, golden polypody, sweet fern, Polypodium vulgare +n13174354 bear's-paw fern, Aglaomorpha meyeniana +n13174670 strap fern +n13174823 Florida strap fern, cow-tongue fern, hart's-tongue fern +n13175682 basket fern, Drynaria rigidula +n13176363 snake polypody, Microgramma-piloselloides +n13176714 climbing bird's nest fern, Microsorium punctatum +n13177048 golden polypody, serpent fern, rabbit's-foot fern, Phlebodium aureum, Polypodium aureum +n13177529 staghorn fern +n13177768 South American staghorn, Platycerium andinum +n13177884 common staghorn fern, elkhorn fern, Platycerium bifurcatum, Platycerium alcicorne +n13178284 felt fern, tongue fern, Pyrrosia lingua, Cyclophorus lingua +n13178707 potato fern, Solanopteris bifrons +n13179056 myrmecophyte +n13179804 grass fern, ribbon fern, Vittaria lineata +n13180534 spleenwort +n13180875 black spleenwort, Asplenium adiantum-nigrum +n13181055 bird's nest fern, Asplenium nidus +n13181244 ebony spleenwort, Scott's Spleenwort, Asplenium platyneuron +n13181406 black-stem spleenwort, black-stemmed spleenwort, little ebony spleenwort +n13181811 walking fern, walking leaf, Asplenium rhizophyllum, Camptosorus rhizophyllus +n13182164 green spleenwort, Asplenium viride +n13182338 mountain spleenwort, Asplenium montanum +n13182799 lobed spleenwort, Asplenium pinnatifidum +n13182937 lanceolate spleenwort, Asplenium billotii +n13183056 hart's-tongue, hart's-tongue fern, Asplenium scolopendrium, Phyllitis scolopendrium +n13183489 scale fern, scaly fern, Asplenium ceterach, Ceterach officinarum +n13184394 scolopendrium +n13185269 deer fern, Blechnum spicant +n13185658 doodia, rasp fern +n13186388 chain fern +n13186546 Virginia chain fern, Woodwardia virginica +n13187367 silver tree fern, sago fern, black tree fern, Cyathea medullaris +n13188096 davallia +n13188268 hare's-foot fern +n13188462 Canary Island hare's foot fern, Davallia canariensis +n13188767 squirrel's-foot fern, ball fern, Davalia bullata, Davalia bullata mariesii, Davallia Mariesii +n13190060 bracken, Pteridium esculentum +n13190747 soft tree fern, Dicksonia antarctica +n13191148 Scythian lamb, Cibotium barometz +n13191620 false bracken, Culcita dubia +n13191884 thyrsopteris, Thyrsopteris elegans +n13192625 shield fern, buckler fern +n13193143 broad buckler-fern, Dryopteris dilatata +n13193269 fragrant cliff fern, fragrant shield fern, fragrant wood fern, Dryopteris fragrans +n13193466 Goldie's fern, Goldie's shield fern, goldie's wood fern, Dryopteris goldiana +n13193642 wood fern, wood-fern, woodfern +n13193856 male fern, Dryopteris filix-mas +n13194036 marginal wood fern, evergreen wood fern, leatherleaf wood fern, Dryopteris marginalis +n13194212 mountain male fern, Dryopteris oreades +n13194572 lady fern, Athyrium filix-femina +n13194758 Alpine lady fern, Athyrium distentifolium +n13194918 silvery spleenwort, glade fern, narrow-leaved spleenwort, Athyrium pycnocarpon, Diplazium pycnocarpon +n13195341 holly fern, Cyrtomium aculeatum, Polystichum aculeatum +n13195761 bladder fern +n13196003 brittle bladder fern, brittle fern, fragile fern, Cystopteris fragilis +n13196234 mountain bladder fern, Cystopteris montana +n13196369 bulblet fern, bulblet bladder fern, berry fern, Cystopteris bulbifera +n13196738 silvery spleenwort, Deparia acrostichoides, Athyrium thelypteroides +n13197274 oak fern, Gymnocarpium dryopteris, Thelypteris dryopteris +n13197507 limestone fern, northern oak fern, Gymnocarpium robertianum +n13198054 ostrich fern, shuttlecock fern, fiddlehead, Matteuccia struthiopteris, Pteretis struthiopteris, Onoclea struthiopteris +n13198482 hart's-tongue, hart's-tongue fern, Olfersia cervina, Polybotrya cervina, Polybotria cervina +n13198914 sensitive fern, bead fern, Onoclea sensibilis +n13199717 Christmas fern, canker brake, dagger fern, evergreen wood fern, Polystichum acrostichoides +n13199970 holly fern +n13200193 Braun's holly fern, prickly shield fern, Polystichum braunii +n13200542 western holly fern, Polystichum scopulinum +n13200651 soft shield fern, Polystichum setiferum +n13200986 leather fern, leatherleaf fern, ten-day fern, Rumohra adiantiformis, Polystichum adiantiformis +n13201423 button fern, Tectaria cicutaria +n13201566 Indian button fern, Tectaria macrodonta +n13201969 woodsia +n13202125 rusty woodsia, fragrant woodsia, oblong woodsia, Woodsia ilvensis +n13202355 Alpine woodsia, northern woodsia, flower-cup fern, Woodsia alpina +n13202602 smooth woodsia, Woodsia glabella +n13205058 Boston fern, Nephrolepis exaltata, Nephrolepis exaltata bostoniensis +n13205249 basket fern, toothed sword fern, Nephrolepis pectinata +n13206178 golden fern, leather fern, Acrostichum aureum +n13206817 maidenhair, maidenhair fern +n13207094 common maidenhair, Venushair, Venus'-hair fern, southern maidenhair, Venus maidenhair, Adiantum capillus-veneris +n13207335 American maidenhair fern, five-fingered maidenhair fern, Adiantum pedatum +n13207572 Bermuda maidenhair, Bermuda maidenhair fern, Adiantum bellum +n13207736 brittle maidenhair, brittle maidenhair fern, Adiantum tenerum +n13207923 Farley maidenhair, Farley maidenhair fern, Barbados maidenhair, glory fern, Adiantum tenerum farleyense +n13208302 annual fern, Jersey fern, Anogramma leptophylla +n13208705 lip fern, lipfern +n13208965 smooth lip fern, Alabama lip fern, Cheilanthes alabamensis +n13209129 lace fern, Cheilanthes gracillima +n13209270 wooly lip fern, hairy lip fern, Cheilanthes lanosa +n13209460 southwestern lip fern, Cheilanthes eatonii +n13209808 bamboo fern, Coniogramme japonica +n13210350 American rock brake, American parsley fern, Cryptogramma acrostichoides +n13210597 European parsley fern, mountain parsley fern, Cryptogramma crispa +n13211020 hand fern, Doryopteris pedata +n13211790 cliff brake, cliff-brake, rock brake +n13212025 coffee fern, Pellaea andromedifolia +n13212175 purple rock brake, Pellaea atropurpurea +n13212379 bird's-foot fern, Pellaea mucronata, Pellaea ornithopus +n13212559 button fern, Pellaea rotundifolia +n13213066 silver fern, Pityrogramma argentea +n13213397 golden fern, Pityrogramma calomelanos aureoflava +n13213577 gold fern, Pityrogramma chrysophylla +n13214217 Pteris cretica +n13214340 spider brake, spider fern, Pteris multifida +n13214485 ribbon fern, spider fern, Pteris serrulata +n13215258 potato fern, Marattia salicina +n13215586 angiopteris, giant fern, Angiopteris evecta +n13217005 skeleton fork fern, Psilotum nudum +n13219422 horsetail +n13219833 common horsetail, field horsetail, Equisetum arvense +n13219976 swamp horsetail, water horsetail, Equisetum fluviatile +n13220122 scouring rush, rough horsetail, Equisetum hyemale, Equisetum hyemale robustum, Equisetum robustum +n13220355 marsh horsetail, Equisetum palustre +n13220525 wood horsetail, Equisetum Sylvaticum +n13220663 variegated horsetail, variegated scouring rush, Equisetum variegatum +n13221529 club moss, club-moss, lycopod +n13222877 shining clubmoss, Lycopodium lucidulum +n13222985 alpine clubmoss, Lycopodium alpinum +n13223090 fir clubmoss, mountain clubmoss, little clubmoss, Lycopodium selago +n13223588 ground cedar, staghorn moss, Lycopodium complanatum +n13223710 ground fir, princess pine, tree clubmoss, Lycopodium obscurum +n13223843 foxtail grass, Lycopodium alopecuroides +n13224673 spikemoss, spike moss, little club moss +n13224922 meadow spikemoss, basket spikemoss, Selaginella apoda +n13225244 desert selaginella, Selaginella eremophila +n13225365 resurrection plant, rose of Jericho, Selaginella lepidophylla +n13225617 florida selaginella, Selaginella eatonii +n13226320 quillwort +n13226871 earthtongue, earth-tongue +n13228017 snuffbox fern, meadow fern, Thelypteris palustris pubescens, Dryopteris thelypteris pubescens +n13228536 christella +n13229543 mountain fern, Oreopteris limbosperma, Dryopteris oreopteris +n13229951 New York fern, Parathelypteris novae-boracensis, Dryopteris noveboracensis +n13230190 Massachusetts fern, Parathelypteris simulata, Thelypteris simulata +n13230662 beech fern +n13230843 broad beech fern, southern beech fern, Phegopteris hexagonoptera, Dryopteris hexagonoptera, Thelypteris hexagonoptera +n13231078 long beech fern, narrow beech fern, northern beech fern, Phegopteris connectilis, Dryopteris phegopteris, Thelypteris phegopteris +n13231678 shoestring fungus +n13231919 Armillaria caligata, booted armillaria +n13232106 Armillaria ponderosa, white matsutake +n13232363 Armillaria zelleri +n13232779 honey mushroom, honey fungus, Armillariella mellea +n13233727 milkweed, silkweed +n13234114 white milkweed, Asclepias albicans +n13234519 poke milkweed, Asclepias exaltata +n13234678 swamp milkweed, Asclepias incarnata +n13234857 Mead's milkweed, Asclepias meadii, Asclepia meadii +n13235011 purple silkweed, Asclepias purpurascens +n13235159 showy milkweed, Asclepias speciosa +n13235319 poison milkweed, horsetail milkweed, Asclepias subverticillata +n13235503 butterfly weed, orange milkweed, chigger flower, chiggerflower, pleurisy root, tuber root, Indian paintbrush, Asclepias tuberosa +n13235766 whorled milkweed, Asclepias verticillata +n13236100 cruel plant, Araujia sericofera +n13237188 wax plant, Hoya carnosa +n13237508 silk vine, Periploca graeca +n13238375 stapelia, carrion flower, starfish flower +n13238654 Stapelias asterias +n13238988 stephanotis +n13239177 Madagascar jasmine, waxflower, Stephanotis floribunda +n13239736 negro vine, Vincetoxicum hirsutum, Vincetoxicum negrum +n13239921 zygospore +n13240362 tree of knowledge +n13252672 orangery +n13354021 pocketbook +n13555775 shit, dump +n13579829 cordage +n13650447 yard, pace +n13653902 extremum, peak +n13862407 leaf shape, leaf form +n13862552 equilateral +n13862780 figure +n13863020 pencil +n13863186 plane figure, two-dimensional figure +n13863473 solid figure, three-dimensional figure +n13863771 line +n13864035 bulb +n13864153 convex shape, convexity +n13864965 concave shape, concavity, incurvation, incurvature +n13865298 cylinder +n13865483 round shape +n13865904 heart +n13866144 polygon, polygonal shape +n13866626 convex polygon +n13866827 concave polygon +n13867005 reentrant polygon, reentering polygon +n13867492 amorphous shape +n13868248 closed curve +n13868371 simple closed curve, Jordan curve +n13868515 S-shape +n13868944 wave, undulation +n13869045 extrados +n13869547 hook, crotchet +n13869788 envelope +n13869896 bight +n13871717 diameter +n13872592 cone, conoid, cone shape +n13872822 funnel, funnel shape +n13873361 oblong +n13873502 circle +n13873917 circle +n13874073 equator +n13874558 scallop, crenation, crenature, crenel, crenelle +n13875392 ring, halo, annulus, doughnut, anchor ring +n13875571 loop +n13875884 bight +n13876561 helix, spiral +n13877547 element of a cone +n13877667 element of a cylinder +n13878306 ellipse, oval +n13879049 quadrate +n13879320 triangle, trigon, trilateral +n13879816 acute triangle, acute-angled triangle +n13880199 isosceles triangle +n13880415 obtuse triangle, obtuse-angled triangle +n13880551 right triangle, right-angled triangle +n13880704 scalene triangle +n13880994 parallel +n13881512 trapezoid +n13881644 star +n13882201 pentagon +n13882276 hexagon +n13882487 heptagon +n13882563 octagon +n13882639 nonagon +n13882713 decagon +n13882961 rhombus, rhomb, diamond +n13883603 spherical polygon +n13883763 spherical triangle +n13884261 convex polyhedron +n13884384 concave polyhedron +n13884930 cuboid +n13885011 quadrangular prism +n13886260 bell, bell shape, campana +n13888491 angular distance +n13889066 true anomaly +n13889331 spherical angle +n13891547 angle of refraction +n13891937 acute angle +n13893786 groove, channel +n13894154 rut +n13894434 bulge, bump, hump, swelling, gibbosity, gibbousness, jut, prominence, protuberance, protrusion, extrusion, excrescence +n13895262 belly +n13896100 bow, arc +n13896217 crescent +n13897198 ellipsoid +n13897528 hypotenuse +n13897996 balance, equilibrium, equipoise, counterbalance +n13898207 conformation +n13898315 symmetry, proportion +n13898645 spheroid, ellipsoid of revolution +n13899735 spherule +n13900287 toroid +n13900422 column, tower, pillar +n13901211 barrel, drum +n13901321 pipe, tube +n13901423 pellet +n13901490 bolus +n13901858 dewdrop +n13902048 ridge +n13902336 rim +n13902793 taper +n13903079 boundary, edge, bound +n13905121 incisure, incisura +n13905275 notch +n13905792 wrinkle, furrow, crease, crinkle, seam, line +n13906484 dermatoglyphic +n13906669 frown line +n13906767 line of life, life line, lifeline +n13906936 line of heart, heart line, love line, mensal line +n13907272 crevice, cranny, crack, fissure, chap +n13908201 cleft +n13908580 roulette, line roulette +n13911045 node +n13912260 tree, tree diagram +n13912540 stemma +n13914141 brachium +n13914265 fork, crotch +n13914608 block, cube +n13915023 ovoid +n13915113 tetrahedron +n13915209 pentahedron +n13915305 hexahedron +n13915999 regular polyhedron, regular convex solid, regular convex polyhedron, Platonic body, Platonic solid, ideal solid +n13916363 polyhedral angle +n13916721 cube, regular hexahedron +n13917690 truncated pyramid +n13917785 truncated cone +n13918274 tail, tail end +n13918387 tongue, knife +n13918717 trapezohedron +n13919547 wedge, wedge shape, cuneus +n13919919 keel +n13926786 place, shoes +n14131950 herpes +n14175579 chlamydia +n14564779 wall +n14582716 micronutrient +n14583400 chyme +n14585392 ragweed pollen +n14592309 pina cloth +n14603798 chlorobenzylidenemalononitrile, CS gas +n14633206 carbon, C, atomic number 6 +n14685296 charcoal, wood coal +n14696793 rock, stone +n14698884 gravel, crushed rock +n14714645 aflatoxin +n14720833 alpha-tocopheral +n14765422 leopard +n14785065 bricks and mortar +n14786943 lagging +n14804958 hydraulic cement, Portland cement +n14810561 choline +n14820180 concrete +n14821852 glass wool +n14844693 soil, dirt +n14853210 high explosive +n14858292 litter +n14867545 fish meal +n14891255 Greek fire +n14899328 culture medium, medium +n14900184 agar, nutrient agar +n14900342 blood agar +n14908027 hip tile, hipped tile +n14909584 hyacinth, jacinth +n14914945 hydroxide ion, hydroxyl ion +n14915184 ice, water ice +n14919819 inositol +n14938389 linoleum, lino +n14941787 lithia water +n14942411 lodestone, loadstone +n14973585 pantothenic acid, pantothen +n14974264 paper +n14975598 papyrus +n14976759 pantile +n14976871 blacktop, blacktopping +n14977188 tarmacadam, tarmac +n14977504 paving, pavement, paving material +n14992287 plaster +n14993378 poison gas +n15005577 ridge tile +n15006012 roughcast +n15019030 sand +n15048888 spackle, spackling compound +n15060326 render +n15060688 wattle and daub +n15062057 stucco +n15067877 tear gas, teargas, lacrimator, lachrymator +n15075141 toilet tissue, toilet paper, bathroom tissue +n15086247 linseed, flaxseed +n15089258 vitamin +n15089472 fat-soluble vitamin +n15089645 water-soluble vitamin +n15089803 vitamin A, antiophthalmic factor, axerophthol, A +n15090065 vitamin A1, retinol +n15090238 vitamin A2, dehydroretinol +n15090742 B-complex vitamin, B complex, vitamin B complex, vitamin B, B vitamin, B +n15091129 vitamin B1, thiamine, thiamin, aneurin, antiberiberi factor +n15091304 vitamin B12, cobalamin, cyanocobalamin, antipernicious anemia factor +n15091473 vitamin B2, vitamin G, riboflavin, lactoflavin, ovoflavin, hepatoflavin +n15091669 vitamin B6, pyridoxine, pyridoxal, pyridoxamine, adermin +n15091846 vitamin Bc, vitamin M, folate, folic acid, folacin, pteroylglutamic acid, pteroylmonoglutamic acid +n15092059 niacin, nicotinic acid +n15092227 vitamin D, calciferol, viosterol, ergocalciferol, cholecalciferol, D +n15092409 vitamin E, tocopherol, E +n15092650 biotin, vitamin H +n15092751 vitamin K, naphthoquinone, antihemorrhagic factor +n15092942 vitamin K1, phylloquinone, phytonadione +n15093049 vitamin K3, menadione +n15093137 vitamin P, bioflavinoid, citrin +n15093298 vitamin C, C, ascorbic acid +n15102359 planking +n15102455 chipboard, hardboard +n15102894 knothole diff --git a/ComputerVision/cnns/tools/imagenet_ofrecord.py b/ComputerVision/cnns/tools/imagenet_ofrecord.py new file mode 100644 index 0000000..232de66 --- /dev/null +++ b/ComputerVision/cnns/tools/imagenet_ofrecord.py @@ -0,0 +1,687 @@ +# Copyright 2016 Google Inc. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Converts ImageNet data to OFRecords file format with Example protos. + +The raw ImageNet data set is expected to reside in JPEG files located in the +following directory structure. + + data_dir/n01440764/ILSVRC2012_val_00000293.JPEG + data_dir/n01440764/ILSVRC2012_val_00000543.JPEG + ... + +where 'n01440764' is the unique synset label associated with +these images. + +The training data set consists of 1000 sub-directories (i.e. labels) +each containing 1200 JPEG images for a total of 1.2M JPEG images. + +The evaluation data set consists of 1000 sub-directories (i.e. labels) +each containing 50 JPEG images for a total of 50K JPEG images. + + train_directory/part-00000 + train_directory/part-00001 + ... + train_directory/part-01023 + +and + + validation_directory/part-00000 + validation_directory/part-00001 + ... + validation_directory/part-01023 + +Each record within the OFRecord file is a +serialized Example proto. The Example proto contains the following fields: + + image/encoded: string containing JPEG encoded image in RGB colorspace + image/height: integer, image height in pixels + image/width: integer, image width in pixels + image/colorspace: string, specifying the colorspace, always 'RGB' + image/channels: integer, specifying the number of channels, always 3 + image/format: string, specifying the format, always 'JPEG' + + image/filename: string containing the basename of the image file + e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG' + image/class/label: integer specifying the index in a classification layer. + The label ranges from [1, 1000] where 0 is not used. + image/class/synset: string specifying the unique ID of the label, + e.g. 'n01440764' + image/class/text: string specifying the human-readable version of the label + e.g. 'red fox, Vulpes vulpes' + + image/object/bbox/xmin: list of integers specifying the 0+ human annotated + bounding boxes + image/object/bbox/xmax: list of integers specifying the 0+ human annotated + bounding boxes + image/object/bbox/ymin: list of integers specifying the 0+ human annotated + bounding boxes + image/object/bbox/ymax: list of integers specifying the 0+ human annotated + bounding boxes + image/object/bbox/label: integer specifying the index in a classification + layer. The label ranges from [1, 1000] where 0 is not used. Note this is + always identical to the image label. + +Note that the length of xmin is identical to the length of xmax, ymin and ymax +for each example. +""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +from datetime import datetime +import os +import random +import sys +import threading +import re +import argparse +import glob + +import numpy as np +import six +import cv2 +import oneflow.core.record.record_pb2 as of_record +import struct + +""" +# train dataset to ofrecord +python3 imagenet_ofrecord.py \ +--train_directory data/imagenet/train \ +--output_directory data/imagenet/ofrecord/train \ +--label_file imagenet_lsvrc_2015_synsets.txt \ +--shards 1024 --num_threads 8 --name train \ +--bounding_box_file imagenet_2012_bounding_boxes.csv \ +--height 224 --width 224 + +# val dataset to ofrecord +python3 imagenet_ofrecord.py \ +--validation_directory data/imagenet/validation \ +--output_directory data/imagenet/ofrecord/validation \ +--label_file imagenet_lsvrc_2015_synsets.txt --name validation \ +--shards 32 --num_threads 4 --name validation \ +--bounding_box_file imagenet_2012_bounding_boxes.csv \ +--height 224 --width 224 +""" + + +arg_parser = argparse.ArgumentParser(description = + 'The python script to resize pics ') + +arg_parser.add_argument('--resize', dest = 'resize', default = False, help = 'resize image') + +arg_parser.add_argument('--name', dest='name', default='train', \ +help = 'data_file_type') + +arg_parser.add_argument('--width', dest='width', default=0, \ +type=int, help='fixed image width') +arg_parser.add_argument('--height', dest='height', default=0, \ +type=int, help='fixed image height') + +arg_parser.add_argument('--train_directory', dest = 'train_directory',\ +default='/tmp/', help='Training data directory') +arg_parser.add_argument('--validation_directory', dest = 'validation_directory', \ +default='/tmp/', help='Validation data directory') +arg_parser.add_argument('--output_directory', dest = 'output_directory', \ +default='/tmp/', help = 'Output data directory') + +arg_parser.add_argument('--shards', dest='shards',\ +default=1024, type=int, help='Number of shards in making OFRecord files.') + + +arg_parser.add_argument('--num_threads', dest='num_threads', default = 8, \ +type=int, help='Number of threads to preprocess the images.') + +# The labels file contains a list of valid labels are held in this file. +# Assumes that the file contains entries as such: +# n01440764 +# n01443537 +# n01484850 +# where each line corresponds to a label expressed as a synset. We map +# each synset contained in the file to an integer (based on the alphabetical +# ordering). See below for details. +arg_parser.add_argument('--label_file', dest = 'labels_file', \ +default = 'imagenet_lsvrc_2015_synsets.txt', help = 'Labels file') + +# This file containing mapping from synset to human-readable label. +# Assumes each line of the file looks like: +# +# n02119247 black fox +# n02119359 silver fox +# n02119477 red fox, Vulpes fulva +# +# where each line corresponds to a unique mapping. Note that each line is +# formatted as \t. +arg_parser.add_argument('--imagenet_metadata_file', dest = 'imagenet_metadata_file', \ +default = 'imagenet_metadata.txt', help = 'ImageNet metadata file') + +# This file is the output of process_bounding_box.py +# Assumes each line of the file looks like: +# +# n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 +# +# where each line corresponds to one bounding box annotation associated +# with an image. Each line can be parsed as: +# +# , , , , +# +# Note that there might exist mulitple bounding box annotations associated +# with an image file. +arg_parser.add_argument('--bounding_box_file', dest = 'bounding_box_file', \ +default = './imagenet_2012_bounding_boxes.csv', help = 'Bounding box file') + +ARGS = arg_parser.parse_args() + +def _int32_feature(value): + """Wrapper for inserting int32 features into Example proto.""" + if not isinstance(value, list): + value = [value] + return of_record.Feature(int32_list=of_record.Int32List(value=value)) + + +def _float_feature(value): + """Wrapper for inserting float features into Example proto.""" + if not isinstance(value, list): + value = [value] + return of_record.Feature(float_list=of_record.FloatList(value=value)) + +def _double_feature(value): + """Wrapper for inserting float features into Example proto.""" + if not isinstance(value, list): + value = [value] + return of_record.Feature(double_list=of_record.DoubleList(value=value)) + + +def _bytes_feature(value): + """Wrapper for inserting bytes features into Example proto.""" + # if isinstance(value, six.string_types): + # value = six.binary_type(value, encoding='utf-8') + return of_record.Feature(bytes_list=of_record.BytesList(value=[value])) + + +def _convert_to_example(filename, image_buffer, label, index, synset, human, bbox, + height, width): + """Build an Example proto for an example. + + Args: + filename: string, path to an image file, e.g., '/path/to/example.JPG' + image_buffer: string, JPEG encoding of RGB image + label: integer, identifier for the ground truth for the network + synset: string, unique WordNet ID specifying the label, e.g., 'n02323233' + human: string, human-readable label, e.g., 'red fox, Vulpes vulpes' + bbox: list of bounding boxes; each box is a list of integers + specifying [xmin, ymin, xmax, ymax]. All boxes are assumed to belong to + the same label as the image label. + height: integer, image height in pixels + width: integer, image width in pixels + Returns: + Example proto + """ + xmin = [] + ymin = [] + xmax = [] + ymax = [] + for b in bbox: + assert len(b) == 4 + # pylint: disable=expression-not-assigned + [l.append(point) for l, point in zip([xmin, ymin, xmax, ymax], b)] + # pylint: enable=expression-not-assigned + + colorspace = 'RGB' + channels = 3 + image_format = 'JPEG' + + example = of_record.OFRecord(feature={ + 'data_id': _bytes_feature(str(index).encode('utf-8')), + 'height': _int32_feature(height), + 'width': _int32_feature(width), + 'colorspace': _bytes_feature(colorspace.encode('utf-8')), + 'channels': _int32_feature(channels), + 'class/label': _int32_feature(label), + 'class/synset': _bytes_feature(synset.encode('utf-8')), + 'class/text': _bytes_feature(human.encode('utf-8')), + 'object/bbox/xmin': _float_feature(xmin), + 'object/bbox/xmax': _float_feature(xmax), + 'object/bbox/ymin': _float_feature(ymin), + 'object/bbox/ymax': _float_feature(ymax), + 'object/bbox/label': _int32_feature([label] * len(xmin)), + 'format': _bytes_feature(image_format.encode('utf-8')), + 'filename': _bytes_feature(os.path.basename(filename).encode('utf-8')), + 'encoded': _bytes_feature(image_buffer)}) + return example + + +class ImageCoder(object): + """Helper class that provides image coding utilities.""" + + def __init__(self,size = None): + self.size = size + + def _resize(self, image_data): + if self.size != None and image_data.shape[:2] != self.size: + return cv2.resize(image_data, self.size) + return image_data + + def image_to_jpeg(self, image_data, resize=ARGS.resize): + # image_data = cv2.imdecode(np.fromstring(image_data, np.uint8), 1) # deprecated, + image_data = cv2.imdecode(np.frombuffer(image_data, np.uint8), 1) + if resize: + image_data = self._resize(image_data) + return cv2.imencode(".jpg", image_data)[1].tobytes(), image_data.shape[0], image_data.shape[1] + +def _process_image(filename, coder): + """Process a single image file. + + Args: + filename: string, path to an image file e.g., '/path/to/example.JPG'. + coder: instance of ImageCoder to provide image coding utils. + Returns: + image_buffer: string, JPEG encoding of RGB image. + height: integer, image height in pixels. + width: integer, image width in pixels. + """ + # Read the image file. + with open(filename, 'rb') as f: + image_data = f.read() + image_data,height, width = coder.image_to_jpeg(image_data) + #print(height, width) + return image_data,height, width + # Decode the RGB JPEG. + # image_data = coder._resize(image_data) + + + +def _process_image_files_batch(coder, thread_index, ranges, name, filenames, + synsets, labels, indexs, humans, bboxes, num_shards): + """Processes and saves list of images as OFRecord in 1 thread. + + Args: + coder: instance of ImageCoder to provide image coding utils. + thread_index: integer, unique batch to run index is within [0, len(ranges)). + ranges: list of pairs of integers specifying ranges of each batches to + analyze in parallel. + name: string, unique identifier specifying the data set + filenames: list of strings; each string is a path to an image file + synsets: list of strings; each string is a unique WordNet ID + labels: list of integer; each integer identifies the ground truth + humans: list of strings; each string is a human-readable label + bboxes: list of bounding boxes for each image. Note that each entry in this + list might contain from 0+ entries corresponding to the number of bounding + box annotations for the image. + num_shards: integer number of shards for this data set. + """ + # Each thread produces N shards where N = int(num_shards / num_threads). + # For instance, if num_shards = 128, and the num_threads = 2, then the first + # thread would produce shards [0, 64). + num_threads = len(ranges) + assert not num_shards % num_threads + num_shards_per_batch = int(num_shards / num_threads) + + shard_ranges = np.linspace(ranges[thread_index][0], + ranges[thread_index][1], + num_shards_per_batch + 1).astype(int) + num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0] + + counter = 0 + + for s in range(num_shards_per_batch): + # Generate a sharded version of the file name, e.g. 'train-00002-of-00010' + shard = thread_index * num_shards_per_batch + s + # output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards) + output_filename = 'part-%.5d' % (shard) + output_file = os.path.join(ARGS.output_directory, output_filename) + + f = open(output_file, 'wb') + shard_counter = 0 + files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int) + for i in files_in_shard: + filename = filenames[i] + label = labels[i] + synset = synsets[i] + human = humans[i] + bbox = bboxes[i] + index = indexs[i] + try: + image_buffer, height, width = _process_image(filename, coder) + except: + print(filename) + continue + + # print('filename, label, index,synset, human, bbox,height, width >>>>>>>>>>>>>>>>>>>>>>>>>>>>\n', + # filename , label, index,synset, human, bbox,height, width) + example = _convert_to_example(filename, image_buffer, label, index, + synset, human, bbox, + height, width) + l = example.ByteSize() + f.write(struct.pack("q", l)) + f.write(example.SerializeToString()) + shard_counter += 1 + counter += 1 + + if not counter % 1000: + print('%s [thread %d]: Processed %d of %d images in thread batch.' % + (datetime.now(), thread_index, counter, num_files_in_thread)) + sys.stdout.flush() + + f.close() + print('%s [thread %d]: Wrote %d images to %s' % + (datetime.now(), thread_index, shard_counter, output_file)) + sys.stdout.flush() + shard_counter = 0 + print('%s [thread %d]: Wrote %d images to %d shards.' % + (datetime.now(), thread_index, counter, num_files_in_thread)) + sys.stdout.flush() + + + +def _process_image_files(name, filenames, synsets, labels, indexs, humans, + bboxes, num_shards): + """Process and save list of images as OFRecord of Example protos. + + Args: + name: string, unique identifier specifying the data set + filenames: list of strings; each string is a path to an image file + synsets: list of strings; each string is a unique WordNet ID + labels: list of integer; each integer identifies the ground truth + humans: list of strings; each string is a human-readable label + bboxes: list of bounding boxes for each image. Note that each entry in this + list might contain from 0+ entries corresponding to the number of bounding + box annotations for the image. + num_shards: integer number of shards for this data set. + """ + assert len(filenames) == len(synsets) + assert len(filenames) == len(labels) + assert len(filenames) == len(humans) + assert len(filenames) == len(bboxes) + + # Break all images into batches with a [ranges[i][0], ranges[i][1]]. + spacing = np.linspace(0, len(filenames), ARGS.num_threads + 1).astype(np.int) + ranges = [] + threads = [] + for i in range(len(spacing) - 1): + ranges.append([spacing[i], spacing[i + 1]]) + # Launch a thread for each batch. + print('Launching %d threads for spacings: %s' % (ARGS.num_threads, ranges)) + sys.stdout.flush() + + + # Create a generic utility for converting all image codings. + if ARGS.width <= 0 or ARGS.height <= 0: + coder = ImageCoder() + else: + coder = ImageCoder((ARGS.width, ARGS.height)) + + threads = [] + for thread_index in range(len(ranges)): + args = (coder, thread_index, ranges, name, filenames, + synsets, labels, indexs, humans, bboxes, num_shards) + t = threading.Thread(target=_process_image_files_batch, args=args) + t.start() + threads.append(t) + + # Wait for all the threads to terminate. + for t in threads: + t.join() + print('%s: Finished writing all %d images in data set.' % + (datetime.now(), len(filenames))) + sys.stdout.flush() + + +def _find_image_files(data_dir, labels_file): + """Build a list of all images files and labels in the data set. + + Args: + data_dir: string, path to the root directory of images. + + Assumes that the ImageNet data set resides in JPEG files located in + the following directory structure. + + data_dir/n01440764/ILSVRC2012_val_00000293.JPEG + data_dir/n01440764/ILSVRC2012_val_00000543.JPEG + + where 'n01440764' is the unique synset label associated with these images. + + labels_file: string, path to the labels file. + + The list of valid labels are held in this file. Assumes that the file + contains entries as such: + n01440764 + n01443537 + n01484850 + where each line corresponds to a label expressed as a synset. We map + each synset contained in the file to an integer (based on the alphabetical + ordering) starting with the integer 1 corresponding to the synset + contained in the first line. + + The reason we start the integer labels at 1 is to reserve label 0 as an + unused background class. + + Returns: + filenames: list of strings; each string is a path to an image file. + synsets: list of strings; each string is a unique WordNet ID. + labels: list of integer; each integer identifies the ground truth. + """ + print('Determining list of input files and labels from %s.' % data_dir) + challenge_synsets = [l.strip() for l in + open(labels_file, 'r').readlines()] + + labels = [] + filenames = [] + synsets = [] + + # Leave label index 0 empty as a background class. + label_index = 0# use to be 1 + + # Construct the list of JPEG files and labels. + for synset in challenge_synsets: + if not os.path.exists(os.path.join(data_dir, synset)): + continue + + jpeg_file_path = '%s/%s/*.JPEG' % (data_dir, synset) + matching_files = glob.glob(jpeg_file_path) + + labels.extend([label_index] * len(matching_files)) + synsets.extend([synset] * len(matching_files)) + filenames.extend(matching_files) + + if not label_index % 100: + print('Finished finding files in %d of %d classes.' % ( + label_index, len(challenge_synsets))) + label_index += 1 + # Shuffle the ordering of all image files in order to guarantee + # random ordering of the images with respect to label in the + # saved OFRecord files. Make the randomization repeatable. + shuffled_index = list(range(len(filenames))) + random.seed(12345) + random.shuffle(shuffled_index) + + filenames = [filenames[i] for i in shuffled_index] + synsets = [synsets[i] for i in shuffled_index] + labels = [labels[i] for i in shuffled_index] + + print('Found %d JPEG files across %d labels inside %s.' % + (len(filenames), len(challenge_synsets), data_dir)) + return filenames, synsets, labels, shuffled_index + + +def _find_human_readable_labels(synsets, synset_to_human): + """Build a list of human-readable labels. + + Args: + synsets: list of strings; each string is a unique WordNet ID. + synset_to_human: dict of synset to human labels, e.g., + 'n02119022' --> 'red fox, Vulpes vulpes' + + Returns: + List of human-readable strings corresponding to each synset. + """ + humans = [] + for s in synsets: + assert s in synset_to_human, ('Failed to find: %s' % s) + humans.append(synset_to_human[s]) + return humans + + +def _find_image_bounding_boxes(filenames, image_to_bboxes): + """Find the bounding boxes for a given image file. + + Args: + filenames: list of strings; each string is a path to an image file. + image_to_bboxes: dictionary mapping image file names to a list of + bounding boxes. This list contains 0+ bounding boxes. + Returns: + List of bounding boxes for each image. Note that each entry in this + list might contain from 0+ entries corresponding to the number of bounding + box annotations for the image. + """ + num_image_bbox = 0 + bboxes = [] + for f in filenames: + basename = os.path.basename(f) + if basename in image_to_bboxes: + bboxes.append(image_to_bboxes[basename]) + num_image_bbox += 1 + else: + bboxes.append([]) + print('Found %d images with bboxes out of %d images' % ( + num_image_bbox, len(filenames))) + return bboxes + + +def _process_dataset(name, directory, num_shards, synset_to_human, + image_to_bboxes): + """Process a complete data set and save it as a OFRecord. + + Args: + name: string, unique identifier specifying the data set. + directory: string, root path to the data set. + num_shards: integer number of shards for this data set. + synset_to_human: dict of synset to human labels, e.g., + 'n02119022' --> 'red fox, Vulpes vulpes' + image_to_bboxes: dictionary mapping image file names to a list of + bounding boxes. This list contains 0+ bounding boxes. + """ + filenames, synsets, labels, indexs = _find_image_files(directory, ARGS.labels_file) + # ./train/n03085013/n03085013_23287.JPEG n03085013 508 652481 + + humans = _find_human_readable_labels(synsets, synset_to_human) + bboxes = _find_image_bounding_boxes(filenames, image_to_bboxes) + + _process_image_files(name, filenames, synsets, labels, indexs, + humans, bboxes, num_shards) + + +def _build_synset_lookup(imagenet_metadata_file): + """Build lookup for synset to human-readable label. + + Args: + imagenet_metadata_file: string, path to file containing mapping from + synset to human-readable label. + + Assumes each line of the file looks like: + + n02119247 black fox + n02119359 silver fox + n02119477 red fox, Vulpes fulva + + where each line corresponds to a unique mapping. Note that each line is + formatted as \t. + + Returns: + Dictionary of synset to human labels, such as: + 'n02119022' --> 'red fox, Vulpes vulpes' + """ + lines = open(imagenet_metadata_file, 'r').readlines() + synset_to_human = {} + for l in lines: + if l: + parts = l.strip().split('\t') + assert len(parts) == 2 + synset = parts[0] + human = parts[1] + synset_to_human[synset] = human + return synset_to_human + + +def _build_bounding_box_lookup(bounding_box_file): + """Build a lookup from image file to bounding boxes. + + Args: + bounding_box_file: string, path to file with bounding boxes annotations. + + Assumes each line of the file looks like: + + n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 + + where each line corresponds to one bounding box annotation associated + with an image. Each line can be parsed as: + + , , , , + + Note that there might exist mulitple bounding box annotations associated + with an image file. This file is the output of process_bounding_boxes.py. + + Returns: + Dictionary mapping image file names to a list of bounding boxes. This list + contains 0+ bounding boxes. + """ + lines = open(bounding_box_file, 'r').readlines() + images_to_bboxes = {} + num_bbox = 0 + num_image = 0 + for l in lines: + if l: + parts = l.split(',') + assert len(parts) == 5, ('Failed to parse: %s' % l) + filename = parts[0] + xmin = float(parts[1]) + ymin = float(parts[2]) + xmax = float(parts[3]) + ymax = float(parts[4]) + box = [xmin, ymin, xmax, ymax] + + if filename not in images_to_bboxes: + images_to_bboxes[filename] = [] + num_image += 1 + images_to_bboxes[filename].append(box) + num_bbox += 1 + + print('Successfully read %d bounding boxes ' + 'across %d images.' % (num_bbox, num_image)) + return images_to_bboxes + + +def main(): + assert not ARGS.shards % ARGS.num_threads, ( + 'Please make the ARGS.num_threads commensurate with ARGS.shards') + + print('Saving results to %s' % ARGS.output_directory) + if not os.path.exists(ARGS.output_directory): + os.makedirs(ARGS.output_directory) + + # Build a map from synset to human-readable label. + synset_to_human = _build_synset_lookup(ARGS.imagenet_metadata_file) + image_to_bboxes = _build_bounding_box_lookup(ARGS.bounding_box_file) + + # Run it! + if ARGS.name == 'validation': + _process_dataset('validation', ARGS.validation_directory, + ARGS.shards, synset_to_human, image_to_bboxes) + else: + _process_dataset('train', ARGS.train_directory, ARGS.shards, + synset_to_human, image_to_bboxes) + + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/ComputerVision/cnns/tools/preprocess_imagenet_validation_data.py b/ComputerVision/cnns/tools/preprocess_imagenet_validation_data.py new file mode 100755 index 0000000..edb3570 --- /dev/null +++ b/ComputerVision/cnns/tools/preprocess_imagenet_validation_data.py @@ -0,0 +1,86 @@ +#!/usr/bin/python +# Copyright 2016 Google Inc. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Process the ImageNet Challenge bounding boxes for OneFlow model training. + +Associate the ImageNet 2012 Challenge validation data set with labels. + +The raw ImageNet validation data set is expected to reside in JPEG files +located in the following directory structure. + + data_dir/ILSVRC2012_val_00000001.JPEG + data_dir/ILSVRC2012_val_00000002.JPEG + ... + data_dir/ILSVRC2012_val_00050000.JPEG + +This script moves the files into a directory structure like such: + data_dir/n01440764/ILSVRC2012_val_00000293.JPEG + data_dir/n01440764/ILSVRC2012_val_00000543.JPEG + ... +where 'n01440764' is the unique synset label associated with +these images. + +Sample usage: + python3 preprocess_imagenet_validation_data.py ../data/imagenet/validation +""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os.path +import sys + +from six.moves import xrange + + +if __name__ == '__main__': + if len(sys.argv) < 2: + print('Invalid usage\n' + 'usage: preprocess_imagenet_validation_data.py ' + '') + sys.exit(-1) + data_dir = sys.argv[1] + validation_labels_file = "imagenet_2012_validation_synset_labels.txt" + +# Read in the 50000 synsets associated with the validation data set. +labels = [l.strip() for l in open(validation_labels_file).readlines()] +unique_labels = set(labels) + +# Make all sub-directories in the validation data dir. +for label in unique_labels: + labeled_data_dir = os.path.join(data_dir, label) + if not os.path.exists(labeled_data_dir): + os.makedirs(labeled_data_dir) + +# Move all of the image to the appropriate sub-directory. +for i in xrange(len(labels)): + basename = 'ILSVRC2012_val_000%.5d.JPEG' % (i + 1) + original_filename = os.path.join(data_dir, basename) + if not os.path.exists(original_filename): + continue + print('Get image: ', original_filename) + new_filename = os.path.join(data_dir, labels[i], basename) + os.rename(original_filename, new_filename) + + +# Delete all empty dir +for label in unique_labels: + labeled_data_dir = os.path.join(data_dir, label) + if not os.path.exists(labeled_data_dir): + continue + if not os.listdir(labeled_data_dir): + os.rmdir(labeled_data_dir) + diff --git a/ComputerVision/cnns/tools/process_bounding_boxes.py b/ComputerVision/cnns/tools/process_bounding_boxes.py new file mode 100755 index 0000000..2d850b4 --- /dev/null +++ b/ComputerVision/cnns/tools/process_bounding_boxes.py @@ -0,0 +1,235 @@ +#!/usr/bin/python +# Copyright 2016 Google Inc. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Process the ImageNet Challenge bounding boxes for TensorFlow model training. +This script is called as +process_bounding_boxes.py [synsets-file] +Where is a directory containing the downloaded and unpacked bounding box +data. If [synsets-file] is supplied, then only the bounding boxes whose +synstes are contained within this file are returned. Note that the +[synsets-file] file contains synset ids, one per line. +The script dumps out a CSV text file in which each line contains an entry. + n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 +The entry can be read as: + , , , , +The bounding box for contains two points (xmin, ymin) and +(xmax, ymax) specifying the lower-left corner and upper-right corner of a +bounding box in *relative* coordinates. +The user supplies a directory where the XML files reside. The directory +structure in the directory is assumed to look like this: +/nXXXXXXXX/nXXXXXXXX_YYYY.xml +Each XML file contains a bounding box annotation. The script: + (1) Parses the XML file and extracts the filename, label and bounding box info. + (2) The bounding box is specified in the XML files as integer (xmin, ymin) and + (xmax, ymax) *relative* to image size displayed to the human annotator. The + size of the image displayed to the human annotator is stored in the XML file + as integer (height, width). + Note that the displayed size will differ from the actual size of the image + downloaded from image-net.org. To make the bounding box annotation useable, + we convert bounding box to floating point numbers relative to displayed + height and width of the image. + Note that each XML file might contain N bounding box annotations. + Note that the points are all clamped at a range of [0.0, 1.0] because some + human annotations extend outside the range of the supplied image. + See details here: http://image-net.org/download-bboxes +(3) By default, the script outputs all valid bounding boxes. If a + [synsets-file] is supplied, only the subset of bounding boxes associated + with those synsets are outputted. Importantly, one can supply a list of + synsets in the ImageNet Challenge and output the list of bounding boxes + associated with the training images of the ILSVRC. + We use these bounding boxes to inform the random distortion of images + supplied to the network. +If you run this script successfully, you will see the following output +to stderr: +> Finished processing 544546 XML files. +> Skipped 0 XML files not in ImageNet Challenge. +> Skipped 0 bounding boxes not in ImageNet Challenge. +> Wrote 615299 bounding boxes from 544546 annotated images. +""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import glob +import os.path +import sys +import xml.etree.ElementTree as ET +from six.moves import xrange # pylint: disable=redefined-builtin + + +class BoundingBox(object): + pass + + +def GetItem(name, root, index=0): + count = 0 + for item in root.iter(name): + if count == index: + return item.text + count += 1 + # Failed to find "index" occurrence of item. + return -1 + + +def GetInt(name, root, index=0): + return int(GetItem(name, root, index)) + + +def FindNumberBoundingBoxes(root): + index = 0 + while True: + if GetInt('xmin', root, index) == -1: + break + index += 1 + return index + + +def ProcessXMLAnnotation(xml_file): + """Process a single XML file containing a bounding box.""" + # pylint: disable=broad-except + try: + tree = ET.parse(xml_file) + except Exception: + print('Failed to parse: ' + xml_file, file=sys.stderr) + return None + # pylint: enable=broad-except + root = tree.getroot() + + num_boxes = FindNumberBoundingBoxes(root) + boxes = [] + + for index in xrange(num_boxes): + box = BoundingBox() + # Grab the 'index' annotation. + box.xmin = GetInt('xmin', root, index) + box.ymin = GetInt('ymin', root, index) + box.xmax = GetInt('xmax', root, index) + box.ymax = GetInt('ymax', root, index) + + box.width = GetInt('width', root) + box.height = GetInt('height', root) + box.filename = GetItem('filename', root) + '.JPEG' + box.label = GetItem('name', root) + + xmin = float(box.xmin) / float(box.width) + xmax = float(box.xmax) / float(box.width) + ymin = float(box.ymin) / float(box.height) + ymax = float(box.ymax) / float(box.height) + + # Some images contain bounding box annotations that + # extend outside of the supplied image. See, e.g. + # n03127925/n03127925_147.xml + # Additionally, for some bounding boxes, the min > max + # or the box is entirely outside of the image. + min_x = min(xmin, xmax) + max_x = max(xmin, xmax) + box.xmin_scaled = min(max(min_x, 0.0), 1.0) + box.xmax_scaled = min(max(max_x, 0.0), 1.0) + + min_y = min(ymin, ymax) + max_y = max(ymin, ymax) + box.ymin_scaled = min(max(min_y, 0.0), 1.0) + box.ymax_scaled = min(max(max_y, 0.0), 1.0) + + boxes.append(box) + + return boxes + +if __name__ == '__main__': + if len(sys.argv) < 2 or len(sys.argv) > 3: + print('Invalid usage\n' + 'usage: process_bounding_boxes.py [synsets-file]', + file=sys.stderr) + sys.exit(-1) + + xml_files = glob.glob(sys.argv[1] + '/*/*.xml') + print('Identified %d XML files in %s' % (len(xml_files), sys.argv[1]), + file=sys.stderr) + + if len(sys.argv) == 3: + labels = set([l.strip() for l in open(sys.argv[2]).readlines()]) + print('Identified %d synset IDs in %s' % (len(labels), sys.argv[2]), + file=sys.stderr) + else: + labels = None + + skipped_boxes = 0 + skipped_files = 0 + saved_boxes = 0 + saved_files = 0 + for file_index, one_file in enumerate(xml_files): + # Example: <...>/n06470073/n00141669_6790.xml + label = os.path.basename(os.path.dirname(one_file)) + + # Determine if the annotation is from an ImageNet Challenge label. + if labels is not None and label not in labels: + skipped_files += 1 + continue + + bboxes = ProcessXMLAnnotation(one_file) + assert bboxes is not None, 'No bounding boxes found in ' + one_file + + found_box = False + for bbox in bboxes: + if labels is not None: + if bbox.label != label: + # Note: There is a slight bug in the bounding box annotation data. + # Many of the dog labels have the human label 'Scottish_deerhound' + # instead of the synset ID 'n02092002' in the bbox.label field. As a + # simple hack to overcome this issue, we only exclude bbox labels + # *which are synset ID's* that do not match original synset label for + # the XML file. + if bbox.label in labels: + skipped_boxes += 1 + continue + + # Guard against improperly specified boxes. + if (bbox.xmin_scaled >= bbox.xmax_scaled or + bbox.ymin_scaled >= bbox.ymax_scaled): + skipped_boxes += 1 + continue + + # Note bbox.filename occasionally contains '%s' in the name. This is + # data set noise that is fixed by just using the basename of the XML file. + image_filename = os.path.splitext(os.path.basename(one_file))[0] + print('%s.JPEG,%.4f,%.4f,%.4f,%.4f' % + (image_filename, + bbox.xmin_scaled, bbox.ymin_scaled, + bbox.xmax_scaled, bbox.ymax_scaled)) + + saved_boxes += 1 + found_box = True + if found_box: + saved_files += 1 + else: + skipped_files += 1 + + if not file_index % 5000: + print('--> processed %d of %d XML files.' % + (file_index + 1, len(xml_files)), + file=sys.stderr) + print('--> skipped %d boxes and %d XML files.' % + (skipped_boxes, skipped_files), file=sys.stderr) + + print('Finished processing %d XML files.' % len(xml_files), file=sys.stderr) + print('Skipped %d XML files not in ImageNet Challenge.' % skipped_files, + file=sys.stderr) + print('Skipped %d bounding boxes not in ImageNet Challenge.' % skipped_boxes, + file=sys.stderr) + print('Wrote %d bounding boxes from %d annotated images.' % + (saved_boxes, saved_files), + file=sys.stderr) + print('Finished.', file=sys.stderr) \ No newline at end of file diff --git a/ComputerVision/cnns/train.sh b/ComputerVision/cnns/train.sh new file mode 100755 index 0000000..6751ab5 --- /dev/null +++ b/ComputerVision/cnns/train.sh @@ -0,0 +1,16 @@ +rm -rf core.* +rm -rf ./output/snapshots/* + + +python3 of_cnn_train_val.py \ + --num_examples=50 \ + --num_val_examples=50 \ + --num_nodes=1 \ + --gpu_num_per_node=1 \ + --model_update="momentum" \ + --learning_rate=0.001 \ + --loss_print_every_n_iter=1 \ + --batch_size_per_device=16 \ + --val_batch_size_per_device=16 \ + --num_epoch=10 \ + --model="resnet50" \ No newline at end of file diff --git a/ComputerVision/cnns/util.py b/ComputerVision/cnns/util.py new file mode 100755 index 0000000..26cc356 --- /dev/null +++ b/ComputerVision/cnns/util.py @@ -0,0 +1,169 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os +import time +import numpy as np +import pandas as pd +from datetime import datetime +import oneflow as flow + + +def InitNodes(args): + if args.num_nodes > 1: + assert args.num_nodes <= len(args.node_ips) + flow.env.ctrl_port(12138) + nodes = [] + for ip in args.node_ips: + addr_dict = {} + addr_dict["addr"] = ip + nodes.append(addr_dict) + + flow.env.machine(nodes) + + +class Snapshot(object): + def __init__(self, model_save_dir, model_load_dir): + self._model_save_dir = model_save_dir + self._check_point = flow.train.CheckPoint() + if model_load_dir: + assert os.path.isdir(model_load_dir) + print("Restoring model from {}.".format(model_load_dir)) + self._check_point.load(model_load_dir) + else: + self._check_point.init() + self.save('initial_model') + print("Init model on demand.") + + def save(self, name): + snapshot_save_path = os.path.join(self._model_save_dir, "snapshot_{}".format(name)) + if not os.path.exists(snapshot_save_path): + os.makedirs(snapshot_save_path) + print("Saving model to {}.".format(snapshot_save_path)) + self._check_point.save(snapshot_save_path) + + +class Summary(object): + def __init__(self, log_dir, config, filename='summary.csv'): + self._filename = filename + self._log_dir = log_dir + if not os.path.exists(log_dir): os.makedirs(log_dir) + self._metrics = pd.DataFrame({"epoch":0, "iter": 0, "legend": "cfg", "note": str(config)}, index=[0]) + + def scalar(self, legend, value, epoch, step=-1): + # TODO: support rank(which device/gpu) + df = pd.DataFrame( + {"epoch": epoch, "iter": step, "legend": legend, "value": value, "rank": 0}, + index=[0]) + self._metrics = pd.concat([self._metrics, df], axis=0, sort=False) + + def save(self): + save_path = os.path.join(self._log_dir, self._filename) + self._metrics.to_csv(save_path, index=False) + + +class StopWatch(object): + def __init__(self): + pass + + def start(self): + self.start_time = time.time() + self.last_split = self.start_time + + def split(self): + now = time.time() + duration = now - self.last_split + self.last_split = now + return duration + + def stop(self): + self.stop_time = time.time() + + def duration(self): + return self.stop_time - self.start_time + + +def match_top_k(predictions, labels, top_k=1): + max_k_preds = np.argpartition(predictions.numpy(), -top_k)[:, -top_k:] + match_array = np.logical_or.reduce(max_k_preds == labels.reshape((-1, 1)), axis=1) + num_matched = match_array.sum() + return num_matched, match_array.shape[0] + + +class Metric(object): + def __init__(self, summary=None, save_summary_steps=-1, desc='train', calculate_batches=-1, + batch_size=256, top_k=5, prediction_key='predictions', label_key='labels', + loss_key=None): + self.summary = summary + self.save_summary = isinstance(self.summary, Summary) + self.save_summary_steps = save_summary_steps + self.desc = desc + self.calculate_batches = calculate_batches + self.top_k = top_k + self.prediction_key = prediction_key + self.label_key = label_key + self.loss_key = loss_key + if loss_key: + self.fmt = "{}: epoch {}, iter {}, loss: {:.6f}, top_1: {:.6f}, top_k: {:.6f}, samples/s: {:.3f}" + else: + self.fmt = "{}: epoch {}, iter {}, top_1: {:.6f}, top_k: {:.6f}, samples/s: {:.3f}" + + self.timer = StopWatch() + self.timer.start() + self._clear() + + def _clear(self): + self.top_1_num_matched = 0 + self.top_k_num_matched = 0 + self.num_samples = 0.0 + + def metric_cb(self, epoch, step): + def callback(outputs): + if step == 0: self._clear() + if self.prediction_key: + num_matched, num_samples = match_top_k(outputs[self.prediction_key], + outputs[self.label_key]) + self.top_1_num_matched += num_matched + num_matched, _ = match_top_k(outputs[self.prediction_key], + outputs[self.label_key], self.top_k) + self.top_k_num_matched += num_matched + else: + num_samples = outputs[self.label_key].shape[0] + + self.num_samples += num_samples + + if (step + 1) % self.calculate_batches == 0: + throughput = self.num_samples / self.timer.split() + if self.prediction_key: + top_1_accuracy = self.top_1_num_matched / self.num_samples + top_k_accuracy = self.top_k_num_matched / self.num_samples + else: + top_1_accuracy = 0.0 + top_k_accuracy = 0.0 + + if self.loss_key: + loss = outputs[self.loss_key].mean() + print(self.fmt.format(self.desc, epoch, step + 1, loss, top_1_accuracy, + top_k_accuracy, throughput)) + if self.save_summary: + self.summary.scalar(self.desc+"_" + self.loss_key, loss, epoch, step) + else: + print(self.fmt.format(self.desc, epoch, step + 1, top_1_accuracy, + top_k_accuracy, throughput)) + + self._clear() + if self.save_summary: + self.summary.scalar(self.desc + "_throughput", throughput, epoch, step) + if self.prediction_key: + self.summary.scalar(self.desc + "_top_1", top_1_accuracy, epoch, step) + self.summary.scalar(self.desc + "_top_{}".format(self.top_k), + top_k_accuracy, epoch, step) + + if self.save_summary: + if (step + 1) % self.save_summary_steps == 0: + self.summary.save() + + return callback + + diff --git a/ComputerVision/cnns/vgg_model.py b/ComputerVision/cnns/vgg_model.py new file mode 100644 index 0000000..8c47daf --- /dev/null +++ b/ComputerVision/cnns/vgg_model.py @@ -0,0 +1,157 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import oneflow as flow +import oneflow.core.operator.op_conf_pb2 as op_conf_util + +def _batch_norm(inputs, name=None, trainable=True): + return flow.layers.batch_normalization( + inputs=inputs, + axis=1, + momentum=0.997, + epsilon=1.001e-5, + center=True, + scale=True, + trainable=trainable, + name=name, + ) + +def _get_regularizer(): + return flow.regularizers.l2(0.00005) + +def conv2d_layer( + name, + input, + filters, + kernel_size=3, + strides=1, + padding="SAME", + data_format="NCHW", + dilation_rate=1, + activation="Relu", + use_bias=True, + weight_initializer=flow.variance_scaling_initializer(2, 'fan_out', 'random_normal', data_format="NCHW"), + bias_initializer=flow.zeros_initializer(), + + weight_regularizer=_get_regularizer(), # weight_decay + bias_regularizer=_get_regularizer(), + + bn=True, +): + weight_shape = (filters, input.shape[1], kernel_size, kernel_size) + weight = flow.get_variable( + name + "_weight", + shape=weight_shape, + dtype=input.dtype, + initializer=weight_initializer, + ) + output = flow.nn.conv2d( + input, weight, strides, padding, data_format, dilation_rate, name=name + ) + if use_bias: + bias = flow.get_variable( + name + "_bias", + shape=(filters,), + dtype=input.dtype, + initializer=bias_initializer, + ) + output = flow.nn.bias_add(output, bias, data_format) + + if activation is not None: + if activation == "Relu": + if bn: + output = _batch_norm(output, name + "_bn") + output = flow.nn.relu(output) + else: + output = flow.nn.relu(output) + else: + raise NotImplementedError + + return output + + +def _conv_block(in_blob, index, filters, conv_times): + conv_block = [] + conv_block.insert(0, in_blob) + for i in range(conv_times): + conv_i = conv2d_layer( + name="conv{}".format(index), + input=conv_block[i], + filters=filters, + kernel_size=3, + strides=1, + bn=True, + ) + + conv_block.append(conv_i) + index += 1 + + return conv_block + +def vgg16bn(images, trainable=True, need_transpose=False, channel_last=False, training=True, wd=1.0/32768): + if need_transpose: + images = flow.transpose(images, name="transpose", perm=[0, 3, 1, 2]) + if channel_last: + # if channel_last=True, then change mode from 'nchw'to 'nhwc' + images = flow.transpose(images, name="transpose", perm=[0,2,3,1]) + conv1 = _conv_block(images, 0, 64, 2) + pool1 = flow.nn.max_pool2d(conv1[-1], 2, 2, "VALID", "NCHW", name="pool1") + + conv2 = _conv_block(pool1, 2, 128, 2) + pool2 = flow.nn.max_pool2d(conv2[-1], 2, 2, "VALID", "NCHW", name="pool2") + + conv3 = _conv_block(pool2, 4, 256, 3) + pool3 = flow.nn.max_pool2d(conv3[-1], 2, 2, "VALID", "NCHW", name="pool3") + + conv4 = _conv_block(pool3, 7, 512, 3) + pool4 = flow.nn.max_pool2d(conv4[-1], 2, 2, "VALID", "NCHW", name="pool4") + + conv5 = _conv_block(pool4, 10, 512, 3) + pool5 = flow.nn.max_pool2d(conv5[-1], 2, 2, "VALID", "NCHW", name="pool5") + + def _get_kernel_initializer(): + return flow.random_normal_initializer(stddev=0.01) + + def _get_bias_initializer(): + return flow.zeros_initializer() + + pool5 = flow.reshape(pool5, [pool5.shape[0], -1]) + fc6 = flow.layers.dense( + inputs=pool5, + units=4096, + activation=flow.nn.relu, + use_bias=True, + kernel_initializer=_get_kernel_initializer(), + bias_initializer=_get_bias_initializer(), + kernel_regularizer=_get_regularizer(), # weght_decay + bias_regularizer=_get_regularizer(), + trainable=trainable, + name="dense0", + ) + + fc6 = flow.nn.dropout(fc6, rate=0.5) + + fc7 = flow.layers.dense( + inputs=fc6, + units=4096, + activation=flow.nn.relu, + use_bias=True, + kernel_initializer=_get_kernel_initializer(), + bias_initializer=_get_bias_initializer(), + trainable=trainable, + name="dense1", + ) + fc7 = flow.nn.dropout(fc7, rate=0.5) + + fc8 = flow.layers.dense( + inputs=fc7, + units=1000, + use_bias=True, + kernel_initializer=_get_kernel_initializer(), + bias_initializer=_get_bias_initializer(), + trainable=trainable, + name="dense2", + ) + + return fc8 diff --git a/NaturalLanguageProcessing/BERT/README.md b/NaturalLanguageProcessing/BERT/README.md new file mode 100644 index 0000000..f4ba1ba --- /dev/null +++ b/NaturalLanguageProcessing/BERT/README.md @@ -0,0 +1,275 @@ +BERT - Bidirectional Encoder Representations from Transformers + +OneFlow实现了BERT的预训练模型(Pre-training)和两个NLP下游任务(SQuAD,Classifier)。主要参考了[谷歌](https://github.com/google-research/bert)和[英伟达](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT)的实现。 + +本文的主要目的是介绍如何快速的使用OneFlow BERT相关脚本。 + +## 数据集下载 +在使用这些脚本进行训练、精调或预测之前,请参考下面链接下载相应的数据集,数据集的格式是OFRecord。 +- Pretrain数据集:完整的预训练数据集是由[Wikipedia](https://dumps.wikimedia.org/)和[BookCorpus](http://yknzhu.wixsite.com/mbweb)两部分数据制作而成,制作成OFRecord之后大概200G。我们提供了一个[样本数据集点击下载](https://oneflow-public.oss-cn-beijing.aliyuncs.com/datasets/wiki_ofrecord_seq_len_128_example.tgz),仅供测试使用; +- SQuAD数据集:包括完整数据集和相关工具,[下载地址](https://oneflow-public.oss-cn-beijing.aliyuncs.com/datasets/squad_dataset_tools.tgz),解压目录为`squad_dataset_tools`,包括如下文件: +``` +squad_dataset_tools +├── ofrecord +├── dev-v1.1.json +├── dev-v2.0.json +├── train-v1.1.json +├── train-v2.0.json +├── evaluate-v1.1.py +├── evaluate-v2.0.py +``` +- GLUE(CoLA, MRPC):完整数据集[下载地址](https://oneflow-public.oss-cn-beijing.aliyuncs.com/datasets/glue_ofrecord.tgz),解压目录为`glue_ofrecord`,包括如下文件: +```shell +glue_ofrecord +├── CoLA +│   ├── eval +│   │   └── eval.of_record-0 +│   ├── test +│   │   └── predict.of_record-0 +│   └── train +│   └── train.of_record-0 +└── MRPC + ├── eval + │   └── eval.of_record-0 + ├── test + │   └── predict.of_record-0 + └── train + └── train.of_record-0 +``` + +如果感兴趣,可以通过[google-research BERT](https://github.com/google-research/bert)提供的工具脚本,制作tfrecord格式的数据集。再根据[加载与准备OFRecord数据集](https://github.com/Oneflow-Inc/oneflow-documentation/blob/master/cn/docs/extended_topics/how_to_make_ofdataset.md)中的方法,将TFRecord数据转为OFRecord数据集使用。 + +## 用BERT进行预训练,Pre-training with BERT +用BERT进行预训练,除了预训练相关的python脚本之外,您只需要准备好数据集,并设置`data_dir`为该数据集的目录,下面就是预训练python脚本运行的示例脚本: +```bash +DATA_DIR=/path/to/wiki_ofrecord_seq_len_128_example +python3 run_pretraining.py \ + --gpu_num_per_node=1 \ + --learning_rate=1e-4 \ + --batch_size_per_device=64 \ + --iter_num=1000000 \ + --loss_print_every_n_iter=20 \ + --seq_length=128 \ + --max_predictions_per_seq=20 \ + --num_hidden_layers=12 \ + --num_attention_heads=12 \ + --max_position_embeddings=512 \ + --type_vocab_size=2 \ + --vocab_size=30522 \ + --attention_probs_dropout_prob=0.1 \ + --hidden_dropout_prob=0.1 \ + --hidden_size_per_head=64 \ + --data_part_num=1 \ + --data_dir=$DATA_DIR \ + --log_dir=./log \ + --model_save_every_n_iter=10000 \ + --save_last_snapshot=True \ + --model_save_dir=./snapshots +``` +修改上面脚本中的`DATA_DIR`后运行,屏幕上首先会打印出参数列表,接着如果能看到类似下面的输出,就说明BERT预训练任务已经成功的开始运行了。 +``` +step: 19, total_loss: 11.138, mlm_loss: 10.422, nsp_loss: 0.716, throughput: 81.638 +step: 39, total_loss: 10.903, mlm_loss: 10.216, nsp_loss: 0.687, throughput: 121.513 +step: 59, total_loss: 10.615, mlm_loss: 9.922, nsp_loss: 0.692, throughput: 104.633 +step: 79, total_loss: 10.347, mlm_loss: 9.655, nsp_loss: 0.692, throughput: 118.725 +``` +需要注意的是`model_save_dir`指明的是保存模型的目录,如果该目录存在,运行会报错,请先删除该目录,OneFlow在运行时会自动创建目录。 + +还需要注意的一个参数是:`data_part_num`。这个参数指明了数据集中数据文件(part)的个数。我们提供的示例数据集只有一个part,所以设置为1,如果您有多个part的数据,请根据实际的数量配置。 + +## Using BERT in SQuAD +### Step 0: 输入和模型准备 +如果需要完整的精调SQuAD网络,需要准备下面一些文件: +1. 数据集 +2. 预训练好的BERT模型 +3. 词表文件`vocab.txt` +4. SQuAD官方的评估工具,`evaluate-v1.1.py`或`evaluate-v2.0.py` +5. SQuAD原始评估数据集文件,`dev-v1.1.json`或`dev-v2.0.json` + +其中1、4、5我们提供了下载链接,4和5在SQuAD官网也能够下载。 +下面介绍如何准备OneFlow需要的预训练好的模型,词表文件也包含在其中的下载文件里。 +#### 将Tensorflow的BERT模型转为OneFlow模型格式 +如果想直接使用已经训练好的pretrained模型做fine-tune任务(如以下将展示的SQuAD),可以考虑直接从[google-research BERT](https://github.com/google-research/bert)页面下载已经训练好的BERT模型。 + +再利用我们提供的`convert_tf_ckpt_to_of.py`脚本,将其转为OneFlow模型格式。转换过程如下: + +首先,下载并解压某个版本的BERT模型,如`uncased_L-12_H-768_A-12`。 +```shell +wget https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip +unzip uncased_L-12_H-768_A-12.zip -d uncased_L-12_H-768_A-12 +``` + +然后,运行以下命令: +```shell +cd uncased_L-12_H-768_A-12/ +cat > checkpoint < max_query_length: + query_tokens = query_tokens[0:max_query_length] + + tok_to_orig_index = [] + orig_to_tok_index = [] + all_doc_tokens = [] + for (i, token) in enumerate(example.doc_tokens): + orig_to_tok_index.append(len(all_doc_tokens)) + sub_tokens = tokenizer.tokenize(token) + for sub_token in sub_tokens: + tok_to_orig_index.append(i) + all_doc_tokens.append(sub_token) + + tok_start_position = None + tok_end_position = None + if is_training and example.is_impossible: + tok_start_position = -1 + tok_end_position = -1 + if is_training and not example.is_impossible: + tok_start_position = orig_to_tok_index[example.start_position] + if example.end_position < len(example.doc_tokens) - 1: + tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 + else: + tok_end_position = len(all_doc_tokens) - 1 + (tok_start_position, tok_end_position) = _improve_answer_span( + all_doc_tokens, tok_start_position, tok_end_position, tokenizer, + example.orig_answer_text) + + # The -3 accounts for [CLS], [SEP] and [SEP] + max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 + + # We can have documents that are longer than the maximum sequence length. + # To deal with this we do a sliding window approach, where we take chunks + # of the up to our max length with a stride of `doc_stride`. + _DocSpan = collections.namedtuple( # pylint: disable=invalid-name + "DocSpan", ["start", "length"]) + doc_spans = [] + start_offset = 0 + while start_offset < len(all_doc_tokens): + length = len(all_doc_tokens) - start_offset + if length > max_tokens_for_doc: + length = max_tokens_for_doc + doc_spans.append(_DocSpan(start=start_offset, length=length)) + if start_offset + length == len(all_doc_tokens): + break + start_offset += min(length, doc_stride) + + for (doc_span_index, doc_span) in enumerate(doc_spans): + tokens = [] + token_to_orig_map = {} + token_is_max_context = {} + segment_ids = [] + tokens.append("[CLS]") + segment_ids.append(0) + for token in query_tokens: + tokens.append(token) + segment_ids.append(0) + tokens.append("[SEP]") + segment_ids.append(0) + + for i in range(doc_span.length): + split_token_index = doc_span.start + i + token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] + + is_max_context = _check_is_max_context(doc_spans, doc_span_index, + split_token_index) + token_is_max_context[len(tokens)] = is_max_context + tokens.append(all_doc_tokens[split_token_index]) + segment_ids.append(1) + tokens.append("[SEP]") + segment_ids.append(1) + + input_ids = tokenizer.convert_tokens_to_ids(tokens) + + # The mask has 1 for real tokens and 0 for padding tokens. Only real + # tokens are attended to. + input_mask = [1] * len(input_ids) + + # Zero-pad up to the sequence length. + while len(input_ids) < max_seq_length: + input_ids.append(0) + input_mask.append(0) + segment_ids.append(0) + + assert len(input_ids) == max_seq_length + assert len(input_mask) == max_seq_length + assert len(segment_ids) == max_seq_length + + start_position = None + end_position = None + if is_training and not example.is_impossible: + # For training, if our document chunk does not contain an annotation + # we throw it out, since there is nothing to predict. + doc_start = doc_span.start + doc_end = doc_span.start + doc_span.length - 1 + out_of_span = False + if not (tok_start_position >= doc_start and + tok_end_position <= doc_end): + out_of_span = True + if out_of_span: + start_position = 0 + end_position = 0 + else: + doc_offset = len(query_tokens) + 2 + start_position = tok_start_position - doc_start + doc_offset + end_position = tok_end_position - doc_start + doc_offset + + if is_training and example.is_impossible: + start_position = 0 + end_position = 0 + + if 0:#example_index < 20: + print("*** Example ***") + print("unique_id: %s" % (unique_id)) + print("example_index: %s" % (example_index)) + print("doc_span_index: %s" % (doc_span_index)) + print("tokens: %s" % " ".join( + [tokenization.printable_text(x) for x in tokens])) + print("token_to_orig_map: %s" % " ".join( + ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) + print("token_is_max_context: %s" % " ".join([ + "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) + ])) + print("input_ids: %s" % " ".join([str(x) for x in input_ids])) + print( + "input_mask: %s" % " ".join([str(x) for x in input_mask])) + print( + "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) + if is_training and example.is_impossible: + print("impossible example") + if is_training and not example.is_impossible: + answer_text = " ".join(tokens[start_position:(end_position + 1)]) + print("start_position: %d" % (start_position)) + print("end_position: %d" % (end_position)) + print( + "answer: %s" % (tokenization.printable_text(answer_text))) + + feature = InputFeatures( + unique_id=unique_id, + example_index=example_index, + doc_span_index=doc_span_index, + tokens=tokens, + token_to_orig_map=token_to_orig_map, + token_is_max_context=token_is_max_context, + input_ids=input_ids, + input_mask=input_mask, + segment_ids=segment_ids, + start_position=start_position, + end_position=end_position, + is_impossible=example.is_impossible) + + # Run callback + output_fn(feature) + + unique_id += 1 + + +def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, + orig_answer_text): + """Returns tokenized answer spans that better match the annotated answer.""" + + # The SQuAD annotations are character based. We first project them to + # whitespace-tokenized words. But then after WordPiece tokenization, we can + # often find a "better match". For example: + # + # Question: What year was John Smith born? + # Context: The leader was John Smith (1895-1943). + # Answer: 1895 + # + # The original whitespace-tokenized answer will be "(1895-1943).". However + # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match + # the exact answer, 1895. + # + # However, this is not always possible. Consider the following: + # + # Question: What country is the top exporter of electornics? + # Context: The Japanese electronics industry is the lagest in the world. + # Answer: Japan + # + # In this case, the annotator chose "Japan" as a character sub-span of + # the word "Japanese". Since our WordPiece tokenizer does not split + # "Japanese", we just use "Japanese" as the annotation. This is fairly rare + # in SQuAD, but does happen. + tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) + + for new_start in range(input_start, input_end + 1): + for new_end in range(input_end, new_start - 1, -1): + text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) + if text_span == tok_answer_text: + return (new_start, new_end) + + return (input_start, input_end) + + +def _check_is_max_context(doc_spans, cur_span_index, position): + """Check if this is the 'max context' doc span for the token.""" + + # Because of the sliding window approach taken to scoring documents, a single + # token can appear in multiple documents. E.g. + # Doc: the man went to the store and bought a gallon of milk + # Span A: the man went to the + # Span B: to the store and bought + # Span C: and bought a gallon of + # ... + # + # Now the word 'bought' will have two scores from spans B and C. We only + # want to consider the score with "maximum context", which we define as + # the *minimum* of its left and right context (the *sum* of left and + # right context will always be the same, of course). + # + # In the example the maximum context for 'bought' would be span C since + # it has 1 left context and 3 right context, while span B has 4 left context + # and 0 right context. + best_score = None + best_span_index = None + for (span_index, doc_span) in enumerate(doc_spans): + end = doc_span.start + doc_span.length - 1 + if position < doc_span.start: + continue + if position > end: + continue + num_left_context = position - doc_span.start + num_right_context = end - position + score = min(num_left_context, num_right_context) + 0.01 * doc_span.length + if best_score is None or score > best_score: + best_score = score + best_span_index = span_index + + return cur_span_index == best_span_index + + +RawResult = collections.namedtuple("RawResult", + ["unique_id", "start_logits", "end_logits"]) + + +def write_predictions(all_examples, all_features, all_results, n_best_size, + max_answer_length, do_lower_case, output_prediction_file, + output_nbest_file, output_null_log_odds_file, FLAGS): + """Write final predictions to the json file and log-odds of null if needed.""" + print("Writing predictions to: %s" % (output_prediction_file)) + print("Writing nbest to: %s" % (output_nbest_file)) + + example_index_to_features = collections.defaultdict(list) + for feature in all_features: + example_index_to_features[feature.example_index].append(feature) + + unique_id_to_result = {} + for result in all_results: + unique_id_to_result[result.unique_id] = result + + _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name + "PrelimPrediction", + ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) + + all_predictions = collections.OrderedDict() + all_nbest_json = collections.OrderedDict() + scores_diff_json = collections.OrderedDict() + + for (example_index, example) in enumerate(all_examples): + features = example_index_to_features[example_index] + + prelim_predictions = [] + # keep track of the minimum score of null start+end of position 0 + score_null = 1000000 # large and positive + min_null_feature_index = 0 # the paragraph slice with min mull score + null_start_logit = 0 # the start logit at the slice with min null score + null_end_logit = 0 # the end logit at the slice with min null score + for (feature_index, feature) in enumerate(features): + try: + result = unique_id_to_result[feature.unique_id] + except KeyError as error: + print(error) + continue + + start_indexes = _get_best_indexes(result.start_logits, n_best_size) + end_indexes = _get_best_indexes(result.end_logits, n_best_size) + # if we could have irrelevant answers, get the min score of irrelevant + if FLAGS.version_2_with_negative: + feature_null_score = result.start_logits[0] + result.end_logits[0] + if feature_null_score < score_null: + score_null = feature_null_score + min_null_feature_index = feature_index + null_start_logit = result.start_logits[0] + null_end_logit = result.end_logits[0] + for start_index in start_indexes: + for end_index in end_indexes: + # We could hypothetically create invalid predictions, e.g., predict + # that the start of the span is in the question. We throw out all + # invalid predictions. + if start_index >= len(feature.tokens): + continue + if end_index >= len(feature.tokens): + continue + if start_index not in feature.token_to_orig_map: + continue + if end_index not in feature.token_to_orig_map: + continue + if not feature.token_is_max_context.get(start_index, False): + continue + if end_index < start_index: + continue + length = end_index - start_index + 1 + if length > max_answer_length: + continue + prelim_predictions.append( + _PrelimPrediction( + feature_index=feature_index, + start_index=start_index, + end_index=end_index, + start_logit=result.start_logits[start_index], + end_logit=result.end_logits[end_index])) + + if FLAGS.version_2_with_negative: + prelim_predictions.append( + _PrelimPrediction( + feature_index=min_null_feature_index, + start_index=0, + end_index=0, + start_logit=null_start_logit, + end_logit=null_end_logit)) + prelim_predictions = sorted( + prelim_predictions, + key=lambda x: (x.start_logit + x.end_logit), + reverse=True) + + _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name + "NbestPrediction", ["text", "start_logit", "end_logit"]) + + seen_predictions = {} + nbest = [] + for pred in prelim_predictions: + if len(nbest) >= n_best_size: + break + feature = features[pred.feature_index] + if pred.start_index > 0: # this is a non-null prediction + tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] + orig_doc_start = feature.token_to_orig_map[pred.start_index] + orig_doc_end = feature.token_to_orig_map[pred.end_index] + orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] + tok_text = " ".join(tok_tokens) + + # De-tokenize WordPieces that have been split off. + tok_text = tok_text.replace(" ##", "") + tok_text = tok_text.replace("##", "") + + # Clean whitespace + tok_text = tok_text.strip() + tok_text = " ".join(tok_text.split()) + orig_text = " ".join(orig_tokens) + + final_text = get_final_text(tok_text, orig_text, do_lower_case, FLAGS) + if final_text in seen_predictions: + continue + + seen_predictions[final_text] = True + else: + final_text = "" + seen_predictions[final_text] = True + + nbest.append( + _NbestPrediction( + text=final_text, + start_logit=pred.start_logit, + end_logit=pred.end_logit)) + + # if we didn't inlude the empty option in the n-best, inlcude it + if FLAGS.version_2_with_negative: + if "" not in seen_predictions: + nbest.append( + _NbestPrediction( + text="", start_logit=null_start_logit, + end_logit=null_end_logit)) + # In very rare edge cases we could have no valid predictions. So we + # just create a nonce prediction in this case to avoid failure. + if not nbest: + nbest.append( + _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) + + assert len(nbest) >= 1 + + total_scores = [] + best_non_null_entry = None + for entry in nbest: + total_scores.append(entry.start_logit + entry.end_logit) + if not best_non_null_entry: + if entry.text: + best_non_null_entry = entry + + probs = _compute_softmax(total_scores) + + nbest_json = [] + for (i, entry) in enumerate(nbest): + output = collections.OrderedDict() + output["text"] = entry.text + output["probability"] = probs[i] + output["start_logit"] = entry.start_logit + output["end_logit"] = entry.end_logit + nbest_json.append(output) + + assert len(nbest_json) >= 1 + + if not FLAGS.version_2_with_negative: + all_predictions[example.qas_id] = nbest_json[0]["text"] + else: + # predict "" iff the null score - the score of best non-null > threshold + score_diff = score_null - best_non_null_entry.start_logit - ( + best_non_null_entry.end_logit) + scores_diff_json[example.qas_id] = score_diff + if score_diff > FLAGS.null_score_diff_threshold: + all_predictions[example.qas_id] = "" + else: + all_predictions[example.qas_id] = best_non_null_entry.text + + all_nbest_json[example.qas_id] = nbest_json + + #with tf.gfile.GFile(output_prediction_file, "w") as writer: + with open(output_prediction_file, "w") as writer: + writer.write(json.dumps(all_predictions, indent=4) + "\n") + + + +def get_final_text(pred_text, orig_text, do_lower_case, FLAGS): + """Project the tokenized prediction back to the original text.""" + + # When we created the data, we kept track of the alignment between original + # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So + # now `orig_text` contains the span of our original text corresponding to the + # span that we predicted. + # + # However, `orig_text` may contain extra characters that we don't want in + # our prediction. + # + # For example, let's say: + # pred_text = steve smith + # orig_text = Steve Smith's + # + # We don't want to return `orig_text` because it contains the extra "'s". + # + # We don't want to return `pred_text` because it's already been normalized + # (the SQuAD eval script also does punctuation stripping/lower casing but + # our tokenizer does additional normalization like stripping accent + # characters). + # + # What we really want to return is "Steve Smith". + # + # Therefore, we have to apply a semi-complicated alignment heruistic between + # `pred_text` and `orig_text` to get a character-to-charcter alignment. This + # can fail in certain cases in which case we just return `orig_text`. + + def _strip_spaces(text): + ns_chars = [] + ns_to_s_map = collections.OrderedDict() + for (i, c) in enumerate(text): + if c == " ": + continue + ns_to_s_map[len(ns_chars)] = i + ns_chars.append(c) + ns_text = "".join(ns_chars) + return (ns_text, ns_to_s_map) + + # We first tokenize `orig_text`, strip whitespace from the result + # and `pred_text`, and check if they are the same length. If they are + # NOT the same length, the heuristic has failed. If they are the same + # length, we assume the characters are one-to-one aligned. + tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) + + tok_text = " ".join(tokenizer.tokenize(orig_text)) + + start_position = tok_text.find(pred_text) + if start_position == -1: + if FLAGS.verbose_logging: + print( + "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) + return orig_text + end_position = start_position + len(pred_text) - 1 + + (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) + (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) + + if len(orig_ns_text) != len(tok_ns_text): + if FLAGS.verbose_logging: + print("Length not equal after stripping spaces: '%s' vs '%s'", + orig_ns_text, tok_ns_text) + return orig_text + + # We then project the characters in `pred_text` back to `orig_text` using + # the character-to-character alignment. + tok_s_to_ns_map = {} + for (i, tok_index) in six.iteritems(tok_ns_to_s_map): + tok_s_to_ns_map[tok_index] = i + + orig_start_position = None + if start_position in tok_s_to_ns_map: + ns_start_position = tok_s_to_ns_map[start_position] + if ns_start_position in orig_ns_to_s_map: + orig_start_position = orig_ns_to_s_map[ns_start_position] + + if orig_start_position is None: + if FLAGS.verbose_logging: + print("Couldn't map start position") + return orig_text + + orig_end_position = None + if end_position in tok_s_to_ns_map: + ns_end_position = tok_s_to_ns_map[end_position] + if ns_end_position in orig_ns_to_s_map: + orig_end_position = orig_ns_to_s_map[ns_end_position] + + if orig_end_position is None: + if FLAGS.verbose_logging: + print("Couldn't map end position") + return orig_text + + output_text = orig_text[orig_start_position:(orig_end_position + 1)] + return output_text + + +def _get_best_indexes(logits, n_best_size): + """Get the n-best logits from a list.""" + index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) + + best_indexes = [] + for i in range(len(index_and_score)): + if i >= n_best_size: + break + best_indexes.append(index_and_score[i][0]) + return best_indexes + + +def _compute_softmax(scores): + """Compute softmax probability over raw logits.""" + if not scores: + return [] + + max_score = None + for score in scores: + if max_score is None or score > max_score: + max_score = score + + exp_scores = [] + total_sum = 0.0 + for score in scores: + x = math.exp(score - max_score) + exp_scores.append(x) + total_sum += x + + probs = [] + for score in exp_scores: + probs.append(score / total_sum) + return probs + + +def gen_eval_predict_json(FLAGS, all_results): + os.makedirs(FLAGS.output_dir, exist_ok=True) + + tokenizer = tokenization.FullTokenizer( + vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) + + eval_examples = read_squad_examples( + input_file=FLAGS.predict_file, is_training=False) + + # eval_writer = FeatureWriter( + # filename=os.path.join(FLAGS.output_dir, "eval.tf_record"), + # is_training=False) + eval_features = [] + + def append_feature(feature): + eval_features.append(feature) + # eval_writer.process_feature(feature) + + convert_examples_to_features( + examples=eval_examples, + tokenizer=tokenizer, + max_seq_length=FLAGS.max_seq_length, + doc_stride=FLAGS.doc_stride, + max_query_length=FLAGS.max_query_length, + is_training=False, + output_fn=append_feature) + #eval_writer.close() + + print("***** Running predictions *****") + print(" Num orig examples = %d", len(eval_examples)) + print(" Num split examples = %d", len(eval_features)) + print(" Batch size = %d", FLAGS.predict_batch_size) + + output_prediction_file = os.path.join(FLAGS.output_dir, "predictions.json") + output_nbest_file = os.path.join(FLAGS.output_dir, "nbest_predictions.json") + output_null_log_odds_file = os.path.join(FLAGS.output_dir, "null_odds.json") + + write_predictions(eval_examples, eval_features, all_results, + FLAGS.n_best_size, FLAGS.max_answer_length, + FLAGS.do_lower_case, output_prediction_file, + output_nbest_file, output_null_log_odds_file, FLAGS) + diff --git a/NaturalLanguageProcessing/BERT/tokenization.py b/NaturalLanguageProcessing/BERT/tokenization.py new file mode 100644 index 0000000..58fcc3f --- /dev/null +++ b/NaturalLanguageProcessing/BERT/tokenization.py @@ -0,0 +1,400 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import collections +import re +import unicodedata +import six +#import tensorflow as tf + + +def validate_case_matches_checkpoint(do_lower_case, init_checkpoint): + """Checks whether the casing config is consistent with the checkpoint name.""" + + # The casing has to be passed in by the user and there is no explicit check + # as to whether it matches the checkpoint. The casing information probably + # should have been stored in the bert_config.json file, but it's not, so + # we have to heuristically detect it to validate. + + if not init_checkpoint: + return + + m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint) + if m is None: + return + + model_name = m.group(1) + + lower_models = [ + "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12", + "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12" + ] + + cased_models = [ + "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16", + "multi_cased_L-12_H-768_A-12" + ] + + is_bad_config = False + if model_name in lower_models and not do_lower_case: + is_bad_config = True + actual_flag = "False" + case_name = "lowercased" + opposite_flag = "True" + + if model_name in cased_models and do_lower_case: + is_bad_config = True + actual_flag = "True" + case_name = "cased" + opposite_flag = "False" + + if is_bad_config: + raise ValueError( + "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. " + "However, `%s` seems to be a %s model, so you " + "should pass in `--do_lower_case=%s` so that the fine-tuning matches " + "how the model was pre-training. If this error is wrong, please " + "just comment out this check." % (actual_flag, init_checkpoint, + model_name, case_name, opposite_flag)) + + +def convert_to_unicode(text): + """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" + if six.PY3: + if isinstance(text, str): + return text + elif isinstance(text, bytes): + return text.decode("utf-8", "ignore") + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + elif six.PY2: + if isinstance(text, str): + return text.decode("utf-8", "ignore") + elif isinstance(text, unicode): + return text + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + else: + raise ValueError("Not running on Python2 or Python 3?") + + +def printable_text(text): + """Returns text encoded in a way suitable for print or `tf.logging`.""" + + # These functions want `str` for both Python2 and Python3, but in one case + # it's a Unicode string and in the other it's a byte string. + if six.PY3: + if isinstance(text, str): + return text + elif isinstance(text, bytes): + return text.decode("utf-8", "ignore") + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + elif six.PY2: + if isinstance(text, str): + return text + elif isinstance(text, unicode): + return text.encode("utf-8") + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + else: + raise ValueError("Not running on Python2 or Python 3?") + + +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + index = 0 + #with tf.gfile.GFile(vocab_file, "r") as reader: + with open(vocab_file, "r") as reader: + while True: + token = convert_to_unicode(reader.readline()) + if not token: + break + token = token.strip() + vocab[token] = index + index += 1 + return vocab + + +def convert_by_vocab(vocab, items): + """Converts a sequence of [tokens|ids] using the vocab.""" + output = [] + for item in items: + output.append(vocab[item]) + return output + + +def convert_tokens_to_ids(vocab, tokens): + return convert_by_vocab(vocab, tokens) + + +def convert_ids_to_tokens(inv_vocab, ids): + return convert_by_vocab(inv_vocab, ids) + + +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class FullTokenizer(object): + """Runs end-to-end tokenziation.""" + + def __init__(self, vocab_file, do_lower_case=True): + self.vocab = load_vocab(vocab_file) + self.inv_vocab = {v: k for k, v in self.vocab.items()} + self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) + + def tokenize(self, text): + split_tokens = [] + for token in self.basic_tokenizer.tokenize(text): + for sub_token in self.wordpiece_tokenizer.tokenize(token): + split_tokens.append(sub_token) + + return split_tokens + + def convert_tokens_to_ids(self, tokens): + return convert_by_vocab(self.vocab, tokens) + + def convert_ids_to_tokens(self, ids): + return convert_by_vocab(self.inv_vocab, ids) + + +class BasicTokenizer(object): + """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" + + def __init__(self, do_lower_case=True): + """Constructs a BasicTokenizer. + + Args: + do_lower_case: Whether to lower case the input. + """ + self.do_lower_case = do_lower_case + + def tokenize(self, text): + """Tokenizes a piece of text.""" + text = convert_to_unicode(text) + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + text = self._tokenize_chinese_chars(text) + + orig_tokens = whitespace_tokenize(text) + split_tokens = [] + for token in orig_tokens: + if self.do_lower_case: + token = token.lower() + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text): + """Splits punctuation on a piece of text.""" + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ((cp >= 0x4E00 and cp <= 0x9FFF) or # + (cp >= 0x3400 and cp <= 0x4DBF) or # + (cp >= 0x20000 and cp <= 0x2A6DF) or # + (cp >= 0x2A700 and cp <= 0x2B73F) or # + (cp >= 0x2B740 and cp <= 0x2B81F) or # + (cp >= 0x2B820 and cp <= 0x2CEAF) or + (cp >= 0xF900 and cp <= 0xFAFF) or # + (cp >= 0x2F800 and cp <= 0x2FA1F)): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xfffd or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +class WordpieceTokenizer(object): + """Runs WordPiece tokenziation.""" + + def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """Tokenizes a piece of text into its word pieces. + + This uses a greedy longest-match-first algorithm to perform tokenization + using the given vocabulary. + + For example: + input = "unaffable" + output = ["un", "##aff", "##able"] + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through `BasicTokenizer. + + Returns: + A list of wordpiece tokens. + """ + + text = convert_to_unicode(text) + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens + + +def _is_whitespace(char): + """Checks whether `chars` is a whitespace character.""" + # \t, \n, and \r are technically contorl characters but we treat them + # as whitespace since they are generally considered as such. + if char == " " or char == "\t" or char == "\n" or char == "\r": + return True + cat = unicodedata.category(char) + if cat == "Zs": + return True + return False + + +def _is_control(char): + """Checks whether `chars` is a control character.""" + # These are technically control characters but we count them as whitespace + # characters. + if char == "\t" or char == "\n" or char == "\r": + return False + cat = unicodedata.category(char) + if cat.startswith("C"): + return True + return False + + +def _is_punctuation(char): + """Checks whether `chars` is a punctuation character.""" + cp = ord(char) + # We treat all non-letter/number ASCII as punctuation. + # Characters such as "^", "$", and "`" are not in the Unicode + # Punctuation class but we treat them as punctuation anyways, for + # consistency. + if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or + (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): + return True + cat = unicodedata.category(char) + if cat.startswith("P"): + return True + return False diff --git a/NaturalLanguageProcessing/BERT/util.py b/NaturalLanguageProcessing/BERT/util.py new file mode 100755 index 0000000..2a936b4 --- /dev/null +++ b/NaturalLanguageProcessing/BERT/util.py @@ -0,0 +1,159 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os +import time +import numpy as np +from collections import OrderedDict +import pandas as pd +from datetime import datetime +import oneflow as flow + + +def InitNodes(args): + if args.num_nodes > 1: + assert args.num_nodes <= len(args.node_ips) + #flow.env.ctrl_port(12138) + nodes = [] + for ip in args.node_ips: + addr_dict = {} + addr_dict["addr"] = ip + nodes.append(addr_dict) + + flow.env.machine(nodes) + + +class Snapshot(object): + def __init__(self, model_save_dir, model_load_dir): + self._model_save_dir = model_save_dir + self._check_point = flow.train.CheckPoint() + if model_load_dir: + assert os.path.isdir(model_load_dir) + print("Restoring model from {}.".format(model_load_dir)) + self._check_point.load(model_load_dir) + else: + self._check_point.init() + self.save('initial_model') + print("Init model on demand.") + + def save(self, name): + snapshot_save_path = os.path.join(self._model_save_dir, "snapshot_{}".format(name)) + if not os.path.exists(snapshot_save_path): + os.makedirs(snapshot_save_path) + print("Saving model to {}.".format(snapshot_save_path)) + self._check_point.save(snapshot_save_path) + + +class Summary(object): + def __init__(self, log_dir, config, filename='summary.csv'): + self._filename = filename + self._log_dir = log_dir + if not os.path.exists(log_dir): os.makedirs(log_dir) + self._metrics = pd.DataFrame({"legend": "cfg", "value": str(config)}, index=[0]) + + def scalar(self, legend, iter, value, **kwargs): + kwargs['legend'] = legend + kwargs['iter'] = int(iter) + kwargs['value'] = value + df = pd.DataFrame(kwargs, index=[0]) + self._metrics = pd.concat([self._metrics, df], axis=0, sort=False) + self.save() + + def save(self): + save_path = os.path.join(self._log_dir, self._filename) + self._metrics.to_csv(save_path, index=False) + + +class StopWatch(object): + def __init__(self): + pass + + def start(self): + self.start_time = time.time() + self.last_split = self.start_time + + def split(self): + now = time.time() + duration = now - self.last_split + self.last_split = now + return duration + + def stop(self): + self.stop_time = time.time() + + def duration(self): + return self.stop_time - self.start_time + + +class Metric(object): + def __init__(self, summary=None, desc='train', print_steps=-1, batch_size=256, keys=[]): + r"""accumulate and calculate metric + + Args: + summary: A `Summary` object to write in. + desc: `str` general description of the metric to show + print_steps: `Int` print metrics every nth steps + batch_size: `Int` batch size per step + keys: keys in callback outputs + Returns: + """ + self.summary = summary + self.save_summary = isinstance(self.summary, Summary) + self.desc = desc + self.print_steps = print_steps + assert batch_size > 0 + self.batch_size = batch_size + + assert isinstance(keys, (list, tuple)) + self.keys = keys + self.metric_dict = OrderedDict() + self.metric_dict['step'] = 0 + + self.timer = StopWatch() + self.timer.start() + self._clear() + + def _clear(self): + for key in self.keys: + self.metric_dict[key] = 0.0 + self.metric_dict['throughput'] = 0.0 + self.num_samples = 0.0 + + def update_and_save(self, key, value, step, **kwargs): + self.metric_dict[key] = value + if self.save_summary: + self.summary.scalar(self.desc + "_" + key, step, value, **kwargs) + + def metric_cb(self, step=0, **kwargs): + def callback(outputs): + if step == 0: self._clear() + + for key in self.keys: + self.metric_dict[key] += outputs[key].sum() + + self.num_samples += self.batch_size + + if (step + 1) % self.print_steps == 0: + self.metric_dict['step'] = step + for k, v in kwargs.items(): + self.metric_dict[k] = v + throughput = self.num_samples / self.timer.split() + self.update_and_save('throughput', throughput, step) + for key in self.keys: + value = self.metric_dict[key] / self.num_samples + self.update_and_save(key, value, step, **kwargs) + print(', '.join(('{}: {}' if type(v) is int else '{}: {:.3f}').format(k, v) \ + for k, v in self.metric_dict.items())) + self._clear() + + return callback + +def CreateOptimizer(args): + warmup_batches = int(args.iter_num * args.warmup_proportion) + lr_warmup = flow.optimizer.warmup.linear(warmup_batches, 0) + lr_scheduler = flow.optimizer.PolynomialSchduler(args.learning_rate, args.iter_num, 0.0, + warmup=lr_warmup) + return flow.optimizer.AdamW(lr_scheduler, epsilon=1e-6, weight_decay=args.weight_decay_rate, + weight_decay_excludes=["bias", "LayerNorm", "layer_norm"], + grad_clipping=flow.optimizer.grad_clipping.by_global_norm(1.0)) diff --git a/README.md b/README.md old mode 100755 new mode 100644 index 8693b19..5bd9524 --- a/README.md +++ b/README.md @@ -1,21 +1,167 @@ # OneFlow Deep Learning Benchmarks -## Introduction -This repository provides OneFlow deep learning benchmark examples for CV, CTR and NLP, and more models are on the way and will be provided here when ready. -## [Convolutional Networks](https://github.com/Oneflow-Inc/OneFlow-Benchmark/tree/of_develop_py3/Classification/cnns) for Computer Vision Classification -- [ResNet-50](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/of_develop_py3/Classification/cnns/resnet_model.py) -- [ResNeXt-50-32*4d](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/of_develop_py3/Classification/cnns/resnext_model.py) -- [VGG-16](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/of_develop_py3/Classification/cnns/vgg_model.py) -- [Inception-V3](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/of_develop_py3/Classification/cnns/inception_model.py) -- [AlexNet](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/of_develop_py3/Classification/cnns/alexnet_model.py) -- [MobileNet-V2](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/of_develop_py3/Classification/cnns/mobilenet_v2_model.py) +This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. -## [Wide Deep Learning](https://github.com/Oneflow-Inc/OneFlow-Benchmark/tree/of_develop_py3/ClickThroughRate/WideDeepLearning) for Click-Through-Rate (CTR) Recommender Systems -- [OneFlow-WDL](https://github.com/Oneflow-Inc/OneFlow-Benchmark/tree/of_develop_py3/ClickThroughRate/WideDeepLearning) +It aims to demonstrate the best practices for modeling so that OneFLow users can take full advantage of OneFlow for their research and product development. -## [BERT](https://github.com/Oneflow-Inc/OneFlow-Benchmark/tree/of_develop_py3/LanguageModeling/BERT) for Nature Language Process -- [BERT Pretrain for Language Modeling](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/of_develop_py3/LanguageModeling/BERT/run_pretraining.py) -- [SQuAD for Question Answering](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/of_develop_py3/LanguageModeling/BERT/run_squad.py) -- [CoLA and MRPC of GLUE](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/of_develop_py3/LanguageModeling/BERT/run_classifier.py) + More models are coming! +## Contents + +### Models and Implementations + +- ### Computer Vision + + - #### Image Classification + +| Model | Reference (Paper) | +| ------------------------------------------------------------ | ------------------------------------------------------------ | +| [ResNet-50](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/resnet_model.py) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) | +| [ResNeXt](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/resnext_model.py) | [Aggregated_Residual_Transformations_CVPR_2017](https://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf) | +| [VGG-16](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/vgg_model.py) | [VGG16 – Convolutional Network for Classification and Detection](https://neurohive.io/en/popular-networks/vgg16/) | +| [Inception-V3](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/inception_model.py) | [Inception V3 Deep Convolutional Architecture For Classifying Acute Myeloid/Lymphoblastic Leukemia](https://software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html) | +| [AlexNet](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/alexnet_model.py) | [ImageNet Classification with Deep Convolutional Neural Networks](http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf) | +| [MobileNet-V2](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/mobilenet_v2_model.py) | [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) | + +- ## Natural Language Processing + +| Model | Reference (Paper) | +| ------------------------------------------------------------ | ------------------------------------------------------------ | +| [BERT (Bidirectional Encoder Representations from Transformers)](https://github.com/OneFlow/models/blob/master/official/nlp/bert) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) | +| [SQuAD for Question Answering](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/LanguageModeling/BERT/run_squad.py) | [BERT-SQuAD](https://github.com/kamalkraj/BERT-SQuAD) | +| [CoLA and MRPC of GLUE](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/LanguageModeling/BERT/run_classifier.py) | [GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding](https://www.aclweb.org/anthology/W18-5446.pdf) | + +- ## Click-Through-Rate + +| Model | Reference (Paper) | +| ------------------------------------------------------------ | ------------------------------------------------------------ | +| [OneFlow-WDL](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/ClickThroughRate/WideDeepLearning) | [**Wide & Deep Learning for Recommender Systems**](https://arxiv.org/pdf/1606.07792.pdf) | + + + +## Get started with the models + +- The models in the master branch are developed using OneFlow [], and they target the OneFlow [nightly binaries](https://github.com/OneFlow/OneFlow#installation) built from the [master branch of OneFlow](https://github.com/OneFlow/OneFlow/tree/master). + +- The stable versions targeting releases of OneFlow are available as tagged branches or [downloadable releases](https://github.com/OneFlow/models/releases). + + + +Please follow the below steps before running models in this repository. + +### Requirements + +- Python >= 3.5 + +- CUDA Toolkit Linux x86_64 Driver + + | OneFlow | CUDA Driver Version | + | ------------- | ------------------- | + | oneflow_cu102 | >= 440.33 | + | oneflow_cu101 | >= 418.39 | + | oneflow_cu100 | >= 410.48 | + | oneflow_cu92 | >= 396.26 | + | oneflow_cu91 | >= 390.46 | + | oneflow_cu90 | >= 384.81 | + + - CUDA runtime is statically linked into OneFlow. OneFlow will work on a minimum supported driver, and any driver beyond. For more information, please refer to [CUDA compatibility documentation](https://docs.nvidia.com/deploy/cuda-compatibility/index.html). + - Support for latest stable version of CUDA will be prioritized. Please upgrade your Nvidia driver to version 440.33 or above and install `oneflow_cu102` if possible. + - We are sorry that due to limits on bandwidth and other resources, we could only guarantee the efficiency and stability of `oneflow_cu102`. We will improve it ASAP. + +### Installation + +#### Method 1: Install with pip package + +- To install latest release of OneFlow with CUDA support: + + ``` + python3 -m pip install --find-links https://oneflow-inc.github.io/nightly oneflow_cu102 --user + ``` + +- To install OneFlow with legacy CUDA support, run one of: + + ``` + python3 -m pip install --find-links https://oneflow-inc.github.io/nightly oneflow_cu101 --user + python3 -m pip install --find-links https://oneflow-inc.github.io/nightly oneflow_cu100 --user + python3 -m pip install --find-links https://oneflow-inc.github.io/nightly oneflow_cu92 --user + python3 -m pip install --find-links https://oneflow-inc.github.io/nightly oneflow_cu91 --user + python3 -m pip install --find-links https://oneflow-inc.github.io/nightly oneflow_cu90 --user + ``` + +- If you are in China, you could run this to have pip download packages from domestic mirror of pypi: + + ``` + python3 -m pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple + ``` + + For more information on this, please refer to [pypi 镜像使用帮助](https://mirror.tuna.tsinghua.edu.cn/help/pypi/) + +- CPU-only OneFlow is not available for now. + +- Releases are built with G++/GCC 4.8.5, cuDNN 7 and MKL 2020.0-088. + +#### Method 2: Build from source + +1. System Requirements to Build OneFlow + +- Please use a newer version of CMake to build OneFlow. You could download cmake release from [here](https://github.com/Kitware/CMake/releases/download/v3.14.0/cmake-3.14.0-Linux-x86_64.tar.gz). + +- Please make sure you have G++ and GCC >= 4.8.5 installed. Clang is not supported for now. + +- To install dependencies, run: + + ``` + yum-config-manager --add-repo https://yum.repos.intel.com/setup/intelproducts.repo && \ + rpm --import https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS-2019.PUB && \ + yum update -y && yum install -y epel-release && \ + yum install -y intel-mkl-64bit-2020.0-088 nasm swig rdma-core-devel + ``` + + On CentOS, if you have MKL installed, please update the environment variable: + + ``` + export LD_LIBRARY_PATH=/opt/intel/lib/intel64_lin:/opt/intel/mkl/lib/intel64:$LD_LIBRARY_PATH + ``` + + If you don't want to build OneFlow with MKL, you could install OpenBLAS: + + ``` + sudo yum -y install openblas-devel + ``` + +2. Clone Source Code + +Clone source code and submodules (faster, recommended) + +``` +git clone https://github.com/Oneflow-Inc/oneflow +cd oneflow +git submodule update --init --recursive +``` + +Or you could also clone the repo with `--recursive` flag to clone third_party submodules together + +``` +git clone https://github.com/Oneflow-Inc/oneflow --recursive +``` + +3. Build and Install OneFlow + +``` +cd build +cmake .. +make -j$(nproc) +make pip_install +``` + +- For pure CPU build, please add this CMake flag `-DBUILD_CUDA=OFF`. + +### More models to come + +[new models] + +## Contributions + +- How to add new models? +- How to add new framework tests? From bef3355e0845dc03df3582aa693fb392dde8f855 Mon Sep 17 00:00:00 2001 From: nlqq Date: Wed, 12 Aug 2020 10:33:41 +0800 Subject: [PATCH 02/20] rm ole files --- Classification/cnns/README.md | 656 - Classification/cnns/alexnet_model.py | 136 - Classification/cnns/config.py | 124 - .../cnns/data/ILSVRC2012_val_00020287.JPEG | Bin 120706 -> 0 bytes Classification/cnns/data/fish.jpg | Bin 81087 -> 0 bytes Classification/cnns/data/tiger.jpg | Bin 14622 -> 0 bytes .../cnns/docs/resnet50_lr_schedule.png | Bin 22779 -> 0 bytes .../cnns/docs/resnet50_validation_acuracy.png | Bin 97580 -> 0 bytes Classification/cnns/evaluate.sh | 19 - .../cnns/imagenet1000_clsidx_to_labels.py | 1002 - Classification/cnns/inception_model.py | 549 - Classification/cnns/inference.sh | 9 - Classification/cnns/job_function_util.py | 30 - Classification/cnns/mobilenet_v2_model.py | 231 - Classification/cnns/of_cnn_evaluate.py | 76 - Classification/cnns/of_cnn_inference.py | 66 - Classification/cnns/of_cnn_train_val.py | 119 - Classification/cnns/ofrecord_util.py | 145 - Classification/cnns/optimizer_util.py | 104 - Classification/cnns/resnet_model.py | 161 - Classification/cnns/resnet_to_onnx.py | 100 - Classification/cnns/resnext_model.py | 248 - Classification/cnns/tools/README.md | 207 - Classification/cnns/tools/extract_trainval.sh | 37 - ...imagenet_2012_validation_synset_labels.txt | 50000 ---------------- .../tools/imagenet_lsvrc_2015_synsets.txt | 1000 - .../cnns/tools/imagenet_metadata.txt | 21842 ------- .../cnns/tools/imagenet_ofrecord.py | 687 - .../preprocess_imagenet_validation_data.py | 86 - .../cnns/tools/process_bounding_boxes.py | 235 - Classification/cnns/train.sh | 16 - Classification/cnns/util.py | 169 - Classification/cnns/vgg_model.py | 157 - LanguageModeling/BERT/README.md | 275 - LanguageModeling/BERT/bert.py | 324 - LanguageModeling/BERT/classifier.py | 101 - LanguageModeling/BERT/config.py | 90 - .../BERT/convert_tf_ckpt_to_of.py | 78 - LanguageModeling/BERT/pretrain.py | 174 - LanguageModeling/BERT/run_classifier.py | 195 - LanguageModeling/BERT/run_pretraining.py | 103 - LanguageModeling/BERT/run_squad.py | 205 - LanguageModeling/BERT/squad.py | 56 - LanguageModeling/BERT/squad_util.py | 789 - LanguageModeling/BERT/tokenization.py | 400 - LanguageModeling/BERT/util.py | 159 - 46 files changed, 81160 deletions(-) delete mode 100644 Classification/cnns/README.md delete mode 100644 Classification/cnns/alexnet_model.py delete mode 100755 Classification/cnns/config.py delete mode 100644 Classification/cnns/data/ILSVRC2012_val_00020287.JPEG delete mode 100644 Classification/cnns/data/fish.jpg delete mode 100755 Classification/cnns/data/tiger.jpg delete mode 100644 Classification/cnns/docs/resnet50_lr_schedule.png delete mode 100644 Classification/cnns/docs/resnet50_validation_acuracy.png delete mode 100644 Classification/cnns/evaluate.sh delete mode 100755 Classification/cnns/imagenet1000_clsidx_to_labels.py delete mode 100644 Classification/cnns/inception_model.py delete mode 100755 Classification/cnns/inference.sh delete mode 100755 Classification/cnns/job_function_util.py delete mode 100644 Classification/cnns/mobilenet_v2_model.py delete mode 100644 Classification/cnns/of_cnn_evaluate.py delete mode 100755 Classification/cnns/of_cnn_inference.py delete mode 100755 Classification/cnns/of_cnn_train_val.py delete mode 100755 Classification/cnns/ofrecord_util.py delete mode 100755 Classification/cnns/optimizer_util.py delete mode 100755 Classification/cnns/resnet_model.py delete mode 100644 Classification/cnns/resnet_to_onnx.py delete mode 100755 Classification/cnns/resnext_model.py delete mode 100644 Classification/cnns/tools/README.md delete mode 100755 Classification/cnns/tools/extract_trainval.sh delete mode 100755 Classification/cnns/tools/imagenet_2012_validation_synset_labels.txt delete mode 100644 Classification/cnns/tools/imagenet_lsvrc_2015_synsets.txt delete mode 100755 Classification/cnns/tools/imagenet_metadata.txt delete mode 100644 Classification/cnns/tools/imagenet_ofrecord.py delete mode 100755 Classification/cnns/tools/preprocess_imagenet_validation_data.py delete mode 100755 Classification/cnns/tools/process_bounding_boxes.py delete mode 100755 Classification/cnns/train.sh delete mode 100755 Classification/cnns/util.py delete mode 100644 Classification/cnns/vgg_model.py delete mode 100644 LanguageModeling/BERT/README.md delete mode 100755 LanguageModeling/BERT/bert.py delete mode 100644 LanguageModeling/BERT/classifier.py delete mode 100644 LanguageModeling/BERT/config.py delete mode 100644 LanguageModeling/BERT/convert_tf_ckpt_to_of.py delete mode 100755 LanguageModeling/BERT/pretrain.py delete mode 100644 LanguageModeling/BERT/run_classifier.py delete mode 100755 LanguageModeling/BERT/run_pretraining.py delete mode 100755 LanguageModeling/BERT/run_squad.py delete mode 100755 LanguageModeling/BERT/squad.py delete mode 100644 LanguageModeling/BERT/squad_util.py delete mode 100644 LanguageModeling/BERT/tokenization.py delete mode 100755 LanguageModeling/BERT/util.py diff --git a/Classification/cnns/README.md b/Classification/cnns/README.md deleted file mode 100644 index 3a5f7aa..0000000 --- a/Classification/cnns/README.md +++ /dev/null @@ -1,656 +0,0 @@ -## 简介 Introduction - -## 图像分类与CNN - -**图像分类** 是指将图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法,是计算机视觉中其他任务,比如目标检测、语义分割、人脸识别等高层视觉任务的基础。 - -ImageNet大规模视觉识别挑战赛(ILSVRC),常称为ImageNet竞赛,包括图像分类、物体定位,以及物体检测等任务,是推动计算机视觉领域发展最重要的比赛之一。 - -在2012年的ImageNet竞赛中,深度卷积网络AlexNet横空出世。以超出第二名10%以上的top-5准确率,勇夺ImageNet2012比赛的冠军。从此,以 CNN(卷积神经网络) 为代表的深度学习方法开始在计算机视觉领域的应用开始大放异彩,更多的更深的CNN网络被提出,比如ImageNet2014比赛的冠军VGGNet, ImageNet2015比赛的冠军ResNet。 - -OneFlow-Benchmark下的cnn仓库目前已支持 **Alexnet** 、 **VGG16** 、 **Resnet50** **InceptionV3** **MobileNetV2**等经典的cnn模型,未来会陆续添加新的cnn模型。这些cnn模型共享一套训练、验证和推理代码,您只需要指定模型,即可使用一套代码完成这些cnn网络模型的训练、测试和验证。 - - - -## 快速开始 Quick Start - -### 准备工作 Requirements - -别担心,使用OneFlow非常容易,只要准备好下面三步,即可开始OneFlow的图像识别之旅。 - -- 安装OneFlow。 - - - 直接通过pip安装:`pip install oneflow` - - 安装轻量版:`pip install --find-links https://oneflow-inc.github.io/nightly oneflow` - - 源码编译等其他安装方式:参考[OneFlow项目主页](https://github.com/Oneflow-Inc/oneflow) - -- 克隆/下载[OneFlow-Benchmark](https://github.com/Oneflow-Inc/OneFlow-Benchmark)仓库。 - - `git clone git@github.com:Oneflow-Inc/OneFlow-Benchmark.git` - -- 准备数据集(可选) - - - 直接使用synthetic虚拟合成数据集 - - 下载我们制作的Imagenet(2012)[迷你数据集](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/mini-imagenet.zip) 解压放入data目录 - - 或者:制作完整OFRecord格式的ImageNet数据集(见下文进阶部分) - - -我们提供了通用脚本:train.sh和inference.sh,它们适用于此仓库下所有cnn网络模型的训练、验证、推理。您可以通过设置参数使用不同的模型、数据集来训练/推理。 - - **关于模型的说明:** - -> 默认情况下,我们使用resnet50,您也可以通过改动脚本中的--model参数指定其他模型,如:--model="resnet50",--model="vgg"等。 - -**关于数据集的说明:** - - -> 1)为了使读者快速上手,我们提供了synthetic虚拟合成数据,“合成数据”是指不通过磁盘加载数据,而是直接在内存中生成一些随机数据,作为神经网络的数据输入源。 -> -> 2)同时,我们提供了一个小的迷你示例数据集。直接下载解压至cnn项目的root目录,即可快速开始训练。读者可以在熟悉了流程后,参考数据集制作部分,制作完整的Imagenet2012数据集。 -> -> 3)使用OFRcord格式的数据集可以提高数据加载效率(但这非必须,参考[数据输入](https://github.com/Oneflow-Inc/oneflow-documentation/docs/basics_topics/data_input.md),oneflow支持直接加载numpy数据)。 - - - -### 预训练模型 - -#### Resnet50 - -[resnet50_v1.5_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_v15_of_best_model_val_top1_77318.tgz ) (validation accuracy: 77.318% top1,93.622% top5 ) - -#### VGG16 - -[vgg16_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/vgg16_of_best_model_val_top1_721.zip) (validation accuracy: 72.1% top1,92.7% top5 ) - -#### Alexnet - -[alexnet_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/alexnet_of_best_model_val_top1_54762.zip) (validation accuracy: 54.762% top1,78.1914% top5 ) - - - -### 预测/推理 - -下载预训练模型:[resnet50_v1.5_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_v15_of_best_model_val_top1_77318.tgz ) ,解压后放入当前目录,然后执行: - -```shell -sh inference.sh -``` - -脚本执行后,将对下面的图片进行分类: - - -
- -
- **输出:** - -```shell -data/fish.jpg -0.87059885 goldfish, Carassius auratus -``` - -可见,模型判断这张图片有87.05%的概率是金鱼goldfish - - - -### 训练&验证 - -训练同样很简单,只需执行: - -```shell -sh train.sh -``` - -即可开始模型的训练,您将看到如下输出: - -```shell -Loading synthetic data. -Loading synthetic data. -Saving model to ./output/snapshots/model_save-20200723124215/snapshot_initial_model. -Init model on demand. -train: epoch 0, iter 10, loss: 7.197278, top_1: 0.000000, top_k: 0.000000, samples/s: 61.569 -train: epoch 0, iter 20, loss: 6.177684, top_1: 0.000000, top_k: 0.000000, samples/s: 122.555 -Saving model to ./output/snapshots/model_save-20200723124215/snapshot_epoch_0. -train: epoch 0, iter 30, loss: 3.988656, top_1: 0.525000, top_k: 0.812500, samples/s: 120.337 -train: epoch 1, iter 10, loss: 1.185733, top_1: 1.000000, top_k: 1.000000, samples/s: 80.705 -train: epoch 1, iter 20, loss: 1.042017, top_1: 1.000000, top_k: 1.000000, samples/s: 118.478 -Saving model to ./output/snapshots/model_save-20200723124215/snapshot_epoch_1. -... -``` - -> 为了方便运行演示,我们默认使用synthetic虚拟合成数据集,使您可以快速看到模型运行的效果 - -同样,你也可以使用[迷你示例数据集](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/mini-imagenet.zip),下载解压后放入cnn项目的root目录即可,然后修改训练脚本如下: - -```shell -rm -rf core.* -rm -rf ./output/snapshots/* - -DATA_ROOT=data/mini-imagenet/ofrecord - -python3 of_cnn_train_val.py \ - --train_data_dir=$DATA_ROOT/train \ - --num_examples=50 \ - --train_data_part_num=1 \ - --val_data_dir=$DATA_ROOT/validation \ - --num_val_examples=50 \ - --val_data_part_num=1 \ - --num_nodes=1 \ - --gpu_num_per_node=1 \ - --model_update="momentum" \ - --learning_rate=0.001 \ - --loss_print_every_n_iter=1 \ - --batch_size_per_device=16 \ - --val_batch_size_per_device=10 \ - --num_epoch=10 \ - --model="resnet50" -``` - -运行此脚本,将在仅有50张金鱼图片的迷你imagenet数据集上,训练出一个分类模型,利用它,你可以对金鱼图片进行分类。 - -不要着急,如果您需要在完整的ImageNet2012数据集上进行训练,请看下文【ResNet】部分的介绍。其中,我们将重点介绍其中的经典网络:Resnet50,以及如何利用OneFlow在完整的Imagenet2012数据集上训练Resnet50,并提供 **对标Nvidia的Mxnet版** 实现。 - - - -## ResNet - -[ResNet](https://arxiv.org/abs/1512.03385) 是2015年ImageNet竞赛的冠军。目前,ResNet相对对于传统的机器学习分类算法而言,效果已经相当的出色,之后大量的检测,分割,识别等任务也都在ResNet基础上完成。 - -[OneFlow-Benchmark](https://github.com/Oneflow-Inc/OneFlow-Benchmark)仓库中,我们提供了ResNet50 v1.5的OneFlow实现。该实现对标了[英伟达的Mxnet版实现](https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5)。我们在ImageNet-2012数据集上训练90轮后,验证集上的准确率能够达到:77.318%(top1),93.622%(top5) 更详细的网络参数对齐工作,见下面【进阶 Advanced】部分。 - - -![resnet50_validation_acuracy](docs/resnet50_validation_acuracy.png) - - -**关于ResNet50 v1.5的说明:** - -> ResNet50 v1.5是原始[ResNet50 v1](https://arxiv.org/abs/1512.03385)的一个改进版本,相对于原始的模型,精度稍有提升 (~0.5% top1),详细说明参见[这里](https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5) 。 - - - -准备好亲自动手,复现上面的结果了吗?那么接下来,立马开始OneFlow的图像识别之旅吧! - -下面,本文就以上面的ResNet50 为例,一步步展现如何使用OneFlow进行网络的训练和预测。 - -### 训练和验证(Train & Validation) - -训练开始前,需要提前准备好数据集,具体见上面的【准备工作 Requirements】部分,准备好之后就可以进行下面的步骤了。 - -先切换到代码目录: - -```shell -cd OneFlow-Benchmark/Classification/cnns -``` - -在train.sh脚本设置训练参数(以下为示例,具体参数可自行设置): - -```shell -rm -rf core.* -rm -rf ./output/snapshots/* - -DATA_ROOT=/dataset/ImageNet/ofrecord - -python3 of_cnn_train_val.py \ - --train_data_dir=$DATA_ROOT/train \ - --train_data_part_num=256 \ - --val_data_dir=$DATA_ROOT/validation \ - --val_data_part_num=256 \ - --num_nodes=1 \ - --gpu_num_per_node=4 \ - --model_update="momentum" \ - --learning_rate=0.256 \ - --loss_print_every_n_iter=10 \ - --batch_size_per_device=64 \ - --val_batch_size_per_device=50 \ - --num_epoch=90 \ - --model="resnet50" -``` - -**参数说明**(部分) - -- --train_data_dir Imagenet2012训练集文件夹路径(ofrecord格式) - -- --train_data_part_num 训练所用的ofrecord分片数量 - -- --val_data_dir Imagenet2012验证集文件夹路径(ofrecord格式) - -- --val_data_part_num 验证所用的ofrecord分片数量 - -- --num_nodes=1 训练使用的机器节点数 - -- --gpu_num_per_node 每个机器节点使用的gpu数量 - -- --model_update="momentum" 学习率更新方式 - -- --learning_rate=0.256 初始学习率 - -- --loss_print_every_n_iter 打印loss间隔 - -- --batch_size_per_device 训练时每个gpu的batch大小 - -- --val_batch_size_per_device 验证时每个gpu的batch大小 - -- --num_epoch 迭代总轮数 - -- --model 使用的模型,可选:resnet50、vgg、alexnet、inceptionv3 - -然后在命令行执行: - -```shell -sh train.sh -``` - -若在屏幕上不断打印出类似下面的信息,则表明训练过程正常运行: - -``` -train: epoch 0, iter 200, loss: 7.024337, top_1: 0.000957, top_k: 0.005313, samples/s: 964.656 -train: epoch 0, iter 400, loss: 6.849526, top_1: 0.003594, top_k: 0.012969, samples/s: 991.474 -... -train: epoch 0, iter 5000, loss: 5.557458, top_1: 0.064590, top_k: 0.174648, samples/s: 935.390 -Saving model to ./output/snapshots/model_save-20200629223546/snapshot_epoch_0. -validation: epoch 0, iter 100, top_1: 0.074620, top_k: 0.194120, samples/s: 2014.683 -``` - -可以看到: - -- 随着训练的进行,loss不断下降,而训练的top_1/top_k准确率不断提高(其中top_k默认为top_5准确率,可自定义)。 -- 每个epoch结束时,会做另外两个工作:1)执行一次验证,并打印出验证集上的top_1/top_k准确率;2)保存模型。 -- samples/s 用来指示训练/验证的执行速度,即每秒钟能处理的图片数量。 - -**复现实验的说明:** - -> Q1. 多久能够完成训练? -> -> 在GPU环境下,使用单机8卡(NVIDIA TITAN V),完成90个epoch的完整训练过程,大概需要15小时。 -> -> Q2. 在ImageNet-2012数据集上训练90个epoch后,准确率能达到多少? -> -> 训练集:80.57%(top1) -> -> 验证集:77.318%(top1),93.622%(top5) - - - -### 预测(Inference) - -恭喜,到这里,您已经知道如何用OneFlow训练模型,接下来,试试用训练好的模型对新图片进行分类预测吧! - -在预测之前, **关于模型,您可以选择:** - -- 自己训练的模型(如:./output/snapshots/model_save-20200723124724/snapshot_epoch_89) - -- 下载我们训练好的模型:[resnet_v1.5_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_v15_of_best_model_val_top1_77318.tgz ) (validation accuracy: 77.318% top1,93.622% top5 ) - - - -准备好模型后,将模型目录填入`inference.sh` 脚本的`MODEL_LOAD_DIR`变量中,然后执行inference.sh脚本,开始对图片`data/tiger.jpg`的类别的进行预测: - -```shell -sh inference.sh -``` - -若输出下面的内容,则表示预测成功: - -```shell -data/tiger.jpg -0.81120294 tiger, Panthera tigris -``` - -**参数说明**(部分) - -- --model 指定要加载的模型 -- --image_path 待检测图片路径 -- --model_load_dir 模型文件路径 - -### 评估(Evaluate) - -在测试了单张图片之后,想试试模型精度有没有达到 **SOTA** (State Of The Art)? 只需运行: -```shell -sh evaluate.sh -``` -即可获得训练好的模型在50000张验证集上的准确率: -```shell -Time stamp: 2020-07-27-09:28:28 -Restoring model from resnet_v15_of_best_model_val_top1_77318. -I0727 09:28:28.773988162 8411 ev_epoll_linux.c:82] Use of signals is disabled. Epoll engine will not be used -Loading data from /dataset/ImageNet/ofrecord/validation -validation: epoch 0, iter 195, top_1: 0.773277, top_k: 0.936058, samples/s: 1578.325 -validation: epoch 0, iter 195, top_1: 0.773237, top_k: 0.936078, samples/s: 1692.303 -validation: epoch 0, iter 195, top_1: 0.773297, top_k: 0.936018, samples/s: 1686.896 -``` - -从3轮的评估结果来看,我们的模型在Imagenet(2012)上已经达到了77.32+%的top_1精度。 - - - -最后,恭喜你!完成了Resnet模型在ImageNet上完整的训练/验证、推理和评估,为自己鼓个掌吧! - - - -## 更详细的说明 Details - -### 分布式训练 -**简单而易用的分布式,是OneFlow的主打特色之一。** - -OneFlow框架从底层设计上,就原生支持高效的分布式训练。尤其对于分布式的数据并行,用户完全不用操心算法从单机单卡扩展到多机多卡时,数据如何划分以及同步的问题。也就是说,使用OneFlow,用户以单机单卡的视角写好算法,**自动具备多机多卡分布式数据并行的能力。** - - -#### 如何配置并运行分布式训练? -还是以上面"快速开始"部分演示的代码为例,在`train.sh`中,只要用`--num_nodes` 指定节点(机器)个数,同时用`--node_ips`指定节点的ip地址,然后用`--gpu_num_per_node`指定每个节点上使用的卡数,就轻松地完成了分布式的配置。 - -例如,想要在2机8卡上进行分布式训练,像下面这样配置: - -```shell -# train.sh -python3 of_cnn_train_val.py \ - --num_nodes=2 \ - --node_ips="192.168.1.1, 192.168.1.2" - --gpu_num_per_node=4 \ - ... - --model="resnet50" -``` - -然后分别在两台机器上,同时执行: -```shell -./train.sh -``` - -程序启动后,通过`watch -n 0.1 nvidia-smi`命令可以看到,两台机器的GPU都开始了工作。一段时间后,会在`--node_ips`设置中的第一台机器的屏幕上,打印输出。 - - -### 混合精度训练与预测 - -目前,OneFlow已经原生支持半精度/全精度的混合精度训练。训练时,模型参数(权重)使用float16进行训练,同时保留float32用作梯度更新和计算过程。由于参数的存储减半,会带来训练速度的提升。 - -在OneFlow中开启半精度/全精度的混合精度训练模式,ResNet50的训练速度理论上能达到`1.7`倍的加速。 - - -#### 如何开启半精度/全精度混合精度训练? - -只需要在`train.sh`脚本中添加参数`--use_fp16=True`即可。 - -#### 混合精度模型 - -我们为您提供了一个在Imagenet2012完整训练了90个epoch的混合精度模型,top_1:77.33% - -您可以直接下载使用:[resnet50_v15_fp16](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_fp16_of_best_model_val_top1_77330.zip) - - - -### 训练过程可视化 - -Oneflow支持将训练生成的中间结果以日志文件的形式保存到本地,可视化后端通过实时读取日志文件,将训练过程产生的数据实时展示到可视化前端。 - -目前,Oneflow支持的可视化类型分为以下几种: - -| 可视化类型 | 描述 | -| ---------- | ------------------------ | -| 模型结构 | 结构图、计算图(后续支持) | -| 标量数据 | 标量数据 | -| 媒体数据 | 文本、图像 | -| 统计分析 | 数据直方图、数据分布图 | -| 降维分析 | 数据降维 | -| 超参分析 | 超参数 | -| 异常检测 | 异常数据检测 | - -具体使用方式可参考test_summary.py 文件 - -具体可视化效果参考之江天枢人工智能开源平台http://tianshu.org.cn/?/course 用户手册可视化部分 - - - -## 进阶 Advanced - -### 参数对齐 - -Oneflow的ResNet50实现,为了保证和[英伟达的Mxnet版实现](https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5)对齐,我们从learning rate学习率,优化器Optimizer的选择,数据增强的图像参数设定,到更细的每一层网络的形态,bias,weight初始化等都做了细致且几乎完全一致的对齐工作。 - -#### Data Augmentation - -**训练** - -1. 随机采样图像并将其解码为[0; 255]。 -2. 随机裁剪一个矩形区域,该矩形区域的长宽比以[3/4; 4/3]和以[8%;100%],然后将裁剪的区域调整为224 x 224平方的图像。 -3. 以0.5的概率水平翻转。 -4. 色彩增强,比例色相,饱和度和亮度,其系数从[0.6; 1.4]。 -5. 将PCA噪声与从正态分布N(0,0.1)采样的系数相加。 -6. 通过分别减去123.68、116.779、103.939并除以58.393、57.12、57.375来标准化RGB通道。 -7. 调整图像的大小,使其较短的一面在[256,480]中随机采样以进行缩放。随机抽取224×224区域。 - -| item | oneflow | nvidia | -| ------------------------ | ------- | ------ | -| 1 random sample | Yes | Yes | -| 2 random crop resize | Yes | Yes | -| 7 short side resize crop | No | No | -| 3 Flip horizontally | Yes | Yes | -| 4 Color augmentation | No | No | -| 5 PCA Noise | No | No | -| 6.1 Normalize mean | Yes | Yes | -| 6.2 Normalize std | Yes | Yes | - -**验证** - -- 将每个图像的短边调整为256像素,同时保持其宽高比。 -- 裁剪中心的224×224区域 -- 标准化RGB通道,类似于训练。 - -#### Learning Rate Schedule - -Oneflow保持了和Mxnet一致的初始学习率以及衰减方式。具体来说,我们采用了5个epoch的warmup,初始学习率lr = 0.256,lr衰减方式采用cosine decay(初始lr可根据batch_size和gpu数量可线性缩放) - -- warmup + cosine decay -- warmup + step decay - -
- -
- - -| item | oneflow | nvidia | -| ----------- | ------- | ------ | -| start lr | 0.256 | 0.256 | -| lr schedule | cosine | cosine | - -#### Optimizer - -| oneflow | nvidia | -| -------- | -------- | -| momentum | momentum | - -#### Weight Initializer - -OneFlow和英伟达保持了相同的初始化方式,只是在两个框架中部分api的名称不同。 - -| variable | oneflow | nvidia | -| ----------- | ------------- | ---------------------------- | -| conv weight | random_normal | Xavier( 'gaussian', 'in', 2) | -| conv bias | NA | NA | -| fc weight | random_normal | Xavier( 'gaussian', 'in', 2) | -| fc bias | 0 | 0 | -| bn gamma | 1 | 1 | -| bn beta | 0 | 0 | - -#### Weight Decay - -| item | oneflow | nvidia | -| ------------ | --------- | --------- | -| weight_decay | 1.0/32768 | 1.0/32768 | -| conv weight | Yes | Yes | -| conv bias | NA | NA | -| fc weight | Yes | Yes | -| fc bias | Yes | NA | -| bn gamma | No | No | -| bn beta | No | No | - -#### Batch Norm - -| param | oneflow | nvidia | -| -------- | ------- | ------ | -| momentum | 0.9 | 0.9 | -| epsilon | 1e-5 | 1e-5 | - -#### Label Smoothing - -| item | oneflow | nvidia | -| --------------- | ------- | ------ | -| label smoothing | 0.1 | 0.1 | - -### 数据集制作 - -#### 用于图像分类数据集简介 - -用于图像分类的公开数据集有CIFAR,ImageNet等等,这些数据集中,是以jpeg的格式提供原始的图片。 - -- [CIFAR](http://www.cs.toronto.edu/~kriz/cifar.html) - 是由Hinton 的学生Alex Krizhevsky 和Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。包括CIFAR-10和CIFAR-100。 - -- [ImageNet](http://image-net.org/index) - ImageNet数据集,一般是指2010-2017年间大规模视觉识别竞赛(ILSVRC)的所使用的数据集的统称。ImageNet数据从2010年来稍有变化,常用ImageNet-2012数据集包含1000个类别,其中训练集包含1,281,167张图片,每个类别数据732至1300张不等,验证集包含50,000张图片,平均每个类别50张图片。 - -完整的ImageNet(2012)制作过程,请参考tools目录下的[README说明](https://github.com/Oneflow-Inc/OneFlow-Benchmark/Classification/cnns/tools/README.md) - - - -### OneFlow 模型转 ONNX 模型 - -#### 简介 - - **ONNX (Open Neural Network Exchange)** 是一种较为广泛使用的神经网络中间格式,通过 ONNX 格式,OneFlow 模型可以被许多部署框架(如 OpenVINO、ONNX Runtime 和移动端的 ncnn、tnn、TEngine 等)所使用。这一节介绍如何将训练好的 resnet50 v1.5 模型转换为 ONNX 模型并验证正确性。 - -#### 快速上手 - -我们提供了完整代码:[resnet\_to\_onnx.py](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/resnet_to_onnx.py) 帮你轻松完成模型的转换和测试的工作 - - **步骤一:** 下载预训练模型:[resnet50_v1.5_model](https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/resnet_v15_of_best_model_val_top1_77318.tgz ) ,解压后放入当前目录 - - **步骤二:** 执行:`python3 resnet_to_onnx.py ` - -此代码将完成OneFlow模型->ONNX模型的转化,然后使用ONNX Runtime加载转换后的模型对单张图片进行测试。测试图片如下: - -
- -
- -输出: - -```python -Convert to onnx success! >> onnx/model/resnet_v15_of_best_model_val_top1_77318.onnx -data/tiger.jpg -Are the results equal? Yes -Class: tiger, Panthera tigris; score: 0.8112028241157532 -``` - - - -#### 如何生成 ONNX 模型 - -**步骤一:指定模型路径 ** - -首先指定待转换的OneFlow模型路径,然后指定转换后的ONNX模型存放路径,例如示例中: - -```python -# set up your model path -flow_weights_path = 'resnet_v15_of_best_model_val_top1_77318' -onnx_model_dir = 'onnx/model' -``` - -**步骤二:新建一个用于推理的 job function** - -然后新建一个用于推理的 job function,它只包含网络结构本身,不包含读取 OFRecord 的算子,并且直接接受 numpy 数组形式的输入。可参考 resnet\_to\_onnx.py 中的 `InferenceNet` - -**步骤三:调用 flow.onnx.export 方法** - -接下来代码中会调用`oneflow_to_onnx()`方法,此方法包含了核心的模型转换方法: `flow.onnx.export()` - - **flow.onnx.export** 将从 OneFlow 网络得到 ONNX 模型,它的第一个参数是上文所说的专用于推理的 job function,第二个参数是OneFlow模型路径,第三个参数是(转换后)ONNX模型的存放路径 - -```python -onnx_model = oneflow_to_onnx(InferenceNet, flow_weights_path, onnx_model_dir, external_data=False) -``` - -#### 验证 ONNX 模型的正确性 - -生成 ONNX 模型之后可以使用 ONNX Runtime 运行 ONNX 模型,以验证 OneFlow 模型和 ONNX 模型能够在相同的输入下产生相同的结果。相应的代码在 resnet\_to\_onnx.py 的 `check_equality`。 - -#### 训练AlexNet - -``` -#Please change $DATA_ROOT this to your own data root. -python3 of_cnn_train_val.py \ - --train_data_dir=$DATA_ROOT/train \ - --val_data_dir=$DATA_ROOT/validation \ - --train_data_part_num=256 \ - --val_data_part_num=256 \ - --num_nodes=1 \ - --gpu_num_per_node=1 \ - --model_update="momentum" \ - --mom=0.9 \ - --learning_rate=0.01 \ - --loss_print_every_n_iter=100 \ - --batch_size_per_device=512 \ - --val_batch_size_per_device=512 \ - --num_epoch=90 \ - --use_fp16=false \ - --model="alexnet" \ -``` - -经过90个epochs的训练后,oneflow模型的top1准确率和top5准确率分别为54.762%和78.1914%。 作为对比,经过90个训练周期后,来自tensorflow基准的模型的top1准确率和top5准确率分别为54.6%和78.33%。 - - - -#### 训练 VGG-16 -``` -#Please change $DATA_ROOT this to your own data root. -python3 cnn_benchmark/of_cnn_train_val.py \ - --train_data_dir=$DATA_ROOT/train \ - --val_data_dir=$DATA_ROOT/validation \ - --train_data_part_num=256 \ - --val_data_part_num=256 \ - --num_nodes=1 \ - --gpu_num_per_node=4 \ - --model_update="momentum" \ - --mom=0.9 \ - --learning_rate=0.01 \ - --loss_print_every_n_iter=10 \ - --batch_size_per_device=128 \ - --val_batch_size_per_device=128 \ - --num_epoch=90 \ - --use_fp16=false \ - --model="vgg" \ -``` - -经过90个epochs的训练后,oneflow模型的top1准确率和top5准确率分别为72.1%和90.7%。 作为对比,经过90轮epochs的训练后的tensorflow基准模型的top1准确率和top5准确率分别为71.5%和89.9%。 - - -## 训练 InceptionV3 -``` -#Please change $DATA_ROOT this to your own data root. -python3 of_cnn_train_val.py \ - --train_data_dir=$DATA_ROOT/train \ - --val_data_dir=$DATA_ROOT/validation \ - --train_data_part_num=256 \ - --val_data_part_num=256 \ - --num_nodes=1 \ - --gpu_num_per_node=1 \ - --model_update="rmsprop" \ - --epsilon=1 \ - --decay_rate=0.9 \ - --learning_rate=0.045 \ - --lr_decay="exponential" \ - --lr_decay_rate=0.94 \ - --lr_decay_epochs=2 \ - --loss_print_every_n_iter=10 \ - --batch_size_per_device=256 \ - --val_batch_size_per_device=256 \ - --num_epoch=100 \ - --use_fp16=false \ - --model="inceptionv3" \ - --image_size=299 \ - --resize_shorter=299 \ - --gradient_clipping=2 \ - --warmup_epochs=0 \ -``` - -经过100个epochs的训练后,oneflow模型在验证集上的top1准确率和top5准确率分别为72.53%和90.04%;在训练集上的top1准确率和top5准确率分别为81.19%和93.15%。 -目前训练结果和主流benchmark的准确率还有差距,我们会在后续调整数据预处理方式,并进一步调整训练参数,已达到预期效果,并提供预训练模型。 - diff --git a/Classification/cnns/alexnet_model.py b/Classification/cnns/alexnet_model.py deleted file mode 100644 index 6e852bb..0000000 --- a/Classification/cnns/alexnet_model.py +++ /dev/null @@ -1,136 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import oneflow as flow - -def _get_kernel_initializer(): - return flow.variance_scaling_initializer(distribution="random_normal", data_format="NCHW") - -def _get_regularizer(): - return flow.regularizers.l2(0.00005) - -def _get_bias_initializer(): - return flow.zeros_initializer() - -def conv2d_layer( - name, - input, - filters, - kernel_size=3, - strides=1, - padding="SAME", - data_format="NCHW", - dilation_rate=1, - activation="Relu", - use_bias=True, - weight_initializer=_get_kernel_initializer(), - bias_initializer=_get_bias_initializer(), - weight_regularizer=_get_regularizer(), - bias_regularizer=_get_regularizer(), -): - if isinstance(kernel_size, int): - kernel_size_1 = kernel_size - kernel_size_2 = kernel_size - if isinstance(kernel_size, list): - kernel_size_1 = kernel_size[0] - kernel_size_2 = kernel_size[1] - - weight_shape = (filters, input.shape[1], kernel_size_1, kernel_size_2) - weight = flow.get_variable( - name + "-weight", - shape=weight_shape, - dtype=input.dtype, - initializer=weight_initializer, - regularizer=weight_regularizer, - ) - output = flow.nn.conv2d( - input, weight, strides, padding, data_format, dilation_rate, name=name - ) - if use_bias: - bias = flow.get_variable( - name + "-bias", - shape=(filters,), - dtype=input.dtype, - initializer=bias_initializer, - regularizer=bias_regularizer, - ) - output = flow.nn.bias_add(output, bias, data_format) - - if activation is not None: - if activation == "Relu": - output = flow.nn.relu(output) - else: - raise NotImplementedError - - return output - - -def alexnet(images, need_transpose=False, channel_last=False, training=True): - if need_transpose: - images = flow.transpose(images, name="transpose", perm=[0, 3, 1, 2]) - if channel_last: - # if channel_last=True, then change mode from 'nchw' to 'nhwc' - images = flow.transpose(images, name="transpose", perm=[0, 2, 3, 1]) - conv1 = conv2d_layer( - "conv1", images, filters=64, kernel_size=11, strides=4, padding="VALID" - ) - - pool1 = flow.nn.avg_pool2d(conv1, 3, 2, "VALID", "NCHW", name="pool1") - - conv2 = conv2d_layer("conv2", pool1, filters=192, kernel_size=5) - - pool2 = flow.nn.avg_pool2d(conv2, 3, 2, "VALID", "NCHW", name="pool2") - - conv3 = conv2d_layer("conv3", pool2, filters=384) - - conv4 = conv2d_layer("conv4", conv3, filters=384) - - conv5 = conv2d_layer("conv5", conv4, filters=256) - - pool5 = flow.nn.avg_pool2d(conv5, 3, 2, "VALID", "NCHW", name="pool5") - - if len(pool5.shape) > 2: - pool5 = flow.reshape(pool5, shape=(pool5.shape[0], -1)) - - fc1 = flow.layers.dense( - inputs=pool5, - units=4096, - activation=flow.nn.relu, - use_bias=True, - #kernel_initializer=flow.random_uniform_initializer(), - kernel_initializer=_get_kernel_initializer(), - bias_initializer=_get_bias_initializer(), - kernel_regularizer=_get_regularizer(), - bias_regularizer=_get_regularizer(), - name="fc1", - ) - - dropout1 = flow.nn.dropout(fc1, rate=0.5) - - fc2 = flow.layers.dense( - inputs=dropout1, - units=4096, - activation=flow.nn.relu, - use_bias=True, - kernel_initializer=_get_kernel_initializer(), - bias_initializer=_get_bias_initializer(), - kernel_regularizer=_get_regularizer(), - bias_regularizer=_get_regularizer(), - name="fc2", - ) - - dropout2 = flow.nn.dropout(fc2, rate=0.5) - - fc3 = flow.layers.dense( - inputs=dropout2, - units=1000, - activation=None, - use_bias=False, - kernel_initializer=_get_kernel_initializer(), - kernel_regularizer=_get_regularizer(), - bias_initializer=False, - name="fc3", - ) - - return fc3 diff --git a/Classification/cnns/config.py b/Classification/cnns/config.py deleted file mode 100755 index 2fb5625..0000000 --- a/Classification/cnns/config.py +++ /dev/null @@ -1,124 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import argparse -from datetime import datetime - - -from optimizer_util import add_optimizer_args -from ofrecord_util import add_ofrecord_args - - -def get_parser(parser=None): - def str_list(x): - return x.split(',') - - def int_list(x): - return list(map(int, x.split(','))) - - def float_list(x): - return list(map(float, x.split(','))) - - def str2bool(v): - if v.lower() in ('yes', 'true', 't', 'y', '1'): - return True - elif v.lower() in ('no', 'false', 'f', 'n', '0'): - return False - else: - raise argparse.ArgumentTypeError('Unsupported value encountered.') - - if parser is None: - parser = argparse.ArgumentParser("flags for cnn benchmark") - - parser.add_argument("--dtype", type=str, - default='float32', help="float16 float32") - - # resouce - parser.add_argument("--gpu_num_per_node", type=int, default=1) - parser.add_argument('--num_nodes', type=int, default=1, - help='node/machine number for training') - parser.add_argument('--node_ips', type=str_list, default=['192.168.1.13', '192.168.1.14'], - help='nodes ip list for training, devided by ",", length >= num_nodes') - - parser.add_argument("--model", type=str, default="resnet50", - help="resnet50") - parser.add_argument( - '--use_fp16', - type=str2bool, - nargs='?', - const=True, - help='Whether to use use fp16' - ) - parser.add_argument( - '--channel_last', - type=str2bool, - nargs='?', - const=False, - help='Whether to use use channel last mode(nhwc)' - ) - - # train and validaion - parser.add_argument('--num_epochs', type=int, - default=90, help='number of epochs') - parser.add_argument("--model_load_dir", type=str, - default=None, help="model load directory if need") - parser.add_argument("--batch_size_per_device", type=int, default=64) - parser.add_argument("--val_batch_size_per_device", type=int, default=8) - - # inference - parser.add_argument("--image_path", type=str, default='test_img/tiger.jpg', help="image path") - - # for data process - parser.add_argument("--num_classes", type=int, default=1000, help="num of pic classes") - parser.add_argument("--num_examples", type=int, - default=1281167, help="train pic number") - parser.add_argument("--num_val_examples", type=int, - default=50000, help="validation pic number") - parser.add_argument('--rgb-mean', type=float_list, default=[123.68, 116.779, 103.939], - help='a tuple of size 3 for the mean rgb') - parser.add_argument('--rgb-std', type=float_list, default=[58.393, 57.12, 57.375], - help='a tuple of size 3 for the std rgb') - parser.add_argument("--input_layout", type=str, - default='NHWC', help="NCHW or NHWC") - parser.add_argument('--image-shape', type=int_list, default=[3, 224, 224], - help='the image shape feed into the network') - parser.add_argument('--label-smoothing', type=float, default=0.1, help='label smoothing factor') - - # snapshot - parser.add_argument("--model_save_dir", type=str, - default="./output/snapshots/model_save-{}".format( - str(datetime.now().strftime("%Y%m%d%H%M%S"))), - help="model save directory", - ) - - # log and loss print - parser.add_argument("--log_dir", type=str, - default="./output", help="log info save directory") - parser.add_argument( - "--loss_print_every_n_iter", - type=int, - default=1, - help="print loss every n iteration", - ) - add_ofrecord_args(parser) - add_optimizer_args(parser) - return parser - - -def print_args(args): - print("=".ljust(66, "=")) - print("Running {}: num_gpu_per_node = {}, num_nodes = {}.".format( - args.model, args.gpu_num_per_node, args.num_nodes)) - print("=".ljust(66, "=")) - for arg in vars(args): - print("{} = {}".format(arg, getattr(args, arg))) - print("-".ljust(66, "-")) - print("Time stamp: {}".format( - str(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")))) - - -if __name__ == '__main__': - parser = get_parser() - args = parser.parse_args() - print_args(args) diff --git a/Classification/cnns/data/ILSVRC2012_val_00020287.JPEG b/Classification/cnns/data/ILSVRC2012_val_00020287.JPEG deleted file mode 100644 index 255c59dddb3d4b8992e4bb733872ad9c62c9c518..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 120706 zcmb4qbx>PR*mZC#ZUq_w1&Y?t65Or0mSQc%ODS$4L5jOu@lqf_kWyR=MN4slhvEb) zS}fts@11YvoA1wWlgUhSclX}A**)hx=h=HVcee_l(Nxt?1>oV~0n~9Xz#SIwNY&}R z9fz-nlb4s>2adP?918E;-r8~KIl6hdc{;j%Eawn?^6YLAp!8p>|6B0!3Gn|bgaicm z1Vn^HL_~yygha$7#6(0S#Ds*zWW*$-{}m!)GIBCf^8dd4*U5h!{MQQiCdIY--zxuK zA9vjVT2ee;yfXqkS^z#R9sw=hT_1oQ0Kg;q--`qMpF)VcDq<2mQUDn_?zk!q0C!eA z+_e%C5RniN04VVA2?&X3=>Wu>^bemiD3A#2zhUHZCshndE+S*%7BQ&%`?hDozKs*3G!T)m}0zy1|A^`4Y$#932X#seI0Ng+j5)tA~Mu1Q9Uwv9a zI?m@r3i@y8AG+hZ@A=ChTsQHDm`m}Pgp|>M`>lsaXbKavlBlg`YVq3L0^lA2t`#i- zEkF){ok|Bx@#*;@I$Iu|#3xLr>6bsqkbQbxkRtaX-DhVsQ8_@hzG6eH@kH+Q+KZ%O zSmmguN8<;C$VTxFV4a6)HBo{`G+32*-2oV_!*9;XBIE&uapV$>Tw{Ba2ygzs6SU>? zB=117V7eoUR(?ZgdBK{lkoDUDiqCM4EeRb+6X##=8OAuBtr#O@guUnK#u+ns`ch^p zOl$BMH86yR_Y}U*H?mId4V?Wx&0tMkyz}R$hPB+)1)5YkUCYJ$U(>sA{dH@gI!R7O z$b=9dXSB-fz?hyXsju?={t#|p9&Jt6-nd9Hm;?2z<)`Tq6ehY~-Wb{40 zhMmrc5UnuoG)`2h#k08o}4-%Vz0xvUBsl5$T+bH6Mz<|q7*mi-e5~W9&|OM znVAfB;^hg{Zd*6|#Tgpoh~}=2FVNW&%QPd!8UVg|xh4zta*oL!3u!Vo!|81<6^B~j zk3H2gb3*FHVtc+PA*JpmDj>o;K%(X6qWflI+U1H~M(6Xxb-k3kf-$g3*cjrs-Y;zp zzArocpw4S}+glQwBt1-e;vHZV$?xasOL3$eG?yQ}#_7j#*nFHwKiF89;D#+0_gl}X+YtYFGcH`dQ3!xS z#isCP;0(z*6Kc;MSjVW{k1fJe3^4~0cuxhXG34HPt4Jk6n~ zJs|a!*A$UN9!(Im2{7Rw2~gRs`V$d(pI+Pnp2V|!ck5-!ZQxRdiO|GAUtsP4HFp5u zGvrQY&8fT=gFI-M4OaG2jnn9{%XdEU^tyekxxv z`#Uso4;cYI?C^0n=U0!23H1@%IKnRD{hpwW=TaI4fx@i;@ppjL9qQ%#TZQ%}+PgZx(*aPH*v1aZnVF_Ff! z!_f@4z%kw^_)8-94kZwBCf1W@fT>q!)FYm~&9A7PvFM+!L(|-+AwECduHg1m6hbO* z%K(V~9bcbob{L0LPlbeDasTBSoV~7iqm&d@Z{5I1T@1O+FLHOH*mV7L+Xq_8FAfcz z6ypniZTnIg_O+EhCZi!Q)1PmSqmHZ#;w8G?FqDijLhddsC+<~@XJ3P3941!8}kXPOu?3x+6qQ&wAQ1I$w zBWux6v=81qx+gLxiCVO`fJbrXsFB8dUUO2Pqh40pfqgaHxbeNfe~jRN)cw`< zw}-JP8IMo%oUhe-VY&&3?g}pXd11|cM?Y@tN`L?zW$ucG)N##JiHO}G3qz=vUy546 z)YoeI7u9;d#1-=r8}9&Ch~Cmdsb5*PeHm^e7bFK0=3oK4$#G$(4_0@8uH72ovvK%9 ztiqsK9UBq;K6LpRz+iSat#E$O?aIN5BpG2z+a@Sg__981u)qOLiW@zhs8HJ{OJBLC zo)KgpZ(pAe*M<0mWlpokpO0)SjlKL)@vPJF)%{9$z?1%eHBB!iyxQVf**G2v838N# zPsp%;cQYsrPMTiJYbvmA6fAo(^0CLur!z>qdI%Q>*%3BWdV>#Y3PYKeGCrW22mD;;06_bc^{q3qnQW( zk8DRw(z=1qZo6tM7ReEQZJMhHGKYJza=Is&YnDf6roUD+Ui0VlHfEpnPydg9lvwi+HQ|VgeIT zbf$!#iWMax;yt?YetlTV|H_NZZl$#($4zBuQvN{*D^hV-U%^pBh>Q>irI%hV=qnMHTe0b^l9C{|Vri!mem863->*BY!E3&Kg3T7;v& zi^_d%Wx~0WGO9vi21Jc>CMRW+}me~Nhi6^kLkxNS8!(ognW+QA>x9-bh6?+6#}Dt%;(AdQeHR) zbwW`$UhZ$6Y-h5P%UWu20qLmG&;YwuB2&wq&@Cn4<=o9JZ2M@6sIc;x@j^l}D%zBy zYZ`)s%9mnAl;=J)RNcpmPr8u?Z{1Xo%kL+Elo9`eB02+(wWjno;y#7X4y{RJb5F;Y z$lrpw!yk5~i6ayDIztbm%YQmXMG53(2-bvLd(nNG*pygi8KgrHNdAS+Pp1Fg8b~FROj34@Mn$@Te&*X3~mCee0Ubc#?LxbhO?*tL6X zcM(ix9kRaaO$1Mv-pRLgx8HgPD!SUS|IsMl`n%9=kmTsJ6JEX*Qg5KnJ$~E`?JD0( zH`U-sH)valxK5EoSWtHCDMLW{MMkv|iv}$1JMS^={^$cYBcOV53eOtE15{%&GV?rR z6hF0g;5{C}`Hi>OYmR1pYi73s8#Zh!2w6@^UimqSNHuXRp-OS1$A?QSE<~7NZUqw&MA0L2jygsT^#Hwzm z+|T57mbh4H6=3*!rXaWB&6#yegHvi($2058%3;I!_nNrs#;m0<0q;cMz?{PD%q-3* zZit_300(oim5Gy0`ITiDG43z6{s?xBV+aM>j|;0ST$J(fZrpm=JU0HcKsz+?kAMDB z3aN^p21`~P92O@(;X3+Dt?H=c4%&E($0bP6DJ#8qwp+_^|LmmjwWjXrL(40qMP!Oj zr98*p69BitvrF9{R7zuwyqb^0H z8>*)8vD6{bQBe6U{gr0wjoW%*vnTm{?wImPQ|fn{R#d@MQPC#vI|Gq?j)JDeRj(Gj z``<^o1Ozh~?m@-IKN~f$2jW)cKi6n%o?(ul6+TqrZJC-SmFi@3NwZGBKmAnn+QX{b|GP11=5bpee+hCEE+K8p2;VcQ5!57Tm} zF6}h&nO0p(>PTPsf9m~o{2PPsv(0(VIb!g}eK#v`^M|y|H?^k9F}DBSOAKN=d^80X z@BNT-zm0hO9TI$@l-(S^L)~?N1u{H?Z&EF)oQ$o)3!oP`+|9I1%{Jf? zPqS!B;7DD+1IQsO03QnbHC>WPlEBFPs#U5eDDX=qVlM9rxrp#IwiS@`!xXNdg+(O{7Agzu?1&h#vyAH%Cf^K-&A=zRLS< z857cXfC9yjQi9@a%#Pui`7IJ5lk?=6R2nPVwZ5ftprCUDMiGfO=^c1Z@%M1X`&o^06bDWbxRx2sdj!kp3i7L0_IJg3S+XZ=~DD`wXB>SUqOp)(fJb*eko1d2`Df& z1t)*}mhqtRMe=Gv{-=vi_6)k^#ytQcIVri^YcHV~#4>lCkQfU&)JqoJ7$Q%QV_MGO zG$wkJ4}blOPhC~9H_I1PHeeDo8=H#0-sn!ofFs4vlmh(`ETELGM^Yfd^LZ76Es30? zM{Gn50SB}KXW9j92L5znI7$v_;H^(pzMAbe@Sd(zRTC{uj=AEsmYUlOGm>1Z;MrJ+ ze}>u#=+HNE{HB4gx@H7=&?pL(_O_-PEe{l%5uJoE0rF#5iobN-DC)}a8*^PJcHywB znbOtbd-XhbosB;u0q%zFOj@T@=74zL?*JefZ_X~S6#u}8G;EHHN5o;$Bu!Z+*LG#p zfsuq!L=p|)bh}bmm{DRsn-0;9YCGD#ZEdXs#1$58B(-dalk861UvchaizpJFq#IBU z`?nJeU|jjJiKkhBJrKXH3ay_|M9)p4gW# z!qgKZyDZ!tAv#aKIjBd?*)_FY+#txD!+{P>o=#HNlSOr@;t|p+Q_}qQe|}ukbcw|< zB4$(KMT32Xd{{`ipgLX1b2J)hK2y}8!#8*;cO8U^S}|hv@ciVYo%o zWF>Y(RXLZk2FZOGa
bXto@oO=&o|PoKDVj15w8ac*I=IamD>{-WgJ(Gf0W(h1%< z(u;~RB|Mp(4wZgtBxI3q>K5UeICoA+P+$A4Sb%rEqX}oRicd#+>sCc61*;X@oblGt zP|QfNmCI@n1n#JmdV8pr6i}9}U+kz9A{?uei5fdeQCD6Z3(NO&=lMVcNs3|@Cjlkp z`z_U+FXAL?@}68rQZiP))?uL*n|J`LQ8Z{9#4GwLheTLp@PJQzewTNzbe z_uX-Kj&QB`z2cu3H2!6QnhAEqOJ(9+n&=ohIHg%t`U~}`jNjf$6&O<)L2ACD!lVePAa^I`F$ZR zF4Q-8YBy4BHb-OXa44}}F=)g*xu;p?vK@7LTpV!Um0wFZ1rV=(eC^HI(A@aL;e!R2 z8x%@y%3%_lv!Znv!0ELCLf!$IjP)+&C%i2oA$3@wHK$Ub6HgX|hyo++eUI=%)mB)& zLw=UKjqbphs)FawajosXn{>#n|H>Vp7Yh+XDRElx-ugm!YE41G4tPKObq{WI-mfQ1 zNqetG+?*M|Y#rBl(yMs~NW=7?EFFu5m&do>n!>sg<+djl`iSuY#8b?*Gq{w-Ffyw0 zvC8jBQ1$NyOI1Ti%#n-Mx92|JEEx$up(7m}9!wLnqVf~)$)2z#W&2WAH+I<~iBHJQ z*S76^hFZ7@#vYpPtEt+Gma5?mF1%F}fWJ~FSGZgmGr=F_e}gA(#x9>vdGg{+wMk29 z_`#YYZFaIcs$8P*_3NE@H=b8Sj#(>13+14x59{PnzX8{4joK0)xy;5qkf z8Vwn{!i~47DUT1`hhcyJQ0A0m9M~FL7RfkCvhi(b%-sPD0ygcX%$2!wk#xfn+g9KT z8-v#qvh^M|eZk#F7czuRDdnQE)FT@J>H@+u;h$tb1xRQA%}{vF+<&2m$CM%vOt$9x zH-PMIJ&%K{1dZ5@7d`Mp3%CjbImYG@jdn~Y=gQN@K1y?qxTg8g5M^0x3h#PLiqmwK zkBwfeR0O{H>($j{%xV2XE57*zwKrq2Xrehs;9L~B4`x^CzhYQRfgFQD|IqLR2kohz z{zjcd3v**-`*T+A2$E#(Jo*cqz|sFYQZ&7Pj2kX0S9s%9*{2w4Ud3*|+lABdSe+iT zU|$`NabpgqtE(%_^(T5;qg6Yu6Tl5FdfgmttN*M@;(n0X!-4J4@6CC^1wR}FNO@qS z6M-N1OLUx6!e}&*iL$=a-y6zz!Q2sv*d&;@tgeB%so3>ZrtTvtR?zf02bFW_)|on9 zTGD;!dXV=MI)+AX1H5Uyw6B5<*2G%T|g0Yi>nagvtSh+ z49O>I&X3N7fBP(aMXp7oGZ%k!hW20_<$BpatfbDIj11}OGNnXUa3cs~ltkl8$GOgt zyLW&w6Fhki3jR(_s)#PP-H9+Sg{MftPz4^POa5y&EJjBU@kep76_jz-iFAc2U@cz} z+ehq3Xty0(y)1lRfKZwfbE#*dAPb041#B)BmaN1lZc>1-f6mRo* z^%D8A{;DDgU;9JJqEar6D0KOOgnatnB`+QdE}+1U#|;E_Fk$N^T&0w|=|Q`J7v=gK z8GhqZ^1XxR9f3DUL@=MPDD74vFL8Gwhwl|XqDRB>{m$3eAeqgC50!%p ziuESNGtOt%AV^^gg&IjDthchI$~sI3})dzu64pVS>$jRgEs=RUS-ou?fMlp*KTJ z@}{;@f3d%oohZ5X<}ldaaojPK?fj7fKu;Tg`XIRbAe{62F9;N)#b%$JJu0km`j>il zLjH>g=T6QXb#=(a75dr$Vc=~c)cZzVz`Ir!^U)P;q`%BrN-l5hfSW-bMkzW&6&BAo zmSUkDW>ite)nC6Pg_4bfz_@_EI3o0`DUFB$@UvWxjRpoPXN^n6Y01Oog;5zPEa^&( zJ%-gFWHCVVk*ECE6@~I!#(&5Jy1+h@>6QZ*nwqi&?&GBA*t>JRnr9uQpZF<`;haLavWXRzw#-$l^X`qw!z zqoigEQpqn9tbBOKwGvbJ+>8z7=M=Bw2{Cy7R z0ev^G?(c0798Z*h^^HVWPY#yJq-yC1`kpQYLjySQPkBzw@fM!_j*J;9gxO=Rzk9Or z6N(SWb)>yVEX5S!YvUvf&L$zTh_J2(l*GlZ%hx0#5r&^14*_5K+=HZK$GCn#xAG{F( zBi{-4K{9F)rK|BVdn4T*yaVTZ?P6n|>IkPtc3eqwV3f%qBOT!{3IN3IFrXEsxc82;JtB8l^YWKWuq4-dIc=KnrWE%nMYZEC4lE7-z#|sqGdDawYT$A& z)qiFy>nXluqyZ`Al56&+Ba-0nTql;rm(&t{ue>2YmGU$wd6}kM)@}CBIWwBC3?!c~ z;{TGfMpeEeRrx8t;lGq4S7vGfTo&ii|3`>RkBB4Ln~JqG`#khWF1_6-y-}NdZ;cp< zb^WghiUr?ED2Sf`cj!uRlF(#WxNxGLtT^SJwNHQUdJpEh_HC8@&T@;WMPXQ4#8OmV1MUnb1t&KxYdnIlYkB-GH3COi=yYg@4fCzM=a9xkQgLA<$bih|z)f zaCHn8b~>PnNBO&fOR8?W!*8cpOv8@DoK+*coenN{dN8s6mV(T?HOY;`ht+uY-xOXB z#}GdiW%U6G*B#)O>#hXWl7^g|RmfQnu^IHc+iN&eJjp}dbWp%Y;!wuo8BICWC|Zwa zj6<|s9m&x~dPs*z>RgEMrw;caOiX#bURf;G6JOFw*Sq_}<1f{j+$nBD#A_#r za!#!N$@>>1gR|!~j+oZ0FTWlu$JGeO=Dd=q{{`#7*|dE@GrbpwBsXqA#TCI{k5ia(7$O$ zz@(w(r=aUUZ0Vo(w$yMAJ?Yc+ZL0uwt$Eu1)HgGbgMf$l3Lffj>Tb>-+sA0ZV-(UZ zrZq#2C+#CZ}(yLNXv{1CC_T#**id0Gxn3W^}YDyWkH?YuW5WMSwPI~ z`N!WC0pE%pM}9%B@3nz8~tKlPUC)=i>`3-(>sRm&<(=1A(sN;#h++!HCkKN5+IZDc+}@ z2)5GlG7nZxjLPHVud+~IYzJ+1=@4hT06rdOz@*yP{KP^-n^^FW9L#A07UT|yQ&6gg zw&C;w&__?qBKHXik89nPT$gF7!C%pa5$z5>X_)pEdfp#yPqnR)eSZ+edRi=T63{$h zVwm+P?-HI`(uK2Ywkv6!5h?vfQ&Mh$xWL=l7_Y=2n>(a_P_DP)1G)yCogPAdf9D7a z1{X7_Z83<4?2IxLvMFfx9XUiHn=DyENS9AvYCJsV2nbO_{lf$Zs#Z8v<&j-;@Jz** zD-yTwC!Xz$PAFw5^gTZ&b5ORsoz+J|_&NPJ!yG{hf5p{xYYe%`3B? zLed=akDVkxnhhX>1pofB6P#ieqt0cwMoKV-MXk>qer60Qa#T&*`-e;i_~DGPCX36k z?~0x+h1{ucex$TwAV=5GJca=3cg*dZjYkuzqi@EZZAWp(QxC&>E5*L-f7;a$*Q1sl zjF-jVI|Io9af7S|K9g@q4m-3`JD=YPDfP@%%~;^!F4AKjLmeT5pKrPnH2n;Gr0@Pw z%;KI#M4$K_McDGkT72YEoS9c=@Af z%&W|IA9QuC-)skwP0WVVztD*`b%?&i?axZ6VbeBDCm`XOdeqT_ThWMfEYQdpUENqJ z!|*9R2(RekrT|p|PPZI}s1M7}uODM&j9ltJhd+L$mLiWWLFi$o>e4~nlo0AB;~CE= zUGA#;{(2-k0iivbW_aLY+blX$s2H|`^jl7yQ-`=p3BDeEp>zQ<2oPf+N}9?=iC3}> z4Pcj#;-2iU`17O_3xmSVjDzT|@FgLjId9dz7D!cLC<-)H9!SkIWRaAIh&sOZ5^p%Q z$UAS8&V%M@yxr{K{Ofmlb4yk6XL7IFaHScwlsM-tN&dC5^ZdLTNN~K7P{L`LYpzL8 zUs6|tEt#QEtha`%o-K8aAs!PM|1KR!?Uo{hE~3p>VnF;JyXoX%gQ-Q+#OSh=H(zI` zlVnjcG|#;fr)P&KpX)Jt?R6p75r13K7^nCZ+w5JjIQggkHbc!~if68g$>u%;_rsr= zlW_ZI#ze?8F8o)amzQYs#f@f4FZFY25?0p&cIor?rS4A4;uq8$8q&TOS2AX5#YbMr z;#pUZu`;TPEr{7+HMrTn`jYM#eLZYsz=U$YMDpd3)ce}wdLK!*O41r-u#1lCu$r)8 z7LSJ9<^%!XWLtc$h6uZ?I^_-Jxy`7N-G^=OA2%0C_hFfLfc!7DPqZ`jt6gACID?~# zl~Dsv_yl-kdpdKH;1YILo8!-tmdRHS4QanU=Pa>_n14^_j|hm~c0JrltALkHkL8X`9m-Ao6KbI`ykZGn)Ef;^WX#wsz*#M2Mi zDQ_Y1iN{xHW#>ul+*8i%v4^6O7pMW%!ceEBDLQp8b>oQ}5O^mZfFK^tOM1$cdbpN+%55@-k(w-Y z<4hJJ8Wo1^fb2aLkI!uLgHx(1y)h00Le77N4wwL4I(2_%MA43fey4IK-1VbkiBji?LS37Bv z;g5Y<_oGA@|H_n|A;$~|G~>c$Q<5M@>qV!fM8$}S=flL2&$h2|?yFVHFEj$Ez>xaf z_JSP`o2OSRu+5h&<$Hi|6FVDIhMy@<)?S6b14kuoLD3%neRge4~P2+s^v63lB~2{Zd~Ui)U}+Fu1HjJ3i`*JPFq6T)0HPwBbyWM2MCx z#Jti?oyqBGtrd0TZbbtt+t&C_&>B<(LOpHIeKqj7|=O0rBjhYoS?c*${CJPo# z+zv5uJHY|hk%6sCRDMfcg2JoTJtyLieS3qb{3w>&25P}#GZ0HH+CPZ{ zWBO{v^a&n0_JF){Y#EN_$4rKe6Kp&^wX-9}fP3fc0U5$G8c&u*Cp|ebGP|+pGkv;5 zQp#bsS?jPq9Epr|8E{F5lCx^@*ATiuy`bQ>S2G?;qpZhMBA8o$q_Ras%8zD_JkA?v zp2x#L? zZtH!5>@WAeeT!yjF~+pxNS7-2z0H2;l}CG1hzK1n;C`xWm0 z^oZMGsA5&u1%argZM}I_Exs$8RoK$mkP}>u8Fq%pcLlDe8pSA+u7s?GBcPK-jBVT3e_GC7KJf3XWX1F#$=FEj4LWT8kQkFtRRpT1+m%0D!4Yv!_+k|QZ(HbZCx`xmDS=Q-B9+;;U=MzWUF zN2b1E%Ajs$xewVt2uAXZ!8t;!6mb1isdM47o@D2(K9a&am>w>;C}ltVXJ08M zpnQ${K?`k%+W^ibXOEh6j-K#T0288)Ul?~haX-EBKT#XNj2U&p;S!IR((CTu%)3PB z>$JNHmEv)iBL~osbB$x6sMlAO;w@EdINjDjsm@q=(MG26NxgC7Q@9YDPOwDC!J6;Q zd9nnH=TlCVzb3JZs03hTL0f45O#Xsp^DF$p9JBkpkDsGZOT=9|1wW4YKJT|rcS@MV z>dB18L>~w>RggqH7b>4Be_nL?R$>)$wVV0&En(cWq6L*E5XKOw2$pOwZ7-X$-LVvX zRB%f6XzfeD8=rTCFJ$F*<;oO%o_Bbe44On+?YoVAs(2Jl*|*ORa{Id*yy~Oq*)94d zLvQbN`=}V4W(r0InFx{D$YUb9M&KLd*M!%jjh6YckbEV024|`hsvP?Gh-YYm4XOX9 z+>)*_k&Fd5C9Mh@JSkEuM0PwZVG(zLDL50+koL2W5`#&)!+QgIvy+`3&6Ahbt$wG+ z(-Cl<==O*cH8hFw^PQT{@$~tv1q9tloNvY`%dagxSO&?W49ct|9kN_Y+s#dg7NTBs zD5ov@Y7&Is%AI;0)LIvB(LBTbJ)VTWN$%@+Y@T|erCy$QF$g`j$rZb|FM-XY?;#%| z_BH0rN`WrF=93a2X1AZrnWEEpest~q;~C@f*S$aBn?)#w;JC9g)!2X_UcX^cQ+|O) z;{-ZT8R2d0LTN3Esv0=;uto*x$bVgKnc#7-?b3^|ymhlwcT+K0BYD;ggt%MMc6Ax1 z#m~%h$rsYG28oY6ij4Ojwm8lTc(l@OiC4@PxD%3RY(eyCsJ?Iqe-Xr0F-T+2X9wN1t8wMY|gI56-(E8gHifAQuf6DWq=|lqg zL{ZmWi~c*dkQxc4wg_Kysng3A!pU2WxBiT80gYEK2N)Ra9G#-hDpaZO6QZ|=Wms|ZMBkcQ#Y|nk@UBU03OD$HOzk37VCWT88C99 zAqV>N58cqa$!p!|tRX2c#kpVysC}S8qKvtAtxKUftt$>Ce*M~T#5U@5@RIi$i=p}P z$4KwffmBgxTJb?+U!Ef<@fdx-8^bo_xwPf)B|rMK+nCTz`I7f`;H64=Nh?FOcdYyf zf3mvkH%z1MOR++ZT+rr$wUNm1i~XAB%iCqfxK5bLM3*T;4#XU8S5^PPA<)5^w zl(B?3cIq)KRZAU&rhxBEK_U*6Z%0d1|F|inAiex#hbkL zG;2tF9 z8QDb{@C-@S*RG{JX9S@H*C1J&CUvaT=jZ2e^gLB#VdXsQk&-ZHKS`%+`3Iqs9nBjH zr1V~4-T0oB^xFcbTO*A}ss$6DE2}-92N;bcoPNP)BFi;>KDSE+`J(TwJ%%G!QHtB{~uYz}WZlkc zr^_>KysaMoQZ4gE!s-1#8XtbWjfvW?wRvNUuu=fqcwhf;BJ5(2XZ4uvtGPSX8S2wyJf73Bp_ zhRl3~&5UOx^Km3BmVkK^haU%;*1;NZah$^%l~TRCOiO+uXV&N>)592sx8F<8URK|0 zV^f`!%K!uhoV}3cjm(PZ+v7FLrk)uie0=_a)B2wG%^d)B?N;s1l%dal0>Be`#ijW= zS{BxOz89x<%15_rfkf%yo?ctIZnldxd>2fvrE@S62>OG39+OhrGzAA%Q-A1h$L3l0 zn%b5ljkv7v8iG^*qM8iu6PJ2!jQGN9?4{rltd$EL_5$OTM2qY^OSgO^8+owBqF-Ag zrmWx9`#qfA28~`WU1l3s_A<=G3f5;Vs(+#^=h%a)@6lNaO;maVllzGGa)#OxZ&a;Y z_b6FR86ViD9=o>Ho{0BRgKBsE{dyjsI5I;STf!_W(^&^Dq7HwWeX&~g7Gz00;XM`i zZDc(`b!mvij9ta>{>jA>0o`s?d>Qw|*&7v{rsv)%Qyl1#EMeVbfVTm*Mn+h&vQr|7 z80;jAxkteoLYTIp9V6V%LT|qI$q#uB6a%p)e{opMG3*|Olz8v{a#+)K*{oJk{c6tQ zCc<}iK{l@wK#wq2D4^<#v#h+g$J!@0rENR6{!9nuty=pi3W^e3e zkzYJH0oRJ3h3?7W23mgmCcMW+&JuD)R;OQk71OqGq+)zn(`NytC%qEQ5L`N|Etf^U zl_>dlc{;wi_PnkoX%4w?O6`Yzd>c_1DS!1SRV_66@k4ob|o5vbE`? zM4RvOem}8qiCgBoqV!iQ){K&;ATl-&jT&EJ=_FD)kSi1`!%RLE>sVPZko`JUO@>deozq&ck~0i8}Awr2zOEXCg_%HP@97*F2; z{B@UgF+F?MR7<@|#jk&k*nih>c|AMa6e^u0huhEkBIjzCWL!zqM{|q7$;<-^J})|V|Mn@3+rx$oN5k4Pz~y&!S1O6XnjKU21O)~8~dZN-77Lqe%6LhR&0 zVg##>&-IHsL-Kx01aLjCZo_k!m&#g*7~Y_Bp-)%Q)$aduQ#YH~99DF}uA7elfc1FX z-33Y?SCo@y2dvpubAgp5{&xgtDUC#oFp`1$4`$5NK#%tlAvAi>zqj; z?ekPK`^$uKRQ^SZ5@vphS~)HR%*R;?5!khQZUt^PC?t`K(~e zNH9Z7t*M&*D;QqRE6*FBNZ{a5WBtQjRxsK#<)m)Z`9jz(z2WyYJM~jmsXhNbiBpDR zuymS7U`wdDJjbQXJr&5z=i{acw)2tFd1JRFx5|BH$%fC&(|!x7{|GNZNCeg74D0%M zk()2E6dU0;>kgt9A>0jdjH;cmL%A`ytVyWQA>zI+ccmoS%PAN6xW^zTL7O{{(Fhdw z4L5eEN|Km*W7FxjT*d%f1B7aIEPKk_YT~!u)I!u$AW$u8s!%X3s}cU|^%T38cz~>8 z6%x;<8ENcS_YRkXxvpF^XOL*8+L832ec09z6Ftap&%wuQgO4J3=Q6~u4uY0R$$u-< zPs<+;S?Y=js$0Y{H)iNEMR-~`uQIlOZcyv(_wpQm6CO94%uGgmZ`%0eLk|Dlm#V@q z*1Z}@$>qdjuaH<=+TeipP_C~k{N5w55RSJxmYnAkS`Ayxy2rSLs(HV(dN5BWCcill z@;gZAl=vwJFYR}UU>FZT?w!3Pp3UguKb4DRYRlytkPH-E?z>oOkCAcWNxGCR@tByG zzQSJbjdhH%l(M^^ea_^+-7jj^Jc0#3SHAA+~c#!cFMOrtg^eiycw~Z*9yNS(RwN^KTP1Ado+KKH_e;eK_z5nF* zlL^b%$4lmCB!9}*Vct+SU&Pbq8{YQqk|nb#V0xZzW%*|+P1O01g?D^GRaM=IU9Y7D z<2$+5jpfc2h{C@BItX&_0FH8N|33P9VU|GwTl^yr-0q3(Enb^{FLtmu)~g&!2ln1H zjYJV*TT@^rwmg}A+}8qrFAF6rj=H-pBA^ekOuqC_+*;iJ@!C?a;hurHCyY_Ct9wJi z9cr@3L4R%VY=eaE4?vi9wu}f{oFw-WQI;1@3w@0tIMnFo9RV-$}8T5t8*ID*EKi~ga%(XctBSc#+3q2|5= z7Ztz%F@M}}7_hF3{+h_`y&hq2lblYjnOc)C-E>+H2|>p9xihyXdojg6>-I2m0VTXz z$_J-Yw8T#7Cn)~yJNRzOogs&G?Z`We-AcOBs(L8emRmx5 zLBSm4>^X;PuEph|sb;dnG1J5=vzI;8TU#AF@wzC?4(E&@}IjGH5f*!zIQ0j=l_=zR1hVp?0F z-BrQuH126rel2A&cPr!DF>Pmr7DQOyFG!Q*C~qTRD+8biAn1AOWRt_#s(3(=V|A`} zSN4U<<0xmSoQ?O&WXkZrG|eMd3O&o|d=_)Bf973l3X|lR?bConFuVjQpl4Qgv1o`eqTG~;O{_eeY&h~G)W^(6~S|fY2=`@9sF94r1qwg zWaY{amP7IJzn|O2w0f(Y95Y!&j@#uSU|FxkJ21->(8)Y&&4-2sO8%qH{@o_oJp1Ua zZa0-madN;hKN=b%=b{{4`A8nT(3^+V)>e)95&fVf#&_PcSzM-Wo8s3OUaIm+ z@ibw5FscI`0FN3E?>vk4B=q+O;^rA`yDa=i59Ze|eD)XO{tNL3CzHnFVt87=5Unfv zZt@?L^x0QTG|Qp0?LVhqL*e{+vObBVq}X>2R;F!xTZvX*hachooq7ud(AfhJ@+y#i zu_KXT$9%W?c-N2HqP*1(zeEO->$6A$VT+hct4K#6n*@=+oqX%#&&K?3?bX{mLCa%q zzeF|yc~TxpTgMlZ=kL)#CsY^8;A@hPl5pzm9I4)q+kH%Jrv*&l48R~|u!>)f!jt3w z0H5p8{6KdJYXDM@d7SN7u~ORk2gmLEb;X180Hvg+L&o0cMcMfF{kjozxh@Z2(4Uc0 zv1Me0qN}G3l0oyo-(7r#lK{S!24h60PFhFgdB~@JfBS2piB4-FPvx)|4o*cNvnd0} zQg%=EJwxRORV^2(P05!d$&fc8#0_X~_1{8s>?zBwg$*`w(CR&^`Pe7tU-|Rb2`v!1 z)=&6{-1+KNBbN^3Mh@f%h1`6Q2DkR>BNaQ3q9X=v%JHUuxZ}u)-tq|@lyQ_2Oi#a_ zCqcLHLDx$+O+p}TjHN(Y$zZT`VzrdWK4MppX(%tY5UdL$vmXS5uZ@HHj-p9JMeo=6 zR6qE)bwgbKGH|Ihvp}x=SzMYFO3iD4RDZ;Y@woh=P{8G{U5LTX ze^4ufCzGWh0zeu+>Coq6b)upy#NQ>F)Xd}~nTl918aM>83IRWTe^0kb_{{)XWotO@ z_xw1-_UG1Ej{a}Hp^`Zwj#ehBIb+471i=}h^>)hdYPr&ISBh&?hRnP=1U^nv&pdx zp<`uI0A2E5RsQ+|_dP8pG=p4`7qtt^%Ny| z(T|pHMn+-d`gNg!;!S3(C~kG=7wK+4zuMJ0_15IGLB3r5Ktq0oPyIUU&_RvN%RwLw zDQTUp-&JA~{dLYTcqpLk1M%d1^{W;(fDS5>0!5Xn)b1+Q6f_ngkROKU=ly>F0B*I! z%&qM#ZqqrA?WKyNJ*zh>M+)-exdQrye#88HbrVk3G?yyoBW2;<^ZZ4%lCsiUo_h>= zFw~kTJOan<_5(xDkb3d+;vDzpy%R065L7=BbFYP$12oNQgvZy9l=3SOrAMc(L>VDtle{v?zjb%9yA>tj^hyq zX9mwir-E;?^VVnkUFX8uo`ozmYVoA+r;N9zo=UqN{{V0TN%;M>)_LRZALB@a1|3?` z{9*pvU+o9)zri*U;)*!y_a}cptp{)`MFEX#vKMRJethOX8ov>&cKzICOPO3}Z`ov){yFT)9cfuxOX|R+Cy!|X zzBIZY9eGJJM&iQrN088asdiTCO?z6+>i0fdBalj2Jm;ZD(UY9j(U}};+L8tUY-`~7 zBV&6V0!B9_h_(4?wS9$9#(rb1rn`?S^dgq$X-$Bd#Nb3J*CeYk979JVY;V|n5H!v5 zb=9M{WfQcD>aQjq=mDoym{aaM)Y)=bTM}Bm5=bG0%B|_6ANh_BmHsw0nmHjQMT%@V*((?(JrSjHSwJVw!*r-J-bQ@FfYy=@ zw2tjR#W*psQvNEbc@Y$gp--l);kcutfE150oosJ<2hUN8z&-EI(`0fQDn2qzjTOfM zmB;sehT&#h9eoyP<9JH!f>%oI?D90CD}WKR#N#P-Ce;&0N+I7d8Q1tH~sjNy(0!fQmM%0Qz_IpB{o3GRl0%N=o8~ zpFzof&DQQZxfExmYQ3&5s7y`|83+U`5PTma$6rN`M!aTf16^ZKzcT*-wa50Ft9uti zw7VZYi^_J+PaE|&tk+}Dkh03L2K#t~@?Vp&zmeCJ;`~{q-W*22`_*V+pe_WR3jEBu z-{Lj(MABAnKm*HKAEEjG0KwOrGG6J;LZe^&S-V!ukP8KsNhO#aI3FL-efo!Nb=gCW zodSqG`nCj+QPb@)1j@0YzFXcU9XWHIa?T8F_Qq1n77l zr}%U)6o+hv*0sFKu`hN*PG59YBv#vyX4r_3JQ4A|AD@rgqeqJ&)D>iPWjyIhUhc}0 z2%aRbS4x{$qDmu;$1XFW6$PMIZpM3s0d@PJ$r$P^}TL;(eS8) zz#p$JUu|p8Lz5sDPO6P1&Z4Mo-+3&CVoMo|*$kBAmuphZ%0}P!$z~+@@HgjO0LyzH zlC3y8m7@#XlGd>;o7Y$&_o#La;2jg^zys&04JFsnah`@-04uTlNj26gkvx^klQ~3_ z+hRZph9iDh0!H*a6RxNvkTjMbiiSaCubaQ4jh73HJd{+JX zAWJ(O($F;@e#`aiw0{u0Ke{VZr`x^59!5y&t0Zp>ut;N7Up!=0_zr}Rk;rf7ucz>y zAry=aVI;3HG;RWlv*fZ>Db%xK-Riiy=^GcZEP)aqY11>G00XZl{d(Ma4H=IwzlT&v z-ERV}`!B()kK*OLt($%GpYDF+#oWrw4f{0hl`|)-^R#unzsekp3BZ85;`%=HUx{Ne zq0&1LVX5ht%1ziF#+ zVnmU8W;A_-QmWfLy}ZC9tekK4$&t=%BB<^)KLqX{h5~9qe(P`k&p(R&^Z1Qg&8+oo zrboAyu#y~=%zSl>u4Ev3a-dY1IH!;lGP8N{)}Qp}7sg@;Yr!n)>iPwlj>55q+sS%L zTN`1>I4kfxe0}=&FS0BwtmKp_vK5#rha2#9*D0M7LSwt{9W2JfJVLQNd6nkG9dC~Q{Zqw_ zjy5S3#Dcrr*C`2qh~TB3<{6;%VtIIaiRVNzgTEgizt7*HzDUUD@>1L8v5dx0i)l5L zK@x)EHIs`mI{yFz^S|=xXSt!g@4B+iuJ>#l9B~Se`tVIaVDZkpm*GkAy!d=SN?*zIwT3YHRAcH)-8UUCzTa@zVPH zhJgzrF$d3$cww!B=i~gpTLuy=4HUSG)fE?dD4wPh8E_@Uk=j?6njz(`Og>NLQTu%L zN0YL%92e@x_I~_O$#)-TFuR+BJvA#IOtQgTK$1cfdR$Y3oyGX2V)Ym)&12SrEtvF1!ENmPZ^=K?s|kz8n5vc=(`AL^d!|_=o>%wI+&HlF zz>WM5zWfjVdJClFhbv2tisgat6z#b2mTpjz?JGuCB4`4o^$wuGTVrt^ATb_81tZAv z_>rtP{yM35n^$V98UFKWB)@irb4D2^k)uYGyF#3{h{X9JM!-KldPG^G-~d#MHPBhj z&fv9r&@*0l;+qTe$+zSWusYvPWFVRv6jqKz`zp`kCwIkx>`v&q*Cm1Dr#A^bQ4EFj zL~4ior+Onm@5ug&@nais?k7MO6O{H}&yRB5i#ObsZ+8@VHk!qRWS&_W%%^9Y?4Dab zHL`X9KW@AqifHB5&=^BWc?v@>eoHkgV{GE(#&+_^(g~8&5{}8SBR7rs*MbV{4zbG# ze~26pVxhHHcYiL(WXVv1omIkC#!o7@sUw*_q1`~>vJX5 z|^tx#2t9w+%Pbb3wBi09K4sfKLC4!6;dlXNZNR^oR&B8 zP%3X~q#uH$FdF-L>(JpE0nKz%akRHitMv1#8Ujl?r+2!eZ`WyXCr#W%)P0e%*_%h zWqtB3_5?TVG&k|qY?9G06=d18M@N&&O{#U=?3SRE#4H|qP}4+svwZxIk@oTX^cP|| z(zqj;zRIIUTbD%aw%)~Xcjy^5#kIa5`T5qopC9SbhC3+kpfvtqi(6J=Sr)&m6Yyf_ z><8)X*7x#t(Tu~8Lk|ViN|j#VqllqW#k;nGoiGtF_BWl4==k5?=UVA09BoC}pe=Sj z>!)@|p{G4~fjsGaT9n^kEla;9Qv5=mv68ImOu7E*iz_Z$5` zPMeDmNTZ@HX}Y8Lf8vd*!det2w%nCVGrt{%{G~|VhQ|E;ymb$INUhLvoVxC-SiIIu z+pc7{7rmMGyJkh%AzXZ^9y$a@GVMtPSPw0Y)$9H0N_AIuTHK|BX-cx~{0)A9eg6R0 zqPgLY1FGw2X(Z8CTy6MR%RQT|GO*?8qYaG_=YMcF{u=)P9;@Qtl>xQ5Q`hs+K@_q~ zz*kaMXI(f6_HREwxbf#*1%`Qw5p4HAR=}8YDQfA^uw_vgW0MOs&@H)(q?sKSV z>V)_BdPHm#E$-(vaS**(Qdri|u_RWjDoE4lDE)bjZ^L-;za2S*;xB3N_E(9mb-K>K z58Y_LgdN-1HoMM+Z^fI}srHohtSrq+Ez1;)35dF&J4TU0HyIG$k6B)qx;9YF}O@`YG*qWC7kRY-^8D(Obph(qMi6;M0-+F^&=si7exMKjvU3H zqt3lN&tQl?7goCJsv-nX6i+p=-Tu`-g@4)e2amn@O4U2tGn=y={GAoZ80q3Gh=Q0~ z(*X^c8{QdI1k(~c1R5{?po#{E;r!1v(@w=A+$@r}G=hrFe-r-zwx&<Vl z&tbC{;>Os_)5ha0*OC}k|dGr383<)Yj|5R25DzO&UBQl0HFM zxe@Ns-iOgYr1*rhXk6VluiN%sV;dY`k*)V$ftKnZ0og~AHc#*4eS1-u47ak(V;VO2 z{SXg$@+5N6^ZAEM$u?6(9kJ#YYOr!`?Pypk@8q!g{dM~F@pB;NzLZ$*V!iDX9!wD6 z$+iQ^k8ZlKkn&O(d6XpCC-po`Ie%XtAN~5Ph$CHslE8;-gy1pck~WXS9k*2SR*J=~ z1G=MkMW5o7o~qxskA7<6NC?>T@OR*i{f~~7l%L9~SO(>I{{T5pF_5u$A68M2jxJKf z-jP=3B7O0`0@bhDIu|t%%}xGkrWr{2V--SdHkPkGJp8-rXpo zvaeNu_YB;nFhcqhA+76&pef_*t1@Px4E^pgllAZK7I%F=#ok*&b_PZyTs&A%j&FkvKOP8 z`q2IxkSdBJcHtRdNb*at&;V?=$DXs~pJTAqbBlwhjTJ*N+!;#O;jq@D$Jt%(HRH?_ zAQQ-ccfk4ZchuqW4J74tgh+Do)q3;r+wmJW+PKRY&ezX3dUqY$m0nERN>SZ{d~s2;)2)>LRxXX2uhuTw?zMLAz5H>P&ZQ9DQ7UiR?B$ z3FNT^T**|C!iOq8%-m3)*F&SRj&AFVB5SFkSMO!(OU7wuQi^%8Vtk+Q-%Z#p@9Rpe zAiG6f&i76m4+WgO_hX8zF#7f-ka6_UK_q}a!{_xqR$N9#7dw|EaL+Zb&mZk6_{U4W zVyy-$_EEcDoNdO!K+%g+aw1)F_Q=b)lx+J*J`XOuKOMxnVki*N)Ytn;Vje1r@MFb} zyI|z&HOZ{Nt?D$T(W3Fh1yFeM*#lr`Z|&e5wiz1BZpci|@IcrgEmydhs0JymL3Bi7 zLodABMq$AOWNZ>c=<*=@cdoSIYaY zD<~sR$I9~f<@%N1Tw?J^76U>36`b1JPj#VVJ43c6j_g>=wX>N{AlPJ)cG9c! z0fwXt@~T)LIs>J~1~N`&kAfCJs(9;J%Q;9g6GLS#MdltV$m;E|H~=(Q?6G0v@A7)Q zZHp-l(w9j>fm${SE7oU{5p9Hx!P#Pwm(?Jhw48wwH-ZZjztEqKfgmk3^ORQm-|V@u zI`X)U7pQw*x|azQ6<+>MD4E11M1U_bdh~>IU4vR{QP(W8d zlBM6cxny;(40zg(sHlk-E@yktC&K>#@Al{t2j04<4x>%gOGBHjo2?VJt6mMsw;9xN z?C)v;+kX4$s9BY|>WIK>*jc7ux^7}Jkj-Ntkb*s$E@a-WL{lEyqVFFZ0%S>953 z=<8n^@vVKjY0x+g2((6!2CE;)cavk?DI}>ZX*g*mk}v04W8iCFm3ZiE{E^bZrNFxB zQcEMsefL@h1G>`bmSmdEDFkG?`bw^Z_}?S2b^idq`cgnyvKSS)`XMd%KG?@Gyq7Dx z#B3PITSHp|Uvs^A{fF<-;x(#qSU-WsXj6%0{=Z*U8`S z@DEJ5jY|cUa?sEM)1dEV$m46+hGoe`B0Os&OToF6J__g$8uD~}9zO*3^I+s!EREC?jb5^$R>~Ex%s^f(#O%Zvkv@ER~0ivL@HjlUx zK=4TW^bZO`?>ou&Lvx(dZwiy0?%VeAuXEGqVpiDn&jAjXM~M9fv^0Out(XH^(;qOZ z$GWnRtN7mY&vLZ{CR-5g`7G$ARF%*x%iYi0z5R&k97%+lf9{6n2I%b-vX6b_F5~{C zq>(Et0QK0OP{YBZc-s`F zo`hbP8J1bZ#z}NJ$N*8qZ+b(&AAYYn1b`3=T}WIW^iUl?*)CwXszEQM+nMq7%;^6fwr^9pQ>8A(k&mh}s2e@Q@c=N^E`lJ2;*qHsy`R zyDCo`8fkiO@EiM0XFDIh?svy@XK~h{%1l=!Ql>gMKCZA{Z7B#6KUt~D*|L@QM%cG6@RzCc;=yh{{Th!o1LG4RYLhIF+)AV$3&sz z#wgJ7Z50KG-u1q{emDB{(zdYPTloAIJbWuFs$;KV_4+Ri_jmS#?!NKM4DWFFFK}eC zvP7#S$s~vlx1bdd5wDF8)2}Nx630E+yi%X=NB#rgzkX}pk@Tiupn?b=eg6R9>E>I8 zrFwUobtxCT;4s>SA09qBhPsZYMMk;0lo7t9uPFdOzkq+IMQF?wokw1XYdHcGa14+A zKEv<6f(MumxAIq%@*C34yQ3wMj~`-8WN&8w01}ZXPG0Y^{{RkyihYW2=H#mcd7Qk3 z+}Y0Z!i=Qn>Z!GW!owK2q91@u1@XT+(d!}dxuexPk)e4@Kiu8Rki7V}X%=aw^;ph< z8+>)PcGC~B>dcstZdGI3y{eUlSn5o--g+#^ITmJfF$C?Gj>7$i&!3(7=?Bcipd$Wg zjRcBz>WfnLGJKXl6_HD;Mc8wAfaUp57AnKQAKoDRZ~FCTxH^H+3F4PCS==rfwmosy zQp}IUu@HJ?81LFokbT=Ajd&x^NKV$>1S)fdx01_p{mj;FJzCaazRrH2!5+A??2m;b zU$*`>ItY+e6=nxnaahgX{fiTFRFEarmA1~y%1Bu3X^A>-AE#H!PN8!jeABl3rj1%5 zQ#_Yq*kTqi7<_F&1nd$#54XtIo|TY3>c3<%NPV4@7IU~H%HFLeF{?Gyi-x%G>X+mc z8qoHDzI>iPsp^6}o>yuLl3qrJ!B-yJ&c~U_Zfg8$Y{f6EN*K|U^N>7+I=b?i`3s# z%SA_rmujg^o3|r^WtBOSHTi%5Z|(Nzn0v1b6;^{pf{c?nD6Ke>${9_}zA>_q(3VPO-d-oK)%jmJ9d!`+ujNi6%2mREXR)8>~ycKO14fWGmsQ z)}!3{2|$X?XAE9GLtKF#)2|?p>HGEL_`mf7<8f?G0)>!=H06%TM*8wzLhhOwe6N%h+>zwy>wXoSO@;a0WyfBjFIl%#FW_)4K87o_@lamw zBp*>>;6`aJ1_1hO9Qio9jI%+{WzKeC=GWw+aMvkK>RmQ5Rwi^$ zR%wGr6;rd~DAbi_17I$`dKA#eORMq&w{D2TD?u*Tx~At@Gnp*c)3VJ*IsGYZOp3mu zvW_jK(HiijKm*5sId!MP<9Li6fwe8y&fQwR?F@t#X*Cf}j7bFY%)&CvSTgBP07len z^0tEg_I`5st{Oogb4lN#87DS|mA5bHy#$jD9tPAEXyamB>4%)1W$O7ab&K_`h{xapaiTqqhuAT#q2R+U%0?0scv zO9E< zIQ}7mLWBlm<3)pL9q;Y-@_Nv0`CUU>T<{~+y#A^hmV3BuH`7<4k$cg4Y)FlYgYX9a zFn72PlZ4XdJ1IT>zCjW+&@v_Or$WsRAg zSAO*;&yTnV%-#U6dl=pqA-Pm&BJbdStD3{I2@h;7{22(Hra!1hV@!6IJT-m=i)pkOP>u3t*k(NrabOmdN5XxE-+a*hzui^t$Pm?Z z+iDm9*qoN%hAp-G0(|eI_*UOG>I*DV-YQ$kU61O2g~eSEuMs7#BzaN%vIoYS?ld~h zl0YrD@Kskh5 z?&3b=4Qs06F*(={)~0d;0d9&{xiUAWv0lW|OER&NSCo)dS-iL;c?6wkF+7RrxJf_3 zx|B9YZKi8zSngpfikQa7*tDqYW~0KImB@Pl zVr8IXdi>d9EU3~E#1>|akCJt*^6&>-<~X*TXq3B}Nuq41IWxG~^Dj=-NU6>M4#Gmt zSw{V?Jm`FDUI6*=(BFo8V)C8;0Cahp_SMiFl>&Clre;g84TxYf$)}N6sB$;Gp8%cx zwf5-qVj2cU3w3|Liacz}Eb3A3+*t@E`b(DKX_Rewu;h2~?)`o=IxJ7}*x#Dq+}>vp z08zc%YaDFy*=ZPnC)d!)G?cBBr<7y zY29CX3$x>w$L-eBUSGd5m6+uM#^kN96^-<<^rX3zwzhfc;WfgLSL7=X2lpEJ-%3L} zoJ$C>qMKfA&dX4v{5pVwN`}CZ#}81RPZ%D2k>kS;lh9|HN4k$C4tct5glw%5L=j9a zC#SX&gX%H;e0-nj{d|4A4Ri;_(nC&&rNHVn``rlL#dw{Xm6V?(c^W_E z)m|74SzP#?doSrqu2Yn1>WXwhAoCt)Pzwya}%$2L1tC2-^Lde9suDr7<>>qJq#eYxJ ztofqI>IT$E+8QhuE8Q{1E5lPGbxe|fJ;?!4PQck;`)~H?K?}u@Edh*i9%V_M*{$_3 zy06vExVnhr!d~(we0N(n( z8xqmGzC|#{wXLF8w{gFUc#HHgcj-?GM|EUqBb1btfI1{0(H(96F|KH%VO6G=Z1*b3 z>&VlrXNmmBd`Id(Zi>u6yr3=zQab9Wc^>AKxjc3imA#?U&is6TuU3h!C(O9lC0&y+ z@H@4Mkr3&{~^lCq@(bFQccI|0LWX0uWxt75KZ z2rgFUrnS1T8p0(!d~?t)SpHx>-Uj;5jnyc71y=phG-DLJ zj<=xV40-UMr$pRhx7}5{vYl)NKcc1{2boIxvMFIUkHKFaHbL0?kG8sD@Ku67YQUS& zC?&>a;_RH3MoDoNs}@*cu4E!mg@i;!85|3ePv+TeY#y?)I2O5~&2a=JrfYL*H7h9lpc%7b*k(k+E=YCo|kXtz(M=B;qyQpLPn>iL|3G2jd zM0K zjGTh&#)pDcemB0B!o%T{oRWL&Jr!8jR%Z>0*SmIHrUMlv{KgW@F_;4u5v-ny1=uMO zA@|^uzaVSi^sYY~9z(u&mmE!9HFdaOB`s-s*>3&E;W5a8)f)2+HR z;<&N2u*X?FSSLJoIjIAWpBzWWR+ARs;0vr(5{M;n)S`Zt38ScqV+B@aWC3@gWEv(g z0Xo;8*!+0tZJL{2WH;^HtpffHq->P9s|gyi25fX{1cQ>VE(2|_c@hVYJL+Sc-4MDL zu#mz@J=H@coIgn}GSRW?k4k#-h}DQyUMtNH&h_#8dFs(It~thvkr3gKD6FmQ1|n;H z&rCG7pZSjwoFQ&nUuqCW!*ALN9)HK8m*N)!pWEVbP)7rU4zz}1YjqlSTK8&XDBZOjILN1#C5+d(JnX1t zB}UIZcs|fT1n3@xJVY}y-KQXpCzXSmnpnnGcY*9$dR66ABuKBuPx|zL1`1A&_IKm1 z619yI8rPy5&5YGbFC#kP^7P@$WME2j$VWKG4M>{|s^pRFW*-_+y#jUAj6iz}qZ)-q z3uT=(Q24qush4HR$qgA`eW3E9yjem|$jOFJ0%GrdtmbM(jV~6Ecn(M!1bG_Y=J@l}#fh2E+e)Q)*!$FIs#9iG{Y#4?<*C|=Xv^^a zWO8V>m&pZGe1;>($5)bPHU3gH(|vyWAO^U3ST|K%-gT+eTk*oFIgr5_mri4Cestda zYebLJqha22hGw&OuO!$8sdIi=g$8CZnR;8A+YVe($pE{3h9NrEFPP}lFtJUPp>}kH{<|* zd<`C`_{rR#qAOcuEfO1;+3Hz9)&dd9;zr-!V~S{z{wJm16PkTjI?Jh|)nT%@hMH*U zU6!1I$dQ8}Mp5=8k+1UWL3#~#@S>+{5qk0Z~K z)hM`KP*f8+xm~`>tu{i0k~3Y7b+&xJ8CgN!kahhC>x86eirI^Fwf#2J%Ww-BW6OWG zhwgu0`*rFJrD~eVs-A~36`z!c#FG*KEP0hL zA^3&cRb`T$tfgd}Y!EqokFfF5hZx(Yt1=F&A@2_4#dkDDD!B;Zf-p>@%CyA%CcbWWBRXfDT(BmDmTCybDm6@0`RUNP_d<#|4` zIKm>|vgm{!y}G0pZymb^-Mp!QQ_6*1809+p^7}_4;!9Dw&#NAnsKQE0U;T zw$WoEX+s4p3yQW7{5HWHT(6x5^S=YfPQxH;LtJY5>1eRki&X0qNpd+=@i5YgRS6or zjJ$Nm`HSFkRUoKl_|e!uB$8;;T@}lP($>2bXr^M7EZ#3M1kGYMBhy(qNJuIXWE@+` z16t4@ug5`#9YJ}k?MQBDaM5nS*1KJ<;&RtyVJ(Rztzse)q*0b`OsYc4&BuzWdF7?z zH_^Nk%>5A_8_X@&u_vb|arSM@mw4m*p8bd{G$~nUb5Xq@#aX!(jDY&nfI$EO}JTeYV_q2l}5sALZ8kB8knvr6LCq+f+OEq)P_7&e3`C zv$MbO`+x1zEq_IKu#;k`LS{0yA*SgnNbXLLx62RP&yVuyVDKGi4rm&YYK#8z%?dsF zresbAG|=Qo*dHI^qp$tCQc0TXu0xuKOHH%7@jv1Qf4qC5K(Z>iy7EHnN~urwgY^Qypi&HQ;J~=s#drIdfF4C z4)ZrsI;op|@t3(;C!-x#v>0=?(TL2g!2bX#q8`u8d`aPtA1B?`YYZh z?>=W8eNeb6w6pi)wUv({T~;Ao-dX)ZfG{556?_6n`yFicTt*lo{2&N52s19+h6rC>Pl3Gh~s#nQk1<@<*g5rD<=d{6ujM=zh0aVWajc#=H((5uMmoO zLXy%Xg3sMCSdZ&6-&TAZ<5s;yDH=!wmvBB{Zqh_$d>1CPE|fO2c7-AZ~Xpx41z{C zPs{hs4ohoxP+5BxYc%4c$9kDpj&kytjbf)q-SMxtk_V3mduj6!3UKXFuL$VfF(=ay~23X`E;G2Wmkm0N+=3Z( z6c!mHkyStkgOQ-#KpuR9qx$ugjJ8SUId7r;P|PKsQii*jPTR-|Q}*NIWSJG9`lyt6 z9spK5;sa=M`T6@Eo{BQ&SatiWm}$1v7m)9{Y2?i-H|>yXdd(1p-Qbx{fGR-Rohc-E z@zC3YE+)UGpTq;M%KGp+7>*R0l2j8i4KuUwioe$9X8|fp6ndErC&&61RMq~Oac00MUv&tU_HL6h6uxGT&${kC7 za;L(!zWe=$TCa9M8!omq3!Nz*Qa&qNZuiLJFIQZAkiV^?A-6W=v|MsP@PoyCZ``1G z(eu8%)+Taorp0a0e&{8@=vSNj#{O*o{#YEJZF3 zTt(=mwN`k_9!h0o3=bcY3D&{T(dYr0UK}+)1yJDE0OF(Ksg}jPKx{R^5LlJxKW%tC zSd}ZUAE@~G>DZ-VaW2rJWpkC^58YAQdhoOXFZ#&~!pujed>yF`;IKY-{YOr}1b;P9 z>V)C0soSwzu!}Xj%~teB)G;KX_<&CmK|bB+9eE$WREsDlCd-_`WgUyk8xcsqRP~`o zQqG{LcK-m>NB4f;ezjv^4dkFo28C!?{^SiGp!XK4vbVA^`A7XAACuDZ#!l;_aR)-7 z^0sKa(M3`Tiu_2d+L0Wc>ttx}L&5RU#%KAE$!iEST!^hS>gyaPc`GPsRyh}ZTYnoK zH@_Zycl$#vPUs=IQ4R7}0wEJPT`Ct;!#{l8Px zX8=&-x+()?G}+&(UGpn9+ym_+_UKNMhUmu5p;R)Lxd2jj<@Vp-p*i_VrrVX~zVEhU zwAUuPUee1UQdi=){{RQF63gIq%Q?{$Z|e?q>tZUKi8p?XI)jFD}O7Oi2M5_mXg$w#}%0Y z;iVwye)~G#`ThD-v}$%JCFJhB%iQ$krE=s`%Ls{FAZXKIdqF398v}aZj;Qw>zEi5J z=!z;Wvz6tcmBr^v{e3k_Hx;1bSil4}wnIjC7m^dNcDhPty@$kY52w{Higr_O)O7pk zvvZ!qt?02qF|01see@xd?hkG_kDqhn?58~w)9aexUDFFFc-#C`rh z%dbKMMLDRhBXvQ@W}2uVBRrvr=j4z-UHtF%>%3gsXoA?l)NH92@>gw3Dp`eQ;>3oL zi3NW`KVSYjABUB?YEg!wf{n3iNa_Nz%*+YeGJqVPjeWKE>dtF+2}iK(R&(5sC5l%e z6=JgPgqY+6D-e92)DOP;UTB{7kyocQT%oL@vikz0aEL4cb82ByLE_Eux>4h2&*}R0 zs7exUQPNZ4&21Py#|rdb=DM}}y3-{guMZ%1mOqPvi{n4vxk9H%CE z2$EJT0Qn`GdH{K1PuP9BoNO&<^SZg3>Y|-}){(|q471;_Vpy4VC4%t{u~zmm4YUCG zKnK54PtLWWz3<0fT6yD^i#Gj!%A}#L)yCFc-xe;9YV+Wc$ArjzL=-5qkV5dDoAQkQ_WQrI9kUQG%enH-W@zxWtvv`@m$6@pfJniNkl!ikr zF@~y8uSV6E4$?_HE>^s!T%8Hl)qoA6NcRGKfI4O@D<7G!G&^(kL@~EQ2|uEp#GAe7 zzekOST9!UmW{ZQy+(~sKkqo2Ra!5S zGz5amS73wi56*z=)t^$82tECzmw$b z^_eyrcaQHH*O%A2&6){^n2OikN?@zw#8xwz5jA*}2b0!dQYHtKYCgbx==|%)LVhB@ zwjFe)OMaP_WtQ&ga^2lEUf+TYYypgg(DRNqRUV|Oz7G~U*T@^|Za5tbf80NP6Pa?h zo^2}S=cP!tI^v-+ zD?NE);S|s3lRB!9{{WN^AbxMYx`T!e)?Qb5r= zy0|+m#Ie{QanU5~5PWpxGROtUe1v=MhS$8d>y^t!N$ZVDwBA<9VT|@6}8#y9UYjS8P^uKbe5$aV?aiMJz=eFEpznC<+zheduru zb`OpFK^{7su{6|z+*f#GH500~PS{&e{SHpOS*7+RN##Qoh#zH&1v?EMx8xmYjd>kq zV@VDLn{VugB&0s6WtTtRS~sA#hqH^x)r_=Kr=~bYKpa(-j*I950Q2L2ezY+7)(`}( zH^`sk>a6(y^2j$$+V454V!wsbw+qi=)B<|aMao5tsM7{MH?{pgPrsg?iw_*$X$FVy zk|>3_2ys{5-pfyz!^>4F+M$u146q1s;KN~q64D(79ESxYgU8R34_Ns2Wt2NGA-YjI zkDtLMJRmp`T)L`0B7Bq+)yvVjT6*$Ym1ZsEA<_1-vux~di5u_-$4^fzA)X7zoQ(ii zn6;V#s-Etec5T3t0VHbh7BxA%f3hN>2cx%5%S$3g2zQ0vc%fD8ll7*!9zt? z?MBD6(PXKJWX+=%5lTZs;CyVb;#*_m<9%*%Cl(x=0##;sJeJ8~=2IWr5?@-rzB$BR zwPJ`QQRILYKRW@5-n2Kb->)Xm4B|v}ry@G{zoHCsHP#q)RGh86TzK2I2X9x08)Can zxelYSI1NaT@D8**c^cP{dUhF}>BD4xpy;U#pu0k|{@ju7C9Bw(Dr2sP=IZj91ix}v z4=8o^Kd9?sX@pO?Y^LKra9y&!;c^y|-GP2Ab+u#?2thtJbx6yKcIqYEo8=I7QZvB?p$rogY0o*EyOI?3IbF-=E)AVXag*}6w* z>TgmVYudx)f(i0I`s)7xjLv`YA#@+xt?!4;MlX)Wi2x zlI#R=cP>3mbUHq$4>0C{?OFHWjSc+tn}6i44V(V}tDxUUe#poA7m8&B#xC}?=5NK% zz#qjQ!EW8DocvGheAjH&wc2fZ<;9$}vpo!zva9jSUXy6C&;SA9hsRIHiX%W;KK)h*dE`RF zE>gc|BLTx#o`qV`Fm^nVR3d4B@IE>_Z~@>k?hfa5UwzdBS@~WqRC{~ylONg=-mBe{&)%$O^&#a{ zeLW}8Jk>~N`Z&C*Qypa5l{(7kmR*kKyCbj5>XsvqkOvRce_WQN=^YQmO`*jZuV|<8@ zu!PLx!30Of8s(MKThJdM0rvZk@aTN3?v{NQ=vG0VwZ_A%S&~Z(NMNz~`QNya{)3^8 zY9)*fb6Tf8oE}0%sWQW6Wg||~xCx>O;>rQv!Pm#nUOOD=Uoj=r(d?+#YFt%YKXxf> zz+q{`Dhjs~re8WB{{V+i;N6vnF|)}Phy0M$Gd6Kvkf_dJ2bZSas%CCg$fTY;^^UKd#9^xaYY8COI)A3A??F8*|W z`s&PmyKkK%377>e=4z;-d759QktHte>1eShW58b<{ZG$C!^q$=azTZ*XlkT8e=ODV z24f6QMHNKo)(k<1F9DC-a@UX7UmbQc4%6ov5IsfuE}5W$74p;MWlAPhlBEUp1QD*; zBj1+T{{XAN_kG7%kg_9Ser{*>K!<80=k!)gWu&bHaAa$T4pLZbLPE~cfAs^uBVIpE z>!s(zJ>T4GtJiHls^zpTXqg`In%zh$)55*T;koqsX#Eo+6&$$}um-}OP4`jy^-M1e z2291<^wkB?1HRpVg_(XLK0>?rOOb@qER$u_i{!6e!1;Ve z9vobgWG_}IV^%A_PkSyx>&X2H+5I}qjwTo9Z4RK2RRl%H$|{pTf**zd0E-`pJ;osX zIPKW8CutRncA7XKtXr2AYciEcxdm@&B({!}>tdX9j$q)A#l$|Fu7i8(I}TxO;P@6N z80?TX`|@7+?2q<${w4R@JX!DUG5wpr3hyn?MjT#t)?!7EQ+q^~>rk4qMa5L?$Uxt_ zL(g6S{{YI|Ha{e6d%Nfd&X=^o{{Y7L!po7(Y4yL;W$CB?0AUCA#J!M`XnzuavhQ$J zZYHDA?whF<^kzDh8|YP)305J9;M{$zM?!!6vBTQIamoJx`u^#U{{U@qt`{5IUq69f zCjQm`0POkx)PLDRe1CENBK9ua~={G&2m%{$Snl>RYJda}A$=_I@iR*87wZVzG<1E1bVF!mvJ0~b7bCH*7D*ag0f5NHk|uZA@>re zmx91(j*xrXWuR#8)nCF|R!{*$cY5NcOl7-^Q)E1!M-voBl&*~2bi@)55SjpxI*cov zEHT$#FMrW=ZF940e&1D0?;ChXCW68xc<(_liZ4yKEJ&l+u8sML`2>B{hPBgNF2jq3 zpPHECaL{~hSuj6|89LNr%FB(ze+j7os*f{iRC3;tC2DBNO3#XfSfaiP$Up9*4v@B+|)n zipn%~(mpZ=mu6t(IjWC*cl|LncyN}j}G8zFC7+3s!SPCA8> zxu992jn*hqKm%p#bRoUm|UhGBvtua z7}*2C0<&>L$g?{gh75F}PtL=yOyTLS&CBYQ#KI%hd9N?ucV}>GSdzRPHbjK#L%r)? zf45Ev3(dG_l88Jwx%+YoLR(o3{{VRQb|&?KQaGRJsYKH$ju1i_T zH_@~>|W?j&X#;!o`vcnm8j*WlK%kA^y3Hl z1Z;D35A(!wP<9W`nc`7INs~95L8A2$Vm!2YEh{Pb$Aws}SB+*{)ZP&tcbSpBC)jC8 zZw#OY+P{@7Kqo}?nArDe+@e7+%bCSm=ln?Qp6#LBU8&vm>}LC7E7erMtk95n8YwV_$oQ1+kU zwgV;HUE6L9gdCDO)WZPw909nNHahe2%uckvdfg$gx}T^kHd)z}6X?8)_~G9F0Egd+ z7U0Wv()UGNtToMKr8Fv);EFc(l-Il78+<{~M zRV%rq=(ADVw}snxAu+?Lw+SR4Na$#vf%e{ySuKW+ViW)Xry;T(p=*q7EHbo3xydI6 zB)8a;^XJb@M9A1}jZovKmt|W19vaNh7=pIf)Z)84--g%5{{ZdNCE>!thZ@;QLsGqI zI0k|%1Q0#PWA-E-hDdjH4)U5%m)=^f>PWcfk;^HO(7&cN<#>J6@jpMV`ozTH3;e|i z;MgtQ31=BFmMbqT6zTB(L_Exl$^aYE{QjL&4D6tRspf|(TuB2`fs-FwxFeGha^uHV z8B4dOKrOFm3J4`s{15BBba{ak;uO;~4g{5wcV%fB<@_|2-a8Dk$g+SzVXtZ^AOI8( zk)!9T%GQ?W2TpW~TGu#QpwOpfYfD%{_X02s3X>--AIxcq3=HY})!p{^E_6d- zztLST?(b`Q^^y>Pdg0F&C=o`qHSXB?@-@SLddR`b?;9(fw?vyZEm@XkzE<6Fd`}Pp zMhvcs%eGD&xVMix@JEl+&t8rxA!Cbw$xB@u92-Ot)m89MCOaWjz+nulYeT~Wg01)kLeJ8O#LexR#ziLhT zl1~sj2i$~_?;t8{fOYvtj`4?MaZkkJ06jO-uVwmAh2R;3!?qZ^S*=RjI}STHt=^9p zleX|D{In6p^zgQcVzG@mi2jU00BjI9x?!}q`JYfylilWw<$WP%bnF7NRcrU zjCL~AEG9$8lPN!vPo6+>KOZFT?bDIO;&MtoJ9kjlmuTjbNsMkzwmKC9#o6JGYmtUtO$vdx9FEH=@L9A6k@3Er zgA(YR0Te$}7^EcRqo+T0di*2&JN#b!L+zZE4#4~={6zdh^sWV4*y;}~G*^zD8c%97 z@jQJ#M3ryYbPh3$!(rxY=9oqYBf0zJwcy~`j6;cmrPt6Bemg3kd3JYlcK2|}+a19} zJNSLxl?bhn#$>UN4XPo$#p*{OQh}5mAA+nuuTSB4xHR?<_Wkac;uu-*jxb_aLxJ1fWp+7>m|#1Xjy?*NJN|vf<2z$@Il!4(d$B2wA(~v z0rUR=YDo@#29@r|;oKc# zMXet0usdFBH|y8QWBC-7xW4MhSdS$+6;ZDQct7NN!@{>T;kQmpG#*L|6W&=&enzA* zWNgh&bLlJ-N(&X@b_TWy^YDMB`t}k+4uonxiGvu~+pASd*+^%#b~MI{S}G6H`fVQ1 z#|9riA0M{5FqlffGi|c8tq&ElwODG_;`Q&+Sgn~k2jm%e>*qx6f5`8m;aKLH1#?=% z`3;3NiJuo#LvABlx#9tMqX0@l`QY9G{Xp~7kVB1|Qs&ya;a0_((oG~VdL)8YFJK=h zTz&_~@6#+Ht*h6PA#6k%UWviofnZgWVC(*8sk8h2yp8L96c>itAPxM-Wn*Sn;?c)z zj=#F6T|*#w7i#RpiqN~*>G~_JUgU;clol@Jt6Z-U^%_q?MvRfFUFrI$NbX0U%i*YId#4eM$3Z&_5@Y4AJuUb$EODl`%z=yfC+DKJMgc^N z^&h&IHO1LU3g-*sDBGV6Ug+)`5Xi|FDTFdYti0A~91apk>Z1u8 z%Y#Vr-R?DB$;|#7_TD@2{{StXo;hpx65%4fj`Z|CiqlABQh8{*EAdy?#>dXbUzd1< zAj;`OvlFN*^ez&NEdbVozv#Ttf&665-N@OGHIL5c)#H+dscF9}9<hvy~BCuWpq! zmN}Erj0OZSARh;M^RxPO_HXGg>s}Rw!Zr+4?PJGYYv3Q$j=Wo(PNiZU>HUqrv|r*5 z109V&gFW+7Xm3R`wAjeq(Kp0^ttP;4`o0ez>DHb<{zl*+(Z#b*Re_0n2=geMXZth1 z9mZ^BF8&tx-e(-D+Mz6!lC`Dd#3+APpO2HK`SYQ!vmO5cAb(HQzZAlE8}0B)mdBRb zEUY86{{Y#M{kZG*O?K`-!0gmGxT9%L)#mY{FgDy)Lbi_EKmrN>01lCx{!-u#B(hts zfYO#WFx^cR?q9=y?0@~NF*MM3pW)B&xM5fNN~a@^{{V)MkCE-1o?ir$_F=7T^{PMR zz6MAldH`*e-$0mbpoTRHy#@ORV%cDgb7)t#6mPS$maoYV_%YY?9(r0|`JaIXnv|bL zlDJ}AK~otI?4kJcBoW0f3lg@-&`EO;uOB}QSp0wq*!>SlfBVtFiMP4nfABus(&At> zc+o_U?4kJYG>(<=J+EcL^VrS82KS++BVVVV+;nFD0M5J!KPG4G{{Vsg(`>{=wHgV< z{>FdWBI_YIj?Rq_<#{`T5E$|*NIE;#zwq=Kf9H?s=(k^u3E2RC{Zb$K?|_z^u8?2;!lBbPujrq%{fYko8|JGe z$?{)@br=<2Mr`Q}ir)nBiGbgapVV}#zvr$79aSM8{Am%A<+4hOt^I=k02{Aac%LWu zU5tr`hkU$}50VDNaBMHe$?>E1>1w%#!^F?tsU&t{@;R{{XWe@wRyuU-!rGQy+F{h?SQi zb-*465(QE`Z+w@a$^QUQ+!>6&4ntcC2(gMjsA|9Ls{CoQD%hLxAMk22l9+eu-*p-w z9d5dlo19s{w|`G+3iAM9`L42KuF{h_;GAL;ue zBekS;nlR#~r_fd2saGItD-%VYll-Y>Uf zzU)}5_NA8f4z;G^WH8saTJi}SK6**N^#s<*;y(&V{{ZLw6rY6RZSAB|{{XSqGb61L z{i6F)8pTHuFKfQgaT{hL&WD};zaz%?)A4`Qa{~Zw6JP#+z(ivlO#nJ-QxX3FvC{fl zW~cq4aB?n+m2TIQNC4lGw!bO+aq)O2%aETN5gPPcy{Y8y{fD?ne4bU;2@NLK&KkRYtmQZK@ z(^$l+z(~+m?3alMKO9K9d2Hrs&Xnld6Y5>|)Ea#z*#$ z!%Im(j5~Im>+3&~`fsTqYfG;uW5&l$ANr7PP#c7zfA{oNd2u$~)|>cS{>tm$g+GW% z_=A!Bbi(&;Gan3=>tU&2Y*m)Tk?q8CO4G>~4`A3R$9#3Kkf#v;0G!*8i|~%a(LD3o z+Ta+$9w~v_-&O0VJ64m~?re9)#O6Wt4d%jG4L=&IwbEBbW>c7xH7rw2qTybmDhCb#2KqkMVb@c_&S z1bqEey{@rf9_3oQPr9z;e-Jw|Tz*nDu$CxMV=O3(=_|yMyrB6zV1y7f>mc#JgNa=B zyDu=8#I!UPgQC)M87T5~1_>_9c(k=*su>kT;iXoP4kYW0YT;Q(&?vrmfzlDN@v^GT zqhLTREg)()Uz&f~cl!fa{@H!Whx|#!{w!g?4*s2T7?`ThiI*q*#Jeoqnn>nB5MN!D zlqn#o*7wugH~vij0I*Exd@mC}nE8n9Krf7c$+)LK6C7hw0`kqz_AK|j(cEYL(w~P> zG@v4VM`>JH6nN2KEH>NZ0KcIpUmb79{{T`Dw0Urbzy9L+ExCrBu+>#Af3bJG>O^A4 ze`wCplCab2PTaJP$_XvLQ;sM4kKf~?NB;m(xOoGQ;R)sW(49Pm*_tg!$^OQV#vf6F z{{U%U!r9Qikk5z8M00ZJ+-|XP;*JWnnS!J|A`{t~; zKlV<3G-0kjML!gO1$&0Yi4@w2{{V?si_=*Y5~?em9Sw zG%AyMh^0gBKlVj`X#9mVtxNHH`#inCBt|VRP7$q=i?ygjc-J6*Ky-RO7yhHTOfDzz z(h@rb5#pN1Y5BhXi}uIxPw>OFKM6kwzYhNZ3NaFP+?DWHy7X)!JG?X7&^Bxn>4ME9 ztt6bkF(=R150>$d`64VYe zPPgISU+~^n(q^ zRhOqm-6i}kx1AhPc;@b;PC-Vu&Eo){gRj%b9y-v#f6rgjttF4~GV<~iP97T(qWTLw zi~W_q+SV&kmBRiOJ(WVhRqogtMhm|_<!f&}{O`ez z8#W2YIoLU*0-wM$4Cz|jQ_CafM^1rzfAJgro1cQYPR^SH+1;<2?5vlh4NSB-+3w3) zRV1oeig_7kjFF-fi9r4i$6jNHf6T#?3Ed-HMQM})M|!WS`b6yhk#uF4XO_ROnEtEs ziht}u{jO*#$3NhIb!055V>I++f>dHW22zjluesKV*1G#18~$Pbo1A7CfXd#%0{a@J z^LacQIZcj7>aKmW{hYtF?Fr+HC-^nrnEnal)S%^GTH1nyf=CqtaMkozXrb(qx2Hz;b(g+gs^)50Kx1A1do{9DfW}EpSb(<`#-JtWq{mEHR$lK zm6c^H6ZmD{c>43#$abH4(67y#`Ph3tm@0mGn9h#8Z^v3k`m2YZH;&CYW^dGmE-i5K zsTpwH-HDN4J)@jrQ0tXBxw7kghLhvQ_Ikhn0H|;zP??|pL0ztHL3*kDW^zbMM{5^q zq-7V9OI^WWu-Q`E43ptT*2kmP+bEE)Q2nfKW&X~Up{rC)dnH)vnyOnuYcK9*co>lry$Ll zAzNH7CdpZ0YQ`TR4FCWd`2)|78tFM6=b9v*=kMU5xLF2|2jNMHGveA>qL;7IP(XHx zKtWXvwU_5(&#)Z90zDh{)8$_g)}jb2$aJh^93@R(3|@b>n&@ z9q-4Ie!z9E&+0rw7$Red*O>lStl^*5n5gjL76C)8pVFyilz+3AWx83bK^TN9#tT`@n?xJh^CtuOA;hI6tfLgk~;i?L+od!+%+E7J|}S zuVMPqvtvK9Z{cn&GBwvV_>VmczMXq1CSe@fg-5a}S!3J82|{Do(NIY`>#-lzxWe4Q zzz)D5JNm;PDJ_xU1JEx~h9)y8x);u09ln8vQ!v7864>W zw|oNgjwR>J1@-Et;>h8nhaC(yCFIW1qa@4%@m@fU4TnD)9^GrMnww5@sJRY&E5!%% z?25bJI5?t-qsrTq3kGg!*OoqK97x>>;vCjIwM5V9hLmit=zU^FijNRVWF*p1$gz@mrzk|g2Kjq~7bweD@aHi|%n|2}ZA&t}Tq5@9k%~ri$ z#VEd~7-iaqvYZu_)DmN3`E{}m!3RWj4#H2L@}67mXhH4{4H^$r_0IFIWvTTR5(pY! z=FHQwh?s>TlydmlK2G?w0x4nBSyAm4W2?yMxtmYuG43#Py0ZeiFyyPWV zZ|%v4w~GCT&!4xI=ZZ-H8Fn8uTx1Mxk&O^P#;ez@>Q5b}KB@IXL>f&m6067(GU%M9ekOq{G2guR+=wMj|?E$?&KT=dVxt)B} zy-bXvNRq9beBPq+SBhzbjsp+~Za^R&;ox{DTG;7!7M6?C@2@2u5NXJE>ZWPRR=m(Q zU$@%Xi_{`ZQY%lO!6R+~oDRPDT(Bs+<+NZkGHgv18_`QeL`Jj+-%B zwnR{pLr(n4pqQie77zNpP`mpNk^t~OZL=Q@v!N-Z>2F%RfhOEX#T40E*(wmaO^de=hKeZW)Uq)EfZHAm5Bk1!tsaRd z4t$`8Gi|j*rpe`T0Z7&KA^!k}sf&_#M0Y-{g~AUYHkb0QkCFz+`+RjV@ZcLmbkE@9 zW3uGix{j@INVXNR)T_vZCoUQVf!Oh&bap)X0jB9j zWU^VjWRS~<$KgF>nG$GYv>Rak<7Z{%pr`usKd(&x0NH5UT|=!Xmxg2k?Qqk#b%|#? zOSp{LY^E;}ki^U_@qtnm^qm;7c$@>sjgp&EqeXu=4?jl2e^5ab0k3{%eHYibfA!WG zkhQXdW0)27`K(IsW&SAFxg4_N>EUIKHx#f25|!fG8UarC$SQ0PaM0*3<2ZL4<>;B0 z{!GCze{hh~*p%IV)BI2E^}^(F7)dX83{!KcqTFIQv>dBU$Hvf|uD9+~9ys}T{^1qn z%!i2o0FpRkT5=Lkq57!XeZTnMj>O=qVmnHvKQmuOyq08w8lXA_jf`QLn};t@4*N{!sCFB19k+9K=)Q?ZCuU&Sw3%Rg8pW7G=WH`%~DADw1o@)^)mcl6K zD~;^CF=NDRX@K#g*ULDrY*fBGoxYXOf3@>&GWjvmI(D1BuKmh2X?Hbwql)$dD$%;_ zcvudxsUun={{T=v4*vi*?a~r(au{;9&s$gr0V7*vZ_!E`H(VIwq|n5P$t4ZRS6~v_ z0F&Sm=gHQGOhJNZZJokqE*{sk0lFH^Y1&ymJXUJrx|L$8%OG%@aL4Wji8}jeeEA^! z0dsO*U^=BFhE})$4Jh}khLt7yiW$`dk0xa(uOH7oS|G33==k&1#|&$RYWe*Yqrv!_ zf&x0v(Y0#mXk1wgVR@ic5=aKvMt=GOmVojB{=E&{I!d;YN0&8!!`@zTxVfa*rJgEk0}n{uMgLlNstvP~D!2?*b%B!mX? z2FmFD!9QW-fzczuIgUOPZu%g2<*cBE$lUF^mTT6ZIb^dsB+Ot8oAd11*PkBVJu)!j zj%{f}>p(TN^|6Op=AOGObw*=gLb_q=BM?g#`;G%B@x@ zC8>Pz1zKamMPG0PaZr4J>N?iO&s=cKYeRzup11J2O1c&h32lMfx-Kj=D`woQLpyK# zs~b2Tnecgg7i8#xqo8&VLykD_HcP!aefpz*9w)mnVrS?mz(T!ih*>zulag3y=K*wye3Z{Bl>#S`8B=-z zqX%01^5yb1)6rqzYe9_KB)Bjc{kD=m2+OY|Rn{4fY8eUim`7kRln`~Hv!kt_Jr*a! zd0pkdkFu*^Z-?Zu?x1Pp`c>--lPo4SSope@36D(#meJkpO#upm9_Dorm zl+Ww8ym%kUhvWQw^x2YAt6it68}RbqlF!2X;KxJ3Bf|r|1=;&_tTDJg*zEx4va@HR zH99F~@64jl^z+!pe|COXww!ysuV zlZZ}CG~S}ARvc8X^w(6Cg7dpU%pkSwCfq2fyoNIj)$7BKxYoTTkJ7G?11BAk$m_!b zIUkL#wfpoOOK`*T09#%3C^I#V776-(>FRjtWyeV}TEnvG$3HsGxzST7bET(S8A*?-dub^YeVWPNV7&YqU4Ps(Iod)P2*l zOJ3obyYx}t?_O3J?#Fsg+p63MUqu+JqJ{AroedD$A&AzAA3ZH3vN^?#Xw$Ce(v&bv z_hfxvO^TIV)$F`bWoEOM8{XD5KJ`B(Z^h)+ zOTNgNdy3~gZe;hKJjMs2;a^*BN61|tACv$O>(J!J2E-gSH?IEx6y!LFo#%7Zorw#v zmOSh^n1b*Mvnn9e1ra{{8OD*@zYdSxw-QPBCW1|8db7KACdlJ>a49? zPwGS%>3yd}22epGUn9>@_r1)i4TN*U9`@KYeYH{1+sI0_@)Om;Tt=1LJE9J2r3%jn zfI;9-6R)0?k`m$N00Hg#B&EYj0L}-|O4qrSN4G(#MP?*Iq%dY!$AY0G2Sa6;0khz* zQtUX4Tfq7K7Y`fmlB?YkWT8nQu~R4*$RvpC*x&-v@8?9WoAuDwgV3KF3w+~N^yTs9 zfgH{@**E*>j7t-w(5yM@5`}eFif#^VBZ96+jerRW_x^x+>X>;611U6mr(uD>(KZuJ zZW{BYL3*mn++?xFW-L=d2p;V#jU8)14;tT|i0I2*tpIB6DKlQf<#k`8Ni1AbT`ssG9jZg8bI);?~9}Iv|C3 zmx!+Rk+z9DWdJE4kQ+mK2JC^l5&3JL{{ZP8S4ihm3Ob%v{z|k{%ZJ2R64+^Hk{LZI zDn`gkrw%{OE5!LHWNVj@-A*EA#sJC)KDL--u3^aVDRS-nJW*Jl);iWf)frw0_{bfZ zc`E={OZf*4c^mWNdl`;91QW~C(FYJ?bF*|#$CJd`u*nt@<|$esEH)bZGv1exP!$OU zc%W@BfXqlIKn{u+UQLmwBAmlEHw?`OnuPe@s$R$qzHpaZa zxNHJQ2bV#`1DDKAjjE7%tXWzd>-OeWUta_Gb=uO|yN&+JWjhAPQ-ogpNas{Zz7bXN;z9qr+T=o7>Av2f5=vH8Welmk@*_++2GQ~l`E6`oDh80*8cF#i=4%9nuLKUu zfUBUzKYCy?TeAvGtq77oP@OU+w!jxLg5>;?2hWas;D^dyU3|TLlomwa?Xk|I_sK)! z=g(ZZl3QPt5UdCy3AoitFI$ljo&GMb_67UGrD%=&cqFvDj&$_v)Zzy45Pd8`Z$y zR05ruAmkE5w^G4CUvDn}o+pa0=z1(TXoZ9Bsv(a2pb^hO`zdL=lNPH|)U>lz@+}PY z<>X2gau28Ks4S&VHBtBZJJIQ35{iQlSNG-b%JJ(^#cw5q&_#hZQ8Bo$?1n z_$TMjN<$=v%u^5tv`{2`KDL;(erpoVYD|QXR3%mz$0nIof|8(+L3KLvJdoPZ(dnn* zUR{}}Zp=%b(n$N{qv&@YLY;^|hgQeragZko47UI(yJ5B((O`4{U(vKrM1BfT1HiWZ z+FiIw!Os!U{qscDovp~WZFc+=K9QD5T^(nRSlv$mK>^|?Wbb+;YkdqyUzAZ+Y}1Ej zYe08Y6Ts?ztN2P}QIrVDgOT3+9$O>Y7z6qPvG8>R4JKm1+6S3Kl+5F>0CZ3}sjxD@ zrqa~JWTdQ-iDjwlL;~%eFJT3lwiq{^hVi|0Z^J+Gm*}DRm%L>p{J&)lUhOkd#yzB( zp^C5`t5tBaFBO%UiSx%ytFP{#@&s-Wk>L$~?JntFTa|#2JAM3+;9_hj79S3^;vy|W zE5xem2A)PImd1hC_qXF`$4W(oc79(p7RvVMLHHrehU}|qD}PsBW%Sw#mV-zWLAi*D z2VUm(5)ZVEbuNlaGy<%WyntFhHjJ-P;EJ3Tv%+ZPu4I6-2_7Woe3mDP@}z6;=dLiw z&@W`z#9|vnZR)!4XC`?o+rJh@S@rFikz-|Iu(>bxDyq92kDuE|tK@qvrjdUfW7l<6n+qUWCao-u>pvLW60Xs5 z2agQ{qDdo%*pD3q;bkW?X(q?z&>a+%Sn9}@tYsF2QO1at0A@`P7?l8cT_3SNK6*5` z6QMc|eLcCRqsEP#?GR!|oZ6n0RIkUe>a0^qq+bCJ&y%yiKOP7^HPaH{gpV$0C)SdZ zNHdqdx7c3Glg|+lRk22_(==>Ij>hF}HubVSx;rO(1P{}u@UTacfXqnr{b@MdOET!i z4K$ZkmKqfd@y4MU%|(7~`hrK1qCPxyfpLq;(JK6T2C^?R;xaipXVA&EG7NA8MhWL2 z(9n?>9$Z2BBoEi)t$a*nt`C0vy+3uG4TExM?W^x~H#T<`lGUI6*~KHg;99W`!!S|3 zlyl_(+K)TeoolIXEufcm(Av-vgQb4|0O?QRF7}epT!t=<-&50B6b3A(mi4H>&?nEG zZ|8plqPM}Ldm%=~Jdn|{la|MC*^)|iZAP^t)F}a!M*Il{LpqhwU3otw{Q2p2czz~G z&YS!F{8ik@^OnC#3L7bf#pUh8e<1R_Nhptu(=l?#k>$Y%RB!H<_}UV7eh4tKO&}JB z_()#iZo2HHzNX!06=)0Bl$2uaAuphLpLWL*IT8-^PQG?}Gw@D~d7N8)=~$51^0%6L z8M0XjudT?%o2cK(S57?Lqbz)`!;m0^VHo?%WL^$U&(`Viqr?0>6iqn{;9 z7?vIdcAgSiMdVY9f}rf^Du4#`2qUDhxMuF!Bhel#Fg|MAs?smh8+6xMKEX|3=gK`98%O40~RCDx@9#j>zb-G(FxKCb<%K^$O8O-LrgjQG5xlLu7gC)64^Cf*jp6^;9^(_ZPm)x~`n}Y2L9#O<3twiB8tkL+R0gQmRUk$$lK` zZJ>VMI_zBK><)3DK8bUIO6JGc*pe9hG+yK_#Tcw* zb*=H&o$sv=`s;Ai^0ON5t#^2{4SX;?hT<3pWpjc5J6{@KTuke|JP#rD!S7X`~=SG=2xULn?wc zp6&7dPv}oUgAPF?Y@B`#<%II}uacDY`+|%qlQwXYMGAoM-h_WJl2is93DS8#IvXFT z9Zc|o+|DEc(Q_tyKx=^@aw5WkquqVelf=Ed^f2Pw(mZS{#T=%&QxhqVkHK&PYv;rH zB#k28D#-zFG0Une$$KKUmfdC1!lC6SH0B1(lLb!LG>mgdjLz~bZ2&+2vn=@W=+ ze2)gtKVR7#PaJ`<*5ukRF^6#!cj@;O9DPV*Dno>vfD0Pd z%W{|59Kt>~4oV@Z_ks- z8w&s+<{YU0$j`!(?>njg00H+%OB3XAH=cpXRZ7b=qwU7e=F8AcpxXSW#3B;)k6cu6==zd=sVtPbM@GEo%_>r1_%{PY3cTNV? znc#}iooXzAM99vK7~YFU;gtKF?0}L2JRc{bz}ez(@f&BcvGL}e!Q!z{zL|M@9TlqI z<2G1Vx0IU)VzpSf$}7tvDhmvGpDetiS5csSyo#PD$vrU?&3t6a3pzu^nD@iCqxZvS~+gwS!8Kx)SdqOEU)|g z!eCx31JI{w{x$Xu$ZW|aEbJ4s!fJwMbPXf&C({GL2Z#ngXasWKk<)mn+V|&>SQ{-o zR~p01rY156A~ZMBsIJ%Up4hp1ywF{b3WBrCc2@=om;xJ$l7u&sHh)pAoehpWULCRt z39TxJ-r*%D5y6LynVZ+{lj5!(&L&xI_b=4f;9YsRA`pek1_S3x2cJIRzjE4Tk7@qk zcgaMJfx|uBl?QLId01Is?wi*!5)C@S@~+4&{IIIb=3)U^89{X45+ z@c4NFEphrH6SYd0u^)5y9CziZ4+w9jh@2&Ldhd9_s6xkv|w=n>%l*<9bQPMBo??3Rb>+iv&H#$ z*QY<8$~PO_{mV6Pt!OJXC{z&&q-tJXDygygLavUr@_8Q{*FzYoV6rs8!Va2&ZQ#7=yzXxE>zD#lkE zZkfu`#{mpd9%%#2u7pP0lVm9@TaOji$>vG%<;gg^!#qYENmiQ_b@22p=&B10DVF8` z0P6?7vW13Z46-;?VyFuiR#L-SU%3bO>PH*JHr*K3y8M#SVr6@?-uq_z3+lOQ{-!@5 zEB7@kyrYd~No3%GUHwHN_6P@Lr_brs!NxHT^GO)A8q}ALm=sjpAj%6Z2S)mDwET?Q|8B9o${OrDVHb7O;@=9~+OG z6eJ!ekC4C)8VcI*0X1d+K`Z2K zg6rF%r8^rt>WqXv#j(37_5D4QazluF!E1|8Z4-yPGV^0AzC!KkGTvgAI~9qRv?vG0 zwuM!IJ7Pik_y<>Hj9@vPuYPHH#PRjiXRYF$5Ob z4YR+Ux5(bQUP&I(2qRPSOS*TR2@8$gSo~vD#yzKTUCb;eXH|)O0_o~EjThPf08!Ch zh#*r!kvvTD4b#$hb{d(b{61Xegmq|9RZAi`3!uQZ%MhS|Ngh8_uCyB#Qd|atsNJg> zB5BI&B?ddk4{Fj`i!XB2amu1K5uL}j(yuOH^535y9z1>eQL{9X`DnLl=V)@`hCnWY zT;GTg!5E|bLJv^Jr;x7B%{!76W#oJ|*_TBB0CV>1Q#@^L4Ly~yIDpzMZTBHKz0)pA zD$}b$EhH_tkGj+YzFF!3nUjxaKFGntTQHOS=SK-CPm(%)|1i z(D?g!{XA=?UBhMn007$cOPH%bcXoc7j2p^i5%~ z!ZHr}s~#^GS@K3{6%whCnWOZPS|AB-aw8I~RYtTnHozaAhlb(obF7;EJ-e+IVQ}wz zjE0Ij-*eTaB}B)&Ocj%S3PT&Jme(%?ZCJQJK2MNzHEG)oxvnIE?5iVi?H38mLYf(@ zeqQ7aVJClGtwhNp1R*3w4jICYYuvvhYN~t_u8i2)<8Jg;o$)v{9$t#WCGOqGrCI7% zmluAreLT@dOT`$_-=qh*iQst+XaGD8T>wu5Y+aQGY%6OkNhyjH@mVVOQKP3$M-fFD zN)(F{JCtSg!)R-Q><#F$o&5B+B1S$iS-CY`P+J6YJhDAKd2>;DEHzv`jFj6mL6zz$WVVWL!m0NENl;s=4#FJ}NJhj=cJnK9}l) zw2{7s%Ln8S6YkoSK2jIgvq98& z9(DHkA$Xa-P%{Ja^+Sw3r0Jrz*SCg9sxDXf`aP)&NYz59pG;gB)Pk+Z@a4yVJefv= zXhf5~HrIwt@61xXU{SDCYh&?OtmG}@ZzNQ$SC%BGl6oyO7>gnlVa(}@Coi}o;DgeQ z9w>0Ew5TLuX(NzQIQx~>EGxx%F<6mu@zDeyj)Li(8%sqH zHq_eaIJ=o)PEhWwHCKt`GTTX7Iiq;lBJ`qk1UXQucDs?augsbNjcSJ-9r*wk`mGEH z6N%>}`w}nWrt|&L+pSwUZxe{^`Li^IcGuMuU=_VRym7EbZbXoFKqH$k9-NC05s-#D zoYBu?>D6e={vKR%jR5MIhPEp_kBM6uyfvAmu8frB0ai|BjG{(9BGbGX@Jnb~I%PT~ zif>vVgX3K&{2N@~Gi}x=bV&>_ZjT2ybX>edGQ%oU($8ap#_a#>77u?!i2 zQb-yb8qwEG&H0)}!JnwCYq#t?34Jp&+qGJ)c$BiND8zXT zeTRT5d4Qm9FagouM~8|tmP2-L<;f+5#4|B$+ntqu#(Oo7%1?-V^l{RTJ1P9QCD45h z4;~w8ipk+f(AWSFS9H!MfHm<^CMHHm15W<{r=neM?rZp{XZAi<>(V&UqYNj262*z} z%rg++5(saR<6U+WiM~NcL+G2tVxy8ggI6gy{{Rs0xS-S}G2EKGf>#83LxVhVJbZMj z+8~`BFEW3-&>m!EW_F#{eDg^gvV*dEZuYKi-H3k$$s}s9B3xyQ)0aSn4&-u10hphV zQM|D}S;EZ1No1G3*dyR}^y-+wV)}M)bWt6o>fshKS`9Zu_NF%KjVAYd2!;HwIRYDWU~s91JWr z#mMAWi%5j%@=!Oej)ch~aL5K%x8!>ICSc-hm-}Cqx&8A|*DCg{Mz2b&ldW>CER-tn z<034K9Z)bJD=88HPmK|vSaiE^jngsALe6#}vb>j{G1z({n;F{jWU!!4WxOnLYo_6f zJdB5vDi&|cCju0o9(jCuCqa=llq?cA2<;(`@aXH+SNM+JNe(Z#1TcL~(%DJ(i zc3HUUP7C)0F2;d9C5gtE-%d4qDLC&5`9CjF)gMNlZxMSbV;grNcB!iOTB^J*s@jG^ z@u?@==-j@`r1S0?1Ir}s%-3j{ekNkmk;f_b_#!Cx22Q=n^R{w93{KOhG~!HAP3?Ce zkes;0d=sF)LDx+>9L~zqrF_!k7e3ka9~46VCRgp*p2TfCR8Od<3Z+!y;y3)k2q62J z3W5kBe&>BsEOBgk2-j7qhvUXJ7fHDJj*4Ns&mWcg>2hMOHpOcOsrq_Q`nBA#1T!fm zz0W7xdh@LT(+>siE_+D7fI*v%InULengm3h?HgB%5Yy&inXekwZZ+-#qk57fF9keV z2uJ0x4$%)!VMLKY7|J74{HNQ;BQS3aW@E`*&$NO zcdZ4`*T^gfo~a~nW3x7Z<*zh0Nf~v#is+ijcQ#t9idpPU8g?ZjzM_=74O!vp2J)qg z7hXgKZbbOkOS#Xp_q@|qjHu1YMz_cj zvO4TG4bAgPb-j>qxHo5TK43Z`#dNKdgAG?FT+&2Xmq=yxQXTmcs8i&*Jh$Kxzs=Ry zGQTTG>#5aNXFKsf+cXH$)b!n>=>1%tj4|20{MaLQVd=(K$nZfY*x>O$`h0BkX)uM& z(^oACpqL80%DqGI&O28!zr%ZnAqAT$A%jrHMDUi3GKAS7ROz%fb*-OwOh1LcAd%z> zOk#LMo*QIq2UQULt7{7<(Ads)-eKK>JZoA{S!85xWyG6k)Tv@X{J!9I;Pn|x3rkMu zFX6`y!6RthDERwVwWr65D~gX8NZgLRqHv*@lCc-!$6_be&VV3mT~=H}yg=6t`JD&J z4n7=YeK=Qh_wYc=POVg+DF_BONV!WRnAN$KK^gXYhr7vr_$%@>I$h6f0rDa|Fe z&ttA-GF9b*S)+|3Qn2tkWRX;c0SH~O9yj;jOh1UnlG)~3@jqP9jk@bf4$pAMUe%cM zwJgndmc+5l%Cjbhm<@l2^#}U&XgH*fXe?%nFB!xnnnNWIf~Z*SjGh}7E!LH*Nme6W zgL!lT%X?U#<`q1_{{Ypo$-V;-VS{5gtAW?aE_ma%gJjWl=4A z1}O`R6EgDtc7Y|6p0oh-@O*V(+5oY?4ZqsVo5zWw#i^_YVukwGWU7_ozYIod>ZUGG zk0IGu=(2(tb@E1!$>^=Ym-%Z@qYooXwhhv|rgAge$JDOWs#nGxhcgs;A!Qq5$y36X z(IkRN8$TUfy?|tPl#PnS0O};y#eFU%b5-H9jmpJ6a>hoD!m7;M1wygd2jm8CpMpW@ zsj#eR2J8(`ju5zK8U*!hHQN~(ev0fe*^$vhOay=-47)_|Bm}cD1KsWW>~x+phX-(cx-;h_~!~Xy{v)fge z>+sPB z@dONy77DZCd(Im9MS>Z#8A_=v2nVU^cq`;A0Z38AD>Ej?kWPu{QOMR-O-=lj*~Fa) zvCm8U{Z@&I?_7nKiW#M#_(YYBca`2F31a1RU_2~Fp}8c0`ECAgL*RJO@I}lGbYc>9Xug3S9unzV z?><+JE0GZvhMuRVGGg8h4zVsELb9DXzacJ!B$l35#Rqu_Y(e07ly4m{w~q|1@(-Pnv$6$G5AeYw&8>odiYCEE z8~u`U_eJA-hG8jINWC|a%GnPj#%?kCij5Ejka3lPJbY=qc;86FjVBN-#)0;}-$b{9 z(%(1cAEJ%OUB=j;@(5$ZQb};sCSt=18d@?e zOT}jOTURBuMWmIZ5X#=Hi8LWSMr|ljtw_8FB4i*9@1}`?&ZaaUUaFJe;?1a{4<*R^ zb0JVx5mmYTeV9uiLL&$Jd6Pi>|^8OLU_dGt5EQ2bSn z`ZV3)+nO(1(R;Pf`h}sHO9YgF!ZITo1IG?}C)#=e#o{TfnW5CSC;p;#R_Bat1@qYt zg0Pu4t31~(V5qH$`9!dvS{UTwBv~eITwHOC?oN9eUOv`6Hp3L6%`x3Mdo1YZ!^<@m z(|6N*S6g;*sd5LqmhJqkJF2lnSjN|xt1qf2Dx{{EphwW(AAkrQ7ZD6jXk(6Rx~{3m zmJ^kyGkRXCZY%kCVhMM*63sZtCVH#rszW4RS53YqGF68U5)XHtS{4j*W48@0?RinUwN*z1j+VpioIZ-y^^sWQg4;0oo3|61+AC zNC|d`PA07RNHRG&vZSimtd(n#4>o1w3Fb!^;sWv@p;sMFBl~2yo4cZQC($=FEoc@= z-{h5TE#&A`ywT9BJVE26WZZJr;+yos9fV=UkDm>%9yPq#gED3}n5@#r-Pk9lt2J)h zp*37x*(+i#_Wgq_b*u*9FECY+*}!A&<`|6-6`6vAy>%F=WDOCp0Y{MI=UcV_f=$HlzWy0LG z(_^XK85zB7OcgCObIhcfg8LA$3ZyeEdH}DTkjGlqn8e!)q9M%t+m}T; z{oQUUe}+5A@f2GYjYkrC9>yi%VgiIiE`)#rJRj4pWQ}`Ur4g#r!sGcinhE)JM$pgp z?dZiz4Uonw%ltV$w!f+bhkRVHV!z7dTYKJ{eh)|S%gck?n@a4YI@eBw zD&$E{jk;BFtCq%Fl1F&}wd7(735zbqcOamHl5MTGcH{Gc)_@6}aveXHHn@)c*wQoOh8K$Vx*ne+pZ=|8{A9q@|dMu1r4w!1|DoP4@$n9h-rMmISbl8Sukqe_pfO8xJ`$nAxm&UdR zk6A4g`)C=DM1~#GwnLuij!GVR>Ei5Mf$;Y7Rv|*N%;daks>*n##*#&mA82`dj({8S zFYwy?aQN(tg=lMm%6z{>RI7@=ij>DS%JDsCt0+l9bgVXtzN-RC`9Yp zrs_$(IV}@23o1t0>+Xubax8_(&(kDV{WxcI4eDxIu3=0r~|TZqJmmn}P{45yuQunBriwN*j@WM_TY?EJnE#wkJSz>{7hko7UYc zx*ORwmjQLQsx7hBpm?fB6~fS#vnAP;Qp9Ydmlli?d7fuXc@wkX@1{6|2yR9JXI=UB zLY7A|+D+QO%h?93EJU?Fj#!ay>(u8}or!gU_^@fYvl1Bj4oBPqgb_WF7hRA!@9BFj z93x1CfOiTfy?+fWT#icTJ={IDEx1xPo`5pGG^89*sxH05N#(xFtsRrr?hnD0pvure z-uZeX#`gFPX*va6#NoS#x9BbsF6+-_=A=zJ6Hf{}Rs@phhCqXpY#pibr`bB!Sy=h2 z5t2X3bYw)axZ8mtG{;J04G~{;bHsOUQfm@by*6qIAmF1RcO0scN?BD@I+j@Zb6s-TAv~Rv z)us&u5pB|ribI5XfnfzgO)eibB=gt;iCBsL@5bzy}Gfav0ch~hnKA)TM>zs#E~kY9JT@o_%KilbL6CGh=I|~A#}ra zMoP!LxDwmzv0TNqYWV8;zTM1Z?74P=+N-qbxeF%-^&M4XJ1gMv_YWI81e*Y}W zRcs~-d_g%~T{Ybd`23!J{x&N1O`1jqY3GtCSl5Y*5vP4~LR6O99Rd%MI(Bw{Y&pkU zTBnC%n-fdO^6o8EEvlHR&faVM|nhh3`@7;+B25RC;sKHhxqre?#iILUj`4l4^T zYa>mx-~A&iEY<$9Ty93w+2IV3qbk1=vJ=O8<;Tk?@JHMC=_1&o7eqJFCj$wDxwl$` zL^(X^YjET!3GUcwEK4*<7P*gF;kF(Ig6w!3VZV-vhQosU4ZG%vguvn_V|@9C>D>c! zH4SQ&B7&tgvn$6E2)7@op^p^>w#%SE+0o>nosNpq(AQ>ehf66uP8rNC&f+gb%=sK8 zqH=lK@y=37R?%l@y$9DI?Id7=Lj$3rHb@|i9+RF2G4@6E2{~gfpyEjVJE1>{cGdjN zOm-T@1hr`zUTY(jXDR_9*JG0w`1}4+28rtNVVLFu-z`w>{?QmBZ;_-DRd*wdF z$~2BRiB?FVEfj%3E3dc4_2*mp>8T-WO+0F=h~ed~r;&c4H&-8dDy4gC1uHRnRXs&< zA_-N3q=36_M?RwmU4EpW8y==+J=Ps2t7C;?9LH6=rj@_F{8m+x!db;op>}M@jpUW& zvus#F7pRC>sEt^0eW^ST<^w=@>FgNrBh2l6zH5G76k8cMhuPl#o&8l_g^J6QhSVQS zxXSRx9JHJS4rC*O9jgZ471o#ykij|2rUsX4!=U}>a_*;U z=jX{M@VPx<3(4sEmD|u+eHQ$_qVnSYW8VR?Puy=y%bn4NJM()A~+pJbGjv%}m z2Vj7;iNw67#ND%y#ZO$c)~bgRvOr~F6>%cBk?zw4^1%7{>5NYcV+%;o?0x=-^I-7K zdz{AsN^*GX;iASzJvgyg!6P4CZ4ni4G|wT8n~6qN+MSgLd-1NBj|&(#V3EuBO*;(6 z;e@AS*Kc(xkFC!2vyQP|DH$BCrm|Eh8)Sv#1TjIU96mO~TI(7f7YLI#dn64#4{nPq z1&54Hk%EWb>i0|W9?mktfilTTI}>`3A#oXz)ftNdyVr<`Iy`x7k-oOy6G6_x2kf>d z$Gxw(#@j2CcSXFcxYmy~3S{OG2%>H05kv$ zPf+YIYjihT1R0_YpwXf1g;mAho&h3Lv;3rr$&OH*eMo~zBNA1ZmGq?rUrfM_62x_# ziNd&+z2pLR(!Obb!?HGbwP$|mTj5urcAiJgOYSUM{KB!@5##vg=C9v|p*LqOP8z-pTknNdD z62Pwa#J0YAtT4Vewat06xU*jbAsmjBJ8}l2k_WoG=PL?UY=t@#(1zsGMOq@rD%V)u zovb{HK+^P-$EKMqB0;SWTR_C|7~|CIeGv9Pk9Q7Eu2Pj+vgK*UwXBPAvc|5( z0e?-wRaK2+P9%l%utDSt?{Eh0`g(eOQ6sQJ-E^bx;(M;8t5ML#R+`FM`lg;{U5k5P zZ!PSiFC(G8ZW~%U=|3rWjDeV%NJSBIysbXGkdWc~nkx9Lm3t!(pO+bFOfFm3l0|5U zls@!YPGqShGVPRw;8?_Ld~PnPBVTR4g%1wLXV8G|{ds)Wg^TZg>6%%@SCskOl z+?jm7P8*q6=cB7JHL2;rBP=q;$+z{GFy?s?r{Y0R1-=ev5X424xQhX2z9|WNuTQ>c zd2QH{FjroN4*R^eqmVFascHoX>oA5z5;VNIopI6R8_D=qJW~T&?7maXo_#%1S)Rvc z8>+S37b|&Oh+5d*P{H~%3FFYyE{@!oHqp-c3^qw+xAz5 zua&+a8gx_9<*M1T*{J1fbQS>3F)XU8k{&#V9zT${U`XOrc|5w&#KZy2!DM&e{i4Ax zme%Iq)PEl6o1cj>-7h_PV@io;3jD=*-Y->-o-zR&;$&syNCY6+(DFE*@JrebQTM01 zp_sT3=GArwf#!YFEX_3qi)G6AU%HadFF^rrxr-$Oi;hh`Xt8@XQf6+qO%haWF9~5>{(izXKT6*D}e=s`;)d>tpPjD<( z+xzdVtX36{tj->t4}Yr9!{XXJhkNJ9^jjxpcXmbx$7SsH?DJtOPLYR>nObtl5q+^8 zHwEN2%fDw2J`Y-$Cb}kGO?z$kOVhU-k-jYLv2;~Jv|X8##^dZwO(^2xr9Ac)%!;x> z<%>k0mzdgcZ7Doi!3?LR@Z3d?F1JxW-(^l4ib09b9C76Y`hJKj_)ILgI`LyI&w#+Q zp+8k>W%MgVKnUCpiH(Yu(|jlQN%0QiP_^{qSMRD<6OV=gmE?_j{@|ix!(G2G&_|Am zt-Nt&~fp zix46zJr)`bu-Xnncsus;VhP#WvAx8X$r0C`Yw!2b6k(^3S&F@d`>O38)5}k8tw>5_ zmS!=_WH#Cj+>ODTIHP}fS3CMYi=BxQ1X5iSl<9m83E`76PM4FKH^;a4GfE>@gK zqTEn97SVY|tei&y$=hTxi1F6kA3D~$2ZY!8+(p+)2tS4KPG@^A-p}Om7ooFtJC-nW#o#-_d2?wQ@In#dQ^@% zp#nk*PsRTLmUKD#gO@Fh#=Z{6MVAQJ+I&rF^#@;5~+aLgcbcQ?l=uqNie2#P698WIEIk=pL z3A~Ht!o)yAnl05UA zt{2ae+Tpw|P}297jGB!F-)%NVRI8Myl*&gYR@P{9hQyW%#?jC1V4>In?IVf(8~ekT zS@7UPONcsNnpi0uNt5zOOI&MeI(v`NOV8d-i;_h&t=tXiv{A_bMT!uEifnsS6Ri{A zjRCH-0efWvyCz}cbK%@F9WJbnN+v$}!oVzcmO=%yYAFP^eN|>GLo**P+dmrslAr_g z){(`XfYmpK<1!e|6~JBH*1c=sn(ZF)?aZa?Sj#zUwGc3l7$M^sxf6mWF6u`gF`*jQ zz#Acm>obRA8zYMz2>E=Kcs~_u=5Ud@T5n-mdn)ci(o30|8GE1VYrKqVvnhzh!Mvzm zB?QgMwmgp;EwQe<68PFOIo$UB)^IS)GKcJJ6VuUsFKYUj=`&aJRx#Ntbsb};S}{MS z<$?6c00#}{Px=G0PeYO*Twc;o>Y{8UO(a7l-u%=woxhefC|+!bZrQF-H!e<=m?=#> zTu=rCx{u5c>^IRQ4Qxft>GL06=(2xLm|ABp6n5wGS2=q#C6sru4O_J1R%8KWS26%j zn6Vq)hzEXrb$Dj+nj~;GfA@S}ZMSacybw7&4x}clseyFN=zrT*t$SSRzPedvYIEJElFjNpyID zvUxE&VX#j50Y8g#;}2`9?#ET>q-@ef84hh7P48acT~>KdxVu)JPUo$OT5?!hZ*e20 zk@|5*$}|&sUM(l{k;5t2C`X??WWH8MWXlRxW0$MHMTs z)>M>zGs4C=>q@&(D(rFacr z8#=0nvg60Sc(Wp@3S*JT9yYsEhY@^lAJy);t2z1$S)PdwRpu`pIb zYOE8ilE~5o+0==s$PxrsBnDtl#}ZC-61B}OaMW_wZ(rqRV4VSDj!!V_)3&QOtIGaT z_FpZS_3KLjMtDFn#bM{!{RBp(dlCT?HT2aEvDO!yY0{*GMPwa zuYQ@KM%5oltIaGBn(t+OPD5Mwab8ZK@;>45qrQPAb~f(C>3x4xraKDeG#5AX8v~!q zy02NtSe~px)ufVg>hN(+}NW{qps5Qq+N85G z7Kq**mh>Cyto6IL_B!31O$=1AOAUz8r4|F(oq~eT=`jKJ0rqeI0NH>B+d-^05al7R zHQS%XHW@iN+Gw9d)!yTIDP-ceaO7r()2{*lGKsz)mpH)CM20bkoeM}QmyI( z{o-^Kw%U7|A@KDea~%D9eAeU-X^$Xv4fpA)yvqk_Nm7q-9G7YvXUD^HE(?s)?*7-9YT~A^U`M>D>am~(QV_m zDxH=?5`|ApCnqC%EI`>L3D88tn#chM7cLpj$*3NmU*%TLYqIf~45b>_Je2VzRkuCM zakOzuF+~1aODi2X(38pDx95ux1B-032Dl4vEkOC|l*dC0T0Afbt(4AMoqU!a&S!Kh z+#alQ*M`B8Ai+wylgtwCOYxMqBgk*#pf*M|)>}kwbw9PKhYuP4=ma^~{Uc-N6<(}@%Sf3r5t=k!#in_;kTJWxt3j_H9 zr8`j^Ya_|ZMml}?UO*nUVS-{zuhca3AMc{Hd^8ujkCyaSEK**-9NoS?qP2TdM-DpV zykw9UNl~`PMdVcx$+7ZD=l#*qv3O?37F^y__s>+8HwP0O){|O~U60n44t~_`oE8pl z-|cB(w5>JH5Uk?&llJ+OB=yn6!LWLJ2;v>UYvEW@iU9dA0Zrl#Fwn;8=E7 ztVPb_zk|iWV#S$avazJC8DtXJSx}x*Y0x+_dVr8WzJA;3xFUIwFfi9!)6%NGe(CnH zk7tp@1HJ9?Rt)WXS%08xHeTHLxMr(0Gg`=IfX}HF$0EDo88PX0r$8_&7pvA3Vu~5^)0J97)AQ+}b$zKMvnIeK=(wC4+V+;Znms70w}sPuM?RZ%>PEjyUAfp@ z_kx9Q{VhuvYW0?)!|MdHBvM(UECA3h^EqRpIBb)n(yYNaO5*1L(f&VQZ&XL&jI8ku zQ9J!~Kw9qH;x&4iY(m+n)#@d7zanyx8Z|Et_DYl!mnc-IP`cPEdg-vm-V$BfKM$Qr@ zE`S09#^+k!IJmSll5UL-l%A47D*!rKzIA(j5g6|ErBQj6h85CK8I{ekZWiZ!i<6=)%)w)?H zmE@+RpH@KU-yXK8L1H<01$>_y=x>H8TuGoo(KN>4G2T}ku4%n%Udhha&S0&76q7NZ z%=Vpf?OMmv&lOcNM((0dRrx9rGX*ioRe4FsG<<t$q7%X;b9@CZo(Fg4yeaLV04*P4#b z_T?9a@>u7`BU3#|tVB6a`uz30qHzTya{|aHvVZ@ot8lJ(}cvPp794I8ZM>3u^ekN`;odrm+Nf*;1nC#~#OCP^W7RuF5oEjh9Ccw#Ut z1HPJ{;ZITTJV$d=$lu4izD}eG0@1lm*c&Uw)7*Ea0o%&#uzh{{ONZdRNg5wuSKno= z!(tDkGw1=gQlzNjn(uGhi@BG#Xi}CqYx?Y_IqAu!WPeZ%@K7Zn22e*3en}l42R=WG z6rbCzl_0p|xe2&vVaGy}Qt3t0p|ySSECgJkXY9MJ}Eb ze5F-my>MR|9c1xAIRT{THuUXZRZc1hA|P~V-0ywVZM(0Jy6QHAgITV?4;u)r0@1OF3Fxi0fbh}MwV5J4TPD01j4lzf-)|d$iWo}2+ zA(}=7iZY*tCtB&*xR7I-K)&a{?Q2IFk9!^*<6*;)8;@?v3a$#pJf3$YkD7I>ZKH<7 z79volMD~eQP^pV<(z1`r+!XNyo}Z71Mq;OFM}EKUCq60eW1KYD`l(!Z@s^8}bnVTM z4`7!IqJJwY7cK7$0)SWCOBFvG=~rOeA@Le+zDZa3H)BslTAq0$s&Ckm_C;WKmx-C2 z*o{WjmDFqxaV3Ve#k`GmpEnAy@Ek+B_V&>((B_kx@3kS}?qOnOcBeguohF_sy?;>_ zMmr$LPl6a9p9;G91E^*h?aP?x4&2qF1huTzhc3#siSLf`mI=*P$zq`s$f7#a$s(OL zxfYE$mi=|{t$n&z64$Ziw5c~7;%sqjU}YOC)-MTOwalID`Ac}ng|gORvSqCwq*)2B zIDsO(Zu&q_w}at;9eo|JhA=b`M^_PEAr&0`W*F^7n!gN@ zNnRx}T2)R~HwbV+CMen?tq)A0`5jvy16vvJz!hfJw;aMUEUt`eX2}=NRg2%rUhPa| zCl!loQ^WrN5oUQ}64#v$_`cIX@gQwgi|Fr1S~#)cymv9xo6}0r{8xDxS%*p_RKzzTibsrrudMf^p-lgMRP1>)FRm+l^}4!d>Oy6>NhZ;@C}WZ}r!Y*GH>iFp^5&5=t)T zS`9X#%ev8z0_=pnwEN$;r*stAiqMQ}GjOsj%RI3n`m3el#w`tQxD0m0A1lki8|y+= zw6{3kw%(HX$z;gqeo@Oy{{Tr8a`tig7~_2Kxdlg_>~cvOg=*8Ob&e>2(ac4`gM!VhZ*sofvl&k98RaH{|08ISZqcaj& zff2@ww)Uxz`$^~yl19c_(Ufb?=Szkak$~nj51#z~_F8Nm+k&+|I~Qq^-e^Fwa;oeN za}xg(^4b+|T417UZVYq;C@ zM&L8^VKKQ6uDePubEKheQ}a4TrQ2)7mPniFgClEgB5#mW)@@TNUzHT4NW2#dgjfTOaVS)(FX3LR=q7#)(#0 zmqZ_P6;aEGBC<&N8+2QKpF&lkB3HUd$L8dBzoNpkQ+MUjZZ6r$RBT)2&5pZM4>%1CxfEgc#scT;o+>y2@MVZ03FTsyV|w&(GP|+ zVB;`GH3w_u^w(9V<>+?2Q&gUKX^gBcvihqo+2xT`up_}_^*t>&AY6qy@OF0LqmiH8 z)a$;wb_>&f0}F|b?tKv53Fa^LS&nlPe0LQ(^5i2J>RzmWRJMI4nGA|xXrLSbF0vz- z`5$m^I$^xLCI&1$wjShP*XS3W#NqJKN;1DsM7Z%*^B7o{yK33NWTp|DQN<$0iB-gk zC1xeGKu}j;^U(oVf!4G*tStgSC(^6cS~wvfN>1IhR35?nJZch219ye|eCe2uB(~~B zhb^s3983a_W6qoy0-?zVzSAq@?WW6TQn?iPRHn&NyiGU=()Q_yo)yM4h98~9aO zZVWiPgPz2Ghw{Y1m>)T~EJKKFi~NZhmzYGZapg7bDa4a8~~sQ=dZ-`TD&`m zWsm~U;96?*Is@_b=B-h842FTs!WzCkDJZE~Yb0~Eh{Wv`sT8uRmX#t5x+(zn_+J^A ztZZboynatW6FAv$<`5knKi}y}!;YyQUo)MP3!bxxu{l^?IpldGg+oAEM9~4?g9(Bb z;{2JL%w=2AM>Kebkj9dGCNSJJj(3dLZKkSfjz_p-PVDX6r1mC^Vzo+YlNI{7RZ(X{ z3$Z{XXl9XR&?pg?z;79oC{Q#;^sSXKOWad`55lL?S%^`V z6h&l+SPFe`hm#Lc=cyACcB6`w8sa*;{5SalrUz-R{p*qC-`!zHf&4_Y_hyV;8vFaz zKw0g)<~Bc{$P0#$E4tgoQTH$Bj1oTjt7Ov z*SYO=fI1SgSp$Q-nvQ(bPEQK8>@8g7j>t^a#4eSoO!b8pXy!=CF22}FS11>5zR%xw znkcU0a1wPO>*-ds{{R`_$k(;P$Uemj4`s#`5GAsVzHh8 zo_seNL`n9aG{f-LmkB0)k@Nl5d{Gx>l3A#o!PimH^0fDLXRBA5u3Ei{Noos$CW^gT zBd-b>0;HrUF~*Mk~fXiXEu#r7>TO+1fL5?lU>3k*vHb`-{kVDTKzzRKVL)w$WWj?gTc> zvk{3U!b6yWp*r8VuY%T#`m%2q#CgqKMd{F~>`&saW@mB>CL0}<$zMDpc<$E>E5|Cy z!bs(b-Pj2pVWdTM4nQgh)!Nu)aC}TYAs%C;d+TekTv9n)L^1nbw0F~b8>tn{OMe%W zw{fs`l;kniVv-s4VoJ{KByR+VjHA(X{G{z9B{)%I>&3?m6I6x-1I*9|GestU9LX{zdxK{k5rm*v39C9Bu z4Lbh-DeNW^N3rZ{uC)N}KD488G`qhgXElxNyxrPDyYrHjyDC<)IgMT(8!SQ6H?h3% z_Wr#tA(j4c>u+;M;8uPsgT2jbVs$u+?eXNVSQ(XJ&*JV+S@V*xwj{AINgM>^3Z7)~ z97y!Y)`x-_fa=&tStaFm+m3dW!eJWLxtU9gx)9^1MIn&LZ!Kc39JV7Ak&#j1eqT>3 z*nUV)6li{LoOzZ4P*xveKvbo{1IkbHfc(?em=L1k{ zriuK846IPuM5}?w11!kCv`VE<0C+PfDjYE?2+=IZ$Wl6FOjt5H`cX=>cx*N`Cz=x; zj?{4zV!NUd*cAG!-Y zUnZ%S#m5afV6hyQ3c&vW%0T=yELP!&b2JPZZjkI?z7Zl~qdxAel9ial%CSkpM^J$`$Pvi+BidO0y=CHro*-czuC_|HXWm(fKB~?? z6-HvDIN9gOPnL#b1c8W>RSbnWuE6*4U_752Rz7;k;y7n8)3qL&f3?z@1h-&=hrc1s z40UKJ$BvB1vBvT!9+ZMWp&Sn^vT^h0$yOs;>x8Y9z82eRhlS!<+u_xFcjm3fISg1T zSq?WZ+GdmLTWu@XI~-UrAn*f-BS*^b$1a$d#o#_Ro7Y0Nad?I@7qPnc<@OaYXFIk^ zvShHiX`^{wNTGHN%`2%o3ZD!XLZ^N`yBxYoIHmHk^gR{?MpqC5KG%GA!gi)FBbCQV ze$bWTS>C%6UF0gr$hzQovho94Q~7>+^>{dlXNDcOP;GCBX314lq%fV^HOy?e2koBZ z?X0|TpjKr!F@sQUGXRGJYN|BjQE$We!Y+!*(0YOe^gyOg?OsL6%OOg z_Hrm8s?b)7H#oAQp!*5UCHh7SuscKhVJ4d~_NcNuKj z%nhxWlDf$@DO56h^aw4%nN)EEs*jzM(D8VQ8p8n^KV1dauSDk&$C)E+H>msFVSVF| zy?z@tuTYYOX(x7$%!%!euqqTr;kNEd$~gS%M`ZZxIgqj#fqA!IFQUc7@XWYlG=|-E zr!M~h1rOQ%yK}hYpffVdZfuQ7Wwq%^!rBqOB@1imUaGac2yOez>FUc}`l1jvKuPQR>b*I{I%8~Z- z(6JI0Fg>P-`~4PnI}k&3+jYz(26(Ynvvng_*0{#kG+}V@SVJ=zGJqwJ6SYAktdtBpKou(s2Q5$47hpD0D z9dsgGPEg#Vso80qQ<@B7&YYAKn5>2%T$>+K8bvZsB6@}WS#9jdvP0mm#7-H%DBCW# z;d&k(Hn2AI1F=7%9F94fO#n1U;449SsAI9$Y1nGEEsg^uMpvvFM-iJ>@v|G?Z^xwJUYy9az*-723s+TOW_}Qehc{;^1+0!HAr3Ym13~osjd_G z;nmknRPc>JC3WfzkOqN?jyTzFI`>%w7lEdvby`*m^+&6b#-O<*t8!Z6OCcjjQY9$b zap#0fJi1r#OLzqPy3fHGGWc<9H9m;c{GpA~xAaG1tNl)YJKU7>Z;`DcSuV1}Di2gC zidh;Hqr}Ic%GD&A zqMB=9Y9gAGnQei}Jt0713QHZG>%|*h-!TEh=6`O9*dvJKeHwQ#NH_c=l___K%T-Ew zJX9_nqpfwr3viW+L`|P!?L+Jjc;Gd%JlUA&qQw3leNAaxw7MtP^+(~{OyT7wR+4tU zsCaTz`-$%5+)sqP0EW6pA0?35^n;W!rbA<#;i$hK}mhhwf~qF(Rwnli_JU*0n3rtzyDNauy~;*TN!@SZQ7*VhR$6tQqk0 zVdN1p;J2XGzA0&AEs!+Plc@c+PDk9hd$ry(kL@+4W|}B%QQ;i%r>Iejc=aAIhC-Zn zbY=H>9YYMBE@vC|BX0YB=(n)W0>zNwUmj{JAKdv^WsCSr&Mrq;i%Ri=D1rkJu5_r( z7#@C3)d3^P>F3}gZJCV+EbL2}lPGY$eRoL1{x4I0-}?Cuz(tfVnhOHqmsnt zKWg(-14D`v$Z_xnb~6hm2nh|AYp<$T8-bSv4rgk|4Np`2Bw?~JWNdc5NNK@tN)=IE zu6mYV)%uwm)^Nf2NRm5$F?19K*A;532F+N-6$@51*bRh3RJ z61K6=R~|l)O%lY;=^5hQ7^^Jo0nk$+ATK4`4aB}n^3e1n^;qwghbsaQWirYX(egdgK;RXHL|68 zGx%hfSeq1&E;n~}cCCAJ(P;3@0K-Pu+2(77>P3#AbNkUxE&~%%jb^Qe$jg4INTia( za{9<2jyRTo9!!;)l*+p%H*ZsAc`r#lp@ys++7vG@=W(E__?$m;(z9u?FvFP0)P`v5 z#T@3$$v3KFaUyXF#L4K}WJV+@VYXsNLl|7N8tQoI_o@rAUO>=w1W_9mV7d5-8r;s) z%-^-0#?*=!Ya}@jTF9CGKxH8dJe80@Uw-Ef;f8^29z077QZqvBO>^H;I|Z!|7j!04 z@*mkm((i1Ah%y*n-N;qKtHQ|~@Z=(zyTvc3>Ab4jWeFr>nate4d^_BksaAE$- zj#lVFt$8EicGjlP3 z{+LHqCPF;}>L!=T(b)1RUnpa8f-`TRUT+y2V$>3Shb0+>%4B5ERfjd3d+he^T9i{s z6xCZ3%P%KIRp9QfVe&y>k`Q0xtsFz$6Bt-CZ@mqD(%6SKPw$&2r4hf&M4Fh4jy^nk z;i}|2t1T4^)ougArx&jTO%x~Pq>YhMMCLgF9k}cS={zZ#M}sReoww88v`z5Xgw70* z5nz$?Qezp9h-Im+MkKEs(ow$-RsdsyUs@R1L-HbM%M^iULRHzh4kUPM8^fRCG=t?l zhTma&7JpBe+S12mCXeiXDyKhVwXBv)Cy2^rC2E-H61`a?=Ou|?M~Ybuc2$xqT8;FZ zV*Gh|-iWY}2aKeKy7XDth@_F1Im|)-03FoK9i3jrV;^x>7dy*VNZz~23cY@AT#f9< zqs;UDc8p5$Bdh)uk9Y)~c~G(Hk%NUu^Oejd`YL~Q_RUVvjwmO!m%_~?Ur}XBrwZ)I zjIn@Rw2?9y)F@)=+@#sq9WROSqjMPC*8WsJE3t7$0E`erkH^sZD#mxWC{KI3Va4RR zNi(!j$>~;zJb}~GjHC`VatSiJ7dz0;q=qvx!Fd>>A!zfZXjqucLwSlb_f z8=Em2efL@}Upz6U3b(CKT1ShgxRh7nm|6fHDT!_;vDi&>bm+ zJH!6~E~-2kq4UNMzRI&K4=q{Y#Ms8tuN>(D+?E#R<}{IYAycUR;xC>1q-7ris>J5X z@t&Vt>s$5gli~PJ#XP{~+fAL$>crjJ*culj?Y!nbt&Dhynp*rzLo`KJI`eyn8Fb_a z_+cDjypjPi0%lW#bUha9f2W;>r@ge_(5Sngh&gMySGU|ajIErOLZos@2d1D@kt2>$ zwOD%z1hjsilNcm&(hi!%HRd}cXV7omRopoEo+F6_j#@9U-Nvxp$4vdSV8I%{Rs|_c zXOU*$s95L%MuB1h(Hig%K*adZCFE97spLrI@5y=0L=wCiTr>xs{;Rm_6*G4Id_`K9 zs^4)+D)HGKogPak4^4{k^#MZ@1wMUOC6^A;ktS6zTUT@W}j>J zte2vTH**(VmZ*uOSJkKE86p_hUp&`be2)O^Xo6fmHaS1~hg9AN8H6nG@im#d(Fbnp zEz9JWa0x@ z!yVZ=`*Klr`*J!H<#HJA*=4L_5M&Z)SdXaSNdSZ6i5nm<%xB5+0#Z*VQJ8s$!(ONp zL_9q1Zp2y!-P`X)?of{ACeu}AX#~hjGnr*Z_5}ux^^R)$FJ5%Chi zJ09DhIt7(mtp)}LuGMBaSoldTir#C+L`=yS7AN1LT#p5PPmk9UOdCsyfx^z;e#_5G zgalk?U$BbpoUQxS;V_JZ6A>fD52{p-C-O)}v>cJd@*Cv8JbH1w8bK>_(Qi83cdqG- z7X^95hRQ}xws~)&(CbT?rwZ7|lF_vB+o@98dXGh=KKRS>1(a=Drzo1NUDxQ9w+nv05FeDx5SMRwdk0~J+7g< z#g9bO=9QppxKP+$=b>oW#@VfsXO+;vv&g8jC_*$Tkv$x*6t+S*uDy|-9PEWAS#{Ln!m*!xN1LF7zI zB6|*ZYt$to!?nQfe+feoBx~wfzUdS#1kTQ~Gex9?nFt_~ zIEMpYC#=XA(C;pwb1E<#8eGrAk$0<2>9;pxn9k)Pl2n!8onSFT9FZ$G z^E~?tD{q&CVG#SBbnKJIBMS(l)N|~F+y-ddo!L&dM}MOGy?bX7-0dG}5~8#%6?)d9 zpXqGbfCK5IiUCvPgQMen4f^zpK4`DO}0c!}RHx%mTR^%BBlZN_T(&?nm0pT|HZH4xvQ?6axzHt`S+-^k=_ zS6Jl_ETtJ^j0f^nm5G#WGXiu%vw849Rwg8GH^%dSr*n>etfrSAz`sPlo*{U#hOj-gfZoW(f=# zT9dO(CX~BLW)_ds;U~Mx`vV3br~!ck$?Gz19`gSH3Bz@lBTHo3mu380!Q9MclAmqS ze&4jbt^WWrR3jkyIxCE3j8}?n787zoR4+Z?_TQd z{{Z0e2ryUWmIQ&_P(F)!n5p6e$XOA20zeJR-~t>mE-&A=?zJR@i9fh>*HxQW?_8X8 zGIbUtniRD?nB!PU5VOj~ePY^R$?jFr@x%{-)VR6i7{ykUHeP>+<0p-dE!Cj>tw>v! z9{CQ`t76_x1QOI`Ms=1Lqmf!*s|x5gqCkKj%0rKzJ!#L28F~P=4ktTZdT0%E)Pek} zk?m?T=WDg;t(a?Bbyy>^exYHW6joE@G=pHV1eNf>f>)%mCDMW6=y~5nXJMsbB7i)P zGyD#U_gf)X721_(*2m90b>$W2r)o!5Xq}{R?CY`?7EsDg&xIsvG1en6t$&q(gU_O% z!5JgWb?P~*&MPy8za*)XxM<9trFmY}IV5fKIvxl|P0O6of z77$A32`K5IJvu3D>R3!3Xx*^Z`+BBUBC9VD*$DN;N~(V-utEB)VGqv89TOJVof#2% zN8X8NLQFZq@{hf~s$DWUd9r=GCHwX-OH{`?B=Nkm+2s&ulpT&N3o>s^2c%R2bb86h zaELJ(W4B$62B%@S>Zv~ueX>AnpLIKfubT8J`gN(UM<0-}Et-QMBKptejVq~b`=ebe z{GBL2173(Qi9F`=14Y}_YAd4jZEuM?C3v6#{W^VBhb&;j_hEw>nUeM%R(m!rHED}R zWRZ~yK8QL|DwQOXnq#IuOAZsq1ZFKAd3y!7g^klQ$m$1W1K(K=^RGfY9zV0wyYY8b zU6UFZx(RFqjG51ZJ?g4FkR6-ag^xs&0_~3N8!WtL2RZSXunNDC?S9;oH0Gtdy}5HI z0)0)>8CJU-Gpva5D(}JEu8P!n)N@EbC1{?4|lt|G4+YQMz@v^zax5Ldn0eV=|;ku?8SBChK09$2 zv(V$yxhP~Y_3}SY=}q z+0EiOHkLMa$89=msrV%EJQb2;mI0%?0s1S$j$in{s8Rgb(v;$~#?waBJDB-iVcW5;l0bb*D*KGD)F9_IpPak3hc__mvSfps+Vp;aFLay55r#td>(-@8>z{um&o~f_skQdX@L zci&#)_F4FBIEa6IdA1&(u~nyTyf7VbHc&xNF{|zvZo>;R4flB ziPWDU5XY6a9@BigrU`}Zc4lSDH14c;`jqHpsKai>+&)?we^*W_vMW}$A!t$Fcw59q zaX6f|kyI6o70}&$EHfG!23<7+VtaJ=K$8m(hfI0R(0vv=V*Ijaui3ApC z%OsBRuH%)xK&p!=UTUS#tBHIKxdzcc4Fe4F9b3w|BzTS<68``cyUGTqVh~siE+V9P zEcLv_`#2Bc6XYX~mOs_B?(Y#n8n|9ciq;o^4p28eARr9LTLYymoDk!vHK$%{H-Wnj z{8xtel1`&S7NWV!G;@8QDqFwYc?GVM$y()aQoQdJWJe_Ihm36;qFCe{whWA*ZT#3^ zCXPcZEx-#p05#^mkBY;#Pdl{?4u%+`}DsW}+F|I8)aOLQADLH6xBE-XaAx;B{BLvAe<_N%&rZ?jY%MN_96tZ@!xPrht-0 z2}6lHfOfurMV)4QuQ`RWgTvvmc4qEHdo^^8r;w_T<^^&;G`vvr@=4bG^?Xb+$ZkI? zo2K9_J}-}%xmg&y(!WqW)yn~r#M_pxBOtZxprbY}&Po|4tqVycYf8nn4dt38r2#5{ zkkP464#A$o$DDYXe53DW^d1o-q>LE_fIev%+%IcoqsdyvcXZv$nvJJ|quhvtTb(%- zPQw+A%+UHA0p-L@c`nCQ#yPZQipEi3{qXq3OU7_>9Vl%_;8tf{>n2QKsnCG3 z*n#7cVikQQa$;XkT)iGr0wfwbaNFAeJogacqYz7-m|bcddu}%S>b!>#!^<4)e1MxA zwoX<`J-?BKbC)mu1=|w@p>nKfmFTAs&0wb^>YWwz#})D9u#6D9ni(!zIh)g62Hxjo zu?``PIcS>SO%l7K6845qCq{TDo*BrFddmL*Q%)hZe^p8WBnT&I8JUAFnZl?I$(#i8 z$b3h~N29bp%SQ){ZZc05qa_WBe=}OAYIeo?@zBf)Wf~|FCP#={2aNER;zO4#SJWW# z97`YNgV8vbjT?g-qfWKSDU5N$8avj65QE3t!zCr9UYo)y+MVcKSO=>TxjKeYj;!Pr zfC8#{l_U@kN==TMMmR>=ugmo}%`1n;J&;J~hne3q&*Gsj_g(3lSs}*L$Jc=;fu(Z` zLAIxzPooLKuMwNp)sxaApV5=s`8g7hmPRLFrpn55j8Hw{l zifvJ#cNNd(udpZk%E^eMN(nP&MMRd$N-M^bN+jT8b>BTBj(&E3DIk;7V^|!*#`9ZJ z@f<*aHPqjZMspD|CR~a0KW?!{h3sQ)d2clF(3K*E7fll3a3x8f-Psc(GEFgyw z+qy#)E))uVX{N_@U&zwT+n(sF+puG4*qQB0DNeisw9Z;GyW{}$V{ljv`h`^N>!#(B z;>%j@K;)O=5s5(XMuU>BVd-U}?hKR}iSZUPZ71?>S90s>IOdAVJ*&@g$Gwoj%AF7o zSo}W@({6US& zviaE{^-1NDLwe@@YmzQE10!Q$aOA7f;NZ>TZ#hvun`vHg)=iLGQe6{6!T^RyHd* zl2RKNG1d9S1llUHvW`I!SpOyb}VHd5rDf=_w&SY%Ha|@gCu2%_-;zTfPQ#v`SRdnWMPyNSUFh-<@G_989dW4 zg43|(g1-cqs?y{QMaW~IgVM1SM93u~BFQx(vuS>vSeCr`&xT{PVv{FB+@{JRz;i% znS7RrJ1H6@YxEsu<%RshhGcCXaHhDz-7X z9DtwEmMNIlyy}HvpOb8;Mm`tFek7mCzPe|K^c{X4{Z=M35+k_Y0XMln0qxOXSq}cq zcP=M4Hb7XfVrlBqvFl7LNYTHwy)!XZJX9eo9@ve5c1K!G!ZKPi9rv%7%XODD;}Peb z-j~r!cRzH;+x@@V6mMR!PVH-vf51wNBCj(iBB&UG(d@ey2f#Zd@2g1I@Z-V`)N&|i z8pr^*Yp$QVgsGLEHS~~XYGfjBMJ?Lm!17i6t|VVE%ecV>M;7Ja?_EnIjn?@b4R2dt zuT_x`5tYr)Ee&*3JjJ-Pf`s`emZ6Gyewoi1MOBf9f&TzXIRKXOHWT$Hrd%N{w(36l zuR#VhIQWjT4w`TCQSFNQuR$%*vFJ=97370Riz|3{ETEUHg zG}vaD1M-};%>LRaEP-rQ3{uHL#hS|mA{$bpMhI!7M`Z*4U{z<2M0oH|kUG4w=4YIP z>AKE#5ct_bpY1OChY^{pQ!9qFELXCTPw4|B4H%nCBDyYwOr^j&-qbdM-$@9ZeDLZC zv)kLEei-r)B?h%m`q;`6_Z^IFT%486Rm`6buM~U{OYL@LV!LMYb~UfeOQLTHnWW}b zFq}Do8-6na(K+mY|V-l8gAve1?sO^B8*5{PfY_E0|M+?a8ErAuwlI(qY)^K zfw}wA(fGF){`(mlYg6~`sLOk_aQN6{rIO6&@iEI3vrGem#pPx7)Nf@&$)s;SG|V`X zI_V>5X?|L3zsHe1dnjf-rJ15;r48F1%Xqx9{$GFsl>Ns-1~?$iBW^iN8+*P@kcn&T0wW4tSBkL*VlsXgtlSqE%yJ6=_1D^#bkP?*!t}i? zEE1I{YhI<@Fk-5VeJBMvrH)Qwvrjjrsm{whst|Z>fv=Ev*0wqb@iBr8`N(g zf;#jVO&aGLCEIeP?szUG@wC0}uz6oT-4|@$T*XrkNM-9!AxSR7$(h>ZQ)wP4KOzGR zeDpLqNweo$TNf}bbHVXH@#s41>CTY2pAvJTd^y1;vgym{e(hOtcd%HV@5xrLpS|36 zo72gqO-B@Q!2DuZ>p}@&5<@zY-=lF12D-(Y!fOE*M>`qE$g=rBKXc!cacHE}ahVU7&O>^4l8%}Qe0toBswfKzU zNkNUqGB+Fi{%R1xj<1%Z{5LkT41D4v6UPva;u_$#(~AiuV_w3D*dQDowx9#nskyS4 z$gPgN{`qoBaW_RHKeEzZO?MsC?lT2PD}(Pm^$A8w{cBUtTCK}wybh5>Q_+%7F8<3= z4*-zxf(r6IWpM^P0{MjoY<~G9949XxBM4)6BrN(~&hBp1{sRrp=DC~0+exb1T6&60 z9P1>IPaLy1sDa%gh)3?@w*!0uIVTf`Y~Eu|JAXY_K4|<>WAYxUijuy^Nv-4hs&9|PFOOXj`D zGwQ4Oxv5aMQ?R40lU&rMIHd_s(MM?uS6P);@)wf2K|GARU7kQIkapqV)0YV(kkH%F zCl?KvN@SMU2Hm=9o&Gp(Wbs{zjlt%q;J<^?v5&J3In7$G%O9;0JYNc42iQVKwHJsn z1}kE5QwEr&f05cAy{q>?XB#m{V~~PLt08F^to5q)vQgHm-OLw~->)C?Iai9raTsHD zB0pFVADJ5qAS3~>at1nC1v>ZVTMan`{xcUN^2pgX{TDlWYK zzswG-M_N1*IO2%R=TSF9ZTbGeZt%VrF^SHQI_t}~JvoaW%AZb5FWG`_YA7F&UPQadX(cZprONI0GbNZUb=A5CqAh0`?p^zM4ENZd=X?U9Z& zIcPqGX88WqmP>hTmAsE)QL`*|1)OBIOw$uBh}bknvOl|v%d*Fdat*RcVdh+7ls&GH z2D@!ng~T>zIqq?`p8o(v(cBn(R$sgo=;Sk&w{A6F4HI0xw=BYH z$&%!<%doH_XaD_Tf!LUks-~^ysNS5k-}l!iNyE> z<^!65qgY`u*y@;SS8Bzm10{6?7T^lSC~~Ggh3~_)KS&=o*T%~M7VA? z1GxIF&MwB`+R*(8QW=_ANxNeWj=2^dj!H^`?CTLN6e^mDLo$vhl8td* zN*Pp-AfBPPC&d_%=DB~P)hNhkh!?lYPV_ePJvyq^W4o@+XER};x7*gPR;gN>Oj#D& zEDIVWIzmfufg5AmT{gsX*G|3+Oryc&SH7wIJ|7kt;sOZXx}NH~z0sG%XS;g8Y;wrE z;8m=W8J?G>bj-orX;WHY6mUG7KyOhGh+&dR8<;CI*Zjr`~>_**(WgVOE zOcox3VJ5?>&-K&QvdLxB>L+5SgU+m5;w=V0B}TXKa^rl`fnH(>&Cm`+9%Xsy@e|Kt zO@Y?5uJ*Lv+5Q_mnNB!Ks?z#dA&yoGt6AN&WnLrmB8PCN!!qf7l-AecnsvPoMX`j& zNL%8x5(h$c9YN+)s$nL^60!8qFwtSZ`he>?NW*9Y zS_P;lmN^4jK&qlZy>-{>jly=`H!9XlP+GN|y5}1I0Lme~7AIj{xc>kloM^$|vv4c! z1A06@0Yo|9M*IH&rKN`AF*(7qyHI*iC-zksF*$mlh*4LI37VG#l^UIED=3j<_ZL-i ze3KDT{LK{Ls=8KE#q49C@bcDK8=?L`b?GrqixCiw;+`lT{(*K*;)*;?Nqe@`m`tUd zR3Aw?P3ywdg^1%q(*npEV(Q@m2g`r;b)7c}5>s-MlrHa&u3}qjfax4+;c@M}|&{9T^oeaDtIpO8IG>-oO!pOuy z;5zT2)j{5+gRh2#a`qOzI|*TH%@Z>N>GH20q*I~bNC78b%ungorVd~3W_J9(`65Fo zbb!BBxO)5)1h~H2j<03bz-8^?uh6SDIy$n*ftsYr5q@koqE2x}$XIwhhl1V_7`8T7 zu)B4WCMF1GHgz|#Q#owIVkVm{EmppgR$iCm}3;d(Sx_B_?up8d^_WjuZU~Q z>wi7fj{Qe|=Xx0|HOq?}G1sYXDV2o9Js&)S74jr?DXnXMdT$B_udR9g?eIVtLf5)y z2KkAx)9zy3N)lI77P$Bx%>YB=5N}k?pLh?iT?mO0I~UM z@AgUY0OrgLz+D=x=xgcm)nR@47Js=i*=fG1F36Brk=oUf0>x0e$0>;H{3uw^07(bW z$j8t!&A~3 z2S$e(c4*6qABr(jTaV>Dil(-O$UX_`lR1qYNM4dICkwE}hktK>Wme4NF2|4jK%tP9 zEPJ+JqsQhtEcjZ zlRtsOcH&&YU+uTdBToeME6KU+uc7Irh1+V#q!@y4{(=GI4_I+w9M;FJfoS+X6%_RS ztC>-DUneFKXYJogo+djGdhvu-kybDl)NfI|p_K$dM%0;G#(?WaX)~|`$!E{P#Cclh z8YJt`b^Enz%HZ+XjDK|Z2X0gKUM!o}$wyd5B*#D*l_{22(TCOghFHgz2u{Zx^`0bt zkTilj?y_+>e2zJtZM_PC!ClW_JC`$=t9DF(ZPS0ItzG{BGsB>a+5?MkZWwtdag_v( z1o50Hl8`feZ{Rss%?!f!{(rxMzGJWCs9w!ij>`Q=zx6b#*@y_BjU|~{AsN|6Em}ym z$8zwIhlS}}ZUx1`uJX{|?)f4JOmZ>O9Tn#bCNmDw2b#1GZdilPVQHD3cd+Us*1?Ri zKHqk{A8#K%ju07UUQg9H4+C)ITutY@_{c^s2t^3hagxn*g35htvX$)w}~ zV!KIC6;OvoC*7HGn$3=zJFzU*f>@k;a)J# zC$op?&(l?IyWTYMNphxdxigs?sW542*^)4^yfy+&SXfUn%#9pp(+X6Cm3grxy7})P z!AQ{DOl_mJYw=!RiO(b~Xclj%*QZNDVe|MZxiW6sn*JvxGg*1dv~tv)gpo%blvAk~ zH2OY{mQ@msYz>ctHde{uxbx?swVw_wnFLvW8~5Lmi0%9hXfb`DnCv9@3svqkt&5YJ zdeTPh9^!D@dPU!w#!41e*yLA;_FPK@Go0X>9Y+5E9Z$u39An=jyw+Gn9k1C(_r=J-WNF>w8zM>>46!teERI%M>%(E3#>l$g5t|T| zw&pi5Y259i^3ciQIO}BTfB4rmP_D2id17;UEKhDn+fxe2(A0%%WYTEBiWsZ=xP3fg zCXgfeNhg%>1^FF}E+$#n=^e|J&^`XgvZgB@Ul?I=uD<^O6*)Cjp671m>@-&AiYvE1 zj@8aqQc}^ZC}iXbWIn)*-Nx1r&qOJrjyW^PGY(hPT)VP-@6uGY zh?^Q(NO0Ji@(3a$>0_`oUg8Y`UM1xkGaoWD5IBLL?hgVP81P-? zzkhUNfiVG;(9->V(G}wEPvhBYS2A9XGHSOf$wJbCf<}%=mR2aCXGPo~#KaZ!*G&A2 zb)n)i30(nY5_L7p`Ru(kQek7f6OEhHp632ZIjpu7Ge3lWthr1cVTt;t53wmDN$XebGb3Xxi)EDo_dc6u30R>7bb}k zSmBmsm)fOFVU!dhfjM?f zO0a_q5&(BQ95z*BUd%yz!$s)b_2xbOmMokZ@J*I`s{j#NkT0L#x~4a6W+1iOcDs6p zBOltm-D@DrEg58zdNRl)w>)zss%2X0@mp3+@*0FLgDQsvJGOv#Zv9nTz*`$1C3()L zu>BBtoNZp@TqZicKOJMSFI2yhj8!s4^|FSnvYPTS0hwL7JZM#wrSzBG^O)GB5(k5* z*d6{_EUXU%d=r4fx(b%6FU<TPQf}V!Nld zP6s#47MuaaV1U7q5|=dw_D1$i;^PPU=4Cyp6Rd=(*{aQazg9@QXztU=O^hG@g3&`{f$ z+hm?32_(#RZkl!4&elD(PNlr3ZuboRza$4MG?7L8RtTY;A$LNmfDLnf9%WeZ@QJU1 z(+$ApA}~P9@%@o;SUg@C;wR7nw_K?Dbp=jI+;?KL%Ol=5qY?&^z!B^D_2}?&C(PweQ}ueXi{{R(yJEZYVo%P*4g2;aolMh|7^s$v7FFf#1Kzg2u z0x-mt(uE4jU&s!-BpxTN2r*LU$o)2|-`|(2-iL|I(_zNJ-u_6G?R*Yrw=xwW!^3~K z@0shzF`eO=EJ~G3i7blSLnGG;yatrO4#{D*p_IAKA=$P>l&)&dMiy#PgBg$_=|hGALe@qOMw~hQcheXK$Km*e*RJa( zY&=rP>0of7RrXX%Wd5@!i^^B6i;i0|C2K!X33duwkt1i+Qrx*I*#}=eWnyHEI7nCx z^B1b{(u-VaY8R+f2%`RFjREXvyS_$4LqT}Fj+a5rTHy}tQkDnb=6d}$- zvPcGNL5ioWoWIP_AjvFBJ5rtkXyab1QQ*2~9U7hvx z_%S9}fqN?T2e(D^ybl@@Q3N@srGxWQaA5moGdtlk)Bk%h$ftKZbCegn8GVJh9k+OrM2 zfJ)BBFus^j6;()YBbTVHpc+#PmZWTGGNZd!kDrmPQgaHa?mt46VCvv3ie5GcZLJ zymS3B>a^_=EW3>S29N@FK`gt``Rf8a0c3!}{cPQ7%b#V7CJqRi*Ez&jQ)-#`ftH4j zCf+WLvkFbf&pdNDnrmQsvZR|Jg=8*OzjpmK){JqFGYhrlt>0aKhz-RxhbTMi?5bG1 zO_Q;bzjmfK2Tt;pNo`12##Rzc(ZCfzQ8k*y6dJ(l+kw7d4DI+5Q3Xt-kjeXyv5JP)NQyGbOh%$>HAJHR= z#7858Vs5lS)9-a78SVlemKwisP{}Qb#ckD3MydkQud1H(F%lh!I`tPz;GVHKb^yll zZoIbR(|xaNNn!AKj}?xKKt2ik-S{#TD?|KlwT|J6{gq2fH6PSzqxEzM;_eS1`T(nv z2ZOEX-5-f@{!`g*@ixhv7dpurj-BmB*t=EX73YQtDyBxQsoq9MSnI4Y^JAh3Un?OW z^=SOD=y+UDm^tSyU%#pQqy}U2Gb`KqMwO{O3H_BSI#TzXFc!ynoo6kxSvq) zW(pgda))ibaWZJ^k2~^XLr0ufZSVG4_;2zOuXZbW2$nZ%5=k0*1~h-nU8SDn$TU={fKJE{{bR zNXT`_E8piz`<0UcLm`E(zgJ@H7K_OVmS~I($@$m!1E~~F=gVl8Z@KqX_~#jNJYPXu zdM#;0Z>uH8zK7w>MBc*MN*UYcyt!;1J{c`E@XqOG7m%!R%lx8M9w{0xX9id04{x4foV5GPODoBfiJv60L$=K{@AlNN~RkAHz%0wsXa%DrH=fD7`~;1pHUTd zDy|qs6k*S}a%JDa>n2Q8jl&ke;v^>T_DN!9m<+Ky=C0Gzw~~Xm-vG&s?mu0omQ}F9 zJxMlQ%Pze_!6E^Um;@wwB=meVk~{wZ=G|m#)8Ex<;P`~~mDihd`z-FwTDaReYn&gC1By_TMi zLnUCnI)?B;c#|*HJoNyOa{R5wgeT9RgRRB~S=iiTaFBS84tGG>C)ST7lO_=d0!@*p zFZQXOtCor5wUftN$YpTV=WKfwupwI$#3GVsDpk3aWKT~;b?Ps*$!@YSd`Aug*zYNJ zy~nRa%=q}(32R4~ooL_5Z#{>bv3s{E;j#Cg$8Kck3wETH$FZWCSola+Y9rb?1f7pp z%D0d+cvlsY83YlEXr~fC$bUDg(BT|bNZebmGEXklp*zPFjmV{JW&Cs$VvHDHD~+_T zJQg9H~P zYOYVZCbf_5sq!~rTwNJqz4g#gG6iU5^jS4BN4nxTnm%ZSk&J~LjB_*wcSswZy?YJT zb1-ZruMZ9*ZbrR1`lVr{yW73mCCg^}mh~i_JE?LNBs}zK$6iX!VR@Q~3~EfX0P7PC z4=e}_@sRT94X_IW_CLa>5aD=+5j!25wdy^U!?}A`58bq~Ia?KKP|wNr6Us_$a?T9I z#8nAn!ZR}ZQGgYiCPygV$4({e$kOUpaq zZ?|$XLmis%Bx`kA899L?Lgq#b&ae_PC#FlUDLIZUHfS8j#}Tuyq3>U!$C4O~PJC?J zOY7ZcvOYhz1bIHCZ66@>Mj-e-XTJ`}-nvg9mDT=0?6UEAawiVE9QFBjPf?F09ZGoo{#dR@Aw~#o$dd}`CGHSE)W;caBqPNy z5zK8^08hwrdEqZOU^T1W%GATk4U?mQ(uz)3@fj%!v(cn$WZN%N8R}3kx;9ZaTaZ!-xRT0cB0}Yzb3Q*?psZPFFi45$R$w$*i z6*XW<1xP>1c#42LmmF8eTsR%5uMcT9>z@ zlC&nhHl)-dxDp47^>LWeS!J?Hmu1c%MDR z9fy6%3uu$if3fmeoL7vnJUR^pf!}|slaIV0w`AU$Jk5r)n8w8d&s&OAkO`aCk{|=h zrMM8$zZO(=D7+YTzaAj5tntQj;iqrmdyoGBP+|W74AVPDP4+#}IsW~}!ww4>h3*VI z9kYU#zBXvC_S9u&uBX#=ol6(76ssZNkdO+sejotcv_!0iGWkg)jR!B&be|B%;Tap7 zE44i|O3CFRdw6NE*=m?ai=vBUUc4Y0xt;ZFS}FygW-c z;zpIolULI~ym;Ww#671EsO#Uj`tnYt{01mM-P_o<@tF(xo2e(#(OD$MEO1o!G%9wa zySJu&O(>Ek1BoV0%q&mVD9AeNp*{3Eev8x`J0f;>(_{x)v&*Qv_EtX1%zqZ2y}u26 z+qf~Aoc%OmQsvo~S5PGMr&(3y93r34TE=BACG@@AT|nwFcpTB$(1Uu8V0B9I>G4vC z-0;^lI>m2$YjyBMRk0>Z6$Ua`;KNYU3Py};>R1Lc{JD7daM{C} zN6in3;ebw^^wU+F#j(C78Q=x*@ow9{Q?v6~JU!g(RWb-@G|a*@iI7OsanMDP zpJ>EvwzPD1I?8VlEpYPNhUIvs@ktCIzRQQQTX*&gxHFX_wL%({=vG)_xirr!*5Iq_ zNfgWpUTkHNi3B%|kWWiuv6Gxng|uXI_DFx;%#RFk)|O&q?nyg;Cua5{N;y1a@=sD) zazxQ5Cyf$my-)-4UrUh(e3x541>=PQq0HHCVB=_rO!Ibh9Tkfe-j%IjvX*jhEoB!4 zLj+FVo=_|Q04*l3$#%-lNk1b;N66Yune=evmV#{ZK{Fo>(YsASt%{SiabSi9%UevX zYNkYr+^h`tJx66&B|GE>jC&i?vI6I2dh{YjG7>Jx*P?3=i^Al4B+^nv5x5nyj>OB_ z6(6(aUf;mvYuKo9k=L5rAEl)?G-!(Jkl`a01-4O`q1avZOfDdoHSTt#C*{C4VF|l+ ziwBVFefC)TK3@dgzntxx(q!seyB;>D)Y<1^EQD&Rgp^%7I8(+b!4ASxuOp-}IA=`u zxrEreAHwszM+_yEvM^Sr!inx0OP9!07k`UmbG0qSV!&BcB1;=DG?c6GVa21B4u?4Q zbQwq)F}7EeE9?+xa?xf#5j5i@j@xeH{%UhAhs?uT<^~yE?cB3mS8qZ#i_?-tmE(5| z9P^3D1pffZ67lo%*P+8k$2T!x^s4vnSD}@RVetlns*hi#ET%k9bk**>Zf6Z^wkGY! zH%j6Mc9P3zO6;gl@?=nq8;}fm9hN7qd=aw?ZyfAal$4(c!G}IGKrPfBe-&fGO$IVd zwm-MKcwNSQF?Cm&mbyEu11*x<9)}Va#c>3tcQbeaHD9;ruPoC9fEdn(sbuuiOg;XK0?7m znY~k1@?FVexRP$-r()hDW6PhaWtti0hHfzld6hg+KD_v601@ZP)9|K=0kQ>J7Bd1L zAZQtbMx6BTUo~jVSnaOt#ZL3st&5@P&0J3LAX?HB4w*u)E($$X8}|E~#=Z{@F}@yF z06-%2<@@(q{4W;+ULy_Ed=^85?U<_Pu~XHvYb8g7{7bsUDYG1Jsd=dfVbw}SvKge~ zy%D`06$Ch#-5i_iRx9CXoF-_cl2*yo(Cg{YDD=Tem&?r_2+_Mv&9u0YTZN@qNC77(Z^PYJ zZQwKVOM{NPcCIJ5(pwYQdQ&{6NJ^-Ago-?#Kr<|aF5L0(Jm<;bcw{_ny0$wA*x@lh zQhD_YTJ6u^xmq*gV!u61wMy_=6P~>xVHSfQ^ znyi-NYLypEY0ae_pCrrQm2oOJ54OkWVLcuo0KvO2;SyV%rG0;oosKa zPbN@ZV4j1zR}qJjU}LRD>b>0g8R4N7d)8%w^H(i2+bWi1j#uRZC>z*bT0!n1iQc-z zp9b>Gpjm0wyX>+tI9CT%fmDTp$8JxMr)1m5wTUYIC#yL%QEMX1(S_QdY@%ju9VuX> zgR|D27FGy@4*QE*uww&huQmroA&l;4#^W;hIVj1A&eD(6$3kW`+86Z!Qwfhig38PX zo%8ZO!?8G0@aeD2Z}ib4G_5Z(Mr%!u>fejKkIK-T-pff-9;J}YQ6dReC-wF?^4yYa z0k-&9&~HSZkb?{(U>D}2^X#@TGBC%QP<0ijRaVF@HEMP?BMFhlRs z7^C$pMjiNr8c1VpD01FU0n)C*TXFy|pVa_x$yxxaJNkuChqLR!+})Sl*({b)-NwpMA3P@$-k)?&s6b8j`m&1!wR(bUbu}`=A zwtP-X);i^ywU*R(tOk}zvFUEaqB!5uO}X~{Q;4((70YZOB-xbG*(KG#3mwzVX|}fW z0j}!ng~m@uBUG6zBHw&&7FL~*J;*GQ(*<;3A!SJwORu$1ssZwPPZ=ZMK4`^{hq}(h zVcH}z#_>+oLS4Y)Z^w5XUIjR*E&BM&5kTODjs=~h?OlgkE`8{diOQFJm z^JG~i8Yl}R5=b*y<*thV0Fv!``1^6>aaq@zj#k9gt=pN!h$alo;GO%3Q7ovWY_B1$ z4RH=WRyZ}$jZZX>5yY^&#bK)oo7=t7+#Ri!j}kDw&pZDB6|gGSiHz26r>u~)T2aN6 zl@f7b=hS5^G!IJR80MCT-5q=SCE=N_j5g}%+1YJ5Uh}by#bt4nDC6*tPG3s1Q-R2{ zDzmqTACU2{%Wg)wuE8ZsQa&JGI02-7qt$PoB`bi1jla;LvpvmcDQbk*)WvG;FX9tb zhDR_Y!L|IJ+R*R7Y-Q9}}H!dCR#wPm_(Awh$yv z>Z}hlpvnmG?bpVJ`fm!*+GCHKnfe~ccsX2W$Q*y)?a6Gtv)vuLgqEE4h7%!~jou}> zWqFw2L8B4K36XR;Z~K9vUOpR_Ok*W@A&sy8-G{|)!HSMLbgrw?>h;%`qK?UB;lfat zEt#c4jy5|JNiBE-JK8A_mCzmWjhaFL8w@mcut!Zq9N-9b^4Kf83f~OM05#K{tVbhS zw{=@L=C39_=d0@3oh4~%owE@qr{zY7Pvx%4u?2@6j+UFmEpU^O(?q`znm`YP+`Dcs z_1RU2Y2~|Dx3X_nx^fSRmekV1wrEEbaow6&h$batuou!+kntYyRaa-E8-<5Z;cs`& zw^>Z#!ctv9zeE>huYY4C&fqOzvQ;t$5OJ~Afs7Z7yE96RS4Ekll@yH+P=?lt)iD@0 z7=)0J;kMODQ4B*VjDk*@ADX^?Aa?|vvz-3`^nXs@bN2osER3xtUOEvqOpTZ#jci$H z`0M?V9GeNBYKakOM#OJ@Z6!pOC*g67eH^a^!R9G!G{pi{V0LUn$>Lgb&Mr^ z&uis(9!j=KZ=#YY8B9p>ZIBfKITc#6qZMF18N%zE^o(u-IYU4K{s~BNW=t#cI5hmn zZ*^^&Uf;{llWfLGGgb3gdg8uD4qlx(eI}WAAsnI`g$pTHh_|cDiQgRf%PjGhL3b>m5PnW_qnJwFFtvQ95Xc01MC=xD8trUmUU4~$>%H-*N z;hHgsrp66?QKrO+V#-(;dX4=SYPfq6SH<1URLlPW2Cz)dt!iWR#BviXl6yslkz$E} zMpcqKG6r^OSyysr_)N-d05v4&2j0q9BFw;Baf7a5r{6?gTeb5&$J;b6VWEUIycD?q z0HL*6AfMHhq2m>lRV7O-6SkLNqHA2V-64v>HH1BqX66XnuAib$9%F(hct4brKn=Y* zEQ7sUF^a8I2ZF_6>qq|ZT*ARUiqWvCZY2*4_FWN~MTnMJ1bjc29K&QhauK%YhsGpf z14}-f^;y_I4qP~n!%b_Ozcel@@b4?!HQ-zZNXgsmfvj1Ul&>vMr>OQU2_b<&^<{V>?x>lSJ3Z-8mhv*e3gWS>ni6hXnMd?ph?{sMDIuLs6%atd%2RjS(V1(UQypki-H( zEbOG8)KA4Y7~C`7qiPpPBgSNsKqGJh#)+#H>Cwf>PZisjB$}nEuQEsLPaWtbilu!~ z(~}fM5*g!-n6m|&VEF2sd&HIPcOZFn=9=R;ktE=aZ>Lf9PWqJUztOa*UJLC@8#Rb* zagMu>SJG$->xpS5Zd`N>Rv|)_^_VZ}c^e_kS;m*Xo}8DZ z97Ucsd8y~`lE3z^Z+2o=%64CJ_Yz?#sYV!lqVplPgm`(;K^65g2mPU0DBVL6HtPz zaxG@<`jOL)80Ct=8fexz<%Lnyvio8lrvMi~@$)b*jCr|=*YD`JzwYKtFN*5S;b0By z^84h2z`@%XKIH7Iy$Ep_{FX%}wSOZ$Ruaj<=Xj&i`=#^scNKiZ5=DQ_VDzRNh{+^b z9(6WFe8;l$OvmFt2>9fy&G6gigv-Ha5e;||YuC3{thTDvNV(pb zR>TfMJMc+4xpYR>lm!QUBR>w0Gut8Nlf>ZTES5lWfONfyDl@w=7I8U2bGlL(Ey0qj zQe1hv7=zV%@!OTEx#J7*KF!F;7{w}*#gr8>940AdX={boQk9d0wpmy+1LfFy4N;xb zoV%UIt}_vcu{6z*$knegg`|l>%Ob4uOU1oO%qqe)ZYbpySJURFrm%Q9u@1`MS_f_G zqP80kh;(j<3XP|p$I$P;%~1PuxbXe&i|w56Y&B|_{H-W6nAmbru(d&Dv+3xw4KCAi zfW=tHAR1i`l;hky;ap{y>H9A~EG}?%AesR4-v0n@idNrp`mVTM-G?9abF0)!D>8^) zXx=1}HEEY=8J~=RIe*I-eoI8jyp{1-*_sFqC*?|4v%BLTW^5tuOl2!I z=gCKE*!3hZW9C+j$6_=*j86$rr0;&>2ekAYCN5|m*K;T03O517;yiYj^ZgIiU2*-h z_*>p|@}1;bU-zQLU#YZYnUG=?PMKL$ji;u{c^3Axj6(Z(^`dx#B?ZzALDRB*vS8fz zJ^TyZ#Nr-6E%Q9x1F`I?KgQ*bo?^{Qw_}<&tu%5f23u=0JW!+#yH@x*0FP^f zp{;bTA_@Fq6M)V+bO9raYvgr3z&~08=BMlCa*8zEn)N@b$Ep$*g@MUEIJN^Q z;U0l8CPsMCU43iVN47BGU;ejYd{B z0ySVuNDPi8I@wVl5TQ=PuuX@Y2hP)!Y;LdN-}F(#VUlKeuLZywByF$kNcby$Gc}W~ znaO0WV{v%j#EfkjS{dFqNbN%9Wc5@J0eEXg)Sfb)Lu0LGV!TKABwdd$x9qpLek&7% zlfip~fV$JJ!1^n-T(&1ATPxdntUg){g{sqw)lq^-vd1h02#1)19XMch$OhAq)lLDC zyh#?0BVL~cq$6v|cFrQts<2@2Hn4c=_2<7|G2BpDo?#`5jb6pRD#+0)h9I{NEeQ?6 zK&`JJ9)XE~Mo4y~ZC_QBjTtHN>2|{pNB{59X5K zdGPw#JL!Ru>=}l&)iH*{7sz}~2Q73T$?3AL*1%*@86wPgp_Cm;YS`fseGkZlp-=}A z#Ep$>XRPDF$Va1W0|3_$bA)FDmM!P z%^x?6vh7aD9|64dyYfyvD0ByNum|>8e~NUBE&Tn@PQIw>%ZKe8H7Ov=O>ej!0V%Rq zi^p6!3GP09Lgq9G2DF2Z>TebujSgg*oxOhdN?|y3F`Uwp;!O)64ZE+q1tgjtIS9q=93aNc5zLH==hEqXhs0+jG`~xLXVClA>HQA}!Cg>N)+= zz_0gCQ!N#oEqPVZq!7nn)hqR|BB#AbI|UI6kI**uH_#m*F%S*vgFJ<#A0(hHRyz) ze!Wb+DHdp~_Xt|dB&`zq)?<_03cC_m@a2)S?v|`f4`7Ze*K26s z)ch5@C)t^}FWE~FElTz+$!F8qhwGx2Mc<+dk5WkZItAAuz%Gc^@}rr)2nD2&v0fU; zoX0cGxV=a`{yeEhP1=!Gz(AB*#a!&Fh6?EjL3JC{Ld<~fIa_h-XNe`Y2FVi4cyn^J zY%gA2lbB~lLqMQT`YY}S@X}mTcLa5sIql{#5exEEosxRgqjh;Bcvu$GM7)2N2qt1# z!m5z_F)jQyVr!^ca9~?47{#z^dw%Ky$8SfAmmh$mp3GCY)XpZHT-aBbq>f9tMms7w zfIlm*2HuqHEQyqIv{|b5Pvba*al_@+?i7BBb)w7QZRNh6rat8I)paqc2E3ONI8{)- z!9SVXnDWIDS4iaaBmL8+VtK1)YWDM8qm_oQZDtn< zld1*DOe$pcB51u=XJN2?ROPkyqIiA#PgKQ9NA~1#AbY2a1csU~OYhH`wO{U!qr~Ge zj$`fX5Jk!6mfC|WxCJasV#kjDIjqvQ9f?65;Gnn#I2Qfu^^3Ct# z6IHQUW_asC7=N#twO^@_$_~hYsU)it7D?^^vOG~6EL*ty z*BcEh7rv41n@tpzss$|^(hg4~OT8+Mtfzvp90}MAMv1~?d*#aaSZ_W-Ok7F8kn?=2 zm-|<~+3)__?qtr=m$oVH?N+@aq~a;7-*|Y%5ZD_jDk%(9>^Vl*8X9=0Wq^kbL0s3e z%i1&vHDj%f&Z|9)l%2rdm6HlOq%wy|)l8B8NfotOT0SFzLPs}P83uq}KGE_APBtdNOq=qad!Kqu zM(44)BeQD3kxt;fmCIV~_^ae2vbS#0uVP>1oPVigBpdKRbK}$h0If6zn02od5zA6M zYS4uPjC`zf_fegl+=1fx=kFw{K+O%R;m${{RlX=}Qz**|%L`^<$AteihnB zbRm?VP)WpuRsbg)-;_cq^8=r%W?5yD7B!-^=Ab)cD{jmgDXgW-7%E0uaKV#+NRq)H zrUYb3w)9l`jAT+rgX9JStIdgdqah;ey3~?=TN9n52Q81^HA>27j#s&RzZHqOJv(O~ zai~cu0F`RShQq9-baqNfq5bD*!9OHD1-aSXr(}Fz7LsA%Mm6Ls>aCPA7yE-Sad3AI z9|2ZqeG1uAePwDAn-SNRQ(Z^8Leg!y>MkIHLc2FWov&rdvCw|%Cxy|&o*E77K>Fxa z{{RJ=#8tQ!Ua=5j02L(>H^E98_LGwodq?A$T@de z5IzV9mk+7EtFP#*S?=n$-WZ(T123Jkl+ReZ5v^t?giDEaW{h}9)oQvIZwjmAG5H6g zOEi;7{m>lJEcHKTmYi7UNcXwz^1G1s)8wCAO;ckpmCa8p$$6ua%~&hP8$o0U&=_T7 zAuS<PnBi>z36GQ#bUd$;e}~6~Vex>GsNL5K)!5}bxki`P$5cZnfbJwav7&FhI%m%}{tz`SQ z?`zzrL-6Y(ce(7tWv$tY+>ItO&B7s#@o8c-M4g$Xc>>I#LKBzeG!wC`%4F)_WaADbuT9?ATUV=fvlGe&%D`1w(0 zf6^D(#cfP_n8WlChFVP#BO5T#%Or6Pc%b9W@Kd@y9~^;+x!Q`Z`THLP(@H^oED+S2d5o*6SFY3z6KOP!z%sAL zKAKsa@?EC{zk;V?2dmq|m{U(se=!IX;T zM-@YgA0aLvy_^(yEWReb&9-?>c{9-fa`UPZpCFfC_O$U)sD-H#?Oc@^4``@ zs_rL&5(hYd)@gON`h3=JPaN55D`&XqWw5a(Mi{PAzD$D`X0>@FAcGr}WR{#BJeDkm~x)Rwo8tb?x zlEos~Rzhz@PieBHR z-QE8HPD=S%;K=5!s!Fm#))r8O`NUZZmimz5MJQr)Va14Uv~hSQT}E}Ke0K*pXSWbM z#oAFC8sWPc-my_4KHMEQeA6e#RgW!xAlI7|hs zb_WZ74&1AZr*1T(R4)vN4^C-E0^H@3gp)Y|N(mVPp>3U<9w5yqeqw8p<^J|e;o32H zjE-m-c0E7Z#E>*q~Xs zfWHLwp#~EP2{}nE=c%H7Hs9x}t`W__2MF9oeeRFTnqt-qz2uuCa-HaK87QpQ$JCTo zCKlqaz^K=$6H3YzQGc74oVEfasi6tYd@PH{QB|X$~NA|cDs75um1qj zPD8h|_$nF85mdrh&DLsj#cgDUwWi$B6m|D=eoPO-_)_DT-(C*~iXIHDip-nUbkwgI z!?>xEC&mr9oYhC>h{=8{47=00EnI=1jM+(2ucAPioxw=Z@+^UUMwUhlIKRe;A?D&U zIJ#XRpXv?5PE+{ zD@o7!+HJoC5-D}?TYQFxTeycY-{q*Alcnnt1h-tr6WEbm z2ppo|grMK%ZY&rd3$;82?zW8ud-^S=_-~Dp^KqldcK%h11>1GLtmU!`4Zq=&deyS< zSTdKeB2gqiXGs=Cc@z*3>%k{P(}{5>M+jp9y8w#s`*TFaVgo>py5GZfqW3NuJhnr& zu`=cF&rNKtu+*Q^tg6rTV$4CLE|H=!iIO4|hF}Vi4_R_?63K{o*I{2Jm5F51;*ASD zt6jOM8@SVtY`wdfE0t@(NSF*415PIh!Z{0>3OVF-@sp=SU5%ZA{x8e{(48$UEN*PR z9IZLJ-G8MkiIMVo3b$pu4GAk?G1)wQq_F=0$&^fyS$N3b5+X?3hlO)%Oh+Ac*p49> zhDN!Xw9u|<(c+|v7ctE(KD_-oudeqM*gM0vZ(-EF3Z6!+aol*;SFuT&IIKlCk9?AP z(XTP&5;SxGJ%q-bz9ge93Zw0)LuV0ln`BU}dXv}qRgUxTY%go1SE^IW<%?XqBy-DQ z8mub>w1IF-?}k-{4hb)ReL3K zxm?yoGB!JRHHb`9Fw?Uf&a~}vc-Tz}xpzorS7b2|eK{4;oUkXU#Ni+#FdE)~^7rTK zOL9y`9qa+%W;NMfdwQFhE88?&WO6RG>X@tqaNhY18wwAdDV4S#g}Tsg8vT`=31-z9$SJawx180yl5dQs(U+o;swcS)jIS7C&) zl8wezL(9toae}2nS?T+w=8*@8DxvSc^ zVt=f!Vo268J4jWGiwl6$Fp^YfRV%aPC=1gNHRZ!KY19$=73pG#!yJvu3xTa_lqPz` z!FM@t%HnTT%HR%8C+D3w2Qiy^ka;)45aAzNgWQCTVw;^0n$^k9> z#S9m1u;ei4@)otB<8MnV+2JFZtZ#^NgYH#_FIyEt$8>kTM z#bdoAzn1NEOBp*cQLRo%F6HY_EQ=JcG2)TNp3;9blJO-*l(TjiIjuXB$pa7gma^X3 zJiGmcrQ-A1{3mE+^SBu#uaSaxg5q6>N$J5P6Ink=5(y<~8DR8yjYwK$Z6^>q$essI z9?ZhWO?KRJuT-`#2I*W&>^Lb%`$IF?)bsgEmn-0BkNAZuR=%9F*r#G>o<^72eekqa zmK8-DqnWmJx*AwaS!72eZuB4P>Yu{mL{B~snZ#G}6vt%b(+@+m-w#_mB|Edlmdwg2 zS5>DoGqfs@fEd;Gg%X}jvea)2>UCLh*pnBDVYQ`Q>*}Ko#PJW!6Tl>Cn_xSTrF+!| zHZI@6;bqM}26_T^^=`oL4S_hFnzcEQ7mc8j1!gR&$WI`4ps3t@78yH$k+o-Guj}fy zF<99f10jvV#^h{oVd_%5rv4YT`^UX-hHO=uwevAtYgKK_W;)V~C(?yZ&lr6sd6q`v zB#i)lX+T)AXGrFgRCVvtkHKa^FNHg#bYv1J-|PA+FLw;3J9GCA6C#kMQyiFKa@aER zSbHv+^@Ps;G}+LM*QWw^8WyJ)iqXk%hbta ztM>jY6C9Q+RZF(uXxde2q-9dt2)w3iHVP<0#u52~_$*jC;%J4&FHj54nbrqq7L`gP83T< zDH~vOvwt3oG6)|r{5WuRjW6$XHJJN%x3k&a)_RmDxiG$NOJ9u zxdXx3Jp5>2IH|(Aq`afwPKubAn+rS{+h^fb%hgtJleTu(V)kEd!9ujw{+*zBA$hGN z!R7|sQ*Y9CKT8^{s>gx#JdK`JpNa^Cl0Bt^eR&G&^Q0k-CKkptqh7o7=C-cW?yEVw z{o94fc4iX%FPX$WEKF%Mv)-pZKvyF|B=uX;NaYN8om84K6_<#!L{9;YA{{b+4E!4rK^ zk~w399tJHWC8Hyr<8@+v!=!QMVF+u%29lh97kC~E4c3~_+n$4T7Gtt)RR-uD=Cp}4Z_ zN$|QIYhq<&ab;k;(4M}j?-|e$;??zBvzoZSS4hRNuvjhlSw4jzbG#n#U6?C*STi}sQf_iM&MO1S%%?kl0X2l^jX{f z8{{tEuig2Jc}~Z(HKnYW{L-6Mr}ZIt+Si_3EXQI3yj$Aw$UXWzI(gH@8y$vgj%RLq z4fpyg%fe%pLkv#JMz^u_-*0t(o}E0Mnz7HAqaI$w`5G-fdTtO!3f7rby*;veoL*l$ z453wYb~^H0M+m`(d~mvtmgw)Ux^?cnxAhCmF}@bdXFzE3_9y|}eat(9_>8n&E(-uD zNQ5nqhZ5xm-eK{bzuLJR-Q0}{Y0Weln#4#WfYvqIuG(_#84yzgvS%9wGu7+)cSNd=ngjB~<;j#>p7 zNRde-g-Mk0ZEuk4((r6sTb1?aAYQlewd*iUd`tly_0(5Tx`=ArNG^+;7GgB3!>tc14#b4m%M-xjW+PJj@Z5x3!EU_(UR4txj@ z0>hca?OT5RM|Fe6VRIw#m`?uVl0|&2yp%NYb)wG+GHVnK3<;&0UopmF*kKt`N58?- zH(8x^(G!Gl_dak#j-!2uu8SnKkjVEHY|R*8vyH>hd6Yw1%F^Ls zi=>f+eW>*g+=T=UosV!Q)Zwr$e9oFzW*4yJ2<6cFE`JD?X(TwKw!^P`O11o6d|n3+ z+?}CH%{rMysckD-Dk{wqEP~QlR#IV&S($?#1cpMSfza@n7$A~E9$?}KBvqetdUZhH zSP7WdGB#7HuX0Co)kbS>q;Pygs0^ydZMmqkM`m z*ehUg427)^zGqG7aPAr2hc#_`DzXU~iXk?w)Qmu$JYmRLoIgJJY&ySfII^#9Rj} zIj+99@a1+4Q;Tu{yAXH~q;G6|_2_sU!brSlJ4W^!{1>bKp2cU3#P9JJYUDdp9oleI zix+zJ>`C>7g__3+W8l*Ib%QBqWb&L>XJK}Cu3a@IA;6arcde}X@obm-j0V0)EFx2< zVmh{F6-9-w8?;fwH22Sl<@E|T4@+)hWG8K}k*^409UGolTfV8h49pN5!$%!^*ZNW! zT!tRKE7(kY^sF0oQoZPqd+b${#dzg#ykp{(q%H0(D0SE*^`DEwK2e`0T%;bi$R2xp zCULl*#zp|;w%-MY_YNLw84ldXEv$sN>8BL(a2UXfcaxl}6p^qZNM!NDU@&Ac=oKA4 z%rxQH z=a>qNRE>3?i^|!v19|TIX|lw}VPb3Z;oq2S>%IC7H~Dv8VJkz3?Zbwil~|IjvVBY! z;R0#x1IEB<_E5&0)p(FJ6oOcm>pj>}Z5q>g1JAC!kz?VkkYvx1y$$c|v&ZfHt!%DR zgcKypcF*%(38>#T;jGFEmapl1W06cuqyw<)#PVHr>9e-8zw-f0Mcg|Q9p$1bv{T)e zP4EzBZyFRNrYcyoj`b%AYY#KeUUh;R{#BG9o67^FSr@@0tQ6`b3L&XR^$;bU1d zGdOo3kAVw7faGAbkyxdKvnpJ_NtG1B&e4Vds<9v|Fb9ay;H&o?W8)z&Zen!Yc2kWr zVj2rTths^aISW~SXxd6&h!iomv6h7zf^YbXQi71LqFoYBC4FCfT!af}80$C1gI-b4#)Q@aEe%u4_h`?fj=P6eG>2aNZgI-^zCK=1_?&-D)#BSg?2l z3nvx+MMp$cF1#U(e6S^{cyW#!iNG4=zs-6`FmpkLr;P~HEq!%F_Z|m5YcHDaPUEMH z%~PKHSFFz&c%ZK%ul!m~0dX9g;}aLrP9X0`T@D*$A>a(hd*|ujq7Q&sg%VEN2SHbx z_EFuOn9kkpJnWV8^o&1QGgnNj#}h!UBU!T?dI6n`u?{V>$T0l7Bc!;5;#t|{)2_Uh zY?8)tF}0tP`S0(~;IBBI;Jew8%R*Yn=I$0LX|ll|tzFE3%~MYy9K-vMAOI1PTi>J7 z;4?AhuA&dbD`I60h`sujojn%iA8}#^GrhZ;>+;!2E5{XNw6%nmQfXD>i3IN<^sC1l zOoNJY^rH#nxMb-jY>sST8yz;&t*SpCL#)3RO=aMvtC;4UV|uCfEgZKkJ(F(n0?K zrtt;t4RzOlv+S*yn={evX=SlAQ)J(@B(}d(3M|wri$UT|HOR56P zpsEPdhTll$am0w(sXL$1WwVLKXAE|>EbpmA(xZ^ZV*6%l3?ee7X(ehj!Y(+L5v#>1 z+bV)0k(8EI;_4oB!uWWWq)PEK$C5ds7 zMW2G!H`1B_kC8kj^zHJ|jx?5d45ju9j$uF&Y?^2qBMf72T{YIX>Yj@O;*f7zx;h`C zu6Ld@I+o)T|RM{4&UXx+`-qHHQNSjUW(zcV3em`nfyAg@&-RbPU`W63K=h;(uS2A@B5 ziGYM=5^7z_{;LUw597EP#y1g-iixoY(a7=6XR@=oNo+7)EJ&1UP=$D`gO{{})0mh9 zhsAODQtly*lw!-}->qow+kVPlw&|uPwJKwKX9wI;cXn4kwd+-?g{<9~&4`{Dkz)`1 zr8X<7j~<_(c_@jGN#-w*5GyJcB$F&=H(x$_eRtFNR{FqO?YkYn+nvu(D{~%in=Y2) zFtH{S30;&ilDs@niv(=6L58C%%L^a*-01wE8?cSV8#4)R&lFsFS5H-7#r`H+y@knO z@)xc8vPC-;XsyQ@^9IeeX#d&eo`E-smhq;f75r?rwC&Tb!yfWJ6so1{m zz~o~%e)*$Aw=oqZSd#TwrHSjKGFK7C+B`vLPAMX?^D1=5U1{O4rV?XtvCVC_2^(a0 zFHOE{Xz$vXYt3Uj-o3|>&gLbG7;G&rF$-+C_J`4iMkI1)uT+PK$c*d*1t4*wuyIQ7 z9qsd)s_oa7s?ETOp4lTKT`R4A%Q?h%7ii`?YYE;M<;h4S^x=E;Sk{_YV}GIa=1>AE zj$&p)#PgOz%xvx6F$Ao87#ruyeCyR|aR|IOHIA!1@9A3nR6ZXw-&rjArJ13F!{FN) z1?#z4*$y(utBpZKte=z-;pK5`Ruc=J<|~`L`YV>H04{j^WIK@!})5 z8>e2BdF@}ah{0wucpUUWdsf~?ot%v+E3L5_y?GeSE65>28F{@+aTDQxmKgEm4_XZ2 z&htvyEu4dn#B^2R(86CNvOK+{R$hmwpaJ)^&S$qW84mZxXK)s8--8uON-|>%@kaIt zF0mGJ+L6^&)k2-fo{DI)XaSgsnmh>w3jEc3Yg?~B2M`fTTEIaUuABY)EW*7SH*ZtM z?`o)q}H1Azq(nt_p*45Y#SZ4wXr@joK?lO?wfb)J~d=p^a>;x`#!g<)#fkD zO7cYNu5`TQiTod1X-w#_@%|b{mep5JO+6Q$p9sb@Hb)rmwfyYu3Mp5FqsKugFld=X)9wOdef}NNMn)+gv-Syb2p^G zg2AGB0}-+ZnZ~*nO41*k-^6s}yoM)<;IQt52hnlAQ`14F{OM#prP+4IO>X3SV<#2L zR%Co!a?v#^WLCP{j3*f!r}E~mEQ8>1fPca6z!4Wr#6&aZ?T{cw!W)n{34+wouPL(-iu8l_EO)qXsa_qV=8z1M6MATCW7kgKHHqUt z5<5Q!p6!Z_dK@NlAx4F_icU{DHDz5=hTnm3}Vy?09>_BcH6;n0u2UkFPFLdFM|~SYT#?GC3XjW|}3?8b@#szo~0w zEfF_iVC}A(uPrPx%ayxw^;%9cw3e_LOz1dVmU=s{G!BK>!G91?{%esbDJEpN<7B7-ln$q>=lyM zMqKtIFC_)1iqFk*J2$LB6FTEWI-LS9yWi;=suw~%spYm{LHMT+EW?*>O;y?SNbxQn zFPjvQHC%CFjkAgf^jMNoUYV@bRp(Zi2w2`P&wPt2XL$M)(H;oW_(Egdj zIx>84D2>t_2Ms0_#7e;6?adnlsN|78S3mei*i-k;VhEtZt!g676l~2S*_r(|43fB5 ziV+`#Uw^2qLih|+n}$XBk>Lsk&n};Rl<_ymE5yzGq}2=8r*)xF@0<^O-tAL^x0U`r zVyWult(0pJ$n+wTSz?t}+#P`8JQU(l#?@Ja#JG2d7I1F0uhnDm=G$2;P0B&Ddm8!u z>W#tX@%Aib9zz@yYuUL5FwCcU1!poWa>J%r*;q(VedE|UJca4$FKB)vCvaGGil#3YN?R8$ zWZpKJ;Uz=*RopDn>_!z@DK^DiDD{|3Ttp8$TH-FwnsTmR6uX!hz#QXb9d{Lc{{Vys zWX*}WWifcW`OKAR7P`G*zp9F(jxgD#<3?zrl<|;gg)$-J$mM{sfU)JxJ9G8Z??jWZ zrH^50AUGbntxG3~$#))NtFLjIsCllc@#1UlByW89S zEQ7^miR}TpIPZT&MebhMwMQx4_}<&Gi?4`+#IVJ7Rd5FvSms#?-vJ>LvXxK@kTy@k zql*Y$$mJeqa|cTPdac}l6l9V$uNF;RZTu&5@jVRYW4|lSE-HoVQ$i(J%yA7H^5%Xj^@{KO{y)2)wX+%8 z8E)9jMJ6`BX8i+`WuHMx$kqawm4S*jDyq?zJWFV?&f*Y3EH22+N44KE*U&7<@$7S) z_K@?Y?bp413N`I^+>`dy`RX@&dA(}UD&eJIKB`_dh>|Hpp3%+2Ffo#=vV3{LjK&ya zB8_RwUiPwGG;M7FMwxW!`}b9ks_ncUUVL5;JC(B)j9k=V#a_XBUs@~EjZ2x*Ss^GI zH|OLymcj)>JdFV9{{RP>rrn|6WM|VL5=X0fY4t{Dcz*-US;Z-}oWJSEhA$8Xi45XK zk-k)HqVxuLx)T@xld;-{`*Y}{?)JS5 z1xx1}+!zU$96RB2UTxn1sL=PWKe?gFCR-go7aeBgvrN-M7Fw~x3@VJ(!)@IX z5g(>LSC9j2K|z+;0RI3lMTvpM!yMZIeL2@P1!EOzmv`QyUmun4ER<8x$yltl&65Fo zYD9)Y>ZoOfk=z1OGTcgOb=K={L6O^yxh-aY>dvOCPisM7rMr#B;q6hxLEIg&MIQ@V zC21PWs|y#~nKp&UqT;MgrhfsI>>Xyd2f-xK~yrBJ_s^{M;HAJU# z4T!>J#vchzwY%#In-g!;7KkdLeK1~F6%=?yjo5tj#(rO(da9p>yH^W&#qjTO3L_|k7P}K zy~c5>NiL(N-yVxs#8`_6XTU>JT(%O1Q7B|=nM%c7C3TxhyDKzDov6_H z(ed(jX9riYzF#t`Y9gU?&>&PQw$}qUiDe6 z&LBR-hFNS%6VZ`;1uZ=5=li@h@VW#L%Ns^;Xq)}V-pDRwO_jM{LCy}Ynu0-9i~YIV z7@9bVVuBkT-Aa?zLk+1tDnXppa~iKATn1h&Lj_X)MK8wy^hPLN&=VI+*;qj=JC`k#U6VTiIPNO;8(ADRP^RaWF?hEo}@DSc6L+bxC)D9 z6H$uG4?n$<(a$vP@nd#oC;tEzo;%sj_`uYQK06v~ZGg9uc#qUtu2tZj1>|$|(K^;T zh-ukuBh1@XfFBD8jn8=2j-Lgq!X${7%`0-a4LP6TV!3QwcsmvA_Pr5HDUh`aTW7N~ z8DG_BjXftJ1XDOHtcP3nkXR#hIbP69NV1p4x*x;I=JQzf_gdFsQ&}(_!Jd|UT}(7` zu(YzSs6v6S_?CzkU^s|de7*{NOCKC_M~8Ny`*uF7CQMl+pt~R=aHVk=m|?M& zxM2P*k+)3csHCv%vanc=SkXhaxq&?tfLhw`QU(fMHtDuKkG46w4!W;LfyG1|*yN&4 z5$4!R%AWszOJdW>g=$Un3O zVW>Z<*~j4U(8kGQc3%wZ>G#cMc)YC)eLl_YoJVW+^jK_;FDTQs$vsw*ci`iga2J${ zrH_vqMk+oC@qdUhM(4PLUWHZR&i>&6&2Fu}UZdaYqx+M+KMQJ221*lxllYYsiXnRg zAXTd*rK3l8b%}yBZdy23Y*I4G8lYyyY)@o*o7TbJ_1R!!rIL2}X~dsVUW%88?%X!9 z0*-DBgt69qeBsf8!oIY!C`la`^M`2?ROAA`_gIiJF<2=8r+!nM3`+^E%a9(Vmi<6fqY};^35AY$ z^0c+}RMKnQ8&t#K3+BrsY0k1J*dC>3UDTN@mv8qEdiM;q@eNP9@wjMk_^N({Ce*N9 zmPV6I2I6Y)?oKPu)rpxL$lP{d;BjPrS|z5c?_Ou(oZ(y;fav7>jW=NL*nLqsTn&0% z+gB*rJf!j6id*5Kw6en_l1>AUNGJ@furf3p$O1_S1A+sYiNdvy3@jJE+`D&6aW4-J zOd*$Uyxi)7h3*>piE#Jt;_qW=T%|&_uRNg@` zu(vy;aV57^xc(MwP?-svEzlx}&}sUqe2qG|EY?OhiahNcHGGyrNvk(H`6~0s6!Jp6 z^sGc-5o801QoxmrXX8J%T4MlPsNL=CH1#Vhh~lJ=!!ZljQ@I|?R=?fY@55?2uj8@O z&u_Y#u0gIm(;4s6j1g_C$cgKt#p*>VBX7dFDvY4?XT_37Ms+)%eJy%8_>)6g7|`a| znu)Mas2>D;v1M`6FJ#4AAAZI=BS#l4S>liuGTGx)#!Bf~HO<(K1#nrkNf`J%JZ^2Y z1Invg{uh;!7Eb9bHi4l-zb@+KW4bTjubH8b$Vpy%SofV49CJ-#9DCY{BuNxGWc4`A z8<`6Iy7%~8J;nf{T0bc@t#sy8B6g+-;Ob;#%wsO!ikf|0tF*&I z1<83BEJU#oQ*ufdfhINzfG3tcF+L(m2zxclV_y94opeh#4;#EW1BZ!5z-iEWre(xj z?wpQWw)=}0QK7AN)ynrUv$#u=eIm3iEP#OW#JuD6kn5R7(I~^C#7-7wkaIMRdGk#( z4qfL$t_gW4oFNMkDtqM2^=I=h@t4}dhQCV3;B1p;= zEys!o<6^o8iI>MLQV;U=)3WrKOjNlZMc6tGwDjhn^V$5KE4HV%O{{lL0p!Re(UxUg z)tbf#WZOy?+y4MCw15H{MIbQq(|kV>ntYG2(Lh)4^jerMH;nP4WWHAN(|>wZoIm!J zo3^K;oWkOBwXNCLjk@oZhe<2k@IifFIpW^sH(dCSc- zJ3-soH9z6bGx0aOF85X|yYRF!{lA`UTv*q~tPnKo*!lzVRKDWwo0u8%b>r=G zOESp{Ql$(pG?>g{#tf6hvXA8!c%o7A$~k~WxQrZh?tu75ORGGA(_7hiJ|)DafK-|X zbMI(OCQAm7j{4g1HLRRM3~k(eLcG}d=Yq7XiLYsqzMdryAS0ARhzDS?#37hQV)1Wd zcXoRBUXO%u={1U3%dU%Cx4r$+)p1>+_;zx5Uh0P_+!>t8VoZ`rVIR>*(dC7`Xkpo& zarMg^#7H4rx`H&Law6wN8GEj@JiD)1hmKFf+>bsctpdJwsr|`bEVto~UanHcD-(^P zk=4n-*OskXHQ}#jSfqkT+fqbKafq9d^CW0^ZFF203@n|n)}qpwTo{gL33SP??6V4) z3=AFDK3lYKSqh8-SjNL<^H-;B<*tIPOJ$Fx9CE9~5IJXAo=A+2G~nEG0`mb8ZU()F zJ4tbD1>pf`x*op}yR0H_G}{m03+2l7Ff{i23BQHO_N?kZl3ij z$H(FDEssN7tbZ%#(BZJrfJUypRWrE13^35<>08EUr|e9Z(oI@h2-6t-7Ia01;(SP9 zmNnqo>u*)kLOrANax)3yd%a|F8X>?R_HJer6{{VF_GllVUIj^?1zV%UE z&r2Nyv&$wo3NZ~U9AD8SKT$?2h^A=w$g(4u{Xm`%7c4YX9<}gTr_F^0z=QiQSHT(h z+z^fXgFvifAC9rxz4aas7i3{BS;r~J*1rs~#`Qe`xYeEEAS=1%8t_O19{Ug5KPqSl6x z!{W3Nduo$YJ4?Pu{fBYd#7%N%PY!D?K1qm}6uS>--Ov16u2mb&PEb4Df z2FP1Dysl2IX>ioCw&-Lq*RK^ZmUAsk2n>)Wg&CEK&7+{OZ@4Y@-EWWS2!)Z_1srZG&;?d~XkmM^i?s zv+&IC8ATJa5L2_<*?;2|g!J*@0!JFg)4Z?ida?vX(BJc=1nee}en|tNLjxki_)==& zze140%Gq$oJ9KH+zqY|P@Gcv;;_kG_7-zhj`h>Lgi$P}Gwb;cp@e}FG z7?Q#P$N}Se*gDPPd?tA$6E*o`((8Kv0BE?_aU&Ae5rtaBwaEwC_;jpKOK4=CB-3!58~$J0Pa48YjFu#gJYzVMmL$% z6VLrCj&HssOq_7$afb$ZEvQx!q2&^eaRBjbgb6f*$AnT@w0!mFW1kWn8-^Ngbl=ya z@!0M?if9qQz&ZIvSUpi4(UXGc{uqB#hymwP@NqR0qI;DTIlmdweEKKrnqhr@UP&@I zSt{8VaAPU!#zy))LUI$89A4SbD&RtS@nXu%bS7utvEBQJtPG3rmp zUaOsqWKJSFF6gWIY;SmXCSNz6q1oBRlOqWjxmq3l4QT=>j<9JxVpmeg8bIuH0XiV` zmNSIrF=81YWc2xms79m1i}`wmC1Tj;$bFj7WxmjEBHYVFqfDY`j&w&d))m7;uR zR~>)QmAiS|A%-v}og}#|hN}9gA`9xs(Z^%n%2g6)ZakN3 z=-Y>Uk>q=_j#`3#A$l$uhA)nu?6;=nX$rE#b2E;_3~N$I>(Q1NnOwzlbF?g|%vaPZ z(?qSVJk*eM$<^757|8Ox>WJ7x?R-aZt@Z4ouoL%B;to5#=+U>`xC?m8m2cL^XC{s) zt~+vsLms>c>~Yg>MB>-gxT`!_F$#!uL}J9Z&vdX{Spt++^> z#bQ|vcq`)(|L7c6nO zp(Cd}jM13mnn7U5o>EC)M!59t@(-q6kc5Q?r*IgzWuPwizJKfJy$1%yHSw6hIjC~^ zDs+(c{GGrsUEhy-d1^Tc@;Kp)u(fCl+`6!Te!d@hsxfYc2Ib@f*6-oKX5+PB+q;A5>>D8V$f zuJuT?4DJ&{`{ z-FAC}x9#Qgm1ez6K}Jl$N>2+@3ly&zZM-}ysoB#xX?%cA{VxaNMUkJy4LNr`R?qae z^(h&nk-kDSAYQ%JRSq-0GIX$uf(HgT_^3s*k zuY1_;EdKy>CVvTadX2R4a1IQcBs97wM;oYY zeoNB6M?-SBXUZ~~-&1z1AMOl&n-6T^s${3HNni$oz*^0SEG(}awhVlvB^g55nn=NI z5DvnCbKQ$!dqap82p+0&TtrC_^JTF^O^M`DHamwcmhNlvUddR+(H8!uEUHHxQw8m_ z6p@>ksS_ZL(m?y>?5oE_^zIf|gV;^Fj^ky14a8dm8zhdfNd%2St+z%;nC}|$9B*>L zce?3XWQydM87!0%Sl|mWX3~#M(5VhNI)>0Y>FjS4kjW>8Lvo8ExpMfT@g5~HnrTL* zpjRpi!!AY)hh=?G#YZkvC5^RCTQw>zYTmNU$|T_^RtOKIQGO4v>4Fp!(tJmaI7HCW zO$`XMT=nL9F2-@uBrRZeS645JKLr)e=gRi%y~5`2V`S&M7Dg!VNeIWyA$h*Nl!GEf zpUM&}WUx^w1nq-){1nf1oc{ouQ+74$2QGFwRIsS#f;V~$R7dS!%uzo+fuHJgp#!gmQH zaLm!ma-55YLpubnHy|9S1qYbT^Y41r`)@S1qe$itz5$` zn8FsYi6WJaT^Yi!lG{7t4zBJW;g$?fJ-_#QeeziN&K}4xz9uoAQhjfb^wyPYuzODz z*|{04D8SQ#2RNT-lTAaV%`s_;D_Wb#j!Go0g-{A5kzwc z6Jnm%MAkHxfJxKfefn&-_&b5?<8pY0ze=QxvDnK=7llI)31gB;l>2TPR*MbQ(MCdk9oxfhke9`XS%%_*_+jrol^%N4IhC@6EYLgg> zPfRpsD^fb}QiY5oN68x#;Nmd?EQf7G*gmNqBmL(Sm}|_M2h*zN0IOm0_$w{ky}O3V zw76QU1w%oWa!KR)io-JUibN<1E9?&)VPjh)X52_{8=n0}+91ck=mwYOY32{fF)a&! z@7*ryz}?8!t(lHxxk^%yLr&CHDx@=fghp@*tdTPgB4u#Ej-HK-b4YQp-~FfNcKfBD zgW#A}=a3J{x{&S8@W|rxH!#@?_ib2?&+)u{%CM}^WopO~W~}QINx{_eDC7BW70x6T zRUo*$0CWM-R&M;i+R?*cn=DQwYg#KD^gj-N5ijNFW8i}H^W|iiMSVc^Eg_KDtYBfv zCNW9QAgrO)i!aFQJB+d7Ha*6TY64dghjcN3@lFQF?Z_%m;(U0#&G_=tW~usBEJ&|T z#Ux;h94Hw`QLj*XWb)()8V7zl$Ke>9gTVo=j>)e9Bkefk2lavIj5k%F{E5UJS#7&9UB*3|g<>COW)G_W~V@CCYoO*meegnxG1a-1Ws9`g~W_hZIqQ=f`6#q{GOu^H;&xJ zyJ)<#I86AF;xjA8*ITGeW(fBd3LL&RmMW%oq>~|7KQ>C$)6-~O6OyxnvAE>titthc z1J>l2GZVm!+d$U-iOeKW&i2B`Q3Ic4UGChzZ?|$inP(S(?umPu)g5wG6v`^bH9Vf2 zS_*kctR3~pk);T_+4vp`2T1tKgG0ByFQQ|Hm{{jV;rWh^y?s3ux~tTZ%}i3{>QbvV zK+hE`7XF?}b{wSAtFYSpq>XrQdkw&l3FtV6#`8_{Wac*eq@Fj5#Ty+MaSmzUsOYRT z4Ea9A?aZbi!DcL^5Y}lvoQW}h^jD6+eePKb$N>R=mXWAt14At2APe%1Z?f~TVMAbc zHa7wehnM?Roaf?w8g@T~J}1}VlDnCP6U`&5RbC{50K?B1cr;JL9v^GBx``a0Vt0LzmsVgLiU0$41$bf$`T`2_>WOg7q zWr`&{chlGm5r+&Sm{8}f?bs~|p~!OGUqYdOi+3YsyN5f4tNc>lJh#=YUrPKkuLXeC za~nAlGswxV1z7R`f(aXqiLH#ets$?|rFS1twxWEEd2~A+{{E>$yYT|vbG0I~VkV_; zASJIH{;^vrT22Nz!vX0R^mu5N(w&_F)=v`Q4w=k&BA7g+X|JbU(^$;XNF;3>g0=2` zd#b(u`p8wGRKs@0KO-8fkz0x*&bk;Bv{6ROqRYe$=%D1fCy5;&3Bg+|rP7;m-~FU; z{3QAYC0RqE}_fn9X;mdFHa0 zB<=cArQ0+GG%YMM;^czdZzQZeGZQ)BSIaVs8%`_c_*^7-d^Hib)dkeMRKS4mtXa!Sep<@FKS+5@0=DY2>h`i-?JiF#+)V|} z*GjBsY&1z&2xYFtBaPRHjzpE$asE=gIc-?=vBIFjz;d%S)ez!Nqq)+O5aHVtjbwgq zKp)>_WvSjDh#isIIL_F+mbqsm6*w*>Y`#7T>Y_@(rFdeKmkmifl8RTCGT@({s@!vN zvdG5^Xf#3R{4HlmJ|)g;nhP3e-o*ZY6Ba&s`NVIVIxOpM5?TqTJ^ z$&En8g0s88?7)*7|#@7#C+t&{+ntS!tJ`Tqx3N)W5?rloaT6w9yxy#TKw|@(QY?}wV895>E4C+-4Hx2~ zcp=TqNYag0e(Ta>+5qsHz#FC4GCO@#o^Kgrv8-irvEIbyvUz)th^1nJm$fY#nE9cW z!bY2Tp^4VGR3I}mx$?33Uxntx>-mV>9lh6{aSnAi^96Lp_OfDeM>yEjwLu|=A!a#U z#PK|os(R8!IJ>)+vm{L1m7SJNc}^v%_=H|4gc~QA+Lq@G$Hr#x-}!+1^->Ly#rCBL z*Sm9evE9ujm?x6zfGhfcQ2v~Z=mSaoxm3Fq3f|OW7er8jiI4k4klpVSO#EJ@%#5v@ko&%CNXkO>jPKQcM zI|<@Q1ZT`h_EHqPx=Wp-V=3IQ+r-D)azlf$9l0drE6ZLvWOj{#0pha@M&3^%@#{xm zvxtMj%INhuzLY;y{sp+Gux^=z>g=Y^E3G@LuWw;)_C0IOa-B-^T~^IWUVBQwl!%$u zO2i&6R%dXG3O6(dhc2fPiiT*+U=b%#%h70Xyn9<7P)+JhtrxX%sfq4(%0rdK(89d7 ztX!H)kVcjAD=3Ocz$2A_B5B)$GZ7yo*SH>+ggO}Nfh$k?eeG+%5*i%P4{wdGL)=Yg zys~ZFcpMjJ-uhXxd5cuaeIT+b%OgxoK(VBTtgIX&yEdG!DHQdUg~!h9SZ6IwjW+9i zmQ-eG=eB^>?|lJ5;$Xz&yB{5uxY73x3>Xqyp}>9-RzmgWuA`JZBg*jHiq2!05EqHo zj8V9p=B?if-}zawVHjOwk=*UNqi5j1ME5soLk=?pZ`GcwQnfNyvojgsb3CC-%8UG% zB3QUE5xN%Jb8*~LiD4erz~@_az4>jY=(YH!0z$$~WOZJ*x9p~|74SGbm2BlXF!>3a zx1g_+t37QsxgwFHPg7x!FeI-EvD*cNkDU&%O5uyd z;j!2b>hB)t$F>S8)8elzu-aLZ9|ZC@7M1i{`7H%@V7ej~W;+};qb5E!Vi?1%1F0RB zt{tK`wS~Ehw>up*3Uj-!k|g+NZ>N@Fpgrus zZ`e9h2a05_b1Tcwm3CXaKZpiO=04m=9>=e!Q#q_IE3_~W=PTfC<#N^|S>%p8s=~gX z-3oFAiwPry65CdWaQ--+o54B7*#@>gL;WWBW;v0AB!u~mUodw2?6J&lV*dcDdoE7m zpCd~m^LHj21(k{uR!ADdC#CHkq90H{^LOufz-~*h8g>Pkh=vYoy$*sj>fH+ECCJQlAMgCx<#ZN8XC#?3}Z-`A0ZvY$!SOpYRTXqYoG z_JF2Yp7Xxa>3eRm~E8V$E zEFvK>h=M4PwY598GMF6wtKQA%alxe+ZU2-F=(dN2>DJRxGF0StBR%5z_aFdC0@%>B^H6;$Mkl z107YSoAt1hcO#Lda}QOZ^|5&<6DM6}qJl}8;wdyRx$@#B4I-|+J@Pu_>N@mrvSvma z*4=D7a!yG&5r)F+c-#}I^!4PkZ^S(1JoX7~W@pUdaoEX9U3&GEXEw>6B#{xxSpfRT z+C>^AQ2-=z(|jH9c;rahapnB4LH$3+F!+K*k(lJIoG6OucBBSY-*YWK?#(_EA(BcM zi#G34hFRi{^ia`wW)l|FoMvcZ(U1mTQIz>zlsI%C7qpNFKYpv{tz)FlPv-|pOU`z} zWV^#5iisl0_Vpgkxr43zNjRy6<%7~Z^{IoyHMw|6%t$RKB@Us*F&sm|Xawr#4R6-} z0E5XbG7w`9KuO=TC*pOwdcNA}o&r-0Mo3LZ&H|SZ0E)bUxIB7ix;^i4j z4YzXC%_hkxN)`?tF?m@8GLo@Tv_ z!3wk>^k7G-)?6Y9>f1Z?%g4=G3J+04Z^?M_=xxFf;~v4h{j8>O*jb}?N%RA!JJ(eD z_kI!@c4*hTjFt$p^V)(L_bORc^-;YT4#6tO@cLi{4;Hj`HYZ^wjlvw%?GB|64+&(f zZfkb+`h3=njQmiolk86Or-+{&l$Lz14r^EKkEirUJJr}ms7EzvQ*tO_!FF3@jc+m+ zm?n8>E$4r)uR^^+Gl49)fqC>ki$BFs?(7F;TeFq#$)wED$V&zJ%PXv2tTy6Ajvh@R ziTDeEmpY*WUaYMixES=Mpxy|F`|G5ep)g01*^pHs2NN^NBFRV(TMKcRsz9&$_TZwcYs(6ZS>+xM}61wG^?<4APq4 zTXNJ%7Mau4bhee9?kqIo3w1)e1CCX z&Qbm&BvoEX-9TtWo|PE{%ggy}vlT3)F?k}`Vysx>oJq657-&7edMy4w9vr|h&e6xN z-Bmh1>+SyP!IOk~cxme0$IG2HUAT`{(@8X|!acBMnTm$=_8EsI*Dk!b3E_N3Dc>$N z-Xk6?f9a|H{9&_cq0ThkHx?*V3ymw6aTm{%O5q=xg zv37(M@^xdSRPdFXN-}*waQ0W75NFkkIF|_c!o&X{1=_7tcCOZMltbYMj7qS zHwFPl61nZH>(y24VY{ao--XsYX4iG%{{RSR_X=K_AeJ`cN=o(FjjDt)v!e5X)Q%!W zXIBLI^f+!Q9Z3wD*&dd?EO^&86OhxdpDH~60BzMj6W*C@J!$bB*^a>7!`g=>kW)HO zR(GP47%Z3@fCd%g6^P2JxQ1xkORswv?j012&erxcM@>G8^2u%(vf8nfw~^(TbhMuA z?)!OLaeooUTS!{8-%REyV7ZOSL_O_Vba5GtxIm2t;dLWuQM|5K2E(wiu}=J?SiY6Y zx}b3EVGa?0gfJ9&gbFs32POx#)m$~?V@j9Pf zJ}FU+widizwenAPmvu`fYqGl~G4MrUyPlp%ykmqy2sp||0Nz-ZnnTF2E$Ockpzl`? z!rIte2EnK14JJfRZW+#Yp_N|y-+t>4y-yE}%3HJBbIo#Qx|pnn{nAG(?!~zhSru4D z?>%v#N#pA1Z;woHtaD@yWbMB$W}lF?ejkr(n&4YPy;WUsmpkglK8<-NmMTjXU+nJqv5(2w?duJbuMG6otR5?L2Oo{FFq)8c5+*LyI;(eue z#wU!3+f;g|F|RKzaA*SQTAQ+Bt3Pq~rbihDTJAb!!enwSX^_j1B0&Jq9DT?>ME;E?@x}psqq}wIuLbn02=D1`&+v(m~745b`KtvGIjGRG*jtO0_Id$Aiu1T^B#wI> z9Z==6xb{8#O$fUux9wx{n11__nqe$f5_m4#DJw@6m32M}31Vqf{{Z_%@ulU_=fnrM zEJW7A`Cs1X@=E4N@iRfyTs!*2Id%L#%23IFyIsGN`iQ2Mv<)y6;fA`wIEF^@?2jKL zZSwRz+9yXV8p9l}F4PR4J4*~V_k2b;v9{eevHoALy3XP3Ivw-dxNKD#G_H(3I?VX# zZnK7;>uH98mDp4tKh6Y1G-QK*% zy7KRRNtEqbd$T<^Dp_=Ykzv{q6q z*w*>c+-kP*JUxWA0lxRqY8Z@mK;wI>x-!_Dl`61hW37#b8K9EPw?kKvqK-x+LY|HK z$O$@8qBhB{u&~g$2Ic3v4-SAx$2M&Z)|+*+-AeZMXm@@dr)GB@EI92NmhH`B8$u7H zhAM^_-BuA84DZ4>MQL4_1}yB%Kwih_bX~VZazG*COA%)%(MRng_U29%ySF^C+ zh_O=2cXh7i{{VNt4l$VAg`D+j^GevrsIxtYJz6Tk>`GtNiDDa7^n)2taUBuxiM&P) zNyy?(_H-$XE^{Z9$6Zb803DaG6T15o@h9-|zv72+!QMTQa{f42%CBsgRq~=bPVY6i zBqB6tA3)AvkO1;>Sldz#l$!=v?2L6dc3zrJ9fTwCB)P6VD3016o~t#d+*EsC@by0s zyL`=%7amBmH*ZQ=V8{JKtb!Q$dW!B*gMixO$B&)wCj&e4$p93`Z`}GXpTyddNSXPL zxxY;p)_dY^{iWTnQK{6U1bEw-FRSLrsrA+2k|aQ^f9F|QK?HesZR}{Kz+jP%y#UGr zH1bIZ4$W-?rnalu-%GwTxE|28CANH(>8Q_d?3{@z(1PEQh&xwONFOV{wy-#v0DO+x zw(hrZd_yy2byW>U<4r6p-gmqEf4(B_{?W~L?Hry4Sn-#f*AEj*JtwN#kd_3Po7HvJ zl&RL3o~eU$(L6}UQ%FABtd1AN+T2q>7J2gPv06ne6m(8POpZUd?)Fr-7dw@7NlaNR zY<8YeUTWNs`qMYHiZItMJj$w(&&P+$9AsN-(_cmEF+5F%H%8d}jy47CM?Z?Qc9u)C zvi+&}Y9`0zsdr2?XSI;XOFpKlj96)d>ll|(*iYv=`dU%V6mN;y=fk|w!})J*QaF4o zABWD-M)m!>j>ulu#?{JXkY{m^ftozrjlyXJvc^3VXVa9#N-^ONs2O*rW1qWy4Wy0a_rb{W@xr-tUwTckODGwPwtfnxmtlk%6lO3x_ zUymNF$V71D4e~T~)U13%+l#R+yDxh7ST}g%EmrOh>4&*q3>^yi%I7k*nVMSC%WW8} zPP;o~NhA)Z#DXwJm3ZVuhmEa{P&aqQc=lje+bkYZYnGqSb+z{9T0D6l>$5xdUptG=@e=qLM*7GZFw_O+iq3axJZo zC8;BJ8g5w{FJXRy!9W>DQN4Li|MSJfye`w{2r=R_(l|KGaqPmHz;W zXrQs_$YFt4DugQNef+fVy#k<(4iCknc+U_nXx}&Owuzn`V#hMrOHRM-P%z!oe%Ei_ z$KX4c9Qb?gB=@^qoYvI(5#Y6-njV8CJE zkcnMnirasFL$W4Y{jrhkOC8bNn2g`x#x9+@l(G3b_ZK@`A;_H;$JkeT1J@CRlu2$# zd5IKw;T~LZ;Jj*t7KaUc8_*4Q_9LX^SkqsO)2T|}hNK3ffz6!P~T#V4!?aO#r z?Bg<(<}l!Ih;JQHSb4mskA+G~Dxy)FWGz{gBl1AZr65crJcN9*mZE!l6U_ANEpZXZZDK*eec_n+B03fneF_I z-p;j=TGtfhD_3~tep1I2k}MJ0eIHU!T!R?jGsM-t1oP#+)nWVXF|HwcKoGYZ1v`P5hZ9ji*E4n8L`s zSQw8(H9mp zu|3gWxVw)b+4@#|fcklD=Lla}x5*uDmpsVu-YH71)u0 zAc59SKf{raXl<7b&-jkR{U^AzqISFu>1K2=5%;C6tho$D9F6=W(^9o=y~!%F*^((w z)75??s?YRNr>x2CehgG8Bp-p|qQXWUCAhqSf2N$4PxQVz3^T#RgCwpr9Ch^FSbG)m z{{VwH>b>U;I+S~Ir5t(5;~2SzjItS~zt8!v$e-eXA`WUa=wHQ>)w;Yi7~bmOb(^+saCn5uYm14IZRs z^uR^tQN6lh(D-f|XFSE6*m3j~t%0)iF~>ZQY(e^7+?HLRx7yk4C47J3&I-?LcI`}z zbfcqcLKsYBMXZ08#X?7^IVQ*>TuK#F)0oLI5k2pf+1*?AN^z-W;q7!0I>skzc=2AnX9~g!Yb3JQ1JA!T>~K>_B}UQZ zEjyd$v_8P2jv0RyFbzzMr{pb?|dn%KDDP)v*L{+>v04 zLZPZF&sU1qIwiwDHM2j>#Iov(^@s|sh^5@NbM(V=47k%xLk~} z{RP{u)@wdRmNH_oPh>1j5w{EQMg%hXIvsip31hQC0XEw`IezQXV&5dhwn8bkHobz2 z$Wq4REK3eMDJ?G2y@_LA8pdZ7>lqlsTGRxX%+=mEjb1m9G+=xDg;k$|F+mxa4O|WG zd+WbWYd z@*s3R4%baIjhXHiHL5q$e#w97*=NLJpDc#W3iRcD)@_Efhs@*X_Z5Zi+Y#8tL5a#i zID|_)b>&vCZOY13Y(?)xF%UTL1SlHoa~%v()FA8W_2jf9b38{x=J}d0eHMb0GMPT$ zFw*W?Q)aPGD^SRqCLqQ|Lo9MCot3bfJoT{3IffuVSX@eWHU{CcR&MvNTUZ=Ji?&!= zW47LeS*YAmCCX;&DkL(P)_BbGwEl7d0Xi(0(3R_^W9KA>_G4p_2-ABckU` zX)68)LILx?M*go206YR5A^;W%1{vkwurLk)2JSy_I2a^2_U{%%{!beg2M!1D32@!14qMFCK!J4~==ucc zwKkB;SDziQfIC8SLn^z(yL4$u5k+DdifKBhQ65F@E;i-m?i%4$me>4|dn)ES`c#$< zL!<-9-Z@Zc|FVIV^`I{3Vm(e>nF^D08gG}-m}tY8w0l$ozUpTAMS%5d)>2o zEVfrCBRKM4(qB&T!6$4%52i~LhIYAT?C*d@?z$wzP(dTf!6)U9)i@QPiMNML&96=z z&aGnTZKyYs+jN@Ai0PQ=TVCxB8ut4W+F1-8UEYPI^QjlHx`gZ#JDV)6hNVi_PgrBHCkdWB&Q}$V;`=qY?cYtGUCeBhm~#`43xL28-*be&W%XRlqwcFVN4?e#26qT8J3vi;kEPg^+afC^o~B zd{6(A=}zCxNSD3;^h+peeuwB!Msy{-!tCSo^Ek;cMzgSP>xGj`QgU2NELF?ijFyUvgF984d zQ#2*^ytOY7|4+^sDTM;@GMVaLu3vJ(NbT5XkA$NO*5Gdu!qM>ICE+tW2$wz1q2JA= zd1OU-IOF7}iig4`BM!u1ln~be7A0?MISa(aYmSF$JH6&DWOW%VIx7MaF`Egwo`5P*2;j0FVPF zC3;>jb zOk|tnIdz>WS;gM8?|^ih7_mm!tZvi2&5=^GFn_(1B^h z+1+t;nijjg2_>}_);o_&%%Y~JS&~^w-9J@jEJB&ftDE+Dk*e#EKGm-H7L6RzK8RXt zR_se?djN2*uzUhn&uOM6KI>*Z*w9dTs@mhY5UYtYg&8m@Hkcjw#XIeA<#O3ZqR>{W zZOD22AaD7WsY;}9l10&NZCkmfqU>Qr@mP9vmGCjr{vhYpkYJ^$HCHQ335zxNT9vYZ z;ZilCjl(6Tuo6i-bWyy8c)W2xT`~hh&5NC{4A>f7m9k;@WgoH01=5RQDlKA~#QFLsXK^HZm$eI2}T3 z-}oT8yjErD7UAr3%%icu{>?hXl`hc;#6$&U(C{a;tQUpLeDo#WTuvV4D~1h{HZrWK z0JoUg6dGp^g4IloxTaw+W0YXOm7|Ju(P7GyA1+cI1++(WBbX)voFYK*v#+U^ogJOP zjZ}~^IhxwI6RwVp7i3mIuf40%7ryT1(qx6lEy!9uQy7c(yqD>ztjY;*{0>mmD1n`N zHeA}r3T?Ud@XUTCfbtxZltu6Jcfu!eLjT16R#j00$r{Rh-}z)vrllp62r~f}67bn! zUmGI&lrJp0^PO1f%cu;TxwB*km7(sFJJ8$`qW}S+N}bF}TYz{%GU;!EqmcWoyupzs zM(yHT#6!;?zZb`dX=Vxn63#CYl4(F!xu{DxGEp9#OtUqbfm=U6^Y4ojX1Edcu1c2sAW)%aB&oUp&KO=6gBT`8& zVSC)n{Bap}n~6T_I^G`w&*=Sp;9iIxFxrA##~s*ShO z`R2z+wOM#;_TB-Tum{0YD1MW01cFp36{^hv!*vdO-R(S67S;PqzcYmWP9od}qHuAy z9dCNYZJ-+p_VyDj+lKx$FC4WH;f?8McKw)#tEZc!JkrA-Usi9R?aE&9RMNcXSn@M+ zUeCUY+3x^EYv!zRx2<*~Rt#gBN0pf|WshUw+8Pt*!77j~pUkhHPH{EKjcl0Pk{5Sl z3(u2h(}Q#CJf!MMCf@_nL5l zr9j_2qp$(Z_VbWsf||~-CrLodcZpP4WHHRt(mQ^^N}w$tu2zc<|G}f4?k|5bRwKLz z*#`$TEj`}(p})&Gv0wRrc#E7nKbS_ULLv1H#GkcQwuY{<4FtiFJh6F~(Mw)uo^}?Gmh@t#dC56uu$|^^+dZ{VS78L>9xGqXr7{6w3wUfI6Nx|ZeA_zbwjs9T zTHLfQQNMt#0X%cDAB#UB(AbKO&kp_BB&Tfn;T}5+D#oUuT<**L9nI&?PNGxMbISh? z7$3d~ptdM;ebJs|0pBrbuQ`6PY`3ReH#>s)uu*g=ueYSFrlF;PugS)Nl@&j_^P8fi z2$G`BmpKSBa`>rreC^VXGnEY_JrbR<+2ACt9ZRoqLOHu1Gg{<3f`VXv{knW5P;LAX zVhb_CI?$bAp(*hr&d8Nl%G_Apy0~@>dVqRTY3|qh%jk8y1JwQ|p>k0{!sQt828MRn zHRcrSRg#Zj<;#=T5ssQ2#P3IYIO{a#?TT7{J7E5DcYm4HBGNnEsJ_4xly(`5LDOCC z;x=5Cqcd--9iVbkr9R2ZmaHL5-0p*WD#uslFvT=d+LPf!;CFeU$^nH>+AWkuiP##A zDc$cnNKq+G@#$=QdRw@Cxt_eTavL`KxdX0!6X(_O(F5j_KP2OnBvEjwF!Y!8!}~h~4@5nEsy*p) ztARd!-CA^U9L&{PBGbd+3X3yKFnz zRsHr^Fbbjk8rYzm`lyG3?2TrVqit5F+ozPgNlL=T?JFb9O^9<{qOfA1iEp)x`L^1B zMYx{+huA5zLpH}be!6V6|Bk=?FeW0_@XLK>?s|Eu^jU~L@X>=o2vp+RT3c(6_5_KS z(O#cILfgXL zrghQ*e=-hR;png<$D!ymkyy^#1sxZ|A5NL7PebR$aDqGkuXbl`e2s2;mue6y=32 zvsm4@ttNm|LPI+UYCS=mQ5|r`4UdWb+h@OEjBNL%Abj~+2^%T-D@Bjo5)oEOmr&Kq z$e>oW;;N-^(0v(hH0tL?yN&1d-8Cw8fg;oG4gnY~t2HH~$@*^j>ZwgZ$mz6!{xlnS zZ=>I{Z;3qdBqFS3gw3%zH{cym+;+TCVqxA_+{tnsMvov=-kT|5@LCuLv~rj&rx=W} z&%xNJ`o5E+m{UbSPeZd4EFso7LsAaMY(xA-koT(1G97E^u(TvKzvtX<|Ey#!D`H^~ zUCA=TG8cVwaQ#8AzS{ewXM5A)J*mri@_zn;@ zi>~})+KW9ooQfodf4aNHrIrDWd@tn+&tlZ z5^yOAUbuma%H6BF3BTHYnZ#;C^VX8T(@m#6rXj~V*OBz0mdSD%!_{WHxq2ZF{q+%0 zNaulser)Awx~`c`e4OVG@tz4-#{Vw*bMj+?EC5608gBKWHJ*h+9QPz*>&LfQp&WxP za=Mx^#)|rhaEBC|`1#PnFR!j^Hyk;*^JA=J=IOxN<>wTGcL2fBeViy-!QVA(xiJzZ zcS#(Wmx^hWMk=F$XH&%bBGoZ(IcjV7uI`D1DlyYr3Vb^{{i9)w0pHF-D$PfzOy z^Q)`v@v*eSk4|Rost+jxec%EaS$j*6)!|l{|GDGcm_!xWJ|N{pF_^t%V@?S2GV74h zo6G9uS=sG2E;}ez?|3=W)z_!H9Ve*WLo!|Nxz*?LiXm7w*+c?DU>8O^eyq1QhQ{3G zE|y1Sn>zM&*}N(WXPkMn%ujK%)w9-49aSVKSW3F&w2}EeLAqBoy+&OM3yX0?I~Z)6 z#hJ=;Oz3zQL`Y~=RjZlrUtD--LI%%C-fZJ?NzT>gW zByVhn*J}K*wa=64*=P6LEl*yYiC6xTEtB49+cB!#7o$Nl@Zb6#x4YpgfXcxivC`9{ zJ3j<+sjb+afXgkntuS4(r8W~2v?xeIvCZWVY{naV?}x<1zex*y>9x=O`O%USUQ>SB znXCc6QhnyWU8R9fJQH3s`}_7RQ>8sQS*!TrF6K+G`h4Mbov?EV%a=XH?XOpg_6aSr zpG$ZOMR2zKAWpw2fzOl9Q#>*r@!9KMjrMyaj(-!vM}#cX;}#=h^k|(y{3Aj2jt|O3 zbgW1WId-vZwG3lbZjRqJ(k^>H%zazU8)hAfCa41^xeG}8LI%N^1 zBgGV`#B8EH9o#mA_N&VFMSG>7Tc9V?$wdH>d^JUzKw2nL!3%DZeLmOuTTX@I>S{k! zmu=x9x7Z}NZ6UYZX6Y?8r3hF4m!nLeBs6%9{4K>-7o9`9>oXmZpd63k@myLHFYlFH zQHyb9$L)xmM)a;5*^e~k()NA=Rh4uZtI@< z%XZY7eYR_snZ#jXw?j6Cjs9~H6X=1*Rdl{fU;xY3n(gFnn#(OG4p2*T!8UnA(#656 zcQeq{q-e1hau!3~QJ`Sag!RpS>>YqoGTuSJbHWImhI*(b#CF-527P@h7^0G}+f@mg zQ*?L^h=C2Q5jFy69CRHWyaUj#oaoDvdj&YU*R-5flpc*QqPm)}HoDlfM%j+sd{u1@ ze?lz1efX*OXQ?K6g!QBe(xyr8nsM1(*IWX*{En;4mu=0me0mC2?*{SolA87(jHcwY z=oSW#G~7ft-*nIaCj9#FDfKm-Zw6^<Gj*YK`0+de`t_Me2xu z6Dqn|%wa`T!!<_%~Q=aHslCVEsjIo-sQhvdTmTuG=Xd-g~kEVo$V=q+u0C812L4!B#bbCGB~R)cS5oy*eyZvkn!v08?; zuNew-+LS?^Lk_%IG^B#rMBx@vRy=#hIrcVx7QCU>D;Z9k*m1yApAjos5h@8HgB{mW z%dBb>{QV^m$>SCS9KXu`iR!g3QDJpCWt22P@mKJMNQ~PK*A#cM9M6zwij8n$y8c1c z^WLj@@p!p8({R+hWo_8DLZ>;cFE#NQA!sXBSRb+NlT5FYKT2I!>lO#dQXm5S5 zEUG;Wm*J*IDa0Iz-zd(xZd6b@**Of)4c<`G5A5t>=EA0NNay+MzTDGn%Rv%6*MN<) z^Q%u?!6lRC^x(P4>xdcd6K&MLLf_~U%}uywf-Ss@*!CyqPx^OPg8WFcwtrT*yKsR0 z$hE4TtR#i*Vz^_!oRH%v(2WYN-1S_%bZ}56f6vFZoO#p$L+#7*Khnl0tPFADk%2Q8A4r!TE4d0ED^*7G=c>R>QFxQWA5c?hb5m>f~By`@5~{g*BixZrzTk zDMbkzl@{9>wHVg*)$GY9S!S0JFjv%nh55jGm}F2z=9f4`;TNWClB9sv*Hkwlv}ui2 zmd{XK51w^X&WKS!_((pXp{Cszd|l3gr!HJqhrF8{Q1*I2?xVWmc}S~>7(OTq#)zDD z+@;ddf+~md;0FK*Wc`YbLoC9F@jXN(5wvwgU6PrhA2!5(n5Am2iI=oD?QMSybs6YR zKiZARIBeMXZ6&5xFlm_^T`-Dbmr7StYA_afIA{Ldgm6xY>)>hO;%HvZ-#ki4BIHTnF@a+L=E@ znJj-hA-{Wj@qU$Q+|zG`L>hxW5htxddT zhlprh`xXpxl&EBJzKBnYhd5W%rkGEm$Mk+fd!xlxM&0Z>dShAa0~qWK$H%doi<8*Rdm@MwNuW3w*B%S$R*LauTf%t$aKS@pEHoX1 z)@UQAwcmemeU+hzDbBkWbJea1UxV;RZHpgfzX~_WCV*L;wZkND$vzBj^Hmd2zN` zR(|0_1EXsgNonA;tUw%oOkEA%I%}Ay%U%{GVpU=MZ_PKGNe8*MhrLf4Z`oQ+SNR$@ zo~3^~y*d6~3;9({Q|1@r1J2o@?f+KPxEi`P!o*Ij`aI$_7C|C1lmaTrh7ZR~E_7TR zHoizWSURPZ{g~nRFOb%3kFX{}_~H{OrIR^uiKl2mBh}eJdlHN_L`CXJnFmtQyt>0i z(E*c=4@q=Y@NjTd*zqW`C{Bj{3UhHGU{n*RW_>%%;Z<;aPY86 zwz~=E=VvuGOT?G3blE$c4MU6`k#MbCEl@xj>b|xl7Fvhz0P(C2kKO_-o6afYULX~& ztE%;P?K!$6B{oHVOA+Jxa&lC!o@d?Wi(hZi?u_Fs9Vw-9$}G~g!K}AKqqY|r^Pe}n zpQOYqg4D`Zf(Ts5w>WwEI@1X7)|#2tJk_HFc7q)P$!;>CD^he0E6N*?m&7uoy81X+ z&UEvK>ddhba;m(;rlMq0qHVv{S@F1&TKE-BWa3lsD}toMk3_VY3lxiRn~vtM)dlj= z*+^~#7wc#1fsNM!vhqh`92uAWEDz7lm#W6i#<){MqSo1e%S>59y$#4<5e7G%N-C5o zZgN}|jOodbW_mx>0ZFH2=0l0fG$-Jh(YX}YTE~oDFK-1+Z8raQ9(ZWCYDFSlTtsX<)k*j#;T^EFZK_l)wNv4JO>XcC z;&9~mNiYaEk<6HGXTUSR84>`>LcG#h&4N%+RV>_=4p$_gn&WaxRONUlI$R=l{NFJK z|9D4w;w)Ke(#4F#ZtflmRvhDqE&Om6(6)n?>`({d_IEh0*7htIq48KAic>FaARw zGZZrL&Vd{PiT;l5Rrg~=P!&XdvClRTe#^1v3jO@jv0=1a&wy2H5{thoSmzLC7AF)j z*PY%~9RQ^Z_~WXSe^Q70NcSvrM>X@*G4$sLZ~BzA4pKkN^@D9|Ioh%_BuhPJmV>sl zYH^~psj-`d1>V0OqWS8QI2WHykMd`_+Qt`IesXN)6G!viKWQ@Tk`WNV$O8 z8dF5iCP^RpK9(mb*JyZ?dB3gKE&{zvUm=4m@>7UH8gA=g+9OOYIoK4L_RhDgSY4da z070!qBvHNNZImi7m`jc_qJw_jtU?2v74TJ?zkiLtznrZvvihh7wJ|BdLB9QWj8U+T z;!lS$2=+EzKCDkc*l|;7#*dHbaq=)7XYFffd|zt4#yTrp;a*cwRY*3&M~OIozfm3b zGPycZNP9S(#L3$m>h3NrZ#gHXwmP-eu6iOa3~wf>5^PZ5G>-H<^r1W_3c52*RW;RN zloa{I(eQaGCAIYo^ou#yDk&Ps2UCx0E-c9eu8phikoov3D5>A3NS2t$mbKPG`vQ26 z12K!uchWmpjg&)o5o~|^D#rLl=S_2Aaglvlf1>&fjpWTVNB~(LM#8v_s;IF$6I%Vu zMG+??K^=XqHSJ|L!b1n;Z7ZHN{NjXILH#EZ7vpJHkKyA7rDA`Gz> zsD0oZRH~lVmY;6?#)1qJUVj!Un>0#!OoHsL2OUET>9Y?QUqx@qU|yiRYIfq#QETrN zid*oGA(Kdul?$&G3BfNDArj*hkWsDmN^p3PW3J-NXT-Qus~R_M*F8wB5;{->VjY z6cQ(&lT^@)N92_z`$7ME6mla)Vw+G)u!`-Ed`FdcfK5KfcW!3etGz~=sCf+9 zEkCoJow$++_CixxIc)qr}RFkAh)_~?(-UURP#7Z|bUx7y;2Jv@z z0&JTXQR|%JkAs96^@pK>1}zN*5zavodhpMKaL>R35# zfuG}OrkUvzIj63EyPOK8!uJ-;5n}k494_S>s$*0$j_^L1qN!VZX!P*#$UCeVPz>yz zMFcB(jy41BDLMU_PQu!@IPz2J9W7TCXw5hj%pO+)SueJl18F%=*eu}M}9%b*twr(~9mDbGIRvRQGdKiAK+h7Ome zbwWmH^5p?FJKBaynf2(Gk(jP$#0yG1rEcl`0_N`kVuNK*Do10=GDI@^zBW9;bqibb z9!>?pPa@^BO>A8~64oAV)w`X462ZKROCZ$=q=rg@zm93)XbJYe%O^_9D_GFmjU+q> z+o6vTIp74H0~=Lwe#&qodm|XN+c5y1$X}W0;^( z>r!7m_|l&e%K*gRi|dauiF)AqRvbmF*u+O|sBKB573@s~eeyNfj%~s^F-2#(FsvuC zLOD>U!X8%Mpj8vhgzogAD!crPJx%&&`wn5*?*#06?n*$1C^!$INH^3C(WWtG|Jf?{X#->be<8o?GB25>r6D>0bLzSPAtFJ*-#cdvFC79u zWD75K)IUF{+nzF?_798yEUZa&77V5XWoZI4`Fy&Wuin@pU5_Tx6-V6i{hp5woOdsm z<8NgHtSlSHldYP{v+G)_jtWCt{^>falDPA;(ZuOBV3aMxGsmw3d_^}a4q&9KrVaUn z058^}!;AzE9T`m&_;&MiuE3QltK_d?lPXH^4!(LTQ*cZ2U^6rCo-RK~P_Fa?t^ZDI zUTyNKb15sUygtbrCYYrS>qy;O(t*0Zo|BH2x)hFSR!RDg4qZG80pXSZeszt?UiJ`f z=M^clVK+GE>!yPnGmAII$qYIxrm!zFx82wI1cRz;fvdd8-KtG|j{23-&;$j2U$vVj ziK~om)=6e&TX*s!Rs9tf9zbkQ`wQ1pQ0A~migsV}*uAPf#+2SMjVNET+K8x>j&94- z{t-cQC3|a)+QGLl)m+euMV0TRtsZak=-|MFj-?zHg8}U4mLmF|Ho{)wchzE?QdieranJbud)K% zg7t$8QFQ1rC%3cC1XJ=*4~yD!7^}da(K*EcL|V`Mjj4nJRqDCdkb{V%mrTz-lXuZ% z4)N$g&W&WqU6)pnf${#^U&#_4p!!6LGS6i8kvU+MYRaP#w4s_M-tn^BaQCh%x{u7* zCr0$EukH8!d0e_@!ljFINuPFE?AFge<#d%+%1JWE$x#!rA=HUrwcn1}g^vscmkd@T z>ZVuhv!epW%b!{ejd2z1EzRryq*LXx4dhuivFK);5 zFZeW`(GC{0#-A9HbsNYyUN0GUGuj4xY&p}p$-C%UTSr4je>sN8mO`K=+s8;y#CPof8jS~rjboeqxaTW^WVe^TJRoRYr@HK=pt?@ZpQm5fA%N5 zzz;`#(CPbCcfP<1Z89UYz|$iuANX>yfJ7x7V`qs=TjXBR!Vs%me$lYQ!2mA|R=H?MmC0l{r zqaj42653ba-uv+KWEFky+0;6;(Q;oi+?rzPZkc^(Se|1G^o?qLDd}uiGOkz6>hdTr zV5c{+Mb_ViJ1hS=l+`~-DsuEgQ zWwE#QdL6~HDgt?rg^YEr*;}Iwme-;-B=2f_)Kv(E?dZfa$-JHq&N`4B<4kX=621O( z%2{~CrOUeTi)?+z*+I6PC}XFePhVE%E7KGD=4M@p8Uoi4uydw0sGyOeE4+qr^u&>u^OLuG(k_QD-@jbb3!Z) z&OK-yN+Cm)WpkGb9W$M5Xo|~$FD&E#*j!!(WFp%QY-``e?SD-^R8yZhI_}IUV3}_o zg%t$xcP?_S5eUDkEMJ{cg_>iKfbPkCh=xSJq#W^HElV2Pmo}dE?>rYMgPwAWTeeMz z1g;;|m|4)x+jIma^B&?Mgu#?X8XCq~F7qAB&`O&Vzre;p7NhE$R|y-Zhq=2Z2j=4M zMqA-)-BkNyNS7csnC2WocUZ)hVD_1RJgxN`s;ZWB$=WPED7{mXgBPm`F5d6xg|*l6 zcR;x?zJ3_x%;mF^fdZ|og&wnLBY4;_QHE+4W=a>oz(NC9uGyBVz4>J7kdvC@fYYe; zvrShFo}hdDFx)C(L*6{V?o8!b-XO>RH-r)Nw+sQnFy-*3adC2&%P8dSAtBZI_nEDz zx2efpr}bSrWa9S()I%g%xiI209CO$Gi17*A>xRpGba7mRp8Jv&$*4i*q9wV8;VqZL zJZ~v(n+UetK@7ZK+A{u(^d#0ts5YC+Jz)ps3CK~*3X>OFfb*nz ze(N~u0TntkSh*2I#|W#ngxpgrtBwKXdIK-J2edQD+V zN_~ec`(Q&N9o5;aQcFR{T_%CofArNB zpsGW}??ux+C(>!R$kzjQ`4DTf0Te=_#?79;ndQP*8n~o$dqEC8Iof>RFhT9wE$KMf z+1bAkCnf$QmJ0`-N8pgh^l4DuPK$rEm_KS7_?)w9osC@?*!7Reo54&4^jvK{Ew`qt zVuG^6NX#LtWLN;x_Va!rAVR!88G7|qsPaAqaQ*oH4#)+229U5n022vZPB)II{w0YU z8`?z53u+o-g@7y``&BWgO^T)>wmFlf>Fr8>W(OD+mYJY?+jl_s7YAz(My^Xk&Y@X4 zf)CI*Sd#F1|7W;I^CQgS+6#Ms-FnAFOF^RvbbCUO8p4JE&W9@uk*`R~fof$U4*o=+ zYF<{@he(i$gI511puA~JhW`0i6l~d zXfc>j6$sCj{LwvM4>cVKM>3eklbTtRn{sivE?nxh*AMd!k!zmFD*rf-mGi;->y{7T z@yOGqW>%EV&Ac|AAAM)vaQ^l=G7}E=s?yERv$Ow79tkZlM8Hy~(#ax&c@esd)#tzp zwkPYCmYQs!reWGgBl!@reDQ70x62kUz#(pt*ucNh>7IWWlV8&Txv=`^x8zy4(2sC7d(TaBCijoxsk zJ;tiCJfdp8#*7bfSIN9Vp{W0O*sX<({*%jHM@IUUV2S|OSB|!I%FKZqpvGr*GDizO z;B3lfT6-Q16F@tyz4aY{@o$gBNMD;!|7h-9#v&qu`|GQkrq>JNL#(gCU8v$E94*N% z#!(B8bX`3f%uxf;;I>ytI&Wgg;2t^yuckv1C-VcM93&Xq9g`f)kvv5g0!L%9~yDM&Oe}pQvx?smiE6X71|P`)v=R#gPs^w{3Ag zcw(}OQ=(k6np*rqID;3hs#Bn`+{!&Xa9~p~9VZgXCRY&-cGbc)*-c!fLn?we(eJ&k$R{vF|tjjPrdm_B5-?hdve} z4DA(7?V)6lR<_y|UZ8egfO|Y`B|~W8LeCEStGHYCgglxzAnTzb{Hm+VuTf7CnJd{0 zNy+c^G5{~S#NUtuqZ7qmfNN^<0za2yGC*z$%AF%Sl?J3~E-_H=nYsVdCT@SCuUoh* z5&uJy`P38hY^(11?*U)5pj{Y9H=C5+?YIAK=L@EI98}joEzEXOLC@Gc-RbbL+wJS* zu}40J0}D97X+)ghX&-tohvrz!|%%?kd>sMWLqn*};3N2%%m5HGwW_JMj#%II!FZ z-#FAwUpe2y7CcBG5#~XMb9?a!LDIHco-V{sAo4Yk9YYF=iu@*o_>V2hKARw^IG`9o zmi(~4bd!@{r%O8a*ZECz+csXn-B*WCjQ(?Vvpo^i1Md2TYn`r=h<33?MjP zL)csWc)Iv(eHRsMZDY$k4T$APo9pHmMeEPj!Q+!*&ccL!! zND?W;@D~CIuB(CjZN9lH;&Q3BWg(lAj#(-G>jz<;yUVtR1*gmuVNZ;tURl&mzpE>T zX33^HG?RYob;pYt7)3Gk@2(dZQY_}-V4xefdLo{uF3f%^G?*|P>$5Jiw`l%H9&<%> z&H7kTp~lTnjdpQ!H<;;hvoWFp{{B!fPrEBV>OR>8nMsjFscex)%*_j-TBA^8=U^fo zjWl*H{l3!OyCx%Raax8U2?%x2Jr8vLY8g^?AB_B9;d-dS#}}L96GA$t*)&4tTw&_6 z`!F`O(PO(TTqrf|D2O_4yG?EZTibobWR;LlTiScJQH6C<}(bEJ*loP zOlam#NzlC=IYF9<&91RGV_a7%i!Q$hX2#r*SV^W>dEOkKp76$^CA%T{Z`!{Dl<_KW zm8vS+cSgq_d;YrfBg|9Wv=0*G>bw%>Vc)PUY)})s){`6zIXbu*E6z;G$4C-wh=|Qm>Sp z?tZytDuq|(6~z#nT>zX}o)aFn7aS;wrC`4V`=&qI+2->_EU;BuGTc1}Iw#5))V9=M zCo0n2G%Aoy{W{|8n>qdHz*AIeO3ubK2*1is9=p|gabfDehHaXwn{bL6liVu-Q8%)4~WC+Hep2Cq!fuS>*kETzlpb^L|1a- zA)i*Mtt#Q?6sp?sPlkw((OO;$({1v}#LPDR{9E4rD;)HyYx4)^YG+_ z-T{h=O618+DF3?GXd*;$&4_0}2OV8rF1gl4&+9`R##W;Nb02Z#Uj@q27d zt`WAEK)zB(bWYcQr;$kQqt-`3Kg|f!e;-M-ad8|_cpVv?M?>8!Gv^Ea?$4rnf4wmI+cD>+)_YpEhL0&b z40-0YqIa@ZA|x3*I6boOS6G-$nom206v)$-_01XD<3%WZd1K*y43+WhVs*m5@8uIo z?B*nYE<3qX+i?*!Gno|1G_Zwx%H733>5Yl8E9eq^(fjCBW_7mtxgERK@1MFk4@Y{^-o5|QcqQ9|J70E#2A5qO&v`~p9cpu>6EIi`~P>mp?ZO3)bLEM=dt z8=(7^VLv|s6Mr|FT_@#ZBn4ARoQ3FyQHnkI-%)c`n*CAWbF~O-P6_O-7UH+#}RJPHrxN@ zSiJQ;?7;_|72-baPqk3+2D15lFl_Zhac1O+-9t)9(`o4UkJb6UAPoBM5<|zMMz%s6 z*IumSJXsY{uU42AEL+ve(e4L?g_fV;yjA2sE&i@(Hbv^_AQ<|aSB>eRKg4b83|UxH z%O@1;p*6gbAoZEX?+h-rg#WR06=i1EhqvNmpA(^IBVHLO!(S6*ZkXYXBZ=jKar|($ z1~c`+210~4rTV5L;uCL_lORwb+Lpl1v2Zqjv;O)HU~`%6T%7i+c6y;&&}U-Y5(KFl z!~T8&sS$e9UYn;&A&EI`b9mD_XfWGsoV3XRPj?{{A{*lmMtL&nT9Psp?A+jDaD4cW zAag1W^}+RZGUAa=kdP%OAP`$y~4rjcvW_f(_&y$^ODjuNku+&Wtkv8gV&ejE0t8t=#Nqu<)EEU zwC5*NN_w>GB(#lxJ1+)%iHj@e4y$J^Ju4MBCsV=BTYhJWIet79k!KWLVP2ix#v7iR zUTvFoUGDtRJaUS}(x2%bfn-#5B0cUhD$p&59asf&|A4yqL(jyFA&QTw6`9Zok0)uD z{_!E7yLL}KFBIh#Ly3j9%rq>wKo@q|w8ceP)EyLqPWicxK~i#XdC|$V8=FNH+{?{~ zKPdciDcf<-Qc0t86GR0Wwa#)Cz*$yOP-m1BvG?L{c_5@ab!>&4~o;c9K9Y9m4c5fT{6KhHD zvH^qI2cp~rKb5dm+m`ugY+%EWg#*wUwL8Klmx zo7l@;yI>YdEj~bG4t|C+dn_3l-h6%*hbZ(R}AwT-$-g2-vzjKSJACY0?H~ z`iRj$WcDe|*!LZPyv=N`H0P6UMQb1b^&-} zOW{0W%YyN z>+d0C5D0}CE63V>O;4KLZjN1@YCFwAK+_!p@wQLW+f4U>f*CbBxePV8GULDFio zot?)hyK0Bh_gTr6_f9l7J^%Erp-~#{Xc(X-D}A1#QKn|$bJ_^5qvnGEKTZA0-Lg9MS2MP__yoE}IY#Yr zsXjiqJ0X`~(fo;n1Vx~cDg%98yE-=5?u{ss3z9hv-Pd3<5xb>`S_y_G7~Lu<;%f4p z5xKdREO$0x`v9pzeWzdKQt}DwXmqoE?b=)KUi>!k6C#%B@+wr5OjlJ;_5t^TM$CKn z5#%J0F-obC0Mk)&wV^F$d@ZFc%|j0ykQ#T?E!)RvWRSH9k=`SRO3sFwbm=_v4ata% z;Eo*ooB11lu^V)>|6`X`Sb`60EV#P44z7I0Z5Gcr+xEk>o%F41;pW3R0dV3^8PH?1 zvlB|8LE(=cM+Q)^E@BhZUX{!_{QPxVcP!gj9#y7Btmhq2I2fp?N9ywNJ9K#liC(WW z&>z(%Z!(?M)A1|-^oM@SD>>XD{LJ0~pP6+7i5^v!q(*gWsW;aIliJM)NVrY>teCny8cb(fd9PsAHr4+D(LZyN^H; zEv?rU0?=BVYUvWWbjG|gGx8yYXvbzb>!|t5X?ts;AsYn+`q()Gf07GfI-h`NBx-;0 z{`7CUgi!ST7;wF^Bxx}`g4f0!8DxgQQ5nu63XHk}CfvjG7~S72KG8PYnHx3cuFCvAA& zU5uBHDfQeX-(X>u?_U~<>nov9QDcES#uplCnf*U`KC6;ht`rE~FiSI9+W!NIKz6^b zIjtJ`9AA6iWB&l0axSverPOK}QKq);zI}h2D;!a?w`mQEZsKa{{G%w#vr4&EJm>@* zo03@j0rth4QPy2gPaCDgp2t7oCXzP{H5sDJ>g)3Qe8J*+b}PCS@9TVZ?wg(URIPi( zl8TqPro~2XC7Kyh8KbeimfK#~vi{00Zx};GS_6T)QSl>==xK5pX_83Rwpi>`ll(Ak zV}66LTjP^`PpWkt0b@s!vuM(8bhH%Z zrs*mnoHxX`G5Z_-xbBj-wgFYh!7aLlRhiRJ%3Dt{h#(DC-p1SD;S1jwEDIiN({;@r zJZCvX*)qW-s%qQ~0>byb&rh}~UsOnC2x# zv2FTb$s?fi9Hf=*agi|QD-}~m6!uW!+jSoJ=~QyqW0y2!k1~AC z^|`mUEOeD42}N8d+Ng6XTDaw?jYOQG*pAn~^dFWi&`#6JuS*eWNiNUKkO)GmSX$Ql zVE*9Sg$rCSWv)Nsv36sq`K{~ii1#^3;-@I6f+U%4l*HHpwe~oNx(*7K1{*n3+Q`JLpAX~OtiM>v`zET^rld}_T@J~nqmd0;F? z!9e|Sh=j=k&09zsR#;>J*-uk|CpK{?=wk(-sLdN97@I>dHydDKQF5j1wF9W4<`zJ{ zbQf$G*~kbdMU)n*os4$nLQil8_$nITloZf}vzQ5?c*du2H}fsN_+u3Dq5HXCqMfPC zP8b$r{Jyx_p}^d?g)3cgbuwwCux56U9=GlE!sX++3-nbWBPk$*(#NOQ7^nUeVwk@u zGov8vd)wOs)O%5*8DwoF%Of_G>2gn)dkikCn+V!>Z^E$SjsX&&*mc<943#!1yCKFA zDDtpk&?HxoE$(;g)AYuMvny`NL8G8}CU!QCK7_Ax@9BcuQMtQHkVadThG9()B~?bZ zCsp=0{c$991)MD(O}!&KO$iMU4w`Ra(+vd4La6*$Y`%UQte}=NS6?z&Y5J18@9a0l zf2j**RlnZnn@3_YR=@-76S`nTJR@%6?MRni# zg&j6&BD9Ll42q!G?|WnD?LnBs;qMsIN1!zI947Mua)SgmMVGVXJiaO_1JXA zkWjLkVGMjZc=zwhxbn=v!79k|4~GML_w9(aJ`ItyT&{qm;w+|omW~=^G1crE=VOj@ zS4|o?G!9Q@ld;y~2VDdbyjPAsZuYS1j%-?Dy zt~i4O%0k4Q@vG(*!r833OgVJ~t{0oq`;0DqK?doJQ6tmk#q*$m7n_Xm~#WL{Vk6~s`A)RC;WeP zYNn+Hw~S?VX9RFZ3pFfSX`-*FBo=w4FK?~!c!60B$W*wPAyMxED$4H(MO8 zDXP!vd_&^txPF!zMxu8>YF-l4L7?m+eO^$&Z4xu;koGTuKirr1*sUU52UZd-Q>oi8W zsG5C5n*`q`bxU0ug^=m6H!OPFrSPIkS1<;*fSNt~n7OCMkxqYi)X5^s%IFGf4PXi1 zueLe&)Zob>Y<|tZ$})k#3#VM0GKn&pMu}nyVpG%G9S@_awox|89c16UD=Dhko#iG! zD7m??1NHm?#j+R>f?}6y>Z&G3do#o>Yad^6h7b!n$O@x!k~7ANmUrjK%nB)0Cw;&t z7FuMQN439_K&zgbOl>{xqoxdDNqFAj#mH908 zjkKHF<-{|<7!lC&r3oR1XQmY?G+gu(ZZ3#pY%HhGbw$vDeAl?|fL6*xH4;X_ z$SQ=`d*jgC;bLK-WRjm)HzbpYB!0{kL?kINYLVSYQhQ&p#;XxH=2c*>NOA><@9l_R z%9)%gbkj!)YJOZ`4!7R_0NW7C+u3Z7CJ0eTq|g>1iliOA zh60;}bUdd_y^-Qc2@K%dd?~3+;Y_r35x8_!(tW$(WP`~xYc3Q?spRFi@R@)lkUQhg zyRh1^@mO61mRO`xj}nDj-1e~Vf})v3sy;5_N^FUvhMh%DZ#g2GA5wdq5dC1ah9>fZ zZ3`HbDROwgt*p#kROb^Z5<7qKt-e(qv9%;y05ANC(raSeE)e4!tnlxPRMl$)iwuvm z`gv`R8LctR*8|<{St=oR(G^(_8Obc1iT#?jUZ|RSq1pDD>3b}0IF|J+lawL`x zM(e&cZD?ZA)LYg`MLI}TS;W08TKB+{RtqEGg*xSxa|%_8Z9+hFuCDg$isem3Q548Qk0`F?vYX1g?mu=Us7_{7754PA-Xr+#nAeGP?o`TpCtJ0D*<&_nf1xQ1K+;_q$nlp6L9s+Fr z*HB{tkh1l)uWSeeevt?TZdCCQW2ap`O@*v5OjTpj5@?cDd`hx;7fJ3f>xVGT3qea? z${HY*mEnpwGs8+_NM5IN5TR+KQOq* z!tV^{$vCq)GRDTDIW+>w&{*w`SB`8U>0oVbxBW1esA{`3Pmpqs zqmOg0s~!PN(~RSfh`6INs;CX-NZEyu_P67XNz)xC`&)Hf{IxZz)P!Sd=xS<+Rw$rX zvh6n9S8u>#CLNBt1#D+pa8>r(j9veb8!<%Ba8+M#lxRTbm(Y z!iMHTK}j?@vsjQu-8Mg5Orc+7%d-jH)`|wIlqqr}^AMw{wg59_6$~c#L)ssOnh>%H zZZ&V(h2Z*%^CTu0ptX0VkTND?xIkdStm<>nk~*rJk)$s8 zMKw6eDkn7Zj?!oA%#E%j18aam7*Q-Kq;ubtRVx;%W^;5~1HVh(>wvZq!kNy>+YMIE z!lDAVx!U*p<2IY9pCJflVr8fnH%NUz!I8Sy_J?`6Kp|M12_UIyG&Yw~disn{yr>kq z)s5nelPDLq%rA`=y8^&7h?ENlwYL8NoM0d?K(fvl6_oj+3<%iT=koT(k`isTVQ4(5 z?OE__3c!+d>$l;JSY8h+QrioJN(%O9i)mvZV`U>@u=l`|Fkg4IJTEp`B}*MU3*Ofw zrX_SuDrUHj6HZ57isZT18EcKK2^(QGe0I5NZA9=ux__mXCjh3DzqTq9&i0&@Vu_;4 zRMIRih(|P^LT%FnvTL{!w{&2OB_1M{3RonbH4P_a9sQ0aeN%=QRDFj0DuxV=X0DSr z%}PFLF42+(m{-sa$Nq7?kRDHRT#$j9mv;;1m8X(GRInn~JKq*LDujo5{E%#;A=W%D zWAS5z=c?j7lQO2J6R~lq4%Z%-YDr1}Z{{XVG(=ZszS3~6dHJC|9PQFM8OAy25 z+Z|eyREzCcM;_8TiZ?ahDW@*UC8Sb@V>7D(aevba>a{i#;)e><#h{M-Twg1uyi|Cu6aDAx$4Z78dXTrJuuoQH);-2ZnU$-C6AX-KDdscHNj+W zDf@-$A|Ro)#jU<7`h$E5X#>r|wyBm)CR?j5wz=twth4PlDa3KK@)FKs@kFz{^Tz~s zEX>bk01eIXQ!5!9UD|`NA>?;+3=5ffzr{?GFP?m-C5l}4GiLc|;|9ckxZ=An)XHZM zx1$@LJ^Z2Fr9bm=N_kBeiCkw}0k4`K6w3=-$79W9JvZn&Vi{r8^%%&R#x{@Xd#_^b zu-e&OLBgIFb$aWk1 zdf;d(j{9E=SF~EntV#U(t@JHB`uMlrSl9DN{Jv*A4l7uwk&W|ztKvj zCAn@FGgKuv4)}>s?+P5gu<1i>uc!6gHy>OdsrAHkRF9rdBj|h~ z8>N{t0^{x^;cpVS+MkssT^>o1J9%1F7iIRh`MxV!Ho0A|(zWdy8=K%~{{TxzQ}!|P znRsi5Kj|#4JhkOVD|Xbwzpaisw@>JzjvEDDs*`#0M;2+CH)}kJU|6b~Cic1ekTBq| z6%!8L6i2F;ogAgK-ulQreXrl^gJOm^HsmOGlsh$zgg52_#%{XH0 z#Yh_q+iVmkcLbrkLitc+PGYoON!S2wzqU4IRgLb1Fu0p~QmJ@;VIRZ^UNASYZ=cv> zSv4{}qN1X>;Z9m0>$|H?HvnGokFRdOo&*)P_Ks~mxLPVQs#K9*l}F&pc0 zy)gWsmAOPb@7uy0k*7m1kLL&6^@kR;_65q_H&9EN0jj~SPbgSf2ZDbBSPeuCadjk*DF&qnG_mpn^8&G2^+q)$O>lkp*uqT}@z`e7eQX!=?vw zLFH=FLM)kx=K)Nifa}~_+usVG5iPk0xMnGq8O=+lmC`$TtSkY-mfPB9$#HVG^O_l2 zH7v0a-y4R7>z#GFe8rri1bYLw(-C&|oysThzEhxPJE9xLfYb zkjbHBWV>BOuWSoZPrl(7PU01vk#Pje0*OC~Ya81XeNKglQWGsYEh&f=J8!-5;j6!;>!267T;Xz8O6tTb)hGlj(*ZO3`v66W8#{xPWN z`Gt9LF|b>k{)h3$%v#4<*6MYFCpd?0U+61TZ;Cvui z7$)nWI729sRgNiC8<0W0ukDUwuGB^ea2Ecm$x8q>3!%7wh8PNe{khT&&zq(>y~#0VvXfJ1&j?8&DN?tF8(?8h5|;z};7&vbLJd!@g9o)D~cit(-eoSuGqXBdL-l2`b!^ zs>AzX=S|zPZ^{NyWhaR#A!co<4#a+g3~OjxQB3%V$@aXZe!@@6U*Vd3 zzOsPiRq#U{Yyp%2ySnxy{jjs6b$W_0XyrI>9+1^71eYA$CUJ*`w9hn#ol?A9GnYnKugq`ji5;%e|y_JBG z=}C_$f}ALdswSw@dpnKAx{ucYO)ITn5plxXUin6-jS@h4vk8;Ga(}iIPb2;j(6OpK zt&z3Y;%0&0a0nlUHwI0+tfG~TX|P)3p^_A5kSe0CpatyTfWWP(BwX^R6r-D{u8!-rcucgiqD=G8 zZ6Ij?8y{nTz5sh)@TQGPr>}RY65T)^Ta$a=Z|jYWV2c$Za*8ayV=XXgWjiXV=zVZB zj(a#4ShOVH4)UraM#yx4-Ek`0vJ@~Qh)Bw)T$_!z2Hk$0u`66Ghkqzs^Kywm3zOx) zTmJx;{IMe>3Nqk1QR(AVkcAq1k!(ok0v639l8CFUfkTMEzfygAoxYeH$O4&`JSTjs zErt-WDzS65*J1kNy;Z0`caI3DU``(gIE4Z*UgYW6;artXbFhuOFT9LkB>q7a0UWftf^Ojb3jeb5%SB^yreQ-=!4NVPO{^=k0t_q419*+J{L!kfHO z?Pnnu3&C&+!!VwZ)l@@7(#b#=@|l6uSKQ!eAuj&_xNM1gnmIyhr-GerA~3f1z8TZG z&cQ>O+w!+%^QBy9s{`L(UAGvPrp*@iwrhdmK4tVP7_(^91;9N)jNAog#XxK6Qj%9hiG`V1`G?mO%}OCA3UL$m zs)LJs9?IR?uPvGiYO`|1Zg1!<>5fy?T@e(ceLHra(K3#x{x0ECGhrDM_ED^F|j@E>yM&zuBwKz zBJl4bkj+XM`vuY*9ZasN%;sEJtCP^;udYZ*Epl~B6NXnw@a<$QyosTATPQ9YW%oGc zRq;GYaG%qLpUGLdN5d5>B+V)UNI=K+>2A2JRnGQ=dm_IH?i{-4&rx7Q+fzG)Xfxn)cChpdIXSZltWR4Jk~az~Lokvb{U5cSg@0Tzg2P`OuMn!}{QD zS50hzvPbKctWO5}lT{vgmDKUf?%az8^9_a=>5{xfVaQO*!O9()L6>JLV+tZS@|$05 zS*W!l!Q_`o9r#rD5_o(yNi`XdSr#B%T;j_~TXW=tsfXYye=^D|GTDMml0>7Rv2W7& zZrT124PgT*dorvsF^!#h>*XlDzPKtE5;BIJ{{RVQb!KbFdtUeH{jhlL+bAyM!M~(3 zM3Ef1kpKsAbG^EBzQ+){nU3Kf4M{?(s@ZB1qE>Kj0KaeY*oa6BJmeG>Kb>AH4P^m4da6Bt?aao|D^(jdl&Wf*L{_*|rdoD%PdzwA2Qs);x#F0@H z?oWJuKDh!V2v=y&n#A-2t|5Ob5ts^#M(ozHYqsHfZHQ!2Mu|gGsV0R)WW9%Dd`6^3 zBdU0*%e#`~TpL=#{{ZIr7Gaf&GFHR@WGuk#b~i2Wg8M2C^4B(MRTu`a8)G{w&DY9| zk+nlYSsX^~VPk6?YF;D!mxeo(H_E63aT|`{w+na3xvxD51M%6m{X&v zAThU5bA;3CM5ExO39geUmNgTmnC^VO;|XS~DA=LOI+=9uP8F6(m~2P}*8H#or}mF+ zFtQ~_lT#9b;sv{l^u~u!J4yInI+PUECPe_FRE>;E!ski1=Y>(~CP^-e6o3n)%KW+- zNP`4;fi}5qu;MDjG_fUFoVhV7NJmiCzv+gs5p)t=_`xMdE+*zUxF8Dw_~D>snRF!I zlA83wuk7ZM9C?Y;RJi>gHf#M^#XF z)wb9QSob1n-O3`lv&T?og_gt0H?TdhG?crWWK&Iz(+cM8EJ}{e3z7xza7V5a&!+%W z2xPcMXzC+F6R;&u&FnBGcM52s%DeIkYANXi(g@j?a4}7;mEq(L6G)=*!Zgq%@yOQX z04_8VpaItSQt92pl<}~%sktOnRaBE#)5{aY9H={zNH{}PUE6q%<(}%CMIYm@%WGfpIJfNF{hBTE(0}>rXUOJ~iw`*F!pFxHb zzjJQ3V6t?}BDBUr#aV{p_^Z_qB*7Q6Gl)e z5-v@;o`7NHG^MQs@|U^+bUvGhVW_BdSV)g>2o@xI@3(ACHl@PO%Cb05Cdr@`Og@|e@GH0~(e)b&zKDrAj0t}HIPe<6S=W_R(FUvZxZHxX1E zwjN~sn8Dq=y|7EQ7^0^#OPe4inD1O~;wz?onMX@U0?Q%YPL{FrdgJBpx7K3SYfUvK z90>maWoDqMvu^Gc>ETBYW;tF|v1SpfU9JGy!1Tv-=*2OO79O#q%w+> zqY%X+22$6s+Sp^MJGgFEM=h|f9G5UF1ahRxkhuW*;)kh1n8PXIS-C!Pv=p~_l3z1w zYkw)}ilmgG>AVt~rp&Us8mfrIbI;0Uu>q_v(_w`5G>mJDNJTnhbm5iM<}t@1inz!W z*cVX3+w5?fcw@gdUWp08U$cDDntC^mcU{XH#DWy6x$9JLBu>TWJYOXiM1&J5#HbV$5hj`aydz+ zhuWmGju(*uH4zw{M#lYpKc+5pnwd6Ar-f8my#$feNe~u{9{u{_&r4Wd($uZ&u~p<* z&n9}DusIRNY!|0r*9<6~wc8YOekCx`W)Z@gR=|38!*mKg9ep&ha^^*IhE$bnd7;8d z;tm~$G*ie)UgWix`F@8MYHdlN3!o&3Dg%jlO0Jr4Vx~6>eZ_=>{Xmhv95%E+gt_q~ zBM7FcD_75^h&WPKFwLa(>OlMBZug`-(0JS}bW{&rDG|lZ^BpQjRleN@#C@x%jsj%Bn(I`-^y*i7HZnR?ulY^6(!_Wtz;BAd~rdR)JH8GF_Gpr zA;7(@?r-?xpEhSmL*2<%Nm>IesT|I}wpz&~GcsR$Ev<{KFW?dv@~PTr=~Wg-M3r_U z$z`>#vGm8#3zqg4_l-dkDJpySzqhs~WR@0Q_Ef4!nm6-{FI)EfF}C}!Hd$?&WO|K7 zqj%e&=y98^m5X4SY0~cOEx7WIxc9uVZGn}+g{2bTW3|9Nf2JauV6hO2L^7bNSmmd< z*>*UKb9Qd_w`VHRrH?Ebd}&CqsM1f%d-{v^#WGr=WFg6nYYJM`Az-J~8!wcB(BBe1 zEzP=_uCcmn%Bx~@DDo&jDX=|ou2|C;rNVv6j6_0WK&akkK8FY@#_>BV z-8Em<=cm^d$IN%#GmC(RERf4o@CbuUpne#fy6edl*(fKP80Rxd5C-=D07&%2jH(00 zMupckG^;cr1G0ITVP>gxrpfQl4l>8k0RGB=oREM+Vt#6%iS%uM?XV47d5c4Zy(UJ?8H8ypJ&ay}Gxn?Va2>NDMmI<7DNckh9w;ZF}L$>DnX<^B+j)B}Ca%s!Z}YA{Eadq=}3 zm5RJFiD>1dNa`uW%622reLG{H*OxWho9S2~jj{}<+>eK8g%b)YH4(9PEDkF*b>;5L zX$1>yg|ZB&W$s=^V3*%W>4j5GbXz0XEKy(Gl=BGZflNZr9jg8CV^MaJFYDrl75DJ!EYhk)%3DIg}AFAfGLb_5*u?)OEs$o>>0?6*5bY zESkEmI4G&4npQegjg%jAhLxJvWO9@-uX(kT4OfO0j}pgK@Zh%Rp|Qfce!199l%q;> zvQc_J2P!Ek4N7K_N=Y78TYUgJzd?mne^GAxFCC@4ekvnyWo;DFEmVAq9{nHhk6YC2 zk-w@ENFFX6w@Fo(L6)^%U?Zl25nxY2jdd+@8c6%H6m>NTeitxtpBzoZ`IK2MUlR&@ zfGlluaxQlI{y6#n0I7Q7t5KX%(u=gGk?GBgB{F3k1w)psRnx{Kt*{<-`7zjjm~=p* zV`?S*kN*HEeRV+GS`&mUw9W$*SnMnmdSkIj!bvGRMoCQhc4bNoBFqiO;9+e<1;DjT z&Q+9|{Swec8`wIJC{k_L6+@?<;VNWvEzc5orKA2C7qabz)igzkv=e74!OQCwn8&zD z8FpU&m&J0bguTVdgmYycmx=4L9E`h@EK1DbuVO{FAEqf?O&h7HjYByJ%`HFx*=pe$ zx$`c5Xz|n-pU#BZ*7WP|jy=)+AnLk@R@8FjQ|i1`qg|gFvgC#NAPCL;-n$X?wXxZ# zbb(AP)UH~vs!Zu%o|<_hR-Tx)l1K95h%)MVM8ck;F=KKF#iE{}*AlztyldUfCJ^eSs=;hgz zA7rZ+A+F^Pe3A=`8=G!_3=Jfko?HzOtNNE}AH&4NwPZtN}{C6)7*8c#|wUrG*nX+k;oofc>mPSH( zH5zQ<83MURR|-^yD*o~|J7FqlVDMEoYYB#GizBp_u^@K0U!}0oq!W%1J8jCZD?S(E zA6sZ{;0zYd7pjec_AoJNP};)&n{*iZYDWOMd`9S?QK3UvgRt0=Fd>+&oysC4mE$oq zO4jI5AI}=Psm=DZaJt1QB4-l;AeO{$(Cxl7b#twfi4^T4g&4;fm6hX>So@LrVpyty z8AD4IjuReFMH@neQEW|t>xI+RxcgZgcgaPi%B2GFrllQpjllP|AQgZ%=afjKPgxF2 zUklPSq5&5yvF=Iqw@%neT~!$JN77N3UgZ41s4!-wIbrlb1}>yrj^PCx$UbG#M0~KXd`IgC6>;Oa6DpKAULV zx4)!rYFavo)0%a#>Mdb^YjyhLK|6=FuE2+;Q4DnvGD+nFp*9$TNz1ujHZV9wvlwaW z1vE5LR6A%5DzaDue#ZOkJuo)l9dNxY1q>NrT^cF0UAHFpzuyF!=UT+A9~nQ2CUX8u zgCl(>442c%dd5|%zmpHKvkJfGDmHN#^m||jfn>&BB5a^(=N#w5Ki?C9cVWR zq#J+vU#1gHTnOPhpweV_DZ4AL(NM6=%>_V9D#*GueGU`Vv9b;0l=O7d?c5wIpCZf^ z7CMJWS($V#`!M=_aZ;>_;Mj1o5Z02*WGiPTs&-hBWmwwQaHq;gpv5-65po!u(vTbo zMl0&pIO1^&Gauz6-rw65omTO;2-i3sR^{fbmt>OV0SXso!F1y0&RR$+`^>M)z?B_rvbzBAyw(&xCb<#zu74EQ;k=X7+Lg*=1dT054I5x=nRJL7@s zJ#|YNEo-)v@I^5^L@U*vKiVlrgqR52Kd3idCpZ?EYs!-9#Tsfqtr(- z!)xIkZ`28Oc3MMrd~yC1RP=6z+e)u^8-WCJ9P==VCEmyy<-LEtIzQ2kCO1lDk-k2V zI*ZQhCtT4rj$bUrdyqHB)s$}!U~AF}h`@5MYO3d_m7@mC4_3a|eGCAL1ObqPV7F1% z$<0I(6p=;lIum?u>K6PjTQLPc<<%O(Ekv%&b{^PAQ$@7g1Z;AH%CWK{6_Kh5YkMEZ zY**`PcMPJTmgPQD=Fs`fjItFwZ(@D0m{K!>5$rA|;H-F(yuM8X26GIpU;}JNPwR?D zQc(AxbYNjJiS7X1GjR5HXecS*5`3wnNFOov2I9bX8}Eqdv^Gad&l?b;eCL2xoYOln zU7o9EQV)Ib;+INmzaW>*Bd)8sbJoh~>Xqvyk{5D7b8w>lacupb$70J$N|#>lDN8Zp zc_n!fBu9#a)HmC^OTwzHD~Iyj-KdG4sjDHW}G3O)MPoX!l0=Q4SEB-RWLo{sEF!o$0D+l z#M=Afw>2wWAbpWdz_3-da#N~LGpH`boGNeD=HH$kQ&l({1B4{d=HXU#G{$M9lIz#d zVbf|bfh}_9+8CJ`W{`7lxeP8ZkEN%Ta_D(QOe-X}F_b!PG@Y$%3Ma6&kp-74apqDB z#%-$Go$rX{e(%w1+fym336Q~3QO8v-pny9IV0oG2$}SgqDe_X&OBs00$zn(^au1*< zw%8q#5EQSD=%f`9Q%bNraZ|0j0lqbw>lqcYk5Oh6k-Um!ki_eyz4yY&Vt*kS83z_k z`3`YNAebFQMyE>~?sxXWnuwjllNe(bHY0!<4Z>#tbLDcMI8Nkdxk^A(~XiyglM zfvahEGsP1fRgT*x=`;AIk|RRu%uk!XpS}@xUNAyu-3}O9EAx$TJZ!6~P)^tN!>VZR5VAZu0g|xQI-O25k1+n1!K`2&($-CXNM2zi z@h>qN_vzf?M?I$~jim|rDQi_-wqtwke0XXDJ*?PNS#rgt9L81DrsRNehOj#qSXx)w zIBw(J+8IZgpuhm zWZASil(SIEju|#4+x@W}eICZO;nzgK`(EK;R3wg}mIZc83j#i0z6Pdt@s;DwZkTv> zAtZHG@t#?Ta>*N?Fy6!0Y;RKT*uNVqig^l$sFs|Ox5 z;p^p1%vMj`^1sAL0I}2$OAvpiDV<9&YzAMCN>)j`DCG@fe*in{jHn>`;L36&fK1Yh zaU^^%j{g7=P$P|Fvo)?x4r7a05U-CaR8+4`DULu2Td2l@UB=Gzwfs>U1+`L+kf=64 zd}NJj94(n9Q)M+2wQ@9oiDKMo^%la4iGw&asC_~V{tR8+L|bkwOdA7f<1c=wmwYi zU#B7`IG-c)Yb(trtkTeSe|2nD_^p~|P|BIb6fp;Tsaur2t=8Vd6bk(;Q8RFLze^?t zv^;>;E>TTiB?m70Ayxg(#1j$&`Wl-rVJuT4u$M^Kkt14+}< z+~ewQlB8uWn$|S=e5&18+;=3tA)~cafEdeM4Z9Aw>KZ(*AQvQ)a;lu_IHQoUk8*5r z&?uzBSunA>U3#Gj=f-2uJ07;fRx;>UOPeE9Tt!Z*3%bVb@>tsfR8n0N3-Ft=-Ys{L zU8l4?H`@41S*H66c&0~cIEo48R)VdSHodwJd?|}fB#~u5+>q=P#U_6XM@dO6vY6S3 zis0!6*R{p{I^w-uq+Z~J#wz2%MiV*F2t-uYS6c2yBQyc*0Ak8K z6XmfuX%?BWySY(4;mJO;h~Z?OAsOjmz8KQc5bGSEONXMXJok-7E5S<}Ff1)#FQ*6A zMYF_ZK(+l%gk? zOAql6$&D%{vAzEQqM5M^T&+v-RkboBM$l;F8!H1hG_3*6tea>TkQ48M;$b%FZ891dTnd`rzRalY+h68Olk|vf-Ff!=2MW%TCT! zt>4rGi5VMN;7Sv`eidVwWz`TFW06u7{{Xldy8B`$wXr*!sZ5?Z3cahTj*fPT0=Pb6 zZ)=nG!-yvZpxprZGs5ReY4w<5bRb(z)1ms?A47hj@9eq+BX%S z#K|ZU6llpeumh$ydE3g>jt7OgRq7rf^12J$-u5Tg8cj2PRGSK6sG>1N5T#(Z7qJ_A z?|Td{6~22yn`476p+#L$2r(?K0P@@$YWFwmiDYna7g50JE{tWl!$UA?xn^4eFLA%u z3uiTsd%3&Re0qg*_OatueK9SK;&4NhlK@eDXJ2A9K@=`lml(L{kmd( zkN84w2sK=TS3aI}jZXXDrY2;L0>wt=o7@Cin!X_sWOE$DVo-|@>P{n-pxbanLnDRv zA@$kwEFvX&i3Y(}sRO1wZ8Jtxl1<`*{Bl)JjZ@48PS-o{jqPv63}z^c${=-WQlo7w z*A_S(&Lfp9aNCt0r!&`R&tO5o@wtq3?!0qFkTs%OMQH>}0<&BNH^06M6EyIk*bwTzS!R=%Mai%` z_w~U7-@>6q@}(67$^?wSX&d4SnE=J|r({i6@d(2wC*1*>BhX0JX3lr%*Q8 zIiiRYVam}qxgB}wm()Z>iWadyo)mYSuXL2)a{mDAv_&N0x#5+=MGIG3yAh{5+%1$_>FiiuzxB;(B+uV2mqVDLW~jIvQjnHi(XgKAQi zKMut8KB|8%_!_o}uLJ>v4^edg0Nk|C5b_?ETjg~W`Ib#Ki6g6yNXd=S!45kSjxp3a zU=cbussmxz?%S|b&Jk0YWw0#HBa#MWAnXmjzWA&3rERE$GhzP#3wo%{yiwN6=H?Qy zHpbwuPqr;4b_VSyCal8Uok}NX)ad{8>*<2zEF|WUj5^Jip**YF3jhTRLBRoAn-@4*2Eu zT6n0K2^)5N{3nl`HI{Bl0mPg{(L!>0vlyx;McEnlWwop~-1~IJW2t(+i%Dsvq5zZd zprogKul?o~X~P^RE@_xaU08(1$5d)m>^c#I9TB5cR#lqnk)KG)@!M^gm2A&fm1MC` z&8Au8G1)Fo#@+q#^rR9>TGmC76?Sc_oOqUId74FC5w-Pc=n2PS(nuk;NUCEyj@4CX z5JxvKk_v&f@z5y^hEiIVA8M=4n~)WwaKsaFd|0ULUN6E`HZGQ%GenT1DQQKT=e8M7 z13d+c_QW4&w&V;V z1f-je5h`9LF_?v1s8iDYe;ik6OrcyU<$L)hCqbJ4Q)aFpu+;W#+Hjt<LIBmB4q>lJK)B=zmyZB*rn1}ODd}}%2*o< z4_jbqctj)fW(E=?nm2Z~n+E-G7>>ts+&}nAid3^HW{{~Q*bCbdzGW|N%L=&(jSiw^ z1GvYHloMqP?z2f-1kD%-%3+ibn2(g(sKj%gR*=kAfl*S46PJ|3ad12DiFO1^&ZjnL zrjf`pDHj1cDD=h{!kL^X>t9nPP<4@loyvDN`*g>Jtl+JbirS+jXt1dghTXoS8bwcM z?>s1`!%7j%tbo0lrI=WNNx{Rn@PO_jbW`S43elt$O&+W2RW=9I`(P=Ie$jOCJ?99F z5LRh>^L3M?t@k_i>wqL8_)OcTxT!gGRZvzC+|plbH&4iW;u#xorEM{fpK0O=%y6wY zy~X?c94nd|WqAG+eA$*Q2``tSHrpFR_^48>?F{m$5;Rc@kOmktlsah1>tmxS5=0ob z<-gQ04R_>GaQ-Q!1!U93BEie1ZlsTz!>8wkjdhf(81mnaCG8|+e<@SGHgx4|9bqilsEncfZ;v|*r$wNT zXmV#rjKGN%^;`nQl#5=%_>e<{$}KoE#Y}@W5+cSUE~+ix%k{tcwmfrenZrO_d{J6w zkh4oq8FwgkDfvo~+t+>Vh@SA#a-YGbJhTOJ_;bYhrw?jPFISXE2Dk@U*mpzN+QQr3 z+glY)Qkp4FQ!P{JZ|xXwOf2QpoG+W?8J@Sxvnn$o0p*R`mm;5ZYa8R6PoTD+$Sy0c z^p2;ezife89H?F>o|)b4xdYh$0LBtYC8S6sg~a)cp>adTebn+XzhOY%CtQCd)|fWLluo8v>J4pxq=#!4A45lb~Lv&~{Zl}B6= z4w@7usZ@M%#%~QMf}Ja5gvu$|)oh`S_WIZ#!xf&TukC*7G+aEdycp6Y8q_`G)J4hk z>x}80JHSZpN{V@I;u8e1%CgHiWt9&>>5IU1@PTtJl__1U&f!8^dk&!OZ_gS^>o)7y zzaWi864xx|qEO0%E zGAMv`)UV+Q6Vp>0Nz9r;HqtMG)GPDn2~DZyWH!B#+TDMy459KiL-)`Y;<{I?o);+Vf@4lS6^WJs}uQJa{Rh^7|6{0)mww}TzU)QN~+%wwJhC~ zCpM0$WRaxOi*dKxz7Ess!Ru(ilHIGQ?Q za<^>z8b4LCmab<8X;qz+n;xg_fo2xM(fP`oS(!@IeAwi9TH1&pn|oUWqM%E$S5%V5 zR*<3f>~O&c8k$ue=p1hG?V#xO30(BR=S_D!uQOqaYW7}7rJ7Cr1`GQhQMCd z-wU56QElleX~qSKQL5;qs^&15f!4%aIKh$i8>8H#q))DLu5$=phLO{P>-y4Jx-ImaGAnyIq7RfrWMn<&+*)5>-jJ}6gB(Ygi@&}SG( zwR!eum^m{`Gx=-*AO#-Q#QlZRG_48<2kw|kiybXhQIXl1fc)?{so1R)Juvs5FpN=T z%`+5~6=FXOc{ZX8Rl1L(|Y%NhYvaa6PMq4@$()p0b`E zq(^AE(SiN%FKk#NH zcj&rJ$KWu^Jx$JSst1av>U{^L)RJBK6yulpiQ;}qP?VKa5b-oB<#fD4IbTl3(k;7! zE`2ehwEZHahD6<@^Zv`1>;C{oDF6}=W|vv0jxu_z zy9ZJ`f(^Y+0j=l?s7C4u0dK|E8P|TCRzeAhrCyvdUBh|g6IEoH&PkrppwtaCf%!-O z0LSKA{{XlQb8TXlwuRT7h02`m3a&5vfgThgIdeh}DTTloOoweTW>NDB3J0&80%MNB zNgaJ~gIv`OEH9XU3fHt{b%Oc9G*q=5{N8A^*RlQsHpOgCIJZX7y0W5eLQWh-zq)Am zY-nn^>EaXeH3HHNjsF0cp5LxI6;)9V0S(&RZiT*8Le;gQW)AD4R7yc;gDGXYgK>2Q zw*z5@Mzi-}2|N}mzR#!-xT8o^!Wzi`0P4S{9%*&^Se6(S1WN&S0YtPBo84!&uxc%b{!W}8-LLum6lY_X#zveC73BbQU%H1 z7iu{-kgKztrD>@H#7^@8x&HufzATjUh76(96sUN0GZ0t}?bu>o`oub-y$E(BGme1w z7|qwp#4qB^s4M~t-`f*J`*Nd^39MkxBVPCZ_>{~PX_rSS2L49gPr27V++m7%6O0{|`ud*R(93)nBp5?KIpP^ivcqE?Zb z4P89!6#f^(5819-cY>^PgsWLrV+@89aq3Uf*uT}t#aE7c&SxLdxqR6ttQz;vcV)(&cjKkC{=9N-vCPR2a?^6@&O9ZX&$Drk+enwUDz=o zZG!arwuY(ZXO`Ban%c@b84Ln-s9;_V@8s-n1U_0+k7|_gKkpCPV#o&3Q|cmVR)QE%&%}- zorkUi*c9Q! zaEJ3CUU24+^%dBVF*n=`TG&vw7K3n!#|&+}qHXrN zlYt}_;aMqMFNKFMlys|A+WTrlZ^qbPGm5v-N&pI7B7knJ70I^O7ykHK_Y$r26Wf$m zl`e~wM!w*JMgV(`(Bv>E;@a1G><9lBqqZ;i6&?s5}hY4JjGyw@_z6pxC-f%!=Uf`P&HvX8e%TrfC47AsE zy>oS>wCs_kpbM4vGvFzrt&XdKE31-y^tZ&ay}McC0Gv6Z>)4*#Y7DpY3XQFF5&rV zpr|fs2b2Th^6}wRd|wSsT`VS7jw)+}Ag%ZQ*tO_x4R+UhQPi=%f~0tdg;z3Wg(_Ak zSO5qcgX>~Ce!pyVeLq@kX3Do!PVPdaxbMQ};Y`Awo}V+M&Z+7l69<5`;_qS&@zQk8 zpk~}0s@&A4a-y@$z3AkT5;sM$Cf(1zEj0R=lahjx0ys&PG_t5VQLIX*UYklBE(gL=tMSv1@g=agLhndQ0ER)ftiG4p~)> z#ev3-b%Nd_WWx>FVufWgvj71o zv&x?g(xggU7btF7ck_A^{&c`Q0+MaG;i`jtWYw&z@M6%H}<_U6|aTOgw{6jBpT=R1v~ksNzTwWW2U}T!2lw zVdW($2MKhw9`BUBRm2qnU;7uh2No7U>mh#S$)hQ)o}9D8Bod448*2~G5l%_`u)L{NFQ>eFb?}*(9wUo_ejn;K0qc-NSnHB(U z7#+`SZx+bfadi~(84a6)s$Bk%WsJ<`N4XRHP51_;k!kMD!jRa8#3Fna)QC^z1zQ+sRNjF8YqWe_X<#}k9 zS?T@_$sG~=pUUeyDz5rT_Z1bWTL6SS_8B)teV^a*Yy6F zRVcO1m4Xb6Z7*Qmtfn+kM45IxyTK<@om;6+sOkD7YEb)#}+ezF3 z+XKwQb>pN1+MgXjww+~7fxW(C-|)n5ji=Hvj{`SFDdgu!sm`^ZKp=JWI0f+SHVDWb z9C<~dX#+3>unG;Yf#qQKje=dyAf6E>sgflC>qSz!jkX7SemBC&;~s*01i*_UuvEkh zOiZzdV0Q%TK7-Q=CB4zq)9!H=M4ViqGaH*~u(kI80GtByT8?Axv(t7XP$+!81^q_; z#~U(hjufN;>0>g}hiP2})k+5MeZL$`$y|8C)x!S(qSYf+<@8dWCT(&t7wn_~vFmGr zjo9ahZfUVzx5VzccHzz_pDeCeX`SII7g>Rax7Ty|;T<-kQ$jy>Fa1}Q+I2fvL@ZUe7kDI6N%IP3 zq_3p}>ycSbhQG>3=Zj{O*A0=Ol{t6E$Mse3*qz30dlFVhPvR$sfs?~e5jfL;Cfu}i z6^@X|!uvcY$VTV4d|F@A^c8I1Bw+k!gTt za@k)X%pt3q6jM`7BV?MJRqd?^^#oj8d+m-*)V&u~Ms5Lfer;vQwH+E-XYG2hVycE+ z4yJBEC4OsP6-tUJ2ay|3!czp1k+d6?Dz_k~s-}uWsUikDhOrmG^!k(HlWdK#{%CnA zKZuo7W}F=uGfz8*I&8XBV#!IV0_(W|_Je#XJ38Ul6G-(77}KaB(k_3`OkU`9PaUmF zXQU1{RA&_BQO_VULrWCW7DQ4&)@|Dz14Yy@lT}k&l}u;3WAdFx{@8**7PA~&Xe#bf zN5Dd;Yax1h9crXJh1`~GTWO>Pp#=U=N2!ZcyojnK0jv$Yr|*VC$P3{^BgnOsI@*ZD zi6qgol{eU5_5PTdk_Pa%Cl_4L;@xl8tiGPOva(wXAs-%A zVPU4r83( z13IqSqcEtHh@h0Hxn?~u@}FZsB%mG%Qj;pGnM9IQvN7#{`NI#sV8S1=DpS!Bj!gEO12kKWj7mPM2-OXoFhXG?y?oIM)Suk zoaYUu2nWs@ZW1nS zG<9NGW@!tq&7fRqANj+&5N(9AtQk$pScfx;m58T+mA%ZDCdb>*VYJ2X{DKrQto&4p zs=1v5*cJ36udW6W?G{ppUn}Hnh7M$CQGE~RjL)U87f}`wRV%oRFm0@V)BU!@rc-Pz zb1;rlG!RO$M%v{Eby9Zr#08|Bt(aOlMdJ(2Win!0=}amMH0AI7w?D2F%+h#PswvoiB7oLc+TjkHYzKQ{Cd7TKWh0x* zN{dS*&UJF!k+HvgNMTlLNllS=iDiwVDjZ*?BBOgx3d;`9lo*o>5>2EVUf6ON2+Axx zG~5(cn>A{1v6trGYuNr63Z{*w)=jAOeU|{Du;#Ey8z~9}w2}`)?SRc09+SBB!bOTD z9%T#IhE(67KG+so7oGx>_OpIb8hpV64N?bjZij99oDcTr;T|<$?i`CnnFPLqtW=V^ zb_5Qeau4N!Wu|rbM$&3yo1%j-3}kkc+jR)Lk<+QfMw=N&Q)&b_l2qukIbJ;>oRc6u z0J*iWvZ4lnRf3YS#DsPn)dZ~z-Gqc4j@y4O*i|hkJS#kNjlMjlShHAWR+PrpWU`Cc z4%hsxgp<=byr;D0>S9%dDDo4aMqK^9a4RDmBHl8-NiVz$7O*?(+n~phUEhk;lHBKo4wEs4K}6i4B-M_~pf3EdZ>R7L`eHpwf#sYf z!lu$;U0FtPkk(C|d@U|vNkoW=OCXp%WWI$wbhtPo?OJ} zBd}#*akw|sEzn-r3NNdA&Xo4UR~^{ze5&@L(ZS)}mfhpht{N%0H#wnN9wBs^HEHtt z=%(dKBE~G62;?n=-p2!=KvTx{_*q zi^V#0o+BzMXH@a5O&nw>EmIKkxFgNXP!Foy;QpxkNeuCtswamL@V;T{zo!nS{pBNW z(fvQl?hYQ~jJq+0mRz2-Vo%0b**%D2rj^H&1aLKl`$i!$lA{Nl?+R!56URaF^0Dg%nL`1D9jjm{dIm!ws0z@U6JzD@Q zTi*=ie$W<;U>Dw_RKTxeDOG><0Bk;{_=L@V6k)eE3zxh=rCP2$$)Na%mLkBl&-+II z0ErmppHU^*J9luK(Z^t}C}N6^o|HixlB%kM&}!|rI);n2v~2|@b~#zpy2KjJs^lK0 z<-@mt4iqot2A$c#FE}>7>ek<{`6`airo?Ow$J^TxzRng~Gn7V`JBl_1 zp;vS_J9YZ{;2CKF$Wm_!j*l?Qsv`K0gJ_w$`Hk=GgtZjUZy_5I_*qm|QnW%hXu|dv z0RI5aB87(5Q$51yNw0;MlCHjMkPB{oF+XJ5>OSZQMO0Olbu{$UaJ^kiFjQE@*@@d> z_rcJ!V>e5Hf|1r2Q1j|s%PKSE*~}8rSI1z;>7kI@xWfqB<92YM?<$iqs*K3uR3_&3 z_x`v(Cpai%Alk`xI;Hc(s~BT`x8DWWo>XmMwp5Vu+y4M@DKdYwZESn6EU-+OFB9d_ zq<f*EJQFi886`rD&yUdmsfj38$u@e%KZITkHy&T8oRdD`q*& zaIz#-a>^ZvWz)P~ZH4>oVsP%CPc2~FmB~|OgsdGAjZo)zb>CLqJ+UJIYk)i~ITt}H z^K%`dj%9U0q}+@g%5v|)Xn@61W|3MiEN*NR8=v!RGn<6H7&6Rh=8kK`+w9wIh41A| z&J@~e%2%dUc;rb&*0smi5k5B(ET)Y>XeCOXWOF|z$I5#SxGk@4-M-hd942g%fY!B4 zf}$#QShZ`Ai`xrloUuz!0C>8Smo%h?1zmQ%dC z%46k%jp3$>ttMF(`W3IF9^SavRWbQc&lBVJr_w{Bb$G9)*S~Oa3YG{mn(3yeX(K>T z&2VjVvwLlTYEDxIJ->&wBC07yx0OtBcJ43s!qno0ggePD)sW5d)W3c91M7@etv~S# z7^GO)dTwpFxF7S3R+?YM6N0-@0Z9iDwwyC6#R?#li%~-~<6QEk?f~i6^T8rwp{l4Y zC80p9%W5dzHLQ{vBz6p~s7gZG;E;s&BKzNdnDj|>tku5$Dl7^da?)9&u++MN(oQx; zM_nUwO3FH?Ndh{TVbqLbpZ2?!bPAk4&`H})=NM)N9e1e zjgiVUZmwB}U5@xuQA@F0w9Qz!CR$q53Q0PUHvZ!6wh-1sg>9qMN+Tv^etMPYpbKB2 z!l6rHxjbb?;dLS@)dWo((ll)yh-1|E#*b~BL zQPV*hF0CMgp>_h+-{$(9R;Hv5T`H0RPRoREB;p-abk99CJcv*OVQ|CV{q6bT4zs3# z86YNFeDX>A#;-*G0B0`;xI6ZZ$av?3I4uT4<3$}jxrYwZJx!^2o;^k7p{ft%ie$0n z)F}XoJmG>|b81eX`{zCun>=KGs+ZN@Q0n@2c&3{)?<7CvwzrVCJmh~-@OkfwxLz(F z&a-|P&+?4dE6=E#))Bc=&U6V|IZdVuo05wGG zkEb!$j^!}3RfplfiasasHGJ8R59Cz2mk7>DlAcW0m(2#>#Z&-iXH#kY zMd7dqmGZY;{UQ-YWMInfUKjnUI9oNWrpmKc%s6*8c2$k4fHBT(VvOoGH$58HxVL;& zwXdXg3}KcLaK2%z(dVXpoN%pl;(i*6nslssdRZOVU0%ZX$1I;tu7D9Bz)Fmb2XC~$ zQB_5nM$}nj%~rzdR0|89o8#E)g*e>g6u~Ujcpu^>b*0Wk)UZ9m%`~dNmiujqTlH&7 zhuU2&EnCM5yW-#3^NjKwzHG)(3nHTnpf)@H9nKx-e^_+tsrxK)3ZjY3Zb)Z_Ncd3J2&0HGK*Gl0_rV?FylhrCT(#oWDnZ1V zMO7>+(q6>aSne@J`i8>!7*kq)6{nX~r5yw-Q$}S+gmTCFNgZ*}blHFDT9Hk{R;!)M zAlAzzyw@As@WrLBxVjZD$zFo0NC|1d4RS02Cgcys-)u-($_OZ9Dv3NJ&7N#JnaRFT`v*xnUu)F-4NgUU{})zt>TvJ?3_gvOv%hB2G$DK z1Mi3(rv~Lp`Hj>%w5O7;I>oA+Qm@LaK(P9C$FVV@;I9Mk%FQ^LDdvu*o}|Y*5b9Np z)6kE6X(pcOa6POp10_Sx_^!V{t2vHoTQy~4H=0KIn!{`Q;(9tK-(u6e&xDDaRnzL` ztg72=Khy1pF+hV$K-4>P6I5UwK&|x;zBiG!D-@-I2@AA==X=<+idm1}5v)L=(WJU+ zVhxA_<+tmLf=-G}{1injsVKg!U4^bb_=rk3?OMNtB{L~usCnIEX${Ca2T#5jx|;2` z$_P5h)gEHCK^AEiHPduK{NG$IlAX|lZc)sV;>!x9jT2Ivvl0cneQ}V?_38w=LlG22 zAoRmwKgt~%8jLLPS>H{_^uW%LZc={=k3-E#CVHSHjJ3ksU~%m4xE4{t?H8x!O!AWx zs2wfqh#Kn~ltN;mkp{YXBk~x^vh~&PfhrrnghUCJmU!vn1fhmB@{1d4z^;DuL<s>xdrhrp0SCH+9sAl!7C**l&MaL|t{PY}&rFD-xtIYi>Fbj}*-13#?;E zTCR>JnYIVk_&xxIolH!_nJUXP5Wx0LphAjlwz(HKVnJfv$v7TpRIy9)jKN(IJl0ia z>UZ4zum@pG_gvjr8GU|TTSd&8yi-Ulx=NBq(*w@kxJ1#q&bk*`xf;sNCTBHK)3u}6 zekRx%w3jzmY7Kd@@}Q+gOfC%^l`J<6B*k?P{-Y9om|N6!i`n=s6nUKs36dom#AiXNX+utskrqrT;wQG(*(cp%` zGREkwWng!e4Z<7xVV2->-Vv}=9s8V*2&xn;t7#69Z+*x;{{Spvut%v3Ey%I4c?8kK zRROaWB0^7=zyoGJW4@KLo$gc}9?inZ^cC2$n?+kLoo1oLy1M!gY%iLQ>d8T=wSvi> z9MH=kXDeWQz-+eqei%bN9oIn9b$H3aO!T>=FB_R9V8GddZjt>xFqWfECpK3KeQqGo z+oFkI0!LL$tgPs|q6eTJ--*JR^wV^6E21kn>e3WixcP4xC9ZyCJxM;^*vM(}8d1@9 z{{Sne4hyQts%EUG&8r~G>U0wqGj)-=^3I=>u;|^egQ%$G+u#v2THk5*Y8S+n=30>& zKw+f-0Fk}Lh`z6>$C?czn;yv(+xKfcwyGE9eC;2~FR@ea>+6j*N>LTa;W46kxM<;B z9v%3-#Xb}99#h901)Wu7Tv0^JBy~`Obm|Bq<5H2aQfb{uzef29(>RM}Q{{Xp>pm!KZz0dyuHa0vPVRFxiToIP>r41OQDNQ2OYMijW zilMSN?iqjt^|x$tt$Rg{?*9OzZqmA?BfCtxrE~rR;yw|6Wi=$3v<62gnz?NtB>aRC zxb!;`JL0oJSzo19Z$rCZE6X<)>Ra1?6z~9ZWR|eMy z{l2^XXY~I7>u{U?nyAMu~M|3Nj zab-w&vy#I#E?q2WsL;)&TW{3c*A;HKtKUwg(_r$ll~w`E^45-9$Rdo`_VU}P`eNnL z^8Wz(@Re#&dEF=0qsa`!D<4~R#nvg3$s1#2sWH|IEK)H9C~aHcz8Er9q8(Eth$I@A zvyQj3E&Jk7@KzyG%S^H>mLWg`Nx1{w{`=!)iUfyDwv}8c>f0ad{#zJ_S|*Ap=e!jh z(b$Cw4l!bhEp?QIxg%q?H;e^}161Ahx}$BRT-a`XaXUF$zl8;)nWBACyoY`7dkf-a z3L99Q$YC-7Q<$!%*XjCq!Cm085{*@6S!u{JT&Qs7Sw)#r%RJNOanw{bMqsiLqB)V= z#H$sEPFg7;+fid;Aew985TV68Dga3J>4grb${{3DO(aAs*pt_7hrRL8wgp+kw zQp*FnYGHexy?t>Igl^mhR`)i#5ku{d;4> zQqzDJjc#(Y6GDv?%p1&hDh|gHiCj2Sw;Uoll{H+;6mX4b2KH-e{4g{w+HO|wE+2wo z%SjaRB~&ab5b7!3-nQyRuoYZ`aUl~9?YDO*-d>coQoP#OJZF~5Q%#S2FMUJWa<{e3 zl>E+)ik~m1%oj1BmFB3LC!|t&)X0J}&68^cb0G`8{{V*f002*ntaFagiggJL?tCTJ zN;GkNC*AL1~+-EZ&Lwg-|H29mbkROYRzh568@Fe$$H3MRGqUhh8DtHb%c zH890cjI&mhwvwmF-sht2iuH9N4$leY4O@l*Of?kW7X)!l8Bof3iKnln@lTdl!tVoR zdDEq7Aygbg!A}5=dL?Koq;^$}O_YJ$_x8oFN7h_y*PJKrfFCBLoVnhbsVS?G)kn={ zBoCu^UYp;(Ex&Zbkc4o1N}E`#8D!KIK=Lr}wf_Jfm;V5addh)(BkAj&J)zp>jaVZF zkS@DlYXRmTp~S9z`A_M!5&T6+j<#1IUd!Ict^$^vdsbR4MWEoLF;+^fz%UDIUsnGB zd;;oL**=3?Yh9F9n!U=Pd8D|o8}{@k3hHTYpF^*;#0Hd3O#JfaU2*6>TY4X^1#JU& zT&qkv$#ixHC`}e`rIs@>W4UG|`Gv;U_OQb_^yte4!qP28?KcHJ<(aIX1fRTPnKJj< z8iIwaZPB**M&kIT>Trf(xGSUS8kCb|=HW3%Qkh~$Q3!0r%DPo!zs+s!_vzmix~4it zY<^0=(Nspj9Ja@vPg5+EbmNmgkOIrmj^@Pn8yladD|K2?XuE~}KSgcR_2$0u9u?vH zKKS>=UIX}>k@3$Cgso9(dg?-7l~GFUyvW~4+*lh11RY1x<61Ttk9eLCong~(>h#8( zi@VXk7RvsLX?X9$zZZNnn=f)Wv%)O#V9cl`T6n7J^2&&tQXX7^hr~w3<9OQK$lZ|G zNpWZWqa2Le$Un>eU;UTJwVgLvOGs)8ywh!;r{@M-V{sWPI&Zl zjM9#ZSmTE)A?1K_yt*rkq`Rcc=_f7YAN5 z>3li$3+e3oRK@IVg4vb$jmBIPTP{JL7n+V=Ft8Pp7?Xp%8toSLI1Z_2## z9|AKDD*phdqP@u0b0_9R_;Q_|V zr_5N=%Vd@{x6CXy_r;nL;u7L4ma7akG^Qaa)ONVI{P0|DA;6X5U1WHpXztb`!v(*&piB!G00Y!$JHbtU35JZc&xCddOYQNGtC^d9)svA&ie)k@16BvQz4*nziu z`uDe{!yB=IX!1gcle8!JpE&MuCeXCrSJPE@H&Vw=`*hs@0G7tfRr%H^-eV)VzTjya zk5E6it|8u5Hyk0gDtS)&7=ol5jllkxh0ixdv7n2Ur9!f)5;S7nEsr;qDn?nXPT{Yx z+o!%dD`CI2Q|>LYmY2^U5{<6J?{DkV8*JEYx9?)hSuE-hFpS@0ewds)aQ;Y16HZ9c zv~kB#rK~~gw_D&D+iat$xksxWSmQBLtdp}JEtqUDxwv)8A@bXVLnx8ysY29%3pSuM z3z3YShtWjt9|)|K#z>klpn?dv8{4=amj2iUl;y`J$}nzhv}&~>Rx(BlY;hcCBpj*x zU~-7kQr@0LeF+h>GJ|q{_{U5Ez+Sd6P}+sGc8W6agXQ0G@Aknl`6wjuOq?f})n*2I zX^>445x5(lQTk#U>Twvsy7HEL;Dp&)Wr`-2I8kN*t%BQO+ZE{U=Uk&?l!JhPQD)Uh z(ua+pm5I1N%ujqZbPOO}YS|CPmicFrd5X-$2HdDUN7ovNnBO7Fm%iiUd?_(c98jcE z#Kum6hjH)ej|?IH?7c={r;0>IQbX)_!to-LwzbyfvP}?-Noh&i$G5H~Yw)3bc~KrL z!Ch2LWv4(1xE--8Uwm0ENf*_rLs3ya?xR6gR%X13{`7!6d0HVMh><7@q}mTAmQBxQQ&?~A4!qHo;QZyuOx zD45;(gP{O`-=9wS7P3PtLA{Ee7ZxjOmKCQ+nn|Roo}>7H{{XK40M2~}r`Hs{NSB-N zt{Qatx{Y6z##UowM|B(C-q^F#*2g1m9FG;wcjAQ1^;FK$O%N?> zsoKsxSJw>WnT0l|)d*jfx=2p1HNt~s2E_FQUl9g}3@0&afQ*c(QDzkmpq;z=TM)@i z5zuNoauI5J!z4-`#9qujeGlP?T}}YHyXjhn=5D&*ELvllNOY=3E%!Y!>&Y#(lbN*u z!Eu#i@Z?oBd_4_Q{{Zjl)Q~CWEF=2r7P0yp;)Ab8vY-w^=zTA(4&8|U>Lj_j$Rv(B zXreIdGPT%?HMRH4f6^z!!K@&G^Bu7UBB_KV^F02CqNo*B!$J)6VKzb(v{G+Jt& zBc8mgyd)GdNfb}Zk~tMvS-gR7b6~X&z0_fQ8%%s$5A#9vFHS#BjrAga;Ud=CZ|`!i z?63Ag;a?c?OuvZyIO0k^70)v|80+b%z9lLsxsDahG;>N-*4peEL;R#Of>!CYzLaH9 z6AU<|$Lf^YW6X6?7qEN2f1QB;03YbNhs3|x!^RH@AfcPa4-2@Hf}^Xc_$n&u)Q(zd zs#F&UlSJ;UO0J+TE&;boVm_ql>eyf{U@iXudn;c~_11~3&9aJM=UdDF0O#Z4_f@uI z;Qs&$@h(iJww4+^(&UYXwIA(e+fDbe$2Fm^lByR|PBszmpX{X6V5y38uw8@Q*FDtu zMVxqk)ZAUcsRd4LO;#F4Xv0(9#^R4c}3m&5Bq*B!Bt?yNx(fVA6uk;q` zY}n@Q{drd9c&YKXgScxm$+8N{J}#rpMKxS#L;MSpP}9jT^9ypyvFeuh$6=%Ds#uum zi~LXU{{Z&B0qX9RpHHn3k#K#cOqasU_lCSe%yOydrWvFX6_yoow7U&EY&&C|>m5N1 z^xNXVH~#=A+I=Vqd|h$;m#p3n(60&b{4wWp!$`2VI;Ke+D#k8Of={*kW0y%=KI_wG z=lzw@v{131y(*va^TvJv5mwP~K4(RkW_ylgD0IesE=SuJ?FNRXYZ=+&?N;?2MhbSB zAB{~JVhiFNntN5O`7}Jy@iK-XHj(ZBc>GavvEBBizVy2?#|eb z)Qy?t9}7nVQ)Uy?&1*iO2?MRY?QXd3+8sPlz#(YiP-^u#=XKwz;k*1O3R0V7=zkGB$IRI)yHz_(dXs3`E`HFv(^cX$o#^DSk z&8)Z7Ei7PNRJ%2Rx5{iy{{Sp#&`R9{oe>VGzlh$1V8l8XGf5>wsECzf@l#Oh{r7fduUG z0KliOr`r&@hU><(j!-wPiYjR`=@vxHo?wMW_Jofywhw`&4=V}bHDsA&Iddt9R7TPe z_HDp6AM=IvbvuIEjeumPHmWjSmIMnT?sn^Q*8s*^0y;o1gey!Xq?U7e0~;G!_?eQG z1b_|}Ea*xqvg!v=_1_zi>t$-*QTjE6g^qiMx3BAfrj(DxNxUi3!3qNFIV2C|-w|vo zZs=bOtI8y^87<{EvBZtxM(2y6Xxbf)vXzD@%+rwJ z)8+$ld1*d7Z+=bEAK^*n8?-a7IlrUls%YR$rc$;SKcME;tGMHAa7`y0OZQJm` zedF+m-WCzlBnVSbanpQgW-DvoD=6ui>_O56&f~5%bhyfrG+vSl=x)KaLfZ^3khGf> zB5ho;B&L)Z&_+;qxo>gpg%6u+v%pB zRdcf#)>Lb%C;M&G;jEK5F`y!AHAcOpG~FJ{qj@TXu%G?8{zKFo;blSG(j2SNf=*SD zRl!*&7|}yRozZ+uARQ8`XqFFMFW7xS9@tFHVp?}t93~M}IzAO2;s@-X;uc3iE_=ds zl5xim>iK9REmsl^!IB$X+tmwfH}%EOMf#sk`2=+q1v`SG;_H^pC0sH;G^8#YNmmvj zfw2T0;DQM2aBq&C9eXDo$apG2RO0U*7MEZqFUx(0t*&t+99?jIA`N@MwbnHCEVVBi z`4z{O=b`J@?Tom+lieFyEN~JV1XdZ1Ldior2+OjuB=sYp#I1y!g?Fs3A}!~Ia%7pz zE0I>^(P?QpE%P1Ot=kFpO%am2dvc`FI?H6CmsI}%5N9HKDN*G~0=<=Y)IPY^O`{Ec zj|-(%bpetwVw1n>II?V_voMySY0OFjGXO%i`;|R<0f+9;n>(5VtQ8-q`mxls_iM6L ztdqw2tnV)PVUlrfd6m(LnNk{cnPTQ?GP*)rzKulQ_w>SzTj}s*f@s}xxvrb_5J(H( zCQ;r5{h`x^xW^~rP6Ey$TD+pF9Kr}Isl!P{JZubXY2`j^8#!I{sQoyQvw1dM zTcWlqD%#gx!q@DW*k{pG!P3$~!8Ik=i73dx!WmO}C+Hn!8Kp5aQ}kDQyiiXEk=zI^K~L6wjhr51AbGs8a-xR=8&CgZp9qadZ? z-xMLMN(#Kbqe&3U0%_AOpCKwju(v`17dzvAs^}=-0yba|_sZhhUZB<;&N)b)D0t(> zULfX%O#c8eq{=Bu-a0yD(HviEl1{_SPj1*Jr}{RYCW10bgHY9FncjEEXJ0)fdHvc^!F-Q9ai?ew#B-JrLtx+m%bM_kg9GbM~0T5Q_7`?3Wzq< zbJK6b7VRce`5#I-2Zj|J#93`-SOht`{1tCjQri%EW20&FcUyS!lRdUMNL4FL&mSe@ zoyZI{5^sLS_-{RZw_ca~VV>}!OSOuRF>N8X-A7Z}_x_ljjs!12xVjAOqC%{!cGwQ1>w;rpQOFj+ z(FoA1FEgP+cOOBGo(LCFFS<A|>PKOL=Wt9Lk%VHNlB`0yV3OZVEAO>!+jqi8o`Kz>7AS#pevgi4p=spe=uiyDjAo{fRr-HLdzgldT& zm!esDZ(<3+QcJnW)w1%9#FAJNH^z@<)ufVbMKa+bd&r3>-u4(8a&{YXv~0!LQ)H%v zWfCPcLG9Um-&^7+xBDt&PK{YCWO+#j!((BACgFKc!rWvrye$(jVIeGSyAOOu&Jl0r zN336r1n6XPb_7_Dd`%qToTy|_7MDK!Jc4(z|^Ai~QS;*cwW3<%{hURWh{ELJW5s9YF7I zOhGpaZt+jNKa$f=M3K}5_~Lab>C?a0Y*#B~V_a@BjfK}}y0Iv-e}|`Vu%~mcxj$T2 zYBc~z0TRH3!|`!cGDZj?uVK}V@LV=_T(W64H*&jpA`HVcg^;LO_X-HUq3`XArngYW z73>e(GP|e3=<29w=_u;yqnb@Z=)+P2e#dX`ju+HBdz;~XmD5UmZ)J+EynpZq!rnJp zyu&x)$TAKhn55F?^f9C}OxJ7kE#;NE6RCAuzAW7x*Seh>!%5u0q10^{yM3=Yxa0OP z@k1%evpz83YFPY2;d({aP;%)M)>9_qQKBc9$_=h#E_OQ(xbK=*)}1nW8wR1`@8SJ^ zR;HZ3FyOe}rE4kVcqfC*hfAZ4EUXQ!Vm2U-p4jY+sBEzJY5xEMl}p@d!qFu}l?u_s zC61&aAdoJ7$G$g)TPwzkt@l~klhQGjXZ0xIXJuE7fhOeN+}L65H7Ij3lvdRmdBF)6 zH_hBv)dUAiIXe!wI31dBZdJmQsa*B|gVfT~RZ>;cRu-0)c*?j3wfceT4Zj={+i)Sn zfQg;Vs)^CRpGuG8ZUy2)QAuCJRc~0)#qjSM&d^FX)vZ7y{{T4X8cwB5`1U+pub%po zqpNA;GDd9Ftw%-0a2lGt+M6+}uO&?kh0K)%oviEy>;~sm`(u4g&`LHmB>Dsu)befw zuFc`R-fBu{;DWT%sIXvUzV;W#0_trzN_Q3o_a{hel|8OkKya^%wfruVtp;cUIaHRO z3W*hFC#I#j4b+YAu_K|jIjvrUzV5YxxeZuK(AR!S@bN3hoWqZ0;f^hAuP4elo)}t+ zwx=zmN>t2X7cn%c5V3JV@$*;JK9nwNT@Ed}{{Y!vI$K&1HPO$T+RK^zX7Ot@ z$^0amgCU-xmpsqwpD&(hnCp&(W4x-Z)D|qNY;R(5%6^yhG;&rNnT5kXRky49f>8rw zh~TbA;8(89DyXu$YB#K$+Bnf8wTHchvGn=UW|n5fPTVh@x{$l`dh2+6JIpdzvbpQH zS*fI{B$sPzjX=3zI{N$K)h?3VK9#i+ju#fybv^Nz)8_~Hqn}Y`6)m2^^=%zPC0$@+ zt(@+%A5uXCpGSNW7%HPv^XMUmwe5#=ofSMT z$-!CsVXtkz5PGgQ$TRHB(hB2Bh;|ZUC(nf z+o$7>gVU_r9#Uy!EA zXIrV;r*GFEJL-KyQp%#sqkm=vLinZOQUh6ElTs{Gs}*2_=JR$QyW_0%r%}FVd7w24 zeSvX}W62!S!s(@ztiX$JYh$am!N+h(TPhFC6%_?1CM5un$EMh08uNYDwYk*8Npo`< zTM!3L{SUX_8_3(Vg|m56UsF@XQ_F}&dzl-k9-m9!0d_^v^AoWNo@o?GBC}}dJlEU& zwh0jgy-UkM=0zixXVq^@pZwu{V{AxA)9{>^G^3`xH3+6af10C~ZS+5`E6?RIN(&rw zq=+iSGin!IBX4i6FRgyes`|k)+2oQ`tyZ3v=TZ*i{{R>QFigx2_+d;$0mfBrLPzmz2{J)MimaDkkm*sC1 zRu@u|69ki2Q&Z}Z*a;i3QU3s(K<5XIfl80AVQFLL6qOKaRZ(Gn{{Yhq=7^*I;4Eqs zyELk$6R9Kg$C1cdEV46qT}g(OrPK8^_gGzO&QYp*D#`}crDlrYs*Z-;3H)&hnM|K@hlS*g)eyaa z7Cmr=uk=`&a%8GZ$CVV(tc2=tZGO9cSVvd?0BL&{=B|1vmNiN+-0dm|TZ@J7iY%;g zb=sb@g}NGis#=AwQwVz%DyHP)Q#62CY^<&ao=GzpDd^>j7|VmdTVYPEXE(`W>`old zA;}>%62`UlAOIpym0SJd+YE7yP6tf?03~eGKP0`xTt!`+$j3IXq?+5LJgsb-^a9&k z-xE>O2o5+_0~OvK!R%Bt1rW}VxL6Inr-<#lx;x{;|GDNIZoWu-*y1dfvZMnq1 zdKCWvv|{;85yT8>8(K>Xn|8wbh_{4w2T(PKD|~auP8LY42=jcSZvAmwuG5RK6^ah1 zYmKh1ZVcjucv+U6C#NHoR2Op^Soyw(`eK`1)3CVhm|pj?vCwLUNm^R#Sy{9`5OCj$ zTpv@GLeu5By%k$jQB15^No6|Fj`yKG}%uLR_2-LbrCZQ$8reRlVS5;dtnUq&eEkOHWgm2*6Hfmc}ngsA>h6t=w3;<2Z6!^}?Y;twTYS#ESw>AnVQx~5 z7ZTTad7b{}s;k$-vP#j&t}pw#Wnu{z1b`V>GFf1 z=l7ijPG4o3Ibkx!S7nd@4aL1dIQjaoM>NxdRo#{0>|Eu=^Q{(fO%p4~0vjOiFa0so zGzJ$$T&dOH_X_9kGLovMr<*f6AOmu2ZP)G1a7cqKpljeV1%}>C_ZOl||(|m+(__%15q>vRZ)2 z5&*6N+!43+!(9vUViD4Bjd`)h3lw}wUV_UAc2j+=_WNV$%^oYp59q41NwLMKDW!Ck(Y=MFa%uTi(hcPS|t?GfQYW4f!kKgd}76?lIa@> zPO-26`rt|C!kQjYC{_^{FP4bPM!#+QVN092*F+b9Y*2aHN{Wh!C8-5^JHOD+|o-u7ndH{{T(;4}1RrTx!V%SUo7JTjDIN z?j)@6>I|zd$v9^sS@@aZj#+9MEy^lEEH~e$Od)}l@0Hhofc*k4SgD&3@$x^ZOKnOk z(nBR8B|Xi`J?wogZ*hlWa>6r|y{~C$ZL*eg8drukhA7#fQRO$iy|7F(=Wyj~+9-Tf za>|2dUG3ARBy{BRz3jP6icaE zNZ`K;x=L8fR07c+_cv44{{Yh-n2W~P@K!b1%FZgDazOBMg1e|@eb+_z+Zfm!&&=Iz zydtkrP=NAMHHWbV*BBA*xw%@!Ab;V6Dn%&j(^NFBMaaKjY);3UVQTh}Z0=S|PLf6% zXi$sXU$!?BJbooc=7Y-lEYU)t>CNO@-Fpm3)^7ZkotCJQ=2AD7(Ye~g*KA56Z^D(h z;b@3UJCLb)3HboWhTg&#U`D8GB!L|nBPC6a1ev1hSh=z!)r#l=gezY60O4-HjST={ zWTjqcnb?#&8v}da8a!BBFF~@Iog+LDq%2BUowu>Z^qD`r;d{KG`7{}gRb+X5YM`?Z zGo3g0>4S9%n+$hy&@`9WaIYlc6w7JhX=I+Rq^Nrjmfvi1N{*l|kl5ipk4^!h#SP3T z8KhoCIT~+%zStt0Qw2vXO+Sc0D*i5wT1f$LhfrPncH0l&k~s#`?JkpZa-`Am9RC0b zs;U=rYp6vegYW5xe$D&2!jdYM{{RvrmuIW0E@V|OO{j|~H~S0;S4hWj6g}rFLnF>1 znx;A0Nrb_zYnw10rxl$>n1<~NN_V?+XXUl^+s|($Q z?TSvNsP4nco3Q130~IJ?A(ltl>b+mo`{IRNFm`>bg)AFR0*7968fto)s*0Lif`~4o zp+`A@-rl5}9fl!_P0bB@e*)k&V$E{6D6tBfS*S@Q-z6EXHfeLef$$DqRqjzyCw znT160L&#*EY_hLSCi+?JeLmI~CB2S14wYC%jnhbA10`X?^!zu#oHw6%sh?8{s%lv| zR8Z&|t7_y0VTnNECXhQg(_G#f7JkKb0WinEJ z#U3fT4b6s|n+rz)G{{V~C(^MW=mSiXvVk@>A97LZE*4B_;8<4`=)jndOu4^wLQ@VS`BVgRFHI zIEI(6+o;S$@!TqQsZk)q3aWU^i@2{ki5D@b2shNKNnG7Z}{uura&^UU9lq;#gZRt;x8Km7Yi=m=_&|j>h<8Br`(hJJOb# zZIS}I6NWh3is0c|YCa3fxIaJ3XU$tRN{rE^H5psTk;hRLJFd92x<`EyA!ytOQo*!} z-kYwwOq@N#z;djWY&8t=Ia2&X;cp8e;ZNVx(n*u&lcjAV<+VB0IGyt-<|>MmNV?t` z;%Mbr0A05ln6Mo$Lh8sXPH?NWnq%S{naTmdix*`f?+vLvLkJ-b%W76=7%X9qos~|dUiZIS?bPB5 z%6~7>Fon$u_3+b-Gb&1`V;YxAc}p*UZ_6CBs`N1LCUT8*bx%qi zwG9kcQTO%2ofA*mKzF1gX0WhaapF}3^m)vVYAIRV1tEYe;E~aY=r$*QnED^4s#;tXpcm3V%i)ZzYn)UO_+H@(td$jClN&U)-s@w0O$|Hm%81nE z1E+7^E|SL-v9EL>-EH638_OHV1#kBuN|H#lC|8l~u_RvSw%7&G-;`rsM+z2T)6>w& zQ5X)u1~)do*qSIA@s*Et#nRfe6)LjHQxY|;Wg8F2d{6el0%kuc))x!RL}1RUO~+&X zaVFEdZIKt{TyKFHSBmx0K$03m1juX`!v^BKwd@U$zyA~iF`dl~Qcg22Nu%Br7o*d!h zWg|DqsD(OCOi(5FP>4Z!PQ!*n_`&9lrRI2Nt*x zp>%lVL|Qp$j)>g6DnZpV8loqKh3w`KO10{Ob#ry zd#o3n;-et(E%VOT(Rb`Mnr}{E{=Jq-@_cZFK&MJ7d!64+uD7ekEGE=qM$EjaBECMN5-q zzQf;5t@p<~>aA8Pc>_1z>Fo_CblBlMPfBSyO-~aFsX?5yw;tc@OeR z8SF7p^J?=%T+XpsUOGF55wYoVdbRuZJ*+TCbN~oUpkX*ve-tKRPa;j4xRXAdm4cqu zik2`gN`ZSQ2d{EK#e#*qnq74E2sVyYE5!1wRCT6zF~FeH20LjY`px&;TYpQDzk6R62;{S;%W!%Y(tAqQ5>E7OMHv8d4!Buc+1 zTk5lJKLdcZI`;$N!bbLni!Ym3}s;wl}s#Uf-kH{oxjp{QwsMyFS8v88N-W)ZA5!Ym&sLX);`=S)~=X9 zR%vqbZS!8&x8sY16_C5cJtr)8!mM+unVJ`-Sanhxh6G>y?~4T+Hk-8E9(^eLqQn4^ zvb^6v;ad4CIBL2`5Q~@|#aL}{LF=$Sm}ya@!BowJa;B%Mdq0U>nP-d{K58kY%qioc z%_-D~%%~ZnQ`AP~Nek3k`)})tMPEx*!28o2CvDW)_SxY?&-l`#J4rIUvL=Fwm^AW{ zV)y=0dpEzP*q2Jt&G*Rr+w?)y>V3gr+aNJzn*RWcK!PJ;rI_wLzvmW8ixz|n3FRPh ztPU7QA2_-N1x=05sKZ?jch;tOCeQiyv?{C%zk2$J~tB2HAY9 ztgNRxqefqbsQ&=mt)D<`!j7Zwif*Gu_X`w8@R=Jp6)vu`yl#BjNezV#q+@t0B$LOr z6Grs2#ONL3Xb38X>c9i@ck8&fUbwe(520eW?=DYumf$&bU#6h z1yqLj2G!q);;yyqdxBZ>;fc;i=4f6{MnOi4+oJn#^;6wCtQAjbtZ;+?{B{{WaT zUHv=Y$IA1{TOerkfYs1L4O9F~?^hR?s7njjY?g*lO3b1T&x)R=B2wC{A}aaBQwFSKMJV zRZn}jG+|?b9HM+X6cn*m&`M!6aZDIEr(5sy$G zG4?yyb^QHs0G300B3Q;ZpJ?V^nNm};N6dy1V05rIbI_=9u(ssiV{3Q7(wpPjEs*Bn zX{*h$*&tPxc+798N2kmSemmj=3x}ocz~w8wNO{%TSYFF=$F3%H4jhFJ!h|GMiCb2# z`Y9c3m)wGXKYS3<(H?nP2;aKngl=kNr)Za&j=FA0{B%300?PF+6k%;3)>vkr? zuWU=?I9NsSrB4klyz)d2tM$j5SrS7NGN+jN zjgNdv$;iP`Ii~CN>mE}iIzc22FLEt|TQp>Hyx37G8Bi29GHrVw>wvtAu(M~%7PTUw z$u$tNgKsg|A98U&Y3d0We}zw{onr~2UoWk|1o~r1m~5p-Oj5}TyCs3#{{Z6)q;ME3 z(9%{jN?%FRQ_EsUY(U>@-GyqQf#PXoW>z~5x}Uxa?h9FX*8o!tb0eaui~!CLnw-<9#>rDGU(m9lB9h(`=;(?S&aY%DbG+;_!(DG7IiD$Td*ljac#WYl%W zKbf}&>Fw={D;*=5W~KAS6@QuWEc`c|$6J*=61ZR_j1pDFx?9j<#Y0GHA|c$Q4ciVu zS3eEsl-yHFjWWXMRPL*C55IAWUa?6f8_oDf#VcgbwB5rwB(#;{Z{moR?g2JCdtn}_ zsMmcxnI8u53uKh}V$o&=e~W)1LVbSUu0DTuttO#bB@VkjRggj$EIC}im}N$m zDVKPGw=zQ7-S-q2}Dhj_!NTLBD=9F;dm#(XTJyL3Vcp1O`I5)JC5-qIyo&7I{ zF;!fE6F7hYbMF-8)oW2xn9f7-9cqD0tSq$10I?$5DBRnjJL2=FOw!8^RIHZRT))P& zhPJVC8bIqqOuV;~UAdDtnVqeDK}VQ^cVdH}$4SxU5VN`LCbaToU1;IH4p^Ewsi~z5 z<5&!C!JFk)w^P33*7%cF*WDvF-4^G8%DbYXWs;trD9D8Yww2pRAxHlJ;g8(<;-^b6 zBIlH%pocc$Hqz!3bkyQ}$=PG3i0lpe$o`5n?cANPWi318aV{7Ni>}s&w_|@K zA2F!R=<;}S>1NkiGxH_6Hz1qt4*T5o^uuZ}%a=ERt0qS{G^P3AStpHTjX^$9{-eEz zTs(ZY8=JsVy`%VYi&N!wblJT{qN)Zkq1UdPj)K?@yHJmA+pKI(JS&DNpDxSt;Q~Wl zQ1Sp`3QI62p!GPQRR_rH*;wh=*0#=8?+#Ezut!Z$jYTW$;lGi+2tJ|TO zZ^9eIoG$fr)4ow#3REC##&32O{$0IrH5RVmL~r(?m>)?-hL&SM(A7k;NWNVTN|Hw1 zM^UyNNlppe5~*e_I8eSeuO`cLC?r}qsALzC8Ng)i*!?k@Tv9qsvE^w~s5G~0xm-KP z+sP5eH~c#V^Bxl0s7A;cdD1!vRpo zJNHKl2gK&`rG}9TGdwFq0V|Odh zxW_8n$T+hrZB*H%N*Kk8IwKpK4Yh20+j0D)_r)tv>G?pwL`PE_zY@N2o@Tj|QO5@@ zQq~MD(0x1LoeGW6;o{0Vtl%RVcnOuqG|m}Sz_4vMxcu#cY9uAZ1Vj$;utD=|z3bmx zcB-<4QGb=M-`CT88$mNzGs@J)=N#~ZN075-G}QG5I$C)hMz9T|1F1H~RO$}?5QUzY ztr_M?Ol6q-R8lHP5mc{Ly@l*8z53%wYvkg~9LEkqucOIDR%Kx>ksnX9Nb-q%F6%ZlkUUdy70ugKe;g8j5;#j%TT0fwcxczL*h{ z6}wq{s8#$!PYNhCMeaq!V%Oj4gCV9e8wIPSv9e09&Z_DsNa2=FQUY{sdmm3sIf9j} z{Ls@$lwOvyv9vQ5Ti9=V`*px`LJH3MWuwf@fn)M>Q1#SyV0|#X)TZ}5DVaVI%6f;J zmW~mWwTZV(MKp~T4O2$@tZR8R$cLSDCiVkm#B7%4%V!%4sNu|!hajT1>Q8b0UlORh z%Lt-Il(Lr44?%(y>5iI`N{a~9X`>xnk$=Mh%O#vb#S=57%d(Qybu-3*S#>joQclCa zTak|$IrOndmYR(a#>I7;ox#|BZ;wq;XxzPMxw6wY4dqfs(m zwpz%DnS0$iQRVTNrHVLXcd%w_e7j&r)Q~QsFtn2mjnItl!bvR<_i@& zJd&86$8NX28&kV;7U<4F#R|Hh*UKL5isgQm;_~pC(o_%wRgF!V!U8xd&ek{SY$cMA z?I5QOwUOMzF{YA~GlX^{bsnH$eI*snIbOZi7gg?So>D5y0Cp#9D82sxOj+qP*QHa= ztA&NLYL%QZ3dZUOaqE0rV2nb`s`z&Du8$00ZXeARrGx(fWicdy{-QeKmDJNVW)}NQ zsT;J}byPIb<{Y}p7d0&3G6mgs+Z=AJn8Dxpg>Q-w`!8sJVSfx$!<@3K#GWvxVFN_V zOHC?(SlktR`fZPZzx;^nM{0Ew%cbZ#e%QO83e@8MBBXDibgC(THC<+zErd06Nl!GOv0iK0Y5xG+eQY~=;`I$_Qb+Kq{Nf51X{r=G zM2d{zW>b2GxBd4Y=?9{3dst!J4Moar99M1C6T}piRdd$GPNuJlCQ@aUkgT&iEF5qdAg_ZBhx3GVB1$>#!itK3@4-*sR@PUYM=dBvNh@TrWtDo8f2J!HP?tz|DVsfl(Uw=u46;gd z2Im{yJAh9^fa)kV5cMFI;HBO!saklNtQT1n9l_rgJsQ#w9FbN#XeDu{iM}UQO-wSV zDk@Rh;kA-W?mf5b(`{GVaN9esc`F!ME4@p4>1y3Gbk>%-KC>Fkus-O#W>1=Y!?Lpd{e{nmk zUFlrof*N2OY^E&8S5(HyQ$+xkfC;Ha*Y_W6B8mn@e$oDEi=y1ys%MTk6E=8cjUtL7 zS5Z|_=RVlI=p9nnKn_*{xHNm6FMa&|Ku9cmqlCEKKBeCj1 z7T64AQ&_F0fLSfcm%`k-g-9VAg$2HQ4*u9NwLVrrJ}YD;71yqD&1JNNSvMFzwxRoi zxDzhoT-PtFNvWAp)6JwC0uOJ`6zW=z(M-F+T-gta^`tBnQ?tTPEFC+jKi7O(D0RlT z?RN?}8Ms_4N{*!FlhYNbC5gV4axb^GEzGEmqrokbn7f2tT$TeH!8myw+ei`{gYA!7 zSO!9bQW2FRnwUc>v|~fJk!~+*dgDVNepcoL&2*tWs=2A9tY47Ez>kz3$KKchPP2|^ zX&G2VWRbkbQ62ZhPvv4E`@xy*3)!7O0XG8YzBE!sr&R}yR@%W(Nz?k^cK$(34USYe z<*A)O<~zmO*10~|A#J>Hm@?{Sr3qBbglW`;_XB@U_|~FO{uZrn!n3QccaXGUoG(&3 zUmin2;vAuxuIFlqDr1ok{ijCqw!b(Y*6eXKkosD}4ob)443WaJsvS4ia0v$6Z)@E3 z`d|*vl9_!^KuHzGK>Y(N$}Ty^R1d{nCIUT#tHKubdE{{R6vdm{bk9${Hhi<(C;cp@dV zG2Z%y`&;$L9r}?yOthVtO}Ad^;h;BTgO{{9$Bh&`OTt-xN0sHKhFuDbpa6)584Q zFr$Y$&5%bOEKMwpC9O0b?lD2vb^Y>);7n=Tv5TJkc76fO^LmltkX>%273I!?D8Ts)~6ao{|`8qNa#BGKkY= zZ&Gb@_s3nP?TfqN1yfNY+qD7DxE5xm$@7|sYTk~mjT}mqlhZyrY}0$0uM!Qz;we_ zR0$<4_*HN%%C7SXkmY5bF%?vRjU{Ya=M5kk{z^d0gJiK+%cr7&RFN%AsA_|8Wow?DeTFSGx=ecm-i4B*V!b>&@a8@x$`d!vGgpyV zYBA~{G4vKaG0S?Ns0dSZ!P)#HDk zDS>GoEa6Lsg)^EcB(G+96)x7%^M8D9{->nWI2%l;Ue2c7 z0^--E)R$S!*8Yo!aQ=~L}y#Oah|)OnOORdtfm z8JFccKrGhVZ^ISpiuodsw$1`;0PxCik!fI{=d_B#G%75kuiq81TP(5wRQv1_4K*aZ zPg^stlJNs#<7013S|XLO0dthTT7AwybB+mFV|i+ziJ7iVfWcH9O4dJ>prTbL9PqQy z&@!*VCdBDiyBqs@V)fH{xR!9_n^%O{at39Q*3s5AT0{(r2^wv0uhe7c{WDe%iLF%A z0lHn6E^6~xBud{Dk(nj)T<9He{jar;%8l^hS6S9m6zC(SR##$nxEqUgzpe24lB72& zd!h1F*A?Y*)6WP?d^57$m*snl++V5K>_5_RaG{fUN~)n>q01tohB>CE3R*uYD{_9; z#Ljl*syRzpssl`tppihmhuX&7FuJ0Y-*TCpBGnYLW{rto%)L_6Ek6rC z!BNg?qHqeUdCK=7_W)paRR;2=?3JBHLzcxwTTxX3%q$PWv~vV1-mDGp>@B_|j<^?H zK_p7C%qb|Ks*xwlqz~7tbpHVAZHG;)ZIbswZoJ>5s-mQhLp(^eirorq2e+;$l~Os! z$AoWaBJxcHtqo!|LKRzpmI04)Z~ZZ}Z`;C<4@v(3g80s=lD%nUWzxgSP41`G=MN|~ zmofHv!BLj`3!$lVsA|W=Jd+LeHMb!8e@tB9s*U*v3MnEaSShhZ97-qWGcEcXd9T~+ zgQA!J02DE}pRINVPpYs<9$eNdEV+KT(Nd zAo8}}QOXsTv?VVxK{mlj{(rBg1fLu!k(jDw%Bm3tgD*xtm=9ocZsmyEGghLsqC0ww z0@jGl+3jzSJxRXid_U_D!Gb55_s0$sbUf9R~bJxIA}3)k-ld@Ykak1C_fWuB^6`9K7pLJ9l# z$HqNf*04Za_Z*K)pwVgWcnui3?V5iAWZ;av=Dc5-!$}d9Sv0N9hi;!-apTnTYO;2z z1&U_Yhe zo^URXuaE*Giv+HIY^NdM-WsT_nvN4%K|&-2wXJ}-+iP1Fnqc`|V3*3z9&))iHEFny zJd#O>P-M2EI{bi;W3Vo1_5NZ9{}dp_~QjrWm+6Fo{HlA zyNo-JQHg<}zmg7WcQ}hKO5(a#eCIKyj7v)qAuN2L?`xcQK9H#22IKj9NNd{Qc6_DG z?}9R(E8)0uhT)pI?!s7T9`%-ES(DY}v~ovCC^H&l z5y}Vi00#H(z0cnq&ZdU08n-)l?$4_$B{cDmNajJF<*)EE22O73Q*HOypF@h}WfbfO z;W>(+kT#WRH7qq*d=(2&8W-5015rP2n5Me1u*?juE&fB4Ol)x?=L$K@xIcyJvaF)E zzHGNTt^uio#^yE!f&k8&4NO9T*Kvn*nhvF?!6kHLcG>UVO}J9NMz!I9WTP-qq|>mg zw5iN1YwFei02r!NO|jjpdHkZIvE^0XAn>I~ncIO-_J2pDS4b?uor&9FZk=y`Y$30xcy)nKM#LM5@`&M^T{MkO z2F{iid+pPvB%`YW!N_Tv-%7ET2T2`GL`%O$>x&y}8*UQ)fq7AyQ`5;%&U~!HYjnkC zmR+sdMb^pzsgf#+V8~RB?mYnO^~9zkaaE()87~U4!BE) zVF@%L!x&EU^PR+;wvk(*y~Vw8W^90R5M8vz23=1i7nY#v7AE@-#{$h(ckOQrR|^{{ zO);W~tOMp3C3}xddK=vQmNnL226ZJ&CJM!87O*$nkA1I=n@Z4b-a^({EYeUqtkGx| zNtuLkBJ?aeA7k{unz3+Z3XV3HdraT5XBqf|!T$iXCx(1!;b#uF9`W26RB`hp z%qkAc0;t^T-=)5|=6x$&GizN@BR4VMuL7*aW+@s-w^S4hSV9( zPLVEiN5L_?xkg)28Wa?7Un%Ei6{v5_k#y5VepGztFCtx=1X0V}ji`E=0X6}7XBK;% z$&*v?{YMby`Q0pPq#B7B#(_y708YbGv)FYc`vC;>kUC>IZHZgOISkqqg0itzT}w!) z5gc!<`-~FlS~3u#Hw=??u>(>rtCJDh*S`4KvR~5iWl@+#7b&9Dpukh^~^jjf314SxY=aW>>x!gJC`4#!o1>U!Z# zMGe~QFJriPb?{fMKe2a)ej0I(VMU*D-f>A9#r#K#O-p65+Q9YckB6$nI?mVw(=KY}j0`Pw-mn87#E~c){ghND{eob9G%n3HI+uI){Q++zrt6nCo zCqJUKR@b)nW)~W9{{Za~pLmy@OqrHrRZW!;!BK6ur%y}ctaQglQ_!~!&&pFIj&~(i zQuFiIVv-h+4L6ir-sBT*orW!w*RieKFg{dqzy=$X)x&-pX1Rxzlt`M1EEdAv_c*Or z^))ni?Z0s-_^Dle#8@kSmpI}62aY_mFN!0W$#f+a_G@p1RWwpn+E*L|e3Lb{4fd++ z_BzbMrlzf|lLpszy^Zg^{)472S^#TX+5s<^?RC%ku4D0EKbztWJuP!8+@nS}xwhmE znCqQ8r?7cAD$QG*A8_SBQBzE*QJG0IGedULFXp%YacGc&?V$o1=0}rt`zg+|N!F%O zQ7NSlylUGVK~YY|9E3eQq_-%(UsY3ISo9~F)gTwtSbV;hHo)}|G&B~bG~j+odyg_1 z^Ntv=IeaqC;xc-I%WIRj-v{V*ow|m#0jrW&NC^}6V-%G ztW1w5t*d0qvbLzDN~a40%1G8W2HyQ~UXxU5B)jq`sSTa6Sl%UZMnmDZ2+`%W(vRN} zB#6+K5*>ExNF;A=op66lX){&Slbc~_b}(G~URCj56xH!IcU@khI0KXA3vPtlA5~~{ z4X0yRPE|Ws4S6mFZQ$(6pDe8sSCYKqWAh!aZ>PQt)TzvZ%{EG7t?l5ZZY#;SYcHp4 z<2kOUXPj9SUt)cS(BKD3`C$<`xgOPuo{_E_u8@xnE?Oa~%hFn!2OPj-9SQe18n%o| z<702r`X%))bZ)pfL}+X3vc{m2Y{Vi719F(y+wF>FW}7P=wl)m>i~j)WF^06@lC8|U zigLW_DrK#&%c7E+?MpO~sc4BE5Rv8kZgE7ClD3J?G2d&wUmxh2wx%~YIF!3D7DJSZ zxaq4YWt;hJur~C*8^@)IV>FQc2=Q5^1W4IVeV3#!_ctC^GtKeYqQ3QMxDG<{tyXmWrH6a%@wUX~KDR0Qg!&kt#}! zdRW;3zTV$nxT;ZWj&|ofTqX~ra7tO79&f{`4E1!(^y~lxTFdKmhg8+^%q@E$K{qVwyEDsd~vhBjAs_H6)#7k963xR7h3!i?Nu{D_d zQqxl5i!ULnDj2zrF*^_guCASMhB$!bPrNUUT1}AS82Tv$miyvz(ADbI&;A-T^4&-Bso&EZhLWS0coGukX%bY@ zR3MbabvGC5>Gi_RRBmm8k^q`~3gcYk!c4=7Grkh6n;_!a$|*9ceC8H!ipyY=X^krn z`%*gH45Q4dNM5%TofXnI_e^hzMo9o~B^|2Gk=#C)eSTucYn%E4P0zVL__w!Cb48nw zp)PNtqZ;Rthz=r9ZhLM0u@Bncm8+!#+9{W2lBxuq8G^Aoy5H%IUq~7*v9ny+7_O^` zQ#6rDzd?SOJ~}5i@(W$zPZd(~qM8tN8vqFX zMj@G^_EWIoFi_S{H!hU5(R{?-*j*z)!CR&QSFO2dB{w7ieXt{-xxb~eIZgQ^Ii?Xi z6_d92wiMKY4V1~27Y!kLnN^&0-r9x&m~L&@u@s?as6^8Pd>cK3AlM${k>3kEmh8R% z07W*gWaS9bP_n7%(1G>DutMi@6vt>ooYXZ!$_ZsFVXovKx6=f@pfbairtqZAR+RCu znk9}>Y_=p5^caV-%SFaRDsD>iorpGwHe(sxLjn3}1Wm(sm% zdja;veyPy`6*}t0fw}ky*2qr_x4aVYBRI}$DDzzIqN|7UV`YA7ScN-+LjVrrzBrdx zb=w&K0JElT?yVFQp@VX~xQZN~FM;?+AZl6jIh@+AHC48gW81%53|Hu>1Wgmn+Z24V z2mTx?$0+c3FsH4|Gpz2en6iHoBxc>s_rIptbvIhJP$7(3$#B!Ny~?WN`5h^yr>16x z#jmHh7yPks>H5nNE0S$aQs-;~3zPHC8>!CR!pQ5YQRYH#xa;eDbzMJO5w`bBe#kqN zp~c)ZnKUhx(8wK`2Qi0TU#yqnh@@^v}TjzK4%;N;qQ77x$#erqvEKhV%qn{{UQkbM*=bX_bVx zg0D1@hYa$s&Mp1d!~8i(D^&a~Zd7++U_*=dTU=aq>xveG6xFp?V7MrHi!_jVUTE?E z026Tsh`dLbW*L(-p^cYOYZ7jDzk7Gb*&Q>b!9`98{GI;EJxLF?RZ?K&69c{JEhtswhPftkp@3p{1Q^xz*HD)|FRFS4&mGj9U1Zmc7Z(J&d zrU31tJR`d@{HhDYSgUFB$ps9v(^rxQkdQhPzu}IH(=o$4uP6Z|s+H{ga=AA<;=Ilz ztf9>qN0>r&AqP+(Z@E21@z|)e7*FpbNT;kn$AYzGoC#gUG?cl#^fh$QF*@oPX^urw zH3U7+m~K6B=B2N)k-K8&+6b`7K`XUq%q|YmfZ8b4jN+1zyd=JT*@yVP9KORAYbzs%Te2D-Y!t-o)%rw%F&>*VGaL_MOE@ zz%r{G`-asaf#Ik4te~v2M$SZG4w43|`G;IR(lsFYM9vl?(iWyGju!!Vo5J~z3g@rH zIYgA{UYeg$t|c|bYlFoDOL$*;l{1uo*|*l zIq^26N&a8~+^=KTwk<4tbwjxUxJlnAY1-@{*~}0L;j5>wA~p=I9Gf(Q+tS0n89?^~ zfrSH$i?WgG>0y?4b+m)lM&JJc7;@RoxI{3EWUnQu%yjGmE6XnBiQF%+_QEtW9|>&N zG%$0U%0L8fYlF4B5Bb4zov^jbW^$MF-152W246=s$pSD1SD_;X(ZJU*xyZNhjpgzz zbg+pTB$z&{H|d47fq>Wr63Jp{WPL?lT$>+z-q?->iIRc-5xy!pyvg(LY#9clC-4;? zXe%=<;@M%NhgCtaeXRSNj)!fq+M8IFt{cjQ(F>=Hvx*|E9HUU;MbtEr^zYvm`W<>V zVcenWDa(h7Vb%i~H7tORfpF=M4jY0@;P$%3ew}_Inp9UPdTIvRPxr#g?o%p$7QC7_ zg^}fm7qyg@8xQY|VWy5OfTVp!{3nRkog!G)n1=%Qz5VgLk{#Q};-hG=vd)H%YGs(! zRZSc+`APsT%ji$1Ohq+NKZ=p9x-}dTM@(f)Nx1-ef5^lRlH$ri9h3^Ek=|(0R$>=W zB!OdWNltNf>In`>P}(1v$Vd5RSRHifLsiUVBuW`9#G706!rF&e61Qh7?qV9SnI-ePH&f~8Ju##+n<_6?M#M;B4 z-)~cnd8{@!w(=WUS!o5{0`-6PdGJe){7R+El9MH=6!S2>M7~s2Ep1jN_Q%K{QNE^7 zX;PiJaP+!O2T#c}ntd-)I4|~Y;70`ughxQ6b;DbbUiizlk1P0YP$1P*JdoE z77Eh@6!fF_nMQce$7-(?r>n}iS&cSQV_ImRaPnKBu^V^8NHlXn9{S9`^+UPAhhu%9 z**6NW2()?65XzqriqZunYBsUh^uV8X{Yub5$XPS{V+y3=PZYCC{O>lQii@n%4`wd-nFjDmv+^4%U>m zrcJn9yTtHU(dOw_A}r}6f}oE6zpgsIk5iAq^ia6&BUMd{Q+j?{=nC z*&#OP90sfcHH>79%D+5f@mnI}o*ssdmn4RQu4s@}NP3bw+=15jIIHxx zK*>oq;<9HGlDML(6r`D_8t11_G>y*ou>CRIDdf9$d?n~TJhNs~2*n!A%*6s5-Me%G zdK6kzBcT^9i$)FyrPjz6 zaxysb3f-CT^j{3I)73)N9I^rtwf^61X$G*~;w^HI9Mc@XF3)PK5KJlIkxK!#pe=Fj zj+@gGz4M6JRd%hGh`n%5O~X|@Z^e@!B50M)r~d#-kN_C(HJXW`qYOWg3XEj#8~m?9 zxC_JhpC^TL8fYWSU{X0?dRp59(;qnN-BB@+=ap-u)4^aW+m>o*^7@KQx>+d9a0CpI z*rEajleoRFY*7C3&zu=JOyY<&BW2T6Wf>k}UiB3@onJJ`BFx1WA{^;v2IK5--dUS1 zOIpP$r1+zXCY>te%_<{;not=U;Ikg;M`ixr__^sCJ8qQCGUeY9_=ZgCStR(Fg*mu= z0?`hgzS!&CJ47McLP1z}xPrLutBJEt7~%@5tfs9X*1{GmAyX7!vBkd%`r+<0qpPK&&S*;fHBbVspZQ~yTo2G&9M-!*d@>flpGwD1S8-)? zaIX=FdCAXYYifwA*vGLxUtXOt&o!=}bIN&1GH&rBF{I+o3Z<-Z6xp>knJSqBHO0#- z9-tnU!hV@`RTW65l;Ev(ig=vD_65i>S4P5mbe$BiC2m3G*jn8-`(wWfc7myK{wQrF zeQc2uk+jMfjZ4tr-q>3&B()6+4DYOqHsp(T^xp~lrDFL{Jb7|YBxYdDx^~!~p~ka4 z&jFs4%;70zw3SR6d6lmt62y;F>)*B+jjW6SwUIv1(*+lb+AVF@eYV0Xi7srlXDF&u zBumVa;1hnh8BD%IO)8SFEQl9i2lIQMQ}2QnD1~KtwFu^x3zgG-hpyh8aWiGGvVus- zH%xSoB_M`U?x=tOtA4xUc&m(jDIq%nS62+@GFQ^a4QhxnWiwfV=#*TR#m#%-7mfj+jiMT zwIxV0+_T9Ge9e349=M0HRxBdSWob-s9b5PQQSE{|5&WVQmytwrtwUIR%vY(vva|7s56G+lFqDqMvl6LLsgi|wd+NNWyE{Q{!%~8uT$f&j#RsL_S@gLa~bTeTa zi}>17Cn_)Uj`&?8b}19aN0mgc5Siu;s^fmA(+aBU?9vp_M|WL!U+ne6JT+IJWYxSu zMk=WyeNK!4*KVD5^vBNs08zC%p2MN1IDPN^6~jfRX^=enU(hEFe$rWPO~G*Fye+~s z(K>*TyP||b4^Tyo@$kK0K!Z|csedJP6I$oA2Bmtw7UPc^O0`9kZnwhnJwH9it4o7xxDUYWx8Z1^qR%tfx0+d;Fn=*S>iZ78@C9@g zTCBU?Frxd=(XgtQJ>!hekMm0F#E{a2-28EW`TkgY?FSxOWjf z%MGf4&T|Tfs;Qp6mYqSl<}d?)OLfOXhKaqu6uIG4xwUjvl}ii91T;nb$4Ix^7C2#i zQS53{*(g^KNlP45vA|Y%Rlo$1au4*uS~F!BaLSZJ;)5zO<`7n8Z#_JaxRn|^T^iQ7 z>%Qml#iE{fGjMmc91wDv^4R_zp@yk+d4pUX$v*f;UFC9#jv@`!rAeH@PaHID4E1Rn zTTi+7^u=O&0{o&7e9o3y`D3h_0HWF~1-!klg6L_ZVal1#-iMwTNnxG}iit|N79!qX zZ>AoJz`#&C0uYG!BC9Z&>0&If#U1Vmx$F63Puc~JZM~uAh?^)mZw{tkT^(&B=&Yq8 zc;9;~bl>sA$Lj7O4cRMRan8=gUS(ejnzH4|P)D28oC8l%*T{FQ?3G-}mPTtNqp72o zjhJ&)$RSvI-?;0C)5yl=5|wQ-;mOM<;iziq>7~na7%OKt2bOhgx8<_3@>HAH zkasv$rfNd1y~f~=OIP^eb7vIQz|dF0OH&N1BiuhRmN}-7DvQaeGa8o#AJ(nwjr!j)6mRbjNNg#G@Z-4$z zOD@B&eTBEeonuWeH$~G{HQPopS;bs8S=_ks<NSTsKfM1)-p;YNRbbpu|VLxAgC9OG(gBRUf*L`2{QWP}c1!N-WbXO>;*XoJr;i zw^F40Z?*8~(2<0p@7!*+zG+Wzd6m%IUrH^&#(krfi_F@JGsu!eT{jxRrqz0 z30f(LFD$aiW7nY&3yb=n(%5Li0|k`K;cX2pk}b7>NKikg*BHhd5>~P&T0qH58!CYz z`9bKy_*ElD<*PYU(d%OUCh60 zIn47ELd2D8jrZwqrXYOVa1_dTQj%y%BqSZk7=}5IFIb5?qQso}7z^L)h~=0Q;-+T` zOlciRj(RvzkRLUM=GX|%{{UrUnhz+RW0=J{K@28HT?n`$_|`Bt0#?@aq~+1nJeFBu z(muBX)OzoYq>|h$Za7vZM@<|iJG(!dt}B(Y-5nTl*>A#*CF6N1#$T68X?5M4?QM^@wmwz*oz}GUykzBcEgwfOAf7$1 zZ8#6Zz69{=C8V2*XIk3fb`WS+3T=De^1ePpt&+1=kjTdn&xLZHSYX6qQM_;B4Ruz1 zU;hA3ioCXuQL+yx7U}lsj)BviF$6L0kX-($ZAPmkn7X4pNa0`F6OVi<;#fQq&GKBo z#VJC5?3TK56i9+q4|y3|Lzwk|Y;19G&~?o#PO2=_nZ7@Z+x#W%ib-3!ysOi|&kuZC z;SUTrS$uA);o83v>8S$dv*nClo~~sU)QsQ~Yz57Q&Z0K9DSdOS>DrZikJ1^k18t(@ z`WMO1H%C#%@fhyq%KJI}G?bA;l+(nrvW{@E8;_^o9PDY%W3K-I=!<-g`AWI<9$GTG z>AnYC&vNoA8{fUY_;E^KB!PsX&9AtwW#VkF_o~#=tpI8;!1EvGy@onolUgEeoL85O z`bsstBT+g7*6~CM(x8SU9qswz$wfGE z-R%u2a5fw$`D~HW&6h(YH4Pn87=((9!Z#h7-7j&CD`j!MSCE1(O0eH5dSgt}muF-i zQbv$LCfBveBEtPP!Z9nH)3~X^ZGc5lHkA(o?V%Ba0BzHAwlohRNNvh!h6kv5R7A3% z=vZ3A07@AXPVP|+j1Cse(xE+r}z6bkPI!l7JNZHkJtFFtk==r7L8df=0;gB~?w)DfQ2L?BA zL2N1K!FrmX2zcxMvEjVFj#|Sr&M9h+s&p=)O_cnkTK68mY%SJn-y?8V(Nc$-IX-b7 zbD42Z6lax-TS=9sVsBN+h%9m`+^xle-_T)WDq14|^0s4k5(fz;e}jSvp{SCgbk(6W zkNbn~(09HehC*Z;FjlSrjH*+Lsq*Z;DKjO8suqozi8kBs)A7Z>M=o=${Gg@B3YE?) zsB58m#O5@tcTzS2{)c>BXyJPslavI?f#dES%4+EvA<4`ZO-w_=369-|t}h)ms7n)u zQabt;NZhVVsG-jMHO^qqI3I|!UK7tOt$eyds&*}DI}v*V4m!<1qtu}6RYo6wpGhq% z>M3p_b%E#FyyN}0v)bwmzb5fthN<%zkO-SKrIopojkkFHY&Y$>$1kh@0P*#Vm+o}; z?f(Gz=Klcdm`ANK-ZFBPxTBAMppi;rL6<3?HHY1-9wf})FE&5pZ5;`08xUVoIDY0S!n(fr2|J4 z3jmd!fVSg&FP1+msIP3MT6Ca}mUWpb-m!oYGM^%_Al-*?VQX#I8f+>~;@UCwc zc>e&0IAW41o`z||R7i?^pn0vgPJn&z??s~TO=Fb>PB>rErxoRV9s4wX&sn8((Zf#k z^fOB&jBH$m2E$j>4X&|Q%0>)-ySeto`{=Gf1(rBC+76JmV$nH&v zSrX`_2!H@?K(?#<{jfIEyKyRLSP^I@qlJ=pkqno=l!8AD2lt4;q zBwy=~V~Xo%OLKJ^da8=46^nxs3xw%=d*J3q7^8Epw@X??q3mvLr~!TYZRkC*tA)ju zGnI+2)hn8nUP^#bPR8RJcGSr5t5X>T(OpvUok5S#`rtK+4?cg0R@VHZyDj>j{{Yt# z{{RmQ5k)`?x-C3t6IGblo|qFQYUf!Orm3ccy3HX2s_5;1e@sN^&nv+#vt&j(lE~`- zc`klpcVD-B2_-X}iD|ksLj*o@3%iE7ApGBk0-8f*vM-oL1hnY0Aiq$c{{UP=8;>ex zaI>UsFEoov>d20IIO*k%zck+RNMS1moPR!_F3iB;jgWc%+gus#YUX zn|mK~kB@Z?8d|!Z?B{cSJ{LlUw`(>t7DFWBeCvqwGbFOhGLx{=*X%uU4ShX5D?A3! zwGg^TUiT{g@bke8+lpx`GyL)DGVHn)xNX$ABVqb_rWAioJa@= zeoMCJe{1x`m#1`ypkNoyab**j9BzhE=alrZntE1?;#7drT=}inxVYa0)X*2WlZzpy zWvyg>E+(OTu*+0+Dgqlx{+;lmN@s($m@96`waHMR%ra`q8kuP678y;olmrFQo z!zihzV|O^+Z00dm8MIMVvl>d4LP5IrRUJpZE!4G62M93``AB)DRhCag=8r0ITDCS_ zz#hK7_-#w87DlZ5<{^%wkKh?rVFl}(2Id}ByeAnta>KN zavCa_Ya?o^hGIoXBqSjJ0Ho|it?z`AwbMG}qur0o3KcBRQmrH)yak94dy8AI{NSi| zM}-%OHw8hgT6%To^VpNNl~UGj#M|$U+R)>C+13h1VmMjBsnOYpD%i7^2eALLEA3 z9WC4Iftw44T%ezus((A z&q|~$g}2gA%D&{Dm}=PB0l0P41%>$uH;FiY8eG0&Y2K0DY(W?E57WL2(={^rKyktb zRxVZIG@6!CMB<_M6FHLY3lzu@XnSkVAswTYE<&_c& zDyD@8@~*=c%2;EVZjfA{-y?^#4x@^*G9+8HvX3J+pD6&3&kW+yV`>UYmmf(|vzt=V zO&|e7Y9md~4r>E26n(Pc%J~*uNJ03nbEccdpnxQ?2FKFk;{`HPVpJWH-)Ll%BA!}^ za9P}7ZZi1~<&Ral>xdiD3l zy`r}6E(_v1{Fa$yigvG>t@pBnrG4%<`(vNU0WY`-mhhDFw`!UBk-;Y|N0jL|KmP!1 z5a8QcX7HYb5t4*zg|zLp{{Sovw2l^!AxfZ)mZYOonHhRY*9C4ndhLP++hu614jkc( z>x;7pa?GBdX~1O-pcA>;-8~Kd*wzTUhRw?GxDHqJ5Bmdt$*aMcW>v+xq#yqMQo)!w zK25FC-Eq=%4JcD(<0*YrNFxbf{{UBxJ(DS@@b|*_s^)_&mKk#z@U3F-N2bbDf2qoy z$3?|Ut?C_9QebXKwm+iNN{E>Y-NNyUDyJnrI;C~bGZ|POtA5t}I$@@nrZOlRJ)^4J z3$TpH%0xj`BLv)g3_D=B+7N}Liv_u7f;l3Q*<`TjcL(Y{F{_wID2TN?^hAX~MD>lt7OOG-4iat5M4*z>yIl_K5Cf#6ztrMx*xIodk(x-6V`h|*yKR4`(*W27tC~*=Wd$_S z83{s!k-6OU?SUq#U<7+!c3ha`%SuzWhn=dAlv+?P?SX#qDcI6EMDl1QqNR0NWO<5$ z*ZltgrURR4;Yg0Ghsqu21MyrVT2@moBN{ zpAUF@fnbY1&!viKm&}lCNMX|V>M=yBtE{d)wzrhVAsh#N@)4Zd#=4BcjO7_#xG9*B z#dgxTo|~c>Py6SaxkEhWQ+9-mWfftnvkA3Eq$pN9k?Jqk1XG7M#eq)e0m?< zN_@UFNp%EL0lL`wgVz>)H%kO}UyGs4_dY5nQeK*xmZGTL3}m1??dk1<=B5R}HB8rA z@>BB4w5c;w#sxYZPo#AOp12-L5YHkIvdlOfB9xWuPg_xw{4w}Yhg5;=+Pt>g(A|&N z;z`JCcOgaIa)VQs!5lKp3}CQk^Lh*0x4t2b>;}b03>LiL9Wow&Tb^2m9x_GvR3;d{Mh9`SKo`)r7XEm<{ zL{3WT8#>=&Pt(&5TTwW%0cy%<+HZ6=l`1PUN17_HhtLRDu^mOfz7LYPy|#ZV$KTRF zJxy+940ScMX{s}2QzH=LxdXlejp44^d0xz3>^W+XSJT3+Mv~J)=JG~^_=|4-!|B@+ z%TC+elsgDu+jaU0jao)lo_Cp!kO;6R)RBmT`*@Ekc0TCYiYiRC;+Aw31&=Y~Q(#E! zd!72@1I_myR_YvI2}@lZQAIr3BiF6PueWe|;yKwZuWT(`@HtaPQ%g}>D;tm&-8S!tsjD8-;-N^{j!6$LlCp}wG^U<2t8R=tuEO@i>P<<<^5tq{JcPSm zC!()faTQGT_teCWn|J!*^P9c5Aww)qRrY^JNj*WYG>luRjdr>Edtttu*A@^G>0-I_ zz(TU>>L*OXN;+uWHKRy1e>Y40cEHuq5tkv|HpBb8pgcuiM_jfMx&$Cdo%cO3O+7bm zOP)~kI4)%I3nVes&a|Z1wc}CT-=(qEG%As?qUjw&Zb@9d#d&)}X@WAyt!W0EZT?>! zJ4_(*lvKCcqPU_Ysfth-GaxJhJNjdzX`tAAB$EX~=QM;nkf0+Fzf4}V_U&!lmr9fB zqla0zERNP`+f1dcu@y8(h~9tXNjaTPfiFX zAZ%^z_?&KUw1Bn+r)MLtaIk<3Mc#&qL)s~<}>Y&SI zI*p09(*!Lx6uz)#QZuVT9EydTYupb{ez+=EFz}%AOcGR48c1P+c8U34#AdJox9M)C z*1#{1I8#RJ453ZTQbcmhsr4KCA9jx54fonzB+^AW1U*bnn;b41A$0X zo}QK}s3%DxNmZja)o@L{i0}8rFXdt-1QRl}sS?QQZF}Cs8mvt`C6iZiesxL1IWAPy z`L%K6#G1%uCih`u?0(pm8gnay2espkh1c{g`ze0L)SNMsQB-HSb5!P~)ryo0q~72X z4_tI@A38pX}^l#=gb1ET&QJ{ zt)N@5^~KgIQqi@`Cd-QbJ!(To&YnaHH2@EDg6ZKK!X3`Ax)GJjJdnLZ+(!E^x%R}f z!lLgZ)U(K*Rgq4U=CJB;9NZ!yMV4ipHRM~~*cC}J%AHFY1V*IvC;Q?#7m=yrx|y0A zHi-Zw?B1O=#CvarBGEjO&mq#Xa^HJ{yL;nq$XKNsWRfBrbs6^4|_Esf*^^z zW^jrT*|$PXNAFgWDs>4;hsqRwpN1OE35w4?)(I{U9P+9hgE`A#qe)(QkwXpl0A0Fm z*4S@J6J>7adO^SPMClr1PSr9>%~3IB8b#QBv7_4?&eiHYS{@@6OHS1Jba!F`+n=?7 z`d@#xDuuR@5jq0Y@tJ-ins!iD>{NHROX2KtV`)OOg%WB%{hY0L8ki23!3|?aKGw+> zh-#{GsyHiPftgI@T?+UkD(9?i^3(fMm z>Zl&2;#rj&_@Hb-?Qd~_S=;SA0YmxRw9MSOC=p){_CkOq63c}IJHQHi5lCEB{a zWgI1JBu25h-Me(ei&whB=meE73xw66G1%W?eesGhFk5JIN}5%16-z{}ELd-=*4M@< zlo{lLr9bUjOA*j@_5QfUiW^AL5RtJ(1E97sV&!S%_+$;{(glr=LV8~u+p??(8s`(z za^2%Xs@8j+r?|lG7J9_{!*sPgLsLPP2fQ7axH7;P_#5hqm8q$4j&? z=v(#`{fU45KH<^g*N8b?O6Rf|rKN&Mjo~4gdyjB>MI&*iSmDe2>U&EPfnS`$lQbQ9+IfMW<_rx>Q2xECa3JId~ zU&IHFd~XMdJ~()z#}v$EhPN`7Xf1y;}&Y;s%+y+fONazpS6TC64!iBq>bHZt; z<;OHoQz`g#+*{CKPViGUAXm;zu}>nG96j990nuoY`bB9e7( zZVARLOf*s|L>w$m&%Vd)fMooN#i3yjTCX8qSqD(RZ*R*Qt(xEyFqIaX2T2r-N-gPu z-}x+a!NP$iVriy%0*KA~clW_8YSj~@sY#VNfg_L)kYHqAd8m|CF(fjG<&{Z2yI^Tz zyOxCCD6Uyjt00Nw60QAiTj_x&fZ1ZO^2rj~r%1&!5H3dKp17}6LPC3|PyY_C%GsYc1;M}D^T)_P zQZ*`ih7cOMMu7&$Z(fjbZe_=OX`E4Kb4W4k?>1^fEh%UQM_%eI8D?zCl~QJL z&@(YjO2i+V->}C20JH>R@i)m1*dsV4XrG7jdJO|G&0fCj%_wPgE1sZ*=suV-8RnPs z2$sgiB8P}FiduR+zbwh;GNCS6?PMP3wl<4GYT9Yn+N#;J$kMW|ZcQ2>vaaCo)cbe( zVo$epPuSl`Ti+>mk&P`x%L=oNKwNY__-6Rr;0aPjja5)YOf?lCJlb_y{ROXq3+;s> z(!wfw6swf1BTEx=jVV7RiY8+-XSDfMEjf)LXBwN+W7lJizRW?Ep`PvNoSAe~^${#( z-aQsK>UYG-%M{*{kC4egu7N_Ot}0^2+7U5 zrsNj)KVQ!qLk-Q)zr==SAH5$hidZG3gPY_kNz|+CI$@+ydr-`BjAd066qJt?2A(SY z1;36i(jQ~n=rA>3a#;g{h?}WYxs)_<$uzOWDoJB|0#&Whp2ql=Y6nbzR6`+Q7b-n0 zgE5jx5-_e;NcQWDZ6RpdRIQDz{83!8p<`A_5ELz>p8av8(D;?CrwNPr2xol}v{8%u zANjyNl7m6#s8^{JXwpW~qX5F&Uu+i@KEy(S8Tfdq>4_(j!$I{O59Nk%#dd3^}Vnbr%&P>JuQpwsNNyVOcizXtfV%kOZN2N@x{uLr@}XX&JwD& zlF}7TlgMeRs#4F)g|0WXtbg-|6;bz@bh)nW;Gte9OAcj}wQLJ&h=9{>w%-hTVw1Jv zqNsM|%-QfW($h^!MD?K=WM5E7BKGvQI+Y_f*ed-)EbmI{*?nVD@Ol(!|n&rDh%m?a4Yu3OYZQGbhn zDv_$=*ml9!zEm#dE>_0kF(9c97#pIGkl+0LF)VJi)~R}3Ztqgj$_XUhg|2(zPUq^e zYs{$Tg1%}ZW0|6B86#_>ZPXsN`(xhe`B;WS2RTYaRV4!cW26JHAn8*(h7QW7PLmXHmhIT7w(nQTiFvymmsSJ>=*Sp z;k`Ep@l7NXc0I%81c zI9l&3&L90k{{U&Zd@%6;0K`nAEv%N0F!&)tuNt-0ZnCwkh3JUiMS?V3cG7 zxbG$Wo={9xXVC2N1~4uAs_nnji{KuZrekTt0KvccN7cNswrboOo+_J&lI2MP-A>rE zM)Cn*;2}4cHswu@rg>q49$abEC4lHn_s5$-HznZ>BBEvp!B=n;fwx=*Ir2m}S=R{NIgJ1l zX=#Ld-FNc0rTg~4;8|w#Yb})X83@~!TXAf7?iS5?x+W4SRqTq)1<50Dzvb~B@}ysc zMN>-XXoqq)#LE`yc}ua5J2HHR{{8V3k%N`)EQoLqH!G}xg~CH zE!!HF3*Bq5E!6b}smYK=BUiE8b{59VWi~o=FBI{};eZF~ajw9z6pf~hJkfxU+*^I| z8~IyrDDGIiw~5t4m9W?hK{dAJNXK85WaYF~If+K5B#l~*q5u}(r`r{&>KewExiMpJ zg1d9VnksCtQ0h@VU{G0z+wkd*HPw?oXILv%mh#Xny%O+)igS}uO3|W3t9Jucz#9u6 zUZWpA^+g0bPl~!}wK7|1I9+E^{{U6y5K~dfQfi}>IgvzV*q)#p>@mw(OAKx=V{)B2 z?sb|@6U8<~m`Rt@)z-36OA4>>qHElJaHQ%lGZvmdkXy2yrMFQbr;1w1vaHWCpJgR_ zwvv9>KB2xlfI)68a4DxS$nq!4V`*loGs;n8bp?8DasjpQk+oBAusBCf#%#TmdcGXZ z@-(5Nsi9a}q9HVMYD3Qi^koceH~g_-ib28_X)bV~RLcakuuD-QER9rE);R1HR9Fvj zU@%B%CwH~1Z#G%dwN-6*?${z$X0@8(NcZ&Zjc0KUML_G_GbC*cDK%heRmPCQ)*v3k zsOgH+i=BO^D3;sWS*(Tgs-aB@Z-PfDYujQve_y^EM8?G3$CL#`t_Q;jfMt>8^ven# z;s7_qCZM_d4-0k;sA0`ymZHHxRk-^DgUk&aEyRSa4PWpS^#x>k2pUDl^LPD5Bbp8N zC(`t|oG5Ko4NOY)gvAOqkp;++?cdYW)4mFgwir=7dqKofRn+U0Nh>)i6f2|!1b1WK ze@kH3$XdWhDiSZs+gnRlm?Q`!c_u@uC2b&r0owMrOW=xWJ{Ow;fekv<#aRg^Ie+eG zA1#3E^}{wF;vUd)ZV$E5%$f#@4rsc%?7$wx8-H9Xo#(jU)fou_>s1v?v8<(#5>>7Z z{`f8Q?QpSLNhv1Di-+qzBvnB*+97KnPqr0QLKYIUwOwTuTisQ&fKHSCwi;lFj8i zZcpcLwk=v^L-uVZ=|yKMn$4=`sjW=3Owr3Kx&%9d%elGq#omfGhBi_8A)NiA3X;w< zT6~_KWT)lJQzIL?f~{`qyIS41#qK78{H0YVaV}J*bDGNp(^ey1W;*KUUv zy*|R|5>8bg#5u)9JpriZKESD8P5R#!ibxpu2iqxKRBahlKNHte&CY34S!+nBdH_e$ z*y7_wPVg{NX}MIsWMZjFY8Vtz{{Y5!x8Kv-78pt81o*&7RkUd*C8+9{)fOyOmf8nh zju^)&7(+fWZQjz3VFd8hJ5%!`RMH640^Z}G9s2L|!DYh8Hk_dqp&X|)ICJJCAA8^G zalX^a^t%caY{A{oxEHwJwhD?io>rU6+^QAKvc|3r?->Aw`r~bZX7Zy*)a^*n#<8ne zg9{%rk`2Dvjj^;u-pUso`6jLx;hr7L^4ThLt|B=#PdSky_(znO#jM4bYn}GQGE70T MnY2KQ+xxHo+3en*80094Wz|$Ha3V?@=LqBYEi(cN1__86fJusw!_p>$T6tje zho`+LZX##V8Tj)3)cOyOfM-N{a|s2dAS&Y@01XiE|APMy0tgf9ABmd;fPn$T1Y%%f zgZ|If|G=3+|Ddh3PoW-71DIs|X_;lyy%#Ika50_pRY?{eXGRl=zM@>8Wh}FfGsB^<%fm z#tc)eqH1c5lfJgdoxq3GUZ)#Q%eG&P<+Il=m1;A1HDc2!#L+Q~eLYDYlQQJXwfIj@ zze*vz3G-BG&so)#PZFf({_BHI`VfxXStAu={?7b0GrzY!?-7TbhVdK|W#=N08} zS;Rn2Veg8;8CyHx&Rc8g|p;cbu1_oGCbf{GLYd!w9JME6_V zYt?`3JB-$bwIQi8P`-_8H*V)XZG&5A441pxnNHBH3Yr7Q*W|wy zmJFmfQO7&A%C5aOYJx3Gr1|BnKfph8dcj9WPz zgdQZv$McxUB%6c@+E>4;Ev#tqVbyX{I6FMCH;CYDikTz0iaSY`KoFVyF= zcBI)c!IjJ|YE|kD?~6qhjU|$qSYr-LWox{Z)g5Q{L@?;!>@qtY3~5PFX~Jm)?YI1K zc2Ljncf*aSz-0wI3lVcK~4j@-pK zdH(CjA+JwFYBUMle$P#OECo}awbh=ttz4Gn%Y5X-MaxQlbXTfa3)l$=)<@UP&s8<; z-?@xLZ5zy#M%OFEEl83;mwUH1Nq6i4{Q0aOlOXaNc29uNgBXhDMZGB|1SN)>A86|K zpCWzL)}*B9{zScX^|!#o(VWyFBI_C2=r{0+u|tIemD(iyhR@K{!4|`rK#nPJ+cMWb zcM^iX+&->(P_ffqW^L)nGSR1p(nXf()x-f#f(LF_5hguKFY*Pu*%{*(#u~_Nf41_| z4#$a{uoKGI*5`CIY8b7wI0ML}J9?_mOa}_osvE`EtWc7FAJKLJ=9p}b5_sRLBZij! zne0b&p&ZO#A>p2^)29+<@5x>z>6h2j7ZV6LrD!SjZIbaKJ&7-Us%9H!9s0FYeGs96 zo*GyEorL2R$}DMPn^-z!oE!$&Si_8#e}_vm4dENA$o%8O&+K@0B{ieLD5>u{x(Xk3 zXso4QJ+2XgRbijiRXbf?Ib`_v?6|{)Z4aO05@2BfBOpY4y~3JOJj}aghqRj8PXMjW zIrR^1w1fD#vR&U=s^{hG@LxM=gu{Y8DgwnPS6eA8MY8!nrDF_OwSIDo?tE3@zyPO? zr0wUIKmM5%kR4J?7-RqpJNqRc;PKW=T1;F(&!J-a6t{(%>i0s=Uj((>*W3I6ZY+@~ z&?H9q8%rK*zK+4+&mTeMEozi8OmKjIc@B>X2Qx8Ak%^=FCXtCdAjuaMP zgAM!cb{NEgy|Moi6U^D%o|l98-1c|CA>Fgg-k4R666UHb5!=RbC(yXypzXiUYxCz# zf}kFc**Kb0R-!-eD)RPwvrZ_{OF#u~IOW0OT8f#!ChW6^w!S6?&fV6p3dPju8b^yM z!Bv*U>c>*>7g8KC`-P&cymSad$z4YB*Y5|#Sw(p6iTlbh<<8qw>6P8{d`Ylkv|Wvs zvH`LB^bhl$g&#Dy&?7Rghk!Fq%$h zEyk+(hGCTEfNNP^udd6HORaubE=+mz=DQSqxk?rRo1hQ2%15~?kk)&!Y4bbm)}thh zVSsR=l{^>m$l_XHMe zBdfbP8}tb{nDJz|Bsth~QmT^*yreS|>$T!39GlqHBOsCvT5fb1vlN#hg%za&Us93Q z9Lxkz8)EQS3q6OjBsSKKSqFu&c_b-rrejUKM7A(Y7;yL9(7dcvW#RRL`|7)bH`NJjBlAsoU(X>76q1hAx3mEdIt47aONvCD0o-%AU=Y0e;~c&P*I+A+axf- zUzT5{&>22)>07F%YsFlKjp=WbG(4@gc@pm}{hm0!iZDTTH!#>Eo-_N4!2~5VRO5hF zFx8WvW_sYpq=?=*RBU*FKqV2k+P*brQ#&rwL74r>VIKt_Ttz;HzTcsb4oH+$ta7#F zkR&KrIsEv|>x1h44PUjZyesbUVU!-fK1ryzZmQ}q=(EV95j;t+QMz)0t6AM~*k7$C zF7CIBaKGSfX)|Woj!`g3>mE92`3CgEBTKU0N5`>{){StV=Wyh-luJ8jAfjmf`K^4x z;{ic78=ZLkjh?AKEJGwGM@K958Qe{JK~%1wp;k-I0Q+{JljP^;N^1Y?pUI_HJ0@9F zrYmv$gy7`I>;0}QRz)`3tY5ixvix2-yQWwabW*iBD}!lmcTWJ-o#I2|RXn6))9Zz@ zIM!5&<8BSHBN}BgpkH_4xFSy`A^iep<#c`RoLuX{;Yoxtyv%9|@K94aF;{NPqKQ5v z4n17|o^4*eY}sWSn?uGpmKIHOUoUGE6Rq1#${M)Un~}wqm7O7Ebk1MBK-LrUCuY7V zy?-gdMNnrK3%8$`aC+F4{csH^ZTZDrgojmO;MIBm_G8Ct52Z=9rh>Y)Eo6Na;u-8e zB%ZLvkKc0fk%L7WFeXfg66~@8?pODq1dX7F=is8k-N5e#cKNbKP`$iVK}Rr?(DG|P zsitG@g@rn`T5Qa;Yvd!@3Y{Fa$7!)(ZZWiEVlme!RkG36G7>U;9{<308gKJRL90`F zOir9iUGXXWcyr!EBOhJWN~3N;qKr?Ecp-|g4p|s7oVrW$t9sHJo*S%{Jv}xIGtzc#unKDDT(UDPxx+@UN!4z1pOc3QAgf0>K`hekY%l7@){)N zynfWmU!2DK#@Rkqa@i%_Lhchw0B9AP*86>5y!Z2t4Ih@>etZ5X1}#-~%Z6a!R0by#UoyVO{X?b; zKcVxKpr&TxkkcJxABU>(3_wEOpP#g0zm0ioL4I*`tRKYBz~FWG8lNJZiqvi6E3td2 zz^SW!{ZX+spTJ*iM5{&oxH;!9?JZKRRl*}R!-{$>C9YIGS$u2lSd3Swl@Iz@9l-V|ln+!f-39>4f)E1nPSB8R~uX8}vkR2N4#Pvv**3Y3-f1p%);zs1SYg#M$maIViN*kO(Hn?r`x@D{!j90dzM&zC$!DcW z-kD3Fdw@?p50au?Q61zQdxylv`Wq3L_ugu`8XITG+Yo!8jeY)$MDVHSOo0&=?GgnwtVvXd%;ta3(KXm z*CW1vh|Nf<`a3X#eaAAp_Pu$w>zsvN{kJ{pzV^XukXm6hjd&=*S(y`=G@Q~aFz%JY zg*~NLH4S?y$ytDr5bP4|2X0@=n>#YDR9EXlv+#(gVhXzAZlG2b|9hu%6nAboN!x&( zzQODnxN>~_^DP5YnG}`QYIU~2cSQQB@>wcI2EEZqFU^4`Kv!j4zdC81=WE1tg~^y7 zBzYxjDb9XMRIDZ+maopEkx|dN#3P?{kmD(jY7$xX_Mx-pQ+CXps-gTMP`=F5x6N*N>y>EY z;K`IF<{rcJY(Kl^hd|x)Y{``4y!lr~yb~}9gUntu)j&oZfV{}1|0&_Sivk}P=baV%F@z^}Z zwzGGrOX1Ld@*{eo3jB9vWTXdv19)l|uLC;Fj+RlSlmW%==^Eia$zX z@0^HzJeqXxdFZTMuT~$mRTUWvS90GD8v9PS8As~W0Xg84I~{2bjBnrLyetwm;4sxn zVEOP|*;WUFqwBYeM~5mdUR>?LH?E17v7cOg3o)w_H)Fa}yGzs+9C;%arMu^u<#4NS z>D74UjUN~@;?|9jVpBq79@eT}wR%p=i5rz=8N!C+(pZ#_TPz#u|KJyWDQbztP@1<3 zSw~e?W*bKp^2ku;s@Lol9II~Rr1o@o>;?28mF*OWK-`l4Dxz#An;Z}i47oKdS39!# zI&_fuepBwnoP#!IQdxh-Pmtf(%N(;FnCv&SLm_?|X1j<;yKqut$`hc*uu^wKGu8h^ zKc~`d+j<;BefVv!CZ8@pmyV%aIYX90W=zbDTx^pB2D`I@#OaF^)U5^Oe0g3)7Mm8f zB!g@%05>itHW6}Nxjj~^Z}Rr{2%JGbj4dvX+kaKK^(6d!Fv%pnhDz7rj}e)0xQh-> zOIq?1p!8z;x6wNL9kwaBG-yY;d zL?(C?T>Gy2psM9Co*)!0Tt&qSVi?VHiN5hs$)c#%6*q@`Yxz*8vHt41{z0quqe-xI z3xL0M{5MC2jDGtX83UN8XfacFPO`1TGGxRhF0Oq`#1Htv>{E4?%{vy4eb|>n>u2^P zy_B!Hx{55*SqGay;UrRjhpt?3YjM?EvLdL$WL^X}9s5=sA<5j43nIV<_Cq%{9Y4Vz z2Osqm^j|z0+-u2&_0LQzA9M~Cq`WiniV$x)kH!{GO3ZV0Iqt<#Lkr#`wTp=5V7x9J zO($eAV&bQ{=n#mfLkoHyDz=(uI5!E$WNZ2>mXWZ1=w4BUO7 zdQp8bts{>~+ufBfh)3_W_V*ZDTeptx$Jgylx(@n!Km!NjJ~1+kplQvJ%~!x^9M(fB z`f;Mt9(+eGJ=#kWF16=ypPuk1fO@0!Oa6w*y$rR%LM|?v-zuRy0zcfRw!Iv^4V7ZU z7Q#kz1v1m|mZ}RhwoJwxzV!`B5mhD!xq)G+bNHMsvcxoaDseL5VYY;olntv&>I$sG zo8;cPnP4Hca>>c|X}|(bm;oNW1(n6yBf=i>cm?i>8pq5R3PMKn9I{)_sZQ9zbbMO< z^N@(~fpTBTUoIY@hhcB><*Hk$JTV0DodMrsAtHuj1&5f7++%{jB;JPk4$tZmXw+l3zs*t9 z{qeg&hJT3qa(MAlW=Wkq^nvd-(XH#hz{@-Iveey=LXt1%U#4|k2ov?=&!R{|?GjDD zJI`lZ^W44QvF>(aR7z3h+oZkNH~D5=nSSsD$WuCu5@SErW!3`OR=r)_eRK*}+}=59 zBhp*!xg`vsAW^FRT4q97gComL=Th58$C%&J=rb{dWV_cT(C%2h9x=DzgW z7sU>}WM{Aq;CPj$>s3{<^A+{B>;3Dy2fSLHw|&}7!wEWhx}W!ghM!a5JVUONN=f{Q z=%ue${3z`DF6+HRz2>5G@Pj|K@jJB{d|Lz6J!J?Dfk~vR1oAG??esrReaFY8EOC&( z(;Pc$h&$jxWX)N)7w7U$rZKaZ?cx#OxunasNSixeiPkO)B~XtF9KYStOl)1K67c%f zUlr&hEK~EI=?OsGY+0kf_mab^t1#zT`Pf1DdD&t)y5d0Vl(gh7OW?%2uz}WR@d>cN zRww#6#G6cheQEe;U`1KPSdO$}l8b6NC%kdgXP<7d4!qWiKiD$^e3)zg%v=kJ#QnMz|5|icVi*8BXzA47vbjFTPnmgcVls|Li0FQmo*aOCTj% zb_>)>XZ3_sQOnmq{}K$}S#_1M=q0+&?fZ2(;u)RlDoa`uw074tGDMWPe{2Lpm6Q9( zdUa)3b`wlL0jiv(JU;EJ#LP`lP`p^1-gOlW^GY#FB%QuY-FM6?-!{&~@lEC!@+VnFZe`pSn3yJV{=$s6`tU`rK0EE`bi{e*nIfSe#SoOI0i0 zdIBu93nYi~>B>3vR#{WjV*tD39-sG#+Qd`?iLtD)+jjJnL5qNp1CpxgRqo@QdTnE* zz5!H7Xmqs<@T~Pz-?hlTcuB1*8W8C(OzX|06Os`Vi~yKR$d7%1;dG8>aeXm3t&PFc zQ|w_!N~%7~hCGb&uh(VKc|oRvL_aH>(*(HONm<%Bk-Z@#%wL=t6+FCn$2nQ6CGveP z9;iK#c3W^B^8|PpTvVPc=lkzVCa^FtgRRuQcjExBOGN!^?mJtp-6q_%es;|d4R^uS z(yAVYNMD_g2zIsG@$LVbehWV2sb>Rz`Q>e+z>O?U#Jn0zE4*@R+ZI7g;=(p2f)t5pPmh{+U8YJ)(hZz z*2-qv`DV~F!^*Dosz1b2eP|?vlGw!)d(Cn^+kw(XG6Q>mE$!m5l+KQS6)mrf`AT#@ zuy7tOrj^HE{oabNLxdl;Ef?N}j?lQaSmydD&Y#Z8Ki)SDbz=!Oy=o(@J1*1JBa!x$ zpPv3Bfb-Cluct`}8qmV~XF?y(Wpv{cs!iy1x(I*VI33cH7CO;fU0OaL=z&cmv5T>uV*yt`A5*59G~*kwt#QsWIt3w zI9k7Xvp2nvm9ZbSz_^#~dt|c%W=yFSD4l-x7^S~(OVBc>;1FI#Bum-HAiJDPKR!&F3lcY zc#vFnZ()#6nB@tYw-r3<@9=QIiNrv?NBuEGibaXVtFkr}>D?b;b*=|&e+Q$3_}Qht znS;e+9P{0nIG61znLkB9<$XkV#T$ZZmPoLw<}0M8Nc=9|Q|0h!R@rhy9(+-!>nq&H zS@|c0a@O3O+R^m9d51puHY4_1>os4hidcnhuVgui=G08)w%_krPPvx5=h3C~2_EwT1Xl1h3I=zXvAD38+a`Z-DQBUh7DA;r*B+t4{r;83z zsvf?Wt_FTfa+c~#7tD_R+Obt$sSHbG>7Wn#J@dCr`=&yPYq~f#+R?&3Lkc}LScuhxoAXUv5wx;EYPK$(7B{=a#ul~!!$~JD!!Z~bkV5L zsvFJ8b9jg}t_Ba#U){dSNfTL|3x*K!NYebJUQSz5YdQvmPY-Lh-mP!v1Xx07)f9%& z*#&>8cJMy+=L*xv5n$eoq|~YR$c-=x#%oZ|?6a&Aty`ANVaBpsi)P%)j&SzG?r+#P zL5?Zco#m}FD%ip)HEWn_CSG-tFSu~A7EH^shE(=4=}g=HgjXcvRjl^DWDU1|N%vdY z=r6VYQZG%hPSu+|$utqkb&|G)7{RVrCaD(KIg~e@F!0F}z;G`)|BuQYr>?icNB;n? z1(kAyS|LIk(B5_wZ26t{B}c`_uM91^h=ETezb%8|qgB2-g$Vr!mQJaj2X~Ff!=7#{YoE(XQp{aO?1HPBws&eg1wn0=f8_USs@yusgRetK$|r!qvl&C&I!u*1 zfGBKIx+90XmAlQ1AH!h*JD+66G3i|96CG&PPZZ3N_36I~&D$DAoRS1WR4wi6kj#3F z*IFgI<(*lS`?#npxXkY%!vAc`6?+`Axhnqa50l;x={T?Sx(ZlLbOOfDu7**`T#-Bh zlEs4x6-pJ8#J%(Jcwh$JdLlVH3x`R9E$v(^hC2E59~35dRapguBB{tno2Hc^A%5yl z0Foc&^2P5<`l~I_9^+C27h`Y!_$cP9eVTVHgvX(!3*N3VK}&NU-o1L&N#VI93T}P0 z-7{q%iU0I#-_u)Zo_~{4yR3zbe~(j0FxXZjChcBU@$PdF%^ya6flM!Aq=*t#YiE@9} zsyosT^`;BK0RXAKHb!r^x7n5X8u4#aaq@!ql(83_J^g31$BpzVQ!d>9dPpeUgRfnHF#&atrVzi5~hIFs3iz!}L8oS{SXbR{-3lmVi-z z$BP7zfXEdU(w&; zNj7FJj>xKG5vfX|1-P~gqXh@1X67+!?1FmG(}@`&9mvb+PzhA?hhfsC%H2!#*j)94 zwreh(w5KwFxav|39~IAnA72XXkxER)$bX72|l7k}f3XueFu6&`Xa< zOxW4PZ)5BsASL)^2WmYSAK>(PC);n^Ye z#3w)`K>(w=p@0^9tYs$1D8YlQ?$-3Z@T_;1%}Z6~7q_ntOq6dT3RqH+15yItZHh)l zboE-Its&9G$UgQPt9?XZoZ_Kue-4gG!f)2GzTms9x;@f=+B}ibxcb^^LwW^TuBb&V zD?P8?fBa}c<#Sf(w+g&$t&qDz<@dhb(z?NZQ>6!C2*d1O!Ao8_$N5+we3=*+9ib`i z?Hkcbo=wm@P>w#91he-F&yqr^Nl5u55>hl=68Sruw63EZSQ{6xw{UUZ(9?|Q=b1Vd zHtug~@I^D{?fr8K$ymk zQvt$cTHDytVTsgEBuuI-IETGqpoPr!I${RLj;7@KI;Yn|orX%Vw;cyTE8NlO*(!NLfzTnC$ zLZuHfrXJzVH*-eCeg=wA%xHJJQz@kl#Eu<>DrjH(EFaO4PW14Lr&Cll-5-jG>`GU7 zz>K`5*A>d~E(@Z4#nl9o6Zd`=65L7MqmpZEFbt|19rfvZ0x$(JET~a>rW*``!>^=z zBzBNyCiEyjzJ=!2m3rqdjF47w)iWL4&vtIFgc<7uoZ!S5M`hJ8>=NsPRgZ}7929#S z-=fpCV3KChvC;68SQ`=Q^BkAsD;0 z-9%~Sf_gArE&?lD-6HMV5m-!G9?9uyjONHxSc~tbOoo4WFO5ha>?Y+{w z0HGt1Eq4al^=Bg&h3yrL&DXlHGc07aL%7p`wp&@?0}G+#8~Y?-02aYMCF5UFC7oJK zn6@g?0P)FXd_z5jb-Q!*j>|$GENg1z_pj7oivEY1clL|^ROMj#SW-ft%X{-DfLZ{B z9;kMPifm);!5yX~UGhF?R%2cE0z=5+{=L7nK8z2r=CS!T^dzzl7~pM_(%<;{O$#XD zz;gm^P-*Oq(I0`@!`Ljlo#hAm(#7yMxgcZ$T@Dk8-0aW=>$ogdKjfYO*z^IkXK%7@ zRni?6WmQfwWw)xZuSp%sIrPK+8sJ-|qC!SfM-hA5c(`|@rYA}y5c5fq- zy1Jsv)w2ttX!El%N#|LC8#bR0lAZtvcZt&MAKy$exRI6v-x-z}vhBIy)voD+0Sy&%6{f2tNxBxS#)J@}nCLOKst0YP6%<8fl7+P>m zz%l<^*D*oeiz`KpFvO^^^)K~m2CTS9HVo&D)5&z<)ce340B*|wR%su}Z(#R!yU-9F zX7Rkejx~o4f$*|TW5RIjz}oph{IXFK^y~g>ikHh#MugM}QwzsHv z6|vXG8>S3rGOCCOtBxN*(${BkXGR07c$;^5YalzKcTG7Gw@g=K2}W({Wdx^U`zv`q z!W8O8;h1B+F#hmy{{v-6FgA<=VFItz50~WzNWYVO0%$tRA)B<<2c!#kcZ5p0E46z6 ztMI$;y=Gnb0$Y=doDePc@_$vlXa;_ZBDTa!so>D)N~Mml1e;&oy#3JEAXKRVXgr-* zfZ1tcy0}P;v8+)q6$u$(1w*O}`bk_Gq$DhzSV|oSXh`~@-WY^xvkg)cqhgt1l5OZP z;7R-P3YSt`HLPQ?Wz zY|rR=EkWWa53JqIox7R!g_o{~Me<7v%?K|qqd_Y6?K3?m_Uqu`tHBp$+A6I=$`05- zVoOrO0ZDiFpM21C4k{MyE0OysD^2x?trhy?+D9f9g^~O~KL+95>^AU8^L1E4tro>_SJ~35QI(wT`!KbRcTGnzU_U%jH zyo}b}^Ux`p=f+UAFxIP--w0k~qKU=Gg}6=~DL>e=in|>i4ot8BW*k4R)Haf&%=FrQ zOo&ImUXITL<-_G)u>0&QzPK%QC`A|sMzYOcNbE7>_FpBdc2M>;o!9hF?ea2Ub+`!T zD`#&EBpevq3!i<-7jqja_EEhIpo}eCXfHe}X1$rv`z{ z&5xNytK8T#e52mzYtv+FR;-l>C7YD(3~v_@0NfU;2_AlPpR%!wUK~qx@dS?(14l?p zL^AeK66yzmvrm8n>aVipKu4K494$cX5(aAyOCPl-l_Im+5DnckxyC-6*x|_qYm+Si z54ZH%hEk}Ru?^c~Y8_5)NSTr=HezZYD6Wz;1bC5Z7^c~<@n0h^w*#dXNDd%}X_OPD zDUld3v7Zj?Is$AMx&8FiY}rxts0%Bj?j+^)$u~%I^?0L}!cRh(V#TtVa`+Ynn$W+| zitN67C7ja0UA21IGqLsP$3AGdye*a*nBXkSLaxm^fh{JH--j+dLvYNc1uVv;PXZW+ zRtL{K!lp(CZ6aG^*Fq5cKD7?>Sa%+D2|Fh8#6e%@0VyAjkRzT0yR!||626@$aYi!Oz>X$p@Si<4!B{#ll+3Vu z3gi9?`CCAyt>KlFH~uEJIj(~DMZTBP ze?o)U)S8PTx%-bU=vG-bdrp7H7)QRdW3h&))kj%m3?!-uzSFr51B_x9JEc=nx#hh% zj87=8Lwns9pGy$q>AL(vB@-&VJs;?-Yejg<6S+b>5N*8X#c{5Hwbi@Z9ZscTB{G70A|xud|_)>$IdRw16F$d zcImZMd2*!wVQQO&y;1??+BL*p(cG5KLz>b%Kf~L->~1io_A{%%mHHPEUikxUgK`3{ zV_#`sb9{Vf#rcv(z=e#_!e|{&Vh3MP(qp?ufE1)0m*UEIyY)_&r$%M?oIW@fuE?oe zV)RVeo;7?Al)Uj*WDQ4emVy=%4N@f<^XMJ1{jl!y-tH*k^wA#6#S+kQ^#l+ZG3iYq zk6rvyX4(OL9oaPemm%^C2CYgVA_9gC@4yyyoAPj`?8jnhXOHY>e7|EtBQJOYnEfwh zdwW}$=`*zf1hcv-z28BH8*@Xxe_rfr4a`Mq*CX~yFQYQDHe(>es;^IUNCu-8JHk$~ zEf3kY&`a?1h}8k~B`kKG&JFYYni5+P9)V=* zVZ72AGG@3rJa$5ddB{z}Zd0rF3c=}1f-rAoyS^eV=)LmDd@co>ZMh9`Gq>2CJ3Bsa z#N-#0xKWs)%kSXvjkUNoys0H|BTqo=K_Jl@J(kWVAX(^~&u!d5c}o>1pQYwX@b8cV zyiemfaXkCR-32b~3`wIL8bt^wVc@HO@k2HbT2{+!0+17iy2(#wa{{d8i`)e~JZqr9 z5-^ym4(6c^YfS6d(D?882MiHSt3?eENs|AiRJm4gJzEs$8=Sx&E8FDi;k@O((h z<6`43N1U49q3~=ICg7ifD=+(dWH);Fi^!}8x6Z8h6^EQ$!jjZosz+1nX_4#BxGcTr zeVbH5-o|-XYEjRLaUJ546^3u=O%d;ClZ%8LlDdmx(&g6t+wF(+Bq^%8#?8eQezQj6 zR`j|zoL(q*8= z{tk3fnt0Qmjee0JgA=+r%`OkKh4T{rN8Z-TrY0A6Zo&)gH$9%VgxQ^r8)HK@?PUbh zLY|!uctP>phvH{vSs<{|`0M>b z?L$U1%9LwA+)ulP578Z({|U7|h#f~Mw~J^ZBXzYzj(C&%IHkb|eLL<;&qkXIZrzFn z2{XCNCjwWJu}}39&^~AW5&R)zL~JYw~Eum3r6W?+Jyuc$l~u!)68RTbXqf z)Xf@Wd)U}{1%DYM++8%HMsCFGt0FXtaL-Jvfw!+*Bot0RbLrdV`X}enkkY94cWkbJ zld;R+8E|P+SFJ}PZt(gp`n}GdZF5xAS0hOv0437kgEg{haB+BrPr4&EDldn&4!fLK zVSD3~^=!)`81u+63ZvxX|eJh~TBtWszq@nqjT&jtB;&|)dWJJYl0ks<9F#g|x zk(ksB9})-e1S%H={SPS>64K=dnpZxvU;grF&}cuwU(B&hl_QZbLUi)uIE>VK{YwQt zBLW>}E%a7n{I{#QNh2k&XC)q!31cmU%X~jcSgk61ZA=XNsGg_I8Fc&xlECc-xHZMf zVgr&dg}=}!u_1vBgu@6uL^*rlmm@;#lSN4}8B~-9sFTDuuU|gz;8ghFu6F0<)?R_r zKW)F9ZiYcE#~Q&iz@(bCZfUrPClx*L>)9?iSw!v7*IGZmXVGy*Iqyt^dm2Tyjpu#EsJ7j--+0aUvNs0YUq%ir- zAgAo9&;<`ix`gNK+O~NAZB2oO90crzx0keWd=liVJw`mx@Q9N)ZGQzIb?ce2^71=vhW)ngp^-^#5KetuaK??_38sBi^B zN4XV082@t~0w-4 zlIwr`fr4ezf-`x6&T8kupMwGoI>ALvq~MN)4u+eZJJhhPKHsatrNlj(2)R+LAIaRz~zZW38wL$=1Q+@5(L;G_gfM(!WW!>Q_MM1cd_=QKcsb6c$+=HL~;G!@g$g$=e$vG<)X$28Vd9T-llX8 rv>e6FDP@H(tdAt#e!fN^;L`S%i)y%RHku*VXf%38j;xjG>D&JT7fbF( diff --git a/Classification/cnns/docs/resnet50_lr_schedule.png b/Classification/cnns/docs/resnet50_lr_schedule.png deleted file mode 100644 index 4245f44be146fad487c0843a15599f8746f58fe5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 22779 zcma&OWn9!@*DXxP&@gmJcegasATcyZN=S*MbPU}gAdPfN2?!|NB`w|ECDQT!!TWyB zIq&a$IA4GdI#=$!*IsK~6RxHrhXEo1!N9;^D9B5z!@$5H0)LOAAOSz;1Z!$wU?^b} zq$M@oVGo-hox#1${6c>IzNZTOM*9-QZ#1$ROPF!&8viaTbXyulrgc(puQV612T7lU&^Z4A2wtq zX9|>(1N??yr(rAL4Uii!9mr9PkwGL=R?_VVF>a!JVX#!7jK?XlsQg82muc(Qnc;cO zsU4*;AFP!NTa-9{h zkLtoNkkfdtj2@WBvD4x|vX^MwFEMo~e-r4sub;T8nc5$W;em^|OO-Rz{<@=6 zcaqK;mm_GDRwPQs@LfYj3ZW?cjW9$+we(|cM=oXbe)xMUdmG7jYl@Ob<1{{2S`CEm zxP-fr@^-c|&b<_52R;EZ(3OIaM~G%$)vPJ2=T-_Sp8);oD->nm!?!+UmIN?1K;y++ zX)wnEM^oEeU5N!NV#wQnOgnh*iPxQ$aIX`W$EMSZk|9h#&jI>+EqFibN7U=}Ze9`k z-=;n4i$Y&*A_d-pd=f5o6_#WLMS^|H=a9SF&DdYB-U%BP0eZ!NIMWIySL; ztTF@gu(d;jDy`|Y$j-DuzY@OEud1($u8Ol87;M`uOtF{bfCd{w4 z7S5vsbxK_ z@4POq5#rq0RO}JHH>+Kjr$vaUY}6C-om>)42&pG732XzAAkKNAMTzHY_PGCu^!xa6 zfg5H~b@R)@lJ0F2|4{3FENs+^mv0~0zla;hU0xWXzHi85XkkBLaW3qXJNhPmov}6% zOhfj~_<8}2298fobFB1+K^Xbhj#5m8&W0YjiZ zIL=1hLbkH{ZZT(o{9OKV+ixzw#JdyecF_17X7te*ulI1d-^Z`3y53jk1Wy!A$M+P? z!2ZL?eT)8|$Cbz)zJcX057t`oSMrO0{ANvCz4x{oub4y?Z_j5VvpG(7(|P9X#(Wl4 zF=?HpPIo&D8bp|oSp`pOFvG&Q*B45muu~6hhAbYJ7d#K)N_g6;HwzBRtjf-=u(;mn`7V@Y7jZ^lbJ7C zNahSgWvTeNb!f`lc<(A*WF9`Qa>T>5pv1Cr(~Ca{3P@80A%w#jRt7pSw7+^#2vZ{~ zHH}oS>Tu9tR%yNTySRW5Ad2;uTD)we;wBKFxwhS+9|`vEY3j2BXUVlkmy)wFfw&Wj zs@^H_5ameqIgM&>u%=NcJX7)iS zL6|g?jJ`iVsam`;_WGmz1|^OXdrji6>RYHMi#(^A?zdPqa>=UVj^y>JTfK1t#K}Pk zIkxJCKc=_@TRnzC*S73MB7{dg2@R&KN8|m*a_!0vkhn&FXzy`=1zXR6@|&^KJi01Y zT*Qfn#F-dml06eXk(h_XNi#}I;>4dS&|kqV+mcDCB0j6b9dRme{XIb;7Zj+;#d5`* z?k;2Tk~HBVB^)hPh%n)>9PJX9Ek4&4^Blo6q#^p`=2r4#HH?gga7kZz3N-#)wCkSV zrF2D8&@FR?LmBs?O3D8oFg5r%F&tGBtW=bvzBZ@l0^7Ps!$w1vdy=3GkPmz&@9#1u z-((w)RgD_0fN(SSg2T@cxxA!dF=#Yz!g6toIn|H-cTBU5;4^ivwpuILceETvGSs>a zQ3VJPAN0OzXPyRzRqyC=hm(pbwwU3v8Z!Z!z%GbOf5WgI~z1`y2vNSb#B zTmdrS-muHm@Q{A=QNFKXq8h{tF^x$2O>>o-^SxZwI}VeiRzjIfNL^l5C-QEMXhUlS zW~6{$1k2HCU@90%_;csC&$;h8uQXenm^3U37X&-wRLmB|y-Uw{uoyW^PZ9^A>`jCO zHdhKTagKR5JJ29_45iT_nOcEhBfgak>CjEk>3UR^(xm9gojzJ^qh;09JCC!{r% zz}W^2sdyB4co}G)*E$c;>%~dJ9@a*@f78i@Ngb58GYl89r6Lg!*(V~YXiJzE9{cV| zyvK@$MllmyS-5$P{M%F)*fkAIDIvY{$HNjo4gqV6D^B-B9IZAkMgkJWY+?*rq=jbG z&4{3EUFJBS_h5QcsyO;pQ`R{fJjhGKZZ$hP)-sCd_lrcY$4je*xl+4&s|hCG5bVt( zQ7z(#S#GyZXk-sfkPSM6M-qVhN`R=TY}r#Kej&w+@;m9aviIBHO6vF@kc5H!f!B=^ z0iRSbUWCJa8;@N>iC_SsQx7{;t6{vFU;r%tM{`$7UY5 z)CVANR3rw5ck1ibs=^=aq%KWxg9qc3DX&lYYd3!E>13CCsgcAuT!ICs{~lglO;R;w z?KkTNe4gxiss5#L_IaVo4QoyVhZG5o1HeI8D z864v`AJJ9h%UdYmU{3Ly5!mJ*R=nwoxKg8pjYm~tU)_Lz=uCEgI>Z?_BeFAwWl7GG z1&=z&3|2aHQA{MSv4a@QV8%_Pum` z6MYyaEX8GSFxvpChJW>1uo(u^&jVJ*<8()I)ckkZuvI{!3xFTkA#v?Pn-fGNB;Wi( zz4+he)M2xjz1Ujl61@?hdnEf@R!I9fNWBGF%W@!^k8yWWN&@Sv)z<;#WpXh_3b!jo zBOOvSM`mcrL}YO$|(Ra0{0;B?uqP zDM`F!ra!h%*PXl@i);TG)+&&{V>ulTH?0f>uN4{eG2N8=$XP*M}w+*)SwW~(0UQK1ES8t<@i>*pH< zDgLrK8E8E+V)KBQaz6pzB(jB z{V&9>sl}{r{0@84K~a8V4wT<*2OrtX{6q7e~KKEQND#8nnaUAnpbjCrC&<8HQ2+l6%UMk$FXi?ToJnQ@G&FmKkHhJzytBJ8MCNs9w%#9D z!f*tf@IhnA815J9=35&GsFmzzx(9y_iz%Kec8q-$$LAGMO4Tzrf?p@6k; z5OVh$C03(ciD8~!nv^&aZ`+#r;V}O0Sn~8aB8XPfaWH>lFly4<$+M$ zBV%Q!7bx3aPXC5^`x!a0QGx8u&NhDTI1n(ayPdMWQu5YJ3YA~fOl1;ir_48|xbJ!J z^m%y43L4mK)^wlyivLt5X_4kd+E6P!@Tq9x5C%ATw&*~muCw-nXbBSzE^heJx zJeEiLihT=(7vBlZ?H42Zew$Yi{~I8Ae_}N$Rqc` zf8-DqTy<;j6wc|KjDaV=aUpzw+id@RTV@#3gU~O`O58kAH#4m#%zFSm%MXqw*LH~5?_V#@z z9B*w)tY$PihSCJlkR0~-Wv_U>Ona!PS0Ej3n;W(WY%a#8E4%3_E{f!PY@ihdO+9s` zkHx8-ztHI!%79ij>yw9r+&31KYHLlfD}6R2_8W#sL)`9)@V6|R^9|f5w0q^UB5q+{ zRm;4Jf%prc%-6tz^=Vd*mDH5O7J-;zpAKuWGDESuOBGwirf%R((2#z=yc~{@q?~1HrjtSVR$!L88?;~=^b&jFNU64s)E#bW}4N7TA znzvH3tI*UOA_Bcn7?R8}1h%k8v)7wV^Fr6E9EY#w%_>*-^BC?vTbuX+(725<1LhAb z8e7T+zd9{cq7##rLNipM30v&xw6vo8pF*cs_hq!}&qGwQz@MCkvo{$@Ki1hmU3b3s z4;Te&0w=!h*rB>*l!C*Id#@!RFbfn*F~a3C?%53C!~=nBaICBcf-q?x;)r+KeM<2$ zCe{Thj=O#o((}%?YP(!utX*A|kH3B$O*zI8Y&ad>(uGoJK&6%H=z;1@9CSW-c=-KP ze?=M&0VRMzqBf^#Sb()d9+K59ae-1BQP8BDq|l_+p7w;QU(_)+^vCE7rk@J#CPcUI z&;ANA@2q#~ssHCMN-U~p*KhsdF$KvwSR zFHE~^^^VSokc6ffJNV5EryZc2Y8Lc@zk;a(;#636<7K=OpH6x$yJ4G!AZ<%tgSdMy z=`8_#l6a%Bn4g%<9(=dB@n8v9f&LWt*Po5wGjmLqZu>Rc+arSMr}BoEXH7o!W5#1K z!Q*##)d^vd|aQG@m6E~Rgv2YKfP*GOdZBs*;nKwQ!T;yO@?cK5ropyM;9LGLu5wUCW+BqzUP+g zqMk?Z)a$Fnp6AqAW6T+o4jgVIQM~A|J+vL2Y{CfN_mFu?#a+l$nIy=2Y++}>!6=e} z1p>bFMpVjRtX!?NHI;&M!?^Zwm@HgH{RzJ2mgUllDD^wkPH-1fZ>~XG$C*nsb zEP(Z9=-k3PGtI>l-imb7Y-YL@`TjPBiZAm+v9)C6|He>F)nNEmdqEjCyD_59MIp3| znyC;Ztd*T)mm5!W2)6$W$h`nDN|S{|n{rPLf&wq2udf#dPhv!Q3-94hrMY2&aP}s2 zP`<-WttYo=Ad-~Z zRE?aQib)-A3wI=UUa$NRdo`WOTPS;xSLTC}CXD0&8Glha)BuOva;_vqoDY$bSRaH? z_?}9KOLiIBver7_G&AlN^AWU%w^1Kp1qosYa7EyQH*2-F3mx-1bkPJ7+;i@{R!?ye z)`&-)cMc%fk99To)jJptl5LocO$sKX0~(vG0O4j_noClq;r*xuQCP+VN3h zAmLdT$L=Ib6(fp*Q=bWaBwRe5sUIa4N7!!kk6AQoyMl-Nsa3^-ZG50NtIL><=R}^IA zr~&#tKdYAXv&tUGn|`?_H?*EpOL~GTnwLIy*XQ2aMCSAkA6MwU8g8*F>D7~w-*UXX zW@Q7VDH4;;afO?rm=^0YqBGK*(|ocy_1Z6J5G6mI3H|b$_FjLZamxDpvEqyJI**>ReyYF$CDDRynLp<~#%eWsJetIxQI zuSANmBaoKMRzH%sncnS?Ccl7CvMC$1XJTl*#MsyV^CM!C`qR+^^4Z>};iBG0r#q`LQ`3VRp%yeUDqk}eG012AtlJCMBnHvJqC zI@fo^+%eDc1MQ4h-fOII?x2hIHKW&o5o>vrp%Hbbl6%J9z#@f?PiVEma2K;+&X<8WpHrCFPkmD0yzQ>a#E@ z!M1pl(&m1YC(#leNEYXV9)c|dUFyO{Mg=KDCbHPg#6wPeSY>Hy>$Sij<-XBXoiR~( zXf~%N7`#?_rv*-;WF62q!^!pk`1&g!L274}ZXbJh^MxdxCsxN={2$E{=bqem+_?6& z6R5$4ZMY(2k6tRQ=B;}*mrmc2T0XLZjpr}(EPj3J$gwQrjDCw0#E6}u`50lH)ZzfK zd7F|ixTJqzrl5P#{`ADY-_!mS9&B7G<3 z^Ok5vh!v?5_TIfgCzhc*Np*>@*Ef54H=Wq*dKNsG;QR`V62P+PrMB;cd!6goLtO)L zryv$6CC6pcI)+`1FXS9BzC4l%h#;WD&CMncJX@3Dl{I!+hU0+5brVl_LvWK-vvFqbQlT6aOj|d5#098_s&93SDwb9slk-f_&MkyUC z9z}5cqa+j#NAfD{<|LBAh72rj2B|SnFj{CvHnn8e#Eli|eJ~`B%wkDs7|WYnjF)Z? zsyZ9L&OAJN)dikc)f9gB430>Oi`u?0W^cwD-V%;72OGjyG-GMz`dhWc#0OU9H0uqC zWc%RZ_PkceH^fl@A6&h>1Z&>rVDHMDI)pU@KFC3XJ+Z8CXg!t@tG_xic|%s1k_wN+ z%*MFPKKD%lm*Sve~cRYlhBWmRr}?cH=xzU;ZbRXmqUoSAfqyR*=V_6 z0dq;!#U4~T{}!2woSSVzl0U$x-mC0#^t`^(BPK@u%O5jVQg+m){co7$dgUNPr9)s3 z(9TMz%QuQ5Ym4)5F*hfH3^wT0zCF|_jCYj;9JN>RUT@xUYvxlSUl$Wlyi{I%`Me}X z6eE?f@PHNFbFySt1|JXy+oSOT#-slCdsrrTS%usc+21igq}#R7FYV=`w7Jjk=VO*u z%PdY`&{r|@n6AZlUOn-mj9V##x;qP46mBWS6~vKgvo?QTX%Je2^6d4^>Q0OG`hRc} zhzbuyr;%>S{6cG#eInjn!{J0JCyt)LvaEQ1q_z3)ne!g3ET=yQ0wQJ*9xWv!`ILwo z`DPv7+LK>s)oJ#9v^APa_U2?R_P7KSCn;SRW{%Sfcdpz{=byU0QUMgGlVgH>|uOyD2MVzBkP}B7V)IE2a?;$vd9kE)fHq_@NVfE5Wu*Iy!(OQRV#o{evwc$I@-~_{AeUx zOSxXr)2OhJ5)|AZ@WfPzV*vP0E7KH`&3>Cv_C-;G2dm{tM&X2HUA5y`+&C@N^>pM) zuw&deGBW%gg(GIxHk(n(#?$R`WqSlDYLO=nve>pzp-Ecnoi4a|P;6Vj6gNZIvFAY_ zXdA~k48U4+eHQ#H3QYEJvV=3jk#K&Aje`n&wGtmu>=^fBM~b~02boG;?z#qbCs|Vg z=`adzBm)moTAj~N?!wnJ5^heYF>TjLKiToTYnuPE^?E~TOYC*CxZe_me)eH{w@UPd z_HgT?=!Z?R5LL|1kyWx{cxM%G@n1uC9UJfFnETU_!;sz1tY)Jn=8u)&tO&Xdnp}Oe z)hxId!5e>U13XcK+P|jMNoc%h5v^6*7oy>@#3kskz@_M+o=&`Ld|nt_WWapCk;vS5 zz-RT=I@0RR%|$`p8*)XvZ+@aBl+#Z0dMXQ7H7Q}qJi3;^lC#vsm# z8fV1_JG{a=Cts0FvPzR$v{De@vIU>Cxkn#atxiG| z@hm_-DP`OWSAgCW^^J;CbJ+%P+yGzN|9p)B3Zuc5q#0`w)fU3@{rmy8e+;Z%0#?r} zikrC?p|C2JT5RSz5WjTGaDTLBt*ogskrMAI8#T=SCu}Lks|eG4Vl1A5fK=-o)P$mB zetlPH(#*}Uy0)M5R+u4=Q_IE&D+nTpzFzC0Wldr%%C=bDT&A@Lgth$V==2N=K)1&{ zZd;t978y;@v`h6yBU~%jHQ`%pl+u9?5#0!|Lg|hN%SVi7-JUpzarOMxo0-ZJ4%KF3 zd+wIb^GD`j8GJW2frKi}Zy5n+*=HYc1)^lM zUg^~{HUPQ=#ec*aZJ-ZLP|TlQ4VJMAkA+L=Qu~VYxek!gqQ?E`$hCkGAJp?Frtw_M zwD%cBtFLeVGON5Uh?_aB)RpB&#OiizXQMp7M)v^*9*utq+bmyn zq=}1Y9;a2_iKbe|8RkM1X_9-gOlyRq$9GbEfZ6x!y_*^aYj8nMD>tfA-GIV~>?-+_ z02pjRWBhLt1c(42{`>NKWizR(Obzy4wcUN0e7-#lUZ7Q3y$Rn}IaMcI`Pg;$CcOQ$ zv{Ca%{jphru=Vx&4Uy6jrUMDWxpbKsKC9!o*!YqTjB>41h}_Qd??{(9gAf_0AA8>U zu9gaJJ!dZkJ&%#U);tNaI$$K6t?!{_(%~oDn>v2$I>uXCHz?KL&Rh^Z;0+5WOzvu zqtqdhM66>DwmniOJ5 zqgBv3-qO~P-)|@b=*8Fn=*5Ua9POfw5xxi~^}0Md z>Gt=pvlb%{NsoKSh0wIeu;CindTt)jR4T?BvSvcI3JF~3E5IAP^DBfuw?!A*bqqf^+ev#F6#svNk2SojC2Y3;mH{i2^afJrKWxm@BM6n#`{(x3_%Z! zU^{~r*|t7FfLM3PRD97P1JQ!R`YifE20|r@r@3Gb$)@byG=KFHRX!-#6LrIfK%Q(= zEn}V$5)=-I_ePAdPmA8ue}~Hf`3)$ul+oes0MUR}W%uV+Pvj_k+~hkDVPi z6xA=1#Y`E^@*A1TLy}=N|Kc8Xhj$;=wq{P zGam>g6f+iNHfc|9vYHhzUSJ38aiWo~)s_E+ro)F0aMB`_kN{er_V~Q6PXghDuZR#S zo>@H@%0Czv;`ctRx(~cd;_)3DQ7M7N^f<+F%95UBot1TYdNe4Eu3DBZ#dkmUC0?_zW?4`ck`7FOv}EG{O9L&$Oo#M3OCi~}0;hP7&^)CDhYLTc zQ6>K1G0Hf2R@tecolgbNL%`?w&-#N0Rx0U^o1|MA;bSE5s}8w*D*CzXatZEKL68-o zXy6kfVoxATebw-PGAG%}PW&*YrkWB|OV-iy0)1+|Ctq?uA@=6E)4@oy%E&85FpcLX z;B)@ZhZ98FbJ22Zqk9E)?M&S}*S_MoAY~w!= z-tM&5f!^AeY|!_~0+%uImG)jsjLTS^9-ERiR3lVwp>pe~(RlyQ4z>9fCz7i15VM0d zM3bGsbvM+F?+Mf;=K-kYuU*+3WF!lYPfN_8NH%UK;ZiL79u4WN3_J&EkcRSDaQ)N? zkR_7mA=FGgg$_+bR^S56A+caUx{wGCtroXpPi|o!Pz!Pt+?m6J?a<8~CAKA_a9P4- z4DkXQpSaE9!C{~-KC7TgU;~NAo9?PT3aQ6}c@#5^?85r93Sj=}5f!+j88)7%TDPOC zCH$C*vDL+T0^!NmYAQ$FaXYi;HAJ|{2|pf&Lxu828ZR@i)d1R)F%quCXonf9+i7^F zpQJ&aRZ4rL*oE+fd3sW-%LM&abI}YB*_BshhMN`KbGxVyFuUH$pC8u|sVC~1Kip@f zKg~|*7chHMusa}k^1Y=0Q3^nJ75rWE1zID)&7K#$O(4}#LFUb61lIdd*#kXFIaP1N z61ybwSk$JzR8CY?zABWTf$Hg;TJVtum<7Ynx&6P#2juqO8rk%{(tx}>&|L!5a25ry z8lgoU7JinE8TM|ff3OUc5#zoUb(3~fi!?HMQL?TY1=HnU5UF$jH;D9Kfe{wzAj%FILGq3m@_UqH$IdKE}A2f_M|s?YIqF^jt?u3Ce_-Zd&>w$<_7euCHMqMi?D3v z28Xj!PK^yCw%yUB$c8)w_$-zHo_|>~2T_G!dnZftH9{JImD>xIhDxy-NSBdl->L!U zfE1sFs@s?4PY{3ei@_MA%l9Y%B}_#~IGH4g96rj<_={;?G5E5QPk{R)&{xNcKSe73 zbJ$aXIu1UiF!1g@p#lAQGYCSkOF9%J#{`H!Uq(7#{jU9^CxX-e{@F@w^T5}-`J0` z`IQsJ6RTHB$#ld-5m|6sWxU2i5H2}Fzeg_v-CH&L&>pn1qt5QdpN`je9=<(gCt{mI zdIk)({R$EgY|G>>#xy_I44_l@xp6D#aC{*SIQdRE#CP3v`dufoLI3cl<0h94$(0Gf0Bfzc{UdMFXG$V7qE4 z;#I-IDnn~}RZ#;?2U+l`@eW01RXpRytXz|pN-KAdbJCwb(_~-;_e}3VX za56*>Oe#BVT=4p|7k{xsFLBjwP1dBMNBmFjyO$t)UGUEJ_u~eI%1shPgudt^ggf~U zK%#4=KkaapHI$X~$k~1v;PA!S9Su$yOyv9plm z{{!2$&H-n$JGyA$E(tHIx_Fi+oUnptj~g_olqiKp{~G|h6@YgV_d8~p^Jh1$XUk7Y zW5C!Syp;Z4)1g#gHv*h>;PkuWq+xwtPOdqummng=)0^SE{#XBbP)7{fb4m42YH&16 z-}f8;!nZ$rSvo}gCwH3*WDjT_p^SYdd!v7J-#)pv$hbYf@-^lGlapA;Pk_aZ3}7v@ zw;$O2k#Q0wGeY5K0|= zROcx0+48w)Sri%w+K*d9@jQ2IT^mj(LC6KRAcC|{Gk@ESZ4_iA=L%1#B~pXlv76=O zAnq~65lWLRSGDtN=Vt}0_Zn;!YA!V&@o;#4{7*jvN9nxFBhq|_$+}d9<|iT?(@*^6 z9&y)^EY=NRHSy98j9G+kksQ76K8y913Tt%k=wEUQ;ps#i0b#kplpUDv;@PJMHdkRE4knDp0#2TgmDg6%TVnJ!pin@ag9a6Ok;}MYY}0sqxM?RP ze5>;{5Izw=f4aP8OiF5^_qq22*VLtPoD(;6-7r=NfLCzat#w#5*8OGE);H9+^ZH|x zlj=N>lb*m4lgFNNBSxC$UMzX8W>!$d%Xq_v;Xb>Kk+OEQa2OIrhf0rZeU(NM_p`=J zF*8;hUqEccmW47jFcJZ3nkXV{IAStm!~Y-Os@SZ2ky!4-a7EoPm`EX+jjg!gi>WHk zWGvo%!gT>;zhG5!i{oIaW|s88?lqQ*FL4I0BV>r^BeG<*j@!LAdwyOFFAHfzJc%@I zxoudZuf(klRPCf{*7n6j$3wM)e+qePYu>#)E#!}4<_UI0Z2j~?a}GbAB-@bV2$cd7 z{Ho8L8Emm*^}79RGzMPx`i>#z4`kOLIM}nN8V@%b6IHqdKNr}Z7&xe4i2J{8N+{N( zra}eaa^yXui;4E#7F>El!h003|9rtrpi67dJ3%ppC=-x>a-5n)54p~$ZK?|u2vC{z z$+@%iO|f^=0)o*o6uzc9rF2BDbUraQiJ${59BWtUS=?c#mgIyq;eVJ0l^sNXk!R+Z z85(a&PQd1e+pNH4QC-Vu1v0TK#zRcRxxrC@+%I`D*+&M@c(sPHMi*C&Y`R;Ab}f6K z(IqPcx%#nBzsNiL_#m?I=4I^tgyDCS2A4a*X~&B7_-QDByZ_&$ZTrHv))3A&o**kc zT7b+}j<<0gMH@;C1d4XYKgdB8`C}NU3>IDzQW%i;eY7;|PM>D`zNB|WmJV;khlryA zaCc3{EoU9(SABD|(tT{s@DJn>@*kGQ#>DQpf3;}fsd+aS+o2YPW*LwyZL#Zs+53;t)#0_6D zYWrLrAuw8&wK&&JR620naMT4xgHk;jN@R)r07mmyXmWU2GT6s!bhid6Ph*V2D|wfr z9;)D)QoWmQEk8hm zTLJ}&1tbEMfh~LpI=o~L(sC1+`gl*AusgBS_=u^CVSBPbDmv5hV6QucYq#?vf&cY* zrPa&=mw#lVeE^HR%lG0U4k0=X7Kj9MhBWLij*9>5@QE5KZ%t`E^ej$cr8+T9EjgZ+ z-cM^ZP{OmfU||>-2{)S9Wn^b#uyc;N(6bRfUHx5hNWNIAbFMxvV_1*GQX`E-GFNr! z)&yhjCz65Jixd`+e9}aqENRx{8E1()H-W1%CxB6`o)CNmPZBf39+g9-kHm3#_64$m z%AOOT_$vM;c2kiG3$O#H?halF@$H@?U3pa|`w4R66sX@BTiX}A zCGeX%al}YBXBMD?S)vOB>mLk>BD2c=6?lF`4|kpvvU^-)b$TKqf8~d;n4C{w6J-IN`qxa zWFIii`khzBBAv1?7A|NblH}Qr}o8 zGmkxPpb^@5cZZB*r_Nk!o5rqtXV<%b>w5R!b?G}ub>^6VkZ8_clY?7LPd2Xbs4O-q zC1?t(T?8zzRCdpOSyt}KMSo^PufG4!@ARDUsQ`&LhJ(lh*!D1VNyT;kF2QM8E(DXD z>&HEG7Cpc}o+UhFx3e4>uavlVQBm_EqD8_TckmQspwO9(C2O%Y;_whHz(GTZ?q(== zoV6Y@_0QI1KL8{!!G91hkZIl`O4T#MtbBc=R;2<>pAD;cq6(QLh1fp4ZbqyVL&(x! z&puafce<)%njdvoHtwP~sI%w=8zG=QwX(UI5s%8NAqa4Xt=ZosDeJ2y$ReE&M!La9 zDCG*exgGxjDO0+v&IYWY@qYWSReKKG7pn^qArBEP-o`*9MarTDH@ELE4LgfJc>~;d zpvqX1t6i(bLQzARno!uE+Dm|9c}yRO9zcSIkQD1cEiICMs;P6~1+y2PsfT^z*MT@Z z4+I-0HXnGqzgOk{r>J3#LM%nWw94!yt1Z(UQdz5GECApL@Z%q*yBvRx<&-Db`aEfx zTm4|x34wPf^{vJz>Cq9PJODW1dNSicn7bcqprmO&n^{}(aHig!A#hUNYYV|{sTfT` zBZeMSc~7E@X9S!%J59AK-QL$=tA&%VW>yVws`kgy^LrM>HLR@eCWI|c97dW(OFqGc zL)Z#Q4?gExa^D%V%M)101$uR^&)%w}YE;0FO~cL&T(2E1HdI~YWW?vb|GH!M_q7yu z^2nEMH%o-~>WP1a8yK^~&BUdp>=knn2gUyDu3jy}sjOvqYFh&PT5E4by~i4m zrd52k>|HEE8AJ-nfX7A8P~f@MbG7`QoWQB+GEddljAAp%)LL#LaY{vf5Q!KUDf9q+ zL7d}f;Fo5f+P+ql$~SC~86FhBBR@X&9SJ835o^C>=7NCO&NmtXOYw=8g)xqSF&zhtvzmHy^={m8ql$>&Dzc3wTp z=O$|WIbpq=)Yr%a4|~!fFX$pi6s4(RA9Ys8Uan|j@HbNOO`Nxv&zwrnq)^^^cG{71 z5@{o$q>)o<7o4&OZM*~zi3?Jsb5gS6Wcl-SEW!hxJztTdxRnp*oWSPOWyurT)GstJ z*{^Hnjfnnl4993Ex@Gac~W4CM*t)OAVmNXdgmYS;ahwSgxrN`thl zb?im@PEyh0;V_x<@~(E(q15hIQ-+FTBJ%+1^XZf9+Yq{n?-zoH?0B z`t2vBql8>}b>9Xcmo@e$MHAWpW@284UDCV z*~1>zItdimKtmJI;` zGFiFZjp*fx@5ebRWl`2sFM+9m8)~UeRI+2wNgViBV8JI=T)_)J;t?3uz58IBf=yT2 zELX}a_Ue?P@x}9I6W0G54tVjGx$49mOSng#Z3Kr4nzUWvHvu<;CMP6BF*jm^WJZk; z6ZSr6y8hE<8Q0h%GrGgOsAUQs3~R6|7)ECog0?OMxPUTNIBb$#gRlJbBC*S?IuFKF zD|JkV&(AH0F}ol}S@3mfA`qf9Pd&&p{j`sstg-3gc*$5CLSbGl(Tqt;Q2Y*x03Yo3 z;(0fLhe5940cAu-i!r*a1S<@c8gV^;yZCtp>auwp3;fs55^tXO@5>Hm-+F?-S8=_@JJTpehTf3hy+n1m=+hvn)T>4%ws z_MlYk=WDqKn5R0<+_sTqZ?e=bQNoP;hY==~?W>;7ue11)P8zx-=X!jir1eYSPwrN* z0Z{$$21VvONT#Sv-yNE2L#(JtDY#D6d z=QJ!!14^r>a$K|!i4zNKnX=?f#zhqCEak=vGD$N2#&ET&@tE^N3$Grq%g#h`{+G*a zry=0ZeK&BQhotG&a6d5pBP4CX!td;5`Bw3IutT5krZYzrxadGf3@b3cV?V~m1ne48 z_zBndw`%=`J22j$DNodmS>U9nT|DJ4&Tofsb) zdRkwl`EILZF!jYS7Qyv$a{z|^-!hU3Q!}HxOeffg)T|akzS8P+ev=v}Yc>dufQn_8WPg!F8_4&kpC4^ zTy+^cwrQU9n&MpOc>_2;Ib|Jj>C@9cnWKob$NqBu+dv>Y`*ot@;~;4*EiHfP%38kX zdRHXT41Z2zCb!3zZG@19$>Dpu{)Nz-A!574GgpFd(1c(H3}hL}5~L>1C$g9@>wk^8 z>h#v=9DV0l`cyInwn59%zw%7X=Mk*@L_`KbD36CQ&N(>T{Jfa(0C_Rf5@}v zKRN&ZK3@eeOv?Y+BNR(Rm#g%E$E|BGoZDRe_hJ6MZSMFDTaR9HcLEg-)^kx#iooK7 zAHw*PYbkL&;2P36#*^LB=_(8OKC~lAf!COB7L$a(7a9^M#ABcpA9*7)+0y67TpbWJ zDh>*ILviXas~z|o^#O;lYK)nP0P6;bvzL8>5P5X$D|bqB@aekOXk*3fEc#dCeIc*Y z{!_YwT!ygKD0`-02t z_#kSgw_3bXaIJ@K0G{t1$rDOw3G3pY!>)8!C3Bz2#%~GSwiH#2ebL2#6Q>pq7kl|W z@p$u^4K$F-w0gN{-6USUEzKgd-Z@Mt?z4+7Xxy9&!6Vf!m%O!=>VBwY(IQdxSM{Gw zR{!(E)xDvg4McXEvh}fvA4vQaX67cOQ~1|^Q!{p#fJaO_x`BmTnCF=|KU4o{SPZRq z+lxH(djUg{*f37bI1gJ+nU0q!jKB%stWJN~9Z|+yc8wzQX5%Q0l$JbP8vLUR4wJ2D z$laS#>Py--5OTc8XVlzGloSwOquW}V?lAM%d)b*VF~cVwx%|Q#uly*)sHtk<)-!S8 z*z5v#C^WD{I$Qk!J|!kIG&8BziAT+lRn1l7DeRq<`^-9P$s5a;eKZRbOcRm8oJjw zr4+ims>pYaO|^47d3qea$~sKvcN$KpoAc%~VrE?0Az9;I2*2>3Q{tb&k?$4Ny=O)whb@VQ`!aYEF`_oR3p?kXt#P4a!cYwdbV6JLcj#Azrz*xZ+| z{tE0{F?oMp7ztw*)^Z2T5J39vHry*!Pm8plb}X!f|MksOvt3F*<(-z4-j3OKqn95M z#&h44HkBH?C%)UZD4atx|E~Uaoq%Ik+3Eux!Nn)jML=-lQbBU<_~O+UE?e~NP02|2 zJ62J#plK%_ECdeP6eP|yB9q~Ip}gVBr;D&`=Upsvrk$9%*OUxUi(zp0F)=a)d~Rex z1rCyz?;hwX)}-&-Mm{P^3sl*0vA3LnLP6)(SZ8e`^eq|Qe2rd6_NLxf%C*~tcAgu{ zQs%?-^bu7c_@N9=>K7iJhNpK!|1*>^#Cix0Iku^Pr|ine5|VurkzNEiH#x}aDXW%k ze{cwM^%U%Zl5GF73KJTCL!3bC*7@@17-ir9tx}EA+*#PIClpO-WL<{dy$0iu%Wn790fkv+dc8LII%8o{lM2vVdsx?@$`G) zooeo!9h{WPeXu!`M(cU^^rAtQGrJbC5Pq~iV2N}>!w+`_Icjz;&R55d(0_-mHW9LFAJVLX%-ogfj$}%Z@0ZMNDV&dEVUYPqLu_6v$iKTO^Nb( z9`2B&$a%epI>+ZQGUxFkrwJFcK87cW*zIV`Si1G!dV?izdsp^RDl>K@C7rMoEm#zJ zHq`N9lDL@>MNQoMu%*oV7x6(cU{~-4ZaQbf4^H0yehWu-8hRCDG5vf7!GFJp!-Nx_ z6@<=C7Si+I@8!@;fF(fuZJs{y7AeZqgrxuIcNOd4ADw0XuyB1-l`pR@BRq9ke#C=? zxu!vAMT6)=cu2b7p@e`fJ8t-3;NuxL0xO@s@Po(%()QP%I3*c)^-)E#*l*24ypjdS zGZ+l{W&QL&cGotCxZs75;35LTC2N1bDgJOvWY#Y@N3wrt8hZ1YXibV~ngrkaH9a!6 zt=<~C@?>6hIccE6r3At?sWk8oyx$lrL|vdJn-1b&bAVz*_^|f|`&KYq!EkCO6Zp=N zS3GUGl)SEFal|RV(1XB;Y~nq!GBw2fwBeV0S8#}vE8Q*%^ig~ zj-(;<6aLtU(YB-NiCgNm7)DvY5Zh)_VQGj>ASUMjUoBVu5B2x`#oLfwA-ia?kFD%G zgAfWK+l&#FNGSWRu|*=XjwQV*J2Ba382cDYWMs(}vd)a1@O^ndKJ_1bf14j(^L*U1 z-Fwct_dKhlMO-dF23`-F-RP|c*>m6b44{*UZ#kSdxcfdK%Yg5I{eCgc?5tvE_aic` z(@5AD3Od0$6e%6<+@vPX=A{?;PKHp&mR3vYPBI^_IPsy=udB_Q_Tml_q$|DlFqU!Q ztB5*EMPm9Lm+2pR{$NK~*h zD}yKN*Idx2&Fr(vd_C*7NHV^oZ~un zKcc$3OBd-+)ix=usf0i{e-YtfT|u1p+0YV&o&u{i!vg;iG9-j^r8A!m3EezGNBrET zplwGV-juYSN9tLh($2y0-zo35BXg@ohKWko?qG}Dem~#X$|oqk#%W>!$BRjaCL+0{ zQvhA%K}kYW1-c4vxZ|SjnhfqQ7@SGhe>L-t3{_1WpqZLaUpOV?%&vfd@r%b%(J2o= z>EQ-vQlBs56_u0j0)9$&(Y>u{XD9|F&RcwGpK;Db(NtPe7F2euN?cf05 z@cIYs-G6|?KgpsC@;>=^JN=J<2NzZk0868uaB}?tHnRj|ut@bV`749;I{PeC0Bc&FX~nWZN#>6X{~yYs#i8AeL*x>BjAz1l&xnR7 zDn(`~0SunzFY-c-+O8=t;+W26lG4g2%^f?(JD*`D=c zKd*C1Vt3PzmhqliTJ1*Xxb4u*Gz=YPwiL$K5PcfXr9zYp3UpGCmvW?a!{}|lcC|mo zX4MB=2n;=U-~1l-9)` z>|z=IfdLC=sUuVs!}uaZqo4D7-STBw2VU(3KoL_r;7@z?4k9 zoxM607Kq}K^ zx-G~B`3>tIze!=?trSVJnced51_I09dO3A~%m8NmoS(k|+eS9p@CLh3UO9R(TQ4~= zRCA<27$1AO9zHra$Nla^P9CeS zSq<%;lfSO7uCwPo;1p;o5a8>9LEM&tw>oboWwb;&3nlVp$-fsqU^HpjV!H>vA7NP~ z<@xJS1hLmKw6k{o$&@c^itC=!5rW;?0>x0GGTqS=@mV&#J`)SwGxsZ85+^J^s~ehd zjqyEJ;h#R_D!+ZgNHrmVAw%e^e0IM2Efuz1ezr)-^jsspF41-98=30!lj(3Z9e6sp zLohWht!pBk_axUE0-yOdMNn1T;8qvGd@ZZtBn%-&Z`^Z4@vi0upQ|E(c@5rZea!U| zDL1S$a^a24+N@(VE^7#^`nV(l{!VS(L_ z${VG@^tT$R`=QDQ9N*+6QeJJ8!$fumifu`BCX+a{yz#{Gg>O>VBP&8XQ*0fv;;pNY zweZdS4U9b}{}CNds51!g!X67};HSS^2{uKKJ-AS*5 zc2gxkt2R64D7B+Pruchm3BHIf`(}^{uk-JQ2a^0hygONMp*#hr;SFZp>!l349QT=C(Gc!b z$+uGpA^yuSw+me0=WCB)|b1I?z9Gr||-`7|!A&B%CYPeRjt>juUlTl_FN zN3S}tRzpYZO}XP8C{KT|0B|>-Igr6}F zyIvGaLDF^%Yeb!1lM0GTJ)KgK4l;KR0?i-uRH2W_xo4C^)FtT6s|Zv@)PpkY?qs?@ z2$ekbrNTtMt|>u0QlrBO*aOKnVC6nidd~DMbJcan_Qy{`>d)ps*%Hc3k$~zVmr8i! z%s5nVcGyAN^~9U%uoHg%nBc{g@Ls%yb&#V%^6=Vu*~e22K{9FdN9^HWZ+dGnST4Nc zK6V;-RnYp}#({!vTZk`%In}nD>3o%l5X+9qiYPJumM-QL7e)gl4XWL7&t%4=q~2^YoNmGg*<1|O%aL^9a5_kP zz14>1aH6O0$hc_l;sUBaNfXLWEQ;_VzE%saquCo1{kQki@SXZ!E7X%ac#Z2)90&Yz zmx0Xfa{A0Ek%6sA@#c{8ze(JO6cwEgof{h4S6(~~PKAVTK^%y+6`02==I|}yAmU0q zp(;>7J#NaiScFB5(Rbzq`Sqa6wbA%${(Oez-Uy!S74wr$r^n8hG-6Na9o+Qa&U`G! z(BEfrKz|6#a8n#=#@palm?p=9FF4mHvFn4MU8nBL;h6Q=U>k97B|tLR=x(a$St^Su z{3t+6{cC4(5XD7w22wL&wVfVI0)~02rsk8uP&Pj5wob&h9~hY1m{mvkap$@5{4;=;i)Mb@Hz5kGvtkZoFffPp$3yZ%}0XSlP+6^;LMy#qx2=mr8j1M}9bCCRnt4 zf$x|gdT!DVzf*6!p2;a`q^rMw>Yhs?nKOO& zDysIQU}WAAOS9*wp)1r=Q3wWjFxS`%MdN@n;b4~}|1c8>w66g$h>!{*_nq0Awr<97P6<=imlLOTZ}!A4%wC4fPv zdEL5YMt@n!XnqdAZNM$==p*p`#R-VC-?;4m=;Hm5-~4*r%J$m<*1k~7Cjxk+%1fQi zQ|^Iscio&?$^k|swr93N<`Isl1yV3=ieQf)6WToq;pO9QV>vcSyqtPSbKR)_hwvva zRWXKn&4S197o`py<}Ln*G)z8|RDFvZ40n4>iMuW4ijc1s&AnPyi}g~=FRfer6-*Z7 zhk(s$QlC)$n+Z5J`GmdPv<5$a{Q*mnTlco_Bt{l23x-C>@{2RJxYW zJX}*Bv5DHUXK>8ab6Mop1EF9yZ*LVY&Axw+2RWEj#M>{a>yan97?`*7+`3#OeC3Z; zxD{hdUYOpl5+Nqs>J$9|1(AVbsoNXl`aniAq3imj{paOD#=_lG(Aih+G5s{M@6b6+o>2x-OUEK`;GvM z(OyeL-Dsbg{?@*gyM!GU(J*J83-3a(KeTS3TUBnTdg@H6pg-N!TGn*YNWkyhaeJ5N z@-co5q`W=+G>|Ws-(;?OisA?Q=Ys3xlc8K`Wq-ycraf4n;r-A&fF{oe z7D}#Gvy}Eekan;MeGLzmG8HdvFG#f=)F`MC7g@YhKXG;a5ovpGeSei(0k%ZbzFVO2 z!S4{w-;&1;if!zuW10A!Rx@bU<29J7mSoZr9xV{aFXcWSQ(Mp!>Z5UQdQSwosuXi4 z@P08bvUi&$02#@v;X*L3biIovpP!tv=)513Ryq_8`kW&lRWN#SvpsDp z`dK0t;kYJuijLhw!P?1)wM^C$)J)lx$mPQ^eWINe?-4@ZyFd~yWmbE>BrSwFLDF_G zn8@2=)RLet-yAiKfdw6}-|(Z zIlkETcaJZ7yza;58gZZ~$2|poDT0Q)3%y!DV2o@-T21R|e-}r~huR%8|Nf}ga7jgF`=5XdlI|NxR=?L z$tj1D@ot2+WOZIqxg?vE%V##Wuh;-e6jI967Q2aflM+q(_0$pj6_Rzp)`_;m&}sgCtcK2s zhIxA_8U`9#lq(w6uVXYcJ=FK@UlQtr{_k(hLiB%)M*UWZ@yF;ptc93=9AjSIUdG}Q z7>D}8eX3#Rg@#7ScKbosyvK?}LsLN0R8hPSM&HiEfwQS*HM;E!B%?!Vp(0qgDHJ58 zn9S_N_^|T3Z{PM-!YVNs!X>%iH@jhxIhl3bWygfB$IWU2|63$$UUZjpM*3lp7DZoT?9vPjuYCr_HcZ?#=>Umg_P;9IzVaGZWrRss4@E`pEPfRV6h4O0+ZAHI<%Sh%@9=~&5l zm_O%tez>uCJnKR9@U)$({Z)oF$hgvy+G!}4S}h**0A9y?QF0W`kq_7^uhr{tbwBKW zAGxuVC{HgoZ4)5?*Y<%J2f?fR%H3#^-0(cRS3rAx2yK4dsxo(x5jnoqS2bH1~Vf`fU|;<=F3ti^9` zRRl(_b#QYY*J!2+nuPP4*Ky|hOq!X|<~(UIn~(_JPc4Y_2)UTeg0(F|X`GJUJ+jgN zwbwo+v3=SdTW89V7H0nsIF0OLA)j3?G28&>j~g1FdoFc9XZ=xbTFp%BJ)&slkCc#J ziW3$R+&EoIB(m>GARv-GG%$sOJ$+j#1U(U*(KGe1Tvfq?l2pCB+UY!{+~1hKGAb=X z{662I`bu$%yu4kc+&RBFpDBVI_h#3I__wteJ0GKHJm7+s-lMAM9({f-TUJ>DS$ABP z7$Su_C9#J6;7fFiZ2S<-S-UnAW3|hkd?({H+BecIZ@#&{z?=^*aa@WQC%o8g3z;2L z$hutN55WakH-3MnEpa%aEG)RS^Ko}*XRnJtSTNUrv($|4(X8&2igzDdh66Jv;xN|w zut?y^x4MRT1hRu@c$3Y#1y+U(p4+mfN|4%o+b|#1OB_==l_+=aVw`?PGr}2oJmcIU zHv2eL{`*%kM-^E`iQov_cmIGgY-;pKVmK7JIqTU&H;d>~rkd}e58xqtBDN5CpqRdN%!)(w)~wdaaX#_p zyy_-9IB4zph_HRsc%f7Tfh*TKsf{8k*Rlcgpu!ii#KE#SN?i?}FlVm#}WRdIaBMLd~$TE%ov5%U4lzz~r z(W2YK3-e47*L!>EE#G>CNojR+V)|2&-b$fyQh5y$Ywq=iQwZh70q+-{8xU=_A5f4NBXk+1kWNmVH~;Im`5=vS7_p5A0x z^?rmzJKc)fcfj{$GSBye8Z2ivO!1DM=~g|}tkbDC@b|e1EU)$Rr0Tz|h$eO*P?J-p z#NO?lYCW!h(DCL%_U3GO_;m3~tChHwYaw3j+uP0h{9p1p?4_!L;xm^QZ$2cW#KA~B zT09oWR3y`-{1F8PjLfv9n>L=clMGZWLW+}P*b1{aSQ{RWB$i3d=5nrdESGI=Wan>C z+Xu)u!w{YkpNxk6bB4%6-VHBTj~^r1e%B80`9j|&zBU7pH%qqhJRI;+fNSln~}TNPK}PYOpO$7 zE@d7Wy^~p4R9-FVwd%0da{R6A)fz7@%yC$Ov{1vOMJiysx<`x^#4I+dD@{%R!Vx+W zF|BmoiXyNtUb{55As)%=?6(s?!&CAOc|@2S(k-ozi04*Gy21Lb`!A}>K?!6sM8JGc zI6qCjNAN+;;%>-Iz-dOvS%yv~cK`>+%dJnCMBD7fEt?Oj`tvt-gLVV5(5@pGE*WY4 zzI#6Kh)13k+?*9W7=A+r--?cP|CUAo)zA#$t2JMNBK531x`VF|3UJc>Z@EZRblLcv zfV&lEJXmVmU9$q7 zV`X0q2d*CoMBR#RD0x_7$mPcwJ)E0+nukF9(09+9XK z3})hkpF4?|_Cl`LLTdPeOF!!b6U!XW2kZ_imzqZq@A89?FnI_+?Iyrly$amL4SV;_ zbFQ)VsG>Z8H;j1u9i;A%JhDRFIx_ls9aHhjvlKxz~XI&2b&Gn7rM=+Q!=x}u7 ze$}Lag3G6MG5`HOj+5V7jrr+$HaK4wG)G2#tqMLWd;DDk&XBtJ)3=Ml#G!~{?r|!x z?`)ZAhRRNbl+{RTvtl5!8X+owy_YCF%$LBDzVNhzU@n{y_(s!Y>?+o_39Y&;{lvCW zL)$k6EeGpO3L`I_os0&)euH_wm&_ViqkS8NdY(on2>ZL;z!>kv6*Dai>Ym-ErG&wV z6!>V%2N!tNsenSpn!j~Dzy^$sXo-=~6ZeuU{~_25EJ$P8HDVuNveFDKDU+R>NM&Lk zSEYZMyvIXgTSmR~YK%84z=WG&Q}bLGVbwhA{_#O9UycM9MB}y81JS4Qd7-oXA!h^I z?rDbSKW(>7WghQ^4rRC^k|t$#3oe&AIx<=hU&V3l8b>af`&1UxtUmdrq7^3Ma%vn4 z+7xG?wxK{0);;@7>Ok&P9&rTq*oMyeehsu zSHGqdxxQJFzh-e0Sxc}hrpsU-Q0bpoU;r$#d(x62)MdXsr{e-a=62j8NiYjuRtNgeFnm?axbW&oaZvn3}17wfB8ksd(!msjA;A<63<4@=}6if7rtR{Nza=f*#k8@^=jx8xjq*7Hz%I|fO2`g@T6Ec~8mh zZhSsWSf%@Pfx8DBh>iQ|hb0K#NKvP=V{W)Qo^@ux%Pi;gSSF(MUg3>#@vePMBW?c} z;n;^m$gZID31O{68EH6mMtsjHvY4>sAdRk_+1|XnPg;01X^WVGq$PzZkVylPceX0t zCP_E6Ni;tI==z!$K_u6-MN5McTnj>raZ+8Zg7x!@9*IlL%z@aJV?_;m>*Ql!|97qd=7<*#6ND>Q?cF0k0ii)UU0STyckKQw;lskJ9n19nBfy7_0VWm7$a6O zmAtt;5PpeXB?hnGr?+UF_jfBS6P$k$Z(g=hPH}^WQvAvl^{k26515r^d|dmM)>Q;Wj~9%|bn(hU z#B}^Q{q6wkGiG0dwOHS^JU=KLO@mIK8Gz8-6f%eN{bUJdYJNezp%&*bmhT{w2-%aS z<7ff4o6elEeq{nrXdA`UR!zaBV;EeJ#!F{C#2fEB2&H+*(n&&$G9Jx80eDZuJ>%08 zi$ua)dWB=&_kDy(9dwJg3SK;o_>qf`F6EJCq@};vFa+s`No7u+xs8d1JCdeR`!Z46 z>maUR27RUlUD0O57SxTT0RtBEW1`W9&8a6^EBT?S3)?O^sF5~v83+C&`IrA6n9`dZpza>s^F2D_HI!46u@AwZ%zWJs9 ze;Q#eWRw&cn6UhHst|$YQaARgWXqQWNcQqaP`6I4x2z5nhml|eZ!*q4gFQ=QjRbF9 zDeC9P-PXD8vSN}raT)?^{AzxFjWL_o$+5_2;vTW3vWXhwaWihc?q2(LQqY;m@&;cX z+&yNB$$>Rdaz6*u-}SU&n~cg{i?Hr?i6uv@Qk`R(HO`TQ+U>N9$ags;QCf^T`*zAr z3Xz|Qn~06xQDX#>vX#H7oxaL;`gi_@mAWzh#!oeaoohqNz!5VUDze%| zdrY!3UjEHnpG|HjH9xOrz1OJXzdtK2=~U^GJ0pnu5F7~lbUDHI~e@SJ#7 z!*4&on>+a>qXxGc-KSz1{?|;?ug~M&u+HzmR=&sj?Uy~g+Pr*H(;S7v%i!}CvqaqI z!75$1;OU}fUqEJ4>KhIO=PJTb(C0@weZ5?5puNy1?Q1a?y0A;@e(C7e zI*m#x+V&#D5b(ll!IPLZ9J_)O61-jC z<`GJQ;SoH9I#GX^Eg6uAyyM`7bL}87|bE;$0a)O^u6_hn-E9G z&P^Brr+(+WIsl6ED)vRhZ%;wY3dOOW9|b_5IO)s+-t;A~mVhyn-Q9RjP#UDeBA(CX zta1oOAY!}`Y_^@yRS&R^D>bIAE9k}}OaDP~Z-BUSpNwYY?d5S}o7Fd9r*cfU>HacT zcWh?Fd-W*^e0>HPnR|XUcBeI0PCJPln#oMUvFyqsw;qBFUkh`NVH!R@F-8(A!TwOb zP*s)%aBeb3Bspka)4OQ!n``};*{&Sm4Y<^>jrdNY&bQ@^zfidNd zY;2kIf}orrELp5sA)Vr$2WBDq4OJT zu(;|tNZ4!bPt?zl!$4L?^jX9(J6s3rSYt5En*eyZcx3vq(mLrr*KEu900m)Nv$kNY zsqDa5p_fBQ9i)4e(*}!X{Q<4|vXdzQKdd<$rOV!5qlu>ad{>ZkFUJo^|GXtHK3`-x zJ^(3KGW1Fl4(1SQ;KC3-Q?yYoUlnH!8Yz@1tp(rDr|4>T@b+3gsriN@C5M(o)a=gk zqdkTQqmL%ZkGK8dyW(XUl2rfU+Hhdsu0T)B?ok@_QYz?hiF!Do`OWE>?jXb3HPCY{ z(Tis#TFSDHoS|nNOW{lazH8Ixad$XCXzY%5_XI2cFe9E)$?v|8j#!0&YfO;!;9v#H z2^z+v`XkqCXycK<*!s(t3dJv;SHE*9VHIQw$=|VuWuH}lLt1Jh?!*%|TP@OQM%?A+ z289Dyz2&vz**p2!g?`Wy1Y&W3q+nby5g>s&hzG*N3)y^1pGe%PvZD$@jxf?Khe2(! zJc+OXAR9|%dXjrY3G~A8rnM*P07aWHerrKskvplvLAyK42|r#(2~OXBxdap$_QI!Q zP_I+|%#AaHRpa%+PxC1)=azsGh1cKLSGDO_`9LiwZWi;Ia*9(2vM7jHh#z>0HD7fw zT)($iq794pMkpSk+-I*JiB!l)KVXUFKpHD8YpBgIKQ+LCOumf*$iseUKGn1x&)zB7 z=upZg$njhyz6VZ#v_d$@2}n{raUeS+)L`r^c%+EH#+?lW3t*VG2n#{POyH>fU9+%5 z7>`A#4BANNsxfS7jn6UkH9j+uRnw;2mp^~1sE67XGW?bFXP|{)jtsr4Omx^(>Phh~dyXC+=I<4L2N4Ajkvo9}$Nz(;6N^60;Rfow;R{FBs z`AgRDkKi_rYQg8ux>pEs{#RTy$&R zLaMH0b^5Hi@Dt&cJ`Y}oD4VCZ=3To)>Z!}`I1_j);TCGd*KSXRFu+wKNreMU)-)ph z>yytjLzCLW)d|-2@INba`YWD48~V-g){!dbEtoTrS}b@F%>_Ixp` zPjDOMINQu-#X?{EYNY=~ro2gho~`tyDu{ZDSov)UdIlC5Xhr1F-gfi(W?3z^7cWTy zHpAQx0hwUp_x*6i8Z@`-x@RG9X)|P}&eHVam$b;4z{?7Ej?eL12dU}?PMY6!=g#_f zl1~g2-*0l4r4Om?Mun!c>wLOkpJ?+AvTo9_v*7j-?wVQ$jYjT71C^+bVw$4>N^`>j ziWEzaozLGExbjGB3bpG6-(z5B`YcSsLOX1ibpk3P@IfqG|6CAaLQlpaS{E6Y+Cuq) z8Z3-Cshs*>T{B)YslAp`msJT>m{ullXUUF!fvj_4CTXr=9xJJ1er)4dhJql-IsWCKBr!?^N zlR_R>ZH?F04?>D5%~`wbagE&RW0{d#-VDtL9E-v$B!+S=9k@L`k!o?x2`1ugZtx2u zeRQaAVH8?h#@7&uJsKS_B~-jnT6{Mxg67g@Qp4Y$2I?FEXI;u#iohSHqVL=|DOmV= zx%}`_%|4Llt3QPC^J*Hb3iqcJ?chI?Fs{%!$)7? z+ls{3L)Vof?sV95MJI1BdA5U{TvPBtY4s>gK#~yU!sD||t85tLG#~f|xiLR+U8Rk; z!!pGuiI!p0o=@K9NPO?j*EZzmp&!3{dFJ~V1un&V!odvfIIb#zCGZ0~by8Lmt$Q<# z_rz&*_3xfEO5~f922}+?o@7q{pKG>G?$6k~$a*=Tv}C*_iG?7MXL5)I4djz=YW@50wJ6Ui32qaU6vo%v~BgM)MY>}HxO z0ek|BbH=`M3^+2jlQh*y{?JBq(Irckvr^xn8P9yd`L#GYtxIoiJ*E413pN8<;7qhe z$1=)s!r9{R`h%s|XM}qx(H{G2O;mQ^W@kA0TJqjr7c8(D`pN z@HUkD$)TN(foorxpM1CPhJ2YV2&R&`X4QU!!SmE^5fi{bu^Gh3)4kjJD-`EVhzec} zad8{{cFQ9AfDu*R=;RG-2s&EgYXqb-)uGfd`M9jYHH~8+V1dm87mK{%pvZKyvd0JV zIT{L5GsPkTi9m`+<26FnjW?Tf*CC(m877Jo#D0k?9tea%l9$Q-3Jx!s~sXWc~~N#S;r#uB8H>by_4)}r|}F#k5}T_$3Y}q3!$Us zCrCRSOv*AYna_>Im>-6y9mc_8*GJIi8|g?W%i6i%R7x%`R5&ub`-4i7%Cybk4E$=EWc;ON2B1AaNmfL^6G3b|kps%5bx`J8~k90<2>XWfN_$EoPt+i8^$iC-qxXYJni=~Ov>AT^>QLtrd zD@u+Y;wO7C%dK&<{U32{<-f2dBn|BH*>Ma9fc#!mN9ju}Mh+UKFsTClG7|;4bSHLt zJpHN3F`Qj86|$zZtOtLKFa0ufB~jr~=08`?hTw#C`%Jj!&e+z0r}mi6Za`{{D*C17GG^0iu^=I{}3{2{U2c_xHvpg-r;F~1l$an-WWdjsB zc`4a&p!Br)VQ@SwB{Ho>(~sC6Y$AZo?)hM;uU64?Ou#fQQSxjr%leYT2cfZoH)EX(shl|)y2DOE3 z06h(Q+-6u3Wk}@?vW6Y3(n{A*Zt)A@DhHXnsiUeNx9!Q9rQ4$8cmCFF44(yP+t_0 zoHuiCJAmj0&X|Yr=KUoslw(oCV&pe{FP2**;Kh0;n!BZ%P^ij+r=Orkz|VuF5VzL? z%t+Yl%Zy~j4N*;u4Wx2_bH1ZKdpqT#JtZ{DvD7=d?hrI>8}-Uab~4EG=Bt%3|J~O# zQ~fM+_#5+4ucFDud|Y*vNhmvYS*o*Fx@OJkvnDF5eBjC6lg+JQ!sK+3vEEl@QggB- z$;2FjDy8uCNv%1a`P%v5cT^K9pUkHkg@a0I-Eb|>s;^Vt8gmDoc}+yJb&^IZVrg#* zuO!2_r(e^vm?xXS8;LmxrPd1vQ&SEAs%dN;A|-yrb05p*hzxNBS*evsJYPpY8{1nJ zG#4|r-|U~$%G#@B+EO?l7xOrc&}}x__hl#eGQFh z_wZV&ToZ+QM!`QAY2}LGc!<55L!8%64WT#(N zTT2J;&4XLt#UH_XhYto%(}5e#LX2`UpE4IbpkB77 zsliop9bJIBzfudJVkl^TY1O)_hdNbgBmJb!9Gxs83P^rYP7euD zN@yr&n4iY{Ec7W@1QD->88Z_+YYP(}yz8%+TNi=tO{zJ7*onOu&(uEQn@`1d$XZlY ziJ&O1z6v7>EbKXbl3P5gb?xF{vX!shbos&8|BXnt-q^@nCYwdvm{47N2EhnyFlqI{ zoJVx+i{=>@^LtIpk}#ZmwUa}Ki_`$J^hfC`+Cv=r?T>6}WD^?4DNHO4LA0Z(d^3=x zGr9Bi;*W$(I!HMUt13ywlgUTWPf<4EU}zM5zQ1FBXX%#sO2m(_Qy94KY8=?$o%ib6 zM&<@4pfhw-lhIN>`*R~j$2w(t0EdD{mpP3n7qQw3SkdGej?$d{PL`bRhnM=0pzbs0 z3U2{rWD!bL6MzK)^Z~l?j6S^Z`=oHUXlIyVpMBC!Zx^nsO>~Csd`f1nd`}Dbx`~R6 zt^UzQ2Z6o#YyTV>V5vStzx}fIKAd5f1-?`2VVOEl0v{)#lGM9e`CwbbrJ@}il{t8) z%EC$4nPxHPX=fPmaArw8IE7HISD@8h2%(U)jQQYN0)x42_7Zy~(Tgtpk*Hz{ZWmHQ z7dzvy+%rx_2uqQa?aU?}o-m%7*I5wf%sGd*m}8AsFW3EQ%ToI`;Xz>ymFu$oy+(ND z)?C1*3lmAkkLQUD`|85+ass5UY0!a}viHWNa75sZty%>B%L*5;f}qiF@l+}qUwgTs zZoUjvB=BsP`{UE^CLh#UoxHJNj30EEi0tu}Yr95;geN9|tg?e5`D=MZ17g;{dGnU+ zX`Ubv)1d(7(k&+DXCJZpoW{*`{3?P})Uh<<_O;qUN=BaeJ;s|(6#*G}+VM}YNHz^T zw;upGUKWFcq{r2R6v&G%SmyF)_`jjDjG77e%IiCbiKtH~K4W?)s&J{e!|V3xd*Wt$ z542A^<1WS@knwAF0^-)1B|d2S+I?Y|r-t!dY}e{j5{0{Dv5jI@nZv8z!_`@51Ak~( z?T{pKa!;xj=Z<9tba_o2L-d)jMD6mHRm}#8c58@&kr6Z7`!GK^Dz>Y!Z<$W**gKt% zR3{(uyU<0fczO!lPheNCBh!{$mcYF8@4#KGxk} zIh7JW$t7QUpRa~jxilUezhD?s5fvk5d>f#D8?R7KQvk&#m>C}^(abnnz8BJ_e**sS zBl&A@38Ba|unfOLxme=j(M%9XQmq)t>jBX|9m{AB8WzQg%(n=2H zd)60`sq76kFqF2;urlM`6si;zB6 zb(DJ`Ysqx;w>Y__ka!p&qpr$C0K#t=ZG@VPn5U27NYnTn0{5n zVI_#qtWPSjC&D5Nd!R#j@5{PxOrvqu+vh*Jg$GkQ(*tDyT5GvpdKrKW`5rO)mvMJWbuhR`_Pr=^?~&3h&;IZUXi*t%4ITX=A1Y2Q(zds)`4o6 z33{(*iyGrtmC7pZ&OmHlAg7j3TA$NBIj}r)x=^r#9B*kW`EHLih+of?am3_;U|C9z z)E0)^XylbPSRryPX=TI`+WxEnJW~?jC44ZVVQ$lp!y5Szt~_4y`0|)jO-yM-;C9zR zv2T&rFkw{*wIM$hGKTtLS@XrciZamfQwJ4;6%iBX=c_yQvAN zWEPR(S_I}Y)Fk(jXvKoCH~91SG!GR3ib)?(Nhvkd4~-&fwy(SF!B0kyYK@nwQA>>H zIM}2^zn8BFRI({^j^kDnZ+BRhUiczQ=N$j$E`c$A@WR!OUv2e=>&rEHX9QimJm`h@ zX9qD8eDt@RnFjf=;JzRE_)L=VjZi-_;avNQ*TP-1y`Vkp(HJQO&^@V`x%%ib6l80F z_H8piWD8CZ<8fLPpFHsXoog(U0 zL7@7Y_pp|UxV4ze6a2-QC>4x_K0TXBGB+Op+RZCzz{n{$tXG7CdeZUVI*p zJv<+R$)=Ig>u<-pOC7mXWA=G3MJ3LGM`$P1|Uh( z`=w!5I4~T|@XG{036vs2?ICZ>wEi$OVQ8ZC*R$KEtVC3y%l_Uq9YB(E{U=!>+YG|WGbfvczbE+MPx-bqu;XRWK^l~5(LjU z-DK>{VxSyc8&4V+k0MXV7_f<}_9UPL`Hq0AueG;smYyfnJ%SM7_Pb$Oo|y8-)rmfk z(xaxg-RSd7Tnn(eAjj`fd_At0I-L*a^||=JYO=Q|o~pi8%Pbj?BAXL%CEAU6`FJD9 zlAINV>+ZlMIw3y05a6yg{$iRRGxX`O2f&99;zr4FU+YX`Yr7p3!uc@x0!&|uS&vVo z+xa*cGiFI5-6{%)v+cf8!_k{k5xR`KxDyR0WEfF3$7k3@DzLMvj~fdL=){Q zbdxw-R>IlXUGwBK8a_ZPUjVcLxqSlydCqg2S0oqf=^Dy1kVBG(#Y?AbL@Je~&H#Bx zaUfEuE0$r|&|Ml_FUfEA2q2s#}Bm zv!MF5!f&3Hw#*!0M17WwX6Y_0#5=Ehi%79%8tLwQu7P7+^!~FlkyxL0ycfV8yqj#i zpVDX!(Ow)o$eG*#n;RX+dG+Aj>4qwYD#LV^9G(%udx#f}%vMy5oE~@MQ8ST3b@ZOC zW;u(k^l8qi@vO~-Q9b<#Wzv8+=wA2Yxb~1G2)&9UVU1PGC;3k7474EA-@na9%!;C3 zauT|Kr$~3tUO_Pb`WuJG#$0Y22eVf#)FzffUTZHvp(T=FxAXF%cqV|ng9XGqO%ejK z5PQz#0c;cQlg<=D=63{$;`ZV6IJ0_eEE$7nghMJH=P+S_>O~awNq1;k+zUJQF7)Qs z=sHX*WY#VlmMhjB`*%h1OI@b{?aX@n^E%y8y}we4P^p9bS68}=|5AyZ$$%s@o@ISX zp6?fjhSE!K^FA2S0VBX-X#s-$A~YpTn3}YbP4&y(`W8uj`y{?ruojcrSZ{k1!`>LO z5FJJ}N7Z)Pwf$X_BQMQIe!%xx$olygo-aW96tEU0?_46T1&oHj&U@I-bW9;4B`_6g zjxFClwUs_Ocr|_n%Yo9y3#-8FiY1?Km5H9U2i!4?7W%CWGstJxw+Anz(`r8ntMbu_ zhU0@O_t#rxvN#h7Z?;U07)ZW44Q7tAwU39YPjd#ae|T-R!BXi^TKO5)7q?GvL(bk- znbByz`yx>0G0T1A<^Cud%Yx>JV##fONUi%|oNbJtB^rVp%IS#`gN}{^K7p(XZ_ABM zNaWkjC#rl2c9WbUx@m;tO`<=2K5_-aw$+}?2VS0TJ-o?&RV)#R&P=(>8|euD%*Bt- zRFKGbw$s0HrPg?QDUsj#If}CRw>5b!Vj|`z*&kt@O|pVhmBs*OV}xgd ziQT+#ZZ&fjJl5Z$oWFAxw#eIGKAVO!tl|-Ot{`jE3%e{aSWfi+a)WWUV0f+msW{o+ z;E?al2}Y6J{N&lfeZ=|qHMtC3kqgVmOyx!@yWr7j|B=?Lb0S`(UwHFm}blzogUo^2@%!M5X3<|?6T_!KJV|9 z4`m^UFLK5rcoDdi(fz3A5xozLp|9TwZ`HE?;?>r^+n7PTrX1}o(yfH)D~erYVN^^{ z3-Jk6cSpmtv^{q5Zqx?q%*`maoV1K?H~*eDom=D{qA3(+TR--#@^EE*^s!Z0hB%@u z9Ve16lBQc!HPD9EByKHdZxP5rxQ9t}4?YfLW`v|5xK1nmTFSULWEcQZ00x)|IKVpi zY{e`y&~KR4ThN^g`o`*fBwQi0;1ruFKM~EjAjo$r=-m^>?-T^107Y(UJ5YX?++Ww0~qG6-RMR>ADXSv7+lWST8 zjh&&PhOX^;WvoFjM6T(_ooFU4!^Q(>uemmmorjrH4I(DAXhtbBwBwVyUj8T|gwh{=rzT}Yw#OpBj7*N3S0|`0;A&QnXjd>?)zWvQhYHCup68Gqy;>4oj%?` zF~dV9ADPriEV7S^j7y;c!=HXIg`&N1;$wdR6XB0eZ62|bj3x&sFJ8eov$j!bHv^qb zMW;zl2G{LWtw}y!YVUu{B~h`Ge7+}cf#?v9<=gsBwa9|24f{>gRPnTY)is)m`r*&i z>6EcvkfCV2D`YuYJv|{lqkYK?`pQQte-bQ*aD<^nxI} z(B&!#Y^HX81aPjL1U*%V3q711Js{pE%D0rpU)wZ;VL+iF){)@sxYDjoCAhh1Z9*qekufUO;SLO z6%HLFusVBdm}pP0h7!F7g`=ic1$$`8#&Fcw!Ai?3)KItIaK`d(GDmU(!MDLrbX
91Yb<*|#nsu*m? zUJxBgZ14@1=)$~OC^~FZA&asxeoumBI$M8eWH@4(VKrTgV`S93He_ix9l``wBD2~XxZ~ppLUHc`U|Hxqf*I+t5RFO^x-pKMVH^*N`6sDr` zF?{d2W*PtK!ar{3ErGJi2>BIK`F|POfBgLK_YKoyMk$P%uN=*P>H7bv9{FR$$RaA2 zP#TV=`+Ml*kDvcj7$g-P8t%aHBHi`HUtjN+ZzhTi<(olbh@Ac9;lIDqe~Ex1(|?KZ zUn2bfw;jTQ$yoW@F880JjP>WJN(XNVp??Ahblf^E8}BkIG5ewmP){FvV1$m z%5P3|Fjum6bb#P@C*I#|Z+s?&@tRr{B z((QO)9oBi>fN#i(|4^>vl@IssZS?3C>;8g( zDj29T)5p;f^eMcy2h9I4NTZMfL%ChK=7DGfg^l$;-m6ZpaQIH2Hh+uAZQa=Spp!YX z-#k97q`!YWQ}cdQjpq5B-$Kh#TEMG+q^u{_`TZoz56>JWP@WXbEe8{8h@;I6%F{v4 zN=E*Bg5Q5|{SRUT*>A6+6@7I7^fOVgfQ~`7?my0h9-X7URK54$Zz%DLJ_@ra$~F+Z zBKZ|<{R_2FV~$V*CRvst|M-X}C~-6k9fSSxdVi*Qm_KU37Rf&RAE_XQlDSWmT~+?^ zC1p_qjsOtrzgy7TX}H|hzBarR`RDbdM-A|gl=%mli`r80D498H080L+moz{nu{g*o z<^OK9{|zy|-B#~D;f(*s+TXY8r~&j$!~dW-C}2EcK?#1bG_~6_nZM=Tuc!fLiAih! zpcpWQHK6K`AJb^D{A2asl8^|F1L&^;S*!u^W4A`jGz;UI4JxL z`+3*(Z-jUHu9<%Z{T&q*L@~_7Hzn*3_Bjyy%h^8Pt&?YWJl$c#JGA70vIiM@@|BD; z8*DD;e?u9d3>IxcbqNnSrFJ3ymh#<{j^@)ZeVN5RaUQ8qLH&x_&+{^!NoSrvlFKbU`eXM@e2+*$+Qfh|cr$U7OeiKv|B_wr zeoNDt#5e!0UeO|Z>&Ggg4i87GE8fPJSKR6%G2^{|L&SA5jFv1z|2;aU_cF&VT4PAU zT)2tlaRn?5_F~ETzW#CTjmchQ?n!OGgYbm%F#>81t7hu@>ff;4z5n@L0aPyIgh##%zK^FIK z+Re`fp>CahqRea;`jO7Lix$e6@0Ga) z!SPs70+bSDYxLFW{$E&K002O3_O2c`lqb*H%8Uiuw`jD*|D2|n7@~7n`Mr(I%O;ym zfDuJq9ITJxfAuSP1H&e`i@?C1dx4uLo*!6!OIz8FQGOfj=M$NR{@aJdl=F3JXkB>1 zF@-H83hI?)?bubZ`ALS6mb(-cx(ULZnOOi_d|K4|h1u`s{gsO&az52WaU+(DsG^XE z1xluSgJ`d*Mm=Lig*Dz}m5etJ#f^^g+`Q^oQri$}ox#*IqT5`%B5B1bDguCG2=!>WJ;_f|p@yZyaFw}!8 zu>bm)MI9Rfuwnu&Lwkwr$Khx3Hq#Hq>~zRwPTuk4v^KWwYzDCkJibk~pDhw!`t#)i zj{ySqM=2kecv^)c*GzZJKU({T+}IUf97t7{`K+Ebbz?recc`L5{`Hqb6P3haN?x1w zD-!uXw8}6=?LrB&L4>r@C;O*^=hY9F{5|P1Mm?o1rl!|G&D3jM-K=taL5xlzKD#7w z`Jf)VK(pMzl@~7@w_mp;jstJ+jnZbHO;dcJPXCk95QffSP?aM>AJ4to<1jD#Lz5uY z_aV1}-i*Az&~I$`fiE*LaJ|LQ7nt*`f?xkdqn8T%WRuPFn!bvUzqg}^7~%r(SDa*7 zMOhz(nkXYc7elz|FB*Cw6UGsoktU`@9wR=Etbh9*l|xA3F+FOnQD8F`^EX?EHw=X* zrvKidqV|e}AR3bPCSHVt(Ch>Dw2g-O1|g@FLd`N5eHOD!9$)-TnM>iwaixZ))R0;oyJg8MDbj0ZD zv!k4&{K(+(-6$=G*g25CP1mc4HnoRQidliLNs4dk`KPAD3Ud?j4U=w7duv0@ftWW+ zrbGJRwd@A*-&)6k=i>#0w>@i2>s$RZvakB7uq zWfg1$&lS$ZT4$vCdevkq8qu?>pnMrTSRhhX22`IRo|ah;hMxT1nK)|Unij~x>PkZ8 zTuFeqn7{YQ?Bmw6)hx!dY5PPjjmoZ-^#AWdg$=R2w+p6K-^)Jsb#u~D>2`A1z@n+O z1sEL@*gng3v(>U>-zB5z-11fG*DXd}8y3tqV#QVdY|A;nH1J8b2v=}k|IBhfs!tXoCD>v^pmqL%9}wh4Q4 zvu019-DHp%0G2yEN0A}zwbj%@uAa+2CjTt(F!;MyJQAqd%f$~PTN(sfLc~RHQ4gCd z42sp~IFRnx#~}I4q49Ca)q^r)AL)GGhHsC`9#ig=RW|>Y>piAvd)s0MY%~^6LxXaO z+}$+)vvkwyF@P34|~!a1{#$D>J0Gi-OA8TeY93NA>-9?DwtC^{ivAK|Kzb4AIxGL>?^fnrC&G7&5(##ao1W{~H_SPK zxv%sR)C7|2$623EgI?A!8yH9Sf3Q7#2eF-5|0%RrZFR;sKO6K*Ghdg+AizzL-hQt< z*>Zl{T?*Bk%R$4cz6!qIANr#S)t<%r z*XXE7io^VY{g%p>>z`Ep77pZ~<7n1S9I>gmu$pazU$xND{K zrCB4BN4q>!$z?O-DW*L8CeN;#=6rGwwtM07$P0ol=qSOXeCPLQyG@eGB?;yWK+E=LC556tbiq*Xr zTr9qF+iN62_INtmI&H)J&u&mu9IsYl;UCvB`eKH6SMuM`Y~a(S+o?OCYr z_P0eL@8|ZNZ^)|?b#qD)mQ3UbI5Cc|w)|2o3t0ehnX&=LkM4bQX>^9u7ob{Yz5k3& zuO_jb)d$W-Oq6yKNGK@>WSf+&P=^EaE z|3lbUhefr0?@L`lY7h_*r3LAd0m+eWq(KCwK}u?fAq0bv?gpg=0wchovcdfIxP;hko`|Y$7&E$F(IoZfNIr!U=_T!rS z;nub_&W2t3+mheyl9C1+#B{1nMPqKq^&7SJYozO65sEYw#4}!3ds(tAGMRj(o?KA8 zsLW+2Erj9gyvTeOcmT`UC1u~d`^YiKrfMCf_8N2X-G0u{_}}w!7hq*~DeV=13xZNH zAJ)FobJX31x;5sPaRjd4Ld!+kKL?FYaB)o)8>$6Px$`kBX_w2k1u=#7WG*kpl~SYM zDU6ud^f}g3=F;ftSB07CJ^4X?{q89OR5RjQNXPH8rYBIYmjSxF+i`St>onq3c*^et zM{(?Mb57ez1G0o3yT+1?(mZ^5_h>;{)mI94%1b;rng5C-oc+fd_TN1+SY(>_}RqE+x2Xyy07Xaiw5^lRNs{c= zBkBg`OrhEt`ko#x1WUPsu98c1Te%~HTF`>DPlcGjO?0*3-%J|_P(VfdK~SR6uk%De z<~PiF{KlExFe_Q5Ex)DI0IkM`AKjtsYue)M)QJyk9ky#-dCiXa0DJWW)t*2ol~Cq@ z8;yRwUZXrI=IPptKUWK%ce1pNDNPFJr2QdW+Rs{;F)PEsdp|An^=+_jJY`Ed&Rhgzp$lE+ntjyj`8Ed;%&(? znkLtUZC;Gt?~y&ls#Y{O0XLand`>7blvE(=$2!q5@>urX0Jg~V|MB+^dwzAp&)$^7 z=<3IL5jIRj!k!dm1EBWI^9kEqu3tZPC!8m|yGcNGu7JokWJDf9Odh@oLlq;mxtKlX$NT_P;*?bojYgN^kF>$H4oJnvq&eg37~ zMF7KeC!TR~$HgypAd-o9GbY>5X?V+**AtvOFBHb1*1FBKP&aedDdYGypVlxy` zHmlcQ0Ci?vr}5lqrMErXjLkl#LjQ~qly5J9#i}`p^Ix;|qnCW9UqnsLxE@+6WC0){ z6~n{sS3g(&rV`-7rmuTn{8Aet@W51}C77GxFR(1{!XM_LmjJQplLu7~MIi`S@N)bsq&S8LTOOmck5 zxg`_z&w%~HF8Z8#Wy~di!MP__-R)Iz%hhn_CT?HhQ|}a>YB4{qT*q^Soq%II44=r7 zsX+nBMJQ~}U9*8*^2=Fu1M3SzUs@JlDs2g`LQuiAfTv>$Vp0*sg%Tq>H9y$*g=a!8 zU+lD-@sTg@pE1)hmVBuLE%^w&z|jrhvELEG|K?M=j!H70FH$F<=0AbVy>VY(XD^qH zKF&t##vR6A(+dgg{t+g+)T1R6&f`I8-w`C(QB1R@$`6ryPWcf*OJEEy27_v3BVc_* z#vR^bSRn2N*}p^6MU;My_k&FgN;ofd6ZO7Q__sp%>Dh<;<#}utTKu_YZaLz{*soMH zcg3&7z*=sFSqI7o>D~2_^%#HSv|CE6CCaGFO)YwNa!!Qa*6X3os=kX7?if;id$7BW z2N?l^9!s4CPW|(;84I`<3HA#8gky_^|IZnxjKkjAP2MRQ=R817PCTk)dSO}gj)QeE zfsj4Ah)J!pfjkL|m} zL0Y{VE_LHAE{CF!>T#DWEU)JL>;ZN@PdafQzdXpE4;{zJ6tGVRxJ= z{>;ln8%&e!*7~)may^^)vrQSv>(1gH+Mas4M~$*CMDJXwPG0JR&dT2K-aSFJjZ1y@ z^4Zn9DNwpxJ0JOVN3zDVt#aXU&JO8(X~RO6Fk@>DW6{r5iGZ|S&FHG~H*33=j`!0z z9=BiB+kcAd*2w*WzG6JUiO3dr@&UhSG3h&`0awbxLG!eauZxrP2uIlMSCLE43q}ZNUo@~*wbG5+bpWhh9GRI9C zYumod&)qG_01CHE(H2UWN~M))OE!uUDY0@lWB7+73&#Kj`G9LF9X|!g zjBs2I;Cq)Fq%36j+D%_Qd6BVgfF9_%GBAHAc$`{F{Y~Nuixb?1er9Qh-u7G3bhB`B zLA;#0)93@@P8{|34@Kd;%=*(u(KrcAs;*Lxy;9@!Qek$l8@6v8i% zZa5X~_*}?he*aN{SeS9m_+{t8B52Ta7F{a4boIdcZ#Z^}Oxq>^|8{)#x95(92%Mp32-d^Z5ZIZ;-yrEMJ z!P8^X#vYlSRP`#wh{{|_u{{|_zLeWW|6=UpKmhG;nBY8t{tU5JQJ2cE&(gFBcpY(% za6h!10`1o}I54}{`fQHJ9@VX(XAWwF3|w~8Zip3nCO}i)*q}9i1Jk0_Q@rNK)ahVF zhP;BbYNIkIob=u22FS#UbPASJs&b#5ZS)vz zUN!{JxL9a^`Lkgit()3El!O2SSW&4AP|rWqk@Kn^sA1SXw463x1)>q+bbL-=JcK3> z-?u-H9KY$-3-4TjV5c7T2$g?R>g+@Bsn-=skihRP+`TIiT@*isYFf znt5&AQ@Qgt*BV|IIF_scw|{WV`T-y#OURYgnys8P!D%5PVjx5W(;11vTYNv4N=g`r zuKn8^N_q8yjY#t*;r(PINzBhE-N%kIDZUK0a%IDijiolocM72|iz%M8oPdhL5Fy+B z-PELwwr74q)H`ibkG)!&A9qKbx|5O8HkB~EA9yLs4Q3u7A#q(iIATTFQEdCADZqV* z-~oD`zPMv8rSkC-Gp9nZEfeUs`p|R|F(-%6<$3q$f2Bf7|BEp_ev@?T=a`;=AkXU8 zvw)-v>OqIytTIdbQR>m_WnDL7enwT{=ai#F@b%dRvEEgxA$#9oBWLb)53k!a)>W?$ z9w#ZlC%(Behv9e(DY2JZkHMkwv#(0d3f5o#(sHz-hlv}NDFWVOe)#vg`Smh9yY0M5 zMK20-HJ1#>6OmSf*C>zka@hc1nT@)6eAEo(n#3>SY`PqszdQ8~kFv6^F={>X%zQ{+7*PQHz7XNV8POt0Xgeb#;N~JW!IR3QGz{i$R~6ViSt} z=U4iL&D_>7O7YKpTlA;Hi&MW48WmIOCr4QRbU{i6Y}xKKF_GgF31^E9aMnK@)elOl z=j4FvEODa^bmDQEuzEE$DB4C^v5JIa_1bhYSGV#5=i}spJ_a$5^xN*I3}JpX=C?wX zP(guF0pCW4#DUZl_ai3WYg=?}S?EM_yZDj^6L%eG_m8@lAC*~c@zZX}QH zu)hFgSd*D*HrK~Ix$wve?VXUX57xw^S$K(Z{}nD@@nFDhiRV5F*!;i>pypHJWQ>dU zWqxtFY1%oZK8LjJ1*^gC4fs<@GPcCX+R^cs#9rbrV5;k@uJMB<9eCifVdx*|K0dV$%7f5Ml17SNJ?*CUV`aOFhI2mK&WHs6i#92 z9w$Gx{0n*P4nEV5i3L@KE-bz2vs)|UmB$}XB3rAdn!Y8aO6l=c!`wgjc$)~K-qKBq z#lWOqULw72*z^duuSY*QQvvp>#PUYxGhStZpC-)2^BGU*)i0xHU@F=51EJhuH=MWf zLCkU(#>p$zf*!?2vXhtNhZ+)G#9=b7+#eoP-{cj35d?oxGV{jK!+e7Q?n@>+U#hc_ z*fpQUJJ4k_w^#TOF)vU6IHLTuR$5zN>q)N}Zc~reqREkvQif_FfiT!%DT+S9(epL& zOCIZRRNFdI?4SjpaAUUAV)8)JF+eT6ELTkZ(LVmO<-Xl^V(4ZZ>o%fn0Zq;rpo*7F z`tu#G(|w_gB82e$2v-DBm<4ICjg-~jKX6%}>|SW7IAo>gnR0Sy<$p+Rx>?;hI5DLs zrxqGrP+t$oTpD4B3ZD=ql$~u#dnt7Q1Z^hzG3~V}GnYlJDH4pRKb}mec-3K(@Hr=~ z@F7`S)HK-BQ+!lxu|n$YyWId(+Y=?`&{WOi()7k*mH z$LQ9_FBU%Squi$t-AF~~6y@qn&YJ??x@yNPRvc zyGzzKZ06PJotY5)q2M310#@oVCCO8bWMi#yiy!R~*Xf?IOe5vuUq`wW8#cVPWa^>` zmDJw7H2q}@RCWHqbb)g}B)gWea`5hs!H8vO5j5VMIACkICHCv8L_o=W;uCsm5pihr zIOmZjz3oX@>qj)04AIOYUR<^dE_yPi=4+aAX&K+qKhs}sQOxplnXmT-rg+Xtr<{og zS&O{npxr~>vXn%*pFn$|yNdcnN{I(p-2V{``fvNy(gyht35ZE8U{v=N4h*3((v}A! z0d786h>jGhGJ9lD=wk0Ax#MOzm=qdLY`pyFMaelSz3BO-vXyOtbu!DIU^ zFqN73*1yu9m_EF*j{4B~zRj+&B_kZwaZU*2kZ9$l1H1Y0=jvt;ErFY!bE;bGgs!F8 z;of(ix%pA$vTp0$4Jw1p@L?rOhs|d!E5mx1tIm{hVF=2P_@;>QIgwbd)k@JLN*1T| zDfYC;Oy)f>`STr5i)9O)jkgH&c3Qb5>C#O2%MvdmUY8AVANxL2nu|jMewNTb@G$V0 z>~Bm=+}`51Y<(5?BO-hX|B#T|0JU*jc4)N4^x)YJI_>`j&rTLvO~>Ki%v#W3r9g`b3ZKCm^+34PcG2`3Ym+ zg((rt5c<4;#S(TX|An%i0r`?P-U8;9b@Ke`FT`b%l4XwamA+?gKIe}y-6FEpDs->I zd|j&^M1dGg`#en|^Y$&JLif~Xt~wdss09~CpBb6b*E@X+(3Ihv?gXo^Y2igAu*PPsqHg}gvyiAj!ct)!9B9+#M%ecAw{tjeRhuZpBL(A`!+d45NVf%QxA7* z5HL&wUp~)cXlRkFZGua!y z0??60xOBS($6$}d_|En43$^m6{_vRcLP~%2(mw9Ok*SxdSeO#rbrEs09>QGYV(2!_Z>wkvx zePpKc4=#VVHYLpPN0c8IBv6TauIJf&_Va;P?}c_aEY+8nl^`fa--8m>uxO$L+w4c( zmFFY%`nHJ7os!=61d>L-r4)GnMhw}l{prg<~RGAK`Eu( zVoX8{4f?DU6=WVa^C;xa-l@fl_6}GZFZHbYsZj`PV$XFWQ-;LLnbi*x1#d|%#trNg zR)al?LHqU0FM4JkiRCm$^seRYC^KTO_=`a^C+QP$t>Dg20=D1(iwwY{sV=(9biP1sZGl?lqo z!y1JyuBHN9ZxJuS;2g)d$-LA{QtuHK`^YDx9TEGrwEEOwy8)TxqDk|aH>}G1>yZnY zAXn5EHA{XEK3g};?xY6o-FJoN$*E)?fqmRwZl(M-xSQY02}UYKKsn*=2A{*L3lky` z!6f$L4R)kmOGFZe6B*}@hr+E~dK%fUu#L2aN!L#uX_6Or&R1HeqlQBAstx@ho?p}TQr1RYPRX4o_P-S5fNKRmR>9Yd+}way0K zhMrZO(2UI6ExG3c8{3Fd0cOAV4LD7wH`de8OtKo~ZJJ6eR_WgQqcZ)s!4nu@0+J#g z;D%KPJwP#rX9JfbiM-*jOhFUJ6S;Z@blCDrnPCrziG=y}Sk4x8y?F4ebM7nNXmaVc z+v0;V^)t#dtZ658aiB!vwtcB(**5}EfnqR}DJ@1MjrL>aEV1#7+H2jmiEuSM<0qHF52p4OYi7xh-t)XF~QxI0@U)q@*(2;&O&Fden6vk^3nMh8XrKO})a z3AbL#AN>SX6gKFa+p7O|bSkO$bZ@d=Gn`6J>tBBV10Ep}E(9I+^3xX~iANgmLYY_# zHZkj7U!t{A4#CF%h%g!xq-oTT!41fG}H$VA(=@BRy>2oR?6?8ipj zD_mBH`wwljrKcVg=&WlLxK=+w)L9|irp89=hV!-WO|gx7=P_KtEo-NVD8Z4$)o)L$ zUshIbPZfz)j#A)@KIvWN?@e*u1kQHa{E93fUQW5}$Hnm>3dwcy&BFy7w8DUSNGtz{ z)|6(n+uA8sp?sBSg=8mOBjFuSeeJ z8dBk%m3+!X+BU)r?>J8#scHhnX zxGJDaXiE1b{I{pDTzlLBW$~#My^e|dA`mjiVBOF$|B$EeeNvI_Oa?>uEcLChcuyJ! zaTa+*ZsI8s)(Jf8CU*i8w$f0*E- zdCHrmR`*}#4MJy&tygvvTpaAj@C>4NMJryO+94V&@fb7GVz%XR%nFUhT4`mo0(Djh zav45WwlSGK3GIM>x|+(MqW{F-5sSL&8}-jc_zb?hh&H=!B3d1heL{>tZ=N!C_}u=vT0igPl5q*6 zgXr_}D6Wez2K*c`+0`xX{V2hkxXq_}b1ulDuTctf7R{5QzR}&{8n5(qN@R(3%|h*{ z4sQ6?&Qea}*U7ptx0S~jm{B)RFl)pxQ)M4_WonG>X}DS=8Ob?$`O)3EbKPReG1;Zw z#GlABy=?60z-ZTVH4qgyA^2E<=uSBcmWrY&tlWFKLHl^(G)@1NU7W2TTv|ReotOW1 z&sikduSR__pTc_2IHrC)&Y1gtsni44M!bX`!V~oqB#hFX_>J>Y6^jj4X(-MW&9DgB zGZ{t7fjY-20t8so&G6YE*9cJ-0S{GUz$|ThV#@QMbMn)mldnXW!&N+1Z}@T1J$@bm zrnG(@#mVVl%72^E3Xlv!oXg`*(kGxi%xM35kVF1PHwm!)C}9Xl)#8oeW7tC z``&}qZW{(^sDfpq+);5kTZu<<&u5ns#H{^eV7kc-BE(U$VvH@sL}#ZfB!8OPHC#}H zEyneDy8f>?!SPD$DmfO%$l_hWAj2qT0deQP*~%(0wh8RPw75Y_FjVK5ww(WJe5&n! z>%)!nnNli^9K7M2^ttmJVSkt&UB3*DEhH)nY`FV%XB@Xe{)32Ps2dA!gUUBDQuz&Q zKAWkiZT=2k=RPJ&JhRzP`I4*Dr2W)Z7RE#kLri`_`N(3%bL;fXyvJGIGjkUEW-d?U z!eU^IzZ*CmXb=;dN$O~iM+jR|`a^WhQvIYE+u18K^s|cc>!!y-eI-=cup36lRGwpQ z`kBe&=#ruU+wyah0S4=CB@N}`y3w%18Ly`E#7MkPDudUfr(3xMbN_smXOK+Hp3bt= z)YQVmon@O(uLu>Dl!gwr7hL=AS%jA{cLtNQ?;b9v+bs8{DypiEj+dIc0-dzC+1Rix z!~}SuM2x`XCMiB7rFxWH)50}mZ*MIGa|*x{j&NQb9pM;to4Y z$qsDH%(CI4-vTY6S;&P}YKLK9UzZ$w?)rY`?&X(v07N~$GOU##Ezp(a&;3N=kXF$= z`6Rr#H}HlEVg`XjSq0TY)O7`>Vyi6&i&g{>5i8f zk>1DW!H>;g2hPO5eS0^)tSfJaR#eBcVNY8In@#&I&}buIB$N4CoB zw1}h1knWw$5I?~L0)(bA^Cqn#c`eGO`m_?v+gqcXU2_k$&}^GG&T4MBj^g!^NAlUB zNgn)(mXHiQzh{_H$$}31F8n5+apl~kUJ+~$BWEJcI(?3jxxm-q8hsMy^*#rmXxEU{ zv!gjG$)Xs_BF<6%moSlZ_Y)m3!|?ZUXzf6Q%=y;#r9n2b5~f$X6Kp5#^fhvoE+<@C z4NkO}#z(l7^_8tWn=}*LpRQtCFS?@&pKb_0h$f3&vCqZ%12r(PlgMyy)74t`(WuEO zC@6#x+4)~L*f5GZ3pR|i3-3!6(WUh{c%!JO=mKG_h3U5>dT=bh)E9p8(pypZLM8{tK!SJ)zOJ zfIwFK*EJ!S7&uH_U0q_SGP1J5!i5F8y1F8h)H)kiks%=jg%4{rw6!Z?AMFrzBhlj) zAD&?ls(ls2OjY{82y<8(#wpR^UI@75|?zhbnH04cp8Q*|5M-3gFxL%2K zubaT`o1U8u=w0C8x0NsvR6o#~UJw&Qw%L_rSUur!8`tFpL|P@$Bp=LL#b4fyYFi+uVxt9<+_hZ@&}Us;s53 zA-&T89N~B0)y&QMH8P*^d~@Sz3;HDB2-$cdqFXG-pIFoh-v85dS0*tT<-%-9AP|g>x@V@Us$mPvQ`HXWVNFfVn@HDK zhsHx$o3Wx1;H24iz_;zALtenQ2wi{iJ@Q<=#i>`4(b#~x-biA_?l<|xxC-yO&pM;K z)j7v;`s$R9X;gm9gOivj#aV6D&dmzJ{VzHQw$cq#(vW&}@a+k$yr4jSjJDEQ92%8N zd{7B(>6fVY=F~S%tHx~Bl6_Hns^gzFQN!o?uBJcdEVS9JcNrO(+m+F}kL|R56LXwbmD|e7{=3cdY%u zcu(czCszLhhJJCt=J^p7N>#baiEp_Z4fwUc;v zkc9tc!{yh)n&KZi1wDE4q{4mMq)%i0;K2Q+&%s=n?F4wm%2I5SE{oIJ+PV%n;Cc6Cr*Az} zaAvDw!gt&Z9B&9s1WrlToNXn>esF86ha(#0tzJ-vd)7jtk)n^8$}oT*4<4L%kc)il;Z0pIBaAYWR9S znZ}Zk-Nj5vHPwN2PHxfEP0s8NU)G$x239(#8M~EC4=*j-)r&4z5?iK%f|nM#C%H)L zcI=1$0|mR7;JdEnSW&4)FE0}Sd5G7lQuIKciRGn*uq_GG(!4Lmml~=MV(ipLQRjNK zZN3z&atTcWJbt>=8x=}*x`~g?T8L(sr_3jy3eM;3UbLGbg(K$75S#t5>23ebTqPci zc|3>f5<8YHx*Z;)32DpXCYG{9f?YMN|KUv_G9drBXPgyHM6TzSUGdcz4bljksTLLP zr+SStnk>%tDyZ1!V;$>W+|jko;2r6nFYjtNjg>CvUQeLt(OBZDlUQ$^>eg^C*P7A| zLRniV_D0%1tu`)g-oP4ZM4^?xUIv69c^pG*C>QsS#37|ts-kwxuB@T@}@=A;>)GJ zmkRa^h72YMsv6xS3GPM<9aWyLIT+0*0?YLufBqS;tzJGOlushux{doH?^){2RUlU^ zpV)Bv`jit~zOP03SoWX207$KRc)G%|IKhsghG8j(@(VDXza}5mq>nA%u$~u*N+nq} zT;qE>l^9dCcsl0BGx%2}p6uxLZM8oi>CXXy@U>^SjHzNmt#?pv2tjI>@(Gr*Cb(G2 zgSVPJ9F4hIr!&PWAw%QicJoPjUBZ^vkgaL(JX5It{#iP;M7dj5u}QpZ@kyyZvv1z< zI~AYk!wh)pwLc#O!VLxz(+r+L1^AV5Z07Z1$5}p~1heP}mpBu2bBc+7C{}T-ZPoIt z78FaO^?q;4jSQzPVTuO=tBxQTH7zl{Y-K5mOC zo2`#BAoBgdp&#a49pJ2F=CAMXQ;hfC+ZfX(AbFYJwQr*d$B_LsRB852DpF`$EU!9| zkV;-bOm@xLp3c&V=s!MPai6a4<(MNC=1s=?RWg$g4PpjSH;uf*86lmSz za;;~VOYW`lp1(6}L~>(Q-;5;O4?A!^4h#KF_qZ^#ejJ-&e)2h!p}UvuQ+cd9AtX*0kA0hZ8g+ z5UTi?XV`%Cpbw0YwhG5$_Em>HMAy#Rt>pdyZMp=^6AE`8fz<*ecGam2+fgUt{C;`5 znG5m7;@n|=%>PvFD65oT=+%Fm%8uy+@YTM5_7vR}EmS0UdIQB{?VGpx5(WJ)rv{!X zsRLx!?Ty#}(&64hA~jlikDi={cgwB$e#83dJHG@;I#Fy~`B!bQwYtn{xW?qSgyTb4 zI_I9y@WreB$7r5GpW2ih9D93Q`XmEPpX|ltbf4rFJ*_dlIXU)IIpjo|4mNa_{hgnBs$X@L_2~{>KGnaKIs*OAzOm`dT z)1o4i6}BezoAy zx`VPHEx?ncr=!A_uCv1O19GU-5meYhfC5&LWAzY_N&NYa6_Od{m#-PzTd1vg+(S`_ ze0%1J8MQ}tg3IdHgH{6Egr3kB5**_EKQE@lzALG^y@&MNt2 zl#5%u=lkLH%l~WDGL-PNbYt@FSUx{A%X5LnDK;KgHFbSce)#4lT5n@xix3?_Fj{^! zf*_9R6kCmM-7_zLeB#lI!_1_^lJZbM4EzUxfBfe1z)zLdB_!~^i=>+jOLmf)+Kxir zX=*}#f|;h;v~KwRFw!HZr(%lEScn2MYVKrTcwrpv#f)@sJ~cb_Wp$-q_+OdPN283K zd`Vb&llokp3>#ni$31-QGCM=}ZkLUZel2ll&5U#t8h4BE8zDi5v`Mj+wa1|f@qf*t z{^z|kGHjQbNnPIKi*spgzq(b%&md9((z6xx!Hh!6_5fRNl{B{(hsSK3Mb4PNn^5Dc z3vgrqZxF!6^6PAXX;t`?9&+4CFBUDQW4{8eLbT&?RHfQQcrw#bG0E3izl4}Jw=c44 z%;Fmi+>K}WLuh#h;lX|o(@@8w7JCb)`H`ocf0(1#F{`*~%^`uNWV&(Mru#9%@*RWe zy#IFl?tm;H%S_?M*<+DeaZpl?J-U9}cS&Ua&hKaeI2x{WhKyg!TSOWE%_#v`CCkcq z6S!Z#pEp968oUgOAV}67!Mi-E1?UaoSqH|cTg@I!f8JwK4Vdsjj%cF{gwl-m+1O@* z`_L6qz4!J_7})N)38+=Y>y1rO{KP!7n%$OVZ{ejc4W4-!yI#lWDDgB*wJPz$W+dek z8Nk~4kMdcO4mm_2J0BhS*nyl5Ja%WF`F|vQH3^uAp(1kEmh~mf3>J~uZKFcu4HNLtXhk+RyL7p zl1JOF1s$&qq}7S_RV3~Qw!gbJ8;wu$j+Bm0pQYJt>Ix{t*5HxnADE46wd$jZw{@<%od=AuWwX4B0_o$!Av$P<%eWO<0QM?Jo# z;UDQ|;K=;Pcyr0$72Vcc4GT^CV7j``5xZ!XI9r)sR?o@26$3vA75RJm)441U-VhF_PBjd0erI`DeM)N127PE1 z@Dfp`|4|`87ML>BaaIen4m!5X!_DY;}gwmR^}AYKt~UGR!t zna`t=Qmz%NrmhXyIt*1#7Rrg$^LJa%e#0k-E=dVY0ua}g43@=>=OeW3zKyGI2Pv+I zNN#)cj})e#(!6=$lc?C@%)@;u(^oN*EZCiE@W zfBBbq1_Z#m`VVR3=~kzjx`|&Ws2?~OTZpt~6Y>Dz!L|ZJj?`=S1iUvs+*r7oP6NWF z2W*>umroLUo86a#+-v4&jwHmkfnMxSM6H3CJ2ryP7Oo)=4rqI*UlR)NZ{!|?%q{UN z<9WaGXk0+LrN0Rd39>QrO$mi0Tmfc$h+@qCQ}4MDZgaal>sMUs;YZmA#z?S>{fj@M z4x|JJ>V4>7E(U90`{s6l6lTt@uG^zk=^rQtU9PJGxM0y4OGe)Etk)w=OD{K3$zbZo zQNw>%scOhN(yn1hI{gs^ApAI@iG^;qTC4keOVQb{5(~S~8$8X;>WUK%b+-Gfi`{v_ zflqvdvb@kxb1~=CZ`T@E-CUrr7M=|i>z+q*ISh!MK)Zn=Ln7q!+DL)T27l;{yJgX0 z*TaXN_%#${0||j(ngqjf-MYAnV#@tw`YF<970q(~VaLx7UjF`mAX~sd2R26ZlA^y} z5sv$6$9ulIwl`bk^A~8O5U$ZmyNaipqnu*DZ`r-&ywtdqLYy|zO5vb6GUM+ZYSdI0 zepf4zLVQs_4CxxkhKYLzq*rbcnslyxkvRihQB7yKX9yh7t5 zIv*-Y+_~2tA6sozl;72G2CIlYz3f?w-T?HGi7bIny$y2Km(%7q$tFo486<$|hkkLH zkQ%u)ILa~|K8rSCW$XAKypI!f`yu=T>5FNBb60IL)RTL}vxZkm-qfU>iXIELTKac=y;XSoKac6bMB948UVKP1YAF?0iQ# zCVE}P&7?!_e7SPL?zpw-5%=U6-U>&|m>%E|=eN~-Y9LmZyX0qaQO!zxY&gHmEvInH zCMA4wId{;C^j+2;Zcf+#;u#BL6&`ppizj=kTmg{=YilsTV?VCH8u&0C|P-up+! zmTYevEclCTkA}Y?rg}8C(Uq_cxR0fpth8+2CSLrLekws$K5*lz>Ro_wUni&Qf@X>u z?mk8}O*hLc@opt?UHNGGN4e+V>K67*XYjjS_~V7f4AZ#IZ_53pIjv*n7?mwdxva=9 znz7<`aZz$Kl>GvncUi##Qc%3AQ}@2KX}D`>Q~+%T{qo5@1u2%wELahs7fE1tN9&QvV|(T5-Z8KNN`(@vYK#5;FjhJ|V-@wVz;P<5Sw@ly|#Q zmaOLU1HplO1_A0INX8Hzk5t)E!=R4%{keG5<1A#McU# z$*wt4e>*7Xo(>Muc*ALhW}(s2Kf*G9c{o}H^ZM1izX;>QK)A*jQIjvWx~$P}%x9My z&F7^%dL#Z^7Z)nOr2H%8)$^Cr7WqA1&uF-MC~T#PF$|Vt3!nBUuDNb0w`A=S8O`nj z*lJ7Fc*5YzA zFo%6Xwuja7GE15@_I|dIvb(n$(V)E~=&M0u5luXA{$yv?Absayy2$e5Sg(F#^X_CQ(B%(5*bhbg)tfBeCuN z-op!0e1{BBZ|-NZpB1sjSBb9qd<((PS|R(dctFp3zt$~0c$6EQ{&ER8S^k=tOmpwG zZ~;EBkr=VifZ2z%?3f@qc7|Yb7tYp2No>$lpcL!!)TOyIj3WD6VejSez^K0-uKs7R z{d1U5XeMI0)aBT7r$a+QHEwz8jH_$P#0hJ-;zjZl2?iyKEz^*jdz0@vO1FLnHhAz++{dOt>qg;8w&oHO9eJ;SfLFE(173N_$~DLN zb-W^w9ZL*+u$i{|lf7XZW`IE+)p*ieM5?nEtFDr>%5q!0j{QPW1K4u$Mj!}XAdt*F z52VsDJe(9Mo4U=4j4AOX`0Mp=@%u$Gq`*QtDZ}((pHFZfrM>v4n10KIWsw;lG!>f& z<3%+N_r(QCx$i4w$19$!J!LVr&xKX=&Hhc;Z#SX?g5gqkUoP739tvb_8#p+_g^b5{D;^SaY@U7lX#i%c&ojFJd1E5K7 zfC*4N&^Q&>P>HQLq(>XWwWhcxa{h=fHQ1u}+ENJF3h}`{XgjP3a}R^=I6Z+Po1`an zpothz8xWTH@j($A-40{N6Hbp}6$L#jW#zGo_n%}2|2CN}G#GFf&z&Y(t%16i`FUVc z0pSu*;0DCY9#CcJ0leWeGm;S@U^*5@s|+@B-wJX0Q?PhZ3vu3mYP$|>f-^DtaX0)D z<{T4nS;~x#O>5n{O5W2q@BqKDx~V^a^P}E(qY5s&=C+|JEu9ZY9mD6xO$;{BwnjV@ zu;TR0z+FBY$tM#oPl-$$x=F~dZHxU0A`r?eF6|-hfw(Pu|C2`JODVhx0baPG5SZ7h zJ;Kl#v2sR=nl`=zoj-jMl7Lrn7$Oh2AdrDj+cK?CTKGaJxd5X~0j`aJ-Lm7MdsNOC zovSFOX8SyO;MT7`=W@$0%5FV&Z&!d#Z?6`h5=rMP;PLp;M|h{Qx8D>Wx;OHR&6ehQ zQzMJ-`pE;+6%+Lwpq3E$l{@ToiT|^0Vxl-bDm}e;%m~)gr@jhokT&|I`S~f$G6aNu z(i3*W2?i3*#s4*Au5@DJuuBZ(2l(W7zD00azRT0mx35}`Zra6?lK?WKG&*yyS!Gv# zzfO13l8RY#IG7#QD~5q2QJ@>Vr}!NKfl4~opA8f1W5r{~n@z>~6FWa-Hev)hg2trrQC5Dr7C_G~4mL6y})Yp5`AinM66JS>h7 zqM9ylsI9I2px(W76W_a{NWWZmeY9}M?=sE1G%?tb(DR%Oyo2PMiBOGx`+IV~J;@at zaP5kv?bnigl-5|0rbXTgq`v4z4VJzYVeXeKG5~IWyib=w^}R_!G|A8eQ9?k)_gNEB z>umXHN!Ax=2N-ic0ZzSg*cBzJ(s%~YA?(H9=#bUz`}#4t+QcW)I0egswngU%@8Ra_ z-g`U2s!wJ8@2&K1C+k}LK>H;}Y zS~%L{E4(@p@^x~u&+VR~LGgIGl)|Td-Sf@!{7=gDZHhN9h!EY=i&l=WUn`Tz3JS357JxI9AB_wT2Tnv{I98r8S;$pQhq06Vo2~;LbJT(Fd+1KJPvx(SdA*56 zpY~(VG247u6|ArU6+IpiE%e;F(Ue$mIR%>fSE{4wsowKLMsQ{EMlQhZpHFalf45tg zlJAxH#K>E>ZiUT_;;;dyHVG4XYVV^E1wgs?J}WCLa4PZh`mieCyszx64N}S&Smr!h zTdYaZl-X*Ct9;RiLdWQi)-NN&#q;}CnQpx)rPA7Hxu|KcvHF?xvu|{*$9LGQ^M@$uLN1dT3i(3 zs0MnJ@^W)>geSeV#Sgw<#m2_2#%QXlySPBA_eKcqRB)N%yt591&5O#Rx6TJgWG@)W z1vmTt!=)ZV=O@3Zu48YQ=TA|jZtxc~+Gm#nd3wOQX#iUz!9$FkzK4_ZyO;GX04+ur zm-Qz=Ad$`LnX;^GY>N04T*JUN3fk3Lu$g*~;K0EC#g58zwRdmdN**2_DypfuO%GYj zS9Mj|(G6NG5kal3?|{b_aD&bokAh&79h$?wA7%c~uQNVjKZ&=P&xp%id5!$)-OgWiQ-vb z<2Ksph`C8iTl|Sw;vt2RyRq24hYwRM_sx`*mA#Wsw+G~CJuEb$x?7vCo&@)GPikgW zMEm=4drAWc@iS=!YD;$nK@&V4Dy^jyY!T}XSkWDfIq%*+t!8`Ollu-8ZMk-s=J_(W zXZW=;B1JPTJ#($BK|H-cAhE(5D$jVa#E^LMK)nV}*HG^xNW7S?j*h2=$UdOH_^d*u z#FAH-!Qd+6=nVldyvi+O(D7>QDBk!)WS1Hg&3i_O8D&rYYdy$H@FKERqWa?BJw?1_ z-lS?LXoFxztIWJhWFZhe^(0I=T(>Z4S^Z&IH8{2m6&9D75QzS(S1}*myiLyal&EFn zX5MMTWQyf)y>NbDvfFwBY6Uc+ZT!@wrBm2f19ux6#W15u21+|m4nHYMY;bH&Y5ovX zfs;GIbW~eW$ZH6{*OPM38W^YA65;<^G+jS|Uuyc9=K9$;_7SbPF8zh9J?&J^ysx%xVmxCs z31ar#UR2`w&4iFZK-w7?x^v=xnJoPtvz>#(+V>YPqySPL&re}Uzlq43>wSn{5WtG= zzM*=KtC~^Kv_~=63W4Tt?7L4Ww#?Pn-RfP~d^p0xQ~Ond7|5-3gM(EfQdcQchljj0 zp7^rlurW^zlcGm5#av-&*8E8DZG|5^G@}qGwpGR2!uGm0+V`WD#D7fw_vyI9_DiHV z7A-!0_gvs;ZCR}OUOEeQUMb*OS*Vr2zMGq020#%BgsnxO?HldT&r3SL+~$CyB(Xww z2B;x9mwBZP+e}h*)~~3`w0=GmRsC*bmoN<#08L4#$<9LV)y|aZ#=jTeq`M#4Bvrd( zX|r5EF$wpGts|r?+_mN(S^tt4tg!ljY+ZF!l-t)|}(MgdEn%wu*u`qgm`R9`Fu>+{m&_uY3 z`O8871LuFN&g)u1VbN3E@YR~VDuDM|}peeOM)<0@e7@KYuZNRa}#U zEL!8SR>YtKO>d49S$9P1uCOPAd%>WC-A^;lx_i2mRjB7N4G1{Zj3KkUd^rYy^i4}L}jC$3M{{nQU+DkEcG!UERi0QCaQ^2Zh`^G~sO<148Ew^U#@ zxBB>kwYa;H=>x0JvDWWU@;w=7d#Ml=8pO=WaX=tamdy#mPx~`Cw*ef=aQk)Q#F>ei zmn!LZax<3xRmKZ>!ZP&CEj5q6DscUvT2G1I*A%-xE3Y<^r3bJL{mE>5sJr&-8pyNx zM)}ezQJ+*`O|F`f$?AX1yyX^QXANWRqZVDMWbXpJJXi<*;BC$HYrQ|@nz{aqD=&q_XOkfrfcw{$0C69GEIW z(OS?-CE9rEU^z%XA)T$8P;}&KTCOq4pq7dfGU;;ucL&s#p0EL^O80%%2Dz2-Vax*G zx18BKv?M=$-H#iLjO#=STD2J zSfczSK5#NcX)O)f94`FZ;zb^xHY9w8eNNM%P-v2TZZfmU|L<&#P@Qqe3M$>43okoi z&EEl?CHZwK7?%hY?8)59zYYd_wJ?n(h+gd^jfq2Bo%f*6`GeAu+9XVE;u5{hDQ8EL z@iD?8&^m4~q0kolh@#BEvK68s8-mBOrcqnD$BpohQ3BcYPY1OKkS|^*qURk68_F97 zH$97*BL6HqwvtV@9MU=A&@VZ8G2(vgmKWGGRH8ksR3uFT`q%|?)dD6s$f8Q{Mz!wo z7bnu@axOf*nJQ(q^QK(eNL?pr1|xqze#8f@`WF-izER{ilykyVtWKGe&6B(6 z&tG^tMU^0^VD~aXGc?$_##_0bdMMkpXEAlVOul623w! zWwqHzD=xvWOm}@#BUFNCWP_QwYPudxl*A3C5gC(vYzpn*xZf>jajpKFl7DlhWIWfEL%JDTTm7~ z-+IBu5KR@Udc&3A=VH%$d;*w-D}iStVXbqQ3LV4u65c-J*kbw9YD2sz??4-MHt~MB z7bkc$c7L2p@LeYhQ)8H6TRhKlOOdfsb#0ye_Y0H)ULZ{tajCLNZ;fWYvij^xuS+67 zqwDGJ*tWKn@!+#P@!lywKoz5;EWsH%&^Jf{$*S?5sKY|oi4}vO2w$9(C0Q`-Dcg9u zpD{pno64;`r#;x8h^4!1_RQPA8*%>XJbX6bM?a9EWcFWPtY0)GN&<9V#yA*QO@WldAVTGKiFZ5>8X0XvIBj~Q;?27 z0_~M%jB6Rr1DCulxCL3|Uk%Ri)%#=*-i(`<1W5(tWv<%i1FYGv^G0%(Z2se`9I0(u z^d~=B&W?SrKe?)*JOWw0@S6P>Vk%E@>>+fJR`SB+>eXp(yQ%CE)MTK1DlCWV0VFsL0 zZxHBXkC!hi&HjiP$^o6)!WxdHC2fWhOYbEI&NZ60ap*Qo+5U7Wzz%;t1yOfeONS#h zzMG@J`4M?b-bR!D!HSdX$LrCN(AjHZ=lSXhCj&KtOQEUN}`8ax}v0i zFX`cFS-+!h*}=qFv@XIcJJW2UV|yz0==2lm)5_ zL!MFP#G*8AM=ok{fON9>D@(o|qTFO`$Q`M3T+L^g?-;Q6K%0E2aq67Yr@^?oHPwlA zfHKe!yr%Rwq54_xuMH44IjaZ&$%Qm?mEV>Kv{+WvK-$b^e*k=1f+$j(yUFQI63k5{ zySKq!IXhBO&7~L>C9tnbOp!b=TcTg{gx!4WV+T`{fi5s!NhCxeffi>_^6bE&Jn)@b>iz!)d2Szt(K@EX#7*j~lo^ zKmgy|s_(b?UCEm$IuOLu!V!{0#?%B2c6 zA5;Id-BXp{wbPun#>PE0mbsrxOsVUl7KK7)N|0F@hj)|(o+oGN+&}WbEai*jC8_M9 z@#U4ab&E$%ALHp4ub>eRCf$3wt!s@xF8bIMBaBa?bYOVq35oEXmQY)WsHBe8BR4Gb zbV`_4X19|Iz604BbHEP5o_4D=pOjZBI;L`JTY(P7wBxO8j0L%XV9k5sxwVkvE(Y|a z3Nl{n4fddoexfvX_A1ZTK5}$tNbA?rXN_De0rBHwJV6SH1$0Uf`(eVd{wTQ8;;fAn|xgsBuSx_e!PVRNd+tQc z%pc8Fe*EB&zdtO|r1}tmNqVV=O=$l4C~qJe>tjoHpWZyq^ncAB@5KlZn1Nb`LZo6_ zewYz;1gPSjTPi07k!a%HclWZ9V|wrF?Fz{ke_Q;ufzuGTz7=aEngAoV_<1ZCbN*sW z0clGWHkEU1nYB{+wJr=T!`s9za%e``M>)`(c{Y z?4Vm+Da&6m4kN|hg_hHeHxDQ-Qd$kR8UPHqJ1MK@?&Sl~9m+DVAkqqs0RHDI$x{;o`6Q(t0)r z%W$GZ=8P#vI5tY5MXQzTx8j^>9#(-=-}qJViBE{R#@@YUH?9RrG9@{l**Zvn8RS#E zsRPixJx6oGx*%=43dQtlXhsYUlqpVfo6yoOdOl0A zWxQLq3kifH^cr+#iKDa|yPao$@*i6+w9y&3)wG~brH?xsbJH=(3EHemK zhUg-og{3YM))5X>uG8X=>IMS(1ZH4xQRND8Ov9Aj-^fAa;b69WY<_q`Uw&w+sRh2dY1kD+)|2Cici8_ zs4@_NTU*!9dw&MMJs;Vy(xKD8uurdSFsAGsSllr|zm&Q&<=rVuy&Dhr<;_gqa>IeL zNXMfNJMcAQF>926NA#ya%%|(Y&-Pzxjk(EypjCWa;<5IGqo}DW%%1eo~byhwa)$T(FTPu5U?~M+baV06eGm zeAxO-omGD}<$Jx1@`lDu?*$(IB?P=_N~XpP0C1@}0t08VZKA)$^GvKvAib|l6B@8% zclbPM?oUCV`~y5#PD8`ItTk4@r*&F54$Q7Vw(<{|A(eK1QqQM1C@3sUC~&I^50g(X z?F*+r@GYr{^g_)DdH3(9HFsJM*P^2U1>;sJbxW&oNVlBm#o=~&iC9esF(biL>WD5yO(I}3y%hT8uz2^)vErIwiCgfXPC)BEHSgwFd0&1%8B>< zh#gSpujG^NGQ?;MS-+I?+$^g;r?x|=;idCM+y zVw(brWT~?8Ib+pUs7vzv=0AP!^W0KNTT%W&9d~o$1dN&QKUgr9{PDZCE_HY*VQZ?y z6OUG=C^O1h>f@-Sdb`C{AI0f)_3PNx%={PHd(?D~Jbeqj{C7VdXFRvdUKK#kffF-R zRYorvB@@LdPJ61yP&=9q2kMJh@cyOd6_G2%&}A=OCrNFaZw(r&?uC)`H!8k%XdNB! zEw`OGnXpRk5z4;|`SBt6WorL=o%q0(_kz_F4yIYDSBp(dz~lux)jp?E91>hag#9wg*GWx-67e6O>(9P9Kr5)}7V0bnxJUJf+MexLP2 zIJo4Sv{o`;nrc+p_>NkMa98RIW(WFaS`MAMYQQQ}x)S+7koBzg*2*nx%K$5>i<>vBgf$j(~WU zHAe4F8O$J|zc|IytVuIioJI7wgQNb8N1Q5j4yI{UV2tp=P z4Vd;m8=v*n`lfSv+`)d0b?p?~u&%0#EEKnd?(str7v^=k`p-m`7j_*o(>igNPA&pWR@f>BGP4&)(hfv&1=Uq^w2O59IR zZI7kHMM5~M3Vpwudov(_iJm_x55^LrQ>iedT>)e2bzyUg{oZ&~H2#CxDm?#HYl_ox z^J#XBG_|x$uo;wVLVn1oNQNMoyB<28;d^$ryVRY*n}~UFn4}n>66w&F6P17hRxPy} zkS7d7&@zMhw}V2vOT?$SHo>JW(7TCZCugjTj~`ExFqawu{5ElhZxuVJzHS-FEq0tg z{;k3B&^9$-WdCL)rXK=y_hgNH+7~(GpMVtt1u{;n&*~W~ zRKC}KdyOm(z~!o5s2SU7xjQ4y4)mk_B8UN1HF*h`r-^^6X)-G<e@O+m`X%c(!E-|{?y_Zi2A-r;2%*b@iv@vFf(Dvn>Q592jL;K`(= z9MvhoRB^_-Y*A?Yte>hJDW8jz5mUtsBD#WYYevNQ!#XzUzU0X5#Am5h((oBRXlCUThK1a>j_$D#dI%#m-|GPhRnA{YPpE^Q4$iYi<5J@L>= z<@gq5B=dj{gzVmdrA6%p!%ky-*aGP4jzno|>t=Y6-A)aOUs3>wU8GR5@EwC-d{uve z6K`()K;J_Y0comdRq?FgWXXWwedwozRVO}-a_iWqLOqE02~rkN0=pSnkge}$n03nk z9sdEDX!t3$RzSIRmk}DtI!$*VQqOa`gHk^T$FWD0oH(zP;x9|FB=(1c+uqgFj{Wi5 zM~3H~wCD)lUoD=z+(&~8jK66lVSIO6OnVdWRf8~&5!~s6aTgo)X40V4>sORdH36A? z0!}(e0BcVF@aRGU==(ry?y-DY>0!^nmPohSm)bh;b2>#y%RF|eO%bU-tLPb8ZATNh zjD04V?TVs{Ie;F~O!mDhf=uq=Z_fK#uoQGaRo~%7@M{N%<99c6(M$J*-HV7bJj0=b z+jD2O*YF7lXi$O?{g%wVi2H8uEwkZ8x{}9G)Jmdb5xxdixXB?zXck0G2bSi zsDdo;z44W}5MU2s&R(ousko$VWW2C(&vVzcr+Lz{(fQ-#k|1obYBfzwtJ0~Zn^>ax zU2#U}9-zu^7=Usfh_3S@*?yKRe`X9G_NTyP$1i-QN)8yW#=IzE&ObwT3R@Wah;$^6 z`6x>9MICBp@ipWCS$Ilr*_d=ONjA!GLq`UPw<}HD2Oma6s1B_a<3GHoUyqD>@WCao zb9TScD-ab1I4_~1$*QXFdz)9sN55_B*-4g}T45D2fgV7?Ob)vN-2RCOut8wPEN14} ze!RCMc(;iXNX0BSwfXK5dmazhI}w^E_Uv9 zf116%@z+D!)=I4pxTwZ#vjhY>zge9gmnmHel*rd^S3s`rAfP_8(o_4pNI>L+2$*zf z0jff!*pXc8%uec6VQbXFTV;ICS0=KIt;kV?hJD(8=fD%K$ItQFtU%z5Y(UAXc`eGl znR}Sv+IJMySc*7YlI7d0939&(|L}bFHraj#Qe+01(`)3!|7TqqO7sHba+G0o_ZdLW z#kR-gFaUd-rAjm|<`-hKlGRV{WOJ?T5X-?ixHsjNttvm{vkKtnsePqA>vaK`#n$(Y zFkUCz#5sNce)7|v5mjSz8{RU%Imb-pY!a|n%kUMk+-`|xwYS^jGG7KDYGg>Cd@sNa z62xD?%G>vmmcMr#SA^9$RD%N#qpfUw1-XFSwg>C)^(9X($Rz{we$%H;dNF}_Uf~Z; z5Mbjyy#6{EZ&H|`zc)9jt&9lo+Aqe{+dm%G^u*mt(OIWUT1|5v6yprNeWQ_%_KvbNd)9{Y}n1#^I#Y-SfwY0ss28 zuk|{5k9v0zUNpGBXPK-y-NIpIZ6>I_;72-IZ!)N^;-;^e-xxJLXA2Z9%1~1A(~~JR zK;V6D1jj!{MR|M}`div^Ix}rjrjps%ea8)LMAp^xOLw?-KLnwR-1S8QOmN)|C-&|h7C*ovU%g?U-m*{`C4r|nE6RJ4L z*AcPo+JQo>2H3S7NLU~F06toDfTu^F3!_La2>rfo1VxQ!Y6GmEZ7o$Z=;*wg$diwM zRx{ZtfU*dTr`D~m`%}hZv%@Q2(hDiSn>Xm#Oo2)3v&}t7tW&V_GFB2rh;z&;VGc7Q zKqwuXTVK2akTw1EPXPZd*zNe_fNKPX8YinfD`C>H&C`G>#usI#Kqv4C#R+@!?$$gV zl!p189%>V74kk|lQfZ>1*4CEm8C3}e+QJ_HX3K>jW?)I$E6H+2Hu|_lbr~jZ4Q=9! zu~XXy&2+F8K8b*DKK$ox1WVbR&YA;3X3ZI>YMUYjd;1Tg<4}PVGgkp0^Mlot?}^P| z>+}SZyg_@qmQbRqaxYVVQPcUCiROa1F_G;UQfPRtMf1EqjA4v&TnZ}6} zPMho&7o#WYcxE<4xPeN4cDdgGS1$dW$jxn1sxDmL!FewRMH-KNT{jqLDv|b^{xs|A zzpB|qKU;<+g#tD&?S-@bZ+HCQ3+YO%U!iy3olOeliun_Dy^G zgZ0@nXQa+3K9<&6s*ffmyprx2pIyqDcp6hZJ4USGokFVC2<(ZMnT?Gfk4!E5RXh|6 zl(b{uo1c%Q%3rGKdYFeTUU$sf%8;;rHx-Y-rB1_qhh1As_a$~|p#dC!j$-i82JCMO zyAnVI4E(D>->GLf^?bos&jKCv6WgA2ia`IBoXOq`$DzTdr2&w(-k{;??2PrnFda<| z_N9#>)&?j$?ySEw+TwOvli0Yng$}(c-WzM7c}zH}3WV`QBiyW>vZZ6QUs}X84Crbh zS}#Tb)8l|t-d0hYC$^oZUeA@Jm6ngSz3w3if@H7;+5eTylt==`*&*F2| z=y{dRzst)v&HWjR7pVgfykN@-CKx%AN+#5@OETEk^d{hO2fH0Wcl`5X5TZd%l!qKZB2k~%NuGMl*lGjx|>_TO)DA|>cDv!Sia8&Pyz{t zPV79$?0PZwtl6~?V5S#0%JALEck@6zx}Z z7~LRXLS|e~8}|%KF(W)$^?|WKbI#m_M%I0r>z!(&Cm&oeNc_<^eY!&FDrXOmaiD{# zpy;6qO#q8Wg_F9qOPhpz#$r9&vqTq@##u*|XNzn1^5h$jQ%iuWkv34tT+gr#l_m|n zC%$?GKuXEEx6su%3Vut~b)o`F6191}!kxOQ2c}B{uFj+oywvEuF5#yi@O&C`>(AEd z#yF|Av)zCoWfKhAR@c)@d2@xX=wNeV6N`pV0Cc#=lwH1nJ*tmya4o|drvB*Bi`A(Y zF9?8{YRX1DjC##8TL}+4xv&=x1?tQH8lZLlMO&);y{AAC5e#BkI4l1d9DvdT^vD|n zqR7!K>6coDh9zk(t$M%++V8;q!wK)-ukBr@;5QQr&&UjNx@hM2~nD#&upwXvYv(v9; z@`0R;v$dD@`AN& z2y9)Rs1Zn9)(47XoQ8Y3o6nS~#iSQWl?{`p0_cD$is2T2b&FJH_J9Ct05Va-$5sbH z3oQ?%ZBa`>$llYfKl<>G1!whMJQYbd`&Nj2Z z(Z$KZp?Er{3&CVJ-DGL@#xmJ|ON^i316RymdsU@$OJ|r7XERV}?&ng%2OW)09+Zk( zCu^2B18Tb3vID3#F!#V(ZecKh{!)%>ZxDS_#&v+vf81pcP~ZZm#ip;UYIgucU$!Wy zIM4$c)YxHTnD(q6K*68V@Z(-?zREF+2efpj!?&uVgJ?ePM}quGIzcx2{l){bB0^3)CjHy zb%>uFpvl}2aYUz_tVHt}Q1q3OQrk2f)1Q2qHgw{zE|=&x&G**Nsnl!FMk7fqsZjc6~KGoItuTQ4uCCT7#&i z0+-Cd&~6!sv8UR#y3q25mz`cNJ*Txwku-bIrTtspuWlS$3;G#gY?y&s6Sa8gXBx@0TsI3YsbOvyPHv2)p z5Zw01TszoZe=l0VVZ3@}*Q=q{0J^#hcF?>jpaL&5g5N{0vYke5nUIZ^qbV$dx6XR~ z4xg6mH=+&j1NGPCu-hQ8cSRM8cd2pCwhgTC8$A^)^ra3@x_eqrQp?r`&uup23!x{^ zK$5;ww8gHp@WW_>>S8esSBq$`YD|$95?Ur!WjWjQRaIPu#_RoRZKie7BpJnoW!U-B)Q{M5F(GcI_uzh%PazJ_%~x6N#+v%FExS1R4Zdez7< z<0c~tXsi~1$xf<=JI@>{ah}L%qJ}XrN zKAkZ-J3#zWc?FwYrjMr+GJErpPalQf-xQsfA0k{}&&YXe8`N9Dtn%X|RJw_h?hl3f zkRBmHDwDAN=pCRP$L>F4_N;y3z!mi3^nz`+FQeDj*TH^3^z}n;mjXAzcMp_Rdm1>- zCbb4&{8|k#(MfU^1|Yb#5yU!FYp(et2yV9_5rZ%AC<5f#A+#6NJ|#EpwP1ROP`NH(Z+03+oqgi#%R7 zN${HEs1ds5n;_`XYq~T7tftuA=?Ey7fgQ~0QFju{KY3+GfFQ%JW8gnhimDA z_Ne8GJboDHW9QVgPfC$(w(ARc8|0I=#iEVQXgphdN)9wt+|F)9(8%smZ7vrPhw|AE zj081_bm~%qva&(@U>sVga8;#N-fP#j6Lwo9$nvx)1& zgE`1n1{&h~EUn}8TG76{ed%yuSS(1=`?&S0YmETjZ z)6vo*-@lUaBp)$V)7$h_KcI+pf~RFat^^pvxzd-yoS*I%hMvT1H>m~UG4Nh>dAc!C zu+rneAMGTtT&pXgGBCeQZeQHdYHoA0VOjk`7;MRUD4xAHDns(-`ixa;8gm3bcVHJud4>G+srH2;pPOsU-a@38$OwL zvzxAwzG$7!VJG*QD^8W$0d|z!#2tDoXe&U&ZTQhh>kBFypWLA0Wn4O7}N4#P3 z4z7RjKId~P+i+M6YYtW1#r5OOa?0o(1~4!uGZDa|%GTC-eZX|pvWAsZ<1fH`QlX!0=%nQc}`g;NL+uaz)U@kv!G-&9bI4G+lgat0GqM^;S+`^9(J)yW2zhd#(J< zHCjzG%mbLBhr3}l^*m3#rYPdXtsAwl3rgw~b?54^#hF4k95y3gJTysKAiMdN8N&Zb z8RB%{+>@HWU5yYzRWeXtkl4%}jd%8YJPtq56Rtj>8>yhHnYJ2fN&Z&dF{qq6a_2T` zCoe8PiMW$X4fDy+r0%VxHZS_^9>lpX_@u-UyEU;q*D1u^rA6^MP3T0v(|9+4Lln#D zl9@4hOSv&J1&m8mqKcgtH+m5{!oQ;KN$IHTD0PKm$j504QXe9yGF zsAyM*@VqC~T~{}mUr=zEF~Uyp|>qi5xUKfTMV$0 zQcUBwxH;Tis_5G^Lr!r1YkAun1``%lhGyqRsjeS4QV#ZNlK3vD(nY?(3LPeG+gPkHkV;Z2lm|dOH!E9 zxV^C7oX$gxVajf#B9oh%N+`1F-IEmR5|gyy&6@9)q|!WZ)_te& zZF%?-aBtpEeIpPB-kv+FoyCWEWl3x3y0-(~)=U)zRZ>;J-t@ z5cF>*_Z~O#j6URq9BOh%jwl4bt}nEj7RAG_S`A7DLXp=w+jV{VggZ4hW#fYO?acYY zh6$Zjkq}NAWQ$hX^@8KVO^pf4p79Eov}SzEpn`6=alg-3y@~Gn;y_21@bMmuci+ex z8t*Z+2x!KH{f;e(Aqnc8K5x0T?3=3B@%&e843Gakcj_f~){QtOZ74nBl5*o-O)6Y- zr3F%Ar|6wFa}9V?b!}1kka8naYrWhGl|v8p@F?0H69TBLh*C6Dv<)l5NMdvNoYN|7pj&1DulM35N#kDeXiZTpa! zzF9IAixmu~ieq6Rkpa5{>x7E{y$*}b8KdBQi5>32quhoOBZ&}q5$ zL>Iv7-c%NPi*FxwVTZ@YOFVUv>RNo~wbkE;IC4UTP{Rxxp~TJc>Yh)lIF;2}pCLuh zU)O#I`s|7Bt;PpD;qC1t61QMcT+Dh|`R_q{w;r9n5%)3#-Y6}pjPekdBRoC2A;Fw^ z!|Dd5kzy+gNV|#<;y01+P07JWCfN@Mn%qXwxa9zJHgnw_#JpQ)e+)C^pnAD-^Eok% zFkWskBWB_Nq|ougnR_r&B>uEmG5@{$D}V9mj*Ix`E-61Lp1UaPzr!Y zvGXx85eJ%UGaSQoPu0hqo87rz_M}zh*#I|V+{X>7$rmI1ba*bt2ko!JSie-<*XYd~ zYhtjGtZz><W79ume9hpI_Z!b@%(%^D#OCFV8IgwQsQYqqvLHX19mwLPoEx zxq2(j(x`RADCzmRD}{8ks&!dvOw%!dO$wcpx2OIq$TK+sJOs=gU*C8fQ1 z?*VMA05_xRIs9q2Tm!ODK3wbYaw$Tx^N#6W@WV^;a@ZTg>0c~+O4WKvlqD?QJ0s~N zy+1z)7yu)-zES?`q0WR9Tms&th+SJSdG&=eAAtNWgusZK#1eiNk{oS(99e&rxX*fj zb4H^@u;lB~woTAVM#`GdD{qeH9UnVzAEfcy-*^(Q+ra0rG!gNlyJ1!vc&^0KtMEIa zwJppIoM-*M$h>s59|-xK(ELnoOqrw}4HK{yF&CemHv0QA{=v*tZ^+vpCW`nYr(Y=vLd+2__C1-&S+keun zpTFIoBw%5&;DD)HB-A@S$ZQAOXid^vMSXt+eC9P<*r5q@?<8P&A66Ly$Y3@1a@HmX zl>is?PDz4znt&{R;DsAA^hmc9^UdAmW{rQ!-`bjA@h0R0IU^I5GIspx!S|~C%?G#7 zGsaXC*e98P=~<0H%itOZb3R^evsO!95T@+Dz8aufDW`VuruRvc#+4Fm9YX&&UZU#< zE1NbG<&KZPjGrXk7v;ySEYLr<V=`d#il3+8JR1Z8>pg+?e6sLe@3 z+Dpo!o!M97dU@7Lf#G83t;s7+ zMvJ9MEkR>&V3CcO7Atw4Frdyom#jh-H5;?uuaD5J&yjZ<`@>KA|M;htaHcrRz_IP>^ZSq$9uG(&XCMOZ! zK*CA(>N~$KGhU}mu3lVZMb7bTjI%211$i(iK4G9mYnYabiEa_jk^a@P<0F##f>|hj z-v4ib%&$E){YK~r3fU6W%bKYimr--DoY&=^A^GC93!p z8b5!pSEq_BJW3M&EEP-9opB!|_2dJ6&W-pcJT7Qhe=o$l@Z?pwm}ztT?%StV^ZzO( z{ArU9D4t$WOmgfBo2<+trKq*&=&zSy9{RLUUb(C*^k%>8t0{2brS^6Z1__fKV@H0A zw_G^5swlU!W*T}~uh|{%4Beg6T{0arU^04HkG+=F2yIEMaB?*_;y$IBYC{JWX~h4!Pp& zuPJ!4wCA>e)r3OZR|E`Pg=fT|!OIK4y1J*TI~OS5a?et!)wR|9k3BD)+VjDAeaTVz z0qZw8QIA-z6M0E`mm^O0jFOVe;#@T$*od4}a%#SF5ZgX5B2LBtmUIr;a$9xN_`3E< z9;7q?c{5ud-OqdE5VTglnYHCoXndDMsPw#FYrA0*-Tv*#|2Vi{DT31oIVMwSSgHDY z>zOOx_S}V0u_L2X(8Q(o(0>Ymxc%&^d^AodkM1r}7HZrQ~(iqx>eZ?iqxWZW1DWH^QvxA{5kOz8Nj^hD4aDgM0-$EtF~u$L~VoK#`q`9=}~ zZ%{HwcNWj;Dlle`A?ACE?i|sl*x5(;3olgF#YE8dk+e7bUgxhB$2|&uWywXKtu0Lh zW1zZZ*GWrwR=~k^Q4PWv>3}oyt&LrsxdY(9;K^Y`5=MsfCLLb5LLa>4Tom6AIf)Yz zrrLP+eOtFl#iY#0uO~Ndr7r?icwlpCzq=QA=0bPO`_G8S(rNeG*XW}O%FZ!#he|%w)h~jN@eC%hCFVh#W0C(*ymWl1sBWpryPn~GD`)J;hZZs>Y<1$DLz;k4gZA~ZAR*L z#g;irN<}FtMQf4x+O61fCDd9WFXF8tZvK6Mt|GM4+hnwpM{-eF|8GItKc@GJ4KQy0 z{2`EU1mQ)BS{d}m)vWVA@liF?xr>XI**xn7H)1j(L6612F=a9>e6G9P(TeR6d@>u7 zLr?6XsQ1dPJOXN5f}|f{HVx~Py5GJ_`fDRnpm_lmwxg}b^-1KOH=|-+q}X&VctilG zKAN&>bXYz4sX=N^`eep5Ef9MdTgXXaQ0Xwf}>8%xj_unm6`Om zsFkj`zv#W{{DZv?y{GiWn!Lb_qkrDq>2DlNZH-@SC9R98;-DiR18#Q8Fc!3hpp9dT zObj{1%c8OZR74#GyYJAhmr`fw8FPH;;fzFfW*&3Vu-ipl)F z_M5bK5kpCJvaFZVUm|Crw##R!p}3}B{b$6A2)In&s~J{EHOfXN{0qNT_>|VtZq1~EBBY` z>2Fft)ERuH03N06nF&^0?uG(I&4rowOjLK`Za5v_+VjxK-65Vl$|IrW%HGq`BLT(B zoeVR+c@gPB*%8J+BtLRKldmjf?Hr4SIUltu2=qRm!iza@3DIBg=6JI|`5>7qHff_~ ziq~nm9&i`Ds9grx<>S%5;YK0wc&E8nj@;iJc)txg4MR1#TNdk5-$w)RHxY zmGc5IREmQf)iarQq_v+~?@r(tH*XG72=EODY4WkVv(w+TXS2#N_+k*0ST@c!a^G&i zOoJDFNLi`XZ7cJ05FV!yQEjMtjXEbEc$+Zh<{PqE@L)aw zj9{o=!Km1dkrPK1(zNEQPmfS$HP^+(&3J{(s1pqr4L7V&CSOvncgnqhO&8~+5_Nff zon=8!M827JU*6JJqByWXb0#zNe{YNU0NDFwS&mT&9b~j+gI9r{%#>Qc7Q)%#Ci=s< zPQ=5-a#^eZJ&xbHx3IQJ$hulPQ>HU;@x86HXKyAyjPIyY%h)rToX$HiQ>NGf21L!y z-GzKE48?$i8r$s2w;0OYist(BFMQ)yzr7DnR_Kq13q%gjem^C39!Kf##sL(eD&~<> z0qgt*&-1&Yi^?HPQ~$9j0KZBBfc)I6DzQFJCPir)<)RPgQT3v^*=2GfC?`H#QEp4^ z6sEA%TX4I^A8pQGJ_1f;2i$t%iCPBJ_KFA;i%^p_(wtl29(99L<~~O?XdHE9QX>Pn zt|Au1o%ha7C@rQ2*-Ch7q@Xdy$+BJ47C_OPa zISGb!+X;wjaQjAE&ohk>jr4dz+n;hpGU)~C>+p^?}NIVft zjgJCV_jEsKCPxna!nqozEKI=3u_+=na%@IE-*kc8BN1w~^QDS(FpgOv#m818`lmG$GCePXd)^G5cV}cs5zyD_y8te6zSTCzj^M z{+sMn9S??m(dksI$E8unbd?9XLR1v*bvym@EKGEfX+(PW7gf3?{lLqJ&bCDdlK>Ta zFb=HqdKzK^i)HVAqocjmL(kZXM&$5{pL0 z3_j(|1C38QjSd#uo)4j5lnjEfu7=5Kla^k0)Hxbr{^?=%y-)ZE*8QDAB?CXHOi?7)`V7UXZ0$}X;>7e9| zE@#RE`tCMWZuvSTxv5`h!%^$SlMZh0VOQRrP7~!Zp7Qaer3o?5P)qXYjXJ5Pd&kSe zxbK2|nLBBBB){B>|KF(lkrRlB`sq3s6faIaRu)=&2zIVR_^*^@VN^vU2sP#A71XOX zczf?!J=4oY^JxYoMTUplj}}#;e%QH3UL5v*TU0*_&$C9Vwk|(VSN^K$tLY3ltk~Km zeKC6I?vU=+6q9?Lu2hcG=t>Du4RMkK1GE2(zXjmp+C>0!B-u=d9xFgc4sOL3Ts*}o zz)dQ1Szn@0sx70^uO%yXwK-6VS?vUM%!EgJKd4^qNMkF77`PCF?Jcq>g1It+|suP1fd5A@u}96>?iSs@bAT}4s?rRS=MX)hdXJNdpzE~ z@^bAIYJ==V@w5O)*{H+chFV00?KRz+>D82V6rn-eA{P+$b_t|tuDI-^W|pXC^AXvx zR@8g-@Sxdp)Q!d=elva_Ih~4Ym9*#&T7qIDF7Fz$&+flndh$?iy4X6^ zxecz9R8M@x${o}r#-W}IfgLnmHvfC*CeMFjdq7?0w0WTJ69o9^Tm^aT6)1Wmd&+isuPmuA?ty-~l>Nnmi%@yk zaY6|M|>w5q38ZVyM&)#dVxYxbb=DAGfp<&_ZN5LH+)phA2PXcmJ1?uICzWw!UCDfmSw7 z;@N-(ZFI=M+xOQl8gSO|#bw-oeU7+^or0lj!JYo;e2n&A{aSuLK$6b$Fff7B#rK{W zraktc86N6qu1uIEcdi`iKnI~3`ZXUb$&mR0&yz=KL5$w
#FoZp<=0b9|0YKJcF@* zP4#}q<6Ug%6ko>aG6gDSFP@3X;*#Cmgds9Vc13BT#bFYmNR}qM3H(l=y zH5YAv!miB=#w&dP_yi@idDw&YES&84k|BsDXPj^YOl%r?5jbp_yoySg0%&m?BC+#b z-0yCsWA1D1GNoC&k>@NQ0avKhS?b82TQ|a_uVVBNl*Rwh)s^c&TRe4|73A#pnUwDY z^el{kRWJrPz+r7|N)$p?2^LtiViboqGiVbU0ZuCB&inw5e;xzmw21q4&tkVSd5Fd7 zF(>7^_)e96GaF>1^x8TCAjqE6tRlGM!XrQO|4sJzdkHY~XKbaG3ma*|^YS>$0Y&B& z=r^jRt!=b4QeR|0ttveGx|mT!L?jb&?V6A1_peW`ZLo};4wX;K>35$Ntn^Rqqe?X* zp0bi)q@34e%sYfvu<2=%nBmW=+S1!cHeC)&x%!QP_P=TA={Ep9XH@YC$}1=7%b)op^0Vu6I!fQ;U4Y=H=%L)gPj~Y?`&jFCg%|ag=Z{F~(9O(R1ir$tT4h z7kj+ksK<#rw{qEj&nZsPN&m9G`ynYd757W~%75e+sY5`oC~IydUd1oW(wM;gv9)#0 zjOwcWrObfV%oz8@uh+`QqqM6$s80JO*mug=0eYN6AB<1BuQ?Xw0z$1nEv}hH2QP5!EjAoBubqWcT1?$ z&~2=#uGvmqidRL*P5FuA^pL3!>&;yGkB42g*5&aZB{1(KhL}O9;y7HVRHegfqMx>p zrYn;~@G-I|C$T$L>VAH$$#8;4hRcezC4;g*o5KBK`6TJek4W7_WHVulP1>U%Dxt^55KAMC+iQ!#H=io! zT-y?aN8;&SKm#GS@F@8x_Op?Uud}kkl6QYh@;c4y2#@$Pq`i72qvyG4WE~a{3L#v> zV+ot(BP|zFZx_?XfALbB8Fs&MVc12*RcFFz+oxT~X{3;M>6!kKXQpt{o#qcMzmd&0 zfW-3;t~L#nnj5Xn^n9TRx%|nwRiJlOHS4`Vc1N&QRIXrTrka<0H0K&k&I1=07u(J8 z=w@&Ndu|+nOS!WMO`M|Cy#8jw8zLOhw6Jkha5!t3IFo5e5OS;Qcc>D; zB%6Qc2F(~=aJtRU%%B>8=Jr5OMQ`obmA^?DZoU{80mM}Pc`Vv>MGuKiUOKF_EB9ON|TrQ_2?7~!cK=2 zCCI+w(8R~+QI?pL#QEygtD5w6ikKiZ>Tdi+*`V_;))c3_EA?vKWgn4O+l^emI^)#z z8E~PVsI%2oOto|t0-S&H)mT@cVV^(YeQJ3V7!~C+cJ7!6eQd(X`(GllcVEs;^U@l& zlgKsmH=@!?$6w?(y=b-evlj{(yvTa>8v&s2y%Ho5Q~616>6M^yu>IA%`uM zwy^~2{)&}4&+stQHU(BuuxSR|5Mfe+joq^@qAL#%5&E6zus1DdLco+hDslJV$gyBi_90hRF6-W&G#wsV_l!z(G+J<~`Dgln z`Ne$(jPj5Qa7|-H2{Gv#dS^98Wtl1Bhv=DDyxzh4z}}K?fB@8y-rnXgK`^(Ya09(N znOW!Bu4+@cFu^-d;4BFU+m)4H!=UAU9xwIRZDovz_gp$1s9$|b8_-JfC}E2&1-ERGg)Tu&C}lT zb@YN@Y`|uO_kwqo=sB7zcN{g!P;I#({VUn?Zx5FH z9$2bxotkY(g&)3#+X1zR(B@3K`Lb7&=MdlK?6xnu|2Go*)A!_sZrj?sjS1_JzpWB} zN!TN6BMuzlb&Nq_ml+1lU=wYz0ig4pRta+7W{ye`ipS> z^nT8Qh~#8+fqAW`Z}Ig|CIsMgtw7thVt{{=8}e!4f@5Isd>-xz-6vhHk!eBNFg>~l zc5w!T-Ps=7ggCQ6TFB*nS_hbJ`70#V2_FE6^0M$!yy$HOusDB;^J9lMM$CRR*>8Xl>85hcJ|U~OBtMw+XQ|WK zU2ZH>B8=wxyQz*`5Xmy++jDImol1JxNwVZBhc=#b6eRRCr5)a>$o> zG2}2k*bMR>y(2KD49Kj1I;89PbE7O+`c7h=s9Ve7Wwl$KEQ{r)v!Y`SAd>IzlI`yU z-E=EAVBpHlI*R*E_|Mhp?IBd+4ta)AK@`j8qXclbq4dFQXSTnolu65I9Tee^X7qR? zOxBn?zb@TbFe8jR-mFxu6A0@U#B4AWYzLh4ll`@?Kjx!?R+%l>mh zeDuIOs?T}2%N2|dw1mu!Y8IXNU7{uLA)uY}KKULgI+mK^qx35xm^pfTYcH!hq?@y0 z8#P^c#h+V*_cRSb^v}upb;8c50cpQ=p_ZDEUmBd{=h+^d|LdQB-m<3}B4kH6%t$&u zX;va;{p+f| zO=S%<3*PNwo>sMAu|nvnYrg$q(%x;XaC+z>F&%wBZ8E@!8#~&eUE)O)vi;i=!O|{W zl9Vc{%^=PIxY+-^Y9yqV2@521;YA^wp{LUWlDWQN2mr6sHY)K$UX>b^GYKCxRk>I8 zfe!&u9~$UzR{`+7&R4t?OgvRN))Cb+pdMN?<+z{k;SAjQ{$Y~m#T2OEg&(&oM_zxr z9ZQ{+1t(x<{AHm<5R1H$Q#ADEhBAT-Fa^Av-g&|rnGuMcrXTullz7@qaHF7KhN^y| zkFK;rD;}ap4)g~YC+F;^@xO=K0YPa>st_Wba23c({$sKm?H`j8w7Y~D=rwO9j(6#H;PmDvPq&tl%a{qhD$S7)#76z z3SrwZM1Q4|b+X5(aR%54lO0vkMN31`{88`w*?T|3J6az~B@qjI=WKO%cQ*lirV4{_ zkiC3R*!qj;^!$8Osd?|ZOE`XGA$l^&O-bp>x5Kf596pz&DrZ;m7aqS9^b^b{-gxKQ zRhlNu$Fw`ur3jNngEZ=gN&tRfhAN%h77Ru{JWt0{h&aA3)77_Dii*8T5zLb8-bq<8 zSJX`4RPTgU&(R+~bFQ@Cx==^NYs(ZhL6xo#3mgMb@-6@+4ejiTH^^*lZ57H;@$s{k zv{&t$&TUv*^cB3*J~sLI1m_~z`=w#>jp0#%g^!AGnW=&KK)|VoV~pMqNE6*WUL9G& zZ|9_6nUT@Be5c2DUY6EF?PGKE_@G^T=^RP#yDQFqhS;Rb(|u*FEr#;p1gR;f;GLG| z%x6?pDE~zLy0$loBWq$&>4`U_)xX_ouC}h2W}cp!TAW{}?&|EksHv$r^5_Zy(TU1x z0NNIW5{`R6zaiC0)?p*BSnO<3D6IcBtEzQ1H(sbOWooNRX z1=4)exW3)hHuuaJ0X4K$EF70E6^NE=<>jJ}(z@TmdSNZgTmlE(apwA6>-ExazjPTg zGE^!?cN#SFpu#B9@4lu?jE^$Uc%&4&pDI8eBcNyc59W7fSQSUgcE`WfI6Rim#C4$u z=O};sc6dZYgfn(!vOQYaW9Bxq-|o&vZIR9B4V5ES1c75QSD$@4|4Rn7C@n((3T`nwy~J$n;+YmVX<%Kc!3#pqcA){Y7Rym&+Gw@MC=j zp=->fy}8;fpvlGA;gc9}KHzYCiB6H>b0M1yl#>r(Rb1SKg~H^W)eNKWi{F-JNscar zTDbRKG9F!u2?7N^a=e|4QomCLz!nWV3_*;P6+2tA!GkffpyL8tjz)e|ON&CRh*O@9 zU8_L#MtoSMT8)2goe*d2q_o<{q(w*=M)xrzk7ZbvcX zlgENXB6L)o@boVDt>+`tS9QJ(I(4Rcy-~2eOvDwoQUCqdL%jYr{&Z&#tJ%yTO%PjF zm&C+$Z_3MiDB_B1ucx~18hUw@T=Tog{eh1Ws-}&CV0AhQ;d8Y|+Wt#v-80?-J|&sK z5f+C|Er~F4M4Qv{N%TjQL*2yw8@2eH1Llol&ZqLwO^Y1QkfM9lsTVfvD`i@dCkKy* z3JY;x|9R5NzwY(%1(uXz&gRs&lNdnRikwG3NoOlI8OJPUvBd79v=RKkHoi-WF`qI< zXmRv%#@M9y&4t|4kf-{427Vcxk1v!DpX1RaEw%ZBYl6fg#^(d&u!o9B(D(oh6BLZj z=P0+Awt6{+VCATv{bO64go zWWdZ6Ta9s-5sW`aWfvlR1J3mZ9|Qmb)3vXI(zowdE>Qz^$NYEAkruAviklDM)n~#1 zLb)7S!RvgClpJ4ZH6OLO=ddyU>@@zbTO_4`8&KkEaYx3Isxa}@6i8fOu@0RDdMA@`xnpd#)*Lql@`1M|L%ZU`3rj&eKT&5T~g-f1p9p_ym7 zX73Ld8!`U%1`zyFR5D@3@*GXK79GHu#i7C)`^CRuzzNh669aJ<55ST@MZ~m?LrmTW zo~rA%EYv126q`NU{%P;7cX`{c-I^~OU!Lo)ok$))fI4?LehVa&2z&4uKFYU%)6``d zl1}d5moRZRLJL$*ERmHEo(~-#I7r72=Nj)-Abd3_(aNK)JB~e?^97X`btpZjz{I$D zaXMo^{|52L-s?VPrvx)N9)gL4lq->W(}* zu}~AZxD!v`7R!SgeNdLA51&Doq@w^Jz#rl=&=LXH>w8)DfUq>u{3pag&uD#6Fl%=iaCyz^Dvv8C4qLwE(loe*HcJ%gq~~ zF2Qk;A)AF^geJiBbmvJ-)Qp3VNfd}3;K~zzxmK%Mn)eSGORel+3e-VurSTx|V~X$} zA@A**w!1QCb#~fxCDcF7$iHu;rSMXT7P>ko`29(_;Qx}8_5v_T6bQ~%y;8s~F}QUf z>rrs+>c+ylL~-BTG)in@{||w*(C%|B(h`ca@c~U)g)n}T^xdAtpRM!%t+>;GzMtMj z=OLa z0gNDR*MQphGB%2jk%a+ z8GZti6E;FyT7D9ij%Q^Hg~_hvq@uMz$fv;2$5+fW>yOzF#zm=vfh}NMPYgJ_=hh{+ z*`C#|fNnR!YT>5l3X?lwsCj#;>kiN*H7p{Rj##ex0%S~Km=wT8a39nOt)AF}g_Cmn zqoeJYY9)$Z4P2xbPCAY~I0LWT?m|QQ26PDZtD0(+O^d9;OAq-%j$>8c8U5W``M)-O z+D!q-N9q;nBFl{%)6*6!iLLn9q(rV*qtX4cER4m_)OD4{(Nom>8aAVyJWOV`$F{?& z&;3?zy7$Frp)Wpa3D!J79<7beUrEf`2=_JQI->utz3`XYp$c+1X$#jH-Jhia8q;M9 z{OTs0dxrSysgX$gh|TpItJBkt^4Pq!f%C#@eV>0GL<9v}|2V{qWze`+O0|k`K}wOh z&xy0I8i%Gu!Z*6Y^e?wPKD+Ny>p~+UbfRALz>jsQtYS8f)s(8uHkaD5naFTo^n*=W z?s1NK?Cd-kK_)`tT4Yd(aBJZ~bY_8=)N}^e@ zT?|4Uw;8)JxgCMoIW+#S%Iu$lf`XK%YZ9>Mrs^Hc8Mel@+W~JVVK=K3PzPBlI)&Or zic-8E^e+yBJ>_cxIOiG%S;8tB&N%)VrZiDGC)3s`o_{WGdiPHe)z|F7pmu z6ib{iF>61o;&s+4iV$PN$3PWX2j`%iLFfQ60M#%-?`W1ymyP%L7Tg=CdWOWp zvA}^h7d8SaF``y+4AP)ZzNcO0@LvkxUqa(^4n#JlKy|!-Dag^YU?%YbU|gsZzag96S<5z03iEI}f3P;^&y|{vZ--s;wDN^p4^>?{F)DA} zN=MAcNH!yYT&b$5F?MArM~{X|)U?wNV6jG<%i~3+UCb)O%>WSrEi)s)QQK=SgDE)3 zY5FF@sGZ$w8lB7slFJv4!;Av-CLlQ`Os}b~&a^RT7i#b5`01LQzIA)&ClDk}83xw%E4{i9}ueO7|QXH8UMqUE%Z zi@WE4dt&*nYm}@60#5^ZYaF_*cAlXF zZn6*fjFBFjrbYoYA`Bo500&XBexSlcH`yA`GBh+)of5466qoRkLfR=b;h%GPe<~>;Gd@>{kFnC1yKPu4FexWo`D8zB z&=|6Yo}HalT)KBkpbiw@>Tk@iGci9|qmFn}sU)G8wh)^39&L3KUhqPXNNE)f4GzxX zlET9c9ybH_9h!*xs$l?L$ko+#tgLoBHL|$#n z_-34==U@RAXWK~aBgD>us1-d?YfnJ-*Wtz8c zeWg9UrQ4dBAmLRL5gjeBtDE>e>hV!Ax(1QCp;H4C6`zN8!EPXUiz})cN<0B*5*$|YW_eWfCc)*%57wtu zue`M=v_2^grxea0$RMty83rJ0#YR2Z>bAok8yG-uWdki$BOGQwV*qyiK}dRe2fwhv z%n{A5dGWH`8}nYy@|8A`@ed@*5e%WCs%npI`-_Y^2L>)@B)Mh_u?nXlRoKl&AwQ;V zZ2&i>*0!$?sSdsV_$1UoO+CdJH&9ySx@LxHX^AMeoBSxytJ7s3y@#_+Ke|%IQ_8Q+ z#5D|h&uP}UmkUkUUmZ`dYYUSJBwM2qGSq(!$Uy97U1p37Zi9*G+BRd+0mYBf_Ej2W z1pwxEIVYLfoK*QQ5bjX6l+fkrsoKpDmFAigCr(s1S8Z<)VVso9nkZ+kZnODfuTNYc zt+%9~G|woFh2?~_2BAn_PhY~BWg>N1$@>sL!p2ucdeBmJS^M5 ztMM>3dz8pvwq&RmZ|B3SL5~FwA#P+hTV#1^c*LORZ1@x`f3IMH+`+U8NrXB&oEW2? zF&xF`{8D|vB7`bi&;0cH+=Qhn2~~I|4ziPgH36x{$9PCkR#TF$#5goZdceuL^XeqG zv??E*FG7bLAjpbGu5$LDcK+Vx!^Eg<{)JpQbV=!EEk~+z$(7|Grmq(NmG3_dWd|Fw z0$@9U8vnWg6f8F-e2lGbf_1Hd)~kcw5;SrWL-vIhQ_BMHmk}d|eAAjosG+4ch(!Wl zoqqekG+fk+)PkO8udUWkBdJ2E94$YvVac~^W+C_@B{o(y%9&Vd94qO&^SbM+U< ze;DQ2j!QT){-FKiesl+K$(t;UAZmVlDAs_!cva++Thz7D}2iGY*w*5xqU@d5u!Qe+`BEwDtY^zkHm(odPl^>V6)h_uKo>rCI>#}ZAM1TBI?z~hSRW@f;~2!*PHyqJ78c6 zT9?@p_$gc@Ow*Gps+76Dy=g6&df9R7(JlfpEW#0O5qf(1?p64W8bFX0jVyUxK)r)! z5Yy!Z4Nc;__ypq(&js@~!p0eZM4m4>!^D_-*@7r7MX`?aY-k3#s)r3(L?Fjdj3ovZ z;ypkRMZg+^eBDJ)b%^z$!T*@@x9mt)LOG|myyoLPDHJG?R@99^;7h;}nSl?a0DVEw zXOw00V?k189eB-0caIEF?VF~q5`U1R|1(tUh5a%55}wwT0)1YpfOOF{WvC`>aZ&~r z<~#@?0pmR06sW`~d9-Z2gDLC`dwa{#t%0aU9$g0+INRqrtSMJQTA3+iQWf67r<5i4 zCIEAZy?@@Kk7;BnhB5K~F4Ew7EkZfvXoN<%rsT=Tt1rFp4!4H5GSE{LsB|zN*hjUH z5oARoSKC7P+bzz?7W%hZT_X|gmb(`J^~&6TJ7?{=nkhs+-8T^xhrZx5@4a{TO1t`@ zB1Q4(K>a=|?r|*bj#Q_5#_cQeYj-8WP6M)5Js=9)HxPnVbTdZ+SW7fp0iyBr6gYgd z0CVLR|MqV!ao}LSq!|+<2b+bTgmkAXX8ob3Dy(jx>j;$$02fAC_z6pQ?&*`am6t3* z_m2xbL;{tto{c13>Cc7Q)8z(v-JmlhxpqakK71PG*eU}w@c>Q^S&Xu9>ZT;bcyl~? zEO_uDEJk&vfDDoAYp7<7nD1uflg}*3eF3iv-%3FviITB=pHpP1+wsgdt=>8i^u_!| zx&B0V;-KjmI(5PO%FWfgv|%Bx9?ux%(f9)f`}*Y;T)+7oF?Qk`byjxk3pBVr*v{v!o`=#XuYLsZP#pEhw`2wk-=|Injm zPSd!j$e}i1uy+-lLnQj9^_;|Tlb`?*Cdg=*h9nKt2w6-k?HBeRyZh&mo*Bl-qeW(d zeGT8 z?hwFjg3#jXr^yYKhmFt<9%etH%0drFt_Krd)cz&llB$0i%&j-@214?!DxCl^YRK=p z>p<%P)7XpaqIR!C@0dV3ys^7Z^A;!CK4Ty6_u%2jCjeFj7>#KRgO3GoNb%lFO;J3s zPtsxQEFu^{5qJh^{k+_hBCHR)+LfQf&(10r@&edGptmG&KzX#tOR}c)V`yL}k`6eB z;My{oYw-oq77KGSD<1bTXywPsuu>&O0>)s-Zw%@168&@4u#z_=4f${Pffu1yBvwJB z<+zVzq)3|Wt+?OPX`pB2bregDMdB4f4_SzR`+XNTbRvREJ+W~~1Y^j|wM<8JjFIOc z>dgB9x-*BCdHr99svBOj@0U4zj$BiBBPFlk;=GTMjo4%MOXAM{@3X7AkDO8_4Dda0 zkc@Z2WN93_SXJ zsRMYG0(wQ&mb!sF)YM0iiVRLdr-BuabUDKodw>KKfd?=az0yUG<xg{FhXxAYh+}MZ(xp%XbG$}bd$o^D!^}cA4BMB1Frt{1^WI^ zUyKI?&oK#5UQk%cT*4H!z}6rf@FCv2#|^Os-ji$2lb)J-AkTDcKK(^u*1Zc{u#zZA zr<=m#5mpxc(A1PCRCL+j<=a#8mQ0n@77$2V8@DBFt`qRIqpgO_CfX9s$vAZ$uDWjw zISJ8ze|xkAfMyS(+U}|95MhpU_J65B^U-Uno$p9L<{J&Wlbnw`voMl#=~-}A&hZvo zVg>nJmJN#mVeOB<;8nXVY-C( z_6S#h(k)|CW;om(xacTv4XL8s+}1qlXdT%=x7>GT?jHdz)6)4$9@jJoFx-vJ@PVkp zjZpS%?a{mj{*#MZ*0OH#rr2BdL?561(IuLF`pJ@W5ArGOr%&k;=sg*DlN6?nwqWhM z8l7n`#&p7%tlD`dE2AY?=*z=~U`i8veGJkFgJLSoF}KpU_@cs}(Hg|x+{~_DlG$Ha zQyWmbud%M>hz5lwp`YEzZ9u)-0eiokLBid zt{Wj#niE{Z2|oZ6FSePhcJL&nU<*WF`#j7P&j${AdMFB}Q}8I)C*M z8~{wx)@P?Efuvdwr`ps9kWPTL<2&@nNpAh!t=l?)){^G$=L7S z3lBJS^fbRLjZ2#FN()~l0l$zC_DlH8sjQd2X_P+r=PXIwTjU%!EsR|^9fJumx#k+z zbIg;4LYe6`AHRn;5u!(`NKiKgJ*VaMd4Yy71{=_Lb?TFDv{mKZ$pk=00>$wPfG(Jr zW|;a%(KNcqL(z2Vpn-fwWGwKEO{HwVo+m~by@`Q^WhJwL^6AXYDlGgIM6E5JHHiwd z+O+a`UFc`{g9%Gg;ShcdUh1sL7B3i8_FCOL1&(VTz$##$y;rFhkzM3zO>NlFI(-@b zE~gV?BJ`TlL>S9iErm%%z7y-pT}?xZ(xdUwspKtRkHFf}W6p%&u5u4c*2j}#jQ`vA zk{%xuqVKPH7n6uRF1$s=b7NQZ_@M!3xTGGKV@Jj>i8WL238qUHUeH!Vwe0Znw7{CQrgkworEc%p8w7U?0%!JCQDG#g-qr3G) zGK2&rLnuSQqYNC`F-5e>RUVsEW)QT|bq^^$3c1$H>j$H2nut-iTNM2A3V>|NeqLf9+mZpH4+ z9M1-FwZ>3{nO-=~*U(5Y@D=Q&Tq12Uk+Pj6GjOa@c~g4oP>?B==9SzQHqL&|Lv@C* zewW!fa0@TmDQ$S0VVuGXv+jE#Yts()(lgM*@o}AEv%)Ege;I&sC+R1qGy*mDi3+ed zzyY6t!^^SAARK*pJb4S+fuq6R{v11&-`1(Cqfd=Hn0%kFE|(mZL!4feM_B1%W0CBa zTTec`&G=p(c3jyc&?n5JaLl!C2;LM$hf~jMVe!tlvUJIW7%k3zy~>v#a$QQc<7|2fBrlHw$&y3kAA=Ra*$yeNF6)spk4jK7KnLVkT8Azvfd1l8egi98G; zGYV3U>lRc?;s)#6S}xV59SEj}{>ag`-q=yMGa+8`mQd62+w<`6 zoW#(=8kbu)=#s@4n=LE`#&T^KEbK6j7bsU?g?|yMcY6Vp(6K+@RYsE}py(YI*g@e4 z!SmPT?jq$VQ zC(aARw7xA2Kc2os@C&f^i>RAHbw<;@6}%I+II)b_XFI{A)62d8670XpMYo`5hch@z zQgZfkKD-34b?JNo+d!%Qb0iOgg>oO4FW2lo${AuMC7BdoM5-_P|GWgRHmeM_J2(*1pZ%P??c%UueEm;L<3|L(6x zrvLNdHQ>eC=Q|q83Ja)UcW>$O)lJ{AiKwSc&z?|pq<`>*Ul89jQ!9j+@A7Dh`y$sz zA5j1EhF^Z2JFzk6C=FtrHhdqRzlq6lW_NI+{UOU%v_N7k4Ic%^>k7z^}p5b+pF#y{c+6o4JU z83yR0C7_dbn_>jt!>j+tgsc6&hUSCbf}?VXKg=~>AA=Rr^FB54NQ?WvxR~{~@DJi8 zoeC$!P-_duqSv@c-wLkITK^Fouez@VJ#!~TnVC^rn=IjPYsU%&3 zWU>OH;q=40ZHBti%b(%$o!*iFI*CPE1Xp@75@L82eKEgC-#=pGOEMJ?%-vZu3-^1+ zH^%jGzY4(5fcuO;IrK3cY{?v-&Wn21?r(+*2s}7}!&`Tu*rO}wNB~&wuU7vTUG)CM zYPqi=nCvI(gT4H#v$T5A0QtnjB(`@(6gbmSiUQLWrpkB##G3KnrL{)~b*s z+Rv_yZW#o1e-mlpO1vxykEHrPI@sIyja$`h8W$Tilf^g9<@t_%F6D}&))pe~F5OMh z1qM#+#J>8y=)ADQ|Z;!Lpq>&mNBTrGhUf!o%pfRE>t$;7%x2kX0!!KFa5wg zbF=J=YYr4^x=h5HJc!Qf{qXq>URJ3uU+>%VCx4rPUv{ZvGWlYK-&nSKPRsImv!$vE z20_Y1XVRWz={UC+NZul|&97ePCD(c6BMfL?tpJ2lbu4#nc?i@9vGJns^!~fP|CsX{ zQm5SZRj|0x$B4&Tpqmw@Mz7M*^4;oG;2|PW?yVy2{(`;{%a?b04 z({+m*-5ll~3TfZr;>eo(Dz?F~ujOyL@pcwv*~_PzYA72huU3(S`sA|aUSo(sbw3jM zEN*>uU|8XG#Z&w#Y9l>omuj9ZS$Nm`ptVod?F?5gO5K8jW&?Yrv2ytd8ohQE?2r0I+SC0VLufiaxk9;1r8MC+s1DQg^I1m2rqpg39eMb z?_nLMPBom;DfYlS7T>S?gAa5;n=_*-Hcqyf3&^nIsduWN;=|qJ%lfEbr63Rkt6e}t zegZv0Io%=;K-r52WsI?)#P&UvZ44L#HFs9}I%1j`fG zd>;uk2EFmn7p$w6o|#%(3qd8X9v*%7{V1G-oo|YnCs7N%U#Gj#m)9Rj`j49W<=3s} z5O~2R3cw3RSy?~Lf_pv?5<+q1QHt<#6GLmPNm4&)etCKSdJ+})J;~k@Pz^jdXxq%8 zo4+;&h(%@j8=%S77T~Rr^~ZeL{UaP1WV;Ao8rE{;!c{je$4ddTpJK>V#Hf1n^{sD& z(tw^Gj;q%E9g4Sa-?mpRlNjzt_lPdXE;ZO+zj0`xs@r`cR3m2Rke|KVb|%~&IzZrY zP4dZYw+*B{U2t%)@mycwyb;DgS^h@$<8@oyL*62ASnkwwMh5wH8u;aHy7SgN0%wtf z+#VR6rxiAQzdCn_Y+*j z=rCUVK5cXb9!NSspm}@@P)vw>rBMd~HC633EF-|jmS9sE(Xa*ukG43UX;{-?co{kC zYlt=HieDGfV>>X{%inQw&@z92uXO9!*j4)e3%w$??H;oX@^B3_fd6snY?BiRnD>^g z^VmMtrTXx4A_T)=wi#x7(Ejk+`?+Kd31lJ#ofi+^=;OS0AKv41AOt^iy`EQFmsc#!S_lMVeOa#G9w{5v!nD&ab1mzDWJ>j^&kAjPqahbs^0TlXVQkFyLn57f+EHKQKz${@L;F}i1b#9x%!D==gYMU#Hlp3fthr$ z(by(9*(x^K0~7U&P5Q?{>KKK(g?!h&egsY~&oqUCXaAU!N5f@|4*1Z3hJZzl3l}fL z&Yz?wsBoAt(Jx|xos(5(P+%eENv?7Y_Oq6u4%-rV6bG#Hk_@@dhEn4RaNQTy(B!6@@!; zf~?PQ3GbPTS1>%KF=S{SotFJi^{(!h+p8u z6y;-vamc|pHmMX>?H>}372K~2n&;{t7|`Mk-Op9j_fY_;EKAFD{o2kmR&gj4ytO?u zB|;DzQY2>BgzVEp-c%Fh=Z|^!7iz|Ybk}eyR*dtX3AC+)(bh{<4$NeAZ=T_z0L<(Pz!-Z%G`V=Z6&tt z61!EJ#m2#(9%5hIEbZ^RwWJBx5)J5v?}T7VM4`|JA_0VY{V*u@+;;669JH{i-FD== z_trawP_9aI4>k8GwmAn(9Xr`K0r>G5LdOL1Y2AU% zIv*gY2gWK;#`*UXzxD7xIW&YHP=D zj&pgLqOFJZ3dEiqB@#^j{(Ln^y&6cl1O;{p;7lU1!Hc?~rAdAz7n7aoLpi)QoAp~jOLdcC zN1RqMfHz~nLbgxPY;7!9m$9j7+aTnY+_CxE(d`DRq8l48+NG_kBSoLJ$Eg#GJu&J@ z@mvm1KL0Iy$}mA)N)?j`;iJs#>w|X6_=E0Ws$7hxJ6}!E?k>?ju})Mv=``dJy)E^^ zH=GTq*=9!itQ)V11V6nb8o9c(fW}(A1Dun4+cO%qymfv=Ldy}ah)?M6EJx$W(GSJ4 zUFN$4-J_O*6VZ7{oGgC420zayH0)li7!Y(pAe)hXbFq#HJ629S`H9zMc`SegWxBNb zO%0#-27+sq;&_d2$`E2ooV83d*HgpWL8+uAUOarX!eMp}bCc!m6#lB^E}6Akd9V1A z6q*#88UgT&#+7*&knem6g| zi?7|~3&@z}Oj5>k^oj>$;6JQrraM>LE*1^i_-@chXYPn#R2q2f#KQF4K!6B(tI9bktg&5$mO zrmg9EZLh8Sk$5z8O;$h$Cj4mM{h_QO#XIKm5EKkf4DW6aTb}gL(_ncDnyGa&vx$Fy zM>IfNEA1(96WUBoyc~K>D@f(4Ta9GHjx^c1-y2Ri&@2Z}uIzMs%CU*#-kQXgT(PQY zuaGJwtyd#hhEQws&#w!Io7cp9L(k0f<$b|le$gfkCN{}$Rk}DNzO}V=-K}6*$c!?O zoJ$bu?2ki(?WCotB|5xr&Ni{6uO*s$an+?MRjV*?>@t0pVWURPGAY*l8(<)ovNZPP zp60jt`qoEqI`s?p%`-E;&R<+6`_tMrO%jbVjvQAnh*S33>Ozwnzx!}f50n@RGnsop zWH_&#Nw0zH)|i$H%uVw^@`{gE1#(t2W%f>jvqk27Zqa6TKS_%k*^{{3C*Xt7wEaV_ zv$@9L#Dp8Q$Y{112iG2TjmUVMm>5SAF;B0qlP+efW+~V@1`sH}>=3B)^4*sLN)0Ew zFdphLXRsdaxfY@(@}tZPFN8HvtyWq)VvGn_ApKC7nclhHi>MVJXiG?Gq&-TB~wLbnzI&Xw@Xt!J2}ulh$YmzE}13M zv`3_jwp;)tcK8n)JgiCDe(k(g{b`M9j?vH`$d~y7(VC4HJvQBYE58`ktiIxM*#4Sw z`f#4FD3LDkeFZg_dh$Jcs2;sNDCp~Xpj#qxPhd|CZ0cvCQDj_WE(izZK=PTs5p0`u zDe15?ke`|*!=%-nZujJouG2szJbz{6{+Tp8_fk>_+szxE-|J`vlefAv_%Rb#22D}` zYnF9tgMLrhZOx@DTpGrI*|1nZY`@ve-`&c0q-+;mX~`2+@<(5+EOCx3(a+_|O{>36 zz(2O}qGXG)m8*J(+jN>nTzSYm67jvwsm1`1eq&uM0m)ZCRiB_IM!oxmyLQ z1$V8dEUAZ6Ls4{%yE|Wbt5CAGNL{saNdx*kuq`W z$eGt#2`9@YJBv4e|8Ts2z9>k;QhTXiT-WtAjqFvSEPj6eK3cZbLEYysCL<%Xt;*}C zo}|=>l1C#O$#S(Pm4+Hd#THzYd+`@9@B#ZUs}MLDbz<$VX_Z!+bhce*P4mlKM&YMc zY;uMC?UUOmbjTO}+RtcINiMJ*put~Zb!odeelE{2ZKP70Z^|We1!<-HlGeZc$GM(RSV&g8*CV%k=G#o}tn14s?f@i^K5_KRVanSlVH!W(wn+OG}1J zoWX!fuZ#n&@+=L1flMEzb>bG2SI!gfd7f8#MACkzbH|j~wC-5n-G1-_pW0JAb;zGn zw%ceiFWxcpJEzaAc*~o$nO*|Yq157^szO>|Hv82!72u-kRiBPrRqu6mn9d*fo~7iP z8CQy{*wA_f+?~%j*=Wn0H`mPs@MS1V&Jc|sWu+yNBM#FJ<<6Sa<{#_r98S2rwkfpV ztiBm#DN~y_LnCo{t7Gh@7T%#*ed{i#p1qiO^Yv(D*QDB3G&4S8)9G1SOY zQKBr3m+MdGJ<=CwDvnl)^HqKcXk+YlK@jqjZa2N4y<>m!Gx>0us=Rg z^QP{CLh)9yDOuq}x6=|o9%;8CA;G8@ETz(3eG<@c{Cj`9r?Is_D$P^g9&~w|aR51F zp8~B6%GW7%(+5{doPj`$&wLdT(}=dfTiG{_+lR^w&EARzkzYyEI!cYJl)ahDbLm8? z*X4@C@`nblFGxhH&kb+SJ303BFh+FFj1ebP2z8y6rMmC-e@gq#u%@!EZAV8PbkGq* z6a-WZRX_z{=%Ta)=}k(&f>IP1N+^MV9RUGFstmC~ji=v+BT*TL^nGT`R!|Uj3iA)2~OO?EqJ<^UEU8~0qB#3{`(W6GP3RMz5dq_B*Z4xBQ+_CHQoFM(P3c$cdL1Mu@q+a^AsJ z)ybPnxOUs&E|OWhSl5N=+_USscRz-_xN4>waqq;MR^Hb)61*25Qv^j0&+m3!x#QRN z%)+}xEsMDyTWTXS9_oys4aS8$vhsM(U zrgsh61+o*+NY^k{)zSg4wb8;zqIRa{gVjE&yE-@p;uVM|oOG|qFmRkJOz{*VJH4P@ z01AZxe(Z~7T*Fj2I_p3e>rK|lx0{TlEa znzoet8VUJXETbCX?uOndn|?EDhKa;=)ExCh`&{Hk*s!E>tXnlR)0RW#ky9<$k9*z{ z98&W_90 z>E)7Xus4g#3yR3J<4y+(dlRKrZslZtH$rkDQ4;5rd1t8((STo z?E5^NE*HN#70GiK-Nd7tr&FwBA6ootwD8vffzq&2mKISldunnVWJE&!&z)Zpmfh#k z;VvA)HVCtLru$EW@T1aQQl>@STeyY`C|8v1W2K#&QYRomKo@hO)LUmiS**J-oR1xD zmMxzsyT=D@=t0CQwkz~ymtuqh;5GF;554k1@+c!W>BXa2`TR&ZufI0ft{c}PWqXA! z*^9d!7AK{NW=O^7(sw) zEP9CLe7(pVjG##6@(EPIxbO4DZ!qJEZr`hvajelPWWKp!M{2d1>t-3TknbW$<+`-c z@|wpI^oc*g@`3XZ3LSnk1I>?0sLO_)u2?Xm2m_IC-4 zZEVmfh4sZFE32NaV>ZF82Xj$dXne)|t_Ux&Vsv-K9<2BjDU%>eB8q?#oMH*#pzQ&q)x8!i z>hdOZZ+7|fhv4;gqYS8~YBaYR_V5_5nmZ~2eZGJ!IICab=^|ZJi4rPn=kBS2WR)MFTDIHwbGZJ)dwhkV;P_bub@ zx{=P;Cm&O_gnT3O=K(X2+-i-vq2322OeJLPYe~OSU`wu?p?<_HL$tC~e>orB!|b== zju(ASj%ezv1c1(=wI;p+T6uv|6RTGsj7pEDow_>XcQ%>@&V`AfoL|`VG_6qo#V*0@ z=_N^#i*Wck_G3z8(bI15q*QUI#Y5-Dgj9^nIT1x>_QcG1e>q~uMQ40{9OWyjk@;40CqX+PTfqby^tBKG@64&<+bKEiR_d6?^LTLp(87L-*PN+rf_b!=UXF z`x#}6@mhts#L9W0%<^2xk6t9=-U3C_o-JzD1sCSM%p2JA(ZV%lUR~#tn~T|6Hmru? z>e6O)PsggcV*hEA441>@&z4ObAJNyxL&%}Cb>Gr8e^yyvwUy%ax)AbYvG!j4%Ucae zH~!d9+t$H9!`NYBDR9)ykEDP?#nnsKcHUj9Fwkwq--A&4cy;*@z;>^Gn|h8IuVa<4 z2NG>HgW2*C5J{mN8=JAeOFHjdW#&$`IqdvZfS|;vZFx%79+} zFU2*EGVJ*gr(a;EkC(dbxeQWQxxP% zeK2njn-Ydb$6I2(se!*G;)n~ybd#3?lMqPs*0lWU*bXdj+Dk4T(wTu)dR8=^<@-p_ z`4O1~1QT!HZD}NC`hD#mKQKk;p5RV%@u}iYakh?@Q9(^dOHVQf6s07XC6EN7)}b!H+({LNxLA-hI#jq zB8*yIY!p2D{tfqWVqXM}1Ix!B%npf}w8jxGKAY>E-6Xe)AYQN@gBWLIodZ5Gabt9; zEA`ADPju{84qy~5G9DhFowwqHi#^R<0O2-C=8tzHf9A^iO~W zz47!e#G2g*Q}JweO9t1Y`Jc<~jfCio1x8u@tXCt4&Le6l7H#e{Kq^sb(pf1G=LBI1 zED=|=0FJH-o5bS~q%R*@6n$g!AJ3(^6Oa@e;x508WWh#3PGZz;0n@#3! z6h}mDB{pE!=0%tTScz+FZFBp0nYtnq8uhu}Slk&TY7sCpEs8kP%TaJ#)Ui0%@GSRX3yyThuSd`aayMxtBbY5@)XsS|Q{rt549IncBIfAiv_cYj@;5fL> zhCThxZJH+yNc$gqdk?+oz<=^_~P_=zE=kf{YI6B$5KB+Vu_Kukm42Tz@Ip(wJu?JRVwkt6@uVTe^sMU#g0HdY-sD zBBjv2fRppY`OVN5rhq;d{ZZ#ue|7ce#t2qb|4dW4%W#Tw#@dHccMiEBsUm{bDHknf z+uLO3ZP%zu&HYT`QeKw+Q8Mpa;Wee9INdtKR7hl3^hjrQoo;YS>zh4S15&u6;I|7_ zj#@Bc^2M(4T0Cl6OWgG4>TD_^H6YbR)>B*oyrDqS?o%TO&1IbFVwPTfk(GxK(leBj?= zT|Sy@BfeRIzpVo%BDihM@-7QR=|V# zYrpK!D)E4w__qQYm<#HbKF!i9-zuh|`_e#@OM9!&00WXR5r6%(GcA}jjSLcW4V@HH z219khkdrGr5yN3~qz(|EolgEfJQuO7srmb3G@4Oo7@w))2_}M}zz_};u16+TL=OY% za)xRm{SR}1R`(UCHeb*~x`ce%Uhh3*$S*VBuuSSIR4YLAXvKXj746Oju5ILWuS}f? z`|k;fjap>tVH+v4KRrxULPmkI*P9m3v{!7nGJX9EXg}!HWXcpW@6~1F%~8~7Y2RHk zpCSP1nxWuSeNemc(*x0x%o3Ht7-lvkNed{LVsp|j%KlL{@4 z=^5~8Y1_ZnyY}hz{V$qhtMP*kn0ix0;m&*kHN-1qAlU#3hr?`L&kIlyi4@{wz z{`6}-q`J>uq%JVV(0v0SGe?cw*Rn)XQ{={SYJW#lKM=0Y2b~NYw}+<<7-LQX0n>*(T@F{Nh`exyUX5Q%El~J@WI`&sP`y(_j5?q zuBw+|*O*6SWIaPGG1CN0jYmOd7bGF$@Q>H__AF$+!z}54n?HI)ZL90bYvG%771QO7 zqf(bBcR_ja?sQpwr;J`<-h)H|#OV6pQMv@u^Q6NTN=o*s-a~Fr{ScipjIX&8+_zGD zlhQ1@&SzskPk_JoX;^7d8fr;S(pvxfO^3AZDjX`ru9Uo1%yo&G3!l>L0AiV$X{d$4 z7vaX0`=&37j54ZOt)jjJco&2UrBF!}>$x`(+_mIP9IGg=&}dX|r>d z>l4mbHG&o|+LyyTrO-+LWLG6`o>8ePd=#y zx)%@=PctX;n$yvj)})T>LWRzDvy6<4xcU-@=-uoO6wGqCiOMOQer~-|L0@j=^$w8? z`T*Dy-lwg4DGT$0*(>*0hYF4xk7y~_!^uJ6yoKzVXuw{>s7iPr$0&3OerGZIQp6YK z?22hStRY+(IqsNH$)YA-XYB1fRj$ih6bAxvt zT^t%A3$yuHQoP6OtY`kt_wbfZN~BHu%ov?1L7>wx>K}4a9ve~>#Sv}`Nr4O zMgrU#>Eq&@bkjCkv`*90Wggw*GTjhy{=u)Z4kz#tI`fmj@KH06g<--AOdg^5f}Kke zKmH^obEwYm)A^tJk~-v)j@xo=x(-ckXq*!x62quNe zXKnB>c){lc0W890Me2CfpR-Q*M(X4QLWT+Lk{ou{TXOCE?Jg~aT-7owZ%uP3B=5JM+tzP_0mE?qIjbx#?3#C}jv@HHpjHuA> zLr*OiDCa*QAK?3Etu6-F5ejS_lU`Z-o`c1Wqc69Vn&(e0J4gBtrPa#qQ)h>q;}0{ySyb z@QW;iRAqV3!r|kE3NrKJnCv1&^xhl8S)eshSrNXJY4&Z|O&~dA3j=an@Na_66ebU+dqF;w@V%wsOJIKjP~ZKeuynpz7ql@AAvne2=tR z)6_JcIuAQ)^g9f36rFQK`trhz<9}c42s2jQQzLJ6+LFW?;Z7x`QF8VZBeQliSqPXK zygL~8r9?k&#~VM=YM?nh?osJaXOjNz{!0AQM*C&pUW5MOp0d0Tk<9J+xAl`Q*sQx} zWBR0y5k>{ges2mpvKw~o%ZK!V);%P1=kh_FGwLSM$peo$PJ7W);x2b z`J)2nX}gjS+ubpZ7Ul1=EP`}{j&q-uFk zvEEfV_%Aok%Fvu_`NFA2bCR?%8xqo1A{*Pj$gW{N$Lm)yOO_w?<#SFH6>{ZMpxG0J zpBvD-iiPu;&OTW~iHR$a=?vA)K}vewcmb<&g>_Jsd(%CR6pXjO?uGVLe+r84l_I=< z?{-9kSNBm;uY!k1oVSMhzw=FYgQl4S*9O{l{behGdotd?3MI^; zOmiFnY#6!%weC*Fo z^B9f_sfR6NxxX}^uGtcl%28x3A(&}y3rzA%2ka(xA-4+y_J7Ul!qhM)NIYz&f=vCY zWpMT#(WCyMV%hD>Jv%DMU(vezT^&n@f7PFB5G(zYXJdEBv#epfph z;~3oY%SZ6pbkxRc`>aRGsD@8t%(;o}C=aySZE zKs&@|@=D!gx!MG=H(Z*rh5q$8qk-y}KzdEN%OA8^F z{tPmwT1>->jC|8^!y+EP9Zkovn`ab;^|imz0(90^qFcs2H{Y>X$`8fUw_T0_DxuNE z%D(7_9g4PWRR_}v)9+@!{c)S7ZYSUfT1wG2_0Y zJqob|H8ZlzAKn{uw*hXWOVX7;*3~Z_01%IK&D`?G4Lbdy3Di3^pP2rSNBZ__P7QDb z%_xM$pnvQ(+6JzzJ`jEL$L>TDm}}$aJ7`T2{C=YTe_nyxhatC7lbPF(on>?dXv4K< z{j)Lthl}eo)N^J}(6NmFSi1h}UuS)R`D@T=X+QhN#!|k^lP%(Xrrl zj8@_brGKbA|3AL!v$?|$U?wTGxPJo0|FR9G|FW*j(hs;P^GuJo1^mDb%=F97UApuC E0Ac2$1ONa4 diff --git a/Classification/cnns/evaluate.sh b/Classification/cnns/evaluate.sh deleted file mode 100644 index b669f18..0000000 --- a/Classification/cnns/evaluate.sh +++ /dev/null @@ -1,19 +0,0 @@ -rm -rf core.* - -# Set up dataset root dir -DATA_ROOT=/dataset/ImageNet/ofrecord - -# Set up model path, e.g. : vgg16_of_best_model_val_top1_721 alexnet_of_best_model_val_top1_54762 -MODEL_LOAD_DIR="resnet_v15_of_best_model_val_top1_77318" - - python3 of_cnn_evaluate.py \ - --num_epochs=3 \ - --num_val_examples=50000 \ - --model_load_dir=$MODEL_LOAD_DIR \ - --val_data_dir=$DATA_ROOT/validation \ - --val_data_part_num=256 \ - --num_nodes=1 \ - --node_ips='127.0.0.1' \ - --gpu_num_per_node=4 \ - --val_batch_size_per_device=64 \ - --model="resnet50" diff --git a/Classification/cnns/imagenet1000_clsidx_to_labels.py b/Classification/cnns/imagenet1000_clsidx_to_labels.py deleted file mode 100755 index e5109b3..0000000 --- a/Classification/cnns/imagenet1000_clsidx_to_labels.py +++ /dev/null @@ -1,1002 +0,0 @@ -clsidx_2_labels = { - 0: 'tench, Tinca tinca', - 1: 'goldfish, Carassius auratus', - 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', - 3: 'tiger shark, Galeocerdo cuvieri', - 4: 'hammerhead, hammerhead shark', - 5: 'electric ray, crampfish, numbfish, torpedo', - 6: 'stingray', - 7: 'cock', - 8: 'hen', - 9: 'ostrich, Struthio camelus', - 10: 'brambling, Fringilla montifringilla', - 11: 'goldfinch, Carduelis carduelis', - 12: 'house finch, linnet, Carpodacus mexicanus', - 13: 'junco, snowbird', - 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea', - 15: 'robin, American robin, Turdus migratorius', - 16: 'bulbul', - 17: 'jay', - 18: 'magpie', - 19: 'chickadee', - 20: 'water ouzel, dipper', - 21: 'kite', - 22: 'bald eagle, American eagle, Haliaeetus leucocephalus', - 23: 'vulture', - 24: 'great grey owl, great gray owl, Strix nebulosa', - 25: 'European fire salamander, Salamandra salamandra', - 26: 'common newt, Triturus vulgaris', - 27: 'eft', - 28: 'spotted salamander, Ambystoma maculatum', - 29: 'axolotl, mud puppy, Ambystoma mexicanum', - 30: 'bullfrog, Rana catesbeiana', - 31: 'tree frog, tree-frog', - 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', - 33: 'loggerhead, loggerhead turtle, Caretta caretta', - 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', - 35: 'mud turtle', - 36: 'terrapin', - 37: 'box turtle, box tortoise', - 38: 'banded gecko', - 39: 'common iguana, iguana, Iguana iguana', - 40: 'American chameleon, anole, Anolis carolinensis', - 41: 'whiptail, whiptail lizard', - 42: 'agama', - 43: 'frilled lizard, Chlamydosaurus kingi', - 44: 'alligator lizard', - 45: 'Gila monster, Heloderma suspectum', - 46: 'green lizard, Lacerta viridis', - 47: 'African chameleon, Chamaeleo chamaeleon', - 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', - 49: 'African crocodile, Nile crocodile, Crocodylus niloticus', - 50: 'American alligator, Alligator mississipiensis', - 51: 'triceratops', - 52: 'thunder snake, worm snake, Carphophis amoenus', - 53: 'ringneck snake, ring-necked snake, ring snake', - 54: 'hognose snake, puff adder, sand viper', - 55: 'green snake, grass snake', - 56: 'king snake, kingsnake', - 57: 'garter snake, grass snake', - 58: 'water snake', - 59: 'vine snake', - 60: 'night snake, Hypsiglena torquata', - 61: 'boa constrictor, Constrictor constrictor', - 62: 'rock python, rock snake, Python sebae', - 63: 'Indian cobra, Naja naja', - 64: 'green mamba', - 65: 'sea snake', - 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus', - 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus', - 68: 'sidewinder, horned rattlesnake, Crotalus cerastes', - 69: 'trilobite', - 70: 'harvestman, daddy longlegs, Phalangium opilio', - 71: 'scorpion', - 72: 'black and gold garden spider, Argiope aurantia', - 73: 'barn spider, Araneus cavaticus', - 74: 'garden spider, Aranea diademata', - 75: 'black widow, Latrodectus mactans', - 76: 'tarantula', - 77: 'wolf spider, hunting spider', - 78: 'tick', - 79: 'centipede', - 80: 'black grouse', - 81: 'ptarmigan', - 82: 'ruffed grouse, partridge, Bonasa umbellus', - 83: 'prairie chicken, prairie grouse, prairie fowl', - 84: 'peacock', - 85: 'quail', - 86: 'partridge', - 87: 'African grey, African gray, Psittacus erithacus', - 88: 'macaw', - 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', - 90: 'lorikeet', - 91: 'coucal', - 92: 'bee eater', - 93: 'hornbill', - 94: 'hummingbird', - 95: 'jacamar', - 96: 'toucan', - 97: 'drake', - 98: 'red-breasted merganser, Mergus serrator', - 99: 'goose', - 100: 'black swan, Cygnus atratus', - 101: 'tusker', - 102: 'echidna, spiny anteater, anteater', - 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', - 104: 'wallaby, brush kangaroo', - 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', - 106: 'wombat', - 107: 'jellyfish', - 108: 'sea anemone, anemone', - 109: 'brain coral', - 110: 'flatworm, platyhelminth', - 111: 'nematode, nematode worm, roundworm', - 112: 'conch', - 113: 'snail', - 114: 'slug', - 115: 'sea slug, nudibranch', - 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore', - 117: 'chambered nautilus, pearly nautilus, nautilus', - 118: 'Dungeness crab, Cancer magister', - 119: 'rock crab, Cancer irroratus', - 120: 'fiddler crab', - 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', - 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus', - 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', - 124: 'crayfish, crawfish, crawdad, crawdaddy', - 125: 'hermit crab', - 126: 'isopod', - 127: 'white stork, Ciconia ciconia', - 128: 'black stork, Ciconia nigra', - 129: 'spoonbill', - 130: 'flamingo', - 131: 'little blue heron, Egretta caerulea', - 132: 'American egret, great white heron, Egretta albus', - 133: 'bittern', - 134: 'crane', - 135: 'limpkin, Aramus pictus', - 136: 'European gallinule, Porphyrio porphyrio', - 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana', - 138: 'bustard', - 139: 'ruddy turnstone, Arenaria interpres', - 140: 'red-backed sandpiper, dunlin, Erolia alpina', - 141: 'redshank, Tringa totanus', - 142: 'dowitcher', - 143: 'oystercatcher, oyster catcher', - 144: 'pelican', - 145: 'king penguin, Aptenodytes patagonica', - 146: 'albatross, mollymawk', - 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', - 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', - 149: 'dugong, Dugong dugon', - 150: 'sea lion', - 151: 'Chihuahua', - 152: 'Japanese spaniel', - 153: 'Maltese dog, Maltese terrier, Maltese', - 154: 'Pekinese, Pekingese, Peke', - 155: 'Shih-Tzu', - 156: 'Blenheim spaniel', - 157: 'papillon', - 158: 'toy terrier', - 159: 'Rhodesian ridgeback', - 160: 'Afghan hound, Afghan', - 161: 'basset, basset hound', - 162: 'beagle', - 163: 'bloodhound, sleuthhound', - 164: 'bluetick', - 165: 'black-and-tan coonhound', - 166: 'Walker hound, Walker foxhound', - 167: 'English foxhound', - 168: 'redbone', - 169: 'borzoi, Russian wolfhound', - 170: 'Irish wolfhound', - 171: 'Italian greyhound', - 172: 'whippet', - 173: 'Ibizan hound, Ibizan Podenco', - 174: 'Norwegian elkhound, elkhound', - 175: 'otterhound, otter hound', - 176: 'Saluki, gazelle hound', - 177: 'Scottish deerhound, deerhound', - 178: 'Weimaraner', - 179: 'Staffordshire bullterrier, Staffordshire bull terrier', - 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', - 181: 'Bedlington terrier', - 182: 'Border terrier', - 183: 'Kerry blue terrier', - 184: 'Irish terrier', - 185: 'Norfolk terrier', - 186: 'Norwich terrier', - 187: 'Yorkshire terrier', - 188: 'wire-haired fox terrier', - 189: 'Lakeland terrier', - 190: 'Sealyham terrier, Sealyham', - 191: 'Airedale, Airedale terrier', - 192: 'cairn, cairn terrier', - 193: 'Australian terrier', - 194: 'Dandie Dinmont, Dandie Dinmont terrier', - 195: 'Boston bull, Boston terrier', - 196: 'miniature schnauzer', - 197: 'giant schnauzer', - 198: 'standard schnauzer', - 199: 'Scotch terrier, Scottish terrier, Scottie', - 200: 'Tibetan terrier, chrysanthemum dog', - 201: 'silky terrier, Sydney silky', - 202: 'soft-coated wheaten terrier', - 203: 'West Highland white terrier', - 204: 'Lhasa, Lhasa apso', - 205: 'flat-coated retriever', - 206: 'curly-coated retriever', - 207: 'golden retriever', - 208: 'Labrador retriever', - 209: 'Chesapeake Bay retriever', - 210: 'German short-haired pointer', - 211: 'vizsla, Hungarian pointer', - 212: 'English setter', - 213: 'Irish setter, red setter', - 214: 'Gordon setter', - 215: 'Brittany spaniel', - 216: 'clumber, clumber spaniel', - 217: 'English springer, English springer spaniel', - 218: 'Welsh springer spaniel', - 219: 'cocker spaniel, English cocker spaniel, cocker', - 220: 'Sussex spaniel', - 221: 'Irish water spaniel', - 222: 'kuvasz', - 223: 'schipperke', - 224: 'groenendael', - 225: 'malinois', - 226: 'briard', - 227: 'kelpie', - 228: 'komondor', - 229: 'Old English sheepdog, bobtail', - 230: 'Shetland sheepdog, Shetland sheep dog, Shetland', - 231: 'collie', - 232: 'Border collie', - 233: 'Bouvier des Flandres, Bouviers des Flandres', - 234: 'Rottweiler', - 235: 'German shepherd, German shepherd dog, German police dog, alsatian', - 236: 'Doberman, Doberman pinscher', - 237: 'miniature pinscher', - 238: 'Greater Swiss Mountain dog', - 239: 'Bernese mountain dog', - 240: 'Appenzeller', - 241: 'EntleBucher', - 242: 'boxer', - 243: 'bull mastiff', - 244: 'Tibetan mastiff', - 245: 'French bulldog', - 246: 'Great Dane', - 247: 'Saint Bernard, St Bernard', - 248: 'Eskimo dog, husky', - 249: 'malamute, malemute, Alaskan malamute', - 250: 'Siberian husky', - 251: 'dalmatian, coach dog, carriage dog', - 252: 'affenpinscher, monkey pinscher, monkey dog', - 253: 'basenji', - 254: 'pug, pug-dog', - 255: 'Leonberg', - 256: 'Newfoundland, Newfoundland dog', - 257: 'Great Pyrenees', - 258: 'Samoyed, Samoyede', - 259: 'Pomeranian', - 260: 'chow, chow chow', - 261: 'keeshond', - 262: 'Brabancon griffon', - 263: 'Pembroke, Pembroke Welsh corgi', - 264: 'Cardigan, Cardigan Welsh corgi', - 265: 'toy poodle', - 266: 'miniature poodle', - 267: 'standard poodle', - 268: 'Mexican hairless', - 269: 'timber wolf, grey wolf, gray wolf, Canis lupus', - 270: 'white wolf, Arctic wolf, Canis lupus tundrarum', - 271: 'red wolf, maned wolf, Canis rufus, Canis niger', - 272: 'coyote, prairie wolf, brush wolf, Canis latrans', - 273: 'dingo, warrigal, warragal, Canis dingo', - 274: 'dhole, Cuon alpinus', - 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus', - 276: 'hyena, hyaena', - 277: 'red fox, Vulpes vulpes', - 278: 'kit fox, Vulpes macrotis', - 279: 'Arctic fox, white fox, Alopex lagopus', - 280: 'grey fox, gray fox, Urocyon cinereoargenteus', - 281: 'tabby, tabby cat', - 282: 'tiger cat', - 283: 'Persian cat', - 284: 'Siamese cat, Siamese', - 285: 'Egyptian cat', - 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', - 287: 'lynx, catamount', - 288: 'leopard, Panthera pardus', - 289: 'snow leopard, ounce, Panthera uncia', - 290: 'jaguar, panther, Panthera onca, Felis onca', - 291: 'lion, king of beasts, Panthera leo', - 292: 'tiger, Panthera tigris', - 293: 'cheetah, chetah, Acinonyx jubatus', - 294: 'brown bear, bruin, Ursus arctos', - 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus', - 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', - 297: 'sloth bear, Melursus ursinus, Ursus ursinus', - 298: 'mongoose', - 299: 'meerkat, mierkat', - 300: 'tiger beetle', - 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', - 302: 'ground beetle, carabid beetle', - 303: 'long-horned beetle, longicorn, longicorn beetle', - 304: 'leaf beetle, chrysomelid', - 305: 'dung beetle', - 306: 'rhinoceros beetle', - 307: 'weevil', - 308: 'fly', - 309: 'bee', - 310: 'ant, emmet, pismire', - 311: 'grasshopper, hopper', - 312: 'cricket', - 313: 'walking stick, walkingstick, stick insect', - 314: 'cockroach, roach', - 315: 'mantis, mantid', - 316: 'cicada, cicala', - 317: 'leafhopper', - 318: 'lacewing, lacewing fly', - 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", - 320: 'damselfly', - 321: 'admiral', - 322: 'ringlet, ringlet butterfly', - 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', - 324: 'cabbage butterfly', - 325: 'sulphur butterfly, sulfur butterfly', - 326: 'lycaenid, lycaenid butterfly', - 327: 'starfish, sea star', - 328: 'sea urchin', - 329: 'sea cucumber, holothurian', - 330: 'wood rabbit, cottontail, cottontail rabbit', - 331: 'hare', - 332: 'Angora, Angora rabbit', - 333: 'hamster', - 334: 'porcupine, hedgehog', - 335: 'fox squirrel, eastern fox squirrel, Sciurus niger', - 336: 'marmot', - 337: 'beaver', - 338: 'guinea pig, Cavia cobaya', - 339: 'sorrel', - 340: 'zebra', - 341: 'hog, pig, grunter, squealer, Sus scrofa', - 342: 'wild boar, boar, Sus scrofa', - 343: 'warthog', - 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius', - 345: 'ox', - 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', - 347: 'bison', - 348: 'ram, tup', - 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis', - 350: 'ibex, Capra ibex', - 351: 'hartebeest', - 352: 'impala, Aepyceros melampus', - 353: 'gazelle', - 354: 'Arabian camel, dromedary, Camelus dromedarius', - 355: 'llama', - 356: 'weasel', - 357: 'mink', - 358: 'polecat, fitch, foulmart, foumart, Mustela putorius', - 359: 'black-footed ferret, ferret, Mustela nigripes', - 360: 'otter', - 361: 'skunk, polecat, wood pussy', - 362: 'badger', - 363: 'armadillo', - 364: 'three-toed sloth, ai, Bradypus tridactylus', - 365: 'orangutan, orang, orangutang, Pongo pygmaeus', - 366: 'gorilla, Gorilla gorilla', - 367: 'chimpanzee, chimp, Pan troglodytes', - 368: 'gibbon, Hylobates lar', - 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus', - 370: 'guenon, guenon monkey', - 371: 'patas, hussar monkey, Erythrocebus patas', - 372: 'baboon', - 373: 'macaque', - 374: 'langur', - 375: 'colobus, colobus monkey', - 376: 'proboscis monkey, Nasalis larvatus', - 377: 'marmoset', - 378: 'capuchin, ringtail, Cebus capucinus', - 379: 'howler monkey, howler', - 380: 'titi, titi monkey', - 381: 'spider monkey, Ateles geoffroyi', - 382: 'squirrel monkey, Saimiri sciureus', - 383: 'Madagascar cat, ring-tailed lemur, Lemur catta', - 384: 'indri, indris, Indri indri, Indri brevicaudatus', - 385: 'Indian elephant, Elephas maximus', - 386: 'African elephant, Loxodonta africana', - 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', - 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', - 389: 'barracouta, snoek', - 390: 'eel', - 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', - 392: 'rock beauty, Holocanthus tricolor', - 393: 'anemone fish', - 394: 'sturgeon', - 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus', - 396: 'lionfish', - 397: 'puffer, pufferfish, blowfish, globefish', - 398: 'abacus', - 399: 'abaya', - 400: "academic gown, academic robe, judge's robe", - 401: 'accordion, piano accordion, squeeze box', - 402: 'acoustic guitar', - 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier', - 404: 'airliner', - 405: 'airship, dirigible', - 406: 'altar', - 407: 'ambulance', - 408: 'amphibian, amphibious vehicle', - 409: 'analog clock', - 410: 'apiary, bee house', - 411: 'apron', - 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', - 413: 'assault rifle, assault gun', - 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack', - 415: 'bakery, bakeshop, bakehouse', - 416: 'balance beam, beam', - 417: 'balloon', - 418: 'ballpoint, ballpoint pen, ballpen, Biro', - 419: 'Band Aid', - 420: 'banjo', - 421: 'bannister, banister, balustrade, balusters, handrail', - 422: 'barbell', - 423: 'barber chair', - 424: 'barbershop', - 425: 'barn', - 426: 'barometer', - 427: 'barrel, cask', - 428: 'barrow, garden cart, lawn cart, wheelbarrow', - 429: 'baseball', - 430: 'basketball', - 431: 'bassinet', - 432: 'bassoon', - 433: 'bathing cap, swimming cap', - 434: 'bath towel', - 435: 'bathtub, bathing tub, bath, tub', - 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon', - 437: 'beacon, lighthouse, beacon light, pharos', - 438: 'beaker', - 439: 'bearskin, busby, shako', - 440: 'beer bottle', - 441: 'beer glass', - 442: 'bell cote, bell cot', - 443: 'bib', - 444: 'bicycle-built-for-two, tandem bicycle, tandem', - 445: 'bikini, two-piece', - 446: 'binder, ring-binder', - 447: 'binoculars, field glasses, opera glasses', - 448: 'birdhouse', - 449: 'boathouse', - 450: 'bobsled, bobsleigh, bob', - 451: 'bolo tie, bolo, bola tie, bola', - 452: 'bonnet, poke bonnet', - 453: 'bookcase', - 454: 'bookshop, bookstore, bookstall', - 455: 'bottlecap', - 456: 'bow', - 457: 'bow tie, bow-tie, bowtie', - 458: 'brass, memorial tablet, plaque', - 459: 'brassiere, bra, bandeau', - 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty', - 461: 'breastplate, aegis, egis', - 462: 'broom', - 463: 'bucket, pail', - 464: 'buckle', - 465: 'bulletproof vest', - 466: 'bullet train, bullet', - 467: 'butcher shop, meat market', - 468: 'cab, hack, taxi, taxicab', - 469: 'caldron, cauldron', - 470: 'candle, taper, wax light', - 471: 'cannon', - 472: 'canoe', - 473: 'can opener, tin opener', - 474: 'cardigan', - 475: 'car mirror', - 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig', - 477: "carpenter's kit, tool kit", - 478: 'carton', - 479: 'car wheel', - 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', - 481: 'cassette', - 482: 'cassette player', - 483: 'castle', - 484: 'catamaran', - 485: 'CD player', - 486: 'cello, violoncello', - 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone', - 488: 'chain', - 489: 'chainlink fence', - 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', - 491: 'chain saw, chainsaw', - 492: 'chest', - 493: 'chiffonier, commode', - 494: 'chime, bell, gong', - 495: 'china cabinet, china closet', - 496: 'Christmas stocking', - 497: 'church, church building', - 498: 'cinema, movie theater, movie theatre, movie house, picture palace', - 499: 'cleaver, meat cleaver, chopper', - 500: 'cliff dwelling', - 501: 'cloak', - 502: 'clog, geta, patten, sabot', - 503: 'cocktail shaker', - 504: 'coffee mug', - 505: 'coffeepot', - 506: 'coil, spiral, volute, whorl, helix', - 507: 'combination lock', - 508: 'computer keyboard, keypad', - 509: 'confectionery, confectionary, candy store', - 510: 'container ship, containership, container vessel', - 511: 'convertible', - 512: 'corkscrew, bottle screw', - 513: 'cornet, horn, trumpet, trump', - 514: 'cowboy boot', - 515: 'cowboy hat, ten-gallon hat', - 516: 'cradle', - 517: 'crane', - 518: 'crash helmet', - 519: 'crate', - 520: 'crib, cot', - 521: 'Crock Pot', - 522: 'croquet ball', - 523: 'crutch', - 524: 'cuirass', - 525: 'dam, dike, dyke', - 526: 'desk', - 527: 'desktop computer', - 528: 'dial telephone, dial phone', - 529: 'diaper, nappy, napkin', - 530: 'digital clock', - 531: 'digital watch', - 532: 'dining table, board', - 533: 'dishrag, dishcloth', - 534: 'dishwasher, dish washer, dishwashing machine', - 535: 'disk brake, disc brake', - 536: 'dock, dockage, docking facility', - 537: 'dogsled, dog sled, dog sleigh', - 538: 'dome', - 539: 'doormat, welcome mat', - 540: 'drilling platform, offshore rig', - 541: 'drum, membranophone, tympan', - 542: 'drumstick', - 543: 'dumbbell', - 544: 'Dutch oven', - 545: 'electric fan, blower', - 546: 'electric guitar', - 547: 'electric locomotive', - 548: 'entertainment center', - 549: 'envelope', - 550: 'espresso maker', - 551: 'face powder', - 552: 'feather boa, boa', - 553: 'file, file cabinet, filing cabinet', - 554: 'fireboat', - 555: 'fire engine, fire truck', - 556: 'fire screen, fireguard', - 557: 'flagpole, flagstaff', - 558: 'flute, transverse flute', - 559: 'folding chair', - 560: 'football helmet', - 561: 'forklift', - 562: 'fountain', - 563: 'fountain pen', - 564: 'four-poster', - 565: 'freight car', - 566: 'French horn, horn', - 567: 'frying pan, frypan, skillet', - 568: 'fur coat', - 569: 'garbage truck, dustcart', - 570: 'gasmask, respirator, gas helmet', - 571: 'gas pump, gasoline pump, petrol pump, island dispenser', - 572: 'goblet', - 573: 'go-kart', - 574: 'golf ball', - 575: 'golfcart, golf cart', - 576: 'gondola', - 577: 'gong, tam-tam', - 578: 'gown', - 579: 'grand piano, grand', - 580: 'greenhouse, nursery, glasshouse', - 581: 'grille, radiator grille', - 582: 'grocery store, grocery, food market, market', - 583: 'guillotine', - 584: 'hair slide', - 585: 'hair spray', - 586: 'half track', - 587: 'hammer', - 588: 'hamper', - 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier', - 590: 'hand-held computer, hand-held microcomputer', - 591: 'handkerchief, hankie, hanky, hankey', - 592: 'hard disc, hard disk, fixed disk', - 593: 'harmonica, mouth organ, harp, mouth harp', - 594: 'harp', - 595: 'harvester, reaper', - 596: 'hatchet', - 597: 'holster', - 598: 'home theater, home theatre', - 599: 'honeycomb', - 600: 'hook, claw', - 601: 'hoopskirt, crinoline', - 602: 'horizontal bar, high bar', - 603: 'horse cart, horse-cart', - 604: 'hourglass', - 605: 'iPod', - 606: 'iron, smoothing iron', - 607: "jack-o'-lantern", - 608: 'jean, blue jean, denim', - 609: 'jeep, landrover', - 610: 'jersey, T-shirt, tee shirt', - 611: 'jigsaw puzzle', - 612: 'jinrikisha, ricksha, rickshaw', - 613: 'joystick', - 614: 'kimono', - 615: 'knee pad', - 616: 'knot', - 617: 'lab coat, laboratory coat', - 618: 'ladle', - 619: 'lampshade, lamp shade', - 620: 'laptop, laptop computer', - 621: 'lawn mower, mower', - 622: 'lens cap, lens cover', - 623: 'letter opener, paper knife, paperknife', - 624: 'library', - 625: 'lifeboat', - 626: 'lighter, light, igniter, ignitor', - 627: 'limousine, limo', - 628: 'liner, ocean liner', - 629: 'lipstick, lip rouge', - 630: 'Loafer', - 631: 'lotion', - 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', - 633: "loupe, jeweler's loupe", - 634: 'lumbermill, sawmill', - 635: 'magnetic compass', - 636: 'mailbag, postbag', - 637: 'mailbox, letter box', - 638: 'maillot', - 639: 'maillot, tank suit', - 640: 'manhole cover', - 641: 'maraca', - 642: 'marimba, xylophone', - 643: 'mask', - 644: 'matchstick', - 645: 'maypole', - 646: 'maze, labyrinth', - 647: 'measuring cup', - 648: 'medicine chest, medicine cabinet', - 649: 'megalith, megalithic structure', - 650: 'microphone, mike', - 651: 'microwave, microwave oven', - 652: 'military uniform', - 653: 'milk can', - 654: 'minibus', - 655: 'miniskirt, mini', - 656: 'minivan', - 657: 'missile', - 658: 'mitten', - 659: 'mixing bowl', - 660: 'mobile home, manufactured home', - 661: 'Model T', - 662: 'modem', - 663: 'monastery', - 664: 'monitor', - 665: 'moped', - 666: 'mortar', - 667: 'mortarboard', - 668: 'mosque', - 669: 'mosquito net', - 670: 'motor scooter, scooter', - 671: 'mountain bike, all-terrain bike, off-roader', - 672: 'mountain tent', - 673: 'mouse, computer mouse', - 674: 'mousetrap', - 675: 'moving van', - 676: 'muzzle', - 677: 'nail', - 678: 'neck brace', - 679: 'necklace', - 680: 'nipple', - 681: 'notebook, notebook computer', - 682: 'obelisk', - 683: 'oboe, hautboy, hautbois', - 684: 'ocarina, sweet potato', - 685: 'odometer, hodometer, mileometer, milometer', - 686: 'oil filter', - 687: 'organ, pipe organ', - 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO', - 689: 'overskirt', - 690: 'oxcart', - 691: 'oxygen mask', - 692: 'packet', - 693: 'paddle, boat paddle', - 694: 'paddlewheel, paddle wheel', - 695: 'padlock', - 696: 'paintbrush', - 697: "pajama, pyjama, pj's, jammies", - 698: 'palace', - 699: 'panpipe, pandean pipe, syrinx', - 700: 'paper towel', - 701: 'parachute, chute', - 702: 'parallel bars, bars', - 703: 'park bench', - 704: 'parking meter', - 705: 'passenger car, coach, carriage', - 706: 'patio, terrace', - 707: 'pay-phone, pay-station', - 708: 'pedestal, plinth, footstall', - 709: 'pencil box, pencil case', - 710: 'pencil sharpener', - 711: 'perfume, essence', - 712: 'Petri dish', - 713: 'photocopier', - 714: 'pick, plectrum, plectron', - 715: 'pickelhaube', - 716: 'picket fence, paling', - 717: 'pickup, pickup truck', - 718: 'pier', - 719: 'piggy bank, penny bank', - 720: 'pill bottle', - 721: 'pillow', - 722: 'ping-pong ball', - 723: 'pinwheel', - 724: 'pirate, pirate ship', - 725: 'pitcher, ewer', - 726: "plane, carpenter's plane, woodworking plane", - 727: 'planetarium', - 728: 'plastic bag', - 729: 'plate rack', - 730: 'plow, plough', - 731: "plunger, plumber's helper", - 732: 'Polaroid camera, Polaroid Land camera', - 733: 'pole', - 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', - 735: 'poncho', - 736: 'pool table, billiard table, snooker table', - 737: 'pop bottle, soda bottle', - 738: 'pot, flowerpot', - 739: "potter's wheel", - 740: 'power drill', - 741: 'prayer rug, prayer mat', - 742: 'printer', - 743: 'prison, prison house', - 744: 'projectile, missile', - 745: 'projector', - 746: 'puck, hockey puck', - 747: 'punching bag, punch bag, punching ball, punchball', - 748: 'purse', - 749: 'quill, quill pen', - 750: 'quilt, comforter, comfort, puff', - 751: 'racer, race car, racing car', - 752: 'racket, racquet', - 753: 'radiator', - 754: 'radio, wireless', - 755: 'radio telescope, radio reflector', - 756: 'rain barrel', - 757: 'recreational vehicle, RV, R.V.', - 758: 'reel', - 759: 'reflex camera', - 760: 'refrigerator, icebox', - 761: 'remote control, remote', - 762: 'restaurant, eating house, eating place, eatery', - 763: 'revolver, six-gun, six-shooter', - 764: 'rifle', - 765: 'rocking chair, rocker', - 766: 'rotisserie', - 767: 'rubber eraser, rubber, pencil eraser', - 768: 'rugby ball', - 769: 'rule, ruler', - 770: 'running shoe', - 771: 'safe', - 772: 'safety pin', - 773: 'saltshaker, salt shaker', - 774: 'sandal', - 775: 'sarong', - 776: 'sax, saxophone', - 777: 'scabbard', - 778: 'scale, weighing machine', - 779: 'school bus', - 780: 'schooner', - 781: 'scoreboard', - 782: 'screen, CRT screen', - 783: 'screw', - 784: 'screwdriver', - 785: 'seat belt, seatbelt', - 786: 'sewing machine', - 787: 'shield, buckler', - 788: 'shoe shop, shoe-shop, shoe store', - 789: 'shoji', - 790: 'shopping basket', - 791: 'shopping cart', - 792: 'shovel', - 793: 'shower cap', - 794: 'shower curtain', - 795: 'ski', - 796: 'ski mask', - 797: 'sleeping bag', - 798: 'slide rule, slipstick', - 799: 'sliding door', - 800: 'slot, one-armed bandit', - 801: 'snorkel', - 802: 'snowmobile', - 803: 'snowplow, snowplough', - 804: 'soap dispenser', - 805: 'soccer ball', - 806: 'sock', - 807: 'solar dish, solar collector, solar furnace', - 808: 'sombrero', - 809: 'soup bowl', - 810: 'space bar', - 811: 'space heater', - 812: 'space shuttle', - 813: 'spatula', - 814: 'speedboat', - 815: "spider web, spider's web", - 816: 'spindle', - 817: 'sports car, sport car', - 818: 'spotlight, spot', - 819: 'stage', - 820: 'steam locomotive', - 821: 'steel arch bridge', - 822: 'steel drum', - 823: 'stethoscope', - 824: 'stole', - 825: 'stone wall', - 826: 'stopwatch, stop watch', - 827: 'stove', - 828: 'strainer', - 829: 'streetcar, tram, tramcar, trolley, trolley car', - 830: 'stretcher', - 831: 'studio couch, day bed', - 832: 'stupa, tope', - 833: 'submarine, pigboat, sub, U-boat', - 834: 'suit, suit of clothes', - 835: 'sundial', - 836: 'sunglass', - 837: 'sunglasses, dark glasses, shades', - 838: 'sunscreen, sunblock, sun blocker', - 839: 'suspension bridge', - 840: 'swab, swob, mop', - 841: 'sweatshirt', - 842: 'swimming trunks, bathing trunks', - 843: 'swing', - 844: 'switch, electric switch, electrical switch', - 845: 'syringe', - 846: 'table lamp', - 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle', - 848: 'tape player', - 849: 'teapot', - 850: 'teddy, teddy bear', - 851: 'television, television system', - 852: 'tennis ball', - 853: 'thatch, thatched roof', - 854: 'theater curtain, theatre curtain', - 855: 'thimble', - 856: 'thresher, thrasher, threshing machine', - 857: 'throne', - 858: 'tile roof', - 859: 'toaster', - 860: 'tobacco shop, tobacconist shop, tobacconist', - 861: 'toilet seat', - 862: 'torch', - 863: 'totem pole', - 864: 'tow truck, tow car, wrecker', - 865: 'toyshop', - 866: 'tractor', - 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', - 868: 'tray', - 869: 'trench coat', - 870: 'tricycle, trike, velocipede', - 871: 'trimaran', - 872: 'tripod', - 873: 'triumphal arch', - 874: 'trolleybus, trolley coach, trackless trolley', - 875: 'trombone', - 876: 'tub, vat', - 877: 'turnstile', - 878: 'typewriter keyboard', - 879: 'umbrella', - 880: 'unicycle, monocycle', - 881: 'upright, upright piano', - 882: 'vacuum, vacuum cleaner', - 883: 'vase', - 884: 'vault', - 885: 'velvet', - 886: 'vending machine', - 887: 'vestment', - 888: 'viaduct', - 889: 'violin, fiddle', - 890: 'volleyball', - 891: 'waffle iron', - 892: 'wall clock', - 893: 'wallet, billfold, notecase, pocketbook', - 894: 'wardrobe, closet, press', - 895: 'warplane, military plane', - 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin', - 897: 'washer, automatic washer, washing machine', - 898: 'water bottle', - 899: 'water jug', - 900: 'water tower', - 901: 'whiskey jug', - 902: 'whistle', - 903: 'wig', - 904: 'window screen', - 905: 'window shade', - 906: 'Windsor tie', - 907: 'wine bottle', - 908: 'wing', - 909: 'wok', - 910: 'wooden spoon', - 911: 'wool, woolen, woollen', - 912: 'worm fence, snake fence, snake-rail fence, Virginia fence', - 913: 'wreck', - 914: 'yawl', - 915: 'yurt', - 916: 'web site, website, internet site, site', - 917: 'comic book', - 918: 'crossword puzzle, crossword', - 919: 'street sign', - 920: 'traffic light, traffic signal, stoplight', - 921: 'book jacket, dust cover, dust jacket, dust wrapper', - 922: 'menu', - 923: 'plate', - 924: 'guacamole', - 925: 'consomme', - 926: 'hot pot, hotpot', - 927: 'trifle', - 928: 'ice cream, icecream', - 929: 'ice lolly, lolly, lollipop, popsicle', - 930: 'French loaf', - 931: 'bagel, beigel', - 932: 'pretzel', - 933: 'cheeseburger', - 934: 'hotdog, hot dog, red hot', - 935: 'mashed potato', - 936: 'head cabbage', - 937: 'broccoli', - 938: 'cauliflower', - 939: 'zucchini, courgette', - 940: 'spaghetti squash', - 941: 'acorn squash', - 942: 'butternut squash', - 943: 'cucumber, cuke', - 944: 'artichoke, globe artichoke', - 945: 'bell pepper', - 946: 'cardoon', - 947: 'mushroom', - 948: 'Granny Smith', - 949: 'strawberry', - 950: 'orange', - 951: 'lemon', - 952: 'fig', - 953: 'pineapple, ananas', - 954: 'banana', - 955: 'jackfruit, jak, jack', - 956: 'custard apple', - 957: 'pomegranate', - 958: 'hay', - 959: 'carbonara', - 960: 'chocolate sauce, chocolate syrup', - 961: 'dough', - 962: 'meat loaf, meatloaf', - 963: 'pizza, pizza pie', - 964: 'potpie', - 965: 'burrito', - 966: 'red wine', - 967: 'espresso', - 968: 'cup', - 969: 'eggnog', - 970: 'alp', - 971: 'bubble', - 972: 'cliff, drop, drop-off', - 973: 'coral reef', - 974: 'geyser', - 975: 'lakeside, lakeshore', - 976: 'promontory, headland, head, foreland', - 977: 'sandbar, sand bar', - 978: 'seashore, coast, seacoast, sea-coast', - 979: 'valley, vale', - 980: 'volcano', - 981: 'ballplayer, baseball player', - 982: 'groom, bridegroom', - 983: 'scuba diver', - 984: 'rapeseed', - 985: 'daisy', - 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", - 987: 'corn', - 988: 'acorn', - 989: 'hip, rose hip, rosehip', - 990: 'buckeye, horse chestnut, conker', - 991: 'coral fungus', - 992: 'agaric', - 993: 'gyromitra', - 994: 'stinkhorn, carrion fungus', - 995: 'earthstar', - 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', - 997: 'bolete', - 998: 'ear, spike, capitulum', - 999: 'toilet tissue, toilet paper, bathroom tissue' -} diff --git a/Classification/cnns/inception_model.py b/Classification/cnns/inception_model.py deleted file mode 100644 index 3167715..0000000 --- a/Classification/cnns/inception_model.py +++ /dev/null @@ -1,549 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import oneflow as flow - -def _get_kernel_initializer(): - return flow.variance_scaling_initializer(distribution="random_normal", data_format="NCHW") - -def _get_regularizer(): - return flow.regularizers.l2(0.00005) - -def _get_bias_initializer(): - return flow.zeros_initializer() - -def conv2d_layer( - name, - input, - filters, - kernel_size=3, - strides=1, - padding="SAME", - data_format="NCHW", - dilation_rate=1, - activation="Relu", - use_bias=True, - weight_initializer=_get_kernel_initializer(), - bias_initializer=_get_bias_initializer(), - weight_regularizer=_get_regularizer(), - bias_regularizer=_get_regularizer(), -): - if isinstance(kernel_size, int): - kernel_size_1 = kernel_size - kernel_size_2 = kernel_size - if isinstance(kernel_size, list): - kernel_size_1 = kernel_size[0] - kernel_size_2 = kernel_size[1] - - weight_shape = (filters, input.shape[1], kernel_size_1, kernel_size_2) - weight = flow.get_variable( - name + "-weight", - shape=weight_shape, - dtype=input.dtype, - initializer=weight_initializer, - regularizer=weight_regularizer, - ) - output = flow.nn.conv2d( - input, weight, strides, padding, data_format, dilation_rate, name=name - ) - if use_bias: - bias = flow.get_variable( - name + "-bias", - shape=(filters,), - dtype=input.dtype, - initializer=bias_initializer, - regularizer=bias_regularizer, - ) - output = flow.nn.bias_add(output, bias, data_format) - - if activation is not None: - if activation == "Relu": - output = flow.keras.activations.relu(output) - else: - raise NotImplementedError - - return output - - -def conv2d_layer_with_bn( - name, - input, - filters, - kernel_size=3, - strides=1, - padding="SAME", - data_format="NCHW", - dilation_rate=1, - activation="Relu", - use_bias=True, - weight_initializer=_get_kernel_initializer(), - bias_initializer=_get_bias_initializer(), - weight_regularizer=_get_regularizer(), - bias_regularizer=_get_regularizer(), - use_bn=True, -): - output = conv2d_layer(name=name, - input=input, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - weight_initializer=weight_initializer, - bias_initializer=bias_initializer, - weight_regularizer=weight_regularizer, - bias_regularizer=bias_regularizer) - - if use_bn: - output = flow.layers.batch_normalization(inputs=output, - axis=1, - momentum=0.997, - epsilon=1.001e-5, - center=True, - scale=True, - trainable=True, - name=name + "_bn") - return output - -def InceptionA(in_blob, index): - with flow.scope.namespace("mixed_{}".format(index)): - with flow.scope.namespace("branch1x1"): - branch1x1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=64, kernel_size=1, strides=1, padding="SAME" - ) - with flow.scope.namespace("branch5x5"): - branch5x5_1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=48, kernel_size=1, strides=1, padding="SAME" - ) - branch5x5_2 = conv2d_layer_with_bn( - "conv1", - branch5x5_1, - filters=64, - kernel_size=5, - strides=1, - padding="SAME", - ) - with flow.scope.namespace("branch3x3dbl"): - branch3x3dbl_1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=64, kernel_size=1, strides=1, padding="SAME" - ) - branch3x3dbl_2 = conv2d_layer_with_bn( - "conv1", - branch3x3dbl_1, - filters=96, - kernel_size=3, - strides=1, - padding="SAME", - ) - branch3x3dbl_3 = conv2d_layer_with_bn( - "conv2", - branch3x3dbl_2, - filters=96, - kernel_size=3, - strides=1, - padding="SAME", - ) - with flow.scope.namespace("branch_pool"): - branch_pool_1 = flow.nn.avg_pool2d( - in_blob, - ksize=3, - strides=1, - padding="SAME", - data_format="NCHW", - name="pool", - ) - branch_pool_2 = conv2d_layer_with_bn( - "conv", - branch_pool_1, - filters=32 if index == 0 else 64, - kernel_size=1, - strides=1, - padding="SAME", - ) - - inceptionA_bn = [] - inceptionA_bn.append(branch1x1) - inceptionA_bn.append(branch5x5_2) - inceptionA_bn.append(branch3x3dbl_3) - inceptionA_bn.append(branch_pool_2) - - mixed_concat = flow.concat(values=inceptionA_bn, axis=1, name="concat") - - return mixed_concat - - -def InceptionB(in_blob, index): - with flow.scope.namespace("mixed_{}".format(index)): - with flow.scope.namespace("branch3x3"): - branch3x3 = conv2d_layer_with_bn( - "conv0", in_blob, filters=384, kernel_size=3, strides=2, padding="VALID" - ) - with flow.scope.namespace("branch3x3dbl"): - branch3x3dbl_1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=64, kernel_size=1, strides=1, padding="SAME" - ) - branch3x3dbl_2 = conv2d_layer_with_bn( - "conv1", - branch3x3dbl_1, - filters=96, - kernel_size=3, - strides=1, - padding="SAME", - ) - branch3x3dbl_3 = conv2d_layer_with_bn( - "conv2", - branch3x3dbl_2, - filters=96, - kernel_size=3, - strides=2, - padding="VALID", - ) - with flow.scope.namespace("branch_pool"): - branch_pool = flow.nn.max_pool2d( - in_blob, - ksize=3, - strides=2, - padding="VALID", - data_format="NCHW", - name="pool0", - ) - - inceptionB_bn = [] - inceptionB_bn.append(branch3x3) - inceptionB_bn.append(branch3x3dbl_3) - inceptionB_bn.append(branch_pool) - mixed_concat = flow.concat(values=inceptionB_bn, axis=1, name="concat") - - return mixed_concat - - -def InceptionC(in_blob, index, filters): - with flow.scope.namespace("mixed_{}".format(index)): - with flow.scope.namespace("branch1x1"): - branch1x1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=192, kernel_size=1, strides=1, padding="SAME" - ) - with flow.scope.namespace("branch7x7"): - branch7x7_1 = conv2d_layer_with_bn( - "conv0", - in_blob, - filters=filters, - kernel_size=1, - strides=1, - padding="SAME", - ) - branch7x7_2 = conv2d_layer_with_bn( - "conv1", - branch7x7_1, - filters=filters, - kernel_size=[1, 7], - strides=1, - padding="SAME", - ) - branch7x7_3 = conv2d_layer_with_bn( - "conv2", - branch7x7_2, - filters=192, - kernel_size=[7, 1], - strides=[1, 1], - padding="SAME", - ) - with flow.scope.namespace("branch7x7dbl"): - branch7x7dbl_1 = conv2d_layer_with_bn( - "conv0", - in_blob, - filters=filters, - kernel_size=1, - strides=1, - padding="SAME", - ) - branch7x7dbl_2 = conv2d_layer_with_bn( - "conv1", - branch7x7dbl_1, - filters=filters, - kernel_size=[7, 1], - strides=1, - padding="SAME", - ) - branch7x7dbl_3 = conv2d_layer_with_bn( - "conv2", - branch7x7dbl_2, - filters=filters, - kernel_size=[1, 7], - strides=1, - padding="SAME", - ) - branch7x7dbl_4 = conv2d_layer_with_bn( - "conv3", - branch7x7dbl_3, - filters=filters, - kernel_size=[7, 1], - strides=1, - padding="SAME", - ) - branch7x7dbl_5 = conv2d_layer_with_bn( - "conv4", - branch7x7dbl_4, - filters=192, - kernel_size=[1, 7], - strides=1, - padding="SAME", - ) - with flow.scope.namespace("branch_pool"): - branch_pool_1 = flow.nn.avg_pool2d( - in_blob, - ksize=3, - strides=1, - padding="SAME", - data_format="NCHW", - name="pool", - ) - branch_pool_2 = conv2d_layer_with_bn( - "conv", - branch_pool_1, - filters=192, - kernel_size=[1, 1], - strides=1, - padding="SAME", - ) - - inceptionC_bn = [] - inceptionC_bn.append(branch1x1) - inceptionC_bn.append(branch7x7_3) - inceptionC_bn.append(branch7x7dbl_5) - inceptionC_bn.append(branch_pool_2) - mixed_concat = flow.concat(values=inceptionC_bn, axis=1, name="concat") - - return mixed_concat - - -def InceptionD(in_blob, index): - with flow.scope.namespace("mixed_{}".format(index)): - with flow.scope.namespace("branch3x3"): - branch3x3_1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=192, kernel_size=1, strides=1, padding="SAME" - ) - branch3x3_2 = conv2d_layer_with_bn( - "conv1", - branch3x3_1, - filters=320, - kernel_size=3, - strides=2, - padding="VALID", - ) - with flow.scope.namespace("branch7x7x3"): - branch7x7x3_1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=192, kernel_size=1, strides=1, padding="SAME" - ) - branch7x7x3_2 = conv2d_layer_with_bn( - "conv1", - branch7x7x3_1, - filters=192, - kernel_size=[1, 7], - strides=1, - padding="SAME", - ) - branch7x7x3_3 = conv2d_layer_with_bn( - "conv2", - branch7x7x3_2, - filters=192, - kernel_size=[7, 1], - strides=1, - padding="SAME", - ) - branch7x7x3_4 = conv2d_layer_with_bn( - "conv3", - branch7x7x3_3, - filters=192, - kernel_size=3, - strides=2, - padding="VALID", - ) - with flow.scope.namespace("branch_pool"): - branch_pool = flow.nn.max_pool2d( - in_blob, - ksize=3, - strides=2, - padding="VALID", - data_format="NCHW", - name="pool", - ) - - inceptionD_bn = [] - inceptionD_bn.append(branch3x3_2) - inceptionD_bn.append(branch7x7x3_4) - inceptionD_bn.append(branch_pool) - - mixed_concat = flow.concat(values=inceptionD_bn, axis=1, name="concat") - - return mixed_concat - - -def InceptionE(in_blob, index): - with flow.scope.namespace("mixed_{}".format(index)): - with flow.scope.namespace("branch1x1"): - branch1x1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=320, kernel_size=1, strides=1, padding="SAME" - ) - with flow.scope.namespace("branch3x3"): - branch3x3_1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=384, kernel_size=1, strides=1, padding="SAME" - ) - branch3x3_2 = conv2d_layer_with_bn( - "conv1", - branch3x3_1, - filters=384, - kernel_size=[1, 3], - strides=1, - padding="SAME", - ) - branch3x3_3 = conv2d_layer_with_bn( - "conv2", - branch3x3_1, - filters=384, - kernel_size=[3, 1], - strides=[1, 1], - padding="SAME", - ) - inceptionE_1_bn = [] - inceptionE_1_bn.append(branch3x3_2) - inceptionE_1_bn.append(branch3x3_3) - concat_branch3x3 = flow.concat( - values=inceptionE_1_bn, axis=1, name="concat" - ) - with flow.scope.namespace("branch3x3dbl"): - branch3x3dbl_1 = conv2d_layer_with_bn( - "conv0", in_blob, filters=448, kernel_size=1, strides=1, padding="SAME" - ) - branch3x3dbl_2 = conv2d_layer_with_bn( - "conv1", - branch3x3dbl_1, - filters=384, - kernel_size=3, - strides=1, - padding="SAME", - ) - branch3x3dbl_3 = conv2d_layer_with_bn( - "conv2", - branch3x3dbl_2, - filters=384, - kernel_size=[1, 3], - strides=1, - padding="SAME", - ) - branch3x3dbl_4 = conv2d_layer_with_bn( - "conv3", - branch3x3dbl_2, - filters=384, - kernel_size=[3, 1], - strides=1, - padding="SAME", - ) - inceptionE_2_bn = [] - inceptionE_2_bn.append(branch3x3dbl_3) - inceptionE_2_bn.append(branch3x3dbl_4) - concat_branch3x3dbl = flow.concat( - values=inceptionE_2_bn, axis=1, name="concat" - ) - with flow.scope.namespace("branch_pool"): - branch_pool_1 = flow.nn.avg_pool2d( - in_blob, - ksize=3, - strides=1, - padding="SAME", - data_format="NCHW", - name="pool", - ) - branch_pool_2 = conv2d_layer_with_bn( - "conv", - branch_pool_1, - filters=192, - kernel_size=[1, 1], - strides=1, - padding="SAME", - ) - - inceptionE_total_bn = [] - inceptionE_total_bn.append(branch1x1) - inceptionE_total_bn.append(concat_branch3x3) - inceptionE_total_bn.append(concat_branch3x3dbl) - inceptionE_total_bn.append(branch_pool_2) - - concat_total = flow.concat( - values=inceptionE_total_bn, axis=1, name="concat") - - return concat_total - - -def inceptionv3(images, trainable=True, need_transpose=False, channel_last=False): - if need_transpose: - images = flow.transpose(images, name="transpose", perm=[0, 3, 1, 2]) - if channel_last: - # if channel_last=True, then change mode from 'nchw' to 'nhwc' - images = flow.transpose(images, name="transpose", perm=[0, 2, 3, 1]) - with flow.scope.namespace("InceptionV3"): - # conv0: 299 x 299 x 3 - conv0 = conv2d_layer_with_bn( - "conv0", images, filters=32, kernel_size=3, strides=2, padding="VALID" - ) - conv1 = conv2d_layer_with_bn( - "conv1", conv0, filters=32, kernel_size=3, strides=1, padding="VALID" - ) - conv2 = conv2d_layer_with_bn( - "conv2", conv1, filters=64, kernel_size=3, strides=1, padding="SAME" - ) - pool1 = flow.nn.max_pool2d( - conv2, ksize=3, strides=2, padding="VALID", data_format="NCHW", name="pool1" - ) - conv3 = conv2d_layer_with_bn( - "conv3", pool1, filters=80, kernel_size=1, strides=1, padding="VALID" - ) - conv4 = conv2d_layer_with_bn( - "conv4", conv3, filters=192, kernel_size=3, strides=1, padding="VALID" - ) - pool2 = flow.nn.max_pool2d( - conv4, ksize=3, strides=2, padding="VALID", data_format="NCHW", name="pool2" - ) - - # mixed_0 ~ mixed_2 - mixed_0 = InceptionA(pool2, 0) - mixed_1 = InceptionA(mixed_0, 1) - mixed_2 = InceptionA(mixed_1, 2) - # mixed_3 - mixed_3 = InceptionB(mixed_2, 3) - - # mixed_4 ~ mixed_7 - mixed_4 = InceptionC(mixed_3, 4, 128) - mixed_5 = InceptionC(mixed_4, 5, 160) - mixed_6 = InceptionC(mixed_5, 6, 160) - mixed_7 = InceptionC(mixed_6, 7, 192) - - # mixed_8 - mixed_8 = InceptionD(mixed_7, 8) - - # mixed_9 ~ mixed_10 - mixed_9 = InceptionE(mixed_8, 9) - mixed_10 = InceptionE(mixed_9, 10) - - pool3 = flow.nn.avg_pool2d( - mixed_10, ksize=8, strides=1, padding="VALID", data_format="NCHW", name="pool3" - ) - - # TODO: Need to transpose weight when converting model from TF to OF if - # you want to use layers.dense interface. - fc1 = flow.layers.dense( - inputs=flow.reshape(pool3, [pool3.shape[0], -1]), - units=1000, - activation=None, - use_bias=True, - kernel_initializer=flow.truncated_normal(0.816496580927726), - bias_initializer=flow.constant_initializer(), - trainable=trainable, - name="fc1", - ) - - return fc1 diff --git a/Classification/cnns/inference.sh b/Classification/cnns/inference.sh deleted file mode 100755 index bf60068..0000000 --- a/Classification/cnns/inference.sh +++ /dev/null @@ -1,9 +0,0 @@ -rm -rf core.* - -# Set up model path, e.g. : vgg16_of_best_model_val_top1_721 alexnet_of_best_model_val_top1_54762 -MODEL_LOAD_DIR="resnet_v15_of_best_model_val_top1_77318" - -python3 of_cnn_inference.py \ - --model="resnet50" \ - --image_path="data/fish.jpg" \ - --model_load_dir=$MODEL_LOAD_DIR \ No newline at end of file diff --git a/Classification/cnns/job_function_util.py b/Classification/cnns/job_function_util.py deleted file mode 100755 index 78b4291..0000000 --- a/Classification/cnns/job_function_util.py +++ /dev/null @@ -1,30 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import oneflow as flow -from optimizer_util import gen_model_update_conf - - -def _default_config(args): - config = flow.function_config() - config.default_logical_view(flow.scope.consistent_view()) - config.default_data_type(flow.float) - if args.use_fp16: - config.enable_auto_mixed_precision(True) - return config - - -def get_train_config(args): - train_config = _default_config(args) - train_config.train.primary_lr(args.learning_rate) - - - train_config.prune_parallel_cast_ops(True) - train_config.train.model_update_conf(gen_model_update_conf(args)) - train_config.enable_inplace(True) - return train_config - - -def get_val_config(args): - return _default_config(args) diff --git a/Classification/cnns/mobilenet_v2_model.py b/Classification/cnns/mobilenet_v2_model.py deleted file mode 100644 index 60a26a6..0000000 --- a/Classification/cnns/mobilenet_v2_model.py +++ /dev/null @@ -1,231 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import oneflow as flow -#ref : https://arxiv.org/pdf/1801.04381.pdf -#ref : https://github.com/liangfu/mxnet-mobilenet-v2/blob/master/symbols/mobilenetv2.py - -def _get_regularizer(model_name): - #all decay - return flow.regularizers.l2(0.00004) - - -def _get_initializer(model_name): - if model_name == "weight": - return flow.variance_scaling_initializer(2.0, mode="fan_out", distribution="random_normal", data_format="NCHW") - elif model_name == "bias": - return flow.zeros_initializer() - elif model_name == "gamma": - return flow.ones_initializer() - elif model_name == "beta": - return flow.zeros_initializer() - elif model_name == "dense_weight": - return flow.random_normal_initializer(0, 0.01) - - -def _batch_norm(inputs, axis, momentum, epsilon, center=True, scale=True, trainable=True, name=None): - return flow.layers.batch_normalization( - inputs=inputs, - axis=axis, - momentum=momentum, - epsilon=epsilon, - center=center, - scale=scale, - beta_initializer = _get_initializer("beta"), - gamma_initializer = _get_initializer("gamma"), - beta_regularizer = _get_regularizer("beta"), - gamma_regularizer = _get_regularizer("gamma"), - trainable=trainable, - name=name - ) - - -def _relu6(data, prefix): - return flow.clip_by_value(data,0,6,name='%s-relu6'%prefix) - - -def mobilenet_unit(data, num_filter=1, kernel=(1, 1), stride=(1, 1), pad=(0, 0), num_group=1, data_format="NCHW", if_act=True, use_bias=False, prefix=''): - conv = flow.layers.conv2d(inputs=data, filters=num_filter, kernel_size=kernel, strides=stride, padding=pad, data_format=data_format, dilation_rate=1, groups=num_group, activation=None, use_bias=use_bias, kernel_initializer=_get_initializer("weight"), bias_initializer=_get_initializer("bias"), kernel_regularizer=_get_regularizer("weight"), bias_regularizer=_get_regularizer("bias"), name=prefix) - bn = _batch_norm(conv, axis=1, momentum=0.9, epsilon=1e-5, name='%s-BatchNorm'%prefix) - if if_act: - act = _relu6(bn, prefix) - return act - else: - return bn - -def shortcut(data_in, data_residual, prefix): - out = flow.math.add(data_in,data_residual) - return out - -def inverted_residual_unit(data, num_in_filter, num_filter, ifshortcut, stride, kernel, pad, expansion_factor, prefix, data_format="NCHW", has_expand = 1): - num_expfilter = int(round(num_in_filter*expansion_factor)) - if has_expand: - channel_expand = mobilenet_unit( - data=data, - num_filter=num_expfilter, - kernel=(1,1), - stride=(1,1), - pad="valid", - num_group=1, - data_format=data_format, - if_act=True, - prefix='%s-expand'%prefix, - ) - else: - channel_expand = data - bottleneck_conv = mobilenet_unit( - data= channel_expand, - num_filter=num_expfilter, - stride=stride, - kernel=kernel, - pad=pad, - num_group=num_expfilter, - data_format=data_format, - if_act=True, - prefix='%s-depthwise'%prefix, - ) - linear_out = mobilenet_unit( - data=bottleneck_conv, - num_filter=num_filter, - kernel=(1, 1), - stride=(1, 1), - pad="valid", - num_group=1, - data_format=data_format, - if_act=False, - prefix='%s-project'%prefix - ) - - if ifshortcut: - out = shortcut( - data_in=data, - data_residual=linear_out, - prefix=prefix, - ) - return out - else: - return linear_out - -MNETV2_CONFIGS_MAP = { - (224,224):{ - 'firstconv_filter_num': 32, - # t, c, s - 'bottleneck_params_list':[ - (1, 16, 1, False), - (6, 24, 2, False), - (6, 24, 1, True), - (6, 32, 2, False), - (6, 32, 1, True), - (6, 32, 1, True), - (6, 64, 2, False), - (6, 64, 1, True), - (6, 64, 1, True), - (6, 64, 1, True), - (6, 96, 1, False), - (6, 96, 1, True), - (6, 96, 1, True), - (6, 160, 2, False), - (6, 160, 1, True), - (6, 160, 1, True), - (6, 320, 1, False), - ], - 'filter_num_before_gp': 1280, - } -} - -class MobileNetV2(object): - def __init__(self, data_wh, multiplier, **kargs): - super(MobileNetV2, self).__init__() - self.data_wh=data_wh - self.multiplier=multiplier - if self.data_wh in MNETV2_CONFIGS_MAP: - self.config_map=MNETV2_CONFIGS_MAP[self.data_wh] - else: - self.config_map=MNETV2_CONFIGS_MAP[(224, 224)] - - def build_network(self, input_data, need_transpose, data_format, class_num=1000, prefix="", **configs): - self.config_map.update(configs) - - if need_transpose: - input_data = flow.transpose(input_data, name="transpose", perm=[0, 3, 1, 2]) - first_c = int(round(self.config_map['firstconv_filter_num']*self.multiplier)) - first_layer = mobilenet_unit( - data=input_data, - num_filter=first_c, - kernel=(3,3), - stride=(2,2), - pad="same", - data_format=data_format, - if_act=True, - prefix= prefix+'-Conv' - ) - - last_bottleneck_layer = first_layer - in_c = first_c - for i, layer_setting in enumerate(self.config_map['bottleneck_params_list']): - t, c, s, sc = layer_setting - if i == 0: - last_bottleneck_layer = inverted_residual_unit( - data=last_bottleneck_layer, - num_in_filter=in_c, - num_filter=int(round(c*self.multiplier)), - ifshortcut=sc, - stride=(s,s), - kernel=(3,3), - pad="same", - expansion_factor=t, - prefix= prefix+'-expanded_conv', - data_format=data_format, - has_expand=0 - ) - in_c = int(round(c*self.multiplier)) - else: - last_bottleneck_layer = inverted_residual_unit( - data=last_bottleneck_layer, - num_in_filter=in_c, - num_filter=int(round(c*self.multiplier)), - ifshortcut=sc, - stride=(s,s), - kernel=(3,3), - pad="same", - expansion_factor=t, - data_format=data_format, - prefix= prefix+'-expanded_conv_%d'%i - ) - in_c = int(round(c*self.multiplier)) - last_fm = mobilenet_unit( - data=last_bottleneck_layer, - num_filter=int(1280 * self.multiplier) if self.multiplier > 1.0 else 1280, - kernel=(1,1), - stride=(1,1), - pad="valid", - data_format=data_format, - if_act=True, - prefix=prefix+'-Conv_1' - ) - # global average pooling - pool_size = int(self.data_wh[0] / 32) - pool = flow.nn.avg_pool2d( - last_fm, ksize=pool_size, strides=1, padding="VALID", data_format="NCHW", name="pool5", - ) - fc = flow.layers.dense( - flow.reshape(pool, (pool.shape[0], -1)), - units=class_num, - use_bias=False, - kernel_initializer=_get_initializer("dense_weight"), - bias_initializer=_get_initializer("bias"), - kernel_regularizer=_get_regularizer("dense_weight"), - bias_regularizer=_get_regularizer("bias"), - name=prefix+'-fc', - ) - return fc - - def __call__(self, input_data, need_transpose, class_num=1000, prefix = "", **configs): - sym = self.build_network(input_data, need_transpose, class_num=class_num, prefix=prefix, **configs) - return sym - -def Mobilenet(input_data, trainable=True, need_transpose=False, training=True, data_format="NCHW", num_classes=1000, multiplier=1.0, prefix = ""): - mobilenetgen = MobileNetV2((224,224), multiplier=multiplier) - out = mobilenetgen(input_data, need_transpose, data_format=data_format, class_num=num_classes, prefix = "MobilenetV2") - return out diff --git a/Classification/cnns/of_cnn_evaluate.py b/Classification/cnns/of_cnn_evaluate.py deleted file mode 100644 index 5607213..0000000 --- a/Classification/cnns/of_cnn_evaluate.py +++ /dev/null @@ -1,76 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import time -import math -import numpy as np - -import config as configs -parser = configs.get_parser() -args = parser.parse_args() -configs.print_args(args) - -from util import Snapshot, Summary, InitNodes, Metric -import ofrecord_util -from job_function_util import get_train_config, get_val_config -import oneflow as flow -import vgg_model -import resnet_model -import resnext_model -import alexnet_model -import mobilenet_v2_model - - -total_device_num = args.num_nodes * args.gpu_num_per_node -val_batch_size = total_device_num * args.val_batch_size_per_device -(C, H, W) = args.image_shape -num_val_steps = int(args.num_val_examples / val_batch_size) - - -model_dict = { - "resnet50": resnet_model.resnet50, - "vgg": vgg_model.vgg16bn, - "alexnet": alexnet_model.alexnet, - "mobilenetv2": mobilenet_v2_model.Mobilenet, - "resnext50": resnext_model.resnext50, -} - - -flow.config.gpu_device_num(args.gpu_num_per_node) -flow.config.enable_debug_mode(True) -@flow.global_function("predict", get_val_config(args)) -def InferenceNet(): - assert os.path.exists(args.val_data_dir) - print("Loading data from {}".format(args.val_data_dir)) - (labels, images) = ofrecord_util.load_imagenet_for_validation(args) - - logits = model_dict[args.model](images, - need_transpose=False if args.val_data_dir else True) - predictions = flow.nn.softmax(logits) - outputs = {"predictions": predictions, "labels": labels} - return outputs - - -def main(): - InitNodes(args) - assert args.model_load_dir, 'Must have model load dir!' - - flow.env.grpc_use_no_signal() - flow.env.log_dir(args.log_dir) - summary = Summary(args.log_dir, args) - # snapshot = Snapshot(args.model_save_dir, args.model_load_dir) - print("Restoring model from {}.".format(args.model_load_dir)) - checkpoint = flow.train.CheckPoint() - checkpoint.load(args.model_load_dir) - metric = Metric(desc='validation', calculate_batches=num_val_steps, summary=summary, - save_summary_steps=num_val_steps, batch_size=val_batch_size) - - for i in range(args.num_epochs): - for j in range(num_val_steps): - InferenceNet().async_get(metric.metric_cb(0, j)) - - -if __name__ == "__main__": - main() diff --git a/Classification/cnns/of_cnn_inference.py b/Classification/cnns/of_cnn_inference.py deleted file mode 100755 index 53320f6..0000000 --- a/Classification/cnns/of_cnn_inference.py +++ /dev/null @@ -1,66 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import numpy as np -from PIL import Image - -import config as configs - -parser = configs.get_parser() -args = parser.parse_args() -configs.print_args(args) - -import oneflow as flow -import oneflow.typing as tp -from imagenet1000_clsidx_to_labels import clsidx_2_labels - -import resnet_model -import resnext_model -import vgg_model -import alexnet_model -import mobilenet_v2_model - -model_dict = { - "resnet50": resnet_model.resnet50, - "vgg": vgg_model.vgg16bn, - "alexnet": alexnet_model.alexnet, - "mobilenetv2": mobilenet_v2_model.Mobilenet, - "resnext50": resnext_model.resnext50, -} - - -def load_image(image_path='test_img/ILSVRC2012_val_00020287.JPEG'): - print(image_path) - im = Image.open(image_path) - im = im.resize((224, 224)) - im = im.convert('RGB') # 有的图像是单通道的,不加转换会报错 - im = np.array(im).astype('float32') - im = (im - args.rgb_mean) / args.rgb_std - im = np.transpose(im, (2, 0, 1)) - im = np.expand_dims(im, axis=0) - return np.ascontiguousarray(im, 'float32') - - -@flow.global_function("predict", flow.function_config()) -def InferenceNet(images: tp.Numpy.Placeholder((1, 3, 224, 224), dtype=flow.float)) -> tp.Numpy: - logits = model_dict[args.model](images, training=False) - predictions = flow.nn.softmax(logits) - return predictions - - -def main(): - flow.env.log_dir(args.log_dir) - assert os.path.isdir(args.model_load_dir) - check_point = flow.train.CheckPoint() - check_point.load(args.model_load_dir) - - image = load_image(args.image_path) - predictions = InferenceNet(image) - clsidx = predictions.argmax() - print(predictions.max(), clsidx_2_labels[clsidx]) - - -if __name__ == "__main__": - main() diff --git a/Classification/cnns/of_cnn_train_val.py b/Classification/cnns/of_cnn_train_val.py deleted file mode 100755 index 8bda734..0000000 --- a/Classification/cnns/of_cnn_train_val.py +++ /dev/null @@ -1,119 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -import os -import math -import oneflow as flow -import ofrecord_util -import config as configs -from util import Snapshot, Summary, InitNodes, Metric -from job_function_util import get_train_config, get_val_config -import resnet_model -import resnext_model -import vgg_model -import alexnet_model -import inception_model -import mobilenet_v2_model - -parser = configs.get_parser() -args = parser.parse_args() -configs.print_args(args) - -total_device_num = args.num_nodes * args.gpu_num_per_node -train_batch_size = total_device_num * args.batch_size_per_device -val_batch_size = total_device_num * args.val_batch_size_per_device -(C, H, W) = args.image_shape -epoch_size = math.ceil(args.num_examples / train_batch_size) -num_val_steps = int(args.num_val_examples / val_batch_size) - - -model_dict = { - "resnet50": resnet_model.resnet50, - "vgg": vgg_model.vgg16bn, - "alexnet": alexnet_model.alexnet, - "inceptionv3": inception_model.inceptionv3, - "mobilenetv2": mobilenet_v2_model.Mobilenet, - "resnext50": resnext_model.resnext50, -} - - -flow.config.gpu_device_num(args.gpu_num_per_node) -flow.config.enable_debug_mode(True) - - -def label_smoothing(labels, classes, eta, dtype): - assert classes > 0 - assert eta >= 0.0 and eta < 1.0 - - return flow.one_hot(labels, depth=classes, dtype=dtype, - on_value=1 - eta + eta / classes, off_value=eta/classes) - - -@flow.global_function("train", get_train_config(args)) -def TrainNet(): - if args.train_data_dir: - assert os.path.exists(args.train_data_dir) - print("Loading data from {}".format(args.train_data_dir)) - (labels, images) = ofrecord_util.load_imagenet_for_training(args) - - else: - print("Loading synthetic data.") - (labels, images) = ofrecord_util.load_synthetic(args) - logits = model_dict[args.model](images, - need_transpose=False if args.train_data_dir else True, - ) - if args.label_smoothing > 0: - one_hot_labels = label_smoothing(labels, args.num_classes, args.label_smoothing, logits.dtype) - loss = flow.nn.softmax_cross_entropy_with_logits(one_hot_labels, logits, name="softmax_loss") - else: - loss = flow.nn.sparse_softmax_cross_entropy_with_logits(labels, logits, name="softmax_loss") - - flow.losses.add_loss(loss) - predictions = flow.nn.softmax(logits) - outputs = {"loss": loss, "predictions": predictions, "labels": labels} - return outputs - - -@flow.global_function("predict", get_val_config(args)) -def InferenceNet(): - if args.val_data_dir: - assert os.path.exists(args.val_data_dir) - print("Loading data from {}".format(args.val_data_dir)) - (labels, images) = ofrecord_util.load_imagenet_for_validation(args) - - else: - print("Loading synthetic data.") - (labels, images) = ofrecord_util.load_synthetic(args) - - logits = model_dict[args.model]( - images, need_transpose=False if args.val_data_dir else True) - predictions = flow.nn.softmax(logits) - outputs = {"predictions": predictions, "labels": labels} - return outputs - - -def main(): - InitNodes(args) - flow.env.grpc_use_no_signal() - flow.env.log_dir(args.log_dir) - - summary = Summary(args.log_dir, args) - snapshot = Snapshot(args.model_save_dir, args.model_load_dir) - - for epoch in range(args.num_epochs): - metric = Metric(desc='train', calculate_batches=args.loss_print_every_n_iter, - summary=summary, save_summary_steps=epoch_size, - batch_size=train_batch_size, loss_key='loss') - for i in range(epoch_size): - TrainNet().async_get(metric.metric_cb(epoch, i)) - - if args.val_data_dir: - metric = Metric(desc='validation', calculate_batches=num_val_steps, summary=summary, - save_summary_steps=num_val_steps, batch_size=val_batch_size) - for i in range(num_val_steps): - InferenceNet().async_get(metric.metric_cb(epoch, i)) - snapshot.save('epoch_{}'.format(epoch)) - - -if __name__ == "__main__": - main() diff --git a/Classification/cnns/ofrecord_util.py b/Classification/cnns/ofrecord_util.py deleted file mode 100755 index 73cf248..0000000 --- a/Classification/cnns/ofrecord_util.py +++ /dev/null @@ -1,145 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import oneflow as flow - - -def add_ofrecord_args(parser): - parser.add_argument("--image_size", type=int, default=224, - required=False, help="image size") - parser.add_argument("--resize_shorter", type=int, default=256, - required=False, help="resize shorter for validation") - parser.add_argument("--train_data_dir", type=str, - default=None, help="train dataset directory") - parser.add_argument("--train_data_part_num", type=int, - default=256, help="train data part num") - parser.add_argument("--val_data_dir", type=str, - default=None, help="val dataset directory") - parser.add_argument("--val_data_part_num", type=int, - default=256, help="val data part num") - return parser - - -def load_imagenet(args, batch_size, data_dir, data_part_num, codec): - image_blob_conf = flow.data.BlobConf( - "encoded", - shape=(args.image_size, args.image_size, 3), - dtype=flow.float, - codec=codec, - preprocessors=[flow.data.NormByChannelPreprocessor(args.rgb_mean[::-1], - args.rgb_std[::-1])], - # preprocessors=[flow.data.NormByChannelPreprocessor(args.rgb_mean, args.rgb_std)], #bgr2rgb - ) - - label_blob_conf = flow.data.BlobConf( - "class/label", shape=(), dtype=flow.int32, codec=flow.data.RawCodec() - ) - - return flow.data.decode_ofrecord( - data_dir, - (label_blob_conf, image_blob_conf), - batch_size=batch_size, - data_part_num=data_part_num, - part_name_suffix_length=5, - #shuffle = True, - # buffer_size=32768, - name="decode", - ) - - -def load_synthetic(args): - total_device_num = args.num_nodes * args.gpu_num_per_node - batch_size = total_device_num * args.batch_size_per_device - label = flow.data.decode_random( - shape=(), - dtype=flow.int32, - batch_size=batch_size, - initializer=flow.zeros_initializer(flow.int32), - ) - - image = flow.data.decode_random( - shape=(args.image_size, args.image_size, 3), dtype=flow.float, batch_size=batch_size - ) - - return label, image - - -def load_imagenet_for_training(args): - total_device_num = args.num_nodes * args.gpu_num_per_node - train_batch_size = total_device_num * args.batch_size_per_device - - color_space = 'RGB' - ofrecord = flow.data.ofrecord_reader(args.train_data_dir, - batch_size=train_batch_size, - data_part_num=args.train_data_part_num, - part_name_suffix_length=5, - random_shuffle=True, - shuffle_after_epoch=True) - image = flow.data.OFRecordImageDecoderRandomCrop(ofrecord, "encoded", # seed=seed, - color_space=color_space) - label = flow.data.OFRecordRawDecoder( - ofrecord, "class/label", shape=(), dtype=flow.int32) - rsz = flow.image.Resize(image, resize_x=args.image_size, resize_y=args.image_size, - color_space=color_space) - - rng = flow.random.CoinFlip(batch_size=train_batch_size) # , seed=seed) - normal = flow.image.CropMirrorNormalize(rsz, mirror_blob=rng, color_space=color_space, - mean=args.rgb_mean, std=args.rgb_std, output_dtype=flow.float) - return label, normal - - -def load_imagenet_for_validation(args): - total_device_num = args.num_nodes * args.gpu_num_per_node - val_batch_size = total_device_num * args.val_batch_size_per_device - - color_space = 'RGB' - ofrecord = flow.data.ofrecord_reader(args.val_data_dir, - batch_size=val_batch_size, - data_part_num=args.val_data_part_num, - part_name_suffix_length=5, - shuffle_after_epoch=False) - image = flow.data.OFRecordImageDecoder( - ofrecord, "encoded", color_space=color_space) - label = flow.data.OFRecordRawDecoder( - ofrecord, "class/label", shape=(), dtype=flow.int32) - rsz = flow.image.Resize( - image, resize_shorter=args.resize_shorter, color_space=color_space) - - normal = flow.image.CropMirrorNormalize(rsz, color_space=color_space, - crop_h=args.image_size, crop_w=args.image_size, crop_pos_y=0.5, crop_pos_x=0.5, - mean=args.rgb_mean, std=args.rgb_std, output_dtype=flow.float) - return label, normal - - -if __name__ == "__main__": - import os - import config as configs - from util import Summary, InitNodes, Metric - from job_function_util import get_val_config - parser = configs.get_parser() - args = parser.parse_args() - configs.print_args(args) - - flow.config.gpu_device_num(args.gpu_num_per_node) - flow.config.enable_debug_mode(True) - @flow.global_function(get_val_config(args)) - def IOTest(): - if args.train_data_dir: - assert os.path.exists(args.train_data_dir) - print("Loading data from {}".format(args.train_data_dir)) - (labels, images) = load_imagenet_for_training(args) - else: - print("Loading synthetic data.") - (labels, images) = load_synthetic(args) - outputs = {"images": images, "labels": labels} - return outputs - - total_device_num = args.num_nodes * args.gpu_num_per_node - train_batch_size = total_device_num * args.batch_size_per_device - summary = Summary(args.log_dir, args, filename='io_test.csv') - metric = Metric(desc='io_test', calculate_batches=args.loss_print_every_n_iter, - summary=summary, save_summary_steps=args.loss_print_every_n_iter, - batch_size=train_batch_size, prediction_key=None) - for i in range(1000): - IOTest().async_get(metric.metric_cb(0, i)) diff --git a/Classification/cnns/optimizer_util.py b/Classification/cnns/optimizer_util.py deleted file mode 100755 index c4c2150..0000000 --- a/Classification/cnns/optimizer_util.py +++ /dev/null @@ -1,104 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import math -import pprint - -def add_optimizer_args(parser): - group = parser.add_argument_group('optimizer parameters', - 'entire group applies only to optimizer parameters') - group.add_argument("--model_update", type=str, default="sgd", help="sgd, adam, momentum, rmsprop") - group.add_argument("--learning_rate", type=float, default=0.256) - group.add_argument("--wd", type=float, default=1.0/32768, help="weight decay") - group.add_argument("--mom", type=float, default=0.875, help="momentum") - group.add_argument('--lr_decay', type=str, default='cosine', help='cosine, step, polynomial, exponential, None') - group.add_argument('--lr_decay_rate', type=float, default='0.94', help='exponential learning decay rate') - group.add_argument('--lr_decay_epochs', type=int, default=2, help='exponential learning rate decay every n epochs') - group.add_argument('--warmup_epochs', type=int, default=5, - help='the epochs to ramp-up lr to scaled large-batch value') - group.add_argument('--decay_rate', type=float, default='0.9', help='decay rate of RMSProp') - group.add_argument('--epsilon', type=float, default='1', help='epsilon') - group.add_argument('--gradient_clipping', type=float, default=0.0, help='gradient clipping') - return parser - -def gen_model_update_conf(args): - total_device_num = args.num_nodes * args.gpu_num_per_node - train_batch_size = total_device_num * args.batch_size_per_device - epoch_size = math.ceil(args.num_examples / train_batch_size) - num_train_batches = epoch_size * args.num_epochs - num_warmup_batches = epoch_size * args.warmup_epochs - decay_batches = num_train_batches - num_warmup_batches - lr_decay_rate = args.lr_decay_rate - decay_rate = args.decay_rate - epsilon = args.epsilon - clipping_threshold = args.gradient_clipping - exponential_decay_batches = epoch_size * args.lr_decay_epochs - - model_update_conf = {} - # basic model update - if args.model_update == 'sgd': - model_update_conf["naive_conf"] = {} - elif args.model_update == 'adam': - model_update_conf["adam_conf"] = {"beta1": 0.9} - elif args.model_update == 'momentum': - assert args.mom < 1.0 - assert args.mom > 0.0 - model_update_conf["momentum_conf"] = {"beta": args.mom} - elif args.model_update == 'rmsprop': - model_update_conf["rmsprop_conf"] = {"decay_rate": decay_rate, "epsilon": epsilon} - else: - assert False - - # learning rate warmup - if args.warmup_epochs > 0: #linear warmup only - model_update_conf['warmup_conf'] = {"linear_conf": { - "warmup_batches": num_warmup_batches, - "start_multiplier": 0, - }} - - # learning rate decay - if args.lr_decay == 'cosine': - model_update_conf['learning_rate_decay'] = {"cosine_conf": {"decay_batches": decay_batches}} - elif args.lr_decay == 'step': - boundaries = [x * epoch_size for x in [30, 60, 80]] - scales = [1, 0.1, 0.01, 0.001] - model_update_conf['learning_rate_decay'] = {"piecewise_scaling_conf": { - "boundaries": boundaries, - "scales":scales, - }} - elif args.lr_decay == 'polynomial': - model_update_conf['learning_rate_decay'] = {"polynomial_conf": { - "decay_batches": decay_batches, - "end_learning_rate": 0.00001, - }} - elif args.lr_decay == 'exponential': - model_update_conf['learning_rate_decay'] = {"exponential_conf": { - "decay_batches": exponential_decay_batches, - "decay_rate": lr_decay_rate, - }} - - # gradient_clipping - if args.gradient_clipping > 0: - model_update_conf['clip_conf'] = {"clip_by_global_norm": { - "clip_norm": clipping_threshold - }} - - # weight decay - if args.wd > 0: - assert args.wd < 1.0 - model_update_conf['weight_decay_conf'] = { - "weight_decay_rate": args.wd, - "excludes": {"pattern": ['_bn-']} - } - - pprint.pprint(model_update_conf) - return model_update_conf - - -if __name__ == '__main__': - import config as configs - parser = configs.get_parser() - args = parser.parse_args() - configs.print_args(args) - gen_model_update_conf(args) diff --git a/Classification/cnns/resnet_model.py b/Classification/cnns/resnet_model.py deleted file mode 100755 index 6bcfefe..0000000 --- a/Classification/cnns/resnet_model.py +++ /dev/null @@ -1,161 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import oneflow as flow - -BLOCK_COUNTS = [3, 4, 6, 3] -BLOCK_FILTERS = [256, 512, 1024, 2048] -BLOCK_FILTERS_INNER = [64, 128, 256, 512] - - -class ResnetBuilder(object): - def __init__(self, weight_regularizer, trainable=True, training=True, channel_last=False): - self.data_format = "NHWC" if channel_last else "NCHW" - self.weight_initializer = flow.variance_scaling_initializer(2, 'fan_in', 'random_normal', - data_format=self.data_format) - self.weight_regularizer = weight_regularizer - self.trainable = trainable - self.training = training - - def _conv2d( - self, - name, - input, - filters, - kernel_size, - strides=1, - padding="SAME", - dilations=1, - ): - # There are different shapes of weight metric between 'NCHW' and 'NHWC' mode - if self.data_format == "NHWC": - shape = (filters, kernel_size, kernel_size, input.shape[3]) - else: - shape = (filters, input.shape[1], kernel_size, kernel_size) - weight = flow.get_variable( - name + "-weight", - shape=shape, - dtype=input.dtype, - initializer=self.weight_initializer, - regularizer=self.weight_regularizer, - model_name="weight", - trainable=self.trainable, - ) - - return flow.nn.conv2d(input, weight, strides, padding, self.data_format, dilations, name=name) - - def _batch_norm(self, inputs, name=None, last=False): - initializer = flow.zeros_initializer() if last else flow.ones_initializer() - axis = 1 - if self.data_format =="NHWC": - axis = 3 - return flow.layers.batch_normalization( - inputs=inputs, - axis=axis, - momentum=0.9, # 97, - epsilon=1e-5, - center=True, - scale=True, - trainable=self.trainable, - training=self.training, - gamma_initializer=initializer, - moving_variance_initializer=initializer, - gamma_regularizer=self.weight_regularizer, - beta_regularizer=self.weight_regularizer, - name=name, - ) - - def conv2d_affine(self, input, name, filters, kernel_size, strides, activation=None, last=False): - # input data_format must be NCHW, cannot check now - padding = "SAME" if strides > 1 or kernel_size > 1 else "VALID" - output = self._conv2d(name, input, filters, kernel_size, strides, padding) - output = self._batch_norm(output, name + "_bn", last=last) - if activation == "Relu": - output = flow.nn.relu(output) - - return output - - def bottleneck_transformation(self, input, block_name, filters, filters_inner, strides): - a = self.conv2d_affine( - input, block_name + "_branch2a", filters_inner, 1, 1, activation="Relu" - ) - - b = self.conv2d_affine( - a, block_name + "_branch2b", filters_inner, 3, strides, activation="Relu" - ) - - c = self.conv2d_affine(b, block_name + "_branch2c", filters, 1, 1, last=True) - return c - - def residual_block(self, input, block_name, filters, filters_inner, strides_init): - if strides_init != 1 or block_name == "res2_0": - shortcut = self.conv2d_affine( - input, block_name + "_branch1", filters, 1, strides_init - ) - else: - shortcut = input - - bottleneck = self.bottleneck_transformation( - input, block_name, filters, filters_inner, strides_init, - ) - return flow.nn.relu(bottleneck + shortcut) - - def residual_stage(self, input, stage_name, counts, filters, filters_inner, stride_init=2): - output = input - for i in range(counts): - block_name = "%s_%d" % (stage_name, i) - output = self.residual_block( - output, block_name, filters, filters_inner, stride_init if i == 0 else 1 - ) - - return output - - def resnet_conv_x_body(self, input): - output = input - for i, (counts, filters, filters_inner) in enumerate( - zip(BLOCK_COUNTS, BLOCK_FILTERS, BLOCK_FILTERS_INNER) - ): - stage_name = "res%d" % (i + 2) - output = self.residual_stage( - output, stage_name, counts, filters, filters_inner, 1 if i == 0 else 2 - ) - - return output - - def resnet_stem(self, input): - conv1 = self._conv2d("conv1", input, 64, 7, 2) - conv1_bn = flow.nn.relu(self._batch_norm(conv1, "conv1_bn")) - pool1 = flow.nn.max_pool2d( - conv1_bn, ksize=3, strides=2, padding="SAME", data_format=self.data_format, name="pool1", - ) - return pool1 - - -def resnet50(images, trainable=True, need_transpose=False, training=True, wd=1.0 / 32768, channel_last=False): - weight_regularizer = flow.regularizers.l2(wd) if wd > 0.0 and wd < 1.0 else None - builder = ResnetBuilder(weight_regularizer, trainable, training, channel_last) - # note: images.shape = (N C H W) in cc's new dataloader, transpose is not needed anymore - if need_transpose: - images = flow.transpose(images, name="transpose", perm=[0, 3, 1, 2]) - if channel_last: - # if channel_last=True, then change mode from 'nchw' to 'nhwc' - images = flow.transpose(images, name="transpose", perm=[0, 2, 3, 1]) - with flow.scope.namespace("Resnet"): - stem = builder.resnet_stem(images) - body = builder.resnet_conv_x_body(stem) - pool5 = flow.nn.avg_pool2d( - body, ksize=7, strides=1, padding="VALID", data_format=builder.data_format, name="pool5", - ) - fc1001 = flow.layers.dense( - flow.reshape(pool5, (pool5.shape[0], -1)), - units=1000, - use_bias=True, - kernel_initializer=flow.variance_scaling_initializer(2, 'fan_in', 'random_normal'), - bias_initializer=flow.zeros_initializer(), - kernel_regularizer=weight_regularizer, - bias_regularizer=weight_regularizer, - trainable=trainable, - name="fc1001", - ) - return fc1001 \ No newline at end of file diff --git a/Classification/cnns/resnet_to_onnx.py b/Classification/cnns/resnet_to_onnx.py deleted file mode 100644 index 33b48a8..0000000 --- a/Classification/cnns/resnet_to_onnx.py +++ /dev/null @@ -1,100 +0,0 @@ -# from __future__ import absolute_import -# from __future__ import division -# from __future__ import print_function - -from collections import OrderedDict -import os -from PIL import Image -import time -from typing import Callable, Text - -import numpy as np -import oneflow as flow -import oneflow.typing as tp -import onnx -import onnxruntime as ort - -from resnet_model import resnet50 -from imagenet1000_clsidx_to_labels import clsidx_2_labels - - -def load_image(image_path: Text) -> np.ndarray: - rgb_mean = [123.68, 116.779, 103.939] - rgb_std = [58.393, 57.12, 57.375] - print(image_path) - im = Image.open(image_path) - im = im.resize((224, 224)) - im = im.convert('RGB') # 有的图像是单通道的,不加转换会报错 - im = np.array(im).astype('float32') - im = (im - rgb_mean) / rgb_std - im = np.transpose(im, (2, 0, 1)) - im = np.expand_dims(im, axis=0) - return np.ascontiguousarray(im, 'float32') - - -@flow.global_function("predict") -def InferenceNet(images: tp.Numpy.Placeholder((1, 3, 224, 224), dtype=flow.float)) -> tp.Numpy: - logits = resnet50(images, training=False) - predictions = flow.nn.softmax(logits) - return predictions - - -def onnx_inference(image: np.ndarray, onnx_model: onnx.ModelProto): - """ - test onnx model with onnx runtime - :param image: input image, a numpy array - :param onnx_model: onnx model - :return: - """ - assert os.path.isfile(image_path) - sess = ort.InferenceSession(onnx_model.SerializeToString()) - assert len(sess.get_outputs()) == 1 and len(sess.get_inputs()) <= 1 - ipt_dict = OrderedDict() - for ipt in sess.get_inputs(): - ipt_dict[ipt.name] = image - onnx_res = sess.run([], ipt_dict)[0] - return onnx_res - - -def oneflow_to_onnx(job_func: Callable, flow_weights_path: Text, onnx_model_dir: Text, external_data: bool=False): - """ - convert oneflow model to onnx model - :param job_func: inference function in oneflow - :param flow_weights_path: input oneflow model path - :param onnx_model_dir: output dir path to save model.onnx - :return: onnx model - """ - if not os.path.exists(onnx_model_dir): os.makedirs(onnx_model_dir) - assert os.path.exists(flow_weights_path) and os.path.isdir(onnx_model_dir) - - onnx_model_path = os.path.join(onnx_model_dir, os.path.basename(flow_weights_path) + '.onnx') - flow.onnx.export(job_func, flow_weights_path, onnx_model_path, opset=11, external_data=external_data) - print('Convert to onnx success! >> ', onnx_model_path) - return onnx.load_model(onnx_model_path) - - -def check_equality(job_func: Callable, onnx_model: onnx.ModelProto, image_path: Text) -> (bool, np.ndarray): - image = load_image(image_path) - onnx_res = onnx_inference(image, onnx_model) - oneflow_res = job_func(image) - is_equal = np.allclose(onnx_res, oneflow_res, rtol=1e-4, atol=1e-5) - return is_equal, onnx_res - - -if __name__ == "__main__": - image_path = 'data/tiger.jpg' - # set up your model path - flow_weights_path = 'resnet_v15_of_best_model_val_top1_77318' - onnx_model_dir = 'onnx/model' - - check_point = flow.train.CheckPoint() - check_point.load(flow_weights_path) - - # conver oneflow to onnx - onnx_model = oneflow_to_onnx(InferenceNet, flow_weights_path, onnx_model_dir, external_data=False) - - # check equality - are_equal, onnx_res = check_equality(InferenceNet, onnx_model, image_path) - clsidx_onnx = onnx_res.argmax() - print('Are the results equal? {}'.format('Yes' if are_equal else 'No')) - print('Class: {}; score: {}'.format(clsidx_2_labels[clsidx_onnx], onnx_res.max())) diff --git a/Classification/cnns/resnext_model.py b/Classification/cnns/resnext_model.py deleted file mode 100755 index e759964..0000000 --- a/Classification/cnns/resnext_model.py +++ /dev/null @@ -1,248 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import oneflow as flow -import collections - - -__all__ = ['ResNeXt', 'resnext18', 'resnext34', 'resnext50', 'resnext101', - 'resnext152'] - -basic_block_expansion = 1 -bottle_neck_expansion = 4 - - -def _conv2d( - inputs, - filters, - kernel_size, - strides=1, - padding="VALID", - groups=1, - use_bias=False, - trainable=True, - name=None -): - if padding != "SAME" and padding != "VALID": - if isinstance(padding, list): - inputs = flow.pad(inputs, (padding)) - padding = "VALID" - elif isinstance(padding, tuple): - inputs = flow.pad(inputs, padding) - padding = "VALID" - else: - raise ValueError("padding must be SAME, VALID or a list/tuple.") - - return flow.layers.conv2d( - inputs, filters, kernel_size, strides, padding, - data_format="NCHW", dilation_rate=1, groups=groups, - activation=None, use_bias=use_bias, - kernel_initializer=flow.random_normal_initializer(), - bias_initializer=flow.zeros_initializer(), - kernel_regularizer=None, bias_regularizer=None, - trainable=trainable, name=name, weight_name=name+"-weight", - bias_name=name+"-bias") - -def conv3x3(in_tensor, filters, strides=1, groups=1, trainable=True, name=""): - return _conv2d(in_tensor, filters=filters, kernel_size=3, - strides=strides, padding=([0, 0], [0, 0], [1, 1], [1, 1]), groups=groups, use_bias=False, - trainable=trainable, name=name) - - -def _batch_norm(inputs, trainable=True, training=True, name=None): - return flow.layers.batch_normalization( - inputs=inputs, - axis=1, - momentum=0.1, - epsilon=1e-5, - center=True, - scale=True, - trainable=trainable, - training=training, - name=name - ) - - -def basic_block(inputs, filters, strides=1, downsample=None, num_group=32, - trainable=True, training=True, layer_block=""): - residual = inputs - conv1 = conv3x3(inputs, filters*2, strides, trainable=trainable, name=layer_block+"conv1") - bn1 = _batch_norm(conv1, trainable=trainable, training=training, name=layer_block+"bn1") - relu = flow.nn.relu(bn1, name=layer_block+"relu1") - conv2 = conv3x3(relu, filters*2, groups=num_group, trainable=trainable, - name=layer_block+"conv2") - bn2 = _batch_norm(conv2, trainable=trainable, training=training, name=layer_block+"bn2") - if downsample is True: - residual = _conv2d(inputs, filters * basic_block_expansion, - kernel_size=1, strides=strides, use_bias=False, - trainable=trainable, name=layer_block+"downsample-0") - residual = _batch_norm(residual, trainable, training=training, name=layer_block+"downsampe-1") - out = flow.math.add(bn2, residual) - out = flow.nn.relu(out) - return out - - -def bottle_neck(inputs, filters, strides, - downsample=None, num_group=32, trainable=True, training=True, layer_block=""): - residual = inputs - conv1 = _conv2d(inputs, filters*2, kernel_size=1, trainable=trainable, name=layer_block+"conv1") - bn1 = _batch_norm(conv1, trainable=trainable, training=training, name=layer_block+"bn1") - relu1 = flow.nn.relu(bn1, name=layer_block+"relu1") - conv2 = _conv2d(relu1, filters*2, kernel_size=3, strides=strides, - padding=([0, 0], [0, 0], [1, 1], [1, 1]), use_bias=False, - groups=num_group, trainable=trainable, - name=layer_block+"conv2") - bn2 = _batch_norm(conv2, trainable=trainable, training=training, name=layer_block+"bn2") - relu2 = flow.nn.relu(bn2, name=layer_block+"relu2") - conv3 = _conv2d(relu2, filters*4, kernel_size=1, padding="VALID", - use_bias=False, trainable=trainable, name=layer_block+"conv3") - bn3 = _batch_norm(conv3, training=training, name=layer_block+"bn3") # pass - if downsample is True: - residual = _conv2d(inputs, filters * bottle_neck_expansion, - kernel_size=1, strides=strides, use_bias=False, - trainable=trainable, - name=layer_block+"downsample-0") - residual = _batch_norm(residual, trainable=trainable, - training=training, name=layer_block+"downsample-1") - out = flow.math.add(bn3, residual) - out = flow.nn.relu(out) - - return out - - -class ResNeXt(): - def __init__(self, images, trainable=True, training=True, - need_transpose=False, channel_last=False, block=None, layers=[], - num_classes=1000, num_group=32): - self.input = 64 - self.images = images - self.trainable = trainable - self.training = training - self.data_format = "NHWC" if channel_last else "NCHW" - self.need_transpose=need_transpose - self.layers = layers - self.block = block - self.num_classes = num_classes - self.num_group = num_group - self.block_expansion = 1 if self.block == basic_block else 4 - super(ResNeXt, self).__init__() - - - def _make_layer(self, inputs, filters, blocks, num_group, strides=1, - layer_num=""): - downsample = None - if strides != 1 or self.input != filters * self.block_expansion: - downsample = True - block_out = self.block(inputs, filters, strides, - downsample, num_group=self.num_group, trainable=self.trainable, - training=self.training, - layer_block=layer_num+"-0-") - - layers = [] - layers.append(block_out) - self.input = filters * self.block_expansion - for i in range(1, blocks): - block_out = self.block(block_out, filters, - strides=1, downsample=False, num_group=num_group, - trainable=self.trainable, training=self.training, - layer_block=layer_num+"-"+str(i)+"-") - layers.append(block_out) - return layers - - def build_network(self): - if self.need_transpose: - images = flow.transpose(self.images, name="transpose", perm=[0, 3, 1, - 2]) - else: - images = self.images - conv1 = _conv2d(images, 64, kernel_size=7, strides=2, - padding=([0, 0], [0, 0], [3, 3], [3, 3]), - groups=1, use_bias=False, trainable=self.trainable, name="conv1") - - bn1 = _batch_norm(conv1, trainable=self.trainable, training=self.training, name="bn1") - - relu = flow.nn.relu(bn1, name="relu1") - pad_before_max_pool = flow.pad(relu, ([0, 0], [0, 0], [1, 1], [1, 1])) - max_pool = flow.nn.max_pool2d(relu, ksize=3, strides=2, - padding="VALID", data_format="NCHW", name="max_pool") - layer1 = self._make_layer(max_pool, 64, self.layers[0], - self.num_group, layer_num="layer1") - layer2 = self._make_layer(layer1[-1], 128, self.layers[1], - self.num_group, strides=2, layer_num="layer2") - layer3 = self._make_layer(layer2[-1], 256, self.layers[2], - self.num_group, strides=2, layer_num="layer3") - layer4 = self._make_layer(layer3[-1], 512, self.layers[3], - self.num_group, strides=2, layer_num="layer4") - - # debug mode: dump data for debugging - # with flow.watch_scope(blob_watcher=blob_watched, - # diff_blob_watcher=diff_blob_watched): - # bn1_identity = flow.identity(layer4[-1], name="layer4_last_out") - - avg_pool = flow.nn.avg_pool2d(layer4[-1], 7, strides=1, padding="VALID", - data_format="NCHW", name="avg_pool") - - reshape = flow.reshape(avg_pool, (avg_pool.shape[0], -1)) - - fc = flow.layers.dense(reshape, units=self.num_classes, use_bias=True, - kernel_initializer=flow.xavier_uniform_initializer(), - bias_initializer=flow.zeros_initializer(), - trainable=self.trainable, - name="fc") - return fc - - -def resnext18(images, trainable=True, training=True, need_transpose=False, - channel_last=False, **kwargs): - """Constructs a ResNeXt-18 model. - """ - resnext_18 = ResNeXt(images, trainable=trainable, training=training, - need_transpose=need_transpose, channel_last=channel_last, - block=basic_block, layers=[2, 2, 2, 2], **kwargs) - model = resnext_18.build_network() - return model - - -def resnext34(images, trainable=True, training=True, need_transpose=False, - channel_last=False, **kwargs): - """Constructs a ResNeXt-34 model. - """ - resnext_34 = ResNeXt(images, trainable=trainable, training=training, - need_transpose=False, channel_last=False, - block=basic_block, layers=[3, 4, 6, 3], **kwargs) - model = resnext_34.build_network() - return model - - -def resnext50(images, trainable=True, training=True, need_transpose=False, - channel_last=False, **kwargs): - """Constructs a ResNeXt-50 model. - """ - resnext_50 = ResNeXt(images, trainable=trainable, training=training, - need_transpose=need_transpose, channel_last=channel_last, - block=bottle_neck, layers=[3, 4, 6, 3], **kwargs) - model = resnext_50.build_network() - return model - - -def resnext101(images, trainable=True, training=True, need_transpose=False, - channel_last=False, **kwargs): - """Constructs a ResNeXt-101 model. - """ - resnext_101 = ResNeXt(images, trainable=trainable, training=training, - need_transpose=False, channel_last=False, - block=bottle_neck, layers=[3, 4, 23, 3], **kwargs) - model = resnex_101.build_network() - return model - - -def resnext152(images, trainable=True, training=True, need_transpose=False, - channel_last=False, **kwargs): - """Constructs a ResNeXt-152 model. - """ - resnext_152 = ResNeXt(images, trainable=trainable, training=training, - need_transpose=need_transpose, channel_last=channel_last, - block=bottle_neck, layers=[3, 8, 36, 3], **kwargs) - model = resnext_152.build_network() - return model diff --git a/Classification/cnns/tools/README.md b/Classification/cnns/tools/README.md deleted file mode 100644 index f961e31..0000000 --- a/Classification/cnns/tools/README.md +++ /dev/null @@ -1,207 +0,0 @@ -# Tools使用说明 -## 简介 -tools文件夹中存放的文件和python代码专门用于 **ImageNet(2012)数据集** 制作工具。通过下面的使用说明,你可以将ImageNet(2012)从原始格式转换为通用图像格式的数据集,再转换为可在OneFlow中直接训练的 **OFRecord** 格式。 - -#### 原始数据集 - -往往是由成千上万的图片或文本等文件组成,这些文件被散列存储在不同的文件夹中,一个个读取的时候会非常慢,并且占用大量内存空间。 - -#### OFRecord - **OFRecord提高IO效率** - -内部借助“Protocol Buffer”二进制数据编码方案,它只占用一个内存块,只需要一次性加载一个二进制文件的方式即可,简单,快速,尤其对大型训练数据很友好。另外,当我们的训练数据量比较大的时候,可以将数据分成多个OFRecord文件,来提高处理效率。 - -关于OFRecord的详细说明请参考:[OFRecord数据格式](https://github.com/Oneflow-Inc/oneflow-documentation/cn/docs/basics_topics/ofrecord.md) - - - -## 数据集制作 - -### 将ImageNet转换成OFRecord - -在OneFlow中,提供了将原始ImageNet2012数据集文件转换成OFRecord格式的脚本,如果您已经下载过,且准备好了ImageNet2012通用图像格式的数据集,并且训练集/验证集的格式如下: - -```shell -│ ├── train -│ │ ├── n01440764 -│ │ └── n01443537 - ... -│ └── validation -│ ├── n01440764 -│ └── n01443537 - ... -``` - -那么,您只需要下载:[imagenet_2012_bounding_boxes.csv](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/imagenet_2012_bounding_boxes.zip) - -然后执行以下脚本即可完成训练集/验证集 > OFRecord的转换: - -#### 转换训练集 - -```shell -python3 imagenet_ofrecord.py \ ---train_directory ../data/imagenet/train \ ---output_directory ../data/imagenet/ofrecord/train \ ---label_file imagenet_lsvrc_2015_synsets.txt \ ---shards 256 --num_threads 8 --name train \ ---bounding_box_file imagenet_2012_bounding_boxes.csv \ ---height 224 --width 224 -``` - -#### 转换验证集 - -```shell -python3 imagenet_ofrecord.py \ ---validation_directory ../data/imagenet/validation \ ---output_directory ../data/imagenet/ofrecord/validation \ ---label_file imagenet_lsvrc_2015_synsets.txt --name validation \ ---shards 256 --num_threads 8 --name validation \ ---bounding_box_file imagenet_2012_bounding_boxes.csv \ ---height 224 --width 224 -``` - -#### 参数说明 - -```shell ---train_directory -# 指定待转换的训练集文件夹路径 ---validation_directory -# 指定待转换的验证集文件夹路径 ---name -# 指定转换的是训练集还是验证集 ---output_directory -# 指定转换后的ofrecord存储位置 - --num_threads -# 任务运行线程数 ---shards -# 指定ofrecord分片数量,建议shards = 256 -#(shards数量越大,则转换后的每个ofrecord分片数据量就越少) ---bounding_box_file -# 该参数指定的csv文件中标记了所有目标box的坐标,使转换后的ofrecord同时支持分类和目标检测任务 -``` - -运行以上脚本后,你可以在../data/imagenet/ofrecord/validation、../data/imagenet/ofrecord/train下看到转换好的ofrecord文件: - -```shell -. -├── train -│ ├── part-00000 -│ └── part-00001 - ... -└── validation - ├── part-00000 - └── part-00001 - ... -``` - - - -如果尚未下载/处理过ImageNet,请看下面【ImageNet的下载和预处理】部分的说明。 - -### ImageNet的下载和预处理 - -如果您尚未下载过Imagenet数据集,请准备以下文件: - -- ILSVRC2012_img_train.tar -- ILSVRC2012_img_val.tar -- ILSVRC2012_bbox_train_v2.tar.gz(非必须) - -其中训练集和验证集的图片请自行下载,bbox标注可以点此下载:[ILSVRC2012_bbox_train_v2.tar.gz](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/ILSVRC2012_bbox_train_v2.tar.gz) - -我们将用下面三个步骤,帮您完成数据集的预处理。之后,您就可以使用【将ImageNet转换成OFRecord】部分介绍的转换脚本进行OFReciord的转换了。 - - - -下面假设您已经下载好了原始数据集和bbox标注文件,并存放在data/imagenet目录下: - -```shell -├── data -│ └── imagenet -│ ├── ILSVRC2012_img_train.tar -│ ├── ILSVRC2012_img_val.tar -│ ├── ILSVRC2012_bbox_train_v2.tar.gz -├── tools -│ ├── extract_trainval.sh -│ ├── imagenet_2012_validation_synset_labels.txt -│ ├── imagenet_lsvrc_2015_synsets.txt -│ ├── imagenet_metadata.txt -│ ├── imagenet_ofrecord.py -│ └── preprocess_imagenet_validation_data.py -``` - -#### 步骤一:process_bounding_boxes - -这一步,主要是将标注好的包含bboxs的xml文件提取到一个.csv文件中,方便后面代码中直接使用。完整的转换过程大约需要5分钟。 - -当然,你也可以直接使用我们转换好的文件:[imagenet_2012_bounding_boxes.csv](https://oneflow-public.oss-cn-beijing.aliyuncs.com/online_document/dataset/imagenet/imagenet_2012_bounding_boxes.zip) - -1.解压ILSVRC2012_bbox_train_v2.tar.gz - -```shell -cd data/imagenet && mkdir bounding_boxes && tar -zxvf ILSVRC2012_bbox_train_v2.tar.gz -C bounding_boxes -``` - -2.提取bboxs至.csv文件 - -```shell -cd ../.. && python process_bounding_boxes.py data/imagenet/bounding_boxes imagenet_lsvrc_2015_synsets.txt | sort > imagenet_2012_bounding_boxes.csv -``` - -#### 步骤二:extract imagenet - -这一步主要是将ILSVRC2012_img_train.tar和ILSVRC2012_img_val.tar解压缩,生成train、validation文件夹。train文件夹下是1000个虚拟lebel分类文件夹(如:n01443537),训练集图片解压后根据分类放入这些label文件夹中;validation文件夹下是解压后的原图。 - -```shell -sh extract_trainval.sh ../data/imagenet # 参数指定存放imagenet元素数据的文件夹路径 -``` -```shell -解压后,文件夹结构示意如下: -. -├── extract_trainval.sh -├── imagenet -│ ├── ILSVRC2012_img_train.tar -│ ├── ILSVRC2012_img_val.tar -│ ├── ILSVRC2012_bbox_train_v2.tar.gz -│ ├── bounding_boxes -│ ├── train -│ │ ├── n01440764 -│ │ │ ├── n01440764_10026.JPEG -│ │ │ ├── n01440764_10027.JPEG - ... -│ │ └── n01443537 -│ │ ├── n01443537_10007.JPEG -│ │ ├── n01443537_10014.JPEG - ... -│ └── validation -│ ├── ILSVRC2012_val_00000236.JPEG -│ ├── ILSVRC2012_val_00000262.JPEG - ... -``` - -#### 步骤三:validation数据处理 - -经过上一步,train数据集已经放入了1000个分类label文件夹中形成了规整的格式,而验证集部分的图片还全部堆放在validation文件夹中,这一步,我们就用preprocess_imagenet_validation_data.py对其进行处理,使其也按类别存放到label文件夹下。 -```shell -python3 preprocess_imagenet_validation_data.py ../data/imagenet/validation -# 参数 ../data/imagenet/validation为ILSVRC2012_img_val.tar解压后验证集图像存放的路径。 -``` -处理后项目文件夹格式如下: -```shell -. -├── extract_trainval.sh -├── imagenet -│ ├── ILSVRC2012_img_train.tar -│ ├── ILSVRC2012_img_val.tar -│ ├── ILSVRC2012_bbox_train_v2.tar.gz -│ ├── bounding_boxes -│ ├── train -│ │ ├── n01440764 -│ │ └── n01443537 - ... -│ └── validation -│ ├── n01440764 -│ └── n01443537 - ... -``` - -至此,已经完成了全部的数据预处理,您可以直接跳转至**转换训练集**和**转换验证集**部分,轻松完成ImageNet-2012数据集到OFRecord的转换过程了。 diff --git a/Classification/cnns/tools/extract_trainval.sh b/Classification/cnns/tools/extract_trainval.sh deleted file mode 100755 index 0af07b1..0000000 --- a/Classification/cnns/tools/extract_trainval.sh +++ /dev/null @@ -1,37 +0,0 @@ -# usage: sh extract_trainval.sh your_path_to/imagenet -# 参数指定存放imagenet元素数据的文件夹路径 - -set -e -ROOT_DIR=$1 # your path to imagenet dataset root dir -echo "Imagenet dataset in dir:${ROOT_DIR}" - -SYNSETS_FILE="imagenet_lsvrc_2015_synsets.txt" -TRAIN_TARBALL="${ROOT_DIR}/ILSVRC2012_img_train.tar" -TRAIN_OUTPUT_PATH="${ROOT_DIR}/train/" -VALIDATION_TARBALL="${ROOT_DIR}/ILSVRC2012_img_val.tar" -VALIDATION_OUTPUT_PATH="${ROOT_DIR}/validation/" - -mkdir -p "${TRAIN_OUTPUT_PATH}" -mkdir -p "${VALIDATION_OUTPUT_PATH}" - -# extract .tar file of validation -tar xf "${VALIDATION_TARBALL}" -C "${VALIDATION_OUTPUT_PATH}" - -# extract .tar file of train -echo "Uncompressing individual train tar-balls in the training data." - -while read SYNSET; do - # Uncompress into the directory. - tar xf "${TRAIN_TARBALL}" "${SYNSET}.tar" - if [ "$?" = "0" ];then - # Create a directory and delete anything there. - mkdir -p "${TRAIN_OUTPUT_PATH}/${SYNSET}" - rm -rf "${TRAIN_OUTPUT_PATH}/${SYNSET}/*" - echo "Processing: ${SYNSET}" - tar xf "${SYNSET}.tar" -C "${TRAIN_OUTPUT_PATH}/${SYNSET}/" - rm -f "${SYNSET}.tar" - echo "Finished processing: ${SYNSET}" - else - echo "${SYNSET}.tar doesn't exist!" - fi -done < "${SYNSETS_FILE}" \ No newline at end of file diff --git a/Classification/cnns/tools/imagenet_2012_validation_synset_labels.txt b/Classification/cnns/tools/imagenet_2012_validation_synset_labels.txt deleted file mode 100755 index 0fc3467..0000000 --- a/Classification/cnns/tools/imagenet_2012_validation_synset_labels.txt +++ /dev/null @@ -1,50000 +0,0 @@ -n01751748 -n09193705 -n02105855 -n04263257 -n03125729 -n01735189 -n02346627 -n02776631 -n03794056 -n02328150 -n01917289 -n02125311 -n02484975 -n04065272 -n03496892 -n02066245 -n01914609 -n01616318 -n02971356 -n03126707 -n02346627 -n02091244 -n07742313 -n03956157 -n01616318 -n04380533 -n02114548 -n02089973 -n01729977 -n04435653 -n02280649 -n03444034 -n02077923 -n09835506 -n03478589 -n04532106 -n01644900 -n02666196 -n04141327 -n01773797 -n03125729 -n04049303 -n02006656 -n02097209 -n02111277 -n03950228 -n03393912 -n02089973 -n03930630 -n02640242 -n01828970 -n01632777 -n04372370 -n03485794 -n02443114 -n02930766 -n02112018 -n13040303 -n04485082 -n03482405 -n02963159 -n02093859 -n01910747 -n01693334 -n04371430 -n02526121 -n01871265 -n04532106 -n04482393 -n04370456 -n02927161 -n02074367 -n01608432 -n02966193 -n01795545 -n02791270 -n02087394 -n02116738 -n02091635 -n02895154 -n09193705 -n02088094 -n04200800 -n01737021 -n02974003 -n03032252 -n02483708 -n01632458 -n02992529 -n01698640 -n02114548 -n02497673 -n02480855 -n04147183 -n02487347 -n03895866 -n02325366 -n02033041 -n07745940 -n02415577 -n02951585 -n02087394 -n04485082 -n04505470 -n02097658 -n04591157 -n01770081 -n02992211 -n03691459 -n03594734 -n01983481 -n03937543 -n02105412 -n03843555 -n02091244 -n07831146 -n03710637 -n03733281 -n03782006 -n03733131 -n03933933 -n02980441 -n04409515 -n02606052 -n02226429 -n02883205 -n02422699 -n01614925 -n07697537 -n02123394 -n04252077 -n03337140 -n02117135 -n02107142 -n04037443 -n02397096 -n03187595 -n02319095 -n07932039 -n03372029 -n02088466 -n02319095 -n04125021 -n03954731 -n09421951 -n04487394 -n02113624 -n03843555 -n03485407 -n09332890 -n03642806 -n03710193 -n01677366 -n01950731 -n07714990 -n02114855 -n02119022 -n04086273 -n04201297 -n03733281 -n02100877 -n03016953 -n03733805 -n03063599 -n07714990 -n03854065 -n04149813 -n03786901 -n03467068 -n02087046 -n04326547 -n02100735 -n03775546 -n02111500 -n02814533 -n02097047 -n02027492 -n02109961 -n02389026 -n02105855 -n02445715 -n03259280 -n07711569 -n03710637 -n03670208 -n02128757 -n04467665 -n02114855 -n01873310 -n03476684 -n02093428 -n03891251 -n02859443 -n04125021 -n01978287 -n02643566 -n07697537 -n01560419 -n03290653 -n13037406 -n03891332 -n02883205 -n02106382 -n02672831 -n04330267 -n02489166 -n02058221 -n03584829 -n07565083 -n03125729 -n02123597 -n04536866 -n02965783 -n09428293 -n02965783 -n11879895 -n01560419 -n01775062 -n03595614 -n02110958 -n03709823 -n03777754 -n02951585 -n02100877 -n01629819 -n02909870 -n02101388 -n02091244 -n01667114 -n03998194 -n01986214 -n04192698 -n02128757 -n02793495 -n09256479 -n01443537 -n02089973 -n01981276 -n02837789 -n03888605 -n03201208 -n02480855 -n03814639 -n04090263 -n01986214 -n02415577 -n01534433 -n02093256 -n03134739 -n03016953 -n12620546 -n03937543 -n02815834 -n03776460 -n10565667 -n03207743 -n02992529 -n01631663 -n03729826 -n04033995 -n04462240 -n01443537 -n02091831 -n03874293 -n03874599 -n04238763 -n07584110 -n02749479 -n02110185 -n09193705 -n04311004 -n02788148 -n02445715 -n06874185 -n04074963 -n01631663 -n03803284 -n01828970 -n02096437 -n04554684 -n03599486 -n03595614 -n02123394 -n04515003 -n04591157 -n04560804 -n02794156 -n03344393 -n02687172 -n04328186 -n04479046 -n03967562 -n01440764 -n04465501 -n03457902 -n04532670 -n01688243 -n01749939 -n01768244 -n02091831 -n02321529 -n02939185 -n02129604 -n12985857 -n03485794 -n02408429 -n01443537 -n03590841 -n07697537 -n04154565 -n03443371 -n02514041 -n09468604 -n03769881 -n02787622 -n02526121 -n03888605 -n01622779 -n01872401 -n07745940 -n03085013 -n02445715 -n02120505 -n01751748 -n04141327 -n02443484 -n02089078 -n01608432 -n01514668 -n03160309 -n04070727 -n07715103 -n02110958 -n03976657 -n03902125 -n02909870 -n01740131 -n04532106 -n03197337 -n02493509 -n10148035 -n02172182 -n02437616 -n03062245 -n04286575 -n03018349 -n02951358 -n02130308 -n04277352 -n02096585 -n04589890 -n02965783 -n02978881 -n02804414 -n02112137 -n02007558 -n03670208 -n02894605 -n03657121 -n03876231 -n02165105 -n01669191 -n02011460 -n03710193 -n03796401 -n02916936 -n03492542 -n03998194 -n04552348 -n01824575 -n01917289 -n03461385 -n03874293 -n03272010 -n02099712 -n02999410 -n04179913 -n07831146 -n02096177 -n04350905 -n04507155 -n03743016 -n02105505 -n03649909 -n03680355 -n01910747 -n03529860 -n02787622 -n02012849 -n02011460 -n02094114 -n02950826 -n02105855 -n09288635 -n01773797 -n01774750 -n04409515 -n02497673 -n02113799 -n02786058 -n02443484 -n02981792 -n03095699 -n01664065 -n02092002 -n07711569 -n02219486 -n13133613 -n02114548 -n03529860 -n02097298 -n13133613 -n04355933 -n01537544 -n01847000 -n04428191 -n02666196 -n02268443 -n03291819 -n01828970 -n04099969 -n02747177 -n07720875 -n02088094 -n02113624 -n03710637 -n03637318 -n03942813 -n02093859 -n03794056 -n02930766 -n02930766 -n04525038 -n03796401 -n03709823 -n02097047 -n04604644 -n03938244 -n01560419 -n02097298 -n02091635 -n04136333 -n07718747 -n02417914 -n03355925 -n02445715 -n02445715 -n03495258 -n04447861 -n02111500 -n03584829 -n03977966 -n04116512 -n04019541 -n04200800 -n02408429 -n02085936 -n03992509 -n02769748 -n04613696 -n07716906 -n02085782 -n07718472 -n04398044 -n03920288 -n01860187 -n03272010 -n04008634 -n04090263 -n02028035 -n01677366 -n13037406 -n04067472 -n02095889 -n04532670 -n01582220 -n03476684 -n02395406 -n04487394 -n02443484 -n02510455 -n04550184 -n02814860 -n12144580 -n03126707 -n02486410 -n02125311 -n03777754 -n03924679 -n04613696 -n07875152 -n02058221 -n03188531 -n02777292 -n02489166 -n02066245 -n04579432 -n01630670 -n02666196 -n02091635 -n02114548 -n02356798 -n03201208 -n03240683 -n03590841 -n03018349 -n02104029 -n04251144 -n10148035 -n02169497 -n02089867 -n01734418 -n04476259 -n02843684 -n04008634 -n03400231 -n02119022 -n02137549 -n03761084 -n02490219 -n03840681 -n04346328 -n01677366 -n02102318 -n04458633 -n04476259 -n04209239 -n01795545 -n10565667 -n02114367 -n02107574 -n03032252 -n02104365 -n03133878 -n04336792 -n02112137 -n03000684 -n04553703 -n02102480 -n03825788 -n01695060 -n03250847 -n07860988 -n04310018 -n02071294 -n01945685 -n01855672 -n02037110 -n03868863 -n04229816 -n12057211 -n02408429 -n02481823 -n07716358 -n04487394 -n03662601 -n02979186 -n02910353 -n04266014 -n03895866 -n04443257 -n02917067 -n04149813 -n03041632 -n02364673 -n02999410 -n04435653 -n04228054 -n02814860 -n01531178 -n03662601 -n07880968 -n04487081 -n07614500 -n03532672 -n01807496 -n02011460 -n02074367 -n04462240 -n02977058 -n02281406 -n03041632 -n04350905 -n02788148 -n02137549 -n04562935 -n04590129 -n02093991 -n03995372 -n02111889 -n04081281 -n02133161 -n02006656 -n02107908 -n04347754 -n02950826 -n02504013 -n04560804 -n02088364 -n02128385 -n02860847 -n04399382 -n02105412 -n02115641 -n07753592 -n07880968 -n03598930 -n03724870 -n02066245 -n02128925 -n04465501 -n02094258 -n02086646 -n04141076 -n04136333 -n13133613 -n02342885 -n02281406 -n03443371 -n07613480 -n04008634 -n04141327 -n04347754 -n03314780 -n02165456 -n03930313 -n04392985 -n01872401 -n04204238 -n07831146 -n02690373 -n12144580 -n02776631 -n02877765 -n02108089 -n03532672 -n03126707 -n01560419 -n02268853 -n03691459 -n03404251 -n02364673 -n02101556 -n02326432 -n03954731 -n07831146 -n03584254 -n02012849 -n03804744 -n02128385 -n01530575 -n03933933 -n04409515 -n02823428 -n01877812 -n03920288 -n02510455 -n02112350 -n03594945 -n03642806 -n02395406 -n03452741 -n02860847 -n03673027 -n02102040 -n04505470 -n04086273 -n02099849 -n01990800 -n03781244 -n04461696 -n02106166 -n04141076 -n07717556 -n02361337 -n03976657 -n03832673 -n03109150 -n01776313 -n03788195 -n03884397 -n04019541 -n01693334 -n03633091 -n02325366 -n03623198 -n02795169 -n01744401 -n01955084 -n02002556 -n07754684 -n02174001 -n02793495 -n02095889 -n02484975 -n02094433 -n09229709 -n03207941 -n02655020 -n03773504 -n04367480 -n03933933 -n01955084 -n04355933 -n13040303 -n02786058 -n04090263 -n02101006 -n02124075 -n03720891 -n07749582 -n04517823 -n01534433 -n04335435 -n03661043 -n02101556 -n03785016 -n03133878 -n02113978 -n02930766 -n02783161 -n03958227 -n02441942 -n02859443 -n02096437 -n02447366 -n07742313 -n07583066 -n02110063 -n03146219 -n12998815 -n03425413 -n02123394 -n03594734 -n02006656 -n02992211 -n04442312 -n03032252 -n01608432 -n02927161 -n03485794 -n07583066 -n03347037 -n01847000 -n04557648 -n03478589 -n01530575 -n02098105 -n01755581 -n03045698 -n02028035 -n03538406 -n03956157 -n01871265 -n13044778 -n02119789 -n07875152 -n02107908 -n02791124 -n03697007 -n03207743 -n02791270 -n02865351 -n03345487 -n03976467 -n03124043 -n04252225 -n02165105 -n03314780 -n04040759 -n02730930 -n02236044 -n07873807 -n02006656 -n02514041 -n03534580 -n03179701 -n04366367 -n02138441 -n03450230 -n01943899 -n07836838 -n03691459 -n04467665 -n02115641 -n01742172 -n02795169 -n02481823 -n07583066 -n02749479 -n01665541 -n04131690 -n03769881 -n02009229 -n04487081 -n02123159 -n04542943 -n07760859 -n02097658 -n02113799 -n07932039 -n02097474 -n03793489 -n02791124 -n04591713 -n01735189 -n01631663 -n02892767 -n04458633 -n02277742 -n07697537 -n03781244 -n02791270 -n03854065 -n04356056 -n07802026 -n03733131 -n01980166 -n02174001 -n07684084 -n01981276 -n03874293 -n03146219 -n02099267 -n02018207 -n04398044 -n03832673 -n02493509 -n03478589 -n06359193 -n02971356 -n02093754 -n04487081 -n03929855 -n03485407 -n01930112 -n01592084 -n02088238 -n04613696 -n03967562 -n03814639 -n04311174 -n04286575 -n03884397 -n03534580 -n03793489 -n02106382 -n03045698 -n03661043 -n03814906 -n02669723 -n03459775 -n03785016 -n04584207 -n03657121 -n03476991 -n04243546 -n04560804 -n03788365 -n01796340 -n04019541 -n03496892 -n07711569 -n03788195 -n02133161 -n04548362 -n02113712 -n03673027 -n12144580 -n02481823 -n02132136 -n03956157 -n01532829 -n04493381 -n02094258 -n03483316 -n01770081 -n02006656 -n02871525 -n01580077 -n07730033 -n02097474 -n02093647 -n02088466 -n01795545 -n07716906 -n03481172 -n01608432 -n02097209 -n01629819 -n07695742 -n02389026 -n02977058 -n04090263 -n04522168 -n02871525 -n04258138 -n02127052 -n04476259 -n03617480 -n04273569 -n03485794 -n06794110 -n03085013 -n02974003 -n02869837 -n02086240 -n01685808 -n02088466 -n03584829 -n01514668 -n02114367 -n03447447 -n04435653 -n03065424 -n01616318 -n02841315 -n02655020 -n03496892 -n04040759 -n01496331 -n02094258 -n03787032 -n02172182 -n01693334 -n02168699 -n03793489 -n07613480 -n01824575 -n01665541 -n04065272 -n02699494 -n02526121 -n01774750 -n03126707 -n04254777 -n02325366 -n01665541 -n02007558 -n01873310 -n01734418 -n03271574 -n01776313 -n01644373 -n02486410 -n02106662 -n03125729 -n02087394 -n02094433 -n07684084 -n04532670 -n01843383 -n02835271 -n12985857 -n04485082 -n02167151 -n03394916 -n01664065 -n04286575 -n03874293 -n02699494 -n01601694 -n01582220 -n02486261 -n02268853 -n03947888 -n13040303 -n03967562 -n03602883 -n01882714 -n04505470 -n02226429 -n04522168 -n02481823 -n02108422 -n03670208 -n07718747 -n01688243 -n02747177 -n07248320 -n02328150 -n02963159 -n02117135 -n03676483 -n06596364 -n01775062 -n03724870 -n03347037 -n13133613 -n02319095 -n03944341 -n02088238 -n02110185 -n01443537 -n06794110 -n02606052 -n02113186 -n02704792 -n03692522 -n03018349 -n02095314 -n04523525 -n02356798 -n04228054 -n02108000 -n04371430 -n01770393 -n04456115 -n02110958 -n01631663 -n02708093 -n02835271 -n02807133 -n02280649 -n02277742 -n03857828 -n03452741 -n03388043 -n06596364 -n04252225 -n04458633 -n01689811 -n03935335 -n01560419 -n02500267 -n02319095 -n02412080 -n02096437 -n03814639 -n03494278 -n01518878 -n02486261 -n01629819 -n04606251 -n03787032 -n01877812 -n01773157 -n02104365 -n02113978 -n02123394 -n02966687 -n01728920 -n02916936 -n01860187 -n03255030 -n02011460 -n02087394 -n02817516 -n02085620 -n02437616 -n02606052 -n03447721 -n01773157 -n02497673 -n04380533 -n02056570 -n01917289 -n12267677 -n04325704 -n02130308 -n02730930 -n03933933 -n02981792 -n07892512 -n02112018 -n02398521 -n02009912 -n02002724 -n02086079 -n02100236 -n03085013 -n02837789 -n02018795 -n02106382 -n02489166 -n03937543 -n02910353 -n07836838 -n15075141 -n02877765 -n03602883 -n02233338 -n13037406 -n01580077 -n04069434 -n04371774 -n03938244 -n02326432 -n03085013 -n02804610 -n04141975 -n02484975 -n02930766 -n03000134 -n02488702 -n02113023 -n02088632 -n02783161 -n02490219 -n04505470 -n02123394 -n04357314 -n02825657 -n02493509 -n03720891 -n03673027 -n03492542 -n01739381 -n02105056 -n03481172 -n03947888 -n02099601 -n02105505 -n01514859 -n07871810 -n03445924 -n12267677 -n04536866 -n03314780 -n12768682 -n02028035 -n01980166 -n02099601 -n01981276 -n07730033 -n02909870 -n04179913 -n02089973 -n02111277 -n12057211 -n01632458 -n02123394 -n04350905 -n03937543 -n02730930 -n01795545 -n02091244 -n01632777 -n03584829 -n03709823 -n02086646 -n01824575 -n03977966 -n03417042 -n02892201 -n01806143 -n02105855 -n02115913 -n03902125 -n01774384 -n07880968 -n02112137 -n09428293 -n04116512 -n02486410 -n03930630 -n04090263 -n01843383 -n07802026 -n04429376 -n02317335 -n02027492 -n01818515 -n02086646 -n02018207 -n04371430 -n03347037 -n03014705 -n04125021 -n03764736 -n02981792 -n02114367 -n04192698 -n04330267 -n03729826 -n02607072 -n02504458 -n03769881 -n02018207 -n03929855 -n04591157 -n03947888 -n04317175 -n03125729 -n01749939 -n04399382 -n02276258 -n03598930 -n02606052 -n03089624 -n02099601 -n03770439 -n02655020 -n07745940 -n02095314 -n04336792 -n04033995 -n02112018 -n02132136 -n02860847 -n03100240 -n02966687 -n02111129 -n04273569 -n04149813 -n02092002 -n03769881 -n04599235 -n03825788 -n04118776 -n04336792 -n02115641 -n01622779 -n02909870 -n02276258 -n02977058 -n02326432 -n01608432 -n03347037 -n02978881 -n02787622 -n02093256 -n02101556 -n02100735 -n02085782 -n02342885 -n03733281 -n02085782 -n03706229 -n02002724 -n13037406 -n02422106 -n07614500 -n02113712 -n04336792 -n02486261 -n02356798 -n02268443 -n04179913 -n04277352 -n02346627 -n03089624 -n02835271 -n02086240 -n04579432 -n03180011 -n04285008 -n02408429 -n04392985 -n02091244 -n02815834 -n02834397 -n04009552 -n02488291 -n03290653 -n03325584 -n03637318 -n02730930 -n02865351 -n02119789 -n03929855 -n03676483 -n04423845 -n03874293 -n03908618 -n03598930 -n02090379 -n01944390 -n04152593 -n09288635 -n02066245 -n01768244 -n03272010 -n01531178 -n03255030 -n03676483 -n02002556 -n02749479 -n02415577 -n02403003 -n07565083 -n02981792 -n01776313 -n02097474 -n02667093 -n02096177 -n03255030 -n01819313 -n02791124 -n02279972 -n04090263 -n09193705 -n04335435 -n03733131 -n03250847 -n04263257 -n02096585 -n03976467 -n02963159 -n04613696 -n04310018 -n02107574 -n03724870 -n09428293 -n02101006 -n04372370 -n03930630 -n07584110 -n01735189 -n04599235 -n02835271 -n04330267 -n02108915 -n02110185 -n07684084 -n04204347 -n02672831 -n03742115 -n04131690 -n09428293 -n04487394 -n03710193 -n09332890 -n03478589 -n04486054 -n02951358 -n09428293 -n04596742 -n01872401 -n04505470 -n04154565 -n02666196 -n02437616 -n03724870 -n02120079 -n01828970 -n03141823 -n01698640 -n03095699 -n04099969 -n02123045 -n04482393 -n04026417 -n02110806 -n04033901 -n04041544 -n02869837 -n04136333 -n02112350 -n03388043 -n03065424 -n02128757 -n04330267 -n02879718 -n02859443 -n01968897 -n01847000 -n01871265 -n02129165 -n02408429 -n04263257 -n13054560 -n02090379 -n04553703 -n03929660 -n01990800 -n03494278 -n01514859 -n02804610 -n01773157 -n02087046 -n07802026 -n03777754 -n07720875 -n01694178 -n06794110 -n02795169 -n07583066 -n02094114 -n03841143 -n01985128 -n03776460 -n02859443 -n02808304 -n02092339 -n02441942 -n02002724 -n04296562 -n02086910 -n02690373 -n01616318 -n07718472 -n02086240 -n04049303 -n04235860 -n06359193 -n02110958 -n01518878 -n02950826 -n03447721 -n02111129 -n04517823 -n03769881 -n02112350 -n07693725 -n07747607 -n02444819 -n02109047 -n04485082 -n10148035 -n03127925 -n04328186 -n03347037 -n02102480 -n07614500 -n02676566 -n04599235 -n03534580 -n02093256 -n03710721 -n02167151 -n04116512 -n04141975 -n03877472 -n02092339 -n03042490 -n04604644 -n03355925 -n04009552 -n03598930 -n02672831 -n03425413 -n03649909 -n02099429 -n01819313 -n02640242 -n02978881 -n03670208 -n02342885 -n03888257 -n03729826 -n02457408 -n02860847 -n09246464 -n02097298 -n03649909 -n04228054 -n02113624 -n01978287 -n03895866 -n03393912 -n03127925 -n03720891 -n01774384 -n04065272 -n03485407 -n04033901 -n02488291 -n12057211 -n01774750 -n01798484 -n01537544 -n07720875 -n03838899 -n04120489 -n02264363 -n02113978 -n02799071 -n02114367 -n04332243 -n03062245 -n02077923 -n02398521 -n04435653 -n01692333 -n07831146 -n04523525 -n02342885 -n07753275 -n01807496 -n02098413 -n01744401 -n07836838 -n02104029 -n02092339 -n02092339 -n02115913 -n01608432 -n03325584 -n02066245 -n03345487 -n03394916 -n01773797 -n02113186 -n02667093 -n02124075 -n04118538 -n02134084 -n02317335 -n03047690 -n03938244 -n02219486 -n07718747 -n02490219 -n04326547 -n02690373 -n07717556 -n01580077 -n02443484 -n04443257 -n04033995 -n07590611 -n02403003 -n07768694 -n03803284 -n04371774 -n02802426 -n06794110 -n04483307 -n02791270 -n02028035 -n03764736 -n07860988 -n09421951 -n03773504 -n04152593 -n04367480 -n02950826 -n02168699 -n04458633 -n01983481 -n04404412 -n04252225 -n04596742 -n02480495 -n02281787 -n01795545 -n02089867 -n02169497 -n02666196 -n04311004 -n02879718 -n03457902 -n02074367 -n03297495 -n02481823 -n04485082 -n02091244 -n07718747 -n02102480 -n04147183 -n03014705 -n02814860 -n04532670 -n02094114 -n01532829 -n01664065 -n04090263 -n03995372 -n03134739 -n06596364 -n03710637 -n01807496 -n02096294 -n04026417 -n02165105 -n03998194 -n02112706 -n04366367 -n02177972 -n04152593 -n04442312 -n01697457 -n03775071 -n07892512 -n02091831 -n02101388 -n01749939 -n03384352 -n02484975 -n03868242 -n01753488 -n02687172 -n02807133 -n02231487 -n02018795 -n04270147 -n03063599 -n04591713 -n03895866 -n03481172 -n04456115 -n01755581 -n02319095 -n02526121 -n01796340 -n02094433 -n01558993 -n04238763 -n03127925 -n03017168 -n02692877 -n04179913 -n02791124 -n03494278 -n06596364 -n01751748 -n02074367 -n03249569 -n04357314 -n07579787 -n04550184 -n06596364 -n03761084 -n07718472 -n03376595 -n04428191 -n01773157 -n07248320 -n03400231 -n04447861 -n03854065 -n01694178 -n02111500 -n04111531 -n02090622 -n03450230 -n04536866 -n01817953 -n02843684 -n03776460 -n04201297 -n04204238 -n02094114 -n04238763 -n01667114 -n02116738 -n03709823 -n04153751 -n02422699 -n01796340 -n07836838 -n02027492 -n03478589 -n01689811 -n02110958 -n03538406 -n03207743 -n01669191 -n06794110 -n02087394 -n01641577 -n07873807 -n03314780 -n04591157 -n02487347 -n04277352 -n07749582 -n03792782 -n03947888 -n03792782 -n01669191 -n02102318 -n03788365 -n03899768 -n04392985 -n01629819 -n04557648 -n02640242 -n02325366 -n07749582 -n04264628 -n04487081 -n02978881 -n03720891 -n01494475 -n02951358 -n01828970 -n04286575 -n04540053 -n04332243 -n04367480 -n03840681 -n02106662 -n03376595 -n02113186 -n03085013 -n09246464 -n03127747 -n04367480 -n03290653 -n07760859 -n02102973 -n03290653 -n01751748 -n02089973 -n02086910 -n02112350 -n03272562 -n04456115 -n03785016 -n02110341 -n01728920 -n04554684 -n02417914 -n01756291 -n03590841 -n01877812 -n02113186 -n02093256 -n02099849 -n02397096 -n03642806 -n02231487 -n04179913 -n02012849 -n02279972 -n04447861 -n04355933 -n01560419 -n02445715 -n03770679 -n03929855 -n01688243 -n06596364 -n07930864 -n01945685 -n01631663 -n03216828 -n03995372 -n02782093 -n01860187 -n04443257 -n04579432 -n07745940 -n04146614 -n02177972 -n04392985 -n01644373 -n02317335 -n04553703 -n02138441 -n13040303 -n01985128 -n02134418 -n01945685 -n02526121 -n02317335 -n01820546 -n04501370 -n01560419 -n02268443 -n03796401 -n03916031 -n02992211 -n03127747 -n03180011 -n02102480 -n04277352 -n01776313 -n03017168 -n02111129 -n02190166 -n02098413 -n02090721 -n01776313 -n09421951 -n02113023 -n02672831 -n03764736 -n04146614 -n03347037 -n03868242 -n02667093 -n02093647 -n02169497 -n02089973 -n07747607 -n02085782 -n02815834 -n02105412 -n02086910 -n04204238 -n03530642 -n07583066 -n04039381 -n02965783 -n04501370 -n04086273 -n04263257 -n02443484 -n04162706 -n07613480 -n04525038 -n04266014 -n03721384 -n04467665 -n04523525 -n04162706 -n02025239 -n04146614 -n01677366 -n04179913 -n04125021 -n02917067 -n04392985 -n04550184 -n02090721 -n03796401 -n03014705 -n04344873 -n02091635 -n01608432 -n03690938 -n04141975 -n01629819 -n04523525 -n01955084 -n01756291 -n04443257 -n02927161 -n07880968 -n07836838 -n02484975 -n02091032 -n07714571 -n03535780 -n04149813 -n09468604 -n02033041 -n03584254 -n04550184 -n03887697 -n03838899 -n02174001 -n03272010 -n03297495 -n04074963 -n03649909 -n03496892 -n03467068 -n02268853 -n03400231 -n02093256 -n04367480 -n02091134 -n04118776 -n02086646 -n07753592 -n02504013 -n02104365 -n02096177 -n03961711 -n04069434 -n03376595 -n01817953 -n01955084 -n02107142 -n03344393 -n03709823 -n02974003 -n02090379 -n04332243 -n03125729 -n03935335 -n02814860 -n01860187 -n03220513 -n02094114 -n03877472 -n02009912 -n02108000 -n02229544 -n03697007 -n03124170 -n02206856 -n03841143 -n04153751 -n01742172 -n13133613 -n04525305 -n01930112 -n02795169 -n02233338 -n02417914 -n03935335 -n01770393 -n02125311 -n03482405 -n04604644 -n02009912 -n03791053 -n03223299 -n03032252 -n04501370 -n03372029 -n03485794 -n02110341 -n04200800 -n02106166 -n04592741 -n02950826 -n04041544 -n07831146 -n04116512 -n01514859 -n03868242 -n03026506 -n02443484 -n02701002 -n04116512 -n02815834 -n03929855 -n03676483 -n01534433 -n02701002 -n02113978 -n04371430 -n03991062 -n07718472 -n02268853 -n04264628 -n02098105 -n07565083 -n02112706 -n02094114 -n02093991 -n02488291 -n02093859 -n03047690 -n01682714 -n07717410 -n01883070 -n04562935 -n01498041 -n07745940 -n02109525 -n01644900 -n01694178 -n03063689 -n02894605 -n01682714 -n03544143 -n02101556 -n02966687 -n03485407 -n03657121 -n02236044 -n07860988 -n01677366 -n07718747 -n02690373 -n04099969 -n03814639 -n02098413 -n01985128 -n02093647 -n02504458 -n01944390 -n03445924 -n03866082 -n03355925 -n02105855 -n03041632 -n03791053 -n03954731 -n07695742 -n02102040 -n03956157 -n03983396 -n02105855 -n03249569 -n03976467 -n03843555 -n02641379 -n03272562 -n03658185 -n03976467 -n02398521 -n03791053 -n03065424 -n03759954 -n03216828 -n03796401 -n01980166 -n09193705 -n01773797 -n02129604 -n04009552 -n02980441 -n03188531 -n02100735 -n07860988 -n03929855 -n04037443 -n03467068 -n02094114 -n03899768 -n04525038 -n02074367 -n04033901 -n02012849 -n02009229 -n02109961 -n03804744 -n02396427 -n02233338 -n03240683 -n03393912 -n03777568 -n02494079 -n02106662 -n04033995 -n02231487 -n04355338 -n04550184 -n02699494 -n04118538 -n03388043 -n02869837 -n02097047 -n03063689 -n01530575 -n02091032 -n03042490 -n03930313 -n02264363 -n02442845 -n02325366 -n01883070 -n01614925 -n03447721 -n03444034 -n02979186 -n02815834 -n02123394 -n03250847 -n02883205 -n04554684 -n03047690 -n01773157 -n02172182 -n03249569 -n04613696 -n03692522 -n04044716 -n12985857 -n02342885 -n03425413 -n02895154 -n01704323 -n01560419 -n02974003 -n07695742 -n03016953 -n03729826 -n03250847 -n02927161 -n02091635 -n01990800 -n02980441 -n02676566 -n02114548 -n02422699 -n04208210 -n02109961 -n04332243 -n04127249 -n03871628 -n02391049 -n01537544 -n02124075 -n02422106 -n01775062 -n03188531 -n02443114 -n01694178 -n03063689 -n02088364 -n04476259 -n04442312 -n03792972 -n07831146 -n02483708 -n04346328 -n04591713 -n03794056 -n04153751 -n03782006 -n02058221 -n04162706 -n04522168 -n03673027 -n04483307 -n03691459 -n03478589 -n02102318 -n07749582 -n07730033 -n01829413 -n01729977 -n04501370 -n09472597 -n03781244 -n02134084 -n01742172 -n03782006 -n04553703 -n09835506 -n03804744 -n02088238 -n04067472 -n03764736 -n02992529 -n03874599 -n03124043 -n04065272 -n02782093 -n03788195 -n04389033 -n03673027 -n04389033 -n03775071 -n07753113 -n12144580 -n02013706 -n02190166 -n04275548 -n03250847 -n03947888 -n01729977 -n02138441 -n04264628 -n03967562 -n03445924 -n04355338 -n02640242 -n01440764 -n12267677 -n02489166 -n02165105 -n03599486 -n03272010 -n02018207 -n02747177 -n04487081 -n02119789 -n02666196 -n02606052 -n02086646 -n04040759 -n01984695 -n12998815 -n01751748 -n04584207 -n04149813 -n01981276 -n02841315 -n03777754 -n04376876 -n02859443 -n04389033 -n01665541 -n04208210 -n04041544 -n02071294 -n13052670 -n01616318 -n03871628 -n02028035 -n03110669 -n01819313 -n04229816 -n02769748 -n03832673 -n02095889 -n01806143 -n02708093 -n07753113 -n02804610 -n02879718 -n03595614 -n02769748 -n07802026 -n04357314 -n09288635 -n07753592 -n04525038 -n04590129 -n01981276 -n01530575 -n02006656 -n03903868 -n02095570 -n03602883 -n03476991 -n04328186 -n03617480 -n03272562 -n02328150 -n04536866 -n02814860 -n03710193 -n04263257 -n02699494 -n04418357 -n01496331 -n02086079 -n03495258 -n03417042 -n03065424 -n03041632 -n04467665 -n02085936 -n03956157 -n02110341 -n07760859 -n03467068 -n02825657 -n02669723 -n07579787 -n02097658 -n03717622 -n03590841 -n02268443 -n07697313 -n02859443 -n01622779 -n02999410 -n01877812 -n01744401 -n01669191 -n04507155 -n02108000 -n10148035 -n04009552 -n09421951 -n03457902 -n02091032 -n03759954 -n01443537 -n02011460 -n01984695 -n02791270 -n03617480 -n02089973 -n02105641 -n03595614 -n03207941 -n03146219 -n04367480 -n07695742 -n03376595 -n09835506 -n02342885 -n03393912 -n04311004 -n04589890 -n02114367 -n02104029 -n01945685 -n02094114 -n01824575 -n04380533 -n02025239 -n03218198 -n02110627 -n04026417 -n02749479 -n07613480 -n02437312 -n03347037 -n02403003 -n03942813 -n03450230 -n04252225 -n02108000 -n03837869 -n02165105 -n03000247 -n04344873 -n02504458 -n02110185 -n01498041 -n04270147 -n04239074 -n03924679 -n02086646 -n09835506 -n03424325 -n04370456 -n03777754 -n03529860 -n02102040 -n01688243 -n02110627 -n02100735 -n02102177 -n04086273 -n01883070 -n04366367 -n02107574 -n02102480 -n04008634 -n02169497 -n04141327 -n02442845 -n03662601 -n01855032 -n04589890 -n02018795 -n03271574 -n02097298 -n03445777 -n02102040 -n03617480 -n02108422 -n02097474 -n02109525 -n02097474 -n11879895 -n03223299 -n02100583 -n03840681 -n02091032 -n01843065 -n03769881 -n02091467 -n02134418 -n02109047 -n04456115 -n03866082 -n04239074 -n02484975 -n04259630 -n07760859 -n09246464 -n01484850 -n02443114 -n04251144 -n03843555 -n04131690 -n07716906 -n03584254 -n04033901 -n04146614 -n03633091 -n13037406 -n04254680 -n07583066 -n03483316 -n02056570 -n02102177 -n04355338 -n01669191 -n04039381 -n01532829 -n02978881 -n03691459 -n04118776 -n02672831 -n06785654 -n07749582 -n02536864 -n02116738 -n04239074 -n02483708 -n03124170 -n07930864 -n02018207 -n04074963 -n01514859 -n02089867 -n03804744 -n04116512 -n02802426 -n03627232 -n03787032 -n02281406 -n07613480 -n02526121 -n02860847 -n01806143 -n03706229 -n03982430 -n04009552 -n01616318 -n01828970 -n03920288 -n03680355 -n02727426 -n02963159 -n02102973 -n04209133 -n01798484 -n02190166 -n02091635 -n02089078 -n04371774 -n04515003 -n02655020 -n02104029 -n01877812 -n02794156 -n02974003 -n02096585 -n04525305 -n02672831 -n02113712 -n02917067 -n02096437 -n07745940 -n02326432 -n03314780 -n02236044 -n02102973 -n02093428 -n03297495 -n03676483 -n03775071 -n04536866 -n04554684 -n03400231 -n04346328 -n01530575 -n04133789 -n03160309 -n01930112 -n03494278 -n03063599 -n03891332 -n04476259 -n02410509 -n03417042 -n07753113 -n03498962 -n03991062 -n04086273 -n01739381 -n07753275 -n03065424 -n03476991 -n07565083 -n01608432 -n04258138 -n03803284 -n02120079 -n02454379 -n01537544 -n02492035 -n02219486 -n01735189 -n03594734 -n02442845 -n04485082 -n03599486 -n02086079 -n03995372 -n04501370 -n02113712 -n02102480 -n03599486 -n04162706 -n03868242 -n04209133 -n02791124 -n01819313 -n02116738 -n02894605 -n03764736 -n03476684 -n02123159 -n02325366 -n03457902 -n02123597 -n09399592 -n02488291 -n03788365 -n01770081 -n01498041 -n02110341 -n02834397 -n02391049 -n02113023 -n02099712 -n01739381 -n02980441 -n02027492 -n03208938 -n07734744 -n02027492 -n02108000 -n03902125 -n04044716 -n09428293 -n01981276 -n02869837 -n03425413 -n03085013 -n03804744 -n02443114 -n01983481 -n02088466 -n02077923 -n01740131 -n09468604 -n02783161 -n03888257 -n02797295 -n04252225 -n01622779 -n01669191 -n03710637 -n01669191 -n01983481 -n02108422 -n04111531 -n04179913 -n04204238 -n04389033 -n02087046 -n01872401 -n02692877 -n01632777 -n02640242 -n02927161 -n02814860 -n03792972 -n04039381 -n02480855 -n03599486 -n04326547 -n03691459 -n04592741 -n03014705 -n01582220 -n13052670 -n02802426 -n01797886 -n04263257 -n04350905 -n03372029 -n02484975 -n09428293 -n03887697 -n02112350 -n03110669 -n02910353 -n02096294 -n02102177 -n02115913 -n02804610 -n04239074 -n04005630 -n04118538 -n04067472 -n02128757 -n02097658 -n02099849 -n01882714 -n02494079 -n03379051 -n02808440 -n04392985 -n02114548 -n02206856 -n03976657 -n01729322 -n07831146 -n01883070 -n02361337 -n02128757 -n02097130 -n04447861 -n13052670 -n02096177 -n03691459 -n02134084 -n02494079 -n03642806 -n04136333 -n02268853 -n02417914 -n03891332 -n09246464 -n03032252 -n02825657 -n03498962 -n03160309 -n04026417 -n04296562 -n03534580 -n03216828 -n07880968 -n03393912 -n02948072 -n04560804 -n04152593 -n04509417 -n03884397 -n02129604 -n01944390 -n04310018 -n04086273 -n07584110 -n04258138 -n04264628 -n13040303 -n02109525 -n04462240 -n02791270 -n03384352 -n04070727 -n02108422 -n03485407 -n02093647 -n03000134 -n03089624 -n07615774 -n03956157 -n02776631 -n01729977 -n03868242 -n03899768 -n01871265 -n03180011 -n03630383 -n01968897 -n02939185 -n02097474 -n04154565 -n04462240 -n02028035 -n04041544 -n02111129 -n03026506 -n04389033 -n02808440 -n03124170 -n02129165 -n02776631 -n04259630 -n03902125 -n07760859 -n01744401 -n02128757 -n02843684 -n02091134 -n02256656 -n03814639 -n02666196 -n02497673 -n13054560 -n01914609 -n01580077 -n02089867 -n03630383 -n02025239 -n02123597 -n02807133 -n03673027 -n04317175 -n15075141 -n01795545 -n03888257 -n03062245 -n04209133 -n01531178 -n02410509 -n04162706 -n03814639 -n02102177 -n04399382 -n03220513 -n06874185 -n04152593 -n07880968 -n02066245 -n01735189 -n03271574 -n01592084 -n04355933 -n02085936 -n01978455 -n04597913 -n07871810 -n02093859 -n01773549 -n03126707 -n03452741 -n02027492 -n02408429 -n01985128 -n03670208 -n04458633 -n04273569 -n03785016 -n01751748 -n03188531 -n02917067 -n02086240 -n03770439 -n03240683 -n03920288 -n03954731 -n02109525 -n03016953 -n02107683 -n01665541 -n04310018 -n03485407 -n03187595 -n03814639 -n02095570 -n01968897 -n03874599 -n02493509 -n02130308 -n02749479 -n01945685 -n02536864 -n04154565 -n02328150 -n03908618 -n01737021 -n02408429 -n02231487 -n04131690 -n03970156 -n01530575 -n04336792 -n02951358 -n02879718 -n03944341 -n03788195 -n02895154 -n03838899 -n02037110 -n04009552 -n03141823 -n02102973 -n07730033 -n01984695 -n07693725 -n04065272 -n01631663 -n02699494 -n03095699 -n02112350 -n04019541 -n09835506 -n01484850 -n07697313 -n01729322 -n03085013 -n04041544 -n02396427 -n02879718 -n03891332 -n04590129 -n03271574 -n02454379 -n01944390 -n02099267 -n02097658 -n07720875 -n02484975 -n03733805 -n02086240 -n04204238 -n03483316 -n03201208 -n02095570 -n01630670 -n03201208 -n01755581 -n02879718 -n03065424 -n02037110 -n02108915 -n02807133 -n04023962 -n01669191 -n02098286 -n04252225 -n02115641 -n02281787 -n06794110 -n02391049 -n04486054 -n01817953 -n04041544 -n04277352 -n02107574 -n09193705 -n04371774 -n04372370 -n03724870 -n03388183 -n04371430 -n02788148 -n01817953 -n02699494 -n07730033 -n09468604 -n04254777 -n04501370 -n03637318 -n02782093 -n04152593 -n01882714 -n02916936 -n03661043 -n04336792 -n02422699 -n04019541 -n01664065 -n03325584 -n03976657 -n04423845 -n04404412 -n03527444 -n02123045 -n02094114 -n01558993 -n03062245 -n02113712 -n03662601 -n03065424 -n03388183 -n03447721 -n01667778 -n03584254 -n03000247 -n07718747 -n01737021 -n02676566 -n01795545 -n07860988 -n04086273 -n04332243 -n03447721 -n01829413 -n02236044 -n02165105 -n01796340 -n02092339 -n01443537 -n04370456 -n03961711 -n07579787 -n01753488 -n02708093 -n02111277 -n01774750 -n04286575 -n02483708 -n02002724 -n02536864 -n03400231 -n03485794 -n02480495 -n02509815 -n04111531 -n07716358 -n01968897 -n04579145 -n02892201 -n02091134 -n04118776 -n03249569 -n01601694 -n04522168 -n02441942 -n03271574 -n02692877 -n03930313 -n02100735 -n04428191 -n03706229 -n02119789 -n02111277 -n01629819 -n04476259 -n03958227 -n03240683 -n02504458 -n04461696 -n09229709 -n01728920 -n02422106 -n03450230 -n02268853 -n03902125 -n03868863 -n09428293 -n04482393 -n03680355 -n01744401 -n12620546 -n02002556 -n04136333 -n02447366 -n02226429 -n03249569 -n02281406 -n03721384 -n03874599 -n02951585 -n04074963 -n02480495 -n03929855 -n03016953 -n03376595 -n07747607 -n15075141 -n02085620 -n04141975 -n03733805 -n03670208 -n02085620 -n01491361 -n03803284 -n02415577 -n07714571 -n03929855 -n13037406 -n01740131 -n01580077 -n03891251 -n02128925 -n01664065 -n02090379 -n07920052 -n02279972 -n02490219 -n02906734 -n01914609 -n01704323 -n02105412 -n03492542 -n04482393 -n02788148 -n01985128 -n03388549 -n04251144 -n02939185 -n02114548 -n07836838 -n10148035 -n03976467 -n03447721 -n02006656 -n07802026 -n04370456 -n02417914 -n01776313 -n02112018 -n03938244 -n02536864 -n07802026 -n04501370 -n02963159 -n03759954 -n02028035 -n04044716 -n02123394 -n02823428 -n01491361 -n04008634 -n01877812 -n07615774 -n09256479 -n01833805 -n04127249 -n04507155 -n03673027 -n01882714 -n03697007 -n03637318 -n04332243 -n12267677 -n07714571 -n03485794 -n04004767 -n02795169 -n02120505 -n02086646 -n02107908 -n03888257 -n01795545 -n03272010 -n07714571 -n02097047 -n03874293 -n02391049 -n01855672 -n01871265 -n04208210 -n02487347 -n02013706 -n02096051 -n03598930 -n03873416 -n02871525 -n02102973 -n03710637 -n01773157 -n03208938 -n04325704 -n02002724 -n02137549 -n02125311 -n01440764 -n01806567 -n03345487 -n04209239 -n07860988 -n07802026 -n07714571 -n12768682 -n02108422 -n01770393 -n03124043 -n04023962 -n02105056 -n04476259 -n02871525 -n03598930 -n02206856 -n03223299 -n02259212 -n02607072 -n02834397 -n02364673 -n03131574 -n02802426 -n02117135 -n04370456 -n01829413 -n04033901 -n02123159 -n02794156 -n02132136 -n02883205 -n07720875 -n03920288 -n02892201 -n04285008 -n03345487 -n03661043 -n04423845 -n02013706 -n01924916 -n03095699 -n09428293 -n04153751 -n02865351 -n03384352 -n02786058 -n02099429 -n03014705 -n02113712 -n01833805 -n03924679 -n03937543 -n02892767 -n01819313 -n02109047 -n01694178 -n01729322 -n02808440 -n04266014 -n01978287 -n04111531 -n04540053 -n02100735 -n03935335 -n04372370 -n03930630 -n02443114 -n03854065 -n03724870 -n09193705 -n02640242 -n03967562 -n07711569 -n04147183 -n03710721 -n02965783 -n02951585 -n01582220 -n03014705 -n02643566 -n01739381 -n03814906 -n01882714 -n01729322 -n02860847 -n04350905 -n01697457 -n03220513 -n04311004 -n03877472 -n04209239 -n04149813 -n03770679 -n04548362 -n07930864 -n03661043 -n03400231 -n02930766 -n04613696 -n03866082 -n01990800 -n01534433 -n03947888 -n02492660 -n01985128 -n03793489 -n03977966 -n01795545 -n04086273 -n01688243 -n02423022 -n04277352 -n03877472 -n03208938 -n04476259 -n04550184 -n03063599 -n04523525 -n02123597 -n02708093 -n02134418 -n02086079 -n11879895 -n03676483 -n02107574 -n02113978 -n03764736 -n03642806 -n01748264 -n02167151 -n04612504 -n02817516 -n02051845 -n03724870 -n02077923 -n01443537 -n03065424 -n02105505 -n02051845 -n02087394 -n01735189 -n04310018 -n01632458 -n02509815 -n02093859 -n01669191 -n03868242 -n03400231 -n02423022 -n02090622 -n03146219 -n02397096 -n03532672 -n02013706 -n01622779 -n02483708 -n03187595 -n02114712 -n03131574 -n03476991 -n03838899 -n02105162 -n04604644 -n01689811 -n02113624 -n03691459 -n15075141 -n01773797 -n01491361 -n04209133 -n04476259 -n03444034 -n02488291 -n03485407 -n01630670 -n04599235 -n02174001 -n02834397 -n02509815 -n03538406 -n03535780 -n02105855 -n04501370 -n02098105 -n03763968 -n03095699 -n04591713 -n02363005 -n03599486 -n01491361 -n02090622 -n03590841 -n03832673 -n02013706 -n06874185 -n06596364 -n04074963 -n04389033 -n02447366 -n01631663 -n02841315 -n03733805 -n03146219 -n02974003 -n03947888 -n02095570 -n02422106 -n04049303 -n02396427 -n03891251 -n02422106 -n04486054 -n02091831 -n07760859 -n03179701 -n03947888 -n03692522 -n02097298 -n03602883 -n02974003 -n02951585 -n04141327 -n04357314 -n02786058 -n02268853 -n04596742 -n03788365 -n02111277 -n02104365 -n03584254 -n04509417 -n03494278 -n02939185 -n02363005 -n03047690 -n04366367 -n04409515 -n04380533 -n03187595 -n01882714 -n03680355 -n03124170 -n01986214 -n04004767 -n01833805 -n04141076 -n02033041 -n03109150 -n04560804 -n07930864 -n02114548 -n02877765 -n02093754 -n01737021 -n02093647 -n03794056 -n01843383 -n01978287 -n01669191 -n02870880 -n02071294 -n02098286 -n04120489 -n04239074 -n01537544 -n02504013 -n03929855 -n09193705 -n03534580 -n03018349 -n04179913 -n01735189 -n01665541 -n12768682 -n02669723 -n03930313 -n04200800 -n02363005 -n04552348 -n03992509 -n02123159 -n04505470 -n01518878 -n01742172 -n02445715 -n03584254 -n02101556 -n02398521 -n02106166 -n04372370 -n04346328 -n02109047 -n03498962 -n01980166 -n07753275 -n04447861 -n09332890 -n04417672 -n07248320 -n02412080 -n03218198 -n04428191 -n04447861 -n04557648 -n01677366 -n01774750 -n09399592 -n02859443 -n04456115 -n02018795 -n03935335 -n04465501 -n02112706 -n02799071 -n07684084 -n01614925 -n02167151 -n04606251 -n04317175 -n04311004 -n02077923 -n04326547 -n02483708 -n02963159 -n07565083 -n04557648 -n02397096 -n04133789 -n02229544 -n04317175 -n07749582 -n03803284 -n04456115 -n01828970 -n02408429 -n01632458 -n03028079 -n03291819 -n01773797 -n02096585 -n02110341 -n01669191 -n01986214 -n03742115 -n01910747 -n02966687 -n02025239 -n07615774 -n02090721 -n01855672 -n02965783 -n03924679 -n11879895 -n02113186 -n04270147 -n02804610 -n06359193 -n02965783 -n03777754 -n09399592 -n01693334 -n04033901 -n02098413 -n01981276 -n03657121 -n02096437 -n03841143 -n02123394 -n02447366 -n03345487 -n02963159 -n01580077 -n03481172 -n02483362 -n02894605 -n02109525 -n04525038 -n01917289 -n03983396 -n04462240 -n04153751 -n03992509 -n02906734 -n03290653 -n02017213 -n02808440 -n04515003 -n02422106 -n02115913 -n03720891 -n10148035 -n02794156 -n02096294 -n03220513 -n02437312 -n02058221 -n04540053 -n07753592 -n02105641 -n04325704 -n04447861 -n07695742 -n03666591 -n03642806 -n01910747 -n03733281 -n01768244 -n03888605 -n13133613 -n03590841 -n03127925 -n02488291 -n04208210 -n04592741 -n04557648 -n02169497 -n01773549 -n02672831 -n03742115 -n01983481 -n02113978 -n03494278 -n02490219 -n02488291 -n03062245 -n02167151 -n02676566 -n04392985 -n03877472 -n02168699 -n02488291 -n02840245 -n03014705 -n04044716 -n02119022 -n01824575 -n02840245 -n04023962 -n03032252 -n02486410 -n03197337 -n02974003 -n04086273 -n02441942 -n03496892 -n03721384 -n03538406 -n03041632 -n02927161 -n02408429 -n03759954 -n03690938 -n01930112 -n01744401 -n02992529 -n03873416 -n07615774 -n02012849 -n03777568 -n03676483 -n01968897 -n03866082 -n04005630 -n04285008 -n02841315 -n02106030 -n02276258 -n02422106 -n03649909 -n03017168 -n02097474 -n02948072 -n02256656 -n04179913 -n09835506 -n02111889 -n02988304 -n07836838 -n02051845 -n02971356 -n02640242 -n03065424 -n04201297 -n02281406 -n02134418 -n02500267 -n02895154 -n02870880 -n03617480 -n02415577 -n03733131 -n03594734 -n04152593 -n04258138 -n04286575 -n04336792 -n02484975 -n04041544 -n04081281 -n03291819 -n04584207 -n02100877 -n03459775 -n01498041 -n04429376 -n04252077 -n04515003 -n02108089 -n03876231 -n03838899 -n07716358 -n02025239 -n02965783 -n04033901 -n03841143 -n02102318 -n03888605 -n03777568 -n04350905 -n02870880 -n04277352 -n07720875 -n02317335 -n02504458 -n02488291 -n02137549 -n02490219 -n04428191 -n03662601 -n04532670 -n02105412 -n02091831 -n04154565 -n01531178 -n07753275 -n02117135 -n01882714 -n03272010 -n03759954 -n03866082 -n03992509 -n02137549 -n01537544 -n01494475 -n03179701 -n01694178 -n04554684 -n04204347 -n11879895 -n04366367 -n04371430 -n12057211 -n02730930 -n03461385 -n01728572 -n01688243 -n04141975 -n02174001 -n04310018 -n02077923 -n02105505 -n03250847 -n01776313 -n04532106 -n02346627 -n04493381 -n07742313 -n04335435 -n02112018 -n02097298 -n04254120 -n02231487 -n03394916 -n01806143 -n04311004 -n03216828 -n07615774 -n07614500 -n07768694 -n07248320 -n03594734 -n04008634 -n02091134 -n02606052 -n04310018 -n07714990 -n01945685 -n02326432 -n01704323 -n01944390 -n01514668 -n01514668 -n01740131 -n04356056 -n03492542 -n02643566 -n03759954 -n03854065 -n03781244 -n03125729 -n02087394 -n02093754 -n02802426 -n03527444 -n07747607 -n03394916 -n01644373 -n02823428 -n02106550 -n03954731 -n01944390 -n09472597 -n03126707 -n02102973 -n03443371 -n03529860 -n02489166 -n04606251 -n04371774 -n03197337 -n04252225 -n01986214 -n03841143 -n02111129 -n04251144 -n02782093 -n03786901 -n04542943 -n03196217 -n01735189 -n03125729 -n02089867 -n04009552 -n02860847 -n02229544 -n01871265 -n03930313 -n04296562 -n03388549 -n02437616 -n02423022 -n02190166 -n04522168 -n04136333 -n02009229 -n07716358 -n01798484 -n01990800 -n04525038 -n07754684 -n01582220 -n03673027 -n02977058 -n04317175 -n03495258 -n02692877 -n02089973 -n01843065 -n03584254 -n02802426 -n02364673 -n01807496 -n02172182 -n03742115 -n02687172 -n02769748 -n07716358 -n03028079 -n02107142 -n02749479 -n02417914 -n04296562 -n01829413 -n01698640 -n03935335 -n02096294 -n02112706 -n02692877 -n01740131 -n07754684 -n04136333 -n02112137 -n02326432 -n02113624 -n07715103 -n02484975 -n03781244 -n01630670 -n02701002 -n03776460 -n01978455 -n01755581 -n01819313 -n03838899 -n04146614 -n04251144 -n02113023 -n02483362 -n04456115 -n02101006 -n02992211 -n02037110 -n03045698 -n02963159 -n03249569 -n06359193 -n03196217 -n01693334 -n02085936 -n03697007 -n02092002 -n02099712 -n02793495 -n03710721 -n02102318 -n03895866 -n02097209 -n03127747 -n01950731 -n02106166 -n01443537 -n03372029 -n04229816 -n01990800 -n04258138 -n03637318 -n03633091 -n03770439 -n01818515 -n04069434 -n02110063 -n01664065 -n02504458 -n01641577 -n04562935 -n03825788 -n03873416 -n02484975 -n01984695 -n03761084 -n02892201 -n04392985 -n04357314 -n02097130 -n03394916 -n03124170 -n03938244 -n01582220 -n04133789 -n07871810 -n02114855 -n02445715 -n03017168 -n01729977 -n02101006 -n04153751 -n07730033 -n02802426 -n02130308 -n02096585 -n01860187 -n01980166 -n02825657 -n03450230 -n04037443 -n04090263 -n02361337 -n02823750 -n02843684 -n03372029 -n01749939 -n02808440 -n03384352 -n02129165 -n02095570 -n02916936 -n02098105 -n02093256 -n03445777 -n02111500 -n04553703 -n03871628 -n03876231 -n03062245 -n03207941 -n04428191 -n02408429 -n04005630 -n02777292 -n03877845 -n04599235 -n02514041 -n04081281 -n02111889 -n03208938 -n02105855 -n10565667 -n02493793 -n02676566 -n02219486 -n04147183 -n01531178 -n04542943 -n02492660 -n04235860 -n02321529 -n01687978 -n02066245 -n01818515 -n03461385 -n03710637 -n03854065 -n01872401 -n01847000 -n03690938 -n06596364 -n07932039 -n02102973 -n01806567 -n02106382 -n15075141 -n02109047 -n02087394 -n01774750 -n02128385 -n07871810 -n02086240 -n04209239 -n07749582 -n04392985 -n02058221 -n01644373 -n03127925 -n03690938 -n04485082 -n03388183 -n02110627 -n02165105 -n03785016 -n02259212 -n02108915 -n02099267 -n04044716 -n01990800 -n01986214 -n01632777 -n01580077 -n02106030 -n01632458 -n03337140 -n01695060 -n09399592 -n04116512 -n03443371 -n02097658 -n04039381 -n02422699 -n02105855 -n03792782 -n02229544 -n01950731 -n02256656 -n03916031 -n01534433 -n03791053 -n04200800 -n03314780 -n04120489 -n04584207 -n01820546 -n04125021 -n02930766 -n02093647 -n02910353 -n03452741 -n03482405 -n04380533 -n01622779 -n07768694 -n03042490 -n03461385 -n04285008 -n04540053 -n02099267 -n12057211 -n04118776 -n04162706 -n12620546 -n01534433 -n01675722 -n02089078 -n03290653 -n02883205 -n07697537 -n03393912 -n02113186 -n03014705 -n04435653 -n03590841 -n03773504 -n02782093 -n02980441 -n04239074 -n04228054 -n03877845 -n04023962 -n04404412 -n02088238 -n03617480 -n03670208 -n09229709 -n02971356 -n04553703 -n01748264 -n02091467 -n07697537 -n02113186 -n07615774 -n02328150 -n02883205 -n07579787 -n01514668 -n03877845 -n02108915 -n07760859 -n02125311 -n03899768 -n01924916 -n02487347 -n02979186 -n03594945 -n03895866 -n02441942 -n13040303 -n03710193 -n03709823 -n03544143 -n02843684 -n02085782 -n02088466 -n01910747 -n04599235 -n01847000 -n02423022 -n03476991 -n02690373 -n07730033 -n03733281 -n02129604 -n02027492 -n04443257 -n03977966 -n03992509 -n02108422 -n07875152 -n03793489 -n03127925 -n04579145 -n02395406 -n02119022 -n03706229 -n03902125 -n03777568 -n02125311 -n04458633 -n02672831 -n01784675 -n02138441 -n04328186 -n02120505 -n01644373 -n03544143 -n01818515 -n03877472 -n04044716 -n04009552 -n03220513 -n04067472 -n02172182 -n02823750 -n02317335 -n04467665 -n02229544 -n04049303 -n02116738 -n07584110 -n02018795 -n03930313 -n02480495 -n02172182 -n09399592 -n01530575 -n02971356 -n02105641 -n01698640 -n04553703 -n02280649 -n01807496 -n02504458 -n03617480 -n03884397 -n02011460 -n02704792 -n03393912 -n01667114 -n03598930 -n01775062 -n07717410 -n04118776 -n03218198 -n03255030 -n02111129 -n02892201 -n03444034 -n03692522 -n02364673 -n07718747 -n04418357 -n04235860 -n03000684 -n03929660 -n03670208 -n01560419 -n02494079 -n03197337 -n01737021 -n07697313 -n02127052 -n03764736 -n04270147 -n02097474 -n04204347 -n03291819 -n03134739 -n02086240 -n03691459 -n01924916 -n04550184 -n02093754 -n03110669 -n02643566 -n02108422 -n02795169 -n02483362 -n03983396 -n02093647 -n02815834 -n04069434 -n03930313 -n02326432 -n02086079 -n03958227 -n04258138 -n03498962 -n03697007 -n03126707 -n02980441 -n03530642 -n02086910 -n02087394 -n02280649 -n04285008 -n02093256 -n01950731 -n03733131 -n04277352 -n02086240 -n03544143 -n03782006 -n01632777 -n02086646 -n03297495 -n09246464 -n02123597 -n02687172 -n04487081 -n02236044 -n03710193 -n02607072 -n02788148 -n01776313 -n04376876 -n02102973 -n07873807 -n03372029 -n02104029 -n02669723 -n01693334 -n12985857 -n03785016 -n02066245 -n01698640 -n04086273 -n03047690 -n04026417 -n01773797 -n03742115 -n02018207 -n01978455 -n02988304 -n03595614 -n02965783 -n02992529 -n01773157 -n03417042 -n03376595 -n04435653 -n07711569 -n03970156 -n02877765 -n04111531 -n09256479 -n02641379 -n04179913 -n02113023 -n03977966 -n04525038 -n02190166 -n04070727 -n02111277 -n02128757 -n01784675 -n02412080 -n03146219 -n03485794 -n01773157 -n02119022 -n02704792 -n01737021 -n03697007 -n03450230 -n01770081 -n03792782 -n02089867 -n02817516 -n03141823 -n01773157 -n07860988 -n02317335 -n04442312 -n04428191 -n04049303 -n12620546 -n04591157 -n03980874 -n03314780 -n02514041 -n03376595 -n01774384 -n01774384 -n04579432 -n04336792 -n01872401 -n02483708 -n03127925 -n03314780 -n03843555 -n01770081 -n02480855 -n04118776 -n01910747 -n03126707 -n02233338 -n02114855 -n02808304 -n02107683 -n03590841 -n01737021 -n01514859 -n04346328 -n02102480 -n02093754 -n09472597 -n09332890 -n03630383 -n02492035 -n04026417 -n02110185 -n03125729 -n04465501 -n07695742 -n03775546 -n02930766 -n07753275 -n07684084 -n04486054 -n01677366 -n03127747 -n02917067 -n04347754 -n02704792 -n07583066 -n07714990 -n02111500 -n03085013 -n02233338 -n03977966 -n03876231 -n07760859 -n03623198 -n02268853 -n07730033 -n02097047 -n02981792 -n01984695 -n04584207 -n01665541 -n01734418 -n02100877 -n03109150 -n02099712 -n01855672 -n02486410 -n02099267 -n03804744 -n04179913 -n02091032 -n04200800 -n04127249 -n01833805 -n01855672 -n02909870 -n04423845 -n03345487 -n04456115 -n04517823 -n07714990 -n03492542 -n01531178 -n07892512 -n01534433 -n03982430 -n04116512 -n02097130 -n04612504 -n03146219 -n02097130 -n04517823 -n07684084 -n01978455 -n02236044 -n01798484 -n04200800 -n01985128 -n09468604 -n02268853 -n02090622 -n03000684 -n04447861 -n04154565 -n02840245 -n03126707 -n02391049 -n04532106 -n01728572 -n03124043 -n01773549 -n02480855 -n07860988 -n02105056 -n03888605 -n02116738 -n02804610 -n02113799 -n03899768 -n01729322 -n07873807 -n02116738 -n02795169 -n02256656 -n07720875 -n03584829 -n02097209 -n02092002 -n07614500 -n03599486 -n02825657 -n02966687 -n04428191 -n02488702 -n01774384 -n03908618 -n03814639 -n02444819 -n02825657 -n02325366 -n03394916 -n02077923 -n03709823 -n04579432 -n03967562 -n01514668 -n04548280 -n03899768 -n02892201 -n01704323 -n01484850 -n03535780 -n03775546 -n03337140 -n01514859 -n01580077 -n01580077 -n04509417 -n03977966 -n02115641 -n07697313 -n07753275 -n04542943 -n02910353 -n02087046 -n04443257 -n03788365 -n04429376 -n01484850 -n02843684 -n04479046 -n01990800 -n09193705 -n02115641 -n01773549 -n09246464 -n03956157 -n03065424 -n02174001 -n01824575 -n02099267 -n02093647 -n03133878 -n01580077 -n01622779 -n03271574 -n07768694 -n04376876 -n01877812 -n03110669 -n01728920 -n04141327 -n04389033 -n02096294 -n02492035 -n03876231 -n07716906 -n02097474 -n02086240 -n02708093 -n02105641 -n01984695 -n03125729 -n03944341 -n03450230 -n02109525 -n04389033 -n07760859 -n01704323 -n04540053 -n02823428 -n02115641 -n03733281 -n02093754 -n01532829 -n07802026 -n09472597 -n02091134 -n03041632 -n04372370 -n01608432 -n04265275 -n02804414 -n03109150 -n04328186 -n02107312 -n03100240 -n03250847 -n03393912 -n02090622 -n02840245 -n02870880 -n04562935 -n02397096 -n03995372 -n02106662 -n02096177 -n02493509 -n02965783 -n01981276 -n01990800 -n01698640 -n02088238 -n02107908 -n09399592 -n02790996 -n02091134 -n04252225 -n02447366 -n03179701 -n02123394 -n02974003 -n03124170 -n03045698 -n03271574 -n04067472 -n01494475 -n01984695 -n02321529 -n03062245 -n07892512 -n02123045 -n02099849 -n02672831 -n03854065 -n02825657 -n01644900 -n07745940 -n04366367 -n09288635 -n03447447 -n03124043 -n12267677 -n02091244 -n02111277 -n02088632 -n12985857 -n04517823 -n03594945 -n04049303 -n03908714 -n03697007 -n07714571 -n01986214 -n03014705 -n04238763 -n02950826 -n01755581 -n02108089 -n02111500 -n02028035 -n03425413 -n02276258 -n03690938 -n03478589 -n04579432 -n04209133 -n02492035 -n04479046 -n03131574 -n04026417 -n01981276 -n01514668 -n02643566 -n03791053 -n02870880 -n04235860 -n06596364 -n04019541 -n09246464 -n03065424 -n13054560 -n04597913 -n02111500 -n04252077 -n03857828 -n02100236 -n04442312 -n02363005 -n04040759 -n03127925 -n04033995 -n03662601 -n02966193 -n03761084 -n03838899 -n04081281 -n04243546 -n04252077 -n04487081 -n04417672 -n03662601 -n03476991 -n01829413 -n07614500 -n02701002 -n07754684 -n04258138 -n01744401 -n03259280 -n02676566 -n03017168 -n01817953 -n04049303 -n01692333 -n02108551 -n03134739 -n02410509 -n03871628 -n04525305 -n02093754 -n04461696 -n04523525 -n11939491 -n04612504 -n03706229 -n02167151 -n01582220 -n03692522 -n03595614 -n02823428 -n03950228 -n04399382 -n03877845 -n04596742 -n04005630 -n03724870 -n03445924 -n07614500 -n01883070 -n03710637 -n04120489 -n03127925 -n03249569 -n02879718 -n04562935 -n03630383 -n02106662 -n02097474 -n02114855 -n09332890 -n02096051 -n03995372 -n03016953 -n03447447 -n10565667 -n07579787 -n02102040 -n02097298 -n01514668 -n04332243 -n03770679 -n02102040 -n01616318 -n01694178 -n02817516 -n02086240 -n03787032 -n01582220 -n02097130 -n03690938 -n02825657 -n02106662 -n02490219 -n02514041 -n03958227 -n03658185 -n03187595 -n02107908 -n07734744 -n02093859 -n02011460 -n04447861 -n02640242 -n02793495 -n02514041 -n01534433 -n02132136 -n02108422 -n01768244 -n04399382 -n01734418 -n02037110 -n02444819 -n03272562 -n02906734 -n01740131 -n03325584 -n03598930 -n02277742 -n03443371 -n03447721 -n02097130 -n04347754 -n03903868 -n03529860 -n06785654 -n01985128 -n02892767 -n02074367 -n02445715 -n03131574 -n02892201 -n02114548 -n02096294 -n03787032 -n03776460 -n02870880 -n04347754 -n03930313 -n02095889 -n02124075 -n01641577 -n07753592 -n02100583 -n04591157 -n02488291 -n03690938 -n03791053 -n02860847 -n04612504 -n01677366 -n02112350 -n03062245 -n02909870 -n09428293 -n01860187 -n02999410 -n13044778 -n04070727 -n02105855 -n01950731 -n04443257 -n02110341 -n04265275 -n04273569 -n03000247 -n01675722 -n03838899 -n13040303 -n03016953 -n03793489 -n02119022 -n04366367 -n03388549 -n06874185 -n02980441 -n03676483 -n04065272 -n02102040 -n04501370 -n01740131 -n04162706 -n04325704 -n01443537 -n02672831 -n02101006 -n04417672 -n01990800 -n02133161 -n02264363 -n04548280 -n03935335 -n02906734 -n01985128 -n02107574 -n03125729 -n03208938 -n02074367 -n03133878 -n02085782 -n02607072 -n03388043 -n02096585 -n07693725 -n02786058 -n01443537 -n01873310 -n02791124 -n04325704 -n03530642 -n04147183 -n02484975 -n02091635 -n03100240 -n02879718 -n02093991 -n11879895 -n01737021 -n13054560 -n01945685 -n04356056 -n02342885 -n04192698 -n04536866 -n04435653 -n01829413 -n01496331 -n03887697 -n03770679 -n12057211 -n12985857 -n04266014 -n02916936 -n04429376 -n02229544 -n03763968 -n03595614 -n02837789 -n02109047 -n02106030 -n03180011 -n02102973 -n02865351 -n02074367 -n02169497 -n02087046 -n03141823 -n02124075 -n02437312 -n07892512 -n01776313 -n02641379 -n01644900 -n03042490 -n03630383 -n03785016 -n07730033 -n03544143 -n02007558 -n02109047 -n02910353 -n02107312 -n02389026 -n01698640 -n03633091 -n04442312 -n07248320 -n04525038 -n03459775 -n03297495 -n03676483 -n03476991 -n02097658 -n03888257 -n02115913 -n01532829 -n02085936 -n01532829 -n02107312 -n02403003 -n03933933 -n02483362 -n02105162 -n02066245 -n01518878 -n01685808 -n03782006 -n07695742 -n09835506 -n04141076 -n02454379 -n02107683 -n03874293 -n02177972 -n02106166 -n04590129 -n03388549 -n04399382 -n02096585 -n02093256 -n02319095 -n04560804 -n02089973 -n03223299 -n02091244 -n02089867 -n04335435 -n03825788 -n02056570 -n01669191 -n02113978 -n03141823 -n02640242 -n02841315 -n04146614 -n03400231 -n02490219 -n03791053 -n07880968 -n02025239 -n03873416 -n02437616 -n03220513 -n02089973 -n03045698 -n02100735 -n04228054 -n06785654 -n04554684 -n03595614 -n03933933 -n03954731 -n02110806 -n02056570 -n04476259 -n03032252 -n02445715 -n03895866 -n02317335 -n04479046 -n02782093 -n02172182 -n02417914 -n03041632 -n04507155 -n02672831 -n02108000 -n07714990 -n03532672 -n02123597 -n03218198 -n02091134 -n02825657 -n02916936 -n03874599 -n03876231 -n03160309 -n04118538 -n03259280 -n03670208 -n07745940 -n03733805 -n01669191 -n03404251 -n07718747 -n07831146 -n02403003 -n02883205 -n02415577 -n01784675 -n02492035 -n03599486 -n01877812 -n01877812 -n03498962 -n04355338 -n03617480 -n03404251 -n02277742 -n02169497 -n02113624 -n04067472 -n04465501 -n04335435 -n02444819 -n09421951 -n04591157 -n01622779 -n03425413 -n02346627 -n04162706 -n03874293 -n02138441 -n04005630 -n03769881 -n03942813 -n04285008 -n02114855 -n02114712 -n02708093 -n03124170 -n01498041 -n07613480 -n02363005 -n03355925 -n13054560 -n03180011 -n04552348 -n02423022 -n04525038 -n02504013 -n02107312 -n02091467 -n02101006 -n03721384 -n07695742 -n02823428 -n04589890 -n04584207 -n04111531 -n03160309 -n01531178 -n02123394 -n02777292 -n04208210 -n01667114 -n01667114 -n04597913 -n03529860 -n03450230 -n02123045 -n12768682 -n01924916 -n02536864 -n04442312 -n02747177 -n07831146 -n02951358 -n03857828 -n03482405 -n03028079 -n04040759 -n02417914 -n01689811 -n03188531 -n04070727 -n07720875 -n02168699 -n11939491 -n01704323 -n03223299 -n01930112 -n02747177 -n03903868 -n02093428 -n01728572 -n03459775 -n04409515 -n03977966 -n03220513 -n04355933 -n03662601 -n03916031 -n07836838 -n07714571 -n03891332 -n02105251 -n03028079 -n02117135 -n02096585 -n04458633 -n02883205 -n01818515 -n01641577 -n04070727 -n02093428 -n03494278 -n03255030 -n03769881 -n07716358 -n03877845 -n07760859 -n03495258 -n04370456 -n02091134 -n03874293 -n03026506 -n03259280 -n02097209 -n03873416 -n07760859 -n02108422 -n01872401 -n01981276 -n04153751 -n02110185 -n02095570 -n01496331 -n04285008 -n03075370 -n02815834 -n09256479 -n02092339 -n02808304 -n09428293 -n02101006 -n02412080 -n04285008 -n03954731 -n04311004 -n03476991 -n01518878 -n02687172 -n02342885 -n02346627 -n02883205 -n03457902 -n02097658 -n02504458 -n03930313 -n02087394 -n02802426 -n03272010 -n02102318 -n02091467 -n02099849 -n04552348 -n02443114 -n02276258 -n03642806 -n02342885 -n03916031 -n02125311 -n02837789 -n02130308 -n04509417 -n03207941 -n03877845 -n13052670 -n02317335 -n03444034 -n03179701 -n04371774 -n03924679 -n02950826 -n02110958 -n02113978 -n02109961 -n02363005 -n02090622 -n07930864 -n03857828 -n03763968 -n07684084 -n02497673 -n02102480 -n04275548 -n04264628 -n02058221 -n01687978 -n02877765 -n01748264 -n02028035 -n02909870 -n04332243 -n09835506 -n04192698 -n03877845 -n03832673 -n04179913 -n03623198 -n02107908 -n04548362 -n01641577 -n02992211 -n04326547 -n02783161 -n03743016 -n01729977 -n04146614 -n01695060 -n03649909 -n02087394 -n03424325 -n01688243 -n03223299 -n01914609 -n02091032 -n02095570 -n07720875 -n02606052 -n03584829 -n02110185 -n03220513 -n07745940 -n01824575 -n02099601 -n11939491 -n07749582 -n03457902 -n01784675 -n02112018 -n03733131 -n04328186 -n04037443 -n03717622 -n01694178 -n02871525 -n02808440 -n04560804 -n02097474 -n02137549 -n01981276 -n02443114 -n02101006 -n04550184 -n12985857 -n02236044 -n02488291 -n04532106 -n03895866 -n03617480 -n03417042 -n03903868 -n03584254 -n02389026 -n04435653 -n02492035 -n01796340 -n03447721 -n03447447 -n03595614 -n04579145 -n02777292 -n04147183 -n02006656 -n03843555 -n02504458 -n03444034 -n03673027 -n04417672 -n10148035 -n04179913 -n03792972 -n04552348 -n02281406 -n02326432 -n02493509 -n03314780 -n03485407 -n01980166 -n04442312 -n03602883 -n01986214 -n02108915 -n02492660 -n03384352 -n04367480 -n04467665 -n02814860 -n01728572 -n03733281 -n03216828 -n02494079 -n03733805 -n02279972 -n01692333 -n02091635 -n04487081 -n03866082 -n03208938 -n07714990 -n02906734 -n02807133 -n02095570 -n03594945 -n03492542 -n02442845 -n01833805 -n02395406 -n06874185 -n02490219 -n02071294 -n02447366 -n01537544 -n02281787 -n02268443 -n03775546 -n04429376 -n03832673 -n04398044 -n04370456 -n02128757 -n04162706 -n04146614 -n04482393 -n07860988 -n02167151 -n02095889 -n02487347 -n01632777 -n02992211 -n02097658 -n02107683 -n03980874 -n07753592 -n02037110 -n03388183 -n01695060 -n04258138 -n02802426 -n03425413 -n02403003 -n03868242 -n02006656 -n02667093 -n02607072 -n02093647 -n02536864 -n04591713 -n02669723 -n03733805 -n03259280 -n03709823 -n04483307 -n03877472 -n02113023 -n04133789 -n06359193 -n03903868 -n03089624 -n02013706 -n04266014 -n02504013 -n02101006 -n02124075 -n01774750 -n02112350 -n02526121 -n03485407 -n03496892 -n02655020 -n07714571 -n02087394 -n03160309 -n02091831 -n03047690 -n04612504 -n02859443 -n04033995 -n02950826 -n03187595 -n01592084 -n07892512 -n04507155 -n01692333 -n01981276 -n02823750 -n04251144 -n04548362 -n07565083 -n04209133 -n01877812 -n04486054 -n09421951 -n02231487 -n02113799 -n02098413 -n04081281 -n02999410 -n02107312 -n02346627 -n01675722 -n02795169 -n03649909 -n04090263 -n03871628 -n01877812 -n03670208 -n03866082 -n03496892 -n07248320 -n04162706 -n02098413 -n04069434 -n03938244 -n02101006 -n02325366 -n03388549 -n03393912 -n01739381 -n02108089 -n03000134 -n03124170 -n02037110 -n02098105 -n01986214 -n03314780 -n10148035 -n04200800 -n03457902 -n02091831 -n02835271 -n03642806 -n02101388 -n02128757 -n04004767 -n02091635 -n04311004 -n04328186 -n01829413 -n02108000 -n03877845 -n03935335 -n01744401 -n01531178 -n13044778 -n02699494 -n01775062 -n02088364 -n04239074 -n03781244 -n02442845 -n03028079 -n09421951 -n12768682 -n02454379 -n03065424 -n02113023 -n01873310 -n03594945 -n03792782 -n03529860 -n02174001 -n02487347 -n01692333 -n02837789 -n04487394 -n02509815 -n03970156 -n02445715 -n02666196 -n02009912 -n01797886 -n07583066 -n02111500 -n03461385 -n04371774 -n04296562 -n02978881 -n02066245 -n02129604 -n03761084 -n09229709 -n01774750 -n02108915 -n01797886 -n04482393 -n03792782 -n02095314 -n01693334 -n04560804 -n04376876 -n07718747 -n01532829 -n03888605 -n02980441 -n01494475 -n02093754 -n07802026 -n04562935 -n02165456 -n02356798 -n03977966 -n03124170 -n02797295 -n04201297 -n04392985 -n04579432 -n02106550 -n02782093 -n04252077 -n04326547 -n02454379 -n02437312 -n01729977 -n02123045 -n04229816 -n02077923 -n03788195 -n02124075 -n02051845 -n02087394 -n02096437 -n02403003 -n02769748 -n04392985 -n02134084 -n02840245 -n04273569 -n03125729 -n03967562 -n03961711 -n03961711 -n07579787 -n04270147 -n02965783 -n02006656 -n03995372 -n03444034 -n02814860 -n04070727 -n04208210 -n04486054 -n03729826 -n02120079 -n04591713 -n02808304 -n02105641 -n03770439 -n04228054 -n02094114 -n03400231 -n02106166 -n03868863 -n02089078 -n03954731 -n04355338 -n02669723 -n04200800 -n04266014 -n03929855 -n02107312 -n04023962 -n03958227 -n01677366 -n02791124 -n03485407 -n02129165 -n03075370 -n01558993 -n02988304 -n04355933 -n02134418 -n01675722 -n07920052 -n02321529 -n02018795 -n03992509 -n03868863 -n03796401 -n02892767 -n04254120 -n03785016 -n04591157 -n01518878 -n06794110 -n01930112 -n02951585 -n07711569 -n01496331 -n02788148 -n03207743 -n03794056 -n04332243 -n04356056 -n07873807 -n02667093 -n03271574 -n02794156 -n02493793 -n03527444 -n02951585 -n03240683 -n02109961 -n01795545 -n03599486 -n04599235 -n01644900 -n07880968 -n04317175 -n02840245 -n02408429 -n07248320 -n04285008 -n02096585 -n02704792 -n04560804 -n03785016 -n02927161 -n03697007 -n07930864 -n07248320 -n02028035 -n02123597 -n02676566 -n07583066 -n02871525 -n02134084 -n02091032 -n04462240 -n02117135 -n02009912 -n09193705 -n09472597 -n02834397 -n03764736 -n01753488 -n03895866 -n02112018 -n02165105 -n02837789 -n03457902 -n04522168 -n04023962 -n04536866 -n04005630 -n02110627 -n02708093 -n04554684 -n01514668 -n02090379 -n07836838 -n02108089 -n03095699 -n04366367 -n04039381 -n07802026 -n03100240 -n03255030 -n04235860 -n02980441 -n03218198 -n01514668 -n03000684 -n02088094 -n02815834 -n03657121 -n03891251 -n02808440 -n02916936 -n03661043 -n04243546 -n04065272 -n03666591 -n04604644 -n04509417 -n03937543 -n04509417 -n02109961 -n04251144 -n02869837 -n02113712 -n02492660 -n02841315 -n07734744 -n04456115 -n02640242 -n03929855 -n04266014 -n01644900 -n02807133 -n03814639 -n01514859 -n01784675 -n04023962 -n02256656 -n01695060 -n03532672 -n04070727 -n03742115 -n03482405 -n01773797 -n03388183 -n03792782 -n09246464 -n03394916 -n13052670 -n03498962 -n02356798 -n02966193 -n01798484 -n03394916 -n04476259 -n03854065 -n03950228 -n02708093 -n02206856 -n03026506 -n04004767 -n03691459 -n01682714 -n02095570 -n02480855 -n03424325 -n01531178 -n03868863 -n02883205 -n02795169 -n04399382 -n02840245 -n02808304 -n01695060 -n02110063 -n01601694 -n04229816 -n02927161 -n03187595 -n02454379 -n04483307 -n01986214 -n02104029 -n04485082 -n02808304 -n03384352 -n02107574 -n02927161 -n03924679 -n01685808 -n02364673 -n04389033 -n07718472 -n01558993 -n03047690 -n03595614 -n02071294 -n03028079 -n01806143 -n03814639 -n02007558 -n04525038 -n02128385 -n02391049 -n04372370 -n03769881 -n02100877 -n09288635 -n03950228 -n02786058 -n03788365 -n01667114 -n02119789 -n02279972 -n02033041 -n02086910 -n01749939 -n03337140 -n07693725 -n02492660 -n02442845 -n02917067 -n03733281 -n07920052 -n02490219 -n02111277 -n02123394 -n02128757 -n02992211 -n03424325 -n03942813 -n04399382 -n04417672 -n01828970 -n03854065 -n02325366 -n02492035 -n03220513 -n02087046 -n03602883 -n01983481 -n01498041 -n02834397 -n03791053 -n04604644 -n07730033 -n01675722 -n02105056 -n04039381 -n02835271 -n02787622 -n04591157 -n02484975 -n04044716 -n02977058 -n03000247 -n03602883 -n02112018 -n04584207 -n03733281 -n04209133 -n02106662 -n01740131 -n03983396 -n04141327 -n03476684 -n03337140 -n04311174 -n02510455 -n03476991 -n04456115 -n03141823 -n04009552 -n03461385 -n01797886 -n01734418 -n02108915 -n04251144 -n04192698 -n04525038 -n03995372 -n01985128 -n07930864 -n02514041 -n02098413 -n03388183 -n02095889 -n02992529 -n07920052 -n03249569 -n02667093 -n03393912 -n03743016 -n03876231 -n02138441 -n07875152 -n02099601 -n01630670 -n02099429 -n03706229 -n03992509 -n03141823 -n03109150 -n02504013 -n02992529 -n01943899 -n03796401 -n01675722 -n04141327 -n07697537 -n04141327 -n02871525 -n04254680 -n07836838 -n03133878 -n02346627 -n03649909 -n02090622 -n03124170 -n04458633 -n04525305 -n03666591 -n02699494 -n03680355 -n01692333 -n02480495 -n03109150 -n02342885 -n02776631 -n04596742 -n03018349 -n04525305 -n01824575 -n01882714 -n02115641 -n02788148 -n04335435 -n02085936 -n02782093 -n03095699 -n03127925 -n09468604 -n07717410 -n03417042 -n12998815 -n02113023 -n07742313 -n04296562 -n07714571 -n02107312 -n01806143 -n04033995 -n02025239 -n03930313 -n02641379 -n03804744 -n07745940 -n02097658 -n07930864 -n03089624 -n02492035 -n02791124 -n02172182 -n02865351 -n01739381 -n03950228 -n02099429 -n01644900 -n02788148 -n01622779 -n02027492 -n04254120 -n03929855 -n02814533 -n02226429 -n07715103 -n03840681 -n02256656 -n01833805 -n12267677 -n01687978 -n04592741 -n04592741 -n07873807 -n02110627 -n02277742 -n04266014 -n01776313 -n02794156 -n02093428 -n04311004 -n03920288 -n03047690 -n03992509 -n02112350 -n04591157 -n03017168 -n03459775 -n01667778 -n01820546 -n03485794 -n02804610 -n03602883 -n03666591 -n01872401 -n04589890 -n02730930 -n02090379 -n03670208 -n02892201 -n03372029 -n03062245 -n02486410 -n04562935 -n01697457 -n02099429 -n04111531 -n01728920 -n04153751 -n02113624 -n01770393 -n04266014 -n02017213 -n03483316 -n01742172 -n02480855 -n01739381 -n01768244 -n03908714 -n02006656 -n02089867 -n03026506 -n01558993 -n03980874 -n03775546 -n01980166 -n09399592 -n02804610 -n04336792 -n02027492 -n04251144 -n02100735 -n03788365 -n13040303 -n02328150 -n15075141 -n07802026 -n01532829 -n03594734 -n02676566 -n04404412 -n02346627 -n02843684 -n02108000 -n02871525 -n02606052 -n03982430 -n02165456 -n02823750 -n01871265 -n02730930 -n03770679 -n04505470 -n03404251 -n01883070 -n02979186 -n02093991 -n01630670 -n04120489 -n01443537 -n04371774 -n03866082 -n01833805 -n03527444 -n03998194 -n03873416 -n02930766 -n03776460 -n06596364 -n02321529 -n04392985 -n03796401 -n04483307 -n02526121 -n02396427 -n02113023 -n03443371 -n07747607 -n01980166 -n02058221 -n02167151 -n02769748 -n03127925 -n02190166 -n03272562 -n02097130 -n04560804 -n02086240 -n04326547 -n02095314 -n01843383 -n02107312 -n03954731 -n02281406 -n02105641 -n03075370 -n02883205 -n01829413 -n02099849 -n02112137 -n07684084 -n03095699 -n02408429 -n10565667 -n02641379 -n02259212 -n02128757 -n03344393 -n01665541 -n04004767 -n07734744 -n02088364 -n02100583 -n02672831 -n01820546 -n03376595 -n04070727 -n02981792 -n03709823 -n02206856 -n01537544 -n01776313 -n04579145 -n02492035 -n02804414 -n02113799 -n02104365 -n03483316 -n09256479 -n03642806 -n07590611 -n02094433 -n02089973 -n02497673 -n01968897 -n02090721 -n02167151 -n02974003 -n02514041 -n03781244 -n02408429 -n02279972 -n04311174 -n01990800 -n02804610 -n03146219 -n13040303 -n07930864 -n04423845 -n02437616 -n03388043 -n04487394 -n04201297 -n02704792 -n01729322 -n04371430 -n03937543 -n03216828 -n02486261 -n02666196 -n04612504 -n03180011 -n03240683 -n03627232 -n01877812 -n04486054 -n02782093 -n02814533 -n02119022 -n03788195 -n07720875 -n02096051 -n03903868 -n02105162 -n04125021 -n03272010 -n03794056 -n02058221 -n03457902 -n04584207 -n03785016 -n04311004 -n03837869 -n02101556 -n03840681 -n03425413 -n03496892 -n02127052 -n01980166 -n03770439 -n04398044 -n02105412 -n03032252 -n03594734 -n02096437 -n10148035 -n01443537 -n04125021 -n03649909 -n02939185 -n01737021 -n02510455 -n02398521 -n02490219 -n03595614 -n04277352 -n03649909 -n07716906 -n02808440 -n03124170 -n03538406 -n03376595 -n02860847 -n01797886 -n04243546 -n03673027 -n04462240 -n03595614 -n04579432 -n01558993 -n04081281 -n04136333 -n03223299 -n03197337 -n02094114 -n03452741 -n04392985 -n02666196 -n02786058 -n09332890 -n03759954 -n04125021 -n03000684 -n04597913 -n01768244 -n02099601 -n07716358 -n03530642 -n01860187 -n02012849 -n02814860 -n02110063 -n03160309 -n02091032 -n15075141 -n02127052 -n02699494 -n04447861 -n02109961 -n03532672 -n04099969 -n03594945 -n02101556 -n04200800 -n02100236 -n04149813 -n07920052 -n04149813 -n02097209 -n03793489 -n09428293 -n03840681 -n02799071 -n04332243 -n01807496 -n04479046 -n02101388 -n02099849 -n02085620 -n02655020 -n02802426 -n04204347 -n02094433 -n02814533 -n04398044 -n04090263 -n02051845 -n04548362 -n04259630 -n04209133 -n04596742 -n02114855 -n02091635 -n01795545 -n02231487 -n07831146 -n02110341 -n01728920 -n02802426 -n01978455 -n03388043 -n03041632 -n03976657 -n02443484 -n01735189 -n04310018 -n02009229 -n02325366 -n03075370 -n04149813 -n03891251 -n02125311 -n04074963 -n02105855 -n04525038 -n02002724 -n03924679 -n03947888 -n03544143 -n01704323 -n02177972 -n04509417 -n07754684 -n03961711 -n02364673 -n07614500 -n04239074 -n02825657 -n02391049 -n03447721 -n03042490 -n04442312 -n02098105 -n03388043 -n03692522 -n04428191 -n02100236 -n04591157 -n03729826 -n03775071 -n02480855 -n03697007 -n02088094 -n02012849 -n02119789 -n02085782 -n03424325 -n01872401 -n01631663 -n02788148 -n01698640 -n02672831 -n04162706 -n04591157 -n02128385 -n02992529 -n03443371 -n03792782 -n04200800 -n04069434 -n02490219 -n03868242 -n04277352 -n03770439 -n01773157 -n04026417 -n03492542 -n02107908 -n04548362 -n03379051 -n01582220 -n02109047 -n04579145 -n02114548 -n04152593 -n02769748 -n04296562 -n02097209 -n01983481 -n04366367 -n03657121 -n02879718 -n02119789 -n03947888 -n02342885 -n04152593 -n04370456 -n03032252 -n07880968 -n04328186 -n02107574 -n02017213 -n01945685 -n04550184 -n01514859 -n04479046 -n07695742 -n03481172 -n07747607 -n02437312 -n03742115 -n01924916 -n01608432 -n04584207 -n02825657 -n12144580 -n01689811 -n04228054 -n02113624 -n07697313 -n04367480 -n04026417 -n01616318 -n02643566 -n04228054 -n01443537 -n04252077 -n01734418 -n02490219 -n02814533 -n01796340 -n03160309 -n04355933 -n03666591 -n02443114 -n03595614 -n02948072 -n03786901 -n04380533 -n01824575 -n02018207 -n02111500 -n03188531 -n03417042 -n13037406 -n02869837 -n03627232 -n07716906 -n02130308 -n02422106 -n03544143 -n02108551 -n03314780 -n01694178 -n02437312 -n02978881 -n04243546 -n02823428 -n03916031 -n01616318 -n01496331 -n15075141 -n02071294 -n03095699 -n04525305 -n02483362 -n02109047 -n02930766 -n03792972 -n04507155 -n02091032 -n01744401 -n03929660 -n01632458 -n02090622 -n13037406 -n01580077 -n03028079 -n04366367 -n03000247 -n02088094 -n04376876 -n02110341 -n03983396 -n02791124 -n02977058 -n03384352 -n03042490 -n02643566 -n04522168 -n02804414 -n07760859 -n02445715 -n01728920 -n04285008 -n01697457 -n03961711 -n03134739 -n01882714 -n07716358 -n02364673 -n02536864 -n07880968 -n03662601 -n02699494 -n04133789 -n04141076 -n04366367 -n02892201 -n02100877 -n01695060 -n07747607 -n02971356 -n02804414 -n01665541 -n02422699 -n03065424 -n07693725 -n04336792 -n07932039 -n04311174 -n07715103 -n02268853 -n02096585 -n01981276 -n04133789 -n02814860 -n03388183 -n01631663 -n02447366 -n01560419 -n02319095 -n04370456 -n04152593 -n02939185 -n01534433 -n02909870 -n01537544 -n07565083 -n02106030 -n01630670 -n02837789 -n03633091 -n01614925 -n13052670 -n02104029 -n02877765 -n02106166 -n02011460 -n03590841 -n02130308 -n01968897 -n02397096 -n02966193 -n02129165 -n03393912 -n03133878 -n03743016 -n03947888 -n02133161 -n02102480 -n02457408 -n02111889 -n02364673 -n02980441 -n02138441 -n03908714 -n04599235 -n03220513 -n01729977 -n02808304 -n03223299 -n03444034 -n03538406 -n03384352 -n02607072 -n07684084 -n07697537 -n07565083 -n02939185 -n04483307 -n01843065 -n03272010 -n04370456 -n03627232 -n03259280 -n01698640 -n01775062 -n02769748 -n04428191 -n04326547 -n02090721 -n02051845 -n03124170 -n02422106 -n02134418 -n09399592 -n03447721 -n04090263 -n04584207 -n03884397 -n02356798 -n02105641 -n03786901 -n02835271 -n02090379 -n03379051 -n04389033 -n01847000 -n02125311 -n02089078 -n01498041 -n01749939 -n02102177 -n04023962 -n03788365 -n02127052 -n04326547 -n01641577 -n02484975 -n07768694 -n03777754 -n04487394 -n07873807 -n02089078 -n02112137 -n03733281 -n04141975 -n02105251 -n04040759 -n13052670 -n07684084 -n03179701 -n03804744 -n03127747 -n01748264 -n02408429 -n03126707 -n03595614 -n04235860 -n02117135 -n03938244 -n02497673 -n03425413 -n04192698 -n03980874 -n01774384 -n04591157 -n02403003 -n01729322 -n02834397 -n03527444 -n03763968 -n04120489 -n02100735 -n01955084 -n02483362 -n02510455 -n01817953 -n03868242 -n02483362 -n04418357 -n01968897 -n03691459 -n01882714 -n02883205 -n01829413 -n02870880 -n02396427 -n01843383 -n10148035 -n02699494 -n01580077 -n04238763 -n03496892 -n07684084 -n02950826 -n03445777 -n01798484 -n03877845 -n04239074 -n01622779 -n02099712 -n02837789 -n07730033 -n09835506 -n04532106 -n03976467 -n03854065 -n01756291 -n07892512 -n15075141 -n02971356 -n02113023 -n04023962 -n02108551 -n02002724 -n09288635 -n03457902 -n03124170 -n01484850 -n04548362 -n03201208 -n01734418 -n02090622 -n03929660 -n03868863 -n02480855 -n02028035 -n01692333 -n02206856 -n03970156 -n07768694 -n04376876 -n02089973 -n03976467 -n03134739 -n03788195 -n04399382 -n04023962 -n03393912 -n12620546 -n03085013 -n02277742 -n03272562 -n01698640 -n04039381 -n02877765 -n03680355 -n01873310 -n04039381 -n02980441 -n04376876 -n01729322 -n02795169 -n01530575 -n04515003 -n02794156 -n02165105 -n03594945 -n02093991 -n02256656 -n02105412 -n03216828 -n02110806 -n03297495 -n02112137 -n03710721 -n02110185 -n09421951 -n02480855 -n04336792 -n02510455 -n02087046 -n02110627 -n04005630 -n02536864 -n04277352 -n01774750 -n02667093 -n04554684 -n02823750 -n03196217 -n01496331 -n01855032 -n02128757 -n03764736 -n02981792 -n03876231 -n04458633 -n03888257 -n01860187 -n04326547 -n09421951 -n07880968 -n02500267 -n01770081 -n03584254 -n07711569 -n09468604 -n01614925 -n03788365 -n04560804 -n01729977 -n03717622 -n02410509 -n02437312 -n03000684 -n01632777 -n02028035 -n07873807 -n01630670 -n03388183 -n02110185 -n02098413 -n02107142 -n04209133 -n07932039 -n03992509 -n04612504 -n01986214 -n04270147 -n06874185 -n02909870 -n02168699 -n03785016 -n01532829 -n04264628 -n02484975 -n02799071 -n04209133 -n07584110 -n01560419 -n02117135 -n07684084 -n03814906 -n03908618 -n02279972 -n02098413 -n02097658 -n04154565 -n02125311 -n02018795 -n02168699 -n02096177 -n03047690 -n02747177 -n03788365 -n02128385 -n03000134 -n03775546 -n04204238 -n04604644 -n03980874 -n03598930 -n01855672 -n02090721 -n07715103 -n02443114 -n02102177 -n04258138 -n04591713 -n03297495 -n01667778 -n04350905 -n04589890 -n06794110 -n03884397 -n04367480 -n03877845 -n10148035 -n03492542 -n04116512 -n03785016 -n01968897 -n02111889 -n04579432 -n03492542 -n02111277 -n03535780 -n03786901 -n02113799 -n04347754 -n03535780 -n02963159 -n03249569 -n03617480 -n04070727 -n02108000 -n03075370 -n03355925 -n04418357 -n02783161 -n02112137 -n03179701 -n02114367 -n02098286 -n02119022 -n03000684 -n01695060 -n15075141 -n02877765 -n02107683 -n03721384 -n02107142 -n02092339 -n02687172 -n02396427 -n01629819 -n03272010 -n10148035 -n04141076 -n04044716 -n04277352 -n02364673 -n04141975 -n01819313 -n03775546 -n03379051 -n01756291 -n03785016 -n04476259 -n04612504 -n01632777 -n03838899 -n02007558 -n01440764 -n02088094 -n01735189 -n02356798 -n02095889 -n09229709 -n02132136 -n02091635 -n07754684 -n03146219 -n03467068 -n03047690 -n02408429 -n02086910 -n02012849 -n04522168 -n01943899 -n12144580 -n01820546 -n01824575 -n01677366 -n03868242 -n03814639 -n02091635 -n04033901 -n02074367 -n04597913 -n07880968 -n01871265 -n03000684 -n01983481 -n07753592 -n04235860 -n02229544 -n03814906 -n03527444 -n04532106 -n02447366 -n04179913 -n04116512 -n01631663 -n04037443 -n03947888 -n02708093 -n03874293 -n04612504 -n04589890 -n02097130 -n03089624 -n03670208 -n04579145 -n03344393 -n07614500 -n04462240 -n01751748 -n04201297 -n07802026 -n02795169 -n07613480 -n07747607 -n02115913 -n02493793 -n03770679 -n02268443 -n02009912 -n04423845 -n01530575 -n01685808 -n07715103 -n03016953 -n03355925 -n04554684 -n04366367 -n03207941 -n03887697 -n04336792 -n03759954 -n03595614 -n02480855 -n04525038 -n04355338 -n02129165 -n03255030 -n02843684 -n04493381 -n02992211 -n03814906 -n04239074 -n06794110 -n03977966 -n02979186 -n03207941 -n07875152 -n01798484 -n02484975 -n02127052 -n02133161 -n03929660 -n02966687 -n12985857 -n01873310 -n07584110 -n02088094 -n01748264 -n02101006 -n03450230 -n03657121 -n03991062 -n02013706 -n03742115 -n03595614 -n04591713 -n03891251 -n01943899 -n03065424 -n04127249 -n03584829 -n02018207 -n02089973 -n03773504 -n01751748 -n02119022 -n02276258 -n04086273 -n01877812 -n02917067 -n02168699 -n02107574 -n03954731 -n02443114 -n02101556 -n01943899 -n03457902 -n01644900 -n01770081 -n03495258 -n02606052 -n02109047 -n01532829 -n02099429 -n02100735 -n03216828 -n04204347 -n02095889 -n03794056 -n02104365 -n03595614 -n01630670 -n03223299 -n04389033 -n01796340 -n02098286 -n02109525 -n04509417 -n01580077 -n04209239 -n01675722 -n07718747 -n02787622 -n04553703 -n02100877 -n02708093 -n01687978 -n01944390 -n02807133 -n03908714 -n12620546 -n04009552 -n04591713 -n02112350 -n02168699 -n03773504 -n03127747 -n03393912 -n03617480 -n02704792 -n03590841 -n03445924 -n02486261 -n03803284 -n03954731 -n02971356 -n03000247 -n03887697 -n02894605 -n04286575 -n02172182 -n01873310 -n04118538 -n04357314 -n02113624 -n02667093 -n03141823 -n04423845 -n03742115 -n02085620 -n02727426 -n04606251 -n02088466 -n03109150 -n03134739 -n02361337 -n03832673 -n02087394 -n02177972 -n04347754 -n07718747 -n03710721 -n03970156 -n04229816 -n01601694 -n02606052 -n03425413 -n03447447 -n04336792 -n04486054 -n04201297 -n07614500 -n02226429 -n01622779 -n04435653 -n09288635 -n02790996 -n02108000 -n03961711 -n03417042 -n03017168 -n03840681 -n02509815 -n04019541 -n01692333 -n01843065 -n03461385 -n04296562 -n02493509 -n03133878 -n02110627 -n07932039 -n02091831 -n03249569 -n02091467 -n03680355 -n07714990 -n02412080 -n03250847 -n03447721 -n02916936 -n02107683 -n02492035 -n03404251 -n02102177 -n07932039 -n04557648 -n04372370 -n03891251 -n02974003 -n15075141 -n02444819 -n04462240 -n02100236 -n02108551 -n04515003 -n02002556 -n02794156 -n04204238 -n04090263 -n04584207 -n02120505 -n03773504 -n02165456 -n07684084 -n04311174 -n02002556 -n02106382 -n01695060 -n02783161 -n02422699 -n03982430 -n02397096 -n03976657 -n02692877 -n03841143 -n03710637 -n04259630 -n02099601 -n03942813 -n12998815 -n11939491 -n04399382 -n03065424 -n01644373 -n04462240 -n03992509 -n03534580 -n02398521 -n02095889 -n02808440 -n04264628 -n02786058 -n04399382 -n03933933 -n04487081 -n01873310 -n04409515 -n02108089 -n02091831 -n07734744 -n04552348 -n04162706 -n02123045 -n13040303 -n02492035 -n03657121 -n02488291 -n02027492 -n02769748 -n07753113 -n03814639 -n01704323 -n02276258 -n04557648 -n03478589 -n04435653 -n03535780 -n04371774 -n02823750 -n02124075 -n07695742 -n03337140 -n03884397 -n01917289 -n07720875 -n07742313 -n04019541 -n02130308 -n02102040 -n02104365 -n02963159 -n01687978 -n07754684 -n02328150 -n02791124 -n04286575 -n04606251 -n03814639 -n09246464 -n02009229 -n01665541 -n04399382 -n04429376 -n04033995 -n04238763 -n09256479 -n01632458 -n04004767 -n04111531 -n03710637 -n02107908 -n04008634 -n02106382 -n02086079 -n07871810 -n02105505 -n02013706 -n03733131 -n07875152 -n03376595 -n03594945 -n01776313 -n03016953 -n04243546 -n04252225 -n03709823 -n02939185 -n02107574 -n02097047 -n02109525 -n03916031 -n02116738 -n07579787 -n02018795 -n03967562 -n03075370 -n12998815 -n01818515 -n02190166 -n02701002 -n01685808 -n12267677 -n02107683 -n07695742 -n02085782 -n03692522 -n02086646 -n03623198 -n03534580 -n02133161 -n07584110 -n03980874 -n03710721 -n03838899 -n04311174 -n03976467 -n02966687 -n03785016 -n02097658 -n04442312 -n04380533 -n03042490 -n03982430 -n02510455 -n02408429 -n02093859 -n07718472 -n02086079 -n02834397 -n03670208 -n01728572 -n02444819 -n02091467 -n04325704 -n04332243 -n03223299 -n01734418 -n03496892 -n01697457 -n03884397 -n03483316 -n04285008 -n01795545 -n03220513 -n02007558 -n01532829 -n02236044 -n06596364 -n04111531 -n03032252 -n03814639 -n04317175 -n04033995 -n02086079 -n07684084 -n01829413 -n02128757 -n03983396 -n04487081 -n02190166 -n04523525 -n04328186 -n04116512 -n03450230 -n04228054 -n02102177 -n03873416 -n02488702 -n02226429 -n02018207 -n04044716 -n03394916 -n01818515 -n01910747 -n03584829 -n03240683 -n04133789 -n03095699 -n04325704 -n02606052 -n02102318 -n02106382 -n03424325 -n02906734 -n01818515 -n04548362 -n04086273 -n07590611 -n02033041 -n04501370 -n02486261 -n03793489 -n02974003 -n09428293 -n02088466 -n04355933 -n02113712 -n02777292 -n02490219 -n02105056 -n02071294 -n02655020 -n03425413 -n02808440 -n02493509 -n03384352 -n02108422 -n04350905 -n07695742 -n02077923 -n03476991 -n03857828 -n02494079 -n01440764 -n02277742 -n02509815 -n07730033 -n01774384 -n02951585 -n02892201 -n02488702 -n02782093 -n03854065 -n04517823 -n03467068 -n07920052 -n03180011 -n02111129 -n02361337 -n03544143 -n07717556 -n03291819 -n02110063 -n03825788 -n02110185 -n02108422 -n01744401 -n04204347 -n01744401 -n02086079 -n01773549 -n03498962 -n02979186 -n01694178 -n04265275 -n04371774 -n01669191 -n01582220 -n02128925 -n02747177 -n02108551 -n02105056 -n02107312 -n01532829 -n01698640 -n03661043 -n02834397 -n03956157 -n01739381 -n02500267 -n02317335 -n02951358 -n02105505 -n07718747 -n04192698 -n04536866 -n03710637 -n02346627 -n03476684 -n02086910 -n02747177 -n02096177 -n04548280 -n01630670 -n01682714 -n04275548 -n03538406 -n02113712 -n09421951 -n01560419 -n04252225 -n02423022 -n01697457 -n02389026 -n03595614 -n02415577 -n04004767 -n02672831 -n03018349 -n03998194 -n03089624 -n04273569 -n02058221 -n03544143 -n02395406 -n03535780 -n03450230 -n03888605 -n13052670 -n01910747 -n01843065 -n03982430 -n03447721 -n01955084 -n01630670 -n03803284 -n02120079 -n03372029 -n02504458 -n03874599 -n02011460 -n02108089 -n03627232 -n02492660 -n04399382 -n02412080 -n03325584 -n03706229 -n02500267 -n02123159 -n04238763 -n02883205 -n13044778 -n07836838 -n02799071 -n01917289 -n04273569 -n04552348 -n01795545 -n02011460 -n03944341 -n02356798 -n04264628 -n02859443 -n02108915 -n02108422 -n04591713 -n02099849 -n07693725 -n01795545 -n04596742 -n03868242 -n03958227 -n02093991 -n03134739 -n01917289 -n02099712 -n03314780 -n11879895 -n10148035 -n02018795 -n02747177 -n04542943 -n03141823 -n02797295 -n01704323 -n02777292 -n02769748 -n04033995 -n01860187 -n02321529 -n01917289 -n03785016 -n03956157 -n03100240 -n04041544 -n02165105 -n03947888 -n03891251 -n03709823 -n02988304 -n02106030 -n02095570 -n02814860 -n03649909 -n03110669 -n02444819 -n04044716 -n04487394 -n02422106 -n04069434 -n02165456 -n02098105 -n02106382 -n02280649 -n02002556 -n01980166 -n02091032 -n09229709 -n03642806 -n03770679 -n02172182 -n07892512 -n01944390 -n04462240 -n02114548 -n02403003 -n03899768 -n09472597 -n03530642 -n02974003 -n02777292 -n02093428 -n01829413 -n02097298 -n01882714 -n01833805 -n03481172 -n02094114 -n03218198 -n02640242 -n02422699 -n03297495 -n04592741 -n01644373 -n02066245 -n03028079 -n04399382 -n03355925 -n03187595 -n02071294 -n01494475 -n02119789 -n02963159 -n03976657 -n03759954 -n02916936 -n02120079 -n03109150 -n04370456 -n02817516 -n01734418 -n02415577 -n03691459 -n04023962 -n02114712 -n03995372 -n06359193 -n01943899 -n01860187 -n02859443 -n02268443 -n02488702 -n03110669 -n03250847 -n02165105 -n02102480 -n03026506 -n04465501 -n03733131 -n01910747 -n04277352 -n03065424 -n01644900 -n02951358 -n04399382 -n02326432 -n03529860 -n03764736 -n02444819 -n02093256 -n02091134 -n02091635 -n11879895 -n03657121 -n04613696 -n03452741 -n04596742 -n02097474 -n02672831 -n01968897 -n02486410 -n02488291 -n02356798 -n07749582 -n04033995 -n03000684 -n04428191 -n02089078 -n04005630 -n03476991 -n02817516 -n04371774 -n12144580 -n12144580 -n03950228 -n02009912 -n03425413 -n04141975 -n02790996 -n01818515 -n07583066 -n04116512 -n03417042 -n01739381 -n01944390 -n03447721 -n03891332 -n01689811 -n04081281 -n02892767 -n04590129 -n01632777 -n02086910 -n01742172 -n04579145 -n02814860 -n04458633 -n04487394 -n02088632 -n03942813 -n04162706 -n07613480 -n02098413 -n04037443 -n02457408 -n04461696 -n02110185 -n03887697 -n03344393 -n04336792 -n04209239 -n02480495 -n02102480 -n04040759 -n03372029 -n03017168 -n02087046 -n02110185 -n04131690 -n02133161 -n02749479 -n02092002 -n04612504 -n03388183 -n03417042 -n02168699 -n07248320 -n02012849 -n03791053 -n02027492 -n07768694 -n02115913 -n02093428 -n01630670 -n02226429 -n01514859 -n07716358 -n02860847 -n04041544 -n02105505 -n02107683 -n03394916 -n03384352 -n04536866 -n02107312 -n04487081 -n02447366 -n02113186 -n03777754 -n03496892 -n09421951 -n02097298 -n02112706 -n02128757 -n02169497 -n03933933 -n02109961 -n04254120 -n04562935 -n02457408 -n02093754 -n15075141 -n02788148 -n01751748 -n02837789 -n06359193 -n01630670 -n03908618 -n07754684 -n02013706 -n03680355 -n02788148 -n06794110 -n02102040 -n01496331 -n03482405 -n02107312 -n13054560 -n03843555 -n01644373 -n02894605 -n01818515 -n03899768 -n02134084 -n01692333 -n02948072 -n03743016 -n07583066 -n02279972 -n07760859 -n03868863 -n02422699 -n02825657 -n02480855 -n02226429 -n04033901 -n01817953 -n04285008 -n04550184 -n04476259 -n02100877 -n09835506 -n02410509 -n03207743 -n03877845 -n03947888 -n01774750 -n02641379 -n04584207 -n02481823 -n07768694 -n02130308 -n04147183 -n04596742 -n02395406 -n07754684 -n04252225 -n04118538 -n09256479 -n07742313 -n02769748 -n03888257 -n03658185 -n04067472 -n02481823 -n03255030 -n03903868 -n03124043 -n03874599 -n06596364 -n04355933 -n04613696 -n04357314 -n02814860 -n02099601 -n01806567 -n02396427 -n02106166 -n03769881 -n02113023 -n04146614 -n02640242 -n02966193 -n02841315 -n02481823 -n03724870 -n03998194 -n04522168 -n02747177 -n02317335 -n04067472 -n02129165 -n07714571 -n03992509 -n03379051 -n04141975 -n02028035 -n02085936 -n04540053 -n02112137 -n03977966 -n03637318 -n03887697 -n09468604 -n03424325 -n04584207 -n01917289 -n07579787 -n03325584 -n01829413 -n04540053 -n03127925 -n01558993 -n02027492 -n03424325 -n03109150 -n06794110 -n01773797 -n03188531 -n02106382 -n03788365 -n02123159 -n01773797 -n02229544 -n02727426 -n02823428 -n02454379 -n02106030 -n01924916 -n12998815 -n04179913 -n04099969 -n07684084 -n03450230 -n04435653 -n02422106 -n03637318 -n03018349 -n04429376 -n03868863 -n02110806 -n02226429 -n02006656 -n03843555 -n06359193 -n01860187 -n01694178 -n02138441 -n03630383 -n04009552 -n02101006 -n03496892 -n03447721 -n07920052 -n07873807 -n01729977 -n03220513 -n01614925 -n02134084 -n03908618 -n03763968 -n03544143 -n02797295 -n04392985 -n01728920 -n03876231 -n03259280 -n03325584 -n04296562 -n02909870 -n02493793 -n02112706 -n02776631 -n02447366 -n01514859 -n03954731 -n03344393 -n04125021 -n03930630 -n04116512 -n02441942 -n03344393 -n02125311 -n02643566 -n03840681 -n02106662 -n03325584 -n07695742 -n01491361 -n03814906 -n03075370 -n02098286 -n02666196 -n07718472 -n02948072 -n01698640 -n03777754 -n07714571 -n01945685 -n03085013 -n03445777 -n04380533 -n01986214 -n03673027 -n03710193 -n02441942 -n01734418 -n02105412 -n03447447 -n04591157 -n02727426 -n04486054 -n02510455 -n03958227 -n01978455 -n04461696 -n03908618 -n04522168 -n02107908 -n07715103 -n04009552 -n03457902 -n03447447 -n01820546 -n02692877 -n03874599 -n02101388 -n02115641 -n03532672 -n03127925 -n04081281 -n02814533 -n02916936 -n02483708 -n02791124 -n04505470 -n04417672 -n03876231 -n01829413 -n09246464 -n01728920 -n02363005 -n07754684 -n07717556 -n03000247 -n01873310 -n02091635 -n07831146 -n02794156 -n03825788 -n03476991 -n04033901 -n02607072 -n02123394 -n03534580 -n01770081 -n02011460 -n02843684 -n02109525 -n03916031 -n04418357 -n03710637 -n03075370 -n01644900 -n04254680 -n07768694 -n04228054 -n04258138 -n04357314 -n07836838 -n03000134 -n04310018 -n03000134 -n02098413 -n02108000 -n04252077 -n02457408 -n04483307 -n02105505 -n03125729 -n02091467 -n03868242 -n02106166 -n03240683 -n02917067 -n02105056 -n04525305 -n01753488 -n02978881 -n03977966 -n02486261 -n04162706 -n02120079 -n03709823 -n03127747 -n02089973 -n03089624 -n03814906 -n01534433 -n04613696 -n03325584 -n04505470 -n03325584 -n02115641 -n03630383 -n01930112 -n04204238 -n03063689 -n02233338 -n03916031 -n02786058 -n02113799 -n03935335 -n04179913 -n03690938 -n02442845 -n01819313 -n01534433 -n01753488 -n02823750 -n01491361 -n03124043 -n01749939 -n02328150 -n03272562 -n02094258 -n04597913 -n01773549 -n03724870 -n01871265 -n01751748 -n04039381 -n03733805 -n02783161 -n02948072 -n02397096 -n02233338 -n02093647 -n03016953 -n04344873 -n02640242 -n01677366 -n02106166 -n07745940 -n03710637 -n03529860 -n02988304 -n04350905 -n02105056 -n01630670 -n12998815 -n02094258 -n03481172 -n04515003 -n04418357 -n03075370 -n04273569 -n01592084 -n03290653 -n04487394 -n02109047 -n02259212 -n04604644 -n03976467 -n04023962 -n02910353 -n03394916 -n02106662 -n01882714 -n03494278 -n01770393 -n03445924 -n02102177 -n02110958 -n02089973 -n01924916 -n02113799 -n01817953 -n02091134 -n01697457 -n03443371 -n04482393 -n01749939 -n01985128 -n04116512 -n03452741 -n03220513 -n02510455 -n03761084 -n02916936 -n02089867 -n02281406 -n03445777 -n03642806 -n03255030 -n09428293 -n01774750 -n03220513 -n04254777 -n13037406 -n04235860 -n07875152 -n01877812 -n02086240 -n03876231 -n02484975 -n03595614 -n03733805 -n02099712 -n03884397 -n03016953 -n02088632 -n04086273 -n02797295 -n04392985 -n03124043 -n02102480 -n02100583 -n01855032 -n02667093 -n01945685 -n03250847 -n01644373 -n04147183 -n02641379 -n02342885 -n03666591 -n03000134 -n03197337 -n02807133 -n03394916 -n01797886 -n02443114 -n02056570 -n02916936 -n04090263 -n01756291 -n03724870 -n02747177 -n04553703 -n01983481 -n04479046 -n07920052 -n01631663 -n01981276 -n02097474 -n02268443 -n01944390 -n02108422 -n04487081 -n07734744 -n02091244 -n02835271 -n01824575 -n02056570 -n03773504 -n01688243 -n03345487 -n03345487 -n02486410 -n03271574 -n03485407 -n02483362 -n02113712 -n02786058 -n04579145 -n02948072 -n03595614 -n03594734 -n01491361 -n01729977 -n04033995 -n04597913 -n01871265 -n02992211 -n02361337 -n04070727 -n02007558 -n03110669 -n09399592 -n02009912 -n03249569 -n02415577 -n02190166 -n02701002 -n03042490 -n01871265 -n02091467 -n03208938 -n02105505 -n04589890 -n02138441 -n04591157 -n03344393 -n01622779 -n01924916 -n02137549 -n04328186 -n07590611 -n01776313 -n04389033 -n02058221 -n03786901 -n02865351 -n02536864 -n04154565 -n02108422 -n07583066 -n03770439 -n04235860 -n03594945 -n02096051 -n03590841 -n04525038 -n02264363 -n04592741 -n02364673 -n01735189 -n02977058 -n02488291 -n07871810 -n03062245 -n04557648 -n03837869 -n01770081 -n04273569 -n03290653 -n03124043 -n02971356 -n02423022 -n02094114 -n01695060 -n01917289 -n02814533 -n03250847 -n02110063 -n02666196 -n02488291 -n02504013 -n02130308 -n01695060 -n03089624 -n02906734 -n02791124 -n09835506 -n07695742 -n06874185 -n04229816 -n02408429 -n02087394 -n03297495 -n02058221 -n03763968 -n01491361 -n03781244 -n03873416 -n02111277 -n13052670 -n02119022 -n02108000 -n02791124 -n03028079 -n02906734 -n02112350 -n02102318 -n04118776 -n02823428 -n04435653 -n03786901 -n02105505 -n01514859 -n02860847 -n01871265 -n07742313 -n01695060 -n01735189 -n03141823 -n02692877 -n04254680 -n02483708 -n02011460 -n02927161 -n02113978 -n02106166 -n03770679 -n02169497 -n04482393 -n02277742 -n04485082 -n01984695 -n03658185 -n01697457 -n09428293 -n02102480 -n04501370 -n04141975 -n01614925 -n02089078 -n03935335 -n02486410 -n01843065 -n01984695 -n02363005 -n04536866 -n04141076 -n01950731 -n03445777 -n02102040 -n07715103 -n09256479 -n03781244 -n02090379 -n02129165 -n04532670 -n02939185 -n04259630 -n03788365 -n03461385 -n04606251 -n04428191 -n02488702 -n01518878 -n02107142 -n01622779 -n02483708 -n07753113 -n07930864 -n01984695 -n03476684 -n02655020 -n03376595 -n01806143 -n04286575 -n02490219 -n02640242 -n04141975 -n03938244 -n02100735 -n04041544 -n02108915 -n03769881 -n02108551 -n02110185 -n02086646 -n03388043 -n07697313 -n02098105 -n04597913 -n04090263 -n02492660 -n02795169 -n02086240 -n02097130 -n02346627 -n01622779 -n01978287 -n01924916 -n02655020 -n02787622 -n02108551 -n03717622 -n07697313 -n02105505 -n07753113 -n04204347 -n02909870 -n01828970 -n02018795 -n07836838 -n01775062 -n07716358 -n01675722 -n02807133 -n02493793 -n02091467 -n02804414 -n12144580 -n02823428 -n09229709 -n03379051 -n02791270 -n01828970 -n03832673 -n04366367 -n03877845 -n03372029 -n03961711 -n03916031 -n03788365 -n04265275 -n01806143 -n04008634 -n02794156 -n03777754 -n01630670 -n07860988 -n04239074 -n04270147 -n03761084 -n04270147 -n04487081 -n02481823 -n02395406 -n02093859 -n03991062 -n04264628 -n04258138 -n06359193 -n02074367 -n07614500 -n02865351 -n07718747 -n04074963 -n04482393 -n03347037 -n02110063 -n07836838 -n02090379 -n03595614 -n03482405 -n13052670 -n04023962 -n03991062 -n04548280 -n02056570 -n02794156 -n13133613 -n02100877 -n03272010 -n02107683 -n04149813 -n04152593 -n02002556 -n03954731 -n01968897 -n03388043 -n03764736 -n02690373 -n02966193 -n01518878 -n02128385 -n03197337 -n02092002 -n03110669 -n03478589 -n02457408 -n02870880 -n02011460 -n02093428 -n03063689 -n03337140 -n04356056 -n02963159 -n04435653 -n03871628 -n02110627 -n02088238 -n03160309 -n03983396 -n02992529 -n03843555 -n01773549 -n02389026 -n09468604 -n04505470 -n02109961 -n02794156 -n03854065 -n04355338 -n02094433 -n13133613 -n03272010 -n01667778 -n03494278 -n12768682 -n02481823 -n03085013 -n03179701 -n01667778 -n02102040 -n02112706 -n02951585 -n02108089 -n02099601 -n07860988 -n04033995 -n03388183 -n02127052 -n02107142 -n03814639 -n04004767 -n02099712 -n01582220 -n02102177 -n02100735 -n03958227 -n02481823 -n01773549 -n03131574 -n04540053 -n03424325 -n03871628 -n02116738 -n09229709 -n02797295 -n02704792 -n02825657 -n02115913 -n03888605 -n02009229 -n03063689 -n07734744 -n02669723 -n02101556 -n03045698 -n04532106 -n03961711 -n04372370 -n02655020 -n02094433 -n02088466 -n04005630 -n12144580 -n02892767 -n02091244 -n03110669 -n03759954 -n03594945 -n03594945 -n04462240 -n07711569 -n03259280 -n04482393 -n02018207 -n03134739 -n03832673 -n04467665 -n04285008 -n02169497 -n03796401 -n02099267 -n02909870 -n02105412 -n04265275 -n01728572 -n04336792 -n02834397 -n02804414 -n04548362 -n03109150 -n02895154 -n03929660 -n01685808 -n02111500 -n04033995 -n01768244 -n02002556 -n03887697 -n04069434 -n03594734 -n02500267 -n07714990 -n02137549 -n03014705 -n02447366 -n01537544 -n07802026 -n03895866 -n04330267 -n03602883 -n02795169 -n04153751 -n03782006 -n02489166 -n03447721 -n03417042 -n04550184 -n02500267 -n02112706 -n03347037 -n02088364 -n02640242 -n03983396 -n02817516 -n01695060 -n13133613 -n02095314 -n03887697 -n02892767 -n07697313 -n11939491 -n04332243 -n02667093 -n02643566 -n02493509 -n04251144 -n02730930 -n04118776 -n02097209 -n04335435 -n03016953 -n03691459 -n04037443 -n02100583 -n02104029 -n02088466 -n09193705 -n03495258 -n02095314 -n03355925 -n07613480 -n02971356 -n04153751 -n01945685 -n01697457 -n04532106 -n02895154 -n04548362 -n04485082 -n02002724 -n02999410 -n03976467 -n02951358 -n03874293 -n02442845 -n04229816 -n01614925 -n02769748 -n04461696 -n02486410 -n03916031 -n04562935 -n02098413 -n02097474 -n03584829 -n02606052 -n02123394 -n03871628 -n04311004 -n02865351 -n01601694 -n02111129 -n04509417 -n01882714 -n03908714 -n02102973 -n03983396 -n02093859 -n03775071 -n02667093 -n02906734 -n07873807 -n04277352 -n04153751 -n01675722 -n01601694 -n04263257 -n01582220 -n03000134 -n04263257 -n04286575 -n06359193 -n02445715 -n03179701 -n04275548 -n02444819 -n02002724 -n03124170 -n02018795 -n02776631 -n12144580 -n03041632 -n02101556 -n04435653 -n04254120 -n04505470 -n03297495 -n02093256 -n03529860 -n01734418 -n04462240 -n02089867 -n03259280 -n03804744 -n02484975 -n03372029 -n02992529 -n01629819 -n03814639 -n04004767 -n02280649 -n04275548 -n04023962 -n03476684 -n01843383 -n02490219 -n03450230 -n02088238 -n02129165 -n07716906 -n02006656 -n07615774 -n04033901 -n02101388 -n02412080 -n02871525 -n01689811 -n02447366 -n02951585 -n03325584 -n04238763 -n01817953 -n07753275 -n03803284 -n03724870 -n01694178 -n04613696 -n03961711 -n04553703 -n04493381 -n04507155 -n03388183 -n04483307 -n02840245 -n01739381 -n03837869 -n03980874 -n02093647 -n02992529 -n03983396 -n02110958 -n01688243 -n02100236 -n01873310 -n04525038 -n03496892 -n04350905 -n02115913 -n01824575 -n04443257 -n01729322 -n03197337 -n09421951 -n07614500 -n03445777 -n03680355 -n04579145 -n03345487 -n03062245 -n02655020 -n02769748 -n03930630 -n03956157 -n04332243 -n03690938 -n04153751 -n04456115 -n02883205 -n01631663 -n02841315 -n02480495 -n02396427 -n04357314 -n01695060 -n02101556 -n03947888 -n04367480 -n03958227 -n01924916 -n02111129 -n02939185 -n01829413 -n02108915 -n03388183 -n02410509 -n04273569 -n02119789 -n04505470 -n02094258 -n02231487 -n02916936 -n02441942 -n04039381 -n02883205 -n02098413 -n01496331 -n03534580 -n07714990 -n04286575 -n03000247 -n03691459 -n03376595 -n01729322 -n12144580 -n04192698 -n03998194 -n02979186 -n02102973 -n02110627 -n01728572 -n03272010 -n03786901 -n04033901 -n02097047 -n03947888 -n07873807 -n02097047 -n07754684 -n02276258 -n02104365 -n01734418 -n03976467 -n02825657 -n01694178 -n01682714 -n02747177 -n03710193 -n09288635 -n02510455 -n02319095 -n02088364 -n02129604 -n04326547 -n03871628 -n02096177 -n09246464 -n03127925 -n02488702 -n06785654 -n02066245 -n12998815 -n01632777 -n02091244 -n01742172 -n03908618 -n04536866 -n03841143 -n01917289 -n02276258 -n03457902 -n04041544 -n03259280 -n02236044 -n02090379 -n04127249 -n03873416 -n02415577 -n03590841 -n02094258 -n03884397 -n01978287 -n02172182 -n01990800 -n04476259 -n03871628 -n03584829 -n04118776 -n02509815 -n02102480 -n01729977 -n02776631 -n03125729 -n02948072 -n01774384 -n01695060 -n07734744 -n01990800 -n02445715 -n03017168 -n02606052 -n04612504 -n02119789 -n02113978 -n03706229 -n02115913 -n02655020 -n02640242 -n03478589 -n03891251 -n02892201 -n02676566 -n01877812 -n02037110 -n07745940 -n02090721 -n04548280 -n02971356 -n03042490 -n02865351 -n04310018 -n07802026 -n01843065 -n01944390 -n03443371 -n01496331 -n13044778 -n03196217 -n02111889 -n09288635 -n03777568 -n03970156 -n02027492 -n09332890 -n04326547 -n04458633 -n02093428 -n03992509 -n03908618 -n03290653 -n04311004 -n03764736 -n04465501 -n03345487 -n04099969 -n02843684 -n02361337 -n02066245 -n02099601 -n03259280 -n02105641 -n01755581 -n03937543 -n03249569 -n02124075 -n03761084 -n02834397 -n03891251 -n07753275 -n04389033 -n03599486 -n04392985 -n01582220 -n03642806 -n01749939 -n01944390 -n03146219 -n09428293 -n02112350 -n03249569 -n02085936 -n03240683 -n04597913 -n03249569 -n02256656 -n07248320 -n04376876 -n03089624 -n04118538 -n02966687 -n03891332 -n01773157 -n02948072 -n01685808 -n04371430 -n02107312 -n01749939 -n02085936 -n02091831 -n02098105 -n02708093 -n02120505 -n01601694 -n06874185 -n02319095 -n01616318 -n01775062 -n13040303 -n03796401 -n04482393 -n03272562 -n03478589 -n02190166 -n02910353 -n02951358 -n01749939 -n12985857 -n04254120 -n03944341 -n03743016 -n01855672 -n04228054 -n03642806 -n03956157 -n04162706 -n02992211 -n01883070 -n03045698 -n02018207 -n01872401 -n04239074 -n07932039 -n04392985 -n02641379 -n01484850 -n01742172 -n04376876 -n04550184 -n03733805 -n04371774 -n04317175 -n03873416 -n02361337 -n02002556 -n02168699 -n02098413 -n02104365 -n03841143 -n02074367 -n04344873 -n07615774 -n04149813 -n02321529 -n12144580 -n02509815 -n03938244 -n01978455 -n03047690 -n04252077 -n02487347 -n03141823 -n02666196 -n02123045 -n02486410 -n02492660 -n03796401 -n02112350 -n07730033 -n03950228 -n04162706 -n02895154 -n02105641 -n03404251 -n02007558 -n01739381 -n02481823 -n04409515 -n02443114 -n02879718 -n03345487 -n02268853 -n12620546 -n03930313 -n04380533 -n01518878 -n04596742 -n03680355 -n02074367 -n01667778 -n03376595 -n04366367 -n02097047 -n02101006 -n01873310 -n03876231 -n04507155 -n02086910 -n04370456 -n02687172 -n03724870 -n02966193 -n02776631 -n03089624 -n04456115 -n03325584 -n01770081 -n04428191 -n01667778 -n02132136 -n02105162 -n03743016 -n04367480 -n02098105 -n03000134 -n02100236 -n02011460 -n02097047 -n02177972 -n04493381 -n03874293 -n02017213 -n03908714 -n02361337 -n02669723 -n02119022 -n02105505 -n03884397 -n02190166 -n03216828 -n02410509 -n02101556 -n02098286 -n03250847 -n02117135 -n03929660 -n04332243 -n03891332 -n02018207 -n01498041 -n03977966 -n02892767 -n03781244 -n02094433 -n02112137 -n02910353 -n03791053 -n01773157 -n03599486 -n11939491 -n01496331 -n02950826 -n09246464 -n02099429 -n02108551 -n02895154 -n09229709 -n07932039 -n03721384 -n03529860 -n02113186 -n03929660 -n02086646 -n02787622 -n02676566 -n02006656 -n02104365 -n03045698 -n03100240 -n03599486 -n03924679 -n03937543 -n02869837 -n02123394 -n01980166 -n04355933 -n03133878 -n03709823 -n06794110 -n02110341 -n01796340 -n02978881 -n03495258 -n03452741 -n02091032 -n04442312 -n04118776 -n01630670 -n03662601 -n02174001 -n04606251 -n02107142 -n03814906 -n03457902 -n02085782 -n03598930 -n02094258 -n03000247 -n02966193 -n02489166 -n04367480 -n02110063 -n07753275 -n07715103 -n04485082 -n03075370 -n02098105 -n13054560 -n02730930 -n03670208 -n02281787 -n04462240 -n02510455 -n02814860 -n04482393 -n03498962 -n09229709 -n02097130 -n04265275 -n04004767 -n02093647 -n01443537 -n01704323 -n02096437 -n03394916 -n04423845 -n02108422 -n03706229 -n02869837 -n01737021 -n03930313 -n04039381 -n02113186 -n02403003 -n02037110 -n03637318 -n02823750 -n01677366 -n02093256 -n02096294 -n06596364 -n03220513 -n02106030 -n02917067 -n02090622 -n04141076 -n01749939 -n02981792 -n02111889 -n02116738 -n09246464 -n02791124 -n02091244 -n02119022 -n02445715 -n03216828 -n03095699 -n03481172 -n04442312 -n02802426 -n09428293 -n03065424 -n02363005 -n12057211 -n02422106 -n02999410 -n03207743 -n03786901 -n02363005 -n02417914 -n01698640 -n03063599 -n04409515 -n03891251 -n03794056 -n02101388 -n04044716 -n02226429 -n01818515 -n01558993 -n02110806 -n03337140 -n03627232 -n04204238 -n07873807 -n03930630 -n04311174 -n01616318 -n04330267 -n04179913 -n04501370 -n02687172 -n02086079 -n03976467 -n03950228 -n01773797 -n03197337 -n02640242 -n01440764 -n02342885 -n02389026 -n02895154 -n02056570 -n04584207 -n03042490 -n09421951 -n01616318 -n03384352 -n07248320 -n03590841 -n03903868 -n02129165 -n02123159 -n03837869 -n03630383 -n02119789 -n07768694 -n02102973 -n03788195 -n01682714 -n02130308 -n03495258 -n03770439 -n02398521 -n02965783 -n02033041 -n02088094 -n02939185 -n01914609 -n04147183 -n03720891 -n02105641 -n01843383 -n01818515 -n02730930 -n02109961 -n04398044 -n04131690 -n01914609 -n03481172 -n04317175 -n03344393 -n04557648 -n02120505 -n02109961 -n02128385 -n02391049 -n03041632 -n09246464 -n03666591 -n02111129 -n02974003 -n02643566 -n03492542 -n02090622 -n02389026 -n01735189 -n03478589 -n03785016 -n03854065 -n03207743 -n04399382 -n02108422 -n04428191 -n07760859 -n03888605 -n02704792 -n03697007 -n03657121 -n04141975 -n04008634 -n02799071 -n02018795 -n02877765 -n07613480 -n11939491 -n02108089 -n02098413 -n01440764 -n01776313 -n03804744 -n01817953 -n02788148 -n03400231 -n03899768 -n02027492 -n02028035 -n02087394 -n04392985 -n01944390 -n04204238 -n03995372 -n02437616 -n03000684 -n03146219 -n01496331 -n02128925 -n02025239 -n03903868 -n06596364 -n01990800 -n03877845 -n02704792 -n01773549 -n03271574 -n02667093 -n01514668 -n02089867 -n02410509 -n09193705 -n04204238 -n02110806 -n02823428 -n01807496 -n07753592 -n02835271 -n04579432 -n03763968 -n01667114 -n01770393 -n02364673 -n03777568 -n04204238 -n04252077 -n01496331 -n02877765 -n01532829 -n02640242 -n04483307 -n04332243 -n03197337 -n02094433 -n03995372 -n03485407 -n02085782 -n04591157 -n07930864 -n02086079 -n01983481 -n04162706 -n02981792 -n02447366 -n03733805 -n02097298 -n04120489 -n04442312 -n07714990 -n02823428 -n02788148 -n02791270 -n11879895 -n03776460 -n02834397 -n03657121 -n02423022 -n03785016 -n03888257 -n02018207 -n01742172 -n04154565 -n02536864 -n03447721 -n02229544 -n04540053 -n04266014 -n03457902 -n03425413 -n02504013 -n02107312 -n02177972 -n02489166 -n04330267 -n03791053 -n04311004 -n02422699 -n02319095 -n04606251 -n04229816 -n02101556 -n04592741 -n03666591 -n02088094 -n02017213 -n03759954 -n02128925 -n03544143 -n03188531 -n03459775 -n04254680 -n03496892 -n02483362 -n02906734 -n07753275 -n02879718 -n02641379 -n02814860 -n03400231 -n02966687 -n09246464 -n02114712 -n02087046 -n02115913 -n03424325 -n03529860 -n01943899 -n04238763 -n03146219 -n02747177 -n02233338 -n13044778 -n03109150 -n02112350 -n03180011 -n02091831 -n03134739 -n03133878 -n01740131 -n02125311 -n02398521 -n02219486 -n04086273 -n02091244 -n02099849 -n02119789 -n04039381 -n02094114 -n04562935 -n03938244 -n07693725 -n12998815 -n04542943 -n02389026 -n03417042 -n01440764 -n02095889 -n02090379 -n02493509 -n02672831 -n01534433 -n02794156 -n02396427 -n02117135 -n03782006 -n04336792 -n03042490 -n03075370 -n02488291 -n04332243 -n02708093 -n02097209 -n02356798 -n03837869 -n04355338 -n03584829 -n03041632 -n06359193 -n03041632 -n03888257 -n03717622 -n04235860 -n04275548 -n01592084 -n03388549 -n01669191 -n07760859 -n02090622 -n01440764 -n01729322 -n02480495 -n07871810 -n04505470 -n04418357 -n03404251 -n03676483 -n02165105 -n04008634 -n03958227 -n02480855 -n02823750 -n07579787 -n02009912 -n07734744 -n03372029 -n01440764 -n02102177 -n03840681 -n07753275 -n03026506 -n01601694 -n03047690 -n02086079 -n02979186 -n02089078 -n02397096 -n12985857 -n02808304 -n04118538 -n04229816 -n09428293 -n07880968 -n04548280 -n03804744 -n01622779 -n02110063 -n02814860 -n02128385 -n01824575 -n01496331 -n04286575 -n03599486 -n03857828 -n03866082 -n03495258 -n02526121 -n02098105 -n02102973 -n03124043 -n04357314 -n07768694 -n03000134 -n03970156 -n04040759 -n02112706 -n04008634 -n04040759 -n06794110 -n02086646 -n02066245 -n03884397 -n03967562 -n04125021 -n02910353 -n02236044 -n01981276 -n07871810 -n02099849 -n03146219 -n04146614 -n09193705 -n02113023 -n02100236 -n13044778 -n03584829 -n03180011 -n02027492 -n03240683 -n02526121 -n01494475 -n02492660 -n01774750 -n07768694 -n02113712 -n03666591 -n12998815 -n03657121 -n02110806 -n03717622 -n02087394 -n02692877 -n02497673 -n04507155 -n02114855 -n04332243 -n02100877 -n04332243 -n02110627 -n03424325 -n02104365 -n01943899 -n03535780 -n02883205 -n01667778 -n01986214 -n02666196 -n02966687 -n02097658 -n03866082 -n04239074 -n02488702 -n01735189 -n04090263 -n04008634 -n03742115 -n03877472 -n03788195 -n03794056 -n01768244 -n02797295 -n02009229 -n03085013 -n02119789 -n04557648 -n02099267 -n03424325 -n03666591 -n01667778 -n07875152 -n01514668 -n02492660 -n03482405 -n04033901 -n04044716 -n03290653 -n12057211 -n02981792 -n01496331 -n02483362 -n03314780 -n04099969 -n02669723 -n02113799 -n02074367 -n02094258 -n03866082 -n04540053 -n02777292 -n03782006 -n02105251 -n03761084 -n01955084 -n02643566 -n02106662 -n01580077 -n01828970 -n02690373 -n03063599 -n02114548 -n03014705 -n03724870 -n02088364 -n07716358 -n03724870 -n03937543 -n02091635 -n02106382 -n07613480 -n13133613 -n04591157 -n02396427 -n03776460 -n02108089 -n02017213 -n04350905 -n02107683 -n04228054 -n01773549 -n03888257 -n02488291 -n04493381 -n01817953 -n01641577 -n02012849 -n01797886 -n02787622 -n02910353 -n04067472 -n03100240 -n02087046 -n03733131 -n02643566 -n02916936 -n02480495 -n02815834 -n02086079 -n02814860 -n02114712 -n07742313 -n01728920 -n02356798 -n13044778 -n01798484 -n04613696 -n02108915 -n02109047 -n03272010 -n04008634 -n02097209 -n01843065 -n02999410 -n04086273 -n03888257 -n02123394 -n04356056 -n09468604 -n01601694 -n03950228 -n04344873 -n02672831 -n12768682 -n02110341 -n10148035 -n02114367 -n04409515 -n03240683 -n04285008 -n07831146 -n03584254 -n01855672 -n02489166 -n03216828 -n03297495 -n04086273 -n01514859 -n01629819 -n02643566 -n02113023 -n02791270 -n03983396 -n07880968 -n02268853 -n03970156 -n02091831 -n02268853 -n02167151 -n03742115 -n03947888 -n04591157 -n03729826 -n02988304 -n03717622 -n02391049 -n02096585 -n02219486 -n02093647 -n02002556 -n02504458 -n01665541 -n03938244 -n03776460 -n02093256 -n02056570 -n02096051 -n02488702 -n07693725 -n01796340 -n02950826 -n01828970 -n03534580 -n03394916 -n04404412 -n03895866 -n01944390 -n04554684 -n02444819 -n03623198 -n04263257 -n04099969 -n02105855 -n03584829 -n04442312 -n01514668 -n02088364 -n01943899 -n02091831 -n02071294 -n03461385 -n04485082 -n01630670 -n01873310 -n02011460 -n02113978 -n01629819 -n07711569 -n04023962 -n01631663 -n02815834 -n01797886 -n03662601 -n02704792 -n02494079 -n02124075 -n03530642 -n03424325 -n02974003 -n01685808 -n02086910 -n04004767 -n03720891 -n04200800 -n01755581 -n04118776 -n02058221 -n03124170 -n03584829 -n01978455 -n02100583 -n03131574 -n03467068 -n02490219 -n02978881 -n02096051 -n04254120 -n03028079 -n04371774 -n02105641 -n02397096 -n04258138 -n03297495 -n02108000 -n02096585 -n02090721 -n02786058 -n02025239 -n01784675 -n03393912 -n01755581 -n02437616 -n02219486 -n03388549 -n02769748 -n03384352 -n03998194 -n02699494 -n04277352 -n03637318 -n02415577 -n03788365 -n01943899 -n02009229 -n04325704 -n04532670 -n01498041 -n03793489 -n04141076 -n04525038 -n04548362 -n02012849 -n02093754 -n03534580 -n04532670 -n02859443 -n02027492 -n04070727 -n03673027 -n11879895 -n02643566 -n04606251 -n04613696 -n03680355 -n01860187 -n04251144 -n01739381 -n02098413 -n04019541 -n02101556 -n03201208 -n04532106 -n02879718 -n02951585 -n04604644 -n04275548 -n02097474 -n03482405 -n07734744 -n03868242 -n04332243 -n04589890 -n03788365 -n03649909 -n02090721 -n02672831 -n02109525 -n02112018 -n07615774 -n02102480 -n03125729 -n01632458 -n04252225 -n01824575 -n02666196 -n03832673 -n02105641 -n07768694 -n03871628 -n03127925 -n03344393 -n02096177 -n03887697 -n03424325 -n03014705 -n03796401 -n03617480 -n04065272 -n03982430 -n04479046 -n03763968 -n02486410 -n07742313 -n02687172 -n03794056 -n04254680 -n03661043 -n02837789 -n02454379 -n01560419 -n04443257 -n07613480 -n02110806 -n01818515 -n02099712 -n03384352 -n04366367 -n03676483 -n02892767 -n02110627 -n02096294 -n01667778 -n02870880 -n03425413 -n01751748 -n04275548 -n03187595 -n02437312 -n03623198 -n01796340 -n09472597 -n04523525 -n02486261 -n01531178 -n02493509 -n02979186 -n03584829 -n03924679 -n02099601 -n03259280 -n04229816 -n01872401 -n04579432 -n01855672 -n01622779 -n02509815 -n04525305 -n04131690 -n02484975 -n09193705 -n02097658 -n02877765 -n02749479 -n06596364 -n01806567 -n02093428 -n01773157 -n03207941 -n03947888 -n01818515 -n02092339 -n02276258 -n03207743 -n02794156 -n02106166 -n03529860 -n04493381 -n02086079 -n02011460 -n03961711 -n03680355 -n04263257 -n01819313 -n02102177 -n04254120 -n03888257 -n03729826 -n04136333 -n04346328 -n02107908 -n02447366 -n03125729 -n03476684 -n02443114 -n03788195 -n03710637 -n03657121 -n03633091 -n03141823 -n07802026 -n02113978 -n01665541 -n01744401 -n02834397 -n03633091 -n04335435 -n02011460 -n02099712 -n03527444 -n03180011 -n02408429 -n02123394 -n03980874 -n04070727 -n03445777 -n04465501 -n03530642 -n03291819 -n04252077 -n01689811 -n02058221 -n02112137 -n01950731 -n01682714 -n02231487 -n07684084 -n03481172 -n02963159 -n07768694 -n03977966 -n02165456 -n02939185 -n04258138 -n02123045 -n02128757 -n02037110 -n02128925 -n02483362 -n03483316 -n04273569 -n04208210 -n03942813 -n03291819 -n03467068 -n02091467 -n02113624 -n03950228 -n03786901 -n04228054 -n03649909 -n01629819 -n02104365 -n02865351 -n02097047 -n03902125 -n02231487 -n04033995 -n02172182 -n01632777 -n02494079 -n02391049 -n02093256 -n03992509 -n03710721 -n03272010 -n03124043 -n02422699 -n02492035 -n02410509 -n04120489 -n02793495 -n03594734 -n03841143 -n03124043 -n04265275 -n02088466 -n02123159 -n03461385 -n01675722 -n02965783 -n07753113 -n07614500 -n04154565 -n03590841 -n02361337 -n07720875 -n01843383 -n04162706 -n02134418 -n03271574 -n01494475 -n01729977 -n01689811 -n01582220 -n02655020 -n03594945 -n02099712 -n02110627 -n02441942 -n02791124 -n02007558 -n03891332 -n02791270 -n02037110 -n02127052 -n01910747 -n01829413 -n04523525 -n02417914 -n04465501 -n01860187 -n03935335 -n03908714 -n02018207 -n02006656 -n07802026 -n03950228 -n07590611 -n02092002 -n04423845 -n02790996 -n04252225 -n03666591 -n02109961 -n03930630 -n02860847 -n04552348 -n02092339 -n09229709 -n02791270 -n07579787 -n03196217 -n02500267 -n02790996 -n01622779 -n02484975 -n02669723 -n02280649 -n11879895 -n03769881 -n02167151 -n02403003 -n03717622 -n02093991 -n03942813 -n04254680 -n04443257 -n01860187 -n09229709 -n02028035 -n02087394 -n01986214 -n02115641 -n02640242 -n04328186 -n03908618 -n04154565 -n02797295 -n02097209 -n02125311 -n07932039 -n02102973 -n03529860 -n01980166 -n02443114 -n03733131 -n07718472 -n03255030 -n02009912 -n02087394 -n03218198 -n02106550 -n03888605 -n01704323 -n02091635 -n03710721 -n02325366 -n02112350 -n03207743 -n03980874 -n03042490 -n07590611 -n02096051 -n02408429 -n02091244 -n03773504 -n01491361 -n02120505 -n02607072 -n02487347 -n02504458 -n04204347 -n02037110 -n02790996 -n02107312 -n04044716 -n02002556 -n02727426 -n04606251 -n02091831 -n03598930 -n03089624 -n01807496 -n07613480 -n04404412 -n04542943 -n09229709 -n03467068 -n01943899 -n11939491 -n02086646 -n02095314 -n02328150 -n02992529 -n02281787 -n04008634 -n07697313 -n03347037 -n02012849 -n02099429 -n04179913 -n02106662 -n03841143 -n07768694 -n07880968 -n02111129 -n04456115 -n04330267 -n01629819 -n04146614 -n03710193 -n03250847 -n02808304 -n03018349 -n01943899 -n02398521 -n03388549 -n02097658 -n03529860 -n02782093 -n01592084 -n04311174 -n02823750 -n04067472 -n02422699 -n03832673 -n04367480 -n04557648 -n02051845 -n01882714 -n02012849 -n03796401 -n01735189 -n09256479 -n03529860 -n11939491 -n03673027 -n01669191 -n03742115 -n02692877 -n02328150 -n07715103 -n02268443 -n02268853 -n01770393 -n07718747 -n07714571 -n01695060 -n01843065 -n03404251 -n02823750 -n04264628 -n03478589 -n02643566 -n01514859 -n02086646 -n01692333 -n03841143 -n03977966 -n04136333 -n02089973 -n02097298 -n04311174 -n01677366 -n01930112 -n02128925 -n03710721 -n02909870 -n02027492 -n04252077 -n03544143 -n09332890 -n04118776 -n04553703 -n02488702 -n02109525 -n04443257 -n01728572 -n03384352 -n04136333 -n07718472 -n03773504 -n04273569 -n02730930 -n02259212 -n03125729 -n01748264 -n03095699 -n02504458 -n04579432 -n02231487 -n04442312 -n03447447 -n02939185 -n02110341 -n04458633 -n03492542 -n02841315 -n04285008 -n02787622 -n01514668 -n03877472 -n04486054 -n04238763 -n02480495 -n07871810 -n01968897 -n03954731 -n03584829 -n03379051 -n02123394 -n03259280 -n07920052 -n02113712 -n02092002 -n02727426 -n04149813 -n01775062 -n03457902 -n03791053 -n02106550 -n09288635 -n01742172 -n02219486 -n04332243 -n02490219 -n04033901 -n03590841 -n04344873 -n07753592 -n02085936 -n03447721 -n01580077 -n02120505 -n02504458 -n03633091 -n02113023 -n02109525 -n11879895 -n03445924 -n01882714 -n02089867 -n04604644 -n03697007 -n02814533 -n02094114 -n01631663 -n02105251 -n02948072 -n04200800 -n01820546 -n03125729 -n03290653 -n02102480 -n04525038 -n03347037 -n03950228 -n02319095 -n03160309 -n03787032 -n02107574 -n04487394 -n04548280 -n07697537 -n01580077 -n03599486 -n04599235 -n01735189 -n04612504 -n02786058 -n03000247 -n02906734 -n13054560 -n02132136 -n02939185 -n02101006 -n04141975 -n04127249 -n07565083 -n01641577 -n02017213 -n02095889 -n02096585 -n03461385 -n02231487 -n04493381 -n02092339 -n04332243 -n02497673 -n02119022 -n02099601 -n04311004 -n03920288 -n02704792 -n02091032 -n03240683 -n03538406 -n04560804 -n01440764 -n02776631 -n02013706 -n02099849 -n01532829 -n02110341 -n01944390 -n03218198 -n02099712 -n04429376 -n03249569 -n02422106 -n04254777 -n04009552 -n03617480 -n03337140 -n01692333 -n02493509 -n12144580 -n03095699 -n03781244 -n03782006 -n02099429 -n09428293 -n04179913 -n02105251 -n07716358 -n04357314 -n03895866 -n02948072 -n03888257 -n03447447 -n07248320 -n01537544 -n02487347 -n03982430 -n02910353 -n07892512 -n09468604 -n03857828 -n03290653 -n03388043 -n03843555 -n04423845 -n04404412 -n04347754 -n01537544 -n02992529 -n02101388 -n02056570 -n02093859 -n02105412 -n03933933 -n02704792 -n03063599 -n12267677 -n04482393 -n01443537 -n03670208 -n04590129 -n07565083 -n04111531 -n03188531 -n02114712 -n04409515 -n03272010 -n02107312 -n02112018 -n03676483 -n03770439 -n13133613 -n04259630 -n02105641 -n04049303 -n02807133 -n03249569 -n02099267 -n04065272 -n07716906 -n02087394 -n01669191 -n04376876 -n01847000 -n02123597 -n04131690 -n02033041 -n04357314 -n01530575 -n02841315 -n01698640 -n04179913 -n01824575 -n02092002 -n02058221 -n03617480 -n04146614 -n02097130 -n09399592 -n02892201 -n02116738 -n04204347 -n04522168 -n04136333 -n01531178 -n02346627 -n02168699 -n01980166 -n07711569 -n03347037 -n04208210 -n02823750 -n02124075 -n02509815 -n03404251 -n02088364 -n01798484 -n02009912 -n03814639 -n02172182 -n03840681 -n02002556 -n03888257 -n03065424 -n03325584 -n02317335 -n02281406 -n03658185 -n02095570 -n03920288 -n03710637 -n02123597 -n03877472 -n04357314 -n07802026 -n04067472 -n02437616 -n03482405 -n01532829 -n04553703 -n03065424 -n02058221 -n07718472 -n04252225 -n02096585 -n02097658 -n04525305 -n12057211 -n04259630 -n02490219 -n04285008 -n01534433 -n01622779 -n04067472 -n04557648 -n03888257 -n02096051 -n01632458 -n02808304 -n12985857 -n01756291 -n02111500 -n02963159 -n02790996 -n03630383 -n07714990 -n04589890 -n02128757 -n02786058 -n02951358 -n03763968 -n02356798 -n01818515 -n02607072 -n07717410 -n03877472 -n04069434 -n02483362 -n04479046 -n02268853 -n10148035 -n02815834 -n02116738 -n04501370 -n03131574 -n02099712 -n02108915 -n04209239 -n03770439 -n02226429 -n12144580 -n02906734 -n02783161 -n02667093 -n04239074 -n02110063 -n01582220 -n07768694 -n01774750 -n03787032 -n12057211 -n03764736 -n01795545 -n03623198 -n01443537 -n02892201 -n03868242 -n03384352 -n02403003 -n03658185 -n03485794 -n02085782 -n04328186 -n03388183 -n04344873 -n07716358 -n02097047 -n01737021 -n01695060 -n02098286 -n04258138 -n03127747 -n07565083 -n01667114 -n03929660 -n03476684 -n03785016 -n04041544 -n02100236 -n03854065 -n03529860 -n02097209 -n02100236 -n04540053 -n02002556 -n03495258 -n02834397 -n04346328 -n03485407 -n02835271 -n01729977 -n02802426 -n03781244 -n02793495 -n02892767 -n02086240 -n02490219 -n02119022 -n06359193 -n03207743 -n01980166 -n04467665 -n04332243 -n03598930 -n04523525 -n03877472 -n03976657 -n02256656 -n02097130 -n02606052 -n04037443 -n02793495 -n03929855 -n04118776 -n02727426 -n01833805 -n02536864 -n03710721 -n03459775 -n04311004 -n02113712 -n02480495 -n03041632 -n02966193 -n03476684 -n07716358 -n04310018 -n07579787 -n02493793 -n02094433 -n07734744 -n01744401 -n03770679 -n04523525 -n02364673 -n03355925 -n07715103 -n02403003 -n01644900 -n01518878 -n02815834 -n04251144 -n02690373 -n02124075 -n04553703 -n04081281 -n02408429 -n01704323 -n02640242 -n03478589 -n04447861 -n07875152 -n04209133 -n07734744 -n04487081 -n02177972 -n02892767 -n02113624 -n03016953 -n07753275 -n02319095 -n07745940 -n02108000 -n02028035 -n02504458 -n02106550 -n07754684 -n03063599 -n03787032 -n02098105 -n03467068 -n02089867 -n02093428 -n07718747 -n07831146 -n03496892 -n03961711 -n01924916 -n01883070 -n01704323 -n03733281 -n03791053 -n02930766 -n03478589 -n01980166 -n01985128 -n09472597 -n03967562 -n02087394 -n01914609 -n02497673 -n03924679 -n03706229 -n02108089 -n15075141 -n03977966 -n07715103 -n03187595 -n02236044 -n04599235 -n03529860 -n04023962 -n02092339 -n02977058 -n07584110 -n07730033 -n03272010 -n03676483 -n02493509 -n09468604 -n02091467 -n03534580 -n03125729 -n04467665 -n01665541 -n04330267 -n02917067 -n03196217 -n02009229 -n03042490 -n01632458 -n03100240 -n02965783 -n02172182 -n03920288 -n03109150 -n07747607 -n02093859 -n02655020 -n03658185 -n03584254 -n02110806 -n04596742 -n02113799 -n01530575 -n03345487 -n02917067 -n03788195 -n02105162 -n15075141 -n04317175 -n04251144 -n02112018 -n04326547 -n03838899 -n01955084 -n02417914 -n02099849 -n02317335 -n03095699 -n02699494 -n04554684 -n03729826 -n04005630 -n02108422 -n03127925 -n02123045 -n03832673 -n02504013 -n01806567 -n04069434 -n04023962 -n04111531 -n02097209 -n02105056 -n02097209 -n03376595 -n02095314 -n01756291 -n03773504 -n01980166 -n06794110 -n04074963 -n02747177 -n02108551 -n03255030 -n03891251 -n03935335 -n03673027 -n02111277 -n03188531 -n02100236 -n02992529 -n02607072 -n02095889 -n02002556 -n02834397 -n02134084 -n07716906 -n02804414 -n02134084 -n04008634 -n02509815 -n04254120 -n04147183 -n04204238 -n03908714 -n04162706 -n03197337 -n11879895 -n03787032 -n04111531 -n02978881 -n02102177 -n03379051 -n04371774 -n01704323 -n03710721 -n01518878 -n03016953 -n02106382 -n04540053 -n01558993 -n02105412 -n02981792 -n03028079 -n03782006 -n02086079 -n04192698 -n02233338 -n03649909 -n03496892 -n02276258 -n03832673 -n04070727 -n03899768 -n03017168 -n03485794 -n04591157 -n02493509 -n02093754 -n02107683 -n04208210 -n02992529 -n03124043 -n03876231 -n03691459 -n01667778 -n07730033 -n04252225 -n04208210 -n02860847 -n01742172 -n02094114 -n03000134 -n07860988 -n01775062 -n03958227 -n03045698 -n03759954 -n02086240 -n03676483 -n04532670 -n02100583 -n02793495 -n01855032 -n04275548 -n04409515 -n03733131 -n03710193 -n07760859 -n03854065 -n01629819 -n02840245 -n03691459 -n03452741 -n03297495 -n03877472 -n02125311 -n04037443 -n02526121 -n01698640 -n04591713 -n02860847 -n02412080 -n01728572 -n04152593 -n02879718 -n02699494 -n02115913 -n03000134 -n02326432 -n02966193 -n04326547 -n04049303 -n04501370 -n07590611 -n02088466 -n01665541 -n03141823 -n02037110 -n02110958 -n03481172 -n07860988 -n02509815 -n02869837 -n03930313 -n03492542 -n02480855 -n02486261 -n03495258 -n03478589 -n03063599 -n04525038 -n02109525 -n02787622 -n01592084 -n02437616 -n13040303 -n04118776 -n02104365 -n02927161 -n03532672 -n03814639 -n01910747 -n01737021 -n03877845 -n07579787 -n09288635 -n01981276 -n03133878 -n02667093 -n02747177 -n02500267 -n04370456 -n01601694 -n03769881 -n04372370 -n02114712 -n02326432 -n03134739 -n03041632 -n01685808 -n02233338 -n01614925 -n03982430 -n03929855 -n04069434 -n04367480 -n03961711 -n03201208 -n02092002 -n04370456 -n04376876 -n02395406 -n03717622 -n04317175 -n02088094 -n02950826 -n01697457 -n04591157 -n01784675 -n03930630 -n04251144 -n02802426 -n07697537 -n01689811 -n12998815 -n04550184 -n04486054 -n01667778 -n03916031 -n01795545 -n02790996 -n01910747 -n02085936 -n03938244 -n03976467 -n02325366 -n03527444 -n02268443 -n03290653 -n03444034 -n02105056 -n02096437 -n03457902 -n03843555 -n02500267 -n02088094 -n02769748 -n04525038 -n02606052 -n04487081 -n02486261 -n03492542 -n03733131 -n02120505 -n07745940 -n02112137 -n07579787 -n02105505 -n03452741 -n10148035 -n04125021 -n04026417 -n02089867 -n03995372 -n02177972 -n03903868 -n04409515 -n01943899 -n02100236 -n03124170 -n03197337 -n02361337 -n04325704 -n03920288 -n03825788 -n02101388 -n11879895 -n03443371 -n02071294 -n07880968 -n03769881 -n03902125 -n02110806 -n03637318 -n04019541 -n03840681 -n02342885 -n03476684 -n02094114 -n04023962 -n03706229 -n02730930 -n02877765 -n04548362 -n02088632 -n04285008 -n07873807 -n03903868 -n04501370 -n04118538 -n02025239 -n03530642 -n02018207 -n03476684 -n03602883 -n02948072 -n02102040 -n02123394 -n01944390 -n02268853 -n04590129 -n01530575 -n02117135 -n03691459 -n02504013 -n03179701 -n04357314 -n04399382 -n03218198 -n02865351 -n03598930 -n02113978 -n03697007 -n01843383 -n02074367 -n02264363 -n01742172 -n02123045 -n02795169 -n03721384 -n02129165 -n03544143 -n04522168 -n12985857 -n02814860 -n02110958 -n02100735 -n13044778 -n02817516 -n07730033 -n04429376 -n04033995 -n04367480 -n03729826 -n02493793 -n04141975 -n01740131 -n01914609 -n02134418 -n01739381 -n02687172 -n02483362 -n13037406 -n01742172 -n02396427 -n02397096 -n01689811 -n09399592 -n04347754 -n02865351 -n04344873 -n02111889 -n02939185 -n04033995 -n02037110 -n01773157 -n03599486 -n02093647 -n01532829 -n02097209 -n02492660 -n04009552 -n04033901 -n02099429 -n02056570 -n02098413 -n02992211 -n03788195 -n03207743 -n03444034 -n03814639 -n04485082 -n01981276 -n01978455 -n03461385 -n01688243 -n02277742 -n03388043 -n02871525 -n02101556 -n03131574 -n02236044 -n07248320 -n03041632 -n02095314 -n04344873 -n02119022 -n02172182 -n13054560 -n01978287 -n03532672 -n04536866 -n02105412 -n04118538 -n02443484 -n01695060 -n02909870 -n02441942 -n02017213 -n02799071 -n04147183 -n04589890 -n02056570 -n02486261 -n03345487 -n04328186 -n02328150 -n04476259 -n04346328 -n04273569 -n03290653 -n03627232 -n02791124 -n02012849 -n02259212 -n02090379 -n03627232 -n03764736 -n02817516 -n04326547 -n03065424 -n02909870 -n01675722 -n04522168 -n13133613 -n02655020 -n04209133 -n02783161 -n03796401 -n03250847 -n01872401 -n01682714 -n01873310 -n01631663 -n04005630 -n02843684 -n02769748 -n02804610 -n03782006 -n01978455 -n02097298 -n02787622 -n07716906 -n02111129 -n02123045 -n02279972 -n02497673 -n02980441 -n02111129 -n03297495 -n04487081 -n04370456 -n01667778 -n03710193 -n02096294 -n03876231 -n03938244 -n02950826 -n04311174 -n04081281 -n01687978 -n04371774 -n06794110 -n02281406 -n04326547 -n02395406 -n02096051 -n02113186 -n04070727 -n02206856 -n02690373 -n01729977 -n03000684 -n01514859 -n03197337 -n03445924 -n04604644 -n02280649 -n02090379 -n02012849 -n01534433 -n07734744 -n03838899 -n02177972 -n04423845 -n03899768 -n02098105 -n03633091 -n02701002 -n04371430 -n02114367 -n03947888 -n01820546 -n02088238 -n03929855 -n04612504 -n02963159 -n02966193 -n02037110 -n03982430 -n02107574 -n02966193 -n04355933 -n03372029 -n02113978 -n04398044 -n02087046 -n02106166 -n04465501 -n03179701 -n10565667 -n03492542 -n01735189 -n02120079 -n02105251 -n01873310 -n02110063 -n03388183 -n02444819 -n02687172 -n01871265 -n02445715 -n04590129 -n12985857 -n01819313 -n03938244 -n02443114 -n04380533 -n04277352 -n02444819 -n02536864 -n02111277 -n02948072 -n03938244 -n07753113 -n01440764 -n09193705 -n02509815 -n01770393 -n01828970 -n03794056 -n03902125 -n02097474 -n07714571 -n02107908 -n01698640 -n04590129 -n02481823 -n04418357 -n02504013 -n02815834 -n01530575 -n03131574 -n02104365 -n04204238 -n02454379 -n04147183 -n02077923 -n02488291 -n02342885 -n02097474 -n07716358 -n03337140 -n04417672 -n01694178 -n04311004 -n06785654 -n07768694 -n04149813 -n01560419 -n03970156 -n04125021 -n09428293 -n04258138 -n03720891 -n04086273 -n02804610 -n03642806 -n03133878 -n02974003 -n01629819 -n03983396 -n04154565 -n02483362 -n04019541 -n03065424 -n04040759 -n06596364 -n04131690 -n01770393 -n04550184 -n02120079 -n03255030 -n02326432 -n03344393 -n12985857 -n01675722 -n01729322 -n02112137 -n04398044 -n02013706 -n04162706 -n04069434 -n03630383 -n02840245 -n01644900 -n03680355 -n04229816 -n09193705 -n02788148 -n04462240 -n03775546 -n06596364 -n02090721 -n03388183 -n04252077 -n03042490 -n01843065 -n02111129 -n01616318 -n04409515 -n10148035 -n01677366 -n02655020 -n02107683 -n02105162 -n03888257 -n02128925 -n03868863 -n04069434 -n01773797 -n03792782 -n03792782 -n01560419 -n07742313 -n13054560 -n02981792 -n03916031 -n03623198 -n04146614 -n11879895 -n01675722 -n02097130 -n04423845 -n02089973 -n04592741 -n01968897 -n07718747 -n02992529 -n07753275 -n07745940 -n02108422 -n02804414 -n02342885 -n03379051 -n02457408 -n02437312 -n03787032 -n02091032 -n02002556 -n03666591 -n03717622 -n07831146 -n03208938 -n02840245 -n03891332 -n04589890 -n03887697 -n04141076 -n03770439 -n02113023 -n02009912 -n02823750 -n04252077 -n02396427 -n02099601 -n02279972 -n01843383 -n02749479 -n04228054 -n04590129 -n01773797 -n02027492 -n02093428 -n02259212 -n01910747 -n02088364 -n02093754 -n07860988 -n02093428 -n01494475 -n03888605 -n04589890 -n02092339 -n07584110 -n02190166 -n02096051 -n04023962 -n02484975 -n03980874 -n02870880 -n01807496 -n02090721 -n02011460 -n02033041 -n01514668 -n02094114 -n02687172 -n02013706 -n04523525 -n07718747 -n02361337 -n07720875 -n04005630 -n04509417 -n07613480 -n01622779 -n03131574 -n01631663 -n02701002 -n03014705 -n02607072 -n01560419 -n03197337 -n09193705 -n02099849 -n03000134 -n02480495 -n03733805 -n07802026 -n01749939 -n03956157 -n01955084 -n03445777 -n02927161 -n02105162 -n02088238 -n06794110 -n09332890 -n02823428 -n03773504 -n03657121 -n04044716 -n07760859 -n03207941 -n07717410 -n01664065 -n03291819 -n01580077 -n02132136 -n01687978 -n09332890 -n04590129 -n04487081 -n03838899 -n01981276 -n03899768 -n04004767 -n03207743 -n02106166 -n07873807 -n04039381 -n03388549 -n03977966 -n03384352 -n02114367 -n07695742 -n02105412 -n04591157 -n01729322 -n02066245 -n03938244 -n03240683 -n07880968 -n03782006 -n02086646 -n01632777 -n02793495 -n02281406 -n02443484 -n03208938 -n04350905 -n03179701 -n03658185 -n02480855 -n01737021 -n09256479 -n04357314 -n03424325 -n02807133 -n01855032 -n01828970 -n03980874 -n02107683 -n03895866 -n07768694 -n02090721 -n02110958 -n02669723 -n04599235 -n02105641 -n02692877 -n02927161 -n01582220 -n02325366 -n04039381 -n02790996 -n07760859 -n02114712 -n02099712 -n04275548 -n04366367 -n02687172 -n02113624 -n02454379 -n04120489 -n03785016 -n02279972 -n04209239 -n01677366 -n01682714 -n01601694 -n02483708 -n07718747 -n04344873 -n02483362 -n07717556 -n01981276 -n02699494 -n03160309 -n02123597 -n03970156 -n01669191 -n01756291 -n02606052 -n02795169 -n03478589 -n02259212 -n06785654 -n02114712 -n04311174 -n03891332 -n04443257 -n01687978 -n04259630 -n02128925 -n02526121 -n03447721 -n04239074 -n03877472 -n03710637 -n07711569 -n04153751 -n01682714 -n03598930 -n04131690 -n01819313 -n02085620 -n02113023 -n03133878 -n07768694 -n04579432 -n04532670 -n03976467 -n04326547 -n02951358 -n02279972 -n03000247 -n03837869 -n09288635 -n03196217 -n03733805 -n02111889 -n04286575 -n01985128 -n02105056 -n02783161 -n03902125 -n02643566 -n04553703 -n03787032 -n02799071 -n02137549 -n03445777 -n03240683 -n02093256 -n01847000 -n01978455 -n02089973 -n03482405 -n06874185 -n02280649 -n02129604 -n02892767 -n02480495 -n02106662 -n12144580 -n03599486 -n02066245 -n02454379 -n01873310 -n03690938 -n02389026 -n02264363 -n02966193 -n02500267 -n03538406 -n01843065 -n04254680 -n04346328 -n03961711 -n03970156 -n03207941 -n03791053 -n02085936 -n03954731 -n03857828 -n02807133 -n02443114 -n02219486 -n03670208 -n04263257 -n03110669 -n01795545 -n03467068 -n02115913 -n02119789 -n04487081 -n02791124 -n04201297 -n04265275 -n01784675 -n02814533 -n02417914 -n07932039 -n02606052 -n01768244 -n04311004 -n03662601 -n02607072 -n01773549 -n02085620 -n02730930 -n04347754 -n02051845 -n01914609 -n03729826 -n02129165 -n01537544 -n03888605 -n03764736 -n04579145 -n01630670 -n01950731 -n03599486 -n03786901 -n04243546 -n04040759 -n03594945 -n01632458 -n02823750 -n04442312 -n02859443 -n01629819 -n04254777 -n04039381 -n01641577 -n04553703 -n03443371 -n04467665 -n03991062 -n02219486 -n02799071 -n04026417 -n03930313 -n02096585 -n03534580 -n07753113 -n03868863 -n01773549 -n03720891 -n02727426 -n02096177 -n03272562 -n02100236 -n03450230 -n03697007 -n02927161 -n01798484 -n02865351 -n01631663 -n02100236 -n03871628 -n03394916 -n03983396 -n03908714 -n02641379 -n07892512 -n01877812 -n01824575 -n02106030 -n02100583 -n03424325 -n02106166 -n01682714 -n04456115 -n01784675 -n03868242 -n02100877 -n04033901 -n04266014 -n04332243 -n02443114 -n04487081 -n01774750 -n02129165 -n01984695 -n03769881 -n02422106 -n04328186 -n02108915 -n02088364 -n02795169 -n01773157 -n03063689 -n04326547 -n01644900 -n09229709 -n02133161 -n03016953 -n02085620 -n07565083 -n02317335 -n04485082 -n02125311 -n04591157 -n02396427 -n04347754 -n02129604 -n02422699 -n02123597 -n03388183 -n03590841 -n02807133 -n03676483 -n03255030 -n02174001 -n04536866 -n02104029 -n02817516 -n02087046 -n02085782 -n02115641 -n02086910 -n02834397 -n03201208 -n02086240 -n02454379 -n02422699 -n02106662 -n04560804 -n02699494 -n02871525 -n04591157 -n04149813 -n03920288 -n02099267 -n02105412 -n01667778 -n03535780 -n02085936 -n03344393 -n03871628 -n02268853 -n02276258 -n03773504 -n04505470 -n02895154 -n01740131 -n02101388 -n01847000 -n04111531 -n02280649 -n04509417 -n01496331 -n02264363 -n02109525 -n03372029 -n03903868 -n01796340 -n02988304 -n02486261 -n07932039 -n03841143 -n02089867 -n02099429 -n03062245 -n02799071 -n03485794 -n03944341 -n02090379 -n04370456 -n04125021 -n03929855 -n02110063 -n02794156 -n04141076 -n02085936 -n04606251 -n02099712 -n01773549 -n02992529 -n03347037 -n02120505 -n02727426 -n03483316 -n04479046 -n03544143 -n03888605 -n04548362 -n13037406 -n04044716 -n02259212 -n02835271 -n01797886 -n02823428 -n04086273 -n02127052 -n03133878 -n03733281 -n02676566 -n02667093 -n04026417 -n07932039 -n04252077 -n03976467 -n04366367 -n03443371 -n04346328 -n02112018 -n03781244 -n03459775 -n03876231 -n01534433 -n03017168 -n02808304 -n07730033 -n02169497 -n02514041 -n04458633 -n02002556 -n03980874 -n03131574 -n01807496 -n04330267 -n01773549 -n02123159 -n04204347 -n02395406 -n02321529 -n03124043 -n03617480 -n01910747 -n01784675 -n03733131 -n07875152 -n04599235 -n09428293 -n07565083 -n02206856 -n03127747 -n02086240 -n04146614 -n04532670 -n03259280 -n02104365 -n01855032 -n04366367 -n02977058 -n02444819 -n02088632 -n04562935 -n03891251 -n07718747 -n02783161 -n03929855 -n01872401 -n07693725 -n02859443 -n04370456 -n02259212 -n02231487 -n04065272 -n02361337 -n02395406 -n02094433 -n01833805 -n02097474 -n03868242 -n04041544 -n02493793 -n02174001 -n02085620 -n12620546 -n02412080 -n02808440 -n02489166 -n04069434 -n03763968 -n03721384 -n04522168 -n03527444 -n04147183 -n02277742 -n03743016 -n02490219 -n01443537 -n01534433 -n02965783 -n02106382 -n02007558 -n03908618 -n04357314 -n02108089 -n01980166 -n03642806 -n04090263 -n02093256 -n02841315 -n01695060 -n04152593 -n04532670 -n04201297 -n03476684 -n02236044 -n02769748 -n03187595 -n02841315 -n04081281 -n07873807 -n04548362 -n03595614 -n04532670 -n03047690 -n04552348 -n01806143 -n04542943 -n07717556 -n03782006 -n02107574 -n04118776 -n04523525 -n04141327 -n03000684 -n02124075 -n02667093 -n03976467 -n02965783 -n06785654 -n04548280 -n03840681 -n04243546 -n03447721 -n03720891 -n03825788 -n02791270 -n02870880 -n03535780 -n02165456 -n02132136 -n04044716 -n03970156 -n03692522 -n01744401 -n04418357 -n02167151 -n02790996 -n03903868 -n02860847 -n02417914 -n01985128 -n02281787 -n10148035 -n02974003 -n03777754 -n03445777 -n04532106 -n02085782 -n03452741 -n03670208 -n03866082 -n02105162 -n03220513 -n03529860 -n04376876 -n01440764 -n03498962 -n02687172 -n01665541 -n04344873 -n02489166 -n03384352 -n02443484 -n03976657 -n04540053 -n01817953 -n02098105 -n02655020 -n01756291 -n02099267 -n04141327 -n07734744 -n03690938 -n02133161 -n10148035 -n03461385 -n03840681 -n02099267 -n03908618 -n02483708 -n03710637 -n02804610 -n02906734 -n07836838 -n03930313 -n02786058 -n01795545 -n02804610 -n02095570 -n03447721 -n04311004 -n04229816 -n04208210 -n03710193 -n03584829 -n04355338 -n03146219 -n02085620 -n04522168 -n02106030 -n03908618 -n02113624 -n04429376 -n02100877 -n02894605 -n02088632 -n02490219 -n02264363 -n04204238 -n07717556 -n02699494 -n13040303 -n02782093 -n04238763 -n03935335 -n02111889 -n04147183 -n02089078 -n03598930 -n04131690 -n01534433 -n04039381 -n02113023 -n03649909 -n02804610 -n02950826 -n07695742 -n03899768 -n03662601 -n02100877 -n06359193 -n04270147 -n03527444 -n04023962 -n03207743 -n03691459 -n02086646 -n04456115 -n04335435 -n04493381 -n03355925 -n02128757 -n03710637 -n02749479 -n04111531 -n02669723 -n04591157 -n02106550 -n04069434 -n01669191 -n03496892 -n01855672 -n03803284 -n04371774 -n02965783 -n01955084 -n03710637 -n04147183 -n03792782 -n04597913 -n04266014 -n02790996 -n02099601 -n03627232 -n02219486 -n07760859 -n02877765 -n07715103 -n02259212 -n07747607 -n04376876 -n01748264 -n04317175 -n02687172 -n13037406 -n02321529 -n02981792 -n02992211 -n03891332 -n01944390 -n02398521 -n07753275 -n01687978 -n03325584 -n01806143 -n01795545 -n02256656 -n13133613 -n06785654 -n02236044 -n04033901 -n02892767 -n03792972 -n07753592 -n01580077 -n03535780 -n03602883 -n02423022 -n03599486 -n02279972 -n02655020 -n03637318 -n02108000 -n03355925 -n04486054 -n01986214 -n03014705 -n04599235 -n02107312 -n04522168 -n03782006 -n02091244 -n04238763 -n01641577 -n02268853 -n07711569 -n03662601 -n02102318 -n01677366 -n02097209 -n03763968 -n03786901 -n02509815 -n02086910 -n06794110 -n07920052 -n03379051 -n02346627 -n02018795 -n02480495 -n07711569 -n04532670 -n02099712 -n02110806 -n03759954 -n02123597 -n04154565 -n03347037 -n02077923 -n02514041 -n01616318 -n02641379 -n04086273 -n02097298 -n02930766 -n01983481 -n03995372 -n03891332 -n03218198 -n02058221 -n01729322 -n02799071 -n01820546 -n04127249 -n02834397 -n02097209 -n03196217 -n03216828 -n02096585 -n04229816 -n11879895 -n03977966 -n03876231 -n03908618 -n03255030 -n02106662 -n02488702 -n02978881 -n03868242 -n03710721 -n03494278 -n02363005 -n02939185 -n07768694 -n04505470 -n02028035 -n02894605 -n07717410 -n07745940 -n04429376 -n04344873 -n02727426 -n01753488 -n02110806 -n03661043 -n01806567 -n01955084 -n03467068 -n02110063 -n03902125 -n03450230 -n01692333 -n02114855 -n01644900 -n07742313 -n07565083 -n04505470 -n02088364 -n03733131 -n02105056 -n02606052 -n03179701 -n07715103 -n02641379 -n03259280 -n07873807 -n04584207 -n02110063 -n03218198 -n02494079 -n01644373 -n04332243 -n02115913 -n02120079 -n09229709 -n02481823 -n04235860 -n02113799 -n02823428 -n04371774 -n02442845 -n01498041 -n03944341 -n09332890 -n02091134 -n02690373 -n02788148 -n02869837 -n04204238 -n01675722 -n02236044 -n02280649 -n12144580 -n01882714 -n04120489 -n02999410 -n03692522 -n01729322 -n04532670 -n03337140 -n02966193 -n07742313 -n03793489 -n04355933 -n03220513 -n02445715 -n04443257 -n04026417 -n02823428 -n03976467 -n02102177 -n03773504 -n04487394 -n02085936 -n07614500 -n02089078 -n02206856 -n04147183 -n04501370 -n02422699 -n02085782 -n02097130 -n03929660 -n01751748 -n02099849 -n01924916 -n01692333 -n04275548 -n03991062 -n01824575 -n03218198 -n02018207 -n03530642 -n03782006 -n03697007 -n07734744 -n01820546 -n02280649 -n02115913 -n04325704 -n02104029 -n03250847 -n11879895 -n03709823 -n03271574 -n04483307 -n04525038 -n02835271 -n02102318 -n04285008 -n01491361 -n01742172 -n02077923 -n01728572 -n01914609 -n03388549 -n03085013 -n02395406 -n03868863 -n04033901 -n02011460 -n02123159 -n02391049 -n04039381 -n01695060 -n02129165 -n03944341 -n04462240 -n02403003 -n03920288 -n03649909 -n04515003 -n03372029 -n02091467 -n04372370 -n02129165 -n01753488 -n02113712 -n03445777 -n04525305 -n01768244 -n02493509 -n03743016 -n12998815 -n03770439 -n02777292 -n02097298 -n01687978 -n04179913 -n02749479 -n03627232 -n03207743 -n03476991 -n07745940 -n01883070 -n03792972 -n03769881 -n02011460 -n02870880 -n02123045 -n04040759 -n07684084 -n02111277 -n01877812 -n04019541 -n03197337 -n02494079 -n03187595 -n02687172 -n02883205 -n07754684 -n09399592 -n02791270 -n03063689 -n03902125 -n02415577 -n02086240 -n02093991 -n02802426 -n03782006 -n03478589 -n02128385 -n02894605 -n02115641 -n02011460 -n02951358 -n02128757 -n02871525 -n02346627 -n03450230 -n09229709 -n02417914 -n01796340 -n02128925 -n04486054 -n02749479 -n02346627 -n01930112 -n02091032 -n02963159 -n01944390 -n02793495 -n02018207 -n04153751 -n02790996 -n02129165 -n03538406 -n02965783 -n03179701 -n03160309 -n01644373 -n01770393 -n02109961 -n01873310 -n03085013 -n01735189 -n04370456 -n02018207 -n02018795 -n02110627 -n03804744 -n03534580 -n07760859 -n01631663 -n04482393 -n02917067 -n07753592 -n03447447 -n02112706 -n03947888 -n02927161 -n04228054 -n03259280 -n07753275 -n07753592 -n02948072 -n07697313 -n01984695 -n11879895 -n02125311 -n12998815 -n03976657 -n02096294 -n04264628 -n04548362 -n02276258 -n03891251 -n03127925 -n02834397 -n03854065 -n02979186 -n07920052 -n02110627 -n02095314 -n04049303 -n02965783 -n02895154 -n02013706 -n04044716 -n03709823 -n02138441 -n02777292 -n01943899 -n07892512 -n02091831 -n03743016 -n01514668 -n04243546 -n02105251 -n03032252 -n01855032 -n04612504 -n03770679 -n03866082 -n02091134 -n03443371 -n03777568 -n03773504 -n02480855 -n07745940 -n02391049 -n01910747 -n02277742 -n03938244 -n02788148 -n01440764 -n03425413 -n03895866 -n03950228 -n02133161 -n01843065 -n02992211 -n02834397 -n02066245 -n03337140 -n07716358 -n03584829 -n02095314 -n02093991 -n02974003 -n02025239 -n04596742 -n02916936 -n01768244 -n03720891 -n02056570 -n02102177 -n04557648 -n02268853 -n02098105 -n01514859 -n04141975 -n02071294 -n03188531 -n04254777 -n03709823 -n03095699 -n04517823 -n03733131 -n07693725 -n03476684 -n03724870 -n03983396 -n02342885 -n02510455 -n03874293 -n02823428 -n04356056 -n01494475 -n04251144 -n02894605 -n02097658 -n04273569 -n02123045 -n03250847 -n01687978 -n02012849 -n03733131 -n02096294 -n02279972 -n01641577 -n03804744 -n02871525 -n04479046 -n07697313 -n02786058 -n01924916 -n07932039 -n02099712 -n03271574 -n02488702 -n02927161 -n02815834 -n02877765 -n04560804 -n03297495 -n04590129 -n03944341 -n03980874 -n02105056 -n01734418 -n03947888 -n02363005 -n06596364 -n07753275 -n02930766 -n02093859 -n03207941 -n01818515 -n03657121 -n01629819 -n03063689 -n03255030 -n02808440 -n02981792 -n09246464 -n04591713 -n03492542 -n04517823 -n03240683 -n07716358 -n07717556 -n02814533 -n01843383 -n03691459 -n02134418 -n02110185 -n02093754 -n02807133 -n07684084 -n02091244 -n03873416 -n02113624 -n02094433 -n02917067 -n03450230 -n03888605 -n01616318 -n04435653 -n02111277 -n02006656 -n02363005 -n02497673 -n07753592 -n07711569 -n01693334 -n03954731 -n04033995 -n04208210 -n02817516 -n07754684 -n02256656 -n13052670 -n04417672 -n11939491 -n02443114 -n03445777 -n02093859 -n07684084 -n03026506 -n04081281 -n02002724 -n02317335 -n03584829 -n04039381 -n03062245 -n02091134 -n07745940 -n02092002 -n03991062 -n02843684 -n03961711 -n04069434 -n01558993 -n07745940 -n04486054 -n04347754 -n02011460 -n02808304 -n02109961 -n04229816 -n04409515 -n04116512 -n03857828 -n02445715 -n03920288 -n02488702 -n03126707 -n07932039 -n02835271 -n03445924 -n01797886 -n03476684 -n03658185 -n01943899 -n02951358 -n03532672 -n02966193 -n02988304 -n02229544 -n02095570 -n02841315 -n04536866 -n02268853 -n03445924 -n03803284 -n04254777 -n02443484 -n03133878 -n02799071 -n13133613 -n02102040 -n02107908 -n03947888 -n04487394 -n03599486 -n03452741 -n02097298 -n04417672 -n02493793 -n02325366 -n07747607 -n03188531 -n04482393 -n02088632 -n04461696 -n03249569 -n07693725 -n02096437 -n01773797 -n02105162 -n02843684 -n02950826 -n02492660 -n04366367 -n01981276 -n03207941 -n02966193 -n03534580 -n02112018 -n01688243 -n04584207 -n02415577 -n01847000 -n02514041 -n02488291 -n02749479 -n04380533 -n02510455 -n02526121 -n07745940 -n03930313 -n03877845 -n01755581 -n01667114 -n02108000 -n02699494 -n02363005 -n02100877 -n03770439 -n02114712 -n02100735 -n02108000 -n02028035 -n02108551 -n02484975 -n07718747 -n03498962 -n01665541 -n02894605 -n04118776 -n02119022 -n04258138 -n04604644 -n02115641 -n07768694 -n12267677 -n03908714 -n03876231 -n07717556 -n11879895 -n01688243 -n03208938 -n12267677 -n02669723 -n02965783 -n02276258 -n01631663 -n04487394 -n02825657 -n01749939 -n04037443 -n04041544 -n03376595 -n04532670 -n02104365 -n02233338 -n02793495 -n03770439 -n01910747 -n04154565 -n01980166 -n03793489 -n02025239 -n02480495 -n03781244 -n04399382 -n07871810 -n04065272 -n02017213 -n01943899 -n04067472 -n03761084 -n02094433 -n03538406 -n02494079 -n04147183 -n04141076 -n04589890 -n01601694 -n02123394 -n06874185 -n02114548 -n03637318 -n03710193 -n04536866 -n09399592 -n03452741 -n03594945 -n07860988 -n03085013 -n02814533 -n03461385 -n04252077 -n02859443 -n04033901 -n01530575 -n03476684 -n04069434 -n02105056 -n02128385 -n01694178 -n01688243 -n03372029 -n04465501 -n02808440 -n04235860 -n02177972 -n13044778 -n02096177 -n01770081 -n01669191 -n02481823 -n07880968 -n03888605 -n02117135 -n02096437 -n02397096 -n01592084 -n03769881 -n03026506 -n02107574 -n02114367 -n03124170 -n03733281 -n03692522 -n02037110 -n02167151 -n01930112 -n03995372 -n03355925 -n03676483 -n03000247 -n02966193 -n02910353 -n01682714 -n02910353 -n02510455 -n02106550 -n02120079 -n03841143 -n04229816 -n02447366 -n02091467 -n04456115 -n03937543 -n01818515 -n04086273 -n02865351 -n03109150 -n02808304 -n03483316 -n01560419 -n07930864 -n04392985 -n04592741 -n04192698 -n02089973 -n03485794 -n07613480 -n02951585 -n01494475 -n01443537 -n02097298 -n02877765 -n02101388 -n03271574 -n03041632 -n03895866 -n02865351 -n02091134 -n02027492 -n03201208 -n03983396 -n02364673 -n02134084 -n02165105 -n01773549 -n04127249 -n04275548 -n01883070 -n02112706 -n03776460 -n02108000 -n02397096 -n04525305 -n02113624 -n02268853 -n02091134 -n03476991 -n02815834 -n04525305 -n03857828 -n03272010 -n04523525 -n04335435 -n03595614 -n07932039 -n03345487 -n03877472 -n04485082 -n02794156 -n03877472 -n03492542 -n02114712 -n02883205 -n02106662 -n03417042 -n03617480 -n02978881 -n02101556 -n04039381 -n02105641 -n02098413 -n04552348 -n02823750 -n07753113 -n02110063 -n09332890 -n09468604 -n02457408 -n01537544 -n02497673 -n09229709 -n04311004 -n02776631 -n02692877 -n03623198 -n04328186 -n03697007 -n02102177 -n01687978 -n03207743 -n03733131 -n02099429 -n03769881 -n02099601 -n02787622 -n03000134 -n03895866 -n02127052 -n04136333 -n02106662 -n13044778 -n01981276 -n03680355 -n03372029 -n03908618 -n03877472 -n04346328 -n04557648 -n04270147 -n04428191 -n02870880 -n03297495 -n02871525 -n02391049 -n02123045 -n01871265 -n02071294 -n02119022 -n04592741 -n02509815 -n03424325 -n02514041 -n02101006 -n02747177 -n01950731 -n02172182 -n04336792 -n04356056 -n04252077 -n01740131 -n04613696 -n04023962 -n04485082 -n02128925 -n02086079 -n03983396 -n02134084 -n02133161 -n02128925 -n04517823 -n07875152 -n02128385 -n04204347 -n02077923 -n03272010 -n02840245 -n02105641 -n01817953 -n04146614 -n04554684 -n03796401 -n04039381 -n02788148 -n04483307 -n02493793 -n03692522 -n03075370 -n03733281 -n04238763 -n02815834 -n03065424 -n02672831 -n03602883 -n04346328 -n02066245 -n03444034 -n03594734 -n15075141 -n12144580 -n07579787 -n02992529 -n04515003 -n02107142 -n02117135 -n01734418 -n01693334 -n02105505 -n02992211 -n02869837 -n13133613 -n02666196 -n04041544 -n03857828 -n04418357 -n02113978 -n01744401 -n02797295 -n02699494 -n02489166 -n02098286 -n04243546 -n02134418 -n02106662 -n03670208 -n04090263 -n02692877 -n03467068 -n04238763 -n03788365 -n03657121 -n02906734 -n02326432 -n02676566 -n02607072 -n03627232 -n02894605 -n03538406 -n04136333 -n01632458 -n04125021 -n03134739 -n01697457 -n03924679 -n04243546 -n09256479 -n02493793 -n07871810 -n02177972 -n01917289 -n02088466 -n04069434 -n03891251 -n02113799 -n07711569 -n01833805 -n04270147 -n04259630 -n02859443 -n04270147 -n02110063 -n03042490 -n03290653 -n02002724 -n02100583 -n01608432 -n03710193 -n03777754 -n02971356 -n04482393 -n13037406 -n01768244 -n03929855 -n03016953 -n07584110 -n02113023 -n04447861 -n02128925 -n02988304 -n04201297 -n02006656 -n01807496 -n03658185 -n03394916 -n07716358 -n07579787 -n02102177 -n01729322 -n03775071 -n04482393 -n02415577 -n02607072 -n02909870 -n03255030 -n03344393 -n02325366 -n02102480 -n02102177 -n04423845 -n02130308 -n03785016 -n02787622 -n04200800 -n02087046 -n04487394 -n04152593 -n04065272 -n07831146 -n02843684 -n07248320 -n03498962 -n02128757 -n04523525 -n02999410 -n03697007 -n02097209 -n11939491 -n04141327 -n07248320 -n04461696 -n02110185 -n02483708 -n03902125 -n02168699 -n02834397 -n02108915 -n02963159 -n03841143 -n02120505 -n02111129 -n02112350 -n03793489 -n03649909 -n04090263 -n02727426 -n04033995 -n01608432 -n02364673 -n02895154 -n07730033 -n02423022 -n02999410 -n07579787 -n02086079 -n01631663 -n02494079 -n04118776 -n03467068 -n03476684 -n03954731 -n03775546 -n02981792 -n01873310 -n01980166 -n04049303 -n04099969 -n02965783 -n02281787 -n02823750 -n02655020 -n02403003 -n02951358 -n02028035 -n02504458 -n03814639 -n02085620 -n04486054 -n03761084 -n07930864 -n04522168 -n04347754 -n01644373 -n02992211 -n04483307 -n02102973 -n04467665 -n03026506 -n03026506 -n07697537 -n01532829 -n04442312 -n02108551 -n01824575 -n04254777 -n03109150 -n01728920 -n04380533 -n02795169 -n04493381 -n03141823 -n01817953 -n04026417 -n02909870 -n01601694 -n02834397 -n03376595 -n02909870 -n07711569 -n03891251 -n01806567 -n03854065 -n03814906 -n02808304 -n04153751 -n07768694 -n04532106 -n02102973 -n02346627 -n13133613 -n02129604 -n02443484 -n03792972 -n02804414 -n02097298 -n02708093 -n01748264 -n03992509 -n04591713 -n02105162 -n03840681 -n02276258 -n02100583 -n02408429 -n03770679 -n07717556 -n02280649 -n02006656 -n04560804 -n04285008 -n03868863 -n02088238 -n02799071 -n04560804 -n02108551 -n02487347 -n01614925 -n04505470 -n04090263 -n03661043 -n01675722 -n01531178 -n01632458 -n01695060 -n04254777 -n04355933 -n03743016 -n04259630 -n01534433 -n02110958 -n02112350 -n02488702 -n02687172 -n09246464 -n02071294 -n02497673 -n03871628 -n07717556 -n02105412 -n02999410 -n02105412 -n04208210 -n04589890 -n03379051 -n03404251 -n03014705 -n04146614 -n03938244 -n02107142 -n03452741 -n01667114 -n04311174 -n01667778 -n03127747 -n02105412 -n09399592 -n07716906 -n03673027 -n03197337 -n03450230 -n02113186 -n01775062 -n04380533 -n06359193 -n03483316 -n02172182 -n03496892 -n03843555 -n04476259 -n02110806 -n04467665 -n04548280 -n01518878 -n02281787 -n02093647 -n04404412 -n04356056 -n03840681 -n03995372 -n02326432 -n02777292 -n01776313 -n03220513 -n02795169 -n02074367 -n01968897 -n07693725 -n02906734 -n03777754 -n02497673 -n03126707 -n04259630 -n03729826 -n04026417 -n01855032 -n02808440 -n04346328 -n03930313 -n04560804 -n03127925 -n07684084 -n04417672 -n02172182 -n02325366 -n03899768 -n01644900 -n02113186 -n03710637 -n03857828 -n02114548 -n04326547 -n02643566 -n02092002 -n03124170 -n02281406 -n01806567 -n04254680 -n03344393 -n01532829 -n02116738 -n02116738 -n02094258 -n03690938 -n03272562 -n03110669 -n03786901 -n07920052 -n04355933 -n01978455 -n01806143 -n01944390 -n03450230 -n02088364 -n03956157 -n02437312 -n03590841 -n04344873 -n02277742 -n02111277 -n01784675 -n04483307 -n02132136 -n04019541 -n01693334 -n01608432 -n01667114 -n02236044 -n03775546 -n01739381 -n02100583 -n02090622 -n01729322 -n04350905 -n02056570 -n04612504 -n04505470 -n12057211 -n03837869 -n01531178 -n04376876 -n02454379 -n02124075 -n02395406 -n02114367 -n03481172 -n02109047 -n07715103 -n04154565 -n02423022 -n01756291 -n02108089 -n02493793 -n03602883 -n02168699 -n01978455 -n02097298 -n02447366 -n04229816 -n07583066 -n03207743 -n07248320 -n02100583 -n02823750 -n01608432 -n04418357 -n01833805 -n03930630 -n03425413 -n02788148 -n03637318 -n04265275 -n02281787 -n04335435 -n02093428 -n06359193 -n03944341 -n04041544 -n04515003 -n02106550 -n02097130 -n02837789 -n07753275 -n04026417 -n03673027 -n03887697 -n03110669 -n03769881 -n01532829 -n02006656 -n04296562 -n04347754 -n01828970 -n03125729 -n03877472 -n02096051 -n04483307 -n02398521 -n03770679 -n02106662 -n03775546 -n04347754 -n02676566 -n03690938 -n07831146 -n04398044 -n01985128 -n02109047 -n03785016 -n03494278 -n03792972 -n02114367 -n03777754 -n04090263 -n02132136 -n03134739 -n01491361 -n09332890 -n03803284 -n02120079 -n03075370 -n02104365 -n03884397 -n02790996 -n01751748 -n07695742 -n02123045 -n03759954 -n03733131 -n12998815 -n03223299 -n07745940 -n04532106 -n02111889 -n02708093 -n01944390 -n01534433 -n02361337 -n02113624 -n02090721 -n02093256 -n02025239 -n04355933 -n03452741 -n01530575 -n01443537 -n04209239 -n02037110 -n04154565 -n03594945 -n04465501 -n07714990 -n03868863 -n01819313 -n04026417 -n04553703 -n02112706 -n01980166 -n02797295 -n03888257 -n02342885 -n03216828 -n03388043 -n03804744 -n02138441 -n01689811 -n04553703 -n02231487 -n04208210 -n03372029 -n02096177 -n04429376 -n03272010 -n02493509 -n03127747 -n02786058 -n03777568 -n04238763 -n03535780 -n03938244 -n02408429 -n02097658 -n02123159 -n03891251 -n02165105 -n02437312 -n02114712 -n04540053 -n04270147 -n02113186 -n02281406 -n03899768 -n04442312 -n04023962 -n02963159 -n02102973 -n01860187 -n03297495 -n03733805 -n03980874 -n04336792 -n04366367 -n02412080 -n02966687 -n03763968 -n02098286 -n01756291 -n03929855 -n03944341 -n03271574 -n04026417 -n07754684 -n01985128 -n07753113 -n01675722 -n02106166 -n02116738 -n03916031 -n04065272 -n03110669 -n07747607 -n02009912 -n03950228 -n03483316 -n07716358 -n03216828 -n09835506 -n03393912 -n02526121 -n03770439 -n02002724 -n02871525 -n01776313 -n04355933 -n03450230 -n02025239 -n02107312 -n04606251 -n03063599 -n01795545 -n04254777 -n02120079 -n01833805 -n02099601 -n13052670 -n02676566 -n03457902 -n03720891 -n03793489 -n01775062 -n01978287 -n10565667 -n02916936 -n03599486 -n02110958 -n01443537 -n04204238 -n02672831 -n07717410 -n04209239 -n01491361 -n02963159 -n03424325 -n03697007 -n03344393 -n03445777 -n02999410 -n02441942 -n04525038 -n02403003 -n07684084 -n03125729 -n02095570 -n01796340 -n03599486 -n07747607 -n04507155 -n07768694 -n04501370 -n07734744 -n02676566 -n01871265 -n03680355 -n02088466 -n10565667 -n02110958 -n02096437 -n01498041 -n02130308 -n07836838 -n03884397 -n04065272 -n02033041 -n02607072 -n13040303 -n02808304 -n03095699 -n03485407 -n02395406 -n04560804 -n02676566 -n04589890 -n02110958 -n02837789 -n01669191 -n02123045 -n07579787 -n01667778 -n12998815 -n04613696 -n02951585 -n03623198 -n03764736 -n02892767 -n02102318 -n04040759 -n02123045 -n03062245 -n02701002 -n03201208 -n04266014 -n01873310 -n04597913 -n03595614 -n07716906 -n02988304 -n03445924 -n02860847 -n02095889 -n02115913 -n01756291 -n02114548 -n02457408 -n03995372 -n01614925 -n02107312 -n03930630 -n03017168 -n03535780 -n01985128 -n02177972 -n03045698 -n13133613 -n04398044 -n02099267 -n01829413 -n02114712 -n02104029 -n01440764 -n04263257 -n04251144 -n03584254 -n03874599 -n06359193 -n04070727 -n04209133 -n04065272 -n01748264 -n02980441 -n02093754 -n02097658 -n03187595 -n01742172 -n04590129 -n03188531 -n02504013 -n02017213 -n02979186 -n02843684 -n04040759 -n01667778 -n01820546 -n02116738 -n04243546 -n04090263 -n03888605 -n01985128 -n02823750 -n04141975 -n03376595 -n02108915 -n03372029 -n02423022 -n01728920 -n02102973 -n01580077 -n02492660 -n07716906 -n02096294 -n03259280 -n03884397 -n02102973 -n03666591 -n02486410 -n02102480 -n02105162 -n09246464 -n02823750 -n04152593 -n03196217 -n01818515 -n04591157 -n04328186 -n01742172 -n01753488 -n02971356 -n09428293 -n02927161 -n03180011 -n04099969 -n02795169 -n02895154 -n03929660 -n01910747 -n03854065 -n02747177 -n03803284 -n02123394 -n04264628 -n04243546 -n02123159 -n01983481 -n02526121 -n12267677 -n06785654 -n04606251 -n01855672 -n02281406 -n04296562 -n01773549 -n02127052 -n02090622 -n02088094 -n04125021 -n01728920 -n03595614 -n02090622 -n04285008 -n03874293 -n02823428 -n02028035 -n02077923 -n02017213 -n03903868 -n02127052 -n04317175 -n02107683 -n01984695 -n03995372 -n02090721 -n02089867 -n10148035 -n01737021 -n01883070 -n01819313 -n03958227 -n03841143 -n03459775 -n03777568 -n03417042 -n02110185 -n03388549 -n03924679 -n02672831 -n02165456 -n03207743 -n04136333 -n02971356 -n04039381 -n04162706 -n02791124 -n03124170 -n01843065 -n04428191 -n03874599 -n02102480 -n04487394 -n01883070 -n02966193 -n01494475 -n02110341 -n07716358 -n07248320 -n02814860 -n04133789 -n02443114 -n02110063 -n04509417 -n02108089 -n04548362 -n01748264 -n03710637 -n02091467 -n02110341 -n02113624 -n01819313 -n02939185 -n03272562 -n02787622 -n12267677 -n04141327 -n02110958 -n01687978 -n04429376 -n01729322 -n02093647 -n07920052 -n01910747 -n02107908 -n03895866 -n02086079 -n02895154 -n13037406 -n03876231 -n04590129 -n01692333 -n03717622 -n02109525 -n04355338 -n03777568 -n03314780 -n03887697 -n04141975 -n01978287 -n04597913 -n04141975 -n02782093 -n03868242 -n02002724 -n03196217 -n04153751 -n01629819 -n02808440 -n02058221 -n01531178 -n02114712 -n03494278 -n04204347 -n03793489 -n03483316 -n04209239 -n03776460 -n04336792 -n02114548 -n02667093 -n02834397 -n04456115 -n03394916 -n04346328 -n01776313 -n02124075 -n02356798 -n03895866 -n02963159 -n01883070 -n03355925 -n02226429 -n03417042 -n02106550 -n02101388 -n04200800 -n02011460 -n02112706 -n04326547 -n01985128 -n03110669 -n03804744 -n04141327 -n11939491 -n02105251 -n03201208 -n07754684 -n01632777 -n04553703 -n04149813 -n02481823 -n03947888 -n01534433 -n03457902 -n02776631 -n04209239 -n04523525 -n04074963 -n02233338 -n03930313 -n03249569 -n03884397 -n01601694 -n04560804 -n02514041 -n03417042 -n07880968 -n03594734 -n03344393 -n02088632 -n02106662 -n02108551 -n01744401 -n02483708 -n02971356 -n02909870 -n02841315 -n03496892 -n02100583 -n03476684 -n07718472 -n01641577 -n06596364 -n03954731 -n04357314 -n04259630 -n07695742 -n04423845 -n03249569 -n04111531 -n02895154 -n04149813 -n02114712 -n04252225 -n03770679 -n02837789 -n04428191 -n02361337 -n02100236 -n01728920 -n03594945 -n02268443 -n07875152 -n07695742 -n02108551 -n01531178 -n01980166 -n02106382 -n03658185 -n02988304 -n04141076 -n02906734 -n02012849 -n02786058 -n01614925 -n02206856 -n01631663 -n03100240 -n03047690 -n03180011 -n02895154 -n02782093 -n03595614 -n09332890 -n07749582 -n04258138 -n03095699 -n02096177 -n01728920 -n03538406 -n01806143 -n02088238 -n04501370 -n09229709 -n04423845 -n02397096 -n02133161 -n02088238 -n02264363 -n02101006 -n04515003 -n02870880 -n04548280 -n04461696 -n03028079 -n02268853 -n03874599 -n01877812 -n02699494 -n12985857 -n02454379 -n04326547 -n02089867 -n01560419 -n02093256 -n04204347 -n04347754 -n02086240 -n04286575 -n04482393 -n03840681 -n04065272 -n02480855 -n02749479 -n03492542 -n02096437 -n02317335 -n02174001 -n04525305 -n04039381 -n07753592 -n13037406 -n02494079 -n04258138 -n02229544 -n01843383 -n01728920 -n04330267 -n02325366 -n02808304 -n04462240 -n03874293 -n03482405 -n01629819 -n03781244 -n04392985 -n04258138 -n03160309 -n02096585 -n01614925 -n02017213 -n04133789 -n04277352 -n02106030 -n04428191 -n03400231 -n03249569 -n01514668 -n10148035 -n02397096 -n07697313 -n07802026 -n03887697 -n07248320 -n01855032 -n03908618 -n02086910 -n04254680 -n02104365 -n03445777 -n02011460 -n07695742 -n04344873 -n01667778 -n02091244 -n01534433 -n02097474 -n02701002 -n03208938 -n03676483 -n03770439 -n01755581 -n02108915 -n01753488 -n02102480 -n03633091 -n03662601 -n01770393 -n07590611 -n04264628 -n03998194 -n02396427 -n02102040 -n01770393 -n04162706 -n02281406 -n12768682 -n01945685 -n03483316 -n01978287 -n02119022 -n02169497 -n03991062 -n04465501 -n07614500 -n01990800 -n01534433 -n03770679 -n09288635 -n03188531 -n09256479 -n04259630 -n02110627 -n04560804 -n02113978 -n02095889 -n04599235 -n03259280 -n02111277 -n02794156 -n04328186 -n04254680 -n03661043 -n03599486 -n02097130 -n02033041 -n02071294 -n03937543 -n09288635 -n03709823 -n02489166 -n03673027 -n01828970 -n04532106 -n03496892 -n01924916 -n04548280 -n02319095 -n02395406 -n02782093 -n04554684 -n02086240 -n03916031 -n02791270 -n07717410 -n04238763 -n02730930 -n01514859 -n01748264 -n02988304 -n03461385 -n03272562 -n04330267 -n07860988 -n02276258 -n07871810 -n02097474 -n02999410 -n04037443 -n01614925 -n04033901 -n03944341 -n02655020 -n01608432 -n03874599 -n03594945 -n04252225 -n07892512 -n03717622 -n03763968 -n02110627 -n02795169 -n03000134 -n02494079 -n03042490 -n03100240 -n07875152 -n02802426 -n02484975 -n09229709 -n02747177 -n06596364 -n04557648 -n02123394 -n02002724 -n02167151 -n02504013 -n01616318 -n03770439 -n04428191 -n02051845 -n04579145 -n02093754 -n12267677 -n01641577 -n02963159 -n02807133 -n04590129 -n03467068 -n01629819 -n02443484 -n02088238 -n02412080 -n03532672 -n04591157 -n04486054 -n02692877 -n02727426 -n04371774 -n04273569 -n03733131 -n03544143 -n02104365 -n02109961 -n03447447 -n01872401 -n03961711 -n02116738 -n01688243 -n01749939 -n03141823 -n02509815 -n12985857 -n01829413 -n02109047 -n02526121 -n02097658 -n03216828 -n02870880 -n04266014 -n04355338 -n03633091 -n01910747 -n02006656 -n03445924 -n02906734 -n04099969 -n02099712 -n02229544 -n04443257 -n02687172 -n04273569 -n02489166 -n03924679 -n12985857 -n02167151 -n02321529 -n02102040 -n02870880 -n01693334 -n02097298 -n01882714 -n04040759 -n03791053 -n02979186 -n02454379 -n03131574 -n04141327 -n02981792 -n02974003 -n02090721 -n04131690 -n02106030 -n02493793 -n02963159 -n04596742 -n11879895 -n03457902 -n02823750 -n01774750 -n03788365 -n02389026 -n02823750 -n02493509 -n07583066 -n01682714 -n03899768 -n02279972 -n07747607 -n01692333 -n04243546 -n04317175 -n02106550 -n01664065 -n01677366 -n02093754 -n04346328 -n02106550 -n02127052 -n03666591 -n03877845 -n03125729 -n03786901 -n03775071 -n02412080 -n01518878 -n03720891 -n01735189 -n02356798 -n02110806 -n03047690 -n04462240 -n02951585 -n01558993 -n03065424 -n02860847 -n02486410 -n02398521 -n04346328 -n02106030 -n02445715 -n04153751 -n02509815 -n01828970 -n04069434 -n07714571 -n13044778 -n01955084 -n03662601 -n01664065 -n02708093 -n02408429 -n03920288 -n02190166 -n02091635 -n04229816 -n01773549 -n02106662 -n02009912 -n01558993 -n02127052 -n02843684 -n02174001 -n03345487 -n01990800 -n03584254 -n02389026 -n02389026 -n04069434 -n03032252 -n07749582 -n02110627 -n02807133 -n02012849 -n03208938 -n02107142 -n03995372 -n02927161 -n03888257 -n02802426 -n09193705 -n07716906 -n03345487 -n02088094 -n03297495 -n02871525 -n02363005 -n02206856 -n02445715 -n02783161 -n02948072 -n09421951 -n02410509 -n02808304 -n03903868 -n02110063 -n03724870 -n07836838 -n04141975 -n02487347 -n02112137 -n02804610 -n07734744 -n04462240 -n03372029 -n02177972 -n02085620 -n01917289 -n04070727 -n02823428 -n02860847 -n04392985 -n02791124 -n01847000 -n01784675 -n02093991 -n03457902 -n02939185 -n04493381 -n03271574 -n02509815 -n03793489 -n02690373 -n03983396 -n02927161 -n03018349 -n03908618 -n02110341 -n03776460 -n02124075 -n04335435 -n03127747 -n02948072 -n03085013 -n02442845 -n02916936 -n01688243 -n02879718 -n02097298 -n04589890 -n02607072 -n02948072 -n04525038 -n02100735 -n02814533 -n03000134 -n03478589 -n02037110 -n04235860 -n02112137 -n04435653 -n04273569 -n03794056 -n01910747 -n01748264 -n01883070 -n04200800 -n04590129 -n03443371 -n02791124 -n03075370 -n03673027 -n01742172 -n03476684 -n01484850 -n01675722 -n02978881 -n03938244 -n02106166 -n01729977 -n04118776 -n04209239 -n03376595 -n04008634 -n02095889 -n01855032 -n03376595 -n04456115 -n02879718 -n04238763 -n02268443 -n02794156 -n02105505 -n01914609 -n03899768 -n02676566 -n02099601 -n02106382 -n04264628 -n04501370 -n03594734 -n03895866 -n04332243 -n04008634 -n02492035 -n01773797 -n04228054 -n02110958 -n06359193 -n02403003 -n04409515 -n03337140 -n02483708 -n02106166 -n04209133 -n02114367 -n03743016 -n03201208 -n03207941 -n02804414 -n04487081 -n01945685 -n02606052 -n03388043 -n03661043 -n02804610 -n04235860 -n02795169 -n03476991 -n03444034 -n03942813 -n04026417 -n03337140 -n02108422 -n04033995 -n03041632 -n02134418 -n04554684 -n03733131 -n02116738 -n03786901 -n03937543 -n04147183 -n04131690 -n03400231 -n02125311 -n02410509 -n01775062 -n02814533 -n02110185 -n04008634 -n04597913 -n01883070 -n07714990 -n02112350 -n02437616 -n03662601 -n02074367 -n04239074 -n03063689 -n07831146 -n02869837 -n03920288 -n13052670 -n03016953 -n02788148 -n04613696 -n02113023 -n03866082 -n02992529 -n04479046 -n04467665 -n04540053 -n02927161 -n03992509 -n04347754 -n03495258 -n03633091 -n02105251 -n02231487 -n02102318 -n02667093 -n01749939 -n02133161 -n03372029 -n02486261 -n04004767 -n02088466 -n07579787 -n02791270 -n03131574 -n02391049 -n01664065 -n02099429 -n01776313 -n03920288 -n02109047 -n02317335 -n04612504 -n03584254 -n03457902 -n02051845 -n03047690 -n04507155 -n02704792 -n01748264 -n02017213 -n03450230 -n02841315 -n04070727 -n02992211 -n03404251 -n02092339 -n12768682 -n07873807 -n03041632 -n03379051 -n04435653 -n04146614 -n02012849 -n03443371 -n04152593 -n04507155 -n03447447 -n04252225 -n03770439 -n13037406 -n01748264 -n04550184 -n03207941 -n07716906 -n03595614 -n07875152 -n04560804 -n04479046 -n03127925 -n07248320 -n02342885 -n02088466 -n03485407 -n09399592 -n04039381 -n04548280 -n02099267 -n04254777 -n06785654 -n02190166 -n03868242 -n04141076 -n02980441 -n03868863 -n02437312 -n02096177 -n02701002 -n03259280 -n02834397 -n15075141 -n07880968 -n02096585 -n09256479 -n02091032 -n03457902 -n02099849 -n02398521 -n02129165 -n03404251 -n01774384 -n03977966 -n02980441 -n02137549 -n03920288 -n01770081 -n03891332 -n03196217 -n02782093 -n02510455 -n03535780 -n04263257 -n02790996 -n03146219 -n01601694 -n03379051 -n03188531 -n02790996 -n04596742 -n01560419 -n03376595 -n12768682 -n02504013 -n03388043 -n02231487 -n03134739 -n03775071 -n02509815 -n07695742 -n02325366 -n09835506 -n04418357 -n04483307 -n04069434 -n03991062 -n02487347 -n03223299 -n02817516 -n03207743 -n02110627 -n04604644 -n02112350 -n02109961 -n03534580 -n03208938 -n03125729 -n03947888 -n04154565 -n01860187 -n02328150 -n02777292 -n02112018 -n02113978 -n02033041 -n07871810 -n10148035 -n01981276 -n07860988 -n03492542 -n04005630 -n02093428 -n04355933 -n02108089 -n03841143 -n02704792 -n02277742 -n03874599 -n04371774 -n01775062 -n03461385 -n02096585 -n02093754 -n02011460 -n02814533 -n02787622 -n02114367 -n01641577 -n03992509 -n04265275 -n02096051 -n07745940 -n02422106 -n01496331 -n03188531 -n07614500 -n02101006 -n02101006 -n13040303 -n02085936 -n03961711 -n02093991 -n07714571 -n01986214 -n01669191 -n01984695 -n03297495 -n02108422 -n03249569 -n04398044 -n03775546 -n01986214 -n04579432 -n07714571 -n01945685 -n02640242 -n06785654 -n04116512 -n02099429 -n09229709 -n01682714 -n01749939 -n02007558 -n01498041 -n04507155 -n02124075 -n02101006 -n02104029 -n02676566 -n02606052 -n04238763 -n02101388 -n02107312 -n03347037 -n02493509 -n02396427 -n04065272 -n03840681 -n04515003 -n02091635 -n02325366 -n04033901 -n01675722 -n03788365 -n13037406 -n03527444 -n01695060 -n04328186 -n07590611 -n01728572 -n02119022 -n02974003 -n02410509 -n07892512 -n07730033 -n04330267 -n03868863 -n02018207 -n02500267 -n02980441 -n01843065 -n02093859 -n02094114 -n07768694 -n04154565 -n02123394 -n03843555 -n02123159 -n02107574 -n01795545 -n02917067 -n02071294 -n03895866 -n03179701 -n03950228 -n04259630 -n02165105 -n02120079 -n02804610 -n02279972 -n01728920 -n02978881 -n03710637 -n01872401 -n03160309 -n02442845 -n09256479 -n02950826 -n02841315 -n04357314 -n02865351 -n04111531 -n07747607 -n03594945 -n03763968 -n04606251 -n03895866 -n02113978 -n04554684 -n04344873 -n04254120 -n01740131 -n03976467 -n07753275 -n02443484 -n02939185 -n02977058 -n13037406 -n07747607 -n04467665 -n01784675 -n04536866 -n02123159 -n02119789 -n04548362 -n02111129 -n06794110 -n04239074 -n03733805 -n02088466 -n03764736 -n01914609 -n02105505 -n02412080 -n04254680 -n04523525 -n07697537 -n01728920 -n02794156 -n02113978 -n13040303 -n01514859 -n04398044 -n02364673 -n01924916 -n02007558 -n03803284 -n02795169 -n03916031 -n02088238 -n02086646 -n03063689 -n01806143 -n04366367 -n03109150 -n04523525 -n04208210 -n01978287 -n03272010 -n03146219 -n03933933 -n04525305 -n03124043 -n02510455 -n01687978 -n01824575 -n04613696 -n06359193 -n03110669 -n03388183 -n03691459 -n02280649 -n03133878 -n02085782 -n02087046 -n02090721 -n02497673 -n04344873 -n04330267 -n01514859 -n02488702 -n04525038 -n07711569 -n01978455 -n01768244 -n02105855 -n04604644 -n02281406 -n01739381 -n01693334 -n02113978 -n07749582 -n03786901 -n01883070 -n09246464 -n03841143 -n03482405 -n12998815 -n03938244 -n04238763 -n03929855 -n02892201 -n02486261 -n02676566 -n01843065 -n01728920 -n03379051 -n02823750 -n02776631 -n02488291 -n02317335 -n02002724 -n01755581 -n03110669 -n04019541 -n03095699 -n04004767 -n03877845 -n02120505 -n02113624 -n07695742 -n03127747 -n03041632 -n01744401 -n02098286 -n02100735 -n02264363 -n04456115 -n02219486 -n02129165 -n04275548 -n03874599 -n03706229 -n01770081 -n02988304 -n02105505 -n02130308 -n02113799 -n06596364 -n02028035 -n01784675 -n04266014 -n02422106 -n03271574 -n01622779 -n04229816 -n02988304 -n02977058 -n03594734 -n03196217 -n04008634 -n03947888 -n03032252 -n02037110 -n03424325 -n03873416 -n03379051 -n02096437 -n03887697 -n04154565 -n03803284 -n06794110 -n03956157 -n03297495 -n03444034 -n09256479 -n02317335 -n03871628 -n04192698 -n07873807 -n02793495 -n03764736 -n02483362 -n01773797 -n03788195 -n03032252 -n04311174 -n02111889 -n03970156 -n04447861 -n02018795 -n03666591 -n03314780 -n02229544 -n02172182 -n02486410 -n02607072 -n02276258 -n04254777 -n02403003 -n02094114 -n09246464 -n02114367 -n03788365 -n03297495 -n02492660 -n04326547 -n03201208 -n04286575 -n03492542 -n03877472 -n01910747 -n01608432 -n02490219 -n03710637 -n04344873 -n02951358 -n01498041 -n01729322 -n04409515 -n04146614 -n03873416 -n02090721 -n04081281 -n03976467 -n02837789 -n04409515 -n03759954 -n02168699 -n03127925 -n03970156 -n01665541 -n03160309 -n04251144 -n04311174 -n02098413 -n02480855 -n01773549 -n02489166 -n03494278 -n02229544 -n01729977 -n04552348 -n04033995 -n01882714 -n04366367 -n03271574 -n03666591 -n02093428 -n02791124 -n03384352 -n03498962 -n03709823 -n02422699 -n02085782 -n04133789 -n02486261 -n12985857 -n04372370 -n03857828 -n04367480 -n04612504 -n04399382 -n01632458 -n03717622 -n02514041 -n02018207 -n07615774 -n02098413 -n03691459 -n02108915 -n07920052 -n04228054 -n04493381 -n04081281 -n03832673 -n13052670 -n04584207 -n04252225 -n01608432 -n02708093 -n04398044 -n02087046 -n04599235 -n02177972 -n02326432 -n02490219 -n03761084 -n02101556 -n04599235 -n04467665 -n02097658 -n01978287 -n04612504 -n02397096 -n03018349 -n02391049 -n07584110 -n02457408 -n01776313 -n02120079 -n02727426 -n02791270 -n04590129 -n02058221 -n03599486 -n03788365 -n02098105 -n02097047 -n03794056 -n02966193 -n01494475 -n02514041 -n01773157 -n07613480 -n09332890 -n02086910 -n02071294 -n02105412 -n02966193 -n02481823 -n04228054 -n02825657 -n03775071 -n02096177 -n02328150 -n01768244 -n03028079 -n03534580 -n01484850 -n09428293 -n03788365 -n02106550 -n03782006 -n04258138 -n03710637 -n02097298 -n03721384 -n02391049 -n02013706 -n02840245 -n03249569 -n02454379 -n02865351 -n02206856 -n02093991 -n01877812 -n03485407 -n02101388 -n03014705 -n04456115 -n03976657 -n03188531 -n02342885 -n02096437 -n02102318 -n03376595 -n03271574 -n02177972 -n03594945 -n03126707 -n02099712 -n01692333 -n02966687 -n03930313 -n01667778 -n07716906 -n01580077 -n03804744 -n02111277 -n03100240 -n04548280 -n02814533 -n04204347 -n04141327 -n02066245 -n02096585 -n02102480 -n03125729 -n03272010 -n03980874 -n07753592 -n02105412 -n02443114 -n04579432 -n02101556 -n03995372 -n02950826 -n01534433 -n02088238 -n07715103 -n02795169 -n01484850 -n01753488 -n02607072 -n01530575 -n01692333 -n04153751 -n02111500 -n03131574 -n03803284 -n02437312 -n02974003 -n02776631 -n04125021 -n09428293 -n02843684 -n03047690 -n02417914 -n03998194 -n03110669 -n02445715 -n04525305 -n03998194 -n01514668 -n02321529 -n02088466 -n01644373 -n07714571 -n04357314 -n03991062 -n02088094 -n02687172 -n02110185 -n02089078 -n09468604 -n02408429 -n04389033 -n03706229 -n02488702 -n03992509 -n02417914 -n04086273 -n07613480 -n04270147 -n03887697 -n01601694 -n02123159 -n01518878 -n07836838 -n04443257 -n01592084 -n03109150 -n02264363 -n02808304 -n04252225 -n01630670 -n04507155 -n03047690 -n03344393 -n02981792 -n03680355 -n07579787 -n02526121 -n01984695 -n04485082 -n03814639 -n02977058 -n03866082 -n04404412 -n04116512 -n03100240 -n03127925 -n01847000 -n02051845 -n02177972 -n02106030 -n03770679 -n03535780 -n03676483 -n01843383 -n01873310 -n02085936 -n02328150 -n03089624 -n02102318 -n02500267 -n04040759 -n04552348 -n02101006 -n07749582 -n03884397 -n02111129 -n03662601 -n03250847 -n02129604 -n03461385 -n03970156 -n04317175 -n03958227 -n07714990 -n01980166 -n03929660 -n03314780 -n01855032 -n03630383 -n01817953 -n02095889 -n04505470 -n02727426 -n03598930 -n02105855 -n02115913 -n03110669 -n10148035 -n02106550 -n02086079 -n04380533 -n10565667 -n03249569 -n02095889 -n02492660 -n07873807 -n02797295 -n04209239 -n02786058 -n02837789 -n02841315 -n02704792 -n03935335 -n04562935 -n02099429 -n02112137 -n03325584 -n04442312 -n04033995 -n07614500 -n02108089 -n03710721 -n03100240 -n02093859 -n02906734 -n04254777 -n07871810 -n02422106 -n04049303 -n03961711 -n02777292 -n04443257 -n04597913 -n02927161 -n03424325 -n03032252 -n02795169 -n02123394 -n01498041 -n01751748 -n03793489 -n03345487 -n02091635 -n02123159 -n02107142 -n02484975 -n03666591 -n03085013 -n04325704 -n03208938 -n04562935 -n04152593 -n09472597 -n07875152 -n04597913 -n04099969 -n03976657 -n02028035 -n03796401 -n02917067 -n02110958 -n02730930 -n02802426 -n02917067 -n02704792 -n07760859 -n02123597 -n01981276 -n01688243 -n03400231 -n02088238 -n07753275 -n02100583 -n01955084 -n02777292 -n01534433 -n03908714 -n02120079 -n04465501 -n02641379 -n02098286 -n01534433 -n02917067 -n04371774 -n02110958 -n03538406 -n03443371 -n03902125 -n03075370 -n04336792 -n02091831 -n02510455 -n02097047 -n03908618 -n02817516 -n02111889 -n01531178 -n02481823 -n03110669 -n02095570 -n03982430 -n03444034 -n07714571 -n07932039 -n01768244 -n02837789 -n03637318 -n04141975 -n01910747 -n03873416 -n03018349 -n02114548 -n07717556 -n03494278 -n03924679 -n02012849 -n02361337 -n02398521 -n03443371 -n07615774 -n02009912 -n02395406 -n02777292 -n02783161 -n02445715 -n03743016 -n03891332 -n04542943 -n15075141 -n02091244 -n02114367 -n03404251 -n03000134 -n01667114 -n03763968 -n02233338 -n09428293 -n03793489 -n04258138 -n04023962 -n01667778 -n03899768 -n13133613 -n03599486 -n03042490 -n04467665 -n03633091 -n02437616 -n02835271 -n03791053 -n04486054 -n07717410 -n07613480 -n01728920 -n03400231 -n02790996 -n02676566 -n04562935 -n02264363 -n04141975 -n03089624 -n03954731 -n03467068 -n02690373 -n02102040 -n01985128 -n04116512 -n02497673 -n04392985 -n03937543 -n02006656 -n01773549 -n02704792 -n02999410 -n07930864 -n02011460 -n02107312 -n02910353 -n01795545 -n04111531 -n02894605 -n01614925 -n02793495 -n02100877 -n03761084 -n02504013 -n02408429 -n07583066 -n01744401 -n03447447 -n03125729 -n01978287 -n04346328 -n03742115 -n02483708 -n13054560 -n02096177 -n03920288 -n02837789 -n03877472 -n02165105 -n03937543 -n03982430 -n03787032 -n07880968 -n04371774 -n04146614 -n03394916 -n03903868 -n02687172 -n01494475 -n02536864 -n02129165 -n07920052 -n01496331 -n02009912 -n02692877 -n02101006 -n03271574 -n04371774 -n01496331 -n04557648 -n02027492 -n02125311 -n03376595 -n01872401 -n04346328 -n02091134 -n04238763 -n01776313 -n01796340 -n01770081 -n03141823 -n01665541 -n04133789 -n02096437 -n02096051 -n10565667 -n04542943 -n03447447 -n09421951 -n02113624 -n03160309 -n02504458 -n01774750 -n03871628 -n04590129 -n12057211 -n03481172 -n03000247 -n04090263 -n04141076 -n01914609 -n03775071 -n02869837 -n04509417 -n04371430 -n02097209 -n04613696 -n02669723 -n02883205 -n01748264 -n01955084 -n04204238 -n03743016 -n02177972 -n03868863 -n04133789 -n02168699 -n04041544 -n02115913 -n02259212 -n02096177 -n02277742 -n04493381 -n02093859 -n03160309 -n04120489 -n09246464 -n04005630 -n03938244 -n03208938 -n04033901 -n02835271 -n04049303 -n02951585 -n04229816 -n01755581 -n01734418 -n01843065 -n02114367 -n09288635 -n04147183 -n03196217 -n04367480 -n03467068 -n01491361 -n02091831 -n04154565 -n07875152 -n07873807 -n02690373 -n02730930 -n04389033 -n02879718 -n03223299 -n01784675 -n03447721 -n01742172 -n01728572 -n12985857 -n03376595 -n03089624 -n03887697 -n04270147 -n01930112 -n02814533 -n07802026 -n07920052 -n03425413 -n06596364 -n03134739 -n02108422 -n12998815 -n07753113 -n02056570 -n09256479 -n04238763 -n02951585 -n04033901 -n01833805 -n01737021 -n01694178 -n06785654 -n02500267 -n02085782 -n03825788 -n03899768 -n01843383 -n02782093 -n01855672 -n04239074 -n04604644 -n07583066 -n03041632 -n02777292 -n03627232 -n03884397 -n02328150 -n04005630 -n02093859 -n01749939 -n03000134 -n04037443 -n03888257 -n01824575 -n07875152 -n02526121 -n07920052 -n02102040 -n02869837 -n02099849 -n04356056 -n01749939 -n02442845 -n04487081 -n02087046 -n04201297 -n02094433 -n02480495 -n02096585 -n01518878 -n04141975 -n02981792 -n01632458 -n02093647 -n02018207 -n04040759 -n01820546 -n03840681 -n03832673 -n02051845 -n01883070 -n03534580 -n02028035 -n03857828 -n01682714 -n04049303 -n02096585 -n04254120 -n02071294 -n03868863 -n02206856 -n04086273 -n02177972 -n02085782 -n03942813 -n01496331 -n04355933 -n02790996 -n04265275 -n03976467 -n02279972 -n02086240 -n01824575 -n09421951 -n02123159 -n02086079 -n07717410 -n02422106 -n02236044 -n01608432 -n03062245 -n07734744 -n01983481 -n04542943 -n01773797 -n02526121 -n01688243 -n01990800 -n02169497 -n01768244 -n01770393 -n03977966 -n02096585 -n03532672 -n07711569 -n01734418 -n04326547 -n09332890 -n04584207 -n02114712 -n02093754 -n03495258 -n01616318 -n02326432 -n04507155 -n03527444 -n01981276 -n02097298 -n03958227 -n02165105 -n07718472 -n04591157 -n04286575 -n04208210 -n02120505 -n04265275 -n04147183 -n03271574 -n02128385 -n02110958 -n03888257 -n02730930 -n01978455 -n02843684 -n03590841 -n03065424 -n03854065 -n01739381 -n01773797 -n03976657 -n04116512 -n02092339 -n01817953 -n02119789 -n01748264 -n02169497 -n03125729 -n02091467 -n07714571 -n02704792 -n02085936 -n02108915 -n03314780 -n02086646 -n07697537 -n03584829 -n03773504 -n04204347 -n01796340 -n03930313 -n02033041 -n02236044 -n02895154 -n02708093 -n02115641 -n04209239 -n01735189 -n03201208 -n09468604 -n03047690 -n04254777 -n06596364 -n03627232 -n01532829 -n01694178 -n04081281 -n03495258 -n02788148 -n01775062 -n04355933 -n03017168 -n04599235 -n03785016 -n07871810 -n03980874 -n02071294 -n04493381 -n04372370 -n02087046 -n04584207 -n04086273 -n02092339 -n02817516 -n03240683 -n12998815 -n03075370 -n02804414 -n01833805 -n01695060 -n04596742 -n04398044 -n02106382 -n04204238 -n02219486 -n02437312 -n04335435 -n01531178 -n04201297 -n03920288 -n03759954 -n03792782 -n02412080 -n04536866 -n03874293 -n02708093 -n02437312 -n04509417 -n01990800 -n04579145 -n02480495 -n04371430 -n02105056 -n03930630 -n03481172 -n02808440 -n07932039 -n04428191 -n02971356 -n02090379 -n03857828 -n02988304 -n02115913 -n04599235 -n04033901 -n11879895 -n03014705 -n02002724 -n02445715 -n02870880 -n02951585 -n02129604 -n02123394 -n01860187 -n03788195 -n03729826 -n01665541 -n01531178 -n04442312 -n02777292 -n13044778 -n07720875 -n02027492 -n02480855 -n04447861 -n02403003 -n03874599 -n01622779 -n02860847 -n03884397 -n13040303 -n03796401 -n03388549 -n03970156 -n02112137 -n03775071 -n01601694 -n02093991 -n01664065 -n02077923 -n02487347 -n02444819 -n02480855 -n04505470 -n03980874 -n03447447 -n01955084 -n02056570 -n03127747 -n02692877 -n06596364 -n03400231 -n03482405 -n03920288 -n03871628 -n03496892 -n12267677 -n04310018 -n02865351 -n01924916 -n03000247 -n03393912 -n02825657 -n06785654 -n02097474 -n04179913 -n02112350 -n03444034 -n03133878 -n02132136 -n02843684 -n01770393 -n01871265 -n03290653 -n03207941 -n03476991 -n03481172 -n04590129 -n01532829 -n03642806 -n03388183 -n02094258 -n03496892 -n04467665 -n02963159 -n02328150 -n02101388 -n09256479 -n03777568 -n02165456 -n03042490 -n02363005 -n13054560 -n02808440 -n04532670 -n01688243 -n03602883 -n02206856 -n03400231 -n02346627 -n01871265 -n01806567 -n02727426 -n04067472 -n02088094 -n04553703 -n13037406 -n07718472 -n04252077 -n04258138 -n02808440 -n02328150 -n03325584 -n01774750 -n02123159 -n02111277 -n04591157 -n03871628 -n03775071 -n04136333 -n03976467 -n03908618 -n03483316 -n04487394 -n02769748 -n04523525 -n12998815 -n04553703 -n04152593 -n02346627 -n02007558 -n03110669 -n01440764 -n09472597 -n02730930 -n02782093 -n04483307 -n02028035 -n04040759 -n03372029 -n02808440 -n02120505 -n03141823 -n02100236 -n01770393 -n01739381 -n03208938 -n03954731 -n04536866 -n04456115 -n03000247 -n04612504 -n02837789 -n03538406 -n02699494 -n03967562 -n04398044 -n03710721 -n04356056 -n04033995 -n02415577 -n04270147 -n03866082 -n03271574 -n02133161 -n03483316 -n01514668 -n03770679 -n04532670 -n03720891 -n02096437 -n03444034 -n02088632 -n02328150 -n02787622 -n12998815 -n07716358 -n02817516 -n03961711 -n02823428 -n01753488 -n02443114 -n04370456 -n04542943 -n03876231 -n02509815 -n04371430 -n04141975 -n02112350 -n02321529 -n02097474 -n04461696 -n03804744 -n02786058 -n12768682 -n01855032 -n03992509 -n01773797 -n02443484 -n02101006 -n09421951 -n03837869 -n04356056 -n01744401 -n02701002 -n03977966 -n02105056 -n02102318 -n03095699 -n01728572 -n01873310 -n03930313 -n03930630 -n06359193 -n02033041 -n04604644 -n03781244 -n04599235 -n02114548 -n02356798 -n03271574 -n07932039 -n02100735 -n04069434 -n04346328 -n09332890 -n12768682 -n02795169 -n04049303 -n02403003 -n04239074 -n02493793 -n02127052 -n04317175 -n02363005 -n03832673 -n04296562 -n03630383 -n01739381 -n02107683 -n02012849 -n03786901 -n04033995 -n03782006 -n02113624 -n02783161 -n02134418 -n03532672 -n02012849 -n02415577 -n02096437 -n03220513 -n01945685 -n02892201 -n04044716 -n07742313 -n03376595 -n02643566 -n01735189 -n01729977 -n02105251 -n09421951 -n02099712 -n03388043 -n02174001 -n04147183 -n02013706 -n13054560 -n02978881 -n09246464 -n02699494 -n02107312 -n03017168 -n07745940 -n02233338 -n02791270 -n01950731 -n03857828 -n02025239 -n03452741 -n02101388 -n03388549 -n01484850 -n02111277 -n01950731 -n02174001 -n02105162 -n02480855 -n03325584 -n03272562 -n03876231 -n01644373 -n04380533 -n07697537 -n04380533 -n02190166 -n07753592 -n01630670 -n02730930 -n03788195 -n02669723 -n02100735 -n03271574 -n03179701 -n02486261 -n02105412 -n02417914 -n01770081 -n02123394 -n01855672 -n02480495 -n02692877 -n01532829 -n04372370 -n01910747 -n03400231 -n02444819 -n04099969 -n03498962 -n04154565 -n02783161 -n03124170 -n03417042 -n04254120 -n07717410 -n04372370 -n07565083 -n03661043 -n04074963 -n02504458 -n03720891 -n03445924 -n03873416 -n03775071 -n02443114 -n03623198 -n03000247 -n02423022 -n03929660 -n02782093 -n01930112 -n01776313 -n03388183 -n02133161 -n02782093 -n03393912 -n03794056 -n09256479 -n07920052 -n03384352 -n02666196 -n02894605 -n03476684 -n02526121 -n02123045 -n03673027 -n03197337 -n02114548 -n04599235 -n02085936 -n02963159 -n04258138 -n03983396 -n03187595 -n03290653 -n03179701 -n01531178 -n02398521 -n02119789 -n02089867 -n04548362 -n02486410 -n01704323 -n01494475 -n04141327 -n02790996 -n02056570 -n02106166 -n02018795 -n04523525 -n03598930 -n04118776 -n03662601 -n04509417 -n02606052 -n02966193 -n03775071 -n02317335 -n03146219 -n03355925 -n02229544 -n02443114 -n03355925 -n04590129 -n02804414 -n02114367 -n03379051 -n02138441 -n03461385 -n04200800 -n03584829 -n01755581 -n04335435 -n03127747 -n04263257 -n04192698 -n01622779 -n02422699 -n02107683 -n04532670 -n02906734 -n02804414 -n12768682 -n02108089 -n02909870 -n03837869 -n02113186 -n02112350 -n01677366 -n03630383 -n02526121 -n02840245 -n01687978 -n04515003 -n15075141 -n02841315 -n02422106 -n02783161 -n02814533 -n02102177 -n02415577 -n03782006 -n01770081 -n02114548 -n03958227 -n01728920 -n03494278 -n01873310 -n02894605 -n01833805 -n03160309 -n04458633 -n03223299 -n12620546 -n12998815 -n01496331 -n04461696 -n01981276 -n03595614 -n02101388 -n03937543 -n03100240 -n03791053 -n04613696 -n02134084 -n04141975 -n02093859 -n03125729 -n02326432 -n03680355 -n03998194 -n01494475 -n02342885 -n03976657 -n01819313 -n04606251 -n01740131 -n02797295 -n02123394 -n02169497 -n03630383 -n01689811 -n03950228 -n07584110 -n04591713 -n04127249 -n12144580 -n07831146 -n03791053 -n02808440 -n02793495 -n02437312 -n02138441 -n02111500 -n02109961 -n03459775 -n03126707 -n03388549 -n02096294 -n03961711 -n04209133 -n04243546 -n02791270 -n01685808 -n02965783 -n03775546 -n02074367 -n03775546 -n03584254 -n02119789 -n02437312 -n03888257 -n03187595 -n02123045 -n03937543 -n02412080 -n01729322 -n03908714 -n02125311 -n01494475 -n02894605 -n03908618 -n02114855 -n02123159 -n03598930 -n02107142 -n03290653 -n02791124 -n03803284 -n03937543 -n03388043 -n03131574 -n02788148 -n02106382 -n04467665 -n02100877 -n04330267 -n03697007 -n03710721 -n02403003 -n02108089 -n03017168 -n03733281 -n03792972 -n02105056 -n01806567 -n01630670 -n03337140 -n03467068 -n01873310 -n02398521 -n02013706 -n04120489 -n02708093 -n02110341 -n03770679 -n02480495 -n03450230 -n03584254 -n02823750 -n04127249 -n02410509 -n04562935 -n04019541 -n04613696 -n01632777 -n07836838 -n02114855 -n02100236 -n02102318 -n07831146 -n03742115 -n03662601 -n03720891 -n02804610 -n02107142 -n03733131 -n03791053 -n03991062 -n02808304 -n03594945 -n02749479 -n04562935 -n02134084 -n02342885 -n03538406 -n02107683 -n02012849 -n01682714 -n02988304 -n07932039 -n02206856 -n03447447 -n01753488 -n01755581 -n02119022 -n04597913 -n03314780 -n02865351 -n03459775 -n01530575 -n04335435 -n09288635 -n02769748 -n02256656 -n03131574 -n03770439 -n02123045 -n02096177 -n04131690 -n02397096 -n01798484 -n02107574 -n02113186 -n01855672 -n03791053 -n03770679 -n01983481 -n02093256 -n01968897 -n02692877 -n02356798 -n07875152 -n02107312 -n02837789 -n03042490 -n03188531 -n03447721 -n02825657 -n03868242 -n04552348 -n01770081 -n02095314 -n04204347 -n02087394 -n04065272 -n02132136 -n02134418 -n01632777 -n04325704 -n03776460 -n01955084 -n02129604 -n01644900 -n02101006 -n04357314 -n12985857 -n03670208 -n07760859 -n04067472 -n02099849 -n03770679 -n02978881 -n03623198 -n03717622 -n04536866 -n02835271 -n07717410 -n04429376 -n02869837 -n03124170 -n01632458 -n01531178 -n03127925 -n02097047 -n03950228 -n03028079 -n02107312 -n13052670 -n02090721 -n07711569 -n02091831 -n01530575 -n04146614 -n01667114 -n03958227 -n02098286 -n07871810 -n01980166 -n02412080 -n02500267 -n01924916 -n04254680 -n02480495 -n01774384 -n03216828 -n07711569 -n03026506 -n01749939 -n03344393 -n03938244 -n02098105 -n01986214 -n01917289 -n04418357 -n02058221 -n02106030 -n02966193 -n03032252 -n02206856 -n03063599 -n02107312 -n03843555 -n02108551 -n01855672 -n02107142 -n02102040 -n04357314 -n04505470 -n03529860 -n02437312 -n02129604 -n03773504 -n02100877 -n03877472 -n04501370 -n07880968 -n04458633 -n02167151 -n03721384 -n02102480 -n07579787 -n02123394 -n02484975 -n03942813 -n04270147 -n03777568 -n02085782 -n01729977 -n04404412 -n04311174 -n03160309 -n02454379 -n02096294 -n04065272 -n02483362 -n02364673 -n03100240 -n07873807 -n03594734 -n04344873 -n07590611 -n01883070 -n03770439 -n03141823 -n02133161 -n01689811 -n01833805 -n02814860 -n04367480 -n03710637 -n07714571 -n02071294 -n01768244 -n03388183 -n01847000 -n03325584 -n01667114 -n02236044 -n04141327 -n03467068 -n01687978 -n04285008 -n03483316 -n03447447 -n02264363 -n02097209 -n04501370 -n09468604 -n02930766 -n01917289 -n04554684 -n02979186 -n02442845 -n03345487 -n02486410 -n02841315 -n03899768 -n09399592 -n03344393 -n02088364 -n03763968 -n02105162 -n04235860 -n03903868 -n09428293 -n03661043 -n03249569 -n02268443 -n02444819 -n02116738 -n03902125 -n02093991 -n02110185 -n03832673 -n03983396 -n07716358 -n02113712 -n03887697 -n03424325 -n03958227 -n01534433 -n02086646 -n04591713 -n07753113 -n03841143 -n02790996 -n02165456 -n02009229 -n02814860 -n04462240 -n02730930 -n02085620 -n02098413 -n03337140 -n02807133 -n04263257 -n02108422 -n02138441 -n01630670 -n04008634 -n02113799 -n02643566 -n12057211 -n01665541 -n04404412 -n03691459 -n01729977 -n03290653 -n01924916 -n02486410 -n04332243 -n13052670 -n03598930 -n02437616 -n02093991 -n01729977 -n02115641 -n02825657 -n02786058 -n02788148 -n02094258 -n02793495 -n03388043 -n02128757 -n02443484 -n02088094 -n03110669 -n01985128 -n07714990 -n02869837 -n03595614 -n04592741 -n02127052 -n07880968 -n02643566 -n09256479 -n02356798 -n02509815 -n04487394 -n03721384 -n01728572 -n02992211 -n03877845 -n02231487 -n02445715 -n02095570 -n04579145 -n03706229 -n02107574 -n01833805 -n01629819 -n03445777 -n03710721 -n03014705 -n04336792 -n04311174 -n03724870 -n03920288 -n03063689 -n03908618 -n02085620 -n02699494 -n02096437 -n03804744 -n04209239 -n03249569 -n11939491 -n01882714 -n02129165 -n03773504 -n04346328 -n02102040 -n12620546 -n02177972 -n02066245 -n03492542 -n02090721 -n04482393 -n01914609 -n02174001 -n02233338 -n01693334 -n01665541 -n02280649 -n01514668 -n01641577 -n02107683 -n04040759 -n03355925 -n04579432 -n02280649 -n02361337 -n03937543 -n03891251 -n02492035 -n03759954 -n03763968 -n01582220 -n03866082 -n04086273 -n04330267 -n04476259 -n04118776 -n03180011 -n03838899 -n03627232 -n04264628 -n02101006 -n02113624 -n02395406 -n01675722 -n04090263 -n03785016 -n02137549 -n02277742 -n03642806 -n07718472 -n03447447 -n03792782 -n04008634 -n04254777 -n01631663 -n04254680 -n02074367 -n01744401 -n03127747 -n02190166 -n03623198 -n02607072 -n02877765 -n02790996 -n02992529 -n02492660 -n02117135 -n01580077 -n03028079 -n02102040 -n01494475 -n04461696 -n01917289 -n04146614 -n04004767 -n02906734 -n01560419 -n02085936 -n12267677 -n03075370 -n01682714 -n02669723 -n01751748 -n02999410 -n10148035 -n02797295 -n03958227 -n03134739 -n01860187 -n02443114 -n03028079 -n03495258 -n03787032 -n02108089 -n01687978 -n01484850 -n02098105 -n03942813 -n02109525 -n04613696 -n01631663 -n09835506 -n01784675 -n02137549 -n09472597 -n02895154 -n03676483 -n04209239 -n01784675 -n03028079 -n03355925 -n03483316 -n03337140 -n03495258 -n04311004 -n04270147 -n03791053 -n02488702 -n02895154 -n02100583 -n10565667 -n04548280 -n02091134 -n01806567 -n02264363 -n02708093 -n02111277 -n02692877 -n03837869 -n03240683 -n03773504 -n03706229 -n03742115 -n01734418 -n12998815 -n03452741 -n06596364 -n03041632 -n02096585 -n04317175 -n07892512 -n01755581 -n03777568 -n03457902 -n02106382 -n01601694 -n03691459 -n02114855 -n03461385 -n02096294 -n03498962 -n04482393 -n02412080 -n03857828 -n02124075 -n02106550 -n03950228 -n07730033 -n02093991 -n07768694 -n02870880 -n02672831 -n02268443 -n03773504 -n09332890 -n02025239 -n04562935 -n07742313 -n04192698 -n04049303 -n01644900 -n02769748 -n01774384 -n02894605 -n03127747 -n03045698 -n03388549 -n03724870 -n03706229 -n03825788 -n01775062 -n03670208 -n02492035 -n01983481 -n04435653 -n03028079 -n03445924 -n02108000 -n01882714 -n02346627 -n09399592 -n12620546 -n03047690 -n02807133 -n03630383 -n03325584 -n02110063 -n07860988 -n01443537 -n04523525 -n02112706 -n02815834 -n03720891 -n03843555 -n02992211 -n02107908 -n03662601 -n03207743 -n04507155 -n02094433 -n02791270 -n02788148 -n02094258 -n02105162 -n04179913 -n07930864 -n03873416 -n02027492 -n02790996 -n03924679 -n07753275 -n03658185 -n02444819 -n07802026 -n01484850 -n02113186 -n02110341 -n02090622 -n04366367 -n01773157 -n03792972 -n02690373 -n02090622 -n06794110 -n02101388 -n07697313 -n03297495 -n03032252 -n01688243 -n02090379 -n02017213 -n04152593 -n02108551 -n03658185 -n02643566 -n04049303 -n03544143 -n03709823 -n01632458 -n02111500 -n07717556 -n01688243 -n07747607 -n01592084 -n03485794 -n02443114 -n03888257 -n07753592 -n01930112 -n03127747 -n01580077 -n12057211 -n03344393 -n03697007 -n01601694 -n01818515 -n04517823 -n04584207 -n02002724 -n03424325 -n03895866 -n03787032 -n02100236 -n03110669 -n04523525 -n01983481 -n04465501 -n02090721 -n02980441 -n02088094 -n02492035 -n03109150 -n02091635 -n07695742 -n02074367 -n07754684 -n02783161 -n03761084 -n02096585 -n04099969 -n01930112 -n03379051 -n02105412 -n02097298 -n04026417 -n03866082 -n04004767 -n01704323 -n04286575 -n02321529 -n04417672 -n04389033 -n02909870 -n01685808 -n01806143 -n02006656 -n03832673 -n07697313 -n07932039 -n02206856 -n12144580 -n02108422 -n07753113 -n03777754 -n04259630 -n02641379 -n13052670 -n03788365 -n02870880 -n02799071 -n02137549 -n02999410 -n04317175 -n02094114 -n03529860 -n03188531 -n03160309 -n03697007 -n02091831 -n03594734 -n04389033 -n02799071 -n07747607 -n02504458 -n04277352 -n01914609 -n02281787 -n03868863 -n09421951 -n03792782 -n02102318 -n01484850 -n04192698 -n02089867 -n03584254 -n01728572 -n03062245 -n02109047 -n02108422 -n02088632 -n02447366 -n02236044 -n02910353 -n02105056 -n03498962 -n03250847 -n04120489 -n02999410 -n03467068 -n03187595 -n03255030 -n04004767 -n02091635 -n04507155 -n03782006 -n02317335 -n02165456 -n04243546 -n02099849 -n04239074 -n09246464 -n04335435 -n03770439 -n01978455 -n01644373 -n02256656 -n02509815 -n03584254 -n03710721 -n01795545 -n07753592 -n02412080 -n07892512 -n02091032 -n04074963 -n03197337 -n03075370 -n02111129 -n03930630 -n01770081 -n04235860 -n02132136 -n02100735 -n01978287 -n02097658 -n04540053 -n04149813 -n02105251 -n01984695 -n03314780 -n02115641 -n04235860 -n02843684 -n04311004 -n04118776 -n02276258 -n02909870 -n02701002 -n02051845 -n04599235 -n01689811 -n03637318 -n03344393 -n04591713 -n02018795 -n02795169 -n04462240 -n03776460 -n03404251 -n03188531 -n07749582 -n01631663 -n02123597 -n02328150 -n02110958 -n02125311 -n04023962 -n03133878 -n03131574 -n02091467 -n01484850 -n02096177 -n01496331 -n02058221 -n03028079 -n02113023 -n02480855 -n02892201 -n04418357 -n03042490 -n03124170 -n12985857 -n04141975 -n01860187 -n02130308 -n04037443 -n13052670 -n07714571 -n02391049 -n04149813 -n04099969 -n01729977 -n04243546 -n02978881 -n03131574 -n02127052 -n04366367 -n02229544 -n01669191 -n02489166 -n07716906 -n03208938 -n02088466 -n02093754 -n01632777 -n04118538 -n02363005 -n02114855 -n09256479 -n02787622 -n02105412 -n03498962 -n12768682 -n03216828 -n03598930 -n02643566 -n03837869 -n07695742 -n01817953 -n01667778 -n04251144 -n02231487 -n04005630 -n03445777 -n04597913 -n07615774 -n02769748 -n01833805 -n01828970 -n01796340 -n01694178 -n03995372 -n03494278 -n03271574 -n03014705 -n02088632 -n03788195 -n02328150 -n02992529 -n03498962 -n02169497 -n02112137 -n02483362 -n07836838 -n02086240 -n01739381 -n02325366 -n03877472 -n04589890 -n02133161 -n01632777 -n02105162 -n04019541 -n01775062 -n02107574 -n04509417 -n01860187 -n02088632 -n03459775 -n03133878 -n04254680 -n01755581 -n02939185 -n02091134 -n02114712 -n07714990 -n02484975 -n03445924 -n03018349 -n02802426 -n01774384 -n03124043 -n03355925 -n03146219 -n03388183 -n02226429 -n07860988 -n03388183 -n04009552 -n02488291 -n03899768 -n03649909 -n03393912 -n02797295 -n03014705 -n03729826 -n01560419 -n02114367 -n03637318 -n02115641 -n04517823 -n02346627 -n02033041 -n02804414 -n07714990 -n04120489 -n03481172 -n02099267 -n10565667 -n03825788 -n03240683 -n02123597 -n02097130 -n02090721 -n02094433 -n02667093 -n03461385 -n02101388 -n09399592 -n02109047 -n04153751 -n04479046 -n03223299 -n13133613 -n01688243 -n02363005 -n04493381 -n02445715 -n02280649 -n03804744 -n04596742 -n04597913 -n01729322 -n02793495 -n04604644 -n04592741 -n03425413 -n04332243 -n04562935 -n02494079 -n07693725 -n07717410 -n06874185 -n03063689 -n02389026 -n02110627 -n03930630 -n01871265 -n07716358 -n02114712 -n03216828 -n06596364 -n03494278 -n07579787 -n04548280 -n04409515 -n02102040 -n07753113 -n01632777 -n02843684 -n02395406 -n02100583 -n03481172 -n02099849 -n02708093 -n01980166 -n02096294 -n01744401 -n03291819 -n04004767 -n01534433 -n03223299 -n03773504 -n04090263 -n02002724 -n02422106 -n04325704 -n01531178 -n02948072 -n02281787 -n04239074 -n04399382 -n03400231 -n02802426 -n02165456 -n02256656 -n02104029 -n06794110 -n07932039 -n02793495 -n02093754 -n02834397 -n02165456 -n03394916 -n02138441 -n01729977 -n02138441 -n04311174 -n03388043 -n03344393 -n03445924 -n02504013 -n13040303 -n02363005 -n02206856 -n03982430 -n03661043 -n02107574 -n03785016 -n02231487 -n04487394 -n04376876 -n04277352 -n07718472 -n04118776 -n01914609 -n01798484 -n01944390 -n03355925 -n03742115 -n02108089 -n03924679 -n03134739 -n02011460 -n02974003 -n02100583 -n01496331 -n01860187 -n02100236 -n04596742 -n02119789 -n02342885 -n04044716 -n04099969 -n03602883 -n07717556 -n04548280 -n03843555 -n04409515 -n02093647 -n01797886 -n04429376 -n03063599 -n07760859 -n02487347 -n01697457 -n03706229 -n02988304 -n03134739 -n02979186 -n02892201 -n03840681 -n03425413 -n13044778 -n04330267 -n03425413 -n02099849 -n04044716 -n01440764 -n02105251 -n03599486 -n03240683 -n02097130 -n04162706 -n03443371 -n02492660 -n03793489 -n04347754 -n04296562 -n03666591 -n04584207 -n04136333 -n02123159 -n04070727 -n02981792 -n07718472 -n01694178 -n10565667 -n04532670 -n02480495 -n07590611 -n02111277 -n04554684 -n01695060 -n04311004 -n02102480 -n04447861 -n02807133 -n04398044 -n04418357 -n03690938 -n01644373 -n03837869 -n02493793 -n01796340 -n02095889 -n03781244 -n02088466 -n02906734 -n04596742 -n12057211 -n02097658 -n03954731 -n02447366 -n03223299 -n03710637 -n03459775 -n04458633 -n02397096 -n03877472 -n07584110 -n03393912 -n07716906 -n07836838 -n03720891 -n02109961 -n04326547 -n01753488 -n02389026 -n07734744 -n07745940 -n02094114 -n02981792 -n02097298 -n03930630 -n02783161 -n04346328 -n01774750 -n01829413 -n02910353 -n02894605 -n02132136 -n04372370 -n04040759 -n02493509 -n03788195 -n04357314 -n02106166 -n02168699 -n02091831 -n02105056 -n01986214 -n02268443 -n01739381 -n01774384 -n02444819 -n02105641 -n01687978 -n04606251 -n03325584 -n04596742 -n02325366 -n02950826 -n04067472 -n02086646 -n02113799 -n04557648 -n04429376 -n01704323 -n02056570 -n02488291 -n07614500 -n03089624 -n01532829 -n03160309 -n04550184 -n07730033 -n02095570 -n04367480 -n04081281 -n04254120 -n04443257 -n03777568 -n03584829 -n04201297 -n12144580 -n02834397 -n03127925 -n02100735 -n02256656 -n02092002 -n01753488 -n04259630 -n03197337 -n02510455 -n02108422 -n02013706 -n03840681 -n02108089 -n04485082 -n03584829 -n02134084 -n03814639 -n04522168 -n04589890 -n04252225 -n03188531 -n03594945 -n03691459 -n04041544 -n04033901 -n04090263 -n02486410 -n03873416 -n03871628 -n02325366 -n02841315 -n02037110 -n02909870 -n01629819 -n07565083 -n02088094 -n03954731 -n12998815 -n03661043 -n04332243 -n02167151 -n04099969 -n04266014 -n03733131 -n02033041 -n02165456 -n02109047 -n02999410 -n02177972 -n02033041 -n03899768 -n01685808 -n04023962 -n02114712 -n03775546 -n02092002 -n02107142 -n02977058 -n01582220 -n04127249 -n03814906 -n03769881 -n03393912 -n03291819 -n02497673 -n03127925 -n09193705 -n07831146 -n03980874 -n07753113 -n01558993 -n02808304 -n03854065 -n04483307 -n02102040 -n04326547 -n02443484 -n09256479 -n03961711 -n01641577 -n03733131 -n04254680 -n02099601 -n02089078 -n03016953 -n03216828 -n02101388 -n02229544 -n02606052 -n04141076 -n01694178 -n03063689 -n01774384 -n02607072 -n02091244 -n03937543 -n04328186 -n03532672 -n03485407 -n07717556 -n02006656 -n04525305 -n02123597 -n02708093 -n02137549 -n07614500 -n03947888 -n03983396 -n03544143 -n01440764 -n01440764 -n03717622 -n02085620 -n02727426 -n03485794 -n03825788 -n04259630 -n02788148 -n03930630 -n04392985 -n02454379 -n02100236 -n01534433 -n02102318 -n04044716 -n02113186 -n02066245 -n02127052 -n01950731 -n03000684 -n02843684 -n04147183 -n02110063 -n07590611 -n02113712 -n04074963 -n03871628 -n02168699 -n09246464 -n07802026 -n01693334 -n03908714 -n02130308 -n09193705 -n02091244 -n02111500 -n03642806 -n04033901 -n02999410 -n02128925 -n06359193 -n07717410 -n02102318 -n04208210 -n02086079 -n03868863 -n03743016 -n03062245 -n03717622 -n04069434 -n03598930 -n01978287 -n04026417 -n01748264 -n02096294 -n04483307 -n01592084 -n03787032 -n03742115 -n01795545 -n02807133 -n02769748 -n02108915 -n04509417 -n02093754 -n02129604 -n02090622 -n01806567 -n04579432 -n04542943 -n03400231 -n07871810 -n09399592 -n02114367 -n04049303 -n02979186 -n02494079 -n03944341 -n03535780 -n03297495 -n07831146 -n02457408 -n04254680 -n03028079 -n03498962 -n02883205 -n02077923 -n02090721 -n04005630 -n02056570 -n01775062 -n03866082 -n02087394 -n04336792 -n01917289 -n04111531 -n02007558 -n04086273 -n02843684 -n13037406 -n04200800 -n03000684 -n03991062 -n02488702 -n02808440 -n03887697 -n01784675 -n02058221 -n02841315 -n02114367 -n03657121 -n02787622 -n03095699 -n03450230 -n02123394 -n02869837 -n03793489 -n02094258 -n04380533 -n02978881 -n07584110 -n02927161 -n02930766 -n02093428 -n04507155 -n03534580 -n03857828 -n01872401 -n03337140 -n02980441 -n02102177 -n02509815 -n02097047 -n02992529 -n02797295 -n03866082 -n02279972 -n03485794 -n03530642 -n01518878 -n04483307 -n04033901 -n07749582 -n02917067 -n03623198 -n02233338 -n03623198 -n03594945 -n02256656 -n02999410 -n02093991 -n02002724 -n03788365 -n03623198 -n02110063 -n01740131 -n04346328 -n04033995 -n02095889 -n04311174 -n02445715 -n03218198 -n02640242 -n04462240 -n03180011 -n02093256 -n03425413 -n02504013 -n03877472 -n02087046 -n03976467 -n02091134 -n04044716 -n02088364 -n02009912 -n02206856 -n03297495 -n02871525 -n03633091 -n02105855 -n03075370 -n02119789 -n01644373 -n03216828 -n03478589 -n03929855 -n02939185 -n01847000 -n02317335 -n01983481 -n03657121 -n02086910 -n02088238 -n02168699 -n03976467 -n07697313 -n03743016 -n04086273 -n04200800 -n01632777 -n03529860 -n03404251 -n03255030 -n03476991 -n04311174 -n02093991 -n03924679 -n03478589 -n04258138 -n01774384 -n02277742 -n01980166 -n02951358 -n03983396 -n03482405 -n02091244 -n01592084 -n02415577 -n02125311 -n03888257 -n03871628 -n02096437 -n03743016 -n04118776 -n02526121 -n07711569 -n01694178 -n01744401 -n03424325 -n10565667 -n02007558 -n01860187 -n03127925 -n04380533 -n03637318 -n02088238 -n04118538 -n02101006 -n02110958 -n01820546 -n02106550 -n03874293 -n02229544 -n03937543 -n03838899 -n04147183 -n03697007 -n02655020 -n01677366 -n02415577 -n03891332 -n03673027 -n02328150 -n02363005 -n04209133 -n04065272 -n04399382 -n02114548 -n03724870 -n12620546 -n04277352 -n02105855 -n01704323 -n01697457 -n02094433 -n02110958 -n02092339 -n01734418 -n02108915 -n02791270 -n01534433 -n04111531 -n03476684 -n02708093 -n01955084 -n01580077 -n01592084 -n03602883 -n02871525 -n04037443 -n02086910 -n13040303 -n07749582 -n01930112 -n13037406 -n03792972 -n01775062 -n02403003 -n02974003 -n01644373 -n02966193 -n03481172 -n02095570 -n03297495 -n01614925 -n01440764 -n02879718 -n02105641 -n03125729 -n03891332 -n01697457 -n03443371 -n03794056 -n02231487 -n02395406 -n02787622 -n03425413 -n02111889 -n01632458 -n02110806 -n03584829 -n03733805 -n04613696 -n07747607 -n02687172 -n03792782 -n02492035 -n02489166 -n03393912 -n03018349 -n03843555 -n02769748 -n02168699 -n03272010 -n04532106 -n01943899 -n01882714 -n03127747 -n02088632 -n04589890 -n12768682 -n07715103 -n02410509 -n03995372 -n01728920 -n02091134 -n01820546 -n01739381 -n02917067 -n04591157 -n07697313 -n01728920 -n02835271 -n02028035 -n03908714 -n02096294 -n02106030 -n03384352 -n02174001 -n04522168 -n03866082 -n02817516 -n01978287 -n04259630 -n04399382 -n02113978 -n03447721 -n02749479 -n03188531 -n02483708 -n07693725 -n03014705 -n01622779 -n03642806 -n02018207 -n09332890 -n03670208 -n03291819 -n02017213 -n02098286 -n04141327 -n02105251 -n02447366 -n02321529 -n03792782 -n01443537 -n01943899 -n04522168 -n13133613 -n03891251 -n02106166 -n04592741 -n04179913 -n03216828 -n04467665 -n01883070 -n07614500 -n02105162 -n04456115 -n04332243 -n04049303 -n07615774 -n01616318 -n07802026 -n03291819 -n01688243 -n02396427 -n09229709 -n09399592 -n02027492 -n04517823 -n03325584 -n02165456 -n03803284 -n02802426 -n09428293 -n02168699 -n02106662 -n03259280 -n03733131 -n04258138 -n01924916 -n01945685 -n09428293 -n02871525 -n02786058 -n03721384 -n04285008 -n03485794 -n01784675 -n04428191 -n02092002 -n04372370 -n04099969 -n03026506 -n02971356 -n02106030 -n04131690 -n01847000 -n03794056 -n12985857 -n02488702 -n01872401 -n03372029 -n01806567 -n01917289 -n03444034 -n01776313 -n02814533 -n02672831 -n03637318 -n02113978 -n02165456 -n04548280 -n02917067 -n01560419 -n02825657 -n04552348 -n02999410 -n02190166 -n03065424 -n02825657 -n07716358 -n02877765 -n09421951 -n12267677 -n01819313 -n04264628 -n03344393 -n02002724 -n01641577 -n02256656 -n01532829 -n03854065 -n02791270 -n02951585 -n03014705 -n01592084 -n01728572 -n01774750 -n03868242 -n04370456 -n03337140 -n03124043 -n03290653 -n02488291 -n04505470 -n04553703 -n02107574 -n01692333 -n12620546 -n04086273 -n03657121 -n01582220 -n03485407 -n03840681 -n07768694 -n03782006 -n02114548 -n11939491 -n04552348 -n03208938 -n02006656 -n03764736 -n07695742 -n01820546 -n02326432 -n02009229 -n02408429 -n03018349 -n03018349 -n02504458 -n02089973 -n01917289 -n01739381 -n02130308 -n04099969 -n02102040 -n03788195 -n03764736 -n02422699 -n01978287 -n02860847 -n02749479 -n03877845 -n03404251 -n04209133 -n07695742 -n04090263 -n03720891 -n04311174 -n03642806 -n03933933 -n04005630 -n02093991 -n02977058 -n09835506 -n03417042 -n01742172 -n03888257 -n02782093 -n07802026 -n03208938 -n02130308 -n02090622 -n04040759 -n02422699 -n03594945 -n02437616 -n03337140 -n09399592 -n02129604 -n02488291 -n04597913 -n03089624 -n03710193 -n02930766 -n04435653 -n01806567 -n03100240 -n01582220 -n03871628 -n02422106 -n02494079 -n04372370 -n07716358 -n04277352 -n02236044 -n03891332 -n03814639 -n02396427 -n02793495 -n02096437 -n02504458 -n02085936 -n01978287 -n04239074 -n03532672 -n02869837 -n02127052 -n03680355 -n02206856 -n03602883 -n01817953 -n03733805 -n03938244 -n03450230 -n04044716 -n02965783 -n03938244 -n01592084 -n03290653 -n04479046 -n07831146 -n01735189 -n04525305 -n02870880 -n02776631 -n02172182 -n04081281 -n03876231 -n01985128 -n01917289 -n10148035 -n04286575 -n03598930 -n02085782 -n02699494 -n04009552 -n03492542 -n07749582 -n03017168 -n03494278 -n02134418 -n03792782 -n01687978 -n13040303 -n03220513 -n03347037 -n03476684 -n01828970 -n02114367 -n07715103 -n02119789 -n01749939 -n03791053 -n02457408 -n01440764 -n01824575 -n04372370 -n07802026 -n04270147 -n04033901 -n04515003 -n03950228 -n04005630 -n02091032 -n02090379 -n02486410 -n07684084 -n04592741 -n02106382 -n02165456 -n02483708 -n01737021 -n02814533 -n04081281 -n03884397 -n07749582 -n01641577 -n03929855 -n04550184 -n04467665 -n03930313 -n02951585 -n02747177 -n04487394 -n01773549 -n04228054 -n02410509 -n04596742 -n02795169 -n03496892 -n04613696 -n02398521 -n03814906 -n02823750 -n02106550 -n02128385 -n02364673 -n03770679 -n02099429 -n01669191 -n12057211 -n04476259 -n02229544 -n03781244 -n02509815 -n02807133 -n02132136 -n03447721 -n02840245 -n03743016 -n04118776 -n04356056 -n02190166 -n03424325 -n04606251 -n04146614 -n04040759 -n07754684 -n02119022 -n02454379 -n02443484 -n04310018 -n03527444 -n04399382 -n03843555 -n01740131 -n02127052 -n02749479 -n03045698 -n02086240 -n01795545 -n04592741 -n02701002 -n04149813 -n02823750 -n01728920 -n04493381 -n02894605 -n03970156 -n03838899 -n03877845 -n03534580 -n02094258 -n03047690 -n02033041 -n03208938 -n03124043 -n03000134 -n03250847 -n01817953 -n02727426 -n01669191 -n02268443 -n03770439 -n02389026 -n04550184 -n02804610 -n03461385 -n02091244 -n02363005 -n02391049 -n07717410 -n03404251 -n07695742 -n04462240 -n01817953 -n06359193 -n01685808 -n02509815 -n09835506 -n04523525 -n04398044 -n01955084 -n02423022 -n02129604 -n02066245 -n01773797 -n02859443 -n04090263 -n03617480 -n04548280 -n03929855 -n03777754 -n02791270 -n02317335 -n03791053 -n03180011 -n01677366 -n03976467 -n02497673 -n01729322 -n03297495 -n02268853 -n01742172 -n07716906 -n03630383 -n02825657 -n02094258 -n07873807 -n03776460 -n01843383 -n02840245 -n02607072 -n01491361 -n03109150 -n03908618 -n02132136 -n01950731 -n02133161 -n04070727 -n03384352 -n03594945 -n03933933 -n03891332 -n01968897 -n09229709 -n02095314 -n02088364 -n01641577 -n03124170 -n03272562 -n02817516 -n01943899 -n07590611 -n04235860 -n03991062 -n02006656 -n04026417 -n02113799 -n04311004 -n02815834 -n04008634 -n07718472 -n02437616 -n04325704 -n03676483 -n03207941 -n02066245 -n03873416 -n02489166 -n03782006 -n04523525 -n03710637 -n02791270 -n09835506 -n01768244 -n03888257 -n04325704 -n02007558 -n01641577 -n03983396 -n04179913 -n03786901 -n03425413 -n02012849 -n03876231 -n02802426 -n04067472 -n02112350 -n02797295 -n03895866 -n07753113 -n03297495 -n02091635 -n04487394 -n03729826 -n02104029 -n02102973 -n03000247 -n01871265 -n03920288 -n03627232 -n02229544 -n02092339 -n02802426 -n03018349 -n13044778 -n03014705 -n02776631 -n03109150 -n13052670 -n03218198 -n04125021 -n04550184 -n04479046 -n04443257 -n03908618 -n02094433 -n02113186 -n02105162 -n02980441 -n02971356 -n07697313 -n02102177 -n04613696 -n02095889 -n02979186 -n09472597 -n03476684 -n02692877 -n01756291 -n03976657 -n03494278 -n03026506 -n04228054 -n04146614 -n03100240 -n02018795 -n01873310 -n04026417 -n02086910 -n04192698 -n02093991 -n04116512 -n02107908 -n02066245 -n04026417 -n02444819 -n02536864 -n02361337 -n03770439 -n02086646 -n03444034 -n04008634 -n02727426 -n07615774 -n02107908 -n03637318 -n04317175 -n03662601 -n09256479 -n03933933 -n03666591 -n02102318 -n07802026 -n04467665 -n03109150 -n03710721 -n02817516 -n01855672 -n03259280 -n02108089 -n01943899 -n02655020 -n02817516 -n07871810 -n03935335 -n03250847 -n04417672 -n04252077 -n01910747 -n03950228 -n02009912 -n02690373 -n02787622 -n01685808 -n02486410 -n04326547 -n03467068 -n01742172 -n02965783 -n04209133 -n06874185 -n01797886 -n01755581 -n03942813 -n02087394 -n02137549 -n03047690 -n04447861 -n04275548 -n02229544 -n03530642 -n01930112 -n04548362 -n04552348 -n02486261 -n02328150 -n03355925 -n02096177 -n02403003 -n01817953 -n01629819 -n03983396 -n03207941 -n01806567 -n02089973 -n07714990 -n03590841 -n02086646 -n03781244 -n02090622 -n03445924 -n02051845 -n04560804 -n09288635 -n03840681 -n01622779 -n03445924 -n02058221 -n03837869 -n02125311 -n02783161 -n01698640 -n02787622 -n03706229 -n02840245 -n02808440 -n03680355 -n01560419 -n01978287 -n02422699 -n01687978 -n01537544 -n03793489 -n03016953 -n04044716 -n01560419 -n02056570 -n03179701 -n09468604 -n03623198 -n02690373 -n02454379 -n04467665 -n02112018 -n04591157 -n04243546 -n04254777 -n01558993 -n07932039 -n04258138 -n02085936 -n03240683 -n04409515 -n03661043 -n01532829 -n03930630 -n02112350 -n02837789 -n02098286 -n04485082 -n03272562 -n02105505 -n03916031 -n07742313 -n03042490 -n02105855 -n04229816 -n04447861 -n02916936 -n02120505 -n02917067 -n01984695 -n02454379 -n03529860 -n03482405 -n04049303 -n03452741 -n02113023 -n03447721 -n01728572 -n03942813 -n03929855 -n03344393 -n01692333 -n01945685 -n03929660 -n07565083 -n04579432 -n03594734 -n03793489 -n02114712 -n02111129 -n02091244 -n12057211 -n02493793 -n03404251 -n03026506 -n01817953 -n02130308 -n02930766 -n03594734 -n02777292 -n02486410 -n09468604 -n02489166 -n01981276 -n04275548 -n02865351 -n04118538 -n01641577 -n02113624 -n04008634 -n01945685 -n02692877 -n02749479 -n03891332 -n02795169 -n02105641 -n04136333 -n04417672 -n04263257 -n06596364 -n02091032 -n03770679 -n07749582 -n02977058 -n03594734 -n02317335 -n04550184 -n02437312 -n01728572 -n02395406 -n04522168 -n04209133 -n02108000 -n01843383 -n04004767 -n03804744 -n04398044 -n02643566 -n13052670 -n03443371 -n02101388 -n02133161 -n02641379 -n03814906 -n02115913 -n02108915 -n01978287 -n04277352 -n04493381 -n01608432 -n04548280 -n03379051 -n03796401 -n02051845 -n04350905 -n04612504 -n03207743 -n02097298 -n03447447 -n02804610 -n01770393 -n10148035 -n02094258 -n03720891 -n02089078 -n02130308 -n02536864 -n03942813 -n02110341 -n04579432 -n07716358 -n03095699 -n02128925 -n04141975 -n02119789 -n03481172 -n03532672 -n02655020 -n07749582 -n02109961 -n02101556 -n03662601 -n03803284 -n02641379 -n04367480 -n02101388 -n04562935 -n01694178 -n02088466 -n02536864 -n03781244 -n04192698 -n02167151 -n02089078 -n03544143 -n03026506 -n02128925 -n04251144 -n03929855 -n03085013 -n03125729 -n01677366 -n03661043 -n04584207 -n04200800 -n02487347 -n02321529 -n03814906 -n01924916 -n02802426 -n01693334 -n02169497 -n02128925 -n07717556 -n03895866 -n02099429 -n03085013 -n11939491 -n09468604 -n02109047 -n07565083 -n04310018 -n02988304 -n07754684 -n02058221 -n02114367 -n03485794 -n03424325 -n04443257 -n01697457 -n02219486 -n02877765 -n01644900 -n03775071 -n02097047 -n02085620 -n07693725 -n03160309 -n02815834 -n03110669 -n03868863 -n04008634 -n03743016 -n02094114 -n03208938 -n07590611 -n04273569 -n03706229 -n02013706 -n07753592 -n02916936 -n02112137 -n02108089 -n03841143 -n03595614 -n03125729 -n07742313 -n02487347 -n04235860 -n02782093 -n01742172 -n04604644 -n04554684 -n04086273 -n02906734 -n02091635 -n03201208 -n07693725 -n09332890 -n02088364 -n03017168 -n03729826 -n03983396 -n03676483 -n04204347 -n04251144 -n02917067 -n04081281 -n03930313 -n03494278 -n03160309 -n02389026 -n03250847 -n03133878 -n02091635 -n02389026 -n02087394 -n02113799 -n02281787 -n04548280 -n04509417 -n03384352 -n02009229 -n04370456 -n07753275 -n02102177 -n01494475 -n03459775 -n02804610 -n04456115 -n02099712 -n01494475 -n04344873 -n03788195 -n01944390 -n01910747 -n03868242 -n03452741 -n13044778 -n01883070 -n02701002 -n02793495 -n02692877 -n03220513 -n01978287 -n02483362 -n01776313 -n02808304 -n03721384 -n02012849 -n03733281 -n07920052 -n02326432 -n04192698 -n02113799 -n02106550 -n02097298 -n02509815 -n02835271 -n04548280 -n04522168 -n03950228 -n01689811 -n09428293 -n01877812 -n02100583 -n01704323 -n03680355 -n03000247 -n03742115 -n04486054 -n02097298 -n02091635 -n03680355 -n02002556 -n02101388 -n01818515 -n02454379 -n03216828 -n03933933 -n02107683 -n04252077 -n02980441 -n04039381 -n03201208 -n02102177 -n03388549 -n04523525 -n03770439 -n03710193 -n01675722 -n04501370 -n04501370 -n02092002 -n03598930 -n07932039 -n02101006 -n02268853 -n04259630 -n03871628 -n02786058 -n03485794 -n02009912 -n02091244 -n02808304 -n01860187 -n07613480 -n01843065 -n02095889 -n01943899 -n02859443 -n02112350 -n02165456 -n01773797 -n02328150 -n03485407 -n01955084 -n01601694 -n03290653 -n01796340 -n06359193 -n01558993 -n03950228 -n02096437 -n02093859 -n01773549 -n04154565 -n02437616 -n02017213 -n04146614 -n02488702 -n02137549 -n02013706 -n02100735 -n04465501 -n02727426 -n04467665 -n02095889 -n02415577 -n03075370 -n02097298 -n02027492 -n02441942 -n02104029 -n03617480 -n03623198 -n02536864 -n07875152 -n04208210 -n02423022 -n03016953 -n01669191 -n04344873 -n02526121 -n09472597 -n03873416 -n01829413 -n12057211 -n02950826 -n02786058 -n02486410 -n02486261 -n02423022 -n02107574 -n03773504 -n01558993 -n02096177 -n03961711 -n01873310 -n04118538 -n02091032 -n03483316 -n13040303 -n03180011 -n02125311 -n02172182 -n03976657 -n02094258 -n02980441 -n02107312 -n01755581 -n02776631 -n02492660 -n01664065 -n01514668 -n02966193 -n02492035 -n03482405 -n04019541 -n03954731 -n02106550 -n04404412 -n02797295 -n01955084 -n04612504 -n04069434 -n02492035 -n10565667 -n02091134 -n01631663 -n02727426 -n02071294 -n02124075 -n02092002 -n02321529 -n04208210 -n01819313 -n02087046 -n04409515 -n03485794 -n04356056 -n02087046 -n02492035 -n02085782 -n03788365 -n02483708 -n04532106 -n02106030 -n03742115 -n03868242 -n03000684 -n02100236 -n02398521 -n03976657 -n03595614 -n03884397 -n03109150 -n02978881 -n02279972 -n02391049 -n03417042 -n01734418 -n07565083 -n03970156 -n02256656 -n01689811 -n02107683 -n04591713 -n02105855 -n04099969 -n02980441 -n07720875 -n04259630 -n07920052 -n03777754 -n02099429 -n03777568 -n03759954 -n02109525 -n04264628 -n03584829 -n04525305 -n02099712 -n01689811 -n02169497 -n02011460 -n02109961 -n03814906 -n02095314 -n03866082 -n02966687 -n03710721 -n02690373 -n02514041 -n03062245 -n02797295 -n02167151 -n01518878 -n13040303 -n13044778 -n02088364 -n03045698 -n03857828 -n09288635 -n03873416 -n10148035 -n02837789 -n03388183 -n03272010 -n13054560 -n02699494 -n02051845 -n02966193 -n02437312 -n04557648 -n02177972 -n03792782 -n01751748 -n02892767 -n04344873 -n03902125 -n01558993 -n02087394 -n02006656 -n01784675 -n02099601 -n03930313 -n02980441 -n02097209 -n02091032 -n03742115 -n02606052 -n02104365 -n02097130 -n07860988 -n02120079 -n04235860 -n02883205 -n02727426 -n02099267 -n03884397 -n02992211 -n03095699 -n04254777 -n02093859 -n03146219 -n04548362 -n04335435 -n02489166 -n01531178 -n02259212 -n02894605 -n02114855 -n03188531 -n02088466 -n03956157 -n04589890 -n04525038 -n02233338 -n04612504 -n07711569 -n02437312 -n03976657 -n12144580 -n01843065 -n02120505 -n07745940 -n04552348 -n03710721 -n03425413 -n01697457 -n02396427 -n02092339 -n02493509 -n02087046 -n02123159 -n04251144 -n04259630 -n02096051 -n04507155 -n02106662 -n03445777 -n03494278 -n01756291 -n03063689 -n02105162 -n04346328 -n04591713 -n03662601 -n02093428 -n02917067 -n03710721 -n02493509 -n02794156 -n07720875 -n01669191 -n02088364 -n01873310 -n04037443 -n03598930 -n07714571 -n04069434 -n03888257 -n07718472 -n03676483 -n03929660 -n02514041 -n02105056 -n04275548 -n03534580 -n04296562 -n03770439 -n02165456 -n02704792 -n03995372 -n04344873 -n02123159 -n11879895 -n02094114 -n02514041 -n03388549 -n01629819 -n02776631 -n02963159 -n03857828 -n07768694 -n01847000 -n02229544 -n02834397 -n04380533 -n07717410 -n02112706 -n03014705 -n11939491 -n02769748 -n03075370 -n03534580 -n02116738 -n02111277 -n03482405 -n02096294 -n01819313 -n02105056 -n04540053 -n03028079 -n03467068 -n02107683 -n12768682 -n02481823 -n02447366 -n03255030 -n02977058 -n12620546 -n03131574 -n02981792 -n02110063 -n03494278 -n02415577 -n02398521 -n04554684 -n03063599 -n04579145 -n04335435 -n04264628 -n04311004 -n02457408 -n02106550 -n04483307 -n02977058 -n02091244 -n02169497 -n03041632 -n03630383 -n02669723 -n02104029 -n02364673 -n02749479 -n02107312 -n02128925 -n02091831 -n04554684 -n01978287 -n02655020 -n02125311 -n04136333 -n07753113 -n01943899 -n04204347 -n03372029 -n04418357 -n02980441 -n02859443 -n04235860 -n09472597 -n02328150 -n02017213 -n01734418 -n03930313 -n03868242 -n04355338 -n04118538 -n02804610 -n02028035 -n02835271 -n02114548 -n03710193 -n04033901 -n01984695 -n03443371 -n03956157 -n07753113 -n03532672 -n01664065 -n02786058 -n02125311 -n02085620 -n02655020 -n04235860 -n03018349 -n13040303 -n03658185 -n04254680 -n01484850 -n03594945 -n04209133 -n03877845 -n12985857 -n02102040 -n02112018 -n03467068 -n02115641 -n04562935 -n03042490 -n04429376 -n02895154 -n13052670 -n01514668 -n01491361 -n01924916 -n04039381 -n02437616 -n04065272 -n01855672 -n03733281 -n03935335 -n02492035 -n02130308 -n04131690 -n01484850 -n03197337 -n03761084 -n03899768 -n02128385 -n04604644 -n03623198 -n04152593 -n02783161 -n04252225 -n04118538 -n02412080 -n03717622 -n02480495 -n02102480 -n02676566 -n02492035 -n04265275 -n07742313 -n03483316 -n03706229 -n02129165 -n07718747 -n03967562 -n01443537 -n02190166 -n01943899 -n02089078 -n03627232 -n02110958 -n03902125 -n04081281 -n02172182 -n02099849 -n02492035 -n02999410 -n04435653 -n03127925 -n07880968 -n04243546 -n03544143 -n01877812 -n02823750 -n02814533 -n02916936 -n02120505 -n02088632 -n02977058 -n07734744 -n02676566 -n01770081 -n04116512 -n02871525 -n02091032 -n02536864 -n03223299 -n02963159 -n03180011 -n03207743 -n03496892 -n03444034 -n03100240 -n04592741 -n02091831 -n04613696 -n02097130 -n03196217 -n04523525 -n04505470 -n04153751 -n03786901 -n03220513 -n02808440 -n04399382 -n03594945 -n01978455 -n01824575 -n01986214 -n03792782 -n02730930 -n03208938 -n02641379 -n02106030 -n02106550 -n02110063 -n03786901 -n04532670 -n03595614 -n13054560 -n02233338 -n03803284 -n03355925 -n02236044 -n02951585 -n03063599 -n03047690 -n01496331 -n02708093 -n02356798 -n04442312 -n02107574 -n03459775 -n04026417 -n02860847 -n02655020 -n03983396 -n03658185 -n04589890 -n03956157 -n02093991 -n02091032 -n02977058 -n01667114 -n02500267 -n03347037 -n07716906 -n03598930 -n02841315 -n04254777 -n04049303 -n13040303 -n03495258 -n04596742 -n15075141 -n02105251 -n01667114 -n01775062 -n02002724 -n04536866 -n01768244 -n02808440 -n02087046 -n02917067 -n04111531 -n02190166 -n03690938 -n13040303 -n04133789 -n03877845 -n01985128 -n03220513 -n03970156 -n04483307 -n01641577 -n03384352 -n02823750 -n02088238 -n04346328 -n04423845 -n04356056 -n04509417 -n02606052 -n01704323 -n07831146 -n02120505 -n02099601 -n02799071 -n02233338 -n03394916 -n02865351 -n03272562 -n03843555 -n09246464 -n02825657 -n02951585 -n03692522 -n04517823 -n03803284 -n02086910 -n07613480 -n09399592 -n03775071 -n02099429 -n07695742 -n03527444 -n04330267 -n03832673 -n02894605 -n02951585 -n09332890 -n13054560 -n03623198 -n02363005 -n04275548 -n09288635 -n03902125 -n04435653 -n04398044 -n02666196 -n04147183 -n02454379 -n02107574 -n04592741 -n04200800 -n02066245 -n01629819 -n03272562 -n03877472 -n02009229 -n03532672 -n02437312 -n02089078 -n04127249 -n03443371 -n02091635 -n02667093 -n03935335 -n02364673 -n02165105 -n03770439 -n03063599 -n02363005 -n03100240 -n02815834 -n04275548 -n02791270 -n02325366 -n01695060 -n02787622 -n07753113 -n02128385 -n04125021 -n02395406 -n04371430 -n03388043 -n12620546 -n04597913 -n03967562 -n02708093 -n02280649 -n02113978 -n09288635 -n03425413 -n03207941 -n01740131 -n04120489 -n02106382 -n02536864 -n04458633 -n03633091 -n03967562 -n04371430 -n02690373 -n02113186 -n02870880 -n02114855 -n02396427 -n02132136 -n02107908 -n01950731 -n02992529 -n03814639 -n03594734 -n07613480 -n07932039 -n03721384 -n02641379 -n03721384 -n03661043 -n04509417 -n02814533 -n02437616 -n04192698 -n02002724 -n15075141 -n03670208 -n02974003 -n02094433 -n03617480 -n04486054 -n03290653 -n03255030 -n04435653 -n02916936 -n01728572 -n01632777 -n03028079 -n02106382 -n12267677 -n02279972 -n02111129 -n01820546 -n03680355 -n03991062 -n02090721 -n02879718 -n01514668 -n01728572 -n04442312 -n03379051 -n02930766 -n03982430 -n02497673 -n02115641 -n02389026 -n02793495 -n03594945 -n03661043 -n04398044 -n01773797 -n03630383 -n07892512 -n02259212 -n02128757 -n03595614 -n03126707 -n04200800 -n12620546 -n02091032 -n01531178 -n03775071 -n02346627 -n02096294 -n04204347 -n02892201 -n01807496 -n03825788 -n02342885 -n02128385 -n07745940 -n04404412 -n03720891 -n02109961 -n03976657 -n02093256 -n03787032 -n03794056 -n04136333 -n03787032 -n02105855 -n01774384 -n02974003 -n02106030 -n04023962 -n03485794 -n02086910 -n02091134 -n02727426 -n04591157 -n03804744 -n04111531 -n03733805 -n02787622 -n02980441 -n03347037 -n01630670 -n04579432 -n01944390 -n12620546 -n02114712 -n03527444 -n04239074 -n01807496 -n01592084 -n02879718 -n04429376 -n02643566 -n07871810 -n07753113 -n03042490 -n02281787 -n03179701 -n01685808 -n03814906 -n02927161 -n02346627 -n03160309 -n04037443 -n02708093 -n03590841 -n04370456 -n02948072 -n02494079 -n06785654 -n04507155 -n02011460 -n02256656 -n04037443 -n03485794 -n03271574 -n04254777 -n02128757 -n04154565 -n03461385 -n02966193 -n02226429 -n02101006 -n02112018 -n07695742 -n02110341 -n02443114 -n02110185 -n02948072 -n02840245 -n03854065 -n02096294 -n02980441 -n03062245 -n03584829 -n01644900 -n03891251 -n03599486 -n02701002 -n02172182 -n03888605 -n03642806 -n04562935 -n01930112 -n02389026 -n02783161 -n02807133 -n04099969 -n03457902 -n03633091 -n03594945 -n07695742 -n07714990 -n03208938 -n04479046 -n09835506 -n03595614 -n01983481 -n03670208 -n01734418 -n01978455 -n03721384 -n02091635 -n02133161 -n04026417 -n01734418 -n03530642 -n04209133 -n04099969 -n01616318 -n02279972 -n03676483 -n03868863 -n02666196 -n02396427 -n01768244 -n03240683 -n02112018 -n13133613 -n03032252 -n04235860 -n02110627 -n03404251 -n04350905 -n02087046 -n01843383 -n01797886 -n02992211 -n02950826 -n02268853 -n03888605 -n07248320 -n03160309 -n07248320 -n03868242 -n01704323 -n01944390 -n04462240 -n06794110 -n03032252 -n04376876 -n02281406 -n02134418 -n03584829 -n03598930 -n04254777 -n04435653 -n02017213 -n04049303 -n03180011 -n03782006 -n02749479 -n04525305 -n02791270 -n04429376 -n02102318 -n07584110 -n02966687 -n02423022 -n02107142 -n02101556 -n04179913 -n02999410 -n02091134 -n02797295 -n04560804 -n01955084 -n07583066 -n03743016 -n03623198 -n03843555 -n02134084 -n02093256 -n02105505 -n03788195 -n07716906 -n04542943 -n04296562 -n02120079 -n03920288 -n02892767 -n04311174 -n04141327 -n02117135 -n03888605 -n04557648 -n04523525 -n02281787 -n02951358 -n03680355 -n07693725 -n02870880 -n02007558 -n06596364 -n01984695 -n03345487 -n02091244 -n09256479 -n02105162 -n07693725 -n03838899 -n03534580 -n02493509 -n02096177 -n07892512 -n02018795 -n04592741 -n01728920 -n07875152 -n01773797 -n02051845 -n04273569 -n03125729 -n01773549 -n04376876 -n04336792 -n02137549 -n03633091 -n01877812 -n02128757 -n04423845 -n02981792 -n03452741 -n01735189 -n04532106 -n02268853 -n07615774 -n03538406 -n01917289 -n01496331 -n01773549 -n03788195 -n02916936 -n03045698 -n03743016 -n03868863 -n04479046 -n01882714 -n03197337 -n02013706 -n07873807 -n02480855 -n04409515 -n02930766 -n03888257 -n03127925 -n11939491 -n02328150 -n02895154 -n02408429 -n02361337 -n02092339 -n01484850 -n03065424 -n02167151 -n01798484 -n02110341 -n02085620 -n04417672 -n02097047 -n04235860 -n02692877 -n04599235 -n04201297 -n02110341 -n03776460 -n02037110 -n02174001 -n02797295 -n02939185 -n03637318 -n03710721 -n02086646 -n03657121 -n02509815 -n07836838 -n04592741 -n04264628 -n04399382 -n02814533 -n04311174 -n02137549 -n07753113 -n02704792 -n02093859 -n01694178 -n03444034 -n01784675 -n02088466 -n03692522 -n02091244 -n02133161 -n09835506 -n01614925 -n02168699 -n02113624 -n03109150 -n02190166 -n03710721 -n02092002 -n01644373 -n04357314 -n01704323 -n01882714 -n03908618 -n04592741 -n02095570 -n02870880 -n04277352 -n03666591 -n09332890 -n02090721 -n04326547 -n04251144 -n04033901 -n02977058 -n03095699 -n02114548 -n02966193 -n07717410 -n04562935 -n02814860 -n02963159 -n02090721 -n03891251 -n02325366 -n03630383 -n03742115 -n03400231 -n07753275 -n02174001 -n01877812 -n02870880 -n02892201 -n02727426 -n02115913 -n02395406 -n03956157 -n02074367 -n07760859 -n04476259 -n03018349 -n04208210 -n04560804 -n03794056 -n03803284 -n03476684 -n01514668 -n04347754 -n01773157 -n01820546 -n04443257 -n03976657 -n04146614 -n02100583 -n04476259 -n01776313 -n02095570 -n03180011 -n02110806 -n02129165 -n02504013 -n02808304 -n03854065 -n02066245 -n01685808 -n03290653 -n01924916 -n03776460 -n02102973 -n03871628 -n04266014 -n04350905 -n02104029 -n03598930 -n04344873 -n10565667 -n02123045 -n02437312 -n03759954 -n02437616 -n02123159 -n01664065 -n02916936 -n03124170 -n02504013 -n03272562 -n03617480 -n02091244 -n02051845 -n02090622 -n04376876 -n04613696 -n02108551 -n04328186 -n01682714 -n03777754 -n02095570 -n07802026 -n02437616 -n02169497 -n02100735 -n01748264 -n03942813 -n04296562 -n02264363 -n04517823 -n03207743 -n02927161 -n04332243 -n02110185 -n04409515 -n02480495 -n09468604 -n02100735 -n07716358 -n15075141 -n03814639 -n02105251 -n01537544 -n01855672 -n01644900 -n04037443 -n02870880 -n02264363 -n04336792 -n09229709 -n03146219 -n02837789 -n03733281 -n04599235 -n04008634 -n02111500 -n04560804 -n02116738 -n02009229 -n03272562 -n02106030 -n03666591 -n02356798 -n09835506 -n02727426 -n02113712 -n02397096 -n04153751 -n02808304 -n02033041 -n02992529 -n02837789 -n03355925 -n03492542 -n03991062 -n02457408 -n03085013 -n04501370 -n02843684 -n02490219 -n02106382 -n02489166 -n03670208 -n02447366 -n02655020 -n13054560 -n03445924 -n03903868 -n02099601 -n02119022 -n02422106 -n04019541 -n04355933 -n04200800 -n02123597 -n13052670 -n03250847 -n02992529 -n02951585 -n03085013 -n01768244 -n04525305 -n03187595 -n01798484 -n03467068 -n04370456 -n03832673 -n02097130 -n03240683 -n04371430 -n04579432 -n04458633 -n04483307 -n02980441 -n02102318 -n04154565 -n03452741 -n03961711 -n02808440 -n03063689 -n02114855 -n02096051 -n04461696 -n04487394 -n02113186 -n07892512 -n03223299 -n04081281 -n04371774 -n04417672 -n03249569 -n03197337 -n02101006 -n01768244 -n02113186 -n03899768 -n02783161 -n01734418 -n01728920 -n02497673 -n03063599 -n04479046 -n02895154 -n02100877 -n01983481 -n03908618 -n04507155 -n03344393 -n01829413 -n02342885 -n02190166 -n07802026 -n03991062 -n02974003 -n01698640 -n04447861 -n03623198 -n04347754 -n07614500 -n12144580 -n04254680 -n04482393 -n01943899 -n03887697 -n03598930 -n02483362 -n02120079 -n03680355 -n03485407 -n02130308 -n02894605 -n03841143 -n02172182 -n02727426 -n04418357 -n02097209 -n03495258 -n02701002 -n03481172 -n02860847 -n04435653 -n03384352 -n04131690 -n02701002 -n03868863 -n01644373 -n03000247 -n02397096 -n04118776 -n02117135 -n02051845 -n03649909 -n02869837 -n03661043 -n02090622 -n02190166 -n02134084 -n02701002 -n03496892 -n02871525 -n04277352 -n02966193 -n07697313 -n03447447 -n03388183 -n02483708 -n03623198 -n09421951 -n02128925 -n02823428 -n02410509 -n02099429 -n04162706 -n01601694 -n06794110 -n03929660 -n07920052 -n04273569 -n02259212 -n03180011 -n01685808 -n02095889 -n04204347 -n02804414 -n02236044 -n04111531 -n02132136 -n07717556 -n03388183 -n04200800 -n04154565 -n02099601 -n03065424 -n03942813 -n01930112 -n04049303 -n02965783 -n03444034 -n03131574 -n02090721 -n02281787 -n04389033 -n07615774 -n02086240 -n02105412 -n03794056 -n03977966 -n01728572 -n03218198 -n07584110 -n02134084 -n03991062 -n03124170 -n04070727 -n03908618 -n07932039 -n02110806 -n01630670 -n03598930 -n04355338 -n03014705 -n02172182 -n03721384 -n02095314 -n02979186 -n01742172 -n04409515 -n02089973 -n02422699 -n03763968 -n02492660 -n02910353 -n03743016 -n03196217 -n02840245 -n03804744 -n04532106 -n03773504 -n02100236 -n02325366 -n07753275 -n03483316 -n01494475 -n04344873 -n04259630 -n03627232 -n02280649 -n02883205 -n04404412 -n04357314 -n04286575 -n03803284 -n02098413 -n04209239 -n01632777 -n03908618 -n02110185 -n02457408 -n02788148 -n03467068 -n01443537 -n04310018 -n03325584 -n02395406 -n03133878 -n02134084 -n02089867 -n01833805 -n03443371 -n03838899 -n03216828 -n03485794 -n03761084 -n02500267 -n04435653 -n01514668 -n10565667 -n01675722 -n02233338 -n02497673 -n01784675 -n03761084 -n02279972 -n03721384 -n02088238 -n03017168 -n01770081 -n03347037 -n02231487 -n12768682 -n03877472 -n02730930 -n02088238 -n01592084 -n03998194 -n03478589 -n03776460 -n02086910 -n02113624 -n02669723 -n01930112 -n04356056 -n12768682 -n09421951 -n03908618 -n02120079 -n02133161 -n03345487 -n02087046 -n04118538 -n03344393 -n02704792 -n02112018 -n02100583 -n03196217 -n04133789 -n02640242 -n02817516 -n01740131 -n01532829 -n04548362 -n04509417 -n02364673 -n02415577 -n04204347 -n12267677 -n03445777 -n07584110 -n03544143 -n03764736 -n07892512 -n01770393 -n01688243 -n04033995 -n04590129 -n01978287 -n02113712 -n02093428 -n01819313 -n02437312 -n03706229 -n03535780 -n02112137 -n04266014 -n02137549 -n03630383 -n03089624 -n04208210 -n03100240 -n02480495 -n02860847 -n03062245 -n04409515 -n04404412 -n02687172 -n04065272 -n03770439 -n04049303 -n03249569 -n02088238 -n01978287 -n04532106 -n01687978 -n01751748 -n02981792 -n03792972 -n04326547 -n01728920 -n04612504 -n07714990 -n03764736 -n07717410 -n04141327 -n03032252 -n02107574 -n02226429 -n01820546 -n02088364 -n03961711 -n07753113 -n02094114 -n03733805 -n02607072 -n02028035 -n03857828 -n02807133 -n04456115 -n02640242 -n02206856 -n12144580 -n02115913 -n03627232 -n02699494 -n01756291 -n03630383 -n02280649 -n02799071 -n07749582 -n01773157 -n09256479 -n04235860 -n06874185 -n02002556 -n02454379 -n03775546 -n02177972 -n02009229 -n03297495 -n03895866 -n01694178 -n01698640 -n01796340 -n03124043 -n02107683 -n02981792 -n04540053 -n07695742 -n02102318 -n02123597 -n04152593 -n01695060 -n04252077 -n01689811 -n01882714 -n04141327 -n07753592 -n02793495 -n04136333 -n03876231 -n02860847 -n04591157 -n04380533 -n03259280 -n03530642 -n01558993 -n04355338 -n02017213 -n02091032 -n07615774 -n07693725 -n02319095 -n04335435 -n06794110 -n11879895 -n09332890 -n02708093 -n02643566 -n03895866 -n03838899 -n03393912 -n02112137 -n01955084 -n02094433 -n02791124 -n03877472 -n03792782 -n01756291 -n02097474 -n03259280 -n02190166 -n07715103 -n02095889 -n04532106 -n04597913 -n03743016 -n04548362 -n02481823 -n03388549 -n02319095 -n03792972 -n02823750 -n03623198 -n03933933 -n02231487 -n03476684 -n02098286 -n02169497 -n03379051 -n02457408 -n07742313 -n07615774 -n02206856 -n04239074 -n03393912 -n01592084 -n03680355 -n02837789 -n03590841 -n01986214 -n03657121 -n03697007 -n01697457 -n02447366 -n04418357 -n04367480 -n03220513 -n04479046 -n03100240 -n03000684 -n01978287 -n02105855 -n03127925 -n02105855 -n02092002 -n02028035 -n02094258 -n04204347 -n01795545 -n02125311 -n02823750 -n02112137 -n03126707 -n02123597 -n03223299 -n01798484 -n02280649 -n01776313 -n02641379 -n01608432 -n03249569 -n01630670 -n03895866 -n03888257 -n02422106 -n02093859 -n04125021 -n04065272 -n03814906 -n03992509 -n04423845 -n03393912 -n02066245 -n02114548 -n10148035 -n01608432 -n04355338 -n04277352 -n03976467 -n02859443 -n04141076 -n02127052 -n02088466 -n07880968 -n09835506 -n03874293 -n03481172 -n04355338 -n02894605 -n03544143 -n02977058 -n01773157 -n02486261 -n02112137 -n03075370 -n01601694 -n04004767 -n04273569 -n04275548 -n02966193 -n03443371 -n01755581 -n02100877 -n04325704 -n02090379 -n02088466 -n03347037 -n03691459 -n01616318 -n01820546 -n04009552 -n03637318 -n01795545 -n02108000 -n01843383 -n03908618 -n07753275 -n02950826 -n04069434 -n02701002 -n02799071 -n02786058 -n02526121 -n03459775 -n04552348 -n04462240 -n02108915 -n02088364 -n02791270 -n01682714 -n02123394 -n02101388 -n02840245 -n04493381 -n01990800 -n04162706 -n13054560 -n01632777 -n02093859 -n02025239 -n02797295 -n03179701 -n02980441 -n04596742 -n01980166 -n09835506 -n03445777 -n03110669 -n02094114 -n02086079 -n01443537 -n02110063 -n04355338 -n01560419 -n03355925 -n02119022 -n03447447 -n02219486 -n02113624 -n04523525 -n01983481 -n10565667 -n03803284 -n04367480 -n03400231 -n01980166 -n04596742 -n02417914 -n02514041 -n02033041 -n02094114 -n02134084 -n13040303 -n03763968 -n04111531 -n02090622 -n02486261 -n03452741 -n04458633 -n02094114 -n02097658 -n01978455 -n02988304 -n04229816 -n02892767 -n02804414 -n03240683 -n01443537 -n02088632 -n02172182 -n02786058 -n02701002 -n04515003 -n07693725 -n03594945 -n02100735 -n04204347 -n02093754 -n09428293 -n03958227 -n03042490 -n06359193 -n02102177 -n03445924 -n04141975 -n03690938 -n02108089 -n03075370 -n04517823 -n03208938 -n03958227 -n10148035 -n02444819 -n02092002 -n10565667 -n02437312 -n02280649 -n02909870 -n03977966 -n03110669 -n03777568 -n07930864 -n04560804 -n03888605 -n02120505 -n03014705 -n01744401 -n03770439 -n03393912 -n02727426 -n02093754 -n03379051 -n03788195 -n02099601 -n02481823 -n03291819 -n04127249 -n03803284 -n03794056 -n03478589 -n02009912 -n07579787 -n02951358 -n03297495 -n04517823 -n03794056 -n03854065 -n04325704 -n03902125 -n03207941 -n03160309 -n02727426 -n03498962 -n02056570 -n01530575 -n03290653 -n03133878 -n02099267 -n03742115 -n04273569 -n02977058 -n03724870 -n04597913 -n03763968 -n03201208 -n02672831 -n02096437 -n02916936 -n04398044 -n03110669 -n01580077 -n03775546 -n01665541 -n03109150 -n01843383 -n01751748 -n04487394 -n02804414 -n04200800 -n03661043 -n01806143 -n01641577 -n02325366 -n03976467 -n02917067 -n01819313 -n04465501 -n01955084 -n03063599 -n04099969 -n02793495 -n02086079 -n02859443 -n03690938 -n13052670 -n02088238 -n02699494 -n03721384 -n02006656 -n02415577 -n02981792 -n02492035 -n03379051 -n02280649 -n03095699 -n03720891 -n03459775 -n02422106 -n01644373 -n03347037 -n02834397 -n03218198 -n03627232 -n04557648 -n02423022 -n01784675 -n03425413 -n04579432 -n07875152 -n03461385 -n03404251 -n03658185 -n07720875 -n01943899 -n12620546 -n03967562 -n02102480 -n02500267 -n02087046 -n03595614 -n02100236 -n07892512 -n04505470 -n01986214 -n02447366 -n01978455 -n03942813 -n02917067 -n02125311 -n04275548 -n02077923 -n01829413 -n04557648 -n02483362 -n03250847 -n02454379 -n02793495 -n03891251 -n03938244 -n03467068 -n02226429 -n02106166 -n04465501 -n04423845 -n02108422 -n02776631 -n01773797 -n03250847 -n04606251 -n01664065 -n04127249 -n04254777 -n02483362 -n03041632 -n01729322 -n02093859 -n02977058 -n04252225 -n02116738 -n02950826 -n03494278 -n02130308 -n03786901 -n04462240 -n03617480 -n04418357 -n02879718 -n03018349 -n03272010 -n03379051 -n01614925 -n02102040 -n01630670 -n03627232 -n13037406 -n09288635 -n07584110 -n02102177 -n03347037 -n01632458 -n01768244 -n03584254 -n04346328 -n03599486 -n03109150 -n03692522 -n15075141 -n01742172 -n02841315 -n13040303 -n02117135 -n02107142 -n04266014 -n03724870 -n07248320 -n02704792 -n03871628 -n01990800 -n02129604 -n02119789 -n02125311 -n04606251 -n07768694 -n03187595 -n04376876 -n04483307 -n02110063 -n02107142 -n02782093 -n04487081 -n01675722 -n01608432 -n03297495 -n02098105 -n01950731 -n04238763 -n02105855 -n04552348 -n02051845 -n02128925 -n02877765 -n02128385 -n02877765 -n01872401 -n01682714 -n03481172 -n02509815 -n02236044 -n02280649 -n02488702 -n03492542 -n01749939 -n03207743 -n03179701 -n02100877 -n01981276 -n03710637 -n03223299 -n01630670 -n03877472 -n01560419 -n02259212 -n04127249 -n03796401 -n04486054 -n01807496 -n03492542 -n01694178 -n01740131 -n01985128 -n03637318 -n03584254 -n07717556 -n07753592 -n02791124 -n03786901 -n02965783 -n03733131 -n04458633 -n01614925 -n04435653 -n03534580 -n04532106 -n02276258 -n01697457 -n03187595 -n04590129 -n04004767 -n03877472 -n07248320 -n03207743 -n02892767 -n03976467 -n03133878 -n03594734 -n01877812 -n03785016 -n04613696 -n03534580 -n02013706 -n01985128 -n02110806 -n02441942 -n04554684 -n03916031 -n01748264 -n04204347 -n03450230 -n01622779 -n02799071 -n02017213 -n03201208 -n02487347 -n02497673 -n01795545 -n02487347 -n04487081 -n03710637 -n04026417 -n07747607 -n02092002 -n02701002 -n02492660 -n03995372 -n02415577 -n02091831 -n02423022 -n02165456 -n03666591 -n04604644 -n02107142 -n02951358 -n02219486 -n04542943 -n03777568 -n03787032 -n04332243 -n02927161 -n09288635 -n01704323 -n02091244 -n02894605 -n04554684 -n02085936 -n03014705 -n01871265 -n02113799 -n02107683 -n03347037 -n04296562 -n09256479 -n02110341 -n06874185 -n03967562 -n02708093 -n04344873 -n02437616 -n04523525 -n02099712 -n04404412 -n04277352 -n02948072 -n04111531 -n03452741 -n02966193 -n03452741 -n02100735 -n04597913 -n07747607 -n03764736 -n02123159 -n02107574 -n01729977 -n03976467 -n03788195 -n07717556 -n15075141 -n04596742 -n01729977 -n03042490 -n02102040 -n02093991 -n12144580 -n02107908 -n04612504 -n02981792 -n01644900 -n02128385 -n02128925 -n02110806 -n01748264 -n02777292 -n04209239 -n02112350 -n02361337 -n04141327 -n02229544 -n02281406 -n03895866 -n02108915 -n12768682 -n02106030 -n03218198 -n04133789 -n02093428 -n03461385 -n02119789 -n03444034 -n02877765 -n03724870 -n03773504 -n01698640 -n02504013 -n02231487 -n01558993 -n06785654 -n01981276 -n02389026 -n04277352 -n02687172 -n03291819 -n04447861 -n04310018 -n02486410 -n02105855 -n02948072 -n03785016 -n02002724 -n03417042 -n03188531 -n02259212 -n02776631 -n02951585 -n03337140 -n01751748 -n02879718 -n04277352 -n12057211 -n02951585 -n03967562 -n07714571 -n02085620 -n02510455 -n02869837 -n01980166 -n01756291 -n03792972 -n02112137 -n03680355 -n03841143 -n07565083 -n07693725 -n07715103 -n01820546 -n01873310 -n03777568 -n01833805 -n02676566 -n03447721 -n02500267 -n03602883 -n04239074 -n04118538 -n04536866 -n04548362 -n02776631 -n01667778 -n03825788 -n03891332 -n04258138 -n04542943 -n02099849 -n03041632 -n04179913 -n01632458 -n01537544 -n02930766 -n03814639 -n02643566 -n03498962 -n01798484 -n02692877 -n03134739 -n03314780 -n02870880 -n07768694 -n04141076 -n03786901 -n03314780 -n02172182 -n02092339 -n03259280 -n07880968 -n02115641 -n01990800 -n12768682 -n07930864 -n03527444 -n02091244 -n03769881 -n01494475 -n03249569 -n02395406 -n03776460 -n12985857 -n02056570 -n02486410 -n01737021 -n02488702 -n01978455 -n01622779 -n02510455 -n01776313 -n07831146 -n02018207 -n02808304 -n01855032 -n03803284 -n02514041 -n02099849 -n01806143 -n03837869 -n03902125 -n02895154 -n04208210 -n02107142 -n01855672 -n02480495 -n04065272 -n03761084 -n02100236 -n02111277 -n02089867 -n04552348 -n02791124 -n02101556 -n02480855 -n02097658 -n03180011 -n03899768 -n02087394 -n02236044 -n02794156 -n04550184 -n02099849 -n02111129 -n03976657 -n01847000 -n04465501 -n03063599 -n03733131 -n09332890 -n02892767 -n01978455 -n02111129 -n03832673 -n04141327 -n02276258 -n03786901 -n02672831 -n01978455 -n02807133 -n03290653 -n03297495 -n02112350 -n02894605 -n03763968 -n02776631 -n04606251 -n03498962 -n04443257 -n04355933 -n02727426 -n12057211 -n04376876 -n02403003 -n03495258 -n04584207 -n04462240 -n01729322 -n03207941 -n02483708 -n10565667 -n03866082 -n04019541 -n04154565 -n13052670 -n02992211 -n03642806 -n03372029 -n03832673 -n03617480 -n01797886 -n04591157 -n04443257 -n03045698 -n03207941 -n04081281 -n02165105 -n02105412 -n02980441 -n02097658 -n02823750 -n02397096 -n03662601 -n01514859 -n03759954 -n02859443 -n02011460 -n03467068 -n04458633 -n02111277 -n01751748 -n03127747 -n03838899 -n07715103 -n02894605 -n02793495 -n07248320 -n03995372 -n02094258 -n03937543 -n03642806 -n02607072 -n03483316 -n02090622 -n04525305 -n02085936 -n03920288 -n03063599 -n01843065 -n02099267 -n01739381 -n03793489 -n02018207 -n03775071 -n01496331 -n06785654 -n03935335 -n03887697 -n07747607 -n03773504 -n07860988 -n04456115 -n02492035 -n03874293 -n04275548 -n03063689 -n02101006 -n01807496 -n02113978 -n02655020 -n02488702 -n02174001 -n04004767 -n04579432 -n04141975 -n03584254 -n02112706 -n03127747 -n02097047 -n04458633 -n02814533 -n02510455 -n02106166 -n02492035 -n13054560 -n04090263 -n02110341 -n02965783 -n04235860 -n01735189 -n01698640 -n07697313 -n02276258 -n03868242 -n02321529 -n03042490 -n04418357 -n03814906 -n02607072 -n04517823 -n03496892 -n07717556 -n02051845 -n03291819 -n09399592 -n02791124 -n02259212 -n02233338 -n07802026 -n03047690 -n03995372 -n03530642 -n02966687 -n02492035 -n02229544 -n01689811 -n01532829 -n03733805 -n01776313 -n02112137 -n04200800 -n07747607 -n03016953 -n03729826 -n07734744 -n02088094 -n04542943 -n02667093 -n03400231 -n04355933 -n03544143 -n02128385 -n04356056 -n02112018 -n02859443 -n02128925 -n02091032 -n04004767 -n02096051 -n02113712 -n02927161 -n03476991 -n02423022 -n12144580 -n04548280 -n03724870 -n04335435 -n07583066 -n02871525 -n03272010 -n02484975 -n02786058 -n09472597 -n04209133 -n03717622 -n03598930 -n02417914 -n01824575 -n04204238 -n02999410 -n04467665 -n04239074 -n03444034 -n04263257 -n03903868 -n02492035 -n02110627 -n02007558 -n02090379 -n03995372 -n04325704 -n04277352 -n02494079 -n02321529 -n12144580 -n01687978 -n03095699 -n02074367 -n02128925 -n02363005 -n02346627 -n04579145 -n03133878 -n02776631 -n03787032 -n03127747 -n01749939 -n01860187 -n04317175 -n12768682 -n02219486 -n03630383 -n02097130 -n02859443 -n03529860 -n02229544 -n03272562 -n04116512 -n01685808 -n03902125 -n02174001 -n02112706 -n02840245 -n04141975 -n01641577 -n02326432 -n07749582 -n02797295 -n04596742 -n02974003 -n01729977 -n02504013 -n02843684 -n03825788 -n04517823 -n03216828 -n04346328 -n02408429 -n01797886 -n02493509 -n02799071 -n04204347 -n07716906 -n06874185 -n02093647 -n02111889 -n04254777 -n02966687 -n03938244 -n02321529 -n03089624 -n02096585 -n02877765 -n03259280 -n02895154 -n02107574 -n07615774 -n03131574 -n02497673 -n01688243 -n04273569 -n03873416 -n03763968 -n01534433 -n03187595 -n02786058 -n02165105 -n02099601 -n02782093 -n01601694 -n03459775 -n01770081 -n04019541 -n01742172 -n03452741 -n03891251 -n01818515 -n03825788 -n04141975 -n02087394 -n02325366 -n02092339 -n07584110 -n03649909 -n02113712 -n04579145 -n03908714 -n04392985 -n02124075 -n13040303 -n02051845 -n02231487 -n02493509 -n01748264 -n03457902 -n03146219 -n01675722 -n03787032 -n02361337 -n07579787 -n04479046 -n02168699 -n02992211 -n02113624 -n02974003 -n04357314 -n07920052 -n07615774 -n03452741 -n03534580 -n02094258 -n04505470 -n02641379 -n03868863 -n02422699 -n03249569 -n02123394 -n02106662 -n01784675 -n04371430 -n04557648 -n02514041 -n02051845 -n03916031 -n01751748 -n02504458 -n07734744 -n02494079 -n03902125 -n02930766 -n03977966 -n03724870 -n04116512 -n03272010 -n04049303 -n03590841 -n02361337 -n04044716 -n03680355 -n03637318 -n11939491 -n03866082 -n03272010 -n02119789 -n07615774 -n03602883 -n03492542 -n04310018 -n02231487 -n02110185 -n03544143 -n03995372 -n02268443 -n01440764 -n02480855 -n02317335 -n01692333 -n02109961 -n03379051 -n03075370 -n02687172 -n04442312 -n03584254 -n01729977 -n02727426 -n03134739 -n01828970 -n02093428 -n02233338 -n02091831 -n02939185 -n04579432 -n04266014 -n03291819 -n03954731 -n03838899 -n07871810 -n02077923 -n12057211 -n02415577 -n02115641 -n03781244 -n07880968 -n07711569 -n03838899 -n03180011 -n02114712 -n03887697 -n02930766 -n01644900 -n02111277 -n02999410 -n03534580 -n02497673 -n02410509 -n02777292 -n03461385 -n04086273 -n03627232 -n01689811 -n09193705 -n01955084 -n03916031 -n04355338 -n04259630 -n03617480 -n01498041 -n02169497 -n02423022 -n02422106 -n02699494 -n02494079 -n04515003 -n03724870 -n02113799 -n03930630 -n04458633 -n04065272 -n02939185 -n02281787 -n02504458 -n02190166 -n03691459 -n02408429 -n07579787 -n02114712 -n04125021 -n04461696 -n03384352 -n03388183 -n03837869 -n03485407 -n01986214 -n03255030 -n02804610 -n03255030 -n01924916 -n04398044 -n04540053 -n02667093 -n03146219 -n02483708 -n03125729 -n09256479 -n02089078 -n02607072 -n03742115 -n04067472 -n02114712 -n03196217 -n04254120 -n02105412 -n03250847 -n02111500 -n07565083 -n04162706 -n01917289 -n03018349 -n03530642 -n02107908 -n02169497 -n02018795 -n03658185 -n03424325 -n02018207 -n03630383 -n03903868 -n07745940 -n02138441 -n03372029 -n02319095 -n01855672 -n03062245 -n07753592 -n04147183 -n04254777 -n03838899 -n02219486 -n04270147 -n07871810 -n01910747 -n02999410 -n12768682 -n03649909 -n04120489 -n02002724 -n01756291 -n02445715 -n02009912 -n01798484 -n04532670 -n04604644 -n04044716 -n02169497 -n02669723 -n04461696 -n02134084 -n03743016 -n01798484 -n03404251 -n02783161 -n03201208 -n02134084 -n02607072 -n03180011 -n02094433 -n03388549 -n07590611 -n02640242 -n02085782 -n02871525 -n03967562 -n02119789 -n04507155 -n04149813 -n03492542 -n02437312 -n02098105 -n01443537 -n01632458 -n02860847 -n02113023 -n03337140 -n12620546 -n03459775 -n11879895 -n03085013 -n02096585 -n02088466 -n01751748 -n02497673 -n02236044 -n03109150 -n02130308 -n04325704 -n03676483 -n02105412 -n03180011 -n02787622 -n02025239 -n01693334 -n02325366 -n02281787 -n04597913 -n04346328 -n04404412 -n02006656 -n02107312 -n02165456 -n03042490 -n04418357 -n02093428 -n04133789 -n07754684 -n03075370 -n03916031 -n04536866 -n07711569 -n02895154 -n02105251 -n02692877 -n03344393 -n04493381 -n04579145 -n03201208 -n04243546 -n02167151 -n01797886 -n09256479 -n01582220 -n04548362 -n03476684 -n04606251 -n04579432 -n02086910 -n02134084 -n02109525 -n04238763 -n03764736 -n04044716 -n04548362 -n02692877 -n03207941 -n04229816 -n03598930 -n04591157 -n02317335 -n01734418 -n15075141 -n03825788 -n04536866 -n04254777 -n02277742 -n03877845 -n02747177 -n01667778 -n01664065 -n03180011 -n02701002 -n13040303 -n03388549 -n04591713 -n04389033 -n02699494 -n02105162 -n02280649 -n04254777 -n02607072 -n01985128 -n03045698 -n03717622 -n02086240 -n03903868 -n02326432 -n02229544 -n03530642 -n01685808 -n02091467 -n03544143 -n03902125 -n02125311 -n09399592 -n04070727 -n07730033 -n07684084 -n04398044 -n03372029 -n03483316 -n03495258 -n01728572 -n04037443 -n02395406 -n03457902 -n03761084 -n01734418 -n02090721 -n03976657 -n03785016 -n01514668 -n04357314 -n02835271 -n02504013 -n02489166 -n03530642 -n02950826 -n02111889 -n04371774 -n04560804 -n03445924 -n02091831 -n07753592 -n03447721 -n01770081 -n02487347 -n02794156 -n02097209 -n03891251 -n02790996 -n03109150 -n04380533 -n03595614 -n04153751 -n04591713 -n02108915 -n04429376 -n01641577 -n04264628 -n03271574 -n02114367 -n07930864 -n02105641 -n02104365 -n03717622 -n04423845 -n02094258 -n02116738 -n01692333 -n02909870 -n02606052 -n02099849 -n02363005 -n07734744 -n02841315 -n01860187 -n02090721 -n03841143 -n02892201 -n04125021 -n04612504 -n01537544 -n04505470 -n02281406 -n03983396 -n02123045 -n01784675 -n02493509 -n03476991 -n03534580 -n02123159 -n02808440 -n04074963 -n01616318 -n03786901 -n03721384 -n02086240 -n02488702 -n03642806 -n03160309 -n01796340 -n13044778 -n09256479 -n03089624 -n02086910 -n04604644 -n04040759 -n07584110 -n04552348 -n04149813 -n02066245 -n01580077 -n04443257 -n04336792 -n02107683 -n01797886 -n02134418 -n02134418 -n01632777 -n06359193 -n01797886 -n03485407 -n04259630 -n03992509 -n07248320 -n04486054 -n03026506 -n02088632 -n03124043 -n02442845 -n02091467 -n03376595 -n04310018 -n02966687 -n03777568 -n03100240 -n04350905 -n02843684 -n02109961 -n01631663 -n03240683 -n03141823 -n02091635 -n01443537 -n11939491 -n02002724 -n03733281 -n02106662 -n03942813 -n03337140 -n03777568 -n04251144 -n07716906 -n01820546 -n03929660 -n03478589 -n02441942 -n02364673 -n09835506 -n04515003 -n02264363 -n01773157 -n01770393 -n03777568 -n04049303 -n02219486 -n02130308 -n02437312 -n02815834 -n02093647 -n01616318 -n04332243 -n12620546 -n10148035 -n02927161 -n02128757 -n03496892 -n03417042 -n04200800 -n02484975 -n01689811 -n02107574 -n03976657 -n03998194 -n02088632 -n04243546 -n03788365 -n02087046 -n10565667 -n03832673 -n02412080 -n01558993 -n03492542 -n04540053 -n01796340 -n04376876 -n02395406 -n03075370 -n07753592 -n02481823 -n02457408 -n02110806 -n03877472 -n01667778 -n03131574 -n03956157 -n02108422 -n02114548 -n03272010 -n03394916 -n01774384 -n03623198 -n02027492 -n04099969 -n02106662 -n02951358 -n01798484 -n13133613 -n03207743 -n04560804 -n02268443 -n03775071 -n04346328 -n01930112 -n03584254 -n02790996 -n09256479 -n01985128 -n02480495 -n02268853 -n03627232 -n03180011 -n02233338 -n03982430 -n02841315 -n03649909 -n04336792 -n09468604 -n02056570 -n02787622 -n03764736 -n02442845 -n02437616 -n03445924 -n01917289 -n02107312 -n02137549 -n03599486 -n03721384 -n04041544 -n01824575 -n04285008 -n01687978 -n01514668 -n04554684 -n04209239 -n03272562 -n03425413 -n02797295 -n02106382 -n06359193 -n03642806 -n01677366 -n03134739 -n02105641 -n01985128 -n03594945 -n07583066 -n02667093 -n02086646 -n07590611 -n02111889 -n03857828 -n04259630 -n02730930 -n04285008 -n03095699 -n03761084 -n02167151 -n04404412 -n04254120 -n04461696 -n04192698 -n01873310 -n03763968 -n02804414 -n04325704 -n01682714 -n02120505 -n03584829 -n04356056 -n04476259 -n09332890 -n04399382 -n03676483 -n03961711 -n09332890 -n02096294 -n04532106 -n04149813 -n03891251 -n06874185 -n02769748 -n04485082 -n04277352 -n03793489 -n03788365 -n02389026 -n03709823 -n03032252 -n02606052 -n03271574 -n03492542 -n01665541 -n01675722 -n03691459 -n07892512 -n02799071 -n02007558 -n02510455 -n03742115 -n04136333 -n03630383 -n02910353 -n02111129 -n02488702 -n01950731 -n04204238 -n04461696 -n02102318 -n03538406 -n03916031 -n02130308 -n04311174 -n01667114 -n02115641 -n04487394 -n02233338 -n02099267 -n01797886 -n02051845 -n04428191 -n02124075 -n04532670 -n03775546 -n07892512 -n02100877 -n04398044 -n04590129 -n02101388 -n04254680 -n04485082 -n03026506 -n04111531 -n03924679 -n01667778 -n02169497 -n04311004 -n03947888 -n02093754 -n01818515 -n03763968 -n04380533 -n02077923 -n02488702 -n01770393 -n02226429 -n07932039 -n02095314 -n01847000 -n03250847 -n04296562 -n02100236 -n03045698 -n07590611 -n03787032 -n02101006 -n01873310 -n02009912 -n02096051 -n07749582 -n02112018 -n03000134 -n03447721 -n04118776 -n03970156 -n01944390 -n07613480 -n02879718 -n01873310 -n03187595 -n03325584 -n01496331 -n02097298 -n03793489 -n02111500 -n04311174 -n01739381 -n02114548 -n02165105 -n01930112 -n02823428 -n04111531 -n02137549 -n04355338 -n03916031 -n03791053 -n02113186 -n04081281 -n02104029 -n03483316 -n04579145 -n01558993 -n01748264 -n02791270 -n03929660 -n02129604 -n02102040 -n03796401 -n02007558 -n11879895 -n06794110 -n07614500 -n02006656 -n04065272 -n02486261 -n02640242 -n01806143 -n03991062 -n02788148 -n09472597 -n03935335 -n02510455 -n03958227 -n02105641 -n04428191 -n03018349 -n02116738 -n03773504 -n02087046 -n03709823 -n01749939 -n02190166 -n02085782 -n01843065 -n03743016 -n01828970 -n01828970 -n03908714 -n03937543 -n02817516 -n04592741 -n02869837 -n03874293 -n04540053 -n03250847 -n02971356 -n02114548 -n02113023 -n04081281 -n03857828 -n03450230 -n04127249 -n02108089 -n02093428 -n04392985 -n04254120 -n02782093 -n02012849 -n03179701 -n04357314 -n13133613 -n02992211 -n04243546 -n01664065 -n01695060 -n04005630 -n03400231 -n03733131 -n02107142 -n02104365 -n04597913 -n04238763 -n04371430 -n03877472 -n04589890 -n04154565 -n01734418 -n03781244 -n07745940 -n02109961 -n01755581 -n07742313 -n04118776 -n01734418 -n02085782 -n03100240 -n02013706 -n03658185 -n03290653 -n02105505 -n03888257 -n02865351 -n02277742 -n02099849 -n03131574 -n02102177 -n02093428 -n02814860 -n01734418 -n01580077 -n04136333 -n04483307 -n01774384 -n02364673 -n06874185 -n07754684 -n07734744 -n04487081 -n07802026 -n09399592 -n03602883 -n04435653 -n02096437 -n02672831 -n02107683 -n02086646 -n01698640 -n03485794 -n03967562 -n01664065 -n03837869 -n01950731 -n02909870 -n01756291 -n02091467 -n03658185 -n02690373 -n02012849 -n03709823 -n02123597 -n13044778 -n02167151 -n03425413 -n07730033 -n03721384 -n03126707 -n02883205 -n02111889 -n03866082 -n01698640 -n04584207 -n03485407 -n02105251 -n03743016 -n03314780 -n03769881 -n01494475 -n04005630 -n03291819 -n03721384 -n04118776 -n03868242 -n04265275 -n09835506 -n03443371 -n03459775 -n04501370 -n01688243 -n03494278 -n02486410 -n02105251 -n03956157 -n02410509 -n02116738 -n04532106 -n02100236 -n04591157 -n02398521 -n04131690 -n03935335 -n02098105 -n04428191 -n02110627 -n03970156 -n03950228 -n02110341 -n04201297 -n07932039 -n07920052 -n03063689 -n02137549 -n03100240 -n01665541 -n04099969 -n02106382 -n02009912 -n03223299 -n02091635 -n03982430 -n04548362 -n01978455 -n01614925 -n02841315 -n07711569 -n04335435 -n02892767 -n03345487 -n02948072 -n04127249 -n02909870 -n02099712 -n04162706 -n01981276 -n02085620 -n02917067 -n07716358 -n04332243 -n03724870 -n04074963 -n01984695 -n03794056 -n03929855 -n01773157 -n01806567 -n04350905 -n03804744 -n10565667 -n07747607 -n03218198 -n03942813 -n01877812 -n03924679 -n07753592 -n02113799 -n02086079 -n03814639 -n02834397 -n02109525 -n07720875 -n04273569 -n03018349 -n03404251 -n03888257 -n03485407 -n07730033 -n13052670 -n02095889 -n01739381 -n01514859 -n02106030 -n07860988 -n03775546 -n04263257 -n03485794 -n03924679 -n04228054 -n02319095 -n02747177 -n03770679 -n03980874 -n02097658 -n02988304 -n07579787 -n02137549 -n01644373 -n02870880 -n04069434 -n13040303 -n02106550 -n02804414 -n07565083 -n03877845 -n03187595 -n02074367 -n02099712 -n01950731 -n03884397 -n03776460 -n04209133 -n03697007 -n01978287 -n03792972 -n07716906 -n04146614 -n03887697 -n02095889 -n02096177 -n04435653 -n02091032 -n02840245 -n02097658 -n02002724 -n02058221 -n03127747 -n04501370 -n01817953 -n02113186 -n01877812 -n04004767 -n02441942 -n02408429 -n04116512 -n02134418 -n03529860 -n03041632 -n03447447 -n03188531 -n03770439 -n03633091 -n02086646 -n02011460 -n04209133 -n04229816 -n01622779 -n01667114 -n01685808 -n02113186 -n02097047 -n03876231 -n02699494 -n03961711 -n03530642 -n03452741 -n02708093 -n01985128 -n02894605 -n03124170 -n03633091 -n13054560 -n02112137 -n02120505 -n01532829 -n03929660 -n04589890 -n04507155 -n01685808 -n02077923 -n04523525 -n04592741 -n02056570 -n03841143 -n02226429 -n04243546 -n04285008 -n02483708 -n03944341 -n04553703 -n03977966 -n02441942 -n01818515 -n03871628 -n03692522 -n07768694 -n02607072 -n04456115 -n04590129 -n03476991 -n02091134 -n03394916 -n01990800 -n02066245 -n02279972 -n01944390 -n02105251 -n04273569 -n03857828 -n02110185 -n02096051 -n01770081 -n02259212 -n02799071 -n01806143 -n03476684 -n01796340 -n03100240 -n01632777 -n02190166 -n02066245 -n03976657 -n03788365 -n02108422 -n03400231 -n04589890 -n04435653 -n02326432 -n03954731 -n04591157 -n02823428 -n07716358 -n02088632 -n01824575 -n01631663 -n02086079 -n03995372 -n04517823 -n02480855 -n03445777 -n04357314 -n03884397 -n03445924 -n03777754 -n03133878 -n03873416 -n02086240 -n04553703 -n04133789 -n07693725 -n02895154 -n02317335 -n04613696 -n01819313 -n03977966 -n02109047 -n03000247 -n02443114 -n03272010 -n01697457 -n04200800 -n02109047 -n02840245 -n01739381 -n06794110 -n01756291 -n01748264 -n03950228 -n02971356 -n02123159 -n04346328 -n02092339 -n01729977 -n03187595 -n02454379 -n03794056 -n03967562 -n04039381 -n02879718 -n02441942 -n04515003 -n04311174 -n03100240 -n03868242 -n03126707 -n04461696 -n13054560 -n04398044 -n01667114 -n01664065 -n02106382 -n04613696 -n02948072 -n12144580 -n03877472 -n02096585 -n03935335 -n04429376 -n02110185 -n03207941 -n02123045 -n03788195 -n04259630 -n02097209 -n02092002 -n01877812 -n03529860 -n02966687 -n03980874 -n02013706 -n02776631 -n02445715 -n01496331 -n01807496 -n02112137 -n02086646 -n04118776 -n03658185 -n01985128 -n02504013 -n12998815 -n02233338 -n12057211 -n07875152 -n03840681 -n03721384 -n03908714 -n02412080 -n02113799 -n02096437 -n02669723 -n03775546 -n03393912 -n07718472 -n01883070 -n02120079 -n01532829 -n04443257 -n02917067 -n02877765 -n02115913 -n07920052 -n01773797 -n02123159 -n03447447 -n04613696 -n03933933 -n04380533 -n01728572 -n03535780 -n04599235 -n02877765 -n13037406 -n02971356 -n02504458 -n02101388 -n04370456 -n09229709 -n02113624 -n02492035 -n02089867 -n09421951 -n02219486 -n02494079 -n02963159 -n03930630 -n02206856 -n02091831 -n02504013 -n02097298 -n09428293 -n04596742 -n01632777 -n02018207 -n03344393 -n03388549 -n03791053 -n01729322 -n02018207 -n03599486 -n03297495 -n02093859 -n01629819 -n04037443 -n01693334 -n02058221 -n03141823 -n04252225 -n04418357 -n01774384 -n03871628 -n03598930 -n03032252 -n02321529 -n02117135 -n02206856 -n03944341 -n02111129 -n02346627 -n03404251 -n02113023 -n02009229 -n02879718 -n01748264 -n01773549 -n04252077 -n02825657 -n03476991 -n03584254 -n04350905 -n13052670 -n04141076 -n03388549 -n02415577 -n02607072 -n04346328 -n01914609 -n02641379 -n03782006 -n01601694 -n03388183 -n03803284 -n02690373 -n02106662 -n02097047 -n07892512 -n02277742 -n10148035 -n02412080 -n02091635 -n01917289 -n03742115 -n04074963 -n03124043 -n02669723 -n04507155 -n02808304 -n02111500 -n03761084 -n01797886 -n03874599 -n03476991 -n04404412 -n02108915 -n01694178 -n02802426 -n02974003 -n03028079 -n03944341 -n03742115 -n02111500 -n02117135 -n02092339 -n04133789 -n03868242 -n07714990 -n07579787 -n04252077 -n02096051 -n02102480 -n02174001 -n03085013 -n01740131 -n02107312 -n04162706 -n02869837 -n02412080 -n04612504 -n01807496 -n04041544 -n03459775 -n02017213 -n02101006 -n07749582 -n02109047 -n07718472 -n02877765 -n01622779 -n01882714 -n03781244 -n02137549 -n02342885 -n03498962 -n04127249 -n06785654 -n02105412 -n03447447 -n09193705 -n02326432 -n04590129 -n02892201 -n03425413 -n04235860 -n03000247 -n03272562 -n03598930 -n02174001 -n03347037 -n07920052 -n01784675 -n07718747 -n02279972 -n02097298 -n03394916 -n03977966 -n03692522 -n03825788 -n07717556 -n02727426 -n02396427 -n07747607 -n04330267 -n03062245 -n02389026 -n02871525 -n02107142 -n02012849 -n02077923 -n03532672 -n03216828 -n02486261 -n01494475 -n04251144 -n02109047 -n03649909 -n01873310 -n03710637 -n01632458 -n02077923 -n04263257 -n04423845 -n02279972 -n01728572 -n02128757 -n04552348 -n07747607 -n07932039 -n02071294 -n02951585 -n02123159 -n04201297 -n03680355 -n02892767 -n03930630 -n01798484 -n01729977 -n01798484 -n04371430 -n02090379 -n03347037 -n03998194 -n03947888 -n02108422 -n02837789 -n03888257 -n01739381 -n04179913 -n07590611 -n02279972 -n03063599 -n02113712 -n02444819 -n03532672 -n02687172 -n07720875 -n01819313 -n02445715 -n03793489 -n02092002 -n03899768 -n03424325 -n02978881 -n01534433 -n02999410 -n04557648 -n01608432 -n02391049 -n03929660 -n02835271 -n03876231 -n02102318 -n02777292 -n04004767 -n03933933 -n07836838 -n01751748 -n07718472 -n04254777 -n03424325 -n03063599 -n02095570 -n01824575 -n04311004 -n01677366 -n03062245 -n03627232 -n03134739 -n04372370 -n03075370 -n02802426 -n03447721 -n01829413 -n02090379 -n04192698 -n03743016 -n01692333 -n02099601 -n03720891 -n02951585 -n01532829 -n02281406 -n02096177 -n03920288 -n02927161 -n04179913 -n02100236 -n04515003 -n07802026 -n02088632 -n03950228 -n09193705 -n03841143 -n02093647 -n04336792 -n04357314 -n03929660 -n02093647 -n02093428 -n04049303 -n01873310 -n02268853 -n03838899 -n01484850 -n03337140 -n01537544 -n02174001 -n03063599 -n02640242 -n03721384 -n04596742 -n02795169 -n02492660 -n02892201 -n02361337 -n04417672 -n02113624 -n02028035 -n02999410 -n01629819 -n02115913 -n02089078 -n01768244 -n04263257 -n01944390 -n01945685 -n02071294 -n03937543 -n02391049 -n02018207 -n02129165 -n02074367 -n01518878 -n03445777 -n04149813 -n02669723 -n02097047 -n02865351 -n07753592 -n02814533 -n03874599 -n07720875 -n04116512 -n02417914 -n02027492 -n03877845 -n02123159 -n04264628 -n02236044 -n02108089 -n04133789 -n04147183 -n02085620 -n02091134 -n03944341 -n13037406 -n02422106 -n01498041 -n03775071 -n04357314 -n02102040 -n01682714 -n01775062 -n03014705 -n01693334 -n01616318 -n04604644 -n03109150 -n02088238 -n01981276 -n02422106 -n01985128 -n04026417 -n01644900 -n02095570 -n04266014 -n02236044 -n02115913 -n01883070 -n03840681 -n02481823 -n03447721 -n01981276 -n03673027 -n02835271 -n02123159 -n02113186 -n03947888 -n02100877 -n03814639 -n02510455 -n04037443 -n03929660 -n03837869 -n02791270 -n03461385 -n02951585 -n04525305 -n02788148 -n02165105 -n04592741 -n02091467 -n03188531 -n02091134 -n03617480 -n03954731 -n04328186 -n02105162 -n02870880 -n03028079 -n04596742 -n04204347 -n02108422 -n01740131 -n02363005 -n03840681 -n04116512 -n02138441 -n04367480 -n01773797 -n04350905 -n02095314 -n09229709 -n02494079 -n03788365 -n02117135 -n01641577 -n04192698 -n02087046 -n12620546 -n02410509 -n03777568 -n02948072 -n03662601 -n02690373 -n02441942 -n03127925 -n02066245 -n02097130 -n03187595 -n02977058 -n03977966 -n03291819 -n02788148 -n03482405 -n02090721 -n02105641 -n04525038 -n04328186 -n03424325 -n03498962 -n03223299 -n04552348 -n09193705 -n07697537 -n04596742 -n01797886 -n01980166 -n02093991 -n01688243 -n01817953 -n03485407 -n01795545 -n02794156 -n02102480 -n01819313 -n03188531 -n02965783 -n03534580 -n02395406 -n02033041 -n03337140 -n04200800 -n02797295 -n02804414 -n02088364 -n03000247 -n03937543 -n02389026 -n01682714 -n02101388 -n01685808 -n07880968 -n02509815 -n03938244 -n04532670 -n03967562 -n03196217 -n02892767 -n01843383 -n02978881 -n01748264 -n04423845 -n02396427 -n03388043 -n03000134 -n04429376 -n03483316 -n03485407 -n02256656 -n04086273 -n02356798 -n02747177 -n01773157 -n03297495 -n02403003 -n07718472 -n03445924 -n01843383 -n02328150 -n03447447 -n02124075 -n02098105 -n06596364 -n03388183 -n06596364 -n02504013 -n04041544 -n02009912 -n02093859 -n04350905 -n02317335 -n07871810 -n02105855 -n02607072 -n02095570 -n02389026 -n06785654 -n09421951 -n02114855 -n03216828 -n01855032 -n03095699 -n02115641 -n01955084 -n03095699 -n03133878 -n03902125 -n02395406 -n04371774 -n04525305 -n03345487 -n02108551 -n01774750 -n02480495 -n03594945 -n02091635 -n04557648 -n03388549 -n01784675 -n13040303 -n13037406 -n01776313 -n02099601 -n03134739 -n02110185 -n01537544 -n13133613 -n02102040 -n01530575 -n01735189 -n01491361 -n07583066 -n02137549 -n03908714 -n03045698 -n01914609 -n02326432 -n01631663 -n03868242 -n03920288 -n03729826 -n02002724 -n03776460 -n03535780 -n03146219 -n02094258 -n03841143 -n02797295 -n02500267 -n04392985 -n02504458 -n01773797 -n04325704 -n03920288 -n02999410 -n02655020 -n02097474 -n09472597 -n02099712 -n02980441 -n04461696 -n02814533 -n03495258 -n01784675 -n03000684 -n07760859 -n04141327 -n02641379 -n04200800 -n04141327 -n01943899 -n04037443 -n04357314 -n02097474 -n03857828 -n01630670 -n02417914 -n02747177 -n04590129 -n02037110 -n03841143 -n04204238 -n04252225 -n02791270 -n09193705 -n04376876 -n02815834 -n01817953 -n04356056 -n02007558 -n02917067 -n03544143 -n03954731 -n03372029 -n02930766 -n04310018 -n03630383 -n04009552 -n02132136 -n07745940 -n02094114 -n02480855 -n02093991 -n02113624 -n03662601 -n12144580 -n02443114 -n01914609 -n04040759 -n02834397 -n02276258 -n04557648 -n07718472 -n02108915 -n07753113 -n02093428 -n03976467 -n01984695 -n02492035 -n04275548 -n02100877 -n04254777 -n02799071 -n03908618 -n03773504 -n03347037 -n02107574 -n03529860 -n02093256 -n03291819 -n02110958 -n04275548 -n04273569 -n02113023 -n03958227 -n04417672 -n03272562 -n01980166 -n01514668 -n02002556 -n02086079 -n02104365 -n01677366 -n03770679 -n02096177 -n02094258 -n01440764 -n01943899 -n02099849 -n03899768 -n01729322 -n01776313 -n06359193 -n02447366 -n03857828 -n03384352 -n02111277 -n02226429 -n04366367 -n01737021 -n01537544 -n02951358 -n04371430 -n03196217 -n02100236 -n04443257 -n04479046 -n03983396 -n03218198 -n02105505 -n01978287 -n04286575 -n03866082 -n04208210 -n03891332 -n03857828 -n02504013 -n03982430 -n04554684 -n04317175 -n04552348 -n12057211 -n02483362 -n02097474 -n02361337 -n02120505 -n03594945 -n03498962 -n01978455 -n01829413 -n02105505 -n01978455 -n04356056 -n07718472 -n01518878 -n02795169 -n03617480 -n03372029 -n02099267 -n04229816 -n07717410 -n02895154 -n02110185 -n04149813 -n02056570 -n04404412 -n03028079 -n02110341 -n04120489 -n02804414 -n02988304 -n02167151 -n04392985 -n07747607 -n02966687 -n09399592 -n03761084 -n03400231 -n04136333 -n04423845 -n02978881 -n02099429 -n07892512 -n02137549 -n01807496 -n04033995 -n03876231 -n03063599 -n04005630 -n02489166 -n03197337 -n04456115 -n03388043 -n03062245 -n03899768 -n04371430 -n03729826 -n02165456 -n02769748 -n02412080 -n02086240 -n01665541 -n02412080 -n02445715 -n01735189 -n02086079 -n02110185 -n07697537 -n02112350 -n02137549 -n02398521 -n02971356 -n03980874 -n02106030 -n02980441 -n09193705 -n03393912 -n04562935 -n03691459 -n02870880 -n02443484 -n02979186 -n02100735 -n01682714 -n02607072 -n01688243 -n02454379 -n02443484 -n07248320 -n03814639 -n04509417 -n04019541 -n03938244 -n01667114 -n03791053 -n04442312 -n02226429 -n01693334 -n02794156 -n01773549 -n01685808 -n03598930 -n02017213 -n02124075 -n02091134 -n01530575 -n03657121 -n01768244 -n04552348 -n02106030 -n01667114 -n02790996 -n02699494 -n03291819 -n01694178 -n02423022 -n01855672 -n03459775 -n04070727 -n03770439 -n03709823 -n01924916 -n06785654 -n03272562 -n02099429 -n03100240 -n02174001 -n06794110 -n03759954 -n04357314 -n03584829 -n03345487 -n03443371 -n02100236 -n03709823 -n04350905 -n02086910 -n02977058 -n02112018 -n04409515 -n04118776 -n03376595 -n02101556 -n02776631 -n02108551 -n03291819 -n07745940 -n02109047 -n04336792 -n03494278 -n03388183 -n02398521 -n03485794 -n03018349 -n03967562 -n02116738 -n02085620 -n02108551 -n02894605 -n07695742 -n01693334 -n04356056 -n02120079 -n04540053 -n03134739 -n01644900 -n01697457 -n02108000 -n03720891 -n03733281 -n04404412 -n02098105 -n02089867 -n01530575 -n03884397 -n03602883 -n02090721 -n04228054 -n03208938 -n02483708 -n02017213 -n02097047 -n02509815 -n02447366 -n03532672 -n01518878 -n02123045 -n01847000 -n02690373 -n02092002 -n02096177 -n04487081 -n02526121 -n02124075 -n03717622 -n02106030 -n02002724 -n03240683 -n03902125 -n03709823 -n02974003 -n02100583 -n03201208 -n01833805 -n13052670 -n02219486 -n02107574 -n07742313 -n02112018 -n02489166 -n02441942 -n07753275 -n01819313 -n02643566 -n03110669 -n04482393 -n04613696 -n02129604 -n02088466 -n02134418 -n02114855 -n04591157 -n02277742 -n02112350 -n03590841 -n04476259 -n02326432 -n01755581 -n11939491 -n04264628 -n12998815 -n02101388 -n02137549 -n02236044 -n02123394 -n02909870 -n03733805 -n04120489 -n03958227 -n02100877 -n02169497 -n02168699 -n03794056 -n04146614 -n03787032 -n03937543 -n03388549 -n01978455 -n06874185 -n03717622 -n07875152 -n01820546 -n03445777 -n02109961 -n04127249 -n07716358 -n03661043 -n01534433 -n03982430 -n02490219 -n04152593 -n03062245 -n01644373 -n02951358 -n04041544 -n02974003 -n02102318 -n04127249 -n02500267 -n04548280 -n02690373 -n02125311 -n01950731 -n02007558 -n12267677 -n03045698 -n01443537 -n02447366 -n02124075 -n03916031 -n03146219 -n02843684 -n02980441 -n03187595 -n02091134 -n03124170 -n07749582 -n03594734 -n02666196 -n03782006 -n07697537 -n02111889 -n03724870 -n02085620 -n03492542 -n02102177 -n04515003 -n02167151 -n03877472 -n07720875 -n02097209 -n03208938 -n01601694 -n04067472 -n02174001 -n02123394 -n07583066 -n03599486 -n04005630 -n01698640 -n03047690 -n03793489 -n02916936 -n02124075 -n01592084 -n03127747 -n02130308 -n02094114 -n04131690 -n03063599 -n02110341 -n04008634 -n03218198 -n01496331 -n03146219 -n03496892 -n02097047 -n02397096 -n03942813 -n03787032 -n02125311 -n02119789 -n01945685 -n02105162 -n03127747 -n02107142 -n02992529 -n12620546 -n04067472 -n01630670 -n02423022 -n02948072 -n01491361 -n04067472 -n04263257 -n03223299 -n02088238 -n02231487 -n01739381 -n01532829 -n02099849 -n09256479 -n01580077 -n03895866 -n02037110 -n07742313 -n02091032 -n03841143 -n01986214 -n04356056 -n02971356 -n01774384 -n02097474 -n04019541 -n07753275 -n01944390 -n04371774 -n02120079 -n07932039 -n04033901 -n04074963 -n02843684 -n03457902 -n02089078 -n03544143 -n02088238 -n02342885 -n01753488 -n02895154 -n04009552 -n01806143 -n03794056 -n01740131 -n02423022 -n02033041 -n03942813 -n04023962 -n03630383 -n04251144 -n04376876 -n02107142 -n01740131 -n03075370 -n01494475 -n04590129 -n02786058 -n01773549 -n02028035 -n01978287 -n02966193 -n03982430 -n02442845 -n07734744 -n07615774 -n03970156 -n03000134 -n01883070 -n02124075 -n07892512 -n03970156 -n03958227 -n04532670 -n03743016 -n04479046 -n02011460 -n02391049 -n03877845 -n01981276 -n02488291 -n01592084 -n03544143 -n02168699 -n01494475 -n03887697 -n03249569 -n03777754 -n02100236 -n02017213 -n02999410 -n03590841 -n03476991 -n04192698 -n01582220 -n04604644 -n03658185 -n03773504 -n02640242 -n01819313 -n02906734 -n07697537 -n02403003 -n04270147 -n03544143 -n02859443 -n03733131 -n03733131 -n04251144 -n01806143 -n04254120 -n04350905 -n02090379 -n01582220 -n03868242 -n02088466 -n02793495 -n04136333 -n03476684 -n02129604 -n02112137 -n01622779 -n02087046 -n02114548 -n07875152 -n01773549 -n03721384 -n01843065 -n01601694 -n04254680 -n07860988 -n04523525 -n01843383 -n03314780 -n04069434 -n02791270 -n04125021 -n07880968 -n03314780 -n04346328 -n04335435 -n02093647 -n04532106 -n04465501 -n02102177 -n04344873 -n03788195 -n03803284 -n09835506 -n01872401 -n01688243 -n02233338 -n03633091 -n03888605 -n02095570 -n04579145 -n03598930 -n02980441 -n03095699 -n02088466 -n04296562 -n01739381 -n02033041 -n04346328 -n01695060 -n03733281 -n04265275 -n01796340 -n07880968 -n02894605 -n04465501 -n01644900 -n03100240 -n03447721 -n03792782 -n01828970 -n02486261 -n02690373 -n01774750 -n09229709 -n03045698 -n03874293 -n12267677 -n03637318 -n02398521 -n02782093 -n01728572 -n02457408 -n04005630 -n04525305 -n01820546 -n02138441 -n03532672 -n02808440 -n12985857 -n02085620 -n04584207 -n02125311 -n07742313 -n03355925 -n03868242 -n03871628 -n03840681 -n04310018 -n02793495 -n02489166 -n02727426 -n04592741 -n02841315 -n02490219 -n04273569 -n04228054 -n03991062 -n02093647 -n02113023 -n01698640 -n04591713 -n02111277 -n04596742 -n02110627 -n03720891 -n04251144 -n03179701 -n02091244 -n07745940 -n03000247 -n04243546 -n07697313 -n03127925 -n01985128 -n03942813 -n02013706 -n02483708 -n01632458 -n02279972 -n02009912 -n02256656 -n01768244 -n02091635 -n03770679 -n12144580 -n01806567 -n04536866 -n03991062 -n02391049 -n02326432 -n04443257 -n02097047 -n02101006 -n02051845 -n03933933 -n03595614 -n07695742 -n07579787 -n02120079 -n02110627 -n02095314 -n03201208 -n03803284 -n02444819 -n03899768 -n02233338 -n02747177 -n03483316 -n04136333 -n03220513 -n03623198 -n03134739 -n03630383 -n02808440 -n03769881 -n02799071 -n04019541 -n01498041 -n04428191 -n02094433 -n03450230 -n02092002 -n03929660 -n03000134 -n01914609 -n03721384 -n04389033 -n02128385 -n03000247 -n02091244 -n02108000 -n02110063 -n02128385 -n02641379 -n01664065 -n02109525 -n07802026 -n07714571 -n03691459 -n02109961 -n01688243 -n04515003 -n04252225 -n02877765 -n03476991 -n07717410 -n04389033 -n02129165 -n01440764 -n12985857 -n04371430 -n03447721 -n02441942 -n02110958 -n02094433 -n04146614 -n03857828 -n03788195 -n03804744 -n02102040 -n02317335 -n09246464 -n02110958 -n02256656 -n03781244 -n01689811 -n02487347 -n02092002 -n03733805 -n01531178 -n02454379 -n02088238 -n01729322 -n01945685 -n01774384 -n01632458 -n03776460 -n01877812 -n07615774 -n02423022 -n03384352 -n01518878 -n03000684 -n02018207 -n03876231 -n02113799 -n01855032 -n02910353 -n02109047 -n03967562 -n02112018 -n02708093 -n02417914 -n13040303 -n04005630 -n02794156 -n01689811 -n02113186 -n03476991 -n03773504 -n03868863 -n03788365 -n02133161 -n02708093 -n07718747 -n02106030 -n03916031 -n02493793 -n02277742 -n02701002 -n04238763 -n07742313 -n01755581 -n02321529 -n01728572 -n12057211 -n03016953 -n04009552 -n02107312 -n04486054 -n03837869 -n04127249 -n03837869 -n03895866 -n03032252 -n04380533 -n02777292 -n01729322 -n02607072 -n03792972 -n03930630 -n02814533 -n04005630 -n04099969 -n02110806 -n03594734 -n03697007 -n02071294 -n02346627 -n02096294 -n01440764 -n12267677 -n02097658 -n02111889 -n03825788 -n04153751 -n04259630 -n04254680 -n02092002 -n01833805 -n04200800 -n04435653 -n07753113 -n03888257 -n01744401 -n04192698 -n02415577 -n04550184 -n02097474 -n02793495 -n04252225 -n03388549 -n02422106 -n02807133 -n02090622 -n03598930 -n01592084 -n01924916 -n07584110 -n02114712 -n03874599 -n03590841 -n09246464 -n04589890 -n03794056 -n03180011 -n02104029 -n03272562 -n04263257 -n03874599 -n07714990 -n02791124 -n03690938 -n02837789 -n02138441 -n02859443 -n03026506 -n02442845 -n04004767 -n02397096 -n04120489 -n01882714 -n03124170 -n03992509 -n01818515 -n03124170 -n02002724 -n03680355 -n02096051 -n02492660 -n04033995 -n04019541 -n02108915 -n01872401 -n04366367 -n04501370 -n04355338 -n03661043 -n02536864 -n01796340 -n02326432 -n02493509 -n02099849 -n02096051 -n02974003 -n03481172 -n03089624 -n01773157 -n03445777 -n02138441 -n07565083 -n03916031 -n02363005 -n01944390 -n02093754 -n04560804 -n12267677 -n03967562 -n07932039 -n03666591 -n02256656 -n03770439 -n04509417 -n03720891 -n07565083 -n07875152 -n01843383 -n03481172 -n02708093 -n02165105 -n02123394 -n01644900 -n02109961 -n04335435 -n02096177 -n02110185 -n02687172 -n04116512 -n01693334 -n03133878 -n02493793 -n01806143 -n07892512 -n03670208 -n04264628 -n03014705 -n07615774 -n02992211 -n03063599 -n04209239 -n02489166 -n07920052 -n04081281 -n04486054 -n02783161 -n03594734 -n03016953 -n02834397 -n04409515 -n03544143 -n01924916 -n02174001 -n04599235 -n07754684 -n07753275 -n02112706 -n03197337 -n02095570 -n02120079 -n03804744 -n01820546 -n02099849 -n04004767 -n02092339 -n03983396 -n01749939 -n04162706 -n04264628 -n03598930 -n02098286 -n07892512 -n03929660 -n04209133 -n03000684 -n04589890 -n02963159 -n02206856 -n03970156 -n04418357 -n02090379 -n03785016 -n02488291 -n04501370 -n04118538 -n04311174 -n03838899 -n02906734 -n01665541 -n03188531 -n03642806 -n03220513 -n02105855 -n03642806 -n02123394 -n02457408 -n03208938 -n04536866 -n02056570 -n02088466 -n04019541 -n02165456 -n02097209 -n02108000 -n04536866 -n02777292 -n02939185 -n04366367 -n01616318 -n03337140 -n04229816 -n03792782 -n07831146 -n03903868 -n03041632 -n02089867 -n07695742 -n03534580 -n03271574 -n01843383 -n07836838 -n02279972 -n07584110 -n02119789 -n01843065 -n02206856 -n03042490 -n02104029 -n04447861 -n03814906 -n02280649 -n03494278 -n02256656 -n02909870 -n03602883 -n01748264 -n02093428 -n03841143 -n03710193 -n01675722 -n02395406 -n03250847 -n02397096 -n12267677 -n03770679 -n02007558 -n03642806 -n07871810 -n03742115 -n02190166 -n07716358 -n01978455 -n02169497 -n04204347 -n03417042 -n02793495 -n03530642 -n03188531 -n02105505 -n02804414 -n02093754 -n02092339 -n02860847 -n02085936 -n02786058 -n02056570 -n02165456 -n03710637 -n04200800 -n04592741 -n03935335 -n02102973 -n04296562 -n04328186 -n12267677 -n01824575 -n02494079 -n02730930 -n02356798 -n03937543 -n03290653 -n02109047 -n02112137 -n02104365 -n02085620 -n09246464 -n01817953 -n03345487 -n02410509 -n02281787 -n04487081 -n01770393 -n03814906 -n01728920 -n02481823 -n01768244 -n03891251 -n04111531 -n03347037 -n03929660 -n02951585 -n02840245 -n02489166 -n01756291 -n02669723 -n07583066 -n02268443 -n04552348 -n04263257 -n04371774 -n03379051 -n04355338 -n04355933 -n04118538 -n04099969 -n04507155 -n02480495 -n03814639 -n02105855 -n02487347 -n04553703 -n04310018 -n03895866 -n03000247 -n01796340 -n03903868 -n03903868 -n07583066 -n04192698 -n02018795 -n02096177 -n02098286 -n03970156 -n03733281 -n07614500 -n03388043 -n02110958 -n01601694 -n07715103 -n02127052 -n02325366 -n03673027 -n02950826 -n02091467 -n03110669 -n03840681 -n03680355 -n02441942 -n03485407 -n02097474 -n02398521 -n02776631 -n02701002 -n02325366 -n03388043 -n07873807 -n03763968 -n04515003 -n02094258 -n02422699 -n01667114 -n04263257 -n07590611 -n02110185 -n03899768 -n03877845 -n03197337 -n12144580 -n04152593 -n02108089 -n02493793 -n02105855 -n03481172 -n04228054 -n03899768 -n02093754 -n01737021 -n02415577 -n01685808 -n01773157 -n02101388 -n03710721 -n01873310 -n03627232 -n02708093 -n02102318 -n07747607 -n02791124 -n02870880 -n03388549 -n04372370 -n03775071 -n04347754 -n03026506 -n07720875 -n01883070 -n03690938 -n03776460 -n01558993 -n04552348 -n03457902 -n07768694 -n04356056 -n04485082 -n09288635 -n07760859 -n03991062 -n04136333 -n03938244 -n02102177 -n03991062 -n04550184 -n04127249 -n01498041 -n03691459 -n03255030 -n02417914 -n02099429 -n04254777 -n04277352 -n01855032 -n01983481 -n04604644 -n02102973 -n02790996 -n02094258 -n02489166 -n03887697 -n02443114 -n04228054 -n01667778 -n02172182 -n04133789 -n03196217 -n02018207 -n03124170 -n02841315 -n02174001 -n02138441 -n02364673 -n03874599 -n02690373 -n12267677 -n02071294 -n02396427 -n02100236 -n04125021 -n01704323 -n02281406 -n02226429 -n02097298 -n02787622 -n02086910 -n02415577 -n02123597 -n03977966 -n03743016 -n02951585 -n04548280 -n03216828 -n02096437 -n02233338 -n02536864 -n01773157 -n03657121 -n02883205 -n03777754 -n01843065 -n15075141 -n04462240 -n02086240 -n03832673 -n04026417 -n04346328 -n02808440 -n04152593 -n03017168 -n03710193 -n02110341 -n02111500 -n02117135 -n02018207 -n03769881 -n02087394 -n04286575 -n02105855 -n03218198 -n04509417 -n02749479 -n01756291 -n03584254 -n07613480 -n02437312 -n04458633 -n01518878 -n01677366 -n02797295 -n07717410 -n03775071 -n04209133 -n03425413 -n04347754 -n02028035 -n02085936 -n04317175 -n04310018 -n13044778 -n01693334 -n03047690 -n03983396 -n02268443 -n04442312 -n02109961 -n04019541 -n04335435 -n07932039 -n03743016 -n02268443 -n04523525 -n02134418 -n02860847 -n02096051 -n02817516 -n04238763 -n12620546 -n02092002 -n13037406 -n03000134 -n04228054 -n02002724 -n02086079 -n03394916 -n04265275 -n04136333 -n02481823 -n04041544 -n03272562 -n02999410 -n02488702 -n01824575 -n03967562 -n02730930 -n01843383 -n04604644 -n02177972 -n01744401 -n07860988 -n04153751 -n01491361 -n03297495 -n04346328 -n03956157 -n02325366 -n02974003 -n03733281 -n03899768 -n07717556 -n02114367 -n04366367 -n03400231 -n02808440 -n01968897 -n02259212 -n03642806 -n01955084 -n03776460 -n09835506 -n01775062 -n02979186 -n02093991 -n04263257 -n04485082 -n04482393 -n03179701 -n01739381 -n02088238 -n03991062 -n13040303 -n01534433 -n01978455 -n02480495 -n02086910 -n02097209 -n02096294 -n04209133 -n09428293 -n03018349 -n07871810 -n01986214 -n01491361 -n02106662 -n03028079 -n04179913 -n04264628 -n03450230 -n04376876 -n02129165 -n02127052 -n02111500 -n04254680 -n02951358 -n03854065 -n02488702 -n02834397 -n02128757 -n03075370 -n07583066 -n03047690 -n01829413 -n03124043 -n01843065 -n07697537 -n07734744 -n02834397 -n02814860 -n02481823 -n04356056 -n03124043 -n01990800 -n03291819 -n02487347 -n03658185 -n04404412 -n03791053 -n03866082 -n02930766 -n02074367 -n02777292 -n04458633 -n02098286 -n02843684 -n04592741 -n01641577 -n03529860 -n01484850 -n04141076 -n03485407 -n03590841 -n04037443 -n07613480 -n01688243 -n04074963 -n02701002 -n03535780 -n02090379 -n02111889 -n06874185 -n07693725 -n07802026 -n07754684 -n01774384 -n01514668 -n02028035 -n04423845 -n02096051 -n02115641 -n01774384 -n02894605 -n03026506 -n02666196 -n03690938 -n02112706 -n03787032 -n01748264 -n03733131 -n03920288 -n04141076 -n02101006 -n03944341 -n12267677 -n03782006 -n03924679 -n02437616 -n02992529 -n02871525 -n02104029 -n03376595 -n04243546 -n03854065 -n03983396 -n02104029 -n01883070 -n07716906 -n02092002 -n02114855 -n03255030 -n01873310 -n01704323 -n04192698 -n03485407 -n02916936 -n07590611 -n02869837 -n03527444 -n03595614 -n02105412 -n09835506 -n04033901 -n04285008 -n02326432 -n02104029 -n07716906 -n07760859 -n03832673 -n03492542 -n02408429 -n03781244 -n02099849 -n03840681 -n02092339 -n03590841 -n01685808 -n01694178 -n07753592 -n03535780 -n02730930 -n04270147 -n02011460 -n04483307 -n01688243 -n01737021 -n02033041 -n03100240 -n03447447 -n03584829 -n02483362 -n03998194 -n02483362 -n03481172 -n01558993 -n04606251 -n01537544 -n02808440 -n03825788 -n01773157 -n04507155 -n04141076 -n02504013 -n04562935 -n07590611 -n04357314 -n01608432 -n02097658 -n03950228 -n02814860 -n01498041 -n04553703 -n12768682 -n03032252 -n02097474 -n01955084 -n07695742 -n02483708 -n02106550 -n04515003 -n02226429 -n04370456 -n03000684 -n03837869 -n02113799 -n02102480 -n03459775 -n02120079 -n02071294 -n13054560 -n04192698 -n02504458 -n04372370 -n04251144 -n02006656 -n03908618 -n04311174 -n03018349 -n13133613 -n03796401 -n04409515 -n02102480 -n02843684 -n04040759 -n02086646 -n02948072 -n07836838 -n03476684 -n02236044 -n04296562 -n02017213 -n04612504 -n02769748 -n07717410 -n07717410 -n01751748 -n03773504 -n02085782 -n04562935 -n04239074 -n07760859 -n07768694 -n03160309 -n01692333 -n03045698 -n03272562 -n04417672 -n03954731 -n04505470 -n04154565 -n03691459 -n04209239 -n04409515 -n02363005 -n07734744 -n02422699 -n03529860 -n04235860 -n04536866 -n01981276 -n03888257 -n02276258 -n03388043 -n07718472 -n02869837 -n02006656 -n03595614 -n02917067 -n01440764 -n01855032 -n03930630 -n02105505 -n01491361 -n03345487 -n04372370 -n03187595 -n01491361 -n04264628 -n04557648 -n02119022 -n02607072 -n02396427 -n07615774 -n04553703 -n07718472 -n03530642 -n02100583 -n04557648 -n03485407 -n07745940 -n01531178 -n03954731 -n04465501 -n12768682 -n04486054 -n03595614 -n04548362 -n07753113 -n02701002 -n04525038 -n02317335 -n02443484 -n02939185 -n03314780 -n02089078 -n02859443 -n02091467 -n02124075 -n03690938 -n02091831 -n02454379 -n04065272 -n03196217 -n02655020 -n04487394 -n04286575 -n03125729 -n03854065 -n03670208 -n02108422 -n02102480 -n02988304 -n02009229 -n02099267 -n02097209 -n02948072 -n02110806 -n02177972 -n03494278 -n01737021 -n13133613 -n04447861 -n04591713 -n03495258 -n02859443 -n02860847 -n04554684 -n03637318 -n04258138 -n01797886 -n03095699 -n04041544 -n03602883 -n04525038 -n03706229 -n02093859 -n02119022 -n02454379 -n07614500 -n02276258 -n07714571 -n02177972 -n02129604 -n01601694 -n04355338 -n02999410 -n07760859 -n02165456 -n02111129 -n03220513 -n02437616 -n04465501 -n03272010 -n02167151 -n02174001 -n02607072 -n04254120 -n07584110 -n03388549 -n03063599 -n02795169 -n02727426 -n02799071 -n10565667 -n02454379 -n07717410 -n02504013 -n04266014 -n04493381 -n03832673 -n02033041 -n02447366 -n03314780 -n02930766 -n02110806 -n04033901 -n02870880 -n01872401 -n03063689 -n03814906 -n01798484 -n02219486 -n02111129 -n03124170 -n03443371 -n01855672 -n03089624 -n04239074 -n03814906 -n04285008 -n02097474 -n01819313 -n02364673 -n03773504 -n04310018 -n04398044 -n13054560 -n01665541 -n02025239 -n03976657 -n04553703 -n07715103 -n02018795 -n03794056 -n03595614 -n03026506 -n02128925 -n03717622 -n03041632 -n04417672 -n07753275 -n07718747 -n01728920 -n03447447 -n02114548 -n02769748 -n01784675 -n02100877 -n02097658 -n04523525 -n02002556 -n03404251 -n03786901 -n04162706 -n02776631 -n13133613 -n04254777 -n04355338 -n02104029 -n04201297 -n03775071 -n02093754 -n03992509 -n03134739 -n12057211 -n04116512 -n02281787 -n07920052 -n02105641 -n01943899 -n03841143 -n02487347 -n04486054 -n02281787 -n02342885 -n03775546 -n02011460 -n02089078 -n03776460 -n04423845 -n02865351 -n03089624 -n04371774 -n01514859 -n01734418 -n02328150 -n09468604 -n03063689 -n02951585 -n02095314 -n03792972 -n03776460 -n02346627 -n02894605 -n01775062 -n02130308 -n04192698 -n13044778 -n01751748 -n07697537 -n03868242 -n04525038 -n02259212 -n02391049 -n04399382 -n02667093 -n01530575 -n01632777 -n03259280 -n02840245 -n04019541 -n02422699 -n02113712 -n03930630 -n02643566 -n02231487 -n04487394 -n03937543 -n03355925 -n01828970 -n01580077 -n07932039 -n02877765 -n02167151 -n03476991 -n02825657 -n01751748 -n03207941 -n03840681 -n09288635 -n01843383 -n04536866 -n03814906 -n04429376 -n04428191 -n03814906 -n04344873 -n01693334 -n03417042 -n02747177 -n01986214 -n02277742 -n03127747 -n02422699 -n12985857 -n02672831 -n02823428 -n02112018 -n04037443 -n07695742 -n02536864 -n02788148 -n02088364 -n02105251 -n02105641 -n02123159 -n03729826 -n03125729 -n04179913 -n02097474 -n03297495 -n03042490 -n04252225 -n03141823 -n09193705 -n04149813 -n02655020 -n03788365 -n03085013 -n02037110 -n01944390 -n02120505 -n04536866 -n07695742 -n02951358 -n03417042 -n03733131 -n04325704 -n03843555 -n03179701 -n02009229 -n04523525 -n02098413 -n02096585 -n03424325 -n02105162 -n04590129 -n01537544 -n02093991 -n03394916 -n01514668 -n13133613 -n03445924 -n03873416 -n01632458 -n03706229 -n02085782 -n01632777 -n04371430 -n12144580 -n01665541 -n02102040 -n02701002 -n04131690 -n04347754 -n13040303 -n01775062 -n02114712 -n01833805 -n03759954 -n02860847 -n04330267 -n02859443 -n02138441 -n01774384 -n07717556 -n04311004 -n03908714 -n02361337 -n04065272 -n04146614 -n04179913 -n01697457 -n03857828 -n04285008 -n02089078 -n01755581 -n02056570 -n02701002 -n02483708 -n02101556 -n01737021 -n03874599 -n02107683 -n03657121 -n01592084 -n03995372 -n03788195 -n02100877 -n03447447 -n09399592 -n04350905 -n04266014 -n02979186 -n02988304 -n02879718 -n03032252 -n01530575 -n03291819 -n04131690 -n02037110 -n01632458 -n02102177 -n04367480 -n01807496 -n02107908 -n01740131 -n02096585 -n04235860 -n02363005 -n02110958 -n07711569 -n03384352 -n03530642 -n03761084 -n03602883 -n01531178 -n01774384 -n04456115 -n01985128 -n01694178 -n03065424 -n04589890 -n04049303 -n07248320 -n06874185 -n04604644 -n01775062 -n02123597 -n02095570 -n01985128 -n02115913 -n01622779 -n01601694 -n04589890 -n01560419 -n01440764 -n02051845 -n03218198 -n03047690 -n03854065 -n02442845 -n02361337 -n02835271 -n01531178 -n02108422 -n02115913 -n03141823 -n02088238 -n03690938 -n03207941 -n02510455 -n01806143 -n01740131 -n03854065 -n02488291 -n04428191 -n03063599 -n02101556 -n02087046 -n02101556 -n03792972 -n04296562 -n02101006 -n02776631 -n01773797 -n03709823 -n04458633 -n02281406 -n03691459 -n03692522 -n02089867 -n03868863 -n02012849 -n03763968 -n01944390 -n01667114 -n03950228 -n02128385 -n02319095 -n04553703 -n03452741 -n03345487 -n02672831 -n03935335 -n02104365 -n01592084 -n04149813 -n03594734 -n02233338 -n01688243 -n07718472 -n03394916 -n13040303 -n01986214 -n02510455 -n04285008 -n03956157 -n02264363 -n03127747 -n03445777 -n04467665 -n03240683 -n03065424 -n04517823 -n02165105 -n03602883 -n01753488 -n04399382 -n09256479 -n02086910 -n03956157 -n03485794 -n02484975 -n02666196 -n02097209 -n03535780 -n02112018 -n03109150 -n04590129 -n01667778 -n02787622 -n02088364 -n03388549 -n02494079 -n01843065 -n02108551 -n03929855 -n03498962 -n02109525 -n04328186 -n09256479 -n04540053 -n03459775 -n03982430 -n02444819 -n01494475 -n02086079 -n02125311 -n03529860 -n01843383 -n03992509 -n01641577 -n04099969 -n04254777 -n01608432 -n02346627 -n02397096 -n02676566 -n01491361 -n02074367 -n04252225 -n04485082 -n02092002 -n02098286 -n02727426 -n03100240 -n13054560 -n02097298 -n02123045 -n02002724 -n02109047 -n03131574 -n02692877 -n02088632 -n04465501 -n02930766 -n01843065 -n03697007 -n02102973 -n04147183 -n02117135 -n07754684 -n02787622 -n02114548 -n04515003 -n01855672 -n01682714 -n02110063 -n04127249 -n03127925 -n04429376 -n03710193 -n03796401 -n02786058 -n02794156 -n02112018 -n02423022 -n02094114 -n02092339 -n03344393 -n03888605 -n02437312 -n02107574 -n03710637 -n01491361 -n04074963 -n02128385 -n04044716 -n02093991 -n02113186 -n01592084 -n07714990 -n02174001 -n02777292 -n02090379 -n04509417 -n02486261 -n02841315 -n02096051 -n01768244 -n03895866 -n03891332 -n02102177 -n04525038 -n03777754 -n07716906 -n02091244 -n02966687 -n01981276 -n02092339 -n04612504 -n09229709 -n02099429 -n04540053 -n03935335 -n01644373 -n02088466 -n04380533 -n02105162 -n02916936 -n01944390 -n02123159 -n03459775 -n01944390 -n02100735 -n01740131 -n03599486 -n02169497 -n03888605 -n04296562 -n03794056 -n03110669 -n02356798 -n03032252 -n04482393 -n03888605 -n01748264 -n02098413 -n03967562 -n03706229 -n13052670 -n04252225 -n02009229 -n04252225 -n09421951 -n01930112 -n04461696 -n04208210 -n02443484 -n03045698 -n03967562 -n07880968 -n02177972 -n01698640 -n02704792 -n04328186 -n01828970 -n04482393 -n03400231 -n03394916 -n04467665 -n04259630 -n01860187 -n03868863 -n03000134 -n02783161 -n02509815 -n04465501 -n02417914 -n04482393 -n02787622 -n02089867 -n03240683 -n02403003 -n04296562 -n02782093 -n02892201 -n03777754 -n04612504 -n03372029 -n01756291 -n03902125 -n03355925 -n01843383 -n04579432 -n02091134 -n04579432 -n03481172 -n02841315 -n07831146 -n03075370 -n02009912 -n04201297 -n02396427 -n01753488 -n03249569 -n04090263 -n01704323 -n02526121 -n04204347 -n02777292 -n03126707 -n04254120 -n02111277 -n01582220 -n02206856 -n02939185 -n01693334 -n02641379 -n04263257 -n04347754 -n07734744 -n01990800 -n04399382 -n04270147 -n03944341 -n01773549 -n03259280 -n02089078 -n02094433 -n04525305 -n04493381 -n01669191 -n02066245 -n02841315 -n03796401 -n04371430 -n04548362 -n03944341 -n01773157 -n03223299 -n03692522 -n03594945 -n02100877 -n03000134 -n02783161 -n03345487 -n02802426 -n01944390 -n02817516 -n02102973 -n03956157 -n03627232 -n02114712 -n03837869 -n02797295 -n04458633 -n03196217 -n02963159 -n02110341 -n02108551 -n09468604 -n03452741 -n02174001 -n04380533 -n07716358 -n04037443 -n03803284 -n03958227 -n09288635 -n04442312 -n03272562 -n03891251 -n04118776 -n04532670 -n01742172 -n03733281 -n02102177 -n03026506 -n02606052 -n01818515 -n04589890 -n04428191 -n02279972 -n02123045 -n04254120 -n03000684 -n01983481 -n02704792 -n07590611 -n04162706 -n02088632 -n02112706 -n03938244 -n02112018 -n02123597 -n01531178 -n02325366 -n03000684 -n02066245 -n02859443 -n03063599 -n07753113 -n02999410 -n03777568 -n02108089 -n01872401 -n02025239 -n01484850 -n03899768 -n04162706 -n02110341 -n02091467 -n04417672 -n03000134 -n04356056 -n04417672 -n01689811 -n02412080 -n02086646 -n02096294 -n01622779 -n02089973 -n02835271 -n09193705 -n04111531 -n04456115 -n09193705 -n03633091 -n07749582 -n07697537 -n02860847 -n01855672 -n03743016 -n02077923 -n07754684 -n01833805 -n02013706 -n03976657 -n03134739 -n03720891 -n02837789 -n04355933 -n03584829 -n09472597 -n01843065 -n01749939 -n03717622 -n03982430 -n02504458 -n02127052 -n03127747 -n04026417 -n03866082 -n01872401 -n02094258 -n03291819 -n02110627 -n03982430 -n02093256 -n02277742 -n02965783 -n04428191 -n01740131 -n02795169 -n02119789 -n03535780 -n03461385 -n01980166 -n02486410 -n03720891 -n04597913 -n03666591 -n02843684 -n04252225 -n10565667 -n02268443 -n01491361 -n02098105 -n03775071 -n03187595 -n07760859 -n02259212 -n03042490 -n03942813 -n04069434 -n04120489 -n01820546 -n04548280 -n07718472 -n02417914 -n02095314 -n06874185 -n03447447 -n03983396 -n04592741 -n02102177 -n03649909 -n03594945 -n02099712 -n04370456 -n04517823 -n07875152 -n03207941 -n02398521 -n03954731 -n01796340 -n01798484 -n02113712 -n01491361 -n04423845 -n03483316 -n04461696 -n02106550 -n01773157 -n13052670 -n02091244 -n03706229 -n01560419 -n03832673 -n02492660 -n04099969 -n03982430 -n04532670 -n01631663 -n02085782 -n01728920 -n03240683 -n04584207 -n01806567 -n01729977 -n01601694 -n04350905 -n04179913 -n04592741 -n02108422 -n02110806 -n02814533 -n01773797 -n02704792 -n02782093 -n03916031 -n03467068 -n03710721 -n04554684 -n01955084 -n07717556 -n02009229 -n02256656 -n03095699 -n02094258 -n02486410 -n02027492 -n04200800 -n04371430 -n03662601 -n02444819 -n01665541 -n01614925 -n02112018 -n03773504 -n04505470 -n02951358 -n02948072 -n02101556 -n03868242 -n02093256 -n01641577 -n02128385 -n03000684 -n03874293 -n03134739 -n01440764 -n02268853 -n07584110 -n04399382 -n01843065 -n03188531 -n02086240 -n04540053 -n01829413 -n04462240 -n03018349 -n03782006 -n07730033 -n03676483 -n04275548 -n03930630 -n03764736 -n02226429 -n02007558 -n04149813 -n01820546 -n01829413 -n02110185 -n02107683 -n03840681 -n02018207 -n01833805 -n03902125 -n03868863 -n03443371 -n02113978 -n03793489 -n02859443 -n02097047 -n04192698 -n07590611 -n07880968 -n07697537 -n02342885 -n02398521 -n02002724 -n02910353 -n02442845 -n02906734 -n02494079 -n02091831 -n02823750 -n04447861 -n01796340 -n03089624 -n03924679 -n01980166 -n04435653 -n03649909 -n02107142 -n02110063 -n02403003 -n04081281 -n01735189 -n01532829 -n03891251 -n02077923 -n03977966 -n03452741 -n04465501 -n02777292 -n02113799 -n04367480 -n03787032 -n01744401 -n02667093 -n03933933 -n01580077 -n02794156 -n01796340 -n02002556 -n02837789 -n01818515 -n09835506 -n04604644 -n01917289 -n03180011 -n02102480 -n03873416 -n03995372 -n03884397 -n03657121 -n02093754 -n02102318 -n02097658 -n02108422 -n01855672 -n02489166 -n03208938 -n02116738 -n07802026 -n03584254 -n02108000 -n09256479 -n02892767 -n02105162 -n03388549 -n02870880 -n02116738 -n01807496 -n03045698 -n03717622 -n03109150 -n03388549 -n02437616 -n07930864 -n03991062 -n03709823 -n03680355 -n02033041 -n02843684 -n02795169 -n02236044 -n02509815 -n04442312 -n12998815 -n03255030 -n02111889 -n03595614 -n03788195 -n02690373 -n01756291 -n01698640 -n07565083 -n01983481 -n03445777 -n03998194 -n02879718 -n07930864 -n03255030 -n02086646 -n04120489 -n03733281 -n01667114 -n03532672 -n03179701 -n04229816 -n03733281 -n09256479 -n02105251 -n03146219 -n04330267 -n06874185 -n12620546 -n01641577 -n02106550 -n02445715 -n03146219 -n02493793 -n02509815 -n02804610 -n03590841 -n01871265 -n02483362 -n02437616 -n03895866 -n02071294 -n03291819 -n13044778 -n02114855 -n01984695 -n02500267 -n06359193 -n01843065 -n03763968 -n02643566 -n04258138 -n02667093 -n07734744 -n04153751 -n02138441 -n03188531 -n07802026 -n02100583 -n07860988 -n01817953 -n02106166 -n02483708 -n03782006 -n02007558 -n04476259 -n02835271 -n03124170 -n04550184 -n03661043 -n04204238 -n03776460 -n03837869 -n04443257 -n02486261 -n01537544 -n02317335 -n02134418 -n04557648 -n01872401 -n04209239 -n01677366 -n02100735 -n02096437 -n04479046 -n01693334 -n02965783 -n01514859 -n07613480 -n02108422 -n01914609 -n03482405 -n03710637 -n04009552 -n02106166 -n01531178 -n02704792 -n04487394 -n02834397 -n02108915 -n02484975 -n04310018 -n02095570 -n03447721 -n02119022 -n03017168 -n03697007 -n03249569 -n02835271 -n04591713 -n03347037 -n02791124 -n01692333 -n01882714 -n03196217 -n02422699 -n04041544 -n03796401 -n02028035 -n02966193 -n04235860 -n03642806 -n03838899 -n02510455 -n01930112 -n03781244 -n02091032 -n02025239 -n03196217 -n02094114 -n01978455 -n04254120 -n13040303 -n03459775 -n07716358 -n03016953 -n03876231 -n02892767 -n04069434 -n02256656 -n02168699 -n02128757 -n01986214 -n02009229 -n02790996 -n03630383 -n07718747 -n02361337 -n02951585 -n07873807 -n03223299 -n07836838 -n04266014 -n03956157 -n02002724 -n02077923 -n02002556 -n02951358 -n03259280 -n02113186 -n02843684 -n04332243 -n01775062 -n02777292 -n04118538 -n02226429 -n03908618 -n02782093 -n03777568 -n02101556 -n02701002 -n02018795 -n02102318 -n03045698 -n04254680 -n02692877 -n12620546 -n02325366 -n01560419 -n02977058 -n03127925 -n04325704 -n03483316 -n02101556 -n03450230 -n04264628 -n02101556 -n03482405 -n07715103 -n03544143 -n02395406 -n01797886 -n03207941 -n04389033 -n01978455 -n01755581 -n02708093 -n03461385 -n02342885 -n01930112 -n04009552 -n02804610 -n13037406 -n02092339 -n02106550 -n04033995 -n02395406 -n03733131 -n02859443 -n04008634 -n02841315 -n02412080 -n03785016 -n01440764 -n03100240 -n01665541 -n03710721 -n04599235 -n04370456 -n02124075 -n02138441 -n03085013 -n01744401 -n04296562 -n09835506 -n03785016 -n07754684 -n04311004 -n02124075 -n02802426 -n04239074 -n02971356 -n02009229 -n02096177 -n01695060 -n03954731 -n01828970 -n02086240 -n02447366 -n03095699 -n03590841 -n03482405 -n02107574 -n02096294 -n03085013 -n04456115 -n04486054 -n04599235 -n03141823 -n04263257 -n03877845 -n04428191 -n03976657 -n02797295 -n03637318 -n03041632 -n07579787 -n02687172 -n03201208 -n04579145 -n01608432 -n02099849 -n01667114 -n04372370 -n02106166 -n03075370 -n02138441 -n03028079 -n01930112 -n03388183 -n03825788 -n13044778 -n02687172 -n03692522 -n02391049 -n04254120 -n03146219 -n03126707 -n02025239 -n07714571 -n02869837 -n01580077 -n03594945 -n02109525 -n04099969 -n03792972 -n03623198 -n01872401 -n02441942 -n03032252 -n02687172 -n02096294 -n02037110 -n04310018 -n02280649 -n03992509 -n04037443 -n01806567 -n02325366 -n03372029 -n02259212 -n04371430 -n02391049 -n01755581 -n01820546 -n02264363 -n01494475 -n03201208 -n01774750 -n03259280 -n02687172 -n04090263 -n02483708 -n04487081 -n03218198 -n02480495 -n01692333 -n03017168 -n01843065 -n03930630 -n02056570 -n03041632 -n02799071 -n03344393 -n01514859 -n02113978 -n02027492 -n01981276 -n02397096 -n04192698 -n03134739 -n02666196 -n02117135 -n04461696 -n02231487 -n09246464 -n04149813 -n02102040 -n02086910 -n04355338 -n02457408 -n02093428 -n01689811 -n03481172 -n07836838 -n03803284 -n01910747 -n04553703 -n03478589 -n03584829 -n04254777 -n04254120 -n02105505 -n02361337 -n03992509 -n02804610 -n02102318 -n01560419 -n01773549 -n03902125 -n06359193 -n02129165 -n02120079 -n02113712 -n01728920 -n03160309 -n07871810 -n04258138 -n03045698 -n04552348 -n13044778 -n03717622 -n02025239 -n02268443 -n02108915 -n04542943 -n03240683 -n02966687 -n07754684 -n03991062 -n02769748 -n03187595 -n03271574 -n02256656 -n03637318 -n04357314 -n03207941 -n01728920 -n04074963 -n03000684 -n04118538 -n03888257 -n03000134 -n02930766 -n02437616 -n01622779 -n03954731 -n04266014 -n02108915 -n01729977 -n04553703 -n02328150 -n07715103 -n03617480 -n02441942 -n01734418 -n02229544 -n02259212 -n03017168 -n02077923 -n03871628 -n02025239 -n02992211 -n01978287 -n01755581 -n04008634 -n01773797 -n04209239 -n04584207 -n02493793 -n01616318 -n04127249 -n01877812 -n02814860 -n03535780 -n04040759 -n02879718 -n02514041 -n04592741 -n03854065 -n01614925 -n04026417 -n03837869 -n02865351 -n04239074 -n06794110 -n02190166 -n04208210 -n02088238 -n02497673 -n03179701 -n04613696 -n01693334 -n02672831 -n02817516 -n02106662 -n04392985 -n03777754 -n03649909 -n04311004 -n01664065 -n04389033 -n02807133 -n03476991 -n03141823 -n03793489 -n02988304 -n03325584 -n01871265 -n09288635 -n04326547 -n02110063 -n03220513 -n02093859 -n01693334 -n02815834 -n02107574 -n04487081 -n04347754 -n07695742 -n04086273 -n04493381 -n01580077 -n02910353 -n07754684 -n04067472 -n12768682 -n01675722 -n02437312 -n04417672 -n03868863 -n13054560 -n02100735 -n03888605 -n04009552 -n04238763 -n03876231 -n03706229 -n02859443 -n01530575 -n01824575 -n02096437 -n04486054 -n02704792 -n02110185 -n01824575 -n12620546 -n03814906 -n04154565 -n02058221 -n02111129 -n03690938 -n03857828 -n01534433 -n09229709 -n02086910 -n04507155 -n02098105 -n02089078 -n04355933 -n02930766 -n03384352 -n02892201 -n03992509 -n02109961 -n04479046 -n03000247 -n03047690 -n04258138 -n04005630 -n02281787 -n01693334 -n03379051 -n01614925 -n04479046 -n04591713 -n03920288 -n02051845 -n01756291 -n02107312 -n04435653 -n03325584 -n02058221 -n02107683 -n02111277 -n03786901 -n07768694 -n03891332 -n04204347 -n03400231 -n03961711 -n02490219 -n03347037 -n04597913 -n02090721 -n03450230 -n02112137 -n03250847 -n03868242 -n02058221 -n04141327 -n03761084 -n02090379 -n02486261 -n02095570 -n01749939 -n02804610 -n04273569 -n02777292 -n03930630 -n03775546 -n07716906 -n02916936 -n02930766 -n03709823 -n02056570 -n02412080 -n02666196 -n03196217 -n04479046 -n04509417 -n01532829 -n07697313 -n02493793 -n02058221 -n04252077 -n02002556 -n02085936 -n03063599 -n04273569 -n04550184 -n03710193 -n01742172 -n02443484 -n03720891 -n03706229 -n02643566 -n03218198 -n03877845 -n01630670 -n07714990 -n02264363 -n01532829 -n04540053 -n02113712 -n04259630 -n03661043 -n03220513 -n03445924 -n07831146 -n01530575 -n03691459 -n01773157 -n06785654 -n03290653 -n03995372 -n03866082 -n02276258 -n03777568 -n01675722 -n12985857 -n02835271 -n03444034 -n02101006 -n03637318 -n03787032 -n04258138 -n03535780 -n04065272 -n02099267 -n03347037 -n01755581 -n03908714 -n02056570 -n02093647 -n01729977 -n04344873 -n01847000 -n02112350 -n01632458 -n04562935 -n03325584 -n04127249 -n04141076 -n04554684 -n07714571 -n02027492 -n03532672 -n02992529 -n02321529 -n03538406 -n03721384 -n02013706 -n04599235 -n02093991 -n02777292 -n02123394 -n07747607 -n03424325 -n03976657 -n04209239 -n02951585 -n07753592 -n04443257 -n03388183 -n10148035 -n03344393 -n04336792 -n02120505 -n01981276 -n03933933 -n01829413 -n03916031 -n02776631 -n01775062 -n04286575 -n04209239 -n07730033 -n02099712 -n07613480 -n02100583 -n03733805 -n03873416 -n04476259 -n02113799 -n02690373 -n09468604 -n02009912 -n01980166 -n02096294 -n03764736 -n03417042 -n03000134 -n10565667 -n04120489 -n02114855 -n04039381 -n04376876 -n02843684 -n02643566 -n03924679 -n03958227 -n03773504 -n02276258 -n03776460 -n03000684 -n02129165 -n03445924 -n02108089 -n04310018 -n03873416 -n02236044 -n03483316 -n02099601 -n02115913 -n02441942 -n03967562 -n04479046 -n04344873 -n02123597 -n02229544 -n03179701 -n02791124 -n04525305 -n03976657 -n04147183 -n02835271 -n01685808 -n02280649 -n01768244 -n02489166 -n04355338 -n02279972 -n03770679 -n01498041 -n04041544 -n02085620 -n02086240 -n03532672 -n02268853 -n02978881 -n02363005 -n04442312 -n02280649 -n02108915 -n04380533 -n04462240 -n03271574 -n03930630 -n02892767 -n01797886 -n01978287 -n02437616 -n03920288 -n03160309 -n01560419 -n02666196 -n03424325 -n02514041 -n02790996 -n02397096 -n01775062 -n02071294 -n02100583 -n04380533 -n01990800 -n03903868 -n07583066 -n02013706 -n02130308 -n02113023 -n03884397 -n03000684 -n04037443 -n01687978 -n02058221 -n02704792 -n07693725 -n04039381 -n03461385 -n01950731 -n03773504 -n02104365 -n04536866 -n02328150 -n07871810 -n03372029 -n04462240 -n02133161 -n02808304 -n03443371 -n01843065 -n01914609 -n01855032 -n04380533 -n02086646 -n02363005 -n04296562 -n04033995 -n02871525 -n03742115 -n02704792 -n02108915 -n03670208 -n02093428 -n04428191 -n09421951 -n01984695 -n02128757 -n01917289 -n04033901 -n02092002 -n03840681 -n03476684 -n04286575 -n04423845 -n02951358 -n03877845 -n01728572 -n03481172 -n03208938 -n02487347 -n02107908 -n07565083 -n04479046 -n03832673 -n02948072 -n02950826 -n03929660 -n04370456 -n02978881 -n01498041 -n02783161 -n03697007 -n01820546 -n03026506 -n04584207 -n02091467 -n02422699 -n02123045 -n03793489 -n03958227 -n02443484 -n02098286 -n02788148 -n04392985 -n12768682 -n03843555 -n02894605 -n04372370 -n02077923 -n02111889 -n01770393 -n02840245 -n01631663 -n02786058 -n04462240 -n02264363 -n03942813 -n02457408 -n03476991 -n02107312 -n02917067 -n04612504 -n02100583 -n04239074 -n04476259 -n02105855 -n03929855 -n02389026 -n04389033 -n03876231 -n04041544 -n01806143 -n07584110 -n02814533 -n03868863 -n02104365 -n02128925 -n02105251 -n04447861 -n04517823 -n02395406 -n04208210 -n02091831 -n04330267 -n02444819 -n02815834 -n02264363 -n01484850 -n02105641 -n02808440 -n02116738 -n01873310 -n03792972 -n02125311 -n01855032 -n02704792 -n07717556 -n03814906 -n01667114 -n03857828 -n01784675 -n02091032 -n04409515 -n01614925 -n03769881 -n02814533 -n02093754 -n07747607 -n03857828 -n04277352 -n02104029 -n04131690 -n02951358 -n02134084 -n07749582 -n03126707 -n04325704 -n02497673 -n02105412 -n01685808 -n07871810 -n02927161 -n04380533 -n04152593 -n02106382 -n04350905 -n01795545 -n03871628 -n02965783 -n07614500 -n03884397 -n03980874 -n02492035 -n02113712 -n03417042 -n04259630 -n03483316 -n01494475 -n02088238 -n07565083 -n07753113 -n04366367 -n04120489 -n04429376 -n02091467 -n02112350 -n02699494 -n03995372 -n02113186 -n01685808 -n03347037 -n02843684 -n02108089 -n03825788 -n03773504 -n02787622 -n04325704 -n03796401 -n01698640 -n03045698 -n02422699 -n04417672 -n04141327 -n04118538 -n02113624 -n04550184 -n01728572 -n04380533 -n04209133 -n01537544 -n07920052 -n04317175 -n01742172 -n02786058 -n03417042 -n03770679 -n02804414 -n02236044 -n03085013 -n04019541 -n03661043 -n03769881 -n01773797 -n02835271 -n01494475 -n01773797 -n02097298 -n01667114 -n02106030 -n02106030 -n03146219 -n01930112 -n02102177 -n13040303 -n04357314 -n04264628 -n07875152 -n04371774 -n02099849 -n03127925 -n02869837 -n03710193 -n02097130 -n07730033 -n04311004 -n03085013 -n02102040 -n04486054 -n02111889 -n04204238 -n03792972 -n03450230 -n03617480 -n02124075 -n03495258 -n03769881 -n02916936 -n01704323 -n03063599 -n01883070 -n01614925 -n04311004 -n01692333 -n03125729 -n04192698 -n03874293 -n03496892 -n04118776 -n02454379 -n04116512 -n01677366 -n01514668 -n03476991 -n03733805 -n03942813 -n03095699 -n02883205 -n02091467 -n02817516 -n06794110 -n03131574 -n02101388 -n01978455 -n02106382 -n02108915 -n03216828 -n07615774 -n07730033 -n01770393 -n04371430 -n02123159 -n01984695 -n01737021 -n02825657 -n02099267 -n03658185 -n02815834 -n02120079 -n03908714 -n04554684 -n04604644 -n03109150 -n03866082 -n03908714 -n03617480 -n02093647 -n02510455 -n04074963 -n03089624 -n02095314 -n03218198 -n02817516 -n01943899 -n03854065 -n03891251 -n04423845 -n04131690 -n04442312 -n01537544 -n03325584 -n02095889 -n03291819 -n03042490 -n02504013 -n03146219 -n04252077 -n02328150 -n01697457 -n02655020 -n04606251 -n07720875 -n02091831 -n02097209 -n01630670 -n01950731 -n01910747 -n07695742 -n03063689 -n01871265 -n03478589 -n07583066 -n02109525 -n03982430 -n04270147 -n01871265 -n02033041 -n03476991 -n01494475 -n09229709 -n03967562 -n03902125 -n02837789 -n04311004 -n04228054 -n02087394 -n04147183 -n02133161 -n03100240 -n04204238 -n02445715 -n03481172 -n04487394 -n03796401 -n02978881 -n01877812 -n01496331 -n07717410 -n02871525 -n02442845 -n02112706 -n02879718 -n03085013 -n02799071 -n03902125 -n02965783 -n02281406 -n04404412 -n02123159 -n02747177 -n04548280 -n04591713 -n04044716 -n03742115 -n02992211 -n07717410 -n10148035 -n02099429 -n02486261 -n04447861 -n03843555 -n04263257 -n04330267 -n02787622 -n02823750 -n01740131 -n04235860 -n03498962 -n02492660 -n02437312 -n07718747 -n03803284 -n02364673 -n02906734 -n07684084 -n03970156 -n03825788 -n03814906 -n07715103 -n02749479 -n02815834 -n02877765 -n02088364 -n02088632 -n04270147 -n07248320 -n01514668 -n01883070 -n02276258 -n04554684 -n02009229 -n07248320 -n01924916 -n03376595 -n03983396 -n02112018 -n01770393 -n02403003 -n02051845 -n02870880 -n02484975 -n02113799 -n03717622 -n07930864 -n07717410 -n02730930 -n03874599 -n02105162 -n02099712 -n01530575 -n03891332 -n01773157 -n02808440 -n02177972 -n03759954 -n07579787 -n02877765 -n03958227 -n03977966 -n03825788 -n03028079 -n04501370 -n02259212 -n03961711 -n03496892 -n03706229 -n04409515 -n12144580 -n03769881 -n09193705 -n02782093 -n01734418 -n04285008 -n02120505 -n02111277 -n02640242 -n02790996 -n02099267 -n07871810 -n01986214 -n01984695 -n12985857 -n04542943 -n03888605 -n04074963 -n10565667 -n04483307 -n09835506 -n02129165 -n03538406 -n01498041 -n04461696 -n03944341 -n03259280 -n01484850 -n04486054 -n03788195 -n09193705 -n03530642 -n04557648 -n02892201 -n04509417 -n03041632 -n02093256 -n02391049 -n04479046 -n03961711 -n15075141 -n02108915 -n01847000 -n02325366 -n03770439 -n03676483 -n06794110 -n01770393 -n02788148 -n03127925 -n03710721 -n02484975 -n02536864 -n02105855 -n03733131 -n04435653 -n02124075 -n03792782 -n04465501 -n01644373 -n02085620 -n03720891 -n03814639 -n03133878 -n02892201 -n02077923 -n02992211 -n02114712 -n02410509 -n03733131 -n03843555 -n02917067 -n02128385 -n04009552 -n03888605 -n03388043 -n04596742 -n03935335 -n06785654 -n02356798 -n02398521 -n03445924 -n03041632 -n03535780 -n07753113 -n02834397 -n01824575 -n07697313 -n04487081 -n02509815 -n02106550 -n01704323 -n01742172 -n02094433 -n01817953 -n03032252 -n01742172 -n02483362 -n02096437 -n02487347 -n02096294 -n04465501 -n02948072 -n03424325 -n02111500 -n02114367 -n01537544 -n01945685 -n02607072 -n04005630 -n04127249 -n07714990 -n03662601 -n03179701 -n09468604 -n01530575 -n03100240 -n06359193 -n02510455 -n02120079 -n02096437 -n03141823 -n01484850 -n04579432 -n04118538 -n02094433 -n02086910 -n01622779 -n07747607 -n07718747 -n02106030 -n02363005 -n03599486 -n03637318 -n02101388 -n03662601 -n03188531 -n02104029 -n11939491 -n04238763 -n01945685 -n02834397 -n02099712 -n01558993 -n03450230 -n03838899 -n04243546 -n02123159 -n04536866 -n02808304 -n04120489 -n03127925 -n04505470 -n03782006 -n02281406 -n04252225 -n02776631 -n02444819 -n04005630 -n03717622 -n03961711 -n03444034 -n03970156 -n01824575 -n02396427 -n02165456 -n02226429 -n02056570 -n07693725 -n04599235 -n03944341 -n02134418 -n03788365 -n07717410 -n04264628 -n03967562 -n04265275 -n03584254 -n01614925 -n07720875 -n03814639 -n04370456 -n04037443 -n03297495 -n02129604 -n03131574 -n04243546 -n02105855 -n03895866 -n03216828 -n02317335 -n02106030 -n03661043 -n01924916 -n02165456 -n04536866 -n01616318 -n02799071 -n03788195 -n02363005 -n01924916 -n04461696 -n04270147 -n02843684 -n04258138 -n03944341 -n01737021 -n01882714 -n02817516 -n02097298 -n01843383 -n04019541 -n04118776 -n02799071 -n03967562 -n03494278 -n02229544 -n04325704 -n03967562 -n13044778 -n03344393 -n04557648 -n03447721 -n09472597 -n04118538 -n03424325 -n04599235 -n01530575 -n02835271 -n09472597 -n02092002 -n02730930 -n04599235 -n02422699 -n03657121 -n01622779 -n03903868 -n02090721 -n04443257 -n01734418 -n07714571 -n01496331 -n02264363 -n03483316 -n03742115 -n07714990 -n03590841 -n03871628 -n04311174 -n02114548 -n03255030 -n02105505 -n07579787 -n07697313 -n03400231 -n06874185 -n04591713 -n04509417 -n03255030 -n03404251 -n02268853 -n07613480 -n07768694 -n02321529 -n01818515 -n01877812 -n02895154 -n03485794 -n04553703 -n02364673 -n09229709 -n02916936 -n04235860 -n07932039 -n15075141 -n02006656 -n02487347 -n02087394 -n02480855 -n04372370 -n03733805 -n02979186 -n02033041 -n10565667 -n02006656 -n02099267 -n02108915 -n03930630 -n01728572 -n04552348 -n02090721 -n02870880 -n02951585 -n04259630 -n02328150 -n04435653 -n02843684 -n03788195 -n03887697 -n04335435 -n04228054 -n01608432 -n04355933 -n02123045 -n04589890 -n04086273 -n03832673 -n02111277 -n01704323 -n03599486 -n04254680 -n02086240 -n02817516 -n02487347 -n04592741 -n03272010 -n02018795 -n01930112 -n03223299 -n03388043 -n03888605 -n04040759 -n02169497 -n02793495 -n04376876 -n02177972 -n04485082 -n07717410 -n04081281 -n03109150 -n02090622 -n03482405 -n01664065 -n03032252 -n03355925 -n01910747 -n04536866 -n03000247 -n03527444 -n02025239 -n04254777 -n04141975 -n03793489 -n02979186 -n02127052 -n01847000 -n02328150 -n02909870 -n10565667 -n03709823 -n02992211 -n02093859 -n07747607 -n07717410 -n03249569 -n01734418 -n03944341 -n04344873 -n01677366 -n02108000 -n03876231 -n04461696 -n06596364 -n09428293 -n03482405 -n02088094 -n04136333 -n04204238 -n01697457 -n04074963 -n01514859 -n02106662 -n04252225 -n02117135 -n03476684 -n01770393 -n02795169 -n03733131 -n03676483 -n04133789 -n04435653 -n01728920 -n04033995 -n04355933 -n01675722 -n03717622 -n04428191 -n03535780 -n02105162 -n07753275 -n04483307 -n02917067 -n04118776 -n03000684 -n03000134 -n02281787 -n01770393 -n02326432 -n01753488 -n02167151 -n02808304 -n04392985 -n03197337 -n03100240 -n04286575 -n03127925 -n01945685 -n02536864 -n02799071 -n02783161 -n02346627 -n02264363 -n02088364 -n02093754 -n03617480 -n02105162 -n02966687 -n01795545 -n02091831 -n01537544 -n03041632 -n02834397 -n02699494 -n03404251 -n01860187 -n04550184 -n02992211 -n02437312 -n02098105 -n07590611 -n03527444 -n07583066 -n01748264 -n02966687 -n03803284 -n04366367 -n02119022 -n01740131 -n02099601 -n01534433 -n04606251 -n02099601 -n02488702 -n04336792 -n02391049 -n02086646 -n02086079 -n02110806 -n02110341 -n04447861 -n02119789 -n04162706 -n02259212 -n03124043 -n02101388 -n03630383 -n02980441 -n02494079 -n03602883 -n01695060 -n04141327 -n04266014 -n03047690 -n02097209 -n02113023 -n02174001 -n01669191 -n01667778 -n02096051 -n04251144 -n02112706 -n02988304 -n03461385 -n03447447 -n02077923 -n03887697 -n02342885 -n01641577 -n01616318 -n02007558 -n01698640 -n04033995 -n03804744 -n02110063 -n03355925 -n01667114 -n01914609 -n03804744 -n02669723 -n07836838 -n02412080 -n03743016 -n04336792 -n13052670 -n03791053 -n03776460 -n03017168 -n04404412 -n03777754 -n04037443 -n03796401 -n04404412 -n06596364 -n02105412 -n04023962 -n01734418 -n02328150 -n02101006 -n07684084 -n02002556 -n13133613 -n07248320 -n01753488 -n02107908 -n02123394 -n04154565 -n02504458 -n13052670 -n04008634 -n02916936 -n02107683 -n02134084 -n02443484 -n07720875 -n04493381 -n03761084 -n02102040 -n03089624 -n01985128 -n01753488 -n02137549 -n09835506 -n03443371 -n02346627 -n02002556 -n04589890 -n04562935 -n01632777 -n02317335 -n01632458 -n02493509 -n02398521 -n03970156 -n02667093 -n03825788 -n02086646 -n13044778 -n02088238 -n01776313 -n02481823 -n04423845 -n03047690 -n07749582 -n02977058 -n01796340 -n02110627 -n02910353 -n03201208 -n01728572 -n02114367 -n03980874 -n02776631 -n02165456 -n02437312 -n02364673 -n03764736 -n04041544 -n12998815 -n03388043 -n03803284 -n02113624 -n02102318 -n03424325 -n03250847 -n09288635 -n03924679 -n03956157 -n01910747 -n04560804 -n07714990 -n04542943 -n07716906 -n02128925 -n04487394 -n04399382 -n04044716 -n04465501 -n03854065 -n02398521 -n02823750 -n07583066 -n02107312 -n04584207 -n01829413 -n01833805 -n02417914 -n04081281 -n02088364 -n02113799 -n04376876 -n02093991 -n02730930 -n04133789 -n02442845 -n02018207 -n03930630 -n02910353 -n02730930 -n03776460 -n02088364 -n04264628 -n07714990 -n04461696 -n03372029 -n02090379 -n01819313 -n03657121 -n02106662 -n02109525 -n02500267 -n04376876 -n04483307 -n03843555 -n13037406 -n02097047 -n02403003 -n03290653 -n02690373 -n02536864 -n02091467 -n03843555 -n04044716 -n01537544 -n02037110 -n04146614 -n04612504 -n01484850 -n07684084 -n03220513 -n04326547 -n03127925 -n02971356 -n03476991 -n01774384 -n07565083 -n02672831 -n03967562 -n03998194 -n09229709 -n01641577 -n01682714 -n04204347 -n03160309 -n03478589 -n03792972 -n04458633 -n04392985 -n02480855 -n02099429 -n07714571 -n02098105 -n02963159 -n02777292 -n03529860 -n03706229 -n12057211 -n04612504 -n04554684 -n03590841 -n03661043 -n04065272 -n01531178 -n07614500 -n02017213 -n02859443 -n04235860 -n02256656 -n03481172 -n02110063 -n02281787 -n04579432 -n01985128 -n02363005 -n04317175 -n01737021 -n03216828 -n02095570 -n07714571 -n04525305 -n07565083 -n03494278 -n04525038 -n01494475 -n04404412 -n07718747 -n03903868 -n04376876 -n02088632 -n07720875 -n02111277 -n01728920 -n04311004 -n02877765 -n06785654 -n01978455 -n01729977 -n02906734 -n01601694 -n04429376 -n02676566 -n03733281 -n02106382 -n02817516 -n04039381 -n04356056 -n01514859 -n03791053 -n04376876 -n03630383 -n04252077 -n04417672 -n01641577 -n04141076 -n02025239 -n02992529 -n02672831 -n02088466 -n01797886 -n04501370 -n04149813 -n02172182 -n04336792 -n04417672 -n03944341 -n03961711 -n04493381 -n04258138 -n04523525 -n02423022 -n02102177 -n02865351 -n04507155 -n07930864 -n02097047 -n03916031 -n02892201 -n04254680 -n01608432 -n04461696 -n03483316 -n02500267 -n02916936 -n03452741 -n02892201 -n02113186 -n03775546 -n03478589 -n03633091 -n04599235 -n03065424 -n02097209 -n01873310 -n04604644 -n04418357 -n03794056 -n03179701 -n01440764 -n01806143 -n02093859 -n01496331 -n01669191 -n04367480 -n02971356 -n02114548 -n03249569 -n01796340 -n07613480 -n04505470 -n03804744 -n02950826 -n03743016 -n02777292 -n03089624 -n02110341 -n03485407 -n02480855 -n02356798 -n02910353 -n03662601 -n01601694 -n04141076 -n03384352 -n02492660 -n03376595 -n02776631 -n02025239 -n04065272 -n02033041 -n03417042 -n09332890 -n02097658 -n04552348 -n03447447 -n03781244 -n03000684 -n01749939 -n01677366 -n02094114 -n04465501 -n04372370 -n02281787 -n03196217 -n02277742 -n02701002 -n03290653 -n03452741 -n01806143 -n04037443 -n03825788 -n04266014 -n07716906 -n02123597 -n02110063 -n02981792 -n03804744 -n02134418 -n03970156 -n02483362 -n02486261 -n01514668 -n02134084 -n03970156 -n01558993 -n01644373 -n03692522 -n03804744 -n02804414 -n02108551 -n01560419 -n02490219 -n03710637 -n03673027 -n04552348 -n02094114 -n03967562 -n03776460 -n02447366 -n03733805 -n03127925 -n02279972 -n09428293 -n03089624 -n03938244 -n04041544 -n02113712 -n03594734 -n02206856 -n03485794 -n02256656 -n02981792 -n03347037 -n03026506 -n04356056 -n09332890 -n07565083 -n07760859 -n04286575 -n02790996 -n01873310 -n03337140 -n04483307 -n02281787 -n02114548 -n12057211 -n02971356 -n04591713 -n04371774 -n03841143 -n02229544 -n02794156 -n04270147 -n04090263 -n04592741 -n02120505 -n02120505 -n03532672 -n03062245 -n03089624 -n03710193 -n03792972 -n02085936 -n01924916 -n01692333 -n04428191 -n13044778 -n06359193 -n07693725 -n02916936 -n02488702 -n02489166 -n02102318 -n03980874 -n04265275 -n04429376 -n02480855 -n07873807 -n03478589 -n02071294 -n02097298 -n01734418 -n02123159 -n02951585 -n07714990 -n02859443 -n04447861 -n02096585 -n03902125 -n04525038 -n03028079 -n03866082 -n03891332 -n03220513 -n03207743 -n04589890 -n03871628 -n01774750 -n02125311 -n02747177 -n04153751 -n02101556 -n02095570 -n01629819 -n03042490 -n01872401 -n04311004 -n04228054 -n03983396 -n04456115 -n04070727 -n02490219 -n02093256 -n03710193 -n03742115 -n03841143 -n04285008 -n02074367 -n02526121 -n02116738 -n03666591 -n02363005 -n02910353 -n02219486 -n03063599 -n01955084 -n02104029 -n02114855 -n04023962 -n04376876 -n04275548 -n01682714 -n01641577 -n02676566 -n07892512 -n01775062 -n03457902 -n04486054 -n03457902 -n02843684 -n07768694 -n04026417 -n03355925 -n02025239 -n03781244 -n03947888 -n02280649 -n03450230 -n02098286 -n03776460 -n03594945 -n07734744 -n02276258 -n07720875 -n02988304 -n03595614 -n02951358 -n03764736 -n02939185 -n02091134 -n01978287 -n02268443 -n03127747 -n03814639 -n03874293 -n04081281 -n07768694 -n07715103 -n02790996 -n03160309 -n04525038 -n02013706 -n04540053 -n02105056 -n07715103 -n01860187 -n07920052 -n01687978 -n07590611 -n03394916 -n03947888 -n01945685 -n02110063 -n04074963 -n04606251 -n03594945 -n04254120 -n03187595 -n02110958 -n02977058 -n07930864 -n02099601 -n03590841 -n02441942 -n01806567 -n02643566 -n03874293 -n03255030 -n04487394 -n07760859 -n02112137 -n04486054 -n01496331 -n03337140 -n01882714 -n02113978 -n07615774 -n02168699 -n04465501 -n02086910 -n04136333 -n04254120 -n03530642 -n03187595 -n01770393 -n02422106 -n03709823 -n02910353 -n01855672 -n02361337 -n01580077 -n01694178 -n04120489 -n04517823 -n03775546 -n01773157 -n03775546 -n03777568 -n04355933 -n01784675 -n01498041 -n02422699 -n04447861 -n02177972 -n02319095 -n03935335 -n03980874 -n03976657 -n02442845 -n02085782 -n03976467 -n07583066 -n04461696 -n04467665 -n02105641 -n04501370 -n03777754 -n04065272 -n03447721 -n02206856 -n03459775 -n03947888 -n04111531 -n02807133 -n03481172 -n01983481 -n03733131 -n02105641 -n03841143 -n03976467 -n02391049 -n03196217 -n02422699 -n04462240 -n04328186 -n04310018 -n04417672 -n03018349 -n02965783 -n01629819 -n03207941 -n04311174 -n02226429 -n02363005 -n03041632 -n04033901 -n02410509 -n02112137 -n02747177 -n02825657 -n02097298 -n02992529 -n03032252 -n01734418 -n04090263 -n04201297 -n02094258 -n04111531 -n04265275 -n04065272 -n02676566 -n03388043 -n07930864 -n02423022 -n02108551 -n03424325 -n02815834 -n04228054 -n02097209 -n02137549 -n03314780 -n01608432 -n01820546 -n02109961 -n01580077 -n07579787 -n03788365 -n02749479 -n03930313 -n01806567 -n02927161 -n04447861 -n04548362 -n02259212 -n04252225 -n02105162 -n03345487 -n02727426 -n07584110 -n04005630 -n02096294 -n04273569 -n02422106 -n03534580 -n09288635 -n01795545 -n02397096 -n02730930 -n01806143 -n03661043 -n02807133 -n02277742 -n07613480 -n03297495 -n03761084 -n03109150 -n07716906 -n12267677 -n04204238 -n04204347 -n04596742 -n03710637 -n02481823 -n02669723 -n01491361 -n01629819 -n03982430 -n02869837 -n01843065 -n04311174 -n01820546 -n01677366 -n02108089 -n01807496 -n03710721 -n03063599 -n03498962 -n01729322 -n02769748 -n02268853 -n04081281 -n03983396 -n06359193 -n02127052 -n02107142 -n02488702 -n02006656 -n07831146 -n02676566 -n04277352 -n03527444 -n03372029 -n03314780 -n02114712 -n01978287 -n03337140 -n03538406 -n02917067 -n01756291 -n01667778 -n01795545 -n01631663 -n02088364 -n02808304 -n01797886 -n02104029 -n03201208 -n01558993 -n03967562 -n04428191 -n02494079 -n04162706 -n04515003 -n04040759 -n01774750 -n01943899 -n02098413 -n02099601 -n04270147 -n02417914 -n03065424 -n07734744 -n02007558 -n02119789 -n07695742 -n02364673 -n01689811 -n02672831 -n02124075 -n01644900 -n04335435 -n02086646 -n02095889 -n02105251 -n02391049 -n01955084 -n02480495 -n03032252 -n02808440 -n03637318 -n02877765 -n04597913 -n02112706 -n04590129 -n01910747 -n02895154 -n03062245 -n03775546 -n03372029 -n04228054 -n04258138 -n04074963 -n11879895 -n01986214 -n01943899 -n02138441 -n01806143 -n01983481 -n03478589 -n04389033 -n02951358 -n02102318 -n03763968 -n03594734 -n01689811 -n07753113 -n02074367 -n01819313 -n03467068 -n03393912 -n02056570 -n04008634 -n04254777 -n01644900 -n02106166 -n03891251 -n04435653 -n01773549 -n03729826 -n01770081 -n03529860 -n03110669 -n03841143 -n02091244 -n04067472 -n04371430 -n03796401 -n03782006 -n04238763 -n01784675 -n04019541 -n02097209 -n02259212 -n03956157 -n02112706 -n02111889 -n03527444 -n02167151 -n04442312 -n07695742 -n03710193 -n04074963 -n02099849 -n02134418 -n02825657 -n13037406 -n02085782 -n02417914 -n12620546 -n04275548 -n02804610 -n04146614 -n01514668 -n01443537 -n04509417 -n02892201 -n02088466 -n03065424 -n04254120 -n03792972 -n01924916 -n02037110 -n07697537 -n03394916 -n02101006 -n02110806 -n03146219 -n02814860 -n03649909 -n03127747 -n01980166 -n02092002 -n03787032 -n02133161 -n03874599 -n04201297 -n02106550 -n07615774 -n03710637 -n03527444 -n07714990 -n03017168 -n02111500 -n01744401 -n03950228 -n02410509 -n02483708 -n07583066 -n04589890 -n02655020 -n02259212 -n01990800 -n03457902 -n07920052 -n04505470 -n02111129 -n03216828 -n02892767 -n02095314 -n02092002 -n01664065 -n03944341 -n03495258 -n01737021 -n01677366 -n01806567 -n02097298 -n04532670 -n04522168 -n02708093 -n02066245 -n02971356 -n02906734 -n03492542 -n03930313 -n02396427 -n02037110 -n03297495 -n03017168 -n01773797 -n03786901 -n02910353 -n02102177 -n02730930 -n02480495 -n04562935 -n02109525 -n02988304 -n02091467 -n04204238 -n04476259 -n01532829 -n03208938 -n04532106 -n02165105 -n01677366 -n07715103 -n02795169 -n02127052 -n02098286 -n01728572 -n01833805 -n02445715 -n02259212 -n04209133 -n07711569 -n07860988 -n09421951 -n03125729 -n04141076 -n01742172 -n03063689 -n01704323 -n01748264 -n01770393 -n01955084 -n02894605 -n03792972 -n04141975 -n02672831 -n03018349 -n02971356 -n02859443 -n07749582 -n03792782 -n02398521 -n04254777 -n02326432 -n03877472 -n02123045 -n03623198 -n02342885 -n03187595 -n03884397 -n04330267 -n04266014 -n02138441 -n03538406 -n03000247 -n02363005 -n02883205 -n07753592 -n04371430 -n03871628 -n03633091 -n04023962 -n01740131 -n04251144 -n02870880 -n02009912 -n03461385 -n02328150 -n01945685 -n02280649 -n02012849 -n02112137 -n04326547 -n02117135 -n07930864 -n04136333 -n04370456 -n01737021 -n01817953 -n03888605 -n03452741 -n04330267 -n07932039 -n02398521 -n07930864 -n03787032 -n02112350 -n12267677 -n03494278 -n07693725 -n03857828 -n02815834 -n04376876 -n03874293 -n04371774 -n03929855 -n02841315 -n02090721 -n09468604 -n02488291 -n02106662 -n03461385 -n04485082 -n03995372 -n02493793 -n01914609 -n02002556 -n07711569 -n02098286 -n07693725 -n02422106 -n02110958 -n04613696 -n03692522 -n07920052 -n02799071 -n04037443 -n02113978 -n01530575 -n10565667 -n10148035 -n03773504 -n03347037 -n09193705 -n02113978 -n01882714 -n03527444 -n02979186 -n01877812 -n02111129 -n03417042 -n03461385 -n02114855 -n12768682 -n01950731 -n02667093 -n02011460 -n03290653 -n02108000 -n04229816 -n01930112 -n02486261 -n04542943 -n04235860 -n07768694 -n02403003 -n03786901 -n02396427 -n02109047 -n01968897 -n03388043 -n04258138 -n02112137 -n02607072 -n02134084 -n03837869 -n04200800 -n02071294 -n04141076 -n02085620 -n03218198 -n02098286 -n02099601 -n04099969 -n03216828 -n02892767 -n03482405 -n03838899 -n03018349 -n04487394 -n04141076 -n02106382 -n11939491 -n03100240 -n03908714 -n07831146 -n09256479 -n12267677 -n04152593 -n02093428 -n02791270 -n02099429 -n02105056 -n03223299 -n02643566 -n07720875 -n02124075 -n02699494 -n03888605 -n03249569 -n03584254 -n02981792 -n04133789 -n03534580 -n01518878 -n02704792 -n07747607 -n13037406 -n02488291 -n03538406 -n03627232 -n02099429 -n02704792 -n07684084 -n03733805 -n02397096 -n02114367 -n02319095 -n02086646 -n02094433 -n04133789 -n04483307 -n02504013 -n04525038 -n04265275 -n04209239 -n03967562 -n02129165 -n03777754 -n09835506 -n02727426 -n01693334 -n02457408 -n02128925 -n03903868 -n04409515 -n01950731 -n06359193 -n03187595 -n01950731 -n04041544 -n02892767 -n02363005 -n04355338 -n02277742 -n04090263 -n03314780 -n04285008 -n01847000 -n02094433 -n02098105 -n07892512 -n09229709 -n03527444 -n03530642 -n01774384 -n01773157 -n04366367 -n03676483 -n01930112 -n03933933 -n03877845 -n02104365 -n07697537 -n02444819 -n13037406 -n04296562 -n02457408 -n11879895 -n04120489 -n03958227 -n03187595 -n03930630 -n02277742 -n01774750 -n04550184 -n02837789 -n04479046 -n02500267 -n04317175 -n07875152 -n01687978 -n02088094 -n02814533 -n02109961 -n02117135 -n04579145 -n07880968 -n02190166 -n02396427 -n04542943 -n04357314 -n02114855 -n03920288 -n02120079 -n01776313 -n01847000 -n04447861 -n04019541 -n03201208 -n03857828 -n03404251 -n07754684 -n09256479 -n02442845 -n06794110 -n02917067 -n04592741 -n02389026 -n03444034 -n03724870 -n02895154 -n02165456 -n03804744 -n01742172 -n02037110 -n02087046 -n02865351 -n02025239 -n03887697 -n02814533 -n04133789 -n03891332 -n02483708 -n07714571 -n03982430 -n04579145 -n02127052 -n07932039 -n04238763 -n03710637 -n02825657 -n03977966 -n02321529 -n02493509 -n02219486 -n09193705 -n01950731 -n03457902 -n03908714 -n03980874 -n02113624 -n03393912 -n03379051 -n01688243 -n02971356 -n04243546 -n02510455 -n02092002 -n02116738 -n02391049 -n04111531 -n02128925 -n02097047 -n02071294 -n04462240 -n01748264 -n02086910 -n04326547 -n02107908 -n06874185 -n03773504 -n04039381 -n03874293 -n04482393 -n04371774 -n02088094 -n03887697 -n03452741 -n07802026 -n02509815 -n03347037 -n03983396 -n01774750 -n02879718 -n03888257 -n01796340 -n07717556 -n02112706 -n01742172 -n12998815 -n03271574 -n01775062 -n02112706 -n04153751 -n04350905 -n02481823 -n02487347 -n01950731 -n02667093 -n02089973 -n04592741 -n03393912 -n02840245 -n02006656 -n01498041 -n04548362 -n02782093 -n09193705 -n02443114 -n01773549 -n02093428 -n04116512 -n01770393 -n02128925 -n02939185 -n04133789 -n02777292 -n03976657 -n03876231 -n02443114 -n04590129 -n02114855 -n04335435 -n03372029 -n04418357 -n02109961 -n02088094 -n02279972 -n03657121 -n04482393 -n04229816 -n02264363 -n04136333 -n02027492 -n03617480 -n07753592 -n03459775 -n04154565 -n03425413 -n01955084 -n03127925 -n02017213 -n02437616 -n01774384 -n07760859 -n01818515 -n03000684 -n02128385 -n04487081 -n02105505 -n03376595 -n02130308 -n02108000 -n03042490 -n02992211 -n07718472 -n02417914 -n02701002 -n02058221 -n03888605 -n01694178 -n01855672 -n02168699 -n02676566 -n04507155 -n03777754 -n01704323 -n02088094 -n03444034 -n02883205 -n02909870 -n02787622 -n02102973 -n02514041 -n03085013 -n04328186 -n02494079 -n02093428 -n01986214 -n03594945 -n01847000 -n02110958 -n04252077 -n03041632 -n09421951 -n03776460 -n03676483 -n02804610 -n02112350 -n02096294 -n02108089 -n03690938 -n04372370 -n03877845 -n02111500 -n04476259 -n02104029 -n02085782 -n03424325 -n01943899 -n02443114 -n02865351 -n02129604 -n04487394 -n02493509 -n03026506 -n04136333 -n04507155 -n04356056 -n04039381 -n03944341 -n03947888 -n02098105 -n02133161 -n02841315 -n04251144 -n02094114 -n04505470 -n01829413 -n02493509 -n11879895 -n07875152 -n01983481 -n02500267 -n02085620 -n13040303 -n03902125 -n12620546 -n03599486 -n03891332 -n02102480 -n04118538 -n01807496 -n01860187 -n03444034 -n01491361 -n07831146 -n02666196 -n02892767 -n13040303 -n03032252 -n02125311 -n02168699 -n02117135 -n02395406 -n01537544 -n07753275 -n04428191 -n02109961 -n04235860 -n02417914 -n04584207 -n04070727 -n01873310 -n02749479 -n02769748 -n07714571 -n04367480 -n02012849 -n01665541 -n02167151 -n02088466 -n03527444 -n04409515 -n02013706 -n03325584 -n02441942 -n07613480 -n02101006 -n02088632 -n02129604 -n01685808 -n02966687 -n04367480 -n03908618 -n02977058 -n04111531 -n03042490 -n03717622 -n06785654 -n02980441 -n01968897 -n01843065 -n04554684 -n04523525 -n04417672 -n01855672 -n03873416 -n02100877 -n02105505 -n03492542 -n01833805 -n04116512 -n04487394 -n02105505 -n03297495 -n02119022 -n04392985 -n02108422 -n02098413 -n02012849 -n04487394 -n01990800 -n02817516 -n03216828 -n03187595 -n07871810 -n02669723 -n02229544 -n02966687 -n02113712 -n03930313 -n03417042 -n02389026 -n03249569 -n03633091 -n02096294 -n02110627 -n03916031 -n07920052 -n04146614 -n03207743 -n02325366 -n03954731 -n04133789 -n03788195 -n03982430 -n02112706 -n02017213 -n02492660 -n03976467 -n03792782 -n02123159 -n07754684 -n03444034 -n03063599 -n02326432 -n02009912 -n04154565 -n03492542 -n03649909 -n02101388 -n02091134 -n02892201 -n02077923 -n02168699 -n04239074 -n03899768 -n04461696 -n03124170 -n09428293 -n03000247 -n01558993 -n02104365 -n02093991 -n03837869 -n02169497 -n03492542 -n03706229 -n02129165 -n03216828 -n03662601 -n02444819 -n03930313 -n04039381 -n01601694 -n04228054 -n02788148 -n03133878 -n01983481 -n02093859 -n02106166 -n02102973 -n03982430 -n02667093 -n03891332 -n01592084 -n02172182 -n03404251 -n02259212 -n03250847 -n02817516 -n07747607 -n03063599 -n03935335 -n02085620 -n02092002 -n02999410 -n02504458 -n03100240 -n04392985 -n02105855 -n07718747 -n03721384 -n02483362 -n01629819 -n02107683 -n02951358 -n07920052 -n03733805 -n02483362 -n01798484 -n04418357 -n04251144 -n03197337 -n03908618 -n01978287 -n01817953 -n04486054 -n04127249 -n01945685 -n07711569 -n02088238 -n02105641 -n02910353 -n07892512 -n01484850 -n03657121 -n02859443 -n07860988 -n04141327 -n03868863 -n01768244 -n03657121 -n02102973 -n02111500 -n01632458 -n02319095 -n04328186 -n04311004 -n01558993 -n01773549 -n01622779 -n02442845 -n07768694 -n01632777 -n03733805 -n03133878 -n02012849 -n03496892 -n02066245 -n02094433 -n03271574 -n02128757 -n03792782 -n02018795 -n01630670 -n02101006 -n04067472 -n02100583 -n04317175 -n03602883 -n04141327 -n02102040 -n07875152 -n02892201 -n04127249 -n07753275 -n04355338 -n02236044 -n01749939 -n07717556 -n02317335 -n02606052 -n04483307 -n04435653 -n04264628 -n04347754 -n04179913 -n07583066 -n04146614 -n03478589 -n03599486 -n02676566 -n02264363 -n04371430 -n03782006 -n04604644 -n03180011 -n03045698 -n03887697 -n02085936 -n07614500 -n04296562 -n02074367 -n01729977 -n02018795 -n01735189 -n03777568 -n03775546 -n02091244 -n03838899 -n04357314 -n01945685 -n03788365 -n02441942 -n04429376 -n02119022 -n01945685 -n03627232 -n02056570 -n02437616 -n03590841 -n01491361 -n01871265 -n04442312 -n01833805 -n04596742 -n04553703 -n04487394 -n03763968 -n02514041 -n11879895 -n04525038 -n02510455 -n04275548 -n01531178 -n04162706 -n03240683 -n04589890 -n03871628 -n04443257 -n02655020 -n04264628 -n01843383 -n02138441 -n02091032 -n02281406 -n03272010 -n03775546 -n03345487 -n03532672 -n02814860 -n07714571 -n02423022 -n03187595 -n03992509 -n03933933 -n03956157 -n07920052 -n01981276 -n03710721 -n04201297 -n09472597 -n02097130 -n02111889 -n03929660 -n02804610 -n03961711 -n07613480 -n01755581 -n02277742 -n03452741 -n02396427 -n01514859 -n04590129 -n04116512 -n01631663 -n07711569 -n02134084 -n04332243 -n04517823 -n01558993 -n02817516 -n02088632 -n03457902 -n01775062 -n02328150 -n02804610 -n02077923 -n02129604 -n02095314 -n03388183 -n02536864 -n03134739 -n03014705 -n02423022 -n04254120 -n03776460 -n03788195 -n03637318 -n02112706 -n03777568 -n02089078 -n03838899 -n03661043 -n02687172 -n02097658 -n02395406 -n01820546 -n03788365 -n02963159 -n02097298 -n07717556 -n02114367 -n02219486 -n04442312 -n04536866 -n02979186 -n04458633 -n07584110 -n03633091 -n04501370 -n03000684 -n02417914 -n02093859 -n04228054 -n03478589 -n02112137 -n03642806 -n02113712 -n02817516 -n03980874 -n01644900 -n11879895 -n04347754 -n03788195 -n02825657 -n02119789 -n02128925 -n02129604 -n04523525 -n04162706 -n03000247 -n04347754 -n02447366 -n02096294 -n02002724 -n02098413 -n03467068 -n01582220 -n02002556 -n03063689 -n01855672 -n02971356 -n02086240 -n02817516 -n01930112 -n02490219 -n09428293 -n02091467 -n03710637 -n02917067 -n06596364 -n01532829 -n02056570 -n04560804 -n01735189 -n04557648 -n07711569 -n06785654 -n04118776 -n02860847 -n02007558 -n02356798 -n04070727 -n02489166 -n07714990 -n02104365 -n02007558 -n03649909 -n01667114 -n01641577 -n03028079 -n03494278 -n07880968 -n03775071 -n01632458 -n01990800 -n02442845 -n02119022 -n02006656 -n02701002 -n02483362 -n03124170 -n01531178 -n02704792 -n02099849 -n01873310 -n01735189 -n04462240 -n03065424 -n04398044 -n04120489 -n04330267 -n03967562 -n02099601 -n03388043 -n02100583 -n02093991 -n09399592 -n01773797 -n03761084 -n02342885 -n02206856 -n02098286 -n03207743 -n13040303 -n01629819 -n02927161 -n04125021 -n04554684 -n02328150 -n03476684 -n02114367 -n03793489 -n03633091 -n03930630 -n02871525 -n02097474 -n02113799 -n02408429 -n03899768 -n07831146 -n04525038 -n02808304 -n03724870 -n02033041 -n02110063 -n03063689 -n01855672 -n02395406 -n04254680 -n03063689 -n02487347 -n02640242 -n03457902 -n12267677 -n04482393 -n04009552 -n02174001 -n01990800 -n04209133 -n01950731 -n02113186 -n03095699 -n01770081 -n04127249 -n02971356 -n02490219 -n04044716 -n01667778 -n03710721 -n03141823 -n04099969 -n02325366 -n04599235 -n01978455 -n03599486 -n02090622 -n03630383 -n02117135 -n02037110 -n02219486 -n03297495 -n02105505 -n04263257 -n02442845 -n04266014 -n03393912 -n02115641 -n02883205 -n01729977 -n03047690 -n02361337 -n04560804 -n02106662 -n03876231 -n03041632 -n02098105 -n01560419 -n02089078 -n03218198 -n04153751 -n02123597 -n03584829 -n02930766 -n03781244 -n02264363 -n07711569 -n04418357 -n06596364 -n03345487 -n02835271 -n04467665 -n03450230 -n03692522 -n03929660 -n03935335 -n01630670 -n02120505 -n02172182 -n03777754 -n04209133 -n01687978 -n03481172 -n02088094 -n02112350 -n03982430 -n02124075 -n03854065 -n04141076 -n06785654 -n02981792 -n03207941 -n03028079 -n13133613 -n02423022 -n03777568 -n02328150 -n02037110 -n02092002 -n02655020 -n04443257 -n02963159 -n01687978 -n09193705 -n10148035 -n03065424 -n03792972 -n02013706 -n01494475 -n07860988 -n02099267 -n04355933 -n02457408 -n01943899 -n03733131 -n04252077 -n02978881 -n03868863 -n03544143 -n03692522 -n12768682 -n02088094 -n04023962 -n02793495 -n03840681 -n01773549 -n03843555 -n04482393 -n07753592 -n03673027 -n07930864 -n01685808 -n02037110 -n02787622 -n06596364 -n02033041 -n04204238 -n12267677 -n02321529 -n03404251 -n03000684 -n07753592 -n03804744 -n01514668 -n03594945 -n02110627 -n03793489 -n04243546 -n02490219 -n02817516 -n03291819 -n02100877 -n01440764 -n04209239 -n02088364 -n04590129 -n02110806 -n09229709 -n02447366 -n04606251 -n04562935 -n02128385 -n02837789 -n02363005 -n04133789 -n02165456 -n03649909 -n03661043 -n02107683 -n01688243 -n01843383 -n03891251 -n12620546 -n03832673 -n03452741 -n04074963 -n04228054 -n03982430 -n01795545 -n02877765 -n03196217 -n04435653 -n02105505 -n04467665 -n07695742 -n02672831 -n03690938 -n04456115 -n04125021 -n15075141 -n03761084 -n04487394 -n02108089 -n07932039 -n01806567 -n02089078 -n02028035 -n03623198 -n02108551 -n01632458 -n03445924 -n01739381 -n03887697 -n07836838 -n02364673 -n03355925 -n02113799 -n04476259 -n02437312 -n03534580 -n03841143 -n03131574 -n07697537 -n01818515 -n03929660 -n02093647 -n02892767 -n03916031 -n04081281 -n04443257 -n02441942 -n01534433 -n01843383 -n02951358 -n02089078 -n03874293 -n03127925 -n02094258 -n04366367 -n03485407 -n04597913 -n01755581 -n01795545 -n01601694 -n01944390 -n03124170 -n02395406 -n03594734 -n01685808 -n01582220 -n02110627 -n03991062 -n02699494 -n09472597 -n02500267 -n03476991 -n02963159 -n02089867 -n01697457 -n03347037 -n01806143 -n02074367 -n02699494 -n04090263 -n03763968 -n02422699 -n04070727 -n01694178 -n01797886 -n03459775 -n03977966 -n01751748 -n03803284 -n01950731 -n01532829 -n02454379 -n02051845 -n03976657 -n07248320 -n07753275 -n09332890 -n02002556 -n03602883 -n12057211 -n02123045 -n02950826 -n02219486 -n02115641 -n02085936 -n02951585 -n02111889 -n02102480 -n01443537 -n02105162 -n02794156 -n04479046 -n03047690 -n02105412 -n02692877 -n01739381 -n07930864 -n04552348 -n02835271 -n01531178 -n04120489 -n01582220 -n02840245 -n02422106 -n01697457 -n03075370 -n04136333 -n03874599 -n03492542 -n02389026 -n03207743 -n02089867 -n04136333 -n06359193 -n02106382 -n02101006 -n02091467 -n03325584 -n01616318 -n02804610 -n07717556 -n02111500 -n01608432 -n02007558 -n03887697 -n02107142 -n02641379 -n07734744 -n03710193 -n02231487 -n02028035 -n04296562 -n04009552 -n02977058 -n03710721 -n03884397 -n03775546 -n07892512 -n04254777 -n07697537 -n03792782 -n02102480 -n03000247 -n02117135 -n01796340 -n02892201 -n04254680 -n04040759 -n01773549 -n04040759 -n03124170 -n02790996 -n04037443 -n02033041 -n04509417 -n01484850 -n03697007 -n04208210 -n04209133 -n02497673 -n03840681 -n03785016 -n04086273 -n02085936 -n02134084 -n03404251 -n02098286 -n07734744 -n03998194 -n02086910 -n03250847 -n03983396 -n04336792 -n03457902 -n03026506 -n03980874 -n01818515 -n04507155 -n03933933 -n13037406 -n04235860 -n02504013 -n03297495 -n02802426 -n01491361 -n02916936 -n01755581 -n02727426 -n04228054 -n03584254 -n04317175 -n01667114 -n04486054 -n02110341 -n04465501 -n02974003 -n12768682 -n12998815 -n02111129 -n11879895 -n03775546 -n03496892 -n03791053 -n01768244 -n09421951 -n04192698 -n04517823 -n02514041 -n12985857 -n13054560 -n04330267 -n03388549 -n04254120 -n04423845 -n11879895 -n02776631 -n02137549 -n03495258 -n03355925 -n02486410 -n02749479 -n03187595 -n03388043 -n04005630 -n02100877 -n07714990 -n06359193 -n02096051 -n02105641 -n07579787 -n09472597 -n04355338 -n03680355 -n02730930 -n03874599 -n02730930 -n04552348 -n03535780 -n01753488 -n02012849 -n01704323 -n02097209 -n03908714 -n04589890 -n04372370 -n01443537 -n03457902 -n04238763 -n09246464 -n01739381 -n02488702 -n04026417 -n01530575 -n07749582 -n02102480 -n04557648 -n02096585 -n01740131 -n04389033 -n03314780 -n07875152 -n02492660 -n12057211 -n04371430 -n02099267 -n03495258 -n02096051 -n02105162 -n02105641 -n03016953 -n02808440 -n03598930 -n04542943 -n01855672 -n03733281 -n07717410 -n02504013 -n02091831 -n04133789 -n04356056 -n02879718 -n03891251 -n03379051 -n02113978 -n09288635 -n02444819 -n01945685 -n03980874 -n02526121 -n02101556 -n04040759 -n02009229 -n03837869 -n04311174 -n07583066 -n02777292 -n03950228 -n02129165 -n02114548 -n02100735 -n04590129 -n03400231 -n03868242 -n02074367 -n06874185 -n04141327 -n01833805 -n09288635 -n04070727 -n02795169 -n03944341 -n01560419 -n03187595 -n02092339 -n03388043 -n03255030 -n04532670 -n02120505 -n02894605 -n02101388 -n01608432 -n03995372 -n02259212 -n03908618 -n03223299 -n02107683 -n07932039 -n03063689 -n01629819 -n03982430 -n03188531 -n01748264 -n03877472 -n02115913 -n01748264 -n04350905 -n04070727 -n02643566 -n02966193 -n01770393 -n02672831 -n02494079 -n02930766 -n03259280 -n02442845 -n03903868 -n03710721 -n02690373 -n01531178 -n01496331 -n03710721 -n02088094 -n07717556 -n03920288 -n02089078 -n02109525 -n02808304 -n03447447 -n04548280 -n02906734 -n07716358 -n01774384 -n03637318 -n02909870 -n03788195 -n02699494 -n04355338 -n02095889 -n02606052 -n03623198 -n01641577 -n01669191 -n02457408 -n03627232 -n02769748 -n04311004 -n03584254 -n03220513 -n03530642 -n04285008 -n01644373 -n09421951 -n03733281 -n03047690 -n02808304 -n03720891 -n02437616 -n07684084 -n01749939 -n04409515 -n02494079 -n02948072 -n02110806 -n02077923 -n01924916 -n01496331 -n04604644 -n02667093 -n02107142 -n01692333 -n04277352 -n04254777 -n02676566 -n12144580 -n03630383 -n02095889 -n03666591 -n03937543 -n01498041 -n03272562 -n09472597 -n03223299 -n04456115 -n02099601 -n03000134 -n02951585 -n03717622 -n01910747 -n06596364 -n01820546 -n02018795 -n04264628 -n02096177 -n01944390 -n01978287 -n01818515 -n03125729 -n02093256 -n01855032 -n02009912 -n02097047 -n02113712 -n01883070 -n01774750 -n01665541 -n02093428 -n01980166 -n04392985 -n03947888 -n02690373 -n02090721 -n04023962 -n03476684 -n04389033 -n03729826 -n02910353 -n01632458 -n02167151 -n02676566 -n03045698 -n01770081 -n04238763 -n10148035 -n04344873 -n02481823 -n04467665 -n02013706 -n02088238 -n02877765 -n01833805 -n07718747 -n02091467 -n03627232 -n04141076 -n04209239 -n01950731 -n04467665 -n03976657 -n03729826 -n04398044 -n07754684 -n04465501 -n01776313 -n02111129 -n03207743 -n03201208 -n01847000 -n02085936 -n03710721 -n04599235 -n02817516 -n02807133 -n04389033 -n02840245 -n04423845 -n07718472 -n02356798 -n02167151 -n02966687 -n02790996 -n02840245 -n02342885 -n02437312 -n07716906 -n02233338 -n03379051 -n01990800 -n02443114 -n01498041 -n03337140 -n02165105 -n04525305 -n02226429 -n01558993 -n02110341 -n04069434 -n01644900 -n02096177 -n04347754 -n03127747 -n02106382 -n01608432 -n02412080 -n02134084 -n04486054 -n04026417 -n02437616 -n04081281 -n04417672 -n02018207 -n03018349 -n03595614 -n02120079 -n03388183 -n03902125 -n02403003 -n03933933 -n09193705 -n01872401 -n03534580 -n02129165 -n03710193 -n01981276 -n02259212 -n07873807 -n01843065 -n02457408 -n02837789 -n02177972 -n02951585 -n02101006 -n02965783 -n04482393 -n01616318 -n04465501 -n03485407 -n02086646 -n02085620 -n02361337 -n01753488 -n04579145 -n01682714 -n02105641 -n04065272 -n01968897 -n02102973 -n12144580 -n04372370 -n02127052 -n02690373 -n02895154 -n04049303 -n03676483 -n02268443 -n02869837 -n02206856 -n04201297 -n02091244 -n02101556 -n02843684 -n04380533 -n07753275 -n01534433 -n02027492 -n02971356 -n04118538 -n03384352 -n03444034 -n03676483 -n03495258 -n02666196 -n01756291 -n03482405 -n02098413 -n04355933 -n03841143 -n02120079 -n02417914 -n03857828 -n02114712 -n01729977 -n01770081 -n03733131 -n03793489 -n03590841 -n02088364 -n01847000 -n11939491 -n03724870 -n02025239 -n07717556 -n02119789 -n03016953 -n02129165 -n04033901 -n02790996 -n02012849 -n02099429 -n03691459 -n04330267 -n10148035 -n03888257 -n07584110 -n02096437 -n04515003 -n02804610 -n02096437 -n04418357 -n02033041 -n02092339 -n12620546 -n01669191 -n03160309 -n02112137 -n02172182 -n03110669 -n04380533 -n03673027 -n03347037 -n04201297 -n02492660 -n02110958 -n02783161 -n02483708 -n02110958 -n04120489 -n03908618 -n02423022 -n04350905 -n04153751 -n02444819 -n02114548 -n07747607 -n07614500 -n04070727 -n04074963 -n01616318 -n02112706 -n02096437 -n04228054 -n01644900 -n01756291 -n02442845 -n03980874 -n02441942 -n04149813 -n03950228 -n01843383 -n02910353 -n03207743 -n04263257 -n02099429 -n04486054 -n02606052 -n04238763 -n02099601 -n02177972 -n03584829 -n04356056 -n03673027 -n02086646 -n04485082 -n02692877 -n03761084 -n03249569 -n04252077 -n02092339 -n01770081 -n02877765 -n02129604 -n03032252 -n13044778 -n02607072 -n03498962 -n02120505 -n01534433 -n01491361 -n07730033 -n02098413 -n02793495 -n02017213 -n02100877 -n02948072 -n02398521 -n03498962 -n02494079 -n04026417 -n03259280 -n04209133 -n02094258 -n02028035 -n03627232 -n03529860 -n02077923 -n03843555 -n03873416 -n02116738 -n03995372 -n02104365 -n04347754 -n04590129 -n03657121 -n01774384 -n03937543 -n07836838 -n04127249 -n02391049 -n04296562 -n02492035 -n04254120 -n04201297 -n02115641 -n02094258 -n03729826 -n02090379 -n02165456 -n02107142 -n01518878 -n03649909 -n01558993 -n01843383 -n01695060 -n02134084 -n02101556 -n02123045 -n03929855 -n02110185 -n03291819 -n02099601 -n04443257 -n02487347 -n01795545 -n04458633 -n02229544 -n03325584 -n04086273 -n03017168 -n01729977 -n03388043 -n01675722 -n02009229 -n03126707 -n02117135 -n03873416 -n04332243 -n02486410 -n03394916 -n02480855 -n02837789 -n03018349 -n03998194 -n04317175 -n01819313 -n03291819 -n01664065 -n02128385 -n02417914 -n04040759 -n01440764 -n09468604 -n03240683 -n07248320 -n11939491 -n02971356 -n02096437 -n02101556 -n04467665 -n03983396 -n04146614 -n04252077 -n03476684 -n02777292 -n03617480 -n04004767 -n02102177 -n02088632 -n07749582 -n04264628 -n04487081 -n02808440 -n04399382 -n03961711 -n04229816 -n03977966 -n03133878 -n03877845 -n03995372 -n04131690 -n02093754 -n02110806 -n01872401 -n02106662 -n07836838 -n04553703 -n02095314 -n12620546 -n02231487 -n02277742 -n04456115 -n02643566 -n02317335 -n04008634 -n04476259 -n04550184 -n02107908 -n02125311 -n03355925 -n03769881 -n07615774 -n02443114 -n02167151 -n04590129 -n12620546 -n02177972 -n03866082 -n07718472 -n02102318 -n07697313 -n03384352 -n04330267 -n03874293 -n03895866 -n02444819 -n03908714 -n02395406 -n04355933 -n03220513 -n04147183 -n02099267 -n01983481 -n01770081 -n02095570 -n01695060 -n02115641 -n04355338 -n07584110 -n02843684 -n04023962 -n02102480 -n04116512 -n02094258 -n04326547 -n02951358 -n01784675 -n03494278 -n03935335 -n02106662 -n02256656 -n03944341 -n02105641 -n02666196 -n03982430 -n02814533 -n04204238 -n07730033 -n01807496 -n03042490 -n02963159 -n02504458 -n03535780 -n04355933 -n02009229 -n02423022 -n01582220 -n07614500 -n02321529 -n03272562 -n03642806 -n04251144 -n02115913 -n02107312 -n03924679 -n02699494 -n03908714 -n04522168 -n09246464 -n03617480 -n02231487 -n02127052 -n04335435 -n02804610 -n02437616 -n03249569 -n01682714 -n02790996 -n03742115 -n02112350 -n02837789 -n04371774 -n03443371 -n02992529 -n01688243 -n03733281 -n07875152 -n02105641 -n02110958 -n02018795 -n04482393 -n03063689 -n02328150 -n02109525 -n02071294 -n02808304 -n03530642 -n03970156 -n01860187 -n02102973 -n03220513 -n03032252 -n01797886 -n03792782 -n02085936 -n04487394 -n02790996 -n01773157 -n04367480 -n03290653 -n03478589 -n04542943 -n07579787 -n02190166 -n06785654 -n02002724 -n01740131 -n04033995 -n01978287 -n02011460 -n03937543 -n02096437 -n01534433 -n02978881 -n03445924 -n07716358 -n02093428 -n01776313 -n02704792 -n01687978 -n04550184 -n02102973 -n02165456 -n03347037 -n01755581 -n02111889 -n03967562 -n01491361 -n02437616 -n02089078 -n02123597 -n04507155 -n03110669 -n03868242 -n03874599 -n02120505 -n03930313 -n02165105 -n04604644 -n03445777 -n02099712 -n02009229 -n04389033 -n04371774 -n02437616 -n04243546 -n03794056 -n03775071 -n04479046 -n03796401 -n02892767 -n03929660 -n02133161 -n03944341 -n03884397 -n04589890 -n03590841 -n02071294 -n04263257 -n01768244 -n02410509 -n04465501 -n02098286 -n02747177 -n02105162 -n01667114 -n02999410 -n01560419 -n07749582 -n01968897 -n02130308 -n02110806 -n02106382 -n07590611 -n07697537 -n04591157 -n04462240 -n02988304 -n03126707 -n02727426 -n04127249 -n02843684 -n03179701 -n02443484 -n04344873 -n02280649 -n03216828 -n12985857 -n04548280 -n03602883 -n03447721 -n01694178 -n02415577 -n02699494 -n03085013 -n02895154 -n04371774 -n03495258 -n03791053 -n02641379 -n02980441 -n02950826 -n02110063 -n03788195 -n01693334 -n02606052 -n07742313 -n02113624 -n03874293 -n04209239 -n03388043 -n02927161 -n03944341 -n04579432 -n03759954 -n02101388 -n01978287 -n03443371 -n02129604 -n01693334 -n07742313 -n01770393 -n06785654 -n03126707 -n02058221 -n03721384 -n02093647 -n07684084 -n03775546 -n03494278 -n03131574 -n02823428 -n02111889 -n04208210 -n02190166 -n04228054 -n03888257 -n02169497 -n01770081 -n02974003 -n03637318 -n02089078 -n02117135 -n02457408 -n02606052 -n03877845 -n02776631 -n01882714 -n03325584 -n02095314 -n02102973 -n02236044 -n02090622 -n02797295 -n01775062 -n02098286 -n03498962 -n02128385 -n02783161 -n07768694 -n03337140 -n01751748 -n04447861 -n02172182 -n03743016 -n03599486 -n04380533 -n07892512 -n03598930 -n02085782 -n01685808 -n02879718 -n01491361 -n04273569 -n02441942 -n04553703 -n03649909 -n03141823 -n02115641 -n04372370 -n04265275 -n04493381 -n06596364 -n02825657 -n02480495 -n02097298 -n03532672 -n01531178 -n03843555 -n03770679 -n02346627 -n02127052 -n03297495 -n02869837 -n02106166 -n01440764 -n02510455 -n02095570 -n02177972 -n03347037 -n01978455 -n02488702 -n02791124 -n04229816 -n01675722 -n03630383 -n01930112 -n04005630 -n04039381 -n03950228 -n04592741 -n01914609 -n02129165 -n01871265 -n03902125 -n01689811 -n03534580 -n01945685 -n01773549 -n02089867 -n03788195 -n02788148 -n02113023 -n03534580 -n04592741 -n02797295 -n03017168 -n04355933 -n02097209 -n02167151 -n04026417 -n03271574 -n02105251 -n04004767 -n02108000 -n04350905 -n02106662 -n03201208 -n03126707 -n01443537 -n02837789 -n02165456 -n03796401 -n02870880 -n02641379 -n01622779 -n02113023 -n07880968 -n02165456 -n03840681 -n03372029 -n04044716 -n03840681 -n03692522 -n03992509 -n02085620 -n03530642 -n02113186 -n02086079 -n07614500 -n09468604 -n03602883 -n09468604 -n04270147 -n04146614 -n02892201 -n03958227 -n03832673 -n02268443 -n02236044 -n01494475 -n02009912 -n01532829 -n02093754 -n03404251 -n03770439 -n07734744 -n04252077 -n07714571 -n02120079 -n01665541 -n02123394 -n03240683 -n04264628 -n02457408 -n07614500 -n02124075 -n03425413 -n03133878 -n07930864 -n03160309 -n02484975 -n02086240 -n02978881 -n04404412 -n02643566 -n02494079 -n02749479 -n02114855 -n02106166 -n02114712 -n03662601 -n07583066 -n02396427 -n02108089 -n04335435 -n03017168 -n02113186 -n04493381 -n02909870 -n03075370 -n03627232 -n03794056 -n01734418 -n02951358 -n02457408 -n02883205 -n02917067 -n03250847 -n02804610 -n02110958 -n02088364 -n03891251 -n02641379 -n02098105 -n02113624 -n02027492 -n02066245 -n02168699 -n06359193 -n03627232 -n09229709 -n02749479 -n04355338 -n04252225 -n02939185 -n01632777 -n02395406 -n02219486 -n02988304 -n01518878 -n03891332 -n02114548 -n02892767 -n01491361 -n03933933 -n02795169 -n09472597 -n07579787 -n03032252 -n02093754 -n13054560 -n03891251 -n02105505 -n02132136 -n07873807 -n02640242 -n04461696 -n04613696 -n09468604 -n02113186 -n02493509 -n04553703 -n01968897 -n04296562 -n03467068 -n03763968 -n04209239 -n02219486 -n03888257 -n01871265 -n03325584 -n03272562 -n03854065 -n01558993 -n03670208 -n01665541 -n03325584 -n01695060 -n02457408 -n02797295 -n02950826 -n02099429 -n03291819 -n02939185 -n03976467 -n02120079 -n02879718 -n04579145 -n04120489 -n01632458 -n02009912 -n04328186 -n06874185 -n02398521 -n02488291 -n02107312 -n03026506 -n02119022 -n01843383 -n03657121 -n03062245 -n07584110 -n02091032 -n03476991 -n02013706 -n02607072 -n02113712 -n03788365 -n04355338 -n04428191 -n04442312 -n01753488 -n12620546 -n03417042 -n02108089 -n07871810 -n03930313 -n04019541 -n04074963 -n02408429 -n02817516 -n01955084 -n02747177 -n09472597 -n03866082 -n02099267 -n03782006 -n03998194 -n02823428 -n04487081 -n03956157 -n03854065 -n02002556 -n01440764 -n02093256 -n02229544 -n02109047 -n03160309 -n02825657 -n02423022 -n03016953 -n04179913 -n01860187 -n02107574 -n06359193 -n02088094 -n04065272 -n02088632 -n02130308 -n03769881 -n02966193 -n06794110 -n07590611 -n03924679 -n04153751 -n02112706 -n02509815 -n04335435 -n04579432 -n02815834 -n02361337 -n02123159 -n03133878 -n02457408 -n02092002 -n04347754 -n03775071 -n03498962 -n02101388 -n03447447 -n02443114 -n04039381 -n02791124 -n02104365 -n01776313 -n04442312 -n03584254 -n02094258 -n02086646 -n04370456 -n01797886 -n03724870 -n01775062 -n02687172 -n02091244 -n03124043 -n01632777 -n02787622 -n01930112 -n01664065 -n01734418 -n02110063 -n01818515 -n04336792 -n03793489 -n02097298 -n02017213 -n04273569 -n03485794 -n02002724 -n04507155 -n11879895 -n02087046 -n02486410 -n04033995 -n03345487 -n03692522 -n04347754 -n01986214 -n03873416 -n03483316 -n02101556 -n03425413 -n03000684 -n02114367 -n02113712 -n03535780 -n02454379 -n03788195 -n02086240 -n02095889 -n02422699 -n03400231 -n03690938 -n01494475 -n02099601 -n04612504 -n07753275 -n03814639 -n02165105 -n03314780 -n03478589 -n01796340 -n02105641 -n01847000 -n01877812 -n02447366 -n03929660 -n02992529 -n02088094 -n07745940 -n04522168 -n04069434 -n12620546 -n03673027 -n03998194 -n03028079 -n04252225 -n02033041 -n01843065 -n07720875 -n02099712 -n02939185 -n02098413 -n04296562 -n03796401 -n01729977 -n02859443 -n02105251 -n02860847 -n04209133 -n02108000 -n04235860 -n02782093 -n02814533 -n01614925 -n01484850 -n01669191 -n04525305 -n07716906 -n02119022 -n03721384 -n02259212 -n03976657 -n02415577 -n04392985 -n04023962 -n02793495 -n04592741 -n02233338 -n02777292 -n01514859 -n03127747 -n04548362 -n03947888 -n03792782 -n03445777 -n04592741 -n02165105 -n02105056 -n04525038 -n02395406 -n02129604 -n09399592 -n09229709 -n06785654 -n03045698 -n04380533 -n02835271 -n07715103 -n03692522 -n02950826 -n02259212 -n03773504 -n04560804 -n04355933 -n02167151 -n01695060 -n02091635 -n07745940 -n03958227 -n03642806 -n01537544 -n03733131 -n02028035 -n02667093 -n03617480 -n02443484 -n04532106 -n06874185 -n02730930 -n01632458 -n04067472 -n09246464 -n02264363 -n09229709 -n02708093 -n03804744 -n03042490 -n03347037 -n02120079 -n02098105 -n02092339 -n03017168 -n02099429 -n03160309 -n12267677 -n03642806 -n07579787 -n02817516 -n01770393 -n01667114 -n04417672 -n04515003 -n02091134 -n02090721 -n04428191 -n02086646 -n04536866 -n03000684 -n01692333 -n04591157 -n03967562 -n03743016 -n04579145 -n02110063 -n04040759 -n02074367 -n03100240 -n04552348 -n02916936 -n03485407 -n02489166 -n03271574 -n01677366 -n02457408 -n02966193 -n04152593 -n01491361 -n01748264 -n03530642 -n03840681 -n01768244 -n02226429 -n03642806 -n02002556 -n03598930 -n01631663 -n03787032 -n03954731 -n04462240 -n03680355 -n02013706 -n03271574 -n04357314 -n02397096 -n01697457 -n02441942 -n03661043 -n01985128 -n03658185 -n02099267 -n04522168 -n13037406 -n02108422 -n04111531 -n01728920 -n02085620 -n01644373 -n02101388 -n02795169 -n02100877 -n04509417 -n02088466 -n02769748 -n02965783 -n03649909 -n03179701 -n01742172 -n01877812 -n03769881 -n03000247 -n02106662 -n03888605 -n03937543 -n04346328 -n03976467 -n03187595 -n15075141 -n03062245 -n03710721 -n04009552 -n02447366 -n02107574 -n03970156 -n03991062 -n02098413 -n07892512 -n03529860 -n03935335 -n01531178 -n02835271 -n03787032 -n02101388 -n02085620 -n02701002 -n11939491 -n01698640 -n02233338 -n11879895 -n02101556 -n07753592 -n02441942 -n07871810 -n01914609 -n02132136 -n02097658 -n07720875 -n02259212 -n01560419 -n02510455 -n04200800 -n04254777 -n01616318 -n04522168 -n02100236 -n04356056 -n07615774 -n03160309 -n02666196 -n02169497 -n03207941 -n07831146 -n04131690 -n04136333 -n02895154 -n02002556 -n04311174 -n04243546 -n13052670 -n02895154 -n03527444 -n02090622 -n04429376 -n01667778 -n01871265 -n01608432 -n03424325 -n02111129 -n02094114 -n03706229 -n02883205 -n07590611 -n02948072 -n01770393 -n03290653 -n02128925 -n02110185 -n02110341 -n01796340 -n02342885 -n02487347 -n04310018 -n02091635 -n02708093 -n03016953 -n02264363 -n04372370 -n03272562 -n02089078 -n03764736 -n02963159 -n03874599 -n02641379 -n01984695 -n02802426 -n02346627 -n03773504 -n04273569 -n02111889 -n03498962 -n03141823 -n04350905 -n02095314 -n04335435 -n03388183 -n01537544 -n03947888 -n02106662 -n03854065 -n01484850 -n02086079 -n07714571 -n01768244 -n04070727 -n03494278 -n03584829 -n03837869 -n01945685 -n03733281 -n04429376 -n02099601 -n04554684 -n04509417 -n01943899 -n07565083 -n04515003 -n03777754 -n03594734 -n03777568 -n03840681 -n02536864 -n04442312 -n03127747 -n03445777 -n04579432 -n03063599 -n02113978 -n03787032 -n01742172 -n02487347 -n04486054 -n02093859 -n04162706 -n02328150 -n03482405 -n04517823 -n07615774 -n04192698 -n02808304 -n02037110 -n04254120 -n02490219 -n07684084 -n02094258 -n02814533 -n02174001 -n07753275 -n04033901 -n02481823 -n03770679 -n03134739 -n01560419 -n04275548 -n01667778 -n01737021 -n01806567 -n04456115 -n07613480 -n01737021 -n03761084 -n07753592 -n04461696 -n04336792 -n02137549 -n02100735 -n04005630 -n02112706 -n12144580 -n03785016 -n03372029 -n04486054 -n02117135 -n01667778 -n02927161 -n07760859 -n03924679 -n04040759 -n07742313 -n02106030 -n03388549 -n03950228 -n01768244 -n07734744 -n04479046 -n02791124 -n01807496 -n04357314 -n01484850 -n03888605 -n04277352 -n04326547 -n03876231 -n07584110 -n02092002 -n01667778 -n01682714 -n02091831 -n02108089 -n02951585 -n02219486 -n02090379 -n01950731 -n02089867 -n01828970 -n03837869 -n01978287 -n02092002 -n02814533 -n01664065 -n12768682 -n07930864 -n04357314 -n02802426 -n02089867 -n03063689 -n03535780 -n04591713 -n03796401 -n02877765 -n02823428 -n07717410 -n04612504 -n03642806 -n04033995 -n02095889 -n04074963 -n01855032 -n04270147 -n03110669 -n03255030 -n03530642 -n10148035 -n07745940 -n02490219 -n02074367 -n02097130 -n02106662 -n03891332 -n02089973 -n04209239 -n04548280 -n04154565 -n02037110 -n02113978 -n02115913 -n02018795 -n02823428 -n02091032 -n03874293 -n04146614 -n04560804 -n04522168 -n07717556 -n04311004 -n02105855 -n02109961 -n02134084 -n02930766 -n01855032 -n02480495 -n02509815 -n02100877 -n02795169 -n02125311 -n01734418 -n03124043 -n02165105 -n02840245 -n03759954 -n01622779 -n02442845 -n04328186 -n04152593 -n04554684 -n02965783 -n02510455 -n03445777 -n07615774 -n12998815 -n07717410 -n03742115 -n04264628 -n02165456 -n04074963 -n02098105 -n02132136 -n01872401 -n02441942 -n04560804 -n02422699 -n02802426 -n07768694 -n01518878 -n02096051 -n02786058 -n02483708 -n02099601 -n04435653 -n01630670 -n02177972 -n13052670 -n02028035 -n01978455 -n13054560 -n02165105 -n04317175 -n01739381 -n02168699 -n02483362 -n02342885 -n02007558 -n01798484 -n04579145 -n02361337 -n02643566 -n04147183 -n04208210 -n01798484 -n02488291 -n03773504 -n03662601 -n02483708 -n01986214 -n04005630 -n02165105 -n02009229 -n03814639 -n04462240 -n02090379 -n03786901 -n01734418 -n01770081 -n02814533 -n03445777 -n03196217 -n02747177 -n02493793 -n03970156 -n02165105 -n03930313 -n02169497 -n04204347 -n02113712 -n02979186 -n02085782 -n04265275 -n01694178 -n09229709 -n04317175 -n07760859 -n02865351 -n03841143 -n01601694 -n02128925 -n03908714 -n01775062 -n01770393 -n02877765 -n03902125 -n01744401 -n02094114 -n03271574 -n04372370 -n07697313 -n04229816 -n02692877 -n01537544 -n04153751 -n02490219 -n09193705 -n02951585 -n01986214 -n02865351 -n02105855 -n04392985 -n03825788 -n04265275 -n12267677 -n03787032 -n02088632 -n04507155 -n03481172 -n03868242 -n02797295 -n02500267 -n02480855 -n03956157 -n02948072 -n03792782 -n03478589 -n04590129 -n01729322 -n02105056 -n02837789 -n03393912 -n02319095 -n02100735 -n02093256 -n03782006 -n03388043 -n03891251 -n02391049 -n02167151 -n03045698 -n01534433 -n04067472 -n02105641 -n04423845 -n01983481 -n03160309 -n02802426 -n09428293 -n02106382 -n04325704 -n02444819 -n01755581 -n02895154 -n02129604 -n02910353 -n07873807 -n07716358 -n03325584 -n02104029 -n01883070 -n02408429 -n02992529 -n02111277 -n04141327 -n02098105 -n12998815 -n04133789 -n02837789 -n02321529 -n04041544 -n03131574 -n01968897 -n03721384 -n09428293 -n03637318 -n04536866 -n01641577 -n01828970 -n02794156 -n02105855 -n02825657 -n02100735 -n02487347 -n02281406 -n04550184 -n02804414 -n03594734 -n01806143 -n09256479 -n04204238 -n03544143 -n04350905 -n04380533 -n03459775 -n04509417 -n02480495 -n04204347 -n03967562 -n03666591 -n03481172 -n03179701 -n01728920 -n09835506 -n02509815 -n11939491 -n02125311 -n01774750 -n01924916 -n04380533 -n03496892 -n02510455 -n02808304 -n04328186 -n04009552 -n02105505 -n02454379 -n04507155 -n01592084 -n04118538 -n01644373 -n02965783 -n03742115 -n07715103 -n03733281 -n02268853 -n03967562 -n02107574 -n04597913 -n01798484 -n04562935 -n04584207 -n07717556 -n02110958 -n04597913 -n07693725 -n02086910 -n04136333 -n01843383 -n02794156 -n02101556 -n04192698 -n02389026 -n03250847 -n01817953 -n01682714 -n01491361 -n06874185 -n02093647 -n02483362 -n04435653 -n01667778 -n04548280 -n03133878 -n02840245 -n01950731 -n04229816 -n01817953 -n04346328 -n07871810 -n04493381 -n03476684 -n01882714 -n03100240 -n02105505 -n03623198 -n02128925 -n07749582 -n03124170 -n03042490 -n01531178 -n03180011 -n02276258 -n03538406 -n01843383 -n01833805 -n02109047 -n01735189 -n01514859 -n02396427 -n01537544 -n07920052 -n02077923 -n03661043 -n03445924 -n01514859 -n04418357 -n01630670 -n02256656 -n02980441 -n01985128 -n03787032 -n09399592 -n02096177 -n03095699 -n02791270 -n02002556 -n02099429 -n02687172 -n04487081 -n03775071 -n04120489 -n02100877 -n04131690 -n02111277 -n04008634 -n03796401 -n03690938 -n03496892 -n02487347 -n02098286 -n04398044 -n02281787 -n02641379 -n03179701 -n03110669 -n03314780 -n03388549 -n02441942 -n02091831 -n03933933 -n07584110 -n02510455 -n02437312 -n02417914 -n02110806 -n02667093 -n03384352 -n03529860 -n04209239 -n04254120 -n04310018 -n07615774 -n01984695 -n03188531 -n02701002 -n01749939 -n03494278 -n04317175 -n02480855 -n04553703 -n04591713 -n02093991 -n03496892 -n03498962 -n02870880 -n07734744 -n02090622 -n02095889 -n03089624 -n03814906 -n01443537 -n03775546 -n03895866 -n04254680 -n02093991 -n02094433 -n03709823 -n04133789 -n04356056 -n09421951 -n03781244 -n03970156 -n03709823 -n03873416 -n03950228 -n03425413 -n09229709 -n03141823 -n03290653 -n01675722 -n04259630 -n04613696 -n03838899 -n01443537 -n03617480 -n02112350 -n01774384 -n02108915 -n03876231 -n02099429 -n02226429 -n01770393 -n01694178 -n06794110 -n03220513 -n11879895 -n03124043 -n02105855 -n02486410 -n04004767 -n09835506 -n07745940 -n02097047 -n03721384 -n03133878 -n02093647 -n06794110 -n04317175 -n02134418 -n02692877 -n02128757 -n03794056 -n02727426 -n01484850 -n02514041 -n02106382 -n02097298 -n04613696 -n02701002 -n03770439 -n01855672 -n02328150 -n03944341 -n09468604 -n02281787 -n04554684 -n02098105 -n03179701 -n02174001 -n02109961 -n03742115 -n04562935 -n03729826 -n04133789 -n04086273 -n01514859 -n04597913 -n04476259 -n01914609 -n02095889 -n03125729 -n04366367 -n02443114 -n02098413 -n03599486 -n01614925 -n04483307 -n02105412 -n01631663 -n02500267 -n02095889 -n04264628 -n07753592 -n02123597 -n03884397 -n04579432 -n03938244 -n07831146 -n02101006 -n02092002 -n02006656 -n02106166 -n04596742 -n03770679 -n04149813 -n04599235 -n04332243 -n03379051 -n01776313 -n01806567 -n09468604 -n04554684 -n02747177 -n04243546 -n03838899 -n01855032 -n01917289 -n02226429 -n03706229 -n03843555 -n07615774 -n02268853 -n04141975 -n01728920 -n01531178 -n03838899 -n09472597 -n01847000 -n13133613 -n04522168 -n02088466 -n09193705 -n03445924 -n02092002 -n02640242 -n07742313 -n04612504 -n01986214 -n09229709 -n02488291 -n02643566 -n03891251 -n09468604 -n01983481 -n07920052 -n03770679 -n02097130 -n03769881 -n03498962 -n07697537 -n02422699 -n04254777 -n03452741 -n04152593 -n01616318 -n02259212 -n03690938 -n04501370 -n04355933 -n01498041 -n04023962 -n02488702 -n04443257 -n02091134 -n02978881 -n02091244 -n01756291 -n04120489 -n04141327 -n02504458 -n01667778 -n02108089 -n03843555 -n02951358 -n01807496 -n02102318 -n07745940 -n06794110 -n02363005 -n07753113 -n01644900 -n02363005 -n01484850 -n02105056 -n02107312 -n03482405 -n01945685 -n02823750 -n02090622 -n03710193 -n03379051 -n07873807 -n04263257 -n03062245 -n02088632 -n04208210 -n04141327 -n07932039 -n02951358 -n02790996 -n02777292 -n02804414 -n03970156 -n04501370 -n02641379 -n01774750 -n01498041 -n04116512 -n02233338 -n03706229 -n02097047 -n07697537 -n02444819 -n04153751 -n02398521 -n03908714 -n02088632 -n02113712 -n02132136 -n04258138 -n03425413 -n02397096 -n02443484 -n06785654 -n04367480 -n03717622 -n03721384 -n02981792 -n01955084 -n02090721 -n02879718 -n02113712 -n02417914 -n02093859 -n02009912 -n02006656 -n01770393 -n02701002 -n01818515 -n12998815 -n03532672 -n03666591 -n06794110 -n03110669 -n03220513 -n03976467 -n02396427 -n03888257 -n02514041 -n02837789 -n07711569 -n07613480 -n03075370 -n07684084 -n02708093 -n02099267 -n03131574 -n01843383 -n02091032 -n03796401 -n04243546 -n04389033 -n03014705 -n03868863 -n01883070 -n01744401 -n12267677 -n03876231 -n01847000 -n02219486 -n01955084 -n03089624 -n04350905 -n02119022 -n04004767 -n02793495 -n03404251 -n03014705 -n01677366 -n03690938 -n04162706 -n04552348 -n01985128 -n07873807 -n02526121 -n07932039 -n02102973 -n02108000 -n04493381 -n02097130 -n04086273 -n03832673 -n02088364 -n02119789 -n02113712 -n07716906 -n03792972 -n02097658 -n02226429 -n09428293 -n02116738 -n07753113 -n02777292 -n02017213 -n04209239 -n02077923 -n02509815 -n07716906 -n02843684 -n02417914 -n07920052 -n09288635 -n01980166 -n09193705 -n03124043 -n03944341 -n02219486 -n02127052 -n04147183 -n02106550 -n04550184 -n01728572 -n02102480 -n04371430 -n03983396 -n02815834 -n04264628 -n04356056 -n02096294 -n02106382 -n07579787 -n02536864 -n03630383 -n02114367 -n03781244 -n03271574 -n01739381 -n04008634 -n03594734 -n03201208 -n02058221 -n02134418 -n10148035 -n01631663 -n02526121 -n02002556 -n02095314 -n02098105 -n04509417 -n04612504 -n02497673 -n01580077 -n01697457 -n03109150 -n09468604 -n03874293 -n02109961 -n02110627 -n02892201 -n02088364 -n03100240 -n03532672 -n02892767 -n07860988 -n03337140 -n02951358 -n03691459 -n03134739 -n02422106 -n02788148 -n03814906 -n02444819 -n06785654 -n04612504 -n02123394 -n03042490 -n04116512 -n03527444 -n09288635 -n01983481 -n09332890 -n07715103 -n01828970 -n04037443 -n03089624 -n02504458 -n01917289 -n03223299 -n02119022 -n02206856 -n04252077 -n02012849 -n02037110 -n01751748 -n07930864 -n04131690 -n07697313 -n02841315 -n03950228 -n04254680 -n04141975 -n03983396 -n02124075 -n12998815 -n03709823 -n01689811 -n02966687 -n03590841 -n02002556 -n01770393 -n04532106 -n02109961 -n04286575 -n02910353 -n03785016 -n04125021 -n04370456 -n02115641 -n03874293 -n13054560 -n02480855 -n02105855 -n01773157 -n02108915 -n02108000 -n03764736 -n02231487 -n04507155 -n01744401 -n04325704 -n02526121 -n04371774 -n01582220 -n02088094 -n12267677 -n07880968 -n04266014 -n02417914 -n04270147 -n07684084 -n01443537 -n03866082 -n04179913 -n02422106 -n07697537 -n02687172 -n03803284 -n01692333 -n04192698 -n02481823 -n02115913 -n03404251 -n02138441 -n02999410 -n03388183 -n02317335 -n03759954 -n04335435 -n03814906 -n03692522 -n13052670 -n03729826 -n02790996 -n02012849 -n03935335 -n01667114 -n07836838 -n01580077 -n07615774 -n03535780 -n02226429 -n03903868 -n02999410 -n03532672 -n03498962 -n01531178 -n03868242 -n02128757 -n03793489 -n01755581 -n09332890 -n02087394 -n03920288 -n02128385 -n03495258 -n02114712 -n03976467 -n04259630 -n02794156 -n01774384 -n02091467 -n04467665 -n02091635 -n04579432 -n03599486 -n02328150 -n04147183 -n02486410 -n04252077 -n02395406 -n07584110 -n03075370 -n02138441 -n02105505 -n04311004 -n04086273 -n04435653 -n04467665 -n04201297 -n01689811 -n03345487 -n02090379 -n02776631 -n04023962 -n02114367 -n13044778 -n02917067 -n07711569 -n03452741 -n01734418 -n03272010 -n01744401 -n09399592 -n02114855 -n03594734 -n02860847 -n04141076 -n02133161 -n03804744 -n01924916 -n04532106 -n01770081 -n02096177 -n02797295 -n03188531 -n04204347 -n03063689 -n02841315 -n02276258 -n02086646 -n03775071 -n03947888 -n02137549 -n03063599 -n02074367 -n02051845 -n03832673 -n03982430 -n01776313 -n02102177 -n02106550 -n03929855 -n04201297 -n01592084 -n02906734 -n03124043 -n03598930 -n07590611 -n02091635 -n02128757 -n04204347 -n01698640 -n01955084 -n03891251 -n02823428 -n03417042 -n03666591 -n03958227 -n03895866 -n02690373 -n01667778 -n02692877 -n03532672 -n07920052 -n03924679 -n03085013 -n07697313 -n02444819 -n02992211 -n07248320 -n02950826 -n02077923 -n03786901 -n03016953 -n02111889 -n02892201 -n02786058 -n02106382 -n02877765 -n02687172 -n02747177 -n02105412 -n07753113 -n03207743 -n04418357 -n02009912 -n01580077 -n01616318 -n04273569 -n01945685 -n03706229 -n04326547 -n02105056 -n13037406 -n03459775 -n02526121 -n02837789 -n04346328 -n01819313 -n02321529 -n03916031 -n03026506 -n02105251 -n04599235 -n01518878 -n02110627 -n01984695 -n01943899 -n04069434 -n02113023 -n01531178 -n03947888 -n03733805 -n03873416 -n02087394 -n04273569 -n03690938 -n02281787 -n04515003 -n01630670 -n03445924 -n04317175 -n02395406 -n02018207 -n02128385 -n03255030 -n02169497 -n03717622 -n03602883 -n02488291 -n01622779 -n03992509 -n02877765 -n03873416 -n01855672 -n03478589 -n03404251 -n07584110 -n03980874 -n03476684 -n02138441 -n02977058 -n02105162 -n03485407 -n01616318 -n02051845 -n03793489 -n01768244 -n04209239 -n03930630 -n04532106 -n03259280 -n02841315 -n02966193 -n03980874 -n04532106 -n02981792 -n01776313 -n04355338 -n02110341 -n03697007 -n02454379 -n02655020 -n03841143 -n07584110 -n02123394 -n03255030 -n07711569 -n03724870 -n03110669 -n03133878 -n01641577 -n01644373 -n04049303 -n07768694 -n03075370 -n02823428 -n02640242 -n02104365 -n04009552 -n02129604 -n03733805 -n02281787 -n04208210 -n04067472 -n01514859 -n03384352 -n03544143 -n03355925 -n01694178 -n03950228 -n07717556 -n02317335 -n02113799 -n07583066 -n02999410 -n07760859 -n02410509 -n02013706 -n04285008 -n04296562 -n03196217 -n03000134 -n02110627 -n04442312 -n02787622 -n02443484 -n02137549 -n03337140 -n03594734 -n02879718 -n02415577 -n02092339 -n03450230 -n02102040 -n07747607 -n03085013 -n03026506 -n06874185 -n02493793 -n03532672 -n01644900 -n03792782 -n04004767 -n02966193 -n01784675 -n13037406 -n03481172 -n03775546 -n04033995 -n02101556 -n03666591 -n04317175 -n01882714 -n02640242 -n03063689 -n04560804 -n01860187 -n04376876 -n04523525 -n01833805 -n02169497 -n03314780 -n02988304 -n02168699 -n04044716 -n02109961 -n01770393 -n01531178 -n04152593 -n02106662 -n04389033 -n01735189 -n07871810 -n04277352 -n02077923 -n03347037 -n02111500 -n02088238 -n03534580 -n03314780 -n02791270 -n04548280 -n03109150 -n03944341 -n02137549 -n04523525 -n04592741 -n04266014 -n01978455 -n02091032 -n04398044 -n02113624 -n02408429 -n04417672 -n04009552 -n02231487 -n04599235 -n07248320 -n04086273 -n04606251 -n03532672 -n02112137 -n09256479 -n04523525 -n01697457 -n03662601 -n04070727 -n02098286 -n02017213 -n02177972 -n01689811 -n03697007 -n03874599 -n02110185 -n04417672 -n04310018 -n02130308 -n04252077 -n03534580 -n01860187 -n03814906 -n02442845 -n04487394 -n02090379 -n01930112 -n07860988 -n02869837 -n02231487 -n03956157 -n03482405 -n02489166 -n02107683 -n01677366 -n01806143 -n03775071 -n02825657 -n02783161 -n01622779 -n02268853 -n04044716 -n04540053 -n02107142 -n04487394 -n03376595 -n01496331 -n02815834 -n02099267 -n04229816 -n07615774 -n03272562 -n01855672 -n02804414 -n01818515 -n02704792 -n02483708 -n01629819 -n03393912 -n03794056 -n01644373 -n02951585 -n02497673 -n02415577 -n01871265 -n07718747 -n02966193 -n03017168 -n01530575 -n02319095 -n02090379 -n03297495 -n03388183 -n03825788 -n01798484 -n03814906 -n02027492 -n02111889 -n04118538 -n02356798 -n01983481 -n01986214 -n02808440 -n02486261 -n01751748 -n03777568 -n04335435 -n07720875 -n03633091 -n03534580 -n04141975 -n04162706 -n03998194 -n07579787 -n02676566 -n03483316 -n01693334 -n04238763 -n02071294 -n04493381 -n07875152 -n01753488 -n02091635 -n03314780 -n03291819 -n03924679 -n12768682 -n06794110 -n03291819 -n03544143 -n01698640 -n06785654 -n03782006 -n04154565 -n02012849 -n07930864 -n03017168 -n04133789 -n02138441 -n03769881 -n03773504 -n07930864 -n04589890 -n01806143 -n03207743 -n02097474 -n01582220 -n02939185 -n02640242 -n02981792 -n03657121 -n02106166 -n02666196 -n01751748 -n03188531 -n01768244 -n04429376 -n02690373 -n01806567 -n02319095 -n02107683 -n04550184 -n04350905 -n01797886 -n04447861 -n04485082 -n03443371 -n04229816 -n03443371 -n04579145 -n03125729 -n03942813 -n03649909 -n02119022 -n02105251 -n12144580 -n02992529 -n01518878 -n02977058 -n01968897 -n02233338 -n03642806 -n01833805 -n09421951 -n01985128 -n01824575 -n04286575 -n04330267 -n02106166 -n07875152 -n02094258 -n02123394 -n01537544 -n04493381 -n02102480 -n02086240 -n02085782 -n03786901 -n04254680 -n03721384 -n04311174 -n04487394 -n02099267 -n03207941 -n02883205 -n02672831 -n04008634 -n03868863 -n04251144 -n03529860 -n01608432 -n02093647 -n02028035 -n03982430 -n01687978 -n01632458 -n03125729 -n02389026 -n02085782 -n06359193 -n03459775 -n01773797 -n02093754 -n04275548 -n02120505 -n03450230 -n03854065 -n02096177 -n02112706 -n02089867 -n02138441 -n02504458 -n02865351 -n04479046 -n03180011 -n03223299 -n02804414 -n02134418 -n01751748 -n02483708 -n01692333 -n02992211 -n03404251 -n07716906 -n01924916 -n07695742 -n02112137 -n02692877 -n02423022 -n02860847 -n01877812 -n04326547 -n02051845 -n01855672 -n02667093 -n01829413 -n07760859 -n01630670 -n02869837 -n02086910 -n01740131 -n02398521 -n03016953 -n02091134 -n02096585 -n02093647 -n03220513 -n07716906 -n03188531 -n03627232 -n03690938 -n02788148 -n04254680 -n02493509 -n02098413 -n03532672 -n02111889 -n01843065 -n02666196 -n02457408 -n03785016 -n02097474 -n02704792 -n03868863 -n04540053 -n03529860 -n04238763 -n03658185 -n03970156 -n04285008 -n02526121 -n02096585 -n03814639 -n03180011 -n02480855 -n03594945 -n02101006 -n04517823 -n12985857 -n02104029 -n04111531 -n01729322 -n03773504 -n01580077 -n02098413 -n04065272 -n02085936 -n02093859 -n02104365 -n09472597 -n02865351 -n04254680 -n02951358 -n02281787 -n01496331 -n02093256 -n01910747 -n04509417 -n02417914 -n02389026 -n03666591 -n06794110 -n03786901 -n07695742 -n02133161 -n04540053 -n02782093 -n01871265 -n03690938 -n02028035 -n02106550 -n02494079 -n07831146 -n01498041 -n02130308 -n04483307 -n01820546 -n02105056 -n04487081 -n09332890 -n02437312 -n03692522 -n02871525 -n02326432 -n07749582 -n02992211 -n02497673 -n03544143 -n13052670 -n13133613 -n07714571 -n03868863 -n02606052 -n02111129 -n03874293 -n02190166 -n02226429 -n02363005 -n02443484 -n04579145 -n03425413 -n03018349 -n03452741 -n02791124 -n02346627 -n02128757 -n03998194 -n03530642 -n01592084 -n01917289 -n03764736 -n07615774 -n03977966 -n02877765 -n02089973 -n01986214 -n01872401 -n03942813 -n01689811 -n02834397 -n07714990 -n02486261 -n02397096 -n04467665 -n02909870 -n04517823 -n04131690 -n01728572 -n01729322 -n01797886 -n02108551 -n03866082 -n01677366 -n02979186 -n03710637 -n03933933 -n03930313 -n03899768 -n03763968 -n02326432 -n02107142 -n02066245 -n04099969 -n07860988 -n07695742 -n01924916 -n03895866 -n03788365 -n01632777 -n02787622 -n01768244 -n01768244 -n03146219 -n06785654 -n02110341 -n03400231 -n02123045 -n02025239 -n03670208 -n01784675 -n03982430 -n04485082 -n03208938 -n01990800 -n03930313 -n02708093 -n04597913 -n01796340 -n02100236 -n01608432 -n01828970 -n01614925 -n03400231 -n01631663 -n03759954 -n01872401 -n01917289 -n02690373 -n01664065 -n03016953 -n04376876 -n01664065 -n02950826 -n04557648 -n02793495 -n02111129 -n01968897 -n03781244 -n07871810 -n02641379 -n02097209 -n02109047 -n03065424 -n03838899 -n04501370 -n01753488 -n04049303 -n02097047 -n04311004 -n03538406 -n03666591 -n02017213 -n02093647 -n04409515 -n03207743 -n01843065 -n03697007 -n03291819 -n03197337 -n03000247 -n02443484 -n03891251 -n02085782 -n04033901 -n03658185 -n01819313 -n03388549 -n02606052 -n04612504 -n01582220 -n02883205 -n04467665 -n03535780 -n04326547 -n03895866 -n02095889 -n02123045 -n03777568 -n01631663 -n02999410 -n07717410 -n02837789 -n04461696 -n07720875 -n03141823 -n03216828 -n04589890 -n02105641 -n03196217 -n01797886 -n07742313 -n02396427 -n04532106 -n02655020 -n02437312 -n03028079 -n02037110 -n03788365 -n01978455 -n02483362 -n02444819 -n01580077 -n04347754 -n01728572 -n03063689 -n02106662 -n02672831 -n03895866 -n04560804 -n04540053 -n02233338 -n03777754 -n02788148 -n09472597 -n02484975 -n04404412 -n02087046 -n02089078 -n03255030 -n03095699 -n07714990 -n02641379 -n03218198 -n02481823 -n01514859 -n03337140 -n04399382 -n02641379 -n02129604 -n03982430 -n04127249 -n04125021 -n01774384 -n01740131 -n02325366 -n04041544 -n02667093 -n07836838 -n01739381 -n02108000 -n02277742 -n01950731 -n03777754 -n04310018 -n02917067 -n02835271 -n04515003 -n02119789 -n02966687 -n03085013 -n12144580 -n02071294 -n12998815 -n04162706 -n03028079 -n03218198 -n02895154 -n04562935 -n07613480 -n02128925 -n03649909 -n01629819 -n01883070 -n02098413 -n02002724 -n02106382 -n01530575 -n02113978 -n02124075 -n04332243 -n02655020 -n04239074 -n01910747 -n09399592 -n02096051 -n03930630 -n07693725 -n03933933 -n03187595 -n02281787 -n02892201 -n02108000 -n01687978 -n03803284 -n07892512 -n02074367 -n03891251 -n03384352 -n04409515 -n02107574 -n01860187 -n03529860 -n02280649 -n02860847 -n03325584 -n04409515 -n03692522 -n02089973 -n02782093 -n03208938 -n02980441 -n01693334 -n01773157 -n01729977 -n03063689 -n02865351 -n03459775 -n03637318 -n04263257 -n04604644 -n04311004 -n02120079 -n02112018 -n03196217 -n01871265 -n02804610 -n07892512 -n03124043 -n02219486 -n02089973 -n02109047 -n04040759 -n07711569 -n04458633 -n07720875 -n02277742 -n01675722 -n02119022 -n02106030 -n03763968 -n02105412 -n03017168 -n03857828 -n04346328 -n04005630 -n03492542 -n02480495 -n02090622 -n03814906 -n04004767 -n02992529 -n02692877 -n09332890 -n02979186 -n01770393 -n02129165 -n02391049 -n07871810 -n03355925 -n04398044 -n07860988 -n03961711 -n02089973 -n03404251 -n02395406 -n03063689 -n04070727 -n04552348 -n02112137 -n02110958 -n01753488 -n07697537 -n04389033 -n02783161 -n07693725 -n04286575 -n07753113 -n07716358 -n03394916 -n02093256 -n01737021 -n07836838 -n02268853 -n02130308 -n02906734 -n02134418 -n02108000 -n01560419 -n03131574 -n02133161 -n03000247 -n02279972 -n02951585 -n03733805 -n01677366 -n03976467 -n03535780 -n03938244 -n01644373 -n02109525 -n03649909 -n02190166 -n01692333 -n02910353 -n01807496 -n03982430 -n02974003 -n03950228 -n01978287 -n03720891 -n02892767 -n02504013 -n01855032 -n02483362 -n02025239 -n03868242 -n02094114 -n02109047 -n07749582 -n01669191 -n03785016 -n04041544 -n02087046 -n03272010 -n03447447 -n02783161 -n03976657 -n02087394 -n04548280 -n01860187 -n01689811 -n04584207 -n04251144 -n02113023 -n03977966 -n03792972 -n13054560 -n06785654 -n07734744 -n02115641 -n04606251 -n02277742 -n02794156 -n02137549 -n04479046 -n01753488 -n04485082 -n02100735 -n02869837 -n03534580 -n02879718 -n04525305 -n01829413 -n03792782 -n02109961 -n03443371 -n02009229 -n01744401 -n01728572 -n02098413 -n04311004 -n03272010 -n02095570 -n01632458 -n02783161 -n01644900 -n01601694 -n01608432 -n04335435 -n02086910 -n04418357 -n02097658 -n03124170 -n04228054 -n02494079 -n07754684 -n02493793 -n02165105 -n02133161 -n01847000 -n03394916 -n02105162 -n01950731 -n03970156 -n02233338 -n03045698 -n02099601 -n11939491 -n04467665 -n04346328 -n04347754 -n03063689 -n03100240 -n02127052 -n03887697 -n09428293 -n02361337 -n02606052 -n04590129 -n02692877 -n03796401 -n04532106 -n03538406 -n07747607 -n01978455 -n07717556 -n02894605 -n03134739 -n04243546 -n03903868 -n02879718 -n01824575 -n01877812 -n01770081 -n04525305 -n01773549 -n02099712 -n01774384 -n02823428 -n01860187 -n03461385 -n04366367 -n02167151 -n02454379 -n03777568 -n01833805 -n03761084 -n04542943 -n02504458 -n02033041 -n02095314 -n03527444 -n02280649 -n02123045 -n01644373 -n12998815 -n03792972 -n02480495 -n03417042 -n02091467 -n02415577 -n12985857 -n03544143 -n04370456 -n02110806 -n03676483 -n03602883 -n03538406 -n04201297 -n03929855 -n02504013 -n10565667 -n02097130 -n03950228 -n01675722 -n04523525 -n02966687 -n02504458 -n02089973 -n01641577 -n04330267 -n04146614 -n01631663 -n02978881 -n07802026 -n04039381 -n03485794 -n03825788 -n04265275 -n03141823 -n04033995 -n03179701 -n01986214 -n04604644 -n02730930 -n03920288 -n02799071 -n04399382 -n04023962 -n02951358 -n02114367 -n02074367 -n03992509 -n03000134 -n01824575 -n04525305 -n02119789 -n03899768 -n03617480 -n02012849 -n03814639 -n04347754 -n04597913 -n02113799 -n04562935 -n03777754 -n02687172 -n02066245 -n02704792 -n01751748 -n02090622 -n03857828 -n03777754 -n02130308 -n02606052 -n03483316 -n02808440 -n02114712 -n01774384 -n09468604 -n03045698 -n02107574 -n02112706 -n03777754 -n04209239 -n07745940 -n02690373 -n07584110 -n03388549 -n03977966 -n04584207 -n02279972 -n02443114 -n02493509 -n02494079 -n03063599 -n01774750 -n01968897 -n01695060 -n04380533 -n02128757 -n09256479 -n02909870 -n04501370 -n03935335 -n07693725 -n04591713 -n03787032 -n01498041 -n03042490 -n02086910 -n01855672 -n04596742 -n02445715 -n02859443 -n02804610 -n03709823 -n02488291 -n02410509 -n03393912 -n03498962 -n03131574 -n03791053 -n03763968 -n02097130 -n03042490 -n01641577 -n01677366 -n01828970 -n02096051 -n03888605 -n02094114 -n02892201 -n02486261 -n03983396 -n02133161 -n03602883 -n03065424 -n02749479 -n02791124 -n01968897 -n02797295 -n02877765 -n01843065 -n02892201 -n03786901 -n02174001 -n03133878 -n02107908 -n04136333 -n02437616 -n04592741 -n04044716 -n01773157 -n02130308 -n02325366 -n04591713 -n04090263 -n03902125 -n03670208 -n07753113 -n03866082 -n04201297 -n02093859 -n02410509 -n02823750 -n01740131 -n03417042 -n03874293 -n03710193 -n02871525 -n02091467 -n04254120 -n02109525 -n04404412 -n02094433 -n11939491 -n02107683 -n04356056 -n02002556 -n02168699 -n01945685 -n04376876 -n04033901 -n01530575 -n03838899 -n01776313 -n03028079 -n03658185 -n04310018 -n02090379 -n02109525 -n04376876 -n04418357 -n04409515 -n07583066 -n03841143 -n02837789 -n03494278 -n03457902 -n02497673 -n02504013 -n02110063 -n02835271 -n01491361 -n02807133 -n02085782 -n02088364 -n02607072 -n02120505 -n07718472 -n03781244 -n02389026 -n03026506 -n02769748 -n02096177 -n02840245 -n02606052 -n03857828 -n03837869 -n01735189 -n02093256 -n02112706 -n02749479 -n04525038 -n03982430 -n02510455 -n02410509 -n03680355 -n02105505 -n03017168 -n02120079 -n03532672 -n03992509 -n02009229 -n02106166 -n02105056 -n02422699 -n03770439 -n03794056 -n03777568 -n02110806 -n01950731 -n04371430 -n03417042 -n03743016 -n01729977 -n02669723 -n02094433 -n04251144 -n02119022 -n01697457 -n01682714 -n07614500 -n02127052 -n03042490 -n02113799 -n04399382 -n03794056 -n02963159 -n02730930 -n01592084 -n04067472 -n02815834 -n07753592 -n13052670 -n07875152 -n06785654 -n04509417 -n03977966 -n03345487 -n03223299 -n04277352 -n06794110 -n02389026 -n07920052 -n02100877 -n04435653 -n04239074 -n04069434 -n03617480 -n01494475 -n02672831 -n07831146 -n02097047 -n03814639 -n02514041 -n02091635 -n01687978 -n02116738 -n01630670 -n01695060 -n04204238 -n04090263 -n04081281 -n01819313 -n02132136 -n03787032 -n04044716 -n15075141 -n03954731 -n04389033 -n02002556 -n04591157 -n04133789 -n04277352 -n02641379 -n03733805 -n04417672 -n02403003 -n01580077 -n03920288 -n03673027 -n07697537 -n07836838 -n04243546 -n02977058 -n07684084 -n07697537 -n02132136 -n03131574 -n02093647 -n03443371 -n03134739 -n04550184 -n03891251 -n02087394 -n07697537 -n07583066 -n04522168 -n04493381 -n04065272 -n02097130 -n04467665 -n01614925 -n03961711 -n02802426 -n02089078 -n02018207 -n03947888 -n01748264 -n02280649 -n02002556 -n03709823 -n01494475 -n03485794 -n04479046 -n02108551 -n03325584 -n03188531 -n02091032 -n02259212 -n02033041 -n03290653 -n04033995 -n07614500 -n02169497 -n04553703 -n02268443 -n09288635 -n01843383 -n04428191 -n03717622 -n02268853 -n02012849 -n02894605 -n02134418 -n01751748 -n02823750 -n02177972 -n03424325 -n02397096 -n07753275 -n02417914 -n03379051 -n02096585 -n03814639 -n03355925 -n03127747 -n02264363 -n03733131 -n02481823 -n03447447 -n04409515 -n02066245 -n02102318 -n03028079 -n02107574 -n04026417 -n02058221 -n02106662 -n02607072 -n01641577 -n03376595 -n07892512 -n11939491 -n02488702 -n09421951 -n01910747 -n02364673 -n07248320 -n03908714 -n02939185 -n02099601 -n03680355 -n02095889 -n02917067 -n04380533 -n01592084 -n02109525 -n02123394 -n02236044 -n02346627 -n12057211 -n12620546 -n04346328 -n01531178 -n01735189 -n04152593 -n04487394 -n02123597 -n01768244 -n02129604 -n09193705 -n04131690 -n02085936 -n02088238 -n03538406 -n03131574 -n02110185 -n03124043 -n03000247 -n02107574 -n02110958 -n03018349 -n02930766 -n02229544 -n02483362 -n03887697 -n01773797 -n02264363 -n02088364 -n04127249 -n02113023 -n03146219 -n02114855 -n04536866 -n03770679 -n01796340 -n03866082 -n04380533 -n03764736 -n07749582 -n03658185 -n04579145 -n01784675 -n01644373 -n02110063 -n02971356 -n02494079 -n02361337 -n02490219 -n03803284 -n02113624 -n02106550 -n03814906 -n03180011 -n01872401 -n02730930 -n04548280 -n02814860 -n02105162 -n03676483 -n01871265 -n07716358 -n04476259 -n03887697 -n07697537 -n02514041 -n04004767 -n04371774 -n01855032 -n01518878 -n09835506 -n01943899 -n03908714 -n03400231 -n02129604 -n02492035 -n04252225 -n02107312 -n03443371 -n02950826 -n03814639 -n02951585 -n04265275 -n01806567 -n03482405 -n01882714 -n01580077 -n02091831 -n04266014 -n02895154 -n04532106 -n02999410 -n03729826 -n03345487 -n02105162 -n02690373 -n04597913 -n04325704 -n03461385 -n01695060 -n01818515 -n09472597 -n01806567 -n07754684 -n04326547 -n02093859 -n04049303 -n02641379 -n03196217 -n02088466 -n04376876 -n02009229 -n03929855 -n02025239 -n03814906 -n03291819 -n04612504 -n03000134 -n02837789 -n07718747 -n03459775 -n02281406 -n01693334 -n02219486 -n04266014 -n04399382 -n01774750 -n02980441 -n03062245 -n04418357 -n02841315 -n04239074 -n02117135 -n03908714 -n04429376 -n02089867 -n01641577 -n02444819 -n04277352 -n01443537 -n04522168 -n02137549 -n03770439 -n03697007 -n07248320 -n04523525 -n04141975 -n04442312 -n02979186 -n03929855 -n03160309 -n07613480 -n04154565 -n03452741 -n03063689 -n01983481 -n03884397 -n02687172 -n01622779 -n01774750 -n02096051 -n04074963 -n03207941 -n02107908 -n03180011 -n04557648 -n01491361 -n04209239 -n02091467 -n03930313 -n03417042 -n02395406 -n02112350 -n02108915 -n02123597 -n04125021 -n03777754 -n09288635 -n02066245 -n03196217 -n04118538 -n03733281 -n02106550 -n02111889 -n03720891 -n04604644 -n03016953 -n03249569 -n04039381 -n02100735 -n01582220 -n02423022 -n03764736 -n03109150 -n02028035 -n02510455 -n01735189 -n02666196 -n02992211 -n04356056 -n03240683 -n01978455 -n04579145 -n02963159 -n09288635 -n02442845 -n04606251 -n02087046 -n03344393 -n01883070 -n03697007 -n03891251 -n03662601 -n02138441 -n01753488 -n04613696 -n01950731 -n03485794 -n02110341 -n02892767 -n02492035 -n04273569 -n04008634 -n02095314 -n03794056 -n09472597 -n02802426 -n07716906 -n03792972 -n01872401 -n03673027 -n02279972 -n02910353 -n03933933 -n03938244 -n01558993 -n03908714 -n01914609 -n02101006 -n02672831 -n04067472 -n02526121 -n07836838 -n02817516 -n07742313 -n01828970 -n04286575 -n03649909 -n02107683 -n02988304 -n02165456 -n04560804 -n01629819 -n03814906 -n03782006 -n02264363 -n02909870 -n09246464 -n02328150 -n02730930 -n04596742 -n03095699 -n03146219 -n01824575 -n03977966 -n01807496 -n02500267 -n02098105 -n01796340 -n02113978 -n02948072 -n03089624 -n04550184 -n07565083 -n03529860 -n03544143 -n02791270 -n03775071 -n03710721 -n13044778 -n02504458 -n02514041 -n03743016 -n03483316 -n12985857 -n03709823 -n04465501 -n03028079 -n04209239 -n01807496 -n02859443 -n04398044 -n03337140 -n02783161 -n02500267 -n01644373 -n07711569 -n03888257 -n02655020 -n09399592 -n03197337 -n02007558 -n03961711 -n04542943 -n02116738 -n01580077 -n02088632 -n02096294 -n03388183 -n02099267 -n03445924 -n04133789 -n04332243 -n03201208 -n03032252 -n02504458 -n02979186 -n04584207 -n03535780 -n02229544 -n02111500 -n04525305 -n03197337 -n02398521 -n02088238 -n02364673 -n04146614 -n02113186 -n02391049 -n02098286 -n04548362 -n02009229 -n07802026 -n07716906 -n02111889 -n02730930 -n01632777 -n02099601 -n02981792 -n03637318 -n01735189 -n04049303 -n02129165 -n02443484 -n03770679 -n04149813 -n01622779 -n03110669 -n01945685 -n03937543 -n02977058 -n02457408 -n03041632 -n01694178 -n03095699 -n02085936 -n04252077 -n03529860 -n01978455 -n01768244 -n06359193 -n02107908 -n04162706 -n03494278 -n02009912 -n01740131 -n03717622 -n13054560 -n03014705 -n02087394 -n02093991 -n03063689 -n02113023 -n03733131 -n04493381 -n03825788 -n02643566 -n03495258 -n06794110 -n02280649 -n04065272 -n02110958 -n03452741 -n03314780 -n01828970 -n02871525 -n04447861 -n02815834 -n04417672 -n04328186 -n02134418 -n03788365 -n03877845 -n04487081 -n02500267 -n03372029 -n03837869 -n01968897 -n03443371 -n12768682 -n01685808 -n03584829 -n02814860 -n03485407 -n03670208 -n01817953 -n03026506 -n01440764 -n01685808 -n03691459 -n04141076 -n04179913 -n03670208 -n01755581 -n03958227 -n03388043 -n03223299 -n02504013 -n01773549 -n01694178 -n02112018 -n01739381 -n01695060 -n01980166 -n03788365 -n03187595 -n02277742 -n01669191 -n02892201 -n02123045 -n07747607 -n04604644 -n04149813 -n04074963 -n02111277 -n02101006 -n03961711 -n01978287 -n03127747 -n02129604 -n07717410 -n02264363 -n07802026 -n02089973 -n02096585 -n04243546 -n01688243 -n02817516 -n04596742 -n03673027 -n02797295 -n07753113 -n01685808 -n02871525 -n02093991 -n01984695 -n07760859 -n03032252 -n07711569 -n02280649 -n03761084 -n03160309 -n03891332 -n02883205 -n04372370 -n04041544 -n04552348 -n04264628 -n04041544 -n01910747 -n03950228 -n02666196 -n04204347 -n01560419 -n04204238 -n02236044 -n03131574 -n04487081 -n02018795 -n02843684 -n03000684 -n01667778 -n02115641 -n04548362 -n01943899 -n02100877 -n02093256 -n02018207 -n02112137 -n03141823 -n02093754 -n02174001 -n04476259 -n02480495 -n03887697 -n02769748 -n02002724 -n02113978 -n02110627 -n03874293 -n02107574 -n02109047 -n01855032 -n02794156 -n03134739 -n07742313 -n03124043 -n02486261 -n02992529 -n01734418 -n02321529 -n03047690 -n02879718 -n02025239 -n03131574 -n04347754 -n03216828 -n02264363 -n03041632 -n02071294 -n01914609 -n02497673 -n02172182 -n01667778 -n02106550 -n02814860 -n01773549 -n01986214 -n02236044 -n02009912 -n02487347 -n01755581 -n03623198 -n02445715 -n06794110 -n02085620 -n04482393 -n01820546 -n04579145 -n02326432 -n07754684 -n04111531 -n03724870 -n02093256 -n07711569 -n02017213 -n01688243 -n01669191 -n01664065 -n02092339 -n02108551 -n04525305 -n03950228 -n03929660 -n03956157 -n03891332 -n04493381 -n02102973 -n03255030 -n01990800 -n02500267 -n02281406 -n01824575 -n03032252 -n02129165 -n02356798 -n03538406 -n02009229 -n02097658 -n03095699 -n03786901 -n03743016 -n02980441 -n07742313 -n02106166 -n03314780 -n02097209 -n04037443 -n04086273 -n03394916 -n02037110 -n02112018 -n03379051 -n02951585 -n04501370 -n04355338 -n03874293 -n04153751 -n07930864 -n02930766 -n01496331 -n04265275 -n02256656 -n01667114 -n03630383 -n04591713 -n02704792 -n03207743 -n03854065 -n03720891 -n07873807 -n02120505 -n02099849 -n04152593 -n02100877 -n04560804 -n03792972 -n03733131 -n13133613 -n02114548 -n03000247 -n04146614 -n04398044 -n02325366 -n03633091 -n09256479 -n03617480 -n01530575 -n03633091 -n03018349 -n01768244 -n02871525 -n04040759 -n03658185 -n03272562 -n02447366 -n04392985 -n02797295 -n03903868 -n04548362 -n07714571 -n03884397 -n03888605 -n02105505 -n03666591 -n03063599 -n03530642 -n02097474 -n04483307 -n04554684 -n02978881 -n02492660 -n03692522 -n04589890 -n04579432 -n02127052 -n02112706 -n02804610 -n02190166 -n11939491 -n03000134 -n01697457 -n12620546 -n02256656 -n01968897 -n02950826 -n03127925 -n02939185 -n06596364 -n02091134 -n03877472 -n02113799 -n02102973 -n02027492 -n03498962 -n02834397 -n07248320 -n04286575 -n01735189 -n02417914 -n03690938 -n03404251 -n01739381 -n02099267 -n02219486 -n02108089 -n02206856 -n03208938 -n03127747 -n02279972 -n02281406 -n02113023 -n01601694 -n07715103 -n02107908 -n02120079 -n02102318 -n02096051 -n01990800 -n02917067 -n03372029 -n03538406 -n12267677 -n03314780 -n03903868 -n02009229 -n02100236 -n03759954 -n02277742 -n03804744 -n02966687 -n02102318 -n09835506 -n01484850 -n02097047 -n02795169 -n03673027 -n02169497 -n03532672 -n04067472 -n01944390 -n02786058 -n04019541 -n01665541 -n04162706 -n01695060 -n04116512 -n03680355 -n04548280 -n04517823 -n02883205 -n02869837 -n01871265 -n01737021 -n01496331 -n01773797 -n04562935 -n03617480 -n03930630 -n04033901 -n04270147 -n03388183 -n02823428 -n02090622 -n02504013 -n04356056 -n02510455 -n01860187 -n02492660 -n02879718 -n02669723 -n15075141 -n04263257 -n02422106 -n04350905 -n02105056 -n02102973 -n03776460 -n03857828 -n02120505 -n02105412 -n02643566 -n03291819 -n04447861 -n03938244 -n07717556 -n02423022 -n03450230 -n01770393 -n04254680 -n03530642 -n03476991 -n03710721 -n04116512 -n04398044 -n02930766 -n04370456 -n02231487 -n04019541 -n03476991 -n04366367 -n02930766 -n01728920 -n03908618 -n07615774 -n06794110 -n01744401 -n04153751 -n03187595 -n02009912 -n02096437 -n02018207 -n02363005 -n07717410 -n02939185 -n03495258 -n03787032 -n03920288 -n04392985 -n02109961 -n04325704 -n03240683 -n01773157 -n02317335 -n03929660 -n02493509 -n03920288 -n03447721 -n02486261 -n04562935 -n01829413 -n01930112 -n02104365 -n02992211 -n04033901 -n03710193 -n02797295 -n01847000 -n02100583 -n04483307 -n03874599 -n04275548 -n04540053 -n01558993 -n04560804 -n04542943 -n01773549 -n04317175 -n03935335 -n07717410 -n02165456 -n03832673 -n01692333 -n03788195 -n07831146 -n03590841 -n03840681 -n02277742 -n09472597 -n07614500 -n04548280 -n03443371 -n04532670 -n01774750 -n04486054 -n03127747 -n03676483 -n02669723 -n02017213 -n01945685 -n02219486 -n04599235 -n03530642 -n04254777 -n02111500 -n03125729 -n01631663 -n07880968 -n02111277 -n01817953 -n03776460 -n01622779 -n03240683 -n02906734 -n02391049 -n01695060 -n04023962 -n01514668 -n04133789 -n02871525 -n02277742 -n02090721 -n01693334 -n04074963 -n07693725 -n01873310 -n02279972 -n02971356 -n02071294 -n03991062 -n02088238 -n03538406 -n04552348 -n02112706 -n04229816 -n03126707 -n01518878 -n03903868 -n13054560 -n04149813 -n01828970 -n03197337 -n02443114 -n03255030 -n01558993 -n03529860 -n04069434 -n02396427 -n03197337 -n02356798 -n02504013 -n02641379 -n02017213 -n01882714 -n01514859 -n04429376 -n04366367 -n04443257 -n03075370 -n03782006 -n02927161 -n03899768 -n07715103 -n03980874 -n01514668 -n03761084 -n01773797 -n02120079 -n04131690 -n07248320 -n02133161 -n02096051 -n13052670 -n02979186 -n02113023 -n03594945 -n02123045 -n02120505 -n02119022 -n02493793 -n01728572 -n03482405 -n01980166 -n07745940 -n01773549 -n02123394 -n02093754 -n03534580 -n02174001 -n02641379 -n01693334 -n01983481 -n02793495 -n04456115 -n04141327 -n02096585 -n01855672 -n03223299 -n03544143 -n02321529 -n09193705 -n04409515 -n02105162 -n03775546 -n01990800 -n02128757 -n03769881 -n03314780 -n03598930 -n03452741 -n03388183 -n03958227 -n02236044 -n04208210 -n07693725 -n01945685 -n04579432 -n02486410 -n02791270 -n02099429 -n02074367 -n04208210 -n01981276 -n03240683 -n03425413 -n02115913 -n03124043 -n02002724 -n02667093 -n03724870 -n07730033 -n03733281 -n04522168 -n07717556 -n03977966 -n03788365 -n01484850 -n03482405 -n03623198 -n07892512 -n07711569 -n03710637 -n03376595 -n04141975 -n02981792 -n03804744 -n02107312 -n03733131 -n01739381 -n04252077 -n03445924 -n04599235 -n02422699 -n03637318 -n03673027 -n03425413 -n02442845 -n02325366 -n02410509 -n02641379 -n02165105 -n02769748 -n02859443 -n01806567 -n03527444 -n02099601 -n07715103 -n01531178 -n04599235 -n07697313 -n02091244 -n04317175 -n02823428 -n02096437 -n02236044 -n02190166 -n02948072 -n01728920 -n01728572 -n03000684 -n03133878 -n02017213 -n01978287 -n03775071 -n04479046 -n07720875 -n06785654 -n01843383 -n02108089 -n02606052 -n02794156 -n02100583 -n12620546 -n02412080 -n01677366 -n03710637 -n07753275 -n02417914 -n04019541 -n01697457 -n01806143 -n03759954 -n02115913 -n12985857 -n03530642 -n02133161 -n02086240 -n02782093 -n02259212 -n02110806 -n03733131 -n02096294 -n04229816 -n06794110 -n02699494 -n03761084 -n01592084 -n07695742 -n01631663 -n03017168 -n04350905 -n02256656 -n04285008 -n01984695 -n04275548 -n01883070 -n03047690 -n02445715 -n02088094 -n03223299 -n01729322 -n03837869 -n02102480 -n02088364 -n02102177 -n04265275 -n02319095 -n02229544 -n03759954 -n02869837 -n04209133 -n03291819 -n04371774 -n02138441 -n02417914 -n02128757 -n02098286 -n04591157 -n03443371 -n03902125 -n02422106 -n04423845 -n04465501 -n13052670 -n02087394 -n04367480 -n07742313 -n03538406 -n03492542 -n03868863 -n02088632 -n01582220 -n03876231 -n03770439 -n02977058 -n03457902 -n03874293 -n03902125 -n03929855 -n02391049 -n03180011 -n03956157 -n02790996 -n02099712 -n01980166 -n04041544 -n02033041 -n03976657 -n01751748 -n02127052 -n01494475 -n02128385 -n04204347 -n03690938 -n03759954 -n02412080 -n04204238 -n03662601 -n02114855 -n03788365 -n02104029 -n02101556 -n01737021 -n09288635 -n02096177 -n02492035 -n04238763 -n03393912 -n04149813 -n02398521 -n01742172 -n02130308 -n01534433 -n04404412 -n02107683 -n02708093 -n04209239 -n07715103 -n07718747 -n04462240 -n02510455 -n02098105 -n02277742 -n02096437 -n02802426 -n02486261 -n02091134 -n03272010 -n01491361 -n04604644 -n02640242 -n03692522 -n02229544 -n07720875 -n04606251 -n04201297 -n11939491 -n02088364 -n02655020 -n03657121 -n02112350 -n02326432 -n03445777 -n02028035 -n04326547 -n03400231 -n02091032 -n03710193 -n01742172 -n01806567 -n03485407 -n03450230 -n01735189 -n02319095 -n03467068 -n04458633 -n03394916 -n02500267 -n04525038 -n02112137 -n02107908 -n12768682 -n02119789 -n03662601 -n07860988 -n04584207 -n07932039 -n03062245 -n07745940 -n03085013 -n04465501 -n02483708 -n03379051 -n01631663 -n01773157 -n02364673 -n02917067 -n02488702 -n02105412 -n02423022 -n03868242 -n02018207 -n02113624 -n04041544 -n04548280 -n03483316 -n03444034 -n02125311 -n02281406 -n04041544 -n03223299 -n03602883 -n12144580 -n04192698 -n07831146 -n01748264 -n02096177 -n01798484 -n03075370 -n01807496 -n04479046 -n03457902 -n02504013 -n02097047 -n07583066 -n02979186 -n03595614 -n04286575 -n09246464 -n02981792 -n03220513 -n02090379 -n02037110 -n02009912 -n07860988 -n04435653 -n02486261 -n02129604 -n01491361 -n04579432 -n02165456 -n03259280 -n01860187 -n03796401 -n02356798 -n01828970 -n02206856 -n03983396 -n02783161 -n03134739 -n02823428 -n04371430 -n04118776 -n02106166 -n02988304 -n01770081 -n04465501 -n03447447 -n03976467 -n02977058 -n02058221 -n02280649 -n03445777 -n03884397 -n01797886 -n03240683 -n03485794 -n02974003 -n04548280 -n02168699 -n07716906 -n02002556 -n01632777 -n02111129 -n02492035 -n02123159 -n03424325 -n02231487 -n01641577 -n07873807 -n02363005 -n02100877 -n03777568 -n01530575 -n03998194 -n01829413 -n02480855 -n09288635 -n02321529 -n02509815 -n03482405 -n04493381 -n02319095 -n03223299 -n03388549 -n02113186 -n02093859 -n07718747 -n01855032 -n10148035 -n07753113 -n04154565 -n02423022 -n04179913 -n02486410 -n02106382 -n02033041 -n02483708 -n01537544 -n02123597 -n03240683 -n04026417 -n02108422 -n09399592 -n02104365 -n03794056 -n01776313 -n02787622 -n03854065 -n01729977 -n02127052 -n03942813 -n02109047 -n03133878 -n03775071 -n02268443 -n04118776 -n02009912 -n02111889 -n04542943 -n03759954 -n03633091 -n03124043 -n03016953 -n02133161 -n02106030 -n01773797 -n03887697 -n04501370 -n04120489 -n02096051 -n01682714 -n03133878 -n02992211 -n01795545 -n02033041 -n04285008 -n02113978 -n02006656 -n01768244 -n02837789 -n01622779 -n02091831 -n02992529 -n03929660 -n02493793 -n03447447 -n02013706 -n03478589 -n07615774 -n03530642 -n02410509 -n01968897 -n04252077 -n03976467 -n07871810 -n01697457 -n04200800 -n01806567 -n03998194 -n03721384 -n02107683 -n02950826 -n02834397 -n02978881 -n02106166 -n02098413 -n04204238 -n04328186 -n01943899 -n03494278 -n01798484 -n07714990 -n02105056 -n04033995 -n03207743 -n03459775 -n02704792 -n03379051 -n04372370 -n01855032 -n03124170 -n04039381 -n04355338 -n01774384 -n03016953 -n02486261 -n01632777 -n02319095 -n02106550 -n03476684 -n01644900 -n03729826 -n03047690 -n04179913 -n02437312 -n03769881 -n01664065 -n02107683 -n09835506 -n01784675 -n02483362 -n02089867 -n04356056 -n03666591 -n06359193 -n02277742 -n04456115 -n02099267 -n03657121 -n04149813 -n07579787 -n04372370 -n02095314 -n03496892 -n02483708 -n04417672 -n04447861 -n02804610 -n03126707 -n01704323 -n09332890 -n02090379 -n03837869 -n11939491 -n03866082 -n03733131 -n02165456 -n04443257 -n02281787 -n02398521 -n07718472 -n02106382 -n02066245 -n04428191 -n03527444 -n03085013 -n02112350 -n02094433 -n03942813 -n02398521 -n02865351 -n03908618 -n02229544 -n01981276 -n03208938 -n02236044 -n04542943 -n02804610 -n02843684 -n01687978 -n02447366 -n02099849 -n03017168 -n02999410 -n02013706 -n02102040 -n02825657 -n02091831 -n01833805 -n02117135 -n01910747 -n03724870 -n04209133 -n04328186 -n03761084 -n04509417 -n04612504 -n01537544 -n01748264 -n04542943 -n02892767 -n04332243 -n04591713 -n02116738 -n07714990 -n03782006 -n07697313 -n03692522 -n02776631 -n03197337 -n06874185 -n02089867 -n02790996 -n02979186 -n03938244 -n03028079 -n02823428 -n04133789 -n02794156 -n02815834 -n03063599 -n10148035 -n02486261 -n04435653 -n01943899 -n02391049 -n02090622 -n04542943 -n02058221 -n02089867 -n02115641 -n03930313 -n02105412 -n03691459 -n03781244 -n03721384 -n01484850 -n03201208 -n03710721 -n03384352 -n02410509 -n03787032 -n03970156 -n02105251 -n03958227 -n02690373 -n01729322 -n01518878 -n04254680 -n02988304 -n03670208 -n04033901 -n02018795 -n02749479 -n03447721 -n02093428 -n02099712 -n02094114 -n02814860 -n02167151 -n04525305 -n02483362 -n02105251 -n02817516 -n04125021 -n02979186 -n01829413 -n02097658 -n02909870 -n01558993 -n03216828 -n02280649 -n02051845 -n02115913 -n03938244 -n04522168 -n01632458 -n02106382 -n02939185 -n04111531 -n01693334 -n02268853 -n02109525 -n02125311 -n03617480 -n02437616 -n04146614 -n03832673 -n02870880 -n04554684 -n02071294 -n02971356 -n03775071 -n04326547 -n11879895 -n01531178 -n02667093 -n04317175 -n02027492 -n02002556 -n02206856 -n03527444 -n04557648 -n04467665 -n01742172 -n02100236 -n02096437 -n13054560 -n02389026 -n02098105 -n07871810 -n02488291 -n04251144 -n12057211 -n04483307 -n01917289 -n03637318 -n01950731 -n01955084 -n02869837 -n04037443 -n02099267 -n04254120 -n02493793 -n12144580 -n01968897 -n03770679 -n02910353 -n04146614 -n04154565 -n02128757 -n04380533 -n03530642 -n02640242 -n01530575 -n04325704 -n04562935 -n03838899 -n02692877 -n03692522 -n03916031 -n02486261 -n03724870 -n02099267 -n03207941 -n02128925 -n03461385 -n01950731 -n02492660 -n02102973 -n07749582 -n04310018 -n02110806 -n02105056 -n09428293 -n02087394 -n15075141 -n03141823 -n03709823 -n03930630 -n02280649 -n04069434 -n07718747 -n02480495 -n07754684 -n12985857 -n03602883 -n01665541 -n04465501 -n02788148 -n02114548 -n07753275 -n03788195 -n02814860 -n02090379 -n03425413 -n01751748 -n04311174 -n01796340 -n07613480 -n03445777 -n04404412 -n03124170 -n02364673 -n01829413 -n03134739 -n07730033 -n03379051 -n04485082 -n03250847 -n07730033 -n07714571 -n02790996 -n03160309 -n02268443 -n02093859 -n13052670 -n02086910 -n01632458 -n04259630 -n01806567 -n02094433 -n02093647 -n02111500 -n03876231 -n01883070 -n02098286 -n04483307 -n03344393 -n01592084 -n04579432 -n04152593 -n04579145 -n03998194 -n02093256 -n01616318 -n03085013 -n03527444 -n04116512 -n02514041 -n03627232 -n03376595 -n04443257 -n03095699 -n02403003 -n04589890 -n01910747 -n02978881 -n02727426 -n01985128 -n03482405 -n02132136 -n04277352 -n13133613 -n02033041 -n02100877 -n01806143 -n03733805 -n01748264 -n02483362 -n03776460 -n02105412 -n03887697 -n01773157 -n02056570 -n02808440 -n02007558 -n04146614 -n02097130 -n03888605 -n02412080 -n01806567 -n02457408 -n03935335 -n03775071 -n07697313 -n01774750 -n07873807 -n07749582 -n02091134 -n02871525 -n02117135 -n03657121 -n03661043 -n02088632 -n03776460 -n02120505 -n02165456 -n03089624 -n03485794 -n01534433 -n02835271 -n03240683 -n04251144 -n02086910 -n03447447 -n04200800 -n01582220 -n02655020 -n04458633 -n04371430 -n02097047 -n03970156 -n04418357 -n04243546 -n02098413 -n02992529 -n03384352 -n02640242 -n02894605 -n03920288 -n03250847 -n02607072 -n04326547 -n04485082 -n03868863 -n09472597 -n02027492 -n02692877 -n03388549 -n03874599 -n02096051 -n01847000 -n02328150 -n01534433 -n02910353 -n01829413 -n02107142 -n03977966 -n02090622 -n03444034 -n04418357 -n04254680 -n02692877 -n02002724 -n03535780 -n02108551 -n02112350 -n15075141 -n04141975 -n04507155 -n04509417 -n11939491 -n02112706 -n02110627 -n03125729 -n03680355 -n01644373 -n01644373 -n01756291 -n01753488 -n02098105 -n02342885 -n03759954 -n02110958 -n02797295 -n02006656 -n02111500 -n04033901 -n01784675 -n04277352 -n02489166 -n02481823 -n02398521 -n01739381 -n02823428 -n02939185 -n12985857 -n04275548 -n04127249 -n02087394 -n03920288 -n04482393 -n03100240 -n03000684 -n07248320 -n02454379 -n02361337 -n03218198 -n02106030 -n03544143 -n04456115 -n02165105 -n03188531 -n01641577 -n07742313 -n03761084 -n01518878 -n04376876 -n03782006 -n02422699 -n01773797 -n02106550 -n04590129 -n03902125 -n02823750 -n03393912 -n04090263 -n01737021 -n02129165 -n01498041 -n03792782 -n02966687 -n02504458 -n03838899 -n01689811 -n04347754 -n01608432 -n01817953 -n02536864 -n01729977 -n02096437 -n03924679 -n02096437 -n01798484 -n02869837 -n04336792 -n03485407 -n03868863 -n04376876 -n03602883 -n02128925 -n02102973 -n02447366 -n07716358 -n03857828 -n04517823 -n03837869 -n07749582 -n02105162 -n02281787 -n02769748 -n02085620 -n01751748 -n02093647 -n04423845 -n02488702 -n03485794 -n03908714 -n01498041 -n02231487 -n02108551 -n03179701 -n02786058 -n01855032 -n04147183 -n04254680 -n04557648 -n01728572 -n04325704 -n07860988 -n01847000 -n13044778 -n03445777 -n03447447 -n02169497 -n03290653 -n03376595 -n02094114 -n03854065 -n02422699 -n01796340 -n03459775 -n02091244 -n04399382 -n03476684 -n02951585 -n03207941 -n02174001 -n03445777 -n01950731 -n04562935 -n01728572 -n02089973 -n01945685 -n02791270 -n04090263 -n01665541 -n02264363 -n04228054 -n03345487 -n03947888 -n01944390 -n04153751 -n01664065 -n03223299 -n02930766 -n04404412 -n03992509 -n01877812 -n02977058 -n09835506 -n12267677 -n03127747 -n01980166 -n09835506 -n07753113 -n02860847 -n02840245 -n01748264 -n03891251 -n02484975 -n02095314 -n03063689 -n04372370 -n11879895 -n02447366 -n01795545 -n03201208 -n01797886 -n04548362 -n03028079 -n03201208 -n02109047 -n03804744 -n03417042 -n02111500 -n02109047 -n02415577 -n04456115 -n02486410 -n03976657 -n02109525 -n03602883 -n03937543 -n02492660 -n02127052 -n02641379 -n03146219 -n02091635 -n02110185 -n04389033 -n04330267 -n02165456 -n04152593 -n04548362 -n02094433 -n04372370 -n03208938 -n02356798 -n02666196 -n02279972 -n03661043 -n03187595 -n03131574 -n07742313 -n02104029 -n02172182 -n02090622 -n02085782 -n02123159 -n02105855 -n02422106 -n01667114 -n01943899 -n03692522 -n03788195 -n07718472 -n03146219 -n04553703 -n09472597 -n04447861 -n02790996 -n03673027 -n02102040 -n07565083 -n01532829 -n02276258 -n04141327 -n01817953 -n04118538 -n01990800 -n02123597 -n01751748 -n02025239 -n01644373 -n03355925 -n02177972 -n04286575 -n04009552 -n03899768 -n03857828 -n04613696 -n02120079 -n02007558 -n04311174 -n03594945 -n04355338 -n03325584 -n07590611 -n07831146 -n03899768 -n02165105 -n06359193 -n06874185 -n03657121 -n02056570 -n09428293 -n04597913 -n02114855 -n04548280 -n03065424 -n01986214 -n03623198 -n04485082 -n03888605 -n02114855 -n02917067 -n04067472 -n03457902 -n03775071 -n07579787 -n02509815 -n04458633 -n03347037 -n02098105 -n12985857 -n03691459 -n04525305 -n01817953 -n03393912 -n04251144 -n02088364 -n02526121 -n02444819 -n02088238 -n02051845 -n01667114 -n04487394 -n04125021 -n02883205 -n04162706 -n02085936 -n02807133 -n02978881 -n04350905 -n01843383 -n02906734 -n01608432 -n02950826 -n04131690 -n02823428 -n02106030 -n01818515 -n03840681 -n03443371 -n03447447 -n02492660 -n11879895 -n02981792 -n01514668 -n02701002 -n04192698 -n02106030 -n07717410 -n03492542 -n06794110 -n03977966 -n04008634 -n07768694 -n04515003 -n02111889 -n02363005 -n01930112 -n04447861 -n07684084 -n01883070 -n03250847 -n02825657 -n03793489 -n01616318 -n02110341 -n06596364 -n04456115 -n01749939 -n03180011 -n02690373 -n02088094 -n01984695 -n02493793 -n09428293 -n03888605 -n09229709 -n02128757 -n04239074 -n04040759 -n03062245 -n02168699 -n02977058 -n01773157 -n02101388 -n03459775 -n04532106 -n04026417 -n02870880 -n04179913 -n02115913 -n04525038 -n11939491 -n02165105 -n04258138 -n09472597 -n01491361 -n03706229 -n03937543 -n01855672 -n03673027 -n02443484 -n03706229 -n04149813 -n03599486 -n03272562 -n01704323 -n01537544 -n03424325 -n02085782 -n02190166 -n04592741 -n02504458 -n04086273 -n07754684 -n02443484 -n02086910 -n01756291 -n01873310 -n02096437 -n02870880 -n02106166 -n07613480 -n03018349 -n03447721 -n04335435 -n02114855 -n07760859 -n03825788 -n02107142 -n02095570 -n01697457 -n03837869 -n02018795 -n02113624 -n03781244 -n03942813 -n02445715 -n02111129 -n04372370 -n02115641 -n07802026 -n02137549 -n02099429 -n03998194 -n04162706 -n03208938 -n02486410 -n02536864 -n02437616 -n02128757 -n04604644 -n03016953 -n04404412 -n02096585 -n01494475 -n03657121 -n04259630 -n04423845 -n03388549 -n02640242 -n02988304 -n02165456 -n03924679 -n04086273 -n02492660 -n02113624 -n02093859 -n02089867 -n04192698 -n01944390 -n01632777 -n02966687 -n02107908 -n02098286 -n07831146 -n02007558 -n04536866 -n02808304 -n07718472 -n03930630 -n07754684 -n01774750 -n03980874 -n03384352 -n02104029 -n02769748 -n02058221 -n01695060 -n03929660 -n13040303 -n03089624 -n04443257 -n04428191 -n03775546 -n04517823 -n01945685 -n03216828 -n02965783 -n02088466 -n04133789 -n03838899 -n02123597 -n02128385 -n02486410 -n03124170 -n03530642 -n02500267 -n12768682 -n02128385 -n01592084 -n02526121 -n04356056 -n02137549 -n03854065 -n07684084 -n01855032 -n02992211 -n02484975 -n02106030 -n09421951 -n04367480 -n09256479 -n02119022 -n02493509 -n03803284 -n01685808 -n07697537 -n01807496 -n03733281 -n03417042 -n02219486 -n09229709 -n02526121 -n03908714 -n04204347 -n03527444 -n01740131 -n02492035 -n02094258 -n03769881 -n03026506 -n02804414 -n02489166 -n02883205 -n03482405 -n04366367 -n03868863 -n03891332 -n01797886 -n03447447 -n04399382 -n04146614 -n02423022 -n02268443 -n03250847 -n07753592 -n01984695 -n03709823 -n03884397 -n03630383 -n03814639 -n02834397 -n01737021 -n03786901 -n01775062 -n01883070 -n09428293 -n03977966 -n07754684 -n03384352 -n02794156 -n13054560 -n02132136 -n02769748 -n07718747 -n02950826 -n01930112 -n02086240 -n02125311 -n03947888 -n02840245 -n03220513 -n03720891 -n02791270 -n02802426 -n03866082 -n03825788 -n02487347 -n02169497 -n02860847 -n01728920 -n03535780 -n03710193 -n02091467 -n04243546 -n01616318 -n03942813 -n02128757 -n04049303 -n04417672 -n02127052 -n03838899 -n03729826 -n02909870 -n09421951 -n04515003 -n02165105 -n03146219 -n04423845 -n03602883 -n01930112 -n04208210 -n03887697 -n03761084 -n02268853 -n04392985 -n03649909 -n03447721 -n02692877 -n12267677 -n07715103 -n04392985 -n04509417 -n04041544 -n03538406 -n01664065 -n03179701 -n01820546 -n04204347 -n03929660 -n02102973 -n03903868 -n01742172 -n01770081 -n03109150 -n04273569 -n02123045 -n07590611 -n13037406 -n02102177 -n03000247 -n02410509 -n02088632 -n07768694 -n06785654 -n03393912 -n03496892 -n04275548 -n03854065 -n04355933 -n01807496 -n07720875 -n04584207 -n03792782 -n03208938 -n02666196 -n04149813 -n02107683 -n04049303 -n04118538 -n04418357 -n02877765 -n01883070 -n02509815 -n10565667 -n02497673 -n02115913 -n03837869 -n02190166 -n04592741 -n04285008 -n04606251 -n03075370 -n04125021 -n03796401 -n02091134 -n03792972 -n01824575 -n02086079 -n01855032 -n07742313 -n03393912 -n03958227 -n02137549 -n02113978 -n02356798 -n02808440 -n02105412 -n01797886 -n04204347 -n03837869 -n02111277 -n02777292 -n02129604 -n07930864 -n02489166 -n03459775 -n01644900 -n04149813 -n03854065 -n03125729 -n04141076 -n04505470 -n02089973 -n02172182 -n04266014 -n04606251 -n07768694 -n09472597 -n02134418 -n03623198 -n02793495 -n01484850 -n02276258 -n02095889 -n03733281 -n03535780 -n03983396 -n02640242 -n01818515 -n02051845 -n03544143 -n02092002 -n02906734 -n01518878 -n03769881 -n02087046 -n03891332 -n04392985 -n03485794 -n03445777 -n02115913 -n02321529 -n03633091 -n01984695 -n04590129 -n02268443 -n02676566 -n02134084 -n03658185 -n02091134 -n03733805 -n02488702 -n02869837 -n02640242 -n03160309 -n02443484 -n02441942 -n01775062 -n02825657 -n12144580 -n04591713 -n02783161 -n01882714 -n02815834 -n02814860 -n02102177 -n02988304 -n03376595 -n02165105 -n04081281 -n03495258 -n09193705 -n04493381 -n02815834 -n11939491 -n02883205 -n03063689 -n02095570 -n04033901 -n03937543 -n02107908 -n07742313 -n02114712 -n02971356 -n02906734 -n02814860 -n01692333 -n02808440 -n03706229 -n04335435 -n03791053 -n03742115 -n02099429 -n02877765 -n02321529 -n03814639 -n01592084 -n03272562 -n02786058 -n01667114 -n03947888 -n02100735 -n04409515 -n01601694 -n03777568 -n12620546 -n06794110 -n02483708 -n03666591 -n03759954 -n01871265 -n02790996 -n01955084 -n03868863 -n03026506 -n04070727 -n02233338 -n01983481 -n02640242 -n01819313 -n02794156 -n03017168 -n02486261 -n04118776 -n02769748 -n03250847 -n02113799 -n02105056 -n02108422 -n01806567 -n04229816 -n09256479 -n04141327 -n01692333 -n01644373 -n02493509 -n02892201 -n02346627 -n07747607 -n04120489 -n03032252 -n04081281 -n09468604 -n02108422 -n07753113 -n02441942 -n03775071 -n02319095 -n04579145 -n02097474 -n03697007 -n02769748 -n02129604 -n04141076 -n04476259 -n02442845 -n04442312 -n02012849 -n01806567 -n03337140 -n02097209 -n03207941 -n01632458 -n01818515 -n02233338 -n02088094 -n02727426 -n04239074 -n03095699 -n04606251 -n03902125 -n02099267 -n02086240 -n03337140 -n02085782 -n02412080 -n03637318 -n01734418 -n02113023 -n04251144 -n03764736 -n02114855 -n02799071 -n01675722 -n02843684 -n01756291 -n04417672 -n02835271 -n04141076 -n04389033 -n04482393 -n02087394 -n02115641 -n03017168 -n01753488 -n02514041 -n04509417 -n02089973 -n03075370 -n01644373 -n03791053 -n04265275 -n02111500 -n02097209 -n04458633 -n07802026 -n04141076 -n04597913 -n02281787 -n12057211 -n02277742 -n07716906 -n03920288 -n04326547 -n03127747 -n03404251 -n02108915 -n02127052 -n02391049 -n04229816 -n02837789 -n03314780 -n02089973 -n04296562 -n02791270 -n03000134 -n01644900 -n04209133 -n01669191 -n02107142 -n03908714 -n03045698 -n03485794 -n02108551 -n02807133 -n02892767 -n04525305 -n02493509 -n10148035 -n03201208 -n03690938 -n04505470 -n02206856 -n02098105 -n03478589 -n02123597 -n02783161 -n01667114 -n02106550 -n03733805 -n03424325 -n01882714 -n01855672 -n01855672 -n01983481 -n01695060 -n01847000 -n02799071 -n04428191 -n03223299 -n13052670 -n02101556 -n04265275 -n03016953 -n01775062 -n04033901 -n01753488 -n03146219 -n04235860 -n03759954 -n03788195 -n07749582 -n01829413 -n02093256 -n02231487 -n04536866 -n03146219 -n04004767 -n02493793 -n04371774 -n02395406 -n02114712 -n02747177 -n01560419 -n03814906 -n04141327 -n01833805 -n03825788 -n02128925 -n02120079 -n03658185 -n03935335 -n03530642 -n01968897 -n02114548 -n03873416 -n01985128 -n01514859 -n02669723 -n04311174 -n03141823 -n01872401 -n03920288 -n02927161 -n02397096 -n04357314 -n03535780 -n03127925 -n01807496 -n02895154 -n02794156 -n03666591 -n04004767 -n04039381 -n04179913 -n01828970 -n02128385 -n02095570 -n04592741 -n02793495 -n02096177 -n01631663 -n02111500 -n12057211 -n04356056 -n02894605 -n02226429 -n04482393 -n01950731 -n03452741 -n01632777 -n03197337 -n04505470 -n04599235 -n01484850 -n04501370 -n02095570 -n02276258 -n02410509 -n04037443 -n02276258 -n04418357 -n02892767 -n02099267 -n03791053 -n04599235 -n03642806 -n03530642 -n07718472 -n07693725 -n11939491 -n02793495 -n02988304 -n02096051 -n01514668 -n01616318 -n04243546 -n02808440 -n04270147 -n02106030 -n04344873 -n07930864 -n03444034 -n07860988 -n02119022 -n02108000 -n04562935 -n02105162 -n02492035 -n02823750 -n03481172 -n02108000 -n04310018 -n02107142 -n02226429 -n02074367 -n03785016 -n04553703 -n03495258 -n07579787 -n07745940 -n02111277 -n04476259 -n03476684 -n04487081 -n02091134 -n07714571 -n02105251 -n04404412 -n04398044 -n01924916 -n02487347 -n12620546 -n03255030 -n04325704 -n02093647 -n02814533 -n03125729 -n03000247 -n02492035 -n01530575 -n02108915 -n02114367 -n01796340 -n13044778 -n04522168 -n02443114 -n04589890 -n04201297 -n03733805 -n02168699 -n01616318 -n03594945 -n04479046 -n02391049 -n02892201 -n04447861 -n02134084 -n02096294 -n01484850 -n03930630 -n02090721 -n04118538 -n02445715 -n06596364 -n03599486 -n04579145 -n09468604 -n01986214 -n01820546 -n02526121 -n02408429 -n03854065 -n01855032 -n03272562 -n09288635 -n02106550 -n02095314 -n01667778 -n02137549 -n02483708 -n02804610 -n04125021 -n03769881 -n02814533 -n07718472 -n04263257 -n03877472 -n02107312 -n03042490 -n01697457 -n09468604 -n03146219 -n02799071 -n03764736 -n02493793 -n03787032 -n02808304 -n03485407 -n01740131 -n04589890 -n01914609 -n02883205 -n04254680 -n03777568 -n02280649 -n02102040 -n02823750 -n04147183 -n02091467 -n04069434 -n01729977 -n01818515 -n04023962 -n03584254 -n02095314 -n03983396 -n03956157 -n02097209 -n02095314 -n02825657 -n02107142 -n02219486 -n03796401 -n01687978 -n03944341 -n02097658 -n07718747 -n04552348 -n04263257 -n03942813 -n02037110 -n03787032 -n03642806 -n01689811 -n02102973 -n02480495 -n07684084 -n02408429 -n04356056 -n02117135 -n07584110 -n04265275 -n02493793 -n01682714 -n01981276 -n04592741 -n03976467 -n02948072 -n04086273 -n04277352 -n13054560 -n02480495 -n01983481 -n02085782 -n03598930 -n03345487 -n02017213 -n03179701 -n01984695 -n04296562 -n04507155 -n04328186 -n01534433 -n02494079 -n03916031 -n04376876 -n02093428 -n01843383 -n01924916 -n03207743 -n07747607 -n03785016 -n03388549 -n02113624 -n03961711 -n02086646 -n02134084 -n04606251 -n04493381 -n02096585 -n02992529 -n03891332 -n01616318 -n01496331 -n01694178 -n01695060 -n04026417 -n01695060 -n02117135 -n03584254 -n04336792 -n01698640 -n02177972 -n04532670 -n02859443 -n02095889 -n01682714 -n11879895 -n02114855 -n02484975 -n02097047 -n04204238 -n04604644 -n01775062 -n03775071 -n01773549 -n03956157 -n03792972 -n04404412 -n09835506 -n07717556 -n02037110 -n02361337 -n02105412 -n04447861 -n02835271 -n03240683 -n07613480 -n02422699 -n02488702 -n01776313 -n04579432 -n04116512 -n03857828 -n02676566 -n03063599 -n02397096 -n02977058 -n02089867 -n04429376 -n03018349 -n13037406 -n03998194 -n01693334 -n01770081 -n03991062 -n03141823 -n03691459 -n04039381 -n02894605 -n02096177 -n02093256 -n02917067 -n03791053 -n03976467 -n02795169 -n02112706 -n01692333 -n02111129 -n03110669 -n03803284 -n01592084 -n02514041 -n02104365 -n02089867 -n07860988 -n02093256 -n02403003 -n04522168 -n02837789 -n01855032 -n02793495 -n02093991 -n02437312 -n02980441 -n04116512 -n02120079 -n04371774 -n02104365 -n04153751 -n02091635 -n01775062 -n04310018 -n03529860 -n02105162 -n02814860 -n02088364 -n02116738 -n03630383 -n02229544 -n04111531 -n01882714 -n01917289 -n03877472 -n02346627 -n03476991 -n02115641 -n03110669 -n02799071 -n03272562 -n01729322 -n03599486 -n03445777 -n04099969 -n02536864 -n03026506 -n03899768 -n04485082 -n01440764 -n04370456 -n04125021 -n07565083 -n02012849 -n02437616 -n02281406 -n03141823 -n01440764 -n04548362 -n03584254 -n04366367 -n04069434 -n02108551 -n07697313 -n02916936 -n03124043 -n01697457 -n02095570 -n03016953 -n02441942 -n02106382 -n01833805 -n03045698 -n04404412 -n03888605 -n04259630 -n03075370 -n03124170 -n03534580 -n04277352 -n03717622 -n02526121 -n01797886 -n04133789 -n02105855 -n03530642 -n02130308 -n01980166 -n04192698 -n04336792 -n07742313 -n01692333 -n02279972 -n04371430 -n01592084 -n09332890 -n04332243 -n04392985 -n07720875 -n03478589 -n03291819 -n04560804 -n02106030 -n04049303 -n02927161 -n07753113 -n04065272 -n02835271 -n03047690 -n03538406 -n01582220 -n02113624 -n03792782 -n04116512 -n02093859 -n03961711 -n02109047 -n07831146 -n02825657 -n13054560 -n02951585 -n02442845 -n02817516 -n03874599 -n02093859 -n01755581 -n02860847 -n02167151 -n01537544 -n02099601 -n02111500 -n03670208 -n03179701 -n02093647 -n03444034 -n03131574 -n02111500 -n04069434 -n01744401 -n03220513 -n03393912 -n02486261 -n03372029 -n01728572 -n02422106 -n01833805 -n03594734 -n13044778 -n02074367 -n02391049 -n07873807 -n09468604 -n02799071 -n03832673 -n02361337 -n02111277 -n04204238 -n02172182 -n04562935 -n02100735 -n02007558 -n03630383 -n01484850 -n02484975 -n02096051 -n02206856 -n03770679 -n04265275 -n09246464 -n09835506 -n07614500 -n09472597 -n03379051 -n03457902 -n01855032 -n04201297 -n02951585 -n13133613 -n03770439 -n02172182 -n03992509 -n03617480 -n02802426 -n02676566 -n01687978 -n07711569 -n03690938 -n02869837 -n03942813 -n04332243 -n01491361 -n12768682 -n01910747 -n04179913 -n03627232 -n13037406 -n07745940 -n04152593 -n01806143 -n07565083 -n03627232 -n12267677 -n03837869 -n02094433 -n04238763 -n03496892 -n04612504 -n02807133 -n02106166 -n02484975 -n03208938 -n04065272 -n02107574 -n07715103 -n04517823 -n10565667 -n02807133 -n03717622 -n04557648 -n04591157 -n02326432 -n06874185 -n04442312 -n03042490 -n03188531 -n04487394 -n02006656 -n01729322 -n03929660 -n03425413 -n03216828 -n02346627 -n02526121 -n02089078 -n01669191 -n10565667 -n04376876 -n04258138 -n02489166 -n02493793 -n03584829 -n03379051 -n02094114 -n01514668 -n03770439 -n02231487 -n01855032 -n03180011 -n04606251 -n03916031 -n01774750 -n02087394 -n03297495 -n01968897 -n02105056 -n01491361 -n02114712 -n02097130 -n02692877 -n04125021 -n03476684 -n03658185 -n02966687 -n02259212 -n03355925 -n13133613 -n03394916 -n02107312 -n02788148 -n02109961 -n01440764 -n03124043 -n06359193 -n04133789 -n02500267 -n04209133 -n03344393 -n03494278 -n02977058 -n03710637 -n01622779 -n09421951 -n02790996 -n02089078 -n02256656 -n01531178 -n04479046 -n04141327 -n03000134 -n02504013 -n03627232 -n02114712 -n03325584 -n03773504 -n04004767 -n04266014 -n02977058 -n02125311 -n02281406 -n03291819 -n01675722 -n02138441 -n03804744 -n03000684 -n02114367 -n03187595 -n01943899 -n02125311 -n02113624 -n02823428 -n02233338 -n03110669 -n02500267 -n03594734 -n03347037 -n01990800 -n02074367 -n02396427 -n03954731 -n02687172 -n02883205 -n03127925 -n02111500 -n07718747 -n02447366 -n04286575 -n02930766 -n01664065 -n04153751 -n01687978 -n02422699 -n02791270 -n02835271 -n02504458 -n01917289 -n04252077 -n04548280 -n03089624 -n07590611 -n07754684 -n01739381 -n04483307 -n01914609 -n02087046 -n03697007 -n04039381 -n01820546 -n04355338 -n02100735 -n03032252 -n02091467 -n01728572 -n02002556 -n03874599 -n02859443 -n04146614 -n03534580 -n04532106 -n01981276 -n03814639 -n01689811 -n06359193 -n01675722 -n03888605 -n07714990 -n04476259 -n02536864 -n02492035 -n04265275 -n02948072 -n03804744 -n04380533 -n01518878 -n04005630 -n07590611 -n04417672 -n03709823 -n02105412 -n02363005 -n01494475 -n03680355 -n02951358 -n04597913 -n03998194 -n01855032 -n02018795 -n03271574 -n02167151 -n02009912 -n03825788 -n04482393 -n01774750 -n02500267 -n01514859 -n03908618 -n03761084 -n03633091 -n02096177 -n03729826 -n07717556 -n03670208 -n01773797 -n04554684 -n01697457 -n03691459 -n02138441 -n03764736 -n02123394 -n04192698 -n04120489 -n07615774 -n03929855 -n02494079 -n01669191 -n01498041 -n03250847 -n03924679 -n02356798 -n02823750 -n03447721 -n02058221 -n07930864 -n01530575 -n04428191 -n04372370 -n03840681 -n02027492 -n01498041 -n07718472 -n03954731 -n04099969 -n03954731 -n01770081 -n03445924 -n03045698 -n03527444 -n02840245 -n04201297 -n01735189 -n01986214 -n02002724 -n02113978 -n02177972 -n03908714 -n03888257 -n02100236 -n02437312 -n02236044 -n07871810 -n03775071 -n03947888 -n03933933 -n02066245 -n02128385 -n01491361 -n02493509 -n07717556 -n02865351 -n03187595 -n02666196 -n01917289 -n01770081 -n02788148 -n03661043 -n02481823 -n02085620 -n02799071 -n03590841 -n01749939 -n01614925 -n02950826 -n02088632 -n01498041 -n02105162 -n01737021 -n02690373 -n03584254 -n02791124 -n02088238 -n04328186 -n01582220 -n02231487 -n03717622 -n01751748 -n03721384 -n02108422 -n01669191 -n02980441 -n04243546 -n03982430 -n02422106 -n03014705 -n04371774 -n04125021 -n02090622 -n01930112 -n04552348 -n03764736 -n01582220 -n02056570 -n02089973 -n09399592 -n03450230 -n03770679 -n03445924 -n02007558 -n02268443 -n02396427 -n01440764 -n03062245 -n02134418 -n03594734 -n02094433 -n04264628 -n02992211 -n02093428 -n02100735 -n04367480 -n03764736 -n03041632 -n01443537 -n03476684 -n09229709 -n04355338 -n02128385 -n04550184 -n01806567 -n02098413 -n04086273 -n02090379 -n03958227 -n02091467 -n02108000 -n03658185 -n02843684 -n01440764 -n02981792 -n07892512 -n03297495 -n03692522 -n03937543 -n03691459 -n03240683 -n02977058 -n07730033 -n04591713 -n11939491 -n03902125 -n02783161 -n04355338 -n02281406 -n03538406 -n01608432 -n03935335 -n01983481 -n02730930 -n01968897 -n03769881 -n04493381 -n02112018 -n02391049 -n04389033 -n03775546 -n02172182 -n09399592 -n02093991 -n01806143 -n02226429 -n01669191 -n04125021 -n02113712 -n02860847 -n02074367 -n02447366 -n02783161 -n02454379 -n01984695 -n03721384 -n03633091 -n03376595 -n02120505 -n02105505 -n04517823 -n03372029 -n03527444 -n03786901 -n03478589 -n02066245 -n07892512 -n01491361 -n02108089 -n03325584 -n03717622 -n03773504 -n01582220 -n03676483 -n04540053 -n07248320 -n04118538 -n02095314 -n12267677 -n03602883 -n02815834 -n03379051 -n02172182 -n02107142 -n06874185 -n01776313 -n07714571 -n01775062 -n03452741 -n03916031 -n04118538 -n01580077 -n02497673 -n01518878 -n03673027 -n02101388 -n03187595 -n04350905 -n02408429 -n03417042 -n02514041 -n02116738 -n03476684 -n02497673 -n04285008 -n03126707 -n03544143 -n04147183 -n03481172 -n04041544 -n02268443 -n09472597 -n02085782 -n03400231 -n03954731 -n04074963 -n03782006 -n02281787 -n04023962 -n04008634 -n07875152 -n07716906 -n02109525 -n03995372 -n02096177 -n01981276 -n03884397 -n02509815 -n03529860 -n03584829 -n02268853 -n04141975 -n04599235 -n03759954 -n02894605 -n02454379 -n03014705 -n02786058 -n04505470 -n02172182 -n02979186 -n02091635 -n02007558 -n02797295 -n02817516 -n02233338 -n04099969 -n03250847 -n02950826 -n02124075 -n01484850 -n02096294 -n02965783 -n01943899 -n02028035 -n04486054 -n02417914 -n03445777 -n04009552 -n02125311 -n03770439 -n02018207 -n02219486 -n04111531 -n09288635 -n03825788 -n03223299 -n04606251 -n02396427 -n07717410 -n02111277 -n04515003 -n02643566 -n03733131 -n02093428 -n01807496 -n02480855 -n03527444 -n02099849 -n04482393 -n02361337 -n02107574 -n04201297 -n03633091 -n04033995 -n02641379 -n02790996 -n02190166 -n03127747 -n02483362 -n03126707 -n03590841 -n07717410 -n04033901 -n02676566 -n07875152 -n02100236 -n04584207 -n01737021 -n02493509 -n02105251 -n03930630 -n03873416 -n02396427 -n02493793 -n03250847 -n02088466 -n02814533 -n02108000 -n01443537 -n02988304 -n01944390 -n04285008 -n04356056 -n01930112 -n03630383 -n02281406 -n02346627 -n04493381 -n03709823 -n01755581 -n02018795 -n07802026 -n11939491 -n07836838 -n04429376 -n03967562 -n02113023 -n03724870 -n03792972 -n01753488 -n07875152 -n07753592 -n04357314 -n03642806 -n04131690 -n04258138 -n01667114 -n02782093 -n02493509 -n04465501 -n07583066 -n02256656 -n01532829 -n01872401 -n07684084 -n03763968 -n04579145 -n03492542 -n04417672 -n04350905 -n04069434 -n03866082 -n04311174 -n01756291 -n02797295 -n03642806 -n03676483 -n03697007 -n02087046 -n03207941 -n04201297 -n02074367 -n01608432 -n02111500 -n03633091 -n02804610 -n04562935 -n02093859 -n03935335 -n02051845 -n01990800 -n02799071 -n04228054 -n02100877 -n01755581 -n02129604 -n02727426 -n01860187 -n04326547 -n03776460 -n02206856 -n02093256 -n01968897 -n02326432 -n03770679 -n02509815 -n02978881 -n03018349 -n03394916 -n02977058 -n03891332 -n01665541 -n04141327 -n02233338 -n02092339 -n03388549 -n04548362 -n04296562 -n04067472 -n03014705 -n02747177 -n02441942 -n04081281 -n03290653 -n02066245 -n01983481 -n02085936 -n01518878 -n02085620 -n04346328 -n01601694 -n01532829 -n03992509 -n01694178 -n02437616 -n04612504 -n02666196 -n03950228 -n02093754 -n02123597 -n01817953 -n02190166 -n04067472 -n03933933 -n02398521 -n02097130 -n03444034 -n03792972 -n04418357 -n01871265 -n03208938 -n01768244 -n02174001 -n02219486 -n01774384 -n07742313 -n04355933 -n02129165 -n07742313 -n01697457 -n04310018 -n02669723 -n04367480 -n01592084 -n02105251 -n02113799 -n07565083 -n02091032 -n02011460 -n03773504 -n02445715 -n04275548 -n02112018 -n01632458 -n02486261 -n07714990 -n02106550 -n03478589 -n02963159 -n03743016 -n04146614 -n03970156 -n03874293 -n07749582 -n06874185 -n01950731 -n01498041 -n04090263 -n02077923 -n02106662 -n02786058 -n04591157 -n03481172 -n03924679 -n02500267 -n04258138 -n04540053 -n03160309 -n02087394 -n03494278 -n04325704 -n01669191 -n02108551 -n01980166 -n03314780 -n02808440 -n04447861 -n02281787 -n02095889 -n02489166 -n02114367 -n04344873 -n02058221 -n02444819 -n02988304 -n03495258 -n02002556 -n03874293 -n02085782 -n01695060 -n02870880 -n01608432 -n02948072 -n04067472 -n02098286 -n02093428 -n04009552 -n12267677 -n02085782 -n03376595 -n04335435 -n03891332 -n03733281 -n02264363 -n02132136 -n04263257 -n01698640 -n01753488 -n07714990 -n03417042 -n03259280 -n01737021 -n04118538 -n01773797 -n03124170 -n03874293 -n09421951 -n02747177 -n09288635 -n04136333 -n03956157 -n02093256 -n03729826 -n03538406 -n01774384 -n04355338 -n02105251 -n02403003 -n01697457 -n01828970 -n02892767 -n02018207 -n02134084 -n03733805 -n07930864 -n02097474 -n04507155 -n04344873 -n02950826 -n03721384 -n01943899 -n07920052 -n02319095 -n04149813 -n02364673 -n01742172 -n04428191 -n03450230 -n09399592 -n01689811 -n01978287 -n07716358 -n02074367 -n04557648 -n03062245 -n02105251 -n07716906 -n03623198 -n03125729 -n03876231 -n04509417 -n03041632 -n04347754 -n06359193 -n04118538 -n01806143 -n07749582 -n02105855 -n13052670 -n02094114 -n03775071 -n01873310 -n03788195 -n04311004 -n03018349 -n03089624 -n02087046 -n03379051 -n04493381 -n07714990 -n03895866 -n15075141 -n07684084 -n01755581 -n07715103 -n04285008 -n03476991 -n04049303 -n03496892 -n03041632 -n02403003 -n03832673 -n04131690 -n04479046 -n04479046 -n02259212 -n01734418 -n02002556 -n03179701 -n03992509 -n07932039 -n04467665 -n02099712 -n04456115 -n03690938 -n04367480 -n01729322 -n03961711 -n03841143 -n02963159 -n03476991 -n04074963 -n02077923 -n01532829 -n02865351 -n02966687 -n01694178 -n03017168 -n04429376 -n03935335 -n09246464 -n04004767 -n03208938 -n04111531 -n04389033 -n07760859 -n04326547 -n04209239 -n07697537 -n03785016 -n04367480 -n04037443 -n04311174 -n02814533 -n02113799 -n02825657 -n02672831 -n02114855 -n02090622 -n09399592 -n04482393 -n01910747 -n04417672 -n04162706 -n02098413 -n07717556 -n01580077 -n02092002 -n03014705 -n04370456 -n02835271 -n03047690 -n03944341 -n07613480 -n02361337 -n02356798 -n02835271 -n02011460 -n02096051 -n01843065 -n03498962 -n07583066 -n07734744 -n04277352 -n02088632 -n09835506 -n04141327 -n01820546 -n03218198 -n03825788 -n04310018 -n02099849 -n02025239 -n07753275 -n03876231 -n02099267 -n03794056 -n07590611 -n01740131 -n02091032 -n04200800 -n01770081 -n02869837 -n03379051 -n01833805 -n03929855 -n02749479 -n01644900 -n03445777 -n02110627 -n01630670 -n04273569 -n04483307 -n02138441 -n07892512 -n01983481 -n02108422 -n02948072 -n02094258 -n03141823 -n01632458 -n04517823 -n04380533 -n09472597 -n02165456 -n01930112 -n03018349 -n02268853 -n01770081 -n04141975 -n03998194 -n03384352 -n04147183 -n03045698 -n03791053 -n03944341 -n02536864 -n01829413 -n02088466 -n01694178 -n02106382 -n01748264 -n03759954 -n12985857 -n04254680 -n04465501 -n02795169 -n02096177 -n02444819 -n01558993 -n02115641 -n03445924 -n02701002 -n06359193 -n01773549 -n03637318 -n02437312 -n04332243 -n02865351 -n02088632 -n04067472 -n02092002 -n03956157 -n04326547 -n02786058 -n01784675 -n01847000 -n04146614 -n03666591 -n04310018 -n01914609 -n07695742 -n03404251 -n03891251 -n06874185 -n03062245 -n03355925 -n12267677 -n04254120 -n07714990 -n02233338 -n02804414 -n03062245 -n02018795 -n07720875 -n03075370 -n03530642 -n01980166 -n01667114 -n04553703 -n09468604 -n06794110 -n04367480 -n02963159 -n03710193 -n01980166 -n03000134 -n03938244 -n02231487 -n02493509 -n03447721 -n07583066 -n09472597 -n03877845 -n04147183 -n04229816 -n12998815 -n03877472 -n07718472 -n03063599 -n01665541 -n02111889 -n06596364 -n02094433 -n01817953 -n02091635 -n01755581 -n01740131 -n01592084 -n03673027 -n03467068 -n03924679 -n04467665 -n03733805 -n01833805 -n03089624 -n02091635 -n02489166 -n02112350 -n04192698 -n02102040 -n02823428 -n04074963 -n01872401 -n04579145 -n03788365 -n04086273 -n02009229 -n07753113 -n02504458 -n02002724 -n02097474 -n07754684 -n03134739 -n02113978 -n02403003 -n03998194 -n01688243 -n03891332 -n04133789 -n02111500 -n02916936 -n07248320 -n04404412 -n04209239 -n07590611 -n03673027 -n04008634 -n03272010 -n13040303 -n09399592 -n02007558 -n02488291 -n07716906 -n04009552 -n02111889 -n03658185 -n01980166 -n04367480 -n02892201 -n04423845 -n03131574 -n04041544 -n04266014 -n03825788 -n02033041 -n02002724 -n01871265 -n04099969 -n02321529 -n02666196 -n01698640 -n03709823 -n02356798 -n03089624 -n03873416 -n02097130 -n02108089 -n04258138 -n01667778 -n04456115 -n03492542 -n02363005 -n01871265 -n01950731 -n04153751 -n01984695 -n01614925 -n02110958 -n01824575 -n01981276 -n15075141 -n03814906 -n03874599 -n04118776 -n01675722 -n02939185 -n03742115 -n01697457 -n02326432 -n02090622 -n04532106 -n03983396 -n02415577 -n02412080 -n02102480 -n03459775 -n04380533 -n04254777 -n01631663 -n03404251 -n07871810 -n02123045 -n02226429 -n01871265 -n01820546 -n01688243 -n02825657 -n01689811 -n02095570 -n04019541 -n03777754 -n01748264 -n02123045 -n02129604 -n02105056 -n02125311 -n02089973 -n03649909 -n04540053 -n03670208 -n02097209 -n01819313 -n03110669 -n02124075 -n02437616 -n01843383 -n03935335 -n02782093 -n07753113 -n03791053 -n02111129 -n07614500 -n03761084 -n03676483 -n01978455 -n03857828 -n02488702 -n02165456 -n07734744 -n03991062 -n02860847 -n03954731 -n03045698 -n03944341 -n02111129 -n02092002 -n03891251 -n02130308 -n01945685 -n03188531 -n02457408 -n03085013 -n03796401 -n13052670 -n02398521 -n03743016 -n02229544 -n03160309 -n02276258 -n02276258 -n02504013 -n02281406 -n02877765 -n03649909 -n07697313 -n02058221 -n02077923 -n03394916 -n02256656 -n04328186 -n02009229 -n03476684 -n03388549 -n07714571 -n09193705 -n02396427 -n01806567 -n02090379 -n02100583 -n04483307 -n02120079 -n01914609 -n01630670 -n04259630 -n07695742 -n02106030 -n02883205 -n02398521 -n03995372 -n07590611 -n04099969 -n02110063 -n03785016 -n02669723 -n03125729 -n04442312 -n07920052 -n02497673 -n02454379 -n02091831 -n02454379 -n02088632 -n02115641 -n03761084 -n02606052 -n02264363 -n01843065 -n03623198 -n03445777 -n02481823 -n01773157 -n03109150 -n04458633 -n02165456 -n02190166 -n04111531 -n03197337 -n04542943 -n04507155 -n02089867 -n02342885 -n02099601 -n03787032 -n03483316 -n02454379 -n04041544 -n02086079 -n04485082 -n07831146 -n02106030 -n03445777 -n02398521 -n02666196 -n02009912 -n01534433 -n03126707 -n12057211 -n04355933 -n02025239 -n04336792 -n02906734 -n02002556 -n04487394 -n03291819 -n01614925 -n04235860 -n04270147 -n03291819 -n03837869 -n04192698 -n04120489 -n02930766 -n02128385 -n02837789 -n02105505 -n01704323 -n02481823 -n03384352 -n02167151 -n07753592 -n07614500 -n02134084 -n04515003 -n01729322 -n04033901 -n02134418 -n01514668 -n03942813 -n02101556 -n03642806 -n03733131 -n03290653 -n02174001 -n01784675 -n03777754 -n03942813 -n02802426 -n04049303 -n03535780 -n02492035 -n04070727 -n03075370 -n04372370 -n07860988 -n04367480 -n03786901 -n04562935 -n07590611 -n02102973 -n07248320 -n03095699 -n04009552 -n07614500 -n09288635 -n03724870 -n04258138 -n01698640 -n07753113 -n04263257 -n01755581 -n04447861 -n02666196 -n03733281 -n02051845 -n02058221 -n03958227 -n02403003 -n02097474 -n02099429 -n02484975 -n07836838 -n10565667 -n07720875 -n02486261 -n02321529 -n01755581 -n03100240 -n03063599 -n01664065 -n02783161 -n03803284 -n03110669 -n02086240 -n02487347 -n02097209 -n04310018 -n02012849 -n04120489 -n03482405 -n02447366 -n01749939 -n03478589 -n02963159 -n04428191 -n04285008 -n01530575 -n02111129 -n03109150 -n07697313 -n02802426 -n03690938 -n01914609 -n02481823 -n02259212 -n03538406 -n15075141 -n03649909 -n04483307 -n04613696 -n10565667 -n02488702 -n02094258 -n02096585 -n02127052 -n02391049 -n01734418 -n09332890 -n03379051 -n02133161 -n12144580 -n02099429 -n04447861 -n04120489 -n07860988 -n02129604 -n03065424 -n02095314 -n04154565 -n02655020 -n02165105 -n04275548 -n02415577 -n02786058 -n02091467 -n03444034 -n01498041 -n07590611 -n04554684 -n02109047 -n04552348 -n03814639 -n03125729 -n03888257 -n03950228 -n02089973 -n03967562 -n02749479 -n03729826 -n02018207 -n04487081 -n03017168 -n03976657 -n03938244 -n02769748 -n07836838 -n02002724 -n03100240 -n03598930 -n04479046 -n01644373 -n02708093 -n02134418 -n13054560 -n09332890 -n03133878 -n04554684 -n03041632 -n02869837 -n03014705 -n02510455 -n03954731 -n02788148 -n02859443 -n02640242 -n02087046 -n03891332 -n02124075 -n03476684 -n04270147 -n04542943 -n03916031 -n02051845 -n02104029 -n04270147 -n02422106 -n03692522 -n02115641 -n02447366 -n03710721 -n02112018 -n03000134 -n02105162 -n02097047 -n02356798 -n04037443 -n02071294 -n07892512 -n03924679 -n01687978 -n02098286 -n03345487 -n04254777 -n03680355 -n02963159 -n01582220 -n04090263 -n03761084 -n04604644 -n02097209 -n03109150 -n02088632 -n03937543 -n01943899 -n02093647 -n02093428 -n03461385 -n04270147 -n04389033 -n03534580 -n09468604 -n02107312 -n01797886 -n02090379 -n02871525 -n01667778 -n01773549 -n01755581 -n02093991 -n04350905 -n03995372 -n02280649 -n03933933 -n02226429 -n03207941 -n09399592 -n02106030 -n03590841 -n02966193 -n03787032 -n02115913 -n04099969 -n04273569 -n02037110 -n01917289 -n04254777 -n03888257 -n02807133 -n04589890 -n02091032 -n01685808 -n07714571 -n03777568 -n03379051 -n03028079 -n04275548 -n02395406 -n04040759 -n02109961 -n01872401 -n03825788 -n02112706 -n03692522 -n02086910 -n02321529 -n03131574 -n04311004 -n03929855 -n01514859 -n03804744 -n03417042 -n02794156 -n07730033 -n04120489 -n02342885 -n04041544 -n04366367 -n02116738 -n02992211 -n02276258 -n02895154 -n01984695 -n03661043 -n03207941 -n02025239 -n02123045 -n02117135 -n02107908 -n02815834 -n04355933 -n03598930 -n07742313 -n03876231 -n02259212 -n01775062 -n03617480 -n03840681 -n03902125 -n02930766 -n03633091 -n04404412 -n03825788 -n03337140 -n02018795 -n02447366 -n07613480 -n02493793 -n01694178 -n12620546 -n06874185 -n02443484 -n04209133 -n04515003 -n04540053 -n01796340 -n03623198 -n02108551 -n03763968 -n02410509 -n11879895 -n03832673 -n03930630 -n02490219 -n03937543 -n02111889 -n02096437 -n04154565 -n02971356 -n02865351 -n03776460 -n02777292 -n02190166 -n04612504 -n04081281 -n02747177 -n03777754 -n02445715 -n03857828 -n11939491 -n01981276 -n04041544 -n04458633 -n03447721 -n02106030 -n02834397 -n02097474 -n01877812 -n02085936 -n02096051 -n03272562 -n03793489 -n02099849 -n03649909 -n01882714 -n02860847 -n04039381 -n04264628 -n02484975 -n02167151 -n02074367 -n01773549 -n04367480 -n07718747 -n02841315 -n02910353 -n02106550 -n03602883 -n04153751 -n03992509 -n09468604 -n02129604 -n09229709 -n02056570 -n03594734 -n02111277 -n07590611 -n02704792 -n03868863 -n02115641 -n02444819 -n02808304 -n04355338 -n02281787 -n02138441 -n03814906 -n04409515 -n01739381 -n03495258 -n03627232 -n02085620 -n02190166 -n03355925 -n03188531 -n02100735 -n03961711 -n02823428 -n07860988 -n01740131 -n09229709 -n03777568 -n03908618 -n02108551 -n02177972 -n09288635 -n01693334 -n02106382 -n04026417 -n03388183 -n02002724 -n03208938 -n04517823 -n04336792 -n03658185 -n02097474 -n02690373 -n13044778 -n02281787 -n02641379 -n02130308 -n02704792 -n01582220 -n02027492 -n04525305 -n02119789 -n13054560 -n03724870 -n02488291 -n07697313 -n02132136 -n04336792 -n03983396 -n03944341 -n01774384 -n02027492 -n02091134 -n07860988 -n02106550 -n04357314 -n03662601 -n03868242 -n03804744 -n02112350 -n01774750 -n02088238 -n07718472 -n01742172 -n02992529 -n04404412 -n02089867 -n03345487 -n02437312 -n02930766 -n13133613 -n02206856 -n02486410 -n03843555 -n04476259 -n02094433 -n01843065 -n07714571 -n02389026 -n04099969 -n01843065 -n03180011 -n09472597 -n03670208 -n01751748 -n01807496 -n02229544 -n02101006 -n03188531 -n03290653 -n02403003 -n02699494 -n04266014 -n02708093 -n04399382 -n02804414 -n07747607 -n02749479 -n03424325 -n04522168 -n01843065 -n01682714 -n02138441 -n11879895 -n04355338 -n03662601 -n03658185 -n03483316 -n07718747 -n03476684 -n02110958 -n04040759 -n03814906 -n04461696 -n02492660 -n04044716 -n04596742 -n01770081 -n01806143 -n04589890 -n03016953 -n02493793 -n01983481 -n01484850 -n02981792 -n03710637 -n02104029 -n01498041 -n03976657 -n04009552 -n02790996 -n04235860 -n04447861 -n01910747 -n03481172 -n04090263 -n03929660 -n07248320 -n03271574 -n03661043 -n03954731 -n03016953 -n07614500 -n03920288 -n02091244 -n02676566 -n13044778 -n03843555 -n07871810 -n03832673 -n04252225 -n02174001 -n03832673 -n10148035 -n02280649 -n09229709 -n06874185 -n02823428 -n02692877 -n02823428 -n07753592 -n02782093 -n03459775 -n09288635 -n04204347 -n02483708 -n04461696 -n02791124 -n03710193 -n12768682 -n04435653 -n04204347 -n02669723 -n03657121 -n01518878 -n04026417 -n02319095 -n03791053 -n02110063 -n02281787 -n03197337 -n04152593 -n02025239 -n03633091 -n02259212 -n02423022 -n03891332 -n03874293 -n02071294 -n01773797 -n07711569 -n02007558 -n13133613 -n02017213 -n04270147 -n02113624 -n02916936 -n01675722 -n07614500 -n03673027 -n02109961 -n02950826 -n02966193 -n01685808 -n02804610 -n02095314 -n03929855 -n10565667 -n02013706 -n02123394 -n03590841 -n07711569 -n02113799 -n07860988 -n04367480 -n07873807 -n02096585 -n02002724 -n02134418 -n02398521 -n04033901 -n02110063 -n09468604 -n01990800 -n04423845 -n02177972 -n04447861 -n02096585 -n02442845 -n04265275 -n04317175 -n01807496 -n04366367 -n03814906 -n12998815 -n03482405 -n03884397 -n03673027 -n03673027 -n03793489 -n02443114 -n02988304 -n02422106 -n04326547 -n02992529 -n01860187 -n03895866 -n03180011 -n04118776 -n03461385 -n04275548 -n15075141 -n03761084 -n01944390 -n04317175 -n04152593 -n02927161 -n03956157 -n02085620 -n02727426 -n01667114 -n04493381 -n01729322 -n04081281 -n01484850 -n03124043 -n02841315 -n02108089 -n03345487 -n02892201 -n07875152 -n02093991 -n03697007 -n02119789 -n01739381 -n02319095 -n02361337 -n01883070 -n02492035 -n02107312 -n07715103 -n04264628 -n01843065 -n07860988 -n01795545 -n01592084 -n03676483 -n04254120 -n03223299 -n03220513 -n02108915 -n03873416 -n02128925 -n02389026 -n01698640 -n15075141 -n03028079 -n01644900 -n01694178 -n03761084 -n03873416 -n03710637 -n03924679 -n03627232 -n04542943 -n03095699 -n02100236 -n01784675 -n01744401 -n04153751 -n03770439 -n02107142 -n03297495 -n07753275 -n04008634 -n07615774 -n04550184 -n02110806 -n04404412 -n03976467 -n07715103 -n04525038 -n02776631 -n02099267 -n02095314 -n03028079 -n02100236 -n03930630 -n03188531 -n02094258 -n04554684 -n03887697 -n02116738 -n02007558 -n02102973 -n02130308 -n04328186 -n04141076 -n03220513 -n02444819 -n04458633 -n01735189 -n02701002 -n02071294 -n01498041 -n04070727 -n04423845 -n02089973 -n04141975 -n01729322 -n01824575 -n04251144 -n01692333 -n01484850 -n04208210 -n01667114 -n04458633 -n04141076 -n02058221 -n02088466 -n07760859 -n04560804 -n02099267 -n03000134 -n02481823 -n02788148 -n02097047 -n04487081 -n04286575 -n02233338 -n04344873 -n02490219 -n02123159 -n02120079 -n02114855 -n02088238 -n01775062 -n04136333 -n03344393 -n03535780 -n02074367 -n03782006 -n02487347 -n02134418 -n02500267 -n03208938 -n04162706 -n02410509 -n02091635 -n04417672 -n01537544 -n02951358 -n02116738 -n03594734 -n03775071 -n03594945 -n04532670 -n01695060 -n02277742 -n02123597 -n02883205 -n07932039 -n02497673 -n07754684 -n02112018 -n03538406 -n03895866 -n01494475 -n02177972 -n03197337 -n02105641 -n02992529 -n04070727 -n02109525 -n02125311 -n04456115 -n02980441 -n03841143 -n03938244 -n03661043 -n01756291 -n03794056 -n02018207 -n03126707 -n01614925 -n03992509 -n03127925 -n02115913 -n03773504 -n02776631 -n09472597 -n02177972 -n03532672 -n04476259 -n04517823 -n13052670 -n07753275 -n01685808 -n04120489 -n02120079 -n02123159 -n02087046 -n03598930 -n02487347 -n03065424 -n04517823 -n02797295 -n02804414 -n02843684 -n02018795 -n03976657 -n04005630 -n02699494 -n03814906 -n09332890 -n02493793 -n04442312 -n02100877 -n04532670 -n03047690 -n02077923 -n03733281 -n04266014 -n09835506 -n02492660 -n04330267 -n07716358 -n01601694 -n04579432 -n04380533 -n01749939 -n03444034 -n03400231 -n03584254 -n03710721 -n03895866 -n04591713 -n03903868 -n02088364 -n04141975 -n01774384 -n02112018 -n04485082 -n04259630 -n03041632 -n02097130 -n03775546 -n02093991 -n01742172 -n09193705 -n01984695 -n01924916 -n02190166 -n03706229 -n13037406 -n04604644 -n03602883 -n02504458 -n03467068 -n04536866 -n04398044 -n01986214 -n03777754 -n02066245 -n02346627 -n04370456 -n02108551 -n04204238 -n04371430 -n03792972 -n02441942 -n02096294 -n02699494 -n04589890 -n02085936 -n02105056 -n02415577 -n07734744 -n02098286 -n02113186 -n02096294 -n02871525 -n03873416 -n01784675 -n02788148 -n02051845 -n07930864 -n01692333 -n02111889 -n03662601 -n02097474 -n02165456 -n03595614 -n03452741 -n04606251 -n03796401 -n03452741 -n07693725 -n02112018 -n03388549 -n04562935 -n13133613 -n04461696 -n01796340 -n04270147 -n03187595 -n03666591 -n04120489 -n04522168 -n02111500 -n03976467 -n01729322 -n02364673 -n04356056 -n02797295 -n02114855 -n02749479 -n04357314 -n07565083 -n02676566 -n02088466 -n02823750 -n02093256 -n02256656 -n02119022 -n02883205 -n03584254 -n03775071 -n01682714 -n03124170 -n04201297 -n04044716 -n01629819 -n12998815 -n07584110 -n04532106 -n03825788 -n04501370 -n01560419 -n03065424 -n02106030 -n04229816 -n03623198 -n02280649 -n06785654 -n02342885 -n02488291 -n02606052 -n03271574 -n04070727 -n03717622 -n02447366 -n03065424 -n03527444 -n01943899 -n02095889 -n02132136 -n04204347 -n03026506 -n01749939 -n03742115 -n02105162 -n03733281 -n02006656 -n04552348 -n02493793 -n02992211 -n02089867 -n04111531 -n04590129 -n03982430 -n03495258 -n02640242 -n02099429 -n02132136 -n02444819 -n02056570 -n03494278 -n01773157 -n02137549 -n01534433 -n02018795 -n03630383 -n02281787 -n04120489 -n02104029 -n02098413 -n02488702 -n03379051 -n02807133 -n04591713 -n02110185 -n04209239 -n01558993 -n04325704 -n04264628 -n03291819 -n02793495 -n02133161 -n03908714 -n03584254 -n02091831 -n02099429 -n09835506 -n01798484 -n03041632 -n02808304 -n04136333 -n09428293 -n04465501 -n01688243 -n02093428 -n02129165 -n07749582 -n03197337 -n04392985 -n04367480 -n02484975 -n02607072 -n03089624 -n04116512 -n04286575 -n02233338 -n04118538 -n04254777 -n02410509 -n02091244 -n03016953 -n03026506 -n02113978 -n02091032 -n02096585 -n04179913 -n01775062 -n03903868 -n04277352 -n02841315 -n04597913 -n01614925 -n04067472 -n03876231 -n02095889 -n02100877 -n03444034 -n01484850 -n02490219 -n03272010 -n12057211 -n03980874 -n02097474 -n04270147 -n04429376 -n04111531 -n09399592 -n04005630 -n03595614 -n02123045 -n03657121 -n07892512 -n03840681 -n04296562 -n02807133 -n01806567 -n04258138 -n02114367 -n01675722 -n02794156 -n01698640 -n04296562 -n07717556 -n03476991 -n04005630 -n02099712 -n02099429 -n03721384 -n04277352 -n03127925 -n02256656 -n03201208 -n02088466 -n02086079 -n01632458 -n04376876 -n03998194 -n01440764 -n02704792 -n01855032 -n03095699 -n04355933 -n04465501 -n03841143 -n04501370 -n01558993 -n03042490 -n01950731 -n03935335 -n04584207 -n01984695 -n02747177 -n03775546 -n04525038 -n01632777 -n04485082 -n04116512 -n02486410 -n02096585 -n02096051 -n02110627 -n03272010 -n03775546 -n02123597 -n02992529 -n01632458 -n02089078 -n03954731 -n02437616 -n02120505 -n04507155 -n02114712 -n03532672 -n03983396 -n02108000 -n01514859 -n07802026 -n02951358 -n01882714 -n04505470 -n02231487 -n03388043 -n04482393 -n02112018 -n04008634 -n02606052 -n04273569 -n03594734 -n04532670 -n01855032 -n02342885 -n03950228 -n02093859 -n02841315 -n02025239 -n03930630 -n01797886 -n03240683 -n01775062 -n02321529 -n02342885 -n02108551 -n03216828 -n02281406 -n03710721 -n04201297 -n01950731 -n03216828 -n07880968 -n04208210 -n02514041 -n02123597 -n04517823 -n04553703 -n03482405 -n07697313 -n03690938 -n02444819 -n04049303 -n03085013 -n01843065 -n03709823 -n02117135 -n02787622 -n07579787 -n02099601 -n04229816 -n03776460 -n01644900 -n07579787 -n03733281 -n09472597 -n01797886 -n07802026 -n01806567 -n02108551 -n02093754 -n02132136 -n04254120 -n03877472 -n02480855 -n04285008 -n15075141 -n04325704 -n09332890 -n03947888 -n01828970 -n02106030 -n04501370 -n07730033 -n02113186 -n03026506 -n04266014 -n11939491 -n04270147 -n03777754 -n04522168 -n01860187 -n02443484 -n02835271 -n04125021 -n02794156 -n06596364 -n04265275 -n04136333 -n10565667 -n04483307 -n02277742 -n02094433 -n07716906 -n01514859 -n02397096 -n02102318 -n04442312 -n03680355 -n02086240 -n02174001 -n02277742 -n03832673 -n01768244 -n01739381 -n02361337 -n02607072 -n01843383 -n02091467 -n02090721 -n01756291 -n02099429 -n01806567 -n02966687 -n02094258 -n01986214 -n07697537 -n02909870 -n03967562 -n04296562 -n03388043 -n04482393 -n09421951 -n07614500 -n02865351 -n02089973 -n04557648 -n01537544 -n01819313 -n03929855 -n04136333 -n03977966 -n04099969 -n01675722 -n03832673 -n02643566 -n07749582 -n04275548 -n04005630 -n02074367 -n03623198 -n03495258 -n04296562 -n02437312 -n02113799 -n03874599 -n02454379 -n02877765 -n02109525 -n04270147 -n01729977 -n02950826 -n02110063 -n03216828 -n01484850 -n03062245 -n02128385 -n04228054 -n03179701 -n01796340 -n01694178 -n02088094 -n03942813 -n02869837 -n03770439 -n02097658 -n03047690 -n03742115 -n03724870 -n02966687 -n02098286 -n01687978 -n02100236 -n01616318 -n04442312 -n02396427 -n03998194 -n01773549 -n07747607 -n01944390 -n03891332 -n03045698 -n03877472 -n03207941 -n02494079 -n01819313 -n02093754 -n02088238 -n02168699 -n04515003 -n01675722 -n02018207 -n02690373 -n03777568 -n03026506 -n02342885 -n02102040 -n07583066 -n03961711 -n02916936 -n03958227 -n01698640 -n07714990 -n02483708 -n03680355 -n04141975 -n02085936 -n07930864 -n03691459 -n02892767 -n03770679 -n03450230 -n02165456 -n04560804 -n01614925 -n04458633 -n02500267 -n02190166 -n04380533 -n02950826 -n07860988 -n02346627 -n03814906 -n02494079 -n01817953 -n09421951 -n03041632 -n04371430 -n04371430 -n03743016 -n01630670 -n04074963 -n04326547 -n02894605 -n02086910 -n03935335 -n04461696 -n03476991 -n03697007 -n01818515 -n04263257 -n02088238 -n07697313 -n02110806 -n07747607 -n02108422 -n02641379 -n04507155 -n02124075 -n12985857 -n02342885 -n07697537 -n03742115 -n12998815 -n04591713 -n03450230 -n02110185 -n02091831 -n03424325 -n01795545 -n04507155 -n01616318 -n01704323 -n03887697 -n02128925 -n01824575 -n02099712 -n03498962 -n04273569 -n04090263 -n01775062 -n03970156 -n02480855 -n02730930 -n02326432 -n04355933 -n03355925 -n01734418 -n02107908 -n01978287 -n03874599 -n03478589 -n03788365 -n02325366 -n02445715 -n03180011 -n03792782 -n01667778 -n02490219 -n01882714 -n04005630 -n04118538 -n03775071 -n03792782 -n02123045 -n02264363 -n02776631 -n01773157 -n01614925 -n04548362 -n02009912 -n02487347 -n03272562 -n01685808 -n02835271 -n02110063 -n04153751 -n02123045 -n02417914 -n04208210 -n03476684 -n01768244 -n07697313 -n02100583 -n02504013 -n04040759 -n04067472 -n01798484 -n07248320 -n02094258 -n02483708 -n04557648 -n01828970 -n02172182 -n03658185 -n02493509 -n03991062 -n03494278 -n03291819 -n02410509 -n03733805 -n04579432 -n03124043 -n02966193 -n02190166 -n02526121 -n07753592 -n07753592 -n07768694 -n09246464 -n07711569 -n02018795 -n02105056 -n01669191 -n02268853 -n02488291 -n02793495 -n02101556 -n04476259 -n07584110 -n04542943 -n03670208 -n03929855 -n04204347 -n02094433 -n09472597 -n04479046 -n01667778 -n03459775 -n02056570 -n12620546 -n04286575 -n02795169 -n04209239 -n02101556 -n04532670 -n02009229 -n04584207 -n02795169 -n02112350 -n01667778 -n02939185 -n03908618 -n01753488 -n02841315 -n03388183 -n03218198 -n02776631 -n02363005 -n02130308 -n06596364 -n02814860 -n02110063 -n02117135 -n07684084 -n04254680 -n03109150 -n02408429 -n04389033 -n04483307 -n01797886 -n02095889 -n03958227 -n04548280 -n02410509 -n03837869 -n03720891 -n04435653 -n01498041 -n02749479 -n07718747 -n04461696 -n03388043 -n02133161 -n02165105 -n02817516 -n04532670 -n02013706 -n01682714 -n02102177 -n03290653 -n04086273 -n02090379 -n01797886 -n01440764 -n01818515 -n04562935 -n02782093 -n03793489 -n11879895 -n02814860 -n02669723 -n02974003 -n07693725 -n02104029 -n03372029 -n03045698 -n03100240 -n02127052 -n07579787 -n03874599 -n02504458 -n02132136 -n03692522 -n04517823 -n03223299 -n04418357 -n02110806 -n01728572 -n04259630 -n03930313 -n02321529 -n02105251 -n04317175 -n01491361 -n07753275 -n02028035 -n04476259 -n03742115 -n03032252 -n02328150 -n04591713 -n02088094 -n02190166 -n04067472 -n03134739 -n02102318 -n03026506 -n04371430 -n03535780 -n01614925 -n02111889 -n03977966 -n03131574 -n02071294 -n02110627 -n02109961 -n02412080 -n01580077 -n06359193 -n04209133 -n03775546 -n03630383 -n01753488 -n02672831 -n02092339 -n01644900 -n07730033 -n03124043 -n04065272 -n03697007 -n01616318 -n01558993 -n02107683 -n04044716 -n03877472 -n02786058 -n02087046 -n07717410 -n04019541 -n01622779 -n03337140 -n02978881 -n04131690 -n03887697 -n01582220 -n02536864 -n04065272 -n02977058 -n03825788 -n01687978 -n01756291 -n04486054 -n01737021 -n01968897 -n03047690 -n02106166 -n02259212 -n02326432 -n04476259 -n02115913 -n02006656 -n04254120 -n02871525 -n03220513 -n03769881 -n03692522 -n02730930 -n04235860 -n02112018 -n02107142 -n02834397 -n04008634 -n02100583 -n01729977 -n07714571 -n01629819 -n02028035 -n03724870 -n04355933 -n01614925 -n07714571 -n07584110 -n02870880 -n13054560 -n02727426 -n03877472 -n04263257 -n04127249 -n03630383 -n01978287 -n13044778 -n02509815 -n04251144 -n04141327 -n12620546 -n03388043 -n02951358 -n02412080 -n03110669 -n03937543 -n04044716 -n02101388 -n07716358 -n04462240 -n03933933 -n02840245 -n03485407 -n03461385 -n02119789 -n01944390 -n01924916 -n04127249 -n04209239 -n03908618 -n03133878 -n03992509 -n02410509 -n03796401 -n01798484 -n04557648 -n02088632 -n03000247 -n02971356 -n03840681 -n01776313 -n01773157 -n04366367 -n03325584 -n03873416 -n01807496 -n02790996 -n09421951 -n07734744 -n03000247 -n04597913 -n04332243 -n02408429 -n01677366 -n02229544 -n03891251 -n02110063 -n03532672 -n03937543 -n01558993 -n04540053 -n12057211 -n03388183 -n02841315 -n09399592 -n03933933 -n02823428 -n02102040 -n02690373 -n02895154 -n02085936 -n04458633 -n02415577 -n04579432 -n04557648 -n03630383 -n02009912 -n02113978 -n03000247 -n09246464 -n03498962 -n02992211 -n03249569 -n03930313 -n01632458 -n02086910 -n02097209 -n03032252 -n01496331 -n04118538 -n03272010 -n02095314 -n02930766 -n02112137 -n03697007 -n04127249 -n04141076 -n03376595 -n07613480 -n04023962 -n03958227 -n04515003 -n04596742 -n02108000 -n03874599 -n01776313 -n02088238 -n01950731 -n02086910 -n03384352 -n02093859 -n02088632 -n02749479 -n01631663 -n01955084 -n04275548 -n02493793 -n03690938 -n02802426 -n02110341 -n02906734 -n02124075 -n03991062 -n03584254 -n03444034 -n02979186 -n03888605 -n01534433 -n02129165 -n01614925 -n02397096 -n12985857 -n02123159 -n01984695 -n02097047 -n01616318 -n02117135 -n01682714 -n03814906 -n02105251 -n01877812 -n04367480 -n01770081 -n02099849 -n02328150 -n07590611 -n07734744 -n03673027 -n02129165 -n02111500 -n04090263 -n02129604 -n02894605 -n02128757 -n04238763 -n03720891 -n03793489 -n03424325 -n07716358 -n02493509 -n02099849 -n02091244 -n02097658 -n02138441 -n03047690 -n02093647 -n02108915 -n04263257 -n02129165 -n04335435 -n07760859 -n02091831 -n03445924 -n02280649 -n02640242 -n04613696 -n03527444 -n01798484 -n03995372 -n01728572 -n04004767 -n02099267 -n07920052 -n03709823 -n02095570 -n02018795 -n03642806 -n04074963 -n04141327 -n01917289 -n04131690 -n03250847 -n02104365 -n03602883 -n02093428 -n03109150 -n03240683 -n02086079 -n02114712 -n02093256 -n02102040 -n03495258 -n04584207 -n02870880 -n02916936 -n07875152 -n07583066 -n02730930 -n04019541 -n04254120 -n02666196 -n03141823 -n03063689 -n06596364 -n02906734 -n03445777 -n02971356 -n03891332 -n07892512 -n02442845 -n03527444 -n02667093 -n01806143 -n03902125 -n02457408 -n01693334 -n02799071 -n02814533 -n06874185 -n02088466 -n03825788 -n01484850 -n03355925 -n02095889 -n02086646 -n03942813 -n03425413 -n04550184 -n02817516 -n04049303 -n04483307 -n02097209 -n03388549 -n02815834 -n02487347 -n02074367 -n02113186 -n02536864 -n02114855 -n07697313 -n03938244 -n02492035 -n02085620 -n02085620 -n03223299 -n04273569 -n03496892 -n03866082 -n03065424 -n03877845 -n02871525 -n03404251 -n04462240 -n02113799 -n02093859 -n03742115 -n02123045 -n04487081 -n02107312 -n03938244 -n02966687 -n02342885 -n03781244 -n02493509 -n02134084 -n02749479 -n07749582 -n12144580 -n02114548 -n13052670 -n07753113 -n03777754 -n07615774 -n02483708 -n01784675 -n01978287 -n02536864 -n02443484 -n03877472 -n04074963 -n01632777 -n02815834 -n01669191 -n02104029 -n02093859 -n01883070 -n01774750 -n01667778 -n01728920 -n02219486 -n03124170 -n02123394 -n01740131 -n04228054 -n01592084 -n02128925 -n02281787 -n02093647 -n01667778 -n02128925 -n01978287 -n02130308 -n03065424 -n12620546 -n13052670 -n02480855 -n03376595 -n07734744 -n04019541 -n02536864 -n04350905 -n01773549 -n03782006 -n02111129 -n01806567 -n07753275 -n02256656 -n01984695 -n04443257 -n02410509 -n02092339 -n02115913 -n01806143 -n02815834 -n03908618 -n02279972 -n03691459 -n03216828 -n04370456 -n02676566 -n03710721 -n01629819 -n03967562 -n03482405 -n04487081 -n01744401 -n02454379 -n02007558 -n03201208 -n03793489 -n03902125 -n02672831 -n03447447 -n02749479 -n01440764 -n03538406 -n03794056 -n02097130 -n04332243 -n02814860 -n02488291 -n03032252 -n02137549 -n02281406 -n01494475 -n02749479 -n04458633 -n01847000 -n03825788 -n01819313 -n01847000 -n03908618 -n03444034 -n02483362 -n04254680 -n02123597 -n03838899 -n02104029 -n03633091 -n03775546 -n01807496 -n03692522 -n03721384 -n04208210 -n02892767 -n02086240 -n02492660 -n04049303 -n04238763 -n03793489 -n02107574 -n02364673 -n02134084 -n02092339 -n02906734 -n04371774 -n02097658 -n02102040 -n01968897 -n02090622 -n03916031 -n03658185 -n02536864 -n03697007 -n03924679 -n02325366 -n03337140 -n02999410 -n01983481 -n03141823 -n03662601 -n01729322 -n02676566 -n02992211 -n03089624 -n01632777 -n02443484 -n03534580 -n01847000 -n02102318 -n01855032 -n03961711 -n03895866 -n02892767 -n01601694 -n02443484 -n03930313 -n03062245 -n02988304 -n02090622 -n02107908 -n03290653 -n04542943 -n04296562 -n01986214 -n02233338 -n02093991 -n03482405 -n02966193 -n03786901 -n02027492 -n04392985 -n03376595 -n07714990 -n02504013 -n04606251 -n03724870 -n02093991 -n03933933 -n02804414 -n03063599 -n01698640 -n03498962 -n04252225 -n02013706 -n03026506 -n03787032 -n04536866 -n02100583 -n01582220 -n02500267 -n03388183 -n07693725 -n02033041 -n03908714 -n02219486 -n02730930 -n03710193 -n02108915 -n01749939 -n02817516 -n01729977 -n02086910 -n02107908 -n03450230 -n07565083 -n02128385 -n03141823 -n04259630 -n01914609 -n07697537 -n04447861 -n02099849 -n03126707 -n01943899 -n04118776 -n02791124 -n03763968 -n03492542 -n02094433 -n04366367 -n01614925 -n02007558 -n02128757 -n04019541 -n04612504 -n02841315 -n13044778 -n04147183 -n03933933 -n02110627 -n02226429 -n01631663 -n03676483 -n02487347 -n04507155 -n03216828 -n07718472 -n02058221 -n03127747 -n07745940 -n02102177 -n02113712 -n02965783 -n03840681 -n04310018 -n01774384 -n02177972 -n03063599 -n01697457 -n03759954 -n02085620 -n07753113 -n03393912 -n02692877 -n03868242 -n02403003 -n03249569 -n03884397 -n02396427 -n03457902 -n07718747 -n02167151 -n04154565 -n04147183 -n04118538 -n03124043 -n04372370 -n01667114 -n03998194 -n03995372 -n10565667 -n01798484 -n04591157 -n03127747 -n02105641 -n03485407 -n02102177 -n04461696 -n01824575 -n02066245 -n04317175 -n02107312 -n06874185 -n04465501 -n02939185 -n04019541 -n03459775 -n04548280 -n03047690 -n04325704 -n07871810 -n01819313 -n03782006 -n02086079 -n03584254 -n03929660 -n02492035 -n03670208 -n02412080 -n02109525 -n02397096 -n01582220 -n03188531 -n02105641 -n02033041 -n03992509 -n02328150 -n03000684 -n03126707 -n07590611 -n02102480 -n07684084 -n07590611 -n09421951 -n04285008 -n02930766 -n04604644 -n03584829 -n03447721 -n01693334 -n02910353 -n03532672 -n04127249 -n04154565 -n03014705 -n13052670 -n03483316 -n02817516 -n03759954 -n03733805 -n04204238 -n02110341 -n04147183 -n02007558 -n02268443 -n03133878 -n03255030 -n02442845 -n02018207 -n04069434 -n02667093 -n03866082 -n02113978 -n02108000 -n03832673 -n04039381 -n01677366 -n01955084 -n02113023 -n04371430 -n03134739 -n03840681 -n07714571 -n01955084 -n03785016 -n03924679 -n04443257 -n03709823 -n04204347 -n02086079 -n02361337 -n04317175 -n09229709 -n04270147 -n01518878 -n02105412 -n07720875 -n02177972 -n02098105 -n03534580 -n02492660 -n03954731 -n03874599 -n04243546 -n04344873 -n04252077 -n02009229 -n01774384 -n03843555 -n02988304 -n02422699 -n03045698 -n03775071 -n02098105 -n04099969 -n01582220 -n03026506 -n02099849 -n02814860 -n02980441 -n07875152 -n01873310 -n02117135 -n02510455 -n02108422 -n04599235 -n03450230 -n02105505 -n04239074 -n04131690 -n04033995 -n03445924 -n01558993 -n02791270 -n03770679 -n02480855 -n02134084 -n02098286 -n03478589 -n01744401 -n04532670 -n02105412 -n03874599 -n04125021 -n01682714 -n02747177 -n02992211 -n03710193 -n01514859 -n01687978 -n04418357 -n02017213 -n01677366 -n02281406 -n02138441 -n03594945 -n02106030 -n03017168 -n02105251 -n04273569 -n02488291 -n09332890 -n03873416 -n02895154 -n02494079 -n02437616 -n01692333 -n04311004 -n03218198 -n02110185 -n02256656 -n07880968 -n02666196 -n03337140 -n04399382 -n04265275 -n04254120 -n01798484 -n03602883 -n03825788 -n01833805 -n02704792 -n01734418 -n03594734 -n02701002 -n02085620 -n01582220 -n03623198 -n03000134 -n02992211 -n03691459 -n02526121 -n03998194 -n01990800 -n03933933 -n02950826 -n01748264 -n15075141 -n10565667 -n15075141 -n02116738 -n02643566 -n02837789 -n04005630 -n02091134 -n02071294 -n10148035 -n02951358 -n04127249 -n03866082 -n04579145 -n04239074 -n02492035 -n02107683 -n04239074 -n04004767 -n04550184 -n03961711 -n03201208 -n03207941 -n03134739 -n02892767 -n03394916 -n02398521 -n03868863 -n02486410 -n04487394 -n03394916 -n01496331 -n04418357 -n02168699 -n02097209 -n01537544 -n01687978 -n02799071 -n04009552 -n03345487 -n04346328 -n12057211 -n03485794 -n02443484 -n02229544 -n02840245 -n02415577 -n02104029 -n03792782 -n03888605 -n02128925 -n03045698 -n03837869 -n02749479 -n04033995 -n02422106 -n03404251 -n04208210 -n02113712 -n03459775 -n02514041 -n04371430 -n01644373 -n03447721 -n13052670 -n03492542 -n04366367 -n01968897 -n02033041 -n02114712 -n02804414 -n01796340 -n04009552 -n04597913 -n03141823 -n04612504 -n01729322 -n02492660 -n03792972 -n02130308 -n03400231 -n01632777 -n03085013 -n01729322 -n02095570 -n03970156 -n04009552 -n03950228 -n02086646 -n02108000 -n03196217 -n01580077 -n04275548 -n04599235 -n01774750 -n03498962 -n03457902 -n03930630 -n04590129 -n01968897 -n04462240 -n04554684 -n02840245 -n02804414 -n07614500 -n03482405 -n02871525 -n04192698 -n02699494 -n03388183 -n04153751 -n03733281 -n01797886 -n01689811 -n02777292 -n02389026 -n03788365 -n01514859 -n02102480 -n03942813 -n02111129 -n03017168 -n02105855 -n04328186 -n02115641 -n02093647 -n02415577 -n02536864 -n13044778 -n02113712 -n02123394 -n01735189 -n03085013 -n03127747 -n02105641 -n04606251 -n02814533 -n02980441 -n02910353 -n02098105 -n04380533 -n02098286 -n02018795 -n02788148 -n01807496 -n03908714 -n03388549 -n02100877 -n03982430 -n01986214 -n04201297 -n03347037 -n04008634 -n04557648 -n03445924 -n02980441 -n03131574 -n02948072 -n01797886 -n04005630 -n02111889 -n02325366 -n01728920 -n02129165 -n02168699 -n04465501 -n01728572 -n02105641 -n01774384 -n04418357 -n02325366 -n03888605 -n04149813 -n02281406 -n03599486 -n03124170 -n02100583 -n03956157 -n03788195 -n04286575 -n04136333 -n04344873 -n03743016 -n01494475 -n01910747 -n02787622 -n04562935 -n02909870 -n02974003 -n02111500 -n03388549 -n04550184 -n07745940 -n03673027 -n02727426 -n03207743 -n04487081 -n04009552 -n02130308 -n02105412 -n03476991 -n01632458 -n02790996 -n04505470 -n04380533 -n02108422 -n07920052 -n03467068 -n03249569 -n03633091 -n02124075 -n03763968 -n03710637 -n03100240 -n02256656 -n03461385 -n02869837 -n02948072 -n03991062 -n02091244 -n04476259 -n02099429 -n02346627 -n02782093 -n02457408 -n02009229 -n02910353 -n02087046 -n01877812 -n03787032 -n02281406 -n04461696 -n03782006 -n01924916 -n03223299 -n01768244 -n04023962 -n07717410 -n03062245 -n07875152 -n03393912 -n02364673 -n03937543 -n02101388 -n04548280 -n12620546 -n03584829 -n04606251 -n02776631 -n04443257 -n02788148 -n03838899 -n02051845 -n07768694 -n03498962 -n02100583 -n02102177 -n07716358 -n04589890 -n02128757 -n02489166 -n03417042 -n03355925 -n02111889 -n03297495 -n03180011 -n03196217 -n02859443 -n02321529 -n04443257 -n03089624 -n07730033 -n03874293 -n03594945 -n02423022 -n11879895 -n02104029 -n02916936 -n02403003 -n03709823 -n04467665 -n01833805 -n02119022 -n02687172 -n02492660 -n02877765 -n02099429 -n03942813 -n02105855 -n02168699 -n07565083 -n03895866 -n03126707 -n02346627 -n02606052 -n03670208 -n02114548 -n02109047 -n03916031 -n01871265 -n04523525 -n02690373 -n03014705 -n02356798 -n02128385 -n02133161 -n03884397 -n02108915 -n03759954 -n03630383 -n02106382 -n02256656 -n02085936 -n03197337 -n03661043 -n04590129 -n03958227 -n04525038 -n02037110 -n03956157 -n03717622 -n02326432 -n03249569 -n01631663 -n01687978 -n12144580 -n02277742 -n03692522 -n04507155 -n04389033 -n04548280 -n01914609 -n01776313 -n03125729 -n02096051 -n02769748 -n04131690 -n02669723 -n04376876 -n01818515 -n02091244 -n03207743 -n03134739 -n03838899 -n02641379 -n02666196 -n02397096 -n02009229 -n02410509 -n02276258 -n03062245 -n02097130 -n02093754 -n02123045 -n04357314 -n03089624 -n02091244 -n01685808 -n02412080 -n03841143 -n01807496 -n02098286 -n02124075 -n02086646 -n03627232 -n09468604 -n01768244 -n07920052 -n03976467 -n03534580 -n03617480 -n04467665 -n07584110 -n04040759 -n02090379 -n03393912 -n01945685 -n04482393 -n01537544 -n02231487 -n02137549 -n03045698 -n04346328 -n04597913 -n02114367 -n07613480 -n02892767 -n04209133 -n02097047 -n02100877 -n02480855 -n03259280 -n03272010 -n07684084 -n03743016 -n01773549 -n02708093 -n02939185 -n03617480 -n01753488 -n07880968 -n03218198 -n02871525 -n02093256 -n01798484 -n02417914 -n02108915 -n04125021 -n03126707 -n04285008 -n02526121 -n04111531 -n02089078 -n02927161 -n02971356 -n04553703 -n02442845 -n01945685 -n01491361 -n04347754 -n04371774 -n09428293 -n04370456 -n01682714 -n01664065 -n02085620 -n02114855 -n03255030 -n02130308 -n04200800 -n02447366 -n04127249 -n02110185 -n02793495 -n03944341 -n03196217 -n02096294 -n04133789 -n07754684 -n03384352 -n03459775 -n04579145 -n01682714 -n03041632 -n07860988 -n06596364 -n04296562 -n04152593 -n01698640 -n03792972 -n04067472 -n03394916 -n01728920 -n04597913 -n04090263 -n03445777 -n13040303 -n07717556 -n01914609 -n07730033 -n02108089 -n04597913 -n02786058 -n06785654 -n03956157 -n04584207 -n03697007 -n02114712 -n02749479 -n07248320 -n03673027 -n02090379 -n04501370 -n01917289 -n04265275 -n04515003 -n03710721 -n03495258 -n04532670 -n04040759 -n01829413 -n02840245 -n02699494 -n02106550 -n03089624 -n02105056 -n02860847 -n02487347 -n02085782 -n03888257 -n03691459 -n02398521 -n04398044 -n01687978 -n04371774 -n02777292 -n01664065 -n04476259 -n04548280 -n12144580 -n02669723 -n02095314 -n02877765 -n04429376 -n03400231 -n03729826 -n02825657 -n02802426 -n03733281 -n03124043 -n07871810 -n02169497 -n04263257 -n01689811 -n04485082 -n04099969 -n03902125 -n04371430 -n02091635 -n03344393 -n02815834 -n13044778 -n02100877 -n02130308 -n09246464 -n02843684 -n01735189 -n06874185 -n02100583 -n02100877 -n15075141 -n02109525 -n02486410 -n02950826 -n01871265 -n02823750 -n07583066 -n02051845 -n01751748 -n02483362 -n03908618 -n02977058 -n02111889 -n04447861 -n02114855 -n02095314 -n02804414 -n02489166 -n04277352 -n02236044 -n02408429 -n02655020 -n01693334 -n03447721 -n02093647 -n02791124 -n02077923 -n04536866 -n03291819 -n02093859 -n02115641 -n04254680 -n04501370 -n04019541 -n02795169 -n03459775 -n04209133 -n07860988 -n04553703 -n02484975 -n03530642 -n02906734 -n04325704 -n04008634 -n12057211 -n02342885 -n04344873 -n03794056 -n02107142 -n04090263 -n02009229 -n02971356 -n02504458 -n04273569 -n09399592 -n03272562 -n02277742 -n02279972 -n07930864 -n02917067 -n04004767 -n04392985 -n07718747 -n02089078 -n03903868 -n03208938 -n02133161 -n03376595 -n02978881 -n03201208 -n02834397 -n02443484 -n02085620 -n02111889 -n03532672 -n04263257 -n03661043 -n15075141 -n04200800 -n03786901 -n01873310 -n04423845 -n01737021 -n02951358 -n02116738 -n01798484 -n03980874 -n02834397 -n02398521 -n01531178 -n07734744 -n01847000 -n03841143 -n02110185 -n13044778 -n02727426 -n02799071 -n02107908 -n01806143 -n03770679 -n03967562 -n02086646 -n02892767 -n01855032 -n02165105 -n01514859 -n04037443 -n03877472 -n03729826 -n01728920 -n02676566 -n03627232 -n04069434 -n04192698 -n02486261 -n02795169 -n04033901 -n01824575 -n02105641 -n02444819 -n01824575 -n03908714 -n04239074 -n02102480 -n02264363 -n01498041 -n02930766 -n04355933 -n04125021 -n03481172 -n02123159 -n02099712 -n04209239 -n02111889 -n02002556 -n03690938 -n04429376 -n03814906 -n04525305 -n02107908 -n01692333 -n04127249 -n01914609 -n04201297 -n02807133 -n01985128 -n02979186 -n02088238 -n03594945 -n03388043 -n09468604 -n03729826 -n02704792 -n07930864 -n03355925 -n04554684 -n04131690 -n04026417 -n02437616 -n03769881 -n04330267 -n02091831 -n01797886 -n02687172 -n02906734 -n02091635 -n02814533 -n02114712 -n03770439 -n04099969 -n04033995 -n02085936 -n01644900 -n02930766 -n01917289 -n01704323 -n04515003 -n01950731 -n03888257 -n07836838 -n02687172 -n02102318 -n02106030 -n02676566 -n01749939 -n03314780 -n03690938 -n02823750 -n03344393 -n03666591 -n04458633 -n04398044 -n01440764 -n04482393 -n03075370 -n02701002 -n04023962 -n01558993 -n07716358 -n02325366 -n02106382 -n04590129 -n10148035 -n02236044 -n04252077 -n12144580 -n02110627 -n03000134 -n02086079 -n03032252 -n02408429 -n03394916 -n02871525 -n01806567 -n02127052 -n02879718 -n03032252 -n03935335 -n04482393 -n03710721 -n04522168 -n04371430 -n04579145 -n03967562 -n03201208 -n04355338 -n04328186 -n04111531 -n01968897 -n02115913 -n01518878 -n04344873 -n02814533 -n01697457 -n04371430 -n01855032 -n01806143 -n03598930 -n02971356 -n03372029 -n02101388 -n02963159 -n02391049 -n01560419 -n02114367 -n03933933 -n03259280 -n01756291 -n04479046 -n07583066 -n03792972 -n02100877 -n07768694 -n02007558 -n03937543 -n03666591 -n02104029 -n01910747 -n02095889 -n04417672 -n03769881 -n03929855 -n02641379 -n02229544 -n07614500 -n04311174 -n02361337 -n07753592 -n02206856 -n04090263 -n03444034 -n04525305 -n02281406 -n02526121 -n01807496 -n02096294 -n01667778 -n02480855 -n07711569 -n02009229 -n01697457 -n03271574 -n01687978 -n02100236 -n03908714 -n01531178 -n02364673 -n03773504 -n03000684 -n02981792 -n04485082 -n01797886 -n03498962 -n03538406 -n03530642 -n01872401 -n02342885 -n02457408 -n02480495 -n02480855 -n01770393 -n01560419 -n01665541 -n04540053 -n04346328 -n04485082 -n02091635 -n03733805 -n02120505 -n02988304 -n04049303 -n02607072 -n02488702 -n03026506 -n07718472 -n03627232 -n03388043 -n02403003 -n03627232 -n03877845 -n03388043 -n02487347 -n04005630 -n01682714 -n01818515 -n04311174 -n01664065 -n04509417 -n02086910 -n02219486 -n04392985 -n04344873 -n01685808 -n07717410 -n03384352 -n01728920 -n02027492 -n02012849 -n04336792 -n02481823 -n07565083 -n03868863 -n03179701 -n02109525 -n04330267 -n03982430 -n03272010 -n04005630 -n02112137 -n03770439 -n02088094 -n02114548 -n02091032 -n01728572 -n03240683 -n02808440 -n02486410 -n02930766 -n01737021 -n03733805 -n03110669 -n03016953 -n01748264 -n02325366 -n01748264 -n02364673 -n02017213 -n04252077 -n02860847 -n03124043 -n03461385 -n02090721 -n03998194 -n02095570 -n07753113 -n04423845 -n04044716 -n01695060 -n01632458 -n02643566 -n02167151 -n01860187 -n02403003 -n02840245 -n03658185 -n04116512 -n02096294 -n01735189 -n01514859 -n04131690 -n02978881 -n03461385 -n03944341 -n02441942 -n07753113 -n01693334 -n09399592 -n02105412 -n03400231 -n04550184 -n02823428 -n02112137 -n03920288 -n04509417 -n03785016 -n03534580 -n02066245 -n02807133 -n01924916 -n02017213 -n03796401 -n02090721 -n01981276 -n02497673 -n09399592 -n01749939 -n03344393 -n03344393 -n02490219 -n04335435 -n04065272 -n07873807 -n03314780 -n03530642 -n02783161 -n02114548 -n02319095 -n03018349 -n01498041 -n02859443 -n02096051 -n04251144 -n03042490 -n02167151 -n02096294 -n09246464 -n12985857 -n02100583 -n03240683 -n02236044 -n02356798 -n02317335 -n02859443 -n02510455 -n01945685 -n03792972 -n02011460 -n03220513 -n04141076 -n03662601 -n07745940 -n02747177 -n12998815 -n04209133 -n02097130 -n01685808 -n04273569 -n04515003 -n02094258 -n02109047 -n03028079 -n02408429 -n03777754 -n02113186 -n02500267 -n03891251 -n02112018 -n04487081 -n02927161 -n01664065 -n03534580 -n03729826 -n03187595 -n02105505 -n07718747 -n02802426 -n02226429 -n04116512 -n01756291 -n01817953 -n07714990 -n02457408 -n03109150 -n04026417 -n02437312 -n02124075 -n02113978 -n03109150 -n02389026 -n06785654 -n03089624 -n03444034 -n04149813 -n02091032 -n04376876 -n02606052 -n03492542 -n04579145 -n01496331 -n01592084 -n04141975 -n01580077 -n02112706 -n03388043 -n02256656 -n02087394 -n04179913 -n07930864 -n04355338 -n03874293 -n04033995 -n02088364 -n03535780 -n03476991 -n04336792 -n03888257 -n07836838 -n03028079 -n03877845 -n03982430 -n02116738 -n04596742 -n03843555 -n15075141 -n04325704 -n04398044 -n02134084 -n02132136 -n03602883 -n01955084 -n02268853 -n02490219 -n04044716 -n02492660 -n01770393 -n03447447 -n07871810 -n01739381 -n03933933 -n02110958 -n04517823 -n10565667 -n02087046 -n02909870 -n07747607 -n13037406 -n03743016 -n02113023 -n07716358 -n01828970 -n04579145 -n04482393 -n02169497 -n04371430 -n01751748 -n01632777 -n02106382 -n01697457 -n04074963 -n03062245 -n02607072 -n03868863 -n04409515 -n01829413 -n04254680 -n01728920 -n02802426 -n03666591 -n01984695 -n02708093 -n02090721 -n02089973 -n02099849 -n02134084 -n13133613 -n03733281 -n02268853 -n04347754 -n02115641 -n04346328 -n02769748 -n01665541 -n03961711 -n02391049 -n01675722 -n02017213 -n03045698 -n02356798 -n02977058 -n01873310 -n02276258 -n03692522 -n02107908 -n03954731 -n04389033 -n02226429 -n03676483 -n02107908 -n01484850 -n01774750 -n02979186 -n03761084 -n03623198 -n03445777 -n03770679 -n01728572 -n03495258 -n04613696 -n02441942 -n03594734 -n02114855 -n02883205 -n04311174 -n04532670 -n02134418 -n03717622 -n02859443 -n03930313 -n03126707 -n03977966 -n03983396 -n04456115 -n07760859 -n01532829 -n04208210 -n03991062 -n04131690 -n03649909 -n03425413 -n02017213 -n02974003 -n03958227 -n02408429 -n01614925 -n03884397 -n04429376 -n01749939 -n01756291 -n01498041 -n03992509 -n03532672 -n04286575 -n03376595 -n02108000 -n02108551 -n07565083 -n03792782 -n02089867 -n07684084 -n03404251 -n03871628 -n04311004 -n13040303 -n02111129 -n02422699 -n03733281 -n04153751 -n04179913 -n02268443 -n02443114 -n03485794 -n07579787 -n02110063 -n01616318 -n03871628 -n07697537 -n02114367 -n02091134 -n02883205 -n02814533 -n03871628 -n02105056 -n02865351 -n03991062 -n02104365 -n04275548 -n03929660 -n03814639 -n02834397 -n03792782 -n07730033 -n02445715 -n02804610 -n02119789 -n04040759 -n02415577 -n02206856 -n02114367 -n04493381 -n02276258 -n03991062 -n02236044 -n04332243 -n07760859 -n02504013 -n02090379 -n02445715 -n10565667 -n04487081 -n09472597 -n04398044 -n01873310 -n02087046 -n03788365 -n02097658 -n03467068 -n07717410 -n03642806 -n03063689 -n01914609 -n03792782 -n12267677 -n03220513 -n02119789 -n02950826 -n02113712 -n03697007 -n04009552 -n03876231 -n10148035 -n03590841 -n03461385 -n02814860 -n03729826 -n03255030 -n09288635 -n02094114 -n04550184 -n02115913 -n01990800 -n02112350 -n12998815 -n02672831 -n01860187 -n04493381 -n02979186 -n02441942 -n02128757 -n01883070 -n03803284 -n03417042 -n02992211 -n04462240 -n03759954 -n01984695 -n07584110 -n04118538 -n02105412 -n03218198 -n02835271 -n03314780 -n04070727 -n03325584 -n01742172 -n04266014 -n03447447 -n02701002 -n01877812 -n03062245 -n01592084 -n01924916 -n03781244 -n01798484 -n02730930 -n02417914 -n02791124 -n02412080 -n09256479 -n04008634 -n02493793 -n07753275 -n03980874 -n02280649 -n03400231 -n03476991 -n02787622 -n02086240 -n04041544 -n04370456 -n04591713 -n03062245 -n04254120 -n02125311 -n03920288 -n02088364 -n02002724 -n02107683 -n01498041 -n04550184 -n01984695 -n04584207 -n02971356 -n03961711 -n02447366 -n01855672 -n03126707 -n03481172 -n02640242 -n03376595 -n02814860 -n01498041 -n04442312 -n03776460 -n01882714 -n04485082 -n03201208 -n01978455 -n04456115 -n03467068 -n02086240 -n02256656 -n04517823 -n03291819 -n04263257 -n02106662 -n02823750 -n03527444 -n01807496 -n02112018 -n02860847 -n01980166 -n01514859 -n02879718 -n02128925 -n03944341 -n07831146 -n04049303 -n04004767 -n04254120 -n02108422 -n07871810 -n01775062 -n02808304 -n03929660 -n02667093 -n07716906 -n03697007 -n12057211 -n03196217 -n01855032 -n02097047 -n02444819 -n07711569 -n02071294 -n06596364 -n03584829 -n02025239 -n09256479 -n02484975 -n02840245 -n02814533 -n03188531 -n03891332 -n01560419 -n02110185 -n01685808 -n03207941 -n02096294 -n02672831 -n04311004 -n04265275 -n07730033 -n04296562 -n02167151 -n02110341 -n03832673 -n03709823 -n02115641 -n02510455 -n04325704 -n02129604 -n04296562 -n13037406 -n04554684 -n03706229 -n02500267 -n02101388 -n02206856 -n02111889 -n04442312 -n02102973 -n02098105 -n02906734 -n01770081 -n13054560 -n04325704 -n02909870 -n02927161 -n03976467 -n03014705 -n02483362 -n02012849 -n02321529 -n03841143 -n04389033 -n02094258 -n15075141 -n03733805 -n03958227 -n03792972 -n04542943 -n02979186 -n07614500 -n03666591 -n03929855 -n07802026 -n02974003 -n02319095 -n02804414 -n04325704 -n02109525 -n02999410 -n02120079 -n04404412 -n01871265 -n03871628 -n03337140 -n01667778 -n01819313 -n04532670 -n02319095 -n03457902 -n02978881 -n02119789 -n04026417 -n01693334 -n01744401 -n03825788 -n04273569 -n03942813 -n01984695 -n02727426 -n01820546 -n04487081 -n03956157 -n04465501 -n04579145 -n02117135 -n04447861 -n03085013 -n02134084 -n03769881 -n03717622 -n02105251 -n03761084 -n02088466 -n01872401 -n02807133 -n03775546 -n03590841 -n03617480 -n01677366 -n02119789 -n02226429 -n04409515 -n03995372 -n02013706 -n07697537 -n02025239 -n02114712 -n03394916 -n02494079 -n01968897 -n03977966 -n11879895 -n03492542 -n03843555 -n03742115 -n04208210 -n02423022 -n04515003 -n13054560 -n02483708 -n04507155 -n07717410 -n03255030 -n03133878 -n03877845 -n04344873 -n04540053 -n09399592 -n04517823 -n04086273 -n02978881 -n02115641 -n04461696 -n02102973 -n02277742 -n04399382 -n04330267 -n03661043 -n13037406 -n04604644 -n03958227 -n02397096 -n04125021 -n03445924 -n03492542 -n02092339 -n03787032 -n03791053 -n02804414 -n01753488 -n07754684 -n01496331 -n01990800 -n04356056 -n04065272 -n01756291 -n04136333 -n03662601 -n02006656 -n02326432 -n02018795 -n03777568 -n07932039 -n04265275 -n02268853 -n03649909 -n04548362 -n03538406 -n02104365 -n03062245 -n04131690 -n01955084 -n04606251 -n04037443 -n01990800 -n02892767 -n02113023 -n03873416 -n04254680 -n02444819 -n04606251 -n02091032 -n03623198 -n01693334 -n04162706 -n04476259 -n01773157 -n02510455 -n01616318 -n02782093 -n04209133 -n03777568 -n12998815 -n04417672 -n12620546 -n04517823 -n02259212 -n02727426 -n02797295 -n03062245 -n02794156 -n04347754 -n03417042 -n02123159 -n03530642 -n07715103 -n07716906 -n03874599 -n04179913 -n01877812 -n02101388 -n02233338 -n04141327 -n02666196 -n04131690 -n03032252 -n02114367 -n03045698 -n02090721 -n02815834 -n07873807 -n02965783 -n04429376 -n04604644 -n01855032 -n02018795 -n03729826 -n04404412 -n07615774 -n02013706 -n01955084 -n01774750 -n01644373 -n02096177 -n02114712 -n03891332 -n03482405 -n03916031 -n02099849 -n02480855 -n13044778 -n02226429 -n03670208 -n13133613 -n03670208 -n04125021 -n02276258 -n03131574 -n03929855 -n02687172 -n02443484 -n02101006 -n04367480 -n02109525 -n04049303 -n02096051 -n03929660 -n02776631 -n02027492 -n01795545 -n02109525 -n03584829 -n03595614 -n02992211 -n04243546 -n03404251 -n04023962 -n03085013 -n02128385 -n02111129 -n04613696 -n04152593 -n02978881 -n02909870 -n10565667 -n03467068 -n02280649 -n03763968 -n02056570 -n02504458 -n03958227 -n03874599 -n02133161 -n03871628 -n02099849 -n03179701 -n01985128 -n02112137 -n02098413 -n01945685 -n02105505 -n03796401 -n04152593 -n02410509 -n01665541 -n04147183 -n02655020 -n02233338 -n03297495 -n01776313 -n01945685 -n03710193 -n04462240 -n03956157 -n02229544 -n02782093 -n04355338 -n03000684 -n04542943 -n02111277 -n04505470 -n03196217 -n02112706 -n03590841 -n03197337 -n02526121 -n04522168 -n01877812 -n03617480 -n02870880 -n04591713 -n06359193 -n02110958 -n07892512 -n03796401 -n03047690 -n01518878 -n04263257 -n01910747 -n07753275 -n01882714 -n04033901 -n01784675 -n02489166 -n03534580 -n04447861 -n02403003 -n07717556 -n02027492 -n03710721 -n02281787 -n02807133 -n03124170 -n02396427 -n02981792 -n04613696 -n02481823 -n04522168 -n03930313 -n10565667 -n03776460 -n03180011 -n04235860 -n02397096 -n03016953 -n03838899 -n09193705 -n04404412 -n04336792 -n02978881 -n07720875 -n04286575 -n12985857 -n07613480 -n03063689 -n02206856 -n02011460 -n02769748 -n02317335 -n02749479 -n01770081 -n02422699 -n02088094 -n02906734 -n06785654 -n04152593 -n03916031 -n02113186 -n02115913 -n02791124 -n03764736 -n02356798 -n02979186 -n02749479 -n03630383 -n03259280 -n04023962 -n04026417 -n02909870 -n03404251 -n03868863 -n03495258 -n03899768 -n03733805 -n02823750 -n02086079 -n04356056 -n03196217 -n01806143 -n07718472 -n04335435 -n03937543 -n04070727 -n01631663 -n02643566 -n11879895 -n03690938 -n02093428 -n02105641 -n02091134 -n03131574 -n03485407 -n01677366 -n02099601 -n02123045 -n02443114 -n02134418 -n04370456 -n01883070 -n04141076 -n03467068 -n02105162 -n02226429 -n02397096 -n02692877 -n02447366 -n13037406 -n09332890 -n04482393 -n03877845 -n02102480 -n10565667 -n02791270 -n02669723 -n02808304 -n04548362 -n03658185 -n02489166 -n02098286 -n07615774 -n04532106 -n01807496 -n02992529 -n01694178 -n04428191 -n03445924 -n07742313 -n04037443 -n03887697 -n01630670 -n02099267 -n02123597 -n01981276 -n02825657 -n02106662 -n03657121 -n03249569 -n03218198 -n04152593 -n12985857 -n03160309 -n02939185 -n01817953 -n01773157 -n02999410 -n03482405 -n04200800 -n02488702 -n03272562 -n03992509 -n03544143 -n04141327 -n02099712 -n03016953 -n02107142 -n01751748 -n02009912 -n02087394 -n04355933 -n02117135 -n13054560 -n02006656 -n03733805 -n03710193 -n04141076 -n01608432 -n09835506 -n04398044 -n07579787 -n02099712 -n02123597 -n07836838 -n04131690 -n04090263 -n02981792 -n02018795 -n03602883 -n02074367 -n02443484 -n02871525 -n02457408 -n02799071 -n03764736 -n03804744 -n02190166 -n03769881 -n04399382 -n04553703 -n02058221 -n02981792 -n01692333 -n01631663 -n03868242 -n06785654 -n03977966 -n04423845 -n02791124 -n02128385 -n01664065 -n01756291 -n07802026 -n02979186 -n02814533 -n12768682 -n04201297 -n07742313 -n02489166 -n02120079 -n03743016 -n03482405 -n01795545 -n02108551 -n02096051 -n02951358 -n02169497 -n04532106 -n02268443 -n03676483 -n01798484 -n02113712 -n07697313 -n02112018 -n04525038 -n03982430 -n04239074 -n02123597 -n03063689 -n02091134 -n02138441 -n03255030 -n02012849 -n02879718 -n02111277 -n02088466 -n02105056 -n01776313 -n04584207 -n02095314 -n01806567 -n01770393 -n03271574 -n03599486 -n10148035 -n03627232 -n04275548 -n03063689 -n03016953 -n01990800 -n04141076 -n03131574 -n01968897 -n02093256 -n01774750 -n01855672 -n04435653 -n03127747 -n03657121 -n03529860 -n07730033 -n02837789 -n01828970 -n02002556 -n02132136 -n03873416 -n03424325 -n04259630 -n02097130 -n03272562 -n03496892 -n04525305 -n03916031 -n01644373 -n04591713 -n02504013 -n02091831 -n01847000 -n03000684 -n01770393 -n03763968 -n02093754 -n03063689 -n02085782 -n03290653 -n03777568 -n07718472 -n02090721 -n02089078 -n03792782 -n13037406 -n02111889 -n04550184 -n03063599 -n04229816 -n04238763 -n01693334 -n03743016 -n02108551 -n04604644 -n02281787 -n02119789 -n02808304 -n09332890 -n02106550 -n07802026 -n03249569 -n07836838 -n03775546 -n04204347 -n04592741 -n01498041 -n03929660 -n02077923 -n02108089 -n02094433 -n02107574 -n13133613 -n02749479 -n03249569 -n02641379 -n03804744 -n02321529 -n01797886 -n02690373 -n13054560 -n02950826 -n01737021 -n01689811 -n01664065 -n07693725 -n02342885 -n02169497 -n09288635 -n02087394 -n03376595 -n02120505 -n03938244 -n03345487 -n02500267 -n01797886 -n04443257 -n03492542 -n02094258 -n03721384 -n13044778 -n03868863 -n07711569 -n02236044 -n04081281 -n03838899 -n04596742 -n02111500 -n04251144 -n02100583 -n07714571 -n04238763 -n02105412 -n02443484 -n04019541 -n03394916 -n03776460 -n03000134 -n02109525 -n02109525 -n02870880 -n03393912 -n03197337 -n04081281 -n03763968 -n01688243 -n02110806 -n02834397 -n02939185 -n02279972 -n03888605 -n02268443 -n02988304 -n04310018 -n04285008 -n09246464 -n02389026 -n01558993 -n01955084 -n01930112 -n01644373 -n12620546 -n02093256 -n09256479 -n02002724 -n03160309 -n04204238 -n01753488 -n03393912 -n01641577 -n02100735 -n04584207 -n02100236 -n02879718 -n02988304 -n02105162 -n02110806 -n04258138 -n03590841 -n02927161 -n01498041 -n03720891 -n04515003 -n02134418 -n03014705 -n03344393 -n02783161 -n04443257 -n02492660 -n03218198 -n01755581 -n02090622 -n03179701 -n04252225 -n04417672 -n04037443 -n04065272 -n03721384 -n02089973 -n02091635 -n03804744 -n09288635 -n04613696 -n03796401 -n07714990 -n01770393 -n01742172 -n02128385 -n03492542 -n03916031 -n01883070 -n01739381 -n02980441 -n02966687 -n04486054 -n04443257 -n01984695 -n03026506 -n02808440 -n02977058 -n02114367 -n02094114 -n02326432 -n03016953 -n02106166 -n03710193 -n01644373 -n02091134 -n03259280 -n03018349 -n03791053 -n04008634 -n02095570 -n07718747 -n03376595 -n07717410 -n02894605 -n07583066 -n02281787 -n03483316 -n02105505 -n03837869 -n04591713 -n02749479 -n01514668 -n02090379 -n03424325 -n03642806 -n02089973 -n01532829 -n02105641 -n04591713 -n01819313 -n02127052 -n03124043 -n03649909 -n02113186 -n04067472 -n02114548 -n03791053 -n03792782 -n02093991 -n03530642 -n02397096 -n02281787 -n03661043 -n03495258 -n02174001 -n07880968 -n03459775 -n02100236 -n02727426 -n01820546 -n02988304 -n02112350 -n03476684 -n04238763 -n02028035 -n02120505 -n01704323 -n03047690 -n02268443 -n02443114 -n02112137 -n02879718 -n01697457 -n04264628 -n03314780 -n03649909 -n02133161 -n07730033 -n03670208 -n02835271 -n03584829 -n02326432 -n03916031 -n03485794 -n03314780 -n02342885 -n02105412 -n02321529 -n01669191 -n07742313 -n03045698 -n02510455 -n04201297 -n03710721 -n02966687 -n02094258 -n02109047 -n03376595 -n03017168 -n01924916 -n02017213 -n02086079 -n03666591 -n04465501 -n02981792 -n03832673 -n01806567 -n02793495 -n02110806 -n01833805 -n01622779 -n02493509 -n03495258 -n03485407 -n02051845 -n04141975 -n02909870 -n01698640 -n02096294 -n02009912 -n02097658 -n02018207 -n02804414 -n03095699 -n01665541 -n03532672 -n02102177 -n01806143 -n01847000 -n07693725 -n02268853 -n03530642 -n03908618 -n03781244 -n04286575 -n02111129 -n04273569 -n04590129 -n02100583 -n03916031 -n04404412 -n02708093 -n03160309 -n07579787 -n03476991 -n04204238 -n03344393 -n09193705 -n01665541 -n01968897 -n03180011 -n02948072 -n01871265 -n01843383 -n02494079 -n02105505 -n02356798 -n02769748 -n01955084 -n01990800 -n02113712 -n03976657 -n03633091 -n03937543 -n04252225 -n02442845 -n03461385 -n03014705 -n01644900 -n03924679 -n04152593 -n02974003 -n02804414 -n03290653 -n04344873 -n02326432 -n04371430 -n03485794 -n02107142 -n03483316 -n04330267 -n01883070 -n02105505 -n03062245 -n03924679 -n02326432 -n03761084 -n02104029 -n02074367 -n04023962 -n02123597 -n04264628 -n03902125 -n02077923 -n02927161 -n03272562 -n04399382 -n07875152 -n03478589 -n03680355 -n02093428 -n03903868 -n02396427 -n01753488 -n01914609 -n04487081 -n03372029 -n01753488 -n02096585 -n07747607 -n01601694 -n03146219 -n03733131 -n03124043 -n02090622 -n03063599 -n03599486 -n03976657 -n07880968 -n02086910 -n02494079 -n02100735 -n01693334 -n02966193 -n02089973 -n03866082 -n02640242 -n02094433 -n03947888 -n01592084 -n04039381 -n04263257 -n04326547 -n02841315 -n04009552 -n02099712 -n03271574 -n02701002 -n03791053 -n04252077 -n07717410 -n02027492 -n02097474 -n02113799 -n01773797 -n11939491 -n03494278 -n02971356 -n02509815 -n02107683 -n04328186 -n03998194 -n03938244 -n03721384 -n02089973 -n07684084 -n04613696 -n03476991 -n03444034 -n03272010 -n02219486 -n07613480 -n03899768 -n01770393 -n04532106 -n04264628 -n03314780 -n02422106 -n01689811 -n04154565 -n03991062 -n02088094 -n03384352 -n02088632 -n03146219 -n02017213 -n02123597 -n01806567 -n01740131 -n01829413 -n04004767 -n04355338 -n04044716 -n01735189 -n03218198 -n02108422 -n07831146 -n02110185 -n07932039 -n03658185 -n01773797 -n09288635 -n02133161 -n01820546 -n09332890 -n09468604 -n03935335 -n04562935 -n03908714 -n02167151 -n03216828 -n02497673 -n04493381 -n03452741 -n02117135 -n04131690 -n02120505 -n03743016 -n02364673 -n03980874 -n04462240 -n02804414 -n02051845 -n02808440 -n02172182 -n09428293 -n02093428 -n03220513 -n02699494 -n03803284 -n03804744 -n02514041 -n04099969 -n04296562 -n03388549 -n12998815 -n03933933 -n04208210 -n02410509 -n04482393 -n04487081 -n02486261 -n02113799 -n04228054 -n09835506 -n04067472 -n01664065 -n04428191 -n01740131 -n02493509 -n11939491 -n03042490 -n03584254 -n09468604 -n04120489 -n02483708 -n01498041 -n03786901 -n04523525 -n02165105 -n03888605 -n02115913 -n04201297 -n04501370 -n04037443 -n02172182 -n03793489 -n03724870 -n02391049 -n04069434 -n02807133 -n02056570 -n07584110 -n04398044 -n04398044 -n03854065 -n02655020 -n02107312 -n04366367 -n04086273 -n03485407 -n02104029 -n04251144 -n03627232 -n02132136 -n02979186 -n02317335 -n03201208 -n04479046 -n03452741 -n04258138 -n07590611 -n04149813 -n04355933 -n03207941 -n04479046 -n02441942 -n03866082 -n07583066 -n03445777 -n03017168 -n02672831 -n04204238 -n04326547 -n02113712 -n01514668 -n02415577 -n03706229 -n02981792 -n02840245 -n04389033 -n03992509 -n02403003 -n04005630 -n03637318 -n04371430 -n04347754 -n02100583 -n01518878 -n02319095 -n02492035 -n04597913 -n02206856 -n02025239 -n04591157 -n01773549 -n04081281 -n07697537 -n01682714 -n04069434 -n02085782 -n02655020 -n07714571 -n01614925 -n04008634 -n07873807 -n04131690 -n03680355 -n02422699 -n07753592 -n03840681 -n06785654 -n01530575 -n02096051 -n03764736 -n02108089 -n04044716 -n03384352 -n01818515 -n02056570 -n02097130 -n01665541 -n01688243 -n04131690 -n04606251 -n01616318 -n01688243 -n02113186 -n04613696 -n01737021 -n02776631 -n03995372 -n01806143 -n01753488 -n04037443 -n02879718 -n04009552 -n02110806 -n04332243 -n04560804 -n03884397 -n02110958 -n03888605 -n01685808 -n07565083 -n02883205 -n02492660 -n01798484 -n03100240 -n02088094 -n04229816 -n02098286 -n02841315 -n03017168 -n04120489 -n07718747 -n03933933 -n04355933 -n04483307 -n02107142 -n01744401 -n02093991 -n02112137 -n02085936 -n03929855 -n02051845 -n02091831 -n01740131 -n02948072 -n02112706 -n04584207 -n04070727 -n03584254 -n04235860 -n01749939 -n02086079 -n03424325 -n04485082 -n02165456 -n03259280 -n02132136 -n03445924 -n12768682 -n03325584 -n01644373 -n02361337 -n04523525 -n07753592 -n04067472 -n04579145 -n07880968 -n02231487 -n04486054 -n03658185 -n04429376 -n03126707 -n02085620 -n02104365 -n02692877 -n04557648 -n04606251 -n03888605 -n02105412 -n06785654 -n02101388 -n03393912 -n04370456 -n12985857 -n07871810 -n03742115 -n04238763 -n02101006 -n02090379 -n09399592 -n07930864 -n02123597 -n03494278 -n02363005 -n07892512 -n02776631 -n03785016 -n07930864 -n02123394 -n01855032 -n02883205 -n02091831 -n03868242 -n02930766 -n01945685 -n03594734 -n02493793 -n02398521 -n04501370 -n03417042 -n02815834 -n03710637 -n02100583 -n02497673 -n02894605 -n03895866 -n01756291 -n02091032 -n02120505 -n03980874 -n07745940 -n02769748 -n04208210 -n01990800 -n02397096 -n01692333 -n03814639 -n01855672 -n04154565 -n02317335 -n02815834 -n07693725 -n03720891 -n02110627 -n13037406 -n02391049 -n04131690 -n01930112 -n07760859 -n03770679 -n02111500 -n04252225 -n01877812 -n03180011 -n13044778 -n02492660 -n04273569 -n04004767 -n04238763 -n03706229 -n04357314 -n01641577 -n04311174 -n03109150 -n03866082 -n03933933 -n02412080 -n03207743 -n03218198 -n07716906 -n03218198 -n02667093 -n02799071 -n02346627 -n03874293 -n01537544 -n01728572 -n03804744 -n01855672 -n01744401 -n02747177 -n02939185 -n02676566 -n02950826 -n02097298 -n01819313 -n02276258 -n09428293 -n01682714 -n03710637 -n03920288 -n02672831 -n02447366 -n02860847 -n02412080 -n04254680 -n01692333 -n02807133 -n03394916 -n13133613 -n01806567 -n07720875 -n07836838 -n02088094 -n02102040 -n01580077 -n03775546 -n04238763 -n04118776 -n04540053 -n02096294 -n02441942 -n03781244 -n02093256 -n02988304 -n02423022 -n07871810 -n01704323 -n02132136 -n01560419 -n02206856 -n01833805 -n02980441 -n11879895 -n07875152 -n03930313 -n03042490 -n03954731 -n03933933 -n03126707 -n03461385 -n02114855 -n03929660 -n04550184 -n02783161 -n03944341 -n07693725 -n02123045 -n09288635 -n03196217 -n03297495 -n02091831 -n03670208 -n04487394 -n02105251 -n02454379 -n02099849 -n04409515 -n01592084 -n02092002 -n07590611 -n03992509 -n02412080 -n03075370 -n02447366 -n02669723 -n12985857 -n03584254 -n01753488 -n02708093 -n02497673 -n04069434 -n01484850 -n07873807 -n03492542 -n03457902 -n03670208 -n04376876 -n01697457 -n02101556 -n11879895 -n02071294 -n03710193 -n03961711 -n03930313 -n02793495 -n12768682 -n03657121 -n04596742 -n04204238 -n02093754 -n03961711 -n09472597 -n03379051 -n02417914 -n02107312 -n02489166 -n01828970 -n03884397 -n04251144 -n03792782 -n02782093 -n01820546 -n02981792 -n06359193 -n03443371 -n01735189 -n04501370 -n03673027 -n03770679 -n03085013 -n02112706 -n01978287 -n02794156 -n02087394 -n01443537 -n04286575 -n02123394 -n04264628 -n03337140 -n03710721 -n03947888 -n02514041 -n02328150 -n02110185 -n03992509 -n02965783 -n02096177 -n01824575 -n03929855 -n02815834 -n02643566 -n01744401 -n02672831 -n02447366 -n06874185 -n04325704 -n02317335 -n03126707 -n02056570 -n02457408 -n03443371 -n04125021 -n03866082 -n03127747 -n04311004 -n02134084 -n01910747 -n07716358 -n02134418 -n02071294 -n04335435 -n03594734 -n06359193 -n04336792 -n02097474 -n07717410 -n02092339 -n04376876 -n03785016 -n02087394 -n02825657 -n03208938 -n03720891 -n04366367 -n02480855 -n03124043 -n04067472 -n03180011 -n04049303 -n04243546 -n04423845 -n03127747 -n02259212 -n03697007 -n04136333 -n04590129 -n03942813 -n02268443 -n04008634 -n04254680 -n04125021 -n04040759 -n03924679 -n04485082 -n02410509 -n04259630 -n03584829 -n03196217 -n03776460 -n01774750 -n09421951 -n07802026 -n04399382 -n04536866 -n04525038 -n02091467 -n03902125 -n03544143 -n02791270 -n03888605 -n03376595 -n02397096 -n03777754 -n04592741 -n03047690 -n07693725 -n02113978 -n04398044 -n02783161 -n04596742 -n03785016 -n01582220 -n02791270 -n02791124 -n02129165 -n03404251 -n03670208 -n03903868 -n02978881 -n02094433 -n04252225 -n02096177 -n03496892 -n03000684 -n03983396 -n02111277 -n03720891 -n03782006 -n01829413 -n04153751 -n03271574 -n03538406 -n03970156 -n03924679 -n02088094 -n01806143 -n02113978 -n03207941 -n03347037 -n03633091 -n03404251 -n04579145 -n02276258 -n02086240 -n02799071 -n03871628 -n02087394 -n02264363 -n03478589 -n03788365 -n02097658 -n02093647 -n07920052 -n03788195 -n03720891 -n07717556 -n02113023 -n01855032 -n07802026 -n02037110 -n03832673 -n04350905 -n07613480 -n02814860 -n03777754 -n03218198 -n02441942 -n02115913 -n02109961 -n04347754 -n03841143 -n02786058 -n02690373 -n07697313 -n07613480 -n01873310 -n03874599 -n02113624 -n02992211 -n07871810 -n03388183 -n01644900 -n04067472 -n04039381 -n02361337 -n04039381 -n04370456 -n01843065 -n01877812 -n02488291 -n03692522 -n02669723 -n03018349 -n03207743 -n02096177 -n01514859 -n02105056 -n03495258 -n03207743 -n04523525 -n03259280 -n03127747 -n02988304 -n02096437 -n02087394 -n04370456 -n01882714 -n01644900 -n11879895 -n03814639 -n03763968 -n03788365 -n04579145 -n03837869 -n04429376 -n02219486 -n03983396 -n04591157 -n07693725 -n02281787 -n01829413 -n04606251 -n02795169 -n03467068 -n02486410 -n04505470 -n02488702 -n02108089 -n02783161 -n06596364 -n01558993 -n07871810 -n02655020 -n02256656 -n03290653 -n03131574 -n01829413 -n02930766 -n03529860 -n01871265 -n01675722 -n02840245 -n04392985 -n04286575 -n03404251 -n02823428 -n02951585 -n02077923 -n03000247 -n01843065 -n02804414 -n04525038 -n01749939 -n03095699 -n04552348 -n03532672 -n03527444 -n03947888 -n02667093 -n02346627 -n01667114 -n07749582 -n02128385 -n02093754 -n02092002 -n02782093 -n04310018 -n02104365 -n02134418 -n03769881 -n02776631 -n01984695 -n02097658 -n02095570 -n02321529 -n02108000 -n02098413 -n03623198 -n03100240 -n03109150 -n02168699 -n03017168 -n01819313 -n02117135 -n03871628 -n03924679 -n04399382 -n15075141 -n03884397 -n03425413 -n03584829 -n03976467 -n02979186 -n02124075 -n02869837 -n03998194 -n02025239 -n01558993 -n04044716 -n02107908 -n04404412 -n04266014 -n03944341 -n01751748 -n02025239 -n04040759 -n02102973 -n03930630 -n09246464 -n02174001 -n02389026 -n03764736 -n01795545 -n02790996 -n02526121 -n03133878 -n03124043 -n02979186 -n02093754 -n03598930 -n03250847 -n02134084 -n03733281 -n02226429 -n04019541 -n02105855 -n02256656 -n02787622 -n04435653 -n03599486 -n03733131 -n02325366 -n03259280 -n03028079 -n03476684 -n03133878 -n03590841 -n03197337 -n04525038 -n03494278 -n04270147 -n01860187 -n02086910 -n02457408 -n03627232 -n03133878 -n03947888 -n02823428 -n02097298 -n02108000 -n04540053 -n03141823 -n03201208 -n03476991 -n02113023 -n03777754 -n03854065 -n02415577 -n02974003 -n01820546 -n02087046 -n04149813 -n04332243 -n02090379 -n04509417 -n07760859 -n03637318 -n02672831 -n03141823 -n03538406 -n03201208 -n04286575 -n02097658 -n03873416 -n04515003 -n09193705 -n02939185 -n03933933 -n01749939 -n03483316 -n02098105 -n02107908 -n02130308 -n02105641 -n04458633 -n03692522 -n02777292 -n07565083 -n02708093 -n02783161 -n04037443 -n04259630 -n02112706 -n07802026 -n01729977 -n02168699 -n04192698 -n04209133 -n07590611 -n01729322 -n02028035 -n04579432 -n01518878 -n02443484 -n07742313 -n04376876 -n04019541 -n02791270 -n02906734 -n02264363 -n02233338 -n06874185 -n04069434 -n13044778 -n02981792 -n02117135 -n03775071 -n03249569 -n04239074 -n03868242 -n02099267 -n03467068 -n02791270 -n01632777 -n01817953 -n04325704 -n01582220 -n04081281 -n03838899 -n02865351 -n02445715 -n04009552 -n02089867 -n02256656 -n01860187 -n02815834 -n04447861 -n03786901 -n04120489 -n03584254 -n03255030 -n02006656 -n03187595 -n04152593 -n03467068 -n03942813 -n03947888 -n07831146 -n02090721 -n04532670 -n03018349 -n02093991 -n01917289 -n01729322 -n02108422 -n03197337 -n02951585 -n04263257 -n07932039 -n01537544 -n03495258 -n01755581 -n02096051 -n01737021 -n04120489 -n02111500 -n03895866 -n02106166 -n04350905 -n04081281 -n02791124 -n04501370 -n02115913 -n02088466 -n07614500 -n02410509 -n01740131 -n03483316 -n02701002 -n03792782 -n03995372 -n03016953 -n02536864 -n12144580 -n02011460 -n04355933 -n02423022 -n03658185 -n03344393 -n02096177 -n03692522 -n04423845 -n02110185 -n02177972 -n03197337 -n03924679 -n01749939 -n02229544 -n03000247 -n01744401 -n02321529 -n03874293 -n03481172 -n01872401 -n02112018 -n02492035 -n03670208 -n04372370 -n01697457 -n02788148 -n01796340 -n03272562 -n02098286 -n03781244 -n03666591 -n13037406 -n04532670 -n03394916 -n01744401 -n02114855 -n04542943 -n02860847 -n02268443 -n04254120 -n02088466 -n11939491 -n03788195 -n07860988 -n03832673 -n02134084 -n02092339 -n02797295 -n04252077 -n04591713 -n02096177 -n03134739 -n03982430 -n02107574 -n02233338 -n07697313 -n03891332 -n03325584 -n03208938 -n01518878 -n02509815 -n03710721 -n04487394 -n03014705 -n02099429 -n02834397 -n04141975 -n01978455 -n03891332 -n02870880 -n04265275 -n02497673 -n01955084 -n02963159 -n02099712 -n02793495 -n03691459 -n02085782 -n03991062 -n02088094 -n07711569 -n02346627 -n07695742 -n03218198 -n01784675 -n02799071 -n03944341 -n03179701 -n02415577 -n04370456 -n04443257 -n04254777 -n01496331 -n02699494 -n01677366 -n02514041 -n02086240 -n02107908 -n11879895 -n03770679 -n02749479 -n03803284 -n04485082 -n03201208 -n03045698 -n03944341 -n01930112 -n02113186 -n04286575 -n03706229 -n02871525 -n01774384 -n01855032 -n02109047 -n02114548 -n12998815 -n03218198 -n03216828 -n04371774 -n02114712 -n04548280 -n02276258 -n04033995 -n03393912 -n03980874 -n04389033 -n07583066 -n01704323 -n03445924 -n02018795 -n03445777 -n02098286 -n03838899 -n01689811 -n03666591 -n03000247 -n02099712 -n03483316 -n04505470 -n02490219 -n04239074 -n01531178 -n02116738 -n01950731 -n02113624 -n04204238 -n02276258 -n07715103 -n03026506 -n02108551 -n02127052 -n02088466 -n02093256 -n02102040 -n03976657 -n04532670 -n03776460 -n03220513 -n03903868 -n03792972 -n03529860 -n02009229 -n02113624 -n02447366 -n03461385 -n02102318 -n04263257 -n02114855 -n02676566 -n03425413 -n03538406 -n03666591 -n03272010 -n07768694 -n04392985 -n04330267 -n03026506 -n07730033 -n02094258 -n04515003 -n04265275 -n13044778 -n02965783 -n02120505 -n02058221 -n03314780 -n02793495 -n02708093 -n03633091 -n03014705 -n01665541 -n02526121 -n04067472 -n04428191 -n07836838 -n02177972 -n01817953 -n04296562 -n04099969 -n03956157 -n02114367 -n02091635 -n02113978 -n03838899 -n02437616 -n04370456 -n02423022 -n02112706 -n02096585 -n02497673 -n04505470 -n02098286 -n02319095 -n04560804 -n03976657 -n04330267 -n02481823 -n04532670 -n12057211 -n03584254 -n04065272 -n04596742 -n02823428 -n01494475 -n03133878 -n07579787 -n04141975 -n03794056 -n03000684 -n04067472 -n02108422 -n04254777 -n01616318 -n03814906 -n03444034 -n04277352 -n04612504 -n02917067 -n03729826 -n02095314 -n03796401 -n04486054 -n03637318 -n02786058 -n03661043 -n03400231 -n02112350 -n03980874 -n04251144 -n01978287 -n03483316 -n03633091 -n04597913 -n02093647 -n02097474 -n02097130 -n03998194 -n01689811 -n04482393 -n02231487 -n04328186 -n03188531 -n02490219 -n04579432 -n09256479 -n03770439 -n07697537 -n02389026 -n04252225 -n03594945 -n04310018 -n01978455 -n03803284 -n03063689 -n01924916 -n03240683 -n03837869 -n02114712 -n02999410 -n04371774 -n03676483 -n02091467 -n03196217 -n03347037 -n04487081 -n03888257 -n03787032 -n01631663 -n03447721 -n02086079 -n01644373 -n09468604 -n07613480 -n04356056 -n04493381 -n06785654 -n03179701 -n01675722 -n04429376 -n02966193 -n03584254 -n03673027 -n03223299 -n03443371 -n02106382 -n04125021 -n03786901 -n04467665 -n03498962 -n03662601 -n02088632 -n02510455 -n12998815 -n02747177 -n04252077 -n12267677 -n04501370 -n02113978 -n03141823 -n01817953 -n03126707 -n03110669 -n02910353 -n03417042 -n09193705 -n02102318 -n01807496 -n02268443 -n01632777 -n02814533 -n07875152 -n01484850 -n02092339 -n02791124 -n04417672 -n03160309 -n02134418 -n03483316 -n01829413 -n02095889 -n07693725 -n04579145 -n03942813 -n02091134 -n04209239 -n07584110 -n04590129 -n03873416 -n02105056 -n02488291 -n04136333 -n01855032 -n04525305 -n04039381 -n02025239 -n03476991 -n01614925 -n01735189 -n02894605 -n04505470 -n02127052 -n12267677 -n02865351 -n03481172 -n02445715 -n02892767 -n02974003 -n03249569 -n01860187 -n01687978 -n03733805 -n03445777 -n02676566 -n07734744 -n03544143 -n03676483 -n03877845 -n03372029 -n03977966 -n02090721 -n03676483 -n02655020 -n02134418 -n02364673 -n02110627 -n03527444 -n04317175 -n02280649 -n02788148 -n02119789 -n02804610 -n04435653 -n02120505 -n02802426 -n02606052 -n07717410 -n03290653 -n03017168 -n02087046 -n02093647 -n04259630 -n01819313 -n03467068 -n02113712 -n03935335 -n02927161 -n02113186 -n03673027 -n04200800 -n04192698 -n01518878 -n03417042 -n02093754 -n02088364 -n02749479 -n01688243 -n04070727 -n04604644 -n02457408 -n06874185 -n04483307 -n02422106 -n01692333 -n02834397 -n03485794 -n02219486 -n01950731 -n02028035 -n01644900 -n03125729 -n12144580 -n01682714 -n03843555 -n03602883 -n02018795 -n03447447 -n02865351 -n03223299 -n03355925 -n04592741 -n02106662 -n02033041 -n01820546 -n03761084 -n02165105 -n02397096 -n02101556 -n04328186 -n03933933 -n03355925 -n04328186 -n03950228 -n03134739 -n03535780 -n01748264 -n04330267 -n02699494 -n01985128 -n02978881 -n04141327 -n02403003 -n02120079 -n07579787 -n02317335 -n02509815 -n04146614 -n01944390 -n04467665 -n02927161 -n12620546 -n02098286 -n01914609 -n02486410 -n02963159 -n03085013 -n04525305 -n04141076 -n01742172 -n01798484 -n02102480 -n01729322 -n03938244 -n02096585 -n04099969 -n02437616 -n03729826 -n01829413 -n03527444 -n04086273 -n02013706 -n03594734 -n02105855 -n04536866 -n02489166 -n02093991 -n02109525 -n01930112 -n01580077 -n02457408 -n04328186 -n01751748 -n03026506 -n04235860 -n02113023 -n03063689 -n01882714 -n03930630 -n03710721 -n04264628 -n04081281 -n04116512 -n04044716 -n01697457 -n04330267 -n02860847 -n02107908 -n04399382 -n03873416 -n04509417 -n03792972 -n02102318 -n01883070 -n07742313 -n02033041 -n12620546 -n03995372 -n02086646 -n03485794 -n07747607 -n02098413 -n03877472 -n02106550 -n04263257 -n02134418 -n04263257 -n04606251 -n01630670 -n02280649 -n02504013 -n02871525 -n04081281 -n03782006 -n01514668 -n02396427 -n02093428 -n02979186 -n04254777 -n04009552 -n03602883 -n07747607 -n04562935 -n02033041 -n04505470 -n02906734 -n03045698 -n01629819 -n04613696 -n07717556 -n02487347 -n01917289 -n01817953 -n07753275 -n02457408 -n02992529 -n01742172 -n03950228 -n03584254 -n02526121 -n01494475 -n02085936 -n02391049 -n04355933 -n03950228 -n03584829 -n02128385 -n01872401 -n02091467 -n03481172 -n04204347 -n03899768 -n02107312 -n02692877 -n04606251 -n03770679 -n07749582 -n01558993 -n02099712 -n03792782 -n03791053 -n04317175 -n02086079 -n02480855 -n01682714 -n04509417 -n03792972 -n02108551 -n02606052 -n03995372 -n04336792 -n02490219 -n07695742 -n12998815 -n03759954 -n04265275 -n02971356 -n03661043 -n02120505 -n01530575 -n03690938 -n02422106 -n02120079 -n07873807 -n04579432 -n03930313 -n09288635 -n02509815 -n03998194 -n03791053 -n01930112 -n03991062 -n02125311 -n02909870 -n07718747 -n01729322 -n02133161 -n03763968 -n03944341 -n01943899 -n02445715 -n04443257 -n02109047 -n04141327 -n03041632 -n01592084 -n02906734 -n01828970 -n03388549 -n01917289 -n02859443 -n02110958 -n03956157 -n02797295 -n02100583 -n02776631 -n03485407 -n04285008 -n03623198 -n01753488 -n03146219 -n03535780 -n12768682 -n12768682 -n02100583 -n03976657 -n04251144 -n03444034 -n03980874 -n02066245 -n01692333 -n03223299 -n04461696 -n09835506 -n02206856 -n13040303 -n02088094 -n02487347 -n03781244 -n03832673 -n02917067 -n01806567 -n03776460 -n04208210 -n04462240 -n02093428 -n02123045 -n03047690 -n04201297 -n02895154 -n04252225 -n03837869 -n01877812 -n03961711 -n01753488 -n02105505 -n02112018 -n02110627 -n02389026 -n02782093 -n02099712 -n03742115 -n04141076 -n01735189 -n02879718 -n03594734 -n04462240 -n02788148 -n02106166 -n03991062 -n01820546 -n04259630 -n04310018 -n15075141 -n03717622 -n03595614 -n03598930 -n02132136 -n03630383 -n03692522 -n04591157 -n04154565 -n02346627 -n02687172 -n07693725 -n02514041 -n02128757 -n02095314 -n01855032 -n03942813 -n03485407 -n13133613 -n03062245 -n03447447 -n02895154 -n04380533 -n02364673 -n03146219 -n02109961 -n02113799 -n02859443 -n01558993 -n02119789 -n01930112 -n04275548 -n03602883 -n02497673 -n02037110 -n03026506 -n07930864 -n04330267 -n02480495 -n02107683 -n03786901 -n01917289 -n03133878 -n04532670 -n01775062 -n03633091 -n03777568 -n01945685 -n03109150 -n03792972 -n02895154 -n04548362 -n02114855 -n03775071 -n07717556 -n02483362 -n02909870 -n02027492 -n07584110 -n03594734 -n03642806 -n03877845 -n03379051 -n02927161 -n04417672 -n04009552 -n04004767 -n02799071 -n03874599 -n01883070 -n03933933 -n03450230 -n01698640 -n03146219 -n02113023 -n03379051 -n03160309 -n01968897 -n03976467 -n04328186 -n02018207 -n02123597 -n02791124 -n01729977 -n04228054 -n02966687 -n02094258 -n03425413 -n01819313 -n02100236 -n02389026 -n02108551 -n02085620 -n03791053 -n03916031 -n01871265 -n01698640 -n02100877 -n03146219 -n03903868 -n03803284 -n04204238 -n04037443 -n02128925 -n03131574 -n02823428 -n09421951 -n03884397 -n07742313 -n03871628 -n01770081 -n04540053 -n03000134 -n02443114 -n04476259 -n04317175 -n02091032 -n07248320 -n04146614 -n04532106 -n07920052 -n02484975 -n04612504 -n01530575 -n03929660 -n04540053 -n01796340 -n01828970 -n04162706 -n03481172 -n03983396 -n02777292 -n02018795 -n02869837 -n02835271 -n03201208 -n01518878 -n12057211 -n03787032 -n02641379 -n04554684 -n02791124 -n01819313 -n02389026 -n04090263 -n03908618 -n03792972 -n02484975 -n07590611 -n01530575 -n12985857 -n09229709 -n01755581 -n03627232 -n02123159 -n03775546 -n04596742 -n04346328 -n02669723 -n07753592 -n07613480 -n03884397 -n02892201 -n01924916 -n04467665 -n02488291 -n03868242 -n02356798 -n04265275 -n02077923 -n02102973 -n03457902 -n02190166 -n03259280 -n02105162 -n02091831 -n02256656 -n01872401 -n02493793 -n02408429 -n02106550 -n03929660 -n03325584 -n04332243 -n04270147 -n01630670 -n03250847 -n02114367 -n02106166 -n03134739 -n02814860 -n02110063 -n03903868 -n02395406 -n04311174 -n03532672 -n02840245 -n01986214 -n04429376 -n02119022 -n03218198 -n02783161 -n03770439 -n02089867 -n02966687 -n03658185 -n09193705 -n03085013 -n02971356 -n04049303 -n11939491 -n02105641 -n03494278 -n02364673 -n01534433 -n01735189 -n02105855 -n03743016 -n07718472 -n02113799 -n04443257 -n02096294 -n02128925 -n02264363 -n03796401 -n02444819 -n03770679 -n02093647 -n03483316 -n02107574 -n04127249 -n02978881 -n13054560 -n02823750 -n03794056 -n03000684 -n01496331 -n01807496 -n02791270 -n01860187 -n03218198 -n02364673 -n03498962 -n04153751 -n01688243 -n03388183 -n01968897 -n02172182 -n02112018 -n02883205 -n03854065 -n12267677 -n02094258 -n04254120 -n01855672 -n02100877 -n03344393 -n07693725 -n02669723 -n02264363 -n03763968 -n03637318 -n04447861 -n01984695 -n12267677 -n04335435 -n02120505 -n02104365 -n03450230 -n04286575 -n03207941 -n02106166 -n03325584 -n03793489 -n03788365 -n03877845 -n02190166 -n02051845 -n02100583 -n02104029 -n06359193 -n01514859 -n02106550 -n02165456 -n02276258 -n01514859 -n03485407 -n01632777 -n02408429 -n03124043 -n03717622 -n04252225 -n04517823 -n03425413 -n04310018 -n03017168 -n03832673 -n01770081 -n03127925 -n02089867 -n03461385 -n03485407 -n01592084 -n02256656 -n03146219 -n01795545 -n03947888 -n07693725 -n04483307 -n02002556 -n04532670 -n04049303 -n02892201 -n03857828 -n01494475 -n01601694 -n04131690 -n02666196 -n02098286 -n02641379 -n04228054 -n03980874 -n04590129 -n01616318 -n03690938 -n04127249 -n03345487 -n02113023 -n01749939 -n04229816 -n02927161 -n03956157 -n02111500 -n01756291 -n02492035 -n02119022 -n02443114 -n02950826 -n02319095 -n04346328 -n02128757 -n03998194 -n02667093 -n01943899 -n04467665 -n01530575 -n01614925 -n04346328 -n02093754 -n03733805 -n03742115 -n03197337 -n02107908 -n01737021 -n02281787 -n03141823 -n04254120 -n01532829 -n02526121 -n02966687 -n02484975 -n03832673 -n02113799 -n03958227 -n04350905 -n03623198 -n06874185 -n03337140 -n02097658 -n04311174 -n04201297 -n03908714 -n01740131 -n03929855 -n02509815 -n03903868 -n03658185 -n01843065 -n04557648 -n04392985 -n02454379 -n02493793 -n04275548 -n03220513 -n02606052 -n04118776 -n02514041 -n07684084 -n03388183 -n02794156 -n01632777 -n04238763 -n04372370 -n03876231 -n02948072 -n02096437 -n02497673 -n03843555 -n07565083 -n02097130 -n04509417 -n03255030 -n02129165 -n01682714 -n07753275 -n09472597 -n02134418 -n02219486 -n02097047 -n03063689 -n02091467 -n03781244 -n02807133 -n03814906 -n04355338 -n04579145 -n03272010 -n02086646 -n02106662 -n03956157 -n02783161 -n02112137 -n03188531 -n03126707 -n01608432 -n03337140 -n01847000 -n04125021 -n04147183 -n07720875 -n02319095 -n02510455 -n04311174 -n03584254 -n04542943 -n02102480 -n02114712 -n02268443 -n07718472 -n03792972 -n03724870 -n04239074 -n02091134 -n02129604 -n03127925 -n02086646 -n03207941 -n01819313 -n04522168 -n03271574 -n04487394 -n03710193 -n02105855 -n03131574 -n02105251 -n02095889 -n03384352 -n07880968 -n02259212 -n04069434 -n01669191 -n03710193 -n01855672 -n13037406 -n01484850 -n04476259 -n03871628 -n01774750 -n02108551 -n02090622 -n03733281 -n03724870 -n03976657 -n02099267 -n04127249 -n02097474 -n02056570 -n01795545 -n07714571 -n02107142 -n01608432 -n02113023 -n04486054 -n03876231 -n04270147 -n03461385 -n13040303 -n02102318 -n02910353 -n02094114 -n02786058 -n02992211 -n02396427 -n04344873 -n02097130 -n01443537 -n04325704 -n02093428 -n04258138 -n07584110 -n03443371 -n03481172 -n02110341 -n04141975 -n02226429 -n02281406 -n04141327 -n04118538 -n02037110 -n02226429 -n01692333 -n03916031 -n02787622 -n03594945 -n07860988 -n03729826 -n04515003 -n04612504 -n02007558 -n01560419 -n02951358 -n02837789 -n04456115 -n04239074 -n02094433 -n04553703 -n03045698 -n03874599 -n03595614 -n02514041 -n03876231 -n04467665 -n04146614 -n02089973 -n04005630 -n04266014 -n04074963 -n03527444 -n04355338 -n09246464 -n03980874 -n01990800 -n03697007 -n13133613 -n07613480 -n02655020 -n03240683 -n04111531 -n01871265 -n01695060 -n03478589 -n04265275 -n02094433 -n02009229 -n02708093 -n03447447 -n03216828 -n04371430 -n03991062 -n02607072 -n02481823 -n02102318 -n09256479 -n02123597 -n02927161 -n01737021 -n01675722 -n11939491 -n03937543 -n03729826 -n01820546 -n01847000 -n02112137 -n01675722 -n04613696 -n02974003 -n03384352 -n03627232 -n04429376 -n01756291 -n03496892 -n02398521 -n02168699 -n03000247 -n01739381 -n04371430 -n04335435 -n03532672 -n02441942 -n03400231 -n03793489 -n01795545 -n01740131 -n02110806 -n03063599 -n02095314 -n04579432 -n04591157 -n02321529 -n03661043 -n01440764 -n04228054 -n04462240 -n03877472 -n03720891 -n02514041 -n03272562 -n01601694 -n02091467 -n04041544 -n03796401 -n03594734 -n02089078 -n02493793 -n01440764 -n09399592 -n03775071 -n04296562 -n02099849 -n02804610 -n03384352 -n02088632 -n04026417 -n02794156 -n01968897 -n02133161 -n03777754 -n02494079 -n02107142 -n03710193 -n02640242 -n04209133 -n02443114 -n03259280 -n02172182 -n02089078 -n04049303 -n02093647 -n06785654 -n03733131 -n03476991 -n04259630 -n01768244 -n13037406 -n02168699 -n02013706 -n02089078 -n01817953 -n02280649 -n02877765 -n04273569 -n02097209 -n06785654 -n02104365 -n02107908 -n02484975 -n02906734 -n09468604 -n01632777 -n01494475 -n01983481 -n04372370 -n02364673 -n02730930 -n02100583 -n04127249 -n03355925 -n02108089 -n03197337 -n03857828 -n01496331 -n02110341 -n04074963 -n02087046 -n03000684 -n03485794 -n02500267 -n02105162 -n03425413 -n01944390 -n02112018 -n04005630 -n01582220 -n04275548 -n07754684 -n02011460 -n02132136 -n01748264 -n04228054 -n02980441 -n02113624 -n04597913 -n02123159 -n02027492 -n04590129 -n02114548 -n03208938 -n02099267 -n03538406 -n03218198 -n04254120 -n03337140 -n02089078 -n02701002 -n02086240 -n02088632 -n01943899 -n13052670 -n04606251 -n09229709 -n01687978 -n03929660 -n02093754 -n01729322 -n02107908 -n07715103 -n03773504 -n04592741 -n02107908 -n02264363 -n04154565 -n02098105 -n03485794 -n02791270 -n06874185 -n02488702 -n03014705 -n03657121 -n03854065 -n02107574 -n02669723 -n03950228 -n02317335 -n04133789 -n01685808 -n03933933 -n02097047 -n02011460 -n01819313 -n03982430 -n01784675 -n03670208 -n03220513 -n04118538 -n02782093 -n02783161 -n03496892 -n02107574 -n04040759 -n02013706 -n02777292 -n01775062 -n01748264 -n03018349 -n04111531 -n02089867 -n09246464 -n04548280 -n07734744 -n03291819 -n04552348 -n03871628 -n07753113 -n01729322 -n07715103 -n04596742 -n02128385 -n03976467 -n04548280 -n02497673 -n02134418 -n02105251 -n03970156 -n01749939 -n01795545 -n01855032 -n02395406 -n02098413 -n02111500 -n02895154 -n07565083 -n03742115 -n02108089 -n02321529 -n02971356 -n02437616 -n03208938 -n01667114 -n02226429 -n03877845 -n02910353 -n04070727 -n04152593 -n01883070 -n02870880 -n02504458 -n04243546 -n02096051 -n03899768 -n02321529 -n03877845 -n03450230 -n03290653 -n01664065 -n03908714 -n01537544 -n02088238 -n01882714 -n01773549 -n04418357 -n02727426 -n01872401 -n02106382 -n03991062 -n02017213 -n02018207 -n04370456 -n02219486 -n02669723 -n01694178 -n01784675 -n03443371 -n02114548 -n01806567 -n04090263 -n07932039 -n01608432 -n02281406 -n04238763 -n01664065 -n02028035 -n01917289 -n03793489 -n04209239 -n03042490 -n03400231 -n02356798 -n03065424 -n04335435 -n01664065 -n01692333 -n07880968 -n03297495 -n02841315 -n03095699 -n07697313 -n09399592 -n01917289 -n03724870 -n13133613 -n03787032 -n02493793 -n03843555 -n01629819 -n03843555 -n04461696 -n01669191 -n03976657 -n02097047 -n03773504 -n02951585 -n04398044 -n03599486 -n03250847 -n03796401 -n01737021 -n02776631 -n03599486 -n02110806 -n04254680 -n02138441 -n02483362 -n02747177 -n03733805 -n04118538 -n01829413 -n02112137 -n02102318 -n02097474 -n02119789 -n04136333 -n04579432 -n02493509 -n01667778 -n02442845 -n02097209 -n03404251 -n02488291 -n02091032 -n01882714 -n04081281 -n02963159 -n02088632 -n01491361 -n04380533 -n04423845 -n01629819 -n03956157 -n04548362 -n02804610 -n04310018 -n04251144 -n07860988 -n02692877 -n03938244 -n01484850 -n04325704 -n01560419 -n02916936 -n02442845 -n03998194 -n04330267 -n03425413 -n07932039 -n01984695 -n03345487 -n03259280 -n07768694 -n02444819 -n01675722 -n02328150 -n04070727 -n04423845 -n03729826 -n07684084 -n03485794 -n03498962 -n01753488 -n03958227 -n02895154 -n03100240 -n02110806 -n04118776 -n02105056 -n03874293 -n04037443 -n03496892 -n07745940 -n03871628 -n03372029 -n02100735 -n02132136 -n03623198 -n03666591 -n02823750 -n01735189 -n02106382 -n07697537 -n02454379 -n04311004 -n03110669 -n04009552 -n02074367 -n02442845 -n02099601 -n09246464 -n03814906 -n04049303 -n01749939 -n03803284 -n02667093 -n03908714 -n04409515 -n03290653 -n07730033 -n02268443 -n03028079 -n02514041 -n04592741 -n07720875 -n02988304 -n02606052 -n03877472 -n01798484 -n03742115 -n04461696 -n02917067 -n01629819 -n04486054 -n04548362 -n02860847 -n02107683 -n01944390 -n03786901 -n04044716 -n01824575 -n01440764 -n02279972 -n01914609 -n03272562 -n07590611 -n01728572 -n01687978 -n03791053 -n01518878 -n02950826 -n03982430 -n02966193 -n03841143 -n02672831 -n02787622 -n02165105 -n04525038 -n03662601 -n12057211 -n04522168 -n04613696 -n02088632 -n01985128 -n09472597 -n03271574 -n01687978 -n04147183 -n07875152 -n01580077 -n03393912 -n03903868 -n04074963 -n03788365 -n01843065 -n03690938 -n02105056 -n04525305 -n01631663 -n02097047 -n02486410 -n04152593 -n02879718 -n04443257 -n02102040 -n02093859 -n02127052 -n09332890 -n01770393 -n03527444 -n03697007 -n04515003 -n07873807 -n04429376 -n03991062 -n03085013 -n01828970 -n01608432 -n03930313 -n02105641 -n01756291 -n02500267 -n04039381 -n02168699 -n03259280 -n01855032 -n10565667 -n02115641 -n04515003 -n02669723 -n02988304 -n03825788 -n02025239 -n03706229 -n01914609 -n03344393 -n04049303 -n03259280 -n02091244 -n02514041 -n03065424 -n12057211 -n02027492 -n04118538 -n04141076 -n03899768 -n04462240 -n02096051 -n02978881 -n02114855 -n04509417 -n04505470 -n03201208 -n01986214 -n02417914 -n01677366 -n07747607 -n04409515 -n01685808 -n04599235 -n03187595 -n03657121 -n15075141 -n04372370 -n02966687 -n01820546 -n03344393 -n03476991 -n03763968 -n04070727 -n03041632 -n01877812 -n07248320 -n07875152 -n02892767 -n03355925 -n01685808 -n04228054 -n03843555 -n01755581 -n04347754 -n02277742 -n03000247 -n07742313 -n07875152 -n03075370 -n02799071 -n03133878 -n06596364 -n01806143 -n03930313 -n03930313 -n02730930 -n01773797 -n03902125 -n03721384 -n02951358 -n02119022 -n01744401 -n02112706 -n02396427 -n03633091 -n01514668 -n03791053 -n02395406 -n04370456 -n03657121 -n02096585 -n02107312 -n03970156 -n03126707 -n02105251 -n02442845 -n04461696 -n07715103 -n03873416 -n01677366 -n02012849 -n03527444 -n01798484 -n04562935 -n02279972 -n02423022 -n03992509 -n01592084 -n03788195 -n02259212 -n04462240 -n03929660 -n02090622 -n04254120 -n01592084 -n02109961 -n03769881 -n02268443 -n02909870 -n01641577 -n04550184 -n04507155 -n01630670 -n04152593 -n02090379 -n01983481 -n09421951 -n04517823 -n01744401 -n07745940 -n01843383 -n03476684 -n01735189 -n03930313 -n03916031 -n02093991 -n03207743 -n02787622 -n02106166 -n04398044 -n04428191 -n04209133 -n02085620 -n09835506 -n01871265 -n03459775 -n02089973 -n02643566 -n02481823 -n02123159 -n07875152 -n04557648 -n03196217 -n04033995 -n02037110 -n01955084 -n03089624 -n01751748 -n02099429 -n03325584 -n03445777 -n03902125 -n02116738 -n02799071 -n02843684 -n03109150 -n02869837 -n06794110 -n03908618 -n02105251 -n02790996 -n02966687 -n09256479 -n02939185 -n04417672 -n02113624 -n04266014 -n02174001 -n02483362 -n03127925 -n03717622 -n01744401 -n01739381 -n02606052 -n03290653 -n04330267 -n02486410 -n02457408 -n04355338 -n01498041 -n02134418 -n01440764 -n04552348 -n02319095 -n03781244 -n07730033 -n04525038 -n02018795 -n03494278 -n04589890 -n01829413 -n04456115 -n04118776 -n02687172 -n02992529 -n07932039 -n03075370 -n04557648 -n01728920 -n01688243 -n02443484 -n03843555 -n03786901 -n03016953 -n02536864 -n04125021 -n01514668 -n04461696 -n01983481 -n02493509 -n07614500 -n01776313 -n02091467 -n02106030 -n02814860 -n02002556 -n01818515 -n03160309 -n02092339 -n02013706 -n01753488 -n01739381 -n02981792 -n01753488 -n02704792 -n09332890 -n02317335 -n03255030 -n04201297 -n02093256 -n01688243 -n03792782 -n03028079 -n01944390 -n02107908 -n03803284 -n03775546 -n02128757 -n04542943 -n04560804 -n02514041 -n04204347 -n02916936 -n03344393 -n02364673 -n03942813 -n01614925 -n02494079 -n04542943 -n07742313 -n02490219 -n03843555 -n02281406 -n02493793 -n02123597 -n04613696 -n01796340 -n07753592 -n03384352 -n03916031 -n03908714 -n03992509 -n04201297 -n03637318 -n02977058 -n02091032 -n02494079 -n03673027 -n04548362 -n01950731 -n03721384 -n02999410 -n02483362 -n02111277 -n03709823 -n02087046 -n03929660 -n07930864 -n03954731 -n03063599 -n03692522 -n02018207 -n03788195 -n04040759 -n02011460 -n07871810 -n03690938 -n04486054 -n01986214 -n04591713 -n04127249 -n01807496 -n02095570 -n01981276 -n02128925 -n02992529 -n02815834 -n01698640 -n01632458 -n02492660 -n02319095 -n03938244 -n03876231 -n01798484 -n03666591 -n02110806 -n03782006 -n01943899 -n02643566 -n04120489 -n04399382 -n02085782 -n04389033 -n07714571 -n01614925 -n03494278 -n04141076 -n03388043 -n04118776 -n03291819 -n02389026 -n04209133 -n01685808 -n03769881 -n04074963 -n04458633 -n04532670 -n02484975 -n07579787 -n02058221 -n03000134 -n01704323 -n04044716 -n03000684 -n03179701 -n07716906 -n01518878 -n02497673 -n03445924 -n02093647 -n02410509 -n03026506 -n04153751 -n04141076 -n03532672 -n04201297 -n07836838 -n03188531 -n02486410 -n04275548 -n02133161 -n03394916 -n02098105 -n04376876 -n02106382 -n03483316 -n02490219 -n03032252 -n03770439 -n02025239 -n03840681 -n03496892 -n03633091 -n02837789 -n03126707 -n02104365 -n04584207 -n04347754 -n04243546 -n02110185 -n02865351 -n02167151 -n02871525 -n02088466 -n02138441 -n02804610 -n03935335 -n02782093 -n01744401 -n09472597 -n03445924 -n01737021 -n02102480 -n02086646 -n02137549 -n02481823 -n02107574 -n02096437 -n02701002 -n03272562 -n02978881 -n01737021 -n01824575 -n03887697 -n02097298 -n03692522 -n02437312 -n03814639 -n02236044 -n02094433 -n07742313 -n04398044 -n03255030 -n04258138 -n02422106 -n06785654 -n02319095 -n03692522 -n04350905 -n04252077 -n03804744 -n03131574 -n02107312 -n07583066 -n02006656 -n01608432 -n04428191 -n04346328 -n02493793 -n04040759 -n03733281 -n02093754 -n01677366 -n02481823 -n11939491 -n13044778 -n04070727 -n02500267 -n03347037 -n03942813 -n03218198 -n02747177 -n04286575 -n01530575 -n02437312 -n02090379 -n04447861 -n01843383 -n01629819 -n01871265 -n02077923 -n02105162 -n03873416 -n02106662 -n02096437 -n02132136 -n03000684 -n01917289 -n02777292 -n02077923 -n02110063 -n02027492 -n02124075 -n04467665 -n04192698 -n04525305 -n12057211 -n02894605 -n02108551 -n04392985 -n01742172 -n02825657 -n04336792 -n04265275 -n02172182 -n02483362 -n02168699 -n02088094 -n02128925 -n03764736 -n02113712 -n03197337 -n03393912 -n03804744 -n07697313 -n03770679 -n02795169 -n02104365 -n10148035 -n01534433 -n03089624 -n10565667 -n04536866 -n02259212 -n01828970 -n01667114 -n02110958 -n03841143 -n03325584 -n03450230 -n04423845 -n04149813 -n02802426 -n03876231 -n03868242 -n07614500 -n04356056 -n02128925 -n03379051 -n02099712 -n02870880 -n02085936 -n13044778 -n03388043 -n02113712 -n02113624 -n03141823 -n02110627 -n03394916 -n04548362 -n02927161 -n01914609 -n04275548 -n03271574 -n03527444 -n01530575 -n03775546 -n02965783 -n02105505 -n03982430 -n04258138 -n03201208 -n07684084 -n02437616 -n03388043 -n04389033 -n02841315 -n03250847 -n02480495 -n01749939 -n12998815 -n02114712 -n02056570 -n03602883 -n02281406 -n02086079 -n03769881 -n03791053 -n02165456 -n02747177 -n13040303 -n04023962 -n02948072 -n04243546 -n02690373 -n04442312 -n03837869 -n04417672 -n13054560 -n02106166 -n01776313 -n02667093 -n07565083 -n13133613 -n07730033 -n02488291 -n04423845 -n03623198 -n03977966 -n03866082 -n02100735 -n02834397 -n04461696 -n02089078 -n01694178 -n01944390 -n03706229 -n03223299 -n03980874 -n03991062 -n04004767 -n04201297 -n03761084 -n03443371 -n02033041 -n02138441 -n01924916 -n04133789 -n06359193 -n02091032 -n02981792 -n03180011 -n04522168 -n04317175 -n02106662 -n01847000 -n12768682 -n03496892 -n02892767 -n07684084 -n01877812 -n03345487 -n03495258 -n03661043 -n01990800 -n03417042 -n04330267 -n01443537 -n02397096 -n01582220 -n01910747 -n02025239 -n03724870 -n02787622 -n02892201 -n02086079 -n04417672 -n04550184 -n04525305 -n03877845 -n07718472 -n04266014 -n02396427 -n01773797 -n02009912 -n01795545 -n02120079 -n02105505 -n04252077 -n07734744 -n02793495 -n04372370 -n02667093 -n01629819 -n02493793 -n02640242 -n01748264 -n02134418 -n04335435 -n02966687 -n01608432 -n03325584 -n02013706 -n02364673 -n02791124 -n02979186 -n04493381 -n03045698 -n03032252 -n02092339 -n01806143 -n03535780 -n02319095 -n04562935 -n01873310 -n02279972 -n02124075 -n03482405 -n02056570 -n02823750 -n02823428 -n01443537 -n02860847 -n02690373 -n03825788 -n04461696 -n02106030 -n01983481 -n01632777 -n04562935 -n01847000 -n03661043 -n03272010 -n02113978 -n04550184 -n02699494 -n04505470 -n01629819 -n03944341 -n03792782 -n02071294 -n02114367 -n04536866 -n02910353 -n03355925 -n03908618 -n02786058 -n02097047 -n02088094 -n02089867 -n04356056 -n02095570 -n01756291 -n02441942 -n04208210 -n07693725 -n02088094 -n06596364 -n02992529 -n04081281 -n03467068 -n01847000 -n01693334 -n03680355 -n04501370 -n03763968 -n01917289 -n02669723 -n01924916 -n02110958 -n04041544 -n02110806 -n02134084 -n02130308 -n02443484 -n02843684 -n01968897 -n01855672 -n02113799 -n03584829 -n12768682 -n01531178 -n03197337 -n01784675 -n03075370 -n04252077 -n03935335 -n02999410 -n07716358 -n04238763 -n07753275 -n02279972 -n02666196 -n02007558 -n02105251 -n02226429 -n01751748 -n02127052 -n04579145 -n02051845 -n02445715 -n02102177 -n03759954 -n03179701 -n02007558 -n03649909 -n03992509 -n03447721 -n02916936 -n03196217 -n01883070 -n01983481 -n03000684 -n01756291 -n02111277 -n03857828 -n04479046 -n02177972 -n04067472 -n03444034 -n03854065 -n03720891 -n04208210 -n01740131 -n04423845 -n01855672 -n03388549 -n02206856 -n04606251 -n03887697 -n02865351 -n04579145 -n01496331 -n02804414 -n02787622 -n04004767 -n02097047 -n02490219 -n03529860 -n03680355 -n03942813 -n01632458 -n03733281 -n03584829 -n02797295 -n02966687 -n01824575 -n07831146 -n04366367 -n03666591 -n03788195 -n02966193 -n03042490 -n06874185 -n03345487 -n02123597 -n02895154 -n01664065 -n01819313 -n12985857 -n01855672 -n02095314 -n02102973 -n02966193 -n02115913 -n03590841 -n02093991 -n02169497 -n02814860 -n02089078 -n02138441 -n02113712 -n02883205 -n01601694 -n01774384 -n04111531 -n03000134 -n02088364 -n02489166 -n01914609 -n04009552 -n03680355 -n03843555 -n03950228 -n03680355 -n04597913 -n04347754 -n04116512 -n02747177 -n01514668 -n02840245 -n03483316 -n07715103 -n04153751 -n02500267 -n03998194 -n15075141 -n03930313 -n02112706 -n03888257 -n02110063 -n02108000 -n02102973 -n02483708 -n02097474 -n02011460 -n02492035 -n02814860 -n02009229 -n03877845 -n06596364 -n07248320 -n04344873 -n04536866 -n02823750 -n03291819 -n01770081 -n02892767 -n03481172 -n02066245 -n04370456 -n02264363 -n03670208 -n02397096 -n03075370 -n02087394 -n02536864 -n04599235 -n03982430 -n04523525 -n04522168 -n13052670 -n03633091 -n04067472 -n02988304 -n04486054 -n01677366 -n02492660 -n03127747 -n02112350 -n04336792 -n03417042 -n13133613 -n01608432 -n02865351 -n02129165 -n01773157 -n04258138 -n04041544 -n04252077 -n03197337 -n03794056 -n03877845 -n04346328 -n02086910 -n01694178 -n03445924 -n04532670 -n03781244 -n04141975 -n03124170 -n03874293 -n03498962 -n01739381 -n02791270 -n07892512 -n03444034 -n02105162 -n01734418 -n04070727 -n02916936 -n03840681 -n04399382 -n07749582 -n02480495 -n04515003 -n01688243 -n02107142 -n01914609 -n01742172 -n07753113 -n01828970 -n01797886 -n04606251 -n03062245 -n03400231 -n03483316 -n02978881 -n02109047 -n02795169 -n01728920 -n03530642 -n04209133 -n02105641 -n02111277 -n01737021 -n02092339 -n04589890 -n02454379 -n12267677 -n03627232 -n01990800 -n02109047 -n03314780 -n01798484 -n03691459 -n02669723 -n03781244 -n03467068 -n01770081 -n01796340 -n03930313 -n02226429 -n02514041 -n02356798 -n07880968 -n04131690 -n02807133 -n03841143 -n02346627 -n02397096 -n02963159 -n02641379 -n02093428 -n01537544 -n02814860 -n04074963 -n02109525 -n02085782 -n02102973 -n02319095 -n02437616 -n02395406 -n02488291 -n03777568 -n03710193 -n09421951 -n03838899 -n04004767 -n02011460 -n02526121 -n02112018 -n02687172 -n02825657 -n01882714 -n01968897 -n03196217 -n02101556 -n04389033 -n04127249 -n04254680 -n03063689 -n04125021 -n01689811 -n04325704 -n02137549 -n10565667 -n02391049 -n07836838 -n04584207 -n02423022 -n02088364 -n03961711 -n02457408 -n03535780 -n02412080 -n03017168 -n02979186 -n02676566 -n01860187 -n02423022 -n03891332 -n01494475 -n01704323 -n04423845 -n03976467 -n02091831 -n02101006 -n01491361 -n03063689 -n01910747 -n01784675 -n03967562 -n02094114 -n04065272 -n01534433 -n04372370 -n02879718 -n02871525 -n02168699 -n01784675 -n03492542 -n02101388 -n07718472 -n02110185 -n12998815 -n03127925 -n03207743 -n12057211 -n07565083 -n04525038 -n04118776 -n01616318 -n02965783 -n02206856 -n03899768 -n01687978 -n03379051 -n02104029 -n04229816 -n03124170 -n02281406 -n03032252 -n02101556 -n02980441 -n03485794 -n04366367 -n02492035 -n03599486 -n04548362 -n03764736 -n07760859 -n01978287 -n04505470 -n02488291 -n02782093 -n03417042 -n02486261 -n03843555 -n02319095 -n02493509 -n01798484 -n03857828 -n03950228 -n02791124 -n03207941 -n01751748 -n03916031 -n04074963 -n03724870 -n13133613 -n03937543 -n03255030 -n04372370 -n02168699 -n03920288 -n02514041 -n02112350 -n01443537 -n01807496 -n04070727 -n01675722 -n01518878 -n03599486 -n04162706 -n04147183 -n01795545 -n01698640 -n01873310 -n07718472 -n04033995 -n04418357 -n04429376 -n02110806 -n01944390 -n09835506 -n02092339 -n02948072 -n01978455 -n02100236 -n03710193 -n04517823 -n04154565 -n03761084 -n02346627 -n02672831 -n02422106 -n01664065 -n04125021 -n03450230 -n03980874 -n03642806 -n03866082 -n01494475 -n01910747 -n02229544 -n01770393 -n02114367 -n07920052 -n01872401 -n02109047 -n03884397 -n02704792 -n07716906 -n03843555 -n03095699 -n04532106 -n02093754 -n02879718 -n04515003 -n07718747 -n02094258 -n03838899 -n03126707 -n07730033 -n03085013 -n03680355 -n02123045 -n02279972 -n02086240 -n02134418 -n03388549 -n03637318 -n03345487 -n04517823 -n03476991 -n07734744 -n03602883 -n04371774 -n04229816 -n03249569 -n02676566 -n02011460 -n02916936 -n01806567 -n02814533 -n01560419 -n03970156 -n01978455 -n02823750 -n02883205 -n02110627 -n03787032 -n10148035 -n04596742 -n04033995 -n02444819 -n03954731 -n04311174 -n02095889 -n01914609 -n03710193 -n02782093 -n01820546 -n02091134 -n04355933 -n02389026 -n04090263 -n04254120 -n01820546 -n01641577 -n02106550 -n02326432 -n03532672 -n03065424 -n07836838 -n02786058 -n04235860 -n04264628 -n02091244 -n03773504 -n02013706 -n04458633 -n04270147 -n07711569 -n04325704 -n03017168 -n02112350 -n04192698 -n02769748 -n02096051 -n04149813 -n02483708 -n04040759 -n04265275 -n02071294 -n07873807 -n02488702 -n04200800 -n02134084 -n04418357 -n04552348 -n02999410 -n02817516 -n01981276 -n02233338 -n02504458 -n02116738 -n03633091 -n03372029 -n07714990 -n04552348 -n02504458 -n02172182 -n03691459 -n02089078 -n03594734 -n02643566 -n01665541 -n01818515 -n02802426 -n03662601 -n03495258 -n01773797 -n02206856 -n03710721 -n04442312 -n02137549 -n03657121 -n04311004 -n03775071 -n03630383 -n02412080 -n01443537 -n03874293 -n03874599 -n07590611 -n04162706 -n02108551 -n07749582 -n02804414 -n03777754 -n03584829 -n02699494 -n02097298 -n03661043 -n01774750 -n03594945 -n04005630 -n07697313 -n02009229 -n03529860 -n04355933 -n03899768 -n03337140 -n02110958 -n02092339 -n02097130 -n03337140 -n01818515 -n03345487 -n01496331 -n03124043 -n02095570 -n01558993 -n03814906 -n03216828 -n03930630 -n06874185 -n02113799 -n07720875 -n03887697 -n03697007 -n02231487 -n02669723 -n02480855 -n04366367 -n03706229 -n03529860 -n03924679 -n03527444 -n01770393 -n04493381 -n04532670 -n02883205 -n04192698 -n02129604 -n02669723 -n04259630 -n02091831 -n09332890 -n01883070 -n04026417 -n03485407 -n01877812 -n01644900 -n09256479 -n04286575 -n01601694 -n04428191 -n03065424 -n03770439 -n02174001 -n02110341 -n02916936 -n04086273 -n03393912 -n02701002 -n03991062 -n01608432 -n04273569 -n04522168 -n07760859 -n02493793 -n02804414 -n02229544 -n04009552 -n03874599 -n03649909 -n07614500 -n02094433 -n02097298 -n03662601 -n03450230 -n02093256 -n04033995 -n02113023 -n09246464 -n01704323 -n02488702 -n02096294 -n04536866 -n07873807 -n03770439 -n04409515 -n04532106 -n04542943 -n07584110 -n02808304 -n03903868 -n03888605 -n02051845 -n02115641 -n02099267 -n03452741 -n03498962 -n01945685 -n01692333 -n03930630 -n02794156 -n04311004 -n03482405 -n04540053 -n09256479 -n02607072 -n02281406 -n03991062 -n02056570 -n04243546 -n03100240 -n01532829 -n03127747 -n02119022 -n02666196 -n03379051 -n04417672 -n07920052 -n03617480 -n01818515 -n03998194 -n03388183 -n02113799 -n04344873 -n03590841 -n04228054 -n04228054 -n02231487 -n03888257 -n04086273 -n02090622 -n03933933 -n02422106 -n03720891 -n02093991 -n04347754 -n01630670 -n03843555 -n03729826 -n01644900 -n02264363 -n03126707 -n12057211 -n04461696 -n02098286 -n02276258 -n04552348 -n01514668 -n04243546 -n02871525 -n02106382 -n02100583 -n02085936 -n04487081 -n03995372 -n01601694 -n02279972 -n03444034 -n07730033 -n02011460 -n02099601 -n04536866 -n03014705 -n02486261 -n04590129 -n04265275 -n03447447 -n02102177 -n03388043 -n01665541 -n03924679 -n06874185 -n03018349 -n02403003 -n03196217 -n02132136 -n01514859 -n02397096 -n02113186 -n03924679 -n02096437 -n07831146 -n04584207 -n03777568 -n02276258 -n02108915 -n04540053 -n03874293 -n02033041 -n04270147 -n02114367 -n07730033 -n02342885 -n03929660 -n03032252 -n02992211 -n03658185 -n02777292 -n02879718 -n02319095 -n07760859 -n03888257 -n02910353 -n03868863 -n04133789 -n04136333 -n04356056 -n02028035 -n03000134 -n03355925 -n04326547 -n02494079 -n04099969 -n02966193 -n04147183 -n02966193 -n07697313 -n03877472 -n02486261 -n02510455 -n07720875 -n03764736 -n04239074 -n02443484 -n07720875 -n02840245 -n03782006 -n02119789 -n04328186 -n02417914 -n03216828 -n02108551 -n02013706 -n01734418 -n03729826 -n01689811 -n04522168 -n02422106 -n04004767 -n12620546 -n04041544 -n04116512 -n03478589 -n02174001 -n04486054 -n02107142 -n02422699 -n03400231 -n07930864 -n04200800 -n01582220 -n07753592 -n02690373 -n07880968 -n03958227 -n01665541 -n01847000 -n12768682 -n03478589 -n02091467 -n02787622 -n02776631 -n03000247 -n04074963 -n03743016 -n03325584 -n09246464 -n03871628 -n01740131 -n09288635 -n02730930 -n03884397 -n03775546 -n02114712 -n07718472 -n01728920 -n02494079 -n01774750 -n03967562 -n07718747 -n02906734 -n03444034 -n02408429 -n02319095 -n04330267 -n02113624 -n02231487 -n04141076 -n04552348 -n03759954 -n04120489 -n02869837 -n03838899 -n02268443 -n02321529 -n04023962 -n03843555 -n04525038 -n02361337 -n03924679 -n02236044 -n01530575 -n02877765 -n01980166 -n03777568 -n04008634 -n04579145 -n07873807 -n03207743 -n03970156 -n04254680 -n03345487 -n02454379 -n03110669 -n01980166 -n02536864 -n04285008 -n07684084 -n01924916 -n02108915 -n04074963 -n03837869 -n01882714 -n03873416 -n02169497 -n02687172 -n02268853 -n02906734 -n03018349 -n04310018 -n02978881 -n01693334 -n04542943 -n03770679 -n02123045 -n02974003 -n02086646 -n01530575 -n03786901 -n03710193 -n03388183 -n02112350 -n02113186 -n01883070 -n04552348 -n04344873 -n01773157 -n02109961 -n02123159 -n04404412 -n01917289 -n02169497 -n03899768 -n03697007 -n03874599 -n02669723 -n07717556 -n04147183 -n03424325 -n03498962 -n07715103 -n01632777 -n02264363 -n03018349 -n01669191 -n04204238 -n01829413 -n03785016 -n01871265 -n02992529 -n04127249 -n01774384 -n13040303 -n02090721 -n07615774 -n02231487 -n03126707 -n04399382 -n02127052 -n02480495 -n04357314 -n04597913 -n04311174 -n04376876 -n03344393 -n04146614 -n01622779 -n04325704 -n03527444 -n07753275 -n02422699 -n03759954 -n01824575 -n01704323 -n04067472 -n01872401 -n02114712 -n02979186 -n07615774 -n02094433 -n02106550 -n01930112 -n02086079 -n07754684 -n02088238 -n03764736 -n02077923 -n01770081 -n03763968 -n03544143 -n03777568 -n03706229 -n07871810 -n02100583 -n02096585 -n03538406 -n02794156 -n04325704 -n04127249 -n02277742 -n03314780 -n13037406 -n02607072 -n07720875 -n02277742 -n02412080 -n13054560 -n02865351 -n03467068 -n03891251 -n02089973 -n02002724 -n02017213 -n02917067 -n01665541 -n07714990 -n03372029 -n03584254 -n03662601 -n03337140 -n02692877 -n02110627 -n04201297 -n04154565 -n03637318 -n03255030 -n07745940 -n02056570 -n03895866 -n02169497 -n01818515 -n04493381 -n03041632 -n02110627 -n04553703 -n02099429 -n09428293 -n03495258 -n02483708 -n04336792 -n02825657 -n03891251 -n01860187 -n09472597 -n01753488 -n04540053 -n02895154 -n02321529 -n03259280 -n01630670 -n03000134 -n03866082 -n01514859 -n07873807 -n02105056 -n01978455 -n02009912 -n03794056 -n03720891 -n03995372 -n02869837 -n02169497 -n03425413 -n04355338 -n02977058 -n02916936 -n03840681 -n04560804 -n03042490 -n07734744 -n03706229 -n01774384 -n03530642 -n02346627 -n02105251 -n02229544 -n04522168 -n03535780 -n02105505 -n02168699 -n02138441 -n04131690 -n02172182 -n02111129 -n02776631 -n03785016 -n03895866 -n02457408 -n03146219 -n02134084 -n02097130 -n02361337 -n07720875 -n01871265 -n02231487 -n07717556 -n04328186 -n04317175 -n03065424 -n02442845 -n03729826 -n02892201 -n02489166 -n03721384 -n02096437 -n02093647 -n03376595 -n01692333 -n02134084 -n01978287 -n01592084 -n02504458 -n03544143 -n04039381 -n02690373 -n01756291 -n03814639 -n03443371 -n03633091 -n02066245 -n03868242 -n02133161 -n01496331 -n02108915 -n03325584 -n03372029 -n02085782 -n04026417 -n02111500 -n03482405 -n04149813 -n02108551 -n03337140 -n03970156 -n02443484 -n03657121 -n03633091 -n01675722 -n02965783 -n03908714 -n03777754 -n03394916 -n06794110 -n02492660 -n02099429 -n01828970 -n04404412 -n01532829 -n02109047 -n07768694 -n02104365 -n01632777 -n02794156 -n02807133 -n07615774 -n01532829 -n13040303 -n04149813 -n01828970 -n03345487 -n02096585 -n03291819 -n07754684 -n02123597 -n04266014 -n02114855 -n02018207 -n04532106 -n04579432 -n09246464 -n02088364 -n07615774 -n04487394 -n04612504 -n07613480 -n02058221 -n03980874 -n02134418 -n01622779 -n04209239 -n02692877 -n01560419 -n02870880 -n03445924 -n02117135 -n04356056 -n02097047 -n02281406 -n04243546 -n02129604 -n02395406 -n02089973 -n09332890 -n07747607 -n09246464 -n04417672 -n02859443 -n02105251 -n02012849 -n03724870 -n04562935 -n02790996 -n02825657 -n02510455 -n03884397 -n04069434 -n01843383 -n01440764 -n02909870 -n04344873 -n13054560 -n03976657 -n04270147 -n02804610 -n03792972 -n01704323 -n01689811 -n03908714 -n03062245 -n03376595 -n02442845 -n04589890 -n02114855 -n04465501 -n01664065 -n07711569 -n02457408 -n02165105 -n02389026 -n03207743 -n04081281 -n04458633 -n01843065 -n04335435 -n03444034 -n04311174 -n02128385 -n01819313 -n02098413 -n02110341 -n06874185 -n02098413 -n02007558 -n02077923 -n04461696 -n01514859 -n03388549 -n03447721 -n03207743 -n02443114 -n01664065 -n03825788 -n02799071 -n01753488 -n03642806 -n01847000 -n09421951 -n02086910 -n02441942 -n03141823 -n01664065 -n03642806 -n02364673 -n03884397 -n02033041 -n04019541 -n04266014 -n07749582 -n01818515 -n02415577 -n02804414 -n04599235 -n01910747 -n02965783 -n04111531 -n03794056 -n02088364 -n03733805 -n02497673 -n04296562 -n01983481 -n04041544 -n07892512 -n02085936 -n03929855 -n02396427 -n03854065 -n02802426 -n01751748 -n01632458 -n03207941 -n02110627 -n04554684 -n03729826 -n02480495 -n01914609 -n04200800 -n02480495 -n01630670 -n03825788 -n04458633 -n07754684 -n01756291 -n02807133 -n02099712 -n03223299 -n03394916 -n02100735 -n04548362 -n01774750 -n03085013 -n02974003 -n04004767 -n02111129 -n02113799 -n02963159 -n04275548 -n06874185 -n02105855 -n03710193 -n02916936 -n03125729 -n04209239 -n04033995 -n07930864 -n03443371 -n04604644 -n03788195 -n04238763 -n02174001 -n03637318 -n07615774 -n04200800 -n02107142 -n03709823 -n03786901 -n02086079 -n03201208 -n03000684 -n04099969 -n02102480 -n01950731 -n07753113 -n02013706 -n04536866 -n02423022 -n02687172 -n04208210 -n04596742 -n02051845 -n01833805 -n02058221 -n03344393 -n03857828 -n01978287 -n04118538 -n03976657 -n03717622 -n02097130 -n09399592 -n01768244 -n02317335 -n04204238 -n01580077 -n02097298 -n03673027 -n02013706 -n02105251 -n07697313 -n03980874 -n02804610 -n02125311 -n03781244 -n02095570 -n03344393 -n02408429 -n02110627 -n02807133 -n02129604 -n04332243 -n04398044 -n13044778 -n02098413 -n02129604 -n03763968 -n03028079 -n02108000 -n03825788 -n02116738 -n04344873 -n03924679 -n02486261 -n02667093 -n03584254 -n04554684 -n07932039 -n01872401 -n02128757 -n02966687 -n02101556 -n03207941 -n04476259 -n07684084 -n02109525 -n02268443 -n03793489 -n02106662 -n04335435 -n03146219 -n01774384 -n03980874 -n01930112 -n03485794 -n03710193 -n04525305 -n03916031 -n07565083 -n02264363 -n03676483 -n04235860 -n02808304 -n03796401 -n12620546 -n02098286 -n02091831 -n02319095 -n02264363 -n04317175 -n04120489 -n02788148 -n02110341 -n04252077 -n07715103 -n04540053 -n03016953 -n02091244 -n02640242 -n04612504 -n03000134 -n02112706 -n01532829 -n02115913 -n02101556 -n02119789 -n04252225 -n03492542 -n03272010 -n03770679 -n01629819 -n04517823 -n04366367 -n02410509 -n03623198 -n03777754 -n03899768 -n04367480 -n04525305 -n03208938 -n02951358 -n03110669 -n04483307 -n04517823 -n02422699 -n04509417 -n03590841 -n09332890 -n01629819 -n04557648 -n09421951 -n13052670 -n01677366 -n02058221 -n02102318 -n03126707 -n04548280 -n03187595 -n02966687 -n03938244 -n02486261 -n02096177 -n02165105 -n02979186 -n04310018 -n01669191 -n04356056 -n01644373 -n03676483 -n04311174 -n03617480 -n02107908 -n04310018 -n02100236 -n03623198 -n03841143 -n02488702 -n04507155 -n02097130 -n02769748 -n03781244 -n02441942 -n03240683 -n02115641 -n02117135 -n02137549 -n02113023 -n02129165 -n04532106 -n04118538 -n01774750 -n02917067 -n03394916 -n04458633 -n01704323 -n04399382 -n02410509 -n02111277 -n02102177 -n03000247 -n02107683 -n04037443 -n03445777 -n04296562 -n02971356 -n04418357 -n02730930 -n03841143 -n01774384 -n03271574 -n02443114 -n12144580 -n02097298 -n02948072 -n04179913 -n02105251 -n03888605 -n03208938 -n04265275 -n09421951 -n02408429 -n02101388 -n02105056 -n07836838 -n04591713 -n02011460 -n04532106 -n01698640 -n04330267 -n04039381 -n04542943 -n02317335 -n02504013 -n01704323 -n01829413 -n04357314 -n04252077 -n01601694 -n02006656 -n03124043 -n02965783 -n02814533 -n03347037 -n03920288 -n03874599 -n02364673 -n03496892 -n01978455 -n03544143 -n04252077 -n03630383 -n03717622 -n03141823 -n04259630 -n03785016 -n02174001 -n02869837 -n04335435 -n02687172 -n01729977 -n02018795 -n01494475 -n03529860 -n02106166 -n04553703 -n04523525 -n02445715 -n03891332 -n02747177 -n03676483 -n02667093 -n07920052 -n02910353 -n02097209 -n03991062 -n04204238 -n02110341 -n02089867 -n01776313 -n02328150 -n03180011 -n07717410 -n03047690 -n04505470 -n03014705 -n01518878 -n01807496 -n04591713 -n02999410 -n04254777 -n02870880 -n02002556 -n02095889 -n02487347 -n03944341 -n03770679 -n03794056 -n03759954 -n02093991 -n01968897 -n03743016 -n03388183 -n03775546 -n02437312 -n04120489 -n03642806 -n02808440 -n04099969 -n03891332 -n03958227 -n02113799 -n03998194 -n02104029 -n03250847 -n02100877 -n07714990 -n03110669 -n02676566 -n03347037 -n03530642 -n10565667 -n02108000 -n03110669 -n03690938 -n02095314 -n02012849 -n02277742 -n01532829 -n04553703 -n02051845 -n04456115 -n03998194 -n02417914 -n03594734 -n01775062 -n02105855 -n03903868 -n02096294 -n04371774 -n02927161 -n03657121 -n03937543 -n04532106 -n01883070 -n01537544 -n02667093 -n02104029 -n02487347 -n02104365 -n02051845 -n04243546 -n02006656 -n02808304 -n04251144 -n02356798 -n02391049 -n07753275 -n02974003 -n03482405 -n09193705 -n01694178 -n02168699 -n12768682 -n03272562 -n03710193 -n03843555 -n03126707 -n03196217 -n06785654 -n04350905 -n07873807 -n04310018 -n02264363 -n02492660 -n10565667 -n04275548 -n04147183 -n04366367 -n02114855 -n02100236 -n04154565 -n02276258 -n03424325 -n03777568 -n03494278 -n01806143 -n03459775 -n03598930 -n03967562 -n03775546 -n04418357 -n02412080 -n04591157 -n01770081 -n03877472 -n01531178 -n03794056 -n04485082 -n03786901 -n01773797 -n04254680 -n02128925 -n02128757 -n02442845 -n02606052 -n02099429 -n04442312 -n01807496 -n02107312 -n03710637 -n02027492 -n03016953 -n02017213 -n12768682 -n04192698 -n02747177 -n04532106 -n01537544 -n04254777 -n03259280 -n02025239 -n09835506 -n02096437 -n04372370 -n02797295 -n03871628 -n02481823 -n03837869 -n02268443 -n04522168 -n03690938 -n04550184 -n03657121 -n02105251 -n01833805 -n01755581 -n07734744 -n01873310 -n03538406 -n01688243 -n03452741 -n02120505 -n02412080 -n04254120 -n04019541 -n02112706 -n02100735 -n03201208 -n03134739 -n02514041 -n04065272 -n02165105 -n04443257 -n04149813 -n03871628 -n02100236 -n02412080 -n02992211 -n02951358 -n03776460 -n02666196 -n03000134 -n12144580 -n03141823 -n02110341 -n02094114 -n02504458 -n04389033 -n02085936 -n04553703 -n03594734 -n09468604 -n03980874 -n07831146 -n03141823 -n13054560 -n01704323 -n02356798 -n03970156 -n02071294 -n06794110 -n02860847 -n03970156 -n11879895 -n04389033 -n01770393 -n02104365 -n02033041 -n07754684 -n02666196 -n03658185 -n03447447 -n03840681 -n01990800 -n03992509 -n02319095 -n04540053 -n04141975 -n03026506 -n02009229 -n07880968 -n03459775 -n02488291 -n02108551 -n03793489 -n03041632 -n03887697 -n12057211 -n07875152 -n01828970 -n01796340 -n03494278 -n02281787 -n01698640 -n01537544 -n02110185 -n04209133 -n02536864 -n07714990 -n02100236 -n04317175 -n04265275 -n01983481 -n01833805 -n02808440 -n01443537 -n07697313 -n02109525 -n03935335 -n03903868 -n04074963 -n01807496 -n03729826 -n04111531 -n07860988 -n04133789 -n03873416 -n03991062 -n03028079 -n03207743 -n02487347 -n03207941 -n03920288 -n02100735 -n02105855 -n03544143 -n02071294 -n03496892 -n03461385 -n01443537 -n04239074 -n03956157 -n04553703 -n04371430 -n12057211 -n04118776 -n02793495 -n02808304 -n03709823 -n02099267 -n03063599 -n03018349 -n02009912 -n03467068 -n03637318 -n12998815 -n04153751 -n03063599 -n02132136 -n02879718 -n02835271 -n03089624 -n01734418 -n02027492 -n04133789 -n01491361 -n03041632 -n02361337 -n03710637 -n02169497 -n02268443 -n03291819 -n02492660 -n04069434 -n03457902 -n04200800 -n04429376 -n01945685 -n02910353 -n02096177 -n04204347 -n03347037 -n01806567 -n02002724 -n01675722 -n04404412 -n03476684 -n03868242 -n01773157 -n02102040 -n02088094 -n02797295 -n07831146 -n03764736 -n03000684 -n02536864 -n01983481 -n02106550 -n04065272 -n01685808 -n02090622 -n04579432 -n04204238 -n13054560 -n03016953 -n03937543 -n04229816 -n02492660 -n03445924 -n11939491 -n03544143 -n02894605 -n07697537 -n04153751 -n02483362 -n02134084 -n04208210 -n03197337 -n01753488 -n03680355 -n03938244 -n03857828 -n03761084 -n02105162 -n03742115 -n02536864 -n02930766 -n01514668 -n03876231 -n02493509 -n02095314 -n04517823 -n01729977 -n04442312 -n11939491 -n01614925 -n03496892 -n02281787 -n02095570 -n02105505 -n04127249 -n04579432 -n03804744 -n04613696 -n01440764 -n04133789 -n02115641 -n02099849 -n04493381 -n02102480 -n11939491 -n07565083 -n03425413 -n01756291 -n02132136 -n02109525 -n03995372 -n12057211 -n07697537 -n04023962 -n03690938 -n03676483 -n03868863 -n04147183 -n02895154 -n01773549 -n01667114 -n12267677 -n04507155 -n03658185 -n01644373 -n06785654 -n02114548 -n04065272 -n04118538 -n01491361 -n03792782 -n03773504 -n07831146 -n02092002 -n02808304 -n04330267 -n02437312 -n03481172 -n03706229 -n02100583 -n04347754 -n02666196 -n04074963 -n03976467 -n02090721 -n02002556 -n01728572 -n02129165 -n02483362 -n01910747 -n03887697 -n02422106 -n04039381 -n02356798 -n04350905 -n02871525 -n02086079 -n04485082 -n04116512 -n02346627 -n02840245 -n03345487 -n04336792 -n03777568 -n02797295 -n02093428 -n04037443 -n03188531 -n03538406 -n02108089 -n02268853 -n02219486 -n02415577 -n02113978 -n04367480 -n02111277 -n07754684 -n03207941 -n02708093 -n02791124 -n04239074 -n01872401 -n03124043 -n02788148 -n03933933 -n01798484 -n03065424 -n03658185 -n09421951 -n03000247 -n02669723 -n04592741 -n02097130 -n02105641 -n01629819 -n02793495 -n03954731 -n04141327 -n02966687 -n02769748 -n02281787 -n01687978 -n04229816 -n04009552 -n04418357 -n04461696 -n02006656 -n03770439 -n02017213 -n07716358 -n02445715 -n02389026 -n02948072 -n06785654 -n02268443 -n03457902 -n04118776 -n12768682 -n02095314 -n01518878 -n04275548 -n02894605 -n01843383 -n02840245 -n07697313 -n07930864 -n02690373 -n02788148 -n04081281 -n03127925 -n03706229 -n03721384 -n01632458 -n04265275 -n01924916 -n02979186 -n01872401 -n04235860 -n04476259 -n07697537 -n02488702 -n03920288 -n03670208 -n04493381 -n02113712 -n01682714 -n03271574 -n03018349 -n01641577 -n02422699 -n02807133 -n02749479 -n02749479 -n02480495 -n02120505 -n02277742 -n03935335 -n03759954 -n02113186 -n02100236 -n03126707 -n04458633 -n02281406 -n01775062 -n04204347 -n02116738 -n03388043 -n04418357 -n02100583 -n03584829 -n01592084 -n04456115 -n01728920 -n02091635 -n03637318 -n02105056 -n02110627 -n02776631 -n03788365 -n03179701 -n02009912 -n02219486 -n04179913 -n07590611 -n03903868 -n04560804 -n01917289 -n04133789 -n02085620 -n03259280 -n02484975 -n01744401 -n07836838 -n07753592 -n03673027 -n01494475 -n01728572 -n02174001 -n07873807 -n02058221 -n04252225 -n03782006 -n04133789 -n15075141 -n02106662 -n02346627 -n03769881 -n03630383 -n03871628 -n01984695 -n01514668 -n01749939 -n03457902 -n04347754 -n04370456 -n02892201 -n01693334 -n03109150 -n02102973 -n02098413 -n01930112 -n02834397 -n02091032 -n02489166 -n12985857 -n02092339 -n03995372 -n02089078 -n03709823 -n02111500 -n02268443 -n02410509 -n01798484 -n03720891 -n03868863 -n02092002 -n03018349 -n04487394 -n03240683 -n03803284 -n07579787 -n02804414 -n03887697 -n04542943 -n02113023 -n02607072 -n01882714 -n02102040 -n07697537 -n02443114 -n01986214 -n02777292 -n02939185 -n02009229 -n03769881 -n04554684 -n02037110 -n02817516 -n02089078 -n03691459 -n03680355 -n04591713 -n03804744 -n03617480 -n01795545 -n02865351 -n02840245 -n02909870 -n02101006 -n04208210 -n04487081 -n02111889 -n04264628 -n01629819 -n02111129 -n12768682 -n03134739 -n03075370 -n13037406 -n02100735 -n04330267 -n04540053 -n01498041 -n03874599 -n03874599 -n04485082 -n03095699 -n04252225 -n02172182 -n01667114 -n04557648 -n02119022 -n02091467 -n04350905 -n01817953 -n01985128 -n04067472 -n02504013 -n04476259 -n09229709 -n02865351 -n02105251 -n03255030 -n02325366 -n04200800 -n03065424 -n04330267 -n02403003 -n02123159 -n02326432 -n02097130 -n02966687 -n04591157 -n03538406 -n02107908 -n02009912 -n01644900 -n02356798 -n04201297 -n04235860 -n02110185 -n03544143 -n02787622 -n04296562 -n02804414 -n02114367 -n02894605 -n02119022 -n02965783 -n03837869 -n01955084 -n02701002 -n02137549 -n03794056 -n03759954 -n03956157 -n03461385 -n02939185 -n07892512 -n07715103 -n01742172 -n04350905 -n01817953 -n02865351 -n02002556 -n01644900 -n02795169 -n03617480 -n03207743 -n02403003 -n03109150 -n03590841 -n02480855 -n02091032 -n07584110 -n02102318 -n02111277 -n02692877 -n04604644 -n03793489 -n01877812 -n02412080 -n01698640 -n02110806 -n04019541 -n04476259 -n04584207 -n02012849 -n03720891 -n04311174 -n03459775 -n03781244 -n09428293 -n02106550 -n02132136 -n03630383 -n02128925 -n03903868 -n03814639 -n01630670 -n02106550 -n01855672 -n01807496 -n02088364 -n03290653 -n02109525 -n03902125 -n07583066 -n04542943 -n03937543 -n07583066 -n04008634 -n04532670 -n02095314 -n04118538 -n07584110 -n02747177 -n03929855 -n01950731 -n07742313 -n03649909 -n02319095 -n01697457 -n02092339 -n09332890 -n04347754 -n02480495 -n03478589 -n07880968 -n03935335 -n03976657 -n02835271 -n04367480 -n02177972 -n04070727 -n04277352 -n04125021 -n03134739 -n02128757 -n02504013 -n04111531 -n04152593 -n04591713 -n03400231 -n01704323 -n12768682 -n02110806 -n04418357 -n02536864 -n04409515 -n04542943 -n03763968 -n03662601 -n02490219 -n02086240 -n04404412 -n07718747 -n02096051 -n04599235 -n01944390 -n01990800 -n04152593 -n02807133 -n02086910 -n03347037 -n01847000 -n02107683 -n02279972 -n04019541 -n01695060 -n02087046 -n03891251 -n04154565 -n04398044 -n02504013 -n02138441 -n04285008 -n03942813 -n04239074 -n02704792 -n03794056 -n04476259 -n04483307 -n03982430 -n02109047 -n11939491 -n04335435 -n02727426 -n03781244 -n01978455 -n03887697 -n02268853 -n02607072 -n02009229 -n04371774 -n07892512 -n04523525 -n01748264 -n03924679 -n04200800 -n04026417 -n04208210 -n04548362 -n04389033 -n04152593 -n02910353 -n07697313 -n03196217 -n04200800 -n02279972 -n01917289 -n02488291 -n02808304 -n03992509 -n02804414 -n01774750 -n04442312 -n03535780 -n02802426 -n04044716 -n02128385 -n07697313 -n04179913 -n03400231 -n03095699 -n03871628 -n02129165 -n01773797 -n03691459 -n02018795 -n04116512 -n03089624 -n02127052 -n02111129 -n02093256 -n03742115 -n04429376 -n02009229 -n02815834 -n07747607 -n03481172 -n03220513 -n03495258 -n02974003 -n01704323 -n04277352 -n07684084 -n02107574 -n02276258 -n12998815 -n03617480 -n03721384 -n02992529 -n02321529 -n03933933 -n03764736 -n03764736 -n02317335 -n04235860 -n02808440 -n02110341 -n04542943 -n02442845 -n02869837 -n01742172 -n02088632 -n02120079 -n04259630 -n03447447 -n03876231 -n02037110 -n01914609 -n02102040 -n13054560 -n03930630 -n03759954 -n07584110 -n04259630 -n03291819 -n07697537 -n01614925 -n03814906 -n04540053 -n02116738 -n01776313 -n03954731 -n04479046 -n03658185 -n04357314 -n03763968 -n01755581 -n01749939 -n02981792 -n03485407 -n02442845 -n04548280 -n07880968 -n02825657 -n09332890 -n04596742 -n04596742 -n02930766 -n01843383 -n03532672 -n13133613 -n02963159 -n03759954 -n02098413 -n04367480 -n02643566 -n04254777 -n02415577 -n04560804 -n04485082 -n03781244 -n04597913 -n04482393 -n01530575 -n03250847 -n02108089 -n04404412 -n02687172 -n03786901 -n02108000 -n02687172 -n02317335 -n02606052 -n02165105 -n03045698 -n03218198 -n02415577 -n04069434 -n04482393 -n01806143 -n01443537 -n02100735 -n04153751 -n04254777 -n02091467 -n03482405 -n02794156 -n07754684 -n03495258 -n04542943 -n01797886 -n03085013 -n03792972 -n01980166 -n02782093 -n03920288 -n03666591 -n01695060 -n02486410 -n02088364 -n02389026 -n07753592 -n07248320 -n03355925 -n01737021 -n04266014 -n02167151 -n03930630 -n02133161 -n02107142 -n03180011 -n04023962 -n01443537 -n02443114 -n02892201 -n03109150 -n01872401 -n07565083 -n02815834 -n02206856 -n03729826 -n10565667 -n02111129 -n02704792 -n02117135 -n03000247 -n02129604 -n04550184 -n03089624 -n03785016 -n01689811 -n02441942 -n01641577 -n02229544 -n01622779 -n02089973 -n02791270 -n02102177 -n02114855 -n13040303 -n03944341 -n01667114 -n04149813 -n03792972 -n02869837 -n02112706 -n13044778 -n01688243 -n02097658 -n02109961 -n03791053 -n04286575 -n01985128 -n03014705 -n04265275 -n04467665 -n01985128 -n04344873 -n04335435 -n02676566 -n01806143 -n04599235 -n02093859 -n04486054 -n01601694 -n02966193 -n02965783 -n02099712 -n02808440 -n03785016 -n04285008 -n04141076 -n07760859 -n03717622 -n01917289 -n03942813 -n04409515 -n01819313 -n03255030 -n02328150 -n07590611 -n01985128 -n03998194 -n12985857 -n03014705 -n02823428 -n03127747 -n02825657 -n03935335 -n02793495 -n04509417 -n02655020 -n07873807 -n02906734 -n03720891 -n04037443 -n04254120 -n07614500 -n01667114 -n02415577 -n03710637 -n02361337 -n04081281 -n04070727 -n03649909 -n07720875 -n02011460 -n01443537 -n04525305 -n02894605 -n02113712 -n09229709 -n04367480 -n04266014 -n02105056 -n09421951 -n02814860 -n02167151 -n01744401 -n02808304 -n02106030 -n02074367 -n02536864 -n04485082 -n03538406 -n02108915 -n02114548 -n01698640 -n04286575 -n02797295 -n02124075 -n02927161 -n02747177 -n02641379 -n02325366 -n02536864 -n03697007 -n02281406 -n03017168 -n02090721 -n03776460 -n02037110 -n03100240 -n04398044 -n02871525 -n03792782 -n02787622 -n03180011 -n04522168 -n04266014 -n03218198 -n02088094 -n02097298 -n04548362 -n03196217 -n02095889 -n01873310 -n02088466 -n01968897 -n04548280 -n04604644 -n02090379 -n03787032 -n04229816 -n03891251 -n02356798 -n04350905 -n03782006 -n01664065 -n03950228 -n01601694 -n01558993 -n02777292 -n02091134 -n02088632 -n02442845 -n02137549 -n01669191 -n02007558 -n03782006 -n03692522 -n02916936 -n04357314 -n02132136 -n03930630 -n04019541 -n04005630 -n02102480 -n03443371 -n04523525 -n03814906 -n07693725 -n04371774 -n04209239 -n03720891 -n02086079 -n02071294 -n01774384 -n01560419 -n04204238 -n02101556 -n03998194 -n04486054 -n04505470 -n02089867 -n04179913 -n02112018 -n04201297 -n03673027 -n03908714 -n02105056 -n02791270 -n03775071 -n03785016 -n02088238 -n04376876 -n03272562 -n02132136 -n01748264 -n02939185 -n03485794 -n02105412 -n02814860 -n03527444 -n03803284 -n02396427 -n03877845 -n07614500 -n01514859 -n02105056 -n03047690 -n04254120 -n03218198 -n02910353 -n04328186 -n03776460 -n02109961 -n03467068 -n02704792 -n04136333 -n02169497 -n02094114 -n03837869 -n03131574 -n02090622 -n04238763 -n01682714 -n03388043 -n04493381 -n04040759 -n02099601 -n03803284 -n02101388 -n13044778 -n04483307 -n03404251 -n02090622 -n12768682 -n04367480 -n03134739 -n02356798 -n02408429 -n02974003 -n02101388 -n03124170 -n04435653 -n02105855 -n07920052 -n03272010 -n03180011 -n07717556 -n04235860 -n07716358 -n02088094 -n07873807 -n03775071 -n02110341 -n02817516 -n03146219 -n02113186 -n09246464 -n02119022 -n03240683 -n03706229 -n02701002 -n04154565 -n03467068 -n03843555 -n02107683 -n02088094 -n02108915 -n02786058 -n02326432 -n01629819 -n01614925 -n12267677 -n02108422 -n02481823 -n02892201 -n02877765 -n01955084 -n12057211 -n03063689 -n02113978 -n02777292 -n03717622 -n02787622 -n02437312 -n03992509 -n01930112 -n02500267 -n03627232 -n04505470 -n03250847 -n03400231 -n02977058 -n04554684 -n04456115 -n04147183 -n03676483 -n04465501 -n02094114 -n04532106 -n07892512 -n04557648 -n03482405 -n02088238 -n03991062 -n01751748 -n02104029 -n03733281 -n02536864 -n01860187 -n03133878 -n02110627 -n03208938 -n04192698 -n02106166 -n03028079 -n04515003 -n03787032 -n04317175 -n03447721 -n02326432 -n03535780 -n03998194 -n04560804 -n04507155 -n03134739 -n01697457 -n04270147 -n02107683 -n04525305 -n02410509 -n02099712 -n02132136 -n02268853 -n01817953 -n03929855 -n07615774 -n02100735 -n01833805 -n03207743 -n04584207 -n04266014 -n07248320 -n03467068 -n03908618 -n02133161 -n02486410 -n01755581 -n02445715 -n01914609 -n02841315 -n02877765 -n01697457 -n01981276 -n06794110 -n04485082 -n02119022 -n02481823 -n02802426 -n01689811 -n01796340 -n02667093 -n01622779 -n01980166 -n02442845 -n04328186 -n01871265 -n03729826 -n02123394 -n01630670 -n02106166 -n10148035 -n02437616 diff --git a/Classification/cnns/tools/imagenet_lsvrc_2015_synsets.txt b/Classification/cnns/tools/imagenet_lsvrc_2015_synsets.txt deleted file mode 100644 index 88aa58f..0000000 --- a/Classification/cnns/tools/imagenet_lsvrc_2015_synsets.txt +++ /dev/null @@ -1,1000 +0,0 @@ -n01440764 -n01443537 -n01484850 -n01491361 -n01494475 -n01496331 -n01498041 -n01514668 -n01514859 -n01518878 -n01530575 -n01531178 -n01532829 -n01534433 -n01537544 -n01558993 -n01560419 -n01580077 -n01582220 -n01592084 -n01601694 -n01608432 -n01614925 -n01616318 -n01622779 -n01629819 -n01630670 -n01631663 -n01632458 -n01632777 -n01641577 -n01644373 -n01644900 -n01664065 -n01665541 -n01667114 -n01667778 -n01669191 -n01675722 -n01677366 -n01682714 -n01685808 -n01687978 -n01688243 -n01689811 -n01692333 -n01693334 -n01694178 -n01695060 -n01697457 -n01698640 -n01704323 -n01728572 -n01728920 -n01729322 -n01729977 -n01734418 -n01735189 -n01737021 -n01739381 -n01740131 -n01742172 -n01744401 -n01748264 -n01749939 -n01751748 -n01753488 -n01755581 -n01756291 -n01768244 -n01770081 -n01770393 -n01773157 -n01773549 -n01773797 -n01774384 -n01774750 -n01775062 -n01776313 -n01784675 -n01795545 -n01796340 -n01797886 -n01798484 -n01806143 -n01806567 -n01807496 -n01817953 -n01818515 -n01819313 -n01820546 -n01824575 -n01828970 -n01829413 -n01833805 -n01843065 -n01843383 -n01847000 -n01855032 -n01855672 -n01860187 -n01871265 -n01872401 -n01873310 -n01877812 -n01882714 -n01883070 -n01910747 -n01914609 -n01917289 -n01924916 -n01930112 -n01943899 -n01944390 -n01945685 -n01950731 -n01955084 -n01968897 -n01978287 -n01978455 -n01980166 -n01981276 -n01983481 -n01984695 -n01985128 -n01986214 -n01990800 -n02002556 -n02002724 -n02006656 -n02007558 -n02009229 -n02009912 -n02011460 -n02012849 -n02013706 -n02017213 -n02018207 -n02018795 -n02025239 -n02027492 -n02028035 -n02033041 -n02037110 -n02051845 -n02056570 -n02058221 -n02066245 -n02071294 -n02074367 -n02077923 -n02085620 -n02085782 -n02085936 -n02086079 -n02086240 -n02086646 -n02086910 -n02087046 -n02087394 -n02088094 -n02088238 -n02088364 -n02088466 -n02088632 -n02089078 -n02089867 -n02089973 -n02090379 -n02090622 -n02090721 -n02091032 -n02091134 -n02091244 -n02091467 -n02091635 -n02091831 -n02092002 -n02092339 -n02093256 -n02093428 -n02093647 -n02093754 -n02093859 -n02093991 -n02094114 -n02094258 -n02094433 -n02095314 -n02095570 -n02095889 -n02096051 -n02096177 -n02096294 -n02096437 -n02096585 -n02097047 -n02097130 -n02097209 -n02097298 -n02097474 -n02097658 -n02098105 -n02098286 -n02098413 -n02099267 -n02099429 -n02099601 -n02099712 -n02099849 -n02100236 -n02100583 -n02100735 -n02100877 -n02101006 -n02101388 -n02101556 -n02102040 -n02102177 -n02102318 -n02102480 -n02102973 -n02104029 -n02104365 -n02105056 -n02105162 -n02105251 -n02105412 -n02105505 -n02105641 -n02105855 -n02106030 -n02106166 -n02106382 -n02106550 -n02106662 -n02107142 -n02107312 -n02107574 -n02107683 -n02107908 -n02108000 -n02108089 -n02108422 -n02108551 -n02108915 -n02109047 -n02109525 -n02109961 -n02110063 -n02110185 -n02110341 -n02110627 -n02110806 -n02110958 -n02111129 -n02111277 -n02111500 -n02111889 -n02112018 -n02112137 -n02112350 -n02112706 -n02113023 -n02113186 -n02113624 -n02113712 -n02113799 -n02113978 -n02114367 -n02114548 -n02114712 -n02114855 -n02115641 -n02115913 -n02116738 -n02117135 -n02119022 -n02119789 -n02120079 -n02120505 -n02123045 -n02123159 -n02123394 -n02123597 -n02124075 -n02125311 -n02127052 -n02128385 -n02128757 -n02128925 -n02129165 -n02129604 -n02130308 -n02132136 -n02133161 -n02134084 -n02134418 -n02137549 -n02138441 -n02165105 -n02165456 -n02167151 -n02168699 -n02169497 -n02172182 -n02174001 -n02177972 -n02190166 -n02206856 -n02219486 -n02226429 -n02229544 -n02231487 -n02233338 -n02236044 -n02256656 -n02259212 -n02264363 -n02268443 -n02268853 -n02276258 -n02277742 -n02279972 -n02280649 -n02281406 -n02281787 -n02317335 -n02319095 -n02321529 -n02325366 -n02326432 -n02328150 -n02342885 -n02346627 -n02356798 -n02361337 -n02363005 -n02364673 -n02389026 -n02391049 -n02395406 -n02396427 -n02397096 -n02398521 -n02403003 -n02408429 -n02410509 -n02412080 -n02415577 -n02417914 -n02422106 -n02422699 -n02423022 -n02437312 -n02437616 -n02441942 -n02442845 -n02443114 -n02443484 -n02444819 -n02445715 -n02447366 -n02454379 -n02457408 -n02480495 -n02480855 -n02481823 -n02483362 -n02483708 -n02484975 -n02486261 -n02486410 -n02487347 -n02488291 -n02488702 -n02489166 -n02490219 -n02492035 -n02492660 -n02493509 -n02493793 -n02494079 -n02497673 -n02500267 -n02504013 -n02504458 -n02509815 -n02510455 -n02514041 -n02526121 -n02536864 -n02606052 -n02607072 -n02640242 -n02641379 -n02643566 -n02655020 -n02666196 -n02667093 -n02669723 -n02672831 -n02676566 -n02687172 -n02690373 -n02692877 -n02699494 -n02701002 -n02704792 -n02708093 -n02727426 -n02730930 -n02747177 -n02749479 -n02769748 -n02776631 -n02777292 -n02782093 -n02783161 -n02786058 -n02787622 -n02788148 -n02790996 -n02791124 -n02791270 -n02793495 -n02794156 -n02795169 -n02797295 -n02799071 -n02802426 -n02804414 -n02804610 -n02807133 -n02808304 -n02808440 -n02814533 -n02814860 -n02815834 -n02817516 -n02823428 -n02823750 -n02825657 -n02834397 -n02835271 -n02837789 -n02840245 -n02841315 -n02843684 -n02859443 -n02860847 -n02865351 -n02869837 -n02870880 -n02871525 -n02877765 -n02879718 -n02883205 -n02892201 -n02892767 -n02894605 -n02895154 -n02906734 -n02909870 -n02910353 -n02916936 -n02917067 -n02927161 -n02930766 -n02939185 -n02948072 -n02950826 -n02951358 -n02951585 -n02963159 -n02965783 -n02966193 -n02966687 -n02971356 -n02974003 -n02977058 -n02978881 -n02979186 -n02980441 -n02981792 -n02988304 -n02992211 -n02992529 -n02999410 -n03000134 -n03000247 -n03000684 -n03014705 -n03016953 -n03017168 -n03018349 -n03026506 -n03028079 -n03032252 -n03041632 -n03042490 -n03045698 -n03047690 -n03062245 -n03063599 -n03063689 -n03065424 -n03075370 -n03085013 -n03089624 -n03095699 -n03100240 -n03109150 -n03110669 -n03124043 -n03124170 -n03125729 -n03126707 -n03127747 -n03127925 -n03131574 -n03133878 -n03134739 -n03141823 -n03146219 -n03160309 -n03179701 -n03180011 -n03187595 -n03188531 -n03196217 -n03197337 -n03201208 -n03207743 -n03207941 -n03208938 -n03216828 -n03218198 -n03220513 -n03223299 -n03240683 -n03249569 -n03250847 -n03255030 -n03259280 -n03271574 -n03272010 -n03272562 -n03290653 -n03291819 -n03297495 -n03314780 -n03325584 -n03337140 -n03344393 -n03345487 -n03347037 -n03355925 -n03372029 -n03376595 -n03379051 -n03384352 -n03388043 -n03388183 -n03388549 -n03393912 -n03394916 -n03400231 -n03404251 -n03417042 -n03424325 -n03425413 -n03443371 -n03444034 -n03445777 -n03445924 -n03447447 -n03447721 -n03450230 -n03452741 -n03457902 -n03459775 -n03461385 -n03467068 -n03476684 -n03476991 -n03478589 -n03481172 -n03482405 -n03483316 -n03485407 -n03485794 -n03492542 -n03494278 -n03495258 -n03496892 -n03498962 -n03527444 -n03529860 -n03530642 -n03532672 -n03534580 -n03535780 -n03538406 -n03544143 -n03584254 -n03584829 -n03590841 -n03594734 -n03594945 -n03595614 -n03598930 -n03599486 -n03602883 -n03617480 -n03623198 -n03627232 -n03630383 -n03633091 -n03637318 -n03642806 -n03649909 -n03657121 -n03658185 -n03661043 -n03662601 -n03666591 -n03670208 -n03673027 -n03676483 -n03680355 -n03690938 -n03691459 -n03692522 -n03697007 -n03706229 -n03709823 -n03710193 -n03710637 -n03710721 -n03717622 -n03720891 -n03721384 -n03724870 -n03729826 -n03733131 -n03733281 -n03733805 -n03742115 -n03743016 -n03759954 -n03761084 -n03763968 -n03764736 -n03769881 -n03770439 -n03770679 -n03773504 -n03775071 -n03775546 -n03776460 -n03777568 -n03777754 -n03781244 -n03782006 -n03785016 -n03786901 -n03787032 -n03788195 -n03788365 -n03791053 -n03792782 -n03792972 -n03793489 -n03794056 -n03796401 -n03803284 -n03804744 -n03814639 -n03814906 -n03825788 -n03832673 -n03837869 -n03838899 -n03840681 -n03841143 -n03843555 -n03854065 -n03857828 -n03866082 -n03868242 -n03868863 -n03871628 -n03873416 -n03874293 -n03874599 -n03876231 -n03877472 -n03877845 -n03884397 -n03887697 -n03888257 -n03888605 -n03891251 -n03891332 -n03895866 -n03899768 -n03902125 -n03903868 -n03908618 -n03908714 -n03916031 -n03920288 -n03924679 -n03929660 -n03929855 -n03930313 -n03930630 -n03933933 -n03935335 -n03937543 -n03938244 -n03942813 -n03944341 -n03947888 -n03950228 -n03954731 -n03956157 -n03958227 -n03961711 -n03967562 -n03970156 -n03976467 -n03976657 -n03977966 -n03980874 -n03982430 -n03983396 -n03991062 -n03992509 -n03995372 -n03998194 -n04004767 -n04005630 -n04008634 -n04009552 -n04019541 -n04023962 -n04026417 -n04033901 -n04033995 -n04037443 -n04039381 -n04040759 -n04041544 -n04044716 -n04049303 -n04065272 -n04067472 -n04069434 -n04070727 -n04074963 -n04081281 -n04086273 -n04090263 -n04099969 -n04111531 -n04116512 -n04118538 -n04118776 -n04120489 -n04125021 -n04127249 -n04131690 -n04133789 -n04136333 -n04141076 -n04141327 -n04141975 -n04146614 -n04147183 -n04149813 -n04152593 -n04153751 -n04154565 -n04162706 -n04179913 -n04192698 -n04200800 -n04201297 -n04204238 -n04204347 -n04208210 -n04209133 -n04209239 -n04228054 -n04229816 -n04235860 -n04238763 -n04239074 -n04243546 -n04251144 -n04252077 -n04252225 -n04254120 -n04254680 -n04254777 -n04258138 -n04259630 -n04263257 -n04264628 -n04265275 -n04266014 -n04270147 -n04273569 -n04275548 -n04277352 -n04285008 -n04286575 -n04296562 -n04310018 -n04311004 -n04311174 -n04317175 -n04325704 -n04326547 -n04328186 -n04330267 -n04332243 -n04335435 -n04336792 -n04344873 -n04346328 -n04347754 -n04350905 -n04355338 -n04355933 -n04356056 -n04357314 -n04366367 -n04367480 -n04370456 -n04371430 -n04371774 -n04372370 -n04376876 -n04380533 -n04389033 -n04392985 -n04398044 -n04399382 -n04404412 -n04409515 -n04417672 -n04418357 -n04423845 -n04428191 -n04429376 -n04435653 -n04442312 -n04443257 -n04447861 -n04456115 -n04458633 -n04461696 -n04462240 -n04465501 -n04467665 -n04476259 -n04479046 -n04482393 -n04483307 -n04485082 -n04486054 -n04487081 -n04487394 -n04493381 -n04501370 -n04505470 -n04507155 -n04509417 -n04515003 -n04517823 -n04522168 -n04523525 -n04525038 -n04525305 -n04532106 -n04532670 -n04536866 -n04540053 -n04542943 -n04548280 -n04548362 -n04550184 -n04552348 -n04553703 -n04554684 -n04557648 -n04560804 -n04562935 -n04579145 -n04579432 -n04584207 -n04589890 -n04590129 -n04591157 -n04591713 -n04592741 -n04596742 -n04597913 -n04599235 -n04604644 -n04606251 -n04612504 -n04613696 -n06359193 -n06596364 -n06785654 -n06794110 -n06874185 -n07248320 -n07565083 -n07579787 -n07583066 -n07584110 -n07590611 -n07613480 -n07614500 -n07615774 -n07684084 -n07693725 -n07695742 -n07697313 -n07697537 -n07711569 -n07714571 -n07714990 -n07715103 -n07716358 -n07716906 -n07717410 -n07717556 -n07718472 -n07718747 -n07720875 -n07730033 -n07734744 -n07742313 -n07745940 -n07747607 -n07749582 -n07753113 -n07753275 -n07753592 -n07754684 -n07760859 -n07768694 -n07802026 -n07831146 -n07836838 -n07860988 -n07871810 -n07873807 -n07875152 -n07880968 -n07892512 -n07920052 -n07930864 -n07932039 -n09193705 -n09229709 -n09246464 -n09256479 -n09288635 -n09332890 -n09399592 -n09421951 -n09428293 -n09468604 -n09472597 -n09835506 -n10148035 -n10565667 -n11879895 -n11939491 -n12057211 -n12144580 -n12267677 -n12620546 -n12768682 -n12985857 -n12998815 -n13037406 -n13040303 -n13044778 -n13052670 -n13054560 -n13133613 -n15075141 diff --git a/Classification/cnns/tools/imagenet_metadata.txt b/Classification/cnns/tools/imagenet_metadata.txt deleted file mode 100755 index 913a237..0000000 --- a/Classification/cnns/tools/imagenet_metadata.txt +++ /dev/null @@ -1,21842 +0,0 @@ -n00004475 organism, being -n00005787 benthos -n00006024 heterotroph -n00006484 cell -n00007846 person, individual, someone, somebody, mortal, soul -n00015388 animal, animate being, beast, brute, creature, fauna -n00017222 plant, flora, plant life -n00021265 food, nutrient -n00021939 artifact, artefact -n00120010 hop -n00141669 check-in -n00288000 dressage -n00288190 curvet, vaulting -n00288384 piaffe -n00324978 funambulism, tightrope walking -n00326094 rock climbing -n00433458 contact sport -n00433661 outdoor sport, field sport -n00433802 gymnastics, gymnastic exercise -n00434075 acrobatics, tumbling -n00439826 track and field -n00440039 track, running -n00440218 jumping -n00440382 broad jump, long jump -n00440509 high jump -n00440643 Fosbury flop -n00440747 skiing -n00440941 cross-country skiing -n00441073 ski jumping -n00441824 water sport, aquatics -n00442115 swimming, swim -n00442437 bathe -n00442847 dip, plunge -n00442981 dive, diving -n00443231 floating, natation -n00443375 dead-man's float, prone float -n00443517 belly flop, belly flopper, belly whop, belly whopper -n00443692 cliff diving -n00443803 flip -n00443917 gainer, full gainer -n00444142 half gainer -n00444340 jackknife -n00444490 swan dive, swallow dive -n00444651 skin diving, skin-dive -n00444846 scuba diving -n00444937 snorkeling, snorkel diving -n00445055 surfing, surfboarding, surfriding -n00445226 water-skiing -n00445351 rowing, row -n00445685 sculling -n00445802 boxing, pugilism, fisticuffs -n00446311 professional boxing -n00446411 in-fighting -n00446493 fight -n00446632 rope-a-dope -n00446804 spar, sparring -n00446980 archery -n00447073 sledding -n00447221 tobogganing -n00447361 luging -n00447463 bobsledding -n00447540 wrestling, rassling, grappling -n00447957 Greco-Roman wrestling -n00448126 professional wrestling -n00448232 sumo -n00448466 skating -n00448640 ice skating -n00448748 figure skating -n00448872 rollerblading -n00448958 roller skating -n00449054 skateboarding -n00449168 speed skating -n00449295 racing -n00449517 auto racing, car racing -n00449695 boat racing -n00449796 hydroplane racing -n00449892 camel racing -n00449977 greyhound racing -n00450070 horse racing -n00450335 riding, horseback riding, equitation -n00450700 equestrian sport -n00450866 pony-trekking -n00450998 showjumping, stadium jumping -n00451186 cross-country riding, cross-country jumping -n00451370 cycling -n00451563 bicycling -n00451635 motorcycling -n00451768 dune cycling -n00451866 blood sport -n00452034 bullfighting, tauromachy -n00452152 cockfighting -n00452293 hunt, hunting -n00452734 battue -n00452864 beagling -n00453126 coursing -n00453313 deer hunting, deer hunt -n00453396 ducking, duck hunting -n00453478 fox hunting, foxhunt -n00453631 pigsticking -n00453935 fishing, sportfishing -n00454237 angling -n00454395 fly-fishing -n00454493 troll, trolling -n00454624 casting, cast -n00454855 bait casting -n00454983 fly casting -n00455076 overcast -n00455173 surf casting, surf fishing -n00456465 day game -n00463246 athletic game -n00463543 ice hockey, hockey, hockey game -n00464277 tetherball -n00464478 water polo -n00464651 outdoor game -n00464894 golf, golf game -n00466273 professional golf -n00466377 round of golf, round -n00466524 medal play, stroke play -n00466630 match play -n00466712 miniature golf -n00466880 croquet -n00467320 quoits, horseshoes -n00467536 shuffleboard, shovelboard -n00467719 field game -n00467995 field hockey, hockey -n00468299 shinny, shinney -n00468480 football, football game -n00469651 American football, American football game -n00470554 professional football -n00470682 touch football -n00470830 hurling -n00470966 rugby, rugby football, rugger -n00471437 ball game, ballgame -n00471613 baseball, baseball game -n00474568 ball -n00474657 professional baseball -n00474769 hardball -n00474881 perfect game -n00475014 no-hit game, no-hitter -n00475142 one-hitter, 1-hitter -n00475273 two-hitter, 2-hitter -n00475403 three-hitter, 3-hitter -n00475535 four-hitter, 4-hitter -n00475661 five-hitter, 5-hitter -n00475787 softball, softball game -n00476140 rounders -n00476235 stickball, stickball game -n00476389 cricket -n00477392 lacrosse -n00477639 polo -n00477827 pushball -n00478262 soccer, association football -n00479076 court game -n00479440 handball -n00479616 racquetball -n00479734 fives -n00479887 squash, squash racquets, squash rackets -n00480211 volleyball, volleyball game -n00480366 jai alai, pelota -n00480508 badminton -n00480885 battledore, battledore and shuttlecock -n00480993 basketball, basketball game, hoops -n00481803 professional basketball -n00481938 deck tennis -n00482122 netball -n00482298 tennis, lawn tennis -n00483205 professional tennis -n00483313 singles -n00483409 singles -n00483508 doubles -n00483605 doubles -n00483705 royal tennis, real tennis, court tennis -n00483848 pallone -n00523513 sport, athletics -n00812526 clasp, clench, clutch, clutches, grasp, grip, hold -n00825773 judo -n00887544 team sport -n01035504 Last Supper, Lord's Supper -n01035667 Seder, Passover supper -n01055165 camping, encampment, bivouacking, tenting -n01314388 pest -n01314663 critter -n01314781 creepy-crawly -n01314910 darter -n01315213 peeper -n01315330 homeotherm, homoiotherm, homotherm -n01315581 poikilotherm, ectotherm -n01315805 range animal -n01316422 scavenger -n01316579 bottom-feeder, bottom-dweller -n01316734 bottom-feeder -n01316949 work animal -n01317089 beast of burden, jument -n01317294 draft animal -n01317391 pack animal, sumpter -n01317541 domestic animal, domesticated animal -n01317813 feeder -n01317916 feeder -n01318053 stocker -n01318279 hatchling -n01318381 head -n01318478 migrator -n01318660 molter, moulter -n01318894 pet -n01319001 stayer -n01319187 stunt -n01319467 marine animal, marine creature, sea animal, sea creature -n01319685 by-catch, bycatch -n01320872 female -n01321123 hen -n01321230 male -n01321456 adult -n01321579 young, offspring -n01321770 orphan -n01321854 young mammal -n01322221 baby -n01322343 pup, whelp -n01322508 wolf pup, wolf cub -n01322604 puppy -n01322685 cub, young carnivore -n01322898 lion cub -n01322983 bear cub -n01323068 tiger cub -n01323155 kit -n01323261 suckling -n01323355 sire -n01323493 dam -n01323599 thoroughbred, purebred, pureblood -n01323781 giant -n01324305 mutant -n01324431 carnivore -n01324610 herbivore -n01324799 insectivore -n01324916 acrodont -n01325060 pleurodont -n01326291 microorganism, micro-organism -n01327909 monohybrid -n01329186 arbovirus, arborvirus -n01330126 adenovirus -n01330497 arenavirus -n01332181 Marburg virus -n01333082 Arenaviridae -n01333483 vesiculovirus -n01333610 Reoviridae -n01334217 variola major, variola major virus -n01334690 viroid, virusoid -n01335218 coliphage -n01337191 paramyxovirus -n01337734 poliovirus -n01338685 herpes, herpes virus -n01339083 herpes simplex 1, HS1, HSV-1, HSV-I -n01339336 herpes zoster, herpes zoster virus -n01339471 herpes varicella zoster, herpes varicella zoster virus -n01339801 cytomegalovirus, CMV -n01340014 varicella zoster virus -n01340522 polyoma, polyoma virus -n01340785 lyssavirus -n01340935 reovirus -n01341090 rotavirus -n01342269 moneran, moneron -n01347583 archaebacteria, archaebacterium, archaeobacteria, archeobacteria -n01349735 bacteroid -n01350226 Bacillus anthracis, anthrax bacillus -n01350701 Yersinia pestis -n01351170 Brucella -n01351315 spirillum, spirilla -n01357328 botulinus, botulinum, Clostridium botulinum -n01357507 clostridium perfringens -n01358572 cyanobacteria, blue-green algae -n01359762 trichodesmium -n01362336 nitric bacteria, nitrobacteria -n01363719 spirillum -n01365474 Francisella, genus Francisella -n01365885 gonococcus, Neisseria gonorrhoeae -n01366700 Corynebacterium diphtheriae, C. diphtheriae, Klebs-Loeffler bacillus -n01367772 enteric bacteria, enterobacteria, enterics, entric -n01368672 klebsiella -n01369358 Salmonella typhimurium -n01369484 typhoid bacillus, Salmonella typhosa, Salmonella typhi -n01374703 nitrate bacterium, nitric bacterium -n01374846 nitrite bacterium, nitrous bacterium -n01375204 actinomycete -n01376237 streptomyces -n01376437 Streptomyces erythreus -n01376543 Streptomyces griseus -n01377278 tubercle bacillus, Mycobacterium tuberculosis -n01377510 pus-forming bacteria -n01377694 streptobacillus -n01378545 myxobacteria, myxobacterium, myxobacter, gliding bacteria, slime bacteria -n01379389 staphylococcus, staphylococci, staph -n01380610 diplococcus -n01380754 pneumococcus, Diplococcus pneumoniae -n01381044 streptococcus, streptococci, strep -n01382033 spirochete, spirochaete -n01384084 planktonic algae -n01384164 zooplankton -n01384687 parasite -n01385017 endoparasite, entoparasite, entozoan, entozoon, endozoan -n01385330 ectoparasite, ectozoan, ectozoon, epizoan, epizoon -n01386007 pathogen -n01386182 commensal -n01386354 myrmecophile -n01387065 protoctist -n01389507 protozoan, protozoon -n01390123 sarcodinian, sarcodine -n01390763 heliozoan -n01392275 endameba -n01392380 ameba, amoeba -n01393486 globigerina -n01394040 testacean -n01394492 arcella -n01394771 difflugia -n01395254 ciliate, ciliated protozoan, ciliophoran -n01396048 paramecium, paramecia -n01396617 stentor -n01397114 alga, algae -n01397690 arame -n01397871 seagrass -n01400247 golden algae -n01400391 yellow-green algae -n01402600 brown algae -n01403457 kelp -n01404365 fucoid, fucoid algae -n01404495 fucoid -n01405007 fucus -n01405616 bladderwrack, Ascophyllum nodosum -n01407798 green algae, chlorophyte -n01410457 pond scum -n01411450 chlorella -n01412694 stonewort -n01413457 desmid -n01414216 sea moss -n01415626 eukaryote, eucaryote -n01415920 prokaryote, procaryote -n01416213 zooid -n01418498 Leishmania, genus Leishmania -n01418620 zoomastigote, zooflagellate -n01419332 polymastigote -n01419573 costia, Costia necatrix -n01419888 giardia -n01421333 cryptomonad, cryptophyte -n01421807 sporozoan -n01422185 sporozoite -n01422335 trophozoite -n01422450 merozoite -n01423302 coccidium, eimeria -n01423617 gregarine -n01424420 plasmodium, Plasmodium vivax, malaria parasite -n01425223 leucocytozoan, leucocytozoon -n01427399 microsporidian -n01429172 Ostariophysi, order Ostariophysi -n01438208 cypriniform fish -n01438581 loach -n01439121 cyprinid, cyprinid fish -n01439514 carp -n01439808 domestic carp, Cyprinus carpio -n01440160 leather carp -n01440242 mirror carp -n01440467 European bream, Abramis brama -n01440764 tench, Tinca tinca -n01441117 dace, Leuciscus leuciscus -n01441272 chub, Leuciscus cephalus -n01441425 shiner -n01441910 common shiner, silversides, Notropis cornutus -n01442450 roach, Rutilus rutilus -n01442710 rudd, Scardinius erythrophthalmus -n01442972 minnow, Phoxinus phoxinus -n01443243 gudgeon, Gobio gobio -n01443537 goldfish, Carassius auratus -n01443831 crucian carp, Carassius carassius, Carassius vulgaris -n01444339 electric eel, Electrophorus electric -n01444783 catostomid -n01445429 buffalo fish, buffalofish -n01445593 black buffalo, Ictiobus niger -n01445857 hog sucker, hog molly, Hypentelium nigricans -n01446152 redhorse, redhorse sucker -n01446589 cyprinodont -n01446760 killifish -n01447139 mummichog, Fundulus heteroclitus -n01447331 striped killifish, mayfish, may fish, Fundulus majalis -n01447658 rivulus -n01447946 flagfish, American flagfish, Jordanella floridae -n01448291 swordtail, helleri, topminnow, Xyphophorus helleri -n01448594 guppy, rainbow fish, Lebistes reticulatus -n01448951 topminnow, poeciliid fish, poeciliid, live-bearer -n01449374 mosquitofish, Gambusia affinis -n01449712 platy, Platypoecilus maculatus -n01449980 mollie, molly -n01450661 squirrelfish -n01450950 reef squirrelfish, Holocentrus coruscus -n01451115 deepwater squirrelfish, Holocentrus bullisi -n01451295 Holocentrus ascensionis -n01451426 soldierfish, soldier-fish -n01451863 anomalops, flashlight fish -n01452345 flashlight fish, Photoblepharon palpebratus -n01453087 John Dory, Zeus faber -n01453475 boarfish, Capros aper -n01453742 boarfish -n01454545 cornetfish -n01454856 stickleback, prickleback -n01455317 three-spined stickleback, Gasterosteus aculeatus -n01455461 ten-spined stickleback, Gasterosteus pungitius -n01455778 pipefish, needlefish -n01456137 dwarf pipefish, Syngnathus hildebrandi -n01456454 deepwater pipefish, Cosmocampus profundus -n01456756 seahorse, sea horse -n01457082 snipefish, bellows fish -n01457407 shrimpfish, shrimp-fish -n01457852 trumpetfish, Aulostomus maculatus -n01458746 pellicle -n01458842 embryo, conceptus, fertilized egg -n01459791 fetus, foetus -n01460303 abortus -n01461315 spawn -n01461646 blastula, blastosphere -n01462042 blastocyst, blastodermic vessicle -n01462544 gastrula -n01462803 morula -n01464844 yolk, vitellus -n01466257 chordate -n01467336 cephalochordate -n01467804 lancelet, amphioxus -n01468238 tunicate, urochordate, urochord -n01468712 ascidian -n01469103 sea squirt -n01469723 salp, salpa -n01470145 doliolum -n01470479 larvacean -n01470733 appendicularia -n01470895 ascidian tadpole -n01471682 vertebrate, craniate -n01472303 Amniota -n01472502 amniote -n01473806 aquatic vertebrate -n01474283 jawless vertebrate, jawless fish, agnathan -n01474864 ostracoderm -n01475232 heterostracan -n01475940 anaspid -n01476418 conodont -n01477080 cyclostome -n01477525 lamprey, lamprey eel, lamper eel -n01477875 sea lamprey, Petromyzon marinus -n01478511 hagfish, hag, slime eels -n01478969 Myxine glutinosa -n01479213 eptatretus -n01479820 gnathostome -n01480106 placoderm -n01480516 cartilaginous fish, chondrichthian -n01480880 holocephalan, holocephalian -n01481331 chimaera -n01481498 rabbitfish, Chimaera monstrosa -n01482071 elasmobranch, selachian -n01482330 shark -n01483021 cow shark, six-gilled shark, Hexanchus griseus -n01483522 mackerel shark -n01483830 porbeagle, Lamna nasus -n01484097 mako, mako shark -n01484285 shortfin mako, Isurus oxyrhincus -n01484447 longfin mako, Isurus paucus -n01484562 bonito shark, blue pointed, Isurus glaucus -n01484850 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias -n01485479 basking shark, Cetorhinus maximus -n01486010 thresher, thrasher, thresher shark, fox shark, Alopius vulpinus -n01486540 carpet shark, Orectolobus barbatus -n01486838 nurse shark, Ginglymostoma cirratum -n01487506 sand tiger, sand shark, Carcharias taurus, Odontaspis taurus -n01488038 whale shark, Rhincodon typus -n01488918 requiem shark -n01489501 bull shark, cub shark, Carcharhinus leucas -n01489709 sandbar shark, Carcharhinus plumbeus -n01489920 blacktip shark, sandbar shark, Carcharhinus limbatus -n01490112 whitetip shark, oceanic whitetip shark, white-tipped shark, Carcharinus longimanus -n01490360 dusky shark, Carcharhinus obscurus -n01490670 lemon shark, Negaprion brevirostris -n01491006 blue shark, great blue shark, Prionace glauca -n01491361 tiger shark, Galeocerdo cuvieri -n01491661 soupfin shark, soupfin, soup-fin, Galeorhinus zyopterus -n01491874 dogfish -n01492357 smooth dogfish -n01492569 smoothhound, smoothhound shark, Mustelus mustelus -n01492708 American smooth dogfish, Mustelus canis -n01492860 Florida smoothhound, Mustelus norrisi -n01493146 whitetip shark, reef whitetip shark, Triaenodon obseus -n01493541 spiny dogfish -n01493829 Atlantic spiny dogfish, Squalus acanthias -n01494041 Pacific spiny dogfish, Squalus suckleyi -n01494475 hammerhead, hammerhead shark -n01494757 smooth hammerhead, Sphyrna zygaena -n01494882 smalleye hammerhead, Sphyrna tudes -n01495006 shovelhead, bonnethead, bonnet shark, Sphyrna tiburo -n01495493 angel shark, angelfish, Squatina squatina, monkfish -n01495701 ray -n01496331 electric ray, crampfish, numbfish, torpedo -n01497118 sawfish -n01497413 smalltooth sawfish, Pristis pectinatus -n01497738 guitarfish -n01498041 stingray -n01498406 roughtail stingray, Dasyatis centroura -n01498699 butterfly ray -n01498989 eagle ray -n01499396 spotted eagle ray, spotted ray, Aetobatus narinari -n01499732 cownose ray, cow-nosed ray, Rhinoptera bonasus -n01500091 manta, manta ray, devilfish -n01500476 Atlantic manta, Manta birostris -n01500854 devil ray, Mobula hypostoma -n01501160 skate -n01501641 grey skate, gray skate, Raja batis -n01501777 little skate, Raja erinacea -n01501948 thorny skate, Raja radiata -n01502101 barndoor skate, Raja laevis -n01503061 bird -n01503976 dickeybird, dickey-bird, dickybird, dicky-bird -n01504179 fledgling, fledgeling -n01504344 nestling, baby bird -n01514668 cock -n01514752 gamecock, fighting cock -n01514859 hen -n01514926 nester -n01515078 night bird -n01515217 night raven -n01515303 bird of passage -n01516212 archaeopteryx, archeopteryx, Archaeopteryx lithographica -n01517389 archaeornis -n01517565 ratite, ratite bird, flightless bird -n01517966 carinate, carinate bird, flying bird -n01518878 ostrich, Struthio camelus -n01519563 cassowary -n01519873 emu, Dromaius novaehollandiae, Emu novaehollandiae -n01520576 kiwi, apteryx -n01521399 rhea, Rhea americana -n01521756 rhea, nandu, Pterocnemia pennata -n01522450 elephant bird, aepyornis -n01523105 moa -n01524359 passerine, passeriform bird -n01524761 nonpasserine bird -n01525720 oscine, oscine bird -n01526521 songbird, songster -n01526766 honey eater, honeysucker -n01527194 accentor -n01527347 hedge sparrow, sparrow, dunnock, Prunella modularis -n01527617 lark -n01527917 skylark, Alauda arvensis -n01528396 wagtail -n01528654 pipit, titlark, lark -n01528845 meadow pipit, Anthus pratensis -n01529672 finch -n01530439 chaffinch, Fringilla coelebs -n01530575 brambling, Fringilla montifringilla -n01531178 goldfinch, Carduelis carduelis -n01531344 linnet, lintwhite, Carduelis cannabina -n01531512 siskin, Carduelis spinus -n01531639 red siskin, Carduelis cucullata -n01531811 redpoll, Carduelis flammea -n01531971 redpoll, Carduelis hornemanni -n01532325 New World goldfinch, goldfinch, yellowbird, Spinus tristis -n01532511 pine siskin, pine finch, Spinus pinus -n01532829 house finch, linnet, Carpodacus mexicanus -n01533000 purple finch, Carpodacus purpureus -n01533339 canary, canary bird -n01533481 common canary, Serinus canaria -n01533651 serin -n01533893 crossbill, Loxia curvirostra -n01534155 bullfinch, Pyrrhula pyrrhula -n01534433 junco, snowbird -n01534582 dark-eyed junco, slate-colored junco, Junco hyemalis -n01534762 New World sparrow -n01535140 vesper sparrow, grass finch, Pooecetes gramineus -n01535469 white-throated sparrow, whitethroat, Zonotrichia albicollis -n01535690 white-crowned sparrow, Zonotrichia leucophrys -n01536035 chipping sparrow, Spizella passerina -n01536186 field sparrow, Spizella pusilla -n01536334 tree sparrow, Spizella arborea -n01536644 song sparrow, Melospiza melodia -n01536780 swamp sparrow, Melospiza georgiana -n01537134 bunting -n01537544 indigo bunting, indigo finch, indigo bird, Passerina cyanea -n01537895 ortolan, ortolan bunting, Emberiza hortulana -n01538059 reed bunting, Emberiza schoeniclus -n01538200 yellowhammer, yellow bunting, Emberiza citrinella -n01538362 yellow-breasted bunting, Emberiza aureola -n01538630 snow bunting, snowbird, snowflake, Plectrophenax nivalis -n01538955 honeycreeper -n01539272 banana quit -n01539573 sparrow, true sparrow -n01539925 English sparrow, house sparrow, Passer domesticus -n01540090 tree sparrow, Passer montanus -n01540233 grosbeak, grossbeak -n01540566 evening grosbeak, Hesperiphona vespertina -n01540832 hawfinch, Coccothraustes coccothraustes -n01541102 pine grosbeak, Pinicola enucleator -n01541386 cardinal, cardinal grosbeak, Richmondena Cardinalis, Cardinalis cardinalis, redbird -n01541760 pyrrhuloxia, Pyrrhuloxia sinuata -n01541922 towhee -n01542168 chewink, cheewink, Pipilo erythrophthalmus -n01542433 green-tailed towhee, Chlorura chlorura -n01542786 weaver, weaverbird, weaver finch -n01543175 baya, Ploceus philippinus -n01543383 whydah, whidah, widow bird -n01543632 Java sparrow, Java finch, ricebird, Padda oryzivora -n01543936 avadavat, amadavat -n01544208 grassfinch, grass finch -n01544389 zebra finch, Poephila castanotis -n01544704 honeycreeper, Hawaiian honeycreeper -n01545574 lyrebird -n01546039 scrubbird, scrub-bird, scrub bird -n01546506 broadbill -n01546921 tyrannid -n01547832 New World flycatcher, flycatcher, tyrant flycatcher, tyrant bird -n01548301 kingbird, Tyrannus tyrannus -n01548492 Arkansas kingbird, western kingbird -n01548694 Cassin's kingbird, Tyrannus vociferans -n01548865 eastern kingbird -n01549053 grey kingbird, gray kingbird, petchary, Tyrannus domenicensis domenicensis -n01549430 pewee, peewee, peewit, pewit, wood pewee, Contopus virens -n01549641 western wood pewee, Contopus sordidulus -n01549886 phoebe, phoebe bird, Sayornis phoebe -n01550172 vermillion flycatcher, firebird, Pyrocephalus rubinus mexicanus -n01550761 cotinga, chatterer -n01551080 cock of the rock, Rupicola rupicola -n01551300 cock of the rock, Rupicola peruviana -n01551711 manakin -n01552034 bellbird -n01552333 umbrella bird, Cephalopterus ornatus -n01552813 ovenbird -n01553142 antbird, ant bird -n01553527 ant thrush -n01553762 ant shrike -n01554017 spotted antbird, Hylophylax naevioides -n01554448 woodhewer, woodcreeper, wood-creeper, tree creeper -n01555004 pitta -n01555305 scissortail, scissortailed flycatcher, Muscivora-forficata -n01555809 Old World flycatcher, true flycatcher, flycatcher -n01556182 spotted flycatcher, Muscicapa striata, Muscicapa grisola -n01556514 thickhead, whistler -n01557185 thrush -n01557962 missel thrush, mistle thrush, mistletoe thrush, Turdus viscivorus -n01558149 song thrush, mavis, throstle, Turdus philomelos -n01558307 fieldfare, snowbird, Turdus pilaris -n01558461 redwing, Turdus iliacus -n01558594 blackbird, merl, merle, ouzel, ousel, European blackbird, Turdus merula -n01558765 ring ouzel, ring blackbird, ring thrush, Turdus torquatus -n01558993 robin, American robin, Turdus migratorius -n01559160 clay-colored robin, Turdus greyi -n01559477 hermit thrush, Hylocichla guttata -n01559639 veery, Wilson's thrush, Hylocichla fuscescens -n01559804 wood thrush, Hylocichla mustelina -n01560105 nightingale, Luscinia megarhynchos -n01560280 thrush nightingale, Luscinia luscinia -n01560419 bulbul -n01560636 Old World chat, chat -n01560793 stonechat, Saxicola torquata -n01560935 whinchat, Saxicola rubetra -n01561181 solitaire -n01561452 redstart, redtail -n01561732 wheatear -n01562014 bluebird -n01562265 robin, redbreast, robin redbreast, Old World robin, Erithacus rubecola -n01562451 bluethroat, Erithacus svecicus -n01563128 warbler -n01563449 gnatcatcher -n01563746 kinglet -n01563945 goldcrest, golden-crested kinglet, Regulus regulus -n01564101 gold-crowned kinglet, Regulus satrata -n01564217 ruby-crowned kinglet, ruby-crowned wren, Regulus calendula -n01564394 Old World warbler, true warbler -n01564773 blackcap, Silvia atricapilla -n01564914 greater whitethroat, whitethroat, Sylvia communis -n01565078 lesser whitethroat, whitethroat, Sylvia curruca -n01565345 wood warbler, Phylloscopus sibilatrix -n01565599 sedge warbler, sedge bird, sedge wren, reedbird, Acrocephalus schoenobaenus -n01565930 wren warbler -n01566207 tailorbird, Orthotomus sutorius -n01566645 babbler, cackler -n01567133 New World warbler, wood warbler -n01567678 parula warbler, northern parula, Parula americana -n01567879 Wilson's warbler, Wilson's blackcap, Wilsonia pusilla -n01568132 flycatching warbler -n01568294 American redstart, redstart, Setophaga ruticilla -n01568720 Cape May warbler, Dendroica tigrina -n01568892 yellow warbler, golden warbler, yellowbird, Dendroica petechia -n01569060 Blackburn, Blackburnian warbler, Dendroica fusca -n01569262 Audubon's warbler, Audubon warbler, Dendroica auduboni -n01569423 myrtle warbler, myrtle bird, Dendroica coronata -n01569566 blackpoll, Dendroica striate -n01569836 New World chat, chat -n01569971 yellow-breasted chat, Icteria virens -n01570267 ovenbird, Seiurus aurocapillus -n01570421 water thrush -n01570676 yellowthroat -n01570839 common yellowthroat, Maryland yellowthroat, Geothlypis trichas -n01571410 riflebird, Ptloris paradisea -n01571904 New World oriole, American oriole, oriole -n01572328 northern oriole, Icterus galbula -n01572489 Baltimore oriole, Baltimore bird, hangbird, firebird, Icterus galbula galbula -n01572654 Bullock's oriole, Icterus galbula bullockii -n01572782 orchard oriole, Icterus spurius -n01573074 meadowlark, lark -n01573240 eastern meadowlark, Sturnella magna -n01573360 western meadowlark, Sturnella neglecta -n01573627 cacique, cazique -n01573898 bobolink, ricebird, reedbird, Dolichonyx oryzivorus -n01574045 New World blackbird, blackbird -n01574390 grackle, crow blackbird -n01574560 purple grackle, Quiscalus quiscula -n01574801 rusty blackbird, rusty grackle, Euphagus carilonus -n01575117 cowbird -n01575401 red-winged blackbird, redwing, Agelaius phoeniceus -n01575745 Old World oriole, oriole -n01576076 golden oriole, Oriolus oriolus -n01576358 fig-bird -n01576695 starling -n01577035 common starling, Sturnus vulgaris -n01577458 rose-colored starling, rose-colored pastor, Pastor sturnus, Pastor roseus -n01577659 myna, mynah, mina, minah, myna bird, mynah bird -n01577941 crested myna, Acridotheres tristis -n01578180 hill myna, Indian grackle, grackle, Gracula religiosa -n01578575 corvine bird -n01579028 crow -n01579149 American crow, Corvus brachyrhyncos -n01579260 raven, Corvus corax -n01579410 rook, Corvus frugilegus -n01579578 jackdaw, daw, Corvus monedula -n01579729 chough -n01580077 jay -n01580379 Old World jay -n01580490 common European jay, Garullus garullus -n01580772 New World jay -n01580870 blue jay, jaybird, Cyanocitta cristata -n01581166 Canada jay, grey jay, gray jay, camp robber, whisker jack, Perisoreus canadensis -n01581434 Rocky Mountain jay, Perisoreus canadensis capitalis -n01581730 nutcracker -n01581874 common nutcracker, Nucifraga caryocatactes -n01581984 Clark's nutcracker, Nucifraga columbiana -n01582220 magpie -n01582398 European magpie, Pica pica -n01582498 American magpie, Pica pica hudsonia -n01582856 Australian magpie -n01583209 butcherbird -n01583495 currawong, bell magpie -n01583828 piping crow, piping crow-shrike, Gymnorhina tibicen -n01584225 wren, jenny wren -n01584695 winter wren, Troglodytes troglodytes -n01584853 house wren, Troglodytes aedon -n01585121 marsh wren -n01585287 long-billed marsh wren, Cistothorus palustris -n01585422 sedge wren, short-billed marsh wren, Cistothorus platensis -n01585715 rock wren, Salpinctes obsoletus -n01586020 Carolina wren, Thryothorus ludovicianus -n01586374 cactus wren -n01586941 mockingbird, mocker, Mimus polyglotktos -n01587278 blue mockingbird, Melanotis caerulescens -n01587526 catbird, grey catbird, gray catbird, Dumetella carolinensis -n01587834 thrasher, mocking thrush -n01588002 brown thrasher, brown thrush, Toxostoma rufums -n01588431 New Zealand wren -n01588725 rock wren, Xenicus gilviventris -n01588996 rifleman bird, Acanthisitta chloris -n01589286 creeper, tree creeper -n01589718 brown creeper, American creeper, Certhia americana -n01589893 European creeper, Certhia familiaris -n01590220 wall creeper, tichodrome, Tichodroma muriaria -n01591005 European nuthatch, Sitta europaea -n01591123 red-breasted nuthatch, Sitta canadensis -n01591301 white-breasted nuthatch, Sitta carolinensis -n01591697 titmouse, tit -n01592084 chickadee -n01592257 black-capped chickadee, blackcap, Parus atricapillus -n01592387 tufted titmouse, Parus bicolor -n01592540 Carolina chickadee, Parus carolinensis -n01592694 blue tit, tomtit, Parus caeruleus -n01593028 bushtit, bush tit -n01593282 wren-tit, Chamaea fasciata -n01593553 verdin, Auriparus flaviceps -n01594004 fairy bluebird, bluebird -n01594372 swallow -n01594787 barn swallow, chimney swallow, Hirundo rustica -n01594968 cliff swallow, Hirundo pyrrhonota -n01595168 tree swallow, tree martin, Hirundo nigricans -n01595450 white-bellied swallow, tree swallow, Iridoprocne bicolor -n01595624 martin -n01595974 house martin, Delichon urbica -n01596273 bank martin, bank swallow, sand martin, Riparia riparia -n01596608 purple martin, Progne subis -n01597022 wood swallow, swallow shrike -n01597336 tanager -n01597737 scarlet tanager, Piranga olivacea, redbird, firebird -n01597906 western tanager, Piranga ludoviciana -n01598074 summer tanager, summer redbird, Piranga rubra -n01598271 hepatic tanager, Piranga flava hepatica -n01598588 shrike -n01598988 butcherbird -n01599159 European shrike, Lanius excubitor -n01599269 northern shrike, Lanius borealis -n01599388 white-rumped shrike, Lanius ludovicianus excubitorides -n01599556 loggerhead shrike, Lanius lucovicianus -n01599741 migrant shrike, Lanius ludovicianus migrans -n01600085 bush shrike -n01600341 black-fronted bush shrike, Chlorophoneus nigrifrons -n01600657 bowerbird, catbird -n01601068 satin bowerbird, satin bird, Ptilonorhynchus violaceus -n01601410 great bowerbird, Chlamydera nuchalis -n01601694 water ouzel, dipper -n01602080 European water ouzel, Cinclus aquaticus -n01602209 American water ouzel, Cinclus mexicanus -n01602630 vireo -n01602832 red-eyed vireo, Vireo olivaceous -n01603000 solitary vireo, Vireo solitarius -n01603152 blue-headed vireo, Vireo solitarius solitarius -n01603600 waxwing -n01603812 cedar waxwing, cedarbird, Bombycilla cedrorun -n01603953 Bohemian waxwing, Bombycilla garrulus -n01604330 bird of prey, raptor, raptorial bird -n01604968 Accipitriformes, order Accipitriformes -n01605630 hawk -n01606097 eyas -n01606177 tiercel, tercel, tercelet -n01606522 goshawk, Accipiter gentilis -n01606672 sparrow hawk, Accipiter nisus -n01606809 Cooper's hawk, blue darter, Accipiter cooperii -n01606978 chicken hawk, hen hawk -n01607309 buteonine -n01607429 redtail, red-tailed hawk, Buteo jamaicensis -n01607600 rough-legged hawk, roughleg, Buteo lagopus -n01607812 red-shouldered hawk, Buteo lineatus -n01607962 buzzard, Buteo buteo -n01608265 honey buzzard, Pernis apivorus -n01608432 kite -n01608814 black kite, Milvus migrans -n01609062 swallow-tailed kite, swallow-tailed hawk, Elanoides forficatus -n01609391 white-tailed kite, Elanus leucurus -n01609751 harrier -n01609956 marsh harrier, Circus Aeruginosus -n01610100 Montagu's harrier, Circus pygargus -n01610226 marsh hawk, northern harrier, hen harrier, Circus cyaneus -n01610552 harrier eagle, short-toed eagle -n01610955 falcon -n01611472 peregrine, peregrine falcon, Falco peregrinus -n01611674 falcon-gentle, falcon-gentil -n01611800 gyrfalcon, gerfalcon, Falco rusticolus -n01611969 kestrel, Falco tinnunculus -n01612122 sparrow hawk, American kestrel, kestrel, Falco sparverius -n01612275 pigeon hawk, merlin, Falco columbarius -n01612476 hobby, Falco subbuteo -n01612628 caracara -n01612955 Audubon's caracara, Polyborus cheriway audubonii -n01613177 carancha, Polyborus plancus -n01613294 eagle, bird of Jove -n01613615 young bird -n01613807 eaglet -n01614038 harpy, harpy eagle, Harpia harpyja -n01614343 golden eagle, Aquila chrysaetos -n01614556 tawny eagle, Aquila rapax -n01614925 bald eagle, American eagle, Haliaeetus leucocephalus -n01615121 sea eagle -n01615303 Kamchatkan sea eagle, Stellar's sea eagle, Haliaeetus pelagicus -n01615458 ern, erne, grey sea eagle, gray sea eagle, European sea eagle, white-tailed sea eagle, Haliatus albicilla -n01615703 fishing eagle, Haliaeetus leucorhyphus -n01616086 osprey, fish hawk, fish eagle, sea eagle, Pandion haliaetus -n01616318 vulture -n01616551 Aegypiidae, family Aegypiidae -n01616764 Old World vulture -n01617095 griffon vulture, griffon, Gyps fulvus -n01617443 bearded vulture, lammergeier, lammergeyer, Gypaetus barbatus -n01617766 Egyptian vulture, Pharaoh's chicken, Neophron percnopterus -n01618082 black vulture, Aegypius monachus -n01618503 secretary bird, Sagittarius serpentarius -n01618922 New World vulture, cathartid -n01619310 buzzard, turkey buzzard, turkey vulture, Cathartes aura -n01619536 condor -n01619835 Andean condor, Vultur gryphus -n01620135 California condor, Gymnogyps californianus -n01620414 black vulture, carrion crow, Coragyps atratus -n01620735 king vulture, Sarcorhamphus papa -n01621127 owl, bird of Minerva, bird of night, hooter -n01621635 owlet -n01622120 little owl, Athene noctua -n01622352 horned owl -n01622483 great horned owl, Bubo virginianus -n01622779 great grey owl, great gray owl, Strix nebulosa -n01622959 tawny owl, Strix aluco -n01623110 barred owl, Strix varia -n01623425 screech owl, Otus asio -n01623615 screech owl -n01623706 scops owl -n01623880 spotted owl, Strix occidentalis -n01624115 Old World scops owl, Otus scops -n01624212 Oriental scops owl, Otus sunia -n01624305 hoot owl -n01624537 hawk owl, Surnia ulula -n01624833 long-eared owl, Asio otus -n01625121 laughing owl, laughing jackass, Sceloglaux albifacies -n01625562 barn owl, Tyto alba -n01627424 amphibian -n01628331 Ichyostega -n01628770 urodele, caudate -n01629276 salamander -n01629819 European fire salamander, Salamandra salamandra -n01629962 spotted salamander, fire salamander, Salamandra maculosa -n01630148 alpine salamander, Salamandra atra -n01630284 newt, triton -n01630670 common newt, Triturus vulgaris -n01630901 red eft, Notophthalmus viridescens -n01631175 Pacific newt -n01631354 rough-skinned newt, Taricha granulosa -n01631512 California newt, Taricha torosa -n01631663 eft -n01632047 ambystomid, ambystomid salamander -n01632308 mole salamander, Ambystoma talpoideum -n01632458 spotted salamander, Ambystoma maculatum -n01632601 tiger salamander, Ambystoma tigrinum -n01632777 axolotl, mud puppy, Ambystoma mexicanum -n01632952 waterdog -n01633406 hellbender, mud puppy, Cryptobranchus alleganiensis -n01633781 giant salamander, Megalobatrachus maximus -n01634227 olm, Proteus anguinus -n01634522 mud puppy, Necturus maculosus -n01635027 dicamptodon, dicamptodontid -n01635176 Pacific giant salamander, Dicamptodon ensatus -n01635480 olympic salamander, Rhyacotriton olympicus -n01636127 lungless salamander, plethodont -n01636352 eastern red-backed salamander, Plethodon cinereus -n01636510 western red-backed salamander, Plethodon vehiculum -n01636829 dusky salamander -n01637112 climbing salamander -n01637338 arboreal salamander, Aneides lugubris -n01637615 slender salamander, worm salamander -n01637932 web-toed salamander -n01638194 Shasta salamander, Hydromantes shastae -n01638329 limestone salamander, Hydromantes brunus -n01638722 amphiuma, congo snake, congo eel, blind eel -n01639187 siren -n01639765 frog, toad, toad frog, anuran, batrachian, salientian -n01640846 true frog, ranid -n01641206 wood-frog, wood frog, Rana sylvatica -n01641391 leopard frog, spring frog, Rana pipiens -n01641577 bullfrog, Rana catesbeiana -n01641739 green frog, spring frog, Rana clamitans -n01641930 cascades frog, Rana cascadae -n01642097 goliath frog, Rana goliath -n01642257 pickerel frog, Rana palustris -n01642391 tarahumara frog, Rana tarahumarae -n01642539 grass frog, Rana temporaria -n01642943 leptodactylid frog, leptodactylid -n01643255 robber frog -n01643507 barking frog, robber frog, Hylactophryne augusti -n01643896 crapaud, South American bullfrog, Leptodactylus pentadactylus -n01644373 tree frog, tree-frog -n01644900 tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui -n01645466 Liopelma hamiltoni -n01645776 true toad -n01646292 bufo -n01646388 agua, agua toad, Bufo marinus -n01646555 European toad, Bufo bufo -n01646648 natterjack, Bufo calamita -n01646802 American toad, Bufo americanus -n01646902 Eurasian green toad, Bufo viridis -n01647033 American green toad, Bufo debilis -n01647180 Yosemite toad, Bufo canorus -n01647303 Texas toad, Bufo speciosus -n01647466 southwestern toad, Bufo microscaphus -n01647640 western toad, Bufo boreas -n01648139 obstetrical toad, midwife toad, Alytes obstetricans -n01648356 midwife toad, Alytes cisternasi -n01648620 fire-bellied toad, Bombina bombina -n01649170 spadefoot, spadefoot toad -n01649412 western spadefoot, Scaphiopus hammondii -n01649556 southern spadefoot, Scaphiopus multiplicatus -n01649726 plains spadefoot, Scaphiopus bombifrons -n01650167 tree toad, tree frog, tree-frog -n01650690 spring peeper, Hyla crucifer -n01650901 Pacific tree toad, Hyla regilla -n01651059 canyon treefrog, Hyla arenicolor -n01651285 chameleon tree frog -n01651487 cricket frog -n01651641 northern cricket frog, Acris crepitans -n01651778 eastern cricket frog, Acris gryllus -n01652026 chorus frog -n01652297 lowland burrowing treefrog, northern casque-headed frog, Pternohyla fodiens -n01653026 western narrow-mouthed toad, Gastrophryne olivacea -n01653223 eastern narrow-mouthed toad, Gastrophryne carolinensis -n01653509 sheep frog -n01653773 tongueless frog -n01654083 Surinam toad, Pipa pipa, Pipa americana -n01654637 African clawed frog, Xenopus laevis -n01654863 South American poison toad -n01655344 caecilian, blindworm -n01661091 reptile, reptilian -n01661592 anapsid, anapsid reptile -n01661818 diapsid, diapsid reptile -n01662060 Diapsida, subclass Diapsida -n01662622 chelonian, chelonian reptile -n01662784 turtle -n01663401 sea turtle, marine turtle -n01663782 green turtle, Chelonia mydas -n01664065 loggerhead, loggerhead turtle, Caretta caretta -n01664369 ridley -n01664492 Atlantic ridley, bastard ridley, bastard turtle, Lepidochelys kempii -n01664674 Pacific ridley, olive ridley, Lepidochelys olivacea -n01664990 hawksbill turtle, hawksbill, hawkbill, tortoiseshell turtle, Eretmochelys imbricata -n01665541 leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea -n01665932 snapping turtle -n01666228 common snapping turtle, snapper, Chelydra serpentina -n01666585 alligator snapping turtle, alligator snapper, Macroclemys temmincki -n01667114 mud turtle -n01667432 musk turtle, stinkpot -n01667778 terrapin -n01668091 diamondback terrapin, Malaclemys centrata -n01668436 red-bellied terrapin, red-bellied turtle, redbelly, Pseudemys rubriventris -n01668665 slider, yellow-bellied terrapin, Pseudemys scripta -n01668892 cooter, river cooter, Pseudemys concinna -n01669191 box turtle, box tortoise -n01669372 Western box turtle, Terrapene ornata -n01669654 painted turtle, painted terrapin, painted tortoise, Chrysemys picta -n01670092 tortoise -n01670535 European tortoise, Testudo graeca -n01670802 giant tortoise -n01671125 gopher tortoise, gopher turtle, gopher, Gopherus polypemus -n01671479 desert tortoise, Gopherus agassizii -n01671705 Texas tortoise -n01672032 soft-shelled turtle, pancake turtle -n01672432 spiny softshell, Trionyx spiniferus -n01672611 smooth softshell, Trionyx muticus -n01673282 tuatara, Sphenodon punctatum -n01674216 saurian -n01674464 lizard -n01674990 gecko -n01675352 flying gecko, fringed gecko, Ptychozoon homalocephalum -n01675722 banded gecko -n01676755 iguanid, iguanid lizard -n01677366 common iguana, iguana, Iguana iguana -n01677747 marine iguana, Amblyrhynchus cristatus -n01678043 desert iguana, Dipsosaurus dorsalis -n01678343 chuckwalla, Sauromalus obesus -n01678657 zebra-tailed lizard, gridiron-tailed lizard, Callisaurus draconoides -n01679005 fringe-toed lizard, Uma notata -n01679307 earless lizard -n01679626 collared lizard -n01679962 leopard lizard -n01680264 spiny lizard -n01680478 fence lizard -n01680655 western fence lizard, swift, blue-belly, Sceloporus occidentalis -n01680813 eastern fence lizard, pine lizard, Sceloporus undulatus -n01680983 sagebrush lizard, Sceloporus graciosus -n01681328 side-blotched lizard, sand lizard, Uta stansburiana -n01681653 tree lizard, Urosaurus ornatus -n01681940 horned lizard, horned toad, horny frog -n01682172 Texas horned lizard, Phrynosoma cornutum -n01682435 basilisk -n01682714 American chameleon, anole, Anolis carolinensis -n01683201 worm lizard -n01683558 night lizard -n01684133 skink, scincid, scincid lizard -n01684578 western skink, Eumeces skiltonianus -n01684741 mountain skink, Eumeces callicephalus -n01685439 teiid lizard, teiid -n01685808 whiptail, whiptail lizard -n01686044 racerunner, race runner, six-lined racerunner, Cnemidophorus sexlineatus -n01686220 plateau striped whiptail, Cnemidophorus velox -n01686403 Chihuahuan spotted whiptail, Cnemidophorus exsanguis -n01686609 western whiptail, Cnemidophorus tigris -n01686808 checkered whiptail, Cnemidophorus tesselatus -n01687128 teju -n01687290 caiman lizard -n01687665 agamid, agamid lizard -n01687978 agama -n01688243 frilled lizard, Chlamydosaurus kingi -n01688961 moloch -n01689081 mountain devil, spiny lizard, Moloch horridus -n01689411 anguid lizard -n01689811 alligator lizard -n01690149 blindworm, slowworm, Anguis fragilis -n01690466 glass lizard, glass snake, joint snake -n01691217 legless lizard -n01691652 Lanthanotus borneensis -n01691951 venomous lizard -n01692333 Gila monster, Heloderma suspectum -n01692523 beaded lizard, Mexican beaded lizard, Heloderma horridum -n01692864 lacertid lizard, lacertid -n01693175 sand lizard, Lacerta agilis -n01693334 green lizard, Lacerta viridis -n01693783 chameleon, chamaeleon -n01694178 African chameleon, Chamaeleo chamaeleon -n01694311 horned chameleon, Chamaeleo oweni -n01694709 monitor, monitor lizard, varan -n01694955 African monitor, Varanus niloticus -n01695060 Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis -n01696633 crocodilian reptile, crocodilian -n01697178 crocodile -n01697457 African crocodile, Nile crocodile, Crocodylus niloticus -n01697611 Asian crocodile, Crocodylus porosus -n01697749 Morlett's crocodile -n01697978 false gavial, Tomistoma schlegeli -n01698434 alligator, gator -n01698640 American alligator, Alligator mississipiensis -n01698782 Chinese alligator, Alligator sinensis -n01699040 caiman, cayman -n01699254 spectacled caiman, Caiman sclerops -n01699675 gavial, Gavialis gangeticus -n01701551 armored dinosaur -n01701859 stegosaur, stegosaurus, Stegosaur stenops -n01702256 ankylosaur, ankylosaurus -n01702479 Edmontonia -n01703011 bone-headed dinosaur -n01703161 pachycephalosaur, pachycephalosaurus -n01703569 ceratopsian, horned dinosaur -n01704103 protoceratops -n01704323 triceratops -n01704626 styracosaur, styracosaurus -n01705010 psittacosaur, psittacosaurus -n01705591 ornithopod, ornithopod dinosaur -n01705934 hadrosaur, hadrosaurus, duck-billed dinosaur -n01707294 trachodon, trachodont -n01708106 saurischian, saurischian dinosaur -n01708998 sauropod, sauropod dinosaur -n01709484 apatosaur, apatosaurus, brontosaur, brontosaurus, thunder lizard, Apatosaurus excelsus -n01709876 barosaur, barosaurus -n01710177 diplodocus -n01711160 argentinosaur -n01712008 theropod, theropod dinosaur, bird-footed dinosaur -n01712752 ceratosaur, ceratosaurus -n01713170 coelophysis -n01713764 tyrannosaur, tyrannosaurus, Tyrannosaurus rex -n01714231 allosaur, allosaurus -n01715888 ornithomimid -n01717016 maniraptor -n01717229 oviraptorid -n01717467 velociraptor -n01718096 deinonychus -n01718414 utahraptor, superslasher -n01719403 synapsid, synapsid reptile -n01721174 dicynodont -n01721898 pelycosaur -n01722670 dimetrodon -n01722998 pterosaur, flying reptile -n01723579 pterodactyl -n01724231 ichthyosaur -n01724840 ichthyosaurus -n01725086 stenopterygius, Stenopterygius quadrisicissus -n01725713 plesiosaur, plesiosaurus -n01726203 nothosaur -n01726692 snake, serpent, ophidian -n01727646 colubrid snake, colubrid -n01728266 hoop snake -n01728572 thunder snake, worm snake, Carphophis amoenus -n01728920 ringneck snake, ring-necked snake, ring snake -n01729322 hognose snake, puff adder, sand viper -n01729672 leaf-nosed snake -n01729977 green snake, grass snake -n01730185 smooth green snake, Opheodrys vernalis -n01730307 rough green snake, Opheodrys aestivus -n01730563 green snake -n01730812 racer -n01730960 blacksnake, black racer, Coluber constrictor -n01731137 blue racer, Coluber constrictor flaviventris -n01731277 horseshoe whipsnake, Coluber hippocrepis -n01731545 whip-snake, whip snake, whipsnake -n01731764 coachwhip, coachwhip snake, Masticophis flagellum -n01731941 California whipsnake, striped racer, Masticophis lateralis -n01732093 Sonoran whipsnake, Masticophis bilineatus -n01732244 rat snake -n01732614 corn snake, red rat snake, Elaphe guttata -n01732789 black rat snake, blacksnake, pilot blacksnake, mountain blacksnake, Elaphe obsoleta -n01732989 chicken snake -n01733214 Indian rat snake, Ptyas mucosus -n01733466 glossy snake, Arizona elegans -n01733757 bull snake, bull-snake -n01733957 gopher snake, Pituophis melanoleucus -n01734104 pine snake -n01734418 king snake, kingsnake -n01734637 common kingsnake, Lampropeltis getulus -n01734808 milk snake, house snake, milk adder, checkered adder, Lampropeltis triangulum -n01735189 garter snake, grass snake -n01735439 common garter snake, Thamnophis sirtalis -n01735577 ribbon snake, Thamnophis sauritus -n01735728 Western ribbon snake, Thamnophis proximus -n01736032 lined snake, Tropidoclonion lineatum -n01736375 ground snake, Sonora semiannulata -n01736796 eastern ground snake, Potamophis striatula, Haldea striatula -n01737021 water snake -n01737472 common water snake, banded water snake, Natrix sipedon, Nerodia sipedon -n01737728 water moccasin -n01737875 grass snake, ring snake, ringed snake, Natrix natrix -n01738065 viperine grass snake, Natrix maura -n01738306 red-bellied snake, Storeria occipitamaculata -n01738601 sand snake -n01738731 banded sand snake, Chilomeniscus cinctus -n01739094 black-headed snake -n01739381 vine snake -n01739647 lyre snake -n01739871 Sonoran lyre snake, Trimorphodon lambda -n01740131 night snake, Hypsiglena torquata -n01740551 blind snake, worm snake -n01740885 western blind snake, Leptotyphlops humilis -n01741232 indigo snake, gopher snake, Drymarchon corais -n01741442 eastern indigo snake, Drymarchon corais couperi -n01741562 constrictor -n01741943 boa -n01742172 boa constrictor, Constrictor constrictor -n01742447 rubber boa, tow-headed snake, Charina bottae -n01742821 rosy boa, Lichanura trivirgata -n01743086 anaconda, Eunectes murinus -n01743605 python -n01743936 carpet snake, Python variegatus, Morelia spilotes variegatus -n01744100 reticulated python, Python reticulatus -n01744270 Indian python, Python molurus -n01744401 rock python, rock snake, Python sebae -n01744555 amethystine python -n01745125 elapid, elapid snake -n01745484 coral snake, harlequin-snake, New World coral snake -n01745902 eastern coral snake, Micrurus fulvius -n01746191 western coral snake, Micruroides euryxanthus -n01746359 coral snake, Old World coral snake -n01746952 African coral snake, Aspidelaps lubricus -n01747285 Australian coral snake, Rhynchoelaps australis -n01747589 copperhead, Denisonia superba -n01747885 cobra -n01748264 Indian cobra, Naja naja -n01748389 asp, Egyptian cobra, Naja haje -n01748686 black-necked cobra, spitting cobra, Naja nigricollis -n01748906 hamadryad, king cobra, Ophiophagus hannah, Naja hannah -n01749244 ringhals, rinkhals, spitting snake, Hemachatus haemachatus -n01749582 mamba -n01749742 black mamba, Dendroaspis augusticeps -n01749939 green mamba -n01750167 death adder, Acanthophis antarcticus -n01750437 tiger snake, Notechis scutatus -n01750743 Australian blacksnake, Pseudechis porphyriacus -n01751036 krait -n01751215 banded krait, banded adder, Bungarus fasciatus -n01751472 taipan, Oxyuranus scutellatus -n01751748 sea snake -n01752165 viper -n01752585 adder, common viper, Vipera berus -n01752736 asp, asp viper, Vipera aspis -n01753032 puff adder, Bitis arietans -n01753180 gaboon viper, Bitis gabonica -n01753488 horned viper, cerastes, sand viper, horned asp, Cerastes cornutus -n01753959 pit viper -n01754370 copperhead, Agkistrodon contortrix -n01754533 water moccasin, cottonmouth, cottonmouth moccasin, Agkistrodon piscivorus -n01754876 rattlesnake, rattler -n01755581 diamondback, diamondback rattlesnake, Crotalus adamanteus -n01755740 timber rattlesnake, banded rattlesnake, Crotalus horridus horridus -n01755952 canebrake rattlesnake, canebrake rattler, Crotalus horridus atricaudatus -n01756089 prairie rattlesnake, prairie rattler, Western rattlesnake, Crotalus viridis -n01756291 sidewinder, horned rattlesnake, Crotalus cerastes -n01756508 Western diamondback, Western diamondback rattlesnake, Crotalus atrox -n01756733 rock rattlesnake, Crotalus lepidus -n01756916 tiger rattlesnake, Crotalus tigris -n01757115 Mojave rattlesnake, Crotalus scutulatus -n01757343 speckled rattlesnake, Crotalus mitchellii -n01757677 massasauga, massasauga rattler, Sistrurus catenatus -n01757901 ground rattler, massasauga, Sistrurus miliaris -n01758141 fer-de-lance, Bothrops atrops -n01758757 carcase, carcass -n01758895 carrion -n01767661 arthropod -n01768244 trilobite -n01769347 arachnid, arachnoid -n01770081 harvestman, daddy longlegs, Phalangium opilio -n01770393 scorpion -n01770795 false scorpion, pseudoscorpion -n01771100 book scorpion, Chelifer cancroides -n01771417 whip-scorpion, whip scorpion -n01771766 vinegarroon, Mastigoproctus giganteus -n01772222 spider -n01772664 orb-weaving spider -n01773157 black and gold garden spider, Argiope aurantia -n01773549 barn spider, Araneus cavaticus -n01773797 garden spider, Aranea diademata -n01774097 comb-footed spider, theridiid -n01774384 black widow, Latrodectus mactans -n01774750 tarantula -n01775062 wolf spider, hunting spider -n01775370 European wolf spider, tarantula, Lycosa tarentula -n01775730 trap-door spider -n01776192 acarine -n01776313 tick -n01776705 hard tick, ixodid -n01777304 Ixodes dammini, deer tick -n01777467 Ixodes neotomae -n01777649 Ixodes pacificus, western black-legged tick -n01777909 Ixodes scapularis, black-legged tick -n01778217 sheep-tick, sheep tick, Ixodes ricinus -n01778487 Ixodes persulcatus -n01778621 Ixodes dentatus -n01778801 Ixodes spinipalpis -n01779148 wood tick, American dog tick, Dermacentor variabilis -n01779463 soft tick, argasid -n01779629 mite -n01779939 web-spinning mite -n01780142 acarid -n01780426 trombidiid -n01780696 trombiculid -n01781071 harvest mite, chigger, jigger, redbug -n01781570 acarus, genus Acarus -n01781698 itch mite, sarcoptid -n01781875 rust mite -n01782209 spider mite, tetranychid -n01782516 red spider, red spider mite, Panonychus ulmi -n01783017 myriapod -n01783706 garden centipede, garden symphilid, symphilid, Scutigerella immaculata -n01784293 tardigrade -n01784675 centipede -n01785667 house centipede, Scutigera coleoptrata -n01786646 millipede, millepede, milliped -n01787006 sea spider, pycnogonid -n01787191 Merostomata, class Merostomata -n01787835 horseshoe crab, king crab, Limulus polyphemus, Xiphosurus polyphemus -n01788291 Asian horseshoe crab -n01788579 eurypterid -n01788864 tongue worm, pentastomid -n01789386 gallinaceous bird, gallinacean -n01789740 domestic fowl, fowl, poultry -n01790171 Dorking -n01790304 Plymouth Rock -n01790398 Cornish, Cornish fowl -n01790557 Rock Cornish -n01790711 game fowl -n01790812 cochin, cochin china -n01791107 jungle fowl, gallina -n01791314 jungle cock -n01791388 jungle hen -n01791463 red jungle fowl, Gallus gallus -n01791625 chicken, Gallus gallus -n01791954 bantam -n01792042 chick, biddy -n01792158 cock, rooster -n01792429 cockerel -n01792530 capon -n01792640 hen, biddy -n01792808 cackler -n01792955 brood hen, broody, broody hen, setting hen, sitter -n01793085 mother hen -n01793159 layer -n01793249 pullet -n01793340 spring chicken -n01793435 Rhode Island red -n01793565 Dominique, Dominick -n01793715 Orpington -n01794158 turkey, Meleagris gallopavo -n01794344 turkey cock, gobbler, tom, tom turkey -n01794651 ocellated turkey, Agriocharis ocellata -n01795088 grouse -n01795545 black grouse -n01795735 European black grouse, heathfowl, Lyrurus tetrix -n01795900 Asian black grouse, Lyrurus mlokosiewiczi -n01796019 blackcock, black cock -n01796105 greyhen, grayhen, grey hen, gray hen, heath hen -n01796340 ptarmigan -n01796519 red grouse, moorfowl, moorbird, moor-bird, moorgame, Lagopus scoticus -n01796729 moorhen -n01797020 capercaillie, capercailzie, horse of the wood, Tetrao urogallus -n01797307 spruce grouse, Canachites canadensis -n01797601 sage grouse, sage hen, Centrocercus urophasianus -n01797886 ruffed grouse, partridge, Bonasa umbellus -n01798168 sharp-tailed grouse, sprigtail, sprig tail, Pedioecetes phasianellus -n01798484 prairie chicken, prairie grouse, prairie fowl -n01798706 greater prairie chicken, Tympanuchus cupido -n01798839 lesser prairie chicken, Tympanuchus pallidicinctus -n01798979 heath hen, Tympanuchus cupido cupido -n01799302 guan -n01799679 curassow -n01800195 piping guan -n01800424 chachalaca -n01800633 Texas chachalaca, Ortilis vetula macalli -n01801088 megapode, mound bird, mound-bird, mound builder, scrub fowl -n01801479 mallee fowl, leipoa, lowan, Leipoa ocellata -n01801672 mallee hen -n01801876 brush turkey, Alectura lathami -n01802159 maleo, Macrocephalon maleo -n01802721 phasianid -n01803078 pheasant -n01803362 ring-necked pheasant, Phasianus colchicus -n01803641 afropavo, Congo peafowl, Afropavo congensis -n01803893 argus, argus pheasant -n01804163 golden pheasant, Chrysolophus pictus -n01804478 bobwhite, bobwhite quail, partridge -n01804653 northern bobwhite, Colinus virginianus -n01804921 Old World quail -n01805070 migratory quail, Coturnix coturnix, Coturnix communis -n01805321 monal, monaul -n01805801 peafowl, bird of Juno -n01806061 peachick, pea-chick -n01806143 peacock -n01806297 peahen -n01806364 blue peafowl, Pavo cristatus -n01806467 green peafowl, Pavo muticus -n01806567 quail -n01806847 California quail, Lofortyx californicus -n01807105 tragopan -n01807496 partridge -n01807828 Hungarian partridge, grey partridge, gray partridge, Perdix perdix -n01808140 red-legged partridge, Alectoris ruffa -n01808291 Greek partridge, rock partridge, Alectoris graeca -n01808596 mountain quail, mountain partridge, Oreortyx picta palmeri -n01809106 guinea fowl, guinea, Numida meleagris -n01809371 guinea hen -n01809752 hoatzin, hoactzin, stinkbird, Opisthocomus hoazin -n01810268 tinamou, partridge -n01810700 columbiform bird -n01811243 dodo, Raphus cucullatus -n01811909 pigeon -n01812187 pouter pigeon, pouter -n01812337 dove -n01812662 rock dove, rock pigeon, Columba livia -n01812866 band-tailed pigeon, band-tail pigeon, bandtail, Columba fasciata -n01813088 wood pigeon, ringdove, cushat, Columba palumbus -n01813385 turtledove -n01813532 Streptopelia turtur -n01813658 ringdove, Streptopelia risoria -n01813948 Australian turtledove, turtledove, Stictopelia cuneata -n01814217 mourning dove, Zenaidura macroura -n01814370 domestic pigeon -n01814549 squab -n01814620 fairy swallow -n01814755 roller, tumbler, tumbler pigeon -n01814921 homing pigeon, homer -n01815036 carrier pigeon -n01815270 passenger pigeon, Ectopistes migratorius -n01815601 sandgrouse, sand grouse -n01816017 painted sandgrouse, Pterocles indicus -n01816140 pin-tailed sandgrouse, pin-tailed grouse, Pterocles alchata -n01816474 pallas's sandgrouse, Syrrhaptes paradoxus -n01816887 parrot -n01817263 popinjay -n01817346 poll, poll parrot -n01817953 African grey, African gray, Psittacus erithacus -n01818299 amazon -n01818515 macaw -n01818832 kea, Nestor notabilis -n01819115 cockatoo -n01819313 sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita -n01819465 pink cockatoo, Kakatoe leadbeateri -n01819734 cockateel, cockatiel, cockatoo parrot, Nymphicus hollandicus -n01820052 lovebird -n01820348 lory -n01820546 lorikeet -n01820801 varied Lorikeet, Glossopsitta versicolor -n01821076 rainbow lorikeet, Trichoglossus moluccanus -n01821203 parakeet, parrakeet, parroket, paraquet, paroquet, parroquet -n01821554 Carolina parakeet, Conuropsis carolinensis -n01821869 budgerigar, budgereegah, budgerygah, budgie, grass parakeet, lovebird, shell parakeet, Melopsittacus undulatus -n01822300 ring-necked parakeet, Psittacula krameri -n01822602 cuculiform bird -n01823013 cuckoo -n01823414 European cuckoo, Cuculus canorus -n01823740 black-billed cuckoo, Coccyzus erythropthalmus -n01824035 roadrunner, chaparral cock, Geococcyx californianus -n01824344 ani -n01824575 coucal -n01824749 crow pheasant, Centropus sinensis -n01825278 touraco, turaco, turacou, turakoo -n01825930 coraciiform bird -n01826364 roller -n01826680 European roller, Coracias garrulus -n01826844 ground roller -n01827403 kingfisher -n01827793 Eurasian kingfisher, Alcedo atthis -n01828096 belted kingfisher, Ceryle alcyon -n01828556 kookaburra, laughing jackass, Dacelo gigas -n01828970 bee eater -n01829413 hornbill -n01829869 hoopoe, hoopoo -n01830042 Euopean hoopoe, Upupa epops -n01830479 wood hoopoe -n01830915 motmot, momot -n01831360 tody -n01831712 apodiform bird -n01832167 swift -n01832493 European swift, Apus apus -n01832813 chimney swift, chimney swallow, Chateura pelagica -n01833112 swiftlet, Collocalia inexpectata -n01833415 tree swift, crested swift -n01833805 hummingbird -n01834177 Archilochus colubris -n01834540 thornbill -n01835276 goatsucker, nightjar, caprimulgid -n01835769 European goatsucker, European nightjar, Caprimulgus europaeus -n01835918 chuck-will's-widow, Caprimulgus carolinensis -n01836087 whippoorwill, Caprimulgus vociferus -n01836673 poorwill, Phalaenoptilus nuttallii -n01837072 frogmouth -n01837526 oilbird, guacharo, Steatornis caripensis -n01838038 piciform bird -n01838598 woodpecker, peckerwood, pecker -n01839086 green woodpecker, Picus viridis -n01839330 downy woodpecker -n01839598 flicker -n01839750 yellow-shafted flicker, Colaptes auratus, yellowhammer -n01839949 gilded flicker, Colaptes chrysoides -n01840120 red-shafted flicker, Colaptes caper collaris -n01840412 ivorybill, ivory-billed woodpecker, Campephilus principalis -n01840775 redheaded woodpecker, redhead, Melanerpes erythrocephalus -n01841102 sapsucker -n01841288 yellow-bellied sapsucker, Sphyrapicus varius -n01841441 red-breasted sapsucker, Sphyrapicus varius ruber -n01841679 wryneck -n01841943 piculet -n01842235 barbet -n01842504 puffbird -n01842788 honey guide -n01843065 jacamar -n01843383 toucan -n01843719 toucanet -n01844231 trogon -n01844551 quetzal, quetzal bird -n01844746 resplendent quetzel, resplendent trogon, Pharomacrus mocino -n01844917 aquatic bird -n01845132 waterfowl, water bird, waterbird -n01845477 anseriform bird -n01846331 duck -n01847000 drake -n01847089 quack-quack -n01847170 duckling -n01847253 diving duck -n01847407 dabbling duck, dabbler -n01847806 mallard, Anas platyrhynchos -n01847978 black duck, Anas rubripes -n01848123 teal -n01848323 greenwing, green-winged teal, Anas crecca -n01848453 bluewing, blue-winged teal, Anas discors -n01848555 garganey, Anas querquedula -n01848648 widgeon, wigeon, Anas penelope -n01848840 American widgeon, baldpate, Anas americana -n01848976 shoveler, shoveller, broadbill, Anas clypeata -n01849157 pintail, pin-tailed duck, Anas acuta -n01849466 sheldrake -n01849676 shelduck -n01849863 ruddy duck, Oxyura jamaicensis -n01850192 bufflehead, butterball, dipper, Bucephela albeola -n01850373 goldeneye, whistler, Bucephela clangula -n01850553 Barrow's goldeneye, Bucephala islandica -n01850873 canvasback, canvasback duck, Aythya valisineria -n01851038 pochard, Aythya ferina -n01851207 redhead, Aythya americana -n01851375 scaup, scaup duck, bluebill, broadbill -n01851573 greater scaup, Aythya marila -n01851731 lesser scaup, lesser scaup duck, lake duck, Aythya affinis -n01851895 wild duck -n01852142 wood duck, summer duck, wood widgeon, Aix sponsa -n01852329 wood drake -n01852400 mandarin duck, Aix galericulata -n01852671 muscovy duck, musk duck, Cairina moschata -n01852861 sea duck -n01853195 eider, eider duck -n01853498 scoter, scooter -n01853666 common scoter, Melanitta nigra -n01853870 old squaw, oldwife, Clangula hyemalis -n01854415 merganser, fish duck, sawbill, sheldrake -n01854700 goosander, Mergus merganser -n01854838 American merganser, Mergus merganser americanus -n01855032 red-breasted merganser, Mergus serrator -n01855188 smew, Mergus albellus -n01855476 hooded merganser, hooded sheldrake, Lophodytes cucullatus -n01855672 goose -n01856072 gosling -n01856155 gander -n01856380 Chinese goose, Anser cygnoides -n01856553 greylag, graylag, greylag goose, graylag goose, Anser anser -n01856890 blue goose, Chen caerulescens -n01857079 snow goose -n01857325 brant, brant goose, brent, brent goose -n01857512 common brant goose, Branta bernicla -n01857632 honker, Canada goose, Canadian goose, Branta canadensis -n01857851 barnacle goose, barnacle, Branta leucopsis -n01858281 coscoroba -n01858441 swan -n01858780 cob -n01858845 pen -n01858906 cygnet -n01859190 mute swan, Cygnus olor -n01859325 whooper, whooper swan, Cygnus cygnus -n01859496 tundra swan, Cygnus columbianus -n01859689 whistling swan, Cygnus columbianus columbianus -n01859852 Bewick's swan, Cygnus columbianus bewickii -n01860002 trumpeter, trumpeter swan, Cygnus buccinator -n01860187 black swan, Cygnus atratus -n01860497 screamer -n01860864 horned screamer, Anhima cornuta -n01861148 crested screamer -n01861330 chaja, Chauna torquata -n01861778 mammal, mammalian -n01862399 female mammal -n01871265 tusker -n01871543 prototherian -n01871875 monotreme, egg-laying mammal -n01872401 echidna, spiny anteater, anteater -n01872772 echidna, spiny anteater, anteater -n01873310 platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus -n01874434 marsupial, pouched mammal -n01874928 opossum, possum -n01875313 common opossum, Didelphis virginiana, Didelphis marsupialis -n01875610 crab-eating opossum -n01876034 opossum rat -n01876326 bandicoot -n01876667 rabbit-eared bandicoot, rabbit bandicoot, bilby, Macrotis lagotis -n01877134 kangaroo -n01877606 giant kangaroo, great grey kangaroo, Macropus giganteus -n01877812 wallaby, brush kangaroo -n01878061 common wallaby, Macropus agiles -n01878335 hare wallaby, kangaroo hare -n01878639 nail-tailed wallaby, nail-tailed kangaroo -n01878929 rock wallaby, rock kangaroo -n01879217 pademelon, paddymelon -n01879509 tree wallaby, tree kangaroo -n01879837 musk kangaroo, Hypsiprymnodon moschatus -n01880152 rat kangaroo, kangaroo rat -n01880473 potoroo -n01880716 bettong -n01880813 jerboa kangaroo, kangaroo jerboa -n01881171 phalanger, opossum, possum -n01881564 cuscus -n01881857 brush-tailed phalanger, Trichosurus vulpecula -n01882125 flying phalanger, flying opossum, flying squirrel -n01882714 koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus -n01883070 wombat -n01883513 dasyurid marsupial, dasyurid -n01883920 dasyure -n01884104 eastern dasyure, Dasyurus quoll -n01884203 native cat, Dasyurus viverrinus -n01884476 thylacine, Tasmanian wolf, Tasmanian tiger, Thylacinus cynocephalus -n01884834 Tasmanian devil, ursine dasyure, Sarcophilus hariisi -n01885158 pouched mouse, marsupial mouse, marsupial rat -n01885498 numbat, banded anteater, anteater, Myrmecobius fasciatus -n01886045 pouched mole, marsupial mole, Notoryctus typhlops -n01886756 placental, placental mammal, eutherian, eutherian mammal -n01887474 livestock, stock, farm animal -n01887623 bull -n01887787 cow -n01887896 calf -n01888045 calf -n01888181 yearling -n01888264 buck -n01888411 doe -n01889074 insectivore -n01889520 mole -n01889849 starnose mole, star-nosed mole, Condylura cristata -n01890144 brewer's mole, hair-tailed mole, Parascalops breweri -n01890564 golden mole -n01890860 shrew mole -n01891013 Asiatic shrew mole, Uropsilus soricipes -n01891274 American shrew mole, Neurotrichus gibbsii -n01891633 shrew, shrewmouse -n01892030 common shrew, Sorex araneus -n01892145 masked shrew, Sorex cinereus -n01892385 short-tailed shrew, Blarina brevicauda -n01892551 water shrew -n01892744 American water shrew, Sorex palustris -n01893021 European water shrew, Neomys fodiens -n01893164 Mediterranean water shrew, Neomys anomalus -n01893399 least shrew, Cryptotis parva -n01893825 hedgehog, Erinaceus europaeus, Erinaceus europeaeus -n01894207 tenrec, tendrac -n01894522 tailless tenrec, Tenrec ecaudatus -n01894956 otter shrew, potamogale, Potamogale velox -n01896844 eiderdown -n01897257 aftershaft -n01897426 sickle feather -n01897536 contour feather -n01897667 bastard wing, alula, spurious wing -n01898593 saddle hackle, saddle feather -n01899894 encolure -n01900150 hair -n01903234 squama -n01903346 scute -n01903498 sclerite -n01904029 plastron -n01904806 scallop shell -n01904886 oyster shell -n01905321 theca -n01905661 invertebrate -n01906749 sponge, poriferan, parazoan -n01907287 choanocyte, collar cell -n01907738 glass sponge -n01908042 Venus's flower basket -n01908958 metazoan -n01909422 coelenterate, cnidarian -n01909788 planula -n01909906 polyp -n01910252 medusa, medusoid, medusan -n01910747 jellyfish -n01911063 scyphozoan -n01911403 Chrysaora quinquecirrha -n01911839 hydrozoan, hydroid -n01912152 hydra -n01912454 siphonophore -n01912809 nanomia -n01913166 Portuguese man-of-war, man-of-war, jellyfish -n01913346 praya -n01913440 apolemia -n01914163 anthozoan, actinozoan -n01914609 sea anemone, anemone -n01914830 actinia, actinian, actiniarian -n01915700 sea pen -n01915811 coral -n01916187 gorgonian, gorgonian coral -n01916388 sea feather -n01916481 sea fan -n01916588 red coral -n01916925 stony coral, madrepore, madriporian coral -n01917289 brain coral -n01917611 staghorn coral, stag's-horn coral -n01917882 mushroom coral -n01918744 ctenophore, comb jelly -n01919385 beroe -n01920051 platyctenean -n01920438 sea gooseberry -n01921059 Venus's girdle, Cestum veneris -n01922303 worm -n01922717 helminth, parasitic worm -n01922948 woodworm -n01923025 woodborer, borer -n01923404 acanthocephalan, spiny-headed worm -n01923890 arrowworm, chaetognath -n01924800 bladder worm -n01924916 flatworm, platyhelminth -n01925270 planarian, planaria -n01925695 fluke, trematode, trematode worm -n01925916 cercaria -n01926379 liver fluke, Fasciola hepatica -n01926689 Fasciolopsis buski -n01927159 schistosome, blood fluke -n01927456 tapeworm, cestode -n01927928 echinococcus -n01928215 taenia -n01928517 ribbon worm, nemertean, nemertine, proboscis worm -n01928865 beard worm, pogonophoran -n01929186 rotifer -n01930112 nematode, nematode worm, roundworm -n01930852 common roundworm, Ascaris lumbricoides -n01931140 chicken roundworm, Ascaridia galli -n01931520 pinworm, threadworm, Enterobius vermicularis -n01931714 eelworm -n01932151 vinegar eel, vinegar worm, Anguillula aceti, Turbatrix aceti -n01932936 trichina, Trichinella spiralis -n01933151 hookworm -n01933478 filaria -n01933988 Guinea worm, Dracunculus medinensis -n01934440 annelid, annelid worm, segmented worm -n01934844 archiannelid -n01935176 oligochaete, oligochaete worm -n01935395 earthworm, angleworm, fishworm, fishing worm, wiggler, nightwalker, nightcrawler, crawler, dew worm, red worm -n01936391 polychaete, polychete, polychaete worm, polychete worm -n01936671 lugworm, lug, lobworm -n01936858 sea mouse -n01937579 bloodworm -n01937909 leech, bloodsucker, hirudinean -n01938454 medicinal leech, Hirudo medicinalis -n01938735 horseleech -n01940736 mollusk, mollusc, shellfish -n01941223 scaphopod -n01941340 tooth shell, tusk shell -n01942177 gastropod, univalve -n01942869 abalone, ear-shell -n01943087 ormer, sea-ear, Haliotis tuberculata -n01943541 scorpion shell -n01943899 conch -n01944118 giant conch, Strombus gigas -n01944390 snail -n01944812 edible snail, Helix pomatia -n01944955 garden snail -n01945143 brown snail, Helix aspersa -n01945340 Helix hortensis -n01945685 slug -n01945845 seasnail -n01946277 neritid, neritid gastropod -n01946630 nerita -n01946827 bleeding tooth, Nerita peloronta -n01947139 neritina -n01947396 whelk -n01947997 moon shell, moonshell -n01948446 periwinkle, winkle -n01948573 limpet -n01949085 common limpet, Patella vulgata -n01949499 keyhole limpet, Fissurella apertura, Diodora apertura -n01949973 river limpet, freshwater limpet, Ancylus fluviatilis -n01950731 sea slug, nudibranch -n01951274 sea hare, Aplysia punctata -n01951613 Hermissenda crassicornis -n01952029 bubble shell -n01952712 physa -n01953361 cowrie, cowry -n01953594 money cowrie, Cypraea moneta -n01953762 tiger cowrie, Cypraea tigris -n01954516 solenogaster, aplacophoran -n01955084 chiton, coat-of-mail shell, sea cradle, polyplacophore -n01955933 bivalve, pelecypod, lamellibranch -n01956344 spat -n01956481 clam -n01956764 seashell -n01957335 soft-shell clam, steamer, steamer clam, long-neck clam, Mya arenaria -n01958038 quahog, quahaug, hard-shell clam, hard clam, round clam, Venus mercenaria, Mercenaria mercenaria -n01958346 littleneck, littleneck clam -n01958435 cherrystone, cherrystone clam -n01958531 geoduck -n01959029 razor clam, jackknife clam, knife-handle -n01959492 giant clam, Tridacna gigas -n01959985 cockle -n01960177 edible cockle, Cardium edule -n01960459 oyster -n01961234 Japanese oyster, Ostrea gigas -n01961600 Virginia oyster -n01961985 pearl oyster, Pinctada margaritifera -n01962506 saddle oyster, Anomia ephippium -n01962788 window oyster, windowpane oyster, capiz, Placuna placenta -n01963317 ark shell -n01963479 blood clam -n01963571 mussel -n01964049 marine mussel, mytilid -n01964271 edible mussel, Mytilus edulis -n01964441 freshwater mussel, freshwater clam -n01964957 pearly-shelled mussel -n01965252 thin-shelled mussel -n01965529 zebra mussel, Dreissena polymorpha -n01965889 scallop, scollop, escallop -n01966377 bay scallop, Pecten irradians -n01966586 sea scallop, giant scallop, Pecten magellanicus -n01967094 shipworm, teredinid -n01967308 teredo -n01967963 piddock -n01968315 cephalopod, cephalopod mollusk -n01968897 chambered nautilus, pearly nautilus, nautilus -n01969726 octopod -n01970164 octopus, devilfish -n01970667 paper nautilus, nautilus, Argonaut, Argonauta argo -n01971094 decapod -n01971280 squid -n01971620 loligo -n01971850 ommastrephes -n01972131 architeuthis, giant squid -n01972541 cuttlefish, cuttle -n01973148 spirula, Spirula peronii -n01974773 crustacean -n01975687 malacostracan crustacean -n01976146 decapod crustacean, decapod -n01976868 brachyuran -n01976957 crab -n01977485 stone crab, Menippe mercenaria -n01978010 hard-shell crab -n01978136 soft-shell crab, soft-shelled crab -n01978287 Dungeness crab, Cancer magister -n01978455 rock crab, Cancer irroratus -n01978587 Jonah crab, Cancer borealis -n01978930 swimming crab -n01979269 English lady crab, Portunus puber -n01979526 American lady crab, lady crab, calico crab, Ovalipes ocellatus -n01979874 blue crab, Callinectes sapidus -n01980166 fiddler crab -n01980655 pea crab -n01981276 king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica -n01981702 spider crab -n01982068 European spider crab, king crab, Maja squinado -n01982347 giant crab, Macrocheira kaempferi -n01982650 lobster -n01983048 true lobster -n01983481 American lobster, Northern lobster, Maine lobster, Homarus americanus -n01983674 European lobster, Homarus vulgaris -n01983829 Cape lobster, Homarus capensis -n01984245 Norway lobster, Nephrops norvegicus -n01984695 spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish -n01985128 crayfish, crawfish, crawdad, crawdaddy -n01985493 Old World crayfish, ecrevisse -n01985797 American crayfish -n01986214 hermit crab -n01986806 shrimp -n01987076 snapping shrimp, pistol shrimp -n01987545 prawn -n01987727 long-clawed prawn, river prawn, Palaemon australis -n01988203 tropical prawn -n01988701 krill -n01988869 Euphausia pacifica -n01989516 opossum shrimp -n01989869 stomatopod, stomatopod crustacean -n01990007 mantis shrimp, mantis crab -n01990516 squilla, mantis prawn -n01990800 isopod -n01991028 woodlouse, slater -n01991520 pill bug -n01992262 sow bug -n01992423 sea louse, sea slater -n01992773 amphipod -n01993525 skeleton shrimp -n01993830 whale louse -n01994910 daphnia, water flea -n01995514 fairy shrimp -n01995686 brine shrimp, Artemia salina -n01996280 tadpole shrimp -n01996585 copepod, copepod crustacean -n01997119 cyclops, water flea -n01997825 seed shrimp, mussel shrimp, ostracod -n01998183 barnacle, cirriped, cirripede -n01998741 acorn barnacle, rock barnacle, Balanus balanoides -n01999186 goose barnacle, gooseneck barnacle, Lepas fascicularis -n01999767 onychophoran, velvet worm, peripatus -n02000954 wading bird, wader -n02002075 stork -n02002556 white stork, Ciconia ciconia -n02002724 black stork, Ciconia nigra -n02003037 adjutant bird, adjutant, adjutant stork, Leptoptilus dubius -n02003204 marabou, marabout, marabou stork, Leptoptilus crumeniferus -n02003577 openbill -n02003839 jabiru, Jabiru mycteria -n02004131 saddlebill, jabiru, Ephippiorhynchus senegalensis -n02004492 policeman bird, black-necked stork, jabiru, Xenorhyncus asiaticus -n02004855 wood ibis, wood stork, flinthead, Mycteria americana -n02005399 shoebill, shoebird, Balaeniceps rex -n02005790 ibis -n02006063 wood ibis, wood stork, Ibis ibis -n02006364 sacred ibis, Threskiornis aethiopica -n02006656 spoonbill -n02006985 common spoonbill, Platalea leucorodia -n02007284 roseate spoonbill, Ajaia ajaja -n02007558 flamingo -n02008041 heron -n02008497 great blue heron, Ardea herodius -n02008643 great white heron, Ardea occidentalis -n02008796 egret -n02009229 little blue heron, Egretta caerulea -n02009380 snowy egret, snowy heron, Egretta thula -n02009508 little egret, Egretta garzetta -n02009750 great white heron, Casmerodius albus -n02009912 American egret, great white heron, Egretta albus -n02010272 cattle egret, Bubulcus ibis -n02010453 night heron, night raven -n02010728 black-crowned night heron, Nycticorax nycticorax -n02011016 yellow-crowned night heron, Nyctanassa violacea -n02011281 boatbill, boat-billed heron, broadbill, Cochlearius cochlearius -n02011460 bittern -n02011805 American bittern, stake driver, Botaurus lentiginosus -n02011943 European bittern, Botaurus stellaris -n02012185 least bittern, Ixobrychus exilis -n02012849 crane -n02013177 whooping crane, whooper, Grus americana -n02013567 courlan, Aramus guarauna -n02013706 limpkin, Aramus pictus -n02014237 crested cariama, seriema, Cariama cristata -n02014524 chunga, seriema, Chunga burmeisteri -n02014941 rail -n02015357 weka, maori hen, wood hen -n02015554 crake -n02015797 corncrake, land rail, Crex crex -n02016066 spotted crake, Porzana porzana -n02016358 gallinule, marsh hen, water hen, swamphen -n02016659 Florida gallinule, Gallinula chloropus cachinnans -n02016816 moorhen, Gallinula chloropus -n02016956 purple gallinule -n02017213 European gallinule, Porphyrio porphyrio -n02017475 American gallinule, Porphyrula martinica -n02017725 notornis, takahe, Notornis mantelli -n02018027 coot -n02018207 American coot, marsh hen, mud hen, water hen, Fulica americana -n02018368 Old World coot, Fulica atra -n02018795 bustard -n02019190 great bustard, Otis tarda -n02019438 plain turkey, Choriotis australis -n02019929 button quail, button-quail, bustard quail, hemipode -n02020219 striped button quail, Turnix sylvatica -n02020578 plain wanderer, Pedionomus torquatus -n02021050 trumpeter -n02021281 Brazilian trumpeter, Psophia crepitans -n02021795 seabird, sea bird, seafowl -n02022684 shorebird, shore bird, limicoline bird -n02023341 plover -n02023855 piping plover, Charadrius melodus -n02023992 killdeer, kildeer, killdeer plover, Charadrius vociferus -n02024185 dotterel, dotrel, Charadrius morinellus, Eudromias morinellus -n02024479 golden plover -n02024763 lapwing, green plover, peewit, pewit -n02025043 turnstone -n02025239 ruddy turnstone, Arenaria interpres -n02025389 black turnstone, Arenaria-Melanocephala -n02026059 sandpiper -n02026629 surfbird, Aphriza virgata -n02026948 European sandpiper, Actitis hypoleucos -n02027075 spotted sandpiper, Actitis macularia -n02027357 least sandpiper, stint, Erolia minutilla -n02027492 red-backed sandpiper, dunlin, Erolia alpina -n02027897 greenshank, Tringa nebularia -n02028035 redshank, Tringa totanus -n02028175 yellowlegs -n02028342 greater yellowlegs, Tringa melanoleuca -n02028451 lesser yellowlegs, Tringa flavipes -n02028727 pectoral sandpiper, jacksnipe, Calidris melanotos -n02028900 knot, greyback, grayback, Calidris canutus -n02029087 curlew sandpiper, Calidris Ferruginea -n02029378 sanderling, Crocethia alba -n02029706 upland sandpiper, upland plover, Bartramian sandpiper, Bartramia longicauda -n02030035 ruff, Philomachus pugnax -n02030224 reeve -n02030287 tattler -n02030568 Polynesian tattler, Heteroscelus incanus -n02030837 willet, Catoptrophorus semipalmatus -n02030996 woodcock -n02031298 Eurasian woodcock, Scolopax rusticola -n02031585 American woodcock, woodcock snipe, Philohela minor -n02031934 snipe -n02032222 whole snipe, Gallinago gallinago -n02032355 Wilson's snipe, Gallinago gallinago delicata -n02032480 great snipe, woodcock snipe, Gallinago media -n02032769 jacksnipe, half snipe, Limnocryptes minima -n02033041 dowitcher -n02033208 greyback, grayback, Limnodromus griseus -n02033324 red-breasted snipe, Limnodromus scolopaceus -n02033561 curlew -n02033779 European curlew, Numenius arquata -n02033882 Eskimo curlew, Numenius borealis -n02034129 godwit -n02034295 Hudsonian godwit, Limosa haemastica -n02034661 stilt, stiltbird, longlegs, long-legs, stilt plover, Himantopus stilt -n02034971 black-necked stilt, Himantopus mexicanus -n02035210 black-winged stilt, Himantopus himantopus -n02035402 white-headed stilt, Himantopus himantopus leucocephalus -n02035656 kaki, Himantopus novae-zelandiae -n02036053 stilt, Australian stilt -n02036228 banded stilt, Cladorhyncus leucocephalum -n02036711 avocet -n02037110 oystercatcher, oyster catcher -n02037464 phalarope -n02037869 red phalarope, Phalaropus fulicarius -n02038141 northern phalarope, Lobipes lobatus -n02038466 Wilson's phalarope, Steganopus tricolor -n02038993 pratincole, glareole -n02039171 courser -n02039497 cream-colored courser, Cursorius cursor -n02039780 crocodile bird, Pluvianus aegyptius -n02040266 stone curlew, thick-knee, Burhinus oedicnemus -n02040505 coastal diving bird -n02041085 larid -n02041246 gull, seagull, sea gull -n02041678 mew, mew gull, sea mew, Larus canus -n02041875 black-backed gull, great black-backed gull, cob, Larus marinus -n02042046 herring gull, Larus argentatus -n02042180 laughing gull, blackcap, pewit, pewit gull, Larus ridibundus -n02042472 ivory gull, Pagophila eburnea -n02042759 kittiwake -n02043063 tern -n02043333 sea swallow, Sterna hirundo -n02043808 skimmer -n02044178 jaeger -n02044517 parasitic jaeger, arctic skua, Stercorarius parasiticus -n02044778 skua, bonxie -n02044908 great skua, Catharacta skua -n02045369 auk -n02045596 auklet -n02045864 razorbill, razor-billed auk, Alca torda -n02046171 little auk, dovekie, Plautus alle -n02046759 guillemot -n02046939 black guillemot, Cepphus grylle -n02047045 pigeon guillemot, Cepphus columba -n02047260 murre -n02047411 common murre, Uria aalge -n02047517 thick-billed murre, Uria lomvia -n02047614 puffin -n02047975 Atlantic puffin, Fratercula arctica -n02048115 horned puffin, Fratercula corniculata -n02048353 tufted puffin, Lunda cirrhata -n02048698 gaviiform seabird -n02049088 loon, diver -n02049532 podicipitiform seabird -n02050004 grebe -n02050313 great crested grebe, Podiceps cristatus -n02050442 red-necked grebe, Podiceps grisegena -n02050586 black-necked grebe, eared grebe, Podiceps nigricollis -n02050809 dabchick, little grebe, Podiceps ruficollis -n02051059 pied-billed grebe, Podilymbus podiceps -n02051474 pelecaniform seabird -n02051845 pelican -n02052204 white pelican, Pelecanus erythrorhynchos -n02052365 Old world white pelican, Pelecanus onocrotalus -n02052775 frigate bird, man-of-war bird -n02053083 gannet -n02053425 solan, solan goose, solant goose, Sula bassana -n02053584 booby -n02054036 cormorant, Phalacrocorax carbo -n02054502 snakebird, anhinga, darter -n02054711 water turkey, Anhinga anhinga -n02055107 tropic bird, tropicbird, boatswain bird -n02055658 sphenisciform seabird -n02055803 penguin -n02056228 Adelie, Adelie penguin, Pygoscelis adeliae -n02056570 king penguin, Aptenodytes patagonica -n02056728 emperor penguin, Aptenodytes forsteri -n02057035 jackass penguin, Spheniscus demersus -n02057330 rock hopper, crested penguin -n02057731 pelagic bird, oceanic bird -n02057898 procellariiform seabird -n02058221 albatross, mollymawk -n02058594 wandering albatross, Diomedea exulans -n02058747 black-footed albatross, gooney, gooney bird, goonie, goony, Diomedea nigripes -n02059162 petrel -n02059541 white-chinned petrel, Procellaria aequinoctialis -n02059852 giant petrel, giant fulmar, Macronectes giganteus -n02060133 fulmar, fulmar petrel, Fulmarus glacialis -n02060411 shearwater -n02060569 Manx shearwater, Puffinus puffinus -n02060889 storm petrel -n02061217 stormy petrel, northern storm petrel, Hydrobates pelagicus -n02061560 Mother Carey's chicken, Mother Carey's hen, Oceanites oceanicus -n02061853 diving petrel -n02062017 aquatic mammal -n02062430 cetacean, cetacean mammal, blower -n02062744 whale -n02063224 baleen whale, whalebone whale -n02063662 right whale -n02064000 bowhead, bowhead whale, Greenland whale, Balaena mysticetus -n02064338 rorqual, razorback -n02064816 blue whale, sulfur bottom, Balaenoptera musculus -n02065026 finback, finback whale, fin whale, common rorqual, Balaenoptera physalus -n02065263 sei whale, Balaenoptera borealis -n02065407 lesser rorqual, piked whale, minke whale, Balaenoptera acutorostrata -n02065726 humpback, humpback whale, Megaptera novaeangliae -n02066245 grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus -n02066707 toothed whale -n02067240 sperm whale, cachalot, black whale, Physeter catodon -n02067603 pygmy sperm whale, Kogia breviceps -n02067768 dwarf sperm whale, Kogia simus -n02068206 beaked whale -n02068541 bottle-nosed whale, bottlenose whale, bottlenose, Hyperoodon ampullatus -n02068974 dolphin -n02069412 common dolphin, Delphinus delphis -n02069701 bottlenose dolphin, bottle-nosed dolphin, bottlenose -n02069974 Atlantic bottlenose dolphin, Tursiops truncatus -n02070174 Pacific bottlenose dolphin, Tursiops gilli -n02070430 porpoise -n02070624 harbor porpoise, herring hog, Phocoena phocoena -n02070776 vaquita, Phocoena sinus -n02071028 grampus, Grampus griseus -n02071294 killer whale, killer, orca, grampus, sea wolf, Orcinus orca -n02071636 pilot whale, black whale, common blackfish, blackfish, Globicephala melaena -n02072040 river dolphin -n02072493 narwhal, narwal, narwhale, Monodon monoceros -n02072798 white whale, beluga, Delphinapterus leucas -n02073250 sea cow, sirenian mammal, sirenian -n02073831 manatee, Trichechus manatus -n02074367 dugong, Dugong dugon -n02074726 Steller's sea cow, Hydrodamalis gigas -n02075296 carnivore -n02075612 omnivore -n02075927 pinniped mammal, pinniped, pinnatiped -n02076196 seal -n02076402 crabeater seal, crab-eating seal -n02076779 eared seal -n02077152 fur seal -n02077384 guadalupe fur seal, Arctocephalus philippi -n02077658 fur seal -n02077787 Alaska fur seal, Callorhinus ursinus -n02077923 sea lion -n02078292 South American sea lion, Otaria Byronia -n02078574 California sea lion, Zalophus californianus, Zalophus californicus -n02078738 Australian sea lion, Zalophus lobatus -n02079005 Steller sea lion, Steller's sea lion, Eumetopias jubatus -n02079389 earless seal, true seal, hair seal -n02079851 harbor seal, common seal, Phoca vitulina -n02080146 harp seal, Pagophilus groenlandicus -n02080415 elephant seal, sea elephant -n02080713 bearded seal, squareflipper square flipper, Erignathus barbatus -n02081060 hooded seal, bladdernose, Cystophora cristata -n02081571 walrus, seahorse, sea horse -n02081798 Atlantic walrus, Odobenus rosmarus -n02081927 Pacific walrus, Odobenus divergens -n02082056 Fissipedia -n02082190 fissiped mammal, fissiped -n02082791 aardvark, ant bear, anteater, Orycteropus afer -n02083346 canine, canid -n02083672 bitch -n02083780 brood bitch -n02084071 dog, domestic dog, Canis familiaris -n02084732 pooch, doggie, doggy, barker, bow-wow -n02084861 cur, mongrel, mutt -n02085019 feist, fice -n02085118 pariah dog, pye-dog, pie-dog -n02085272 lapdog -n02085374 toy dog, toy -n02085620 Chihuahua -n02085782 Japanese spaniel -n02085936 Maltese dog, Maltese terrier, Maltese -n02086079 Pekinese, Pekingese, Peke -n02086240 Shih-Tzu -n02086346 toy spaniel -n02086478 English toy spaniel -n02086646 Blenheim spaniel -n02086753 King Charles spaniel -n02086910 papillon -n02087046 toy terrier -n02087122 hunting dog -n02087314 courser -n02087394 Rhodesian ridgeback -n02087551 hound, hound dog -n02088094 Afghan hound, Afghan -n02088238 basset, basset hound -n02088364 beagle -n02088466 bloodhound, sleuthhound -n02088632 bluetick -n02088745 boarhound -n02088839 coonhound -n02088992 coondog -n02089078 black-and-tan coonhound -n02089232 dachshund, dachsie, badger dog -n02089468 sausage dog, sausage hound -n02089555 foxhound -n02089725 American foxhound -n02089867 Walker hound, Walker foxhound -n02089973 English foxhound -n02090129 harrier -n02090253 Plott hound -n02090379 redbone -n02090475 wolfhound -n02090622 borzoi, Russian wolfhound -n02090721 Irish wolfhound -n02090827 greyhound -n02091032 Italian greyhound -n02091134 whippet -n02091244 Ibizan hound, Ibizan Podenco -n02091467 Norwegian elkhound, elkhound -n02091635 otterhound, otter hound -n02091831 Saluki, gazelle hound -n02092002 Scottish deerhound, deerhound -n02092173 staghound -n02092339 Weimaraner -n02092468 terrier -n02093056 bullterrier, bull terrier -n02093256 Staffordshire bullterrier, Staffordshire bull terrier -n02093428 American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier -n02093647 Bedlington terrier -n02093754 Border terrier -n02093859 Kerry blue terrier -n02093991 Irish terrier -n02094114 Norfolk terrier -n02094258 Norwich terrier -n02094433 Yorkshire terrier -n02094562 rat terrier, ratter -n02094721 Manchester terrier, black-and-tan terrier -n02094931 toy Manchester, toy Manchester terrier -n02095050 fox terrier -n02095212 smooth-haired fox terrier -n02095314 wire-haired fox terrier -n02095412 wirehair, wirehaired terrier, wire-haired terrier -n02095570 Lakeland terrier -n02095727 Welsh terrier -n02095889 Sealyham terrier, Sealyham -n02096051 Airedale, Airedale terrier -n02096177 cairn, cairn terrier -n02096294 Australian terrier -n02096437 Dandie Dinmont, Dandie Dinmont terrier -n02096585 Boston bull, Boston terrier -n02096756 schnauzer -n02097047 miniature schnauzer -n02097130 giant schnauzer -n02097209 standard schnauzer -n02097298 Scotch terrier, Scottish terrier, Scottie -n02097474 Tibetan terrier, chrysanthemum dog -n02097658 silky terrier, Sydney silky -n02097786 Skye terrier -n02097967 Clydesdale terrier -n02098105 soft-coated wheaten terrier -n02098286 West Highland white terrier -n02098413 Lhasa, Lhasa apso -n02098550 sporting dog, gun dog -n02098806 bird dog -n02098906 water dog -n02099029 retriever -n02099267 flat-coated retriever -n02099429 curly-coated retriever -n02099601 golden retriever -n02099712 Labrador retriever -n02099849 Chesapeake Bay retriever -n02099997 pointer, Spanish pointer -n02100236 German short-haired pointer -n02100399 setter -n02100583 vizsla, Hungarian pointer -n02100735 English setter -n02100877 Irish setter, red setter -n02101006 Gordon setter -n02101108 spaniel -n02101388 Brittany spaniel -n02101556 clumber, clumber spaniel -n02101670 field spaniel -n02101861 springer spaniel, springer -n02102040 English springer, English springer spaniel -n02102177 Welsh springer spaniel -n02102318 cocker spaniel, English cocker spaniel, cocker -n02102480 Sussex spaniel -n02102605 water spaniel -n02102806 American water spaniel -n02102973 Irish water spaniel -n02103181 griffon, wire-haired pointing griffon -n02103406 working dog -n02103841 watchdog, guard dog -n02104029 kuvasz -n02104184 attack dog -n02104280 housedog -n02104365 schipperke -n02104523 shepherd dog, sheepdog, sheep dog -n02104882 Belgian sheepdog, Belgian shepherd -n02105056 groenendael -n02105162 malinois -n02105251 briard -n02105412 kelpie -n02105505 komondor -n02105641 Old English sheepdog, bobtail -n02105855 Shetland sheepdog, Shetland sheep dog, Shetland -n02106030 collie -n02106166 Border collie -n02106382 Bouvier des Flandres, Bouviers des Flandres -n02106550 Rottweiler -n02106662 German shepherd, German shepherd dog, German police dog, alsatian -n02106854 police dog -n02106966 pinscher -n02107142 Doberman, Doberman pinscher -n02107312 miniature pinscher -n02107420 Sennenhunde -n02107574 Greater Swiss Mountain dog -n02107683 Bernese mountain dog -n02107908 Appenzeller -n02108000 EntleBucher -n02108089 boxer -n02108254 mastiff -n02108422 bull mastiff -n02108551 Tibetan mastiff -n02108672 bulldog, English bulldog -n02108915 French bulldog -n02109047 Great Dane -n02109150 guide dog -n02109256 Seeing Eye dog -n02109391 hearing dog -n02109525 Saint Bernard, St Bernard -n02109687 seizure-alert dog -n02109811 sled dog, sledge dog -n02109961 Eskimo dog, husky -n02110063 malamute, malemute, Alaskan malamute -n02110185 Siberian husky -n02110341 dalmatian, coach dog, carriage dog -n02110532 liver-spotted dalmatian -n02110627 affenpinscher, monkey pinscher, monkey dog -n02110806 basenji -n02110958 pug, pug-dog -n02111129 Leonberg -n02111277 Newfoundland, Newfoundland dog -n02111500 Great Pyrenees -n02111626 spitz -n02111889 Samoyed, Samoyede -n02112018 Pomeranian -n02112137 chow, chow chow -n02112350 keeshond -n02112497 griffon, Brussels griffon, Belgian griffon -n02112706 Brabancon griffon -n02112826 corgi, Welsh corgi -n02113023 Pembroke, Pembroke Welsh corgi -n02113186 Cardigan, Cardigan Welsh corgi -n02113335 poodle, poodle dog -n02113624 toy poodle -n02113712 miniature poodle -n02113799 standard poodle -n02113892 large poodle -n02113978 Mexican hairless -n02114100 wolf -n02114367 timber wolf, grey wolf, gray wolf, Canis lupus -n02114548 white wolf, Arctic wolf, Canis lupus tundrarum -n02114712 red wolf, maned wolf, Canis rufus, Canis niger -n02114855 coyote, prairie wolf, brush wolf, Canis latrans -n02115012 coydog -n02115096 jackal, Canis aureus -n02115335 wild dog -n02115641 dingo, warrigal, warragal, Canis dingo -n02115913 dhole, Cuon alpinus -n02116185 crab-eating dog, crab-eating fox, Dusicyon cancrivorus -n02116450 raccoon dog, Nyctereutes procyonides -n02116738 African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus -n02117135 hyena, hyaena -n02117512 striped hyena, Hyaena hyaena -n02117646 brown hyena, strand wolf, Hyaena brunnea -n02117900 spotted hyena, laughing hyena, Crocuta crocuta -n02118176 aardwolf, Proteles cristata -n02118333 fox -n02118643 vixen -n02118707 Reynard -n02119022 red fox, Vulpes vulpes -n02119247 black fox -n02119359 silver fox -n02119477 red fox, Vulpes fulva -n02119634 kit fox, prairie fox, Vulpes velox -n02119789 kit fox, Vulpes macrotis -n02120079 Arctic fox, white fox, Alopex lagopus -n02120278 blue fox -n02120505 grey fox, gray fox, Urocyon cinereoargenteus -n02120997 feline, felid -n02121620 cat, true cat -n02121808 domestic cat, house cat, Felis domesticus, Felis catus -n02122298 kitty, kitty-cat, puss, pussy, pussycat -n02122430 mouser -n02122510 alley cat -n02122580 stray -n02122725 tom, tomcat -n02122810 gib -n02122878 tabby, queen -n02122948 kitten, kitty -n02123045 tabby, tabby cat -n02123159 tiger cat -n02123242 tortoiseshell, tortoiseshell-cat, calico cat -n02123394 Persian cat -n02123478 Angora, Angora cat -n02123597 Siamese cat, Siamese -n02123785 blue point Siamese -n02123917 Burmese cat -n02124075 Egyptian cat -n02124157 Maltese, Maltese cat -n02124313 Abyssinian, Abyssinian cat -n02124484 Manx, Manx cat -n02124623 wildcat -n02125010 sand cat -n02125081 European wildcat, catamountain, Felis silvestris -n02125311 cougar, puma, catamount, mountain lion, painter, panther, Felis concolor -n02125494 ocelot, panther cat, Felis pardalis -n02125689 jaguarundi, jaguarundi cat, jaguarondi, eyra, Felis yagouaroundi -n02125872 kaffir cat, caffer cat, Felis ocreata -n02126028 jungle cat, Felis chaus -n02126139 serval, Felis serval -n02126317 leopard cat, Felis bengalensis -n02126640 margay, margay cat, Felis wiedi -n02126787 manul, Pallas's cat, Felis manul -n02127052 lynx, catamount -n02127292 common lynx, Lynx lynx -n02127381 Canada lynx, Lynx canadensis -n02127482 bobcat, bay lynx, Lynx rufus -n02127586 spotted lynx, Lynx pardina -n02127678 caracal, desert lynx, Lynx caracal -n02127808 big cat, cat -n02128385 leopard, Panthera pardus -n02128598 leopardess -n02128669 panther -n02128757 snow leopard, ounce, Panthera uncia -n02128925 jaguar, panther, Panthera onca, Felis onca -n02129165 lion, king of beasts, Panthera leo -n02129463 lioness -n02129530 lionet -n02129604 tiger, Panthera tigris -n02129837 Bengal tiger -n02129923 tigress -n02129991 liger -n02130086 tiglon, tigon -n02130308 cheetah, chetah, Acinonyx jubatus -n02130545 saber-toothed tiger, sabertooth -n02130925 Smiledon californicus -n02131653 bear -n02132136 brown bear, bruin, Ursus arctos -n02132320 bruin -n02132466 Syrian bear, Ursus arctos syriacus -n02132580 grizzly, grizzly bear, silvertip, silver-tip, Ursus horribilis, Ursus arctos horribilis -n02132788 Alaskan brown bear, Kodiak bear, Kodiak, Ursus middendorffi, Ursus arctos middendorffi -n02133161 American black bear, black bear, Ursus americanus, Euarctos americanus -n02133400 cinnamon bear -n02133704 Asiatic black bear, black bear, Ursus thibetanus, Selenarctos thibetanus -n02134084 ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus -n02134418 sloth bear, Melursus ursinus, Ursus ursinus -n02134971 viverrine, viverrine mammal -n02135220 civet, civet cat -n02135610 large civet, Viverra zibetha -n02135844 small civet, Viverricula indica, Viverricula malaccensis -n02136103 binturong, bearcat, Arctictis bintourong -n02136285 Cryptoprocta, genus Cryptoprocta -n02136452 fossa, fossa cat, Cryptoprocta ferox -n02136794 fanaloka, Fossa fossa -n02137015 genet, Genetta genetta -n02137302 banded palm civet, Hemigalus hardwickii -n02137549 mongoose -n02137722 Indian mongoose, Herpestes nyula -n02137888 ichneumon, Herpestes ichneumon -n02138169 palm cat, palm civet -n02138441 meerkat, mierkat -n02138647 slender-tailed meerkat, Suricata suricatta -n02138777 suricate, Suricata tetradactyla -n02139199 bat, chiropteran -n02139671 fruit bat, megabat -n02140049 flying fox -n02140179 Pteropus capestratus -n02140268 Pteropus hypomelanus -n02140491 harpy, harpy bat, tube-nosed bat, tube-nosed fruit bat -n02140858 Cynopterus sphinx -n02141306 carnivorous bat, microbat -n02141611 mouse-eared bat -n02141713 leafnose bat, leaf-nosed bat -n02142407 macrotus, Macrotus californicus -n02142734 spearnose bat -n02142898 Phyllostomus hastatus -n02143142 hognose bat, Choeronycteris mexicana -n02143439 horseshoe bat -n02143891 horseshoe bat -n02144251 orange bat, orange horseshoe bat, Rhinonicteris aurantius -n02144593 false vampire, false vampire bat -n02144936 big-eared bat, Megaderma lyra -n02145424 vespertilian bat, vespertilionid -n02145910 frosted bat, Vespertilio murinus -n02146201 red bat, Lasiurus borealis -n02146371 brown bat -n02146700 little brown bat, little brown myotis, Myotis leucifugus -n02146879 cave myotis, Myotis velifer -n02147173 big brown bat, Eptesicus fuscus -n02147328 serotine, European brown bat, Eptesicus serotinus -n02147591 pallid bat, cave bat, Antrozous pallidus -n02147947 pipistrelle, pipistrel, Pipistrellus pipistrellus -n02148088 eastern pipistrel, Pipistrellus subflavus -n02148512 jackass bat, spotted bat, Euderma maculata -n02148835 long-eared bat -n02148991 western big-eared bat, Plecotus townsendi -n02149420 freetail, free-tailed bat, freetailed bat -n02149653 guano bat, Mexican freetail bat, Tadarida brasiliensis -n02149861 pocketed bat, pocketed freetail bat, Tadirida femorosacca -n02150134 mastiff bat -n02150482 vampire bat, true vampire bat -n02150885 Desmodus rotundus -n02151230 hairy-legged vampire bat, Diphylla ecaudata -n02152740 predator, predatory animal -n02152881 prey, quarry -n02152991 game -n02153109 big game -n02153203 game bird -n02153809 fossorial mammal -n02156732 tetrapod -n02156871 quadruped -n02157206 hexapod -n02157285 biped -n02159955 insect -n02160947 social insect -n02161225 holometabola, metabola -n02161338 defoliator -n02161457 pollinator -n02161588 gallfly -n02162561 scorpion fly -n02163008 hanging fly -n02163297 collembolan, springtail -n02164464 beetle -n02165105 tiger beetle -n02165456 ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle -n02165877 two-spotted ladybug, Adalia bipunctata -n02166229 Mexican bean beetle, bean beetle, Epilachna varivestis -n02166567 Hippodamia convergens -n02166826 vedalia, Rodolia cardinalis -n02167151 ground beetle, carabid beetle -n02167505 bombardier beetle -n02167820 calosoma -n02167944 searcher, searcher beetle, Calosoma scrutator -n02168245 firefly, lightning bug -n02168427 glowworm -n02168699 long-horned beetle, longicorn, longicorn beetle -n02169023 sawyer, sawyer beetle -n02169218 pine sawyer -n02169497 leaf beetle, chrysomelid -n02169705 flea beetle -n02169974 Colorado potato beetle, Colorado beetle, potato bug, potato beetle, Leptinotarsa decemlineata -n02170400 carpet beetle, carpet bug -n02170599 buffalo carpet beetle, Anthrenus scrophulariae -n02170738 black carpet beetle -n02170993 clerid beetle, clerid -n02171164 bee beetle -n02171453 lamellicorn beetle -n02171869 scarabaeid beetle, scarabaeid, scarabaean -n02172182 dung beetle -n02172518 scarab, scarabaeus, Scarabaeus sacer -n02172678 tumblebug -n02172761 dorbeetle -n02172870 June beetle, June bug, May bug, May beetle -n02173113 green June beetle, figeater -n02173373 Japanese beetle, Popillia japonica -n02173784 Oriental beetle, Asiatic beetle, Anomala orientalis -n02174001 rhinoceros beetle -n02174355 melolonthid beetle -n02174659 cockchafer, May bug, May beetle, Melolontha melolontha -n02175014 rose chafer, rose bug, Macrodactylus subspinosus -n02175569 rose chafer, rose beetle, Cetonia aurata -n02175916 stag beetle -n02176261 elaterid beetle, elater, elaterid -n02176439 click beetle, skipjack, snapping beetle -n02176747 firefly, fire beetle, Pyrophorus noctiluca -n02176916 wireworm -n02177196 water beetle -n02177506 whirligig beetle -n02177775 deathwatch beetle, deathwatch, Xestobium rufovillosum -n02177972 weevil -n02178411 snout beetle -n02178717 boll weevil, Anthonomus grandis -n02179012 blister beetle, meloid -n02179192 oil beetle -n02179340 Spanish fly -n02179891 Dutch-elm beetle, Scolytus multistriatus -n02180233 bark beetle -n02180427 spruce bark beetle, Dendroctonus rufipennis -n02180875 rove beetle -n02181235 darkling beetle, darkling groung beetle, tenebrionid -n02181477 mealworm -n02181724 flour beetle, flour weevil -n02182045 seed beetle, seed weevil -n02182355 pea weevil, Bruchus pisorum -n02182642 bean weevil, Acanthoscelides obtectus -n02182930 rice weevil, black weevil, Sitophylus oryzae -n02183096 Asian longhorned beetle, Anoplophora glabripennis -n02183507 web spinner -n02183857 louse, sucking louse -n02184473 common louse, Pediculus humanus -n02184589 head louse, Pediculus capitis -n02184720 body louse, cootie, Pediculus corporis -n02185167 crab louse, pubic louse, crab, Phthirius pubis -n02185481 bird louse, biting louse, louse -n02186153 flea -n02186717 Pulex irritans -n02187150 dog flea, Ctenocephalides canis -n02187279 cat flea, Ctenocephalides felis -n02187554 chigoe, chigger, chigoe flea, Tunga penetrans -n02187900 sticktight, sticktight flea, Echidnophaga gallinacea -n02188699 dipterous insect, two-winged insects, dipteran, dipteron -n02189363 gall midge, gallfly, gall gnat -n02189670 Hessian fly, Mayetiola destructor -n02190166 fly -n02190790 housefly, house fly, Musca domestica -n02191273 tsetse fly, tsetse, tzetze fly, tzetze, glossina -n02191773 blowfly, blow fly -n02191979 bluebottle, Calliphora vicina -n02192252 greenbottle, greenbottle fly -n02192513 flesh fly, Sarcophaga carnaria -n02192814 tachina fly -n02193009 gadfly -n02193163 botfly -n02194249 human botfly, Dermatobia hominis -n02194750 sheep botfly, sheep gadfly, Oestrus ovis -n02195091 warble fly -n02195526 horsefly, cleg, clegg, horse fly -n02195819 bee fly -n02196119 robber fly, bee killer -n02196344 fruit fly, pomace fly -n02196896 apple maggot, railroad worm, Rhagoletis pomonella -n02197185 Mediterranean fruit fly, medfly, Ceratitis capitata -n02197689 drosophila, Drosophila melanogaster -n02197877 vinegar fly -n02198129 leaf miner, leaf-miner -n02198532 louse fly, hippoboscid -n02198859 horse tick, horsefly, Hippobosca equina -n02199170 sheep ked, sheep-tick, sheep tick, Melophagus Ovinus -n02199502 horn fly, Haematobia irritans -n02200198 mosquito -n02200509 wiggler, wriggler -n02200630 gnat -n02200850 yellow-fever mosquito, Aedes aegypti -n02201000 Asian tiger mosquito, Aedes albopictus -n02201497 anopheline -n02201626 malarial mosquito, malaria mosquito -n02202006 common mosquito, Culex pipiens -n02202124 Culex quinquefasciatus, Culex fatigans -n02202287 gnat -n02202678 punkie, punky, punkey, no-see-um, biting midge -n02203152 midge -n02203592 fungus gnat -n02203978 psychodid -n02204249 sand fly, sandfly, Phlebotomus papatasii -n02204722 fungus gnat, sciara, sciarid -n02204907 armyworm -n02205219 crane fly, daddy longlegs -n02205673 blackfly, black fly, buffalo gnat -n02206270 hymenopterous insect, hymenopteran, hymenopteron, hymenopter -n02206856 bee -n02207179 drone -n02207345 queen bee -n02207449 worker -n02207647 soldier -n02207805 worker bee -n02208280 honeybee, Apis mellifera -n02208498 Africanized bee, Africanized honey bee, killer bee, Apis mellifera scutellata, Apis mellifera adansonii -n02208848 black bee, German bee -n02208979 Carniolan bee -n02209111 Italian bee -n02209354 carpenter bee -n02209624 bumblebee, humblebee -n02209964 cuckoo-bumblebee -n02210427 andrena, andrenid, mining bee -n02210921 Nomia melanderi, alkali bee -n02211444 leaf-cutting bee, leaf-cutter, leaf-cutter bee -n02211627 mason bee -n02211896 potter bee -n02212062 wasp -n02212602 vespid, vespid wasp -n02212958 paper wasp -n02213107 hornet -n02213239 giant hornet, Vespa crabro -n02213543 common wasp, Vespula vulgaris -n02213663 bald-faced hornet, white-faced hornet, Vespula maculata -n02213788 yellow jacket, yellow hornet, Vespula maculifrons -n02214096 Polistes annularis -n02214341 mason wasp -n02214499 potter wasp -n02214660 Mutillidae, family Mutillidae -n02214773 velvet ant -n02215161 sphecoid wasp, sphecoid -n02215621 mason wasp -n02215770 digger wasp -n02216211 cicada killer, Sphecius speciosis -n02216365 mud dauber -n02216740 gall wasp, gallfly, cynipid wasp, cynipid gall wasp -n02217563 chalcid fly, chalcidfly, chalcid, chalcid wasp -n02217839 strawworm, jointworm -n02218134 chalcis fly -n02218371 ichneumon fly -n02218713 sawfly -n02219015 birch leaf miner, Fenusa pusilla -n02219486 ant, emmet, pismire -n02220055 pharaoh ant, pharaoh's ant, Monomorium pharaonis -n02220225 little black ant, Monomorium minimum -n02220518 army ant, driver ant, legionary ant -n02220804 carpenter ant -n02221083 fire ant -n02221414 wood ant, Formica rufa -n02221571 slave ant -n02221715 Formica fusca -n02221820 slave-making ant, slave-maker -n02222035 sanguinary ant, Formica sanguinea -n02222321 bulldog ant -n02222582 Amazon ant, Polyergus rufescens -n02223266 termite, white ant -n02223520 dry-wood termite -n02224023 Reticulitermes lucifugus -n02224713 Mastotermes darwiniensis -n02225081 Mastotermes electrodominicus -n02225798 powder-post termite, Cryptotermes brevis -n02226183 orthopterous insect, orthopteron, orthopteran -n02226429 grasshopper, hopper -n02226821 short-horned grasshopper, acridid -n02226970 locust -n02227247 migratory locust, Locusta migratoria -n02227604 migratory grasshopper -n02227966 long-horned grasshopper, tettigoniid -n02228341 katydid -n02228697 mormon cricket, Anabrus simplex -n02229156 sand cricket, Jerusalem cricket, Stenopelmatus fuscus -n02229544 cricket -n02229765 mole cricket -n02230023 European house cricket, Acheta domestica -n02230187 field cricket, Acheta assimilis -n02230480 tree cricket -n02230634 snowy tree cricket, Oecanthus fultoni -n02231052 phasmid, phasmid insect -n02231487 walking stick, walkingstick, stick insect -n02231803 diapheromera, Diapheromera femorata -n02232223 walking leaf, leaf insect -n02233338 cockroach, roach -n02233943 oriental cockroach, oriental roach, Asiatic cockroach, blackbeetle, Blatta orientalis -n02234355 American cockroach, Periplaneta americana -n02234570 Australian cockroach, Periplaneta australasiae -n02234848 German cockroach, Croton bug, crotonbug, water bug, Blattella germanica -n02235205 giant cockroach -n02236044 mantis, mantid -n02236241 praying mantis, praying mantid, Mantis religioso -n02236355 bug -n02236896 hemipterous insect, bug, hemipteran, hemipteron -n02237424 leaf bug, plant bug -n02237581 mirid bug, mirid, capsid -n02237868 four-lined plant bug, four-lined leaf bug, Poecilocapsus lineatus -n02238235 lygus bug -n02238358 tarnished plant bug, Lygus lineolaris -n02238594 lace bug -n02238887 lygaeid, lygaeid bug -n02239192 chinch bug, Blissus leucopterus -n02239528 coreid bug, coreid -n02239774 squash bug, Anasa tristis -n02240068 leaf-footed bug, leaf-foot bug -n02240517 bedbug, bed bug, chinch, Cimex lectularius -n02241008 backswimmer, Notonecta undulata -n02241426 true bug -n02241569 heteropterous insect -n02241799 water bug -n02242137 giant water bug -n02242455 water scorpion -n02243209 water boatman, boat bug -n02243562 water strider, pond-skater, water skater -n02243878 common pond-skater, Gerris lacustris -n02244173 assassin bug, reduviid -n02244515 conenose, cone-nosed bug, conenose bug, big bedbug, kissing bug -n02244797 wheel bug, Arilus cristatus -n02245111 firebug -n02245443 cotton stainer -n02246011 homopterous insect, homopteran -n02246628 whitefly -n02246941 citrus whitefly, Dialeurodes citri -n02247216 greenhouse whitefly, Trialeurodes vaporariorum -n02247511 sweet-potato whitefly -n02247655 superbug, Bemisia tabaci, poinsettia strain -n02248062 cotton strain -n02248368 coccid insect -n02248510 scale insect -n02248887 soft scale -n02249134 brown soft scale, Coccus hesperidum -n02249515 armored scale -n02249809 San Jose scale, Aspidiotus perniciosus -n02250280 cochineal insect, cochineal, Dactylopius coccus -n02250822 mealybug, mealy bug -n02251067 citrophilous mealybug, citrophilus mealybug, Pseudococcus fragilis -n02251233 Comstock mealybug, Comstock's mealybug, Pseudococcus comstocki -n02251593 citrus mealybug, Planococcus citri -n02251775 plant louse, louse -n02252226 aphid -n02252799 apple aphid, green apple aphid, Aphis pomi -n02252972 blackfly, bean aphid, Aphis fabae -n02253127 greenfly -n02253264 green peach aphid -n02253494 ant cow -n02253715 woolly aphid, woolly plant louse -n02253913 woolly apple aphid, American blight, Eriosoma lanigerum -n02254246 woolly alder aphid, Prociphilus tessellatus -n02254697 adelgid -n02254901 balsam woolly aphid, Adelges piceae -n02255023 spruce gall aphid, Adelges abietis -n02255391 woolly adelgid -n02256172 jumping plant louse, psylla, psyllid -n02256656 cicada, cicala -n02257003 dog-day cicada, harvest fly -n02257284 seventeen-year locust, periodical cicada, Magicicada septendecim -n02257715 spittle insect, spittlebug -n02257985 froghopper -n02258198 meadow spittlebug, Philaenus spumarius -n02258508 pine spittlebug -n02258629 Saratoga spittlebug, Aphrophora saratogensis -n02259212 leafhopper -n02259377 plant hopper, planthopper -n02259708 treehopper -n02259987 lantern fly, lantern-fly -n02260421 psocopterous insect -n02260863 psocid -n02261063 bark-louse, bark louse -n02261419 booklouse, book louse, deathwatch, Liposcelis divinatorius -n02261757 common booklouse, Trogium pulsatorium -n02262178 ephemerid, ephemeropteran -n02262449 mayfly, dayfly, shadfly -n02262803 stonefly, stone fly, plecopteran -n02263378 neuropteron, neuropteran, neuropterous insect -n02264021 ant lion, antlion, antlion fly -n02264232 doodlebug, ant lion, antlion -n02264363 lacewing, lacewing fly -n02264591 aphid lion, aphis lion -n02264885 green lacewing, chrysopid, stink fly -n02265330 brown lacewing, hemerobiid, hemerobiid fly -n02266050 dobson, dobsonfly, dobson fly, Corydalus cornutus -n02266269 hellgrammiate, dobson -n02266421 fish fly, fish-fly -n02266864 alderfly, alder fly, Sialis lutaria -n02267208 snakefly -n02267483 mantispid -n02268148 odonate -n02268443 dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk -n02268853 damselfly -n02269196 trichopterous insect, trichopteran, trichopteron -n02269340 caddis fly, caddis-fly, caddice fly, caddice-fly -n02269522 caseworm -n02269657 caddisworm, strawworm -n02270011 thysanuran insect, thysanuron -n02270200 bristletail -n02270623 silverfish, Lepisma saccharina -n02270945 firebrat, Thermobia domestica -n02271222 jumping bristletail, machilid -n02271570 thysanopter, thysanopteron, thysanopterous insect -n02271897 thrips, thrip, thripid -n02272286 tobacco thrips, Frankliniella fusca -n02272552 onion thrips, onion louse, Thrips tobaci -n02272871 earwig -n02273392 common European earwig, Forficula auricularia -n02274024 lepidopterous insect, lepidopteron, lepidopteran -n02274259 butterfly -n02274822 nymphalid, nymphalid butterfly, brush-footed butterfly, four-footed butterfly -n02275560 mourning cloak, mourning cloak butterfly, Camberwell beauty, Nymphalis antiopa -n02275773 tortoiseshell, tortoiseshell butterfly -n02276078 painted beauty, Vanessa virginiensis -n02276258 admiral -n02276355 red admiral, Vanessa atalanta -n02276749 white admiral, Limenitis camilla -n02276902 banded purple, white admiral, Limenitis arthemis -n02277094 red-spotted purple, Limenitis astyanax -n02277268 viceroy, Limenitis archippus -n02277422 anglewing -n02277742 ringlet, ringlet butterfly -n02278024 comma, comma butterfly, Polygonia comma -n02278210 fritillary -n02278463 silverspot -n02278839 emperor butterfly, emperor -n02278980 purple emperor, Apatura iris -n02279257 peacock, peacock butterfly, Inachis io -n02279637 danaid, danaid butterfly -n02279972 monarch, monarch butterfly, milkweed butterfly, Danaus plexippus -n02280458 pierid, pierid butterfly -n02280649 cabbage butterfly -n02281015 small white, Pieris rapae -n02281136 large white, Pieris brassicae -n02281267 southern cabbage butterfly, Pieris protodice -n02281406 sulphur butterfly, sulfur butterfly -n02281787 lycaenid, lycaenid butterfly -n02282257 blue -n02282385 copper -n02282553 American copper, Lycaena hypophlaeas -n02282903 hairstreak, hairstreak butterfly -n02283077 Strymon melinus -n02283201 moth -n02283617 moth miller, miller -n02283951 tortricid, tortricid moth -n02284224 leaf roller, leaf-roller -n02284611 tea tortrix, tortrix, Homona coffearia -n02284884 orange tortrix, tortrix, Argyrotaenia citrana -n02285179 codling moth, codlin moth, Carpocapsa pomonella -n02285548 lymantriid, tussock moth -n02285801 tussock caterpillar -n02286089 gypsy moth, gipsy moth, Lymantria dispar -n02286425 browntail, brown-tail moth, Euproctis phaeorrhoea -n02286654 gold-tail moth, Euproctis chrysorrhoea -n02287004 geometrid, geometrid moth -n02287352 Paleacrita vernata -n02287622 Alsophila pometaria -n02287799 cankerworm -n02287987 spring cankerworm -n02288122 fall cankerworm -n02288268 measuring worm, inchworm, looper -n02288789 pyralid, pyralid moth -n02289307 bee moth, wax moth, Galleria mellonella -n02289610 corn borer, European corn borer moth, corn borer moth, Pyrausta nubilalis -n02289988 Mediterranean flour moth, Anagasta kuehniella -n02290340 tobacco moth, cacao moth, Ephestia elutella -n02290664 almond moth, fig moth, Cadra cautella -n02290870 raisin moth, Cadra figulilella -n02291220 tineoid, tineoid moth -n02291572 tineid, tineid moth -n02291748 clothes moth -n02292085 casemaking clothes moth, Tinea pellionella -n02292401 webbing clothes moth, webbing moth, Tineola bisselliella -n02292692 carpet moth, tapestry moth, Trichophaga tapetzella -n02293352 gelechiid, gelechiid moth -n02293868 grain moth -n02294097 angoumois moth, angoumois grain moth, Sitotroga cerealella -n02294407 potato moth, potato tuber moth, splitworm, Phthorimaea operculella -n02294577 potato tuberworm, Phthorimaea operculella -n02295064 noctuid moth, noctuid, owlet moth -n02295390 cutworm -n02295870 underwing -n02296021 red underwing, Catocala nupta -n02296276 antler moth, Cerapteryx graminis -n02296612 heliothis moth, Heliothis zia -n02296912 army cutworm, Chorizagrotis auxiliaris -n02297294 armyworm, Pseudaletia unipuncta -n02297442 armyworm, army worm, Pseudaletia unipuncta -n02297819 Spodoptera exigua -n02297938 beet armyworm, Spodoptera exigua -n02298095 Spodoptera frugiperda -n02298218 fall armyworm, Spodoptera frugiperda -n02298541 hawkmoth, hawk moth, sphingid, sphinx moth, hummingbird moth -n02299039 Manduca sexta -n02299157 tobacco hornworm, tomato worm, Manduca sexta -n02299378 Manduca quinquemaculata -n02299505 tomato hornworm, potato worm, Manduca quinquemaculata -n02299846 death's-head moth, Acherontia atropos -n02300173 bombycid, bombycid moth, silkworm moth -n02300554 domestic silkworm moth, domesticated silkworm moth, Bombyx mori -n02300797 silkworm -n02301452 saturniid, saturniid moth -n02301935 emperor, emperor moth, Saturnia pavonia -n02302244 imperial moth, Eacles imperialis -n02302459 giant silkworm moth, silkworm moth -n02302620 silkworm, giant silkworm, wild wilkworm -n02302969 luna moth, Actias luna -n02303284 cecropia, cecropia moth, Hyalophora cecropia -n02303585 cynthia moth, Samia cynthia, Samia walkeri -n02303777 ailanthus silkworm, Samia cynthia -n02304036 io moth, Automeris io -n02304432 polyphemus moth, Antheraea polyphemus -n02304657 pernyi moth, Antheraea pernyi -n02304797 tussah, tusseh, tussur, tussore, tusser, Antheraea mylitta -n02305085 atlas moth, Atticus atlas -n02305407 arctiid, arctiid moth -n02305636 tiger moth -n02305929 cinnabar, cinnabar moth, Callimorpha jacobeae -n02306433 lasiocampid, lasiocampid moth -n02306825 eggar, egger -n02307176 tent-caterpillar moth, Malacosoma americana -n02307325 tent caterpillar -n02307515 tent-caterpillar moth, Malacosoma disstria -n02307681 forest tent caterpillar, Malacosoma disstria -n02307910 lappet, lappet moth -n02308033 lappet caterpillar -n02308139 webworm -n02308471 webworm moth -n02308618 Hyphantria cunea -n02308735 fall webworm, Hyphantria cunea -n02309120 garden webworm, Loxostege similalis -n02309242 instar -n02309337 caterpillar -n02309841 corn borer, Pyrausta nubilalis -n02310000 bollworm -n02310149 pink bollworm, Gelechia gossypiella -n02310334 corn earworm, cotton bollworm, tomato fruitworm, tobacco budworm, vetchworm, Heliothis zia -n02310585 cabbageworm, Pieris rapae -n02310717 woolly bear, woolly bear caterpillar -n02310941 woolly bear moth -n02311060 larva -n02311617 nymph -n02311748 leptocephalus -n02312006 grub -n02312175 maggot -n02312325 leatherjacket -n02312427 pupa -n02312640 chrysalis -n02312912 imago -n02313008 queen -n02313360 phoronid -n02313709 bryozoan, polyzoan, sea mat, sea moss, moss animal -n02315487 brachiopod, lamp shell, lampshell -n02315821 peanut worm, sipunculid -n02316707 echinoderm -n02317335 starfish, sea star -n02317781 brittle star, brittle-star, serpent star -n02318167 basket star, basket fish -n02318687 Astrophyton muricatum -n02319095 sea urchin -n02319308 edible sea urchin, Echinus esculentus -n02319555 sand dollar -n02319829 heart urchin -n02320127 crinoid -n02320465 sea lily -n02321170 feather star, comatulid -n02321529 sea cucumber, holothurian -n02322047 trepang, Holothuria edulis -n02322992 Duplicidentata -n02323449 lagomorph, gnawing mammal -n02323902 leporid, leporid mammal -n02324045 rabbit, coney, cony -n02324431 rabbit ears -n02324514 lapin -n02324587 bunny, bunny rabbit -n02324850 European rabbit, Old World rabbit, Oryctolagus cuniculus -n02325366 wood rabbit, cottontail, cottontail rabbit -n02325722 eastern cottontail, Sylvilagus floridanus -n02325884 swamp rabbit, canecutter, swamp hare, Sylvilagus aquaticus -n02326074 marsh hare, swamp rabbit, Sylvilagus palustris -n02326432 hare -n02326763 leveret -n02326862 European hare, Lepus europaeus -n02327028 jackrabbit -n02327175 white-tailed jackrabbit, whitetail jackrabbit, Lepus townsendi -n02327435 blacktail jackrabbit, Lepus californicus -n02327656 polar hare, Arctic hare, Lepus arcticus -n02327842 snowshoe hare, snowshoe rabbit, varying hare, Lepus americanus -n02328009 Belgian hare, leporide -n02328150 Angora, Angora rabbit -n02328429 pika, mouse hare, rock rabbit, coney, cony -n02328820 little chief hare, Ochotona princeps -n02328942 collared pika, Ochotona collaris -n02329401 rodent, gnawer -n02330245 mouse -n02331046 rat -n02331309 pocket rat -n02331842 murine -n02332156 house mouse, Mus musculus -n02332447 harvest mouse, Micromyx minutus -n02332755 field mouse, fieldmouse -n02332954 nude mouse -n02333190 European wood mouse, Apodemus sylvaticus -n02333546 brown rat, Norway rat, Rattus norvegicus -n02333733 wharf rat -n02333819 sewer rat -n02333909 black rat, roof rat, Rattus rattus -n02334201 bandicoot rat, mole rat -n02334460 jerboa rat -n02334728 kangaroo mouse -n02335127 water rat -n02335231 beaver rat -n02336011 New World mouse -n02336275 American harvest mouse, harvest mouse -n02336641 wood mouse -n02336826 white-footed mouse, vesper mouse, Peromyscus leucopus -n02337001 deer mouse, Peromyscus maniculatus -n02337171 cactus mouse, Peromyscus eremicus -n02337332 cotton mouse, Peromyscus gossypinus -n02337598 pygmy mouse, Baiomys taylori -n02337902 grasshopper mouse -n02338145 muskrat, musquash, Ondatra zibethica -n02338449 round-tailed muskrat, Florida water rat, Neofiber alleni -n02338722 cotton rat, Sigmodon hispidus -n02338901 wood rat, wood-rat -n02339282 dusky-footed wood rat -n02339376 vole, field mouse -n02339922 packrat, pack rat, trade rat, bushytail woodrat, Neotoma cinerea -n02340186 dusky-footed woodrat, Neotoma fuscipes -n02340358 eastern woodrat, Neotoma floridana -n02340640 rice rat, Oryzomys palustris -n02340930 pine vole, pine mouse, Pitymys pinetorum -n02341288 meadow vole, meadow mouse, Microtus pennsylvaticus -n02341475 water vole, Richardson vole, Microtus richardsoni -n02341616 prairie vole, Microtus ochrogaster -n02341974 water vole, water rat, Arvicola amphibius -n02342250 red-backed mouse, redback vole -n02342534 phenacomys -n02342885 hamster -n02343058 Eurasian hamster, Cricetus cricetus -n02343320 golden hamster, Syrian hamster, Mesocricetus auratus -n02343772 gerbil, gerbille -n02344175 jird -n02344270 tamarisk gerbil, Meriones unguiculatus -n02344408 sand rat, Meriones longifrons -n02344528 lemming -n02344918 European lemming, Lemmus lemmus -n02345078 brown lemming, Lemmus trimucronatus -n02345340 grey lemming, gray lemming, red-backed lemming -n02345600 pied lemming -n02345774 Hudson bay collared lemming, Dicrostonyx hudsonius -n02345997 southern bog lemming, Synaptomys cooperi -n02346170 northern bog lemming, Synaptomys borealis -n02346627 porcupine, hedgehog -n02346998 Old World porcupine -n02347274 brush-tailed porcupine, brush-tail porcupine -n02347573 long-tailed porcupine, Trichys lipura -n02347744 New World porcupine -n02348173 Canada porcupine, Erethizon dorsatum -n02348788 pocket mouse -n02349205 silky pocket mouse, Perognathus flavus -n02349390 plains pocket mouse, Perognathus flavescens -n02349557 hispid pocket mouse, Perognathus hispidus -n02349847 Mexican pocket mouse, Liomys irroratus -n02350105 kangaroo rat, desert rat, Dipodomys phillipsii -n02350357 Ord kangaroo rat, Dipodomys ordi -n02350670 kangaroo mouse, dwarf pocket rat -n02350989 jumping mouse -n02351343 meadow jumping mouse, Zapus hudsonius -n02351870 jerboa -n02352002 typical jerboa -n02352290 Jaculus jaculus -n02352591 dormouse -n02352932 loir, Glis glis -n02353172 hazel mouse, Muscardinus avellanarius -n02353411 lerot -n02353861 gopher, pocket gopher, pouched rat -n02354162 plains pocket gopher, Geomys bursarius -n02354320 southeastern pocket gopher, Geomys pinetis -n02354621 valley pocket gopher, Thomomys bottae -n02354781 northern pocket gopher, Thomomys talpoides -n02355227 squirrel -n02355477 tree squirrel -n02356381 eastern grey squirrel, eastern gray squirrel, cat squirrel, Sciurus carolinensis -n02356612 western grey squirrel, western gray squirrel, Sciurus griseus -n02356798 fox squirrel, eastern fox squirrel, Sciurus niger -n02356977 black squirrel -n02357111 red squirrel, cat squirrel, Sciurus vulgaris -n02357401 American red squirrel, spruce squirrel, red squirrel, Sciurus hudsonicus, Tamiasciurus hudsonicus -n02357585 chickeree, Douglas squirrel, Tamiasciurus douglasi -n02357911 antelope squirrel, whitetail antelope squirrel, antelope chipmunk, Citellus leucurus -n02358091 ground squirrel, gopher, spermophile -n02358390 mantled ground squirrel, Citellus lateralis -n02358584 suslik, souslik, Citellus citellus -n02358712 flickertail, Richardson ground squirrel, Citellus richardsoni -n02358890 rock squirrel, Citellus variegatus -n02359047 Arctic ground squirrel, parka squirrel, Citellus parryi -n02359324 prairie dog, prairie marmot -n02359556 blacktail prairie dog, Cynomys ludovicianus -n02359667 whitetail prairie dog, Cynomys gunnisoni -n02359915 eastern chipmunk, hackee, striped squirrel, ground squirrel, Tamias striatus -n02360282 chipmunk -n02360480 baronduki, baranduki, barunduki, burunduki, Eutamius asiaticus, Eutamius sibiricus -n02360781 American flying squirrel -n02360933 southern flying squirrel, Glaucomys volans -n02361090 northern flying squirrel, Glaucomys sabrinus -n02361337 marmot -n02361587 groundhog, woodchuck, Marmota monax -n02361706 hoary marmot, whistler, whistling marmot, Marmota caligata -n02361850 yellowbelly marmot, rockchuck, Marmota flaviventris -n02362194 Asiatic flying squirrel -n02363005 beaver -n02363245 Old World beaver, Castor fiber -n02363351 New World beaver, Castor canadensis -n02363996 mountain beaver, sewellel, Aplodontia rufa -n02364520 cavy -n02364673 guinea pig, Cavia cobaya -n02364840 aperea, wild cavy, Cavia porcellus -n02365108 mara, Dolichotis patagonum -n02365480 capybara, capibara, Hydrochoerus hydrochaeris -n02366002 agouti, Dasyprocta aguti -n02366301 paca, Cuniculus paca -n02366579 mountain paca -n02366959 coypu, nutria, Myocastor coypus -n02367492 chinchilla, Chinchilla laniger -n02367812 mountain chinchilla, mountain viscacha -n02368116 viscacha, chinchillon, Lagostomus maximus -n02368399 abrocome, chinchilla rat, rat chinchilla -n02368821 mole rat -n02369293 mole rat -n02369555 sand rat -n02369680 naked mole rat -n02369935 queen, queen mole rat -n02370137 Damaraland mole rat -n02370525 Ungulata -n02370806 ungulate, hoofed mammal -n02371344 unguiculate, unguiculate mammal -n02372140 dinoceras, uintathere -n02372584 hyrax, coney, cony, dassie, das -n02372952 rock hyrax, rock rabbit, Procavia capensis -n02373336 odd-toed ungulate, perissodactyl, perissodactyl mammal -n02374149 equine, equid -n02374451 horse, Equus caballus -n02375302 roan -n02375438 stablemate, stable companion -n02375757 gee-gee -n02375862 eohippus, dawn horse -n02376542 foal -n02376679 filly -n02376791 colt -n02376918 male horse -n02377063 ridgeling, ridgling, ridgel, ridgil -n02377181 stallion, entire -n02377291 stud, studhorse -n02377388 gelding -n02377480 mare, female horse -n02377603 broodmare, stud mare -n02377703 saddle horse, riding horse, mount -n02378149 remount -n02378299 palfrey -n02378415 warhorse -n02378541 cavalry horse -n02378625 charger, courser -n02378755 steed -n02378870 prancer -n02378969 hack -n02379081 cow pony -n02379183 quarter horse -n02379329 Morgan -n02379430 Tennessee walker, Tennessee walking horse, Walking horse, Plantation walking horse -n02379630 American saddle horse -n02379743 Appaloosa -n02379908 Arabian, Arab -n02380052 Lippizan, Lipizzan, Lippizaner -n02380335 pony -n02380464 polo pony -n02380583 mustang -n02380745 bronco, bronc, broncho -n02380875 bucking bronco -n02381004 buckskin -n02381119 crowbait, crow-bait -n02381261 dun -n02381364 grey, gray -n02381460 wild horse -n02381609 tarpan, Equus caballus gomelini -n02381831 Przewalski's horse, Przevalski's horse, Equus caballus przewalskii, Equus caballus przevalskii -n02382039 cayuse, Indian pony -n02382132 hack -n02382204 hack, jade, nag, plug -n02382338 plow horse, plough horse -n02382437 pony -n02382635 Shetland pony -n02382750 Welsh pony -n02382850 Exmoor -n02382948 racehorse, race horse, bangtail -n02383231 thoroughbred -n02384741 steeplechaser -n02384858 racer -n02385002 finisher -n02385098 pony -n02385214 yearling -n02385580 dark horse -n02385676 mudder -n02385776 nonstarter -n02385898 stalking-horse -n02386014 harness horse -n02386141 cob -n02386224 hackney -n02386310 workhorse -n02386496 draft horse, draught horse, dray horse -n02386746 packhorse -n02386853 carthorse, cart horse, drayhorse -n02386968 Clydesdale -n02387093 Percheron -n02387254 farm horse, dobbin -n02387346 shire, shire horse -n02387452 pole horse, poler -n02387722 post horse, post-horse, poster -n02387887 coach horse -n02387983 pacer -n02388143 pacer, pacemaker, pacesetter -n02388276 trotting horse, trotter -n02388453 pole horse -n02388588 stepper, high stepper -n02388735 chestnut -n02388832 liver chestnut -n02388917 bay -n02389026 sorrel -n02389128 palomino -n02389261 pinto -n02389346 ass -n02389559 domestic ass, donkey, Equus asinus -n02389779 burro -n02389865 moke -n02389943 jack, jackass -n02390015 jennet, jenny, jenny ass -n02390101 mule -n02390258 hinny -n02390454 wild ass -n02390640 African wild ass, Equus asinus -n02390738 kiang, Equus kiang -n02390834 onager, Equus hemionus -n02390938 chigetai, dziggetai, Equus hemionus hemionus -n02391049 zebra -n02391234 common zebra, Burchell's zebra, Equus Burchelli -n02391373 mountain zebra, Equus zebra zebra -n02391508 grevy's zebra, Equus grevyi -n02391617 quagga, Equus quagga -n02391994 rhinoceros, rhino -n02392434 Indian rhinoceros, Rhinoceros unicornis -n02392555 woolly rhinoceros, Rhinoceros antiquitatis -n02392824 white rhinoceros, Ceratotherium simum, Diceros simus -n02393161 black rhinoceros, Diceros bicornis -n02393580 tapir -n02393807 New World tapir, Tapirus terrestris -n02393940 Malayan tapir, Indian tapir, Tapirus indicus -n02394477 even-toed ungulate, artiodactyl, artiodactyl mammal -n02395003 swine -n02395406 hog, pig, grunter, squealer, Sus scrofa -n02395694 piglet, piggy, shoat, shote -n02395855 sucking pig -n02395931 porker -n02396014 boar -n02396088 sow -n02396157 razorback, razorback hog, razorbacked hog -n02396427 wild boar, boar, Sus scrofa -n02396796 babirusa, babiroussa, babirussa, Babyrousa Babyrussa -n02397096 warthog -n02397529 peccary, musk hog -n02397744 collared peccary, javelina, Tayassu angulatus, Tayassu tajacu, Peccari angulatus -n02397987 white-lipped peccary, Tayassu pecari -n02398521 hippopotamus, hippo, river horse, Hippopotamus amphibius -n02399000 ruminant -n02401031 bovid -n02402010 bovine -n02402175 ox, wild ox -n02402425 cattle, cows, kine, oxen, Bos taurus -n02403003 ox -n02403153 stirk -n02403231 bullock, steer -n02403325 bull -n02403454 cow, moo-cow -n02403740 heifer -n02403820 bullock -n02403920 dogie, dogy, leppy -n02404028 maverick -n02404186 beef, beef cattle -n02404432 longhorn, Texas longhorn -n02404573 Brahman, Brahma, Brahmin, Bos indicus -n02404906 zebu -n02405101 aurochs, urus, Bos primigenius -n02405302 yak, Bos grunniens -n02405440 banteng, banting, tsine, Bos banteng -n02405577 Welsh, Welsh Black -n02405692 red poll -n02405799 Santa Gertrudis -n02405929 Aberdeen Angus, Angus, black Angus -n02406046 Africander -n02406174 dairy cattle, dairy cow, milch cow, milk cow, milcher, milker -n02406432 Ayrshire -n02406533 Brown Swiss -n02406647 Charolais -n02406749 Jersey -n02406859 Devon -n02406952 grade -n02407071 Durham, shorthorn -n02407172 milking shorthorn -n02407276 Galloway -n02407390 Friesian, Holstein, Holstein-Friesian -n02407521 Guernsey -n02407625 Hereford, whiteface -n02407763 cattalo, beefalo -n02407959 Old World buffalo, buffalo -n02408429 water buffalo, water ox, Asiatic buffalo, Bubalus bubalis -n02408660 Indian buffalo -n02408817 carabao -n02409038 anoa, dwarf buffalo, Anoa depressicornis -n02409202 tamarau, tamarao, Bubalus mindorensis, Anoa mindorensis -n02409508 Cape buffalo, Synercus caffer -n02409870 Asian wild ox -n02410011 gaur, Bibos gaurus -n02410141 gayal, mithan, Bibos frontalis -n02410509 bison -n02410702 American bison, American buffalo, buffalo, Bison bison -n02410900 wisent, aurochs, Bison bonasus -n02411206 musk ox, musk sheep, Ovibos moschatus -n02411705 sheep -n02411999 ewe -n02412080 ram, tup -n02412210 wether -n02412440 lamb -n02412629 lambkin -n02412700 baa-lamb -n02412787 hog, hogget, hogg -n02412909 teg -n02412977 Persian lamb -n02413050 black sheep -n02413131 domestic sheep, Ovis aries -n02413484 Cotswold -n02413593 Hampshire, Hampshire down -n02413717 Lincoln -n02413824 Exmoor -n02413917 Cheviot -n02414043 broadtail, caracul, karakul -n02414209 longwool -n02414290 merino, merino sheep -n02414442 Rambouillet -n02414578 wild sheep -n02414763 argali, argal, Ovis ammon -n02414904 Marco Polo sheep, Marco Polo's sheep, Ovis poli -n02415130 urial, Ovis vignei -n02415253 Dall sheep, Dall's sheep, white sheep, Ovis montana dalli -n02415435 mountain sheep -n02415577 bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis -n02415829 mouflon, moufflon, Ovis musimon -n02416104 aoudad, arui, audad, Barbary sheep, maned sheep, Ammotragus lervia -n02416519 goat, caprine animal -n02416820 kid -n02416880 billy, billy goat, he-goat -n02416964 nanny, nanny-goat, she-goat -n02417070 domestic goat, Capra hircus -n02417242 Cashmere goat, Kashmir goat -n02417387 Angora, Angora goat -n02417534 wild goat -n02417663 bezoar goat, pasang, Capra aegagrus -n02417785 markhor, markhoor, Capra falconeri -n02417914 ibex, Capra ibex -n02418064 goat antelope -n02418465 mountain goat, Rocky Mountain goat, Oreamnos americanus -n02418770 goral, Naemorhedus goral -n02419056 serow -n02419336 chamois, Rupicapra rupicapra -n02419634 takin, gnu goat, Budorcas taxicolor -n02419796 antelope -n02420509 blackbuck, black buck, Antilope cervicapra -n02420828 gerenuk, Litocranius walleri -n02421136 addax, Addax nasomaculatus -n02421449 gnu, wildebeest -n02421792 dik-dik -n02422106 hartebeest -n02422391 sassaby, topi, Damaliscus lunatus -n02422699 impala, Aepyceros melampus -n02423022 gazelle -n02423218 Thomson's gazelle, Gazella thomsoni -n02423362 Gazella subgutturosa -n02423589 springbok, springbuck, Antidorcas marsupialis, Antidorcas euchore -n02424085 bongo, Tragelaphus eurycerus, Boocercus eurycerus -n02424305 kudu, koodoo, koudou -n02424486 greater kudu, Tragelaphus strepsiceros -n02424589 lesser kudu, Tragelaphus imberbis -n02424695 harnessed antelope -n02424909 nyala, Tragelaphus angasi -n02425086 mountain nyala, Tragelaphus buxtoni -n02425228 bushbuck, guib, Tragelaphus scriptus -n02425532 nilgai, nylghai, nylghau, blue bull, Boselaphus tragocamelus -n02425887 sable antelope, Hippotragus niger -n02426176 saiga, Saiga tatarica -n02426481 steenbok, steinbok, Raphicerus campestris -n02426813 eland -n02427032 common eland, Taurotragus oryx -n02427183 giant eland, Taurotragus derbianus -n02427470 kob, Kobus kob -n02427576 lechwe, Kobus leche -n02427724 waterbuck -n02428089 puku, Adenota vardoni -n02428349 oryx, pasang -n02428508 gemsbok, gemsbuck, Oryx gazella -n02428842 forest goat, spindle horn, Pseudoryx nghetinhensis -n02429456 pronghorn, prongbuck, pronghorn antelope, American antelope, Antilocapra americana -n02430045 deer, cervid -n02430559 stag -n02430643 royal, royal stag -n02430748 pricket -n02430830 fawn -n02431122 red deer, elk, American elk, wapiti, Cervus elaphus -n02431337 hart, stag -n02431441 hind -n02431542 brocket -n02431628 sambar, sambur, Cervus unicolor -n02431785 wapiti, elk, American elk, Cervus elaphus canadensis -n02431976 Japanese deer, sika, Cervus nipon, Cervus sika -n02432291 Virginia deer, white tail, whitetail, white-tailed deer, whitetail deer, Odocoileus Virginianus -n02432511 mule deer, burro deer, Odocoileus hemionus -n02432704 black-tailed deer, blacktail deer, blacktail, Odocoileus hemionus columbianus -n02432983 elk, European elk, moose, Alces alces -n02433318 fallow deer, Dama dama -n02433546 roe deer, Capreolus capreolus -n02433729 roebuck -n02433925 caribou, reindeer, Greenland caribou, Rangifer tarandus -n02434190 woodland caribou, Rangifer caribou -n02434415 barren ground caribou, Rangifer arcticus -n02434712 brocket -n02434954 muntjac, barking deer -n02435216 musk deer, Moschus moschiferus -n02435517 pere david's deer, elaphure, Elaphurus davidianus -n02435853 chevrotain, mouse deer -n02436224 kanchil, Tragulus kanchil -n02436353 napu, Tragulus Javanicus -n02436645 water chevrotain, water deer, Hyemoschus aquaticus -n02437136 camel -n02437312 Arabian camel, dromedary, Camelus dromedarius -n02437482 Bactrian camel, Camelus bactrianus -n02437616 llama -n02437971 domestic llama, Lama peruana -n02438173 guanaco, Lama guanicoe -n02438272 alpaca, Lama pacos -n02438580 vicuna, Vicugna vicugna -n02439033 giraffe, camelopard, Giraffa camelopardalis -n02439398 okapi, Okapia johnstoni -n02441326 musteline mammal, mustelid, musteline -n02441942 weasel -n02442172 ermine, shorttail weasel, Mustela erminea -n02442336 stoat -n02442446 New World least weasel, Mustela rixosa -n02442572 Old World least weasel, Mustela nivalis -n02442668 longtail weasel, long-tailed weasel, Mustela frenata -n02442845 mink -n02443015 American mink, Mustela vison -n02443114 polecat, fitch, foulmart, foumart, Mustela putorius -n02443346 ferret -n02443484 black-footed ferret, ferret, Mustela nigripes -n02443808 muishond -n02443959 snake muishond, Poecilogale albinucha -n02444251 striped muishond, Ictonyx striata -n02444819 otter -n02445004 river otter, Lutra canadensis -n02445171 Eurasian otter, Lutra lutra -n02445394 sea otter, Enhydra lutris -n02445715 skunk, polecat, wood pussy -n02446206 striped skunk, Mephitis mephitis -n02446352 hooded skunk, Mephitis macroura -n02446645 hog-nosed skunk, hognosed skunk, badger skunk, rooter skunk, Conepatus leuconotus -n02447021 spotted skunk, little spotted skunk, Spilogale putorius -n02447366 badger -n02447762 American badger, Taxidea taxus -n02448060 Eurasian badger, Meles meles -n02448318 ratel, honey badger, Mellivora capensis -n02448633 ferret badger -n02448885 hog badger, hog-nosed badger, sand badger, Arctonyx collaris -n02449183 wolverine, carcajou, skunk bear, Gulo luscus -n02449350 glutton, Gulo gulo, wolverine -n02449699 grison, Grison vittatus, Galictis vittatus -n02450034 marten, marten cat -n02450295 pine marten, Martes martes -n02450426 sable, Martes zibellina -n02450561 American marten, American sable, Martes americana -n02450677 stone marten, beech marten, Martes foina -n02450829 fisher, pekan, fisher cat, black cat, Martes pennanti -n02451125 yellow-throated marten, Charronia flavigula -n02451415 tayra, taira, Eira barbara -n02451575 fictional animal -n02453108 pachyderm -n02453611 edentate -n02454379 armadillo -n02454794 peba, nine-banded armadillo, Texas armadillo, Dasypus novemcinctus -n02455135 apar, three-banded armadillo, Tolypeutes tricinctus -n02455428 tatouay, cabassous, Cabassous unicinctus -n02455720 peludo, poyou, Euphractus sexcinctus -n02456008 giant armadillo, tatou, tatu, Priodontes giganteus -n02456275 pichiciago, pichiciego, fairy armadillo, chlamyphore, Chlamyphorus truncatus -n02456962 sloth, tree sloth -n02457408 three-toed sloth, ai, Bradypus tridactylus -n02457945 two-toed sloth, unau, unai, Choloepus didactylus -n02458135 two-toed sloth, unau, unai, Choloepus hoffmanni -n02458517 megatherian, megatheriid, megatherian mammal -n02459190 mylodontid -n02460009 anteater, New World anteater -n02460451 ant bear, giant anteater, great anteater, tamanoir, Myrmecophaga jubata -n02460817 silky anteater, two-toed anteater, Cyclopes didactylus -n02461128 tamandua, tamandu, lesser anteater, Tamandua tetradactyla -n02461830 pangolin, scaly anteater, anteater -n02462213 coronet -n02469248 scapular -n02469472 tadpole, polliwog, pollywog -n02469914 primate -n02470238 simian -n02470325 ape -n02470709 anthropoid -n02470899 anthropoid ape -n02471300 hominoid -n02471762 hominid -n02472293 homo, man, human being, human -n02472987 world, human race, humanity, humankind, human beings, humans, mankind, man -n02473307 Homo erectus -n02473554 Pithecanthropus, Pithecanthropus erectus, genus Pithecanthropus -n02473720 Java man, Trinil man -n02473857 Peking man -n02473983 Sinanthropus, genus Sinanthropus -n02474110 Homo soloensis -n02474282 Javanthropus, genus Javanthropus -n02474605 Homo habilis -n02474777 Homo sapiens -n02475078 Neandertal man, Neanderthal man, Neandertal, Neanderthal, Homo sapiens neanderthalensis -n02475358 Cro-magnon -n02475669 Homo sapiens sapiens, modern man -n02476219 australopithecine -n02476567 Australopithecus afarensis -n02476870 Australopithecus africanus -n02477028 Australopithecus boisei -n02477187 Zinjanthropus, genus Zinjanthropus -n02477329 Australopithecus robustus -n02477516 Paranthropus, genus Paranthropus -n02477782 Sivapithecus -n02478239 rudapithecus, Dryopithecus Rudapithecus hungaricus -n02478875 proconsul -n02479332 Aegyptopithecus -n02480153 great ape, pongid -n02480495 orangutan, orang, orangutang, Pongo pygmaeus -n02480855 gorilla, Gorilla gorilla -n02481103 western lowland gorilla, Gorilla gorilla gorilla -n02481235 eastern lowland gorilla, Gorilla gorilla grauri -n02481366 mountain gorilla, Gorilla gorilla beringei -n02481500 silverback -n02481823 chimpanzee, chimp, Pan troglodytes -n02482060 western chimpanzee, Pan troglodytes verus -n02482286 eastern chimpanzee, Pan troglodytes schweinfurthii -n02482474 central chimpanzee, Pan troglodytes troglodytes -n02482650 pygmy chimpanzee, bonobo, Pan paniscus -n02483092 lesser ape -n02483362 gibbon, Hylobates lar -n02483708 siamang, Hylobates syndactylus, Symphalangus syndactylus -n02484322 monkey -n02484473 Old World monkey, catarrhine -n02484975 guenon, guenon monkey -n02485225 talapoin, Cercopithecus talapoin -n02485371 grivet, Cercopithecus aethiops -n02485536 vervet, vervet monkey, Cercopithecus aethiops pygerythrus -n02485688 green monkey, African green monkey, Cercopithecus aethiops sabaeus -n02485988 mangabey -n02486261 patas, hussar monkey, Erythrocebus patas -n02486410 baboon -n02486657 chacma, chacma baboon, Papio ursinus -n02486908 mandrill, Mandrillus sphinx -n02487079 drill, Mandrillus leucophaeus -n02487347 macaque -n02487547 rhesus, rhesus monkey, Macaca mulatta -n02487675 bonnet macaque, bonnet monkey, capped macaque, crown monkey, Macaca radiata -n02487847 Barbary ape, Macaca sylvana -n02488003 crab-eating macaque, croo monkey, Macaca irus -n02488291 langur -n02488415 entellus, hanuman, Presbytes entellus, Semnopithecus entellus -n02488702 colobus, colobus monkey -n02488894 guereza, Colobus guereza -n02489166 proboscis monkey, Nasalis larvatus -n02489589 New World monkey, platyrrhine, platyrrhinian -n02490219 marmoset -n02490597 true marmoset -n02490811 pygmy marmoset, Cebuella pygmaea -n02491107 tamarin, lion monkey, lion marmoset, leoncita -n02491329 silky tamarin, Leontocebus rosalia -n02491474 pinche, Leontocebus oedipus -n02492035 capuchin, ringtail, Cebus capucinus -n02492356 douroucouli, Aotus trivirgatus -n02492660 howler monkey, howler -n02492948 saki -n02493224 uakari -n02493509 titi, titi monkey -n02493793 spider monkey, Ateles geoffroyi -n02494079 squirrel monkey, Saimiri sciureus -n02494383 woolly monkey -n02495242 tree shrew -n02496052 prosimian -n02496913 lemur -n02497673 Madagascar cat, ring-tailed lemur, Lemur catta -n02498153 aye-aye, Daubentonia madagascariensis -n02498743 slender loris, Loris gracilis -n02499022 slow loris, Nycticebus tardigradua, Nycticebus pygmaeus -n02499316 potto, kinkajou, Perodicticus potto -n02499568 angwantibo, golden potto, Arctocebus calabarensis -n02499808 galago, bushbaby, bush baby -n02500267 indri, indris, Indri indri, Indri brevicaudatus -n02500596 woolly indris, Avahi laniger -n02501583 tarsier -n02501923 Tarsius syrichta -n02502006 Tarsius glis -n02502514 flying lemur, flying cat, colugo -n02502807 Cynocephalus variegatus -n02503127 proboscidean, proboscidian -n02503517 elephant -n02503756 rogue elephant -n02504013 Indian elephant, Elephas maximus -n02504458 African elephant, Loxodonta africana -n02504770 mammoth -n02505063 woolly mammoth, northern mammoth, Mammuthus primigenius -n02505238 columbian mammoth, Mammuthus columbi -n02505485 imperial mammoth, imperial elephant, Archidiskidon imperator -n02505998 mastodon, mastodont -n02506947 plantigrade mammal, plantigrade -n02507148 digitigrade mammal, digitigrade -n02507649 procyonid -n02508021 raccoon, racoon -n02508213 common raccoon, common racoon, coon, ringtail, Procyon lotor -n02508346 crab-eating raccoon, Procyon cancrivorus -n02508742 bassarisk, cacomistle, cacomixle, coon cat, raccoon fox, ringtail, ring-tailed cat, civet cat, miner's cat, Bassariscus astutus -n02509197 kinkajou, honey bear, potto, Potos flavus, Potos caudivolvulus -n02509515 coati, coati-mondi, coati-mundi, coon cat, Nasua narica -n02509815 lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens -n02510455 giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca -n02511730 twitterer -n02512053 fish -n02512752 fingerling -n02512830 game fish, sport fish -n02512938 food fish -n02513248 rough fish -n02513355 groundfish, bottom fish -n02513560 young fish -n02513727 parr -n02513805 mouthbreeder -n02513939 spawner -n02514041 barracouta, snoek -n02515214 crossopterygian, lobefin, lobe-finned fish -n02515713 coelacanth, Latimeria chalumnae -n02516188 lungfish -n02516776 ceratodus -n02517442 catfish, siluriform fish -n02517938 silurid, silurid fish -n02518324 European catfish, sheatfish, Silurus glanis -n02518622 electric catfish, Malopterurus electricus -n02519148 bullhead, bullhead catfish -n02519340 horned pout, hornpout, pout, Ameiurus Melas -n02519472 brown bullhead -n02519686 channel catfish, channel cat, Ictalurus punctatus -n02519862 blue catfish, blue cat, blue channel catfish, blue channel cat -n02520147 flathead catfish, mudcat, goujon, shovelnose catfish, spoonbill catfish, Pylodictus olivaris -n02520525 armored catfish -n02520810 sea catfish -n02521646 gadoid, gadoid fish -n02522399 cod, codfish -n02522637 codling -n02522722 Atlantic cod, Gadus morhua -n02522866 Pacific cod, Alaska cod, Gadus macrocephalus -n02523110 whiting, Merlangus merlangus, Gadus merlangus -n02523427 burbot, eelpout, ling, cusk, Lota lota -n02523877 haddock, Melanogrammus aeglefinus -n02524202 pollack, pollock, Pollachius pollachius -n02524524 hake -n02524659 silver hake, Merluccius bilinearis, whiting -n02524928 ling -n02525382 cusk, torsk, Brosme brosme -n02525703 grenadier, rattail, rattail fish -n02526121 eel -n02526425 elver -n02526818 common eel, freshwater eel -n02527057 tuna, Anguilla sucklandii -n02527271 moray, moray eel -n02527622 conger, conger eel -n02528163 teleost fish, teleost, teleostan -n02529293 beaked salmon, sandfish, Gonorhynchus gonorhynchus -n02529772 clupeid fish, clupeid -n02530052 whitebait -n02530188 brit, britt -n02530421 shad -n02530637 common American shad, Alosa sapidissima -n02530831 river shad, Alosa chrysocloris -n02530999 allice shad, allis shad, allice, allis, Alosa alosa -n02531114 alewife, Alosa pseudoharengus, Pomolobus pseudoharengus -n02531625 menhaden, Brevoortia tyrannis -n02532028 herring, Clupea harangus -n02532272 Atlantic herring, Clupea harengus harengus -n02532451 Pacific herring, Clupea harengus pallasii -n02532602 sardine -n02532786 sild -n02532918 brisling, sprat, Clupea sprattus -n02533209 pilchard, sardine, Sardina pilchardus -n02533545 Pacific sardine, Sardinops caerulea -n02533834 anchovy -n02534165 mediterranean anchovy, Engraulis encrasicholus -n02534559 salmonid -n02534734 salmon -n02535080 parr -n02535163 blackfish -n02535258 redfish -n02535537 Atlantic salmon, Salmo salar -n02535759 landlocked salmon, lake salmon -n02536165 sockeye, sockeye salmon, red salmon, blueback salmon, Oncorhynchus nerka -n02536456 chinook, chinook salmon, king salmon, quinnat salmon, Oncorhynchus tshawytscha -n02536864 coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch -n02537085 trout -n02537319 brown trout, salmon trout, Salmo trutta -n02537525 rainbow trout, Salmo gairdneri -n02537716 sea trout -n02538010 lake trout, salmon trout, Salvelinus namaycush -n02538216 brook trout, speckled trout, Salvelinus fontinalis -n02538406 char, charr -n02538562 Arctic char, Salvelinus alpinus -n02538985 whitefish -n02539424 lake whitefish, Coregonus clupeaformis -n02539573 cisco, lake herring, Coregonus artedi -n02539894 round whitefish, Menominee whitefish, Prosopium cylindraceum -n02540412 smelt -n02540983 sparling, European smelt, Osmerus eperlanus -n02541257 capelin, capelan, caplin -n02541687 tarpon, Tarpon atlanticus -n02542017 ladyfish, tenpounder, Elops saurus -n02542432 bonefish, Albula vulpes -n02542958 argentine -n02543255 lanternfish -n02543565 lizardfish, snakefish, snake-fish -n02544274 lancetfish, lancet fish, wolffish -n02545841 opah, moonfish, Lampris regius -n02546028 New World opah, Lampris guttatus -n02546331 ribbonfish -n02546627 dealfish, Trachipterus arcticus -n02547014 oarfish, king of the herring, ribbonfish, Regalecus glesne -n02547733 batfish -n02548247 goosefish, angler, anglerfish, angler fish, monkfish, lotte, allmouth, Lophius Americanus -n02548689 toadfish, Opsanus tau -n02548884 oyster fish, oyster-fish, oysterfish -n02549248 frogfish -n02549376 sargassum fish -n02549989 needlefish, gar, billfish -n02550203 timucu -n02550460 flying fish -n02550655 monoplane flying fish, two-wing flying fish -n02551134 halfbeak -n02551668 saury, billfish, Scomberesox saurus -n02552171 spiny-finned fish, acanthopterygian -n02553028 lingcod, Ophiodon elongatus -n02554730 percoid fish, percoid, percoidean -n02555863 perch -n02556373 climbing perch, Anabas testudineus, A. testudineus -n02556846 perch -n02557182 yellow perch, Perca flavescens -n02557318 European perch, Perca fluviatilis -n02557591 pike-perch, pike perch -n02557749 walleye, walleyed pike, jack salmon, dory, Stizostedion vitreum -n02557909 blue pike, blue pickerel, blue pikeperch, blue walleye, Strizostedion vitreum glaucum -n02558206 snail darter, Percina tanasi -n02558860 cusk-eel -n02559144 brotula -n02559383 pearlfish, pearl-fish -n02559862 robalo -n02560110 snook -n02561108 pike -n02561381 northern pike, Esox lucius -n02561514 muskellunge, Esox masquinongy -n02561661 pickerel -n02561803 chain pickerel, chain pike, Esox niger -n02561937 redfin pickerel, barred pickerel, Esox americanus -n02562315 sunfish, centrarchid -n02562796 crappie -n02562971 black crappie, Pomoxis nigromaculatus -n02563079 white crappie, Pomoxis annularis -n02563182 freshwater bream, bream -n02563648 pumpkinseed, Lepomis gibbosus -n02563792 bluegill, Lepomis macrochirus -n02563949 spotted sunfish, stumpknocker, Lepomis punctatus -n02564270 freshwater bass -n02564403 rock bass, rock sunfish, Ambloplites rupestris -n02564720 black bass -n02564935 Kentucky black bass, spotted black bass, Micropterus pseudoplites -n02565072 smallmouth, smallmouth bass, smallmouthed bass, smallmouth black bass, smallmouthed black bass, Micropterus dolomieu -n02565324 largemouth, largemouth bass, largemouthed bass, largemouth black bass, largemouthed black bass, Micropterus salmoides -n02565573 bass -n02566109 serranid fish, serranid -n02566489 white perch, silver perch, Morone americana -n02566665 yellow bass, Morone interrupta -n02567334 blackmouth bass, Synagrops bellus -n02567633 rock sea bass, rock bass, Centropristis philadelphica -n02568087 striped bass, striper, Roccus saxatilis, rockfish -n02568447 stone bass, wreckfish, Polyprion americanus -n02568959 grouper -n02569484 hind -n02569631 rock hind, Epinephelus adscensionis -n02569905 creole-fish, Paranthias furcifer -n02570164 jewfish, Mycteroperca bonaci -n02570484 soapfish -n02570838 surfperch, surffish, surf fish -n02571167 rainbow seaperch, rainbow perch, Hipsurus caryi -n02571652 bigeye -n02571810 catalufa, Priacanthus arenatus -n02572196 cardinalfish -n02572484 flame fish, flamefish, Apogon maculatus -n02573249 tilefish, Lopholatilus chamaeleonticeps -n02573704 bluefish, Pomatomus saltatrix -n02574271 cobia, Rachycentron canadum, sergeant fish -n02574910 remora, suckerfish, sucking fish -n02575325 sharksucker, Echeneis naucrates -n02575590 whale sucker, whalesucker, Remilegia australis -n02576223 carangid fish, carangid -n02576575 jack -n02576906 crevalle jack, jack crevalle, Caranx hippos -n02577041 yellow jack, Caranx bartholomaei -n02577164 runner, blue runner, Caranx crysos -n02577403 rainbow runner, Elagatis bipinnulata -n02577662 leatherjacket, leatherjack -n02577952 threadfish, thread-fish, Alectis ciliaris -n02578233 moonfish, Atlantic moonfish, horsefish, horsehead, horse-head, dollarfish, Selene setapinnis -n02578454 lookdown, lookdown fish, Selene vomer -n02578771 amberjack, amberfish -n02578928 yellowtail, Seriola dorsalis -n02579303 kingfish, Seriola grandis -n02579557 pompano -n02579762 Florida pompano, Trachinotus carolinus -n02579928 permit, Trachinotus falcatus -n02580336 scad -n02580679 horse mackerel, jack mackerel, Spanish mackerel, saurel, Trachurus symmetricus -n02580830 horse mackerel, saurel, Trachurus trachurus -n02581108 bigeye scad, big-eyed scad, goggle-eye, Selar crumenophthalmus -n02581482 mackerel scad, mackerel shad, Decapterus macarellus -n02581642 round scad, cigarfish, quiaquia, Decapterus punctatus -n02581957 dolphinfish, dolphin, mahimahi -n02582220 Coryphaena hippurus -n02582349 Coryphaena equisetis -n02582721 pomfret, Brama raii -n02583567 characin, characin fish, characid -n02583890 tetra -n02584145 cardinal tetra, Paracheirodon axelrodi -n02584449 piranha, pirana, caribe -n02585872 cichlid, cichlid fish -n02586238 bolti, Tilapia nilotica -n02586543 snapper -n02587051 red snapper, Lutjanus blackfordi -n02587300 grey snapper, gray snapper, mangrove snapper, Lutjanus griseus -n02587479 mutton snapper, muttonfish, Lutjanus analis -n02587618 schoolmaster, Lutjanus apodus -n02587877 yellowtail, yellowtail snapper, Ocyurus chrysurus -n02588286 grunt -n02588794 margate, Haemulon album -n02588945 Spanish grunt, Haemulon macrostomum -n02589062 tomtate, Haemulon aurolineatum -n02589196 cottonwick, Haemulon malanurum -n02589316 sailor's-choice, sailors choice, Haemulon parra -n02589623 porkfish, pork-fish, Anisotremus virginicus -n02589796 pompon, black margate, Anisotremus surinamensis -n02590094 pigfish, hogfish, Orthopristis chrysopterus -n02590495 sparid, sparid fish -n02590702 sea bream, bream -n02590987 porgy -n02591330 red porgy, Pagrus pagrus -n02591613 European sea bream, Pagellus centrodontus -n02591911 Atlantic sea bream, Archosargus rhomboidalis -n02592055 sheepshead, Archosargus probatocephalus -n02592371 pinfish, sailor's-choice, squirrelfish, Lagodon rhomboides -n02592734 sheepshead porgy, Calamus penna -n02593019 snapper, Chrysophrys auratus -n02593191 black bream, Chrysophrys australis -n02593453 scup, northern porgy, northern scup, Stenotomus chrysops -n02593679 scup, southern porgy, southern scup, Stenotomus aculeatus -n02594250 sciaenid fish, sciaenid -n02594942 striped drum, Equetus pulcher -n02595056 jackknife-fish, Equetus lanceolatus -n02595339 silver perch, mademoiselle, Bairdiella chrysoura -n02595702 red drum, channel bass, redfish, Sciaenops ocellatus -n02596067 mulloway, jewfish, Sciaena antarctica -n02596252 maigre, maiger, Sciaena aquila -n02596381 croaker -n02596720 Atlantic croaker, Micropogonias undulatus -n02597004 yellowfin croaker, surffish, surf fish, Umbrina roncador -n02597367 whiting -n02597608 kingfish -n02597818 king whiting, Menticirrhus americanus -n02597972 northern whiting, Menticirrhus saxatilis -n02598134 corbina, Menticirrhus undulatus -n02598573 white croaker, chenfish, kingfish, Genyonemus lineatus -n02598878 white croaker, queenfish, Seriphus politus -n02599052 sea trout -n02599347 weakfish, Cynoscion regalis -n02599557 spotted weakfish, spotted sea trout, spotted squeateague, Cynoscion nebulosus -n02599958 mullet -n02600298 goatfish, red mullet, surmullet, Mullus surmuletus -n02600503 red goatfish, Mullus auratus -n02600798 yellow goatfish, Mulloidichthys martinicus -n02601344 mullet, grey mullet, gray mullet -n02601767 striped mullet, Mugil cephalus -n02601921 white mullet, Mugil curema -n02602059 liza, Mugil liza -n02602405 silversides, silverside -n02602760 jacksmelt, Atherinopsis californiensis -n02603317 barracuda -n02603540 great barracuda, Sphyraena barracuda -n02603862 sweeper -n02604157 sea chub -n02604480 Bermuda chub, rudderfish, Kyphosus sectatrix -n02604954 spadefish, angelfish, Chaetodipterus faber -n02605316 butterfly fish -n02605703 chaetodon -n02605936 angelfish -n02606052 rock beauty, Holocanthus tricolor -n02606384 damselfish, demoiselle -n02606751 beaugregory, Pomacentrus leucostictus -n02607072 anemone fish -n02607201 clown anemone fish, Amphiprion percula -n02607470 sergeant major, Abudefduf saxatilis -n02607862 wrasse -n02608284 pigfish, giant pigfish, Achoerodus gouldii -n02608547 hogfish, hog snapper, Lachnolaimus maximus -n02608860 slippery dick, Halicoeres bivittatus -n02608996 puddingwife, pudding-wife, Halicoeres radiatus -n02609302 bluehead, Thalassoma bifasciatum -n02609823 pearly razorfish, Hemipteronatus novacula -n02610066 tautog, blackfish, Tautoga onitis -n02610373 cunner, bergall, Tautogolabrus adspersus -n02610664 parrotfish, polly fish, pollyfish -n02610980 threadfin -n02611561 jawfish -n02611898 stargazer -n02612167 sand stargazer -n02613181 blenny, combtooth blenny -n02613572 shanny, Blennius pholis -n02613820 Molly Miller, Scartella cristata -n02614140 clinid, clinid fish -n02614482 pikeblenny -n02614653 bluethroat pikeblenny, Chaenopsis ocellata -n02614978 gunnel, bracketed blenny -n02615298 rock gunnel, butterfish, Pholis gunnellus -n02616128 eelblenny -n02616397 wrymouth, ghostfish, Cryptacanthodes maculatus -n02616851 wolffish, wolf fish, catfish -n02617537 viviparous eelpout, Zoarces viviparus -n02618094 ocean pout, Macrozoarces americanus -n02618513 sand lance, sand launce, sand eel, launce -n02618827 dragonet -n02619165 goby, gudgeon -n02619550 mudskipper, mudspringer -n02619861 sleeper, sleeper goby -n02620167 flathead -n02620578 archerfish, Toxotes jaculatrix -n02621258 surgeonfish -n02621908 gempylid -n02622249 snake mackerel, Gempylus serpens -n02622547 escolar, Lepidocybium flavobrunneum -n02622712 oilfish, Ruvettus pretiosus -n02622955 cutlassfish, frost fish, hairtail -n02623445 scombroid, scombroid fish -n02624167 mackerel -n02624551 common mackerel, shiner, Scomber scombrus -n02624807 Spanish mackerel, Scomber colias -n02624987 chub mackerel, tinker, Scomber japonicus -n02625258 wahoo, Acanthocybium solandri -n02625612 Spanish mackerel -n02625851 king mackerel, cavalla, cero, Scomberomorus cavalla -n02626089 Scomberomorus maculatus -n02626265 cero, pintado, kingfish, Scomberomorus regalis -n02626471 sierra, Scomberomorus sierra -n02626762 tuna, tunny -n02627037 albacore, long-fin tunny, Thunnus alalunga -n02627292 bluefin, bluefin tuna, horse mackerel, Thunnus thynnus -n02627532 yellowfin, yellowfin tuna, Thunnus albacares -n02627835 bonito -n02628062 skipjack, Atlantic bonito, Sarda sarda -n02628259 Chile bonito, Chilean bonito, Pacific bonito, Sarda chiliensis -n02628600 skipjack, skipjack tuna, Euthynnus pelamis -n02629230 bonito, oceanic bonito, Katsuwonus pelamis -n02629716 swordfish, Xiphias gladius -n02630281 sailfish -n02630615 Atlantic sailfish, Istiophorus albicans -n02630739 billfish -n02631041 marlin -n02631330 blue marlin, Makaira nigricans -n02631475 black marlin, Makaira mazara, Makaira marlina -n02631628 striped marlin, Makaira mitsukurii -n02631775 white marlin, Makaira albida -n02632039 spearfish -n02632494 louvar, Luvarus imperialis -n02633422 dollarfish, Poronotus triacanthus -n02633677 palometa, California pompano, Palometa simillima -n02633977 harvestfish, Paprilus alepidotus -n02634545 driftfish -n02635154 barrelfish, black rudderfish, Hyperglyphe perciformis -n02635580 clingfish -n02636170 tripletail -n02636405 Atlantic tripletail, Lobotes surinamensis -n02636550 Pacific tripletail, Lobotes pacificus -n02636854 mojarra -n02637179 yellowfin mojarra, Gerres cinereus -n02637475 silver jenny, Eucinostomus gula -n02637977 whiting -n02638596 ganoid, ganoid fish -n02639087 bowfin, grindle, dogfish, Amia calva -n02639605 paddlefish, duckbill, Polyodon spathula -n02639922 Chinese paddlefish, Psephurus gladis -n02640242 sturgeon -n02640626 Pacific sturgeon, white sturgeon, Sacramento sturgeon, Acipenser transmontanus -n02640857 beluga, hausen, white sturgeon, Acipenser huso -n02641379 gar, garfish, garpike, billfish, Lepisosteus osseus -n02642107 scorpaenoid, scorpaenoid fish -n02642644 scorpaenid, scorpaenid fish -n02643112 scorpionfish, scorpion fish, sea scorpion -n02643316 plumed scorpionfish, Scorpaena grandicornis -n02643566 lionfish -n02643836 stonefish, Synanceja verrucosa -n02644113 rockfish -n02644360 copper rockfish, Sebastodes caurinus -n02644501 vermillion rockfish, rasher, Sebastodes miniatus -n02644665 red rockfish, Sebastodes ruberrimus -n02644817 rosefish, ocean perch, Sebastodes marinus -n02645538 bullhead -n02645691 miller's-thumb -n02645953 sea raven, Hemitripterus americanus -n02646667 lumpfish, Cyclopterus lumpus -n02646892 lumpsucker -n02648035 pogge, armed bullhead, Agonus cataphractus -n02648625 greenling -n02648916 kelp greenling, Hexagrammos decagrammus -n02649218 painted greenling, convict fish, convictfish, Oxylebius pictus -n02649546 flathead -n02650050 gurnard -n02650413 tub gurnard, yellow gurnard, Trigla lucerna -n02650541 sea robin, searobin -n02651060 northern sea robin, Prionotus carolinus -n02652132 flying gurnard, flying robin, butterflyfish -n02652668 plectognath, plectognath fish -n02653145 triggerfish -n02653497 queen triggerfish, Bessy cerca, oldwench, oldwife, Balistes vetula -n02653786 filefish -n02654112 leatherjacket, leatherfish -n02654425 boxfish, trunkfish -n02654745 cowfish, Lactophrys quadricornis -n02655020 puffer, pufferfish, blowfish, globefish -n02655523 spiny puffer -n02655848 porcupinefish, porcupine fish, Diodon hystrix -n02656032 balloonfish, Diodon holocanthus -n02656301 burrfish -n02656670 ocean sunfish, sunfish, mola, headfish -n02656969 sharptail mola, Mola lanceolata -n02657368 flatfish -n02657694 flounder -n02658079 righteye flounder, righteyed flounder -n02658531 plaice, Pleuronectes platessa -n02658811 European flatfish, Platichthys flesus -n02659176 yellowtail flounder, Limanda ferruginea -n02659478 winter flounder, blackback flounder, lemon sole, Pseudopleuronectes americanus -n02659808 lemon sole, Microstomus kitt -n02660091 American plaice, Hippoglossoides platessoides -n02660208 halibut, holibut -n02660519 Atlantic halibut, Hippoglossus hippoglossus -n02660640 Pacific halibut, Hippoglossus stenolepsis -n02661017 lefteye flounder, lefteyed flounder -n02661473 southern flounder, Paralichthys lethostigmus -n02661618 summer flounder, Paralichthys dentatus -n02662239 whiff -n02662397 horned whiff, Citharichthys cornutus -n02662559 sand dab -n02662825 windowpane, Scophthalmus aquosus -n02662993 brill, Scophthalmus rhombus -n02663211 turbot, Psetta maxima -n02663485 tonguefish, tongue-fish -n02663849 sole -n02664285 European sole, Solea solea -n02664642 English sole, lemon sole, Parophrys vitulus -n02665250 hogchoker, Trinectes maculatus -n02665985 aba -n02666196 abacus -n02666501 abandoned ship, derelict -n02666624 A battery -n02666943 abattoir, butchery, shambles, slaughterhouse -n02667093 abaya -n02667244 Abbe condenser -n02667379 abbey -n02667478 abbey -n02667576 abbey -n02667693 Abney level -n02668393 abrader, abradant -n02668613 abrading stone -n02669295 abutment -n02669442 abutment arch -n02669534 academic costume -n02669723 academic gown, academic robe, judge's robe -n02670186 accelerator, throttle, throttle valve -n02670382 accelerator, particle accelerator, atom smasher -n02670683 accelerator, accelerator pedal, gas pedal, gas, throttle, gun -n02670935 accelerometer -n02671780 accessory, accoutrement, accouterment -n02672152 accommodating lens implant, accommodating IOL -n02672371 accommodation -n02672831 accordion, piano accordion, squeeze box -n02675077 acetate disk, phonograph recording disk -n02675219 acetate rayon, acetate -n02675522 achromatic lens -n02676097 acoustic delay line, sonic delay line -n02676261 acoustic device -n02676566 acoustic guitar -n02676670 acoustic modem -n02676938 acropolis -n02677028 acrylic -n02677136 acrylic, acrylic paint -n02677436 actinometer -n02677718 action, action mechanism -n02678010 active matrix screen -n02678384 actuator -n02678897 adapter, adaptor -n02679142 adder -n02679257 adding machine, totalizer, totaliser -n02679961 addressing machine, Addressograph -n02680110 adhesive bandage -n02680512 adit -n02680638 adjoining room -n02680754 adjustable wrench, adjustable spanner -n02681392 adobe, adobe brick -n02682311 adz, adze -n02682407 aeolian harp, aeolian lyre, wind harp -n02682569 aerator -n02682811 aerial torpedo -n02682922 aerosol, aerosol container, aerosol can, aerosol bomb, spray can -n02683183 Aertex -n02683323 afghan -n02683454 Afro-wig -n02683558 afterburner -n02683791 after-shave, after-shave lotion -n02684248 agateware -n02684356 agglomerator -n02684515 aglet, aiglet, aiguilette -n02684649 aglet, aiglet -n02684962 agora, public square -n02685082 aigrette, aigret -n02685253 aileron -n02685365 air bag -n02685701 airbrake -n02685995 airbrush -n02686121 airbus -n02686227 air compressor -n02686379 air conditioner, air conditioning -n02686568 aircraft -n02687172 aircraft carrier, carrier, flattop, attack aircraft carrier -n02687423 aircraft engine -n02687682 air cushion, air spring -n02687821 airdock, hangar, repair shed -n02687992 airfield, landing field, flying field, field -n02688273 air filter, air cleaner -n02688443 airfoil, aerofoil, control surface, surface -n02689144 airframe -n02689274 air gun, airgun, air rifle -n02689434 air hammer, jackhammer, pneumatic hammer -n02689748 air horn -n02689819 airing cupboard -n02690373 airliner -n02690715 airmailer -n02691156 airplane, aeroplane, plane -n02692086 airplane propeller, airscrew, prop -n02692232 airport, airdrome, aerodrome, drome -n02692513 air pump, vacuum pump -n02692680 air search radar -n02692877 airship, dirigible -n02693246 air terminal, airport terminal -n02693413 air-to-air missile -n02693540 air-to-ground missile, air-to-surface missile -n02694045 aisle -n02694279 Aladdin's lamp -n02694426 alarm, warning device, alarm system -n02694662 alarm clock, alarm -n02694966 alb -n02695627 alcazar -n02695762 alcohol thermometer, alcohol-in-glass thermometer -n02696165 alehouse -n02696246 alembic -n02696569 algometer -n02696843 alidade, alidad -n02697022 alidade, alidad -n02697221 A-line -n02697576 Allen screw -n02697675 Allen wrench -n02697876 alligator wrench -n02698244 alms dish, alms tray -n02698473 alpaca -n02698634 alpenstock -n02699494 altar -n02699629 altar, communion table, Lord's table -n02699770 altarpiece, reredos -n02699915 altazimuth -n02700064 alternator -n02700258 altimeter -n02700895 Amati -n02701002 ambulance -n02701260 amen corner -n02701730 American organ -n02702989 ammeter -n02703124 ammonia clock -n02703275 ammunition, ammo -n02704645 amphibian, amphibious aircraft -n02704792 amphibian, amphibious vehicle -n02704949 amphitheater, amphitheatre, coliseum -n02705201 amphitheater, amphitheatre -n02705429 amphora -n02705944 amplifier -n02706221 ampulla -n02706806 amusement arcade -n02708093 analog clock -n02708224 analog computer, analogue computer -n02708433 analog watch -n02708555 analytical balance, chemical balance -n02708711 analyzer, analyser -n02708885 anamorphosis, anamorphism -n02709101 anastigmat -n02709367 anchor, ground tackle -n02709637 anchor chain, anchor rope -n02709763 anchor light, riding light, riding lamp -n02709908 AND circuit, AND gate -n02710044 andiron, firedog, dog, dog-iron -n02710201 android, humanoid, mechanical man -n02710324 anechoic chamber -n02710429 anemometer, wind gauge, wind gage -n02710600 aneroid barometer, aneroid -n02711237 angiocardiogram -n02711780 angioscope -n02712545 angle bracket, angle iron -n02712643 angledozer -n02713003 ankle brace -n02713218 anklet, anklets, bobbysock, bobbysocks -n02713364 anklet -n02713496 ankus -n02714315 anode -n02714535 anode -n02714751 answering machine -n02715229 antenna, aerial, transmitting aerial -n02715513 anteroom, antechamber, entrance hall, hall, foyer, lobby, vestibule -n02715712 antiaircraft, antiaircraft gun, flak, flack, pom-pom, ack-ack, ack-ack gun -n02716626 antiballistic missile, ABM -n02720048 antifouling paint -n02720576 anti-G suit, G suit -n02721813 antimacassar -n02723165 antiperspirant -n02724722 anti-submarine rocket -n02725872 anvil -n02726017 ao dai -n02726210 apadana -n02726305 apartment, flat -n02726681 apartment building, apartment house -n02727016 aperture -n02727141 aperture -n02727426 apiary, bee house -n02727825 apparatus, setup -n02728440 apparel, wearing apparel, dress, clothes -n02729222 applecart -n02729837 appliance -n02729965 appliance, contraption, contrivance, convenience, gadget, gizmo, gismo, widget -n02730265 applicator, applier -n02730568 appointment, fitting -n02730930 apron -n02731251 apron string -n02731398 apse, apsis -n02731629 aqualung, Aqua-Lung, scuba -n02731900 aquaplane -n02732072 aquarium, fish tank, marine museum -n02732572 arabesque -n02732827 arbor, arbour, bower, pergola -n02733213 arcade, colonnade -n02733524 arch -n02734725 architecture -n02734835 architrave -n02735268 arch support -n02735361 arc lamp, arc light -n02735538 arctic, galosh, golosh, rubber, gumshoe -n02735688 area -n02736396 areaway -n02736798 argyle, argyll -n02737351 ark -n02737660 arm -n02738031 armament -n02738271 armature -n02738449 armband -n02738535 armchair -n02738741 armet -n02738859 arm guard, arm pad -n02738978 armhole -n02739123 armilla -n02739427 armlet, arm band -n02739550 armoire -n02739668 armor, armour -n02739889 armored car, armoured car -n02740061 armored car, armoured car -n02740300 armored personnel carrier, armoured personnel carrier, APC -n02740533 armored vehicle, armoured vehicle -n02740764 armor plate, armour plate, armor plating, plate armor, plate armour -n02741367 armory, armoury, arsenal -n02741475 armrest -n02742070 arquebus, harquebus, hackbut, hagbut -n02742194 array -n02742322 array, raiment, regalia -n02742468 arrester, arrester hook -n02742753 arrow -n02743426 arsenal, armory, armoury -n02744323 arterial road -n02744844 arthrogram -n02744961 arthroscope -n02745492 artificial heart -n02745611 artificial horizon, gyro horizon, flight indicator -n02745816 artificial joint -n02746008 artificial kidney, hemodialyzer -n02746225 artificial skin -n02746365 artillery, heavy weapon, gun, ordnance -n02746595 artillery shell -n02746683 artist's loft -n02746978 art school -n02747063 ascot -n02747177 ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin -n02747672 ash-pan -n02747802 ashtray -n02748183 aspergill, aspersorium -n02748359 aspersorium -n02748491 aspirator -n02749169 aspirin powder, headache powder -n02749292 assault gun -n02749479 assault rifle, assault gun -n02749670 assegai, assagai -n02749790 assembly -n02749953 assembly -n02750070 assembly hall -n02750169 assembly plant -n02750320 astatic coils -n02750652 astatic galvanometer -n02751067 astrodome -n02751215 astrolabe -n02751295 astronomical telescope -n02751490 astronomy satellite -n02752199 athenaeum, atheneum -n02752496 athletic sock, sweat sock, varsity sock -n02752615 athletic supporter, supporter, suspensor, jockstrap, jock -n02752810 atlas, telamon -n02752917 atmometer, evaporometer -n02753044 atom bomb, atomic bomb, A-bomb, fission bomb, plutonium bomb -n02753394 atomic clock -n02753710 atomic pile, atomic reactor, pile, chain reactor -n02754103 atomizer, atomiser, spray, sprayer, nebulizer, nebuliser -n02754656 atrium -n02755140 attache case, attache -n02755352 attachment, bond -n02755529 attack submarine -n02755675 attenuator -n02755823 attic -n02755984 attic fan -n02756098 attire, garb, dress -n02756854 audio amplifier -n02756977 audiocassette -n02757061 audio CD, audio compact disc -n02757337 audiometer, sonometer -n02757462 audio system, sound system -n02757714 audiotape -n02757810 audiotape -n02757927 audiovisual, audiovisual aid -n02758134 auditorium -n02758490 auger, gimlet, screw auger, wimble -n02758863 autobahn -n02758960 autoclave, sterilizer, steriliser -n02759257 autofocus -n02759387 autogiro, autogyro, gyroplane -n02759700 autoinjector -n02759963 autoloader, self-loader -n02760099 automat -n02760199 automat -n02760298 automatic choke -n02760429 automatic firearm, automatic gun, automatic weapon -n02760658 automatic pistol, automatic -n02760855 automatic rifle, automatic, machine rifle -n02761034 automatic transmission, automatic drive -n02761206 automation -n02761392 automaton, robot, golem -n02761557 automobile engine -n02761696 automobile factory, auto factory, car factory -n02761834 automobile horn, car horn, motor horn, horn, hooter -n02762169 autopilot, automatic pilot, robot pilot -n02762371 autoradiograph -n02762508 autostrada -n02762725 auxiliary boiler, donkey boiler -n02762909 auxiliary engine, donkey engine -n02763083 auxiliary pump, donkey pump -n02763198 auxiliary research submarine -n02763306 auxiliary storage, external storage, secondary storage -n02763604 aviary, bird sanctuary, volary -n02763714 awl -n02763901 awning, sunshade, sunblind -n02764044 ax, axe -n02764398 ax handle, axe handle -n02764505 ax head, axe head -n02764614 axis, axis of rotation -n02764779 axle -n02764935 axle bar -n02765028 axletree -n02766168 babushka -n02766320 baby bed, baby's bed -n02766534 baby buggy, baby carriage, carriage, perambulator, pram, stroller, go-cart, pushchair, pusher -n02766792 baby grand, baby grand piano, parlor grand, parlor grand piano, parlour grand, parlour grand piano -n02767038 baby powder -n02767147 baby shoe -n02767433 back, backrest -n02767665 back -n02767956 backbench -n02768114 backboard -n02768226 backboard, basketball backboard -n02768433 backbone -n02768655 back brace -n02768973 backgammon board -n02769075 background, desktop, screen background -n02769290 backhoe -n02769669 backlighting -n02769748 backpack, back pack, knapsack, packsack, rucksack, haversack -n02769963 backpacking tent, pack tent -n02770078 backplate -n02770211 back porch -n02770585 backsaw, back saw -n02770721 backscratcher -n02770830 backseat -n02771004 backspace key, backspace, backspacer -n02771166 backstairs -n02771286 backstay -n02771547 backstop -n02771750 backsword -n02772101 backup system -n02772435 badminton court -n02772554 badminton equipment -n02772700 badminton racket, badminton racquet, battledore -n02773037 bag -n02773838 bag, traveling bag, travelling bag, grip, suitcase -n02774152 bag, handbag, pocketbook, purse -n02774630 baggage, luggage -n02774921 baggage -n02775039 baggage car, luggage van -n02775178 baggage claim -n02775483 bagpipe -n02775689 bailey -n02775813 bailey -n02775897 Bailey bridge -n02776007 bain-marie -n02776205 bait, decoy, lure -n02776505 baize -n02776631 bakery, bakeshop, bakehouse -n02776825 balaclava, balaclava helmet -n02776978 balalaika -n02777100 balance -n02777292 balance beam, beam -n02777402 balance wheel, balance -n02777638 balbriggan -n02777734 balcony -n02777927 balcony -n02778131 baldachin -n02778294 baldric, baldrick -n02778456 bale -n02778588 baling wire -n02778669 ball -n02779435 ball -n02779609 ball and chain -n02779719 ball-and-socket joint -n02779971 ballast, light ballast -n02780315 ball bearing, needle bearing, roller bearing -n02780445 ball cartridge -n02780588 ballcock, ball cock -n02780704 balldress -n02780815 ballet skirt, tutu -n02781121 ball gown -n02781213 ballistic galvanometer -n02781338 ballistic missile -n02781517 ballistic pendulum -n02781764 ballistocardiograph, cardiograph -n02782093 balloon -n02782432 balloon bomb, Fugo -n02782602 balloon sail -n02782681 ballot box -n02782778 ballpark, park -n02783035 ball-peen hammer -n02783161 ballpoint, ballpoint pen, ballpen, Biro -n02783324 ballroom, dance hall, dance palace -n02783459 ball valve -n02783900 balsa raft, Kon Tiki -n02783994 baluster -n02784124 banana boat -n02784998 band -n02785648 bandage, patch -n02786058 Band Aid -n02786198 bandanna, bandana -n02786331 bandbox -n02786463 banderilla -n02786611 bandoleer, bandolier -n02786736 bandoneon -n02786837 bandsaw, band saw -n02787120 bandwagon -n02787269 bangalore torpedo -n02787435 bangle, bauble, gaud, gewgaw, novelty, fallal, trinket -n02787622 banjo -n02788021 banner, streamer -n02788148 bannister, banister, balustrade, balusters, handrail -n02788386 banquette -n02788462 banyan, banian -n02788572 baptismal font, baptistry, baptistery, font -n02788689 bar -n02789487 bar -n02790669 barbecue, barbeque -n02790823 barbed wire, barbwire -n02790996 barbell -n02791124 barber chair -n02791270 barbershop -n02791532 barbette carriage -n02791665 barbican, barbacan -n02791795 bar bit -n02792409 bareboat -n02792552 barge, flatboat, hoy, lighter -n02792948 barge pole -n02793089 baritone, baritone horn -n02793199 bark, barque -n02793296 bar magnet -n02793414 bar mask -n02793495 barn -n02793684 barndoor -n02793842 barn door -n02793930 barnyard -n02794008 barograph -n02794156 barometer -n02794368 barong -n02794474 barouche -n02794664 bar printer -n02794779 barrack -n02794972 barrage balloon -n02795169 barrel, cask -n02795528 barrel, gun barrel -n02795670 barrelhouse, honky-tonk -n02795783 barrel knot, blood knot -n02795978 barrel organ, grind organ, hand organ, hurdy gurdy, hurdy-gurdy, street organ -n02796207 barrel vault -n02796318 barrette -n02796412 barricade -n02796623 barrier -n02796995 barroom, bar, saloon, ginmill, taproom -n02797295 barrow, garden cart, lawn cart, wheelbarrow -n02797535 bascule -n02797692 base, pedestal, stand -n02797881 base, bag -n02799071 baseball -n02799175 baseball bat, lumber -n02799323 baseball cap, jockey cap, golf cap -n02799897 baseball equipment -n02800213 baseball glove, glove, baseball mitt, mitt -n02800497 basement, cellar -n02800675 basement -n02800940 basic point defense missile system -n02801047 basilica, Roman basilica -n02801184 basilica -n02801450 basilisk -n02801525 basin -n02801823 basinet -n02801938 basket, handbasket -n02802215 basket, basketball hoop, hoop -n02802426 basketball -n02802544 basketball court -n02802721 basketball equipment -n02802990 basket weave -n02803349 bass -n02803539 bass clarinet -n02803666 bass drum, gran casa -n02803809 basset horn -n02803934 bass fiddle, bass viol, bull fiddle, double bass, contrabass, string bass -n02804123 bass guitar -n02804252 bass horn, sousaphone, tuba -n02804414 bassinet -n02804515 bassinet -n02804610 bassoon -n02805283 baster -n02805845 bastinado -n02805983 bastion -n02806088 bastion, citadel -n02806379 bat -n02806530 bath -n02806762 bath chair -n02806875 bathhouse, bagnio -n02806992 bathhouse, bathing machine -n02807133 bathing cap, swimming cap -n02807523 bath oil -n02807616 bathrobe -n02807731 bathroom, bath -n02808185 bath salts -n02808304 bath towel -n02808440 bathtub, bathing tub, bath, tub -n02808829 bathyscaphe, bathyscaph, bathyscape -n02808968 bathysphere -n02809105 batik -n02809241 batiste -n02809364 baton, wand -n02809491 baton -n02809605 baton -n02809736 baton -n02810139 battering ram -n02810270 batter's box -n02810471 battery, electric battery -n02810782 battery, stamp battery -n02811059 batting cage, cage -n02811204 batting glove -n02811350 batting helmet -n02811468 battle-ax, battle-axe -n02811618 battle cruiser -n02811719 battle dress -n02811936 battlement, crenelation, crenellation -n02812201 battleship, battlewagon -n02812342 battle sight, battlesight -n02812631 bay -n02812785 bay -n02812949 bayonet -n02813252 bay rum -n02813399 bay window, bow window -n02813544 bazaar, bazar -n02813645 bazaar, bazar -n02813752 bazooka -n02813981 B battery -n02814116 BB gun -n02814338 beach house -n02814428 beach towel -n02814533 beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon -n02814774 beachwear -n02814860 beacon, lighthouse, beacon light, pharos -n02815478 beading plane -n02815749 beaker -n02815834 beaker -n02815950 beam -n02816494 beam balance -n02816656 beanbag -n02816768 beanie, beany -n02817031 bearing -n02817251 bearing rein, checkrein -n02817386 bearing wall -n02817516 bearskin, busby, shako -n02817650 beater -n02817799 beating-reed instrument, reed instrument, reed -n02818135 beaver, castor -n02818254 beaver -n02818687 Beckman thermometer -n02818832 bed -n02819697 bed -n02820085 bed and breakfast, bed-and-breakfast -n02820210 bedclothes, bed clothing, bedding -n02820556 Bedford cord -n02820675 bed jacket -n02821202 bedpan -n02821415 bedpost -n02821543 bedroll -n02821627 bedroom, sleeping room, sleeping accommodation, chamber, bedchamber -n02821943 bedroom furniture -n02822064 bedsitting room, bedsitter, bedsit -n02822220 bedspread, bedcover, bed cover, bed covering, counterpane, spread -n02822399 bedspring -n02822579 bedstead, bedframe -n02822762 beefcake -n02822865 beehive, hive -n02823124 beeper, pager -n02823335 beer barrel, beer keg -n02823428 beer bottle -n02823510 beer can -n02823586 beer garden -n02823750 beer glass -n02823848 beer hall -n02823964 beer mat -n02824058 beer mug, stein -n02824152 belaying pin -n02824319 belfry -n02824448 bell -n02825153 bell arch -n02825240 bellarmine, longbeard, long-beard, greybeard -n02825442 bellbottom trousers, bell-bottoms, bellbottom pants -n02825657 bell cote, bell cot -n02825872 bell foundry -n02825961 bell gable -n02826068 bell jar, bell glass -n02826259 bellows -n02826459 bellpull -n02826589 bell push -n02826683 bell seat, balloon seat -n02826812 bell tent -n02826886 bell tower -n02827148 bellyband -n02827606 belt -n02828115 belt, belt ammunition, belted ammunition -n02828299 belt buckle -n02828427 belting -n02828884 bench -n02829246 bench clamp -n02829353 bench hook -n02829510 bench lathe -n02829596 bench press -n02830157 bender -n02831237 beret -n02831335 berlin -n02831595 Bermuda shorts, Jamaica shorts -n02831724 berth, bunk, built in bed -n02831894 besom -n02831998 Bessemer converter -n02833040 bethel -n02833140 betting shop -n02833275 bevatron -n02833403 bevel, bevel square -n02833793 bevel gear, pinion and crown wheel, pinion and ring gear -n02834027 B-flat clarinet, licorice stick -n02834397 bib -n02834506 bib-and-tucker -n02834642 bicorn, bicorne -n02834778 bicycle, bike, wheel, cycle -n02835271 bicycle-built-for-two, tandem bicycle, tandem -n02835412 bicycle chain -n02835551 bicycle clip, trouser clip -n02835724 bicycle pump -n02835829 bicycle rack -n02835915 bicycle seat, saddle -n02836035 bicycle wheel -n02836174 bidet -n02836268 bier -n02836392 bier -n02836513 bi-fold door -n02836607 bifocals -n02836900 Big Blue, BLU-82 -n02837134 big board -n02837567 bight -n02837789 bikini, two-piece -n02837887 bikini pants -n02838014 bilge -n02838178 bilge keel -n02838345 bilge pump -n02838577 bilge well -n02838728 bill, peak, eyeshade, visor, vizor -n02838958 bill, billhook -n02839110 billboard, hoarding -n02839351 billiard ball -n02839592 billiard room, billiard saloon, billiard parlor, billiard parlour, billiard hall -n02839910 bin -n02840134 binder, ligature -n02840245 binder, ring-binder -n02840515 bindery -n02840619 binding, book binding, cover, back -n02841063 bin liner -n02841187 binnacle -n02841315 binoculars, field glasses, opera glasses -n02841506 binocular microscope -n02841641 biochip -n02841847 biohazard suit -n02842133 bioscope -n02842573 biplane -n02842809 birch, birch rod -n02843029 birchbark canoe, birchbark, birch bark -n02843158 birdbath -n02843276 birdcage -n02843465 birdcall -n02843553 bird feeder, birdfeeder, feeder -n02843684 birdhouse -n02843777 bird shot, buckshot, duck shot -n02843909 biretta, berretta, birretta -n02844056 bishop -n02844214 bistro -n02844307 bit -n02844714 bit -n02845130 bite plate, biteplate -n02845293 bitewing -n02845985 bitumastic -n02846141 black -n02846260 black -n02846511 blackboard, chalkboard -n02846619 blackboard eraser -n02846733 black box -n02846874 blackface -n02847461 blackjack, cosh, sap -n02847631 black tie -n02847852 blackwash -n02848118 bladder -n02848216 blade -n02848523 blade, vane -n02848806 blade -n02848921 blank, dummy, blank shell -n02849154 blanket, cover -n02849885 blast furnace -n02850060 blasting cap -n02850358 blazer, sport jacket, sport coat, sports jacket, sports coat -n02850732 blender, liquidizer, liquidiser -n02850950 blimp, sausage balloon, sausage -n02851099 blind, screen -n02851795 blind curve, blind bend -n02851939 blindfold -n02852043 bling, bling bling -n02852173 blinker, flasher -n02852360 blister pack, bubble pack -n02853016 block -n02853218 blockade -n02853336 blockade-runner -n02853745 block and tackle -n02853870 blockbuster -n02854378 blockhouse -n02854532 block plane -n02854630 bloodmobile -n02854739 bloomers, pants, drawers, knickers -n02854926 blouse -n02855089 blower -n02855390 blowtorch, torch, blowlamp -n02855701 blucher -n02855793 bludgeon -n02855925 blue -n02856013 blue chip -n02856237 blunderbuss -n02856362 blunt file -n02857365 boarding -n02857477 boarding house, boardinghouse -n02857644 boardroom, council chamber -n02857907 boards -n02858304 boat -n02859184 boater, leghorn, Panama, Panama hat, sailor, skimmer, straw hat -n02859343 boat hook -n02859443 boathouse -n02859557 boatswain's chair, bosun's chair -n02859729 boat train -n02859955 boatyard -n02860415 bobbin, spool, reel -n02860640 bobby pin, hairgrip, grip -n02860847 bobsled, bobsleigh, bob -n02861022 bobsled, bobsleigh -n02861147 bocce ball, bocci ball, boccie ball -n02861286 bodega -n02861387 bodice -n02861509 bodkin, threader -n02861658 bodkin -n02861777 bodkin -n02861886 body -n02862048 body armor, body armour, suit of armor, suit of armour, coat of mail, cataphract -n02862916 body lotion -n02863014 body stocking -n02863176 body plethysmograph -n02863340 body pad -n02863426 bodywork -n02863536 Bofors gun -n02863638 bogy, bogie, bogey -n02863750 boiler, steam boiler -n02864122 boiling water reactor, BWR -n02864504 bolero -n02864593 bollard, bitt -n02864987 bolo, bolo knife -n02865351 bolo tie, bolo, bola tie, bola -n02865665 bolt -n02865931 bolt, deadbolt -n02866106 bolt -n02866386 bolt cutter -n02866578 bomb -n02867401 bombazine -n02867592 bomb calorimeter, bomb -n02867715 bomber -n02867966 bomber jacket -n02868240 bomblet, cluster bomblet -n02868429 bomb rack -n02868546 bombshell -n02868638 bomb shelter, air-raid shelter, bombproof -n02868975 bone-ash cup, cupel, refractory pot -n02869155 bone china -n02869249 bones, castanets, clappers, finger cymbals -n02869563 boneshaker -n02869737 bongo, bongo drum -n02869837 bonnet, poke bonnet -n02870526 book -n02870676 book bag -n02870772 bookbindery -n02870880 bookcase -n02871005 bookend -n02871147 bookmark, bookmarker -n02871314 bookmobile -n02871439 bookshelf -n02871525 bookshop, bookstore, bookstall -n02871631 boom -n02871824 boom, microphone boom -n02871963 boomerang, throwing stick, throw stick -n02872333 booster, booster rocket, booster unit, takeoff booster, takeoff rocket -n02872529 booster, booster amplifier, booster station, relay link, relay station, relay transmitter -n02872752 boot -n02873520 boot -n02873623 boot camp -n02873733 bootee, bootie -n02873839 booth, cubicle, stall, kiosk -n02874086 booth -n02874214 booth -n02874336 boothose -n02874442 bootjack -n02874537 bootlace -n02874642 bootleg -n02874750 bootstrap -n02875436 bore bit, borer, rock drill, stone drill -n02875626 boron chamber -n02875948 borstal -n02876084 bosom -n02876326 Boston rocker -n02876457 bota -n02876657 bottle -n02877266 bottle, feeding bottle, nursing bottle -n02877513 bottle bank -n02877642 bottlebrush -n02877765 bottlecap -n02877962 bottle opener -n02878107 bottling plant -n02878222 bottom, freighter, merchantman, merchant ship -n02878425 boucle -n02878534 boudoir -n02878628 boulle, boule, buhl -n02878796 bouncing betty -n02879087 bouquet, corsage, posy, nosegay -n02879309 boutique, dress shop -n02879422 boutonniere -n02879517 bow -n02879718 bow -n02880189 bow, bowknot -n02880393 bow and arrow -n02880546 bowed stringed instrument, string -n02880842 Bowie knife -n02880940 bowl -n02881193 bowl -n02881546 bowl -n02881757 bowler hat, bowler, derby hat, derby, plug hat -n02881906 bowline, bowline knot -n02882190 bowling alley -n02882301 bowling ball, bowl -n02882483 bowling equipment -n02882647 bowling pin, pin -n02882894 bowling shoe -n02883004 bowsprit -n02883101 bowstring -n02883205 bow tie, bow-tie, bowtie -n02883344 box -n02884225 box, loge -n02884450 box, box seat -n02884859 box beam, box girder -n02884994 box camera, box Kodak -n02885108 boxcar -n02885233 box coat -n02885338 boxing equipment -n02885462 boxing glove, glove -n02885882 box office, ticket office, ticket booth -n02886321 box spring -n02886434 box wrench, box end wrench -n02886599 brace, bracing -n02887079 brace, braces, orthodontic braces -n02887209 brace -n02887489 brace, suspender, gallus -n02887832 brace and bit -n02887970 bracelet, bangle -n02888270 bracer, armguard -n02888429 brace wrench -n02888569 bracket, wall bracket -n02888898 bradawl, pricker -n02889425 brake -n02889646 brake -n02889856 brake band -n02889996 brake cylinder, hydraulic brake cylinder, master cylinder -n02890188 brake disk -n02890351 brake drum, drum -n02890513 brake lining -n02890662 brake pad -n02890804 brake pedal -n02890940 brake shoe, shoe, skid -n02891188 brake system, brakes -n02891788 brass, brass instrument -n02892201 brass, memorial tablet, plaque -n02892304 brass -n02892392 brassard -n02892499 brasserie -n02892626 brassie -n02892767 brassiere, bra, bandeau -n02892948 brass knucks, knucks, brass knuckles, knuckles, knuckle duster -n02893269 brattice -n02893418 brazier, brasier -n02893608 breadbasket -n02893692 bread-bin, breadbox -n02893941 bread knife -n02894024 breakable -n02894158 breakfast area, breakfast nook -n02894337 breakfast table -n02894605 breakwater, groin, groyne, mole, bulwark, seawall, jetty -n02894847 breast drill -n02895008 breast implant -n02895154 breastplate, aegis, egis -n02895328 breast pocket -n02895438 breathalyzer, breathalyser -n02896074 breechblock, breech closer -n02896294 breechcloth, breechclout, loincloth -n02896442 breeches, knee breeches, knee pants, knickerbockers, knickers -n02896694 breeches buoy -n02896856 breechloader -n02896949 breeder reactor -n02897097 Bren, Bren gun -n02897389 brewpub -n02897820 brick -n02898093 brickkiln -n02898173 bricklayer's hammer -n02898269 brick trowel, mason's trowel -n02898369 brickwork -n02898585 bridal gown, wedding gown, wedding dress -n02898711 bridge, span -n02899439 bridge, nosepiece -n02900160 bridle -n02900459 bridle path, bridle road -n02900594 bridoon -n02900705 briefcase -n02900857 briefcase bomb -n02900987 briefcase computer -n02901114 briefs, Jockey shorts -n02901259 brig -n02901377 brig -n02901481 brigandine -n02901620 brigantine, hermaphrodite brig -n02901793 brilliantine -n02901901 brilliant pebble -n02902079 brim -n02902687 bristle brush -n02902816 britches -n02902916 broad arrow -n02903006 broadax, broadaxe -n02903126 brochette -n02903204 broadcaster, spreader -n02903727 broadcloth -n02903852 broadcloth -n02904109 broad hatchet -n02904233 broadloom -n02904505 broadside -n02904640 broadsword -n02904803 brocade -n02904927 brogan, brogue, clodhopper, work shoe -n02905036 broiler -n02905152 broken arch -n02905886 bronchoscope -n02906734 broom -n02906963 broom closet -n02907082 broomstick, broom handle -n02907296 brougham -n02907391 Browning automatic rifle, BAR -n02907656 Browning machine gun, Peacemaker -n02907873 brownstone -n02908123 brunch coat -n02908217 brush -n02908773 Brussels carpet -n02908951 Brussels lace -n02909053 bubble -n02909165 bubble chamber -n02909285 bubble jet printer, bubble-jet printer, bubblejet -n02909706 buckboard -n02909870 bucket, pail -n02910145 bucket seat -n02910241 bucket shop -n02910353 buckle -n02910542 buckram -n02910701 bucksaw -n02910864 buckskins -n02910964 buff, buffer -n02911332 buffer, polisher -n02911485 buffer, buffer storage, buffer store -n02912065 buffet, counter, sideboard -n02912319 buffing wheel -n02912557 buggy, roadster -n02912894 bugle -n02913152 building, edifice -n02914991 building complex, complex -n02915904 bulldog clip, alligator clip -n02916065 bulldog wrench -n02916179 bulldozer, dozer -n02916350 bullet, slug -n02916936 bulletproof vest -n02917067 bullet train, bullet -n02917377 bullhorn, loud hailer, loud-hailer -n02917521 bullion -n02917607 bullnose, bullnosed plane -n02917742 bullpen, detention cell, detention centre -n02917964 bullpen -n02918112 bullring -n02918330 bulwark -n02918455 bumboat -n02918595 bumper -n02918831 bumper -n02918964 bumper car, Dodgem -n02919148 bumper guard -n02919308 bumper jack -n02919414 bundle, sheaf -n02919648 bung, spile -n02919792 bungalow, cottage -n02919890 bungee, bungee cord -n02919976 bunghole -n02920083 bunk -n02920164 bunk, feed bunk -n02920259 bunk bed, bunk -n02920369 bunker, sand trap, trap -n02920503 bunker, dugout -n02920658 bunker -n02921029 bunsen burner, bunsen, etna -n02921195 bunting -n02921292 bur, burr -n02921406 Burberry -n02921592 burette, buret -n02921756 burglar alarm -n02921884 burial chamber, sepulcher, sepulchre, sepulture -n02922159 burial garment -n02922292 burial mound, grave mound, barrow, tumulus -n02922461 burin -n02922578 burqa, burka -n02922798 burlap, gunny -n02922877 burn bag -n02923129 burner -n02923535 burnous, burnoose, burnouse -n02923682 burp gun, machine pistol -n02923915 burr -n02924116 bus, autobus, coach, charabanc, double-decker, jitney, motorbus, motorcoach, omnibus, passenger vehicle -n02925009 bushel basket -n02925107 bushing, cylindrical lining -n02925385 bush jacket -n02925519 business suit -n02925666 buskin, combat boot, desert boot, half boot, top boot -n02926426 bustier -n02926591 bustle -n02927053 butcher knife -n02927161 butcher shop, meat market -n02927764 butter dish -n02927887 butterfly valve -n02928049 butter knife -n02928299 butt hinge -n02928413 butt joint, butt -n02928608 button -n02929184 buttonhook -n02929289 buttress, buttressing -n02929462 butt shaft -n02929582 butt weld, butt-weld -n02929923 buzz bomb, robot bomb, flying bomb, doodlebug, V-1 -n02930080 buzzer -n02930214 BVD, BVD's -n02930339 bypass condenser, bypass capacitor -n02930645 byway, bypath, byroad -n02930766 cab, hack, taxi, taxicab -n02931013 cab, cabriolet -n02931148 cab -n02931294 cabana -n02931417 cabaret, nightclub, night club, club, nightspot -n02931836 caber -n02932019 cabin -n02932400 cabin -n02932523 cabin car, caboose -n02932693 cabin class, second class, economy class -n02932891 cabin cruiser, cruiser, pleasure boat, pleasure craft -n02933112 cabinet -n02933340 cabinet, console -n02933462 cabinet, locker, storage locker -n02933649 cabinetwork -n02933750 cabin liner -n02933990 cable, cable television, cable system, cable television service -n02934168 cable, line, transmission line -n02934451 cable car, car -n02935017 cache, memory cache -n02935387 caddy, tea caddy -n02935490 caesium clock -n02935658 cafe, coffeehouse, coffee shop, coffee bar -n02935891 cafeteria -n02936176 cafeteria tray -n02936281 caff -n02936402 caftan, kaftan -n02936570 caftan, kaftan -n02936714 cage, coop -n02936921 cage -n02937010 cagoule -n02937336 caisson -n02937958 calash, caleche, calash top -n02938218 calceus -n02938321 calcimine -n02938886 calculator, calculating machine -n02939185 caldron, cauldron -n02939763 calico -n02939866 caliper, calliper -n02940289 call-board -n02940385 call center, call centre -n02940570 caller ID -n02940706 calliope, steam organ -n02941095 calorimeter -n02941228 calpac, calpack, kalpac -n02941845 camail, aventail, ventail -n02942015 camber arch -n02942147 cambric -n02942349 camcorder -n02942460 camel's hair, camelhair -n02942699 camera, photographic camera -n02943241 camera lens, optical lens -n02943465 camera lucida -n02943686 camera obscura -n02943871 camera tripod -n02943964 camise -n02944075 camisole -n02944146 camisole, underbodice -n02944256 camlet -n02944459 camouflage -n02944579 camouflage, camo -n02944826 camp, encampment, cantonment, bivouac -n02945161 camp -n02945813 camp, refugee camp -n02945964 campaign hat -n02946127 campanile, belfry -n02946270 camp chair -n02946348 camper, camping bus, motor home -n02946509 camper trailer -n02946753 campstool -n02946824 camshaft -n02946921 can, tin, tin can -n02947212 canal -n02947660 canal boat, narrow boat, narrowboat -n02947818 candelabrum, candelabra -n02947977 candid camera -n02948072 candle, taper, wax light -n02948293 candlepin -n02948403 candlesnuffer -n02948557 candlestick, candle holder -n02948834 candlewick -n02948942 candy thermometer -n02949084 cane -n02949202 cane -n02949356 cangue -n02949542 canister, cannister, tin -n02950018 cannery -n02950120 cannikin -n02950186 cannikin -n02950256 cannon -n02950482 cannon -n02950632 cannon -n02950826 cannon -n02950943 cannonball, cannon ball, round shot -n02951358 canoe -n02951585 can opener, tin opener -n02951703 canopic jar, canopic vase -n02951843 canopy -n02952109 canopy -n02952237 canopy -n02952374 canteen -n02952485 canteen -n02952585 canteen -n02952674 canteen, mobile canteen -n02952798 canteen -n02952935 cant hook -n02953056 cantilever -n02953197 cantilever bridge -n02953455 cantle -n02953552 Canton crepe -n02953673 canvas, canvass -n02953850 canvas, canvass -n02954163 canvas tent, canvas, canvass -n02954340 cap -n02954938 cap -n02955065 cap -n02955247 capacitor, capacitance, condenser, electrical condenser -n02955540 caparison, trapping, housing -n02955767 cape, mantle -n02956393 capital ship -n02956699 capitol -n02956795 cap opener -n02956883 capote, hooded cloak -n02957008 capote, hooded coat -n02957135 cap screw -n02957252 capstan -n02957427 capstone, copestone, coping stone, stretcher -n02957755 capsule -n02957862 captain's chair -n02958343 car, auto, automobile, machine, motorcar -n02959942 car, railcar, railway car, railroad car -n02960352 car, elevator car -n02960690 carabiner, karabiner, snap ring -n02960903 carafe, decanter -n02961035 caravansary, caravanserai, khan, caravan inn -n02961225 car battery, automobile battery -n02961451 carbine -n02961544 car bomb -n02961947 carbon arc lamp, carbon arc -n02962061 carboy -n02962200 carburetor, carburettor -n02962414 car carrier -n02962843 cardcase -n02962938 cardiac monitor, heart monitor -n02963159 cardigan -n02963302 card index, card catalog, card catalogue -n02963503 cardiograph, electrocardiograph -n02963692 cardioid microphone -n02963821 car door -n02963987 cardroom -n02964075 card table -n02964196 card table -n02964295 car-ferry -n02964634 cargo area, cargo deck, cargo hold, hold, storage area -n02964843 cargo container -n02964934 cargo door -n02965024 cargo hatch -n02965122 cargo helicopter -n02965216 cargo liner -n02965300 cargo ship, cargo vessel -n02965529 carillon -n02965783 car mirror -n02966068 caroche -n02966193 carousel, carrousel, merry-go-round, roundabout, whirligig -n02966545 carpenter's hammer, claw hammer, clawhammer -n02966687 carpenter's kit, tool kit -n02966786 carpenter's level -n02966942 carpenter's mallet -n02967081 carpenter's rule -n02967170 carpenter's square -n02967294 carpetbag -n02967407 carpet beater, rug beater -n02967540 carpet loom -n02967626 carpet pad, rug pad, underlay, underlayment -n02967782 carpet sweeper, sweeper -n02967991 carpet tack -n02968074 carport, car port -n02968210 carrack, carack -n02968333 carrel, carrell, cubicle, stall -n02968473 carriage, equipage, rig -n02969010 carriage -n02969163 carriage bolt -n02969323 carriageway -n02969527 carriage wrench -n02969634 carrick bend -n02969886 carrier -n02970408 carryall, holdall, tote, tote bag -n02970534 carrycot -n02970685 car seat -n02970849 cart -n02971167 car tire, automobile tire, auto tire, rubber tire -n02971356 carton -n02971473 cartouche, cartouch -n02971579 car train -n02971691 cartridge -n02971940 cartridge, pickup -n02972397 cartridge belt -n02972714 cartridge extractor, cartridge remover, extractor -n02972934 cartridge fuse -n02973017 cartridge holder, cartridge clip, clip, magazine -n02973236 cartwheel -n02973805 carving fork -n02973904 carving knife -n02974003 car wheel -n02974348 caryatid -n02974454 cascade liquefier -n02974565 cascade transformer -n02974697 case -n02975212 case, display case, showcase, vitrine -n02975589 case, compositor's case, typesetter's case -n02975994 casein paint, casein -n02976123 case knife, sheath knife -n02976249 case knife -n02976350 casement -n02976455 casement window -n02976552 casern -n02976641 case shot, canister, canister shot -n02976815 cash bar -n02976939 cashbox, money box, till -n02977058 cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM -n02977330 cashmere -n02977438 cash register, register -n02977619 casing, case -n02977936 casino, gambling casino -n02978055 casket, jewel casket -n02978205 casque -n02978367 casquet, casquetel -n02978478 Cassegrainian telescope, Gregorian telescope -n02978753 casserole -n02978881 cassette -n02979074 cassette deck -n02979186 cassette player -n02979290 cassette recorder -n02979399 cassette tape -n02979516 cassock -n02979836 cast, plaster cast, plaster bandage -n02980036 caster, castor -n02980203 caster, castor -n02980441 castle -n02980625 castle, rook -n02981024 catacomb -n02981198 catafalque -n02981321 catalytic converter -n02981565 catalytic cracker, cat cracker -n02981792 catamaran -n02981911 catapult, arbalest, arbalist, ballista, bricole, mangonel, onager, trebuchet, trebucket -n02982232 catapult, launcher -n02982416 catboat -n02982515 cat box -n02982599 catch -n02983072 catchall -n02983189 catcher's mask -n02983357 catchment -n02983507 Caterpillar, cat -n02983904 cathedra, bishop's throne -n02984061 cathedral -n02984203 cathedral, duomo -n02984469 catheter -n02984699 cathode -n02985137 cathode-ray tube, CRT -n02985606 cat-o'-nine-tails, cat -n02985828 cat's-paw -n02985963 catsup bottle, ketchup bottle -n02986066 cattle car -n02986160 cattle guard, cattle grid -n02986348 cattleship, cattle boat -n02987047 cautery, cauterant -n02987379 cavalier hat, slouch hat -n02987492 cavalry sword, saber, sabre -n02987706 cavetto -n02987823 cavity wall -n02987950 C battery -n02988066 C-clamp -n02988156 CD drive -n02988304 CD player -n02988486 CD-R, compact disc recordable, CD-WO, compact disc write-once -n02988679 CD-ROM, compact disc read-only memory -n02988963 CD-ROM drive -n02989099 cedar chest -n02990373 ceiling -n02990758 celesta -n02991048 cell, electric cell -n02991302 cell, jail cell, prison cell -n02991847 cellar, wine cellar -n02992032 cellblock, ward -n02992211 cello, violoncello -n02992368 cellophane -n02992529 cellular telephone, cellular phone, cellphone, cell, mobile phone -n02992795 cellulose tape, Scotch tape, Sellotape -n02993194 cenotaph, empty tomb -n02993368 censer, thurible -n02993546 center, centre -n02994573 center punch -n02994743 Centigrade thermometer -n02995345 central processing unit, CPU, C.P.U., central processor, processor, mainframe -n02995871 centrifugal pump -n02995998 centrifuge, extractor, separator -n02997391 ceramic -n02997607 ceramic ware -n02997910 cereal bowl -n02998003 cereal box -n02998107 cerecloth -n02998563 cesspool, cesspit, sink, sump -n02998696 chachka, tsatske, tshatshke, tchotchke -n02998841 chador, chadar, chaddar, chuddar -n02999138 chafing dish -n02999410 chain -n02999936 chain -n03000134 chainlink fence -n03000247 chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour -n03000530 chain printer -n03000684 chain saw, chainsaw -n03001115 chain store -n03001282 chain tongs -n03001540 chain wrench -n03001627 chair -n03002096 chair -n03002210 chair of state -n03002341 chairlift, chair lift -n03002555 chaise, shay -n03002711 chaise longue, chaise, daybed -n03002816 chalet -n03002948 chalice, goblet -n03003091 chalk -n03003633 challis -n03004275 chamberpot, potty, thunder mug -n03004409 chambray -n03004531 chamfer bit -n03004620 chamfer plane -n03004713 chamois cloth -n03004824 chancel, sanctuary, bema -n03005033 chancellery -n03005147 chancery -n03005285 chandelier, pendant, pendent -n03005515 chandlery -n03005619 chanfron, chamfron, testiere, frontstall, front-stall -n03006626 chanter, melody pipe -n03006788 chantry -n03006903 chap -n03007130 chapel -n03007297 chapterhouse, fraternity house, frat house -n03007444 chapterhouse -n03007591 character printer, character-at-a-time printer, serial printer -n03008177 charcuterie -n03008817 charge-exchange accelerator -n03008976 charger, battery charger -n03009111 chariot -n03009269 chariot -n03009794 charnel house, charnel -n03010473 chassis -n03010656 chassis -n03010795 chasuble -n03010915 chateau -n03011018 chatelaine -n03011355 checker, chequer -n03011741 checkout, checkout counter -n03012013 cheekpiece -n03012159 cheeseboard, cheese tray -n03012373 cheesecloth -n03012499 cheese cutter -n03012644 cheese press -n03012734 chemical bomb, gas bomb -n03012897 chemical plant -n03013006 chemical reactor -n03013438 chemise, sack, shift -n03013580 chemise, shimmy, shift, slip, teddy -n03013850 chenille -n03014440 chessman, chess piece -n03014705 chest -n03015149 chesterfield -n03015254 chest of drawers, chest, bureau, dresser -n03015478 chest protector -n03015631 cheval-de-frise, chevaux-de-frise -n03015851 cheval glass -n03016209 chicane -n03016389 chicken coop, coop, hencoop, henhouse -n03016609 chicken wire -n03016737 chicken yard, hen yard, chicken run, fowl run -n03016868 chiffon -n03016953 chiffonier, commode -n03017070 child's room -n03017168 chime, bell, gong -n03017698 chimney breast -n03017835 chimney corner, inglenook -n03018209 china -n03018349 china cabinet, china closet -n03018614 chinchilla -n03018712 Chinese lantern -n03018848 Chinese puzzle -n03019198 chinning bar -n03019304 chino -n03019434 chino -n03019685 chin rest -n03019806 chin strap -n03019938 chintz -n03020034 chip, microchip, micro chip, silicon chip, microprocessor chip -n03020416 chip, poker chip -n03020692 chisel -n03021228 chlamys -n03024064 choir -n03024233 choir loft -n03024333 choke -n03024518 choke, choke coil, choking coil -n03025070 chokey, choky -n03025165 choo-choo -n03025250 chopine, platform -n03025886 chordophone -n03026506 Christmas stocking -n03026907 chronograph -n03027001 chronometer -n03027108 chronoscope -n03027250 chuck -n03027505 chuck wagon -n03027625 chukka, chukka boot -n03028079 church, church building -n03028596 church bell -n03028785 church hat -n03029066 church key -n03029197 church tower -n03029296 churidars -n03029445 churn, butter churn -n03029925 ciderpress -n03030262 cigar band -n03030353 cigar box -n03030557 cigar cutter -n03030880 cigarette butt -n03031012 cigarette case -n03031152 cigarette holder -n03031422 cigar lighter, cigarette lighter, pocket lighter -n03031756 cinch, girth -n03032252 cinema, movie theater, movie theatre, movie house, picture palace -n03032453 cinquefoil -n03032811 circle, round -n03033267 circlet -n03033362 circuit, electrical circuit, electric circuit -n03033986 circuit board, circuit card, board, card, plug-in, add-in -n03034244 circuit breaker, breaker -n03034405 circuitry -n03034516 circular plane, compass plane -n03034663 circular saw, buzz saw -n03035252 circus tent, big top, round top, top -n03035510 cistern -n03035715 cistern, water tank -n03035832 cittern, cithern, cither, citole, gittern -n03036022 city hall -n03036149 cityscape -n03036244 city university -n03036341 civies, civvies -n03036469 civilian clothing, civilian dress, civilian garb, plain clothes -n03036701 clack valve, clack, clapper valve -n03036866 clamp, clinch -n03037108 clamshell, grapple -n03037228 clapper, tongue -n03037404 clapperboard -n03037590 clarence -n03037709 clarinet -n03038041 Clark cell, Clark standard cell -n03038281 clasp -n03038480 clasp knife, jackknife -n03038685 classroom, schoolroom -n03038870 clavichord -n03039015 clavier, Klavier -n03039259 clay pigeon -n03039353 claymore mine, claymore -n03039493 claymore -n03039827 cleaners, dry cleaners -n03039947 cleaning implement, cleaning device, cleaning equipment -n03040229 cleaning pad -n03040376 clean room, white room -n03040836 clearway -n03041114 cleat -n03041265 cleat -n03041449 cleats -n03041632 cleaver, meat cleaver, chopper -n03041810 clerestory, clearstory -n03042139 clevis -n03042384 clews -n03042490 cliff dwelling -n03042697 climbing frame -n03042829 clinch -n03042984 clinch, clench -n03043173 clincher -n03043274 clinic -n03043423 clinical thermometer, mercury-in-glass clinical thermometer -n03043693 clinker, clinker brick -n03043798 clinometer, inclinometer -n03043958 clip -n03044671 clip lead -n03044801 clip-on -n03044934 clipper -n03045074 clipper -n03045228 clipper, clipper ship -n03045337 cloak -n03045698 cloak -n03045800 cloakroom, coatroom -n03046029 cloche -n03046133 cloche -n03046257 clock -n03046802 clock pendulum -n03046921 clock radio -n03047052 clock tower -n03047171 clockwork -n03047690 clog, geta, patten, sabot -n03047799 cloisonne -n03047941 cloister -n03048883 closed circuit, loop -n03049066 closed-circuit television -n03049326 closed loop, closed-loop system -n03049457 closet -n03049782 closeup lens -n03049924 cloth cap, flat cap -n03050026 cloth covering -n03050453 clothesbrush -n03050546 clothes closet, clothespress -n03050655 clothes dryer, clothes drier -n03050864 clothes hamper, laundry basket, clothes basket, voider -n03051041 clotheshorse -n03051249 clothespin, clothes pin, clothes peg -n03051396 clothes tree, coat tree, coat stand -n03051540 clothing, article of clothing, vesture, wear, wearable, habiliment -n03052464 clothing store, haberdashery, haberdashery store, mens store -n03052917 clout nail, clout -n03053047 clove hitch -n03053976 club car, lounge car -n03054491 clubroom -n03054605 cluster bomb -n03054901 clutch -n03055159 clutch, clutch pedal -n03055418 clutch bag, clutch -n03055670 coach, four-in-hand, coach-and-four -n03055857 coach house, carriage house, remise -n03056097 coal car -n03056215 coal chute -n03056288 coal house -n03056493 coal shovel -n03056583 coaming -n03056873 coaster brake -n03057021 coat -n03057541 coat button -n03057636 coat closet -n03057724 coatdress -n03057841 coatee -n03057920 coat hanger, clothes hanger, dress hanger -n03058107 coating, coat -n03058603 coating -n03058949 coat of paint -n03059103 coatrack, coat rack, hatrack -n03059236 coattail -n03059366 coaxial cable, coax, coax cable -n03059685 cobweb -n03059934 cobweb -n03060728 Cockcroft and Walton accelerator, Cockcroft-Walton accelerator, Cockcroft and Walton voltage multiplier, Cockcroft-Walton voltage multiplier -n03061050 cocked hat -n03061211 cockhorse -n03061345 cockleshell -n03061505 cockpit -n03061674 cockpit -n03061819 cockpit -n03061893 cockscomb, coxcomb -n03062015 cocktail dress, sheath -n03062122 cocktail lounge -n03062245 cocktail shaker -n03062336 cocotte -n03062651 codpiece -n03062798 coelostat -n03062985 coffee can -n03063073 coffee cup -n03063199 coffee filter -n03063338 coffee maker -n03063485 coffee mill, coffee grinder -n03063599 coffee mug -n03063689 coffeepot -n03063834 coffee stall -n03063968 coffee table, cocktail table -n03064250 coffee urn -n03064350 coffer -n03064562 Coffey still -n03064758 coffin, casket -n03064935 cog, sprocket -n03065243 coif -n03065424 coil, spiral, volute, whorl, helix -n03065708 coil -n03066232 coil -n03066359 coil spring, volute spring -n03066464 coin box -n03066849 colander, cullender -n03067093 cold cathode -n03067212 cold chisel, set chisel -n03067339 cold cream, coldcream, face cream, vanishing cream -n03067518 cold frame -n03068181 collar, neckband -n03068998 collar -n03069752 college -n03070059 collet, collet chuck -n03070193 collider -n03070396 colliery, pit -n03070587 collimator -n03070854 collimator -n03071021 cologne, cologne water, eau de cologne -n03071160 colonnade -n03071288 colonoscope -n03071552 colorimeter, tintometer -n03072056 colors, colours -n03072201 color television, colour television, color television system, colour television system, color TV, colour TV -n03072440 color tube, colour tube, color television tube, colour television tube, color TV tube, colour TV tube -n03072682 color wash, colour wash -n03073296 Colt -n03073384 colter, coulter -n03073545 columbarium -n03073694 columbarium, cinerarium -n03073977 column, pillar -n03074380 column, pillar -n03074855 comb -n03075097 comb -n03075248 comber -n03075370 combination lock -n03075500 combination plane -n03075634 combine -n03075768 comforter, pacifier, baby's dummy, teething ring -n03075946 command module -n03076411 commissary -n03076623 commissary -n03076708 commodity, trade good, good -n03077442 common ax, common axe, Dayton ax, Dayton axe -n03077616 common room -n03077741 communications satellite -n03078287 communication system -n03078506 community center, civic center -n03078670 commutator -n03078802 commuter, commuter train -n03078995 compact, powder compact -n03079136 compact, compact car -n03079230 compact disk, compact disc, CD -n03079494 compact-disk burner, CD burner -n03079616 companionway -n03079741 compartment -n03080309 compartment -n03080497 compass -n03080633 compass -n03080731 compass card, mariner's compass -n03080904 compass saw -n03081859 compound -n03081986 compound lens -n03082127 compound lever -n03082280 compound microscope -n03082450 compress -n03082656 compression bandage, tourniquet -n03082807 compressor -n03082979 computer, computing machine, computing device, data processor, electronic computer, information processing system -n03084420 computer circuit -n03084834 computerized axial tomography scanner, CAT scanner -n03085013 computer keyboard, keypad -n03085219 computer monitor -n03085333 computer network -n03085602 computer screen, computer display -n03085781 computer store -n03085915 computer system, computing system, automatic data processing system, ADP system, ADPS -n03086183 concentration camp, stockade -n03086457 concert grand, concert piano -n03086580 concert hall -n03086670 concertina -n03086868 concertina -n03087069 concrete mixer, cement mixer -n03087245 condensation pump, diffusion pump -n03087366 condenser, optical condenser -n03087521 condenser -n03087643 condenser -n03087816 condenser microphone, capacitor microphone -n03088389 condominium -n03088580 condominium, condo -n03088707 conductor -n03089477 cone clutch, cone friction clutch -n03089624 confectionery, confectionary, candy store -n03089753 conference center, conference house -n03089879 conference room -n03090000 conference table, council table, council board -n03090172 confessional -n03090437 conformal projection, orthomorphic projection -n03090710 congress boot, congress shoe, congress gaiter -n03090856 conic projection, conical projection -n03091044 connecting rod -n03091223 connecting room -n03091374 connection, connexion, connector, connecter, connective -n03091907 conning tower -n03092053 conning tower -n03092166 conservatory, hothouse, indoor garden -n03092314 conservatory, conservatoire -n03092476 console -n03092656 console -n03092883 console table, console -n03093427 consulate -n03093792 contact, tangency -n03094159 contact, contact lens -n03094503 container -n03095699 container ship, containership, container vessel -n03095965 containment -n03096439 contrabassoon, contrafagotto, double bassoon -n03096960 control, controller -n03097362 control center -n03097535 control circuit, negative feedback circuit -n03097673 control key, command key -n03098140 control panel, instrument panel, control board, board, panel -n03098515 control rod -n03098688 control room -n03098806 control system -n03098959 control tower -n03099147 convector -n03099274 convenience store -n03099454 convent -n03099622 conventicle, meetinghouse -n03099771 converging lens, convex lens -n03099945 converter, convertor -n03100240 convertible -n03100346 convertible, sofa bed -n03100490 conveyance, transport -n03100897 conveyer belt, conveyor belt, conveyer, conveyor, transporter -n03101156 cooker -n03101302 cookfire -n03101375 cookhouse -n03101517 cookie cutter -n03101664 cookie jar, cooky jar -n03101796 cookie sheet, baking tray -n03101986 cooking utensil, cookware -n03102371 cookstove -n03102516 coolant system -n03102654 cooler, ice chest -n03102859 cooling system, cooling -n03103128 cooling system, engine cooling system -n03103396 cooling tower -n03103563 coonskin cap, coonskin -n03103904 cope -n03104019 coping saw -n03104512 copperware -n03105088 copyholder -n03105214 coquille -n03105306 coracle -n03105467 corbel, truss -n03105645 corbel arch -n03105810 corbel step, corbie-step, corbiestep, crow step -n03105974 corbie gable -n03106722 cord, corduroy -n03106898 cord, electric cord -n03107046 cordage -n03107488 cords, corduroys -n03107716 core -n03108455 core bit -n03108624 core drill -n03108759 corer -n03108853 cork, bottle cork -n03109033 corker -n03109150 corkscrew, bottle screw -n03109253 corncrib -n03109693 corner, quoin -n03109881 corner, nook -n03110202 corner post -n03110669 cornet, horn, trumpet, trump -n03111041 cornice -n03111177 cornice -n03111296 cornice, valance, valance board, pelmet -n03111690 correctional institution -n03112240 corrugated fastener, wiggle nail -n03112719 corselet, corslet -n03112869 corset, girdle, stays -n03113152 cosmetic -n03113505 cosmotron -n03113657 costume -n03113835 costume -n03114041 costume -n03114236 costume -n03114379 cosy, tea cosy, cozy, tea cozy -n03114504 cot, camp bed -n03114743 cottage tent -n03114839 cotter, cottar -n03115014 cotter pin -n03115180 cotton -n03115400 cotton flannel, Canton flannel -n03115663 cotton mill -n03115762 couch -n03115897 couch -n03116008 couchette -n03116163 coude telescope, coude system -n03116530 counter -n03116767 counter, tabulator -n03117199 counter -n03117642 counterbore, countersink, countersink bit -n03118346 counter tube -n03118969 country house -n03119203 country store, general store, trading post -n03119396 coupe -n03119510 coupling, coupler -n03120198 court, courtyard -n03120491 court -n03120778 court, courtroom -n03121040 court -n03121190 Courtelle -n03121298 courthouse -n03121431 courthouse -n03121897 coverall -n03122073 covered bridge -n03122202 covered couch -n03122295 covered wagon, Conestoga wagon, Conestoga, prairie wagon, prairie schooner -n03122748 covering -n03123553 coverlet -n03123666 cover plate -n03123809 cowbarn, cowshed, cow barn, cowhouse, byre -n03123917 cowbell -n03124043 cowboy boot -n03124170 cowboy hat, ten-gallon hat -n03124313 cowhide -n03124474 cowl -n03124590 cow pen, cattle pen, corral -n03125057 CPU board, mother board -n03125588 crackle, crackleware, crackle china -n03125729 cradle -n03125870 craft -n03126090 cramp, cramp iron -n03126385 crampon, crampoon, climbing iron, climber -n03126580 crampon, crampoon -n03126707 crane -n03126927 craniometer -n03127024 crank, starter -n03127203 crankcase -n03127408 crankshaft -n03127531 crash barrier -n03127747 crash helmet -n03127925 crate -n03128085 cravat -n03128248 crayon, wax crayon -n03128427 crazy quilt -n03128519 cream, ointment, emollient -n03129001 cream pitcher, creamer -n03129471 creche, foundling hospital -n03129636 creche -n03129753 credenza, credence -n03129848 creel -n03130066 crematory, crematorium, cremation chamber -n03130233 crematory, crematorium -n03130563 crepe, crape -n03130761 crepe de Chine -n03130866 crescent wrench -n03131193 cretonne -n03131574 crib, cot -n03131669 crib -n03131967 cricket ball -n03132076 cricket bat, bat -n03132261 cricket equipment -n03132438 cringle, eyelet, loop, grommet, grummet -n03132666 crinoline -n03132776 crinoline -n03133050 crochet needle, crochet hook -n03133415 crock, earthenware jar -n03133878 Crock Pot -n03134118 crook, shepherd's crook -n03134232 Crookes radiometer -n03134394 Crookes tube -n03134739 croquet ball -n03134853 croquet equipment -n03135030 croquet mallet -n03135532 cross -n03135656 crossbar -n03135788 crossbar -n03135917 crossbar -n03136051 crossbench -n03136254 cross bit -n03136369 crossbow -n03136504 crosscut saw, crosscut handsaw, cutoff saw -n03137473 crossjack, mizzen course -n03137579 crosspiece -n03138128 crotchet -n03138217 croupier's rake -n03138344 crowbar, wrecking bar, pry, pry bar -n03138669 crown, diadem -n03139089 crown, crownwork, jacket, jacket crown, cap -n03139464 crown jewels -n03139640 crown lens -n03139998 crow's nest -n03140126 crucible, melting pot -n03140292 crucifix, rood, rood-tree -n03140431 cruet, crewet -n03140546 cruet-stand -n03140652 cruise control -n03140771 cruise missile -n03140900 cruiser -n03141065 cruiser, police cruiser, patrol car, police car, prowl car, squad car -n03141327 cruise ship, cruise liner -n03141455 crupper -n03141612 cruse -n03141702 crusher -n03141823 crutch -n03142099 cryometer -n03142205 cryoscope -n03142325 cryostat -n03142431 crypt -n03142679 crystal, watch crystal, watch glass -n03143400 crystal detector -n03143572 crystal microphone -n03143754 crystal oscillator, quartz oscillator -n03144156 crystal set -n03144873 cubitiere -n03144982 cucking stool, ducking stool -n03145147 cuckoo clock -n03145277 cuddy -n03145384 cudgel -n03145522 cue, cue stick, pool cue, pool stick -n03145719 cue ball -n03145843 cuff, turnup -n03146219 cuirass -n03146342 cuisse -n03146449 cul, cul de sac, dead end -n03146560 culdoscope -n03146687 cullis -n03146777 culotte -n03146846 cultivator, tiller -n03147084 culverin -n03147156 culverin -n03147280 culvert -n03147509 cup -n03148324 cupboard, closet -n03148518 cup hook -n03148727 cupola -n03148808 cupola -n03149135 curb, curb bit -n03149401 curb roof -n03149686 curbstone, kerbstone -n03149810 curette, curet -n03150232 curler, hair curler, roller, crimper -n03150511 curling iron -n03150661 currycomb -n03150795 cursor, pointer -n03151077 curtain, drape, drapery, mantle, pall -n03152303 customhouse, customshouse -n03152951 cutaway, cutaway drawing, cutaway model -n03153246 cutlas, cutlass -n03153585 cutoff -n03153948 cutout -n03154073 cutter, cutlery, cutting tool -n03154316 cutter -n03154446 cutting implement -n03154616 cutting room -n03154745 cutty stool -n03154895 cutwork -n03155178 cybercafe -n03155502 cyclopean masonry -n03155915 cyclostyle -n03156071 cyclotron -n03156279 cylinder -n03156405 cylinder, piston chamber -n03156767 cylinder lock -n03157348 cymbal -n03158186 dacha -n03158414 Dacron, Terylene -n03158668 dado -n03158796 dado plane -n03158885 dagger, sticker -n03159535 dairy, dairy farm -n03159640 dais, podium, pulpit, rostrum, ambo, stump, soapbox -n03160001 daisy print wheel, daisy wheel -n03160186 daisywheel printer -n03160309 dam, dike, dyke -n03160740 damask -n03161016 dampener, moistener -n03161450 damper, muffler -n03161893 damper block, piano damper -n03162297 dark lantern, bull's-eye -n03162460 darkroom -n03162556 darning needle, embroidery needle -n03162714 dart -n03162818 dart -n03163222 dashboard, fascia -n03163381 dashiki, daishiki -n03163488 dash-pot -n03163798 data converter -n03163973 data input device, input device -n03164192 data multiplexer -n03164344 data system, information system -n03164605 davenport -n03164722 davenport -n03164929 davit -n03165096 daybed, divan bed -n03165211 daybook, ledger -n03165466 day nursery, day care center -n03165616 day school -n03165823 dead axle -n03165955 deadeye -n03166120 deadhead -n03166514 deanery -n03166600 deathbed -n03166685 death camp -n03166809 death house, death row -n03166951 death knell, death bell -n03167153 death seat -n03167978 deck -n03168107 deck -n03168217 deck chair, beach chair -n03168543 deck-house -n03168663 deckle -n03168774 deckle edge, deckle -n03168933 declinometer, transit declinometer -n03169063 decoder -n03169176 decolletage -n03170292 decoupage -n03170459 dedicated file server -n03170635 deep-freeze, Deepfreeze, deep freezer, freezer -n03170872 deerstalker -n03171228 defense system, defence system -n03171356 defensive structure, defense, defence -n03171635 defibrillator -n03171910 defilade -n03172038 deflector -n03172738 delayed action -n03172965 delay line -n03173270 delft -n03173387 delicatessen, deli, food shop -n03173929 delivery truck, delivery van, panel truck -n03174079 delta wing -n03174450 demijohn -n03174731 demitasse -n03175081 den -n03175189 denim, dungaree, jean -n03175301 densimeter, densitometer -n03175457 densitometer -n03175604 dental appliance -n03175843 dental floss, floss -n03175983 dental implant -n03176238 dentist's drill, burr drill -n03176386 denture, dental plate, plate -n03176594 deodorant, deodourant -n03176763 department store, emporium -n03177059 departure lounge -n03177165 depilatory, depilator, epilator -n03177708 depressor -n03178000 depth finder -n03178173 depth gauge, depth gage -n03178430 derrick -n03178538 derrick -n03178674 derringer -n03179701 desk -n03179910 desk phone -n03180011 desktop computer -n03180384 dessert spoon -n03180504 destroyer, guided missile destroyer -n03180732 destroyer escort -n03180865 detached house, single dwelling -n03180969 detector, sensor, sensing element -n03181293 detector -n03181667 detention home, detention house, house of detention, detention camp -n03182140 detonating fuse -n03182232 detonator, detonating device, cap -n03182912 developer -n03183080 device -n03185868 Dewar flask, Dewar -n03186199 dhoti -n03186285 dhow -n03186818 dial, telephone dial -n03187037 dial -n03187153 dial -n03187268 dialog box, panel -n03187595 dial telephone, dial phone -n03187751 dialyzer, dialysis machine -n03188290 diamante -n03188531 diaper, nappy, napkin -n03188725 diaper -n03188871 diaphone -n03189083 diaphragm, stop -n03189311 diaphragm -n03189818 diathermy machine -n03190458 dibble, dibber -n03191286 dice cup, dice box -n03191451 dicer -n03191561 dickey, dickie, dicky, shirtfront -n03191776 dickey, dickie, dicky, dickey-seat, dickie-seat, dicky-seat -n03192543 Dictaphone -n03192907 die -n03193107 diesel, diesel engine, diesel motor -n03193260 diesel-electric locomotive, diesel-electric -n03193423 diesel-hydraulic locomotive, diesel-hydraulic -n03193597 diesel locomotive -n03193754 diestock -n03194170 differential analyzer -n03194297 differential gear, differential -n03194812 diffuser, diffusor -n03194992 diffuser, diffusor -n03195332 digester -n03195485 diggings, digs, domiciliation, lodgings, pad -n03195799 digital-analog converter, digital-to-analog converter -n03195959 digital audiotape, DAT -n03196062 digital camera -n03196217 digital clock -n03196324 digital computer -n03196598 digital display, alphanumeric display -n03196990 digital subscriber line, DSL -n03197201 digital voltmeter -n03197337 digital watch -n03197446 digitizer, digitiser, analog-digital converter, analog-to-digital converter -n03198223 dilator, dilater -n03198500 dildo -n03199358 dimity -n03199488 dimmer -n03199647 diner -n03199775 dinette -n03199901 dinghy, dory, rowboat -n03200231 dining area -n03200357 dining car, diner, dining compartment, buffet car -n03200539 dining-hall -n03200701 dining room, dining-room -n03200906 dining-room furniture -n03201035 dining-room table -n03201208 dining table, board -n03201529 dinner bell -n03201638 dinner dress, dinner gown, formal, evening gown -n03201776 dinner jacket, tux, tuxedo, black tie -n03201895 dinner napkin -n03201996 dinner pail, dinner bucket -n03202354 dinner table -n03202481 dinner theater, dinner theatre -n03202760 diode, semiconductor diode, junction rectifier, crystal rectifier -n03202940 diode, rectifying tube, rectifying valve -n03203089 dip -n03203806 diplomatic building -n03204134 dipole, dipole antenna -n03204306 dipper -n03204436 dipstick -n03204558 DIP switch, dual inline package switch -n03204955 directional antenna -n03205143 directional microphone -n03205304 direction finder -n03205458 dirk -n03205574 dirndl -n03205669 dirndl -n03205903 dirty bomb -n03206023 discharge lamp -n03206158 discharge pipe -n03206282 disco, discotheque -n03206405 discount house, discount store, discounter, wholesale house -n03206602 discus, saucer -n03206718 disguise -n03206908 dish -n03207305 dish, dish aerial, dish antenna, saucer -n03207548 dishpan -n03207630 dish rack -n03207743 dishrag, dishcloth -n03207835 dishtowel, dish towel, tea towel -n03207941 dishwasher, dish washer, dishwashing machine -n03208556 disk, disc -n03208938 disk brake, disc brake -n03209359 disk clutch -n03209477 disk controller -n03209666 disk drive, disc drive, hard drive, Winchester drive -n03209910 diskette, floppy, floppy disk -n03210245 disk harrow, disc harrow -n03210372 dispatch case, dispatch box -n03210552 dispensary -n03210683 dispenser -n03211117 display, video display -n03211413 display adapter, display adaptor -n03211616 display panel, display board, board -n03211789 display window, shop window, shopwindow, show window -n03212114 disposal, electric pig, garbage disposal -n03212247 disrupting explosive, bursting explosive -n03212406 distaff -n03212811 distillery, still -n03213014 distributor, distributer, electrical distributor -n03213361 distributor cam -n03213538 distributor cap -n03213715 distributor housing -n03213826 distributor point, breaker point, point -n03214253 ditch -n03214450 ditch spade, long-handled spade -n03214582 ditty bag -n03214966 divan -n03215076 divan, diwan -n03215191 dive bomber -n03215337 diverging lens, concave lens -n03215508 divided highway, dual carriageway -n03215749 divider -n03215930 diving bell -n03216199 divining rod, dowser, dowsing rod, waterfinder, water finder -n03216402 diving suit, diving dress -n03216562 dixie -n03216710 Dixie cup, paper cup -n03216828 dock, dockage, docking facility -n03217653 doeskin -n03217739 dogcart -n03217889 doggie bag, doggy bag -n03218198 dogsled, dog sled, dog sleigh -n03218446 dog wrench -n03219010 doily, doyley, doyly -n03219135 doll, dolly -n03219483 dollhouse, doll's house -n03219612 dolly -n03219859 dolman -n03219966 dolman, dolman jacket -n03220095 dolman sleeve -n03220237 dolmen, cromlech, portal tomb -n03220513 dome -n03220692 dome, domed stadium, covered stadium -n03221059 domino, half mask, eye mask -n03221351 dongle -n03221540 donkey jacket -n03221720 door -n03222176 door -n03222318 door -n03222516 doorbell, bell, buzzer -n03222722 doorframe, doorcase -n03222857 doorjamb, doorpost -n03223162 doorlock -n03223299 doormat, welcome mat -n03223441 doornail -n03223553 doorplate -n03223686 doorsill, doorstep, threshold -n03223923 doorstop, doorstopper -n03224490 Doppler radar -n03224603 dormer, dormer window -n03224753 dormer window -n03224893 dormitory, dorm, residence hall, hall, student residence -n03225108 dormitory, dormitory room, dorm room -n03225458 dosemeter, dosimeter -n03225616 dossal, dossel -n03225777 dot matrix printer, matrix printer, dot printer -n03225988 double bed -n03226090 double-bitted ax, double-bitted axe, Western ax, Western axe -n03226254 double boiler, double saucepan -n03226375 double-breasted jacket -n03226538 double-breasted suit -n03226880 double door -n03227010 double glazing -n03227184 double-hung window -n03227317 double knit -n03227721 doubler -n03227856 double reed -n03228016 double-reed instrument, double reed -n03228254 doublet -n03228365 doubletree -n03228533 douche, douche bag -n03228692 dovecote, columbarium, columbary -n03228796 Dover's powder -n03228967 dovetail, dovetail joint -n03229115 dovetail plane -n03229244 dowel, dowel pin, joggle -n03229526 downstage -n03231160 drafting instrument -n03231368 drafting table, drawing table -n03231819 Dragunov -n03232309 drainage ditch -n03232417 drainage system -n03232543 drain basket -n03232815 drainplug -n03232923 drape -n03233123 drapery -n03233624 drawbar -n03233744 drawbridge, lift bridge -n03233905 drawer -n03234164 drawers, underdrawers, shorts, boxers, boxershorts -n03234952 drawing chalk -n03235042 drawing room, withdrawing room -n03235180 drawing room -n03235327 drawknife, drawshave -n03235796 drawstring bag -n03235979 dray, camion -n03236093 dreadnought, dreadnaught -n03236217 dredge -n03236423 dredger -n03236580 dredging bucket -n03236735 dress, frock -n03237212 dress blues, dress whites -n03237340 dresser -n03237416 dress hat, high hat, opera hat, silk hat, stovepipe, top hat, topper, beaver -n03237639 dressing, medical dressing -n03237839 dressing case -n03237992 dressing gown, robe-de-chambre, lounging robe -n03238131 dressing room -n03238286 dressing sack, dressing sacque -n03238586 dressing table, dresser, vanity, toilet table -n03238762 dress rack -n03238879 dress shirt, evening shirt -n03239054 dress suit, full dress, tailcoat, tail coat, tails, white tie, white tie and tails -n03239259 dress uniform -n03239607 drift net -n03239726 drill -n03240140 electric drill -n03240683 drilling platform, offshore rig -n03240892 drill press -n03241093 drill rig, drilling rig, oilrig, oil rig -n03241335 drinking fountain, water fountain, bubbler -n03241496 drinking vessel -n03241903 drip loop -n03242120 drip mat -n03242264 drip pan -n03242390 dripping pan, drip pan -n03242506 drip pot -n03242995 drive -n03243218 drive -n03243625 drive line, drive line system -n03244047 driver, number one wood -n03244231 driveshaft -n03244388 driveway, drive, private road -n03244775 driving iron, one iron -n03244919 driving wheel -n03245271 drogue, drogue chute, drogue parachute -n03245421 drogue parachute -n03245724 drone, drone pipe, bourdon -n03245889 drone, pilotless aircraft, radio-controlled aircraft -n03246197 drop arch -n03246312 drop cloth -n03246454 drop curtain, drop cloth, drop -n03246653 drop forge, drop hammer, drop press -n03246933 drop-leaf table -n03247083 dropper, eye dropper -n03247351 droshky, drosky -n03247495 drove, drove chisel -n03248835 drugget -n03249342 drugstore, apothecary's shop, chemist's, chemist's shop, pharmacy -n03249569 drum, membranophone, tympan -n03249956 drum, metal drum -n03250089 drum brake -n03250279 drumhead, head -n03250405 drum printer -n03250588 drum sander, electric sander, sander, smoother -n03250847 drumstick -n03250952 dry battery -n03251100 dry-bulb thermometer -n03251280 dry cell -n03251533 dry dock, drydock, graving dock -n03251766 dryer, drier -n03251932 dry fly -n03252231 dry kiln -n03252324 dry masonry -n03252422 dry point -n03252637 dry wall, dry-stone wall -n03252787 dual scan display -n03253071 duck -n03253187 duckboard -n03253279 duckpin -n03253714 dudeen -n03253796 duffel, duffle -n03253886 duffel bag, duffle bag, duffel, duffle -n03254046 duffel coat, duffle coat -n03254189 dugout -n03254374 dugout canoe, dugout, pirogue -n03254625 dulciana -n03254737 dulcimer -n03254862 dulcimer -n03255030 dumbbell -n03255167 dumb bomb, gravity bomb -n03255322 dumbwaiter, food elevator -n03255488 dumdum, dumdum bullet -n03255899 dumpcart -n03256032 Dumpster -n03256166 dump truck, dumper, tipper truck, tipper lorry, tip truck, tipper -n03256472 Dumpy level -n03256631 dunce cap, dunce's cap, fool's cap -n03256788 dune buggy, beach buggy -n03256928 dungeon -n03257065 duplex apartment, duplex -n03257210 duplex house, duplex, semidetached house -n03257586 duplicator, copier -n03258192 dust bag, vacuum bag -n03258330 dustcloth, dustrag, duster -n03258456 dust cover -n03258577 dust cover, dust sheet -n03258905 dustmop, dust mop, dry mop -n03259009 dustpan -n03259280 Dutch oven -n03259401 Dutch oven -n03259505 dwelling, home, domicile, abode, habitation, dwelling house -n03260206 dye-works -n03260504 dynamo -n03260733 dynamometer, ergometer -n03260849 Eames chair -n03261019 earflap, earlap -n03261263 early warning radar -n03261395 early warning system -n03261603 earmuff -n03261776 earphone, earpiece, headphone, phone -n03262072 earplug -n03262248 earplug -n03262519 earthenware -n03262717 earthwork -n03262809 easel -n03262932 easy chair, lounge chair, overstuffed chair -n03263076 eaves -n03263338 ecclesiastical attire, ecclesiastical robe -n03263640 echinus -n03263758 echocardiograph -n03264906 edger -n03265032 edge tool -n03265754 efficiency apartment -n03266195 egg-and-dart, egg-and-anchor, egg-and-tongue -n03266371 eggbeater, eggwhisk -n03266620 egg timer -n03266749 eiderdown, duvet, continental quilt -n03267113 eight ball -n03267468 ejection seat, ejector seat, capsule -n03267696 elastic -n03267821 elastic bandage -n03268142 Elastoplast -n03268311 elbow -n03268645 elbow pad -n03268790 electric, electric automobile, electric car -n03268918 electrical cable -n03269073 electrical contact -n03269203 electrical converter -n03269401 electrical device -n03270165 electrical system -n03270695 electric bell -n03270854 electric blanket -n03271030 electric chair, chair, death chair, hot seat -n03271260 electric clock -n03271376 electric-discharge lamp, gas-discharge lamp -n03271574 electric fan, blower -n03271765 electric frying pan -n03271865 electric furnace -n03272010 electric guitar -n03272125 electric hammer -n03272239 electric heater, electric fire -n03272383 electric lamp -n03272562 electric locomotive -n03272810 electric meter, power meter -n03272940 electric mixer -n03273061 electric motor -n03273551 electric organ, electronic organ, Hammond organ, organ -n03273740 electric range -n03273913 electric refrigerator, fridge -n03274265 electric toothbrush -n03274435 electric typewriter -n03274561 electro-acoustic transducer -n03274796 electrode -n03275125 electrodynamometer -n03275311 electroencephalograph -n03275566 electrograph -n03275681 electrolytic, electrolytic capacitor, electrolytic condenser -n03275864 electrolytic cell -n03276179 electromagnet -n03276696 electrometer -n03276839 electromyograph -n03277004 electron accelerator -n03277149 electron gun -n03277459 electronic balance -n03277602 electronic converter -n03277771 electronic device -n03278248 electronic equipment -n03278914 electronic fetal monitor, electronic foetal monitor, fetal monitor, foetal monitor -n03279153 electronic instrument, electronic musical instrument -n03279364 electronic voltmeter -n03279508 electron microscope -n03279804 electron multiplier -n03279918 electrophorus -n03280216 electroscope -n03280394 electrostatic generator, electrostatic machine, Wimshurst machine, Van de Graaff generator -n03280644 electrostatic printer -n03281145 elevator, lift -n03281524 elevator -n03281673 elevator shaft -n03282060 embankment -n03282295 embassy -n03282401 embellishment -n03283221 emergency room, ER -n03283413 emesis basin -n03283827 emitter -n03284308 empty -n03284482 emulsion, photographic emulsion -n03284743 enamel -n03284886 enamel -n03284981 enamelware -n03285578 encaustic -n03285730 encephalogram, pneumoencephalogram -n03285912 enclosure -n03286572 endoscope -n03287351 energizer, energiser -n03287733 engine -n03288003 engine -n03288500 engineering, engine room -n03288643 enginery -n03288742 English horn, cor anglais -n03288886 English saddle, English cavalry saddle -n03289660 enlarger -n03289985 ensemble -n03290096 ensign -n03290195 entablature -n03290653 entertainment center -n03291413 entrenching tool, trenching spade -n03291551 entrenchment, intrenchment -n03291741 envelope -n03291819 envelope -n03291963 envelope, gasbag -n03292085 eolith -n03292362 epauliere -n03292475 epee -n03292603 epergne -n03292736 epicyclic train, epicyclic gear train -n03292960 epidiascope -n03293095 epilating wax -n03293741 equalizer, equaliser -n03293863 equatorial -n03294048 equipment -n03294604 erasable programmable read-only memory, EPROM -n03294833 eraser -n03295012 erecting prism -n03295140 erection -n03295246 Erlenmeyer flask -n03295928 escape hatch -n03296081 escapement -n03296217 escape wheel -n03296328 escarpment, escarp, scarp, protective embankment -n03296478 escutcheon, scutcheon -n03296963 esophagoscope, oesophagoscope -n03297103 espadrille -n03297226 espalier -n03297495 espresso maker -n03297644 espresso shop -n03297735 establishment -n03298089 estaminet -n03298352 estradiol patch -n03298716 etagere -n03298858 etamine, etamin -n03299406 etching -n03300216 ethernet -n03300443 ethernet cable -n03301175 Eton jacket -n03301291 etui -n03301389 eudiometer -n03301568 euphonium -n03301833 evaporative cooler -n03301940 evening bag -n03302671 exercise bike, exercycle -n03302790 exercise device -n03302938 exhaust, exhaust system -n03303217 exhaust fan -n03303669 exhaust valve -n03303831 exhibition hall, exhibition area -n03304197 Exocet -n03304323 expansion bit, expansive bit -n03304465 expansion bolt -n03305300 explosive detection system, EDS -n03305522 explosive device -n03305953 explosive trace detection, ETD -n03306385 express, limited -n03306869 extension, telephone extension, extension phone -n03307037 extension cord -n03307573 external-combustion engine -n03307792 external drive -n03308152 extractor -n03308481 eyebrow pencil -n03308614 eyecup, eyebath, eye cup -n03309110 eyeliner -n03309356 eyepatch, patch -n03309465 eyepiece, ocular -n03309687 eyeshadow -n03309808 fabric, cloth, material, textile -n03313333 facade, frontage, frontal -n03314227 face guard -n03314378 face mask -n03314608 faceplate -n03314780 face powder -n03314884 face veil -n03315644 facing, cladding -n03315805 facing -n03315990 facing, veneer -n03316105 facsimile, facsimile machine, fax -n03316406 factory, mill, manufacturing plant, manufactory -n03316873 factory ship -n03317233 fagot, faggot -n03317510 fagot stitch, faggot stitch -n03317673 Fahrenheit thermometer -n03317788 faience -n03317889 faille -n03318136 fairlead -n03318294 fairy light -n03318865 falchion -n03318983 fallboard, fall-board -n03319167 fallout shelter -n03319457 false face -n03319576 false teeth -n03319745 family room -n03320046 fan -n03320262 fan belt -n03320421 fan blade -n03320519 fancy dress, masquerade, masquerade costume -n03320845 fanion -n03320959 fanlight -n03321103 fanjet, fan-jet, fanjet engine, turbojet, turbojet engine, turbofan, turbofan engine -n03321419 fanjet, fan-jet, turbofan, turbojet -n03321563 fanny pack, butt pack -n03321843 fan tracery -n03321954 fan vaulting -n03322570 farm building -n03322704 farmer's market, green market, greenmarket -n03322836 farmhouse -n03322940 farm machine -n03323096 farmplace, farm-place, farmstead -n03323211 farmyard -n03323319 farthingale -n03323703 fastener, fastening, holdfast, fixing -n03324629 fast reactor -n03324814 fat farm -n03324928 fatigues -n03325088 faucet, spigot -n03325288 fauld -n03325403 fauteuil -n03325584 feather boa, boa -n03325691 featheredge -n03325941 fedora, felt hat, homburg, Stetson, trilby -n03326073 feedback circuit, feedback loop -n03326371 feedlot -n03326475 fell, felled seam -n03326660 felloe, felly -n03326795 felt -n03326948 felt-tip pen, felt-tipped pen, felt tip, Magic Marker -n03327133 felucca -n03327234 fence, fencing -n03327553 fencing mask, fencer's mask -n03327691 fencing sword -n03327841 fender, wing -n03328201 fender, buffer, cowcatcher, pilot -n03329302 Ferris wheel -n03329536 ferrule, collet -n03329663 ferry, ferryboat -n03330002 ferule -n03330665 festoon -n03330792 fetoscope, foetoscope -n03330947 fetter, hobble -n03331077 fez, tarboosh -n03331244 fiber, fibre, vulcanized fiber -n03331599 fiber optic cable, fibre optic cable -n03332005 fiberscope -n03332173 fichu -n03332271 fiddlestick, violin bow -n03332393 field artillery, field gun -n03332591 field coil, field winding -n03332784 field-effect transistor, FET -n03332989 field-emission microscope -n03333129 field glass, glass, spyglass -n03333252 field hockey ball -n03333349 field hospital -n03333610 field house, sports arena -n03333711 field lens -n03333851 field magnet -n03334017 field-sequential color television, field-sequential color TV, field-sequential color television system, field-sequential color TV system -n03334291 field tent -n03334382 fieldwork -n03334492 fife -n03334912 fifth wheel, spare -n03335030 fighter, fighter aircraft, attack aircraft -n03335333 fighting chair -n03335461 fig leaf -n03335846 figure eight, figure of eight -n03336168 figure loom, figured-fabric loom -n03336282 figure skate -n03336575 filament -n03336742 filature -n03336839 file -n03337140 file, file cabinet, filing cabinet -n03337383 file folder -n03337494 file server -n03337822 filigree, filagree, fillagree -n03338287 filling -n03338821 film, photographic film -n03339296 film, plastic film -n03339529 film advance -n03339643 filter -n03340009 filter -n03340723 finder, viewfinder, view finder -n03340923 finery -n03341035 fine-tooth comb, fine-toothed comb -n03341153 finger -n03341297 fingerboard -n03341606 finger bowl -n03342015 finger paint, fingerpaint -n03342127 finger-painting -n03342262 finger plate, escutcheon, scutcheon -n03342432 fingerstall, cot -n03342657 finish coat, finishing coat -n03342863 finish coat, finishing coat -n03342961 finisher -n03343047 fin keel -n03343234 fipple -n03343354 fipple flute, fipple pipe, recorder, vertical flute -n03343560 fire -n03343737 fire alarm, smoke alarm -n03343853 firearm, piece, small-arm -n03344305 fire bell -n03344393 fireboat -n03344509 firebox -n03344642 firebrick -n03344784 fire control radar -n03344935 fire control system -n03345487 fire engine, fire truck -n03345837 fire extinguisher, extinguisher, asphyxiator -n03346135 fire iron -n03346289 fireman's ax, fireman's axe -n03346455 fireplace, hearth, open fireplace -n03347037 fire screen, fireguard -n03347472 fire tongs, coal tongs -n03347617 fire tower -n03348142 firewall -n03348868 firing chamber, gun chamber -n03349020 firing pin -n03349296 firkin -n03349367 firmer chisel -n03349469 first-aid kit -n03349599 first-aid station -n03349771 first base -n03349892 first class -n03350204 fishbowl, fish bowl, goldfish bowl -n03350352 fisherman's bend -n03350456 fisherman's knot, true lover's knot, truelove knot -n03350602 fisherman's lure, fish lure -n03351151 fishhook -n03351262 fishing boat, fishing smack, fishing vessel -n03351434 fishing gear, tackle, fishing tackle, fishing rig, rig -n03351979 fishing rod, fishing pole -n03352232 fish joint -n03352366 fish knife -n03352628 fishnet, fishing net -n03352961 fish slice -n03353281 fitment -n03353951 fixative -n03354207 fixer-upper -n03354903 flag -n03355468 flageolet, treble recorder, shepherd's pipe -n03355768 flagon -n03355925 flagpole, flagstaff -n03356038 flagship -n03356279 flail -n03356446 flambeau -n03356559 flamethrower -n03356858 flange, rim -n03356982 flannel -n03357081 flannel, gabardine, tweed, white -n03357267 flannelette -n03357716 flap, flaps -n03358172 flash, photoflash, flash lamp, flashgun, flashbulb, flash bulb -n03358380 flash -n03358726 flash camera -n03358841 flasher -n03359137 flashlight, torch -n03359285 flashlight battery -n03359436 flash memory -n03359566 flask -n03360133 flat arch, straight arch -n03360300 flatbed -n03360431 flatbed press, cylinder press -n03360622 flat bench -n03360731 flatcar, flatbed, flat -n03361109 flat file -n03361297 flatlet -n03361380 flat panel display, FPD -n03361550 flats -n03361683 flat tip screwdriver -n03362639 fleece -n03362771 fleet ballistic missile submarine -n03362890 fleur-de-lis, fleur-de-lys -n03363363 flight simulator, trainer -n03363549 flintlock -n03363749 flintlock, firelock -n03364008 flip-flop, thong -n03364156 flipper, fin -n03364599 float, plasterer's float -n03364937 floating dock, floating dry dock -n03365231 floatplane, pontoon plane -n03365374 flood, floodlight, flood lamp, photoflood -n03365592 floor, flooring -n03365991 floor, level, storey, story -n03366464 floor -n03366721 floorboard -n03366823 floor cover, floor covering -n03366974 floor joist -n03367059 floor lamp -n03367321 flophouse, dosshouse -n03367410 florist, florist shop, flower store -n03367545 floss -n03367875 flotsam, jetsam -n03367969 flour bin -n03368048 flour mill -n03368352 flowerbed, flower bed, bed of flowers -n03369276 flugelhorn, fluegelhorn -n03369407 fluid drive -n03369512 fluid flywheel -n03369866 flume -n03370387 fluorescent lamp -n03370646 fluoroscope, roentgenoscope -n03371875 flush toilet, lavatory -n03372029 flute, transverse flute -n03372549 flute, flute glass, champagne flute -n03372822 flux applicator -n03372933 fluxmeter -n03373237 fly -n03373611 flying boat -n03373943 flying buttress, arc-boutant -n03374102 flying carpet -n03374282 flying jib -n03374372 fly rod -n03374473 fly tent -n03374570 flytrap -n03374649 flywheel -n03374838 fob, watch chain, watch guard -n03375171 foghorn -n03375329 foglamp -n03375575 foil -n03376159 fold, sheepfold, sheep pen, sheepcote -n03376279 folder -n03376595 folding chair -n03376771 folding door, accordion door -n03376938 folding saw -n03378005 food court -n03378174 food processor -n03378342 food hamper -n03378442 foot -n03378593 footage -n03378765 football -n03379051 football helmet -n03379204 football stadium -n03379343 footbath -n03379719 foot brake -n03379828 footbridge, overcrossing, pedestrian bridge -n03379989 foothold, footing -n03380301 footlocker, locker -n03380647 foot rule -n03380724 footstool, footrest, ottoman, tuffet -n03380867 footwear, footgear -n03381126 footwear -n03381231 forceps -n03381450 force pump -n03381565 fore-and-after -n03381776 fore-and-aft sail -n03382104 forecastle, fo'c'sle -n03382292 forecourt -n03382413 foredeck -n03382533 fore edge, foredge -n03382708 foreground -n03382856 foremast -n03382969 fore plane -n03383099 foresail -n03383211 forestay -n03383378 foretop -n03383468 fore-topmast -n03383562 fore-topsail -n03383821 forge -n03384167 fork -n03384352 forklift -n03384891 formalwear, eveningwear, evening dress, evening clothes -n03385295 Formica -n03385557 fortification, munition -n03386011 fortress, fort -n03386343 forty-five -n03386544 Foucault pendulum -n03386726 foulard -n03386870 foul-weather gear -n03387323 foundation garment, foundation -n03387653 foundry, metalworks -n03388043 fountain -n03388183 fountain pen -n03388323 four-in-hand -n03388549 four-poster -n03388711 four-pounder -n03388990 four-stroke engine, four-stroke internal-combustion engine -n03389611 four-wheel drive, 4WD -n03389761 four-wheel drive, 4WD -n03389889 four-wheeler -n03389983 fowling piece -n03390075 foxhole, fox hole -n03390327 fragmentation bomb, antipersonnel bomb, anti-personnel bomb, daisy cutter -n03390673 frail -n03390786 fraise -n03390983 frame, framing -n03391301 frame -n03391613 frame buffer -n03391770 framework -n03392648 Francis turbine -n03392741 franking machine -n03393017 free house -n03393199 free-reed -n03393324 free-reed instrument -n03393761 freewheel -n03393912 freight car -n03394149 freight elevator, service elevator -n03394272 freight liner, liner train -n03394480 freight train, rattler -n03394649 French door -n03394916 French horn, horn -n03395256 French polish, French polish shellac -n03395401 French roof -n03395514 French window -n03395859 Fresnel lens -n03396074 fret -n03396580 friary -n03396654 friction clutch -n03396997 frieze -n03397087 frieze -n03397266 frigate -n03397412 frigate -n03397532 frill, flounce, ruffle, furbelow -n03397947 Frisbee -n03398153 frock -n03398228 frock coat -n03399579 frontlet, frontal -n03399677 front porch -n03399761 front projector -n03399971 fruit machine -n03400231 frying pan, frypan, skillet -n03400972 fuel filter -n03401129 fuel gauge, fuel indicator -n03401279 fuel injection, fuel injection system -n03401721 fuel system -n03402188 full-dress uniform -n03402369 full metal jacket -n03402511 full skirt -n03402785 fumigator -n03402941 funeral home, funeral parlor, funeral parlour, funeral chapel, funeral church, funeral-residence -n03403643 funnel -n03404012 funny wagon -n03404149 fur -n03404251 fur coat -n03404360 fur hat -n03404449 furnace -n03404900 furnace lining, refractory -n03405111 furnace room -n03405265 furnishing -n03405595 furnishing, trappings -n03405725 furniture, piece of furniture, article of furniture -n03406759 fur-piece -n03406966 furrow -n03407369 fuse, electrical fuse, safety fuse -n03407865 fusee drive, fusee -n03408054 fuselage -n03408264 fusil -n03408340 fustian -n03408444 futon -n03409297 gabardine -n03409393 gable, gable end, gable wall -n03409591 gable roof, saddle roof, saddleback, saddleback roof -n03409920 gadgetry -n03410022 gaff -n03410147 gaff -n03410303 gaff -n03410423 gaffsail, gaff-headed sail -n03410571 gaff topsail, fore-and-aft topsail -n03410740 gag, muzzle -n03410938 gaiter -n03411079 gaiter -n03411208 Galilean telescope -n03411339 galleon -n03411927 gallery -n03412058 gallery, art gallery, picture gallery -n03412220 galley, ship's galley, caboose, cookhouse -n03412387 galley -n03412511 galley -n03412906 gallows -n03413124 gallows tree, gallows-tree, gibbet, gallous -n03413264 galvanometer -n03413428 gambling house, gambling den, gambling hell, gaming house -n03413684 gambrel, gambrel roof -n03413828 game -n03414029 gamebag -n03414162 game equipment -n03414676 gaming table -n03415252 gamp, brolly -n03415486 gangplank, gangboard, gangway -n03415626 gangsaw -n03415749 gangway -n03415868 gantlet -n03416094 gantry, gauntry -n03416489 garage -n03416640 garage, service department -n03416775 Garand rifle, Garand, M-1, M-1 rifle -n03416900 garbage -n03417042 garbage truck, dustcart -n03417202 garboard, garboard plank, garboard strake -n03417345 garden -n03417749 garden -n03417970 garden rake -n03418158 garden spade -n03418242 garden tool, lawn tool -n03418402 garden trowel -n03418618 gargoyle -n03418749 garibaldi -n03418915 garlic press -n03419014 garment -n03420345 garment bag -n03420801 garrison cap, overseas cap -n03420935 garrote, garotte, garrotte, iron collar -n03421117 garter, supporter -n03421324 garter belt, suspender belt -n03421485 garter stitch -n03421669 gas guzzler -n03421768 gas shell -n03421960 gas bracket -n03422072 gas burner, gas jet -n03422484 gas-cooled reactor -n03422589 gas-discharge tube -n03422771 gas engine -n03423099 gas fixture -n03423224 gas furnace -n03423306 gas gun -n03423479 gas heater -n03423568 gas holder, gasometer -n03423719 gasket -n03423877 gas lamp -n03424204 gas maser -n03424325 gasmask, respirator, gas helmet -n03424489 gas meter, gasometer -n03424630 gasoline engine, petrol engine -n03424862 gasoline gauge, gasoline gage, gas gauge, gas gage, petrol gauge, petrol gage -n03425241 gas oven -n03425325 gas oven -n03425413 gas pump, gasoline pump, petrol pump, island dispenser -n03425595 gas range, gas stove, gas cooker -n03425769 gas ring -n03426134 gas tank, gasoline tank, petrol tank -n03426285 gas thermometer, air thermometer -n03426462 gastroscope -n03426574 gas turbine -n03426871 gas-turbine ship -n03427202 gat, rod -n03427296 gate -n03428090 gatehouse -n03428226 gateleg table -n03428349 gatepost -n03429003 gathered skirt -n03429137 Gatling gun -n03429288 gauge, gage -n03429682 gauntlet, gantlet -n03429771 gauntlet, gantlet, metal glove -n03429914 gauze, netting, veiling -n03430091 gauze, gauze bandage -n03430313 gavel -n03430418 gazebo, summerhouse -n03430551 gear, gear wheel, geared wheel, cogwheel -n03430959 gear, paraphernalia, appurtenance -n03431243 gear, gear mechanism -n03431570 gearbox, gear box, gear case -n03431745 gearing, gear, geartrain, power train, train -n03432061 gearset -n03432129 gearshift, gearstick, shifter, gear lever -n03432360 Geiger counter, Geiger-Muller counter -n03432509 Geiger tube, Geiger-Muller tube -n03433247 gene chip, DNA chip -n03433637 general-purpose bomb, GP bomb -n03433877 generator -n03434188 generator -n03434285 generator -n03434830 Geneva gown -n03435593 geodesic dome -n03435743 georgette -n03435991 gharry -n03436075 ghat -n03436182 ghetto blaster, boom box -n03436417 gift shop, novelty shop -n03436549 gift wrapping -n03436656 gig -n03436772 gig -n03436891 gig -n03436990 gig -n03437184 gildhall -n03437295 gill net -n03437430 gilt, gilding -n03437581 gimbal -n03437741 gingham -n03437829 girandole, girandola -n03437941 girder -n03438071 girdle, cincture, sash, waistband, waistcloth -n03438257 glass, drinking glass -n03438661 glass -n03438780 glass cutter -n03438863 glasses case -n03439348 glebe house -n03439631 Glengarry -n03439814 glider, sailplane -n03440216 Global Positioning System, GPS -n03440682 glockenspiel, orchestral bells -n03440876 glory hole, lazaretto -n03441112 glove -n03441345 glove compartment -n03441465 glow lamp -n03441582 glow tube -n03442288 glyptic art, glyptography -n03442487 glyptics, lithoglyptics -n03442597 gnomon -n03442756 goal -n03443005 goalmouth -n03443149 goalpost -n03443371 goblet -n03443543 godown -n03443912 goggles -n03444034 go-kart -n03445326 gold plate -n03445617 golf bag -n03445777 golf ball -n03445924 golfcart, golf cart -n03446070 golf club, golf-club, club -n03446268 golf-club head, club head, club-head, clubhead -n03446832 golf equipment -n03447075 golf glove -n03447358 golliwog, golliwogg -n03447447 gondola -n03447721 gong, tam-tam -n03447894 goniometer -n03448031 Gordian knot -n03448590 gorget -n03448696 gossamer -n03448956 Gothic arch -n03449217 gouache -n03449309 gouge -n03449451 gourd, calabash -n03449564 government building -n03449858 government office -n03450230 gown -n03450516 gown, robe -n03450734 gown, surgical gown, scrubs -n03450881 grab -n03450974 grab bag -n03451120 grab bar -n03451253 grace cup -n03451365 grade separation -n03451711 graduated cylinder -n03451798 graffito, graffiti -n03452267 gramophone, acoustic gramophone -n03452449 granary, garner -n03452594 grandfather clock, longcase clock -n03452741 grand piano, grand -n03453231 graniteware -n03453320 granny knot, granny -n03453443 grape arbor, grape arbour -n03454110 grapnel, grapnel anchor -n03454211 grapnel, grapple, grappler, grappling hook, grappling iron -n03454442 grass skirt -n03454536 grate, grating -n03454707 grate, grating -n03454885 grater -n03455355 graver, graving tool, pointel, pointrel -n03455488 gravestone, headstone, tombstone -n03455642 gravimeter, gravity meter -n03455802 gravure, photogravure, heliogravure -n03456024 gravy boat, gravy holder, sauceboat, boat -n03456186 grey, gray -n03456299 grease-gun, gun -n03456447 greasepaint -n03456548 greasy spoon -n03456665 greatcoat, overcoat, topcoat -n03457008 great hall -n03457451 greave, jambeau -n03457686 greengrocery -n03457902 greenhouse, nursery, glasshouse -n03458271 grenade -n03458422 grid, gridiron -n03459328 griddle -n03459591 grill, grille, grillwork -n03459775 grille, radiator grille -n03459914 grillroom, grill -n03460040 grinder -n03460147 grinding wheel, emery wheel -n03460297 grindstone -n03460455 gripsack -n03460899 gristmill -n03461288 grocery bag -n03461385 grocery store, grocery, food market, market -n03461651 grogram -n03461882 groined vault -n03461988 groover -n03462110 grosgrain -n03462315 gros point -n03462747 ground, earth -n03462972 ground bait -n03463185 ground control -n03463381 ground floor, first floor, ground level -n03463666 groundsheet, ground cloth -n03464053 G-string, thong -n03464467 guard, safety, safety device -n03464628 guard boat -n03464952 guardroom -n03465040 guardroom -n03465151 guard ship -n03465320 guard's van -n03465426 gueridon -n03465500 Guarnerius -n03465605 guesthouse -n03465718 guestroom -n03465818 guidance system, guidance device -n03466162 guided missile -n03466493 guided missile cruiser -n03466600 guided missile frigate -n03466839 guildhall -n03466947 guilloche -n03467068 guillotine -n03467254 guimpe -n03467380 guimpe -n03467517 guitar -n03467796 guitar pick -n03467887 gulag -n03467984 gun -n03468570 gunboat -n03468696 gun carriage -n03468821 gun case -n03469031 gun emplacement, weapons emplacement -n03469175 gun enclosure, gun turret, turret -n03469493 gunlock, firing mechanism -n03469832 gunnery -n03469903 gunnysack, gunny sack, burlap bag -n03470005 gun pendulum -n03470222 gun room -n03470387 gunsight, gun-sight -n03470629 gun trigger, trigger -n03470948 gurney -n03471030 gusher -n03471190 gusset, inset -n03471347 gusset, gusset plate -n03471779 guy, guy cable, guy wire, guy rope -n03472232 gymnastic apparatus, exerciser -n03472535 gym shoe, sneaker, tennis shoe -n03472672 gym suit -n03472796 gymslip -n03472937 gypsy cab -n03473078 gyrocompass -n03473227 gyroscope, gyro -n03473465 gyrostabilizer, gyrostabiliser -n03473817 habergeon -n03473966 habit -n03474167 habit, riding habit -n03474352 hacienda -n03474779 hacksaw, hack saw, metal saw -n03474896 haft, helve -n03475581 hairbrush -n03475674 haircloth, hair -n03475823 hairdressing, hair tonic, hair oil, hair grease -n03475961 hairnet -n03476083 hairpiece, false hair, postiche -n03476313 hairpin -n03476542 hair shirt -n03476684 hair slide -n03476991 hair spray -n03477143 hairspring -n03477303 hair trigger -n03477410 halberd -n03477512 half binding -n03477773 half hatchet -n03477902 half hitch -n03478589 half track -n03478756 hall -n03478907 hall -n03479121 hall -n03479266 Hall of Fame -n03479397 hall of residence -n03479502 hallstand -n03480579 halter -n03480719 halter, hackamore -n03480973 hame -n03481172 hammer -n03481521 hammer, power hammer -n03482001 hammer -n03482128 hammerhead -n03482252 hammock, sack -n03482405 hamper -n03482523 hand -n03482877 handball -n03483086 handbarrow -n03483230 handbell -n03483316 hand blower, blow dryer, blow drier, hair dryer, hair drier -n03483531 handbow -n03483637 hand brake, emergency, emergency brake, parking brake -n03483823 hand calculator, pocket calculator -n03483971 handcar -n03484083 handcart, pushcart, cart, go-cart -n03484487 hand cream -n03484576 handcuff, cuff, handlock, manacle -n03484809 hand drill, handheld drill -n03484931 hand glass, simple microscope, magnifying glass -n03485198 hand glass, hand mirror -n03485309 hand grenade -n03485407 hand-held computer, hand-held microcomputer -n03485575 handhold -n03485794 handkerchief, hankie, hanky, hankey -n03487090 handlebar -n03487331 handloom -n03487444 hand lotion -n03487533 hand luggage -n03487642 hand-me-down -n03487774 hand mower -n03487886 hand pump -n03488111 handrest -n03488188 handsaw, hand saw, carpenter's saw -n03488438 handset, French telephone -n03488603 hand shovel -n03488784 handspike -n03488887 handstamp, rubber stamp -n03489048 hand throttle -n03489162 hand tool -n03490006 hand towel, face towel -n03490119 hand truck, truck -n03490324 handwear, hand wear -n03490449 handwheel -n03490649 handwheel -n03490784 hangar queen -n03490884 hanger -n03491032 hang glider -n03491724 hangman's rope, hangman's halter, halter, hemp, hempen necktie -n03491988 hank -n03492087 hansom, hansom cab -n03492250 harbor, harbour -n03492542 hard disc, hard disk, fixed disk -n03492922 hard hat, tin hat, safety hat -n03493219 hardtop -n03493792 hardware, ironware -n03493911 hardware store, ironmonger, ironmonger's shop -n03494278 harmonica, mouth organ, harp, mouth harp -n03494537 harmonium, organ, reed organ -n03494706 harness -n03495039 harness -n03495258 harp -n03495570 harp -n03495671 harpoon -n03495941 harpoon gun -n03496183 harpoon log -n03496296 harpsichord, cembalo -n03496486 Harris Tweed -n03496612 harrow -n03496892 harvester, reaper -n03497100 hash house -n03497352 hasp -n03497657 hat, chapeau, lid -n03498441 hatbox -n03498536 hatch -n03498662 hatchback, hatchback door -n03498781 hatchback -n03498866 hatchel, heckle -n03498962 hatchet -n03499354 hatpin -n03499468 hauberk, byrnie -n03499907 Hawaiian guitar, steel guitar -n03500090 hawse, hawsehole, hawsepipe -n03500209 hawser -n03500295 hawser bend -n03500389 hay bale -n03500457 hayfork -n03500557 hayloft, haymow, mow -n03500699 haymaker, hay conditioner -n03500838 hayrack, hayrig -n03500971 hayrack -n03501152 hazard -n03501288 head -n03501520 head -n03501614 head -n03502200 headboard -n03502331 head covering, veil -n03502509 headdress, headgear -n03502777 header -n03502897 header -n03503097 header, coping, cope -n03503233 header, lintel -n03503358 headfast -n03503477 head gasket -n03503567 head gate -n03503718 headgear -n03503997 headlight, headlamp -n03504205 headpiece -n03504293 headpin, kingpin -n03504723 headquarters, central office, main office, home office, home base -n03505015 headrace -n03505133 headrest -n03505383 headsail -n03505504 headscarf -n03505667 headset -n03505764 head shop -n03506028 headstall, headpiece -n03506184 headstock -n03506370 health spa, spa, health club -n03506560 hearing aid, ear trumpet -n03506727 hearing aid, deaf-aid -n03506880 hearse -n03507241 hearth, fireside -n03507458 hearthrug -n03507658 heart-lung machine -n03507963 heat engine -n03508101 heater, warmer -n03508485 heat exchanger -n03508881 heating pad, hot pad -n03509394 heat lamp, infrared lamp -n03509608 heat pump -n03509843 heat-seeking missile -n03510072 heat shield -n03510244 heat sink -n03510384 heaume -n03510487 heaver -n03510583 heavier-than-air craft -n03510866 heckelphone, basset oboe -n03510987 hectograph, heliotype -n03511175 hedge, hedgerow -n03511333 hedge trimmer -n03512030 helicon, bombardon -n03512147 helicopter, chopper, whirlybird, eggbeater -n03512452 heliograph -n03512624 heliometer -n03512911 helm -n03513137 helmet -n03513376 helmet -n03514129 hematocrit, haematocrit -n03514340 hemming-stitch -n03514451 hemostat, haemostat -n03514693 hemstitch, hemstitching -n03514894 henroost -n03515338 heraldry -n03515934 hermitage -n03516266 herringbone -n03516367 herringbone, herringbone pattern -n03516647 Herschelian telescope, off-axis reflector -n03516844 Hessian boot, hessian, jackboot, Wellington, Wellington boot -n03516996 heterodyne receiver, superheterodyne receiver, superhet -n03517509 hibachi -n03517647 hideaway, retreat -n03517760 hi-fi, high fidelity sound system -n03517899 high altar -n03517982 high-angle gun -n03518135 highball glass -n03518230 highboard -n03518305 highboy, tallboy -n03518445 highchair, feeding chair -n03518631 high gear, high -n03518829 high-hat cymbal, high hat -n03518943 highlighter -n03519081 highlighter -n03519226 high-pass filter -n03519387 high-rise, tower block -n03519674 high table -n03519848 high-warp loom -n03520493 hijab -n03521076 hinge, flexible joint -n03521431 hinging post, swinging post -n03521544 hip boot, thigh boot -n03521675 hipflask, pocket flask -n03521771 hip pad -n03521899 hip pocket -n03522003 hippodrome -n03522100 hip roof, hipped roof -n03522634 hitch -n03522863 hitch -n03522990 hitching post -n03523134 hitchrack, hitching bar -n03523398 hob -n03523506 hobble skirt -n03523987 hockey skate -n03524150 hockey stick -n03524287 hod -n03524425 hodoscope -n03524574 hoe -n03524745 hoe handle -n03524976 hogshead -n03525074 hoist -n03525252 hold, keep -n03525454 holder -n03525693 holding cell -n03525827 holding device -n03526062 holding pen, holding paddock, holding yard -n03527149 hollowware, holloware -n03527444 holster -n03527565 holster -n03527675 holy of holies, sanctum sanctorum -n03528100 home, nursing home, rest home -n03528263 home appliance, household appliance -n03528523 home computer -n03528901 home plate, home base, home, plate -n03529175 home room, homeroom -n03529444 homespun -n03529629 homestead -n03529860 home theater, home theatre -n03530189 homing torpedo -n03530511 hone -n03530642 honeycomb -n03530910 hood, bonnet, cowl, cowling -n03531281 hood -n03531447 hood -n03531546 hood, exhaust hood -n03531691 hood -n03531982 hood latch -n03532342 hook -n03532672 hook, claw -n03532919 hook -n03533014 hookah, narghile, nargileh, sheesha, shisha, chicha, calean, kalian, water pipe, hubble-bubble, hubbly-bubbly -n03533392 hook and eye -n03533486 hookup, assemblage -n03533654 hookup -n03533845 hook wrench, hook spanner -n03534580 hoopskirt, crinoline -n03534695 hoosegow, hoosgow -n03534776 Hoover -n03535024 hope chest, wedding chest -n03535284 hopper -n03535647 hopsacking, hopsack -n03535780 horizontal bar, high bar -n03536122 horizontal stabilizer, horizontal stabiliser, tailplane -n03536568 horizontal tail -n03536761 horn -n03537085 horn -n03537241 horn -n03537412 horn button -n03537550 hornpipe, pibgorn, stockhorn -n03538037 horse, gymnastic horse -n03538179 horsebox -n03538300 horsecar -n03538406 horse cart, horse-cart -n03538542 horsecloth -n03538634 horse-drawn vehicle -n03538817 horsehair -n03538957 horsehair wig -n03539103 horseless carriage -n03539293 horse pistol, horse-pistol -n03539433 horseshoe, shoe -n03539546 horseshoe -n03539678 horse-trail -n03539754 horsewhip -n03540090 hose -n03540267 hosiery, hose -n03540476 hospice -n03540595 hospital, infirmary -n03540914 hospital bed -n03541091 hospital room -n03541269 hospital ship -n03541393 hospital train -n03541537 hostel, youth hostel, student lodging -n03541696 hostel, hostelry, inn, lodge, auberge -n03541923 hot-air balloon -n03542333 hotel -n03542605 hotel-casino, casino-hotel -n03542727 hotel-casino, casino-hotel -n03542860 hotel room -n03543012 hot line -n03543112 hot pants -n03543254 hot plate, hotplate -n03543394 hot rod, hot-rod -n03543511 hot spot, hotspot -n03543603 hot tub -n03543735 hot-water bottle, hot-water bag -n03543945 houndstooth check, hound's-tooth check, dogstooth check, dogs-tooth check, dog's-tooth check -n03544143 hourglass -n03544238 hour hand, little hand -n03544360 house -n03545150 house -n03545470 houseboat -n03545585 houselights -n03545756 house of cards, cardhouse, card-house, cardcastle -n03545961 house of correction -n03546112 house paint, housepaint -n03546235 housetop -n03546340 housing, lodging, living accommodations -n03547054 hovel, hut, hutch, shack, shanty -n03547229 hovercraft, ground-effect machine -n03547397 howdah, houdah -n03547530 huarache, huaraches -n03547861 hub-and-spoke, hub-and-spoke system -n03548086 hubcap -n03548195 huck, huckaback -n03548320 hug-me-tight -n03548402 hula-hoop -n03548533 hulk -n03548626 hull -n03548930 humeral veil, veil -n03549199 Humvee, Hum-Vee -n03549350 hunter, hunting watch -n03549473 hunting knife -n03549589 hurdle -n03549732 hurricane deck, hurricane roof, promenade deck, awning deck -n03549897 hurricane lamp, hurricane lantern, tornado lantern, storm lantern, storm lamp -n03550153 hut, army hut, field hut -n03550289 hutch -n03550420 hutment -n03551084 hydraulic brake, hydraulic brakes -n03551395 hydraulic press -n03551582 hydraulic pump, hydraulic ram -n03551790 hydraulic system -n03552001 hydraulic transmission, hydraulic transmission system -n03552449 hydroelectric turbine -n03552749 hydrofoil, hydroplane -n03553019 hydrofoil, foil -n03553248 hydrogen bomb, H-bomb, fusion bomb, thermonuclear bomb -n03553486 hydrometer, gravimeter -n03554375 hygrodeik -n03554460 hygrometer -n03554645 hygroscope -n03555006 hyperbaric chamber -n03555217 hypercoaster -n03555426 hypermarket -n03555564 hypodermic needle -n03555662 hypodermic syringe, hypodermic, hypo -n03555862 hypsometer -n03555996 hysterosalpingogram -n03556173 I-beam -n03556679 ice ax, ice axe, piolet -n03556811 iceboat, ice yacht, scooter -n03556992 icebreaker, iceboat -n03557270 iced-tea spoon -n03557360 ice hockey rink, ice-hockey rink -n03557590 ice machine -n03557692 ice maker -n03557840 ice pack, ice bag -n03558007 icepick, ice pick -n03558176 ice rink, ice-skating rink, ice -n03558404 ice skate -n03558633 ice tongs -n03558739 icetray -n03559373 iconoscope -n03559531 Identikit, Identikit picture -n03559999 idle pulley, idler pulley, idle wheel -n03560430 igloo, iglu -n03560860 ignition coil -n03561047 ignition key -n03561169 ignition switch -n03561573 imaret -n03562565 immovable bandage -n03563200 impact printer -n03563460 impeller -n03563710 implant -n03563967 implement -n03564849 impression -n03565288 imprint -n03565565 improvised explosive device, I.E.D., IED -n03565710 impulse turbine -n03565830 in-basket, in-tray -n03565991 incendiary bomb, incendiary, firebomb -n03566193 incinerator -n03566329 inclined plane -n03566555 inclinometer, dip circle -n03566730 inclinometer -n03566860 incrustation, encrustation -n03567066 incubator, brooder -n03567635 index register -n03567788 Indiaman -n03567912 Indian club -n03568117 indicator -n03568818 induction coil -n03569014 inductor, inductance -n03569174 industrial watercourse -n03569293 inertial guidance system, inertial navigation system -n03569494 inflater, inflator -n03571280 inhaler, inhalator -n03571439 injector -n03571625 ink bottle, inkpot -n03571853 ink eraser -n03571942 ink-jet printer -n03572107 inkle -n03572205 inkstand -n03572321 inkwell, inkstand -n03572631 inlay -n03573574 inside caliper -n03573848 insole, innersole -n03574243 instep -n03574416 instillator -n03574555 institution -n03574816 instrument -n03575958 instrument of punishment -n03576215 instrument of torture -n03576443 intaglio, diaglyph -n03576955 intake valve -n03577090 integrated circuit, microcircuit -n03577312 integrator, planimeter -n03577474 Intelnet -n03577672 interceptor -n03577818 interchange -n03578055 intercommunication system, intercom -n03578251 intercontinental ballistic missile, ICBM -n03578656 interface, port -n03578981 interferometer -n03579538 interior door -n03579982 internal-combustion engine, ICE -n03580518 internal drive -n03580615 internet, net, cyberspace -n03580845 interphone -n03580990 interrupter -n03581125 intersection, crossroad, crossway, crossing, carrefour -n03581531 interstice -n03581897 intraocular lens -n03582508 intravenous pyelogram, IVP -n03582959 inverter -n03583419 ion engine -n03583621 ionization chamber, ionization tube -n03584254 iPod -n03584400 video iPod -n03584829 iron, smoothing iron -n03585073 iron -n03585337 iron, branding iron -n03585438 irons, chains -n03585551 ironclad -n03585682 iron foundry -n03585778 iron horse -n03585875 ironing -n03586219 iron lung -n03586631 ironmongery -n03586911 ironworks -n03587205 irrigation ditch -n03588216 izar -n03588841 jabot -n03588951 jack -n03589313 jack, jackstones -n03589513 jack -n03589672 jack -n03589791 jacket -n03590306 jacket -n03590475 jacket -n03590588 jack-in-the-box -n03590841 jack-o'-lantern -n03590932 jack plane -n03591116 Jacob's ladder, jack ladder, pilot ladder -n03591313 jaconet -n03591592 Jacquard loom, Jacquard -n03591798 jacquard -n03591901 jag, dag -n03592245 jail, jailhouse, gaol, clink, slammer, poky, pokey -n03592669 jalousie -n03592773 jamb -n03592931 jammer -n03593122 jampot, jamjar -n03593222 japan -n03593526 jar -n03593862 Jarvik heart, Jarvik artificial heart -n03594010 jaunting car, jaunty car -n03594148 javelin -n03594277 jaw -n03594523 Jaws of Life -n03594734 jean, blue jean, denim -n03594945 jeep, landrover -n03595055 jellaba -n03595264 jerkin -n03595409 jeroboam, double-magnum -n03595523 jersey -n03595614 jersey, T-shirt, tee shirt -n03595860 jet, jet plane, jet-propelled plane -n03596099 jet bridge -n03596285 jet engine -n03596543 jetliner -n03597147 jeweler's glass -n03597317 jewelled headdress, jeweled headdress -n03597916 jew's harp, jews' harp, mouth bow -n03598151 jib -n03598299 jibboom -n03598385 jig -n03598515 jig -n03598646 jiggermast, jigger -n03598783 jigsaw, scroll saw, fretsaw -n03598930 jigsaw puzzle -n03599486 jinrikisha, ricksha, rickshaw -n03599964 jobcentre -n03600285 jodhpurs, jodhpur breeches, riding breeches -n03600475 jodhpur, jodhpur boot, jodhpur shoe -n03600722 joinery -n03600977 joint -n03601442 Joint Direct Attack Munition, JDAM -n03601638 jointer, jointer plane, jointing plane, long plane -n03601840 joist -n03602081 jolly boat, jolly -n03602194 jorum -n03602365 joss house -n03602686 journal bearing -n03602790 journal box -n03602883 joystick -n03603442 jungle gym -n03603594 junk -n03603722 jug -n03604156 jukebox, nickelodeon -n03604311 jumbojet, jumbo jet -n03604400 jumper, pinafore, pinny -n03604536 jumper -n03604629 jumper -n03604763 jumper -n03604843 jumper cable, jumper lead, lead, booster cable -n03605417 jump seat -n03605504 jump suit -n03605598 jump suit, jumpsuit -n03605722 junction -n03605915 junction, conjunction -n03606106 junction barrier, barrier strip -n03606251 junk shop -n03606347 jury box -n03606465 jury mast -n03607029 kachina -n03607186 kaffiyeh -n03607527 kalansuwa -n03607659 Kalashnikov -n03607923 kameez -n03608504 kanzu -n03609147 katharometer -n03609235 kayak -n03609397 kazoo -n03609542 keel -n03609786 keelboat -n03609959 keelson -n03610098 keep, donjon, dungeon -n03610418 keg -n03610524 kennel, doghouse, dog house -n03610682 kepi, peaked cap, service cap, yachting cap -n03610836 keratoscope -n03610992 kerchief -n03612010 ketch -n03612814 kettle, boiler -n03612965 kettle, kettledrum, tympanum, tympani, timpani -n03613294 key -n03613592 key -n03614007 keyboard -n03614383 keyboard buffer -n03614532 keyboard instrument -n03614782 keyhole -n03614887 keyhole saw -n03615300 khadi, khaddar -n03615406 khaki -n03615563 khakis -n03615655 khimar -n03615790 khukuri -n03616091 kick pleat -n03616225 kicksorter, pulse height analyzer -n03616428 kickstand -n03616763 kick starter, kick start -n03616979 kid glove, suede glove -n03617095 kiln -n03617312 kilt -n03617480 kimono -n03617594 kinescope, picture tube, television tube -n03617834 Kinetoscope -n03618101 king -n03618339 king -n03618546 kingbolt, kingpin, swivel pin -n03618678 king post -n03618797 Kipp's apparatus -n03618982 kirk -n03619050 kirpan -n03619196 kirtle -n03619275 kirtle -n03619396 kit, outfit -n03619650 kit -n03619793 kitbag, kit bag -n03619890 kitchen -n03620052 kitchen appliance -n03620353 kitchenette -n03620967 kitchen table -n03621049 kitchen utensil -n03621377 kitchenware -n03621694 kite balloon -n03622058 klaxon, claxon -n03622401 klieg light -n03622526 klystron -n03622839 knee brace -n03622931 knee-high, knee-hi -n03623198 knee pad -n03623338 knee piece -n03623556 knife -n03624134 knife -n03624400 knife blade -n03624767 knight, horse -n03625355 knit -n03625539 knitting machine -n03625646 knitting needle -n03625943 knitwear -n03626115 knob, boss -n03626272 knob, pommel -n03626418 knobble -n03626502 knobkerrie, knobkerry -n03626760 knocker, doorknocker, rapper -n03627232 knot -n03627954 knuckle joint, hinge joint -n03628071 kohl -n03628215 koto -n03628421 kraal -n03628511 kremlin -n03628728 kris, creese, crease -n03628831 krummhorn, crumhorn, cromorne -n03628984 Kundt's tube -n03629100 Kurdistan -n03629231 kurta -n03629520 kylix, cylix -n03629643 kymograph, cymograph -n03630262 lab bench, laboratory bench -n03630383 lab coat, laboratory coat -n03631177 lace -n03631811 lacquer -n03631922 lacquerware -n03632100 lacrosse ball -n03632577 ladder-back -n03632729 ladder-back, ladder-back chair -n03632852 ladder truck, aerial ladder truck -n03632963 ladies' room, powder room -n03633091 ladle -n03633341 lady chapel -n03633632 lagerphone -n03633886 lag screw, lag bolt -n03634034 lake dwelling, pile dwelling -n03634899 lally, lally column -n03635032 lamasery -n03635108 lambrequin -n03635330 lame -n03635516 laminar flow clean room -n03635668 laminate -n03635932 lamination -n03636248 lamp -n03636649 lamp -n03637027 lamp house, lamphouse, lamp housing -n03637181 lamppost -n03637318 lampshade, lamp shade -n03637480 lanai -n03637787 lancet arch, lancet -n03637898 lancet window -n03638014 landau -n03638180 lander -n03638623 landing craft -n03638743 landing flap -n03638883 landing gear -n03639077 landing net -n03639230 landing skid -n03639497 land line, landline -n03639675 land mine, ground-emplaced mine, booby trap -n03639880 land office -n03640850 lanolin -n03640988 lantern -n03641569 lanyard, laniard -n03641947 lap, lap covering -n03642144 laparoscope -n03642341 lapboard -n03642444 lapel -n03642573 lap joint, splice -n03642806 laptop, laptop computer -n03643149 laryngoscope -n03643253 laser, optical maser -n03643491 laser-guided bomb, LGB -n03643737 laser printer -n03643907 lash, thong -n03644073 lashing -n03644378 lasso, lariat, riata, reata -n03644858 latch -n03645011 latch, door latch -n03645168 latchet -n03645290 latchkey -n03645577 lateen, lateen sail -n03646020 latex paint, latex, rubber-base paint -n03646148 lath -n03646296 lathe -n03646809 latrine -n03646916 lattice, latticework, fretwork -n03647423 launch -n03647520 launcher, rocket launcher -n03648219 laundry, wash, washing, washables -n03648431 laundry cart -n03648667 laundry truck -n03649003 lavalava -n03649161 lavaliere, lavalier, lavalliere -n03649288 laver -n03649674 lawn chair, garden chair -n03649797 lawn furniture -n03649909 lawn mower, mower -n03650551 layette -n03651388 lead-acid battery, lead-acid accumulator -n03651605 lead-in -n03651843 leading rein -n03652100 lead pencil -n03652389 leaf spring -n03652729 lean-to -n03652826 lean-to tent -n03652932 leash, tether, lead -n03653110 leatherette, imitation leather -n03653220 leather strip -n03653454 Leclanche cell -n03653583 lectern, reading desk -n03653740 lecture room -n03653833 lederhosen -n03653975 ledger board -n03654576 leg -n03654826 leg -n03655072 legging, leging, leg covering -n03655470 Leiden jar, Leyden jar -n03655720 leisure wear -n03656484 lens, lense, lens system -n03656957 lens, electron lens -n03657121 lens cap, lens cover -n03657239 lens implant, interocular lens implant, IOL -n03657511 leotard, unitard, body suit, cat suit -n03658102 letter case -n03658185 letter opener, paper knife, paperknife -n03658635 levee -n03658858 level, spirit level -n03659292 lever -n03659686 lever, lever tumbler -n03659809 lever -n03659950 lever lock -n03660124 Levi's, levis -n03660562 Liberty ship -n03660909 library -n03661043 library -n03661340 lid -n03662301 Liebig condenser -n03662452 lie detector -n03662601 lifeboat -n03662719 life buoy, lifesaver, life belt, life ring -n03662887 life jacket, life vest, cork jacket -n03663433 life office -n03663531 life preserver, preserver, flotation device -n03663910 life-support system, life support -n03664159 life-support system, life support -n03664675 lifting device -n03664840 lift pump -n03664943 ligament -n03665232 ligature -n03665366 light, light source -n03665851 light arm -n03665924 light bulb, lightbulb, bulb, incandescent lamp, electric light, electric-light bulb -n03666238 light circuit, lighting circuit -n03666362 light-emitting diode, LED -n03666591 lighter, light, igniter, ignitor -n03666917 lighter-than-air craft -n03667060 light filter, diffusing screen -n03667235 lighting -n03667552 light machine gun -n03667664 light meter, exposure meter, photometer -n03667829 light microscope -n03668067 lightning rod, lightning conductor -n03668279 light pen, electronic stylus -n03668488 lightship -n03668803 Lilo -n03669245 limber -n03669534 limekiln -n03669886 limiter, clipper -n03670208 limousine, limo -n03671914 linear accelerator, linac -n03672521 linen -n03672827 line printer, line-at-a-time printer -n03673027 liner, ocean liner -n03673270 liner, lining -n03673450 lingerie, intimate apparel -n03673767 lining, liner -n03674270 link, data link -n03674440 linkage -n03674731 Link trainer -n03674842 linocut -n03675076 linoleum knife, linoleum cutter -n03675235 Linotype, Linotype machine -n03675445 linsey-woolsey -n03675558 linstock -n03675907 lion-jaw forceps -n03676087 lip-gloss -n03676483 lipstick, lip rouge -n03676623 liqueur glass -n03676759 liquid crystal display, LCD -n03677115 liquid metal reactor -n03677682 lisle -n03677766 lister, lister plow, lister plough, middlebreaker, middle buster -n03678558 litterbin, litter basket, litter-basket -n03678729 little theater, little theatre -n03678879 live axle, driving axle -n03679384 living quarters, quarters -n03679712 living room, living-room, sitting room, front room, parlor, parlour -n03680248 load -n03680355 Loafer -n03680512 loaner -n03680734 lobe -n03680858 lobster pot -n03680942 local -n03681477 local area network, LAN -n03681813 local oscillator, heterodyne oscillator -n03682380 Lochaber ax -n03682487 lock -n03682877 lock, ignition lock -n03683079 lock, lock chamber -n03683341 lock -n03683457 lockage -n03683606 locker -n03683708 locker room -n03683995 locket -n03684143 lock-gate -n03684224 locking pliers -n03684489 lockring, lock ring, lock washer -n03684611 lockstitch -n03684740 lockup -n03684823 locomotive, engine, locomotive engine, railway locomotive -n03685307 lodge, indian lodge -n03685486 lodge, hunting lodge -n03685640 lodge -n03685820 lodging house, rooming house -n03686130 loft, attic, garret -n03686363 loft, pigeon loft -n03686470 loft -n03686924 log cabin -n03687137 loggia -n03687928 longbow -n03688066 long iron -n03688192 long johns -n03688405 long sleeve -n03688504 long tom -n03688605 long trousers, long pants -n03688707 long underwear, union suit -n03688832 looking glass, glass -n03688943 lookout, observation tower, lookout station, observatory -n03689157 loom -n03689570 loop knot -n03690168 lorgnette -n03690279 Lorraine cross, cross of Lorraine -n03690473 lorry, camion -n03690851 lota -n03690938 lotion -n03691459 loudspeaker, speaker, speaker unit, loudspeaker system, speaker system -n03691817 lounge, waiting room, waiting area -n03692004 lounger -n03692136 lounging jacket, smoking jacket -n03692272 lounging pajama, lounging pyjama -n03692379 loungewear -n03692522 loupe, jeweler's loupe -n03692842 louvered window, jalousie -n03693293 love knot, lovers' knot, lover's knot, true lovers' knot, true lover's knot -n03693474 love seat, loveseat, tete-a-tete, vis-a-vis -n03693707 loving cup -n03693860 lowboy -n03694196 low-pass filter -n03694356 low-warp-loom -n03694639 LP, L-P -n03694761 L-plate -n03694949 lubber's hole -n03695122 lubricating system, force-feed lubricating system, force feed, pressure-feed lubricating system, pressure feed -n03695452 luff -n03695616 lug -n03695753 luge -n03695857 Luger -n03695957 luggage carrier -n03696065 luggage compartment, automobile trunk, trunk -n03696301 luggage rack, roof rack -n03696445 lugger -n03696568 lugsail, lug -n03696746 lug wrench -n03696909 lumberjack, lumber jacket -n03697007 lumbermill, sawmill -n03697366 lunar excursion module, lunar module, LEM -n03697552 lunchroom -n03697812 lunette -n03697913 lungi, lungyi, longyi -n03698123 lunula -n03698226 lusterware -n03698360 lute -n03698604 luxury liner, express luxury liner -n03698723 lyceum -n03698815 lychgate, lichgate -n03699280 lyre -n03699591 machete, matchet, panga -n03699754 machicolation -n03699975 machine -n03700963 machine, simple machine -n03701191 machine bolt -n03701391 machine gun -n03701640 machinery -n03701790 machine screw -n03702248 machine tool -n03702440 machinist's vise, metalworking vise -n03702582 machmeter -n03703075 mackinaw -n03703203 mackinaw, Mackinaw boat -n03703463 mackinaw, Mackinaw coat -n03703590 mackintosh, macintosh -n03703730 macrame -n03703862 madras -n03703945 Mae West, air jacket -n03704549 magazine rack -n03704834 magic lantern -n03705379 magnet -n03705808 magnetic bottle -n03706229 magnetic compass -n03706415 magnetic core memory, core memory -n03706653 magnetic disk, magnetic disc, disk, disc -n03706939 magnetic head -n03707171 magnetic mine -n03707372 magnetic needle -n03707597 magnetic recorder -n03707766 magnetic stripe -n03708036 magnetic tape, mag tape, tape -n03708425 magneto, magnetoelectric machine -n03708843 magnetometer, gaussmeter -n03708962 magnetron -n03709206 magnifier -n03709363 magnum -n03709545 magnus hitch -n03709644 mail -n03709823 mailbag, postbag -n03709960 mailbag, mail pouch -n03710079 mailboat, mail boat, packet, packet boat -n03710193 mailbox, letter box -n03710294 mail car -n03710421 maildrop -n03710528 mailer -n03710637 maillot -n03710721 maillot, tank suit -n03710937 mailsorter -n03711044 mail train -n03711711 mainframe, mainframe computer -n03711999 mainmast -n03712111 main rotor -n03712337 mainsail -n03712444 mainspring -n03712887 main-topmast -n03712981 main-topsail -n03713069 main yard -n03713151 maisonette, maisonnette -n03713436 majolica, maiolica -n03714235 makeup, make-up, war paint -n03715114 Maksutov telescope -n03715275 malacca, malacca cane -n03715386 mallet, beetle -n03715669 mallet, hammer -n03715892 mallet -n03716228 mammogram -n03716887 mandola -n03716966 mandolin -n03717131 manger, trough -n03717285 mangle -n03717447 manhole -n03717622 manhole cover -n03718212 man-of-war, ship of the line -n03718335 manometer -n03718458 manor, manor house -n03718581 manor hall, hall -n03718699 MANPAD -n03718789 mansard, mansard roof -n03718935 manse -n03719053 mansion, mansion house, manse, hall, residence -n03719343 mantel, mantelpiece, mantle, mantlepiece, chimneypiece -n03719560 mantelet, mantilla -n03719743 mantilla -n03720005 Mao jacket -n03720163 map -n03720665 maquiladora -n03720891 maraca -n03721047 marble -n03721252 marching order -n03721384 marimba, xylophone -n03721590 marina -n03722007 marker -n03722288 marketplace, market place, mart, market -n03722646 marlinespike, marlinspike, marlingspike -n03722944 marocain, crepe marocain -n03723153 marquee, marquise -n03723267 marquetry, marqueterie -n03723439 marriage bed -n03723781 martello tower -n03723885 martingale -n03724066 mascara -n03724176 maser -n03724417 masher -n03724538 mashie, five iron -n03724623 mashie niblick, seven iron -n03724756 masjid, musjid -n03724870 mask -n03725035 mask -n03725506 Masonite -n03725600 Mason jar -n03725717 masonry -n03725869 mason's level -n03726116 massage parlor -n03726233 massage parlor -n03726371 mass spectrograph -n03726516 mass spectrometer, spectrometer -n03726760 mast -n03726993 mast -n03727067 mastaba, mastabah -n03727465 master bedroom -n03727605 masterpiece, chef-d'oeuvre -n03727837 mat -n03727946 mat, gym mat -n03728437 match, lucifer, friction match -n03728982 match -n03729131 matchboard -n03729308 matchbook -n03729402 matchbox -n03729482 matchlock -n03729647 match plane, tonguing and grooving plane -n03729826 matchstick -n03729951 material -n03730153 materiel, equipage -n03730334 maternity hospital -n03730494 maternity ward -n03730655 matrix -n03730788 Matthew Walker, Matthew Walker knot -n03730893 matting -n03731019 mattock -n03731483 mattress cover -n03731695 maul, sledge, sledgehammer -n03731882 maulstick, mahlstick -n03732020 Mauser -n03732114 mausoleum -n03732458 maxi -n03732543 Maxim gun -n03732658 maximum and minimum thermometer -n03733131 maypole -n03733281 maze, labyrinth -n03733465 mazer -n03733547 means -n03733644 measure -n03733805 measuring cup -n03733925 measuring instrument, measuring system, measuring device -n03735637 measuring stick, measure, measuring rod -n03735963 meat counter -n03736064 meat grinder -n03736147 meat hook -n03736269 meat house -n03736372 meat safe -n03736470 meat thermometer -n03736970 mechanical device -n03738066 mechanical piano, Pianola, player piano -n03738241 mechanical system -n03738472 mechanism -n03739518 medical building, health facility, healthcare facility -n03739693 medical instrument -n03742019 medicine ball -n03742115 medicine chest, medicine cabinet -n03742238 MEDLINE -n03743016 megalith, megalithic structure -n03743279 megaphone -n03743902 memorial, monument -n03744276 memory, computer memory, storage, computer storage, store, memory board -n03744684 memory chip -n03744840 memory device, storage device -n03745146 menagerie, zoo, zoological garden -n03745487 mending -n03745571 menhir, standing stone -n03746005 menorah -n03746155 Menorah -n03746330 man's clothing -n03746486 men's room, men's -n03748162 mercantile establishment, retail store, sales outlet, outlet -n03749504 mercury barometer -n03749634 mercury cell -n03749807 mercury thermometer, mercury-in-glass thermometer -n03750206 mercury-vapor lamp -n03750437 mercy seat -n03750614 merlon -n03751065 mess, mess hall -n03751269 mess jacket, monkey jacket, shell jacket -n03751458 mess kit -n03751590 messuage -n03751757 metal detector -n03752071 metallic -n03752185 metal screw -n03752398 metal wood -n03752922 meteorological balloon -n03753077 meter -n03753514 meterstick, metrestick -n03757604 metronome -n03758089 mezzanine, mezzanine floor, entresol -n03758220 mezzanine, first balcony -n03758894 microbalance -n03758992 microbrewery -n03759243 microfiche -n03759432 microfilm -n03759661 micrometer, micrometer gauge, micrometer caliper -n03759954 microphone, mike -n03760310 microprocessor -n03760671 microscope -n03760944 microtome -n03761084 microwave, microwave oven -n03761588 microwave diathermy machine -n03761731 microwave linear accelerator -n03762238 middy, middy blouse -n03762332 midiron, two iron -n03762434 mihrab -n03762602 mihrab -n03762982 military hospital -n03763727 military quarters -n03763968 military uniform -n03764276 military vehicle -n03764606 milk bar -n03764736 milk can -n03764822 milk float -n03764995 milking machine -n03765128 milking stool -n03765467 milk wagon, milkwagon -n03765561 mill, grinder, milling machinery -n03765934 milldam -n03766044 miller, milling machine -n03766218 milliammeter -n03766322 millinery, woman's hat -n03766508 millinery, hat shop -n03766600 milling -n03766697 millivoltmeter -n03766935 millstone -n03767112 millstone -n03767203 millwheel, mill wheel -n03767459 mimeograph, mimeo, mimeograph machine, Roneo, Roneograph -n03767745 minaret -n03767966 mincer, mincing machine -n03768132 mine -n03768683 mine detector -n03768823 minelayer -n03768916 mineshaft -n03769610 minibar, cellaret -n03769722 minibike, motorbike -n03769881 minibus -n03770085 minicar -n03770224 minicomputer -n03770316 ministry -n03770439 miniskirt, mini -n03770520 minisub, minisubmarine -n03770679 minivan -n03770834 miniver -n03770954 mink, mink coat -n03772077 minster -n03772269 mint -n03772584 minute hand, big hand -n03772674 Minuteman -n03773035 mirror -n03773504 missile -n03773835 missile defense system, missile defence system -n03774327 miter box, mitre box -n03774461 miter joint, mitre joint, miter, mitre -n03775071 mitten -n03775199 mixer -n03775388 mixer -n03775546 mixing bowl -n03775636 mixing faucet -n03775747 mizzen, mizen -n03775847 mizzenmast, mizenmast, mizzen, mizen -n03776167 mobcap -n03776460 mobile home, manufactured home -n03776877 moccasin, mocassin -n03776997 mock-up -n03777126 mod con -n03777568 Model T -n03777754 modem -n03778459 modillion -n03778817 module -n03779000 module -n03779128 mohair -n03779246 moire, watered-silk -n03779370 mold, mould, cast -n03779884 moldboard, mouldboard -n03780047 moldboard plow, mouldboard plough -n03780799 moleskin -n03781055 Molotov cocktail, petrol bomb, gasoline bomb -n03781244 monastery -n03781467 monastic habit -n03781594 moneybag -n03781683 money belt -n03781787 monitor -n03782006 monitor -n03782190 monitor, monitoring device -n03782794 monkey-wrench, monkey wrench -n03782929 monk's cloth -n03783304 monochrome -n03783430 monocle, eyeglass -n03783575 monofocal lens implant, monofocal IOL -n03783873 monoplane -n03784139 monotype -n03784270 monstrance, ostensorium -n03784793 mooring tower, mooring mast -n03784896 Moorish arch, horseshoe arch -n03785016 moped -n03785142 mop handle -n03785237 moquette -n03785499 morgue, mortuary, dead room -n03785721 morion, cabasset -n03786096 morning dress -n03786194 morning dress -n03786313 morning room -n03786621 Morris chair -n03786715 mortar, howitzer, trench mortar -n03786901 mortar -n03787032 mortarboard -n03787523 mortise joint, mortise-and-tenon joint -n03788047 mosaic -n03788195 mosque -n03788365 mosquito net -n03788498 motel -n03788601 motel room -n03788914 Mother Hubbard, muumuu -n03789171 motion-picture camera, movie camera, cine-camera -n03789400 motion-picture film, movie film, cine-film -n03789603 motley -n03789794 motley -n03789946 motor -n03790230 motorboat, powerboat -n03790512 motorcycle, bike -n03790755 motor hotel, motor inn, motor lodge, tourist court, court -n03790953 motorized wheelchair -n03791053 motor scooter, scooter -n03791235 motor vehicle, automotive vehicle -n03792048 mound, hill -n03792334 mound, hill, pitcher's mound -n03792526 mount, setting -n03792782 mountain bike, all-terrain bike, off-roader -n03792972 mountain tent -n03793489 mouse, computer mouse -n03793850 mouse button -n03794056 mousetrap -n03794136 mousse, hair mousse, hair gel -n03794798 mouthpiece, embouchure -n03795123 mouthpiece -n03795269 mouthpiece, gumshield -n03795758 movement -n03795976 movie projector, cine projector, film projector -n03796181 moving-coil galvanometer -n03796401 moving van -n03796522 mud brick -n03796605 mudguard, splash guard, splash-guard -n03796848 mudhif -n03796974 muff -n03797062 muffle -n03797182 muffler -n03797264 mufti -n03797390 mug -n03797896 mulch -n03798061 mule, scuff -n03798442 multichannel recorder -n03798610 multiengine airplane, multiengine plane -n03798982 multiplex -n03799113 multiplexer -n03799240 multiprocessor -n03799375 multistage rocket, step rocket -n03799610 munition, ordnance, ordnance store -n03799876 Murphy bed -n03800371 musette, shepherd's pipe -n03800485 musette pipe -n03800563 museum -n03800772 mushroom anchor -n03800933 musical instrument, instrument -n03801353 music box, musical box -n03801533 music hall, vaudeville theater, vaudeville theatre -n03801671 music school -n03801760 music stand, music rack -n03801880 music stool, piano stool -n03802007 musket -n03802228 musket ball, ball -n03802393 muslin -n03802643 mustache cup, moustache cup -n03802800 mustard plaster, sinapism -n03802973 mute -n03803116 muzzle loader -n03803284 muzzle -n03803780 myelogram -n03804211 nacelle -n03804744 nail -n03805180 nailbrush -n03805280 nailfile -n03805374 nailhead -n03805503 nailhead -n03805725 nail polish, nail enamel, nail varnish -n03805933 nainsook -n03807334 Napier's bones, Napier's rods -n03809211 nard, spikenard -n03809312 narrowbody aircraft, narrow-body aircraft, narrow-body -n03809603 narrow wale -n03809686 narthex -n03809802 narthex -n03810412 nasotracheal tube -n03810952 national monument -n03811295 nautilus, nuclear submarine, nuclear-powered submarine -n03811444 navigational system -n03811847 naval equipment -n03811965 naval gun -n03812263 naval missile -n03812382 naval radar -n03812789 naval tactical data system -n03812924 naval weaponry -n03813078 nave -n03813176 navigational instrument -n03813946 nebuchadnezzar -n03814528 neckband -n03814639 neck brace -n03814727 neckcloth, stock -n03814817 neckerchief -n03814906 necklace -n03815149 necklet -n03815278 neckline -n03815482 neckpiece -n03815615 necktie, tie -n03816005 neckwear -n03816136 needle -n03816394 needle -n03816530 needlenose pliers -n03816849 needlework, needlecraft -n03817191 negative -n03817331 negative magnetic pole, negative pole, south-seeking pole -n03817522 negative pole -n03817647 negligee, neglige, peignoir, wrapper, housecoat -n03818001 neolith -n03818343 neon lamp, neon induction lamp, neon tube -n03819047 nephoscope -n03819336 nest -n03819448 nest egg -n03819595 net, network, mesh, meshing, meshwork -n03819994 net -n03820154 net -n03820318 net -n03820728 network, electronic network -n03820950 network -n03821145 neutron bomb -n03821424 newel -n03821518 newel post, newel -n03822171 newspaper, paper -n03822361 newsroom -n03822504 newsroom -n03822656 newsstand -n03822767 Newtonian telescope, Newtonian reflector -n03823111 nib, pen nib -n03823216 niblick, nine iron -n03823312 nicad, nickel-cadmium accumulator -n03823673 nickel-iron battery, nickel-iron accumulator -n03823906 Nicol prism -n03824197 night bell -n03824284 nightcap -n03824381 nightgown, gown, nightie, night-robe, nightdress -n03824589 night latch -n03824713 night-light -n03824999 nightshirt -n03825080 nightwear, sleepwear, nightclothes -n03825271 ninepin, skittle, skittle pin -n03825442 ninepin ball, skittle ball -n03825673 ninon -n03825788 nipple -n03825913 nipple shield -n03826039 niqab -n03826186 Nissen hut, Quonset hut -n03827420 nogging -n03827536 noisemaker -n03828020 nonsmoker, nonsmoking car -n03829340 non-volatile storage, nonvolatile storage -n03829857 Norfolk jacket -n03829954 noria -n03831203 nosebag, feedbag -n03831382 noseband, nosepiece -n03831757 nose flute -n03832144 nosewheel -n03832673 notebook, notebook computer -n03833907 nuclear-powered ship -n03834040 nuclear reactor, reactor -n03834472 nuclear rocket -n03834604 nuclear weapon, atomic weapon -n03835197 nude, nude painting -n03835729 numdah, numdah rug, nammad -n03835941 nun's habit -n03836062 nursery, baby's room -n03836451 nut and bolt -n03836602 nutcracker -n03836906 nylon -n03836976 nylons, nylon stocking, rayons, rayon stocking, silk stocking -n03837422 oar -n03837606 oast -n03837698 oast house -n03837869 obelisk -n03838024 object ball -n03838298 objective, objective lens, object lens, object glass -n03838748 oblique bandage -n03838899 oboe, hautboy, hautbois -n03839172 oboe da caccia -n03839276 oboe d'amore -n03839424 observation dome -n03839671 observatory -n03839795 obstacle -n03840327 obturator -n03840681 ocarina, sweet potato -n03840823 octant -n03841011 odd-leg caliper -n03841143 odometer, hodometer, mileometer, milometer -n03841290 oeil de boeuf -n03841666 office, business office -n03842012 office building, office block -n03842156 office furniture -n03842276 officer's mess -n03842377 off-line equipment, auxiliary equipment -n03842585 ogee, cyma reversa -n03842754 ogee arch, keel arch -n03842986 ohmmeter -n03843092 oil, oil color, oil colour -n03843316 oilcan -n03843438 oilcloth -n03843555 oil filter -n03843883 oil heater, oilstove, kerosene heater, kerosine heater -n03844045 oil lamp, kerosene lamp, kerosine lamp -n03844233 oil paint -n03844550 oil pump -n03844673 oil refinery, petroleum refinery -n03844815 oilskin, slicker -n03844965 oil slick -n03845107 oilstone -n03845190 oil tanker, oiler, tanker, tank ship -n03845990 old school tie -n03846100 olive drab -n03846234 olive drab, olive-drab uniform -n03846431 Olympian Zeus -n03846677 omelet pan, omelette pan -n03846772 omnidirectional antenna, nondirectional antenna -n03846970 omnirange, omnidirectional range, omnidirectional radio range -n03847471 onion dome -n03847823 open-air market, open-air marketplace, market square -n03848033 open circuit -n03848168 open-end wrench, tappet wrench -n03848348 opener -n03848537 open-hearth furnace -n03849275 openside plane, rabbet plane -n03849412 open sight -n03849679 openwork -n03849814 opera, opera house -n03849943 opera cloak, opera hood -n03850053 operating microscope -n03850245 operating room, OR, operating theater, operating theatre, surgery -n03850492 operating table -n03850613 ophthalmoscope -n03851341 optical device -n03851787 optical disk, optical disc -n03852280 optical instrument -n03852544 optical pyrometer, pyroscope -n03852688 optical telescope -n03853291 orchestra pit, pit -n03853924 ordinary, ordinary bicycle -n03854065 organ, pipe organ -n03854421 organdy, organdie -n03854506 organic light-emitting diode, OLED -n03854722 organ loft -n03854815 organ pipe, pipe, pipework -n03855214 organza -n03855333 oriel, oriel window -n03855464 oriflamme -n03855604 O ring -n03855756 Orlon -n03855908 orlop deck, orlop, fourth deck -n03856012 orphanage, orphans' asylum -n03856335 orphrey -n03856465 orrery -n03856728 orthicon, image orthicon -n03857026 orthochromatic film -n03857156 orthopter, ornithopter -n03857291 orthoscope -n03857687 oscillograph -n03857828 oscilloscope, scope, cathode-ray oscilloscope, CRO -n03858085 ossuary -n03858183 otoscope, auriscope, auroscope -n03858418 ottoman, pouf, pouffe, puff, hassock -n03858533 oubliette -n03858837 out-basket, out-tray -n03859000 outboard motor, outboard -n03859170 outboard motorboat, outboard -n03859280 outbuilding -n03859495 outerwear, overclothes -n03859608 outfall -n03859958 outfit, getup, rig, turnout -n03860234 outfitter -n03860404 outhouse, privy, earth-closet, jakes -n03861048 output device -n03861271 outrigger -n03861430 outrigger canoe -n03861596 outside caliper -n03861842 outside mirror -n03862379 outwork -n03862676 oven -n03862862 oven thermometer -n03863108 overall -n03863262 overall, boilersuit, boilers suit -n03863657 overcoat, overcoating -n03863783 overdrive -n03863923 overgarment, outer garment -n03864139 overhand knot -n03864356 overhang -n03864692 overhead projector -n03865288 overmantel -n03865371 overnighter, overnight bag, overnight case -n03865557 overpass, flyover -n03865820 override -n03865949 overshoe -n03866082 overskirt -n03867854 oxbow -n03868044 Oxbridge -n03868242 oxcart -n03868324 oxeye -n03868406 oxford -n03868643 oximeter -n03868763 oxyacetylene torch -n03868863 oxygen mask -n03869838 oyster bar -n03869976 oyster bed, oyster bank, oyster park -n03870105 pace car -n03870290 pacemaker, artificial pacemaker -n03870546 pack -n03870672 pack -n03870980 pack, face pack -n03871083 package, parcel -n03871371 package store, liquor store, off-licence -n03871524 packaging -n03871628 packet -n03871724 packing box, packing case -n03871860 packinghouse, packing plant -n03872016 packinghouse -n03872167 packing needle -n03872273 packsaddle -n03873416 paddle, boat paddle -n03873699 paddle -n03873848 paddle -n03873996 paddle box, paddle-box -n03874138 paddle steamer, paddle-wheeler -n03874293 paddlewheel, paddle wheel -n03874487 paddock -n03874599 padlock -n03874823 page printer, page-at-a-time printer -n03875218 paint, pigment -n03875806 paintball -n03875955 paintball gun -n03876111 paintbox -n03876231 paintbrush -n03877351 paisley -n03877472 pajama, pyjama, pj's, jammies -n03877674 pajama, pyjama -n03877845 palace -n03878066 palace, castle -n03878211 palace -n03878294 palanquin, palankeen -n03878418 paleolith -n03878511 palestra, palaestra -n03878674 palette, pallet -n03878828 palette knife -n03878963 palisade -n03879456 pallet -n03879705 pallette, palette -n03880032 pallium -n03880129 pallium -n03880323 pan -n03880531 pan, cooking pan -n03881305 pancake turner -n03881404 panchromatic film -n03881534 panda car -n03882611 paneling, panelling, pane -n03882960 panhandle -n03883054 panic button -n03883385 pannier -n03883524 pannier -n03883664 pannikin -n03883773 panopticon -n03883944 panopticon -n03884397 panpipe, pandean pipe, syrinx -n03884554 pantaloon -n03884639 pantechnicon -n03884778 pantheon -n03884926 pantheon -n03885028 pantie, panty, scanty, step-in -n03885194 panting, trousering -n03885293 pant leg, trouser leg -n03885410 pantograph -n03885535 pantry, larder, buttery -n03885669 pants suit, pantsuit -n03885788 panty girdle -n03885904 pantyhose -n03886053 panzer -n03886641 paper chain -n03886762 paper clip, paperclip, gem clip -n03886940 paper cutter -n03887185 paper fastener -n03887330 paper feed -n03887512 paper mill -n03887697 paper towel -n03887899 parabolic mirror -n03888022 parabolic reflector, paraboloid reflector -n03888257 parachute, chute -n03888605 parallel bars, bars -n03888808 parallel circuit, shunt circuit -n03888998 parallel interface, parallel port -n03889397 parang -n03889503 parapet, breastwork -n03889626 parapet -n03889726 parasail -n03889871 parasol, sunshade -n03890093 parer, paring knife -n03890233 parfait glass -n03890358 pargeting, pargetting, pargetry -n03890514 pari-mutuel machine, totalizer, totaliser, totalizator, totalisator -n03891051 parka, windbreaker, windcheater, anorak -n03891251 park bench -n03891332 parking meter -n03891538 parlor, parlour -n03892178 parquet, parquet floor -n03892425 parquetry, parqueterie -n03892557 parsonage, vicarage, rectory -n03892728 Parsons table -n03893935 partial denture -n03894051 particle detector -n03894379 partition, divider -n03894677 parts bin -n03894933 party line -n03895038 party wall -n03895170 parvis -n03895866 passenger car, coach, carriage -n03896103 passenger ship -n03896233 passenger train -n03896419 passenger van -n03896526 passe-partout -n03896628 passive matrix display -n03896984 passkey, passe-partout, master key, master -n03897130 pass-through -n03897634 pastry cart -n03897943 patch -n03898129 patchcord -n03898271 patchouli, patchouly, pachouli -n03898395 patch pocket -n03898633 patchwork, patchwork quilt -n03898787 patent log, screw log, taffrail log -n03899100 paternoster -n03899612 patina -n03899768 patio, terrace -n03899933 patisserie -n03900028 patka -n03900194 patrol boat, patrol ship -n03900301 patty-pan -n03900393 pave -n03900979 pavilion, marquee -n03901229 pavior, paviour, paving machine -n03901338 pavis, pavise -n03901750 pawn -n03901974 pawnbroker's shop, pawnshop, loan office -n03902125 pay-phone, pay-station -n03902220 PC board -n03902482 peach orchard -n03902756 pea jacket, peacoat -n03903133 peavey, peavy, cant dog, dog hook -n03903290 pectoral, pectoral medallion -n03903424 pedal, treadle, foot pedal, foot lever -n03903733 pedal pusher, toreador pants -n03903868 pedestal, plinth, footstall -n03904060 pedestal table -n03904183 pedestrian crossing, zebra crossing -n03904433 pedicab, cycle rickshaw -n03904657 pediment -n03904782 pedometer -n03904909 peeler -n03905361 peep sight -n03905540 peg, nog -n03905730 peg, pin, thole, tholepin, rowlock, oarlock -n03905947 peg -n03906106 peg, wooden leg, leg, pegleg -n03906224 pegboard -n03906463 Pelham -n03906590 pelican crossing -n03906789 pelisse -n03906894 pelvimeter -n03906997 pen -n03907475 penal colony -n03907654 penal institution, penal facility -n03907908 penalty box -n03908111 pen-and-ink -n03908204 pencil -n03908456 pencil -n03908618 pencil box, pencil case -n03908714 pencil sharpener -n03909020 pendant earring, drop earring, eardrop -n03909160 pendulum -n03909406 pendulum clock -n03909516 pendulum watch -n03909658 penetration bomb -n03911406 penile implant -n03911513 penitentiary, pen -n03911658 penknife -n03911767 penlight -n03911866 pennant, pennon, streamer, waft -n03912218 pennywhistle, tin whistle, whistle -n03912821 penthouse -n03913343 pentode -n03913930 peplos, peplus, peplum -n03914106 peplum -n03914337 pepper mill, pepper grinder -n03914438 pepper shaker, pepper box, pepper pot -n03914583 pepper spray -n03914831 percale -n03915118 percolator -n03915320 percussion cap -n03915437 percussion instrument, percussive instrument -n03915900 perforation -n03916031 perfume, essence -n03916289 perfumery -n03916385 perfumery -n03916470 perfumery -n03916720 peripheral, computer peripheral, peripheral device -n03917048 periscope -n03917198 peristyle -n03917327 periwig, peruke -n03917814 permanent press, durable press -n03918074 perpetual motion machine -n03918480 personal computer, PC, microcomputer -n03918737 personal digital assistant, PDA, personal organizer, personal organiser, organizer, organiser -n03919096 personnel carrier -n03919289 pestle -n03919430 pestle, muller, pounder -n03919808 petcock -n03920288 Petri dish -n03920384 petrolatum gauze -n03920641 pet shop -n03920737 petticoat, half-slip, underskirt -n03920867 pew, church bench -n03923379 phial, vial, ampule, ampul, ampoule -n03923564 Phillips screw -n03923692 Phillips screwdriver -n03923918 phonograph needle, needle -n03924069 phonograph record, phonograph recording, record, disk, disc, platter -n03924407 photocathode -n03924532 photocoagulator -n03924679 photocopier -n03926148 photographic equipment -n03926412 photographic paper, photographic material -n03926876 photometer -n03927091 photomicrograph -n03927299 Photostat, Photostat machine -n03927539 photostat -n03927792 physical pendulum, compound pendulum -n03928116 piano, pianoforte, forte-piano -n03928589 piano action -n03928814 piano keyboard, fingerboard, clavier -n03928994 piano wire -n03929091 piccolo -n03929202 pick, pickax, pickaxe -n03929443 pick -n03929660 pick, plectrum, plectron -n03929855 pickelhaube -n03930229 picket boat -n03930313 picket fence, paling -n03930431 picket ship -n03930515 pickle barrel -n03930630 pickup, pickup truck -n03931765 picture frame -n03931885 picture hat -n03931980 picture rail -n03932080 picture window -n03932670 piece of cloth, piece of material -n03933391 pied-a-terre -n03933933 pier -n03934042 pier -n03934229 pier arch -n03934311 pier glass, pier mirror -n03934565 pier table -n03934656 pieta -n03934890 piezometer -n03935116 pig bed, pig -n03935234 piggery, pig farm -n03935335 piggy bank, penny bank -n03935883 pilaster -n03936269 pile, spile, piling, stilt -n03936466 pile driver -n03937543 pill bottle -n03937835 pillbox, toque, turban -n03937931 pillion -n03938037 pillory -n03938244 pillow -n03938401 pillow block -n03938522 pillow lace, bobbin lace -n03938725 pillow sham -n03939062 pilot bit -n03939178 pilot boat -n03939281 pilot burner, pilot light, pilot -n03939440 pilot cloth -n03939565 pilot engine -n03939677 pilothouse, wheelhouse -n03939844 pilot light, pilot lamp, indicator lamp -n03940256 pin -n03940894 pin, flag -n03941013 pin, pin tumbler -n03941231 pinata -n03941417 pinball machine, pin table -n03941586 pince-nez -n03941684 pincer, pair of pincers, tweezer, pair of tweezers -n03941887 pinch bar -n03942028 pincurl clip -n03942600 pinfold -n03942813 ping-pong ball -n03942920 pinhead -n03943115 pinion -n03943266 pinnacle -n03943623 pinprick -n03943714 pinstripe -n03943833 pinstripe -n03943920 pinstripe -n03944024 pintle -n03944138 pinwheel, pinwheel wind collector -n03944341 pinwheel -n03945459 tabor pipe -n03945615 pipe -n03945817 pipe bomb -n03945928 pipe cleaner -n03946076 pipe cutter -n03946162 pipefitting, pipe fitting -n03947111 pipet, pipette -n03947343 pipe vise, pipe clamp -n03947466 pipe wrench, tube wrench -n03947798 pique -n03947888 pirate, pirate ship -n03948242 piste -n03948459 pistol, handgun, side arm, shooting iron -n03948830 pistol grip -n03948950 piston, plunger -n03949145 piston ring -n03949317 piston rod -n03949761 pit -n03950228 pitcher, ewer -n03950359 pitchfork -n03950537 pitching wedge -n03950647 pitch pipe -n03950899 pith hat, pith helmet, sun helmet, topee, topi -n03951068 piton -n03951213 Pitot-static tube, Pitot head, Pitot tube -n03951453 Pitot tube, Pitot -n03951800 pitsaw -n03951971 pivot, pin -n03952150 pivoting window -n03952576 pizzeria, pizza shop, pizza parlor -n03953020 place of business, business establishment -n03953416 place of worship, house of prayer, house of God, house of worship -n03953901 placket -n03954393 planchet, coin blank -n03954731 plane, carpenter's plane, woodworking plane -n03955296 plane, planer, planing machine -n03955489 plane seat -n03955809 planetarium -n03955941 planetarium -n03956157 planetarium -n03956331 planetary gear, epicyclic gear, planet wheel, planet gear -n03956531 plank-bed -n03956623 planking -n03956785 planner -n03956922 plant, works, industrial plant -n03957315 planter -n03957420 plaster, adhesive plaster, sticking plaster -n03957762 plasterboard, gypsum board -n03957991 plastering trowel -n03958227 plastic bag -n03958338 plastic bomb -n03958630 plastic laminate -n03958752 plastic wrap -n03959014 plastron -n03959123 plastron -n03959227 plastron -n03959701 plate, scale, shell -n03960374 plate, collection plate -n03960490 plate -n03961394 platen -n03961630 platen -n03961711 plate rack -n03961828 plate rail -n03961939 platform -n03962525 platform, weapons platform -n03962685 platform -n03962852 platform bed -n03962932 platform rocker -n03963028 plating, metal plating -n03963198 platter -n03963294 playback -n03963483 playbox, play-box -n03963645 playground -n03964495 playpen, pen -n03964611 playsuit -n03965456 plaza, mall, center, shopping mall, shopping center, shopping centre -n03965907 pleat, plait -n03966206 plenum -n03966325 plethysmograph -n03966582 pleximeter, plessimeter -n03966751 plexor, plessor, percussor -n03966976 pliers, pair of pliers, plyers -n03967270 plimsoll -n03967396 plotter -n03967562 plow, plough -n03967942 plug, stopper, stopple -n03968293 plug, male plug -n03968479 plug fuse -n03968581 plughole -n03968728 plumb bob, plumb, plummet -n03969510 plumb level -n03970156 plunger, plumber's helper -n03970363 plus fours -n03970546 plush -n03971218 plywood, plyboard -n03971321 pneumatic drill -n03971960 p-n junction -n03972146 p-n-p transistor -n03972372 poacher -n03972524 pocket -n03973003 pocket battleship -n03973285 pocketcomb, pocket comb -n03973402 pocket flap -n03973520 pocket-handkerchief -n03973628 pocketknife, pocket knife -n03973839 pocket watch -n03973945 pod, fuel pod -n03974070 pogo stick -n03974915 point-and-shoot camera -n03975035 pointed arch -n03975657 pointing trowel -n03975788 point lace, needlepoint -n03975926 poker, stove poker, fire hook, salamander -n03976105 polarimeter, polariscope -n03976268 Polaroid -n03976467 Polaroid camera, Polaroid Land camera -n03976657 pole -n03977158 pole -n03977266 poleax, poleaxe -n03977430 poleax, poleaxe -n03977592 police boat -n03977966 police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria -n03978421 polling booth -n03978575 polo ball -n03978686 polo mallet, polo stick -n03978815 polonaise -n03978966 polo shirt, sport shirt -n03979377 polyester -n03979492 polygraph -n03980026 pomade, pomatum -n03980478 pommel horse, side horse -n03980874 poncho -n03980986 pongee -n03981094 poniard, bodkin -n03981340 pontifical -n03981566 pontoon -n03981760 pontoon bridge, bateau bridge, floating bridge -n03981924 pony cart, ponycart, donkey cart, tub-cart -n03982232 pool ball -n03982331 poolroom -n03982430 pool table, billiard table, snooker table -n03982642 poop deck -n03982767 poor box, alms box, mite box -n03982895 poorhouse -n03983396 pop bottle, soda bottle -n03983499 popgun -n03983612 poplin -n03983712 popper -n03983928 poppet, poppet valve -n03984125 pop tent -n03984234 porcelain -n03984381 porch -n03984643 porkpie, porkpie hat -n03984759 porringer -n03985069 portable -n03985232 portable computer -n03985441 portable circular saw, portable saw -n03985881 portcullis -n03986071 porte-cochere -n03986224 porte-cochere -n03986355 portfolio -n03986562 porthole -n03986704 portico -n03986857 portiere -n03986949 portmanteau, Gladstone, Gladstone bag -n03987266 portrait camera -n03987376 portrait lens -n03987674 positive pole, positive magnetic pole, north-seeking pole -n03987865 positive pole -n03987990 positron emission tomography scanner, PET scanner -n03988170 post -n03988758 postage meter -n03988926 post and lintel -n03989199 post chaise -n03989349 postern -n03989447 post exchange, PX -n03989665 posthole digger, post-hole digger -n03989777 post horn -n03989898 posthouse, post house -n03990474 pot -n03991062 pot, flowerpot -n03991202 potbelly, potbelly stove -n03991321 Potemkin village -n03991443 potential divider, voltage divider -n03991646 potentiometer, pot -n03991837 potentiometer -n03992325 potpourri -n03992436 potsherd -n03992509 potter's wheel -n03992703 pottery, clayware -n03992975 pottle -n03993053 potty seat, potty chair -n03993180 pouch -n03993403 poultice, cataplasm, plaster -n03993703 pound, dog pound -n03993878 pound net -n03994008 powder -n03994297 powder and shot -n03994417 powdered mustard, dry mustard -n03994614 powder horn, powder flask -n03994757 powder keg -n03995018 power brake -n03995265 power cord -n03995372 power drill -n03995535 power line, power cable -n03995661 power loom -n03995856 power mower, motor mower -n03996004 power pack -n03996145 power saw, saw, sawing machine -n03996416 power shovel, excavator, digger, shovel -n03996849 power steering, power-assisted steering -n03997274 power takeoff, PTO -n03997484 power tool -n03997875 praetorium, pretorium -n03998194 prayer rug, prayer mat -n03998333 prayer shawl, tallith, tallis -n03998673 precipitator, electrostatic precipitator, Cottrell precipitator -n03999064 prefab -n03999160 presbytery -n03999621 presence chamber -n03999992 press, mechanical press -n04000311 press, printing press -n04000480 press -n04000592 press box -n04000716 press gallery -n04000998 press of sail, press of canvas -n04001132 pressure cabin -n04001265 pressure cooker -n04001397 pressure dome -n04001499 pressure gauge, pressure gage -n04001661 pressurized water reactor, PWR -n04001845 pressure suit -n04002262 pricket -n04002371 prie-dieu -n04002629 primary coil, primary winding, primary -n04003241 Primus stove, Primus -n04003359 Prince Albert -n04003856 print -n04004099 print buffer -n04004210 printed circuit -n04004475 printer, printing machine -n04004767 printer -n04004990 printer cable -n04005197 priory -n04005630 prison, prison house -n04005912 prison camp, internment camp, prisoner of war camp, POW camp -n04006067 privateer -n04006227 private line -n04006330 privet hedge -n04006411 probe -n04007415 proctoscope -n04007664 prod, goad -n04008385 production line, assembly line, line -n04008634 projectile, missile -n04009552 projector -n04009801 projector -n04009923 prolonge -n04010057 prolonge knot, sailor's breastplate -n04010779 prompter, autocue -n04010927 prong -n04011827 propeller, propellor -n04012084 propeller plane -n04012482 propjet, turboprop, turbo-propeller plane -n04012665 proportional counter tube, proportional counter -n04013060 propulsion system -n04013176 proscenium, proscenium wall -n04013600 proscenium arch -n04013729 prosthesis, prosthetic device -n04014297 protective covering, protective cover, protection -n04015204 protective garment -n04015786 proton accelerator -n04015908 protractor -n04016240 pruner, pruning hook, lopper -n04016479 pruning knife -n04016576 pruning saw -n04016684 pruning shears -n04016846 psaltery -n04017571 psychrometer -n04017807 PT boat, mosquito boat, mosquito craft, motor torpedo boat -n04018155 public address system, P.A. system, PA system, P.A., PA -n04018399 public house, pub, saloon, pothouse, gin mill, taphouse -n04018667 public toilet, comfort station, public convenience, convenience, public lavatory, restroom, toilet facility, wash room -n04019101 public transport -n04019335 public works -n04019541 puck, hockey puck -n04019696 pull -n04019881 pullback, tieback -n04020087 pull chain -n04020298 pulley, pulley-block, pulley block, block -n04020744 pull-off, rest area, rest stop, layby, lay-by -n04020912 Pullman, Pullman car -n04021028 pullover, slipover -n04021164 pull-through -n04021362 pulse counter -n04021503 pulse generator -n04021704 pulse timing circuit -n04021798 pump -n04022332 pump -n04022434 pump action, slide action -n04022708 pump house, pumping station -n04022866 pump room -n04023021 pump-type pliers -n04023119 pump well -n04023249 punch, puncher -n04023422 punchboard -n04023695 punch bowl -n04023962 punching bag, punch bag, punching ball, punchball -n04024137 punch pliers -n04024274 punch press -n04024862 punnet -n04024983 punt -n04025508 pup tent, shelter tent -n04025633 purdah -n04026053 purifier -n04026180 purl, purl stitch -n04026417 purse -n04026813 push-bike -n04026918 push broom -n04027023 push button, push, button -n04027367 push-button radio -n04027706 pusher, zori -n04027820 put-put -n04027935 puttee -n04028074 putter, putting iron -n04028221 putty knife -n04028315 puzzle -n04028581 pylon, power pylon -n04028764 pylon -n04029416 pyramidal tent -n04029647 pyrograph -n04029734 pyrometer -n04029913 pyrometric cone -n04030054 pyrostat -n04030161 pyx, pix -n04030274 pyx, pix, pyx chest, pix chest -n04030414 pyxis -n04030518 quad, quadrangle -n04030846 quadrant -n04030965 quadraphony, quadraphonic system, quadriphonic system -n04031884 quartering -n04032509 quarterstaff -n04032603 quartz battery, quartz mill -n04032936 quartz lamp -n04033287 queen -n04033425 queen -n04033557 queen post -n04033801 quern -n04033901 quill, quill pen -n04033995 quilt, comforter, comfort, puff -n04034262 quilted bedspread -n04034367 quilting -n04035231 quipu -n04035634 quirk molding, quirk moulding -n04035748 quirt -n04035836 quiver -n04035912 quoin, coign, coigne -n04036155 quoit -n04036303 QWERTY keyboard -n04036776 rabbet, rebate -n04036963 rabbet joint -n04037076 rabbit ears -n04037220 rabbit hutch -n04037298 raceabout -n04037443 racer, race car, racing car -n04037873 raceway, race -n04037964 racing boat -n04038231 racing gig -n04038338 racing skiff, single shell -n04038440 rack, stand -n04038727 rack -n04039041 rack, wheel -n04039209 rack and pinion -n04039381 racket, racquet -n04039742 racquetball -n04039848 radar, microwave radar, radio detection and ranging, radiolocation -n04040247 radial, radial tire, radial-ply tire -n04040373 radial engine, rotary engine -n04040540 radiation pyrometer -n04040759 radiator -n04041069 radiator -n04041243 radiator cap -n04041408 radiator hose -n04041544 radio, wireless -n04041747 radio antenna, radio aerial -n04042076 radio chassis -n04042204 radio compass -n04042358 radiogram, radiograph, shadowgraph, skiagraph, skiagram -n04042632 radio interferometer -n04042795 radio link, link -n04042985 radiometer -n04043168 radiomicrometer -n04043411 radio-phonograph, radio-gramophone -n04043733 radio receiver, receiving set, radio set, radio, tuner, wireless -n04044307 radiotelegraph, radiotelegraphy, wireless telegraph, wireless telegraphy -n04044498 radiotelephone, radiophone, wireless telephone -n04044716 radio telescope, radio reflector -n04044955 radiotherapy equipment -n04045085 radio transmitter -n04045255 radome, radar dome -n04045397 raft -n04045644 rafter, balk, baulk -n04045787 raft foundation -n04045941 rag, shred, tag, tag end, tatter -n04046091 ragbag -n04046277 raglan -n04046400 raglan sleeve -n04046590 rail -n04046974 rail fence -n04047139 railhead -n04047401 railing, rail -n04047733 railing -n04047834 railroad bed -n04048441 railroad tunnel -n04049303 rain barrel -n04049405 raincoat, waterproof -n04049585 rain gauge, rain gage, pluviometer, udometer -n04049753 rain stick -n04050066 rake -n04050313 rake handle -n04050600 RAM disk -n04050933 ramekin, ramequin -n04051269 ramjet, ramjet engine, atherodyde, athodyd, flying drainpipe -n04051439 rammer -n04051549 ramp, incline -n04051705 rampant arch -n04051825 rampart, bulwark, wall -n04052235 ramrod -n04052346 ramrod -n04052442 ranch, spread, cattle ranch, cattle farm -n04052658 ranch house -n04052757 random-access memory, random access memory, random memory, RAM, read/write memory -n04053508 rangefinder, range finder -n04053677 range hood -n04053767 range pole, ranging pole, flagpole -n04054361 rapier, tuck -n04054566 rariora -n04054670 rasp, wood file -n04055180 ratchet, rachet, ratch -n04055447 ratchet wheel -n04055700 rathskeller -n04055861 ratline, ratlin -n04056073 rat-tail file -n04056180 rattan, ratan -n04056413 rattrap -n04056932 rayon -n04057047 razor -n04057215 razorblade -n04057435 reaction-propulsion engine, reaction engine -n04057673 reaction turbine -n04057846 reactor -n04057981 reading lamp -n04058096 reading room -n04058239 read-only memory, ROM, read-only storage, fixed storage -n04058486 read-only memory chip -n04058594 readout, read-out -n04058721 read/write head, head -n04059157 ready-to-wear -n04059298 real storage -n04059399 reamer -n04059516 reamer, juicer, juice reamer -n04059947 rearview mirror -n04060198 Reaumur thermometer -n04060448 rebozo -n04060647 receiver, receiving system -n04060904 receptacle -n04061681 reception desk -n04061793 reception room -n04061969 recess, niche -n04062179 reciprocating engine -n04062428 recliner, reclining chair, lounger -n04062644 reconnaissance plane -n04062807 reconnaissance vehicle, scout car -n04063154 record changer, auto-changer, changer -n04063373 recorder, recording equipment, recording machine -n04063868 recording -n04064213 recording system -n04064401 record player, phonograph -n04064747 record sleeve, record cover -n04064862 recovery room -n04065272 recreational vehicle, RV, R.V. -n04065464 recreation room, rec room -n04065789 recycling bin -n04065909 recycling plant -n04066023 redbrick university -n04066270 red carpet -n04066388 redoubt -n04066476 redoubt -n04066767 reduction gear -n04067143 reed pipe -n04067231 reed stop -n04067353 reef knot, flat knot -n04067472 reel -n04067658 reel -n04067818 refectory -n04067921 refectory table -n04068441 refinery -n04068601 reflecting telescope, reflector -n04069166 reflectometer -n04069276 reflector -n04069434 reflex camera -n04069582 reflux condenser -n04069777 reformatory, reform school, training school -n04070003 reformer -n04070207 refracting telescope -n04070415 refractometer -n04070545 refrigeration system -n04070727 refrigerator, icebox -n04070964 refrigerator car -n04071102 refuge, sanctuary, asylum -n04071263 regalia -n04071393 regimentals -n04072193 regulator -n04072551 rein -n04072960 relay, electrical relay -n04073425 release, button -n04073948 religious residence, cloister -n04074185 reliquary -n04074963 remote control, remote -n04075291 remote terminal, link-attached terminal, remote station, link-attached station -n04075468 removable disk -n04075715 rendering -n04075813 rep, repp -n04075916 repair shop, fix-it shop -n04076052 repeater -n04076284 repeating firearm, repeater -n04076713 repository, monument -n04077430 reproducer -n04077594 rerebrace, upper cannon -n04077734 rescue equipment -n04077889 research center, research facility -n04078002 reseau -n04078574 reservoir -n04078955 reset -n04079106 reset button -n04079244 residence -n04079603 resistance pyrometer -n04079933 resistor, resistance -n04080138 resonator -n04080454 resonator, cavity resonator, resonating chamber -n04080705 resort hotel, spa -n04080833 respirator, inhalator -n04081281 restaurant, eating house, eating place, eatery -n04081699 rest house -n04081844 restraint, constraint -n04082344 resuscitator -n04082562 retainer -n04082710 retaining wall -n04082886 reticle, reticule, graticule -n04083113 reticulation -n04083309 reticule -n04083649 retort -n04083800 retractor -n04084517 return key, return -n04084682 reverberatory furnace -n04084889 revers, revere -n04085017 reverse, reverse gear -n04085574 reversible -n04085873 revetment, revetement, stone facing -n04086066 revetment -n04086273 revolver, six-gun, six-shooter -n04086446 revolving door, revolver -n04086663 rheometer -n04086794 rheostat, variable resistor -n04086937 rhinoscope -n04087126 rib -n04087432 riband, ribband -n04087709 ribbed vault -n04087826 ribbing -n04088229 ribbon development -n04088343 rib joint pliers -n04088441 ricer -n04088696 riddle -n04088797 ride -n04089152 ridge, ridgepole, rooftree -n04089376 ridge rope -n04089666 riding boot -n04089836 riding crop, hunting crop -n04089976 riding mower -n04090263 rifle -n04090548 rifle ball -n04090781 rifle grenade -n04091097 rig -n04091466 rigger, rigger brush -n04091584 rigger -n04091693 rigging, tackle -n04092168 rigout -n04093157 ringlet -n04093223 rings -n04093625 rink, skating rink -n04093775 riot gun -n04093915 ripcord -n04094060 ripcord -n04094250 ripping bar -n04094438 ripping chisel -n04094608 ripsaw, splitsaw -n04094720 riser -n04094859 riser, riser pipe, riser pipeline, riser main -n04095109 Ritz -n04095210 river boat -n04095342 rivet -n04095577 riveting machine, riveter, rivetter -n04095938 roach clip, roach holder -n04096066 road, route -n04096733 roadbed -n04096848 roadblock, barricade -n04097085 roadhouse -n04097373 roadster, runabout, two-seater -n04097622 roadway -n04097760 roaster -n04097866 robe -n04098169 robotics equipment -n04098260 Rochon prism, Wollaston prism -n04098399 rock bit, roller bit -n04098513 rocker -n04098795 rocker, cradle -n04099003 rocker arm, valve rocker -n04099175 rocket, rocket engine -n04099429 rocket, projectile -n04099969 rocking chair, rocker -n04100174 rod -n04100519 rodeo -n04101375 roll -n04101497 roller -n04101701 roller -n04101860 roller bandage -n04102037 in-line skate -n04102162 Rollerblade -n04102285 roller blind -n04102406 roller coaster, big dipper, chute-the-chute -n04102618 roller skate -n04102760 roller towel -n04102872 roll film -n04102962 rolling hitch -n04103094 rolling mill -n04103206 rolling pin -n04103364 rolling stock -n04103665 roll-on -n04103769 roll-on -n04103918 roll-on roll-off -n04104147 Rolodex -n04104384 Roman arch, semicircular arch -n04104500 Roman building -n04104770 romper, romper suit -n04104925 rood screen -n04105068 roof -n04105438 roof -n04105704 roofing -n04105893 room -n04107598 roomette -n04107743 room light -n04107984 roost -n04108268 rope -n04108822 rope bridge -n04108999 rope tow -n04110068 rose water -n04110178 rose window, rosette -n04110281 rosin bag -n04110439 rotary actuator, positioner -n04110654 rotary engine -n04110841 rotary press -n04110955 rotating mechanism -n04111190 rotating shaft, shaft -n04111414 rotisserie -n04111531 rotisserie -n04111668 rotor -n04111962 rotor, rotor coil -n04112147 rotor -n04112252 rotor blade, rotary wing -n04112430 rotor head, rotor shaft -n04112579 rotunda -n04112654 rotunda -n04112752 rouge, paint, blusher -n04112921 roughcast -n04113038 rouleau -n04113194 roulette, toothed wheel -n04113316 roulette ball -n04113406 roulette wheel, wheel -n04113641 round, unit of ammunition, one shot -n04113765 round arch -n04113968 round-bottom flask -n04114069 roundel -n04114301 round file -n04114428 roundhouse -n04114719 router -n04114844 router -n04114996 router plane -n04115144 rowel -n04115256 row house, town house -n04115456 rowing boat -n04115542 rowlock arch -n04115802 royal -n04115996 royal mast -n04116098 rubber band, elastic band, elastic -n04116294 rubber boot, gum boot -n04116389 rubber bullet -n04116512 rubber eraser, rubber, pencil eraser -n04117216 rudder -n04117464 rudder -n04117639 rudder blade -n04118021 rug, carpet, carpeting -n04118538 rugby ball -n04118635 ruin -n04118776 rule, ruler -n04119091 rumble -n04119230 rumble seat -n04119360 rummer -n04119478 rumpus room, playroom, game room -n04119630 runcible spoon -n04119751 rundle, spoke, rung -n04120489 running shoe -n04120695 running suit -n04120842 runway -n04121228 rushlight, rush candle -n04121342 russet -n04121426 rya, rya rug -n04121511 saber, sabre -n04121728 saber saw, jigsaw, reciprocating saw -n04122262 sable -n04122349 sable, sable brush, sable's hair pencil -n04122492 sable coat -n04122578 sabot, wooden shoe -n04122685 sachet -n04122825 sack, poke, paper bag, carrier bag -n04123026 sack, sacque -n04123123 sackbut -n04123228 sackcloth -n04123317 sackcloth -n04123448 sack coat -n04123567 sacking, bagging -n04123740 saddle -n04124098 saddlebag -n04124202 saddle blanket, saddlecloth, horse blanket -n04124370 saddle oxford, saddle shoe -n04124488 saddlery -n04124573 saddle seat -n04124887 saddle stitch -n04125021 safe -n04125116 safe -n04125257 safe-deposit, safe-deposit box, safety-deposit, safety deposit box, deposit box, lockbox -n04125541 safe house -n04125692 safety arch -n04125853 safety belt, life belt, safety harness -n04126066 safety bicycle, safety bike -n04126244 safety bolt, safety lock -n04126541 safety curtain -n04126659 safety fuse -n04126852 safety lamp, Davy lamp -n04126980 safety match, book matches -n04127117 safety net -n04127249 safety pin -n04127395 safety rail, guardrail -n04127521 safety razor -n04127633 safety valve, relief valve, escape valve, escape cock, escape -n04127904 sail, canvas, canvass, sheet -n04128413 sail -n04128499 sailboat, sailing boat -n04128710 sailcloth -n04128837 sailing vessel, sailing ship -n04129490 sailing warship -n04129688 sailor cap -n04129766 sailor suit -n04130143 salad bar -n04130257 salad bowl -n04130566 salinometer -n04130907 sallet, salade -n04131015 salon -n04131113 salon -n04131208 salon, beauty salon, beauty parlor, beauty parlour, beauty shop -n04131368 saltbox -n04131499 saltcellar -n04131690 saltshaker, salt shaker -n04131811 saltworks -n04131929 salver -n04132158 salwar, shalwar -n04132465 Sam Browne belt -n04132603 samisen, shamisen -n04132829 samite -n04132985 samovar -n04133114 sampan -n04133789 sandal -n04134008 sandbag -n04134170 sandblaster -n04134523 sandbox -n04134632 sandglass -n04135024 sand wedge -n04135118 sandwich board -n04135315 sanitary napkin, sanitary towel, Kotex -n04135710 cling film, clingfilm, Saran Wrap -n04135933 sarcenet, sarsenet -n04136045 sarcophagus -n04136161 sari, saree -n04136333 sarong -n04136510 sash, window sash -n04136800 sash fastener, sash lock, window lock -n04137089 sash window -n04137217 satchel -n04137355 sateen -n04137444 satellite, artificial satellite, orbiter -n04137773 satellite receiver -n04137897 satellite television, satellite TV -n04138131 satellite transmitter -n04138261 satin -n04138869 Saturday night special -n04138977 saucepan -n04139140 saucepot -n04139395 sauna, sweat room -n04139859 savings bank, coin bank, money box, bank -n04140064 saw -n04140539 sawed-off shotgun -n04140631 sawhorse, horse, sawbuck, buck -n04140777 sawmill -n04140853 saw set -n04141076 sax, saxophone -n04141198 saxhorn -n04141327 scabbard -n04141712 scaffolding, staging -n04141838 scale -n04141975 scale, weighing machine -n04142175 scaler -n04142327 scaling ladder -n04142434 scalpel -n04142731 scanner, electronic scanner -n04142999 scanner -n04143140 scanner, digital scanner, image scanner -n04143365 scantling, stud -n04143897 scarf -n04144241 scarf joint, scarf -n04144539 scatter rug, throw rug -n04144651 scauper, scorper -n04145863 Schmidt telescope, Schmidt camera -n04146050 school, schoolhouse -n04146343 schoolbag -n04146504 school bell -n04146614 school bus -n04146862 school ship, training ship -n04146976 school system -n04147183 schooner -n04147291 schooner -n04147495 scientific instrument -n04147793 scimitar -n04147916 scintillation counter -n04148054 scissors, pair of scissors -n04148285 sclerometer -n04148464 scoinson arch, sconcheon arch -n04148579 sconce -n04148703 sconce -n04149083 scoop -n04149374 scooter -n04149813 scoreboard -n04150153 scouring pad -n04150273 scow -n04150371 scow -n04150980 scraper -n04151108 scratcher -n04151581 screen -n04151940 screen, cover, covert, concealment -n04152387 screen -n04152593 screen, CRT screen -n04153025 screen door, screen -n04153330 screening -n04153751 screw -n04154152 screw, screw propeller -n04154340 screw -n04154565 screwdriver -n04154753 screw eye -n04154854 screw key -n04154938 screw thread, thread -n04155068 screwtop -n04155177 screw wrench -n04155457 scriber, scribe, scratch awl -n04155625 scrim -n04155735 scrimshaw -n04155889 scriptorium -n04156040 scrubber -n04156140 scrub brush, scrubbing brush, scrubber -n04156297 scrub plane -n04156411 scuffer -n04156591 scuffle, scuffle hoe, Dutch hoe -n04156814 scull -n04156946 scull -n04157099 scullery -n04157320 sculpture -n04158002 scuttle, coal scuttle -n04158138 scyphus -n04158250 scythe -n04158672 seabag -n04158807 sea boat -n04158956 sea chest -n04160036 sealing wax, seal -n04160261 sealskin -n04160372 seam -n04160586 seaplane, hydroplane -n04160847 searchlight -n04161010 searing iron -n04161358 seat -n04161981 seat -n04162433 seat -n04162706 seat belt, seatbelt -n04163530 secateurs -n04164002 secondary coil, secondary winding, secondary -n04164199 second balcony, family circle, upper balcony, peanut gallery -n04164406 second base -n04164757 second hand -n04164868 secretary, writing table, escritoire, secretaire -n04165409 sectional -n04165675 security blanket -n04165945 security system, security measure, security -n04166111 security system -n04166281 sedan, saloon -n04166436 sedan, sedan chair -n04167346 seeder -n04167489 seeker -n04167661 seersucker -n04168084 segmental arch -n04168199 Segway, Segway Human Transporter, Segway HT -n04168472 seidel -n04168541 seine -n04168840 seismograph -n04169437 selector, selector switch -n04169597 selenium cell -n04170037 self-propelled vehicle -n04170384 self-registering thermometer -n04170515 self-starter -n04170694 selsyn, synchro -n04170933 selvage, selvedge -n04171208 semaphore -n04171459 semiautomatic firearm -n04171629 semiautomatic pistol, semiautomatic -n04171831 semiconductor device, semiconductor unit, semiconductor -n04172107 semi-detached house -n04172230 semigloss -n04172342 semitrailer, semi -n04172512 sennit -n04172607 sensitometer -n04172776 sentry box -n04172904 separate -n04173046 septic tank -n04173172 sequence, episode -n04173511 sequencer, sequenator -n04173907 serape, sarape -n04174026 serge -n04174101 serger -n04174234 serial port -n04174500 serpent -n04174705 serration -n04175039 server -n04175147 server, host -n04175574 service club -n04176068 serving cart -n04176190 serving dish -n04176295 servo, servomechanism, servosystem -n04176528 set -n04177041 set gun, spring gun -n04177329 setscrew -n04177545 setscrew -n04177654 set square -n04177755 settee -n04177820 settle, settee -n04177931 settlement house -n04178190 seventy-eight, 78 -n04178329 Seven Wonders of the Ancient World, Seven Wonders of the World -n04178668 sewage disposal plant, disposal plant -n04179126 sewer, sewerage, cloaca -n04179712 sewing basket -n04179824 sewing kit -n04179913 sewing machine -n04180063 sewing needle -n04180229 sewing room -n04180888 sextant -n04181083 sgraffito -n04181228 shackle, bond, hamper, trammel -n04181561 shackle -n04181718 shade -n04182152 shadow box -n04182322 shaft -n04183217 shag rug -n04183329 shaker -n04183957 shank -n04184095 shank, stem -n04184316 shantung -n04184435 shaper, shaping machine -n04184600 shaping tool -n04184880 sharkskin -n04185071 sharpener -n04185529 Sharpie -n04185804 shaver, electric shaver, electric razor -n04185946 shaving brush -n04186051 shaving cream, shaving soap -n04186268 shaving foam -n04186455 shawl -n04186624 shawm -n04186848 shears -n04187061 sheath -n04187233 sheathing, overlay, overlayer -n04187547 shed -n04187751 sheep bell -n04187885 sheepshank -n04187970 sheepskin coat, afghan -n04188064 sheepwalk, sheeprun -n04188179 sheet, bed sheet -n04189092 sheet bend, becket bend, weaver's knot, weaver's hitch -n04189282 sheeting -n04189651 sheet pile, sheath pile, sheet piling -n04189816 Sheetrock -n04190052 shelf -n04190376 shelf bracket -n04190464 shell -n04190747 shell, case, casing -n04190997 shell, racing shell -n04191150 shellac, shellac varnish -n04191595 shelter -n04191943 shelter -n04192238 shelter -n04192361 sheltered workshop -n04192521 Sheraton -n04192698 shield, buckler -n04192858 shield -n04193179 shielding -n04193377 shift key, shift -n04193742 shillelagh, shillalah -n04193883 shim -n04194009 shingle -n04194127 shin guard, shinpad -n04194289 ship -n04196080 shipboard system -n04196502 shipping, cargo ships, merchant marine, merchant vessels -n04196803 shipping room -n04196925 ship-towed long-range acoustic detection system -n04197110 shipwreck -n04197391 shirt -n04197781 shirt button -n04197878 shirtdress -n04198015 shirtfront -n04198233 shirting -n04198355 shirtsleeve -n04198453 shirttail -n04198562 shirtwaist, shirtwaister -n04198722 shiv -n04198797 shock absorber, shock, cushion -n04199027 shoe -n04200000 shoe -n04200258 shoebox -n04200537 shoehorn -n04200800 shoe shop, shoe-shop, shoe store -n04200908 shoetree -n04201064 shofar, shophar -n04201297 shoji -n04201733 shooting brake -n04202142 shooting lodge, shooting box -n04202282 shooting stick -n04202417 shop, store -n04203356 shop bell -n04204081 shopping bag -n04204238 shopping basket -n04204347 shopping cart -n04204755 short circuit, short -n04205062 short iron -n04205318 short pants, shorts, trunks -n04205505 short sleeve -n04205613 shortwave diathermy machine -n04206070 shot -n04206225 shot glass, jigger, pony -n04206356 shotgun, scattergun -n04206570 shotgun shell -n04206790 shot tower -n04207151 shoulder -n04207343 shoulder bag -n04207596 shouldered arch -n04207763 shoulder holster -n04207903 shoulder pad -n04208065 shoulder patch -n04208210 shovel -n04208427 shovel -n04208582 shovel hat -n04208760 showboat -n04208936 shower -n04209133 shower cap -n04209239 shower curtain -n04209509 shower room -n04209613 shower stall, shower bath -n04209811 showroom, salesroom, saleroom -n04210012 shrapnel -n04210120 shredder -n04210288 shrimper -n04210390 shrine -n04210591 shrink-wrap -n04210858 shunt -n04211001 shunt, electrical shunt, bypass -n04211219 shunter -n04211356 shutter -n04211528 shutter -n04211857 shuttle -n04211970 shuttle -n04212165 shuttle bus -n04212282 shuttlecock, bird, birdie, shuttle -n04212467 shuttle helicopter -n04212810 Sibley tent -n04213105 sickbay, sick berth -n04213264 sickbed -n04213353 sickle, reaping hook, reap hook -n04213530 sickroom -n04214046 sideboard -n04214282 sidecar -n04214413 side chapel -n04214649 sidelight, running light -n04215153 sidesaddle -n04215402 sidewalk, pavement -n04215588 sidewall -n04215800 side-wheeler -n04215910 sidewinder -n04216634 sieve, screen -n04216860 sifter -n04216963 sights -n04217387 sigmoidoscope, flexible sigmoidoscope -n04217546 signal box, signal tower -n04217718 signaling device -n04217882 signboard, sign -n04218564 silencer, muffler -n04218921 silent butler -n04219185 Silex -n04219424 silk -n04219580 silks -n04220250 silo -n04220805 silver plate -n04221076 silverpoint -n04221673 simple pendulum -n04221823 simulator -n04222210 single bed -n04222307 single-breasted jacket -n04222470 single-breasted suit -n04222723 single prop, single-propeller plane -n04222847 single-reed instrument, single-reed woodwind -n04223066 single-rotor helicopter -n04223170 singlestick, fencing stick, backsword -n04223299 singlet, vest, undershirt -n04224395 siren -n04224543 sister ship -n04224842 sitar -n04225031 sitz bath, hip bath -n04225222 six-pack, six pack, sixpack -n04225729 skate -n04225987 skateboard -n04226322 skeg -n04226464 skein -n04226537 skeleton, skeletal frame, frame, underframe -n04226826 skeleton key -n04226962 skep -n04227050 skep -n04227144 sketch, study -n04227519 sketcher -n04227787 skew arch -n04227900 skewer -n04228054 ski -n04228215 ski binding, binding -n04228422 skibob -n04228581 ski boot -n04228693 ski cap, stocking cap, toboggan cap -n04229007 skidder -n04229107 skid lid -n04229480 skiff -n04229620 ski jump -n04229737 ski lodge -n04229816 ski mask -n04229959 skimmer -n04230387 ski parka, ski jacket -n04230487 ski-plane -n04230603 ski pole -n04230707 ski rack -n04230808 skirt -n04231272 skirt -n04231693 ski tow, ski lift, lift -n04231905 Skivvies -n04232153 skullcap -n04232312 skybox -n04232437 skyhook -n04232800 skylight, fanlight -n04233027 skysail -n04233124 skyscraper -n04233295 skywalk -n04233715 slacks -n04233832 slack suit -n04234160 slasher -n04234260 slash pocket -n04234455 slat, spline -n04234670 slate -n04234763 slate pencil -n04234887 slate roof -n04235291 sled, sledge, sleigh -n04235646 sleeper -n04235771 sleeper -n04235860 sleeping bag -n04236001 sleeping car, sleeper, wagon-lit -n04236377 sleeve, arm -n04236702 sleeve -n04236809 sleigh bed -n04236935 sleigh bell, cascabel -n04237174 slice bar -n04237287 slicer -n04237423 slicer -n04238128 slide, playground slide, sliding board -n04238321 slide fastener, zip, zipper, zip fastener -n04238617 slide projector -n04238763 slide rule, slipstick -n04238953 slide valve -n04239074 sliding door -n04239218 sliding seat -n04239333 sliding window -n04239436 sling, scarf bandage, triangular bandage -n04239639 sling -n04239786 slingback, sling -n04239900 slinger ring -n04240434 slip clutch, slip friction clutch -n04240752 slipcover -n04240867 slip-joint pliers -n04241042 slipknot -n04241249 slip-on -n04241394 slipper, carpet slipper -n04241573 slip ring -n04242084 slit lamp -n04242315 slit trench -n04242408 sloop -n04242587 sloop of war -n04242704 slop basin, slop bowl -n04243003 slop pail, slop jar -n04243142 slops -n04243251 slopshop, slopseller's shop -n04243546 slot, one-armed bandit -n04243941 slot machine, coin machine -n04244379 sluice, sluiceway, penstock -n04244847 smack -n04244997 small boat -n04245218 small computer system interface, SCSI -n04245412 small ship -n04245508 small stores -n04245847 smart bomb -n04246060 smelling bottle -n04246271 smocking -n04246459 smoke bomb, smoke grenade -n04246731 smokehouse, meat house -n04246855 smoker, smoking car, smoking carriage, smoking compartment -n04247011 smoke screen, smokescreen -n04247440 smoking room -n04247544 smoothbore -n04247630 smooth plane, smoothing plane -n04247736 snack bar, snack counter, buffet -n04247876 snaffle, snaffle bit -n04248209 snap, snap fastener, press stud -n04248396 snap brim -n04248507 snap-brim hat -n04248851 snare, gin, noose -n04249415 snare drum, snare, side drum -n04249582 snatch block -n04249882 snifter, brandy snifter, brandy glass -n04250224 sniper rifle, precision rifle -n04250473 snips, tinsnips -n04250599 Sno-cat -n04250692 snood -n04250850 snorkel, schnorkel, schnorchel, snorkel breather, breather -n04251144 snorkel -n04251701 snowbank, snow bank -n04251791 snowboard -n04252077 snowmobile -n04252225 snowplow, snowplough -n04252331 snowshoe -n04252560 snowsuit -n04252653 snow thrower, snow blower -n04253057 snuffbox -n04253168 snuffer -n04253304 snuffers -n04253931 soapbox -n04254009 soap dish -n04254120 soap dispenser -n04254450 soap pad -n04254680 soccer ball -n04254777 sock -n04255163 socket -n04255346 socket wrench -n04255499 socle -n04255586 soda can -n04255670 soda fountain -n04255768 soda fountain -n04255899 sod house, soddy, adobe house -n04256318 sodium-vapor lamp, sodium-vapour lamp -n04256520 sofa, couch, lounge -n04256758 soffit -n04256891 softball, playground ball -n04257223 soft pedal -n04257684 soil pipe -n04257790 solar array, solar battery, solar panel -n04257986 solar cell, photovoltaic cell -n04258138 solar dish, solar collector, solar furnace -n04258333 solar heater -n04258438 solar house -n04258618 solar telescope -n04258732 solar thermal system -n04258859 soldering iron -n04259202 solenoid -n04259468 solleret, sabaton -n04259630 sombrero -n04260192 sonic depth finder, fathometer -n04260364 sonogram, echogram -n04260589 sonograph -n04261116 sorter -n04261281 souk -n04261369 sound bow -n04261506 soundbox, body -n04261638 sound camera -n04261767 sounder -n04261868 sound film -n04262161 sounding board, soundboard -n04262530 sounding rocket -n04262678 sound recording, audio recording, audio -n04262869 sound spectrograph -n04263257 soup bowl -n04263336 soup ladle -n04263502 soupspoon, soup spoon -n04263760 source of illumination -n04263950 sourdine -n04264134 soutache -n04264233 soutane -n04264361 sou'wester -n04264485 soybean future -n04264628 space bar -n04264765 space capsule, capsule -n04264914 spacecraft, ballistic capsule, space vehicle -n04265275 space heater -n04265428 space helmet -n04265904 space rocket -n04266014 space shuttle -n04266162 space station, space platform, space laboratory -n04266375 spacesuit -n04266486 spade -n04266849 spade bit -n04266968 spaghetti junction -n04267091 Spandau -n04267165 spandex -n04267246 spandrel, spandril -n04267435 spanker -n04267577 spar -n04267985 sparge pipe -n04268142 spark arrester, sparker -n04268275 spark arrester -n04268418 spark chamber, spark counter -n04268565 spark coil -n04268799 spark gap -n04269086 spark lever -n04269270 spark plug, sparking plug, plug -n04269502 sparkplug wrench -n04269668 spark transmitter -n04269822 spat, gaiter -n04269944 spatula -n04270147 spatula -n04270371 speakerphone -n04270576 speaking trumpet -n04270891 spear, lance, shaft -n04271148 spear, gig, fizgig, fishgig, lance -n04271531 specialty store -n04271793 specimen bottle -n04271891 spectacle -n04272054 spectacles, specs, eyeglasses, glasses -n04272389 spectator pump, spectator -n04272782 spectrograph -n04272928 spectrophotometer -n04273064 spectroscope, prism spectroscope -n04273285 speculum -n04273569 speedboat -n04273659 speed bump -n04273796 speedometer, speed indicator -n04273972 speed skate, racing skate -n04274686 spherometer -n04274985 sphygmomanometer -n04275093 spicemill -n04275175 spice rack -n04275283 spider -n04275548 spider web, spider's web -n04275661 spike -n04275904 spike -n04277352 spindle -n04277493 spindle, mandrel, mandril, arbor -n04277669 spindle -n04277826 spin dryer, spin drier -n04278247 spinet -n04278353 spinet -n04278447 spinnaker -n04278605 spinner -n04278932 spinning frame -n04279063 spinning jenny -n04279172 spinning machine -n04279353 spinning rod -n04279462 spinning wheel -n04279858 spiral bandage -n04279987 spiral ratchet screwdriver, ratchet screwdriver -n04280259 spiral spring -n04280373 spirit lamp -n04280487 spirit stove -n04280845 spirometer -n04280970 spit -n04281260 spittoon, cuspidor -n04281375 splashboard, splasher, dashboard -n04281571 splasher -n04281998 splice, splicing -n04282231 splicer -n04282494 splint -n04282872 split rail, fence rail -n04282992 Spode -n04283096 spoiler -n04283255 spoiler -n04283378 spoke, wheel spoke, radius -n04283585 spokeshave -n04283784 sponge cloth -n04283905 sponge mop -n04284002 spoon -n04284341 spoon -n04284438 Spork -n04284572 sporran -n04284869 sport kite, stunt kite -n04285008 sports car, sport car -n04285146 sports equipment -n04285622 sports implement -n04285803 sportswear, athletic wear, activewear -n04285965 sport utility, sport utility vehicle, S.U.V., SUV -n04286128 spot -n04286575 spotlight, spot -n04286960 spot weld, spot-weld -n04287351 spouter -n04287451 sprag -n04287747 spray gun -n04287898 spray paint -n04287986 spreader -n04288165 sprig -n04288272 spring -n04288533 spring balance, spring scale -n04288673 springboard -n04289027 sprinkler -n04289195 sprinkler system -n04289449 sprit -n04289576 spritsail -n04289690 sprocket, sprocket wheel -n04289827 sprocket -n04290079 spun yarn -n04290259 spur, gad -n04290507 spur gear, spur wheel -n04290615 sputnik -n04290762 spy satellite -n04291069 squad room -n04291242 square -n04291759 square knot -n04291992 square-rigger -n04292080 square sail -n04292221 squash ball -n04292414 squash racket, squash racquet, bat -n04292572 squawk box, squawker, intercom speaker -n04292921 squeegee -n04293119 squeezer -n04293258 squelch circuit, squelch, squelcher -n04293744 squinch -n04294212 stabilizer, stabiliser -n04294426 stabilizer -n04294614 stabilizer bar, anti-sway bar -n04294879 stable, stalls, horse barn -n04295081 stable gear, saddlery, tack -n04295353 stabling -n04295571 stacks -n04295777 staddle -n04295881 stadium, bowl, arena, sports stadium -n04296562 stage -n04297098 stagecoach, stage -n04297750 stained-glass window -n04297847 stair-carpet -n04298053 stair-rod -n04298661 stairwell -n04298765 stake -n04299215 stall, stand, sales booth -n04299370 stall -n04299963 stamp -n04300358 stamp mill, stamping mill -n04300509 stamping machine, stamper -n04300643 stanchion -n04301000 stand -n04301242 standard -n04301474 standard cell -n04301760 standard transmission, stick shift -n04302200 standing press -n04302863 stanhope -n04302988 Stanley Steamer -n04303095 staple -n04303258 staple -n04303357 staple gun, staplegun, tacker -n04303497 stapler, stapling machine -n04304215 starship, spaceship -n04304375 starter, starter motor, starting motor -n04304680 starting gate, starting stall -n04305016 Stassano furnace, electric-arc furnace -n04305210 Statehouse -n04305323 stately home -n04305471 state prison -n04305572 stateroom -n04305947 static tube -n04306080 station -n04306592 stator, stator coil -n04306847 statue -n04307419 stay -n04307767 staysail -n04307878 steakhouse, chophouse -n04307986 steak knife -n04308084 stealth aircraft -n04308273 stealth bomber -n04308397 stealth fighter -n04308583 steam bath, steam room, vapor bath, vapour bath -n04308807 steamboat -n04308915 steam chest -n04309049 steam engine -n04309348 steamer, steamship -n04309548 steamer -n04309833 steam iron -n04310018 steam locomotive -n04310157 steamroller, road roller -n04310507 steam shovel -n04310604 steam turbine -n04310721 steam whistle -n04310904 steel -n04311004 steel arch bridge -n04311174 steel drum -n04311595 steel mill, steelworks, steel plant, steel factory -n04312020 steel-wool pad -n04312154 steelyard, lever scale, beam scale -n04312432 steeple, spire -n04312654 steerage -n04312756 steering gear -n04312916 steering linkage -n04313220 steering system, steering mechanism -n04313503 steering wheel, wheel -n04313628 stele, stela -n04314107 stem-winder -n04314216 stencil -n04314522 Sten gun -n04314632 stenograph -n04314914 step, stair -n04315342 step-down transformer -n04315713 step stool -n04315828 step-up transformer -n04315948 stereo, stereophony, stereo system, stereophonic system -n04316498 stereoscope -n04316815 stern chaser -n04316924 sternpost -n04317063 sternwheeler -n04317175 stethoscope -n04317325 stewing pan, stewpan -n04317420 stick -n04317833 stick -n04317976 stick, control stick, joystick -n04318131 stick -n04318787 stile -n04318892 stiletto -n04318982 still -n04319545 stillroom, still room -n04319774 Stillson wrench -n04319937 stilt -n04320405 Stinger -n04320598 stink bomb, stench bomb -n04320871 stirrer -n04320973 stirrup, stirrup iron -n04321121 stirrup pump -n04321453 stob -n04322026 stock, gunstock -n04322531 stockade -n04322692 stockcar -n04322801 stock car -n04323519 stockinet, stockinette -n04323819 stocking -n04324120 stock-in-trade -n04324297 stockpot -n04324387 stockroom, stock room -n04324515 stocks -n04325041 stock saddle, Western saddle -n04325208 stockyard -n04325704 stole -n04325804 stomacher -n04325968 stomach pump -n04326547 stone wall -n04326676 stoneware -n04326799 stonework -n04326896 stool -n04327204 stoop, stoep -n04327544 stop bath, short-stop, short-stop bath -n04327682 stopcock, cock, turncock -n04328054 stopper knot -n04328186 stopwatch, stop watch -n04328329 storage battery, accumulator -n04328580 storage cell, secondary cell -n04328703 storage ring -n04328946 storage space -n04329477 storeroom, storage room, stowage -n04329681 storm cellar, cyclone cellar, tornado cellar -n04329834 storm door -n04329958 storm window, storm sash -n04330109 stoup, stoop -n04330189 stoup -n04330267 stove -n04330340 stove, kitchen stove, range, kitchen range, cooking stove -n04330669 stove bolt -n04330746 stovepipe -n04330896 stovepipe iron -n04330998 Stradavarius, Strad -n04331277 straight chair, side chair -n04331443 straightedge -n04331639 straightener -n04331765 straight flute, straight-fluted drill -n04331892 straight pin -n04332074 straight razor -n04332243 strainer -n04332580 straitjacket, straightjacket -n04332987 strap -n04333129 strap -n04333869 strap hinge, joint hinge -n04334105 strapless -n04334365 streamer fly -n04334504 streamliner -n04334599 street -n04335209 street -n04335435 streetcar, tram, tramcar, trolley, trolley car -n04335693 street clothes -n04335886 streetlight, street lamp -n04336792 stretcher -n04337157 stretcher -n04337287 stretch pants -n04337503 strickle -n04337650 strickle -n04338517 stringed instrument -n04338963 stringer -n04339062 stringer -n04339191 string tie -n04339638 strip -n04339879 strip lighting -n04340019 strip mall -n04340521 stroboscope, strobe, strobe light -n04340750 strongbox, deedbox -n04340935 stronghold, fastness -n04341133 strongroom -n04341288 strop -n04341414 structural member -n04341686 structure, construction -n04343511 student center -n04343630 student lamp -n04343740 student union -n04344003 stud finder -n04344734 studio apartment, studio -n04344873 studio couch, day bed -n04345028 study -n04345201 study hall -n04345787 stuffing nut, packing nut -n04346003 stump -n04346157 stun gun, stun baton -n04346328 stupa, tope -n04346428 sty, pigsty, pigpen -n04346511 stylus, style -n04346679 stylus -n04346855 sub-assembly -n04347119 subcompact, subcompact car -n04347519 submachine gun -n04347754 submarine, pigboat, sub, U-boat -n04348070 submarine torpedo -n04348184 submersible, submersible warship -n04348359 submersible -n04348988 subtracter -n04349189 subway token -n04349306 subway train -n04349401 subwoofer -n04349913 suction cup -n04350104 suction pump -n04350235 sudatorium, sudatory -n04350458 suede cloth, suede -n04350581 sugar bowl -n04350688 sugar refinery -n04350769 sugar spoon, sugar shell -n04350905 suit, suit of clothes -n04351550 suite, rooms -n04351699 suiting -n04353573 sulky -n04354026 summer house -n04354182 sumo ring -n04354387 sump -n04354487 sump pump -n04354589 sunbonnet -n04355115 Sunday best, Sunday clothes -n04355267 sun deck -n04355338 sundial -n04355511 sundress -n04355684 sundries -n04355821 sun gear -n04355933 sunglass -n04356056 sunglasses, dark glasses, shades -n04356595 sunhat, sun hat -n04356772 sunlamp, sun lamp, sunray lamp, sun-ray lamp -n04356925 sun parlor, sun parlour, sun porch, sunporch, sunroom, sun lounge, solarium -n04357121 sunroof, sunshine-roof -n04357314 sunscreen, sunblock, sun blocker -n04357531 sunsuit -n04357930 supercharger -n04358117 supercomputer -n04358256 superconducting supercollider -n04358491 superhighway, information superhighway -n04358707 supermarket -n04358874 superstructure -n04359034 supertanker -n04359124 supper club -n04359217 supplejack -n04359335 supply chamber -n04359500 supply closet -n04359589 support -n04360501 support -n04360798 support column -n04360914 support hose, support stocking -n04361095 supporting structure -n04361260 supporting tower -n04361937 surcoat -n04362624 surface gauge, surface gage, scribing block -n04362821 surface lift -n04362972 surface search radar -n04363082 surface ship -n04363210 surface-to-air missile, SAM -n04363412 surface-to-air missile system -n04363671 surfboat -n04363777 surcoat -n04363874 surgeon's knot -n04363991 surgery -n04364160 surge suppressor, surge protector, spike suppressor, spike arrester, lightning arrester -n04364397 surgical dressing -n04364545 surgical instrument -n04364827 surgical knife -n04364994 surplice -n04365112 surrey -n04365229 surtout -n04365328 surveillance system -n04365484 surveying instrument, surveyor's instrument -n04365751 surveyor's level -n04366033 sushi bar -n04366116 suspension, suspension system -n04366367 suspension bridge -n04366832 suspensory, suspensory bandage -n04367011 sustaining pedal, loud pedal -n04367371 suture, surgical seam -n04367480 swab, swob, mop -n04367746 swab -n04367950 swaddling clothes, swaddling bands -n04368109 swag -n04368235 swage block -n04368365 swagger stick -n04368496 swallow-tailed coat, swallowtail, morning coat -n04368695 swamp buggy, marsh buggy -n04368840 swan's down -n04369025 swathe, wrapping -n04369282 swatter, flyswatter, flyswat -n04369485 sweat bag -n04369618 sweatband -n04370048 sweater, jumper -n04370288 sweat pants, sweatpants -n04370456 sweatshirt -n04370600 sweatshop -n04370774 sweat suit, sweatsuit, sweats, workout suit -n04370955 sweep, sweep oar -n04371050 sweep hand, sweep-second -n04371430 swimming trunks, bathing trunks -n04371563 swimsuit, swimwear, bathing suit, swimming costume, bathing costume -n04371774 swing -n04371979 swing door, swinging door -n04372370 switch, electric switch, electrical switch -n04373089 switchblade, switchblade knife, flick-knife, flick knife -n04373428 switch engine, donkey engine -n04373563 swivel -n04373704 swivel chair -n04373795 swizzle stick -n04373894 sword, blade, brand, steel -n04374315 sword cane, sword stick -n04374521 S wrench -n04374735 synagogue, temple, tabernacle -n04374907 synchrocyclotron -n04375080 synchroflash -n04375241 synchromesh -n04375405 synchronous converter, rotary, rotary converter -n04375615 synchronous motor -n04375775 synchrotron -n04375926 synchroscope, synchronoscope, synchronizer, synchroniser -n04376400 synthesizer, synthesiser -n04376876 syringe -n04377057 system -n04378489 tabard -n04378651 Tabernacle -n04378956 tabi, tabis -n04379096 tab key, tab -n04379243 table -n04379964 table -n04380255 tablefork -n04380346 table knife -n04380533 table lamp -n04380916 table saw -n04381073 tablespoon -n04381450 tablet-armed chair -n04381587 table-tennis table, ping-pong table, pingpong table -n04381724 table-tennis racquet, table-tennis bat, pingpong paddle -n04381860 tabletop -n04381994 tableware -n04382334 tabor, tabour -n04382438 taboret, tabouret -n04382537 tachistoscope, t-scope -n04382695 tachograph -n04382880 tachometer, tach -n04383015 tachymeter, tacheometer -n04383130 tack -n04383301 tack hammer -n04383839 taffeta -n04383923 taffrail -n04384593 tailgate, tailboard -n04384910 taillight, tail lamp, rear light, rear lamp -n04385079 tailor-made -n04385157 tailor's chalk -n04385536 tailpipe -n04385799 tail rotor, anti-torque rotor -n04386051 tailstock -n04386456 take-up -n04386664 talaria -n04386792 talcum, talcum powder -n04387095 tam, tam-o'-shanter, tammy -n04387201 tambour -n04387261 tambour, embroidery frame, embroidery hoop -n04387400 tambourine -n04387531 tammy -n04387706 tamp, tamper, tamping bar -n04387932 Tampax -n04388040 tampion, tompion -n04388162 tampon -n04388473 tandoor -n04388574 tangram -n04388743 tank, storage tank -n04389033 tank, army tank, armored combat vehicle, armoured combat vehicle -n04389430 tankard -n04389521 tank car, tank -n04389718 tank destroyer -n04389854 tank engine, tank locomotive -n04389999 tanker plane -n04390483 tank shell -n04390577 tank top -n04390873 tannoy -n04390977 tap, spigot -n04391445 tapa, tappa -n04391838 tape, tape recording, taping -n04392113 tape, tapeline, tape measure -n04392526 tape deck -n04392764 tape drive, tape transport, transport -n04392985 tape player -n04393095 tape recorder, tape machine -n04393301 taper file -n04393549 tapestry, tapis -n04393808 tappet -n04393913 tap wrench -n04394031 tare -n04394261 target, butt -n04394421 target acquisition system -n04394630 tarmacadam, tarmac, macadam -n04395024 tarpaulin, tarp -n04395106 tartan, plaid -n04395332 tasset, tasse -n04395651 tattoo -n04395875 tavern, tap house -n04396226 tawse -n04396335 taximeter -n04396650 T-bar lift, T-bar, Alpine lift -n04396808 tea bag -n04396902 tea ball -n04397027 tea cart, teacart, tea trolley, tea wagon -n04397168 tea chest -n04397261 teaching aid -n04397452 teacup -n04397645 tea gown -n04397768 teakettle -n04397860 tea maker -n04398044 teapot -n04398497 teashop, teahouse, tearoom, tea parlor, tea parlour -n04398688 teaspoon -n04398834 tea-strainer -n04398951 tea table -n04399046 tea tray -n04399158 tea urn -n04399382 teddy, teddy bear -n04399537 tee, golf tee -n04399846 tee hinge, T hinge -n04400109 telecom hotel, telco building -n04400289 telecommunication system, telecom system, telecommunication equipment, telecom equipment -n04400499 telegraph, telegraphy -n04400737 telegraph key -n04400899 telemeter -n04401088 telephone, phone, telephone set -n04401578 telephone bell -n04401680 telephone booth, phone booth, call box, telephone box, telephone kiosk -n04401828 telephone cord, phone cord -n04401949 telephone jack, phone jack -n04402057 telephone line, phone line, telephone circuit, subscriber line, line -n04402342 telephone plug, phone plug -n04402449 telephone pole, telegraph pole, telegraph post -n04402580 telephone receiver, receiver -n04402746 telephone system, phone system -n04402984 telephone wire, telephone line, telegraph wire, telegraph line -n04403413 telephoto lens, zoom lens -n04403524 Teleprompter -n04403638 telescope, scope -n04403925 telescopic sight, telescope sight -n04404072 telethermometer -n04404200 teletypewriter, teleprinter, teletype machine, telex, telex machine -n04404412 television, television system -n04404817 television antenna, tv-antenna -n04404997 television camera, tv camera, camera -n04405540 television equipment, video equipment -n04405762 television monitor, tv monitor -n04405907 television receiver, television, television set, tv, tv set, idiot box, boob tube, telly, goggle box -n04406239 television room, tv room -n04406552 television transmitter -n04406687 telpher, telfer -n04406817 telpherage, telferage -n04407257 tempera, poster paint, poster color, poster colour -n04407435 temple -n04407686 temple -n04408871 temporary hookup, patch -n04409011 tender, supply ship -n04409128 tender, ship's boat, pinnace, cutter -n04409279 tender -n04409384 tenement, tenement house -n04409515 tennis ball -n04409625 tennis camp -n04409806 tennis racket, tennis racquet -n04409911 tenon -n04410086 tenor drum, tom-tom -n04410365 tenoroon -n04410485 tenpenny nail -n04410565 tenpin -n04410663 tensimeter -n04410760 tensiometer -n04410886 tensiometer -n04411019 tensiometer -n04411264 tent, collapsible shelter -n04411835 tenter -n04411966 tenterhook -n04412097 tent-fly, rainfly, fly sheet, fly, tent flap -n04412300 tent peg -n04412416 tepee, tipi, teepee -n04413151 terminal, pole -n04413419 terminal -n04413969 terraced house -n04414101 terra cotta -n04414199 terrarium -n04414319 terra sigillata, Samian ware -n04414476 terry, terry cloth, terrycloth -n04414675 Tesla coil -n04414909 tessera -n04415257 test equipment -n04415663 test rocket, research rocket, test instrument vehicle -n04415815 test room, testing room -n04416005 testudo -n04416901 tetraskelion, tetraskele -n04417086 tetrode -n04417180 textile machine -n04417361 textile mill -n04417672 thatch, thatched roof -n04417809 theater, theatre, house -n04418357 theater curtain, theatre curtain -n04418644 theater light -n04419073 theodolite, transit -n04419642 theremin -n04419868 thermal printer -n04420024 thermal reactor -n04420720 thermocouple, thermocouple junction -n04421083 thermoelectric thermometer, thermel, electric thermometer -n04421258 thermograph, thermometrograph -n04421417 thermograph -n04421582 thermohydrometer, thermogravimeter -n04421740 thermojunction -n04421872 thermometer -n04422409 thermonuclear reactor, fusion reactor -n04422566 thermopile -n04422727 thermos, thermos bottle, thermos flask -n04422875 thermostat, thermoregulator -n04423552 thigh pad -n04423687 thill -n04423845 thimble -n04424692 thinning shears -n04425804 third base, third -n04425977 third gear, third -n04426184 third rail -n04426316 thong -n04426427 thong -n04427216 three-centered arch, basket-handle arch -n04427473 three-decker -n04427559 three-dimensional radar, 3d radar -n04427715 three-piece suit -n04427857 three-quarter binding -n04428008 three-way switch, three-point switch -n04428191 thresher, thrasher, threshing machine -n04428382 threshing floor -n04428634 thriftshop, second-hand store -n04429038 throat protector -n04429376 throne -n04430475 thrust bearing -n04430605 thruster -n04430896 thumb -n04431025 thumbhole -n04431436 thumbscrew -n04431648 thumbstall -n04431745 thumbtack, drawing pin, pushpin -n04431925 thunderer -n04432043 thwart, cross thwart -n04432203 tiara -n04432662 ticking -n04432785 tickler coil -n04433377 tie, tie beam -n04433585 tie, railroad tie, crosstie, sleeper -n04434207 tie rack -n04434531 tie rod -n04434932 tights, leotards -n04435180 tile -n04435552 tile cutter -n04435653 tile roof -n04435759 tiller -n04435870 tilter -n04436012 tilt-top table, tip-top table, tip table -n04436185 timber -n04436329 timber -n04436401 timber hitch -n04436542 timbrel -n04436832 time bomb, infernal machine -n04436992 time capsule -n04437276 time clock -n04437380 time-delay measuring instrument, time-delay measuring system -n04437670 time-fuse -n04437953 timepiece, timekeeper, horologe -n04438304 timer -n04438507 timer -n04438643 time-switch -n04438897 tin -n04439505 tinderbox -n04439585 tine -n04439712 tinfoil, tin foil -n04440597 tippet -n04440963 tire chain, snow chain -n04441093 tire iron, tire tool -n04441528 titfer -n04441662 tithe barn -n04441790 titrator -n04442312 toaster -n04442441 toaster oven -n04442582 toasting fork -n04442741 toastrack -n04443164 tobacco pouch -n04443257 tobacco shop, tobacconist shop, tobacconist -n04443433 toboggan -n04443766 toby, toby jug, toby fillpot jug -n04444121 tocsin, warning bell -n04444218 toe -n04444749 toecap -n04444953 toehold -n04445040 toga -n04445154 toga virilis -n04445327 toggle -n04445610 toggle bolt -n04445782 toggle joint -n04445952 toggle switch, toggle, on-off switch, on/off switch -n04446162 togs, threads, duds -n04446276 toilet, lavatory, lav, can, john, privy, bathroom -n04446844 toilet bag, sponge bag -n04447028 toilet bowl -n04447156 toilet kit, travel kit -n04447276 toilet powder, bath powder, dusting powder -n04447443 toiletry, toilet articles -n04447861 toilet seat -n04448070 toilet water, eau de toilette -n04448185 tokamak -n04448361 token -n04449290 tollbooth, tolbooth, tollhouse -n04449449 toll bridge -n04449550 tollgate, tollbar -n04449700 toll line -n04449966 tomahawk, hatchet -n04450133 Tommy gun, Thompson submachine gun -n04450243 tomograph -n04450465 tone arm, pickup, pickup arm -n04450640 toner -n04450749 tongs, pair of tongs -n04450994 tongue -n04451139 tongue and groove joint -n04451318 tongue depressor -n04451636 tonometer -n04451818 tool -n04452528 tool bag -n04452615 toolbox, tool chest, tool cabinet, tool case -n04452757 toolshed, toolhouse -n04452848 tooth -n04453037 tooth -n04453156 toothbrush -n04453390 toothpick -n04453666 top -n04453910 top, cover -n04454654 topgallant, topgallant mast -n04454792 topgallant, topgallant sail -n04454908 topiary -n04455048 topknot -n04455250 topmast -n04455579 topper -n04455652 topsail -n04456011 toque -n04456115 torch -n04456472 torpedo -n04456734 torpedo -n04457157 torpedo -n04457326 torpedo boat -n04457474 torpedo-boat destroyer -n04457638 torpedo tube -n04457767 torque converter -n04457910 torque wrench -n04458201 torture chamber -n04458633 totem pole -n04458843 touch screen, touchscreen -n04459018 toupee, toupe -n04459122 touring car, phaeton, tourer -n04459243 tourist class, third class -n04459362 towel -n04459610 toweling, towelling -n04459773 towel rack, towel horse -n04459909 towel rail, towel bar -n04460130 tower -n04461437 town hall -n04461570 towpath, towing path -n04461696 tow truck, tow car, wrecker -n04461879 toy -n04462011 toy box, toy chest -n04462240 toyshop -n04462576 trace detector -n04463679 track, rail, rails, runway -n04464125 track -n04464615 trackball -n04464852 tracked vehicle -n04465050 tract house -n04465203 tract housing -n04465358 traction engine -n04465501 tractor -n04465666 tractor -n04466871 trail bike, dirt bike, scrambler -n04467099 trailer, house trailer -n04467307 trailer -n04467506 trailer camp, trailer park -n04467665 trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi -n04467899 trailing edge -n04468005 train, railroad train -n04469003 tramline, tramway, streetcar track -n04469251 trammel -n04469514 trampoline -n04469684 tramp steamer, tramp -n04469813 tramway, tram, aerial tramway, cable tramway, ropeway -n04470741 transdermal patch, skin patch -n04471148 transept -n04471315 transformer -n04471632 transistor, junction transistor, electronic transistor -n04471912 transit instrument -n04472243 transmission, transmission system -n04472563 transmission shaft -n04472726 transmitter, sender -n04472961 transom, traverse -n04473108 transom, transom window, fanlight -n04473275 transponder -n04473884 transporter -n04474035 transporter, car transporter -n04474187 transport ship -n04474466 trap -n04475309 trap door -n04475411 trapeze -n04475496 trave, traverse, crossbeam, crosspiece -n04475631 travel iron -n04475749 trawl, dragnet, trawl net -n04475900 trawl, trawl line, spiller, setline, trotline -n04476116 trawler, dragger -n04476259 tray -n04476526 tray cloth -n04476831 tread -n04476972 tread -n04477219 treadmill, treadwheel, tread-wheel -n04477387 treadmill -n04477548 treasure chest -n04477725 treasure ship -n04478066 treenail, trenail, trunnel -n04478383 trefoil arch -n04478512 trellis, treillage -n04478657 trench -n04479046 trench coat -n04479287 trench knife -n04479405 trepan -n04479526 trepan, trephine -n04479694 trestle -n04479823 trestle -n04479939 trestle bridge -n04480033 trestle table -n04480141 trestlework -n04480303 trews -n04480527 trial balloon -n04480853 triangle -n04480995 triangle -n04481524 triclinium -n04481642 triclinium -n04482177 tricorn, tricorne -n04482297 tricot -n04482393 tricycle, trike, velocipede -n04482975 trident -n04483073 trigger -n04483307 trimaran -n04483925 trimmer -n04484024 trimmer arch -n04484432 triode -n04485082 tripod -n04485423 triptych -n04485586 trip wire -n04485750 trireme -n04485884 triskelion, triskele -n04486054 triumphal arch -n04486213 trivet -n04486322 trivet -n04486616 troika -n04486934 troll -n04487081 trolleybus, trolley coach, trackless trolley -n04487394 trombone -n04487724 troop carrier, troop transport -n04487894 troopship -n04488202 trophy case -n04488427 trough -n04488530 trouser -n04488742 trouser cuff -n04488857 trouser press, pants presser -n04489008 trouser, pant -n04489695 trousseau -n04489817 trowel -n04490091 truck, motortruck -n04491312 trumpet arch -n04491388 truncheon, nightstick, baton, billy, billystick, billy club -n04491638 trundle bed, trundle, truckle bed, truckle -n04491769 trunk -n04491934 trunk hose -n04492060 trunk lid -n04492157 trunk line -n04492375 truss -n04492749 truss bridge -n04493109 try square -n04493259 T-square -n04493381 tub, vat -n04494204 tube, vacuum tube, thermionic vacuum tube, thermionic tube, electron tube, thermionic valve -n04495051 tuck box -n04495183 tucker -n04495310 tucker-bag -n04495450 tuck shop -n04495555 Tudor arch, four-centered arch -n04495698 tudung -n04495843 tugboat, tug, towboat, tower -n04496614 tulle -n04496726 tumble-dryer, tumble drier -n04496872 tumbler -n04497249 tumbrel, tumbril -n04497442 tun -n04497570 tunic -n04497801 tuning fork -n04498275 tupik, tupek, sealskin tent -n04498389 turban -n04498523 turbine -n04498873 turbogenerator -n04499062 tureen -n04499300 Turkish bath -n04499446 Turkish towel, terry towel -n04499554 Turk's head -n04499810 turnbuckle -n04500060 turner, food turner -n04500390 turnery -n04501127 turnpike -n04501281 turnspit -n04501370 turnstile -n04501550 turntable -n04501837 turntable, lazy Susan -n04501947 turret -n04502059 turret clock -n04502197 turtleneck, turtle, polo-neck -n04502502 tweed -n04502670 tweeter -n04502851 twenty-two, .22 -n04502989 twenty-two pistol -n04503073 twenty-two rifle -n04503155 twill -n04503269 twill, twill weave -n04503413 twin bed -n04503499 twinjet -n04503593 twist bit, twist drill -n04503705 two-by-four -n04504038 two-man tent -n04504141 two-piece, two-piece suit, lounge suit -n04504770 typesetting machine -n04505036 typewriter -n04505345 typewriter carriage -n04505470 typewriter keyboard -n04505888 tyrolean, tirolean -n04506289 uke, ukulele -n04506402 ulster -n04506506 ultracentrifuge -n04506688 ultramicroscope, dark-field microscope -n04506895 Ultrasuede -n04506994 ultraviolet lamp, ultraviolet source -n04507155 umbrella -n04507326 umbrella tent -n04507453 undercarriage -n04507689 undercoat, underseal -n04508163 undergarment, unmentionable -n04508489 underpants -n04508949 underwear, underclothes, underclothing -n04509171 undies -n04509260 uneven parallel bars, uneven bars -n04509417 unicycle, monocycle -n04509592 uniform -n04510706 universal joint, universal -n04511002 university -n04513827 upholstery -n04513998 upholstery material -n04514095 upholstery needle -n04514241 uplift -n04514648 upper berth, upper -n04515003 upright, upright piano -n04515444 upset, swage -n04515729 upstairs -n04515890 urceole -n04516116 urn -n04516214 urn -n04516354 used-car, secondhand car -n04516672 utensil -n04517211 Uzi -n04517408 vacation home -n04517823 vacuum, vacuum cleaner -n04517999 vacuum chamber -n04518132 vacuum flask, vacuum bottle -n04518343 vacuum gauge, vacuum gage -n04518643 Valenciennes, Valenciennes lace -n04518764 valise -n04519153 valve -n04519536 valve -n04519728 valve-in-head engine -n04519887 vambrace, lower cannon -n04520170 van -n04520382 van, caravan -n04520784 vane -n04520962 vaporizer, vaporiser -n04521571 variable-pitch propeller -n04521863 variometer -n04521987 varnish -n04522168 vase -n04523525 vault -n04523831 vault, bank vault -n04524142 vaulting horse, long horse, buck -n04524313 vehicle -n04524594 Velcro -n04524716 velocipede -n04524941 velour, velours -n04525038 velvet -n04525191 velveteen -n04525305 vending machine -n04525417 veneer, veneering -n04525584 Venetian blind -n04525821 Venn diagram, Venn's diagram -n04526520 ventilation, ventilation system, ventilating system -n04526800 ventilation shaft -n04526964 ventilator -n04527648 veranda, verandah, gallery -n04528079 verdigris -n04528968 vernier caliper, vernier micrometer -n04529108 vernier scale, vernier -n04529681 vertical file -n04529962 vertical stabilizer, vertical stabiliser, vertical fin, tail fin, tailfin -n04530283 vertical tail -n04530456 Very pistol, Verey pistol -n04530566 vessel, watercraft -n04531098 vessel -n04531873 vest, waistcoat -n04532022 vestiture -n04532106 vestment -n04532398 vest pocket -n04532504 vestry, sacristy -n04532670 viaduct -n04532831 vibraphone, vibraharp, vibes -n04533042 vibrator -n04533199 vibrator -n04533499 Victrola -n04533594 vicuna -n04533700 videocassette -n04533802 videocassette recorder, VCR -n04533946 videodisk, videodisc, DVD -n04534127 video recording, video -n04534359 videotape -n04534520 videotape -n04534895 vigil light, vigil candle -n04535252 villa -n04535370 villa -n04535524 villa -n04536153 viol -n04536335 viola -n04536465 viola da braccio -n04536595 viola da gamba, gamba, bass viol -n04536765 viola d'amore -n04536866 violin, fiddle -n04537436 virginal, pair of virginals -n04538249 viscometer, viscosimeter -n04538403 viscose rayon, viscose -n04538552 vise, bench vise -n04538878 visor, vizor -n04539053 visual display unit, VDU -n04539203 vivarium -n04539407 Viyella -n04539794 voile -n04540053 volleyball -n04540255 volleyball net -n04540397 voltage regulator -n04540761 voltaic cell, galvanic cell, primary cell -n04541136 voltaic pile, pile, galvanic pile -n04541320 voltmeter -n04541662 vomitory -n04541777 von Neumann machine -n04541987 voting booth -n04542095 voting machine -n04542329 voussoir -n04542474 vox angelica, voix celeste -n04542595 vox humana -n04542715 waders -n04542858 wading pool -n04542943 waffle iron -n04543158 wagon, waggon -n04543509 wagon, coaster wagon -n04543636 wagon tire -n04543772 wagon wheel -n04543924 wain -n04543996 wainscot, wainscoting, wainscotting -n04544325 wainscoting, wainscotting -n04544450 waist pack, belt bag -n04545305 walker, baby-walker, go-cart -n04545471 walker, Zimmer, Zimmer frame -n04545748 walker -n04545858 walkie-talkie, walky-talky -n04545984 walk-in -n04546081 walking shoe -n04546194 walking stick -n04546340 Walkman -n04546595 walk-up apartment, walk-up -n04546855 wall -n04547592 wall -n04548280 wall clock -n04548362 wallet, billfold, notecase, pocketbook -n04549028 wall tent -n04549122 wall unit -n04549629 wand -n04549721 Wankel engine, Wankel rotary engine, epitrochoidal engine -n04549919 ward, hospital ward -n04550184 wardrobe, closet, press -n04550676 wardroom -n04551055 warehouse, storage warehouse -n04551833 warming pan -n04552097 war paint -n04552348 warplane, military plane -n04552551 war room -n04552696 warship, war vessel, combat ship -n04553389 wash -n04553561 wash-and-wear -n04553703 washbasin, handbasin, washbowl, lavabo, wash-hand basin -n04554211 washboard, splashboard -n04554406 washboard -n04554684 washer, automatic washer, washing machine -n04554871 washer -n04554998 washhouse -n04555291 washroom -n04555400 washstand, wash-hand stand -n04555600 washtub -n04555700 wastepaper basket, waste-paper basket, wastebasket, waste basket, circular file -n04555897 watch, ticker -n04556408 watch cap -n04556533 watch case -n04556664 watch glass -n04556948 watchtower -n04557308 water-base paint -n04557522 water bed -n04557648 water bottle -n04557751 water butt -n04558059 water cart -n04558199 water chute -n04558478 water closet, closet, W.C., loo -n04558804 watercolor, water-color, watercolour, water-colour -n04559023 water-cooled reactor -n04559166 water cooler -n04559451 water faucet, water tap, tap, hydrant -n04559620 water filter -n04559730 water gauge, water gage, water glass -n04559910 water glass -n04559994 water hazard -n04560113 water heater, hot-water heater, hot-water tank -n04560292 watering can, watering pot -n04560502 watering cart -n04560619 water jacket -n04560804 water jug -n04560882 water jump -n04561010 water level -n04561287 water meter -n04561422 water mill -n04561734 waterproof -n04561857 waterproofing -n04561965 water pump -n04562122 water scooter, sea scooter, scooter -n04562262 water ski -n04562496 waterspout -n04562935 water tower -n04563020 water wagon, water waggon -n04563204 waterwheel, water wheel -n04563413 waterwheel, water wheel -n04563560 water wings -n04563790 waterworks -n04564278 wattmeter -n04564581 waxwork, wax figure -n04565039 ways, shipway, slipway -n04565375 weapon, arm, weapon system -n04566257 weaponry, arms, implements of war, weapons system, munition -n04566561 weapons carrier -n04566756 weathercock -n04567098 weatherglass -n04567593 weather satellite, meteorological satellite -n04567746 weather ship -n04568069 weathervane, weather vane, vane, wind vane -n04568557 web, entanglement -n04568713 web -n04568841 webbing -n04569063 webcam -n04569520 wedge -n04569822 wedge -n04570118 wedgie -n04570214 Wedgwood -n04570416 weeder, weed-whacker -n04570532 weeds, widow's weeds -n04570815 weekender -n04570958 weighbridge -n04571292 weight, free weight, exercising weight -n04571566 weir -n04571686 weir -n04571800 welcome wagon -n04571958 weld -n04572121 welder's mask -n04572235 weldment -n04572935 well -n04573045 wellhead -n04573281 welt -n04573379 Weston cell, cadmium cell -n04573513 wet bar -n04573625 wet-bulb thermometer -n04573832 wet cell -n04573937 wet fly -n04574067 wet suit -n04574348 whaleboat -n04574471 whaler, whaling ship -n04574606 whaling gun -n04574999 wheel -n04575723 wheel -n04575824 wheel and axle -n04576002 wheelchair -n04576211 wheeled vehicle -n04576971 wheelwork -n04577139 wherry -n04577293 wherry, Norfolk wherry -n04577426 whetstone -n04577567 whiffletree, whippletree, swingletree -n04577769 whip -n04578112 whipcord -n04578329 whipping post -n04578559 whipstitch, whipping, whipstitching -n04578708 whirler -n04578801 whisk, whisk broom -n04578934 whisk -n04579056 whiskey bottle -n04579145 whiskey jug -n04579230 whispering gallery, whispering dome -n04579432 whistle -n04579667 whistle -n04579986 white -n04580493 white goods -n04581102 whitewash -n04581595 whorehouse, brothel, bordello, bagnio, house of prostitution, house of ill repute, bawdyhouse, cathouse, sporting house -n04581829 wick, taper -n04582205 wicker, wickerwork, caning -n04582349 wicker basket -n04582771 wicket, hoop -n04582869 wicket -n04583022 wickiup, wikiup -n04583212 wide-angle lens, fisheye lens -n04583620 widebody aircraft, wide-body aircraft, wide-body, twin-aisle airplane -n04583888 wide wale -n04583967 widow's walk -n04584056 Wiffle, Wiffle Ball -n04584207 wig -n04584373 wigwam -n04585128 Wilton, Wilton carpet -n04585318 wimple -n04585456 wincey -n04585626 winceyette -n04585745 winch, windlass -n04585980 Winchester -n04586072 windbreak, shelterbelt -n04586581 winder, key -n04586932 wind instrument, wind -n04587327 windjammer -n04587404 windmill, aerogenerator, wind generator -n04587559 windmill -n04587648 window -n04588739 window -n04589190 window blind -n04589325 window box -n04589434 window envelope -n04589593 window frame -n04589890 window screen -n04590021 window seat -n04590129 window shade -n04590263 windowsill -n04590553 windshield, windscreen -n04590746 windshield wiper, windscreen wiper, wiper, wiper blade -n04590933 Windsor chair -n04591056 Windsor knot -n04591157 Windsor tie -n04591249 wind tee -n04591359 wind tunnel -n04591517 wind turbine -n04591631 wine bar -n04591713 wine bottle -n04591887 wine bucket, wine cooler -n04592005 wine cask, wine barrel -n04592099 wineglass -n04592356 winepress -n04592465 winery, wine maker -n04592596 wineskin -n04592741 wing -n04593077 wing chair -n04593185 wing nut, wing-nut, wing screw, butterfly nut, thumbnut -n04593376 wing tip -n04593524 wing tip -n04593629 winker, blinker, blinder -n04593866 wiper, wiper arm, contact arm -n04594114 wiper motor -n04594218 wire -n04594489 wire, conducting wire -n04594742 wire cloth -n04594828 wire cutter -n04594919 wire gauge, wire gage -n04595028 wireless local area network, WLAN, wireless fidelity, WiFi -n04595285 wire matrix printer, wire printer, stylus printer -n04595501 wire recorder -n04595611 wire stripper -n04595762 wirework, grillwork -n04595855 wiring -n04596116 wishing cap -n04596492 witness box, witness stand -n04596742 wok -n04596852 woman's clothing -n04597066 wood -n04597309 woodcarving -n04597400 wood chisel -n04597804 woodenware -n04597913 wooden spoon -n04598136 woodscrew -n04598318 woodshed -n04598416 wood vise, woodworking vise, shoulder vise -n04598582 woodwind, woodwind instrument, wood -n04598965 woof, weft, filling, pick -n04599124 woofer -n04599235 wool, woolen, woollen -n04600312 workbasket, workbox, workbag -n04600486 workbench, work bench, bench -n04600912 work-clothing, work-clothes -n04601041 workhouse -n04601159 workhouse -n04601938 workpiece -n04602762 workroom -n04602840 works, workings -n04602956 work-shirt -n04603399 workstation -n04603729 worktable, work table -n04603872 workwear -n04604276 World Wide Web, WWW, web -n04604644 worm fence, snake fence, snake-rail fence, Virginia fence -n04604806 worm gear -n04605057 worm wheel -n04605163 worsted -n04605321 worsted, worsted yarn -n04605446 wrap, wrapper -n04605572 wraparound -n04605726 wrapping, wrap, wrapper -n04606251 wreck -n04606574 wrench, spanner -n04607035 wrestling mat -n04607242 wringer -n04607640 wrist pad -n04607759 wrist pin, gudgeon pin -n04607869 wristwatch, wrist watch -n04607982 writing arm -n04608329 writing desk -n04608435 writing desk -n04608567 writing implement -n04608809 xerographic printer -n04608923 Xerox, xerographic copier, Xerox machine -n04609531 X-ray film -n04609651 X-ray machine -n04609811 X-ray tube -n04610013 yacht, racing yacht -n04610176 yacht chair -n04610274 yagi, Yagi aerial -n04610503 yard -n04610676 yard -n04611351 yardarm -n04611795 yard marker -n04611916 yardstick, yard measure -n04612026 yarmulke, yarmulka, yarmelke -n04612159 yashmak, yashmac -n04612257 yataghan -n04612373 yawl, dandy -n04612504 yawl -n04612840 yoke -n04613015 yoke -n04613158 yoke, coupling -n04613696 yurt -n04613939 Zamboni -n04614505 zero -n04614655 ziggurat, zikkurat, zikurat -n04614844 zill -n04615149 zip gun -n04615226 zither, cither, zithern -n04615644 zoot suit -n04682018 shading -n04950713 grain -n04950952 wood grain, woodgrain, woodiness -n04951071 graining, woodgraining -n04951186 marbleization, marbleisation, marbleizing, marbleising -n04951373 light, lightness -n04951716 aura, aureole, halo, nimbus, glory, gloriole -n04951875 sunniness -n04953296 glint -n04953678 opalescence, iridescence -n04955160 polish, gloss, glossiness, burnish -n04957356 primary color for pigments, primary colour for pigments -n04957589 primary color for light, primary colour for light -n04958634 colorlessness, colourlessness, achromatism, achromaticity -n04958865 mottle -n04959061 achromia -n04959230 shade, tint, tincture, tone -n04959672 chromatic color, chromatic colour, spectral color, spectral colour -n04960277 black, blackness, inkiness -n04960582 coal black, ebony, jet black, pitch black, sable, soot black -n04961062 alabaster -n04961331 bone, ivory, pearl, off-white -n04961691 gray, grayness, grey, greyness -n04962062 ash grey, ash gray, silver, silver grey, silver gray -n04962240 charcoal, charcoal grey, charcoal gray, oxford grey, oxford gray -n04963111 sanguine -n04963307 Turkey red, alizarine red -n04963588 crimson, ruby, deep red -n04963740 dark red -n04964001 claret -n04964799 fuschia -n04964878 maroon -n04965179 orange, orangeness -n04965451 reddish orange -n04965661 yellow, yellowness -n04966543 gamboge, lemon, lemon yellow, maize -n04966941 pale yellow, straw, wheat -n04967191 green, greenness, viridity -n04967561 greenishness -n04967674 sea green -n04967801 sage green -n04967882 bottle green -n04968056 emerald -n04968139 olive green, olive-green -n04968749 jade green, jade -n04968895 blue, blueness -n04969242 azure, cerulean, sapphire, lazuline, sky-blue -n04969540 steel blue -n04969798 greenish blue, aqua, aquamarine, turquoise, cobalt blue, peacock blue -n04969952 purplish blue, royal blue -n04970059 purple, purpleness -n04970312 Tyrian purple -n04970398 indigo -n04970470 lavender -n04970631 reddish purple, royal purple -n04970916 pink -n04971211 carnation -n04971313 rose, rosiness -n04972350 chestnut -n04972451 chocolate, coffee, deep brown, umber, burnt umber -n04972801 light brown -n04973020 tan, topaz -n04973291 beige, ecru -n04973386 reddish brown, sepia, burnt sienna, Venetian red, mahogany -n04973585 brick red -n04973669 copper, copper color -n04973816 Indian red -n04974145 puce -n04974340 olive -n04974859 ultramarine -n04975739 complementary color, complementary -n04976319 pigmentation -n04976952 complexion, skin color, skin colour -n04977412 ruddiness, rosiness -n04978561 nonsolid color, nonsolid colour, dithered color, dithered colour -n04979002 aposematic coloration, warning coloration -n04979307 cryptic coloration -n04981658 ring -n05102764 center of curvature, centre of curvature -n05218119 cadaver, corpse, stiff, clay, remains -n05233741 mandibular notch -n05235879 rib -n05238282 skin, tegument, cutis -n05239437 skin graft -n05241218 epidermal cell -n05241485 melanocyte -n05241662 prickle cell -n05242070 columnar cell, columnar epithelial cell -n05242239 spongioblast -n05242928 squamous cell -n05244421 amyloid plaque, amyloid protein plaque -n05244755 dental plaque, bacterial plaque -n05244934 macule, macula -n05245192 freckle, lentigo -n05257476 bouffant -n05257967 sausage curl -n05258051 forelock -n05258627 spit curl, kiss curl -n05259914 pigtail -n05260127 pageboy -n05260240 pompadour -n05261310 thatch -n05262422 soup-strainer, toothbrush -n05262534 mustachio, moustachio, handle-bars -n05262698 walrus mustache, walrus moustache -n05263183 stubble -n05263316 vandyke beard, vandyke -n05263448 soul patch, Attilio -n05265736 esophageal smear -n05266096 paraduodenal smear, duodenal smear -n05266879 specimen -n05278922 punctum -n05279953 glenoid fossa, glenoid cavity -n05282652 diastema -n05285623 marrow, bone marrow -n05302499 mouth, oral cavity, oral fissure, rima oris -n05314075 canthus -n05399034 milk -n05399243 mother's milk -n05399356 colostrum, foremilk -n05418717 vein, vena, venous blood vessel -n05427346 ganglion cell, gangliocyte -n05442594 X chromosome -n05447757 embryonic cell, formative cell -n05448704 myeloblast -n05448827 sideroblast -n05449196 osteocyte -n05449661 megalocyte, macrocyte -n05449959 leukocyte, leucocyte, white blood cell, white cell, white blood corpuscle, white corpuscle, WBC -n05450617 histiocyte -n05451099 fixed phagocyte -n05451384 lymphocyte, lymph cell -n05453412 monoblast -n05453657 neutrophil, neutrophile -n05453815 microphage -n05454833 sickle cell -n05454978 siderocyte -n05455113 spherocyte -n05458173 ootid -n05458576 oocyte -n05459101 spermatid -n05459457 Leydig cell, Leydig's cell -n05459769 striated muscle cell, striated muscle fiber -n05460759 smooth muscle cell -n05464534 Ranvier's nodes, nodes of Ranvier -n05467054 neuroglia, glia -n05467758 astrocyte -n05468098 protoplasmic astrocyte -n05468739 oligodendrocyte -n05469664 proprioceptor -n05469861 dendrite -n05475397 sensory fiber, afferent fiber -n05482922 subarachnoid space -n05486510 cerebral cortex, cerebral mantle, pallium, cortex -n05491154 renal cortex -n05526957 prepuce, foreskin -n05538625 head, caput -n05539947 scalp -n05541509 frontal eminence -n05542893 suture, sutura, fibrous joint -n05545879 foramen magnum -n05571341 esophagogastric junction, oesophagogastric junction -n05578095 heel -n05581932 cuticle -n05584746 hangnail, agnail -n05586759 exoskeleton -n05604434 abdominal wall -n05716342 lemon -n06008896 coordinate axis -n06209940 landscape -n06254669 medium -n06255081 vehicle -n06255613 paper -n06259898 channel, transmission channel -n06262567 film, cinema, celluloid -n06262943 silver screen -n06263202 free press -n06263369 press, public press -n06263609 print media -n06263762 storage medium, data-storage medium -n06263895 magnetic storage medium, magnetic medium, magnetic storage -n06266417 journalism, news media -n06266633 Fleet Street -n06266710 photojournalism -n06266878 news photography -n06266973 rotogravure -n06267145 newspaper, paper -n06267564 daily -n06267655 gazette -n06267758 school newspaper, school paper -n06267893 tabloid, rag, sheet -n06267991 yellow journalism, tabloid, tab -n06271778 telecommunication, telecom -n06272290 telephone, telephony -n06272612 voice mail, voicemail -n06272803 call, phone call, telephone call -n06273207 call-back -n06273294 collect call -n06273414 call forwarding -n06273555 call-in -n06273743 call waiting -n06273890 crank call -n06273986 local call -n06274092 long distance, long-distance call, trunk call -n06274292 toll call -n06274546 wake-up call -n06274760 three-way calling -n06274921 telegraphy -n06275095 cable, cablegram, overseas telegram -n06275353 wireless -n06275471 radiotelegraph, radiotelegraphy, wireless telegraphy -n06276501 radiotelephone, radiotelephony, wireless telephone -n06276697 broadcasting -n06276902 Rediffusion -n06277025 multiplex -n06277135 radio, radiocommunication, wireless -n06277280 television, telecasting, TV, video -n06278338 cable television, cable -n06278475 high-definition television, HDTV -n06281040 reception -n06281175 signal detection, detection -n06340977 Hakham -n06359193 web site, website, internet site, site -n06359467 chat room, chatroom -n06359657 portal site, portal -n06415688 jotter -n06417096 breviary -n06418693 wordbook -n06419354 desk dictionary, collegiate dictionary -n06423496 reckoner, ready reckoner -n06470073 document, written document, papers -n06591815 album, record album -n06592078 concept album -n06592281 rock opera -n06592421 tribute album, benefit album -n06595351 magazine, mag -n06596179 colour supplement -n06596364 comic book -n06596474 news magazine -n06596607 pulp, pulp magazine -n06596727 slick, slick magazine, glossy -n06596845 trade magazine -n06613686 movie, film, picture, moving picture, moving-picture show, motion picture, motion-picture show, picture show, pic, flick -n06614901 outtake -n06616216 shoot-'em-up -n06618653 spaghetti Western -n06625062 encyclical, encyclical letter -n06785654 crossword puzzle, crossword -n06793231 sign -n06794110 street sign -n06874185 traffic light, traffic signal, stoplight -n06883725 swastika, Hakenkreuz -n06892775 concert -n06998748 artwork, art, graphics, nontextual matter -n07005523 lobe -n07248320 book jacket, dust cover, dust jacket, dust wrapper -n07273802 cairn -n07461050 three-day event -n07556406 comfort food -n07556637 comestible, edible, eatable, pabulum, victual, victuals -n07556872 tuck -n07556970 course -n07557165 dainty, delicacy, goody, kickshaw, treat -n07557434 dish -n07560193 fast food -n07560331 finger food -n07560422 ingesta -n07560542 kosher -n07560652 fare -n07560903 diet -n07561112 diet -n07561590 dietary -n07561848 balanced diet -n07562017 bland diet, ulcer diet -n07562172 clear liquid diet -n07562379 diabetic diet -n07562495 dietary supplement -n07562651 carbohydrate loading, carbo loading -n07562881 fad diet -n07562984 gluten-free diet -n07563207 high-protein diet -n07563366 high-vitamin diet, vitamin-deficiency diet -n07563642 light diet -n07563800 liquid diet -n07564008 low-calorie diet -n07564101 low-fat diet -n07564292 low-sodium diet, low-salt diet, salt-free diet -n07564515 macrobiotic diet -n07564629 reducing diet, obesity diet -n07564796 soft diet, pap, spoon food -n07564971 vegetarianism -n07565083 menu -n07565161 chow, chuck, eats, grub -n07565259 board, table -n07565608 mess -n07565725 ration -n07565945 field ration -n07566092 K ration -n07566231 C-ration -n07566340 foodstuff, food product -n07566863 starches -n07567039 breadstuff -n07567139 coloring, colouring, food coloring, food colouring, food color, food colour -n07567390 concentrate -n07567611 tomato concentrate -n07567707 meal -n07567980 kibble -n07568095 cornmeal, Indian meal -n07568241 farina -n07568389 matzo meal, matzoh meal, matzah meal -n07568502 oatmeal, rolled oats -n07568625 pea flour -n07568818 roughage, fiber -n07568991 bran -n07569106 flour -n07569423 plain flour -n07569543 wheat flour -n07569644 whole wheat flour, graham flour, graham, whole meal flour -n07569873 soybean meal, soybean flour, soy flour -n07570021 semolina -n07570530 corn gluten feed -n07570720 nutriment, nourishment, nutrition, sustenance, aliment, alimentation, victuals -n07572353 commissariat, provisions, provender, viands, victuals -n07572616 larder -n07572858 frozen food, frozen foods -n07572957 canned food, canned foods, canned goods, tinned goods -n07573103 canned meat, tinned meat -n07573347 Spam -n07573453 dehydrated food, dehydrated foods -n07573563 square meal -n07573696 meal, repast -n07574176 potluck -n07574426 refection -n07574504 refreshment -n07574602 breakfast -n07574780 continental breakfast, petit dejeuner -n07574923 brunch -n07575076 lunch, luncheon, tiffin, dejeuner -n07575226 business lunch -n07575392 high tea -n07575510 tea, afternoon tea, teatime -n07575726 dinner -n07575984 supper -n07576182 buffet -n07576438 picnic -n07576577 cookout -n07576781 barbecue, barbeque -n07576969 clambake -n07577144 fish fry -n07577374 bite, collation, snack -n07577538 nosh -n07577657 nosh-up -n07577772 ploughman's lunch -n07577918 coffee break, tea break -n07578093 banquet, feast, spread -n07579575 entree, main course -n07579688 piece de resistance -n07579787 plate -n07579917 adobo -n07580053 side dish, side order, entremets -n07580253 special -n07580359 casserole -n07580470 chicken casserole -n07580592 chicken cacciatore, chicken cacciatora, hunter's chicken -n07581249 antipasto -n07581346 appetizer, appetiser, starter -n07581607 canape -n07581775 cocktail -n07581931 fruit cocktail -n07582027 crab cocktail -n07582152 shrimp cocktail -n07582277 hors d'oeuvre -n07582441 relish -n07582609 dip -n07582811 bean dip -n07582892 cheese dip -n07582970 clam dip -n07583066 guacamole -n07583197 soup -n07583865 soup du jour -n07583978 alphabet soup -n07584110 consomme -n07584228 madrilene -n07584332 bisque -n07584423 borsch, borsh, borscht, borsht, borshch, bortsch -n07584593 broth -n07584859 barley water -n07584938 bouillon -n07585015 beef broth, beef stock -n07585107 chicken broth, chicken stock -n07585208 broth, stock -n07585474 stock cube -n07585557 chicken soup -n07585644 cock-a-leekie, cocky-leeky -n07585758 gazpacho -n07585906 gumbo -n07585997 julienne -n07586099 marmite -n07586179 mock turtle soup -n07586318 mulligatawny -n07586485 oxtail soup -n07586604 pea soup -n07586718 pepper pot, Philadelphia pepper pot -n07586894 petite marmite, minestrone, vegetable soup -n07587023 potage, pottage -n07587111 pottage -n07587206 turtle soup, green turtle soup -n07587331 eggdrop soup -n07587441 chowder -n07587618 corn chowder -n07587700 clam chowder -n07587819 Manhattan clam chowder -n07587962 New England clam chowder -n07588111 fish chowder -n07588193 won ton, wonton, wonton soup -n07588299 split-pea soup -n07588419 green pea soup, potage St. Germain -n07588574 lentil soup -n07588688 Scotch broth -n07588817 vichyssoise -n07588947 stew -n07589458 bigos -n07589543 Brunswick stew -n07589724 burgoo -n07589872 burgoo -n07589967 olla podrida, Spanish burgoo -n07590068 mulligan stew, mulligan, Irish burgoo -n07590177 purloo, chicken purloo, poilu -n07590320 goulash, Hungarian goulash, gulyas -n07590502 hotchpotch -n07590611 hot pot, hotpot -n07590752 beef goulash -n07590841 pork-and-veal goulash -n07590974 porkholt -n07591049 Irish stew -n07591162 oyster stew -n07591236 lobster stew -n07591330 lobscouse, lobscuse, scouse -n07591473 fish stew -n07591586 bouillabaisse -n07591813 matelote -n07591961 paella -n07592094 fricassee -n07592317 chicken stew -n07592400 turkey stew -n07592481 beef stew -n07592656 ragout -n07592768 ratatouille -n07592922 salmi -n07593004 pot-au-feu -n07593107 slumgullion -n07593199 smorgasbord -n07593471 viand -n07593774 ready-mix -n07593972 brownie mix -n07594066 cake mix -n07594155 lemonade mix -n07594250 self-rising flour, self-raising flour -n07594737 choice morsel, tidbit, titbit -n07594840 savory, savoury -n07595051 calf's-foot jelly -n07595180 caramel, caramelized sugar -n07595368 lump sugar -n07595649 cane sugar -n07595751 castor sugar, caster sugar -n07595914 powdered sugar -n07596046 granulated sugar -n07596160 icing sugar -n07596362 corn sugar -n07596452 brown sugar -n07596566 demerara, demerara sugar -n07596684 sweet, confection -n07596967 confectionery -n07597145 confiture -n07597263 sweetmeat -n07597365 candy, confect -n07598256 candy bar -n07598529 carob bar -n07598622 hardbake -n07598734 hard candy -n07598928 barley-sugar, barley candy -n07599068 brandyball -n07599161 jawbreaker -n07599242 lemon drop -n07599383 sourball -n07599468 patty -n07599554 peppermint patty -n07599649 bonbon -n07599783 brittle, toffee, toffy -n07599911 peanut brittle -n07599998 chewing gum, gum -n07600177 gum ball -n07600285 bubble gum -n07600394 butterscotch -n07600506 candied fruit, succade, crystallized fruit -n07600696 candied apple, candy apple, taffy apple, caramel apple, toffee apple -n07600895 crystallized ginger -n07601025 grapefruit peel -n07601175 lemon peel -n07601290 orange peel -n07601407 candied citrus peel -n07601572 candy cane -n07601686 candy corn -n07601809 caramel -n07602650 center, centre -n07604956 comfit -n07605040 cotton candy, spun sugar, candyfloss -n07605198 dragee -n07605282 dragee -n07605380 fondant -n07605474 fudge -n07605597 chocolate fudge -n07605693 divinity, divinity fudge -n07605804 penuche, penoche, panoche, panocha -n07605944 gumdrop -n07606058 jujube -n07606191 honey crisp -n07606278 mint, mint candy -n07606419 horehound -n07606538 peppermint, peppermint candy -n07606669 jelly bean, jelly egg -n07606764 kiss, candy kiss -n07606933 molasses kiss -n07607027 meringue kiss -n07607138 chocolate kiss -n07607361 licorice, liquorice -n07607492 Life Saver -n07607605 lollipop, sucker, all-day sucker -n07607707 lozenge -n07607832 cachou -n07607967 cough drop, troche, pastille, pastil -n07608098 marshmallow -n07608245 marzipan, marchpane -n07608339 nougat -n07608429 nougat bar -n07608533 nut bar -n07608641 peanut bar -n07608721 popcorn ball -n07608866 praline -n07608980 rock candy -n07609083 rock candy, rock -n07609215 sugar candy -n07609316 sugarplum -n07609407 taffy -n07609549 molasses taffy -n07609632 truffle, chocolate truffle -n07609728 Turkish Delight -n07609840 dessert, sweet, afters -n07610295 ambrosia, nectar -n07610502 ambrosia -n07610620 baked Alaska -n07610746 blancmange -n07610890 charlotte -n07611046 compote, fruit compote -n07611148 dumpling -n07611267 flan -n07611358 frozen dessert -n07611733 junket -n07611839 mousse -n07611991 mousse -n07612137 pavlova -n07612273 peach melba -n07612367 whip -n07612530 prune whip -n07612632 pudding -n07612996 pudding, pud -n07613158 syllabub, sillabub -n07613266 tiramisu -n07613480 trifle -n07613671 tipsy cake -n07613815 jello, Jell-O -n07614103 apple dumpling -n07614198 ice, frappe -n07614348 water ice, sorbet -n07614500 ice cream, icecream -n07614730 ice-cream cone -n07614825 chocolate ice cream -n07615052 Neapolitan ice cream -n07615190 peach ice cream -n07615289 sherbert, sherbet -n07615460 strawberry ice cream -n07615569 tutti-frutti -n07615671 vanilla ice cream -n07615774 ice lolly, lolly, lollipop, popsicle -n07615954 ice milk -n07616046 frozen yogurt -n07616174 snowball -n07616265 snowball -n07616386 parfait -n07616487 ice-cream sundae, sundae -n07616590 split -n07616748 banana split -n07616906 frozen pudding -n07617051 frozen custard, soft ice cream -n07617188 pudding -n07617344 flummery -n07617447 fish mousse -n07617526 chicken mousse -n07617611 chocolate mousse -n07617708 plum pudding, Christmas pudding -n07617839 carrot pudding -n07617932 corn pudding -n07618029 steamed pudding -n07618119 duff, plum duff -n07618281 vanilla pudding -n07618432 chocolate pudding -n07618587 brown Betty -n07618684 Nesselrode, Nesselrode pudding -n07618871 pease pudding -n07619004 custard -n07619208 creme caramel -n07619301 creme anglais -n07619409 creme brulee -n07619508 fruit custard -n07619881 tapioca -n07620047 tapioca pudding -n07620145 roly-poly, roly-poly pudding -n07620327 suet pudding -n07620597 Bavarian cream -n07620689 maraschino, maraschino cherry -n07621264 nonpareil -n07621497 zabaglione, sabayon -n07621618 garnish -n07623136 pastry, pastry dough -n07624466 turnover -n07624666 apple turnover -n07624757 knish -n07624924 pirogi, piroshki, pirozhki -n07625061 samosa -n07625324 timbale -n07627931 puff paste, pate feuillete -n07628068 phyllo -n07628181 puff batter, pouf paste, pate a choux -n07631926 ice-cream cake, icebox cake -n07639069 doughnut, donut, sinker -n07641928 fish cake, fish ball -n07642361 fish stick, fish finger -n07642471 conserve, preserve, conserves, preserves -n07642742 apple butter -n07642833 chowchow -n07642933 jam -n07643026 lemon curd, lemon cheese -n07643200 strawberry jam, strawberry preserves -n07643306 jelly -n07643474 apple jelly -n07643577 crabapple jelly -n07643679 grape jelly -n07643764 marmalade -n07643891 orange marmalade -n07643981 gelatin, jelly -n07644244 gelatin dessert -n07648913 buffalo wing -n07648997 barbecued wing -n07650792 mess -n07650903 mince -n07651025 puree -n07654148 barbecue, barbeque -n07654298 biryani, biriani -n07655067 escalope de veau Orloff -n07655263 saute -n07663899 patty, cake -n07665438 veal parmesan, veal parmigiana -n07666176 veal cordon bleu -n07672914 margarine, margarin, oleo, oleomargarine, marge -n07678586 mincemeat -n07678729 stuffing, dressing -n07678953 turkey stuffing -n07679034 oyster stuffing, oyster dressing -n07679140 forcemeat, farce -n07679356 bread, breadstuff, staff of life -n07680168 anadama bread -n07680313 bap -n07680416 barmbrack -n07680517 breadstick, bread-stick -n07680655 grissino -n07680761 brown bread, Boston brown bread -n07680932 bun, roll -n07681264 tea bread -n07681355 caraway seed bread -n07681450 challah, hallah -n07681691 cinnamon bread -n07681805 cracked-wheat bread -n07681926 cracker -n07682197 crouton -n07682316 dark bread, whole wheat bread, whole meal bread, brown bread -n07682477 English muffin -n07682624 flatbread -n07682808 garlic bread -n07682952 gluten bread -n07683039 graham bread -n07683138 Host -n07683265 flatbrod -n07683360 bannock -n07683490 chapatti, chapati -n07683617 pita, pocket bread -n07683786 loaf of bread, loaf -n07684084 French loaf -n07684164 matzo, matzoh, matzah, unleavened bread -n07684289 nan, naan -n07684422 onion bread -n07684517 raisin bread -n07684600 quick bread -n07684938 banana bread -n07685031 date bread -n07685118 date-nut bread -n07685218 nut bread -n07685303 oatcake -n07685399 Irish soda bread -n07685546 skillet bread, fry bread -n07685730 rye bread -n07685918 black bread, pumpernickel -n07686021 Jewish rye bread, Jewish rye -n07686202 limpa -n07686299 Swedish rye bread, Swedish rye -n07686461 salt-rising bread -n07686634 simnel -n07686720 sour bread, sourdough bread -n07686873 toast -n07687053 wafer -n07687211 white bread, light bread -n07687381 baguet, baguette -n07687469 French bread -n07687626 Italian bread -n07687789 cornbread -n07688021 corn cake -n07688130 skillet corn bread -n07688265 ashcake, ash cake, corn tash -n07688412 hoecake -n07688624 cornpone, pone -n07688757 corn dab, corn dodger, dodger -n07688898 hush puppy, hushpuppy -n07689003 johnnycake, johnny cake, journey cake -n07689217 Shawnee cake -n07689313 spoon bread, batter bread -n07689490 cinnamon toast -n07689624 orange toast -n07689757 Melba toast -n07689842 zwieback, rusk, Brussels biscuit, twice-baked bread -n07690019 frankfurter bun, hotdog bun -n07690152 hamburger bun, hamburger roll -n07690273 muffin, gem -n07690431 bran muffin -n07690511 corn muffin -n07690585 Yorkshire pudding -n07690739 popover -n07690892 scone -n07691091 drop scone, griddlecake, Scotch pancake -n07691237 cross bun, hot cross bun -n07691539 brioche -n07691650 crescent roll, croissant -n07691758 hard roll, Vienna roll -n07691863 soft roll -n07691954 kaiser roll -n07692114 Parker House roll -n07692248 clover-leaf roll -n07692405 onion roll -n07692517 bialy, bialystoker -n07692614 sweet roll, coffee roll -n07692887 bear claw, bear paw -n07693048 cinnamon roll, cinnamon bun, cinnamon snail -n07693223 honey bun, sticky bun, caramel bun, schnecken -n07693439 pinwheel roll -n07693590 danish, danish pastry -n07693725 bagel, beigel -n07693889 onion bagel -n07693972 biscuit -n07694169 rolled biscuit -n07694403 baking-powder biscuit -n07694516 buttermilk biscuit, soda biscuit -n07694659 shortcake -n07694839 hardtack, pilot biscuit, pilot bread, sea biscuit, ship biscuit -n07695187 saltine -n07695284 soda cracker -n07695410 oyster cracker -n07695504 water biscuit -n07695652 graham cracker -n07695742 pretzel -n07695878 soft pretzel -n07695965 sandwich -n07696403 sandwich plate -n07696527 butty -n07696625 ham sandwich -n07696728 chicken sandwich -n07696839 club sandwich, three-decker, triple-decker -n07696977 open-face sandwich, open sandwich -n07697100 hamburger, beefburger, burger -n07697313 cheeseburger -n07697408 tunaburger -n07697537 hotdog, hot dog, red hot -n07697699 Sloppy Joe -n07697825 bomber, grinder, hero, hero sandwich, hoagie, hoagy, Cuban sandwich, Italian sandwich, poor boy, sub, submarine, submarine sandwich, torpedo, wedge, zep -n07698250 gyro -n07698401 bacon-lettuce-tomato sandwich, BLT -n07698543 Reuben -n07698672 western, western sandwich -n07698782 wrap -n07700003 spaghetti -n07703889 hasty pudding -n07704054 gruel -n07704205 congee, jook -n07704305 skilly -n07705931 edible fruit -n07707451 vegetable, veggie, veg -n07708124 julienne, julienne vegetable -n07708398 raw vegetable, rabbit food -n07708512 crudites -n07708685 celery stick -n07708798 legume -n07709046 pulse -n07709172 potherb -n07709333 greens, green, leafy vegetable -n07709701 chop-suey greens -n07709881 bean curd, tofu -n07710007 solanaceous vegetable -n07710283 root vegetable -n07710616 potato, white potato, Irish potato, murphy, spud, tater -n07710952 baked potato -n07711080 french fries, french-fried potatoes, fries, chips -n07711232 home fries, home-fried potatoes -n07711371 jacket potato -n07711569 mashed potato -n07711683 potato skin, potato peel, potato peelings -n07711799 Uruguay potato -n07711907 yam -n07712063 sweet potato -n07712267 yam -n07712382 snack food -n07712559 chip, crisp, potato chip, Saratoga chip -n07712748 corn chip -n07712856 tortilla chip -n07712959 nacho -n07713074 eggplant, aubergine, mad apple -n07713267 pieplant, rhubarb -n07713395 cruciferous vegetable -n07713763 mustard, mustard greens, leaf mustard, Indian mustard -n07713895 cabbage, chou -n07714078 kale, kail, cole -n07714188 collards, collard greens -n07714287 Chinese cabbage, celery cabbage, Chinese celery -n07714448 bok choy, bok choi -n07714571 head cabbage -n07714802 red cabbage -n07714895 savoy cabbage, savoy -n07714990 broccoli -n07715103 cauliflower -n07715221 brussels sprouts -n07715407 broccoli rabe, broccoli raab -n07715561 squash -n07715721 summer squash -n07716034 yellow squash -n07716203 crookneck, crookneck squash, summer crookneck -n07716358 zucchini, courgette -n07716504 marrow, vegetable marrow -n07716649 cocozelle -n07716750 pattypan squash -n07716906 spaghetti squash -n07717070 winter squash -n07717410 acorn squash -n07717556 butternut squash -n07717714 hubbard squash -n07717858 turban squash -n07718068 buttercup squash -n07718195 cushaw -n07718329 winter crookneck squash -n07718472 cucumber, cuke -n07718671 gherkin -n07718747 artichoke, globe artichoke -n07718920 artichoke heart -n07719058 Jerusalem artichoke, sunchoke -n07719213 asparagus -n07719330 bamboo shoot -n07719437 sprout -n07719616 bean sprout -n07719756 alfalfa sprout -n07719839 beet, beetroot -n07719980 beet green -n07720084 sugar beet -n07720185 mangel-wurzel -n07720277 chard, Swiss chard, spinach beet, leaf beet -n07720442 pepper -n07720615 sweet pepper -n07720875 bell pepper -n07721018 green pepper -n07721118 globe pepper -n07721195 pimento, pimiento -n07721325 hot pepper -n07721456 chili, chili pepper, chilli, chilly, chile -n07721678 jalapeno, jalapeno pepper -n07721833 chipotle -n07721942 cayenne, cayenne pepper -n07722052 tabasco, red pepper -n07722217 onion -n07722390 Bermuda onion -n07722485 green onion, spring onion, scallion -n07722666 Vidalia onion -n07722763 Spanish onion -n07722888 purple onion, red onion -n07723039 leek -n07723177 shallot -n07723330 salad green, salad greens -n07723559 lettuce -n07723753 butterhead lettuce -n07723968 buttercrunch -n07724078 Bibb lettuce -n07724173 Boston lettuce -n07724269 crisphead lettuce, iceberg lettuce, iceberg -n07724492 cos, cos lettuce, romaine, romaine lettuce -n07724654 leaf lettuce, loose-leaf lettuce -n07724819 celtuce -n07724943 bean, edible bean -n07725158 goa bean -n07725255 lentil -n07725376 pea -n07725531 green pea, garden pea -n07725663 marrowfat pea -n07725789 snow pea, sugar pea -n07725888 sugar snap pea -n07726009 split-pea -n07726095 chickpea, garbanzo -n07726230 cajan pea, pigeon pea, dahl -n07726386 field pea -n07726525 mushy peas -n07726672 black-eyed pea, cowpea -n07726796 common bean -n07727048 kidney bean -n07727140 navy bean, pea bean, white bean -n07727252 pinto bean -n07727377 frijole -n07727458 black bean, turtle bean -n07727578 fresh bean -n07727741 flageolet, haricot -n07727868 green bean -n07728053 snap bean, snap -n07728181 string bean -n07728284 Kentucky wonder, Kentucky wonder bean -n07728391 scarlet runner, scarlet runner bean, runner bean, English runner bean -n07728585 haricot vert, haricots verts, French bean -n07728708 wax bean, yellow bean -n07728804 shell bean -n07729000 lima bean -n07729142 Fordhooks -n07729225 sieva bean, butter bean, butterbean, civet bean -n07729384 fava bean, broad bean -n07729485 soy, soybean, soya, soya bean -n07729828 green soybean -n07729926 field soybean -n07730033 cardoon -n07730207 carrot -n07730320 carrot stick -n07730406 celery -n07730562 pascal celery, Paschal celery -n07730708 celeriac, celery root -n07730855 chicory, curly endive -n07731006 radicchio -n07731122 coffee substitute -n07731284 chicory, chicory root -n07731436 Postum -n07731587 chicory escarole, endive, escarole -n07731767 Belgian endive, French endive, witloof -n07731952 corn, edible corn -n07732168 sweet corn, green corn -n07732302 hominy -n07732433 lye hominy -n07732525 pearl hominy -n07732636 popcorn -n07732747 cress -n07732904 watercress -n07733005 garden cress -n07733124 winter cress -n07733217 dandelion green -n07733394 gumbo, okra -n07733567 kohlrabi, turnip cabbage -n07733712 lamb's-quarter, pigweed, wild spinach -n07733847 wild spinach -n07734017 tomato -n07734183 beefsteak tomato -n07734292 cherry tomato -n07734417 plum tomato -n07734555 tomatillo, husk tomato, Mexican husk tomato -n07734744 mushroom -n07734879 stuffed mushroom -n07735052 salsify -n07735179 oyster plant, vegetable oyster -n07735294 scorzonera, black salsify -n07735404 parsnip -n07735510 pumpkin -n07735687 radish -n07735803 turnip -n07735981 white turnip -n07736087 rutabaga, swede, swedish turnip, yellow turnip -n07736256 turnip greens -n07736371 sorrel, common sorrel -n07736527 French sorrel -n07736692 spinach -n07736813 taro, taro root, cocoyam, dasheen, edda -n07736971 truffle, earthnut -n07737081 edible nut -n07737594 bunya bunya -n07737745 peanut, earthnut, goober, goober pea, groundnut, monkey nut -n07738105 freestone -n07738224 cling, clingstone -n07739035 windfall -n07739125 apple -n07739344 crab apple, crabapple -n07739506 eating apple, dessert apple -n07739923 Baldwin -n07740033 Cortland -n07740115 Cox's Orange Pippin -n07740220 Delicious -n07740342 Golden Delicious, Yellow Delicious -n07740461 Red Delicious -n07740597 Empire -n07740744 Grimes' golden -n07740855 Jonathan -n07740954 McIntosh -n07741138 Macoun -n07741235 Northern Spy -n07741357 Pearmain -n07741461 Pippin -n07741623 Prima -n07741706 Stayman -n07741804 Winesap -n07741888 Stayman Winesap -n07742012 cooking apple -n07742224 Bramley's Seedling -n07742313 Granny Smith -n07742415 Lane's Prince Albert -n07742513 Newtown Wonder -n07742605 Rome Beauty -n07742704 berry -n07743224 bilberry, whortleberry, European blueberry -n07743384 huckleberry -n07743544 blueberry -n07743723 wintergreen, boxberry, checkerberry, teaberry, spiceberry -n07743902 cranberry -n07744057 lingonberry, mountain cranberry, cowberry, lowbush cranberry -n07744246 currant -n07744430 gooseberry -n07744559 black currant -n07744682 red currant -n07744811 blackberry -n07745046 boysenberry -n07745197 dewberry -n07745357 loganberry -n07745466 raspberry -n07745661 saskatoon, serviceberry, shadberry, juneberry -n07745940 strawberry -n07746038 sugarberry, hackberry -n07746186 persimmon -n07746334 acerola, barbados cherry, surinam cherry, West Indian cherry -n07746551 carambola, star fruit -n07746749 ceriman, monstera -n07746910 carissa plum, natal plum -n07747055 citrus, citrus fruit, citrous fruit -n07747607 orange -n07747811 temple orange -n07747951 mandarin, mandarin orange -n07748157 clementine -n07748276 satsuma -n07748416 tangerine -n07748574 tangelo, ugli, ugli fruit -n07748753 bitter orange, Seville orange, sour orange -n07748912 sweet orange -n07749095 Jaffa orange -n07749192 navel orange -n07749312 Valencia orange -n07749446 kumquat -n07749582 lemon -n07749731 lime -n07749870 key lime -n07749969 grapefruit -n07750146 pomelo, shaddock -n07750299 citrange -n07750449 citron -n07750586 almond -n07750736 Jordan almond -n07750872 apricot -n07751004 peach -n07751148 nectarine -n07751280 pitahaya -n07751451 plum -n07751737 damson, damson plum -n07751858 greengage, greengage plum -n07751977 beach plum -n07752109 sloe -n07752264 Victoria plum -n07752377 dried fruit -n07752514 dried apricot -n07752602 prune -n07752664 raisin -n07752782 seedless raisin, sultana -n07752874 seeded raisin -n07752966 currant -n07753113 fig -n07753275 pineapple, ananas -n07753448 anchovy pear, river pear -n07753592 banana -n07753743 passion fruit -n07753980 granadilla -n07754155 sweet calabash -n07754279 bell apple, sweet cup, water lemon, yellow granadilla -n07754451 breadfruit -n07754684 jackfruit, jak, jack -n07754894 cacao bean, cocoa bean -n07755089 cocoa -n07755262 canistel, eggfruit -n07755411 melon -n07755619 melon ball -n07755707 muskmelon, sweet melon -n07755929 cantaloup, cantaloupe -n07756096 winter melon -n07756325 honeydew, honeydew melon -n07756499 Persian melon -n07756641 net melon, netted melon, nutmeg melon -n07756838 casaba, casaba melon -n07756951 watermelon -n07757132 cherry -n07757312 sweet cherry, black cherry -n07757511 bing cherry -n07757602 heart cherry, oxheart, oxheart cherry -n07757753 blackheart, blackheart cherry -n07757874 capulin, Mexican black cherry -n07757990 sour cherry -n07758125 amarelle -n07758260 morello -n07758407 cocoa plum, coco plum, icaco -n07758582 gherkin -n07758680 grape -n07758950 fox grape -n07759194 Concord grape -n07759324 Catawba -n07759424 muscadine, bullace grape -n07759576 scuppernong -n07759691 slipskin grape -n07759816 vinifera grape -n07760070 emperor -n07760153 muscat, muscatel, muscat grape -n07760297 ribier -n07760395 sultana -n07760501 Tokay -n07760673 flame tokay -n07760755 Thompson Seedless -n07760859 custard apple -n07761141 cherimoya, cherimolla -n07761309 soursop, guanabana -n07761611 sweetsop, annon, sugar apple -n07761777 ilama -n07761954 pond apple -n07762114 papaw, pawpaw -n07762244 papaya -n07762373 kai apple -n07762534 ketembilla, kitembilla, kitambilla -n07762740 ackee, akee -n07762913 durian -n07763107 feijoa, pineapple guava -n07763290 genip, Spanish lime -n07763483 genipap, genipap fruit -n07763629 kiwi, kiwi fruit, Chinese gooseberry -n07763792 loquat, Japanese plum -n07763987 mangosteen -n07764155 mango -n07764315 sapodilla, sapodilla plum, sapota -n07764486 sapote, mammee, marmalade plum -n07764630 tamarind, tamarindo -n07764847 avocado, alligator pear, avocado pear, aguacate -n07765073 date -n07765208 elderberry -n07765361 guava -n07765517 mombin -n07765612 hog plum, yellow mombin -n07765728 hog plum, wild plum -n07765862 jaboticaba -n07765999 jujube, Chinese date, Chinese jujube -n07766173 litchi, litchi nut, litchee, lichi, leechee, lichee, lychee -n07766409 longanberry, dragon's eye -n07766530 mamey, mammee, mammee apple -n07766723 marang -n07766891 medlar -n07767002 medlar -n07767171 mulberry -n07767344 olive -n07767549 black olive, ripe olive -n07767709 green olive -n07767847 pear -n07768068 bosc -n07768139 anjou -n07768230 bartlett, bartlett pear -n07768318 seckel, seckel pear -n07768423 plantain -n07768590 plumcot -n07768694 pomegranate -n07768858 prickly pear -n07769102 Barbados gooseberry, blade apple -n07769306 quandong, quandang, quantong, native peach -n07769465 quandong nut -n07769584 quince -n07769731 rambutan, rambotan -n07769886 pulasan, pulassan -n07770034 rose apple -n07770180 sorb, sorb apple -n07770439 sour gourd, monkey bread -n07770571 edible seed -n07770763 pumpkin seed -n07770869 betel nut, areca nut -n07771082 beechnut -n07771212 walnut -n07771405 black walnut -n07771539 English walnut -n07771731 brazil nut, brazil -n07771891 butternut -n07772026 souari nut -n07772147 cashew, cashew nut -n07772274 chestnut -n07772413 chincapin, chinkapin, chinquapin -n07772788 hazelnut, filbert, cobnut, cob -n07772935 coconut, cocoanut -n07773428 coconut milk, coconut water -n07774182 grugru nut -n07774295 hickory nut -n07774479 cola extract -n07774596 macadamia nut -n07774719 pecan -n07774842 pine nut, pignolia, pinon nut -n07775050 pistachio, pistachio nut -n07775197 sunflower seed -n07783827 anchovy paste -n07785487 rollmops -n07800091 feed, provender -n07800487 cattle cake -n07800636 creep feed -n07800740 fodder -n07801007 feed grain -n07801091 eatage, forage, pasture, pasturage, grass -n07801342 silage, ensilage -n07801508 oil cake -n07801709 oil meal -n07801779 alfalfa -n07801892 broad bean, horse bean -n07802026 hay -n07802152 timothy -n07802246 stover -n07802417 grain, food grain, cereal -n07802767 grist -n07802863 groats -n07802963 millet -n07803093 barley, barleycorn -n07803213 pearl barley -n07803310 buckwheat -n07803408 bulgur, bulghur, bulgur wheat -n07803545 wheat, wheat berry -n07803779 cracked wheat -n07803895 stodge -n07803992 wheat germ -n07804152 oat -n07804323 rice -n07804543 brown rice -n07804657 white rice, polished rice -n07804771 wild rice, Indian rice -n07804900 paddy -n07805006 slop, slops, swill, pigswill, pigwash -n07805254 mash -n07805389 chicken feed, scratch -n07805478 cud, rechewed food -n07805594 bird feed, bird food, birdseed -n07805731 petfood, pet-food, pet food -n07805966 dog food -n07806043 cat food -n07806120 canary seed -n07806221 salad -n07806633 tossed salad -n07806774 green salad -n07806879 Caesar salad -n07807002 salmagundi -n07807171 salad nicoise -n07807317 combination salad -n07807472 chef's salad -n07807594 potato salad -n07807710 pasta salad -n07807834 macaroni salad -n07807922 fruit salad -n07808022 Waldorf salad -n07808166 crab Louis -n07808268 herring salad -n07808352 tuna fish salad, tuna salad -n07808479 chicken salad -n07808587 coleslaw, slaw -n07808675 aspic -n07808806 molded salad -n07808904 tabbouleh, tabooli -n07809096 ingredient, fixings -n07809368 flavorer, flavourer, flavoring, flavouring, seasoner, seasoning -n07810531 bouillon cube -n07810907 condiment -n07811416 herb -n07812046 fines herbes -n07812184 spice -n07812662 spearmint oil -n07812790 lemon oil -n07812913 wintergreen oil, oil of wintergreen -n07813107 salt, table salt, common salt -n07813324 celery salt -n07813495 onion salt -n07813579 seasoned salt -n07813717 sour salt -n07813833 five spice powder -n07814007 allspice -n07814203 cinnamon -n07814390 stick cinnamon -n07814487 clove -n07814634 cumin, cumin seed -n07814790 fennel -n07814925 ginger, gingerroot -n07815163 ginger, powdered ginger -n07815294 mace -n07815424 nutmeg -n07815588 pepper, peppercorn -n07815839 black pepper -n07815956 white pepper -n07816052 sassafras -n07816164 basil, sweet basil -n07816296 bay leaf -n07816398 borage -n07816575 hyssop -n07816726 caraway -n07816839 chervil -n07817024 chives -n07817160 comfrey, healing herb -n07817315 coriander, Chinese parsley, cilantro -n07817465 coriander, coriander seed -n07817599 costmary -n07817758 fennel, common fennel -n07817871 fennel, Florence fennel, finocchio -n07818029 fennel seed -n07818133 fenugreek, fenugreek seed -n07818277 garlic, ail -n07818422 clove, garlic clove -n07818572 garlic chive -n07818689 lemon balm -n07818825 lovage -n07818995 marjoram, oregano -n07819166 mint -n07819303 mustard seed -n07819480 mustard, table mustard -n07819682 Chinese mustard -n07819769 nasturtium -n07819896 parsley -n07820036 salad burnet -n07820145 rosemary -n07820297 rue -n07820497 sage -n07820683 clary sage -n07820814 savory, savoury -n07820960 summer savory, summer savoury -n07821107 winter savory, winter savoury -n07821260 sweet woodruff, waldmeister -n07821404 sweet cicely -n07821610 tarragon, estragon -n07821758 thyme -n07821919 turmeric -n07822053 caper -n07822197 catsup, ketchup, cetchup, tomato ketchup -n07822323 cardamom, cardamon, cardamum -n07822518 cayenne, cayenne pepper, red pepper -n07822687 chili powder -n07822845 chili sauce -n07823105 chutney, Indian relish -n07823280 steak sauce -n07823369 taco sauce -n07823460 salsa -n07823591 mint sauce -n07823698 cranberry sauce -n07823814 curry powder -n07823951 curry -n07824191 lamb curry -n07824268 duck sauce, hoisin sauce -n07824383 horseradish -n07824502 marinade -n07824702 paprika -n07824863 Spanish paprika -n07824988 pickle -n07825194 dill pickle -n07825399 bread and butter pickle -n07825496 pickle relish -n07825597 piccalilli -n07825717 sweet pickle -n07825850 applesauce, apple sauce -n07825972 soy sauce, soy -n07826091 Tabasco, Tabasco sauce -n07826250 tomato paste -n07826340 angelica -n07826453 angelica -n07826544 almond extract -n07826653 anise, aniseed, anise seed -n07826930 Chinese anise, star anise, star aniseed -n07827130 juniper berries -n07827284 saffron -n07827410 sesame seed, benniseed -n07827554 caraway seed -n07827750 poppy seed -n07827896 dill, dill weed -n07828041 dill seed -n07828156 celery seed -n07828275 lemon extract -n07828378 monosodium glutamate, MSG -n07828642 vanilla bean -n07828987 vinegar, acetum -n07829248 cider vinegar -n07829331 wine vinegar -n07829412 sauce -n07830493 anchovy sauce -n07830593 hot sauce -n07830690 hard sauce -n07830841 horseradish sauce, sauce Albert -n07830986 bolognese pasta sauce -n07831146 carbonara -n07831267 tomato sauce -n07831450 tartare sauce, tartar sauce -n07831663 wine sauce -n07831821 marchand de vin, mushroom wine sauce -n07831955 bread sauce -n07832099 plum sauce -n07832202 peach sauce -n07832307 apricot sauce -n07832416 pesto -n07832592 ravigote, ravigotte -n07832741 remoulade sauce -n07832902 dressing, salad dressing -n07833333 sauce Louis -n07833535 bleu cheese dressing, blue cheese dressing -n07833672 blue cheese dressing, Roquefort dressing -n07833816 French dressing, vinaigrette, sauce vinaigrette -n07833951 Lorenzo dressing -n07834065 anchovy dressing -n07834160 Italian dressing -n07834286 half-and-half dressing -n07834507 mayonnaise, mayo -n07834618 green mayonnaise, sauce verte -n07834774 aioli, aioli sauce, garlic sauce -n07834872 Russian dressing, Russian mayonnaise -n07835051 salad cream -n07835173 Thousand Island dressing -n07835331 barbecue sauce -n07835457 hollandaise -n07835547 bearnaise -n07835701 Bercy, Bercy butter -n07835823 bordelaise -n07835921 bourguignon, bourguignon sauce, Burgundy sauce -n07836077 brown sauce, sauce Espagnole -n07836269 Espagnole, sauce Espagnole -n07836456 Chinese brown sauce, brown sauce -n07836600 blanc -n07836731 cheese sauce -n07836838 chocolate sauce, chocolate syrup -n07837002 hot-fudge sauce, fudge sauce -n07837110 cocktail sauce, seafood sauce -n07837234 Colbert, Colbert butter -n07837362 white sauce, bechamel sauce, bechamel -n07837545 cream sauce -n07837630 Mornay sauce -n07837755 demiglace, demi-glaze -n07837912 gravy, pan gravy -n07838073 gravy -n07838233 spaghetti sauce, pasta sauce -n07838441 marinara -n07838551 mole -n07838659 hunter's sauce, sauce chausseur -n07838811 mushroom sauce -n07838905 mustard sauce -n07839055 Nantua, shrimp sauce -n07839172 Hungarian sauce, paprika sauce -n07839312 pepper sauce, Poivrade -n07839478 roux -n07839593 Smitane -n07839730 Soubise, white onion sauce -n07839864 Lyonnaise sauce, brown onion sauce -n07840027 veloute -n07840124 allemande, allemande sauce -n07840219 caper sauce -n07840304 poulette -n07840395 curry sauce -n07840520 Worcester sauce, Worcestershire, Worcestershire sauce -n07840672 coconut milk, coconut cream -n07840804 egg, eggs -n07841037 egg white, white, albumen, ovalbumin -n07841345 egg yolk, yolk -n07841495 boiled egg, coddled egg -n07841639 hard-boiled egg, hard-cooked egg -n07841800 Easter egg -n07841907 Easter egg -n07842044 chocolate egg -n07842130 candy egg -n07842202 poached egg, dropped egg -n07842308 scrambled eggs -n07842433 deviled egg, stuffed egg -n07842605 shirred egg, baked egg, egg en cocotte -n07842753 omelet, omelette -n07842972 firm omelet -n07843117 French omelet -n07843220 fluffy omelet -n07843348 western omelet -n07843464 souffle -n07843636 fried egg -n07843775 dairy product -n07844042 milk -n07844604 milk -n07844786 sour milk -n07844867 soya milk, soybean milk, soymilk -n07845087 formula -n07845166 pasteurized milk -n07845335 cows' milk -n07845421 yak's milk -n07845495 goats' milk -n07845571 acidophilus milk -n07845702 raw milk -n07845775 scalded milk -n07845863 homogenized milk -n07846014 certified milk -n07846143 powdered milk, dry milk, dried milk, milk powder -n07846274 nonfat dry milk -n07846359 evaporated milk -n07846471 condensed milk -n07846557 skim milk, skimmed milk -n07846688 semi-skimmed milk -n07846802 whole milk -n07846938 low-fat milk -n07847047 buttermilk -n07847198 cream -n07847453 clotted cream, Devonshire cream -n07847585 double creme, heavy whipping cream -n07847706 half-and-half -n07847827 heavy cream -n07847917 light cream, coffee cream, single cream -n07848093 sour cream, soured cream -n07848196 whipping cream, light whipping cream -n07848338 butter -n07848771 clarified butter, drawn butter -n07848936 ghee -n07849026 brown butter, beurre noisette -n07849186 Meuniere butter, lemon butter -n07849336 yogurt, yoghurt, yoghourt -n07849506 blueberry yogurt -n07849619 raita -n07849733 whey -n07849912 curd -n07850083 curd -n07850219 clabber -n07850329 cheese -n07851054 paring -n07851298 cream cheese -n07851443 double cream -n07851554 mascarpone -n07851641 triple cream, triple creme -n07851767 cottage cheese, pot cheese, farm cheese, farmer's cheese -n07851926 process cheese, processed cheese -n07852045 bleu, blue cheese -n07852229 Stilton -n07852302 Roquefort -n07852376 gorgonzola -n07852452 Danish blue -n07852532 Bavarian blue -n07852614 Brie -n07852712 brick cheese -n07852833 Camembert -n07852919 cheddar, cheddar cheese, Armerican cheddar, American cheese -n07853125 rat cheese, store cheese -n07853232 Cheshire cheese -n07853345 double Gloucester -n07853445 Edam -n07853560 goat cheese, chevre -n07853648 Gouda, Gouda cheese -n07853762 grated cheese -n07853852 hand cheese -n07853946 Liederkranz -n07854066 Limburger -n07854184 mozzarella -n07854266 Muenster -n07854348 Parmesan -n07854455 quark cheese, quark -n07854614 ricotta -n07854707 string cheese -n07854813 Swiss cheese -n07854982 Emmenthal, Emmental, Emmenthaler, Emmentaler -n07855105 Gruyere -n07855188 sapsago -n07855317 Velveeta -n07855413 nut butter -n07855510 peanut butter -n07855603 marshmallow fluff -n07855721 onion butter -n07855812 pimento butter -n07855907 shrimp butter -n07856045 lobster butter -n07856186 yak butter -n07856270 spread, paste -n07856756 cheese spread -n07856895 anchovy butter -n07856992 fishpaste -n07857076 garlic butter -n07857170 miso -n07857356 wasabi -n07857598 snail butter -n07857731 hummus, humus, hommos, hoummos, humous -n07857959 pate -n07858114 duck pate -n07858197 foie gras, pate de foie gras -n07858336 tapenade -n07858484 tahini -n07858595 sweetening, sweetener -n07858841 aspartame -n07858978 honey -n07859142 saccharin -n07859284 sugar, refined sugar -n07859583 syrup, sirup -n07859796 sugar syrup -n07859951 molasses -n07860103 sorghum, sorghum molasses -n07860208 treacle, golden syrup -n07860331 grenadine -n07860447 maple syrup -n07860548 corn syrup -n07860629 miraculous food, manna, manna from heaven -n07860805 batter -n07860988 dough -n07861158 bread dough -n07861247 pancake batter -n07861334 fritter batter -n07861557 coq au vin -n07861681 chicken provencale -n07861813 chicken and rice -n07861983 moo goo gai pan -n07862095 arroz con pollo -n07862244 bacon and eggs -n07862348 barbecued spareribs, spareribs -n07862461 beef Bourguignonne, boeuf Bourguignonne -n07862611 beef Wellington, filet de boeuf en croute -n07862770 bitok -n07862946 boiled dinner, New England boiled dinner -n07863107 Boston baked beans -n07863229 bubble and squeak -n07863374 pasta -n07863547 cannelloni -n07863644 carbonnade flamande, Belgian beef stew -n07863802 cheese souffle -n07863935 chicken Marengo -n07864065 chicken cordon bleu -n07864198 Maryland chicken -n07864317 chicken paprika, chicken paprikash -n07864475 chicken Tetrazzini -n07864638 Tetrazzini -n07864756 chicken Kiev -n07864934 chili, chili con carne -n07865105 chili dog -n07865196 chop suey -n07865484 chow mein -n07865575 codfish ball, codfish cake -n07865700 coquille -n07865788 coquilles Saint-Jacques -n07866015 croquette -n07866151 cottage pie -n07866277 rissole -n07866409 dolmas, stuffed grape leaves -n07866571 egg foo yong, egg fu yung -n07866723 egg roll, spring roll -n07866868 eggs Benedict -n07867021 enchilada -n07867164 falafel, felafel -n07867324 fish and chips -n07867421 fondue, fondu -n07867616 cheese fondue -n07867751 chocolate fondue -n07867883 fondue, fondu -n07868045 beef fondue, boeuf fondu bourguignon -n07868200 French toast -n07868340 fried rice, Chinese fried rice -n07868508 frittata -n07868684 frog legs -n07868830 galantine -n07868955 gefilte fish, fish ball -n07869111 haggis -n07869291 ham and eggs -n07869391 hash -n07869522 corned beef hash -n07869611 jambalaya -n07869775 kabob, kebab, shish kebab -n07869937 kedgeree -n07870069 souvlaki, souvlakia -n07870167 lasagna, lasagne -n07870313 seafood Newburg -n07870478 lobster Newburg, lobster a la Newburg -n07870620 shrimp Newburg -n07870734 Newburg sauce -n07870894 lobster thermidor -n07871065 lutefisk, lutfisk -n07871234 macaroni and cheese -n07871335 macedoine -n07871436 meatball -n07871588 porcupine ball, porcupines -n07871720 Swedish meatball -n07871810 meat loaf, meatloaf -n07872593 moussaka -n07872748 osso buco -n07873057 marrow, bone marrow -n07873198 pheasant under glass -n07873348 pigs in blankets -n07873464 pilaf, pilaff, pilau, pilaw -n07873679 bulgur pilaf -n07873807 pizza, pizza pie -n07874063 sausage pizza -n07874159 pepperoni pizza -n07874259 cheese pizza -n07874343 anchovy pizza -n07874441 Sicilian pizza -n07874531 poi -n07874674 pork and beans -n07874780 porridge -n07874995 oatmeal, burgoo -n07875086 loblolly -n07875152 potpie -n07875267 rijsttaffel, rijstaffel, rijstafel -n07875436 risotto, Italian rice -n07875560 roulade -n07875693 fish loaf -n07875835 salmon loaf -n07875926 Salisbury steak -n07876026 sauerbraten -n07876189 sauerkraut -n07876281 scallopine, scallopini -n07876460 veal scallopini -n07876550 scampi -n07876651 Scotch egg -n07876775 Scotch woodcock -n07876893 scrapple -n07877187 spaghetti and meatballs -n07877299 Spanish rice -n07877675 steak tartare, tartar steak, cannibal mound -n07877849 pepper steak -n07877961 steak au poivre, peppered steak, pepper steak -n07878145 beef Stroganoff -n07878283 stuffed cabbage -n07878479 kishke, stuffed derma -n07878647 stuffed peppers -n07878785 stuffed tomato, hot stuffed tomato -n07878926 stuffed tomato, cold stuffed tomato -n07879072 succotash -n07879174 sukiyaki -n07879350 sashimi -n07879450 sushi -n07879560 Swiss steak -n07879659 tamale -n07879821 tamale pie -n07879953 tempura -n07880080 teriyaki -n07880213 terrine -n07880325 Welsh rarebit, Welsh rabbit, rarebit -n07880458 schnitzel, Wiener schnitzel -n07880751 taco -n07880880 chicken taco -n07880968 burrito -n07881117 beef burrito -n07881205 quesadilla -n07881404 tostada -n07881525 bean tostada -n07881625 refried beans, frijoles refritos -n07881800 beverage, drink, drinkable, potable -n07882420 wish-wash -n07882497 concoction, mixture, intermixture -n07882886 mix, premix -n07883031 filling -n07883156 lekvar -n07883251 potion -n07883384 elixir -n07883510 elixir of life -n07883661 philter, philtre, love-potion, love-philter, love-philtre -n07884567 alcohol, alcoholic drink, alcoholic beverage, intoxicant, inebriant -n07885705 proof spirit -n07886057 home brew, homebrew -n07886176 hooch, hootch -n07886317 kava, kavakava -n07886463 aperitif -n07886572 brew, brewage -n07886849 beer -n07887099 draft beer, draught beer -n07887192 suds -n07887304 Munich beer, Munchener -n07887461 bock, bock beer -n07887634 lager, lager beer -n07887967 light beer -n07888058 Oktoberfest, Octoberfest -n07888229 Pilsner, Pilsener -n07888378 shebeen -n07888465 Weissbier, white beer, wheat beer -n07888816 Weizenbock -n07888909 malt -n07889193 wort -n07889274 malt, malt liquor -n07889510 ale -n07889814 bitter -n07889990 Burton -n07890068 pale ale -n07890226 porter, porter's beer -n07890352 stout -n07890540 Guinness -n07890617 kvass -n07890750 mead -n07890890 metheglin -n07890970 hydromel -n07891095 oenomel -n07891189 near beer -n07891309 ginger beer -n07891433 sake, saki, rice beer -n07891726 wine, vino -n07892418 vintage -n07892512 red wine -n07892813 white wine -n07893253 blush wine, pink wine, rose, rose wine -n07893425 altar wine, sacramental wine -n07893528 sparkling wine -n07893642 champagne, bubbly -n07893792 cold duck -n07893891 Burgundy, Burgundy wine -n07894102 Beaujolais -n07894298 Medoc -n07894451 Canary wine -n07894551 Chablis, white Burgundy -n07894703 Montrachet -n07894799 Chardonnay, Pinot Chardonnay -n07894965 Pinot noir -n07895100 Pinot blanc -n07895237 Bordeaux, Bordeaux wine -n07895435 claret, red Bordeaux -n07895595 Chianti -n07895710 Cabernet, Cabernet Sauvignon -n07895839 Merlot -n07895962 Sauvignon blanc -n07896060 California wine -n07896165 Cotes de Provence -n07896287 dessert wine -n07896422 Dubonnet -n07896560 jug wine -n07896661 macon, maconnais -n07896765 Moselle -n07896893 Muscadet -n07896994 plonk -n07897116 retsina -n07897200 Rhine wine, Rhenish, hock -n07897438 Riesling -n07897600 liebfraumilch -n07897750 Rhone wine -n07897865 Rioja -n07897975 sack -n07898117 Saint Emilion -n07898247 Soave -n07898333 zinfandel -n07898443 Sauterne, Sauternes -n07898617 straw wine -n07898745 table wine -n07898895 Tokay -n07899003 vin ordinaire -n07899108 vermouth -n07899292 sweet vermouth, Italian vermouth -n07899434 dry vermouth, French vermouth -n07899533 Chenin blanc -n07899660 Verdicchio -n07899769 Vouvray -n07899899 Yquem -n07899976 generic, generic wine -n07900225 varietal, varietal wine -n07900406 fortified wine -n07900616 Madeira -n07900734 malmsey -n07900825 port, port wine -n07900958 sherry -n07901355 Marsala -n07901457 muscat, muscatel, muscadel, muscadelle -n07901587 liquor, spirits, booze, hard drink, hard liquor, John Barleycorn, strong drink -n07902121 neutral spirits, ethyl alcohol -n07902336 aqua vitae, ardent spirits -n07902443 eau de vie -n07902520 moonshine, bootleg, corn liquor -n07902698 bathtub gin -n07902799 aquavit, akvavit -n07902937 arrack, arak -n07903101 bitters -n07903208 brandy -n07903543 applejack -n07903643 Calvados -n07903731 Armagnac -n07903841 Cognac -n07903962 grappa -n07904072 kirsch -n07904293 slivovitz -n07904395 gin -n07904637 sloe gin -n07904760 geneva, Holland gin, Hollands -n07904865 grog -n07904934 ouzo -n07905038 rum -n07905296 demerara, demerara rum -n07905386 Jamaica rum -n07905474 schnapps, schnaps -n07905618 pulque -n07905770 mescal -n07905979 tequila -n07906111 vodka -n07906284 whiskey, whisky -n07906572 blended whiskey, blended whisky -n07906718 bourbon -n07906877 corn whiskey, corn whisky, corn -n07907037 firewater -n07907161 Irish, Irish whiskey, Irish whisky -n07907342 poteen -n07907429 rye, rye whiskey, rye whisky -n07907548 Scotch, Scotch whiskey, Scotch whisky, malt whiskey, malt whisky, Scotch malt whiskey, Scotch malt whisky -n07907831 sour mash, sour mash whiskey -n07907943 liqueur, cordial -n07908411 absinth, absinthe -n07908567 amaretto -n07908647 anisette, anisette de Bordeaux -n07908812 benedictine -n07908923 Chartreuse -n07909129 coffee liqueur -n07909231 creme de cacao -n07909362 creme de menthe -n07909504 creme de fraise -n07909593 Drambuie -n07909714 Galliano -n07909811 orange liqueur -n07909954 curacao, curacoa -n07910048 triple sec -n07910152 Grand Marnier -n07910245 kummel -n07910379 maraschino, maraschino liqueur -n07910538 pastis -n07910656 Pernod -n07910799 pousse-cafe -n07910970 Kahlua -n07911061 ratafia, ratafee -n07911249 sambuca -n07911371 mixed drink -n07911677 cocktail -n07912093 Dom Pedro -n07912211 highball -n07913180 mixer -n07913300 bishop -n07913393 Bloody Mary -n07913537 Virgin Mary, bloody shame -n07913644 bullshot -n07913774 cobbler -n07913882 collins, Tom Collins -n07914006 cooler -n07914128 refresher -n07914271 smoothie -n07914413 daiquiri, rum cocktail -n07914586 strawberry daiquiri -n07914686 NADA daiquiri -n07914777 spritzer -n07914887 flip -n07914995 gimlet -n07915094 gin and tonic -n07915213 grasshopper -n07915366 Harvey Wallbanger -n07915491 julep, mint julep -n07915618 manhattan -n07915800 Rob Roy -n07915918 margarita -n07916041 martini -n07916183 gin and it -n07916319 vodka martini -n07916437 old fashioned -n07916582 pink lady -n07917133 Sazerac -n07917272 screwdriver -n07917392 sidecar -n07917507 Scotch and soda -n07917618 sling -n07917791 brandy sling -n07917874 gin sling -n07917951 rum sling -n07918028 sour -n07918193 whiskey sour, whisky sour -n07918309 stinger -n07918706 swizzle -n07918879 hot toddy, toddy -n07919165 zombie, zombi -n07919310 fizz -n07919441 Irish coffee -n07919572 cafe au lait -n07919665 cafe noir, demitasse -n07919787 decaffeinated coffee, decaf -n07919894 drip coffee -n07920052 espresso -n07920222 caffe latte, latte -n07920349 cappuccino, cappuccino coffee, coffee cappuccino -n07920540 iced coffee, ice coffee -n07920663 instant coffee -n07920872 mocha, mocha coffee -n07920989 mocha -n07921090 cassareep -n07921239 Turkish coffee -n07921360 chocolate milk -n07921455 cider, cyder -n07921615 hard cider -n07921834 scrumpy -n07921948 sweet cider -n07922041 mulled cider -n07922147 perry -n07922512 rotgut -n07922607 slug -n07922764 cocoa, chocolate, hot chocolate, drinking chocolate -n07922955 criollo -n07923748 juice -n07924033 fruit juice, fruit crush -n07924276 nectar -n07924366 apple juice -n07924443 cranberry juice -n07924560 grape juice -n07924655 must -n07924747 grapefruit juice -n07924834 orange juice -n07924955 frozen orange juice, orange-juice concentrate -n07925116 pineapple juice -n07925229 lemon juice -n07925327 lime juice -n07925423 papaya juice -n07925500 tomato juice -n07925608 carrot juice -n07925708 V-8 juice -n07925808 koumiss, kumis -n07925966 fruit drink, ade -n07926250 lemonade -n07926346 limeade -n07926442 orangeade -n07926540 malted milk -n07926785 mate -n07926920 mulled wine -n07927070 negus -n07927197 soft drink -n07927512 pop, soda, soda pop, soda water, tonic -n07927716 birch beer -n07927836 bitter lemon -n07927931 cola, dope -n07928163 cream soda -n07928264 egg cream -n07928367 ginger ale, ginger pop -n07928488 orange soda -n07928578 phosphate -n07928696 Coca Cola, Coke -n07928790 Pepsi, Pepsi Cola -n07928887 root beer -n07928998 sarsaparilla -n07929172 tonic, tonic water, quinine water -n07929351 coffee bean, coffee berry, coffee -n07929519 coffee, java -n07929940 cafe royale, coffee royal -n07930062 fruit punch -n07930205 milk punch -n07930315 mimosa, buck's fizz -n07930433 pina colada -n07930554 punch -n07930864 cup -n07931001 champagne cup -n07931096 claret cup -n07931280 wassail -n07931452 planter's punch -n07931612 White Russian -n07931733 fish house punch -n07931870 May wine -n07932039 eggnog -n07932323 cassiri -n07932454 spruce beer -n07932614 rickey -n07932762 gin rickey -n07932841 tea, tea leaf -n07933154 tea bag -n07933274 tea -n07933530 tea-like drink -n07933652 cambric tea -n07933799 cuppa, cupper -n07933891 herb tea, herbal tea, herbal -n07934032 tisane -n07934152 camomile tea -n07934282 ice tea, iced tea -n07934373 sun tea -n07934530 black tea -n07934678 congou, congo, congou tea, English breakfast tea -n07934800 Darjeeling -n07934908 orange pekoe, pekoe -n07935043 souchong, soochong -n07935152 green tea -n07935288 hyson -n07935379 oolong -n07935504 water -n07935737 bottled water -n07935878 branch water -n07936015 spring water -n07936093 sugar water -n07936263 drinking water -n07936459 ice water -n07936548 soda water, carbonated water, club soda, seltzer, sparkling water -n07936745 mineral water -n07936979 seltzer -n07937069 Vichy water -n07937344 perishable, spoilable -n07937461 couscous -n07937621 ramekin, ramequin -n07938007 multivitamin, multivitamin pill -n07938149 vitamin pill -n07938313 soul food -n07938594 mold, mould -n07942152 people -n07951464 collection, aggregation, accumulation, assemblage -n07954211 book, rule book -n07977870 library -n08079613 baseball club, ball club, club, nine -n08182379 crowd -n08238463 class, form, grade, course -n08242223 core, nucleus, core group -n08249459 concert band, military band -n08253141 dance -n08256735 wedding, wedding party -n08376250 chain, concatenation -n08385989 power breakfast -n08492354 aerie, aery, eyrie, eyry -n08492461 agora -n08494231 amusement park, funfair, pleasure ground -n08495908 aphelion -n08496334 apron -n08500819 interplanetary space -n08500989 interstellar space -n08501887 intergalactic space -n08505018 bush -n08506347 semidesert -n08511017 beam-ends -n08517010 bridgehead -n08517676 bus stop -n08518171 campsite, campground, camping site, camping ground, bivouac, encampment, camping area -n08519299 detention basin -n08521623 cemetery, graveyard, burial site, burial ground, burying ground, memorial park, necropolis -n08523340 trichion, crinion -n08524735 city, metropolis, urban center -n08539072 business district, downtown -n08539276 outskirts -n08540532 borough -n08547468 cow pasture -n08547544 crest -n08551296 eparchy, exarchate -n08554440 suburb, suburbia, suburban area -n08555333 stockbroker belt -n08555710 crawlspace, crawl space -n08558770 sheikdom, sheikhdom -n08558963 residence, abode -n08559155 domicile, legal residence -n08560295 dude ranch -n08569482 farmland, farming area -n08571275 midfield -n08571642 firebreak, fireguard -n08571898 flea market -n08573674 battlefront, front, front line -n08573842 garbage heap, junk heap, rubbish heap, scrapheap, trash heap, junk pile, trash pile, refuse heap -n08578517 benthos, benthic division, benthonic zone -n08579266 goldfield -n08579352 grainfield, grain field -n08580944 half-mast, half-staff -n08583292 hemline -n08583455 heronry -n08583554 hipline -n08583682 hipline -n08584914 hole-in-the-wall -n08586978 junkyard -n08589670 isoclinic line, isoclinal -n08596076 littoral, litoral, littoral zone, sands -n08597579 magnetic pole -n08598301 grassland -n08598568 mecca -n08599174 observer's meridian -n08599292 prime meridian -n08611339 nombril -n08611421 no-parking zone -n08613733 outdoors, out-of-doors, open air, open -n08614632 fairground -n08616050 pasture, pastureland, grazing land, lea, ley -n08618831 perihelion -n08619112 periselene, perilune -n08623676 locus of infection -n08628141 kasbah, casbah -n08633683 waterfront -n08640531 resort, resort hotel, holiday resort -n08640739 resort area, playground, vacation spot -n08640962 rough -n08643267 ashram -n08644045 harborage, harbourage -n08645104 scrubland -n08645212 weald -n08645318 wold -n08647264 schoolyard -n08648917 showplace -n08649711 bedside -n08651104 sideline, out of bounds -n08652376 ski resort -n08658309 soil horizon -n08658918 geological horizon -n08659242 coal seam -n08659331 coalface -n08659446 field -n08659861 oilfield -n08661878 Temperate Zone -n08662427 terreplein -n08663051 three-mile limit -n08663703 desktop -n08663860 top -n08673039 kampong, campong -n08674344 subtropics, semitropics -n08676253 barrio -n08677424 veld, veldt -n08677801 vertex, peak, apex, acme -n08678783 waterline, water line, water level -n08679167 high-water mark -n08679269 low-water mark -n08679562 continental divide -n08685188 zodiac -n08782627 Aegean island -n08896327 sultanate -n09032191 Swiss canton -n09186592 abyssal zone -n09189157 aerie, aery, eyrie, eyry -n09191635 air bubble -n09193551 alluvial flat, alluvial plain -n09193705 alp -n09194227 Alpine glacier, Alpine type of glacier -n09199101 anthill, formicary -n09201998 aquifer -n09203827 archipelago -n09205509 arete -n09206896 arroyo -n09206985 ascent, acclivity, rise, raise, climb, upgrade -n09208496 asterism -n09209025 asthenosphere -n09210862 atoll -n09213434 bank -n09213565 bank -n09214060 bar -n09214269 barbecue pit -n09214916 barrier reef -n09215023 baryon, heavy particle -n09215437 basin -n09217230 beach -n09218315 honeycomb -n09218494 belay -n09218641 ben -n09219233 berm -n09223487 bladder stone, cystolith -n09224725 bluff -n09226869 borrow pit -n09228055 brae -n09229709 bubble -n09230041 burrow, tunnel -n09230202 butte -n09231117 caldera -n09233446 canyon, canon -n09233603 canyonside -n09238926 cave -n09239302 cavern -n09242389 chasm -n09245515 cirque, corrie, cwm -n09246464 cliff, drop, drop-off -n09247410 cloud -n09248153 coast -n09248399 coastland -n09249034 col, gap -n09249155 collector -n09251407 comet -n09255070 continental glacier -n09256479 coral reef -n09257843 cove -n09259025 crag -n09259219 crater -n09260907 cultivated land, farmland, plowland, ploughland, tilled land, tillage, tilth -n09262690 dale -n09263912 defile, gorge -n09264803 delta -n09265620 descent, declivity, fall, decline, declination, declension, downslope -n09266604 diapir -n09267854 divot -n09268007 divot -n09269341 down -n09269472 downhill -n09269882 draw -n09270160 drey -n09270657 drumlin -n09270735 dune, sand dune -n09274152 escarpment, scarp -n09274305 esker -n09279986 fireball -n09281252 flare star -n09282208 floor -n09283193 fomite, vehicle -n09283405 foothill -n09283514 footwall -n09283767 foreland -n09283866 foreshore -n09287415 gauge boson -n09287968 geological formation, formation -n09288635 geyser -n09289331 glacier -n09289596 glen -n09290350 gopher hole -n09290444 gorge -n09294877 grotto, grot -n09295210 growler -n09295946 gulch, flume -n09300306 gully -n09300905 hail -n09302616 highland, upland -n09303008 hill -n09303528 hillside -n09304750 hole, hollow -n09305031 hollow, holler -n09305898 hot spring, thermal spring -n09308572 iceberg, berg -n09308743 icecap, ice cap -n09309046 ice field -n09309168 ice floe, floe -n09309292 ice mass -n09310616 inclined fault -n09315159 ion -n09319604 isthmus -n09325824 kidney stone, urinary calculus, nephrolith, renal calculus -n09326662 knoll, mound, hillock, hummock, hammock -n09327077 kopje, koppie -n09327538 Kuiper belt, Edgeworth-Kuiper belt -n09330378 lake bed, lake bottom -n09331251 lakefront -n09332890 lakeside, lakeshore -n09335693 landfall -n09335809 landfill -n09336555 lather -n09337048 leak -n09337253 ledge, shelf -n09338013 lepton -n09339810 lithosphere, geosphere -n09344198 lowland -n09344324 lunar crater -n09344724 maar -n09348460 massif -n09349648 meander -n09351905 mesa, table -n09352849 meteorite -n09353815 microfossil -n09354511 midstream -n09357346 molehill -n09357447 monocline -n09359803 mountain, mount -n09361517 mountainside, versant -n09362316 mouth -n09362945 mull -n09366017 natural depression, depression -n09366317 natural elevation, elevation -n09375606 nullah -n09376198 ocean -n09376526 ocean floor, sea floor, ocean bottom, seabed, sea bottom, Davy Jones's locker, Davy Jones -n09376786 oceanfront -n09381242 outcrop, outcropping, rock outcrop -n09382099 oxbow -n09384106 pallasite -n09389867 perforation -n09391386 photosphere -n09391644 piedmont -n09391774 Piedmont glacier, Piedmont type of glacier -n09392402 pinetum -n09393524 plage -n09393605 plain, field, champaign -n09396465 point -n09396608 polar glacier -n09398076 pothole, chuckhole -n09398677 precipice -n09399592 promontory, headland, head, foreland -n09400584 ptyalith -n09400987 pulsar -n09402944 quicksand -n09403086 rabbit burrow, rabbit hole -n09403211 radiator -n09403427 rainbow -n09403734 range, mountain range, range of mountains, chain, mountain chain, chain of mountains -n09405078 rangeland -n09405787 ravine -n09406793 reef -n09409512 ridge -n09409752 ridge, ridgeline -n09410224 rift valley -n09411189 riparian forest -n09411295 ripple mark -n09415584 riverbank, riverside -n09415671 riverbed, river bottom -n09416076 rock, stone -n09416890 roof -n09421031 saltpan -n09421799 sandbank -n09421951 sandbar, sand bar -n09422190 sandpit -n09422631 sanitary landfill -n09425019 sawpit -n09425344 scablands -n09428293 seashore, coast, seacoast, sea-coast -n09428628 seaside, seaboard -n09429630 seif dune -n09432283 shell -n09432990 shiner -n09433312 shoal -n09433442 shore -n09433839 shoreline -n09435739 sinkhole, sink, swallow hole -n09436444 ski slope -n09436708 sky -n09437454 slope, incline, side -n09438844 snowcap -n09438940 snowdrift -n09439032 snowfield -n09439213 soapsuds, suds, lather -n09442595 spit, tongue -n09443281 spoor -n09443641 spume -n09444783 star -n09445008 steep -n09445289 steppe -n09447666 strand -n09448690 streambed, creek bed -n09450163 sun, Sun -n09451237 supernova -n09452291 swale -n09452395 swamp, swampland -n09452760 swell -n09453008 tableland, plateau -n09454153 talus, scree -n09454412 tangle -n09454744 tar pit -n09456207 terrace, bench -n09457979 tidal basin -n09458269 tideland -n09459979 tor -n09460046 tor -n09461069 Trapezium -n09462600 troposphere -n09463226 tundra -n09464486 twinkler -n09466678 uphill -n09467696 urolith -n09468604 valley, vale -n09470027 vehicle-borne transmission -n09470222 vein, mineral vein -n09472413 volcanic crater, crater -n09472597 volcano -n09474010 wadi -n09474412 wall -n09474765 warren, rabbit warren -n09475044 wasp's nest, wasps' nest, hornet's nest, hornets' nest -n09475179 watercourse -n09475925 waterside -n09476123 water table, water level, groundwater level -n09478210 whinstone, whin -n09480959 wormcast -n09481120 xenolith -n09493983 Circe -n09495962 gryphon, griffin, griffon -n09505153 spiritual leader -n09537660 messiah, christ -n09556121 Rhea Silvia, Rea Silvia -n09605110 number one -n09606009 adventurer, venturer -n09606527 anomaly, unusual person -n09607630 appointee, appointment -n09607782 argonaut -n09607903 Ashkenazi -n09608709 benefactor, helper -n09610255 color-blind person -n09610405 commoner, common man, common person -n09611722 conservator -n09612700 contrarian -n09613118 contadino -n09613191 contestant -n09613690 cosigner, cosignatory -n09615336 discussant -n09616573 enologist, oenologist, fermentologist -n09616922 entertainer -n09617161 eulogist, panegyrist -n09617435 ex-gambler -n09617577 experimenter -n09617696 experimenter -n09618760 exponent -n09618880 ex-president -n09618957 face -n09619168 female, female person -n09619452 finisher -n09620078 inhabitant, habitant, dweller, denizen, indweller -n09620794 native, indigen, indigene, aborigine, aboriginal -n09621232 native -n09622049 juvenile, juvenile person -n09622302 lover -n09624168 male, male person -n09624559 mediator, go-between, intermediator, intermediary, intercessor -n09624899 mediatrix -n09625401 national, subject -n09626238 peer, equal, match, compeer -n09627807 prize winner, lottery winner -n09627906 recipient, receiver -n09629065 religionist -n09629246 sensualist -n09629752 traveler, traveller -n09631129 unwelcome person, persona non grata -n09632274 unskilled person -n09632518 worker -n09633969 wrongdoer, offender -n09635534 Black African -n09635635 Afrikaner, Afrikander, Boer -n09635973 Aryan -n09636339 Black, Black person, blackamoor, Negro, Negroid -n09637339 Black woman -n09638454 mulatto -n09638875 White, White person, Caucasian -n09639382 Circassian -n09639919 Semite -n09640327 Chaldean, Chaldaean, Chaldee -n09640715 Elamite -n09641002 white man -n09641578 WASP, white Anglo-Saxon Protestant -n09643799 gook, slant-eye -n09644152 Mongol, Mongolian -n09644657 Tatar, Tartar, Mongol Tatar -n09648743 Nahuatl -n09648911 Aztec -n09649067 Olmec -n09650729 Biloxi -n09650839 Blackfoot -n09650989 Brule -n09651123 Caddo -n09651968 Cheyenne -n09652149 Chickasaw -n09653144 Cocopa, Cocopah -n09653438 Comanche -n09654079 Creek -n09654518 Delaware -n09654898 Diegueno -n09655213 Esselen -n09655466 Eyeish -n09656077 Havasupai -n09657206 Hunkpapa -n09657748 Iowa, Ioway -n09658254 Kalapooia, Kalapuya, Calapooya, Calapuya -n09658398 Kamia -n09658815 Kekchi -n09658921 Kichai -n09659039 Kickapoo -n09659188 Kiliwa, Kiliwi -n09660010 Malecite -n09660240 Maricopa -n09661873 Mohican, Mahican -n09662038 Muskhogean, Muskogean -n09662661 Navaho, Navajo -n09662951 Nootka -n09663248 Oglala, Ogalala -n09663786 Osage -n09663999 Oneida -n09664556 Paiute, Piute -n09664908 Passamaquody -n09665367 Penobscot -n09665545 Penutian -n09666349 Potawatomi -n09666476 Powhatan -n09666883 kachina -n09667358 Salish -n09668199 Shahaptian, Sahaptin, Sahaptino -n09668437 Shasta -n09668562 Shawnee -n09668988 Sihasapa -n09669631 Teton, Lakota, Teton Sioux, Teton Dakota -n09670280 Taracahitian -n09670521 Tarahumara -n09670909 Tuscarora -n09671089 Tutelo -n09672590 Yana -n09672725 Yavapai -n09672840 Yokuts -n09673091 Yuma -n09674412 Gadaba -n09674786 Kolam -n09675045 Kui -n09675673 Toda -n09675799 Tulu -n09675922 Gujarati, Gujerati -n09676021 Kashmiri -n09676247 Punjabi, Panjabi -n09676884 Slav -n09677427 Anabaptist -n09678747 Adventist, Second Adventist -n09679028 gentile, non-Jew, goy -n09679170 gentile -n09679925 Catholic -n09680908 Old Catholic -n09681107 Uniat, Uniate, Uniate Christian -n09681234 Copt -n09681973 Jewess -n09683180 Jihadist -n09683757 Buddhist -n09683924 Zen Buddhist -n09684082 Mahayanist -n09684901 swami -n09685233 Hare Krishna -n09685806 Shintoist -n09686262 Eurafrican -n09686401 Eurasian -n09688233 Gael -n09688804 Frank -n09689435 Afghan, Afghanistani -n09689958 Albanian -n09690083 Algerian -n09690208 Altaic -n09690496 Andorran -n09690621 Angolan -n09690864 Anguillan -n09691604 Austrian -n09691729 Bahamian -n09691858 Bahraini, Bahreini -n09692125 Basotho -n09692915 Herero -n09693244 Luba, Chiluba -n09693982 Barbadian -n09694664 Bolivian -n09694771 Bornean -n09695019 Carioca -n09695132 Tupi -n09695514 Bruneian -n09695620 Bulgarian -n09695979 Byelorussian, Belorussian, White Russian -n09696456 Cameroonian -n09696585 Canadian -n09696763 French Canadian -n09697401 Central American -n09697986 Chilean -n09698644 Congolese -n09699020 Cypriot, Cypriote, Cyprian -n09699642 Dane -n09700125 Djiboutian -n09700964 Britisher, Briton, Brit -n09701148 English person -n09701833 Englishwoman -n09702134 Anglo-Saxon -n09702673 Angle -n09703101 West Saxon -n09703344 Lombard, Langobard -n09703485 limey, John Bull -n09703708 Cantabrigian -n09703809 Cornishman -n09703932 Cornishwoman -n09704057 Lancastrian -n09704157 Lancastrian -n09704283 Geordie -n09705003 Oxonian -n09705124 Ethiopian -n09705671 Amhara -n09705784 Eritrean -n09706029 Finn -n09706255 Komi -n09707061 Livonian -n09707289 Lithuanian -n09707735 Selkup, Ostyak-Samoyed -n09708750 Parisian -n09708889 Parisienne -n09709531 Creole -n09709673 Creole -n09710041 Gabonese -n09710164 Greek, Hellene -n09710886 Dorian -n09711132 Athenian -n09711435 Laconian -n09712324 Guyanese -n09712448 Haitian -n09712696 Malay, Malayan -n09712967 Moro -n09713108 Netherlander, Dutchman, Hollander -n09714120 Icelander -n09714694 Iraqi, Iraki -n09715165 Irishman -n09715303 Irishwoman -n09715427 Dubliner -n09716047 Italian -n09716933 Roman -n09717233 Sabine -n09718217 Japanese, Nipponese -n09718811 Jordanian -n09718936 Korean -n09719309 Kenyan -n09719794 Lao, Laotian -n09720033 Lapp, Lapplander, Sami, Saami, Same, Saame -n09720256 Latin American, Latino -n09720595 Lebanese -n09720702 Levantine -n09720842 Liberian -n09721244 Luxemburger, Luxembourger -n09721444 Macedonian -n09722064 Sabahan -n09722658 Mexican -n09722817 Chicano -n09723067 Mexican-American, Mexicano -n09723819 Namibian -n09723944 Nauruan -n09724234 Gurkha -n09724533 New Zealander, Kiwi -n09724656 Nicaraguan -n09724785 Nigerian -n09725000 Hausa, Haussa -n09725229 North American -n09725546 Nova Scotian, bluenose -n09725653 Omani -n09725772 Pakistani -n09725935 Brahui -n09726621 South American Indian -n09726811 Carib, Carib Indian -n09727440 Filipino -n09727826 Polynesian -n09728137 Qatari, Katari -n09728285 Romanian, Rumanian -n09729062 Muscovite -n09729156 Georgian -n09730077 Sarawakian -n09730204 Scandinavian, Norse, Northman -n09730824 Senegalese -n09731343 Slovene -n09731436 South African -n09731571 South American -n09732170 Sudanese -n09733459 Syrian -n09733793 Tahitian -n09734185 Tanzanian -n09734450 Tibetan -n09734535 Togolese -n09734639 Tuareg -n09735258 Turki -n09735654 Chuvash -n09736485 Turkoman, Turkmen, Turcoman -n09736798 Uzbek, Uzbeg, Uzbak, Usbek, Usbeg -n09736945 Ugandan -n09737050 Ukranian -n09737161 Yakut -n09737453 Tungus, Evenk -n09738121 Igbo -n09738400 American -n09740724 Anglo-American -n09741074 Alaska Native, Alaskan Native, Native Alaskan -n09741331 Arkansan, Arkansawyer -n09741722 Carolinian -n09741816 Coloradan -n09741904 Connecticuter -n09741999 Delawarean, Delawarian -n09742101 Floridian -n09742315 German American -n09742927 Illinoisan -n09743487 Mainer, Down Easter -n09743601 Marylander -n09743792 Minnesotan, Gopher -n09744161 Nebraskan, Cornhusker -n09744346 New Hampshirite, Granite Stater -n09744462 New Jerseyan, New Jerseyite, Garden Stater -n09744679 New Yorker -n09744834 North Carolinian, Tarheel -n09745229 Oregonian, Beaver -n09745324 Pennsylvanian, Keystone Stater -n09745834 Texan -n09745933 Utahan -n09746936 Uruguayan -n09747191 Vietnamese, Annamese -n09747495 Gambian -n09748101 East German -n09748408 Berliner -n09748648 Prussian -n09748889 Ghanian -n09749386 Guinean -n09750282 Papuan -n09750641 Walloon -n09750770 Yemeni -n09750891 Yugoslav, Jugoslav, Yugoslavian, Jugoslavian -n09751076 Serbian, Serb -n09751496 Xhosa -n09751622 Zairese, Zairean -n09751895 Zimbabwean -n09752023 Zulu -n09752519 Gemini, Twin -n09753348 Sagittarius, Archer -n09753792 Pisces, Fish -n09754152 abbe -n09754217 abbess, mother superior, prioress -n09754633 abnegator -n09754907 abridger, abbreviator -n09755086 abstractor, abstracter -n09755241 absconder -n09755555 absolver -n09755788 abecedarian -n09755893 aberrant -n09756049 abettor, abetter -n09756195 abhorrer -n09756961 abomination -n09757449 abseiler, rappeller -n09758173 abstainer, ascetic -n09758885 academic administrator -n09759501 academician -n09760290 accessory before the fact -n09760609 companion -n09760913 accompanist, accompanyist -n09761068 accomplice, confederate -n09761753 account executive, account representative, registered representative, customer's broker, customer's man -n09762011 accused -n09762385 accuser -n09763272 acid head -n09763784 acquaintance, friend -n09764201 acquirer -n09764598 aerialist -n09764732 action officer -n09764900 active -n09765118 active citizen -n09765278 actor, histrion, player, thespian, role player -n09767197 actor, doer, worker -n09769076 addict, nut, freak, junkie, junky -n09769525 adducer -n09769929 adjuster, adjustor, claims adjuster, claims adjustor, claim agent -n09770179 adjutant, aide, aide-de-camp -n09770359 adjutant general -n09771435 admirer, adorer -n09772330 adoptee -n09772746 adulterer, fornicator -n09772930 adulteress, fornicatress, hussy, jade, loose woman, slut, strumpet, trollop -n09773962 advertiser, advertizer, adman -n09774167 advisee -n09774783 advocate, advocator, proponent, exponent -n09775907 aeronautical engineer -n09776346 affiliate -n09776642 affluent -n09776807 aficionado -n09777870 buck sergeant -n09778266 agent-in-place -n09778537 aggravator, annoyance -n09778783 agitator, fomenter -n09778927 agnostic -n09779124 agnostic, doubter -n09779280 agonist -n09779461 agony aunt -n09779790 agriculturist, agriculturalist, cultivator, grower, raiser -n09780395 air attache -n09780828 air force officer, commander -n09780984 airhead -n09781398 air traveler, air traveller -n09781504 alarmist -n09781650 albino -n09782167 alcoholic, alky, dipsomaniac, boozer, lush, soaker, souse -n09782397 alderman -n09782855 alexic -n09783537 alienee, grantee -n09783776 alienor -n09783884 aliterate, aliterate person -n09784043 algebraist -n09784160 allegorizer, allegoriser -n09784564 alliterator -n09785236 almoner, medical social worker -n09785659 alpinist -n09785891 altar boy -n09786115 alto -n09787534 ambassador, embassador -n09787765 ambassador -n09788073 ambusher -n09788237 amicus curiae, friend of the court -n09789150 amoralist -n09789566 amputee -n09789898 analogist -n09790047 analphabet, analphabetic -n09790482 analyst -n09791014 industry analyst -n09791419 market strategist -n09791816 anarchist, nihilist, syndicalist -n09792125 anathema, bete noire -n09792555 ancestor, ascendant, ascendent, antecedent, root -n09792969 anchor, anchorman, anchorperson -n09793141 ancient -n09793352 anecdotist, raconteur -n09793946 angler, troller -n09794550 animator -n09794668 animist -n09795010 annotator -n09795124 announcer -n09795334 announcer -n09796809 anti -n09796974 anti-American -n09797742 anti-Semite, Jew-baiter -n09797873 Anzac -n09797998 ape-man -n09798096 aphakic -n09800469 appellant, plaintiff in error -n09800964 appointee -n09801102 apprehender -n09801275 April fool -n09801533 aspirant, aspirer, hopeful, wannabe, wannabee -n09802445 appreciator -n09802641 appropriator -n09802951 Arabist -n09804230 archaist -n09805151 archbishop -n09805324 archer, bowman -n09805475 architect, designer -n09806944 archivist -n09807075 archpriest, hierarch, high priest, prelate, primate -n09808080 Aristotelian, Aristotelean, Peripatetic -n09808591 armiger -n09809279 army attache -n09809538 army engineer, military engineer -n09809749 army officer -n09809925 arranger, adapter, transcriber -n09810166 arrival, arriver, comer -n09811568 arthritic -n09811712 articulator -n09811852 artilleryman, cannoneer, gunner, machine gunner -n09813219 artist's model, sitter -n09814252 assayer -n09814381 assemblyman -n09814488 assemblywoman -n09814567 assenter -n09814660 asserter, declarer, affirmer, asseverator, avower -n09815455 assignee -n09815790 assistant, helper, help, supporter -n09816654 assistant professor -n09816771 associate -n09817174 associate -n09817386 associate professor -n09818022 astronaut, spaceman, cosmonaut -n09819477 cosmographer, cosmographist -n09820044 atheist -n09820263 athlete, jock -n09821831 attendant, attender, tender -n09822830 attorney general -n09823153 auditor -n09823287 augur, auspex -n09823502 aunt, auntie, aunty -n09823832 au pair girl -n09824135 authoritarian, dictator -n09824609 authority -n09825096 authorizer, authoriser -n09825750 automobile mechanic, auto-mechanic, car-mechanic, mechanic, grease monkey -n09826204 aviator, aeronaut, airman, flier, flyer -n09826605 aviatrix, airwoman, aviatress -n09826821 ayah -n09827246 babu, baboo -n09827363 baby, babe, sister -n09828216 baby -n09828403 baby boomer, boomer -n09828988 baby farmer -n09830194 back -n09830400 backbencher -n09830629 backpacker, packer -n09830759 backroom boy, brain truster -n09830926 backscratcher -n09831962 bad person -n09832456 baggage -n09832633 bag lady -n09832978 bailee -n09833111 bailiff -n09833275 bailor -n09833441 bairn -n09833536 baker, bread maker -n09833751 balancer -n09833997 balker, baulker, noncompliant -n09834258 ball-buster, ball-breaker -n09834378 ball carrier, runner -n09834699 ballet dancer -n09834885 ballet master -n09835017 ballet mistress -n09835153 balletomane -n09835230 ball hawk -n09835348 balloonist -n09835506 ballplayer, baseball player -n09836160 bullfighter, toreador -n09836343 banderillero -n09836519 matador -n09836786 picador -n09837459 bandsman -n09837720 banker -n09838295 bank robber -n09838370 bankrupt, insolvent -n09838621 bantamweight -n09839702 barmaid -n09840217 baron, big businessman, business leader, king, magnate, mogul, power, top executive, tycoon -n09840435 baron -n09840520 baron -n09841188 bartender, barman, barkeep, barkeeper, mixologist -n09841515 baseball coach, baseball manager -n09841696 base runner, runner -n09842047 basketball player, basketeer, cager -n09842288 basketweaver, basketmaker -n09842395 Basket Maker -n09842528 bass, basso -n09842823 bastard, by-blow, love child, illegitimate child, illegitimate, whoreson -n09843443 bat boy -n09843602 bather -n09843716 batman -n09843824 baton twirler, twirler -n09844457 Bavarian -n09844898 beadsman, bedesman -n09845401 beard -n09845849 beatnik, beat -n09846142 beauty consultant -n09846469 Bedouin, Beduin -n09846586 bedwetter, bed wetter, wetter -n09846755 beekeeper, apiarist, apiculturist -n09846894 beer drinker, ale drinker -n09847267 beggarman -n09847344 beggarwoman -n09847543 beldam, beldame -n09848110 theist -n09848489 believer, truster -n09849167 bell founder -n09849990 benedick, benedict -n09850760 berserker, berserk -n09850974 besieger -n09851165 best, topper -n09851575 betrothed -n09853541 Big Brother -n09853645 bigot -n09853881 big shot, big gun, big wheel, big cheese, big deal, big enchilada, big fish, head honcho -n09854218 big sister -n09854421 billiard player -n09854915 biochemist -n09855433 biographer -n09856401 bird fancier -n09856671 birth -n09856827 birth-control campaigner, birth-control reformer -n09857007 bisexual, bisexual person -n09858165 black belt -n09858299 blackmailer, extortioner, extortionist -n09858733 Black Muslim -n09859152 blacksmith -n09859285 blade -n09859975 blind date -n09861287 bluecoat -n09861599 bluestocking, bas bleu -n09861863 boatbuilder -n09861946 boatman, boater, waterman -n09862183 boatswain, bos'n, bo's'n, bosun, bo'sun -n09862621 bobby -n09863031 bodyguard, escort -n09863339 boffin -n09863749 Bolshevik, Marxist, red, bolshie, bolshy -n09863936 Bolshevik, Bolshevist -n09864632 bombshell -n09864968 bondman, bondsman -n09865068 bondwoman, bondswoman, bondmaid -n09865162 bondwoman, bondswoman, bondmaid -n09865398 bond servant -n09865672 book agent -n09865744 bookbinder -n09866115 bookkeeper -n09866354 bookmaker -n09866559 bookworm -n09866661 booster, shoplifter, lifter -n09866817 bootblack, shoeblack -n09866922 bootlegger, moonshiner -n09867069 bootmaker, boot maker -n09867154 borderer -n09867311 border patrolman -n09868270 botanist, phytologist, plant scientist -n09868782 bottom feeder -n09868899 boulevardier -n09869317 bounty hunter -n09869447 bounty hunter -n09869578 Bourbon -n09870096 bowler -n09871095 slugger, slogger -n09871229 cub, lad, laddie, sonny, sonny boy -n09871681 Boy Scout -n09871867 boy scout -n09871952 boy wonder -n09872066 bragger, braggart, boaster, blowhard, line-shooter, vaunter -n09872557 brahman, brahmin -n09873348 brawler -n09873473 breadwinner -n09873769 breaststroker -n09873899 breeder, stock breeder -n09874428 brick -n09874725 bride -n09874862 bridesmaid, maid of honor -n09875025 bridge agent -n09875979 broadcast journalist -n09876701 Brother -n09877288 brother-in-law -n09877587 browser -n09877750 Brummie, Brummy -n09877951 buddy, brother, chum, crony, pal, sidekick -n09878921 bull -n09879552 bully -n09880189 bunny, bunny girl -n09880741 burglar -n09881265 bursar -n09881358 busboy, waiter's assistant -n09881895 business editor -n09883047 business traveler -n09883452 buster -n09883807 busybody, nosy-parker, nosey-parker, quidnunc -n09885059 buttinsky -n09885866 cabinetmaker, furniture maker -n09886403 caddie, golf caddie -n09886540 cadet, plebe -n09888635 caller, caller-out -n09889065 call girl -n09889170 calligrapher, calligraphist -n09889691 campaigner, candidate, nominee -n09889941 camper -n09890192 camp follower -n09890749 candidate, prospect -n09891730 canonist -n09892262 capitalist -n09892513 captain, headwaiter, maitre d'hotel, maitre d' -n09892693 captain, senior pilot -n09893191 captain -n09893344 captain, chieftain -n09893502 captive -n09893600 captive -n09894143 cardinal -n09894445 cardiologist, heart specialist, heart surgeon -n09894654 card player -n09894909 cardsharp, card sharp, cardsharper, card sharper, sharper, sharpie, sharpy, card shark -n09895222 careerist -n09895480 career man -n09895561 caregiver -n09895701 caretaker -n09895902 caretaker -n09896170 caricaturist -n09896311 carillonneur -n09896401 caroler, caroller -n09896685 carpenter -n09896826 carper, niggler -n09898020 Cartesian -n09899289 cashier -n09899671 casualty, injured party -n09899782 casualty -n09899929 casuist, sophist -n09901337 catechist -n09901502 catechumen, neophyte -n09901642 caterer -n09901786 Catholicos -n09901921 cat fancier -n09902128 Cavalier, Royalist -n09902353 cavalryman, trooper -n09902731 caveman, cave man, cave dweller, troglodyte -n09902851 celebrant -n09902954 celebrant, celebrator, celebrater -n09903153 celebrity, famous person -n09903501 cellist, violoncellist -n09903639 censor -n09903936 censor -n09904208 centenarian -n09904837 centrist, middle of the roader, moderate, moderationist -n09905050 centurion -n09905185 certified public accountant, CPA -n09905530 chachka, tsatske, tshatshke, tchotchke, tchotchkeleh -n09906293 chambermaid, fille de chambre -n09906449 chameleon -n09906704 champion, champ, title-holder -n09907804 chandler -n09908769 prison chaplain -n09909660 charcoal burner -n09909929 charge d'affaires -n09910222 charioteer -n09910374 charmer, beguiler -n09910556 chartered accountant -n09910840 chartist, technical analyst -n09911226 charwoman, char, cleaning woman, cleaning lady, woman -n09912431 male chauvinist, sexist -n09912681 cheapskate, tightwad -n09912907 Chechen -n09912995 checker -n09913329 cheerer -n09913455 cheerleader -n09913593 cheerleader -n09915434 Cheops, Khufu -n09915651 chess master -n09916348 chief executive officer, CEO, chief operating officer -n09917214 chief of staff -n09917345 chief petty officer -n09917481 Chief Secretary -n09917593 child, kid, youngster, minor, shaver, nipper, small fry, tiddler, tike, tyke, fry, nestling -n09918248 child, kid -n09918554 child, baby -n09918867 child prodigy, infant prodigy, wonder child -n09919061 chimneysweeper, chimneysweep, sweep -n09919200 chiropractor -n09919451 chit -n09919899 choker -n09920106 choragus -n09920283 choreographer -n09920901 chorus girl, showgirl, chorine -n09921034 chosen -n09923003 cicerone -n09923186 cigar smoker -n09923418 cipher, cypher, nobody, nonentity -n09923561 circus acrobat -n09923673 citizen -n09923996 city editor -n09924106 city father -n09924195 city man -n09924313 city slicker, city boy -n09924437 civic leader, civil leader -n09924996 civil rights leader, civil rights worker, civil rights activist -n09927089 cleaner -n09927451 clergyman, reverend, man of the cloth -n09928136 cleric, churchman, divine, ecclesiastic -n09928451 clerk -n09928845 clever Dick, clever clogs -n09929202 climatologist -n09929298 climber -n09929577 clinician -n09930257 closer, finisher -n09930628 closet queen -n09930876 clown, buffoon, goof, goofball, merry andrew -n09931165 clown, buffoon -n09931418 coach, private instructor, tutor -n09931640 coach, manager, handler -n09932098 pitching coach -n09932336 coachman -n09932508 coal miner, collier, pitman -n09932788 coastguardsman -n09933020 cobber -n09933098 cobbler, shoemaker -n09933842 codger, old codger -n09933972 co-beneficiary -n09934337 cog -n09934488 cognitive neuroscientist -n09934774 coiffeur -n09935107 coiner -n09935434 collaborator, cooperator, partner, pardner -n09936825 colleen -n09936892 college student, university student -n09937056 collegian, college man, college boy -n09937688 colonial -n09937802 colonialist -n09937903 colonizer, coloniser -n09938080 coloratura, coloratura soprano -n09938449 color guard -n09938991 colossus, behemoth, giant, heavyweight, titan -n09940725 comedian -n09940818 comedienne -n09941089 comer -n09941571 commander -n09941787 commander in chief, generalissimo -n09941964 commanding officer, commandant, commander -n09942697 commissar, political commissar -n09942970 commissioned officer -n09943239 commissioned military officer -n09943811 commissioner -n09944022 commissioner -n09944160 committee member -n09944430 committeewoman -n09945021 commodore -n09945223 communicant -n09945319 communist, commie -n09945603 Communist -n09945745 commuter -n09946814 compere -n09947127 complexifier -n09950457 compulsive -n09950728 computational linguist -n09951070 computer scientist -n09951274 computer user -n09951524 Comrade -n09951616 concert-goer, music lover -n09952163 conciliator, make-peace, pacifier, peacemaker, reconciler -n09953052 conductor -n09953350 confectioner, candymaker -n09953615 Confederate -n09954355 confessor -n09954639 confidant, intimate -n09955406 Confucian, Confucianist -n09955944 rep -n09956578 conqueror, vanquisher -n09957523 Conservative -n09958133 Nonconformist, chapelgoer -n09958292 Anglican -n09958447 consignee -n09958569 consigner, consignor -n09959142 constable -n09959658 constructivist -n09960688 contractor -n09961198 contralto -n09961331 contributor -n09961469 control freak -n09961605 convalescent -n09961739 convener -n09962966 convict, con, inmate, yard bird, yardbird -n09964202 copilot, co-pilot -n09964411 copycat, imitator, emulator, ape, aper -n09965515 coreligionist -n09965787 cornerback -n09966470 corporatist -n09966554 correspondent, letter writer -n09967063 cosmetician -n09967406 cosmopolitan, cosmopolite -n09967555 Cossack -n09967816 cost accountant -n09967967 co-star -n09968259 costumier, costumer, costume designer -n09968652 cotter, cottier -n09968741 cotter, cottar -n09968845 counselor, counsellor -n09970088 counterterrorist -n09970192 counterspy, mole -n09970402 countess -n09970822 compromiser -n09971273 countrywoman -n09971385 county agent, agricultural agent, extension agent -n09971839 courtier -n09972010 cousin, first cousin, cousin-german, full cousin -n09972458 cover girl, pin-up, lovely -n09972587 cow -n09974648 craftsman, artisan, journeyman, artificer -n09975425 craftsman, crafter -n09976024 crapshooter -n09976283 crazy, loony, looney, nutcase, weirdo -n09976429 creature, wight -n09976728 creditor -n09976917 creep, weirdo, weirdie, weirdy, spook -n09978442 criminologist -n09979321 critic -n09979913 Croesus -n09980458 cross-examiner, cross-questioner -n09980805 crossover voter, crossover -n09980985 croupier -n09981092 crown prince -n09981278 crown princess -n09981540 cryptanalyst, cryptographer, cryptologist -n09981939 Cub Scout -n09982152 cuckold -n09982525 cultist -n09983314 curandera -n09983572 curate, minister of religion, minister, parson, pastor, rector -n09983889 curator, conservator -n09984960 customer agent -n09985470 cutter, carver -n09985809 cyberpunk -n09985978 cyborg, bionic man, bionic woman -n09986450 cymbalist -n09986700 Cynic -n09986904 cytogeneticist -n09987045 cytologist -n09987161 czar -n09987239 czar, tsar, tzar -n09988063 dad, dada, daddy, pa, papa, pappa, pop -n09988311 dairyman -n09988493 Dalai Lama, Grand Lama -n09988703 dallier, dillydallier, dilly-dallier, mope, lounger -n09989502 dancer, professional dancer, terpsichorean -n09990415 dancer, social dancer -n09990690 clog dancer -n09990777 dancing-master, dance master -n09991740 dark horse -n09991867 darling, favorite, favourite, pet, dearie, deary, ducky -n09992538 date, escort -n09992837 daughter, girl -n09993252 dawdler, drone, laggard, lagger, trailer, poke -n09993651 day boarder -n09994400 day laborer, day labourer -n09994673 deacon, Protestant deacon -n09994808 deaconess -n09994878 deadeye -n09995829 deipnosophist -n09996039 dropout -n09996304 deadhead -n09996481 deaf person -n09997622 debtor, debitor -n09998788 deckhand, roustabout -n09999135 defamer, maligner, slanderer, vilifier, libeler, backbiter, traducer -n10000294 defense contractor -n10000459 deist, freethinker -n10000787 delegate -n10001217 deliveryman, delivery boy, deliverer -n10001481 demagogue, demagog, rabble-rouser -n10001764 demigod, superman, Ubermensch -n10002257 demographer, demographist, population scientist -n10002760 demonstrator, protester -n10003476 den mother -n10004718 department head -n10005006 depositor -n10005934 deputy -n10006177 dermatologist, skin doctor -n10006748 descender -n10007684 designated hitter -n10007809 designer, intriguer -n10007995 desk clerk, hotel desk clerk, hotel clerk -n10008123 desk officer -n10008254 desk sergeant, deskman, station keeper -n10009162 detainee, political detainee -n10009276 detective, investigator, tec, police detective -n10009484 detective -n10009671 detractor, disparager, depreciator, knocker -n10010062 developer -n10010243 deviationist -n10010632 devisee -n10010767 devisor -n10010864 devourer -n10011360 dialectician -n10011486 diarist, diary keeper, journalist -n10012484 dietician, dietitian, nutritionist -n10013811 diocesan -n10015215 director, theater director, theatre director -n10015485 director -n10015792 dirty old man -n10015897 disbeliever, nonbeliever, unbeliever -n10017272 disk jockey, disc jockey, dj -n10017422 dispatcher -n10018747 distortionist -n10018861 distributor, distributer -n10019072 district attorney, DA -n10019187 district manager -n10019406 diver, plunger -n10020366 divorcee, grass widow -n10020533 ex-wife, ex -n10020670 divorce lawyer -n10020807 docent -n10020890 doctor, doc, physician, MD, Dr., medico -n10022908 dodo, fogy, fogey, fossil -n10023264 doge -n10023506 dog in the manger -n10023656 dogmatist, doctrinaire -n10024025 dolichocephalic -n10024362 domestic partner, significant other, spousal equivalent, spouse equivalent -n10024937 Dominican -n10025060 dominus, dominie, domine, dominee -n10025295 don, father -n10025391 Donatist -n10025635 donna -n10026976 dosser, street person -n10027246 double, image, look-alike -n10027590 double-crosser, double-dealer, two-timer, betrayer, traitor -n10028402 down-and-out -n10028541 doyenne -n10029068 draftsman, drawer -n10030277 dramatist, playwright -n10032987 dreamer -n10033412 dressmaker, modiste, needlewoman, seamstress, sempstress -n10033572 dressmaker's model -n10033663 dribbler, driveller, slobberer, drooler -n10033888 dribbler -n10034201 drinker, imbiber, toper, juicer -n10034614 drinker -n10035952 drug addict, junkie, junky -n10036266 drug user, substance abuser, user -n10036444 Druid -n10036692 drum majorette, majorette -n10036929 drummer -n10037080 drunk -n10037385 drunkard, drunk, rummy, sot, inebriate, wino -n10037588 Druze, Druse -n10037922 dry, prohibitionist -n10038119 dry nurse -n10038409 duchess -n10038620 duke -n10039271 duffer -n10039946 dunker -n10040240 Dutch uncle -n10040698 dyspeptic -n10040945 eager beaver, busy bee, live wire, sharpie, sharpy -n10041373 earl -n10041887 earner, wage earner -n10042690 eavesdropper -n10042845 eccentric, eccentric person, flake, oddball, geek -n10043024 eclectic, eclecticist -n10043491 econometrician, econometrist -n10043643 economist, economic expert -n10044682 ectomorph -n10044879 editor, editor in chief -n10047199 egocentric, egoist -n10047459 egotist, egoist, swellhead -n10048117 ejaculator -n10048367 elder -n10048612 elder statesman -n10048836 elected official -n10049363 electrician, lineman, linesman -n10050043 elegist -n10050880 elocutionist -n10051026 emancipator, manumitter -n10051761 embryologist -n10051861 emeritus -n10051975 emigrant, emigre, emigree, outgoer -n10052694 emissary, envoy -n10053439 empress -n10053808 employee -n10054657 employer -n10055297 enchantress, witch -n10055410 enchantress, temptress, siren, Delilah, femme fatale -n10055566 encyclopedist, encyclopaedist -n10055730 endomorph -n10055847 enemy, foe, foeman, opposition -n10056103 energizer, energiser, vitalizer, vitaliser, animator -n10056611 end man -n10056719 end man, corner man -n10057271 endorser, indorser -n10058411 enjoyer -n10058962 enlisted woman -n10059067 enophile, oenophile -n10060075 entrant -n10060175 entrant -n10060352 entrepreneur, enterpriser -n10061043 envoy, envoy extraordinary, minister plenipotentiary -n10061195 enzymologist -n10061431 eparch -n10061882 epidemiologist -n10062042 epigone, epigon -n10062176 epileptic -n10062275 Episcopalian -n10062492 equerry -n10062594 equerry -n10062716 erotic -n10062905 escapee -n10062996 escapist, dreamer, wishful thinker -n10063635 Eskimo, Esquimau, Inuit -n10063919 espionage agent -n10064831 esthetician, aesthetician -n10064977 etcher -n10065758 ethnologist -n10066206 Etonian -n10066314 etymologist -n10067011 evangelist, revivalist, gospeler, gospeller -n10067305 Evangelist -n10067600 event planner -n10067968 examiner, inspector -n10068234 examiner, tester, quizzer -n10068425 exarch -n10069296 executant -n10069981 executive secretary -n10070108 executive vice president -n10070377 executrix -n10070449 exegete -n10070563 exhibitor, exhibitioner, shower -n10070711 exhibitionist, show-off -n10071332 exile, expatriate, expat -n10071557 existentialist, existentialist philosopher, existential philosopher -n10072054 exorcist, exorciser -n10074249 ex-spouse -n10074578 extern, medical extern -n10074735 extremist -n10074841 extrovert, extravert -n10075299 eyewitness -n10075693 facilitator -n10076224 fairy godmother -n10076483 falangist, phalangist -n10076604 falconer, hawker -n10076957 falsifier -n10077106 familiar -n10077593 fan, buff, devotee, lover -n10077879 fanatic, fiend -n10078131 fancier, enthusiast -n10078719 farm boy -n10078806 farmer, husbandman, granger, sodbuster -n10079399 farmhand, fieldhand, field hand, farm worker -n10079893 fascist -n10080117 fascista -n10080508 fatalist, determinist, predestinarian, predestinationist -n10080869 father, male parent, begetter -n10081204 Father, Padre -n10081842 father-figure -n10082043 father-in-law -n10082299 Fauntleroy, Little Lord Fauntleroy -n10082423 Fauve, fauvist -n10082562 favorite son -n10082687 featherweight -n10082997 federalist -n10083677 fellow traveler, fellow traveller -n10083823 female aristocrat -n10084043 female offspring -n10084295 female child, girl, little girl -n10085101 fence -n10085869 fiance, groom-to-be -n10086383 fielder, fieldsman -n10086744 field judge -n10087434 fighter pilot -n10087736 filer -n10088200 film director, director -n10090745 finder -n10091349 fire chief, fire marshal -n10091450 fire-eater, fire-swallower -n10091564 fire-eater, hothead -n10091651 fireman, firefighter, fire fighter, fire-eater -n10091861 fire marshall -n10091997 fire walker -n10092488 first baseman, first sacker -n10092643 firstborn, eldest -n10092794 first lady -n10092978 first lieutenant, 1st lieutenant -n10093167 first offender -n10093475 first sergeant, sergeant first class -n10093818 fishmonger, fishwife -n10094320 flagellant -n10094584 flag officer -n10094782 flak catcher, flak, flack catcher, flack -n10095265 flanker back, flanker -n10095420 flapper -n10095769 flatmate -n10095869 flatterer, adulator -n10096126 flibbertigibbet, foolish woman -n10096508 flight surgeon -n10097262 floorwalker, shopwalker -n10097477 flop, dud, washout -n10097590 Florentine -n10097842 flower girl -n10097995 flower girl -n10098245 flutist, flautist, flute player -n10098388 fly-by-night -n10098517 flyweight -n10098624 flyweight -n10098710 foe, enemy -n10098862 folk dancer -n10099002 folk poet -n10099375 follower -n10101308 football hero -n10101634 football player, footballer -n10101981 footman -n10102800 forefather, father, sire -n10103155 foremother -n10103228 foreign agent -n10103921 foreigner, outsider -n10104064 boss -n10104487 foreman -n10104756 forester, tree farmer, arboriculturist -n10104888 forewoman -n10105085 forger, counterfeiter -n10105733 forward -n10105906 foster-brother, foster brother -n10106387 foster-father, foster father -n10106509 foster-mother, foster mother -n10106995 foster-sister, foster sister -n10107173 foster-son, foster son -n10107303 founder, beginner, founding father, father -n10108018 foundress -n10108089 four-minute man -n10108464 framer -n10108832 Francophobe -n10109443 freak, monster, monstrosity, lusus naturae -n10109662 free agent, free spirit, freewheeler -n10109826 free agent -n10110093 freedom rider -n10110731 free-liver -n10110893 freeloader -n10111358 free trader -n10111779 Freudian -n10111903 friar, mendicant -n10112129 monk, monastic -n10113249 frontierswoman -n10113583 front man, front, figurehead, nominal head, straw man, strawman -n10113869 frotteur -n10114476 fucker -n10114550 fucker -n10114662 fuddy-duddy -n10115430 fullback -n10115946 funambulist, tightrope walker -n10116370 fundamentalist -n10116478 fundraiser -n10116702 futurist -n10117017 gadgeteer -n10117267 gagman, gagster, gagwriter -n10117415 gagman, standup comedian -n10117739 gainer, weight gainer -n10117851 gal -n10118301 galoot -n10118743 gambist -n10118844 gambler -n10119609 gamine -n10120330 garbage man, garbageman, garbage collector, garbage carter, garbage hauler, refuse collector, dustman -n10120671 gardener -n10121026 garment cutter -n10121246 garroter, garrotter, strangler, throttler, choker -n10121714 gasman -n10121800 gastroenterologist -n10122300 gatherer -n10122531 gawker -n10123122 gendarme -n10123844 general, full general -n10126177 generator, source, author -n10126424 geneticist -n10126708 genitor -n10127186 gent -n10127689 geologist -n10128519 geophysicist -n10128748 ghostwriter, ghost -n10129338 Gibson girl -n10129825 girl, miss, missy, young lady, young woman, fille -n10130686 girlfriend, girl, lady friend -n10130877 girlfriend -n10131151 girl wonder -n10131268 Girondist, Girondin -n10131590 gitano -n10131815 gladiator -n10132035 glassblower -n10132502 gleaner -n10134178 goat herder, goatherd -n10134396 godchild -n10134760 godfather -n10134982 godparent -n10135129 godson -n10135197 gofer -n10135297 goffer, gopher -n10136615 goldsmith, goldworker, gold-worker -n10136959 golfer, golf player, linksman -n10137825 gondolier, gondoliere -n10138369 good guy -n10138472 good old boy, good ole boy, good ol' boy -n10139077 good Samaritan -n10139651 gossip columnist -n10140051 gouger -n10140597 governor general -n10140683 grabber -n10140783 grader -n10140929 graduate nurse, trained nurse -n10141364 grammarian, syntactician -n10141732 granddaughter -n10142166 grande dame -n10142391 grandfather, gramps, granddad, grandad, granddaddy, grandpa -n10142537 Grand Inquisitor -n10142747 grandma, grandmother, granny, grannie, gran, nan, nanna -n10142946 grandmaster -n10143172 grandparent -n10143595 grantee -n10143725 granter -n10144338 grass widower, divorced man -n10145239 great-aunt, grandaunt -n10145340 great grandchild -n10145480 great granddaughter -n10145590 great grandmother -n10145774 great grandparent -n10145902 great grandson -n10146002 great-nephew, grandnephew -n10146104 great-niece, grandniece -n10146416 Green Beret -n10146816 grenadier, grenade thrower -n10146927 greeter, saluter, welcomer -n10147121 gringo -n10147262 grinner -n10147710 grocer -n10147935 groom, bridegroom -n10148035 groom, bridegroom -n10148305 grouch, grump, crank, churl, crosspatch -n10148825 group captain -n10149436 grunter -n10149867 prison guard, jailer, jailor, gaoler, screw, turnkey -n10150071 guard -n10150794 guesser -n10150940 guest, invitee -n10151133 guest -n10151261 guest of honor -n10151367 guest worker, guestworker -n10151570 guide -n10151760 guitarist, guitar player -n10152306 gunnery sergeant -n10152616 guru -n10152763 guru -n10153155 guvnor -n10153414 guy, cat, hombre, bozo -n10153594 gymnast -n10153865 gym rat -n10154013 gynecologist, gynaecologist, woman's doctor -n10154186 Gypsy, Gipsy, Romany, Rommany, Romani, Roma, Bohemian -n10154601 hack, drudge, hacker -n10155222 hacker, cyber-terrorist, cyberpunk -n10155600 haggler -n10155849 hairdresser, hairstylist, stylist, styler -n10156629 hakim, hakeem -n10156831 Hakka -n10157016 halberdier -n10157128 halfback -n10157271 half blood -n10158506 hand -n10159045 animal trainer, handler -n10159289 handyman, jack of all trades, odd-job man -n10159533 hang glider -n10160188 hardliner -n10160280 harlequin -n10160412 harmonizer, harmoniser -n10161622 hash head -n10162016 hatchet man, iceman -n10162194 hater -n10162354 hatmaker, hatter, milliner, modiste -n10164025 headman, tribal chief, chieftain, chief -n10164233 headmaster, schoolmaster, master -n10164492 head nurse -n10165448 hearer, listener, auditor, attender -n10166189 heartbreaker -n10166394 heathen, pagan, gentile, infidel -n10167152 heavyweight -n10167361 heavy -n10167565 heckler, badgerer -n10167838 hedger -n10168012 hedger, equivocator, tergiversator -n10168183 hedonist, pagan, pleasure seeker -n10168584 heir, inheritor, heritor -n10168837 heir apparent -n10169147 heiress, inheritress, inheritrix -n10169241 heir presumptive -n10169419 hellion, heller, devil -n10169796 helmsman, steersman, steerer -n10170060 hire -n10170681 hematologist, haematologist -n10170866 hemiplegic -n10171219 herald, trumpeter -n10171456 herbalist, herb doctor -n10171567 herder, herdsman, drover -n10172080 hermaphrodite, intersex, gynandromorph, androgyne, epicene, epicene person -n10173410 heroine -n10173579 heroin addict -n10173665 hero worshiper, hero worshipper -n10173771 Herr -n10174253 highbinder -n10174330 highbrow -n10174445 high commissioner -n10174589 highflier, highflyer -n10174695 Highlander, Scottish Highlander, Highland Scot -n10174971 high-muck-a-muck, pooh-bah -n10175248 high priest -n10175725 highjacker, hijacker -n10176913 hireling, pensionary -n10177150 historian, historiographer -n10178077 hitchhiker -n10178216 hitter, striker -n10179069 hobbyist -n10180580 holdout -n10180791 holdover, hangover -n10180923 holdup man, stickup man -n10181445 homeboy -n10181547 homeboy -n10181799 home buyer -n10181878 homegirl -n10182190 homeless, homeless person -n10182402 homeopath, homoeopath -n10183347 honest woman -n10183931 honor guard, guard of honor -n10184505 hooker -n10185148 hoper -n10185483 hornist -n10185793 horseman, equestrian, horseback rider -n10186068 horse trader -n10186143 horsewoman -n10186216 horse wrangler, wrangler -n10186350 horticulturist, plantsman -n10186686 hospital chaplain -n10186774 host, innkeeper, boniface -n10187130 host -n10187491 hostess -n10187990 hotelier, hotelkeeper, hotel manager, hotelman, hosteller -n10188715 housekeeper -n10188856 housemaster -n10188957 housemate -n10189278 house physician, resident, resident physician -n10189597 house sitter -n10190122 housing commissioner -n10190516 huckster, cheap-jack -n10191001 hugger -n10191388 humanist, humanitarian -n10191613 humanitarian, do-gooder, improver -n10192839 hunk -n10193650 huntress -n10194231 ex-husband, ex -n10194775 hydrologist -n10195056 hyperope -n10195155 hypertensive -n10195261 hypnotist, hypnotizer, hypnotiser, mesmerist, mesmerizer -n10195593 hypocrite, dissembler, dissimulator, phony, phoney, pretender -n10196404 iceman -n10196725 iconoclast -n10197392 ideologist, ideologue -n10198437 idol, matinee idol -n10198832 idolizer, idoliser -n10199251 imam, imaum -n10200246 imperialist -n10200781 important person, influential person, personage -n10202225 inamorato -n10202624 incumbent, officeholder -n10202763 incurable -n10203949 inductee -n10204177 industrialist -n10204833 infanticide -n10205231 inferior -n10205344 infernal -n10205457 infielder -n10205714 infiltrator -n10206173 informer, betrayer, rat, squealer, blabber -n10206506 ingenue -n10206629 ingenue -n10207077 polymath -n10207169 in-law, relative-in-law -n10208189 inquiry agent -n10208847 inspector -n10208950 inspector general -n10209082 instigator, initiator -n10209731 insurance broker, insurance agent, general agent, underwriter -n10210137 insurgent, insurrectionist, freedom fighter, rebel -n10210512 intelligence analyst -n10210648 interior designer, designer, interior decorator, house decorator, room decorator, decorator -n10210911 interlocutor, conversational partner -n10211036 interlocutor, middleman -n10211666 International Grandmaster -n10211830 internationalist -n10212231 internist -n10212501 interpreter, translator -n10212780 interpreter -n10213034 intervenor -n10213429 introvert -n10214062 invader, encroacher -n10214390 invalidator, voider, nullifier -n10215623 investigator -n10216106 investor -n10216403 invigilator -n10217208 irreligionist -n10218043 Ivy Leaguer -n10218164 Jack of all trades -n10218292 Jacksonian -n10219240 Jane Doe -n10219453 janissary -n10219879 Jat -n10220080 Javanese, Javan -n10220924 Jekyll and Hyde -n10221312 jester, fool, motley fool -n10221520 Jesuit -n10222170 jezebel -n10222259 jilt -n10222497 jobber, middleman, wholesaler -n10222716 job candidate -n10223069 Job's comforter -n10223177 jockey -n10223606 John Doe -n10224578 journalist -n10225219 judge, justice, jurist -n10225931 judge advocate -n10226413 juggler -n10227166 Jungian -n10227266 junior -n10227393 junior -n10227490 Junior, Jr, Jnr -n10227698 junior lightweight -n10227793 junior middleweight -n10227985 jurist, legal expert -n10228278 juror, juryman, jurywoman -n10228468 justice of the peace -n10228592 justiciar, justiciary -n10228712 kachina -n10229883 keyboardist -n10230216 Khedive -n10233248 kingmaker -n10235024 king, queen, world-beater -n10235269 King's Counsel -n10235385 Counsel to the Crown -n10236304 kin, kinsperson, family -n10236521 enate, matrikin, matrilineal kin, matrisib, matrilineal sib -n10236842 kink -n10237069 kinswoman -n10237196 kisser, osculator -n10237464 kitchen help -n10237556 kitchen police, KP -n10237676 Klansman, Ku Kluxer, Kluxer -n10237799 kleptomaniac -n10238272 kneeler -n10238375 knight -n10239928 knocker -n10240082 knower, apprehender -n10240235 know-it-all, know-all -n10240417 kolkhoznik -n10240821 Kshatriya -n10241024 labor coach, birthing coach, doula, monitrice -n10241300 laborer, manual laborer, labourer, jack -n10242328 Labourite -n10243137 lady -n10243273 lady-in-waiting -n10243483 lady's maid -n10243664 lama -n10243872 lamb, dear -n10244108 lame duck -n10244359 lamplighter -n10244913 land agent -n10245029 landgrave -n10245341 landlubber, lubber, landsman -n10245507 landlubber, landsman, landman -n10245639 landowner, landholder, property owner -n10245863 landscape architect, landscape gardener, landscaper, landscapist -n10246317 langlaufer -n10246395 languisher -n10246703 lapidary, lapidarist -n10247358 lass, lassie, young girl, jeune fille -n10247880 Latin -n10248008 Latin -n10248198 latitudinarian -n10248377 Jehovah's Witness -n10249191 law agent -n10249270 lawgiver, lawmaker -n10249459 lawman, law officer, peace officer -n10249869 law student -n10249950 lawyer, attorney -n10250712 lay reader -n10251329 lazybones -n10251612 leaker -n10252075 leaseholder, lessee -n10252222 lector, lecturer, reader -n10252354 lector, reader -n10252547 lecturer -n10253122 left-hander, lefty, southpaw -n10253296 legal representative -n10253479 legate, official emissary -n10253611 legatee -n10253703 legionnaire, legionary -n10255459 letterman -n10257221 liberator -n10258602 licenser -n10258786 licentiate -n10259348 lieutenant -n10259780 lieutenant colonel, light colonel -n10259997 lieutenant commander -n10260473 lieutenant junior grade, lieutenant JG -n10260706 life -n10260800 lifeguard, lifesaver -n10261211 life tenant -n10261511 light flyweight -n10261624 light heavyweight, cruiserweight -n10261862 light heavyweight -n10262343 light-o'-love, light-of-love -n10262445 lightweight -n10262561 lightweight -n10262655 lightweight -n10262880 lilliputian -n10263146 limnologist -n10263411 lineman -n10263790 line officer -n10265281 lion-hunter -n10265801 lisper -n10265891 lister -n10266016 literary critic -n10266328 literate, literate person -n10266848 litigant, litigator -n10267166 litterer, litterbug, litter lout -n10267311 little brother -n10267865 little sister -n10268629 lobbyist -n10269199 locksmith -n10269289 locum tenens, locum -n10271677 Lord, noble, nobleman -n10272782 loser -n10272913 loser, also-ran -n10273064 failure, loser, nonstarter, unsuccessful person -n10274173 Lothario -n10274318 loudmouth, blusterer -n10274815 lowerclassman, underclassman -n10275249 Lowlander, Scottish Lowlander, Lowland Scot -n10275395 loyalist, stalwart -n10275848 Luddite -n10276045 lumberman, lumberjack, logger, feller, faller -n10276477 lumper -n10276942 bedlamite -n10277027 pyromaniac -n10277638 lutist, lutanist, lutenist -n10277815 Lutheran -n10277912 lyricist, lyrist -n10278456 macebearer, mace, macer -n10279018 machinist, mechanic, shop mechanic -n10279778 madame -n10280034 maenad -n10280130 maestro, master -n10280598 magdalen -n10280674 magician, prestidigitator, conjurer, conjuror, illusionist -n10281546 magus -n10281770 maharani, maharanee -n10281896 mahatma -n10282482 maid, maiden -n10282672 maid, maidservant, housemaid, amah -n10283170 major -n10283366 major -n10283546 major-domo, seneschal -n10284064 maker, shaper -n10284871 malahini -n10284965 malcontent -n10286282 malik -n10286539 malingerer, skulker, shammer -n10286749 Malthusian -n10288964 adonis -n10289039 man -n10289176 man -n10289462 manageress -n10289766 mandarin -n10290422 maneuverer, manoeuvrer -n10290541 maniac -n10290813 Manichaean, Manichean, Manichee -n10290919 manicurist -n10291110 manipulator -n10291469 man-at-arms -n10291822 man of action, man of deeds -n10291942 man of letters -n10292316 manufacturer, producer -n10293332 marcher, parader -n10293590 marchioness, marquise -n10293861 margrave -n10294020 margrave -n10294139 Marine, devil dog, leatherneck, shipboard soldier -n10295371 marquess -n10295479 marquis, marquess -n10296176 marshal, marshall -n10296444 martinet, disciplinarian, moralist -n10297234 mascot -n10297367 masochist -n10297531 mason, stonemason -n10297841 masquerader, masker, masquer -n10298202 masseur -n10298271 masseuse -n10298647 master -n10298912 master, captain, sea captain, skipper -n10299125 master-at-arms -n10299250 master of ceremonies, emcee, host -n10299700 masturbator, onanist -n10299875 matchmaker, matcher, marriage broker -n10300041 mate, first mate -n10300154 mate -n10300303 mate -n10300500 mater -n10300654 material -n10300829 materialist -n10302576 matriarch, materfamilias -n10302700 matriarch -n10302905 matriculate -n10303037 matron -n10303814 mayor, city manager -n10304086 mayoress -n10304650 mechanical engineer -n10304914 medalist, medallist, medal winner -n10305635 medical officer, medic -n10305802 medical practitioner, medical man -n10306004 medical scientist -n10306279 medium, spiritualist, sensitive -n10306496 megalomaniac -n10306595 melancholic, melancholiac -n10306890 Melkite, Melchite -n10307114 melter -n10308066 nonmember -n10308168 board member -n10308275 clansman, clanswoman, clan member -n10308504 memorizer, memoriser -n10308653 Mendelian -n10308732 mender, repairer, fixer -n10310783 Mesoamerican -n10311506 messmate -n10311661 mestiza -n10312287 meteorologist -n10312491 meter maid -n10312600 Methodist -n10313000 Metis -n10313239 metropolitan -n10313441 mezzo-soprano, mezzo -n10313724 microeconomist, microeconomic expert -n10314054 middle-aged man -n10314182 middlebrow -n10314517 middleweight -n10314836 midwife, accoucheuse -n10315217 mikado, tenno -n10315456 Milanese -n10315561 miler -n10315730 miles gloriosus -n10316360 military attache -n10316527 military chaplain, padre, Holy Joe, sky pilot -n10316862 military leader -n10317007 military officer, officer -n10317500 military policeman, MP -n10317963 mill agent -n10318293 mill-hand, factory worker -n10318607 millionairess -n10318686 millwright -n10319313 minder -n10320484 mining engineer -n10320863 minister, government minister -n10321126 ministrant -n10321340 minor leaguer, bush leaguer -n10321632 Minuteman -n10321882 misanthrope, misanthropist -n10322238 misfit -n10323634 mistress -n10323752 mistress, kept woman, fancy woman -n10323999 mixed-blood -n10324560 model, poser -n10325549 class act -n10325774 modeler, modeller -n10326776 modifier -n10327143 molecular biologist -n10327987 Monegasque, Monacan -n10328123 monetarist -n10328328 moneygrubber -n10328437 moneymaker -n10328696 Mongoloid -n10328941 monolingual -n10329035 monologist -n10330593 moonlighter -n10330931 moralist -n10331098 morosoph -n10331167 morris dancer -n10331258 mortal enemy -n10331347 mortgagee, mortgage holder -n10331841 mortician, undertaker, funeral undertaker, funeral director -n10332110 moss-trooper -n10332385 mother, female parent -n10332861 mother -n10332953 mother -n10333044 mother figure -n10333165 mother hen -n10333317 mother-in-law -n10333439 mother's boy, mamma's boy, mama's boy -n10333601 mother's daughter -n10333838 motorcycle cop, motorcycle policeman, speed cop -n10334009 motorcyclist -n10334461 Mound Builder -n10334782 mountebank, charlatan -n10335246 mourner, griever, sorrower, lamenter -n10335801 mouthpiece, mouth -n10335931 mover -n10336411 moviegoer, motion-picture fan -n10336904 muffin man -n10337488 mugwump, independent, fencesitter -n10338231 Mullah, Mollah, Mulla -n10338391 muncher -n10339179 murderess -n10339251 murder suspect -n10339717 musher -n10340312 musician, instrumentalist, player -n10341243 musicologist -n10341343 music teacher -n10341446 musketeer -n10341573 Muslimah -n10341955 mutilator, maimer, mangler -n10342180 mutineer -n10342367 mute, deaf-mute, deaf-and-dumb person -n10342543 mutterer, mumbler, murmurer -n10342893 muzzler -n10342992 Mycenaen -n10343088 mycologist -n10343355 myope -n10343449 myrmidon -n10343554 mystic, religious mystic -n10343869 mythologist -n10344121 naif -n10344203 nailer -n10344319 namby-pamby -n10344656 name dropper -n10344774 namer -n10345015 nan -n10345100 nanny, nursemaid, nurse -n10345302 narc, nark, narcotics agent -n10345422 narcissist, narcist -n10345659 nark, copper's nark -n10346015 nationalist -n10347204 nautch girl -n10347446 naval commander -n10348526 Navy SEAL, SEAL -n10349243 obstructionist, obstructor, obstructer, resister, thwarter -n10349750 Nazarene -n10349836 Nazarene, Ebionite -n10350220 Nazi, German Nazi -n10350774 nebbish, nebbech -n10351064 necker -n10353016 neonate, newborn, newborn infant, newborn baby -n10353355 nephew -n10353928 neurobiologist -n10354265 neurologist, brain doctor -n10354754 neurosurgeon, brain surgeon -n10355142 neutral -n10355306 neutralist -n10355449 newcomer, fledgling, fledgeling, starter, neophyte, freshman, newbie, entrant -n10355688 newcomer -n10355806 New Dealer -n10356450 newspaper editor -n10356877 newsreader, news reader -n10357012 Newtonian -n10357613 niece -n10357737 niggard, skinflint, scrooge, churl -n10358032 night porter -n10358124 night rider, nightrider -n10358575 NIMBY -n10359117 niqaabi -n10359422 nitpicker -n10359546 Nobelist, Nobel Laureate -n10359659 NOC -n10360366 noncandidate -n10360747 noncommissioned officer, noncom, enlisted officer -n10361060 nondescript -n10361194 nondriver -n10361296 nonparticipant -n10361525 nonperson, unperson -n10362003 nonresident -n10362319 nonsmoker -n10362557 Northern Baptist -n10363445 noticer -n10363573 novelist -n10364198 novitiate, novice -n10364502 nuclear chemist, radiochemist -n10365514 nudger -n10366145 nullipara -n10366276 number theorist -n10366966 nurse -n10368291 nursling, nurseling, suckling -n10368528 nymph, houri -n10368624 nymphet -n10368711 nympholept -n10368798 nymphomaniac, nympho -n10369095 oarswoman -n10369317 oboist -n10369417 obscurantist -n10369528 observer, commentator -n10369699 obstetrician, accoucheur -n10369955 occupier -n10370381 occultist -n10370955 wine lover -n10371052 offerer, offeror -n10371221 office-bearer -n10371330 office boy -n10371450 officeholder, officer -n10373390 officiant -n10373525 Federal, Fed, federal official -n10374541 oilman -n10374849 oil tycoon -n10374943 old-age pensioner -n10375052 old boy -n10375314 old lady -n10375402 old man -n10376523 oldster, old person, senior citizen, golden ager -n10376890 old-timer, oldtimer, gaffer, old geezer, antique -n10377021 old woman -n10377185 oligarch -n10377291 Olympian -n10377542 omnivore -n10377633 oncologist -n10378026 onlooker, looker-on -n10378113 onomancer -n10378780 operator -n10379376 opportunist, self-seeker -n10380126 optimist -n10380499 Orangeman -n10380672 orator, speechmaker, rhetorician, public speaker, speechifier -n10381804 orderly, hospital attendant -n10381981 orderly -n10382157 orderly sergeant -n10382302 ordinand -n10382480 ordinary -n10382710 organ-grinder -n10382825 organist -n10383094 organization man -n10383237 organizer, organiser, arranger -n10383505 organizer, organiser, labor organizer -n10383816 originator, conceiver, mastermind -n10384214 ornithologist, bird watcher -n10384392 orphan -n10384496 orphan -n10385566 osteopath, osteopathist -n10386196 out-and-outer -n10386754 outdoorswoman -n10386874 outfielder -n10386984 outfielder -n10387196 right fielder -n10387324 right-handed pitcher, right-hander -n10387836 outlier -n10389865 owner-occupier -n10389976 oyabun -n10390600 packrat -n10390698 padrone -n10390807 padrone -n10391416 page, pageboy -n10393909 painter -n10394434 Paleo-American, Paleo-Amerind, Paleo-Indian -n10394786 paleontologist, palaeontologist, fossilist -n10395073 pallbearer, bearer -n10395209 palmist, palmister, chiromancer -n10395390 pamperer, spoiler, coddler, mollycoddler -n10395828 Panchen Lama -n10396106 panelist, panellist -n10396337 panhandler -n10396727 paparazzo -n10396908 paperboy -n10397001 paperhanger, paperer -n10397142 paperhanger -n10397392 papoose, pappoose -n10399130 pardoner -n10400003 paretic -n10400108 parishioner -n10400205 park commissioner -n10400437 Parliamentarian, Member of Parliament -n10400618 parliamentary agent -n10400998 parodist, lampooner -n10401204 parricide -n10401331 parrot -n10401639 partaker, sharer -n10402709 part-timer -n10402824 party -n10403633 party man, party liner -n10403876 passenger, rider -n10404426 passer -n10404998 paster -n10405540 pater -n10405694 patient -n10406266 patriarch -n10406391 patriarch -n10406765 patriarch, paterfamilias -n10407310 patriot, nationalist -n10407954 patron, sponsor, supporter -n10408809 patternmaker -n10409459 pawnbroker -n10409752 payer, remunerator -n10410246 peacekeeper -n10410996 peasant -n10411356 pedant, bookworm, scholastic -n10411551 peddler, pedlar, packman, hawker, pitchman -n10411867 pederast, paederast, child molester -n10414239 penologist -n10414768 pentathlete -n10414865 Pentecostal, Pentecostalist -n10415037 percussionist -n10416567 periodontist -n10417288 peshmerga -n10417424 personality -n10417551 personal representative -n10417682 personage -n10417843 persona grata -n10417969 persona non grata -n10418101 personification -n10418735 perspirer, sweater -n10419047 pervert, deviant, deviate, degenerate -n10419472 pessimist -n10419630 pest, blighter, cuss, pesterer, gadfly -n10419785 Peter Pan -n10420031 petitioner, suppliant, supplicant, requester -n10420277 petit juror, petty juror -n10420507 pet sitter, critter sitter -n10420649 petter, fondler -n10421016 Pharaoh, Pharaoh of Egypt -n10421470 pharmacist, druggist, chemist, apothecary, pill pusher, pill roller -n10421956 philanthropist, altruist -n10422405 philatelist, stamp collector -n10425946 philosopher -n10426454 phonetician -n10426630 phonologist -n10427223 photojournalist -n10427359 photometrist, photometrician -n10427764 physical therapist, physiotherapist -n10428004 physicist -n10431122 piano maker -n10431625 picker, chooser, selector -n10432189 picnicker, picknicker -n10432441 pilgrim -n10432875 pill -n10432957 pillar, mainstay -n10433077 pill head -n10433452 pilot -n10433610 Piltdown man, Piltdown hoax -n10433737 pimp, procurer, panderer, pander, pandar, fancy man, ponce -n10435169 pipe smoker -n10435251 pip-squeak, squirt, small fry -n10435716 pisser, urinator -n10435988 pitcher, hurler, twirler -n10436334 pitchman -n10437014 placeman, placeseeker -n10437137 placer miner -n10437262 plagiarist, plagiarizer, plagiariser, literary pirate, pirate -n10437698 plainsman -n10438172 planner, contriver, deviser -n10438619 planter, plantation owner -n10438842 plasterer -n10439373 platinum blond, platinum blonde -n10439523 platitudinarian -n10439727 playboy, man-about-town, Corinthian -n10439851 player, participant -n10441037 playmate, playfellow -n10441124 pleaser -n10441694 pledger -n10441962 plenipotentiary -n10442093 plier, plyer -n10442232 plodder, slowpoke, stick-in-the-mud, slowcoach -n10442417 plodder, slogger -n10442573 plotter, mapper -n10443032 plumber, pipe fitter -n10443659 pluralist -n10443830 pluralist -n10444194 poet -n10448322 pointsman -n10448455 point woman -n10449664 policyholder -n10450038 political prisoner -n10450161 political scientist -n10450303 politician, politico, pol, political leader -n10451450 politician -n10451590 pollster, poll taker, headcounter, canvasser -n10451858 polluter, defiler -n10453184 pool player -n10455619 portraitist, portrait painter, portrayer, limner -n10456070 poseuse -n10456138 positivist, rationalist -n10456696 postdoc, post doc -n10457214 poster girl -n10457444 postulator -n10457903 private citizen -n10458111 problem solver, solver, convergent thinker -n10458356 pro-lifer -n10458596 prosthetist -n10459882 postulant -n10460033 potboy, potman -n10461060 poultryman, poulterer -n10462588 power user -n10462751 power worker, power-station worker -n10462860 practitioner, practician -n10464052 prayer, supplicant -n10464542 preceptor, don -n10464711 predecessor -n10464870 preemptor, pre-emptor -n10465002 preemptor, pre-emptor -n10465451 premature baby, preterm baby, premature infant, preterm infant, preemie, premie -n10465831 presbyter -n10466198 presenter, sponsor -n10466564 presentist -n10466918 preserver -n10467179 president -n10467395 President of the United States, United States President, President, Chief Executive -n10468750 president, prexy -n10469611 press agent, publicity man, public relations man, PR man -n10469874 press photographer -n10470779 priest -n10471640 prima ballerina -n10471732 prima donna, diva -n10471859 prima donna -n10472129 primigravida, gravida I -n10472447 primordial dwarf, hypoplastic dwarf, true dwarf, normal dwarf -n10473453 prince charming -n10473562 prince consort -n10473789 princeling -n10473917 Prince of Wales -n10474064 princess -n10474343 princess royal -n10474446 principal, dealer -n10474645 principal, school principal, head teacher, head -n10475835 print seller -n10475940 prior -n10476467 private, buck private, common soldier -n10477713 probationer, student nurse -n10477955 processor -n10478118 process-server -n10478293 proconsul -n10478462 proconsul -n10478827 proctologist -n10478960 proctor, monitor -n10479135 procurator -n10479328 procurer, securer -n10481167 profit taker -n10481268 programmer, computer programmer, coder, software engineer -n10482054 promiser, promisor -n10482220 promoter, booster, plugger -n10482587 promulgator -n10482921 propagandist -n10483138 propagator, disseminator -n10483395 property man, propman, property master -n10483799 prophetess -n10483890 prophet -n10484858 prosecutor, public prosecutor, prosecuting officer, prosecuting attorney -n10485298 prospector -n10485883 protectionist -n10486166 protegee -n10486236 protozoologist -n10486561 provost marshal -n10487182 pruner, trimmer -n10487363 psalmist -n10487592 psephologist -n10488016 psychiatrist, head-shrinker, shrink -n10488309 psychic -n10488656 psycholinguist -n10489426 psychophysicist -n10490421 publican, tavern keeper -n10491998 pudge -n10492086 puerpera -n10492727 punching bag -n10493199 punter -n10493419 punter -n10493685 puppeteer -n10493835 puppy, pup -n10493922 purchasing agent -n10494195 puritan -n10494373 Puritan -n10495167 pursuer -n10495421 pusher, shover -n10495555 pusher, drug peddler, peddler, drug dealer, drug trafficker -n10495756 pusher, thruster -n10496393 putz -n10496489 Pygmy, Pigmy -n10497135 qadi -n10497534 quadriplegic -n10497645 quadruplet, quad -n10498046 quaker, trembler -n10498699 quarter -n10498816 quarterback, signal caller, field general -n10498986 quartermaster -n10499110 quartermaster general -n10499232 Quebecois -n10499355 queen, queen regnant, female monarch -n10499631 Queen of England -n10499857 queen -n10500217 queen -n10500419 queen consort -n10500603 queen mother -n10500824 Queen's Counsel -n10500942 question master, quizmaster -n10501453 quick study, sponge -n10501635 quietist -n10502046 quitter -n10502329 rabbi -n10502950 racist, racialist -n10503818 radiobiologist -n10504090 radiologic technologist -n10504206 radiologist, radiotherapist -n10505347 rainmaker -n10505613 raiser -n10505732 raja, rajah -n10505942 rake, rakehell, profligate, rip, blood, roue -n10506336 ramrod -n10506544 ranch hand -n10506915 ranker -n10507070 ranter, raver -n10507380 rape suspect -n10507482 rapper -n10507565 rapporteur -n10507692 rare bird, rara avis -n10508141 ratepayer -n10508379 raw recruit -n10508710 reader -n10509063 reading teacher -n10509161 realist -n10509810 real estate broker, real estate agent, estate agent, land agent, house agent -n10510245 rear admiral -n10510974 receiver -n10511771 reciter -n10512201 recruit, enlistee -n10512372 recruit, military recruit -n10512708 recruiter -n10512859 recruiting-sergeant -n10513509 redcap -n10513823 redhead, redheader, red-header, carrottop -n10513938 redneck, cracker -n10514051 reeler -n10514121 reenactor -n10514255 referral -n10514429 referee, ref -n10514784 refiner -n10515863 Reform Jew -n10516527 registered nurse, RN -n10517137 registrar -n10517283 Regius professor -n10518349 reliever, allayer, comforter -n10519126 anchorite, hermit -n10519494 religious leader -n10519984 remover -n10520286 Renaissance man, generalist -n10520544 renegade -n10520964 rentier -n10521100 repairman, maintenance man, service man -n10521662 reporter, newsman, newsperson -n10521853 newswoman -n10522035 representative -n10522324 reprobate, miscreant -n10522759 rescuer, recoverer, saver -n10523341 reservist -n10524076 resident commissioner -n10524223 respecter -n10524869 restaurateur, restauranter -n10525134 restrainer, controller -n10525436 retailer, retail merchant -n10525617 retiree, retired person -n10525878 returning officer -n10526534 revenant -n10527147 revisionist -n10527334 revolutionist, revolutionary, subversive, subverter -n10528023 rheumatologist -n10528148 Rhodesian man, Homo rhodesiensis -n10528493 rhymer, rhymester, versifier, poetizer, poetiser -n10529231 rich person, wealthy person, have -n10530150 rider -n10530383 riding master -n10530571 rifleman -n10530959 right-hander, right hander, righthander -n10531109 right-hand man, chief assistant, man Friday -n10531445 ringer -n10531838 ringleader -n10533874 roadman, road mender -n10533983 roarer, bawler, bellower, screamer, screecher, shouter, yeller -n10536134 rocket engineer, rocket scientist -n10536274 rocket scientist -n10536416 rock star -n10537708 Romanov, Romanoff -n10537906 romanticist, romantic -n10538629 ropemaker, rope-maker, roper -n10538733 roper -n10538853 roper -n10539015 ropewalker, ropedancer -n10539160 rosebud -n10539278 Rosicrucian -n10540114 Mountie -n10540252 Rough Rider -n10540656 roundhead -n10541833 civil authority, civil officer -n10542608 runner -n10542761 runner -n10542888 runner -n10543161 running back -n10543937 rusher -n10544232 rustic -n10544748 saboteur, wrecker, diversionist -n10545792 sadist -n10546428 sailing master, navigator -n10546633 sailor, crewman -n10548419 salesgirl, saleswoman, saleslady -n10548537 salesman -n10548681 salesperson, sales representative, sales rep -n10549510 salvager, salvor -n10550252 sandwichman -n10550369 sangoma -n10550468 sannup -n10551576 sapper -n10552393 Sassenach -n10553140 satrap -n10553235 saunterer, stroller, ambler -n10554024 Savoyard -n10554141 sawyer -n10554846 scalper -n10555059 scandalmonger -n10555430 scapegrace, black sheep -n10556033 scene painter -n10556518 schemer, plotter -n10556704 schizophrenic -n10556825 schlemiel, shlemiel -n10557246 schlockmeister, shlockmeister -n10557854 scholar, scholarly person, bookman, student -n10559009 scholiast -n10559288 schoolchild, school-age child, pupil -n10559508 schoolfriend -n10559683 Schoolman, medieval Schoolman -n10559996 schoolmaster -n10560106 schoolmate, classmate, schoolfellow, class fellow -n10560637 scientist -n10561222 scion -n10561320 scoffer, flouter, mocker, jeerer -n10561736 scofflaw -n10562135 scorekeeper, scorer -n10562283 scorer -n10562509 scourer -n10562968 scout, talent scout -n10563314 scoutmaster -n10563403 scrambler -n10563711 scratcher -n10564098 screen actor, movie actor -n10565502 scrutineer, canvasser -n10565667 scuba diver -n10566072 sculptor, sculpturer, carver, statue maker -n10567613 Sea Scout -n10567722 seasonal worker, seasonal -n10567848 seasoner -n10568200 second baseman, second sacker -n10568358 second cousin -n10568443 seconder -n10568608 second fiddle, second banana -n10568915 second-in-command -n10569011 second lieutenant, 2nd lieutenant -n10569179 second-rater, mediocrity -n10570019 secretary -n10570704 Secretary of Agriculture, Agriculture Secretary -n10571907 Secretary of Health and Human Services -n10572706 Secretary of State -n10572889 Secretary of the Interior, Interior Secretary -n10573957 sectarian, sectary, sectarist -n10574311 section hand -n10574538 secularist -n10574840 security consultant -n10575463 seeded player, seed -n10575594 seeder, cloud seeder -n10575787 seeker, searcher, quester -n10576223 segregate -n10576316 segregator, segregationist -n10576676 selectman -n10576818 selectwoman -n10576962 selfish person -n10577182 self-starter -n10577284 seller, marketer, vender, vendor, trafficker -n10577710 selling agent -n10577820 semanticist, semiotician -n10578021 semifinalist -n10578162 seminarian, seminarist -n10578471 senator -n10578656 sendee -n10579062 senior -n10579549 senior vice president -n10580030 separatist, separationist -n10580437 septuagenarian -n10580535 serf, helot, villein -n10581648 spree killer -n10581890 serjeant-at-law, serjeant, sergeant-at-law, sergeant -n10582604 server -n10582746 serviceman, military man, man, military personnel -n10583387 settler, colonist -n10583790 settler -n10585077 sex symbol -n10585217 sexton, sacristan -n10585628 shaheed -n10586166 Shakespearian, Shakespearean -n10586265 shanghaier, seizer -n10586444 sharecropper, cropper, sharecrop farmer -n10586903 shaver -n10586998 Shavian -n10588074 sheep -n10588357 sheik, tribal sheik, sheikh, tribal sheikh, Arab chief -n10588724 shelver -n10588965 shepherd -n10589666 ship-breaker -n10590146 shipmate -n10590239 shipowner -n10590452 shipping agent -n10590903 shirtmaker -n10591072 shogun -n10591811 shopaholic -n10592049 shop girl -n10592811 shop steward, steward -n10593521 shot putter -n10594147 shrew, termagant -n10594523 shuffler -n10594857 shyster, pettifogger -n10595164 sibling, sib -n10595647 sick person, diseased person, sufferer -n10596517 sightreader -n10596899 signaler, signaller -n10597505 signer -n10597745 signor, signior -n10597889 signora -n10598013 signore -n10598181 signorina -n10598459 silent partner, sleeping partner -n10598904 addle-head, addlehead, loon, birdbrain -n10599215 simperer -n10599806 singer, vocalist, vocalizer, vocaliser -n10601234 Sinologist -n10601362 sipper -n10602119 sirrah -n10602470 Sister -n10602985 sister, sis -n10603528 waverer, vacillator, hesitator, hesitater -n10603851 sitar player -n10604275 sixth-former -n10604380 skateboarder -n10604634 skeptic, sceptic, doubter -n10604880 sketcher -n10604979 skidder -n10605253 skier -n10605737 skinny-dipper -n10607291 skin-diver, aquanaut -n10607478 skinhead -n10609092 slasher -n10609198 slattern, slut, slovenly woman, trollop -n10610465 sleeper, slumberer -n10610850 sleeper -n10611267 sleeping beauty -n10611613 sleuth, sleuthhound -n10612210 slob, sloven, pig, slovenly person -n10612373 sloganeer -n10612518 slopseller, slop-seller -n10613996 smasher, stunner, knockout, beauty, ravisher, sweetheart, peach, lulu, looker, mantrap, dish -n10614507 smirker -n10614629 smith, metalworker -n10615179 smoothie, smoothy, sweet talker, charmer -n10615334 smuggler, runner, contrabandist, moon curser, moon-curser -n10616578 sneezer -n10617024 snob, prig, snot, snoot -n10617193 snoop, snooper -n10617397 snorer -n10618234 sob sister -n10618342 soccer player -n10618465 social anthropologist, cultural anthropologist -n10618685 social climber, climber -n10618848 socialist -n10619492 socializer, socialiser -n10619642 social scientist -n10619888 social secretary -n10620212 Socinian -n10620586 sociolinguist -n10620758 sociologist -n10621294 soda jerk, soda jerker -n10621400 sodalist -n10621514 sodomite, sodomist, sod, bugger -n10622053 soldier -n10624074 son, boy -n10624310 songster -n10624437 songstress -n10624540 songwriter, songster, ballad maker -n10625860 sorcerer, magician, wizard, necromancer, thaumaturge, thaumaturgist -n10626630 sorehead -n10627252 soul mate -n10628097 Southern Baptist -n10628644 sovereign, crowned head, monarch -n10629329 spacewalker -n10629647 Spanish American, Hispanic American, Hispanic -n10629939 sparring partner, sparring mate -n10630093 spastic -n10630188 speaker, talker, utterer, verbalizer, verbaliser -n10631131 native speaker -n10631309 Speaker -n10631654 speechwriter -n10632576 specialist, medical specialist -n10633298 specifier -n10633450 spectator, witness, viewer, watcher, looker -n10634464 speech therapist -n10634849 speedskater, speed skater -n10634990 spellbinder -n10635788 sphinx -n10636488 spinster, old maid -n10637483 split end -n10638922 sport, sportsman, sportswoman -n10639238 sport, summercater -n10639359 sporting man, outdoor man -n10639637 sports announcer, sportscaster, sports commentator -n10639817 sports editor -n10641223 sprog -n10642596 square dancer -n10642705 square shooter, straight shooter, straight arrow -n10643095 squatter -n10643837 squire -n10643937 squire -n10644598 staff member, staffer -n10645017 staff sergeant -n10645223 stage director -n10646032 stainer -n10646140 stakeholder -n10646433 stalker -n10646641 stalking-horse -n10646780 stammerer, stutterer -n10646942 stamper, stomper, tramper, trampler -n10647745 standee -n10648237 stand-in, substitute, relief, reliever, backup, backup man, fill-in -n10648696 star, principal, lead -n10649197 starlet -n10649308 starter, dispatcher -n10650162 statesman, solon, national leader -n10652605 state treasurer -n10652703 stationer, stationery seller -n10654015 stenographer, amanuensis, shorthand typist -n10654211 stentor -n10654321 stepbrother, half-brother, half brother -n10654827 stepmother -n10654932 stepparent -n10655169 stevedore, loader, longshoreman, docker, dockhand, dock worker, dockworker, dock-walloper, lumper -n10655442 steward -n10655594 steward, flight attendant -n10655730 steward -n10655986 stickler -n10656120 stiff -n10656223 stifler, smotherer -n10656969 stipendiary, stipendiary magistrate -n10657306 stitcher -n10657556 stockjobber -n10657835 stock trader -n10658304 stockist -n10659042 stoker, fireman -n10659762 stooper -n10660128 store detective -n10660621 strafer -n10660883 straight man, second banana -n10661002 stranger, alien, unknown -n10661216 stranger -n10661563 strategist, strategian -n10661732 straw boss, assistant foreman -n10663315 streetwalker, street girl, hooker, hustler, floozy, floozie, slattern -n10663549 stretcher-bearer, litter-bearer -n10665302 struggler -n10665587 stud, he-man, macho-man -n10665698 student, pupil, educatee -n10666752 stumblebum, palooka -n10667477 stylist -n10667709 subaltern -n10667863 subcontractor -n10668450 subduer, surmounter, overcomer -n10668666 subject, case, guinea pig -n10669991 subordinate, subsidiary, underling, foot soldier -n10671042 substitute, reserve, second-stringer -n10671613 successor, heir -n10671736 successor, replacement -n10671898 succorer, succourer -n10672371 Sufi -n10672540 suffragan, suffragan bishop -n10672662 suffragette -n10673296 sugar daddy -n10673776 suicide bomber -n10674130 suitor, suer, wooer -n10674713 sumo wrestler -n10675010 sunbather -n10675142 sundowner -n10675609 super heavyweight -n10676018 superior, higher-up, superordinate -n10676434 supermom -n10676569 supernumerary, spear carrier, extra -n10678937 supremo -n10679174 surgeon, operating surgeon, sawbones -n10679503 Surgeon General -n10679610 Surgeon General -n10679723 surpriser -n10680609 surveyor -n10680796 surveyor -n10681194 survivor, subsister -n10681557 sutler, victualer, victualler, provisioner -n10682713 sweeper -n10682953 sweetheart, sweetie, steady, truelove -n10683675 swinger, tramp -n10684146 switcher, whipper -n10684630 swot, grind, nerd, wonk, dweeb -n10684827 sycophant, toady, crawler, lackey, ass-kisser -n10685398 sylph -n10686073 sympathizer, sympathiser, well-wisher -n10686517 symphonist -n10686694 syncopator -n10686885 syndic -n10688356 tactician -n10688811 tagger -n10689306 tailback -n10690268 tallyman, tally clerk -n10690421 tallyman -n10690648 tanker, tank driver -n10691318 tapper, wiretapper, phone tapper -n10691937 Tartuffe, Tartufe -n10692090 Tarzan -n10692482 taster, taste tester, taste-tester, sampler -n10692883 tax assessor, assessor -n10693235 taxer -n10693334 taxi dancer -n10693824 taxonomist, taxonomer, systematist -n10694258 teacher, instructor -n10694939 teaching fellow -n10695450 tearaway -n10696101 technical sergeant -n10696508 technician -n10697135 Ted, Teddy boy -n10697282 teetotaler, teetotaller, teetotalist -n10698368 television reporter, television newscaster, TV reporter, TV newsman -n10699558 temporizer, temporiser -n10699752 tempter -n10699981 term infant -n10700105 toiler -n10700201 tenant, renter -n10700640 tenant -n10700963 tenderfoot -n10701180 tennis player -n10701644 tennis pro, professional tennis player -n10701962 tenor saxophonist, tenorist -n10702167 termer -n10702615 terror, scourge, threat -n10703221 tertigravida, gravida III -n10703336 testator, testate -n10703480 testatrix -n10703692 testee, examinee -n10704238 test-tube baby -n10704712 Texas Ranger, Ranger -n10704886 thane -n10705448 theatrical producer -n10705615 theologian, theologist, theologizer, theologiser -n10706812 theorist, theoretician, theorizer, theoriser, idealogue -n10707134 theosophist -n10707233 therapist, healer -n10707707 Thessalonian -n10708292 thinker, creative thinker, mind -n10708454 thinker -n10709529 thrower -n10710171 thurifer -n10710259 ticket collector, ticket taker -n10710778 tight end -n10710913 tiler -n10711483 timekeeper, timer -n10711766 Timorese -n10712229 tinkerer, fiddler -n10712374 tinsmith, tinner -n10712474 tinter -n10712690 tippler, social drinker -n10712835 tipster, tout -n10713254 T-man -n10713686 toastmaster, symposiarch -n10713843 toast mistress -n10714195 tobogganist -n10715030 tomboy, romp, hoyden -n10715347 toolmaker -n10715789 torchbearer -n10716576 Tory -n10716864 Tory -n10717055 tosser -n10717196 tosser, jerk-off, wanker -n10717337 totalitarian -n10718131 tourist, tourer, holidaymaker -n10718349 tout, touter -n10718509 tout, ticket tout -n10718665 tovarich, tovarisch -n10718952 towhead -n10719036 town clerk -n10719132 town crier, crier -n10719267 townsman, towner -n10719807 toxicologist -n10720197 track star -n10720453 trader, bargainer, dealer, monger -n10720964 trade unionist, unionist, union member -n10721124 traditionalist, diehard -n10721321 traffic cop -n10721612 tragedian -n10721708 tragedian -n10721819 tragedienne -n10722029 trail boss -n10722575 trainer -n10722965 traitor, treasonist -n10723230 traitress -n10723597 transactor -n10724132 transcriber -n10724372 transfer, transferee -n10724570 transferee -n10725280 translator, transcriber -n10726031 transvestite, cross-dresser -n10726786 traveling salesman, travelling salesman, commercial traveler, commercial traveller, roadman, bagman -n10727016 traverser -n10727171 trawler -n10727458 Treasury, First Lord of the Treasury -n10728117 trencher -n10728233 trend-setter, taste-maker, fashion arbiter -n10728624 tribesman -n10728998 trier, attempter, essayer -n10729330 trifler -n10730542 trooper -n10730728 trooper, state trooper -n10731013 Trotskyite, Trotskyist, Trot -n10731732 truant, hooky player -n10732010 trumpeter, cornetist -n10732521 trusty -n10732854 Tudor -n10732967 tumbler -n10733820 tutee -n10734394 twin -n10734741 two-timer -n10734891 Tyke -n10734963 tympanist, timpanist -n10735173 typist -n10735298 tyrant, autocrat, despot -n10735984 umpire, ump -n10737103 understudy, standby -n10737264 undesirable -n10738111 unicyclist -n10738215 unilateralist -n10738670 Unitarian -n10738871 Arminian -n10739135 universal donor -n10739297 UNIX guru -n10739391 Unknown Soldier -n10740594 upsetter -n10740732 upstager -n10740868 upstart, parvenu, nouveau-riche, arriviste -n10741152 upstart -n10741367 urchin -n10741493 urologist -n10742005 usherette -n10742111 usher, doorkeeper -n10742546 usurper, supplanter -n10742997 utility man -n10743124 utilizer, utiliser -n10743356 Utopian -n10744078 uxoricide -n10744164 vacationer, vacationist -n10745006 valedictorian, valedictory speaker -n10745770 valley girl -n10746931 vaulter, pole vaulter, pole jumper -n10747119 vegetarian -n10747424 vegan -n10747548 venerator -n10747965 venture capitalist -n10748142 venturer, merchant-venturer -n10748506 vermin, varmint -n10748620 very important person, VIP, high-up, dignitary, panjandrum, high muckamuck -n10749928 vibist, vibraphonist -n10750031 vicar -n10750188 vicar -n10750640 vicar-general -n10751026 vice chancellor -n10751152 vicegerent -n10751265 vice president, V.P. -n10751710 vice-regent -n10752480 victim, dupe -n10753061 Victorian -n10753182 victualer, victualler -n10753339 vigilante, vigilance man -n10753442 villager -n10753989 vintager -n10754189 vintner, wine merchant -n10754281 violator, debaucher, ravisher -n10754449 violator, lawbreaker, law offender -n10755080 violist -n10755164 virago -n10755394 virologist -n10755648 Visayan, Bisayan -n10756061 viscountess -n10756148 viscount -n10756261 Visigoth -n10756641 visionary -n10756837 visiting fireman -n10757050 visiting professor -n10757492 visualizer, visualiser -n10758337 vixen, harpy, hellcat -n10758445 vizier -n10758949 voicer -n10759151 volunteer, unpaid worker -n10759331 volunteer, military volunteer, voluntary -n10759982 votary -n10760199 votary -n10760622 vouchee -n10760951 vower -n10761190 voyager -n10761326 voyeur, Peeping Tom, peeper -n10761519 vulcanizer, vulcaniser -n10762212 waffler -n10762480 Wagnerian -n10763075 waif, street child -n10763245 wailer -n10763383 waiter, server -n10763620 waitress -n10764465 walking delegate -n10764622 walk-on -n10764719 wallah -n10765305 wally -n10765587 waltzer -n10765679 wanderer, roamer, rover, bird of passage -n10765885 Wandering Jew -n10766260 wanton -n10768148 warrantee -n10768272 warrantee -n10768903 washer -n10769084 washerman, laundryman -n10769188 washwoman, washerwoman, laundrywoman, laundress -n10769321 wassailer, carouser -n10769459 wastrel, waster -n10771066 Wave -n10772092 weatherman, weather forecaster -n10772580 weekend warrior -n10772937 weeder -n10773665 welder -n10773800 welfare case, charity case -n10774329 westerner -n10774756 West-sider -n10775003 wetter -n10775128 whaler -n10776052 Whig -n10776339 whiner, complainer, moaner, sniveller, crybaby, bellyacher, grumbler, squawker -n10776887 whipper-in -n10777299 whisperer -n10778044 whiteface -n10778148 Carmelite, White Friar -n10778711 Augustinian -n10778999 white hope, great white hope -n10779610 white supremacist -n10779897 whoremaster, whoremonger -n10779995 whoremaster, whoremonger, john, trick -n10780284 widow, widow woman -n10780632 wife, married woman -n10781236 wiggler, wriggler, squirmer -n10781817 wimp, chicken, crybaby -n10782362 wing commander -n10782471 winger -n10782791 winner -n10782940 winner, victor -n10783240 window dresser, window trimmer -n10783539 winker -n10783646 wiper -n10783734 wireman, wirer -n10784113 wise guy, smart aleck, wiseacre, wisenheimer, weisenheimer -n10784544 witch doctor -n10784922 withdrawer -n10785480 withdrawer -n10787470 woman, adult female -n10788852 woman -n10789415 wonder boy, golden boy -n10789709 wonderer -n10791115 working girl -n10791221 workman, workingman, working man, working person -n10791820 workmate -n10791890 worldling -n10792335 worshiper, worshipper -n10792506 worthy -n10792856 wrecker -n10793570 wright -n10793799 write-in candidate, write-in -n10794014 writer, author -n10801561 Wykehamist -n10801802 yakuza -n10802507 yard bird, yardbird -n10802621 yardie -n10802953 yardman -n10803031 yardmaster, trainmaster, train dispatcher -n10803282 yenta -n10803978 yogi -n10804287 young buck, young man -n10804636 young Turk -n10804732 Young Turk -n10805501 Zionist -n10806113 zoo keeper -n10994097 Genet, Edmund Charles Edouard Genet, Citizen Genet -n11100798 Kennan, George F. Kennan, George Frost Kennan -n11196627 Munro, H. H. Munro, Hector Hugh Munro, Saki -n11242849 Popper, Karl Popper, Sir Karl Raimund Popper -n11318824 Stoker, Bram Stoker, Abraham Stoker -n11346873 Townes, Charles Townes, Charles Hard Townes -n11448153 dust storm, duster, sandstorm, sirocco -n11487732 parhelion, mock sun, sundog -n11508382 snow, snowfall -n11511327 facula -n11524451 wave -n11530008 microflora -n11531193 wilding -n11531334 semi-climber -n11532682 volva -n11533212 basidiocarp -n11533999 domatium -n11536567 apomict -n11536673 aquatic -n11537327 bryophyte, nonvascular plant -n11539289 acrocarp, acrocarpous moss -n11542137 sphagnum, sphagnum moss, peat moss, bog moss -n11542640 liverwort, hepatic -n11544015 hepatica, Marchantia polymorpha -n11545350 pecopteris -n11545524 pteridophyte, nonflowering plant -n11545714 fern -n11547562 fern ally -n11547855 spore -n11548728 carpospore -n11548870 chlamydospore -n11549009 conidium, conidiospore -n11549245 oospore -n11549779 tetraspore -n11549895 zoospore -n11552133 cryptogam -n11552386 spermatophyte, phanerogam, seed plant -n11552594 seedling -n11552806 annual -n11552976 biennial -n11553240 perennial -n11553522 hygrophyte -n11596108 gymnosperm -n11597657 gnetum, Gnetum gnemon -n11598287 Catha edulis -n11598686 ephedra, joint fir -n11598886 mahuang, Ephedra sinica -n11599324 welwitschia, Welwitschia mirabilis -n11600372 cycad -n11601177 sago palm, Cycas revoluta -n11601333 false sago, fern palm, Cycas circinalis -n11601918 zamia -n11602091 coontie, Florida arrowroot, Seminole bread, Zamia pumila -n11602478 ceratozamia -n11602873 dioon -n11603246 encephalartos -n11603462 kaffir bread, Encephalartos caffer -n11603835 macrozamia -n11604046 burrawong, Macrozamia communis, Macrozamia spiralis -n11608250 pine, pine tree, true pine -n11609475 pinon, pinyon -n11609684 nut pine -n11609862 pinon pine, Mexican nut pine, Pinus cembroides -n11610047 Rocky mountain pinon, Pinus edulis -n11610215 single-leaf, single-leaf pine, single-leaf pinyon, Pinus monophylla -n11610437 bishop pine, bishop's pine, Pinus muricata -n11610602 California single-leaf pinyon, Pinus californiarum -n11610823 Parry's pinyon, Pinus quadrifolia, Pinus parryana -n11611087 spruce pine, Pinus glabra -n11611233 black pine, Pinus nigra -n11611356 pitch pine, northern pitch pine, Pinus rigida -n11611561 pond pine, Pinus serotina -n11611758 stone pine, umbrella pine, European nut pine, Pinus pinea -n11612018 Swiss pine, Swiss stone pine, arolla pine, cembra nut tree, Pinus cembra -n11612235 cembra nut, cedar nut -n11612349 Swiss mountain pine, mountain pine, dwarf mountain pine, mugho pine, mugo pine, Pinus mugo -n11612575 ancient pine, Pinus longaeva -n11612923 white pine -n11613219 American white pine, eastern white pine, weymouth pine, Pinus strobus -n11613459 western white pine, silver pine, mountain pine, Pinus monticola -n11613692 southwestern white pine, Pinus strobiformis -n11613867 limber pine, Pinus flexilis -n11614039 whitebark pine, whitebarked pine, Pinus albicaulis -n11614250 yellow pine -n11614420 ponderosa, ponderosa pine, western yellow pine, bull pine, Pinus ponderosa -n11614713 Jeffrey pine, Jeffrey's pine, black pine, Pinus jeffreyi -n11615026 shore pine, lodgepole, lodgepole pine, spruce pine, Pinus contorta -n11615259 Sierra lodgepole pine, Pinus contorta murrayana -n11615387 loblolly pine, frankincense pine, Pinus taeda -n11615607 jack pine, Pinus banksiana -n11615812 swamp pine -n11615967 longleaf pine, pitch pine, southern yellow pine, Georgia pine, Pinus palustris -n11616260 shortleaf pine, short-leaf pine, shortleaf yellow pine, Pinus echinata -n11616486 red pine, Canadian red pine, Pinus resinosa -n11616662 Scotch pine, Scots pine, Scotch fir, Pinus sylvestris -n11616852 scrub pine, Virginia pine, Jersey pine, Pinus virginiana -n11617090 Monterey pine, Pinus radiata -n11617272 bristlecone pine, Rocky Mountain bristlecone pine, Pinus aristata -n11617631 table-mountain pine, prickly pine, hickory pine, Pinus pungens -n11617878 knobcone pine, Pinus attenuata -n11618079 Japanese red pine, Japanese table pine, Pinus densiflora -n11618290 Japanese black pine, black pine, Pinus thunbergii -n11618525 Torrey pine, Torrey's pine, soledad pine, grey-leaf pine, sabine pine, Pinus torreyana -n11618861 larch, larch tree -n11619227 American larch, tamarack, black larch, Larix laricina -n11619455 western larch, western tamarack, Oregon larch, Larix occidentalis -n11619687 subalpine larch, Larix lyallii -n11619845 European larch, Larix decidua -n11620016 Siberian larch, Larix siberica, Larix russica -n11620389 golden larch, Pseudolarix amabilis -n11620673 fir, fir tree, true fir -n11621029 silver fir -n11621281 amabilis fir, white fir, Pacific silver fir, red silver fir, Christmas tree, Abies amabilis -n11621547 European silver fir, Christmas tree, Abies alba -n11621727 white fir, Colorado fir, California white fir, Abies concolor, Abies lowiana -n11621950 balsam fir, balm of Gilead, Canada balsam, Abies balsamea -n11622184 Fraser fir, Abies fraseri -n11622368 lowland fir, lowland white fir, giant fir, grand fir, Abies grandis -n11622591 Alpine fir, subalpine fir, Abies lasiocarpa -n11622771 Santa Lucia fir, bristlecone fir, Abies bracteata, Abies venusta -n11623105 cedar, cedar tree, true cedar -n11623815 cedar of Lebanon, Cedrus libani -n11623967 deodar, deodar cedar, Himalayan cedar, Cedrus deodara -n11624192 Atlas cedar, Cedrus atlantica -n11624531 spruce -n11625003 Norway spruce, Picea abies -n11625223 weeping spruce, Brewer's spruce, Picea breweriana -n11625391 Engelmann spruce, Engelmann's spruce, Picea engelmannii -n11625632 white spruce, Picea glauca -n11625804 black spruce, Picea mariana, spruce pine -n11626010 Siberian spruce, Picea obovata -n11626152 Sitka spruce, Picea sitchensis -n11626409 oriental spruce, Picea orientalis -n11626585 Colorado spruce, Colorado blue spruce, silver spruce, Picea pungens -n11626826 red spruce, eastern spruce, yellow spruce, Picea rubens -n11627168 hemlock, hemlock tree -n11627512 eastern hemlock, Canadian hemlock, spruce pine, Tsuga canadensis -n11627714 Carolina hemlock, Tsuga caroliniana -n11627908 mountain hemlock, black hemlock, Tsuga mertensiana -n11628087 western hemlock, Pacific hemlock, west coast hemlock, Tsuga heterophylla -n11628456 douglas fir -n11628793 green douglas fir, douglas spruce, douglas pine, douglas hemlock, Oregon fir, Oregon pine, Pseudotsuga menziesii -n11629047 big-cone spruce, big-cone douglas fir, Pseudotsuga macrocarpa -n11629354 Cathaya -n11630017 cedar, cedar tree -n11630489 cypress, cypress tree -n11631159 gowen cypress, Cupressus goveniana -n11631405 pygmy cypress, Cupressus pigmaea, Cupressus goveniana pigmaea -n11631619 Santa Cruz cypress, Cupressus abramsiana, Cupressus goveniana abramsiana -n11631854 Arizona cypress, Cupressus arizonica -n11631985 Guadalupe cypress, Cupressus guadalupensis -n11632167 Monterey cypress, Cupressus macrocarpa -n11632376 Mexican cypress, cedar of Goa, Portuguese cypress, Cupressus lusitanica -n11632619 Italian cypress, Mediterranean cypress, Cupressus sempervirens -n11632929 King William pine, Athrotaxis selaginoides -n11633284 Chilean cedar, Austrocedrus chilensis -n11634736 incense cedar, red cedar, Calocedrus decurrens, Libocedrus decurrens -n11635152 southern white cedar, coast white cedar, Atlantic white cedar, white cypress, white cedar, Chamaecyparis thyoides -n11635433 Oregon cedar, Port Orford cedar, Lawson's cypress, Lawson's cedar, Chamaecyparis lawsoniana -n11635830 yellow cypress, yellow cedar, Nootka cypress, Alaska cedar, Chamaecyparis nootkatensis -n11636204 Japanese cedar, Japan cedar, sugi, Cryptomeria japonica -n11636835 juniper berry -n11639084 incense cedar -n11639306 kawaka, Libocedrus plumosa -n11639445 pahautea, Libocedrus bidwillii, mountain pine -n11640132 metasequoia, dawn redwood, Metasequoia glyptostrodoides -n11643835 arborvitae -n11644046 western red cedar, red cedar, canoe cedar, Thuja plicata -n11644226 American arborvitae, northern white cedar, white cedar, Thuja occidentalis -n11644462 Oriental arborvitae, Thuja orientalis, Platycladus orientalis -n11644872 hiba arborvitae, Thujopsis dolobrata -n11645163 keteleeria -n11645590 Wollemi pine -n11645914 araucaria -n11646167 monkey puzzle, chile pine, Araucaria araucana -n11646344 norfolk island pine, Araucaria heterophylla, Araucaria excelsa -n11646517 new caledonian pine, Araucaria columnaris -n11646694 bunya bunya, bunya bunya tree, Araucaria bidwillii -n11646955 hoop pine, Moreton Bay pine, Araucaria cunninghamii -n11647306 kauri pine, dammar pine -n11647703 kauri, kaury, Agathis australis -n11647868 amboina pine, amboyna pine, Agathis dammara, Agathis alba -n11648039 dundathu pine, queensland kauri, smooth bark kauri, Agathis robusta -n11648268 red kauri, Agathis lanceolata -n11648776 plum-yew -n11649150 California nutmeg, nutmeg-yew, Torreya californica -n11649359 stinking cedar, stinking yew, Torrey tree, Torreya taxifolia -n11649878 celery pine -n11650160 celery top pine, celery-topped pine, Phyllocladus asplenifolius -n11650307 tanekaha, Phyllocladus trichomanoides -n11650430 Alpine celery pine, Phyllocladus alpinus -n11650558 yellowwood, yellowwood tree -n11650759 gymnospermous yellowwood -n11652039 podocarp -n11652217 yacca, yacca podocarp, Podocarpus coriaceus -n11652376 brown pine, Rockingham podocarp, Podocarpus elatus -n11652578 cape yellowwood, African yellowwood, Podocarpus elongatus -n11652753 South-African yellowwood, Podocarpus latifolius -n11652966 alpine totara, Podocarpus nivalis -n11653126 totara, Podocarpus totara -n11653570 common yellowwood, bastard yellowwood, Afrocarpus falcata -n11653904 kahikatea, New Zealand Dacryberry, New Zealand white pine, Dacrycarpus dacrydioides, Podocarpus dacrydioides -n11654293 rimu, imou pine, red pine, Dacrydium cupressinum -n11654438 tarwood, tar-wood, Dacrydium colensoi -n11654984 common sickle pine, Falcatifolium falciforme -n11655152 yellow-leaf sickle pine, Falcatifolium taxoides -n11655592 tarwood, tar-wood, New Zealand mountain pine, Halocarpus bidwilli, Dacrydium bidwilli -n11655974 westland pine, silver pine, Lagarostrobus colensoi -n11656123 huon pine, Lagarostrobus franklinii, Dacrydium franklinii -n11656549 Chilean rimu, Lepidothamnus fonkii -n11656771 mountain rimu, Lepidothamnus laxifolius, Dacridium laxifolius -n11657585 nagi, Nageia nagi -n11658331 miro, black pine, Prumnopitys ferruginea, Podocarpus ferruginea -n11658544 matai, black pine, Prumnopitys taxifolia, Podocarpus spicata -n11658709 plum-fruited yew, Prumnopitys andina, Prumnopitys elegans -n11659248 Prince Albert yew, Prince Albert's yew, Saxe-gothea conspicua -n11659627 Sundacarpus amara, Prumnopitys amara, Podocarpus amara -n11660300 Japanese umbrella pine, Sciadopitys verticillata -n11661372 yew -n11661909 Old World yew, English yew, Taxus baccata -n11662128 Pacific yew, California yew, western yew, Taxus brevifolia -n11662371 Japanese yew, Taxus cuspidata -n11662585 Florida yew, Taxus floridana -n11662937 New Caledonian yew, Austrotaxus spicata -n11663263 white-berry yew, Pseudotaxus chienii -n11664418 ginkgo, gingko, maidenhair tree, Ginkgo biloba -n11665372 angiosperm, flowering plant -n11666854 dicot, dicotyledon, magnoliopsid, exogen -n11668117 monocot, monocotyledon, liliopsid, endogen -n11669786 floret, floweret -n11669921 flower -n11672269 bloomer -n11672400 wildflower, wild flower -n11674019 apetalous flower -n11674332 inflorescence -n11675025 rosebud -n11675404 gynostegium -n11675738 pollinium -n11676500 pistil -n11676743 gynobase -n11676850 gynophore -n11677485 stylopodium -n11677902 carpophore -n11678010 cornstalk, corn stalk -n11678299 petiolule -n11678377 mericarp -n11679378 micropyle -n11680457 germ tube -n11680596 pollen tube -n11682659 gemma -n11683216 galbulus -n11683838 nectary, honey gland -n11684264 pericarp, seed vessel -n11684499 epicarp, exocarp -n11684654 mesocarp -n11685091 pip -n11685621 silique, siliqua -n11686195 cataphyll -n11686652 perisperm -n11686780 monocarp, monocarpic plant, monocarpous plant -n11686912 sporophyte -n11687071 gametophyte -n11687432 megasporangium, macrosporangium -n11687789 microspore -n11687964 microsporangium -n11688069 microsporophyll -n11688378 archespore, archesporium -n11689197 bonduc nut, nicker nut, nicker seed -n11689367 Job's tears -n11689483 oilseed, oil-rich seed -n11689678 castor bean -n11689815 cottonseed -n11689957 candlenut -n11690088 peach pit -n11690254 hypanthium, floral cup, calyx tube -n11690455 petal, flower petal -n11691046 corolla -n11691857 lip -n11692265 perianth, chlamys, floral envelope, perigone, perigonium -n11692792 thistledown -n11693981 custard apple, custard apple tree -n11694300 cherimoya, cherimoya tree, Annona cherimola -n11694469 ilama, ilama tree, Annona diversifolia -n11694664 soursop, prickly custard apple, soursop tree, Annona muricata -n11694866 bullock's heart, bullock's heart tree, bullock heart, Annona reticulata -n11695085 sweetsop, sweetsop tree, Annona squamosa -n11695285 pond apple, pond-apple tree, Annona glabra -n11695599 pawpaw, papaw, papaw tree, Asimina triloba -n11695974 ilang-ilang, ylang-ylang, Cananga odorata -n11696450 lancewood, lancewood tree, Oxandra lanceolata -n11696935 Guinea pepper, negro pepper, Xylopia aethiopica -n11697560 barberry -n11697802 American barberry, Berberis canadensis -n11698042 common barberry, European barberry, Berberis vulgaris -n11698245 Japanese barberry, Berberis thunbergii -n11699442 Oregon grape, Oregon holly grape, hollygrape, mountain grape, holly-leaves barberry, Mahonia aquifolium -n11699751 Oregon grape, Mahonia nervosa -n11700058 mayapple, May apple, wild mandrake, Podophyllum peltatum -n11700279 May apple -n11700864 allspice -n11701066 Carolina allspice, strawberry shrub, strawberry bush, sweet shrub, Calycanthus floridus -n11701302 spicebush, California allspice, Calycanthus occidentalis -n11702713 katsura tree, Cercidiphyllum japonicum -n11703669 laurel -n11704093 true laurel, bay, bay laurel, bay tree, Laurus nobilis -n11704620 camphor tree, Cinnamomum camphora -n11704791 cinnamon, Ceylon cinnamon, Ceylon cinnamon tree, Cinnamomum zeylanicum -n11705171 cassia, cassia-bark tree, Cinnamomum cassia -n11705387 cassia bark, Chinese cinnamon -n11705573 Saigon cinnamon, Cinnamomum loureirii -n11705776 cinnamon bark -n11706325 spicebush, spice bush, American spicebush, Benjamin bush, Lindera benzoin, Benzoin odoriferum -n11706761 avocado, avocado tree, Persea Americana -n11706942 laurel-tree, red bay, Persea borbonia -n11707229 sassafras, sassafras tree, Sassafras albidum -n11707827 California laurel, California bay tree, Oregon myrtle, pepperwood, spice tree, sassafras laurel, California olive, mountain laurel, Umbellularia californica -n11708658 anise tree -n11708857 purple anise, Illicium floridanum -n11709045 star anise, Illicium anisatum -n11709205 star anise, Chinese anise, Illicium verum -n11709674 magnolia -n11710136 southern magnolia, evergreen magnolia, large-flowering magnolia, bull bay, Magnolia grandiflora -n11710393 umbrella tree, umbrella magnolia, elkwood, elk-wood, Magnolia tripetala -n11710658 earleaved umbrella tree, Magnolia fraseri -n11710827 cucumber tree, Magnolia acuminata -n11710987 large-leaved magnolia, large-leaved cucumber tree, great-leaved macrophylla, Magnolia macrophylla -n11711289 saucer magnolia, Chinese magnolia, Magnolia soulangiana -n11711537 star magnolia, Magnolia stellata -n11711764 sweet bay, swamp bay, swamp laurel, Magnolia virginiana -n11711971 manglietia, genus Manglietia -n11712282 tulip tree, tulip poplar, yellow poplar, canary whitewood, Liriodendron tulipifera -n11713164 moonseed -n11713370 common moonseed, Canada moonseed, yellow parilla, Menispermum canadense -n11713763 Carolina moonseed, Cocculus carolinus -n11714382 nutmeg, nutmeg tree, Myristica fragrans -n11715430 water nymph, fragrant water lily, pond lily, Nymphaea odorata -n11715678 European white lily, Nymphaea alba -n11716698 southern spatterdock, Nuphar sagittifolium -n11717399 lotus, Indian lotus, sacred lotus, Nelumbo nucifera -n11717577 water chinquapin, American lotus, yanquapin, Nelumbo lutea -n11718296 water-shield, fanwort, Cabomba caroliniana -n11718681 water-shield, Brasenia schreberi, water-target -n11719286 peony, paeony -n11720353 buttercup, butterflower, butter-flower, crowfoot, goldcup, kingcup -n11720643 meadow buttercup, tall buttercup, tall crowfoot, tall field buttercup, Ranunculus acris -n11720891 water crowfoot, water buttercup, Ranunculus aquatilis -n11721337 lesser celandine, pilewort, Ranunculus ficaria -n11721642 lesser spearwort, Ranunculus flammula -n11722036 greater spearwort, Ranunculus lingua -n11722342 western buttercup, Ranunculus occidentalis -n11722466 creeping buttercup, creeping crowfoot, Ranunculus repens -n11722621 cursed crowfoot, celery-leaved buttercup, Ranunculus sceleratus -n11722982 aconite -n11723227 monkshood, helmetflower, helmet flower, Aconitum napellus -n11723452 wolfsbane, wolfbane, wolf's bane, Aconitum lycoctonum -n11723770 baneberry, cohosh, herb Christopher -n11723986 baneberry -n11724109 red baneberry, redberry, red-berry, snakeberry, Actaea rubra -n11724660 pheasant's-eye, Adonis annua -n11725015 anemone, windflower -n11725311 Alpine anemone, mountain anemone, Anemone tetonensis -n11725480 Canada anemone, Anemone Canadensis -n11725623 thimbleweed, Anemone cylindrica -n11725821 wood anemone, Anemone nemorosa -n11725973 wood anemone, snowdrop, Anemone quinquefolia -n11726145 longheaded thimbleweed, Anemone riparia -n11726269 snowdrop anemone, snowdrop windflower, Anemone sylvestris -n11726433 Virginia thimbleweed, Anemone virginiana -n11726707 rue anemone, Anemonella thalictroides -n11727091 columbine, aquilegia, aquilege -n11727358 meeting house, honeysuckle, Aquilegia canadensis -n11727540 blue columbine, Aquilegia caerulea, Aquilegia scopulorum calcarea -n11727738 granny's bonnets, Aquilegia vulgaris -n11728099 marsh marigold, kingcup, meadow bright, May blob, cowslip, water dragon, Caltha palustris -n11728769 American bugbane, summer cohosh, Cimicifuga americana -n11728945 black cohosh, black snakeroot, rattle-top, Cimicifuga racemosa -n11729142 fetid bugbane, foetid bugbane, Cimicifuga foetida -n11729478 clematis -n11729860 pine hyacinth, Clematis baldwinii, Viorna baldwinii -n11730015 blue jasmine, blue jessamine, curly clematis, marsh clematis, Clematis crispa -n11730458 golden clematis, Clematis tangutica -n11730602 scarlet clematis, Clematis texensis -n11730750 leather flower, Clematis versicolor -n11730933 leather flower, vase-fine, vase vine, Clematis viorna -n11731157 virgin's bower, old man's beard, devil's darning needle, Clematis virginiana -n11731659 purple clematis, purple virgin's bower, mountain clematis, Clematis verticillaris -n11732052 goldthread, golden thread, Coptis groenlandica, Coptis trifolia groenlandica -n11732567 rocket larkspur, Consolida ambigua, Delphinium ajacis -n11733054 delphinium -n11733312 larkspur -n11733548 winter aconite, Eranthis hyemalis -n11734493 lenten rose, black hellebore, Helleborus orientalis -n11734698 green hellebore, Helleborus viridis -n11735053 hepatica, liverleaf -n11735570 goldenseal, golden seal, yellow root, turmeric root, Hydrastis Canadensis -n11735977 false rue anemone, false rue, Isopyrum biternatum -n11736362 giant buttercup, Laccopetalum giganteum -n11736694 nigella -n11736851 love-in-a-mist, Nigella damascena -n11737009 fennel flower, Nigella hispanica -n11737125 black caraway, nutmeg flower, Roman coriander, Nigella sativa -n11737534 pasqueflower, pasque flower -n11738547 meadow rue -n11738997 false bugbane, Trautvetteria carolinensis -n11739365 globeflower, globe flower -n11739978 winter's bark, winter's bark tree, Drimys winteri -n11740414 pepper shrub, Pseudowintera colorata, Wintera colorata -n11741175 sweet gale, Scotch gale, Myrica gale -n11741350 wax myrtle -n11741575 bay myrtle, puckerbush, Myrica cerifera -n11741797 bayberry, candleberry, swamp candleberry, waxberry, Myrica pensylvanica -n11742310 sweet fern, Comptonia peregrina, Comptonia asplenifolia -n11742878 corkwood, corkwood tree, Leitneria floridana -n11744011 jointed rush, Juncus articulatus -n11744108 toad rush, Juncus bufonius -n11744471 slender rush, Juncus tenuis -n11745817 zebrawood, zebrawood tree -n11746600 Connarus guianensis -n11747468 legume, leguminous plant -n11748002 legume -n11748811 peanut -n11749112 granadilla tree, granadillo, Brya ebenus -n11749603 arariba, Centrolobium robustum -n11750173 tonka bean, coumara nut -n11750508 courbaril, Hymenaea courbaril -n11750989 melilotus, melilot, sweet clover -n11751765 darling pea, poison bush -n11751974 smooth darling pea, Swainsona galegifolia -n11752578 clover, trefoil -n11752798 alpine clover, Trifolium alpinum -n11752937 hop clover, shamrock, lesser yellow trefoil, Trifolium dubium -n11753143 crimson clover, Italian clover, Trifolium incarnatum -n11753355 red clover, purple clover, Trifolium pratense -n11753562 buffalo clover, Trifolium reflexum, Trifolium stoloniferum -n11753700 white clover, dutch clover, shamrock, Trifolium repens -n11754893 mimosa -n11756092 acacia -n11756329 shittah, shittah tree -n11756669 wattle -n11756870 black wattle, Acacia auriculiformis -n11757017 gidgee, stinking wattle, Acacia cambegei -n11757190 catechu, Jerusalem thorn, Acacia catechu -n11757653 silver wattle, mimosa, Acacia dealbata -n11757851 huisache, cassie, mimosa bush, sweet wattle, sweet acacia, scented wattle, flame tree, Acacia farnesiana -n11758122 lightwood, Acacia melanoxylon -n11758276 golden wattle, Acacia pycnantha -n11758483 fever tree, Acacia xanthophloea -n11758799 coralwood, coral-wood, red sandalwood, Barbados pride, peacock flower fence, Adenanthera pavonina -n11759224 albizzia, albizia -n11759404 silk tree, Albizia julibrissin, Albizzia julibrissin -n11759609 siris, siris tree, Albizia lebbeck, Albizzia lebbeck -n11759853 rain tree, saman, monkeypod, monkey pod, zaman, zamang, Albizia saman -n11760785 calliandra -n11761202 conacaste, elephant's ear, Enterolobium cyclocarpa -n11761650 inga -n11761836 ice-cream bean, Inga edulis -n11762018 guama, Inga laurina -n11762433 lead tree, white popinac, Leucaena glauca, Leucaena leucocephala -n11762927 wild tamarind, Lysiloma latisiliqua, Lysiloma bahamensis -n11763142 sabicu, Lysiloma sabicu -n11763625 nitta tree -n11763874 Parkia javanica -n11764478 manila tamarind, camachile, huamachil, wild tamarind, Pithecellobium dulce -n11764814 cat's-claw, catclaw, black bead, Pithecellodium unguis-cati -n11765568 honey mesquite, Western honey mesquite, Prosopis glandulosa -n11766046 algarroba, algarrobilla, algarobilla -n11766189 screw bean, screwbean, tornillo, screwbean mesquite, Prosopis pubescens -n11766432 screw bean -n11767354 dogbane -n11767877 Indian hemp, rheumatism weed, Apocynum cannabinum -n11768816 bushman's poison, ordeal tree, Acocanthera oppositifolia, Acocanthera venenata -n11769176 impala lily, mock azalia, desert rose, kudu lily, Adenium obesum, Adenium multiflorum -n11769621 allamanda -n11769803 common allamanda, golden trumpet, Allamanda cathartica -n11770256 dita, dita bark, devil tree, Alstonia scholaris -n11771147 Nepal trumpet flower, Easter lily vine, Beaumontia grandiflora -n11771539 carissa -n11771746 hedge thorn, natal plum, Carissa bispinosa -n11771924 natal plum, amatungulu, Carissa macrocarpa, Carissa grandiflora -n11772408 periwinkle, rose periwinkle, Madagascar periwinkle, old maid, Cape periwinkle, red periwinkle, cayenne jasmine, Catharanthus roseus, Vinca rosea -n11772879 ivory tree, conessi, kurchi, kurchee, Holarrhena pubescens, Holarrhena antidysenterica -n11773408 white dipladenia, Mandevilla boliviensis, Dipladenia boliviensis -n11773628 Chilean jasmine, Mandevilla laxa -n11773987 oleander, rose bay, Nerium oleander -n11774513 frangipani, frangipanni -n11774972 West Indian jasmine, pagoda tree, Plumeria alba -n11775340 rauwolfia, rauvolfia -n11775626 snakewood, Rauwolfia serpentina -n11776234 Strophanthus kombe -n11777080 yellow oleander, Thevetia peruviana, Thevetia neriifolia -n11778092 myrtle, Vinca minor -n11778257 large periwinkle, Vinca major -n11779300 arum, aroid -n11780148 cuckoopint, lords-and-ladies, jack-in-the-pulpit, Arum maculatum -n11780424 black calla, Arum palaestinum -n11781176 calamus -n11782036 alocasia, elephant's ear, elephant ear -n11782266 giant taro, Alocasia macrorrhiza -n11782761 amorphophallus -n11782878 pungapung, telingo potato, elephant yam, Amorphophallus paeonifolius, Amorphophallus campanulatus -n11783162 devil's tongue, snake palm, umbrella arum, Amorphophallus rivieri -n11783920 anthurium, tailflower, tail-flower -n11784126 flamingo flower, flamingo plant, Anthurium andraeanum, Anthurium scherzerianum -n11784497 jack-in-the-pulpit, Indian turnip, wake-robin, Arisaema triphyllum, Arisaema atrorubens -n11785276 friar's-cowl, Arisarum vulgare -n11785668 caladium -n11785875 Caladium bicolor -n11786131 wild calla, water arum, Calla palustris -n11786539 taro, taro plant, dalo, dasheen, Colocasia esculenta -n11786843 taro, cocoyam, dasheen, eddo -n11787190 cryptocoryne, water trumpet -n11788039 dracontium -n11788727 golden pothos, pothos, ivy arum, Epipremnum aureum, Scindapsus aureus -n11789066 skunk cabbage, Lysichiton americanum -n11789438 monstera -n11789589 ceriman, Monstera deliciosa -n11789962 nephthytis -n11790089 Nephthytis afzelii -n11790788 arrow arum -n11790936 green arrow arum, tuckahoe, Peltandra virginica -n11791341 philodendron -n11791569 pistia, water lettuce, water cabbage, Pistia stratiotes, Pistia stratoites -n11792029 pothos -n11792341 spathiphyllum, peace lily, spathe flower -n11792742 skunk cabbage, polecat weed, foetid pothos, Symplocarpus foetidus -n11793403 yautia, tannia, spoonflower, malanga, Xanthosoma sagittifolium, Xanthosoma atrovirens -n11793779 calla lily, calla, arum lily, Zantedeschia aethiopica -n11794024 pink calla, Zantedeschia rehmanii -n11794139 golden calla -n11794519 duckweed -n11795049 common duckweed, lesser duckweed, Lemna minor -n11795216 star-duckweed, Lemna trisulca -n11795580 great duckweed, water flaxseed, Spirodela polyrrhiza -n11796005 watermeal -n11796188 common wolffia, Wolffia columbiana -n11797321 aralia -n11797508 American angelica tree, devil's walking stick, Hercules'-club, Aralia spinosa -n11797981 American spikenard, petty morel, life-of-man, Aralia racemosa -n11798270 bristly sarsaparilla, bristly sarsparilla, dwarf elder, Aralia hispida -n11798496 Japanese angelica tree, Aralia elata -n11798688 Chinese angelica, Chinese angelica tree, Aralia stipulata -n11798978 ivy, common ivy, English ivy, Hedera helix -n11799331 puka, Meryta sinclairii -n11799732 ginseng, nin-sin, Panax ginseng, Panax schinseng, Panax pseudoginseng -n11800236 ginseng -n11800565 umbrella tree, Schefflera actinophylla, Brassaia actinophylla -n11801392 birthwort, Aristolochia clematitis -n11801665 Dutchman's-pipe, pipe vine, Aristolochia macrophylla, Aristolochia durior -n11801891 Virginia snakeroot, Virginia serpentaria, Virginia serpentary, Aristolochia serpentaria -n11802410 Canada ginger, black snakeroot, Asarum canadense -n11802586 heartleaf, heart-leaf, Asarum virginicum -n11802800 heartleaf, heart-leaf, Asarum shuttleworthii -n11802995 asarabacca, Asarum europaeum -n11805255 caryophyllaceous plant -n11805544 corn cockle, corn campion, crown-of-the-field, Agrostemma githago -n11805956 sandwort -n11806219 mountain sandwort, mountain starwort, mountain daisy, Arenaria groenlandica -n11806369 pine-barren sandwort, longroot, Arenaria caroliniana -n11806521 seabeach sandwort, Arenaria peploides -n11806679 rock sandwort, Arenaria stricta -n11806814 thyme-leaved sandwort, Arenaria serpyllifolia -n11807108 mouse-ear chickweed, mouse eared chickweed, mouse ear, clammy chickweed, chickweed -n11807525 snow-in-summer, love-in-a-mist, Cerastium tomentosum -n11807696 Alpine mouse-ear, Arctic mouse-ear, Cerastium alpinum -n11807979 pink, garden pink -n11808299 sweet William, Dianthus barbatus -n11808468 carnation, clove pink, gillyflower, Dianthus caryophyllus -n11808721 china pink, rainbow pink, Dianthus chinensis -n11808932 Japanese pink, Dianthus chinensis heddewigii -n11809094 maiden pink, Dianthus deltoides -n11809271 cheddar pink, Diangus gratianopolitanus -n11809437 button pink, Dianthus latifolius -n11809594 cottage pink, grass pink, Dianthus plumarius -n11809754 fringed pink, Dianthus supurbus -n11810030 drypis -n11810358 baby's breath, babies'-breath, Gypsophila paniculata -n11811059 coral necklace, Illecebrum verticullatum -n11811473 lychnis, catchfly -n11811706 ragged robin, cuckoo flower, Lychnis flos-cuculi, Lychins floscuculi -n11811921 scarlet lychnis, maltese cross, Lychins chalcedonica -n11812094 mullein pink, rose campion, gardener's delight, dusty miller, Lychnis coronaria -n11812910 sandwort, Moehringia lateriflora -n11813077 sandwort, Moehringia mucosa -n11814584 soapwort, hedge pink, bouncing Bet, bouncing Bess, Saponaria officinalis -n11814996 knawel, knawe, Scleranthus annuus -n11815491 silene, campion, catchfly -n11815721 moss campion, Silene acaulis -n11815918 wild pink, Silene caroliniana -n11816121 red campion, red bird's eye, Silene dioica, Lychnis dioica -n11816336 white campion, evening lychnis, white cockle, bladder campion, Silene latifolia, Lychnis alba -n11816649 fire pink, Silene virginica -n11816829 bladder campion, Silene uniflora, Silene vulgaris -n11817160 corn spurry, corn spurrey, Spergula arvensis -n11817501 sand spurry, sea spurry, Spergularia rubra -n11817914 chickweed -n11818069 common chickweed, Stellaria media -n11818636 cowherb, cow cockle, Vaccaria hispanica, Vaccaria pyramidata, Saponaria vaccaria -n11819509 Hottentot fig, Hottentot's fig, sour fig, Carpobrotus edulis, Mesembryanthemum edule -n11819912 livingstone daisy, Dorotheanthus bellidiformis -n11820965 fig marigold, pebble plant -n11821184 ice plant, icicle plant, Mesembryanthemum crystallinum -n11822300 New Zealand spinach, Tetragonia tetragonioides, Tetragonia expansa -n11823043 amaranth -n11823305 amaranth -n11823436 tumbleweed, Amaranthus albus, Amaranthus graecizans -n11823756 prince's-feather, gentleman's-cane, prince's-plume, red amaranth, purple amaranth, Amaranthus cruentus, Amaranthus hybridus hypochondriacus, Amaranthus hybridus erythrostachys -n11824146 pigweed, Amaranthus hypochondriacus -n11824344 thorny amaranth, Amaranthus spinosus -n11824747 alligator weed, alligator grass, Alternanthera philoxeroides -n11825351 cockscomb, common cockscomb, Celosia cristata, Celosia argentea cristata -n11825749 cottonweed -n11826198 globe amaranth, bachelor's button, Gomphrena globosa -n11826569 bloodleaf -n11827541 saltwort, Batis maritima -n11828577 lamb's-quarters, pigweed, wild spinach, Chenopodium album -n11828973 good-king-henry, allgood, fat hen, wild spinach, Chenopodium bonus-henricus -n11829205 Jerusalem oak, feather geranium, Mexican tea, Chenopodium botrys, Atriplex mexicana -n11829672 oak-leaved goosefoot, oakleaf goosefoot, Chenopodium glaucum -n11829922 sowbane, red goosefoot, Chenopodium hybridum -n11830045 nettle-leaved goosefoot, nettleleaf goosefoot, Chenopodium murale -n11830252 red goosefoot, French spinach, Chenopodium rubrum -n11830400 stinking goosefoot, Chenopodium vulvaria -n11830714 orach, orache -n11830906 saltbush -n11831100 garden orache, mountain spinach, Atriplex hortensis -n11831297 desert holly, Atriplex hymenelytra -n11831521 quail bush, quail brush, white thistle, Atriplex lentiformis -n11832214 beet, common beet, Beta vulgaris -n11832480 beetroot, Beta vulgaris rubra -n11832671 chard, Swiss chard, spinach beet, leaf beet, chard plant, Beta vulgaris cicla -n11832899 mangel-wurzel, mangold-wurzel, mangold, Beta vulgaris vulgaris -n11833373 winged pigweed, tumbleweed, Cycloloma atriplicifolium -n11833749 halogeton, Halogeton glomeratus -n11834272 glasswort, samphire, Salicornia europaea -n11834654 saltwort, barilla, glasswort, kali, kelpwort, Salsola kali, Salsola soda -n11834890 Russian thistle, Russian tumbleweed, Russian cactus, tumbleweed, Salsola kali tenuifolia -n11835251 greasewood, black greasewood, Sarcobatus vermiculatus -n11836327 scarlet musk flower, Nyctaginia capitata -n11836722 sand verbena -n11837204 sweet sand verbena, Abronia fragrans -n11837351 yellow sand verbena, Abronia latifolia -n11837562 beach pancake, Abronia maritima -n11837743 beach sand verbena, pink sand verbena, Abronia umbellata -n11837970 desert sand verbena, Abronia villosa -n11838413 trailing four o'clock, trailing windmills, Allionia incarnata -n11838916 bougainvillea -n11839460 umbrellawort -n11839568 four o'clock -n11839823 common four-o'clock, marvel-of-Peru, Mirabilis jalapa, Mirabilis uniflora -n11840067 California four o'clock, Mirabilis laevis, Mirabilis californica -n11840246 sweet four o'clock, maravilla, Mirabilis longiflora -n11840476 desert four o'clock, Colorado four o'clock, maravilla, Mirabilis multiflora -n11840764 mountain four o'clock, Mirabilis oblongifolia -n11841247 cockspur, Pisonia aculeata -n11843441 rattail cactus, rat's-tail cactus, Aporocactus flagelliformis -n11844371 saguaro, sahuaro, Carnegiea gigantea -n11844892 night-blooming cereus -n11845557 echinocactus, barrel cactus -n11845793 hedgehog cactus -n11845913 golden barrel cactus, Echinocactus grusonii -n11846312 hedgehog cereus -n11846425 rainbow cactus -n11846765 epiphyllum, orchid cactus -n11847169 barrel cactus -n11848479 night-blooming cereus -n11848867 chichipe, Lemaireocereus chichipe -n11849271 mescal, mezcal, peyote, Lophophora williamsii -n11849467 mescal button, sacred mushroom, magic mushroom -n11849871 mammillaria -n11849983 feather ball, Mammillaria plumosa -n11850521 garambulla, garambulla cactus, Myrtillocactus geometrizans -n11850918 Knowlton's cactus, Pediocactus knowltonii -n11851258 nopal -n11851578 prickly pear, prickly pear cactus -n11851839 cholla, Opuntia cholla -n11852028 nopal, Opuntia lindheimeri -n11852148 tuna, Opuntia tuna -n11852531 Barbados gooseberry, Barbados-gooseberry vine, Pereskia aculeata -n11853079 mistletoe cactus -n11853356 Christmas cactus, Schlumbergera buckleyi, Schlumbergera baridgesii -n11853813 night-blooming cereus -n11854479 crab cactus, Thanksgiving cactus, Zygocactus truncatus, Schlumbergera truncatus -n11855274 pokeweed -n11855435 Indian poke, Phytolacca acinosa -n11855553 poke, pigeon berry, garget, scoke, Phytolacca americana -n11855842 ombu, bella sombra, Phytolacca dioica -n11856573 bloodberry, blood berry, rougeberry, rouge plant, Rivina humilis -n11857696 portulaca -n11857875 rose moss, sun plant, Portulaca grandiflora -n11858077 common purslane, pussley, pussly, verdolagas, Portulaca oleracea -n11858703 rock purslane -n11858814 red maids, redmaids, Calandrinia ciliata -n11859275 Carolina spring beauty, Claytonia caroliniana -n11859472 spring beauty, Clatonia lanceolata -n11859737 Virginia spring beauty, Claytonia virginica -n11860208 siskiyou lewisia, Lewisia cotyledon -n11860555 bitterroot, Lewisia rediviva -n11861238 broad-leaved montia, Montia cordifolia -n11861487 blinks, blinking chickweed, water chickweed, Montia lamprosperma -n11861641 toad lily, Montia chamissoi -n11861853 winter purslane, miner's lettuce, Cuban spinach, Montia perfoliata -n11862835 flame flower, flame-flower, flameflower, Talinum aurantiacum -n11863467 pigmy talinum, Talinum brevifolium -n11863877 jewels-of-opar, Talinum paniculatum -n11865071 caper -n11865276 native pomegranate, Capparis arborea -n11865429 caper tree, Jamaica caper tree, Capparis cynophallophora -n11865574 caper tree, bay-leaved caper, Capparis flexuosa -n11865874 common caper, Capparis spinosa -n11866248 spiderflower, cleome -n11866706 Rocky Mountain bee plant, stinking clover, Cleome serrulata -n11867311 clammyweed, Polanisia graveolens, Polanisia dodecandra -n11868814 crucifer, cruciferous plant -n11869351 cress, cress plant -n11869689 watercress -n11870044 stonecress, stone cress -n11870418 garlic mustard, hedge garlic, sauce-alone, jack-by-the-hedge, Alliaria officinalis -n11870747 alyssum, madwort -n11871059 rose of Jericho, resurrection plant, Anastatica hierochuntica -n11871496 Arabidopsis thaliana, mouse-ear cress -n11871748 Arabidopsis lyrata -n11872146 rock cress, rockcress -n11872324 sicklepod, Arabis Canadensis -n11872658 tower mustard, tower cress, Turritis glabra, Arabis glabra -n11873182 horseradish, horseradish root -n11873612 winter cress, St. Barbara's herb, scurvy grass -n11874081 yellow rocket, rockcress, rocket cress, Barbarea vulgaris, Sisymbrium barbarea -n11874423 hoary alison, hoary alyssum, Berteroa incana -n11874878 buckler mustard, Biscutalla laevigata -n11875523 wild cabbage, Brassica oleracea -n11875691 cabbage, cultivated cabbage, Brassica oleracea -n11875938 head cabbage, head cabbage plant, Brassica oleracea capitata -n11876204 savoy cabbage -n11876432 brussels sprout, Brassica oleracea gemmifera -n11876634 cauliflower, Brassica oleracea botrytis -n11876803 broccoli, Brassica oleracea italica -n11877193 collard -n11877283 kohlrabi, Brassica oleracea gongylodes -n11877473 turnip plant -n11877646 turnip, white turnip, Brassica rapa -n11877860 rutabaga, turnip cabbage, swede, Swedish turnip, rutabaga plant, Brassica napus napobrassica -n11878101 broccoli raab, broccoli rabe, Brassica rapa ruvo -n11878283 mustard -n11878633 chinese mustard, indian mustard, leaf mustard, gai choi, Brassica juncea -n11879054 bok choy, bok choi, pakchoi, pak choi, Chinese white cabbage, Brassica rapa chinensis -n11879722 rape, colza, Brassica napus -n11879895 rapeseed -n11881189 shepherd's purse, shepherd's pouch, Capsella bursa-pastoris -n11882074 lady's smock, cuckooflower, cuckoo flower, meadow cress, Cardamine pratensis -n11882237 coral-root bittercress, coralroot, coralwort, Cardamine bulbifera, Dentaria bulbifera -n11882426 crinkleroot, crinkle-root, crinkle root, pepper root, toothwort, Cardamine diphylla, Dentaria diphylla -n11882636 American watercress, mountain watercress, Cardamine rotundifolia -n11882821 spring cress, Cardamine bulbosa -n11882972 purple cress, Cardamine douglasii -n11883328 wallflower, Cheiranthus cheiri, Erysimum cheiri -n11883628 prairie rocket -n11883945 scurvy grass, common scurvy grass, Cochlearia officinalis -n11884384 sea kale, sea cole, Crambe maritima -n11884967 tansy mustard, Descurainia pinnata -n11885856 draba -n11887119 wallflower -n11887310 prairie rocket -n11887476 Siberian wall flower, Erysimum allionii, Cheiranthus allionii -n11887750 western wall flower, Erysimum asperum, Cheiranthus asperus, Erysimum arkansanum -n11888061 wormseed mustard, Erysimum cheiranthoides -n11888424 heliophila -n11888800 damask violet, Dame's violet, sweet rocket, Hesperis matronalis -n11889205 tansy-leaved rocket, Hugueninia tanacetifolia, Sisymbrium tanacetifolia -n11889619 candytuft -n11890022 woad -n11890150 dyer's woad, Isatis tinctoria -n11890884 bladderpod -n11891175 sweet alyssum, sweet alison, Lobularia maritima -n11892029 Malcolm stock, stock -n11892181 Virginian stock, Virginia stock, Malcolmia maritima -n11892637 stock, gillyflower -n11892817 brompton stock, Matthiola incana -n11893640 bladderpod -n11893916 chamois cress, Pritzelago alpina, Lepidium alpina -n11894327 radish plant, radish -n11894558 jointed charlock, wild radish, wild rape, runch, Raphanus raphanistrum -n11894770 radish, Raphanus sativus -n11895092 radish, daikon, Japanese radish, Raphanus sativus longipinnatus -n11895472 marsh cress, yellow watercress, Rorippa islandica -n11895714 great yellowcress, Rorippa amphibia, Nasturtium amphibium -n11896141 schizopetalon, Schizopetalon walkeri -n11896722 field mustard, wild mustard, charlock, chadlock, Brassica kaber, Sinapis arvensis -n11897116 hedge mustard, Sisymbrium officinale -n11897466 desert plume, prince's-plume, Stanleya pinnata, Cleome pinnata -n11898639 pennycress -n11898775 field pennycress, French weed, fanweed, penny grass, stinkweed, mithridate mustard, Thlaspi arvense -n11899223 fringepod, lacepod -n11899762 bladderpod -n11899921 wasabi -n11900569 poppy -n11901294 Iceland poppy, Papaver alpinum -n11901452 western poppy, Papaver californicum -n11901597 prickly poppy, Papaver argemone -n11901759 Iceland poppy, arctic poppy, Papaver nudicaule -n11901977 oriental poppy, Papaver orientale -n11902200 corn poppy, field poppy, Flanders poppy, Papaver rhoeas -n11902389 opium poppy, Papaver somniferum -n11902709 prickly poppy, argemone, white thistle, devil's fig -n11902982 Mexican poppy, Argemone mexicana -n11903333 bocconia, tree celandine, Bocconia frutescens -n11903671 celandine, greater celandine, swallowwort, swallow wort, Chelidonium majus -n11904109 corydalis -n11904274 climbing corydalis, Corydalis claviculata, Fumaria claviculata -n11905392 California poppy, Eschscholtzia californica -n11905749 horn poppy, horned poppy, yellow horned poppy, sea poppy, Glaucium flavum -n11906127 golden cup, Mexican tulip poppy, Hunnemania fumariifolia -n11906514 plume poppy, bocconia, Macleaya cordata -n11906917 blue poppy, Meconopsis betonicifolia -n11907100 Welsh poppy, Meconopsis cambrica -n11907405 creamcups, Platystemon californicus -n11907689 matilija poppy, California tree poppy, Romneya coulteri -n11908549 wind poppy, flaming poppy, Stylomecon heterophyllum, Papaver heterophyllum -n11908846 celandine poppy, wood poppy, Stylophorum diphyllum -n11909864 climbing fumitory, Allegheny vine, Adlumia fungosa, Fumaria fungosa -n11910271 bleeding heart, lyreflower, lyre-flower, Dicentra spectabilis -n11910460 Dutchman's breeches, Dicentra cucullaria -n11910666 squirrel corn, Dicentra canadensis -n11915214 composite, composite plant -n11915658 compass plant, compass flower -n11915899 everlasting, everlasting flower -n11916467 achillea -n11916696 yarrow, milfoil, Achillea millefolium -n11917407 pink-and-white everlasting, pink paper daisy, Acroclinium roseum -n11917835 white snakeroot, white sanicle, Ageratina altissima, Eupatorium rugosum -n11918286 ageratum -n11918473 common ageratum, Ageratum houstonianum -n11918808 sweet sultan, Amberboa moschata, Centaurea moschata -n11919447 ragweed, ambrosia, bitterweed -n11919761 common ragweed, Ambrosia artemisiifolia -n11919975 great ragweed, Ambrosia trifida -n11920133 western ragweed, perennial ragweed, Ambrosia psilostachya -n11920498 ammobium -n11920663 winged everlasting, Ammobium alatum -n11920998 pellitory, pellitory-of-Spain, Anacyclus pyrethrum -n11921395 pearly everlasting, cottonweed, Anaphalis margaritacea -n11921792 andryala -n11922661 plantain-leaved pussytoes -n11922755 field pussytoes -n11922839 solitary pussytoes -n11922926 mountain everlasting -n11923174 mayweed, dog fennel, stinking mayweed, stinking chamomile, Anthemis cotula -n11923397 yellow chamomile, golden marguerite, dyers' chamomile, Anthemis tinctoria -n11923637 corn chamomile, field chamomile, corn mayweed, Anthemis arvensis -n11924014 woolly daisy, dwarf daisy, Antheropeas wallacei, Eriophyllum wallacei -n11924445 burdock, clotbur -n11924849 great burdock, greater burdock, cocklebur, Arctium lappa -n11925303 African daisy -n11925450 blue-eyed African daisy, Arctotis stoechadifolia, Arctotis venusta -n11925898 marguerite, marguerite daisy, Paris daisy, Chrysanthemum frutescens, Argyranthemum frutescens -n11926365 silversword, Argyroxiphium sandwicense -n11926833 arnica -n11926976 heartleaf arnica, Arnica cordifolia -n11927215 Arnica montana -n11927740 lamb succory, dwarf nipplewort, Arnoseris minima -n11928352 artemisia -n11928858 mugwort -n11929743 sweet wormwood, Artemisia annua -n11930038 field wormwood, Artemisia campestris -n11930203 tarragon, estragon, Artemisia dracunculus -n11930353 sand sage, silvery wormwood, Artemisia filifolia -n11930571 wormwood sage, prairie sagewort, Artemisia frigida -n11930788 western mugwort, white sage, cudweed, prairie sage, Artemisia ludoviciana, Artemisia gnaphalodes -n11930994 Roman wormwood, Artemis pontica -n11931135 bud brush, bud sagebrush, Artemis spinescens -n11931540 common mugwort, Artemisia vulgaris -n11931918 aster -n11932745 wood aster -n11932927 whorled aster, Aster acuminatus -n11933099 heath aster, Aster arenosus -n11933257 heart-leaved aster, Aster cordifolius -n11933387 white wood aster, Aster divaricatus -n11933546 bushy aster, Aster dumosus -n11933728 heath aster, Aster ericoides -n11933903 white prairie aster, Aster falcatus -n11934041 stiff aster, Aster linarifolius -n11934239 goldilocks, goldilocks aster, Aster linosyris, Linosyris vulgaris -n11934463 large-leaved aster, Aster macrophyllus -n11934616 New England aster, Aster novae-angliae -n11934807 Michaelmas daisy, New York aster, Aster novi-belgii -n11935027 upland white aster, Aster ptarmicoides -n11935187 Short's aster, Aster shortii -n11935330 sea aster, sea starwort, Aster tripolium -n11935469 prairie aster, Aster turbinellis -n11935627 annual salt-marsh aster -n11935715 aromatic aster -n11935794 arrow leaved aster -n11935877 azure aster -n11935953 bog aster -n11936027 crooked-stemmed aster -n11936113 Eastern silvery aster -n11936199 flat-topped white aster -n11936287 late purple aster -n11936369 panicled aster -n11936448 perennial salt marsh aster -n11936539 purple-stemmed aster -n11936624 rough-leaved aster -n11936707 rush aster -n11936782 Schreiber's aster -n11936864 small white aster -n11936946 smooth aster -n11937023 southern aster -n11937102 starved aster, calico aster -n11937195 tradescant's aster -n11937278 wavy-leaved aster -n11937360 Western silvery aster -n11937446 willow aster -n11937692 ayapana, Ayapana triplinervis, Eupatorium aya-pana -n11938556 mule fat, Baccharis viminea -n11939180 balsamroot -n11939491 daisy -n11939699 common daisy, English daisy, Bellis perennis -n11940006 bur marigold, burr marigold, beggar-ticks, beggar's-ticks, sticktight -n11940349 Spanish needles, Bidens bipinnata -n11940599 tickseed sunflower, Bidens coronata, Bidens trichosperma -n11940750 European beggar-ticks, trifid beggar-ticks, trifid bur marigold, Bidens tripartita -n11941094 slender knapweed -n11941478 false chamomile -n11941924 Swan River daisy, Brachycome Iberidifolia -n11942659 woodland oxeye, Buphthalmum salicifolium -n11943133 Indian plantain -n11943407 calendula -n11943660 common marigold, pot marigold, ruddles, Scotch marigold, Calendula officinalis -n11943992 China aster, Callistephus chinensis -n11944196 thistle -n11944751 welted thistle, Carduus crispus -n11944954 musk thistle, nodding thistle, Carduus nutans -n11945367 carline thistle -n11945514 stemless carline thistle, Carlina acaulis -n11945783 common carline thistle, Carlina vulgaris -n11946051 safflower, false saffron, Carthamus tinctorius -n11946313 safflower seed -n11946727 catananche -n11946918 blue succory, cupid's dart, Catananche caerulea -n11947251 centaury -n11947629 dusty miller, Centaurea cineraria, Centaurea gymnocarpa -n11947802 cornflower, bachelor's button, bluebottle, Centaurea cyanus -n11948044 star-thistle, caltrop, Centauria calcitrapa -n11948264 knapweed -n11948469 sweet sultan, Centaurea imperialis -n11948864 great knapweed, greater knapweed, Centaurea scabiosa -n11949015 Barnaby's thistle, yellow star-thistle, Centaurea solstitialis -n11949402 chamomile, camomile, Chamaemelum nobilis, Anthemis nobilis -n11949857 chaenactis -n11950345 chrysanthemum -n11950686 corn marigold, field marigold, Chrysanthemum segetum -n11950877 crown daisy, Chrysanthemum coronarium -n11951052 chop-suey greens, tong ho, shun giku, Chrysanthemum coronarium spatiosum -n11951511 golden aster -n11951820 Maryland golden aster, Chrysopsis mariana -n11952346 goldenbush -n11952541 rabbit brush, rabbit bush, Chrysothamnus nauseosus -n11953038 chicory, succory, chicory plant, Cichorium intybus -n11953339 endive, witloof, Cichorium endivia -n11953610 chicory, chicory root -n11953884 plume thistle, plumed thistle -n11954161 Canada thistle, creeping thistle, Cirsium arvense -n11954345 field thistle, Cirsium discolor -n11954484 woolly thistle, Cirsium flodmanii -n11954642 European woolly thistle, Cirsium eriophorum -n11954798 melancholy thistle, Cirsium heterophylum, Cirsium helenioides -n11955040 brook thistle, Cirsium rivulare -n11955153 bull thistle, boar thistle, spear thistle, Cirsium vulgare, Cirsium lanceolatum -n11955532 blessed thistle, sweet sultan, Cnicus benedictus -n11955896 mistflower, mist-flower, ageratum, Conoclinium coelestinum, Eupatorium coelestinum -n11956348 horseweed, Canadian fleabane, fleabane, Conyza canadensis, Erigeron canadensis -n11956850 coreopsis, tickseed, tickweed, tick-weed -n11957317 giant coreopsis, Coreopsis gigantea -n11957514 sea dahlia, Coreopsis maritima -n11957678 calliopsis, Coreopsis tinctoria -n11958080 cosmos, cosmea -n11958499 brass buttons, Cotula coronopifolia -n11958888 billy buttons -n11959259 hawk's-beard, hawk's-beards -n11959632 artichoke, globe artichoke, artichoke plant, Cynara scolymus -n11959862 cardoon, Cynara cardunculus -n11960245 dahlia, Dahlia pinnata -n11960673 German ivy, Delairea odorata, Senecio milkanioides -n11961100 florist's chrysanthemum, florists' chrysanthemum, mum, Dendranthema grandifloruom, Chrysanthemum morifolium -n11961446 cape marigold, sun marigold, star of the veldt -n11961871 leopard's-bane, leopardbane -n11962272 coneflower -n11962667 globe thistle -n11962994 elephant's-foot -n11963572 tassel flower, Emilia sagitta -n11963932 brittlebush, brittle bush, incienso, Encelia farinosa -n11964446 sunray, Enceliopsis nudicaulis -n11964848 engelmannia -n11965218 fireweed, Erechtites hieracifolia -n11965627 fleabane -n11965962 blue fleabane, Erigeron acer -n11966083 daisy fleabane, Erigeron annuus -n11966215 orange daisy, orange fleabane, Erigeron aurantiacus -n11966385 spreading fleabane, Erigeron divergens -n11966617 seaside daisy, beach aster, Erigeron glaucous -n11966896 Philadelphia fleabane, Erigeron philadelphicus -n11967142 robin's plantain, Erigeron pulchellus -n11967315 showy daisy, Erigeron speciosus -n11967744 woolly sunflower -n11967878 golden yarrow, Eriophyllum lanatum -n11968519 dog fennel, Eupatorium capillifolium -n11968704 Joe-Pye weed, spotted Joe-Pye weed, Eupatorium maculatum -n11968931 boneset, agueweed, thoroughwort, Eupatorium perfoliatum -n11969166 Joe-Pye weed, purple boneset, trumpet weed, marsh milkweed, Eupatorium purpureum -n11969607 blue daisy, blue marguerite, Felicia amelloides -n11969806 kingfisher daisy, Felicia bergeriana -n11970101 cotton rose, cudweed, filago -n11970298 herba impia, Filago germanica -n11970586 gaillardia -n11971248 gazania -n11971406 treasure flower, Gazania rigens -n11971783 African daisy -n11971927 Barberton daisy, Transvaal daisy, Gerbera jamesonii -n11972291 desert sunflower, Gerea canescens -n11972759 cudweed -n11972959 chafeweed, wood cudweed, Gnaphalium sylvaticum -n11973341 gumweed, gum plant, tarweed, rosinweed -n11973634 Grindelia robusta -n11973749 curlycup gumweed, Grindelia squarrosa -n11974373 little-head snakeweed, Gutierrezia microcephala -n11974557 rabbitweed, rabbit-weed, snakeweed, broom snakeweed, broom snakeroot, turpentine weed, Gutierrezia sarothrae -n11974888 broomweed, broom-weed, Gutierrezia texana -n11975254 velvet plant, purple velvet plant, royal velvet plant, Gynura aurantiaca -n11976170 goldenbush -n11976314 camphor daisy, Haplopappus phyllocephalus -n11976511 yellow spiny daisy, Haplopappus spinulosus -n11976933 hoary golden bush, Hazardia cana -n11977303 sneezeweed -n11977660 orange sneezeweed, owlclaws, Helenium hoopesii -n11977887 rosilla, Helenium puberulum -n11978233 sunflower, helianthus -n11978551 swamp sunflower, Helianthus angustifolius -n11978713 common sunflower, mirasol, Helianthus annuus -n11978961 giant sunflower, tall sunflower, Indian potato, Helianthus giganteus -n11979187 showy sunflower, Helianthus laetiflorus -n11979354 Maximilian's sunflower, Helianthus maximilianii -n11979527 prairie sunflower, Helianthus petiolaris -n11979715 Jerusalem artichoke, girasol, Jerusalem artichoke sunflower, Helianthus tuberosus -n11979964 Jerusalem artichoke -n11980318 strawflower, golden everlasting, yellow paper daisy, Helichrysum bracteatum -n11980682 heliopsis, oxeye -n11981192 strawflower -n11981475 hairy golden aster, prairie golden aster, Heterotheca villosa, Chrysopsis villosa -n11982115 hawkweed -n11982545 rattlesnake weed, Hieracium venosum -n11982939 alpine coltsfoot, Homogyne alpina, Tussilago alpina -n11983375 alpine gold, alpine hulsea, Hulsea algida -n11983606 dwarf hulsea, Hulsea nana -n11984144 cat's-ear, California dandelion, capeweed, gosmore, Hypochaeris radicata -n11984542 inula -n11985053 marsh elder, iva -n11985321 burweed marsh elder, false ragweed, Iva xanthifolia -n11985739 krigia -n11985903 dwarf dandelion, Krigia dandelion, Krigia bulbosa -n11986511 garden lettuce, common lettuce, Lactuca sativa -n11986729 cos lettuce, romaine lettuce, Lactuca sativa longifolia -n11987126 leaf lettuce, Lactuca sativa crispa -n11987349 celtuce, stem lettuce, Lactuca sativa asparagina -n11987511 prickly lettuce, horse thistle, Lactuca serriola, Lactuca scariola -n11988132 goldfields, Lasthenia chrysostoma -n11988596 tidytips, tidy tips, Layia platyglossa -n11988893 hawkbit -n11989087 fall dandelion, arnica bud, Leontodon autumnalis -n11989393 edelweiss, Leontopodium alpinum -n11989869 oxeye daisy, ox-eyed daisy, marguerite, moon daisy, white daisy, Leucanthemum vulgare, Chrysanthemum leucanthemum -n11990167 oxeye daisy, Leucanthemum maximum, Chrysanthemum maximum -n11990313 shasta daisy, Leucanthemum superbum, Chrysanthemum maximum maximum -n11990627 Pyrenees daisy, Leucanthemum lacustre, Chrysanthemum lacustre -n11990920 north island edelweiss, Leucogenes leontopodium -n11991263 blazing star, button snakeroot, gayfeather, gay-feather, snakeroot -n11991549 dotted gayfeather, Liatris punctata -n11991777 dense blazing star, Liatris pycnostachya -n11992479 Texas star, Lindheimera texana -n11992806 African daisy, yellow ageratum, Lonas inodora, Lonas annua -n11993203 tahoka daisy, tansy leaf aster, Machaeranthera tanacetifolia -n11993444 sticky aster, Machaeranthera bigelovii -n11993675 Mojave aster, Machaeranthera tortifoloia -n11994150 tarweed -n11995092 sweet false chamomile, wild chamomile, German chamomile, Matricaria recutita, Matricaria chamomilla -n11995396 pineapple weed, rayless chamomile, Matricaria matricarioides -n11996251 climbing hempweed, climbing boneset, wild climbing hempweed, climbing hemp-vine, Mikania scandens -n11996677 mutisia -n11997032 rattlesnake root -n11997160 white lettuce, cankerweed, Nabalus alba, Prenanthes alba -n11997969 daisybush, daisy-bush, daisy bush -n11998492 New Zealand daisybush, Olearia haastii -n11998888 cotton thistle, woolly thistle, Scotch thistle, Onopordum acanthium, Onopordon acanthium -n11999278 othonna -n11999656 cascade everlasting, Ozothamnus secundiflorus, Helichrysum secundiflorum -n12000191 butterweed -n12001294 American feverfew, wild quinine, prairie dock, Parthenium integrifolium -n12001707 cineraria, Pericallis cruenta, Senecio cruentus -n12001924 florest's cineraria, Pericallis hybrida -n12002428 butterbur, bog rhubarb, Petasites hybridus, Petasites vulgaris -n12002651 winter heliotrope, sweet coltsfoot, Petasites fragrans -n12002826 sweet coltsfoot, Petasites sagitattus -n12003167 oxtongue, bristly oxtongue, bitterweed, bugloss, Picris echioides -n12003696 hawkweed -n12004120 mouse-ear hawkweed, Pilosella officinarum, Hieracium pilocella -n12004547 stevia -n12004987 rattlesnake root, Prenanthes purpurea -n12005656 fleabane, feabane mullet, Pulicaria dysenterica -n12006306 sheep plant, vegetable sheep, Raoulia lutescens, Raoulia australis -n12006766 coneflower -n12006930 Mexican hat, Ratibida columnaris -n12007196 long-head coneflower, prairie coneflower, Ratibida columnifera -n12007406 prairie coneflower, Ratibida tagetes -n12007766 Swan River everlasting, rhodanthe, Rhodanthe manglesii, Helipterum manglesii -n12008252 coneflower -n12008487 black-eyed Susan, Rudbeckia hirta, Rudbeckia serotina -n12008749 cutleaved coneflower, Rudbeckia laciniata -n12009047 golden glow, double gold, hortensia, Rudbeckia laciniata hortensia -n12009420 lavender cotton, Santolina chamaecyparissus -n12009792 creeping zinnia, Sanvitalia procumbens -n12010628 golden thistle -n12010815 Spanish oyster plant, Scolymus hispanicus -n12011370 nodding groundsel, Senecio bigelovii -n12011620 dusty miller, Senecio cineraria, Cineraria maritima -n12012111 butterweed, ragwort, Senecio glabellus -n12012253 ragwort, tansy ragwort, ragweed, benweed, Senecio jacobaea -n12012510 arrowleaf groundsel, Senecio triangularis -n12013035 black salsify, viper's grass, scorzonera, Scorzonera hispanica -n12013511 white-topped aster -n12013701 narrow-leaved white-topped aster -n12014085 silver sage, silver sagebrush, grey sage, gray sage, Seriphidium canum, Artemisia cana -n12014355 sea wormwood, Seriphidium maritimum, Artemisia maritima -n12014923 sawwort, Serratula tinctoria -n12015221 rosinweed, Silphium laciniatum -n12015525 milk thistle, lady's thistle, Our Lady's mild thistle, holy thistle, blessed thistle, Silybum marianum -n12015959 goldenrod -n12016434 silverrod, Solidago bicolor -n12016567 meadow goldenrod, Canadian goldenrod, Solidago canadensis -n12016777 Missouri goldenrod, Solidago missouriensis -n12016914 alpine goldenrod, Solidago multiradiata -n12017127 grey goldenrod, gray goldenrod, Solidago nemoralis -n12017326 Blue Mountain tea, sweet goldenrod, Solidago odora -n12017511 dyer's weed, Solidago rugosa -n12017664 seaside goldenrod, beach goldenrod, Solidago sempervirens -n12017853 narrow goldenrod, Solidago spathulata -n12018014 Boott's goldenrod -n12018100 Elliott's goldenrod -n12018188 Ohio goldenrod -n12018271 rough-stemmed goldenrod -n12018363 showy goldenrod -n12018447 tall goldenrod -n12018530 zigzag goldenrod, broad leaved goldenrod -n12018760 sow thistle, milk thistle -n12019035 milkweed, Sonchus oleraceus -n12019827 stevia -n12020184 stokes' aster, cornflower aster, Stokesia laevis -n12020507 marigold -n12020736 African marigold, big marigold, Aztec marigold, Tagetes erecta -n12020941 French marigold, Tagetes patula -n12022054 painted daisy, pyrethrum, Tanacetum coccineum, Chrysanthemum coccineum -n12022382 pyrethrum, Dalmatian pyrethrum, Dalmatia pyrethrum, Tanacetum cinerariifolium, Chrysanthemum cinerariifolium -n12022821 northern dune tansy, Tanacetum douglasii -n12023108 feverfew, Tanacetum parthenium, Chrysanthemum parthenium -n12023407 dusty miller, silver-lace, silver lace, Tanacetum ptarmiciflorum, Chrysanthemum ptarmiciflorum -n12023726 tansy, golden buttons, scented fern, Tanacetum vulgare -n12024176 dandelion, blowball -n12024445 common dandelion, Taraxacum ruderalia, Taraxacum officinale -n12024690 dandelion green -n12024805 Russian dandelion, kok-saghyz, kok-sagyz, Taraxacum kok-saghyz -n12025220 stemless hymenoxys, Tetraneuris acaulis, Hymenoxys acaulis -n12026018 Mexican sunflower, tithonia -n12026476 Easter daisy, stemless daisy, Townsendia Exscapa -n12026981 yellow salsify, Tragopogon dubius -n12027222 salsify, oyster plant, vegetable oyster, Tragopogon porrifolius -n12027658 meadow salsify, goatsbeard, shepherd's clock, Tragopogon pratensis -n12028424 scentless camomile, scentless false camomile, scentless mayweed, scentless hayweed, corn mayweed, Tripleurospermum inodorum, Matricaria inodorum -n12029039 turfing daisy, Tripleurospermum tchihatchewii, Matricaria tchihatchewii -n12029635 coltsfoot, Tussilago farfara -n12030092 ursinia -n12030654 crownbeard, crown-beard, crown beard -n12030908 wingstem, golden ironweed, yellow ironweed, golden honey plant, Verbesina alternifolia, Actinomeris alternifolia -n12031139 cowpen daisy, golden crownbeard, golden crown beard, butter daisy, Verbesina encelioides, Ximenesia encelioides -n12031388 gravelweed, Verbesina helianthoides -n12031547 Virginia crownbeard, frostweed, frost-weed, Verbesina virginica -n12031927 ironweed, vernonia -n12032429 mule's ears, Wyethia amplexicaulis -n12032686 white-rayed mule's ears, Wyethia helianthoides -n12033139 cocklebur, cockle-bur, cockleburr, cockle-burr -n12033504 xeranthemum -n12033709 immortelle, Xeranthemum annuum -n12034141 zinnia, old maid, old maid flower -n12034384 white zinnia, Zinnia acerosa -n12034594 little golden zinnia, Zinnia grandiflora -n12035631 blazing star, Mentzelia livicaulis, Mentzelia laevicaulis -n12035907 bartonia, Mentzelia lindleyi -n12036067 achene -n12036226 samara, key fruit, key -n12036939 campanula, bellflower -n12037499 creeping bellflower, Campanula rapunculoides -n12037691 Canterbury bell, cup and saucer, Campanula medium -n12038038 tall bellflower, Campanula americana -n12038208 marsh bellflower, Campanula aparinoides -n12038406 clustered bellflower, Campanula glomerata -n12038585 peach bells, peach bell, willow bell, Campanula persicifolia -n12038760 chimney plant, chimney bellflower, Campanula pyramidalis -n12038898 rampion, rampion bellflower, Campanula rapunculus -n12039317 tussock bellflower, spreading bellflower, Campanula carpatica -n12041446 orchid, orchidaceous plant -n12043444 orchis -n12043673 male orchis, early purple orchid, Orchis mascula -n12043836 butterfly orchid, butterfly orchis, Orchis papilionaceae -n12044041 showy orchis, purple orchis, purple-hooded orchis, Orchis spectabilis -n12044467 aerides -n12044784 angrecum -n12045157 jewel orchid -n12045514 puttyroot, adam-and-eve, Aplectrum hyemale -n12045860 arethusa -n12046028 bog rose, wild pink, dragon's mouth, Arethusa bulbosa -n12046428 bletia -n12046815 Bletilla striata, Bletia striata -n12047345 brassavola -n12047884 spider orchid, Brassia lawrenceana -n12048056 spider orchid, Brassia verrucosa -n12048399 caladenia -n12048928 calanthe -n12049282 grass pink, Calopogon pulchellum, Calopogon tuberosum -n12049562 calypso, fairy-slipper, Calypso bulbosa -n12050533 cattleya -n12050959 helleborine -n12051103 red helleborine, Cephalanthera rubra -n12051514 spreading pogonia, funnel-crest rosebud orchid, Cleistes divaricata, Pogonia divaricata -n12051792 rosebud orchid, Cleistes rosea, Pogonia rosea -n12052267 satyr orchid, Coeloglossum bracteatum -n12052447 frog orchid, Coeloglossum viride -n12052787 coelogyne -n12053405 coral root -n12053690 spotted coral root, Corallorhiza maculata -n12053962 striped coral root, Corallorhiza striata -n12054195 early coral root, pale coral root, Corallorhiza trifida -n12055073 swan orchid, swanflower, swan-flower, swanneck, swan-neck -n12055516 cymbid, cymbidium -n12056099 cypripedia -n12056217 lady's slipper, lady-slipper, ladies' slipper, slipper orchid -n12056601 moccasin flower, nerveroot, Cypripedium acaule -n12056758 common lady's-slipper, showy lady's-slipper, showy lady slipper, Cypripedium reginae, Cypripedium album -n12056990 ram's-head, ram's-head lady's slipper, Cypripedium arietinum -n12057211 yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum -n12057447 large yellow lady's slipper, Cypripedium calceolus pubescens -n12057660 California lady's slipper, Cypripedium californicum -n12057895 clustered lady's slipper, Cypripedium fasciculatum -n12058192 mountain lady's slipper, Cypripedium montanum -n12058630 marsh orchid -n12058822 common spotted orchid, Dactylorhiza fuchsii, Dactylorhiza maculata fuchsii -n12059314 dendrobium -n12059625 disa -n12060546 phantom orchid, snow orchid, Eburophyton austinae -n12061104 tulip orchid, Encyclia citrina, Cattleya citrina -n12061380 butterfly orchid, Encyclia tampensis, Epidendrum tampense -n12061614 butterfly orchid, butterfly orchis, Epidendrum venosum, Encyclia venosa -n12062105 epidendron -n12062468 helleborine -n12062626 Epipactis helleborine -n12062781 stream orchid, chatterbox, giant helleborine, Epipactis gigantea -n12063211 tongueflower, tongue-flower -n12063639 rattlesnake plantain, helleborine -n12064389 fragrant orchid, Gymnadenia conopsea -n12064591 short-spurred fragrant orchid, Gymnadenia odoratissima -n12065316 fringed orchis, fringed orchid -n12065649 frog orchid -n12065777 rein orchid, rein orchis -n12066018 bog rein orchid, bog candles, Habenaria dilatata -n12066261 white fringed orchis, white fringed orchid, Habenaria albiflora -n12066451 elegant Habenaria, Habenaria elegans -n12066630 purple-fringed orchid, purple-fringed orchis, Habenaria fimbriata -n12066821 coastal rein orchid, Habenaria greenei -n12067029 Hooker's orchid, Habenaria hookeri -n12067193 ragged orchid, ragged orchis, ragged-fringed orchid, green fringed orchis, Habenaria lacera -n12067433 prairie orchid, prairie white-fringed orchis, Habenaria leucophaea -n12067672 snowy orchid, Habenaria nivea -n12067817 round-leaved rein orchid, Habenaria orbiculata -n12068138 purple fringeless orchid, purple fringeless orchis, Habenaria peramoena -n12068432 purple-fringed orchid, purple-fringed orchis, Habenaria psycodes -n12068615 Alaska rein orchid, Habenaria unalascensis -n12069009 crested coral root, Hexalectris spicata -n12069217 Texas purple spike, Hexalectris warnockii -n12069679 lizard orchid, Himantoglossum hircinum -n12070016 laelia -n12070381 liparis -n12070583 twayblade -n12070712 fen orchid, fen orchis, Liparis loeselii -n12071259 broad-leaved twayblade, Listera convallarioides -n12071477 lesser twayblade, Listera cordata -n12071744 twayblade, Listera ovata -n12072210 green adder's mouth, Malaxis-unifolia, Malaxis ophioglossoides -n12072722 masdevallia -n12073217 maxillaria -n12073554 pansy orchid -n12073991 odontoglossum -n12074408 oncidium, dancing lady orchid, butterfly plant, butterfly orchid -n12074867 bee orchid, Ophrys apifera -n12075010 fly orchid, Ophrys insectifera, Ophrys muscifera -n12075151 spider orchid -n12075299 early spider orchid, Ophrys sphegodes -n12075830 Venus' slipper, Venus's slipper, Venus's shoe -n12076223 phaius -n12076577 moth orchid, moth plant -n12076852 butterfly plant, Phalaenopsis amabilis -n12077244 rattlesnake orchid -n12077944 lesser butterfly orchid, Platanthera bifolia, Habenaria bifolia -n12078172 greater butterfly orchid, Platanthera chlorantha, Habenaria chlorantha -n12078451 prairie white-fringed orchid, Platanthera leucophea -n12078747 tangle orchid -n12079120 Indian crocus -n12079523 pleurothallis -n12079963 pogonia -n12080395 butterfly orchid -n12080588 Psychopsis krameriana, Oncidium papilio kramerianum -n12080820 Psychopsis papilio, Oncidium papilio -n12081215 helmet orchid, greenhood -n12081649 foxtail orchid -n12082131 orange-blossom orchid, Sarcochilus falcatus -n12083113 sobralia -n12083591 ladies' tresses, lady's tresses -n12083847 screw augur, Spiranthes cernua -n12084158 hooded ladies' tresses, Spiranthes romanzoffiana -n12084400 western ladies' tresses, Spiranthes porrifolia -n12084555 European ladies' tresses, Spiranthes spiralis -n12084890 stanhopea -n12085267 stelis -n12085664 fly orchid -n12086012 vanda -n12086192 blue orchid, Vanda caerulea -n12086539 vanilla -n12086778 vanilla orchid, Vanilla planifolia -n12087961 yam, yam plant -n12088223 yam -n12088327 white yam, water yam, Dioscorea alata -n12088495 cinnamon vine, Chinese yam, Dioscorea batata -n12088909 elephant's-foot, tortoise plant, Hottentot bread vine, Hottentot's bread vine, Dioscorea elephantipes -n12089320 wild yam, Dioscorea paniculata -n12089496 cush-cush, Dioscorea trifida -n12089846 black bryony, black bindweed, Tamus communis -n12090890 primrose, primula -n12091213 English primrose, Primula vulgaris -n12091377 cowslip, paigle, Primula veris -n12091550 oxlip, paigle, Primula elatior -n12091697 Chinese primrose, Primula sinensis -n12091953 polyanthus, Primula polyantha -n12092262 pimpernel -n12092417 scarlet pimpernel, red pimpernel, poor man's weatherglass, Anagallis arvensis -n12092629 bog pimpernel, Anagallis tenella -n12092930 chaffweed, bastard pimpernel, false pimpernel -n12093329 cyclamen, Cyclamen purpurascens -n12093600 sowbread, Cyclamen hederifolium, Cyclamen neopolitanum -n12093885 sea milkwort, sea trifoly, black saltwort, Glaux maritima -n12094244 featherfoil, feather-foil -n12094401 water gillyflower, American featherfoil, Hottonia inflata -n12094612 water violet, Hottonia palustris -n12095020 loosestrife -n12095281 gooseneck loosestrife, Lysimachia clethroides Duby -n12095412 yellow pimpernel, Lysimachia nemorum -n12095543 fringed loosestrife, Lysimachia ciliatum -n12095647 moneywort, creeping Jenny, creeping Charlie, Lysimachia nummularia -n12095934 swamp candles, Lysimachia terrestris -n12096089 whorled loosestrife, Lysimachia quadrifolia -n12096395 water pimpernel -n12096563 brookweed, Samolus valerandii -n12096674 brookweed, Samolus parviflorus, Samolus floribundus -n12097396 coralberry, spiceberry, Ardisia crenata -n12097556 marlberry, Ardisia escallonoides, Ardisia paniculata -n12098403 plumbago -n12098524 leadwort, Plumbago europaea -n12098827 thrift -n12099342 sea lavender, marsh rosemary, statice -n12100187 barbasco, joewood, Jacquinia keyensis -n12101870 gramineous plant, graminaceous plant -n12102133 grass -n12103680 midgrass -n12103894 shortgrass, short-grass -n12104104 sword grass -n12104238 tallgrass, tall-grass -n12104501 herbage, pasturage -n12104734 goat grass, Aegilops triuncalis -n12105125 wheatgrass, wheat-grass -n12105353 crested wheatgrass, crested wheat grass, fairway crested wheat grass, Agropyron cristatum -n12105828 bearded wheatgrass, Agropyron subsecundum -n12105981 western wheatgrass, bluestem wheatgrass, Agropyron smithii -n12106134 intermediate wheatgrass, Agropyron intermedium, Elymus hispidus -n12106323 slender wheatgrass, Agropyron trachycaulum, Agropyron pauciflorum, Elymus trachycaulos -n12107002 velvet bent, velvet bent grass, brown bent, Rhode Island bent, dog bent, Agrostis canina -n12107191 cloud grass, Agrostis nebulosa -n12107710 meadow foxtail, Alopecurus pratensis -n12107970 foxtail, foxtail grass -n12108432 broom grass -n12108613 broom sedge, Andropogon virginicus -n12108871 tall oat grass, tall meadow grass, evergreen grass, false oat, French rye, Arrhenatherum elatius -n12109365 toetoe, toitoi, Arundo conspicua, Chionochloa conspicua -n12109827 oat -n12110085 cereal oat, Avena sativa -n12110236 wild oat, wild oat grass, Avena fatua -n12110352 slender wild oat, Avena barbata -n12110475 wild red oat, animated oat, Avene sterilis -n12110778 brome, bromegrass -n12111238 chess, cheat, Bromus secalinus -n12111627 field brome, Bromus arvensis -n12112008 grama, grama grass, gramma, gramma grass -n12112337 black grama, Bouteloua eriopoda -n12112609 buffalo grass, Buchloe dactyloides -n12112918 reed grass -n12113195 feather reed grass, feathertop, Calamagrostis acutiflora -n12113323 Australian reed grass, Calamagrostic quadriseta -n12113657 burgrass, bur grass -n12114010 buffel grass, Cenchrus ciliaris, Pennisetum cenchroides -n12114590 Rhodes grass, Chloris gayana -n12115180 pampas grass, Cortaderia selloana -n12116058 giant star grass, Cynodon plectostachyum -n12116429 orchard grass, cocksfoot, cockspur, Dactylis glomerata -n12116734 Egyptian grass, crowfoot grass, Dactyloctenium aegypticum -n12117017 crabgrass, crab grass, finger grass -n12117235 smooth crabgrass, Digitaria ischaemum -n12117326 large crabgrass, hairy finger grass, Digitaria sanguinalis -n12117695 barnyard grass, barn grass, barn millet, Echinochloa crusgalli -n12117912 Japanese millet, billion-dollar grass, Japanese barnyard millet, sanwa millet, Echinochloa frumentacea -n12118414 yardgrass, yard grass, wire grass, goose grass, Eleusine indica -n12118661 finger millet, ragi, ragee, African millet, coracan, corakan, kurakkan, Eleusine coracana -n12119099 lyme grass -n12119238 wild rye -n12119390 giant ryegrass, Elymus condensatus, Leymus condensatus -n12119539 sea lyme grass, European dune grass, Elymus arenarius, Leymus arenaria -n12119717 Canada wild rye, Elymus canadensis -n12120347 teff, teff grass, Eragrostis tef, Eragrostic abyssinica -n12120578 weeping love grass, African love grass, Eragrostis curvula -n12121033 plume grass -n12121187 Ravenna grass, wool grass, Erianthus ravennae -n12121610 fescue, fescue grass, meadow fescue, Festuca elatior -n12122442 reed meadow grass, Glyceria grandis -n12122725 velvet grass, Yorkshire fog, Holcus lanatus -n12122918 creeping soft grass, Holcus mollis -n12123648 barleycorn -n12123741 barley grass, wall barley, Hordeum murinum -n12124172 little barley, Hordeum pusillum -n12124627 rye grass, ryegrass -n12124818 perennial ryegrass, English ryegrass, Lolium perenne -n12125001 Italian ryegrass, Italian rye, Lolium multiflorum -n12125183 darnel, tare, bearded darnel, cheat, Lolium temulentum -n12125584 nimblewill, nimble Will, Muhlenbergia schreberi -n12126084 cultivated rice, Oryza sativa -n12126360 ricegrass, rice grass -n12126736 smilo, smilo grass, Oryzopsis miliacea -n12127460 switch grass, Panicum virgatum -n12127575 broomcorn millet, hog millet, Panicum miliaceum -n12127768 goose grass, Texas millet, Panicum Texanum -n12128071 dallisgrass, dallis grass, paspalum, Paspalum dilatatum -n12128306 Bahia grass, Paspalum notatum -n12128490 knotgrass, Paspalum distichum -n12129134 fountain grass, Pennisetum ruppelii, Pennisetum setaceum -n12129738 reed canary grass, gardener's garters, lady's laces, ribbon grass, Phalaris arundinacea -n12129986 canary grass, birdseed grass, Phalaris canariensis -n12130549 timothy, herd's grass, Phleum pratense -n12131405 bluegrass, blue grass -n12131550 meadowgrass, meadow grass -n12132092 wood meadowgrass, Poa nemoralis, Agrostis alba -n12132956 noble cane -n12133151 munj, munja, Saccharum bengalense, Saccharum munja -n12133462 broom beard grass, prairie grass, wire grass, Andropogon scoparius, Schizachyrium scoparium -n12133682 bluestem, blue stem, Andropogon furcatus, Andropogon gerardii -n12134025 rye, Secale cereale -n12134486 bristlegrass, bristle grass -n12134695 giant foxtail -n12134836 yellow bristlegrass, yellow bristle grass, yellow foxtail, glaucous bristlegrass, Setaria glauca -n12135049 green bristlegrass, green foxtail, rough bristlegrass, bottle-grass, bottle grass, Setaria viridis -n12135576 Siberian millet, Setaria italica rubrofructa -n12135729 German millet, golden wonder millet, Setaria italica stramineofructa -n12135898 millet -n12136392 rattan, rattan cane -n12136581 malacca -n12136720 reed -n12137120 sorghum -n12137569 grain sorghum -n12137791 durra, doura, dourah, Egyptian corn, Indian millet, Guinea corn -n12137954 feterita, federita, Sorghum vulgare caudatum -n12138110 hegari -n12138248 kaoliang -n12138444 milo, milo maize -n12138578 shallu, Sorghum vulgare rosburghii -n12139196 broomcorn, Sorghum vulgare technicum -n12139575 cordgrass, cord grass -n12139793 salt reed grass, Spartina cynosuroides -n12139921 prairie cordgrass, freshwater cordgrass, slough grass, Spartina pectinmata -n12140511 smut grass, blackseed, carpet grass, Sporobolus poiretii -n12140759 sand dropseed, Sporobolus cryptandrus -n12140903 rush grass, rush-grass -n12141167 St. Augustine grass, Stenotaphrum secundatum, buffalo grass -n12141385 grain -n12141495 cereal, cereal grass -n12142085 wheat -n12142357 wheat berry -n12142450 durum, durum wheat, hard wheat, Triticum durum, Triticum turgidum, macaroni wheat -n12143065 spelt, Triticum spelta, Triticum aestivum spelta -n12143215 emmer, starch wheat, two-grain spelt, Triticum dicoccum -n12143405 wild wheat, wild emmer, Triticum dicoccum dicoccoides -n12143676 corn, maize, Indian corn, Zea mays -n12144313 mealie -n12144580 corn -n12144987 dent corn, Zea mays indentata -n12145148 flint corn, flint maize, Yankee corn, Zea mays indurata -n12145477 popcorn, Zea mays everta -n12146311 zoysia -n12146488 Manila grass, Japanese carpet grass, Zoysia matrella -n12146654 Korean lawn grass, Japanese lawn grass, Zoysia japonica -n12147226 bamboo -n12147835 common bamboo, Bambusa vulgaris -n12148757 giant bamboo, kyo-chiku, Dendrocalamus giganteus -n12150722 umbrella plant, umbrella sedge, Cyperus alternifolius -n12150969 chufa, yellow nutgrass, earth almond, ground almond, rush nut, Cyperus esculentus -n12151170 galingale, galangal, Cyperus longus -n12151615 nutgrass, nut grass, nutsedge, nut sedge, Cyperus rotundus -n12152031 sand sedge, sand reed, Carex arenaria -n12152251 cypress sedge, Carex pseudocyperus -n12152532 cotton grass, cotton rush -n12152722 common cotton grass, Eriophorum angustifolium -n12153033 hardstem bulrush, hardstemmed bulrush, Scirpus acutus -n12153224 wool grass, Scirpus cyperinus -n12153580 spike rush -n12153741 water chestnut, Chinese water chestnut, Eleocharis dulcis -n12153914 needle spike rush, needle rush, slender spike rush, hair grass, Eleocharis acicularis -n12154114 creeping spike rush, Eleocharis palustris -n12154773 pandanus, screw pine -n12155009 textile screw pine, lauhala, Pandanus tectorius -n12155583 cattail -n12155773 cat's-tail, bullrush, bulrush, nailrod, reed mace, reedmace, Typha latifolia -n12156679 bur reed -n12156819 grain, caryopsis -n12157056 kernel -n12157179 rye -n12157769 gourd, gourd vine -n12158031 gourd -n12158443 pumpkin, pumpkin vine, autumn pumpkin, Cucurbita pepo -n12158798 squash, squash vine -n12159055 summer squash, summer squash vine, Cucurbita pepo melopepo -n12159388 yellow squash -n12159555 marrow, marrow squash, vegetable marrow -n12159804 zucchini, courgette -n12159942 cocozelle, Italian vegetable marrow -n12160125 cymling, pattypan squash -n12160303 spaghetti squash -n12160490 winter squash, winter squash plant -n12160857 acorn squash -n12161056 hubbard squash, Cucurbita maxima -n12161285 turban squash, Cucurbita maxima turbaniformis -n12161577 buttercup squash -n12161744 butternut squash, Cucurbita maxima -n12161969 winter crookneck, winter crookneck squash, Cucurbita moschata -n12162181 cushaw, Cucurbita mixta, Cucurbita argyrosperma -n12162425 prairie gourd, prairie gourd vine, Missouri gourd, wild pumpkin, buffalo gourd, calabazilla, Cucurbita foetidissima -n12162758 prairie gourd -n12163035 bryony, briony -n12163279 white bryony, devil's turnip, Bryonia alba -n12164363 sweet melon, muskmelon, sweet melon vine, Cucumis melo -n12164656 cantaloupe, cantaloup, cantaloupe vine, cantaloup vine, Cucumis melo cantalupensis -n12164881 winter melon, Persian melon, honeydew melon, winter melon vine, Cucumis melo inodorus -n12165170 net melon, netted melon, nutmeg melon, Cucumis melo reticulatus -n12165384 cucumber, cucumber vine, Cucumis sativus -n12165758 squirting cucumber, exploding cucumber, touch-me-not, Ecballium elaterium -n12166128 bottle gourd, calabash, Lagenaria siceraria -n12166424 luffa, dishcloth gourd, sponge gourd, rag gourd, strainer vine -n12166793 loofah, vegetable sponge, Luffa cylindrica -n12166929 angled loofah, sing-kwa, Luffa acutangula -n12167075 loofa, loofah, luffa, loufah sponge -n12167436 balsam apple, Momordica balsamina -n12167602 balsam pear, Momordica charantia -n12168565 lobelia -n12169099 water lobelia, Lobelia dortmanna -n12170585 mallow -n12171098 musk mallow, mus rose, Malva moschata -n12171316 common mallow, Malva neglecta -n12171966 okra, gumbo, okra plant, lady's-finger, Abelmoschus esculentus, Hibiscus esculentus -n12172364 okra -n12172481 abelmosk, musk mallow, Abelmoschus moschatus, Hibiscus moschatus -n12172906 flowering maple -n12173069 velvetleaf, velvet-leaf, velvetweed, Indian mallow, butter-print, China jute, Abutilon theophrasti -n12173664 hollyhock -n12173912 rose mallow, Alcea rosea, Althea rosea -n12174311 althea, althaea, hollyhock -n12174521 marsh mallow, white mallow, Althea officinalis -n12174926 poppy mallow -n12175181 fringed poppy mallow, Callirhoe digitata -n12175370 purple poppy mallow, Callirhoe involucrata -n12175598 clustered poppy mallow, Callirhoe triangulata -n12176453 sea island cotton, tree cotton, Gossypium barbadense -n12176709 Levant cotton, Gossypium herbaceum -n12176953 upland cotton, Gossypium hirsutum -n12177129 Peruvian cotton, Gossypium peruvianum -n12177455 wild cotton, Arizona wild cotton, Gossypium thurberi -n12178129 kenaf, kanaf, deccan hemp, bimli, bimli hemp, Indian hemp, Bombay hemp, Hibiscus cannabinus -n12178780 sorrel tree, Hibiscus heterophyllus -n12178896 rose mallow, swamp mallow, common rose mallow, swamp rose mallow, Hibiscus moscheutos -n12179122 cotton rose, Confederate rose, Confederate rose mallow, Hibiscus mutabilis -n12179632 roselle, rozelle, sorrel, red sorrel, Jamaica sorrel, Hibiscus sabdariffa -n12180168 mahoe, majagua, mahagua, balibago, purau, Hibiscus tiliaceus -n12180456 flower-of-an-hour, flowers-of-an-hour, bladder ketmia, black-eyed Susan, Hibiscus trionum -n12180885 lacebark, ribbonwood, houhere, Hoheria populnea -n12181352 wild hollyhock, Iliamna remota, Sphaeralcea remota -n12181612 mountain hollyhock, Iliamna ruvularis, Iliamna acerifolia -n12182049 seashore mallow -n12182276 salt marsh mallow, Kosteletzya virginica -n12183026 chaparral mallow, Malacothamnus fasciculatus, Sphaeralcea fasciculata -n12183452 malope, Malope trifida -n12183816 false mallow -n12184095 waxmallow, wax mallow, sleeping hibiscus -n12184468 glade mallow, Napaea dioica -n12184912 pavonia -n12185254 ribbon tree, ribbonwood, Plagianthus regius, Plagianthus betulinus -n12185859 bush hibiscus, Radyera farragei, Hibiscus farragei -n12186352 Virginia mallow, Sida hermaphrodita -n12186554 Queensland hemp, jellyleaf, Sida rhombifolia -n12186839 Indian mallow, Sida spinosa -n12187247 checkerbloom, wild hollyhock, Sidalcea malviflora -n12187663 globe mallow, false mallow -n12187891 prairie mallow, red false mallow, Sphaeralcea coccinea, Malvastrum coccineum -n12188289 tulipwood tree -n12188635 portia tree, bendy tree, seaside mahoe, Thespesia populnea -n12189429 red silk-cotton tree, simal, Bombax ceiba, Bombax malabarica -n12189779 cream-of-tartar tree, sour gourd, Adansonia gregorii -n12189987 baobab, monkey-bread tree, Adansonia digitata -n12190410 kapok, ceiba tree, silk-cotton tree, white silk-cotton tree, Bombay ceiba, God tree, Ceiba pentandra -n12190869 durian, durion, durian tree, Durio zibethinus -n12191240 Montezuma -n12192132 shaving-brush tree, Pseudobombax ellipticum -n12192877 quandong, quandong tree, Brisbane quandong, silver quandong tree, blue fig, Elaeocarpus grandis -n12193334 quandong, blue fig -n12193665 makomako, New Zealand wine berry, wineberry, Aristotelia serrata, Aristotelia racemosa -n12194147 Jamaican cherry, calabur tree, calabura, silk wood, silkwood, Muntingia calabura -n12194613 breakax, breakaxe, break-axe, Sloanea jamaicensis -n12195391 sterculia -n12195533 Panama tree, Sterculia apetala -n12195734 kalumpang, Java olives, Sterculia foetida -n12196129 bottle-tree, bottle tree -n12196336 flame tree, flame durrajong, Brachychiton acerifolius, Sterculia acerifolia -n12196527 flame tree, broad-leaved bottletree, Brachychiton australis -n12196694 kurrajong, currajong, Brachychiton populneus -n12196954 Queensland bottletree, narrow-leaved bottletree, Brachychiton rupestris, Sterculia rupestris -n12197359 kola, kola nut, kola nut tree, goora nut, Cola acuminata -n12197601 kola nut, cola nut -n12198286 Chinese parasol tree, Chinese parasol, Japanese varnish tree, phoenix tree, Firmiana simplex -n12198793 flannelbush, flannel bush, California beauty -n12199266 screw tree -n12199399 nut-leaved screw tree, Helicteres isora -n12199790 red beech, brown oak, booyong, crow's foot, stave wood, silky elm, Heritiera trifoliolata, Terrietia trifoliolata -n12199982 looking glass tree, Heritiera macrophylla -n12200143 looking-glass plant, Heritiera littoralis -n12200504 honey bell, honeybells, Hermannia verticillata, Mahernia verticillata -n12200905 mayeng, maple-leaved bayur, Pterospermum acerifolium -n12201331 silver tree, Tarrietia argyrodendron -n12201580 cacao, cacao tree, chocolate tree, Theobroma cacao -n12201938 obeche, obechi, arere, samba, Triplochiton scleroxcylon -n12202936 linden, linden tree, basswood, lime, lime tree -n12203529 American basswood, American lime, Tilia americana -n12203699 small-leaved linden, small-leaved lime, Tilia cordata -n12203896 white basswood, cottonwood, Tilia heterophylla -n12204032 Japanese linden, Japanese lime, Tilia japonica -n12204175 silver lime, silver linden, Tilia tomentosa -n12204730 corchorus -n12205460 African hemp, Sparmannia africana -n12205694 herb, herbaceous plant -n12214789 protea -n12215022 honeypot, king protea, Protea cynaroides -n12215210 honeyflower, honey-flower, Protea mellifera -n12215579 banksia -n12215824 honeysuckle, Australian honeysuckle, coast banksia, Banksia integrifolia -n12216215 smoke bush -n12216628 Chilean firebush, Chilean flameflower, Embothrium coccineum -n12216968 Chilean nut, Chile nut, Chile hazel, Chilean hazelnut, Guevina heterophylla, Guevina avellana -n12217453 grevillea -n12217851 red-flowered silky oak, Grevillea banksii -n12218274 silky oak, Grevillea robusta -n12218490 beefwood, Grevillea striata -n12218868 cushion flower, pincushion hakea, Hakea laurina -n12219668 rewa-rewa, New Zealand honeysuckle -n12220019 honeyflower, honey-flower, mountain devil, Lambertia formosa -n12220496 silver tree, Leucadendron argenteum -n12220829 lomatia -n12221191 macadamia, macadamia tree -n12221368 Macadamia integrifolia -n12221522 macadamia nut, macadamia nut tree, Macadamia ternifolia -n12221801 Queensland nut, Macadamia tetraphylla -n12222090 prickly ash, Orites excelsa -n12222493 geebung -n12222900 wheel tree, firewheel tree, Stenocarpus sinuatus -n12223160 scrub beefwood, beefwood, Stenocarpus salignus -n12223569 waratah, Telopea Oreades -n12223764 waratah, Telopea speciosissima -n12224978 casuarina -n12225222 she-oak -n12225349 beefwood -n12225563 Australian pine, Casuarina equisetfolia -n12226932 heath -n12227658 tree heath, briar, brier, Erica arborea -n12227909 briarroot -n12228229 winter heath, spring heath, Erica carnea -n12228387 bell heather, heather bell, fine-leaved heath, Erica cinerea -n12228689 Cornish heath, Erica vagans -n12228886 Spanish heath, Portuguese heath, Erica lusitanica -n12229111 Prince-of-Wales'-heath, Prince of Wales heath, Erica perspicua -n12229651 bog rosemary, moorwort, Andromeda glaucophylla -n12229887 marsh andromeda, common bog rosemary, Andromeda polifolia -n12230540 madrona, madrono, manzanita, Arbutus menziesii -n12230794 strawberry tree, Irish strawberry, Arbutus unedo -n12231192 bearberry -n12231709 alpine bearberry, black bearberry, Arctostaphylos alpina -n12232114 heartleaf manzanita, Arctostaphylos andersonii -n12232280 Parry manzanita, Arctostaphylos manzanita -n12232851 spike heath, Bruckenthalia spiculifolia -n12233249 bryanthus -n12234318 leatherleaf, Chamaedaphne calyculata -n12234669 Connemara heath, St. Dabeoc's heath, Daboecia cantabrica -n12235051 trailing arbutus, mayflower, Epigaea repens -n12235479 creeping snowberry, moxie plum, maidenhair berry, Gaultheria hispidula -n12236160 salal, shallon, Gaultheria shallon -n12236546 huckleberry -n12236768 black huckleberry, Gaylussacia baccata -n12236977 dangleberry, dangle-berry, Gaylussacia frondosa -n12237152 box huckleberry, Gaylussacia brachycera -n12237486 kalmia -n12237641 mountain laurel, wood laurel, American laurel, calico bush, Kalmia latifolia -n12237855 swamp laurel, bog laurel, bog kalmia, Kalmia polifolia -n12238756 trapper's tea, glandular Labrador tea -n12238913 wild rosemary, marsh tea, Ledum palustre -n12239240 sand myrtle, Leiophyllum buxifolium -n12239647 leucothoe -n12239880 dog laurel, dog hobble, switch-ivy, Leucothoe fontanesiana, Leucothoe editorum -n12240150 sweet bells, Leucothoe racemosa -n12240477 alpine azalea, mountain azalea, Loiseleuria procumbens -n12240965 staggerbush, stagger bush, Lyonia mariana -n12241192 maleberry, male berry, privet andromeda, he-huckleberry, Lyonia ligustrina -n12241426 fetterbush, fetter bush, shiny lyonia, Lyonia lucida -n12241880 false azalea, fool's huckleberry, Menziesia ferruginea -n12242123 minniebush, minnie bush, Menziesia pilosa -n12242409 sorrel tree, sourwood, titi, Oxydendrum arboreum -n12242850 mountain heath, Phyllodoce caerulea, Bryanthus taxifolius -n12243109 purple heather, Brewer's mountain heather, Phyllodoce breweri -n12243693 fetterbush, mountain fetterbush, mountain andromeda, Pieris floribunda -n12244153 rhododendron -n12244458 coast rhododendron, Rhododendron californicum -n12244650 rosebay, Rhododendron maxima -n12244819 swamp azalea, swamp honeysuckle, white honeysuckle, Rhododendron viscosum -n12245319 azalea -n12245695 cranberry -n12245885 American cranberry, large cranberry, Vaccinium macrocarpon -n12246037 European cranberry, small cranberry, Vaccinium oxycoccus -n12246232 blueberry, blueberry bush -n12246773 farkleberry, sparkleberry, Vaccinium arboreum -n12246941 low-bush blueberry, low blueberry, Vaccinium angustifolium, Vaccinium pennsylvanicum -n12247202 rabbiteye blueberry, rabbit-eye blueberry, rabbiteye, Vaccinium ashei -n12247407 dwarf bilberry, dwarf blueberry, Vaccinium caespitosum -n12247963 evergreen blueberry, Vaccinium myrsinites -n12248141 evergreen huckleberry, Vaccinium ovatum -n12248359 bilberry, thin-leaved bilberry, mountain blue berry, Viccinium membranaceum -n12248574 bilberry, whortleberry, whinberry, blaeberry, Viccinium myrtillus -n12248780 bog bilberry, bog whortleberry, moor berry, Vaccinium uliginosum alpinum -n12248941 dryland blueberry, dryland berry, Vaccinium pallidum -n12249122 grouseberry, grouse-berry, grouse whortleberry, Vaccinium scoparium -n12249294 deerberry, squaw huckleberry, Vaccinium stamineum -n12249542 cowberry, mountain cranberry, lingonberry, lingenberry, lingberry, foxberry, Vaccinium vitis-idaea -n12251001 diapensia -n12251278 galax, galaxy, wandflower, beetleweed, coltsfoot, Galax urceolata -n12251740 pyxie, pixie, pixy, Pyxidanthera barbulata -n12252168 shortia -n12252383 oconee bells, Shortia galacifolia -n12252866 Australian heath -n12253229 epacris -n12253487 common heath, Epacris impressa -n12253664 common heath, blunt-leaf heath, Epacris obtusifolia -n12253835 Port Jackson heath, Epacris purpurascens -n12254168 native cranberry, groundberry, ground-berry, cranberry heath, Astroloma humifusum, Styphelia humifusum -n12255225 pink fivecorner, Styphelia triflora -n12256112 wintergreen, pyrola -n12256325 false wintergreen, Pyrola americana, Pyrola rotundifolia americana -n12256522 lesser wintergreen, Pyrola minor -n12256708 wild lily of the valley, shinleaf, Pyrola elliptica -n12256920 wild lily of the valley, Pyrola rotundifolia -n12257570 pipsissewa, prince's pine -n12257725 love-in-winter, western prince's pine, Chimaphila umbellata, Chimaphila corymbosa -n12258101 one-flowered wintergreen, one-flowered pyrola, Moneses uniflora, Pyrola uniflora -n12258885 Indian pipe, waxflower, Monotropa uniflora -n12259316 pinesap, false beachdrops, Monotropa hypopithys -n12260799 beech, beech tree -n12261359 common beech, European beech, Fagus sylvatica -n12261571 copper beech, purple beech, Fagus sylvatica atropunicea, Fagus purpurea, Fagus sylvatica purpurea -n12261808 American beech, white beech, red beech, Fagus grandifolia, Fagus americana -n12262018 weeping beech, Fagus pendula, Fagus sylvatica pendula -n12262185 Japanese beech -n12262553 chestnut, chestnut tree -n12263038 American chestnut, American sweet chestnut, Castanea dentata -n12263204 European chestnut, sweet chestnut, Spanish chestnut, Castanea sativa -n12263410 Chinese chestnut, Castanea mollissima -n12263588 Japanese chestnut, Castanea crenata -n12263738 Allegheny chinkapin, eastern chinquapin, chinquapin, dwarf chestnut, Castanea pumila -n12263987 Ozark chinkapin, Ozark chinquapin, chinquapin, Castanea ozarkensis -n12264512 oak chestnut -n12264786 giant chinkapin, golden chinkapin, Chrysolepis chrysophylla, Castanea chrysophylla, Castanopsis chrysophylla -n12265083 dwarf golden chinkapin, Chrysolepis sempervirens -n12265394 tanbark oak, Lithocarpus densiflorus -n12265600 Japanese oak, Lithocarpus glabra, Lithocarpus glaber -n12266217 southern beech, evergreen beech -n12266528 myrtle beech, Nothofagus cuninghamii -n12266644 Coigue, Nothofagus dombeyi -n12266796 New Zealand beech -n12266984 silver beech, Nothofagus menziesii -n12267133 roble beech, Nothofagus obliqua -n12267265 rauli beech, Nothofagus procera -n12267411 black beech, Nothofagus solanderi -n12267534 hard beech, Nothofagus truncata -n12267677 acorn -n12267931 cupule, acorn cup -n12268246 oak, oak tree -n12269241 live oak -n12269406 coast live oak, California live oak, Quercus agrifolia -n12269652 white oak -n12270027 American white oak, Quercus alba -n12270278 Arizona white oak, Quercus arizonica -n12270460 swamp white oak, swamp oak, Quercus bicolor -n12270741 European turkey oak, turkey oak, Quercus cerris -n12270946 canyon oak, canyon live oak, maul oak, iron oak, Quercus chrysolepis -n12271187 scarlet oak, Quercus coccinea -n12271451 jack oak, northern pin oak, Quercus ellipsoidalis -n12271643 red oak -n12271933 southern red oak, swamp red oak, turkey oak, Quercus falcata -n12272239 Oregon white oak, Oregon oak, Garry oak, Quercus garryana -n12272432 holm oak, holm tree, holly-leaved oak, evergreen oak, Quercus ilex -n12272735 bear oak, Quercus ilicifolia -n12272883 shingle oak, laurel oak, Quercus imbricaria -n12273114 bluejack oak, turkey oak, Quercus incana -n12273344 California black oak, Quercus kelloggii -n12273515 American turkey oak, turkey oak, Quercus laevis -n12273768 laurel oak, pin oak, Quercus laurifolia -n12273939 California white oak, valley oak, valley white oak, roble, Quercus lobata -n12274151 overcup oak, Quercus lyrata -n12274358 bur oak, burr oak, mossy-cup oak, mossycup oak, Quercus macrocarpa -n12274630 scrub oak -n12274863 blackjack oak, blackjack, jack oak, Quercus marilandica -n12275131 swamp chestnut oak, Quercus michauxii -n12275317 Japanese oak, Quercus mongolica, Quercus grosseserrata -n12275489 chestnut oak -n12275675 chinquapin oak, chinkapin oak, yellow chestnut oak, Quercus muehlenbergii -n12275888 myrtle oak, seaside scrub oak, Quercus myrtifolia -n12276110 water oak, possum oak, Quercus nigra -n12276314 Nuttall oak, Nuttall's oak, Quercus nuttalli -n12276477 durmast, Quercus petraea, Quercus sessiliflora -n12276628 basket oak, cow oak, Quercus prinus, Quercus montana -n12276872 pin oak, swamp oak, Quercus palustris -n12277150 willow oak, Quercus phellos -n12277334 dwarf chinkapin oak, dwarf chinquapin oak, dwarf oak, Quercus prinoides -n12277578 common oak, English oak, pedunculate oak, Quercus robur -n12277800 northern red oak, Quercus rubra, Quercus borealis -n12278107 Shumard oak, Shumard red oak, Quercus shumardii -n12278371 post oak, box white oak, brash oak, iron oak, Quercus stellata -n12278650 cork oak, Quercus suber -n12278865 Spanish oak, Quercus texana -n12279060 huckleberry oak, Quercus vaccinifolia -n12279293 Chinese cork oak, Quercus variabilis -n12279458 black oak, yellow oak, quercitron, quercitron oak, Quercus velutina -n12279772 southern live oak, Quercus virginiana -n12280060 interior live oak, Quercus wislizenii, Quercus wizlizenii -n12280364 mast -n12281241 birch, birch tree -n12281788 yellow birch, Betula alleghaniensis, Betula leutea -n12281974 American white birch, paper birch, paperbark birch, canoe birch, Betula cordifolia, Betula papyrifera -n12282235 grey birch, gray birch, American grey birch, American gray birch, Betula populifolia -n12282527 silver birch, common birch, European white birch, Betula pendula -n12282737 downy birch, white birch, Betula pubescens -n12282933 black birch, river birch, red birch, Betula nigra -n12283147 sweet birch, cherry birch, black birch, Betula lenta -n12283395 Yukon white birch, Betula neoalaskana -n12283542 swamp birch, water birch, mountain birch, Western paper birch, Western birch, Betula fontinalis -n12283790 Newfoundland dwarf birch, American dwarf birch, Betula glandulosa -n12284262 alder, alder tree -n12284821 common alder, European black alder, Alnus glutinosa, Alnus vulgaris -n12285049 grey alder, gray alder, Alnus incana -n12285195 seaside alder, Alnus maritima -n12285369 white alder, mountain alder, Alnus rhombifolia -n12285512 red alder, Oregon alder, Alnus rubra -n12285705 speckled alder, Alnus rugosa -n12285900 smooth alder, hazel alder, Alnus serrulata -n12286068 green alder, Alnus veridis -n12286197 green alder, Alnus veridis crispa, Alnus crispa -n12286826 hornbeam -n12286988 European hornbeam, Carpinus betulus -n12287195 American hornbeam, Carpinus caroliniana -n12287642 hop hornbeam -n12287836 Old World hop hornbeam, Ostrya carpinifolia -n12288005 Eastern hop hornbeam, ironwood, ironwood tree, Ostrya virginiana -n12288823 hazelnut, hazel, hazelnut tree -n12289310 American hazel, Corylus americana -n12289433 cobnut, filbert, Corylus avellana, Corylus avellana grandis -n12289585 beaked hazelnut, Corylus cornuta -n12290748 centaury -n12290975 rosita, Centaurium calycosum -n12291143 lesser centaury, Centaurium minus -n12291459 seaside centaury -n12291671 slender centaury -n12291959 prairie gentian, tulip gentian, bluebell, Eustoma grandiflorum -n12292463 Persian violet, Exacum affine -n12292877 columbo, American columbo, deer's-ear, deer's-ears, pyramid plant, American gentian -n12293723 gentian -n12294124 gentianella, Gentiana acaulis -n12294331 closed gentian, blind gentian, bottle gentian, Gentiana andrewsii -n12294542 explorer's gentian, Gentiana calycosa -n12294723 closed gentian, blind gentian, Gentiana clausa -n12294871 great yellow gentian, Gentiana lutea -n12295033 marsh gentian, calathian violet, Gentiana pneumonanthe -n12295237 soapwort gentian, Gentiana saponaria -n12295429 striped gentian, Gentiana villosa -n12295796 agueweed, ague weed, five-flowered gentian, stiff gentian, Gentianella quinquefolia, Gentiana quinquefolia -n12296045 felwort, gentianella amarella -n12296432 fringed gentian -n12296735 Gentianopsis crinita, Gentiana crinita -n12296929 Gentianopsis detonsa, Gentiana detonsa -n12297110 Gentianopsid procera, Gentiana procera -n12297280 Gentianopsis thermalis, Gentiana thermalis -n12297507 tufted gentian, Gentianopsis holopetala, Gentiana holopetala -n12297846 spurred gentian -n12298165 sabbatia -n12299640 toothbrush tree, mustard tree, Salvadora persica -n12300840 olive tree -n12301180 olive, European olive tree, Olea europaea -n12301445 olive -n12301613 black maire, Olea cunninghamii -n12301766 white maire, Olea lanceolata -n12302071 fringe tree -n12302248 fringe bush, Chionanthus virginicus -n12302565 forestiera -n12303083 forsythia -n12303462 ash, ash tree -n12304115 white ash, Fraxinus Americana -n12304286 swamp ash, Fraxinus caroliniana -n12304420 flowering ash, Fraxinus cuspidata -n12304703 European ash, common European ash, Fraxinus excelsior -n12304899 Oregon ash, Fraxinus latifolia, Fraxinus oregona -n12305089 black ash, basket ash, brown ash, hoop ash, Fraxinus nigra -n12305293 manna ash, flowering ash, Fraxinus ornus -n12305475 red ash, downy ash, Fraxinus pennsylvanica -n12305654 green ash, Fraxinus pennsylvanica subintegerrima -n12305819 blue ash, Fraxinus quadrangulata -n12305986 mountain ash, Fraxinus texensis -n12306089 pumpkin ash, Fraxinus tomentosa -n12306270 Arizona ash, Fraxinus velutina -n12306717 jasmine -n12306938 primrose jasmine, Jasminum mesnyi -n12307076 winter jasmine, Jasminum nudiflorum -n12307240 common jasmine, true jasmine, jessamine, Jasminum officinale -n12307756 privet -n12308112 Amur privet, Ligustrum amurense -n12308447 Japanese privet, Ligustrum japonicum -n12308907 Ligustrum obtusifolium -n12309277 common privet, Ligustrum vulgare -n12309630 devilwood, American olive, Osmanthus americanus -n12310021 mock privet -n12310349 lilac -n12310638 Himalayan lilac, Syringa emodi -n12311045 Persian lilac, Syringa persica -n12311224 Japanese tree lilac, Syringa reticulata, Syringa amurensis japonica -n12311413 Japanese lilac, Syringa villosa -n12311579 common lilac, Syringa vulgaris -n12312110 bloodwort -n12312728 kangaroo paw, kangaroo's paw, kangaroo's-foot, kangaroo-foot plant, Australian sword lily, Anigozanthus manglesii -n12315060 Virginian witch hazel, Hamamelis virginiana -n12315245 vernal witch hazel, Hamamelis vernalis -n12315598 winter hazel, flowering hazel -n12315999 fothergilla, witch alder -n12316444 liquidambar -n12316572 sweet gum, sweet gum tree, bilsted, red gum, American sweet gum, Liquidambar styraciflua -n12317296 iron tree, iron-tree, ironwood, ironwood tree -n12318378 walnut, walnut tree -n12318782 California black walnut, Juglans californica -n12318965 butternut, butternut tree, white walnut, Juglans cinerea -n12319204 black walnut, black walnut tree, black hickory, Juglans nigra -n12319414 English walnut, English walnut tree, Circassian walnut, Persian walnut, Juglans regia -n12320010 hickory, hickory tree -n12320414 water hickory, bitter pecan, water bitternut, Carya aquatica -n12320627 pignut, pignut hickory, brown hickory, black hickory, Carya glabra -n12320806 bitternut, bitternut hickory, bitter hickory, bitter pignut, swamp hickory, Carya cordiformis -n12321077 pecan, pecan tree, Carya illinoensis, Carya illinoinsis -n12321395 big shellbark, big shellbark hickory, big shagbark, king nut, king nut hickory, Carya laciniosa -n12321669 nutmeg hickory, Carya myristicaeformis, Carya myristiciformis -n12321873 shagbark, shagbark hickory, shellbark, shellbark hickory, Carya ovata -n12322099 mockernut, mockernut hickory, black hickory, white-heart hickory, big-bud hickory, Carya tomentosa -n12322501 wing nut, wing-nut -n12322699 Caucasian walnut, Pterocarya fraxinifolia -n12323665 dhawa, dhava -n12324056 combretum -n12324222 hiccup nut, hiccough nut, Combretum bracteosum -n12324388 bush willow, Combretum appiculatum -n12324558 bush willow, Combretum erythrophyllum -n12324906 button tree, button mangrove, Conocarpus erectus -n12325234 white mangrove, Laguncularia racemosa -n12325787 oleaster -n12327022 water milfoil -n12327528 anchovy pear, anchovy pear tree, Grias cauliflora -n12327846 brazil nut, brazil-nut tree, Bertholletia excelsa -n12328398 loosestrife -n12328567 purple loosestrife, spiked loosestrife, Lythrum salicaria -n12328801 grass poly, hyssop loosestrife, Lythrum hyssopifolia -n12329260 crape myrtle, crepe myrtle, crepe flower, Lagerstroemia indica -n12329473 Queen's crape myrtle, pride-of-India, Lagerstroemia speciosa -n12330239 myrtaceous tree -n12330469 myrtle -n12330587 common myrtle, Myrtus communis -n12330891 bayberry, bay-rum tree, Jamaica bayberry, wild cinnamon, Pimenta acris -n12331066 allspice, allspice tree, pimento tree, Pimenta dioica -n12331263 allspice tree, Pimenta officinalis -n12331655 sour cherry, Eugenia corynantha -n12331788 nakedwood, Eugenia dicrana -n12332030 Surinam cherry, pitanga, Eugenia uniflora -n12332218 rose apple, rose-apple tree, jambosa, Eugenia jambos -n12332555 feijoa, feijoa bush -n12333053 jaboticaba, jaboticaba tree, Myrciaria cauliflora -n12333530 guava, true guava, guava bush, Psidium guajava -n12333771 guava, strawberry guava, yellow cattley guava, Psidium littorale -n12333961 cattley guava, purple strawberry guava, Psidium cattleianum, Psidium littorale longipes -n12334153 Brazilian guava, Psidium guineense -n12334293 gum tree, gum -n12334891 eucalyptus, eucalypt, eucalyptus tree -n12335483 flooded gum -n12335664 mallee -n12335800 stringybark -n12335937 smoothbark -n12336092 red gum, peppermint, peppermint gum, Eucalyptus amygdalina -n12336224 red gum, marri, Eucalyptus calophylla -n12336333 river red gum, river gum, Eucalyptus camaldulensis, Eucalyptus rostrata -n12336586 mountain swamp gum, Eucalyptus camphora -n12336727 snow gum, ghost gum, white ash, Eucalyptus coriacea, Eucalyptus pauciflora -n12336973 alpine ash, mountain oak, Eucalyptus delegatensis -n12337131 white mallee, congoo mallee, Eucalyptus dumosa -n12337246 white stringybark, thin-leaved stringybark, Eucalyptusd eugenioides -n12337391 white mountain ash, Eucalyptus fraxinoides -n12337617 blue gum, fever tree, Eucalyptus globulus -n12337800 rose gum, Eucalypt grandis -n12337922 cider gum, Eucalypt gunnii -n12338034 swamp gum, Eucalypt ovata -n12338146 spotted gum, Eucalyptus maculata -n12338258 lemon-scented gum, Eucalyptus citriodora, Eucalyptus maculata citriodora -n12338454 black mallee, black sally, black gum, Eucalytus stellulata -n12338655 forest red gum, Eucalypt tereticornis -n12338796 mountain ash, Eucalyptus regnans -n12338979 manna gum, Eucalyptus viminalis -n12339526 clove, clove tree, Syzygium aromaticum, Eugenia aromaticum, Eugenia caryophyllatum -n12339831 clove -n12340383 tupelo, tupelo tree -n12340581 water gum, Nyssa aquatica -n12340755 sour gum, black gum, pepperidge, Nyssa sylvatica -n12341542 enchanter's nightshade -n12341931 Circaea lutetiana -n12342299 willowherb -n12342498 fireweed, giant willowherb, rosebay willowherb, wickup, Epilobium angustifolium -n12342852 California fuchsia, humming bird's trumpet, Epilobium canum canum, Zauschneria californica -n12343480 fuchsia -n12343753 lady's-eardrop, ladies'-eardrop, lady's-eardrops, ladies'-eardrops, Fuchsia coccinea -n12344283 evening primrose -n12344483 common evening primrose, German rampion, Oenothera biennis -n12344700 sundrops, Oenothera fruticosa -n12344837 Missouri primrose, Ozark sundrops, Oenothera macrocarpa -n12345280 pomegranate, pomegranate tree, Punica granatum -n12345899 mangrove, Rhizophora mangle -n12346578 daphne -n12346813 garland flower, Daphne cneorum -n12346986 spurge laurel, wood laurel, Daphne laureola -n12347158 mezereon, February daphne, Daphne mezereum -n12349315 Indian rhododendron, Melastoma malabathricum -n12349711 Medinilla magnifica -n12350032 deer grass, meadow beauty -n12350758 canna -n12351091 achira, indian shot, arrowroot, Canna indica, Canna edulis -n12351790 arrowroot, American arrowroot, obedience plant, Maranta arundinaceae -n12352287 banana, banana tree -n12352639 dwarf banana, Musa acuminata -n12352844 Japanese banana, Musa basjoo -n12352990 plantain, plantain tree, Musa paradisiaca -n12353203 edible banana, Musa paradisiaca sapientum -n12353431 abaca, Manila hemp, Musa textilis -n12353754 Abyssinian banana, Ethiopian banana, Ensete ventricosum, Musa ensete -n12355760 ginger -n12356023 common ginger, Canton ginger, stem ginger, Zingiber officinale -n12356395 turmeric, Curcuma longa, Curcuma domestica -n12356960 galangal, Alpinia galanga -n12357485 shellflower, shall-flower, shell ginger, Alpinia Zerumbet, Alpinia speciosa, Languas speciosa -n12357968 grains of paradise, Guinea grains, Guinea pepper, melagueta pepper, Aframomum melegueta -n12358293 cardamom, cardamon, Elettaria cardamomum -n12360108 begonia -n12360534 fibrous-rooted begonia -n12360684 tuberous begonia -n12360817 rhizomatous begonia -n12360958 Christmas begonia, blooming-fool begonia, Begonia cheimantha -n12361135 angel-wing begonia, Begonia cocchinea -n12361560 beefsteak begonia, kidney begonia, Begonia erythrophylla, Begonia feastii -n12361754 star begonia, star-leaf begonia, Begonia heracleifolia -n12361946 rex begonia, king begonia, painted-leaf begonia, beefsteak geranium, Begonia rex -n12362274 wax begonia, Begonia semperflorens -n12362514 Socotra begonia, Begonia socotrana -n12362668 hybrid tuberous begonia, Begonia tuberhybrida -n12363301 dillenia -n12363768 guinea gold vine, guinea flower -n12364604 poon -n12364940 calaba, Santa Maria tree, Calophyllum calaba -n12365158 Maria, Calophyllum longifolium -n12365285 laurelwood, lancewood tree, Calophyllum candidissimum -n12365462 Alexandrian laurel, Calophyllum inophyllum -n12365900 clusia -n12366053 wild fig, Clusia flava -n12366186 waxflower, Clusia insignis -n12366313 pitch apple, strangler fig, Clusia rosea, Clusia major -n12366675 mangosteen, mangosteen tree, Garcinia mangostana -n12366870 gamboge tree, Garcinia hanburyi, Garcinia cambogia, Garcinia gummi-gutta -n12367611 St John's wort -n12368028 common St John's wort, tutsan, Hypericum androsaemum -n12368257 great St John's wort, Hypericum ascyron, Hypericum pyramidatum -n12368451 creeping St John's wort, Hypericum calycinum -n12369066 low St Andrew's cross, Hypericum hypericoides -n12369309 klammath weed, Hypericum perforatum -n12369476 shrubby St John's wort, Hypericum prolificum, Hypericum spathulatum -n12369665 St Peter's wort, Hypericum tetrapterum, Hypericum maculatum -n12369845 marsh St-John's wort, Hypericum virginianum -n12370174 mammee apple, mammee, mamey, mammee tree, Mammea americana -n12370549 rose chestnut, ironwood, ironwood tree, Mesua ferrea -n12371202 bower actinidia, tara vine, Actinidia arguta -n12371439 Chinese gooseberry, kiwi, kiwi vine, Actinidia chinensis, Actinidia deliciosa -n12371704 silvervine, silver vine, Actinidia polygama -n12372233 wild cinnamon, white cinnamon tree, Canella winterana, Canella-alba -n12373100 papaya, papaia, pawpaw, papaya tree, melon tree, Carica papaya -n12373739 souari, souari nut, souari tree, Caryocar nuciferum -n12374418 rockrose, rock rose -n12374705 white-leaved rockrose, Cistus albidus -n12374862 common gum cistus, Cistus ladanifer, Cistus ladanum -n12375769 frostweed, frost-weed, frostwort, Helianthemum canadense, Crocanthemum canadense -n12377198 dipterocarp -n12377494 red lauan, red lauan tree, Shorea teysmanniana -n12378249 governor's plum, governor plum, Madagascar plum, ramontchi, batoko palm, Flacourtia indica -n12378753 kei apple, kei apple bush, Dovyalis caffra -n12378963 ketembilla, kitembilla, kitambilla, ketembilla tree, Ceylon gooseberry, Dovyalis hebecarpa -n12379531 chaulmoogra, chaulmoogra tree, chaulmugra, Hydnocarpus kurzii, Taraktagenos kurzii, Taraktogenos kurzii -n12380761 wild peach, Kiggelaria africana -n12381511 candlewood -n12382233 boojum tree, cirio, Fouquieria columnaris, Idria columnaris -n12382875 bird's-eye bush, Ochna serrulata -n12383737 granadilla, purple granadillo, Passiflora edulis -n12383894 granadilla, sweet granadilla, Passiflora ligularis -n12384037 granadilla, giant granadilla, Passiflora quadrangularis -n12384227 maypop, Passiflora incarnata -n12384375 Jamaica honeysuckle, yellow granadilla, Passiflora laurifolia -n12384569 banana passion fruit, Passiflora mollissima -n12384680 sweet calabash, Passiflora maliformis -n12384839 love-in-a-mist, running pop, wild water lemon, Passiflora foetida -n12385429 reseda -n12385566 mignonette, sweet reseda, Reseda odorata -n12385830 dyer's rocket, dyer's mignonette, weld, Reseda luteola -n12386945 false tamarisk, German tamarisk, Myricaria germanica -n12387103 halophyte -n12387633 viola -n12387839 violet -n12388143 field pansy, heartsease, Viola arvensis -n12388293 American dog violet, Viola conspersa -n12388858 dog violet, heath violet, Viola canina -n12388989 horned violet, tufted pansy, Viola cornuta -n12389130 two-eyed violet, heartsease, Viola ocellata -n12389501 bird's-foot violet, pansy violet, Johnny-jump-up, wood violet, Viola pedata -n12389727 downy yellow violet, Viola pubescens -n12389932 long-spurred violet, Viola rostrata -n12390099 pale violet, striped violet, cream violet, Viola striata -n12390314 hedge violet, wood violet, Viola sylvatica, Viola reichenbachiana -n12392070 nettle -n12392549 stinging nettle, Urtica dioica -n12392765 Roman nettle, Urtica pipulifera -n12393269 ramie, ramee, Chinese silk plant, China grass, Boehmeria nivea -n12394118 wood nettle, Laportea canadensis -n12394328 Australian nettle, Australian nettle tree -n12394638 pellitory-of-the-wall, wall pellitory, pellitory, Parietaria difussa -n12395068 richweed, clearweed, dead nettle, Pilea pumilla -n12395289 artillery plant, Pilea microphylla -n12395463 friendship plant, panamica, panamiga, Pilea involucrata -n12395906 Queensland grass-cloth plant, Pipturus argenteus -n12396091 Pipturus albidus -n12396924 cannabis, hemp -n12397431 Indian hemp, Cannabis indica -n12399132 mulberry, mulberry tree -n12399384 white mulberry, Morus alba -n12399534 black mulberry, Morus nigra -n12399656 red mulberry, Morus rubra -n12399899 osage orange, bow wood, mock orange, Maclura pomifera -n12400489 breadfruit, breadfruit tree, Artocarpus communis, Artocarpus altilis -n12400720 jackfruit, jackfruit tree, Artocarpus heterophyllus -n12400924 marang, marang tree, Artocarpus odoratissima -n12401335 fig tree -n12401684 fig, common fig, common fig tree, Ficus carica -n12401893 caprifig, Ficus carica sylvestris -n12402051 golden fig, Florida strangler fig, strangler fig, wild fig, Ficus aurea -n12402348 banyan, banyan tree, banian, banian tree, Indian banyan, East Indian fig tree, Ficus bengalensis -n12402596 pipal, pipal tree, pipul, peepul, sacred fig, bo tree, Ficus religiosa -n12402840 India-rubber tree, India-rubber plant, India-rubber fig, rubber plant, Assam rubber, Ficus elastica -n12403075 mistletoe fig, mistletoe rubber plant, Ficus diversifolia, Ficus deltoidea -n12403276 Port Jackson fig, rusty rig, little-leaf fig, Botany Bay fig, Ficus rubiginosa -n12403513 sycamore, sycamore fig, mulberry fig, Ficus sycomorus -n12403994 paper mulberry, Broussonetia papyrifera -n12404729 trumpetwood, trumpet-wood, trumpet tree, snake wood, imbauba, Cecropia peltata -n12405714 elm, elm tree -n12406304 winged elm, wing elm, Ulmus alata -n12406488 American elm, white elm, water elm, rock elm, Ulmus americana -n12406715 smooth-leaved elm, European field elm, Ulmus carpinifolia -n12406902 cedar elm, Ulmus crassifolia -n12407079 witch elm, wych elm, Ulmus glabra -n12407222 Dutch elm, Ulmus hollandica -n12407396 Huntingdon elm, Ulmus hollandica vegetata -n12407545 water elm, Ulmus laevis -n12407715 Chinese elm, Ulmus parvifolia -n12407890 English elm, European elm, Ulmus procera -n12408077 Siberian elm, Chinese elm, dwarf elm, Ulmus pumila -n12408280 slippery elm, red elm, Ulmus rubra -n12408466 Jersey elm, guernsey elm, wheately elm, Ulmus sarniensis, Ulmus campestris sarniensis, Ulmus campestris wheatleyi -n12408717 September elm, red elm, Ulmus serotina -n12408873 rock elm, Ulmus thomasii -n12409231 hackberry, nettle tree -n12409470 European hackberry, Mediterranean hackberry, Celtis australis -n12409651 American hackberry, Celtis occidentalis -n12409840 sugarberry, Celtis laevigata -n12411461 iridaceous plant -n12412355 bearded iris -n12412606 beardless iris -n12412987 orrisroot, orris -n12413165 dwarf iris, Iris cristata -n12413301 Dutch iris, Iris filifolia -n12413419 Florentine iris, orris, Iris germanica florentina, Iris florentina -n12413642 stinking iris, gladdon, gladdon iris, stinking gladwyn, roast beef plant, Iris foetidissima -n12413880 German iris, Iris germanica -n12414035 Japanese iris, Iris kaempferi -n12414159 German iris, Iris kochii -n12414329 Dalmatian iris, Iris pallida -n12414449 Persian iris, Iris persica -n12414818 Dutch iris, Iris tingitana -n12414932 dwarf iris, vernal iris, Iris verna -n12415595 Spanish iris, xiphium iris, Iris xiphium -n12416073 blackberry-lily, leopard lily, Belamcanda chinensis -n12416423 crocus -n12416703 saffron, saffron crocus, Crocus sativus -n12417836 corn lily -n12418221 blue-eyed grass -n12418507 wandflower, Sparaxis tricolor -n12419037 amaryllis -n12419878 salsilla, Bomarea edulis -n12420124 salsilla, Bomarea salsilla -n12420535 blood lily -n12420722 Cape tulip, Haemanthus coccineus -n12421137 hippeastrum, Hippeastrum puniceum -n12421467 narcissus -n12421683 daffodil, Narcissus pseudonarcissus -n12421917 jonquil, Narcissus jonquilla -n12422129 jonquil -n12422559 Jacobean lily, Aztec lily, Strekelia formosissima -n12425281 liliaceous plant -n12426623 mountain lily, Lilium auratum -n12426749 Canada lily, wild yellow lily, meadow lily, wild meadow lily, Lilium canadense -n12427184 tiger lily, leopard lily, pine lily, Lilium catesbaei -n12427391 Columbia tiger lily, Oregon lily, Lilium columbianum -n12427566 tiger lily, devil lily, kentan, Lilium lancifolium -n12427757 Easter lily, Bermuda lily, white trumpet lily, Lilium longiflorum -n12427946 coast lily, Lilium maritinum -n12428076 Turk's-cap, martagon, Lilium martagon -n12428242 Michigan lily, Lilium michiganense -n12428412 leopard lily, panther lily, Lilium pardalinum -n12428747 Turk's-cap, Turk's cap-lily, Lilium superbum -n12429352 African lily, African tulip, blue African lily, Agapanthus africanus -n12430198 colicroot, colic root, crow corn, star grass, unicorn root -n12430471 ague root, ague grass, Aletris farinosa -n12430675 yellow colicroot, Aletris aurea -n12431434 alliaceous plant -n12432069 Hooker's onion, Allium acuminatum -n12432356 wild leek, Levant garlic, kurrat, Allium ampeloprasum -n12432574 Canada garlic, meadow leek, rose leek, Allium canadense -n12432707 keeled garlic, Allium carinatum -n12433081 onion -n12433178 shallot, eschalot, multiplier onion, Allium cepa aggregatum, Allium ascalonicum -n12433769 nodding onion, nodding wild onion, lady's leek, Allium cernuum -n12433952 Welsh onion, Japanese leek, Allium fistulosum -n12434106 red-skinned onion, Allium haematochiton -n12434483 daffodil garlic, flowering onion, Naples garlic, Allium neopolitanum -n12434634 few-flowered leek, Allium paradoxum -n12434775 garlic, Allium sativum -n12434985 sand leek, giant garlic, Spanish garlic, rocambole, Allium scorodoprasum -n12435152 chives, chive, cive, schnittlaugh, Allium schoenoprasum -n12435486 crow garlic, false garlic, field garlic, stag's garlic, wild garlic, Allium vineale -n12435649 wild garlic, wood garlic, Ramsons, Allium ursinum -n12435777 garlic chive, Chinese chive, Oriental garlic, Allium tuberosum -n12435965 round-headed leek, Allium sphaerocephalum -n12436090 three-cornered leek, triquetrous leek, Allium triquetrum -n12436907 cape aloe, Aloe ferox -n12437513 kniphofia, tritoma, flame flower, flame-flower, flameflower -n12437769 poker plant, Kniphofia uvaria -n12437930 red-hot poker, Kniphofia praecox -n12439154 fly poison, Amianthum muscaetoxicum, Amianthum muscitoxicum -n12439830 amber lily, Anthericum torreyi -n12441183 asparagus, edible asparagus, Asparagus officinales -n12441390 asparagus fern, Asparagus setaceous, Asparagus plumosus -n12441552 smilax, Asparagus asparagoides -n12441958 asphodel -n12442548 Jacob's rod -n12443323 aspidistra, cast-iron plant, bar-room plant, Aspidistra elatio -n12443736 coral drops, Bessera elegans -n12444095 Christmas bells -n12444898 climbing onion, Bowiea volubilis -n12446200 mariposa, mariposa tulip, mariposa lily -n12446519 globe lily, fairy lantern -n12446737 cat's-ear -n12446908 white globe lily, white fairy lantern, Calochortus albus -n12447121 yellow globe lily, golden fairy lantern, Calochortus amabilis -n12447346 rose globe lily, Calochortus amoenus -n12447581 star tulip, elegant cat's ears, Calochortus elegans -n12447891 desert mariposa tulip, Calochortus kennedyi -n12448136 yellow mariposa tulip, Calochortus luteus -n12448361 sagebrush mariposa tulip, Calochortus macrocarpus -n12448700 sego lily, Calochortus nuttallii -n12449296 camas, camass, quamash, camosh, camash -n12449526 common camas, Camassia quamash -n12449784 Leichtlin's camas, Camassia leichtlinii -n12449934 wild hyacinth, indigo squill, Camassia scilloides -n12450344 dogtooth violet, dogtooth, dog's-tooth violet -n12450607 white dogtooth violet, white dog's-tooth violet, blonde lilian, Erythronium albidum -n12450840 yellow adder's tongue, trout lily, amberbell, Erythronium americanum -n12451070 European dogtooth, Erythronium dens-canis -n12451240 fawn lily, Erythronium californicum -n12451399 glacier lily, snow lily, Erythronium grandiflorum -n12451566 avalanche lily, Erythronium montanum -n12451915 fritillary, checkered lily -n12452256 mission bells, rice-grain fritillary, Fritillaria affinis, Fritillaria lanceolata, Fritillaria mutica -n12452480 mission bells, black fritillary, Fritillaria biflora -n12452673 stink bell, Fritillaria agrestis -n12452836 crown imperial, Fritillaria imperialis -n12453018 white fritillary, Fritillaria liliaceae -n12453186 snake's head fritillary, guinea-hen flower, checkered daffodil, leper lily, Fritillaria meleagris -n12453714 adobe lily, pink fritillary, Fritillaria pluriflora -n12453857 scarlet fritillary, Fritillaria recurva -n12454159 tulip -n12454436 dwarf tulip, Tulipa armena, Tulipa suaveolens -n12454556 lady tulip, candlestick tulip, Tulipa clusiana -n12454705 Tulipa gesneriana -n12454793 cottage tulip -n12454949 Darwin tulip -n12455950 gloriosa, glory lily, climbing lily, creeping lily, Gloriosa superba -n12457091 lemon lily, Hemerocallis lilio-asphodelus, Hemerocallis flava -n12458550 common hyacinth, Hyacinthus orientalis -n12458713 Roman hyacinth, Hyacinthus orientalis albulus -n12458874 summer hyacinth, cape hyacinth, Hyacinthus candicans, Galtonia candicans -n12459629 star-of-Bethlehem -n12460146 bath asparagus, Prussian asparagus, Ornithogalum pyrenaicum -n12460697 grape hyacinth -n12460957 common grape hyacinth, Muscari neglectum -n12461109 tassel hyacinth, Muscari comosum -n12461466 scilla, squill -n12461673 spring squill, Scilla verna, sea onion -n12462032 false asphodel -n12462221 Scotch asphodel, Tofieldia pusilla -n12462582 sea squill, sea onion, squill, Urginea maritima -n12462805 squill -n12463134 butcher's broom, Ruscus aculeatus -n12463743 bog asphodel -n12463975 European bog asphodel, Narthecium ossifragum -n12464128 American bog asphodel, Narthecium americanum -n12464476 hellebore, false hellebore -n12464649 white hellebore, American hellebore, Indian poke, bugbane, Veratrum viride -n12465557 squaw grass, bear grass, Xerophyllum tenax -n12466727 death camas, zigadene -n12467018 alkali grass, Zigadenus elegans -n12467197 white camas, Zigadenus glaucus -n12467433 poison camas, Zigadenus nuttalli -n12467592 grassy death camas, Zigadenus venenosus, Zigadenus venenosus gramineus -n12468545 prairie wake-robin, prairie trillium, Trillium recurvatum -n12468719 dwarf-white trillium, snow trillium, early wake-robin -n12469517 herb Paris, Paris quadrifolia -n12470092 sarsaparilla -n12470512 bullbrier, greenbrier, catbrier, horse brier, horse-brier, brier, briar, Smilax rotundifolia -n12470907 rough bindweed, Smilax aspera -n12472024 clintonia, Clinton's lily -n12473608 false lily of the valley, Maianthemum canadense -n12473840 false lily of the valley, Maianthemum bifolium -n12474167 Solomon's-seal -n12474418 great Solomon's-seal, Polygonatum biflorum, Polygonatum commutatum -n12475035 bellwort, merry bells, wild oats -n12475242 strawflower, cornflower, Uvularia grandiflora -n12475774 pia, Indian arrowroot, Tacca leontopetaloides, Tacca pinnatifida -n12476510 agave, century plant, American aloe -n12477163 American agave, Agave americana -n12477401 sisal, Agave sisalana -n12477583 maguey, cantala, Agave cantala -n12477747 maguey, Agave atrovirens -n12477983 Agave tequilana -n12478768 cabbage tree, grass tree, Cordyline australis -n12479537 dracaena -n12480456 tuberose, Polianthes tuberosa -n12480895 sansevieria, bowstring hemp -n12481150 African bowstring hemp, African hemp, Sansevieria guineensis -n12481289 Ceylon bowstring hemp, Sansevieria zeylanica -n12481458 mother-in-law's tongue, snake plant, Sansevieria trifasciata -n12482437 Spanish bayonet, Yucca aloifolia -n12482668 Spanish bayonet, Yucca baccata -n12482893 Joshua tree, Yucca brevifolia -n12483282 soapweed, soap-weed, soap tree, Yucca elata -n12483427 Adam's needle, Adam's needle-and-thread, spoonleaf yucca, needle palm, Yucca filamentosa -n12483625 bear grass, Yucca glauca -n12483841 Spanish dagger, Yucca gloriosa -n12484244 Our Lord's candle, Yucca whipplei -n12484784 water shamrock, buckbean, bogbean, bog myrtle, marsh trefoil, Menyanthes trifoliata -n12485653 butterfly bush, buddleia -n12485981 yellow jasmine, yellow jessamine, Carolina jasmine, evening trumpet flower, Gelsemium sempervirens -n12486574 flax -n12487058 calabar bean, ordeal bean -n12488454 bonduc, bonduc tree, Caesalpinia bonduc, Caesalpinia bonducella -n12488709 divi-divi, Caesalpinia coriaria -n12489046 Mysore thorn, Caesalpinia decapetala, Caesalpinia sepiaria -n12489676 brazilian ironwood, Caesalpinia ferrea -n12489815 bird of paradise, poinciana, Caesalpinia gilliesii, Poinciana gilliesii -n12490490 shingle tree, Acrocarpus fraxinifolius -n12491017 mountain ebony, orchid tree, Bauhinia variegata -n12491435 msasa, Brachystegia speciformis -n12491826 cassia -n12492106 golden shower tree, drumstick tree, purging cassia, pudding pipe tree, canafistola, canafistula, Cassia fistula -n12492460 pink shower, pink shower tree, horse cassia, Cassia grandis -n12492682 rainbow shower, Cassia javonica -n12492900 horse cassia, Cassia roxburghii, Cassia marginata -n12493208 carob, carob tree, carob bean tree, algarroba, Ceratonia siliqua -n12493426 carob, carob bean, algarroba bean, algarroba, locust bean, locust pod -n12493868 paloverde -n12494794 royal poinciana, flamboyant, flame tree, peacock flower, Delonix regia, Poinciana regia -n12495146 locust tree, locust -n12495670 water locust, swamp locust, Gleditsia aquatica -n12495895 honey locust, Gleditsia triacanthos -n12496427 Kentucky coffee tree, bonduc, chicot, Gymnocladus dioica -n12496949 logwood, logwood tree, campeachy, bloodwood tree, Haematoxylum campechianum -n12497669 Jerusalem thorn, horsebean, Parkinsonia aculeata -n12498055 palo verde, Parkinsonia florida, Cercidium floridum -n12498457 Dalmatian laburnum, Petteria ramentacea, Cytisus ramentaceus -n12499163 senna -n12499757 avaram, tanner's cassia, Senna auriculata, Cassia auriculata -n12499979 Alexandria senna, Alexandrian senna, true senna, tinnevelly senna, Indian senna, Senna alexandrina, Cassia acutifolia, Cassia augustifolia -n12500309 wild senna, Senna marilandica, Cassia marilandica -n12500518 sicklepod, Senna obtusifolia, Cassia tora -n12500751 coffee senna, mogdad coffee, styptic weed, stinking weed, Senna occidentalis, Cassia occidentalis -n12501202 tamarind, tamarind tree, tamarindo, Tamarindus indica -n12504570 false indigo, bastard indigo, Amorpha californica -n12504783 false indigo, bastard indigo, Amorpha fruticosa -n12505253 hog peanut, wild peanut, Amphicarpaea bracteata, Amphicarpa bracteata -n12506181 angelim, andelmin -n12506341 cabbage bark, cabbage-bark tree, cabbage tree, Andira inermis -n12506991 kidney vetch, Anthyllis vulneraria -n12507379 groundnut, groundnut vine, Indian potato, potato bean, wild bean, Apios americana, Apios tuberosa -n12507823 rooibos, Aspalathus linearis, Aspalathus cedcarbergensis -n12508309 milk vetch, milk-vetch -n12508618 alpine milk vetch, Astragalus alpinus -n12508762 purple milk vetch, Astragalus danicus -n12509109 camwood, African sandalwood, Baphia nitida -n12509476 wild indigo, false indigo -n12509665 blue false indigo, Baptisia australis -n12509821 white false indigo, Baptisia lactea -n12509993 indigo broom, horsefly weed, rattle weed, Baptisia tinctoria -n12510343 dhak, dak, palas, Butea frondosa, Butea monosperma -n12510774 pigeon pea, pigeon-pea plant, cajan pea, catjang pea, red gram, dhal, dahl, Cajanus cajan -n12511488 sword bean, Canavalia gladiata -n12511856 pea tree, caragana -n12512095 Siberian pea tree, Caragana arborescens -n12512294 Chinese pea tree, Caragana sinica -n12512674 Moreton Bay chestnut, Australian chestnut -n12513172 butterfly pea, Centrosema virginianum -n12513613 Judas tree, love tree, Circis siliquastrum -n12513933 redbud, Cercis canadensis -n12514138 western redbud, California redbud, Cercis occidentalis -n12514592 tagasaste, Chamaecytisus palmensis, Cytesis proliferus -n12514992 weeping tree broom -n12515393 flame pea -n12515711 chickpea, chickpea plant, Egyptian pea, Cicer arietinum -n12515925 chickpea, garbanzo -n12516165 Kentucky yellowwood, gopherwood, Cladrastis lutea, Cladrastis kentukea -n12516584 glory pea, clianthus -n12516828 desert pea, Sturt pea, Sturt's desert pea, Clianthus formosus, Clianthus speciosus -n12517077 parrot's beak, parrot's bill, Clianthus puniceus -n12517445 butterfly pea, Clitoria mariana -n12517642 blue pea, butterfly pea, Clitoria turnatea -n12518013 telegraph plant, semaphore plant, Codariocalyx motorius, Desmodium motorium, Desmodium gyrans -n12518481 bladder senna, Colutea arborescens -n12519089 axseed, crown vetch, Coronilla varia -n12519563 crotalaria, rattlebox -n12520406 guar, cluster bean, Cyamopsis tetragonolobus, Cyamopsis psoraloides -n12521186 white broom, white Spanish broom, Cytisus albus, Cytisus multiflorus -n12521394 common broom, Scotch broom, green broom, Cytisus scoparius -n12522188 rosewood, rosewood tree -n12522678 Indian blackwood, East Indian rosewood, East India rosewood, Indian rosewood, Dalbergia latifolia -n12522894 sissoo, sissu, sisham, Dalbergia sissoo -n12523141 kingwood, kingwood tree, Dalbergia cearensis -n12523475 Brazilian rosewood, caviuna wood, jacaranda, Dalbergia nigra -n12523850 cocobolo, Dalbergia retusa -n12524188 blackwood, blackwood tree -n12525168 bitter pea -n12525513 derris -n12525753 derris root, tuba root, Derris elliptica -n12526178 prairie mimosa, prickle-weed, Desmanthus ilinoensis -n12526516 tick trefoil, beggar lice, beggar's lice -n12526754 beggarweed, Desmodium tortuosum, Desmodium purpureum -n12527081 Australian pea, Dipogon lignosus, Dolichos lignosus -n12527738 coral tree, erythrina -n12528109 kaffir boom, Cape kafferboom, Erythrina caffra -n12528382 coral bean tree, Erythrina corallodendrum -n12528549 ceibo, crybaby tree, cry-baby tree, common coral tree, Erythrina crista-galli -n12528768 kaffir boom, Transvaal kafferboom, Erythrina lysistemon -n12528974 Indian coral tree, Erythrina variegata, Erythrina Indica -n12529220 cork tree, Erythrina vespertilio -n12529500 goat's rue, goat rue, Galega officinalis -n12529905 poison bush, poison pea, gastrolobium -n12530629 Spanish broom, Spanish gorse, Genista hispanica -n12530818 woodwaxen, dyer's greenweed, dyer's-broom, dyeweed, greenweed, whin, woadwaxen, Genista tinctoria -n12531328 chanar, chanal, Geoffroea decorticans -n12531727 gliricidia -n12532564 soy, soybean, soya bean -n12532886 licorice, liquorice, Glycyrrhiza glabra -n12533190 wild licorice, wild liquorice, American licorice, American liquorice, Glycyrrhiza lepidota -n12533437 licorice root -n12534208 Western Australia coral pea, Hardenbergia comnptoniana -n12534625 sweet vetch, Hedysarum boreale -n12534862 French honeysuckle, sulla, Hedysarum coronarium -n12536291 anil, Indigofera suffruticosa, Indigofera anil -n12537253 scarlet runner, running postman, Kennedia prostrata -n12537569 hyacinth bean, bonavist, Indian bean, Egyptian bean, Lablab purpureus, Dolichos lablab -n12538209 Scotch laburnum, Alpine golden chain, Laburnum alpinum -n12539074 vetchling -n12539306 wild pea -n12539832 everlasting pea -n12540250 beach pea, sea pea, Lathyrus maritimus, Lathyrus japonicus -n12540647 grass vetch, grass vetchling, Lathyrus nissolia -n12540966 marsh pea, Lathyrus palustris -n12541157 common vetchling, meadow pea, yellow vetchling, Lathyrus pratensis -n12541403 grass pea, Indian pea, khesari, Lathyrus sativus -n12542043 Tangier pea, Tangier peavine, Lalthyrus tingitanus -n12542240 heath pea, earth-nut pea, earthnut pea, tuberous vetch, Lathyrus tuberosus -n12543186 bicolor lespediza, ezo-yama-hagi, Lespedeza bicolor -n12543455 japanese clover, japan clover, jap clover, Lespedeza striata -n12543639 Korean lespedeza, Lespedeza stipulacea -n12543826 sericea lespedeza, Lespedeza sericea, Lespedeza cuneata -n12544240 lentil, lentil plant, Lens culinaris -n12544539 lentil -n12545232 prairie bird's-foot trefoil, compass plant, prairie lotus, prairie trefoil, Lotus americanus -n12545635 bird's foot trefoil, bird's foot clover, babies' slippers, bacon and eggs, Lotus corniculatus -n12545865 winged pea, asparagus pea, Lotus tetragonolobus -n12546183 lupine, lupin -n12546420 white lupine, field lupine, wolf bean, Egyptian lupine, Lupinus albus -n12546617 tree lupine, Lupinus arboreus -n12546962 wild lupine, sundial lupine, Indian beet, old-maid's bonnet, Lupinus perennis -n12547215 bluebonnet, buffalo clover, Texas bluebonnet, Lupinus subcarnosus -n12547503 Texas bluebonnet, Lupinus texensis -n12548280 medic, medick, trefoil -n12548564 moon trefoil, Medicago arborea -n12548804 sickle alfalfa, sickle lucerne, sickle medick, Medicago falcata -n12549005 Calvary clover, Medicago intertexta, Medicago echinus -n12549192 black medick, hop clover, yellow trefoil, nonesuch clover, Medicago lupulina -n12549420 alfalfa, lucerne, Medicago sativa -n12549799 millettia -n12550210 mucuna -n12550408 cowage, velvet bean, Bengal bean, Benghal bean, Florida bean, Mucuna pruriens utilis, Mucuna deeringiana, Mucuna aterrima, Stizolobium deeringiana -n12551173 tolu tree, tolu balsam tree, Myroxylon balsamum, Myroxylon toluiferum -n12551457 Peruvian balsam, Myroxylon pereirae, Myroxylon balsamum pereirae -n12552309 sainfoin, sanfoin, holy clover, esparcet, Onobrychis viciifolia, Onobrychis viciaefolia -n12552893 restharrow, rest-harrow, Ononis repens -n12553742 bead tree, jumby bean, jumby tree, Ormosia monosperma -n12554029 jumby bead, jumbie bead, Ormosia coarctata -n12554526 locoweed, crazyweed, crazy weed -n12554729 purple locoweed, purple loco, Oxytropis lambertii -n12554911 tumbleweed -n12555255 yam bean, Pachyrhizus erosus -n12555859 shamrock pea, Parochetus communis -n12556656 pole bean -n12557064 kidney bean, frijol, frijole -n12557438 haricot -n12557556 wax bean -n12557681 scarlet runner, scarlet runner bean, Dutch case-knife bean, runner bean, Phaseolus coccineus, Phaseolus multiflorus -n12558230 lima bean, lima bean plant, Phaseolus limensis -n12558425 sieva bean, butter bean, butter-bean plant, lima bean, Phaseolus lunatus -n12558680 tepary bean, Phaseolus acutifolius latifolius -n12559044 chaparral pea, stingaree-bush, Pickeringia montana -n12559518 Jamaica dogwood, fish fuddle, Piscidia piscipula, Piscidia erythrina -n12560282 pea -n12560621 garden pea -n12560775 edible-pod pea, edible-podded pea, Pisum sativum macrocarpon -n12561169 sugar snap pea, snap pea -n12561309 field pea, field-pea plant, Austrian winter pea, Pisum sativum arvense, Pisum arvense -n12561594 field pea -n12562141 common flat pea, native holly, Playlobium obtusangulum -n12562577 quira -n12562785 roble, Platymiscium trinitatis -n12563045 Panama redwood tree, Panama redwood, Platymiscium pinnatum -n12563702 Indian beech, Pongamia glabra -n12564083 winged bean, winged pea, goa bean, goa bean vine, Manila bean, Psophocarpus tetragonolobus -n12564613 breadroot, Indian breadroot, pomme blanche, pomme de prairie, Psoralea esculenta -n12565102 bloodwood tree, kiaat, Pterocarpus angolensis -n12565912 kino, Pterocarpus marsupium -n12566331 red sandalwood, red sanders, red sanderswood, red saunders, Pterocarpus santalinus -n12566954 kudzu, kudzu vine, Pueraria lobata -n12567950 bristly locust, rose acacia, moss locust, Robinia hispida -n12568186 black locust, yellow locust, Robinia pseudoacacia -n12568649 clammy locust, Robinia viscosa -n12569037 carib wood, Sabinea carinalis -n12569616 Colorado River hemp, Sesbania exaltata -n12569851 scarlet wisteria tree, vegetable hummingbird, Sesbania grandiflora -n12570394 Japanese pagoda tree, Chinese scholartree, Chinese scholar tree, Sophora japonica, Sophora sinensis -n12570703 mescal bean, coral bean, frijolito, frijolillo, Sophora secundiflora -n12570972 kowhai, Sophora tetraptera -n12571781 jade vine, emerald creeper, Strongylodon macrobotrys -n12572546 hoary pea -n12572759 bastard indigo, Tephrosia purpurea -n12572858 catgut, goat's rue, wild sweet pea, Tephrosia virginiana -n12573256 bush pea -n12573474 false lupine, golden pea, yellow pea, Thermopsis macrophylla -n12573647 Carolina lupine, Thermopsis villosa -n12573911 tipu, tipu tree, yellow jacaranda, pride of Bolivia -n12574320 bird's foot trefoil, Trigonella ornithopodioides -n12574470 fenugreek, Greek clover, Trigonella foenumgraecum -n12574866 gorse, furze, whin, Irish gorse, Ulex europaeus -n12575322 vetch -n12575812 tufted vetch, bird vetch, Calnada pea, Vicia cracca -n12576323 broad bean, fava bean, horsebean -n12576451 bitter betch, Vicia orobus -n12576695 bush vetch, Vicia sepium -n12577362 moth bean, Vigna aconitifolia, Phaseolus aconitifolius -n12577895 snailflower, snail-flower, snail flower, snail bean, corkscrew flower, Vigna caracalla, Phaseolus caracalla -n12578255 mung, mung bean, green gram, golden gram, Vigna radiata, Phaseolus aureus -n12578626 cowpea, cowpea plant, black-eyed pea, Vigna unguiculata, Vigna sinensis -n12578916 cowpea, black-eyed pea -n12579038 asparagus bean, yard-long bean, Vigna unguiculata sesquipedalis, Vigna sesquipedalis -n12579404 swamp oak, Viminaria juncea, Viminaria denudata -n12579822 keurboom, Virgilia capensis, Virgilia oroboides -n12580012 keurboom, Virgilia divaricata -n12580654 Japanese wistaria, Wisteria floribunda -n12580786 Chinese wistaria, Wisteria chinensis -n12580896 American wistaria, American wisteria, Wisteria frutescens -n12581110 silky wisteria, Wisteria venusta -n12582231 palm, palm tree -n12582665 sago palm -n12582846 feather palm -n12583126 fan palm -n12583401 palmetto -n12583681 coyol, coyol palm, Acrocomia vinifera -n12583855 grugru, gri-gri, grugru palm, macamba, Acrocomia aculeata -n12584191 areca -n12584365 betel palm, Areca catechu -n12584715 sugar palm, gomuti, gomuti palm, Arenga pinnata -n12585137 piassava palm, pissaba palm, Bahia piassava, bahia coquilla, Attalea funifera -n12585373 coquilla nut -n12585629 palmyra, palmyra palm, toddy palm, wine palm, lontar, longar palm, Borassus flabellifer -n12586298 calamus -n12586499 rattan, rattan palm, Calamus rotang -n12586725 lawyer cane, Calamus australis -n12586989 fishtail palm -n12587132 wine palm, jaggery palm, kitul, kittul, kitul tree, toddy palm, Caryota urens -n12587487 wax palm, Ceroxylon andicola, Ceroxylon alpinum -n12587803 coconut, coconut palm, coco palm, coco, cocoa palm, coconut tree, Cocos nucifera -n12588320 carnauba, carnauba palm, wax palm, Copernicia prunifera, Copernicia cerifera -n12588780 caranday, caranda, caranda palm, wax palm, Copernicia australis, Copernicia alba -n12589142 corozo, corozo palm -n12589458 gebang palm, Corypha utan, Corypha gebanga -n12589687 latanier, latanier palm -n12589841 talipot, talipot palm, Corypha umbraculifera -n12590232 oil palm -n12590499 African oil palm, Elaeis guineensis -n12590600 American oil palm, Elaeis oleifera -n12590715 palm nut, palm kernel -n12591017 cabbage palm, Euterpe oleracea -n12591351 cabbage palm, cabbage tree, Livistona australis -n12591702 true sago palm, Metroxylon sagu -n12592058 nipa palm, Nipa fruticans -n12592544 babassu, babassu palm, coco de macao, Orbignya phalerata, Orbignya spesiosa, Orbignya martiana -n12592839 babassu nut -n12593122 cohune palm, Orbignya cohune, cohune -n12593341 cohune nut -n12593994 date palm, Phoenix dactylifera -n12594324 ivory palm, ivory-nut palm, ivory plant, Phytelephas macrocarpa -n12594989 raffia palm, Raffia farinifera, Raffia ruffia -n12595699 bamboo palm, Raffia vinifera -n12595964 lady palm -n12596148 miniature fan palm, bamboo palm, fern rhapis, Rhapis excelsa -n12596345 reed rhapis, slender lady palm, Rhapis humilis -n12596709 royal palm, Roystonea regia -n12596849 cabbage palm, Roystonea oleracea -n12597134 cabbage palmetto, cabbage palm, Sabal palmetto -n12597466 saw palmetto, scrub palmetto, Serenoa repens -n12597798 thatch palm, thatch tree, silver thatch, broom palm, Thrinax parviflora -n12598027 key palm, silvertop palmetto, silver thatch, Thrinax microcarpa, Thrinax morrisii, Thrinax keyensis -n12599185 English plantain, narrow-leaved plantain, ribgrass, ribwort, ripple-grass, buckthorn, Plantago lanceolata -n12599435 broad-leaved plantain, common plantain, white-man's foot, whiteman's foot, cart-track plant, Plantago major -n12599661 hoary plantain, Plantago media -n12599874 fleawort, psyllium, Spanish psyllium, Plantago psyllium -n12600095 rugel's plantain, broad-leaved plantain, Plantago rugelii -n12600267 hoary plantain, Plantago virginica -n12601494 buckwheat, Polygonum fagopyrum, Fagopyrum esculentum -n12601805 prince's-feather, princess feather, kiss-me-over-the-garden-gate, prince's-plume, Polygonum orientale -n12602262 eriogonum -n12602434 umbrella plant, Eriogonum allenii -n12602612 wild buckwheat, California buckwheat, Erigonum fasciculatum -n12602980 rhubarb, rhubarb plant -n12603273 Himalayan rhubarb, Indian rhubarb, red-veined pie plant, Rheum australe, Rheum emodi -n12603449 pie plant, garden rhubarb, Rheum cultorum, Rheum rhabarbarum, Rheum rhaponticum -n12603672 Chinese rhubarb, Rheum palmatum -n12604228 sour dock, garden sorrel, Rumex acetosa -n12604460 sheep sorrel, sheep's sorrel, Rumex acetosella -n12604639 bitter dock, broad-leaved dock, yellow dock, Rumex obtusifolius -n12604845 French sorrel, garden sorrel, Rumex scutatus -n12605683 yellow-eyed grass -n12606438 commelina -n12606545 spiderwort, dayflower -n12607456 pineapple, pineapple plant, Ananas comosus -n12609379 pipewort, Eriocaulon aquaticum -n12610328 water hyacinth, water orchid, Eichhornia crassipes, Eichhornia spesiosa -n12610740 water star grass, mud plantain, Heteranthera dubia -n12611640 naiad, water nymph -n12612170 water plantain, Alisma plantago-aquatica -n12612811 narrow-leaved water plantain -n12613706 hydrilla, Hydrilla verticillata -n12614096 American frogbit, Limnodium spongia -n12614477 waterweed -n12614625 Canadian pondweed, Elodea canadensis -n12615232 tape grass, eelgrass, wild celery, Vallisneria spiralis -n12615710 pondweed -n12616248 curled leaf pondweed, curly pondweed, Potamogeton crispus -n12616630 loddon pondweed, Potamogeton nodosus, Potamogeton americanus -n12616996 frog's lettuce -n12617559 arrow grass, Triglochin maritima -n12618146 horned pondweed, Zannichellia palustris -n12618727 eelgrass, grass wrack, sea wrack, Zostera marina -n12620196 rose, rosebush -n12620546 hip, rose hip, rosehip -n12620969 banksia rose, Rosa banksia -n12621410 damask rose, summer damask rose, Rosa damascena -n12621619 sweetbrier, sweetbriar, brier, briar, eglantine, Rosa eglanteria -n12621945 Cherokee rose, Rosa laevigata -n12622297 musk rose, Rosa moschata -n12622875 agrimonia, agrimony -n12623077 harvest-lice, Agrimonia eupatoria -n12623211 fragrant agrimony, Agrimonia procera -n12623818 alderleaf Juneberry, alder-leaved serviceberry, Amelanchier alnifolia -n12624381 flowering quince -n12624568 japonica, maule's quince, Chaenomeles japonica -n12625003 coco plum, coco plum tree, cocoa plum, icaco, Chrysobalanus icaco -n12625383 cotoneaster -n12625670 Cotoneaster dammeri -n12625823 Cotoneaster horizontalis -n12626674 parsley haw, parsley-leaved thorn, Crataegus apiifolia, Crataegus marshallii -n12626878 scarlet haw, Crataegus biltmoreana -n12627119 blackthorn, pear haw, pear hawthorn, Crataegus calpodendron, Crataegus tomentosa -n12627347 cockspur thorn, cockspur hawthorn, Crataegus crus-galli -n12627526 mayhaw, summer haw, Crataegus aestivalis -n12628356 red haw, downy haw, Crataegus mollis, Crataegus coccinea mollis -n12628705 red haw, Crataegus pedicellata, Crataegus coccinea -n12628986 quince, quince bush, Cydonia oblonga -n12629305 mountain avens, Dryas octopetala -n12629666 loquat, loquat tree, Japanese medlar, Japanese plum, Eriobotrya japonica -n12630763 beach strawberry, Chilean strawberry, Fragaria chiloensis -n12630999 Virginia strawberry, scarlet strawberry, Fragaria virginiana -n12631331 avens -n12631637 yellow avens, Geum alleppicum strictum, Geum strictum -n12631932 yellow avens, Geum macrophyllum -n12632335 prairie smoke, purple avens, Geum triflorum -n12632733 bennet, white avens, Geum virginianum -n12633061 toyon, tollon, Christmasberry, Christmas berry, Heteromeles arbutifolia, Photinia arbutifolia -n12633638 apple tree -n12633994 apple, orchard apple tree, Malus pumila -n12634211 wild apple, crab apple, crabapple -n12634429 crab apple, crabapple, cultivated crab apple -n12634734 Siberian crab, Siberian crab apple, cherry apple, cherry crab, Malus baccata -n12634986 wild crab, Malus sylvestris -n12635151 American crab apple, garland crab, Malus coronaria -n12635359 Oregon crab apple, Malus fusca -n12635532 Southern crab apple, flowering crab, Malus angustifolia -n12635744 Iowa crab, Iowa crab apple, prairie crab, western crab apple, Malus ioensis -n12635955 Bechtel crab, flowering crab -n12636224 medlar, medlar tree, Mespilus germanica -n12636885 cinquefoil, five-finger -n12637123 silverweed, goose-tansy, goose grass, Potentilla anserina -n12637485 salad burnet, burnet bloodwort, pimpernel, Poterium sanguisorba -n12638218 plum, plum tree -n12638556 wild plum, wild plum tree -n12638753 Allegheny plum, Alleghany plum, sloe, Prunus alleghaniensis -n12638964 American red plum, August plum, goose plum, Prunus americana -n12639168 chickasaw plum, hog plum, hog plum bush, Prunus angustifolia -n12639376 beach plum, beach plum bush, Prunus maritima -n12639584 common plum, Prunus domestica -n12639736 bullace, Prunus insititia -n12639910 damson plum, damson plum tree, Prunus domestica insititia -n12640081 big-tree plum, Prunus mexicana -n12640284 Canada plum, Prunus nigra -n12640435 plumcot, plumcot tree -n12640607 apricot, apricot tree -n12640839 Japanese apricot, mei, Prunus mume -n12641007 common apricot, Prunus armeniaca -n12641180 purple apricot, black apricot, Prunus dasycarpa -n12641413 cherry, cherry tree -n12641931 wild cherry, wild cherry tree -n12642090 wild cherry -n12642200 sweet cherry, Prunus avium -n12642435 heart cherry, oxheart, oxheart cherry -n12642600 gean, mazzard, mazzard cherry -n12642964 capulin, capulin tree, Prunus capuli -n12643113 cherry laurel, laurel cherry, mock orange, wild orange, Prunus caroliniana -n12643313 cherry plum, myrobalan, myrobalan plum, Prunus cerasifera -n12643473 sour cherry, sour cherry tree, Prunus cerasus -n12643688 amarelle, Prunus cerasus caproniana -n12643877 morello, Prunus cerasus austera -n12644283 marasca -n12644902 almond tree -n12645174 almond, sweet almond, Prunus dulcis, Prunus amygdalus, Amygdalus communis -n12645530 bitter almond, Prunus dulcis amara, Amygdalus communis amara -n12646072 jordan almond -n12646197 dwarf flowering almond, Prunus glandulosa -n12646397 holly-leaved cherry, holly-leaf cherry, evergreen cherry, islay, Prunus ilicifolia -n12646605 fuji, fuji cherry, Prunus incisa -n12646740 flowering almond, oriental bush cherry, Prunus japonica -n12646950 cherry laurel, laurel cherry, Prunus laurocerasus -n12647231 Catalina cherry, Prunus lyonii -n12647376 bird cherry, bird cherry tree -n12647560 hagberry tree, European bird cherry, common bird cherry, Prunus padus -n12647787 hagberry -n12647893 pin cherry, Prunus pensylvanica -n12648045 peach, peach tree, Prunus persica -n12648196 nectarine, nectarine tree, Prunus persica nectarina -n12648424 sand cherry, Prunus pumila, Prunus pumilla susquehanae, Prunus susquehanae, Prunus cuneata -n12648693 Japanese plum, Prunus salicina -n12648888 black cherry, black cherry tree, rum cherry, Prunus serotina -n12649065 flowering cherry -n12649317 oriental cherry, Japanese cherry, Japanese flowering cherry, Prunus serrulata -n12649539 Japanese flowering cherry, Prunus sieboldii -n12649866 Sierra plum, Pacific plum, Prunus subcordata -n12650038 rosebud cherry, winter flowering cherry, Prunus subhirtella -n12650229 Russian almond, dwarf Russian almond, Prunus tenella -n12650379 flowering almond, Prunus triloba -n12650556 chokecherry, chokecherry tree, Prunus virginiana -n12650805 chokecherry -n12650915 western chokecherry, Prunus virginiana demissa, Prunus demissa -n12651229 Pyracantha, pyracanth, fire thorn, firethorn -n12651611 pear, pear tree, Pyrus communis -n12651821 fruit tree -n12653218 bramble bush -n12653436 lawyerbush, lawyer bush, bush lawyer, Rubus cissoides, Rubus australis -n12653633 stone bramble, Rubus saxatilis -n12654227 sand blackberry, Rubus cuneifolius -n12654857 boysenberry, boysenberry bush -n12655062 loganberry, Rubus loganobaccus, Rubus ursinus loganobaccus -n12655245 American dewberry, Rubus canadensis -n12655351 Northern dewberry, American dewberry, Rubus flagellaris -n12655498 Southern dewberry, Rubus trivialis -n12655605 swamp dewberry, swamp blackberry, Rubus hispidus -n12655726 European dewberry, Rubus caesius -n12655869 raspberry, raspberry bush -n12656369 wild raspberry, European raspberry, framboise, Rubus idaeus -n12656528 American raspberry, Rubus strigosus, Rubus idaeus strigosus -n12656685 black raspberry, blackcap, blackcap raspberry, thimbleberry, Rubus occidentalis -n12656909 salmonberry, Rubus spectabilis -n12657082 salmonberry, salmon berry, thimbleberry, Rubus parviflorus -n12657755 wineberry, Rubus phoenicolasius -n12658118 mountain ash -n12658308 rowan, rowan tree, European mountain ash, Sorbus aucuparia -n12658481 rowanberry -n12658603 American mountain ash, Sorbus americana -n12658715 Western mountain ash, Sorbus sitchensis -n12658846 service tree, sorb apple, sorb apple tree, Sorbus domestica -n12659064 wild service tree, Sorbus torminalis -n12659356 spirea, spiraea -n12659539 bridal wreath, bridal-wreath, Saint Peter's wreath, St. Peter's wreath, Spiraea prunifolia -n12660601 madderwort, rubiaceous plant -n12661045 Indian madder, munjeet, Rubia cordifolia -n12661227 madder, Rubia tinctorum -n12661538 woodruff -n12662074 dagame, lemonwood tree, Calycophyllum candidissimum -n12662379 blolly, West Indian snowberry, Chiococca alba -n12662772 coffee, coffee tree -n12663023 Arabian coffee, Coffea arabica -n12663254 Liberian coffee, Coffea liberica -n12663359 robusta coffee, Rio Nunez coffee, Coffea robusta, Coffea canephora -n12663804 cinchona, chinchona -n12664005 Cartagena bark, Cinchona cordifolia, Cinchona lancifolia -n12664187 calisaya, Cinchona officinalis, Cinchona ledgeriana, Cinchona calisaya -n12664469 cinchona tree, Cinchona pubescens -n12664710 cinchona, cinchona bark, Peruvian bark, Jesuit's bark -n12665048 bedstraw -n12665271 sweet woodruff, waldmeister, woodruff, fragrant bedstraw, Galium odoratum, Asperula odorata -n12665659 Northern bedstraw, Northern snow bedstraw, Galium boreale -n12665857 yellow bedstraw, yellow cleavers, Our Lady's bedstraw, Galium verum -n12666050 wild licorice, Galium lanceolatum -n12666159 cleavers, clivers, goose grass, catchweed, spring cleavers, Galium aparine -n12666369 wild madder, white madder, white bedstraw, infant's-breath, false baby's breath, Galium mollugo -n12666965 cape jasmine, cape jessamine, Gardenia jasminoides, Gardenia augusta -n12667406 genipa -n12667582 genipap fruit, jagua, marmalade box, Genipa Americana -n12667964 hamelia -n12668131 scarlet bush, scarlet hamelia, coloradillo, Hamelia patens, Hamelia erecta -n12669803 lemonwood, lemon-wood, lemonwood tree, lemon-wood tree, Psychotria capensis -n12670334 negro peach, Sarcocephalus latifolius, Sarcocephalus esculentus -n12670758 wild medlar, wild medlar tree, medlar, Vangueria infausta -n12670962 Spanish tamarind, Vangueria madagascariensis -n12671651 abelia -n12672289 bush honeysuckle, Diervilla sessilifolia -n12673588 American twinflower, Linnaea borealis americana -n12674120 honeysuckle -n12674685 American fly honeysuckle, fly honeysuckle, Lonicera canadensis -n12674895 Italian honeysuckle, Italian woodbine, Lonicera caprifolium -n12675299 yellow honeysuckle, Lonicera flava -n12675515 hairy honeysuckle, Lonicera hirsuta -n12675876 Japanese honeysuckle, Lonicera japonica -n12676134 Hall's honeysuckle, Lonicera japonica halliana -n12676370 Morrow's honeysuckle, Lonicera morrowii -n12676534 woodbine, Lonicera periclymenum -n12676703 trumpet honeysuckle, coral honeysuckle, trumpet flower, trumpet vine, Lonicera sempervirens -n12677120 European fly honeysuckle, European honeysuckle, Lonicera xylosteum -n12677331 swamp fly honeysuckle -n12677612 snowberry, common snowberry, waxberry, Symphoricarpos alba -n12677841 coralberry, Indian currant, Symphoricarpos orbiculatus -n12678794 blue elder, blue elderberry, Sambucus caerulea -n12679023 dwarf elder, danewort, Sambucus ebulus -n12679432 American red elder, red-berried elder, stinking elder, Sambucus pubens -n12679593 European red elder, red-berried elder, Sambucus racemosa -n12679876 feverroot, horse gentian, tinker's root, wild coffee, Triostium perfoliatum -n12680402 cranberry bush, cranberry tree, American cranberry bush, highbush cranberry, Viburnum trilobum -n12680652 wayfaring tree, twist wood, twistwood, Viburnum lantana -n12680864 guelder rose, European cranberrybush, European cranberry bush, crampbark, cranberry tree, Viburnum opulus -n12681376 arrow wood, Viburnum recognitum -n12681579 black haw, Viburnum prunifolium -n12681893 weigela, Weigela florida -n12682411 teasel, teazel, teasle -n12682668 common teasel, Dipsacus fullonum -n12682882 fuller's teasel, Dipsacus sativus -n12683096 wild teasel, Dipsacus sylvestris -n12683407 scabious, scabiosa -n12683571 sweet scabious, pincushion flower, mournful widow, Scabiosa atropurpurea -n12683791 field scabious, Scabiosa arvensis -n12684379 jewelweed, lady's earrings, orange balsam, celandine, touch-me-not, Impatiens capensis -n12685431 geranium -n12685831 cranesbill, crane's bill -n12686077 wild geranium, spotted cranesbill, Geranium maculatum -n12686274 meadow cranesbill, Geranium pratense -n12686496 Richardson's geranium, Geranium richardsonii -n12686676 herb robert, herbs robert, herb roberts, Geranium robertianum -n12686877 sticky geranium, Geranium viscosissimum -n12687044 dove's foot geranium, Geranium molle -n12687462 rose geranium, sweet-scented geranium, Pelargonium graveolens -n12687698 fish geranium, bedding geranium, zonal pelargonium, Pelargonium hortorum -n12687957 ivy geranium, ivy-leaved geranium, hanging geranium, Pelargonium peltatum -n12688187 apple geranium, nutmeg geranium, Pelargonium odoratissimum -n12688372 lemon geranium, Pelargonium limoneum -n12688716 storksbill, heron's bill -n12689305 musk clover, muskus grass, white-stemmed filaree, Erodium moschatum -n12690653 incense tree -n12691428 elephant tree, Bursera microphylla -n12691661 gumbo-limbo, Bursera simaruba -n12692024 Boswellia carteri -n12692160 salai, Boswellia serrata -n12692521 balm of gilead, Commiphora meccanensis -n12692714 myrrh tree, Commiphora myrrha -n12693244 Protium heptaphyllum -n12693352 Protium guianense -n12693865 water starwort -n12694486 barbados cherry, acerola, Surinam cherry, West Indian cherry, Malpighia glabra -n12695144 mahogany, mahogany tree -n12695975 chinaberry, chinaberry tree, China tree, Persian lilac, pride-of-India, azederach, azedarach, Melia azederach, Melia azedarach -n12696492 neem, neem tree, nim tree, margosa, arishth, Azadirachta indica, Melia Azadirachta -n12696830 neem seed -n12697152 Spanish cedar, Spanish cedar tree, Cedrela odorata -n12697514 satinwood, satinwood tree, Chloroxylon swietenia -n12698027 African scented mahogany, cedar mahogany, sapele mahogany, Entandrophragma cylindricum -n12698435 silver ash -n12698598 native beech, flindosa, flindosy, Flindersia australis -n12698774 bunji-bunji, Flindersia schottiana -n12699031 African mahogany -n12699301 lanseh tree, langsat, langset, Lansium domesticum -n12699922 true mahogany, Cuban mahogany, Dominican mahogany, Swietinia mahogani -n12700088 Honduras mahogany, Swietinia macrophylla -n12700357 Philippine mahogany, Philippine cedar, kalantas, Toona calantas, Cedrela calantas -n12702124 caracolito, Ruptiliocarpon caracolito -n12703190 common wood sorrel, cuckoo bread, shamrock, Oxalis acetosella -n12703383 Bermuda buttercup, English-weed, Oxalis pes-caprae, Oxalis cernua -n12703557 creeping oxalis, creeping wood sorrel, Oxalis corniculata -n12703716 goatsfoot, goat's foot, Oxalis caprina -n12703856 violet wood sorrel, Oxalis violacea -n12704041 oca, oka, Oxalis tuberosa, Oxalis crenata -n12704343 carambola, carambola tree, Averrhoa carambola -n12704513 bilimbi, Averrhoa bilimbi -n12705013 milkwort -n12705220 senega, Polygala alba -n12705458 orange milkwort, yellow milkwort, candyweed, yellow bachelor's button, Polygala lutea -n12705698 flowering wintergreen, gaywings, bird-on-the-wing, fringed polygala, Polygala paucifolia -n12705978 Seneca snakeroot, Seneka snakeroot, senga root, senega root, senega snakeroot, Polygala senega -n12706410 common milkwort, gand flower, Polygala vulgaris -n12707199 rue, herb of grace, Ruta graveolens -n12707781 citrus, citrus tree -n12708293 orange, orange tree -n12708654 sour orange, Seville orange, bitter orange, bitter orange tree, bigarade, marmalade orange, Citrus aurantium -n12708941 bergamot, bergamot orange, Citrus bergamia -n12709103 pomelo, pomelo tree, pummelo, shaddock, Citrus maxima, Citrus grandis, Citrus decumana -n12709349 citron, citron tree, Citrus medica -n12709688 grapefruit, Citrus paradisi -n12709901 mandarin, mandarin orange, mandarin orange tree, Citrus reticulata -n12710295 tangerine, tangerine tree -n12710415 clementine, clementine tree -n12710577 satsuma, satsuma tree -n12710693 sweet orange, sweet orange tree, Citrus sinensis -n12710917 temple orange, temple orange tree, tangor, king orange, Citrus nobilis -n12711182 tangelo, tangelo tree, ugli fruit, Citrus tangelo -n12711398 rangpur, rangpur lime, lemanderin, Citrus limonia -n12711596 lemon, lemon tree, Citrus limon -n12711817 sweet lemon, sweet lime, Citrus limetta -n12711984 lime, lime tree, Citrus aurantifolia -n12712320 citrange, citrange tree, Citroncirus webberi -n12712626 fraxinella, dittany, burning bush, gas plant, Dictamnus alba -n12713063 kumquat, cumquat, kumquat tree -n12713358 marumi, marumi kumquat, round kumquat, Fortunella japonica -n12713521 nagami, nagami kumquat, oval kumquat, Fortunella margarita -n12713866 cork tree, Phellodendron amurense -n12714254 trifoliate orange, trifoliata, wild orange, Poncirus trifoliata -n12714755 prickly ash -n12714949 toothache tree, sea ash, Zanthoxylum americanum, Zanthoxylum fraxineum -n12715195 Hercules'-club, Hercules'-clubs, Hercules-club, Zanthoxylum clava-herculis -n12715914 bitterwood tree -n12716400 marupa, Simarouba amara -n12716594 paradise tree, bitterwood, Simarouba glauca -n12717072 ailanthus -n12717224 tree of heaven, tree of the gods, Ailanthus altissima -n12717644 wild mango, dika, wild mango tree, Irvingia gabonensis -n12718074 pepper tree, Kirkia wilmsii -n12718483 Jamaica quassia, bitterwood, Picrasma excelsa, Picrasma excelsum -n12718995 quassia, bitterwood, Quassia amara -n12719684 nasturtium -n12719944 garden nasturtium, Indian cress, Tropaeolum majus -n12720200 bush nasturtium, Tropaeolum minus -n12720354 canarybird flower, canarybird vine, canary creeper, Tropaeolum peregrinum -n12721122 bean caper, Syrian bean caper, Zygophyllum fabago -n12721477 palo santo, Bulnesia sarmienti -n12722071 lignum vitae, Guaiacum officinale -n12723062 creosote bush, coville, hediondilla, Larrea tridentata -n12723610 caltrop, devil's weed, Tribulus terestris -n12724942 willow, willow tree -n12725521 osier -n12725738 white willow, Huntingdon willow, Salix alba -n12725940 silver willow, silky willow, Salix alba sericea, Salix sericea -n12726159 golden willow, Salix alba vitellina, Salix vitellina -n12726357 cricket-bat willow, Salix alba caerulea -n12726528 arctic willow, Salix arctica -n12726670 weeping willow, Babylonian weeping willow, Salix babylonica -n12726902 Wisconsin weeping willow, Salix pendulina, Salix blanda, Salix pendulina blanda -n12727101 pussy willow, Salix discolor -n12727301 sallow -n12727518 goat willow, florist's willow, pussy willow, Salix caprea -n12727729 peachleaf willow, peach-leaved willow, almond-leaves willow, Salix amygdaloides -n12727960 almond willow, black Hollander, Salix triandra, Salix amygdalina -n12728164 hoary willow, sage willow, Salix candida -n12728322 crack willow, brittle willow, snap willow, Salix fragilis -n12728508 prairie willow, Salix humilis -n12728656 dwarf willow, Salix herbacea -n12728864 grey willow, gray willow, Salix cinerea -n12729023 arroyo willow, Salix lasiolepis -n12729164 shining willow, Salix lucida -n12729315 swamp willow, black willow, Salix nigra -n12729521 bay willow, laurel willow, Salix pentandra -n12729729 purple willow, red willow, red osier, basket willow, purple osier, Salix purpurea -n12729950 balsam willow, Salix pyrifolia -n12730143 creeping willow, Salix repens -n12730370 Sitka willow, silky willow, Salix sitchensis -n12730544 dwarf grey willow, dwarf gray willow, sage willow, Salix tristis -n12730776 bearberry willow, Salix uva-ursi -n12731029 common osier, hemp willow, velvet osier, Salix viminalis -n12731401 poplar, poplar tree -n12731835 balsam poplar, hackmatack, tacamahac, Populus balsamifera -n12732009 white poplar, white aspen, abele, aspen poplar, silver-leaved poplar, Populus alba -n12732252 grey poplar, gray poplar, Populus canescens -n12732491 black poplar, Populus nigra -n12732605 Lombardy poplar, Populus nigra italica -n12732756 cottonwood -n12732966 Eastern cottonwood, necklace poplar, Populus deltoides -n12733218 black cottonwood, Western balsam poplar, Populus trichocarpa -n12733428 swamp cottonwood, black cottonwood, downy poplar, swamp poplar, Populus heterophylla -n12733647 aspen -n12733870 quaking aspen, European quaking aspen, Populus tremula -n12734070 American quaking aspen, American aspen, Populus tremuloides -n12734215 Canadian aspen, bigtooth aspen, bigtoothed aspen, big-toothed aspen, large-toothed aspen, large tooth aspen, Populus grandidentata -n12735160 sandalwood tree, true sandalwood, Santalum album -n12736603 quandong, quandang, quandong tree, Eucarya acuminata, Fusanus acuminatus -n12736999 rabbitwood, buffalo nut, Pyrularia pubera -n12737383 Loranthaceae, family Loranthaceae, mistletoe family -n12737898 mistletoe, Loranthus europaeus -n12738259 American mistletoe, Arceuthobium pusillum -n12739332 mistletoe, Viscum album, Old World mistletoe -n12739966 American mistletoe, Phoradendron serotinum, Phoradendron flavescens -n12740967 aalii -n12741222 soapberry, soapberry tree -n12741586 wild China tree, Sapindus drumondii, Sapindus marginatus -n12741792 China tree, false dogwood, jaboncillo, chinaberry, Sapindus saponaria -n12742290 akee, akee tree, Blighia sapida -n12742741 soapberry vine -n12742878 heartseed, Cardiospermum grandiflorum -n12743009 balloon vine, heart pea, Cardiospermum halicacabum -n12743352 longan, lungen, longanberry, Dimocarpus longan, Euphorbia litchi, Nephelium longana -n12743823 harpullia -n12743976 harpulla, Harpullia cupanioides -n12744142 Moreton Bay tulipwood, Harpullia pendula -n12744387 litchi, lichee, litchi tree, Litchi chinensis, Nephelium litchi -n12744850 Spanish lime, Spanish lime tree, honey berry, mamoncillo, genip, ginep, Melicocca bijuga, Melicocca bijugatus -n12745386 rambutan, rambotan, rambutan tree, Nephelium lappaceum -n12745564 pulasan, pulassan, pulasan tree, Nephelium mutabile -n12746884 pachysandra -n12747120 Allegheny spurge, Allegheny mountain spurge, Pachysandra procumbens -n12748248 bittersweet, American bittersweet, climbing bittersweet, false bittersweet, staff vine, waxwork, shrubby bittersweet, Celastrus scandens -n12749049 spindle tree, spindleberry, spindleberry tree -n12749456 winged spindle tree, Euonymous alatus -n12749679 wahoo, burning bush, Euonymus atropurpureus -n12749852 strawberry bush, wahoo, Euonymus americanus -n12750076 evergreen bittersweet, Euonymus fortunei radicans, Euonymus radicans vegetus -n12750767 cyrilla, leatherwood, white titi, Cyrilla racemiflora -n12751172 titi, buckwheat tree, Cliftonia monophylla -n12751675 crowberry -n12752205 maple -n12753007 silver maple, Acer saccharinum -n12753245 sugar maple, rock maple, Acer saccharum -n12753573 red maple, scarlet maple, swamp maple, Acer rubrum -n12753762 moosewood, moose-wood, striped maple, striped dogwood, goosefoot maple, Acer pennsylvanicum -n12754003 Oregon maple, big-leaf maple, Acer macrophyllum -n12754174 dwarf maple, Rocky-mountain maple, Acer glabrum -n12754311 mountain maple, mountain alder, Acer spicatum -n12754468 vine maple, Acer circinatum -n12754648 hedge maple, field maple, Acer campestre -n12754781 Norway maple, Acer platanoides -n12754981 sycamore, great maple, scottish maple, Acer pseudoplatanus -n12755225 box elder, ash-leaved maple, Acer negundo -n12755387 California box elder, Acer negundo Californicum -n12755559 pointed-leaf maple, Acer argutum -n12755727 Japanese maple, full moon maple, Acer japonicum -n12755876 Japanese maple, Acer palmatum -n12756457 holly -n12757115 Chinese holly, Ilex cornuta -n12757303 bearberry, possum haw, winterberry, Ilex decidua -n12757458 inkberry, gallberry, gall-berry, evergreen winterberry, Ilex glabra -n12757668 mate, Paraguay tea, Ilex paraguariensis -n12757816 American holly, Christmas holly -n12757930 low gallberry holly -n12758014 tall gallberry holly -n12758099 yaupon holly -n12758176 deciduous holly -n12758250 juneberry holly -n12758325 largeleaf holly -n12758399 Geogia holly -n12758471 common winterberry holly -n12758555 smooth winterberry holly -n12759273 cashew, cashew tree, Anacardium occidentale -n12759668 goncalo alves, Astronium fraxinifolium -n12760539 Venetian sumac, wig tree, Cotinus coggygria -n12760875 laurel sumac, Malosma laurina, Rhus laurina -n12761284 mango, mango tree, Mangifera indica -n12761702 pistachio, Pistacia vera, pistachio tree -n12761905 terebinth, Pistacia terebinthus -n12762049 mastic, mastic tree, lentisk, Pistacia lentiscus -n12762405 Australian sumac, Rhodosphaera rhodanthema, Rhus rhodanthema -n12762896 sumac, sumach, shumac -n12763529 smooth sumac, scarlet sumac, vinegar tree, Rhus glabra -n12764008 sugar-bush, sugar sumac, Rhus ovata -n12764202 staghorn sumac, velvet sumac, Virginian sumac, vinegar tree, Rhus typhina -n12764507 squawbush, squaw-bush, skunkbush, Rhus trilobata -n12764978 aroeira blanca, Schinus chichita -n12765115 pepper tree, molle, Peruvian mastic tree, Schinus molle -n12765402 Brazilian pepper tree, Schinus terebinthifolius -n12765846 hog plum, yellow mombin, yellow mombin tree, Spondias mombin -n12766043 mombin, mombin tree, jocote, Spondias purpurea -n12766595 poison ash, poison dogwood, poison sumac, Toxicodendron vernix, Rhus vernix -n12766869 poison ivy, markweed, poison mercury, poison oak, Toxicodendron radicans, Rhus radicans -n12767208 western poison oak, Toxicodendron diversilobum, Rhus diversiloba -n12767423 eastern poison oak, Toxicodendron quercifolium, Rhus quercifolia, Rhus toxicodenedron -n12767648 varnish tree, lacquer tree, Chinese lacquer tree, Japanese lacquer tree, Japanese varnish tree, Japanese sumac, Toxicodendron vernicifluum, Rhus verniciflua -n12768369 horse chestnut, buckeye, Aesculus hippocastanum -n12768682 buckeye, horse chestnut, conker -n12768809 sweet buckeye -n12768933 Ohio buckeye -n12769065 dwarf buckeye, bottlebrush buckeye -n12769219 red buckeye -n12769318 particolored buckeye -n12770529 ebony, ebony tree, Diospyros ebenum -n12770892 marblewood, marble-wood, Andaman marble, Diospyros kurzii -n12771085 marblewood, marble-wood -n12771192 persimmon, persimmon tree -n12771390 Japanese persimmon, kaki, Diospyros kaki -n12771597 American persimmon, possumwood, Diospyros virginiana -n12771890 date plum, Diospyros lotus -n12772753 buckthorn -n12772908 southern buckthorn, shittimwood, shittim, mock orange, Bumelia lycioides -n12773142 false buckthorn, chittamwood, chittimwood, shittimwood, black haw, Bumelia lanuginosa -n12773651 star apple, caimito, Chrysophyllum cainito -n12773917 satinleaf, satin leaf, caimitillo, damson plum, Chrysophyllum oliviforme -n12774299 balata, balata tree, beefwood, bully tree, Manilkara bidentata -n12774641 sapodilla, sapodilla tree, Manilkara zapota, Achras zapota -n12775070 gutta-percha tree, Palaquium gutta -n12775393 gutta-percha tree -n12775717 canistel, canistel tree, Pouteria campechiana nervosa -n12775919 marmalade tree, mammee, sapote, Pouteria zapota, Calocarpum zapota -n12776558 sweetleaf, Symplocus tinctoria -n12776774 Asiatic sweetleaf, sapphire berry, Symplocus paniculata -n12777436 styrax -n12777680 snowbell, Styrax obassia -n12777778 Japanese snowbell, Styrax japonicum -n12777892 Texas snowbell, Texas snowbells, Styrax texana -n12778398 silver-bell tree, silverbell tree, snowdrop tree, opossum wood, Halesia carolina, Halesia tetraptera -n12778605 carnivorous plant -n12779603 pitcher plant -n12779851 common pitcher plant, huntsman's cup, huntsman's cups, Sarracenia purpurea -n12780325 hooded pitcher plant, Sarracenia minor -n12780563 huntsman's horn, huntsman's horns, yellow trumpet, yellow pitcher plant, trumpets, Sarracenia flava -n12781940 tropical pitcher plant -n12782530 sundew, sundew plant, daily dew -n12782915 Venus's flytrap, Venus's flytraps, Dionaea muscipula -n12783316 waterwheel plant, Aldrovanda vesiculosa -n12783730 Drosophyllum lusitanicum -n12784371 roridula -n12784889 Australian pitcher plant, Cephalotus follicularis -n12785724 sedum -n12785889 stonecrop -n12786273 rose-root, midsummer-men, Sedum rosea -n12786464 orpine, orpin, livelong, live-forever, Sedum telephium -n12786836 pinwheel, Aeonium haworthii -n12787364 Christmas bush, Christmas tree, Ceratopetalum gummiferum -n12788854 hortensia, Hydrangea macrophylla hortensis -n12789054 fall-blooming hydrangea, Hydrangea paniculata -n12789554 carpenteria, Carpenteria californica -n12789977 decumary, Decumaria barbata, Decumaria barbara -n12790430 deutzia -n12791064 philadelphus -n12791329 mock orange, syringa, Philadelphus coronarius -n12793015 saxifrage, breakstone, rockfoil -n12793284 yellow mountain saxifrage, Saxifraga aizoides -n12793494 meadow saxifrage, fair-maids-of-France, Saxifraga granulata -n12793695 mossy saxifrage, Saxifraga hypnoides -n12793886 western saxifrage, Saxifraga occidentalis -n12794135 purple saxifrage, Saxifraga oppositifolia -n12794367 star saxifrage, starry saxifrage, Saxifraga stellaris -n12794568 strawberry geranium, strawberry saxifrage, mother-of-thousands, Saxifraga stolonifera, Saxifraga sarmentosam -n12794985 astilbe -n12795209 false goatsbeard, Astilbe biternata -n12795352 dwarf astilbe, Astilbe chinensis pumila -n12795555 spirea, spiraea, Astilbe japonica -n12796022 bergenia -n12796385 coast boykinia, Boykinia elata, Boykinia occidentalis -n12796849 golden saxifrage, golden spleen -n12797368 umbrella plant, Indian rhubarb, Darmera peltata, Peltiphyllum peltatum -n12797860 bridal wreath, bridal-wreath, Francoa ramosa -n12798284 alumroot, alumbloom -n12798910 coralbells, Heuchera sanguinea -n12799269 leatherleaf saxifrage, Leptarrhena pyrolifolia -n12799776 woodland star, Lithophragma affine, Lithophragma affinis, Tellima affinis -n12800049 prairie star, Lithophragma parviflorum -n12800586 miterwort, mitrewort, bishop's cap -n12801072 five-point bishop's cap, Mitella pentandra -n12801520 parnassia, grass-of-Parnassus -n12801781 bog star, Parnassia palustris -n12801966 fringed grass of Parnassus, Parnassia fimbriata -n12803226 false alumroot, fringe cups, Tellima grandiflora -n12803754 foamflower, coolwart, false miterwort, false mitrewort, Tiarella cordifolia -n12803958 false miterwort, false mitrewort, Tiarella unifoliata -n12804352 pickaback plant, piggyback plant, youth-on-age, Tolmiea menziesii -n12805146 currant, currant bush -n12805561 black currant, European black currant, Ribes nigrum -n12805762 white currant, Ribes sativum -n12806015 gooseberry, gooseberry bush, Ribes uva-crispa, Ribes grossularia -n12806732 plane tree, sycamore, platan -n12807251 London plane, Platanus acerifolia -n12807409 American sycamore, American plane, buttonwood, Platanus occidentalis -n12807624 oriental plane, Platanus orientalis -n12807773 California sycamore, Platanus racemosa -n12808007 Arizona sycamore, Platanus wrightii -n12809868 Greek valerian, Polemonium reptans -n12810007 northern Jacob's ladder, Polemonium boreale -n12810151 skunkweed, skunk-weed, Polemonium viscosum -n12810595 phlox -n12811027 moss pink, mountain phlox, moss phlox, dwarf phlox, Phlox subulata -n12811713 evening-snow, Linanthus dichotomus -n12812235 acanthus -n12812478 bear's breech, bear's breeches, sea holly, Acanthus mollis -n12812801 caricature plant, Graptophyllum pictum -n12813189 black-eyed Susan, black-eyed Susan vine, Thunbergia alata -n12814643 catalpa, Indian bean -n12814857 Catalpa bignioides -n12814960 Catalpa speciosa -n12815198 desert willow, Chilopsis linearis -n12815668 calabash, calabash tree, Crescentia cujete -n12815838 calabash -n12816508 borage, tailwort, Borago officinalis -n12816942 common amsinckia, Amsinckia intermedia -n12817464 anchusa -n12817694 bugloss, alkanet, Anchusa officinalis -n12817855 cape forget-me-not, Anchusa capensis -n12818004 cape forget-me-not, Anchusa riparia -n12818346 Spanish elm, Equador laurel, salmwood, cypre, princewood, Cordia alliodora -n12818601 princewood, Spanish elm, Cordia gerascanthus -n12818966 Chinese forget-me-not, Cynoglossum amabile -n12819141 hound's-tongue, Cynoglossum officinale -n12819354 hound's-tongue, Cynoglossum virginaticum -n12819728 blueweed, blue devil, blue thistle, viper's bugloss, Echium vulgare -n12820113 beggar's lice, beggar lice -n12820669 gromwell, Lithospermum officinale -n12820853 puccoon, Lithospermum caroliniense -n12821505 Virginia bluebell, Virginia cowslip, Mertensia virginica -n12821895 garden forget-me-not, Myosotis sylvatica -n12822115 forget-me-not, mouse ear, Myosotis scorpiodes -n12822466 false gromwell -n12822769 comfrey, cumfrey -n12822955 common comfrey, boneset, Symphytum officinale -n12823717 convolvulus -n12823859 bindweed -n12824053 field bindweed, wild morning-glory, Convolvulus arvensis -n12824289 scammony, Convolvulus scammonia -n12824735 silverweed -n12825497 dodder -n12826143 dichondra, Dichondra micrantha -n12827270 cypress vine, star-glory, Indian pink, Ipomoea quamoclit, Quamoclit pennata -n12827537 moonflower, belle de nuit, Ipomoea alba -n12827907 wild potato vine, wild sweet potato vine, man-of-the-earth, manroot, scammonyroot, Ipomoea panurata, Ipomoea fastigiata -n12828220 red morning-glory, star ipomoea, Ipomoea coccinea -n12828379 man-of-the-earth, Ipomoea leptophylla -n12828520 scammony, Ipomoea orizabensis -n12828791 Japanese morning glory, Ipomoea nil -n12828977 imperial Japanese morning glory, Ipomoea imperialis -n12829582 gesneriad -n12829975 gesneria -n12830222 achimenes, hot water plant -n12830568 aeschynanthus -n12831141 lace-flower vine, Alsobia dianthiflora, Episcia dianthiflora -n12831535 columnea -n12831932 episcia -n12832315 gloxinia -n12832538 Canterbury bell, Gloxinia perennis -n12832822 kohleria -n12833149 African violet, Saintpaulia ionantha -n12833985 streptocarpus -n12834190 Cape primrose -n12834798 waterleaf -n12834938 Virginia waterleaf, Shawnee salad, shawny, Indian salad, John's cabbage, Hydrophyllum virginianum -n12835331 yellow bells, California yellow bells, whispering bells, Emmanthe penduliflora -n12835766 yerba santa, Eriodictyon californicum -n12836212 nemophila -n12836337 baby blue-eyes, Nemophila menziesii -n12836508 five-spot, Nemophila maculata -n12836862 scorpionweed, scorpion weed, phacelia -n12837052 California bluebell, Phacelia campanularia -n12837259 California bluebell, whitlavia, Phacelia minor, Phacelia whitlavia -n12837466 fiddleneck, Phacelia tanacetifolia -n12837803 fiesta flower, Pholistoma auritum, Nemophila aurita -n12839574 basil thyme, basil balm, mother of thyme, Acinos arvensis, Satureja acinos -n12839979 giant hyssop -n12840168 yellow giant hyssop, Agastache nepetoides -n12840362 anise hyssop, Agastache foeniculum -n12840502 Mexican hyssop, Agastache mexicana -n12840749 bugle, bugleweed -n12841007 creeping bugle, Ajuga reptans -n12841193 erect bugle, blue bugle, Ajuga genevensis -n12841354 pyramid bugle, Ajuga pyramidalis -n12842302 wood mint -n12842519 hairy wood mint, Blephilia hirsuta -n12842642 downy wood mint, Blephilia celiata -n12842887 calamint -n12843144 common calamint, Calamintha sylvatica, Satureja calamintha officinalis -n12843316 large-flowered calamint, Calamintha grandiflora, Clinopodium grandiflorum, Satureja grandiflora -n12843557 lesser calamint, field balm, Calamintha nepeta, Calamintha nepeta glantulosa, Satureja nepeta, Satureja calamintha glandulosa -n12843970 wild basil, cushion calamint, Clinopodium vulgare, Satureja vulgaris -n12844409 horse balm, horseweed, stoneroot, stone-root, richweed, stone root, Collinsonia canadensis -n12844939 coleus, flame nettle -n12845187 country borage, Coleus aromaticus, Coleus amboinicus, Plectranthus amboinicus -n12845413 painted nettle, Joseph's coat, Coleus blumei, Solenostemon blumei, Solenostemon scutellarioides -n12845908 Apalachicola rosemary, Conradina glabra -n12846335 dragonhead, dragon's head, Dracocephalum parviflorum -n12846690 elsholtzia -n12847008 hemp nettle, dead nettle, Galeopsis tetrahit -n12847374 ground ivy, alehoof, field balm, gill-over-the-ground, runaway robin, Glechoma hederaceae, Nepeta hederaceae -n12847927 pennyroyal, American pennyroyal, Hedeoma pulegioides -n12848499 hyssop, Hyssopus officinalis -n12849061 dead nettle -n12849279 white dead nettle, Lamium album -n12849416 henbit, Lamium amplexicaule -n12849952 English lavender, Lavandula angustifolia, Lavandula officinalis -n12850168 French lavender, Lavandula stoechas -n12850336 spike lavender, French lavender, Lavandula latifolia -n12850906 dagga, Cape dagga, red dagga, wilde dagga, Leonotis leonurus -n12851094 lion's-ear, Leonotis nepetaefolia, Leonotis nepetifolia -n12851469 motherwort, Leonurus cardiaca -n12851860 pitcher sage, Lepechinia calycina, Sphacele calycina -n12852234 bugleweed, Lycopus virginicus -n12852428 water horehound, Lycopus americanus -n12852570 gipsywort, gypsywort, Lycopus europaeus -n12853080 origanum -n12853287 oregano, marjoram, pot marjoram, wild marjoram, winter sweet, Origanum vulgare -n12853482 sweet marjoram, knotted marjoram, Origanum majorana, Majorana hortensis -n12854048 horehound -n12854193 common horehound, white horehound, Marrubium vulgare -n12854600 lemon balm, garden balm, sweet balm, bee balm, beebalm, Melissa officinalis -n12855365 corn mint, field mint, Mentha arvensis -n12855494 water-mint, water mint, Mentha aquatica -n12855710 bergamot mint, lemon mint, eau de cologne mint, Mentha citrata -n12855886 horsemint, Mentha longifolia -n12856091 peppermint, Mentha piperita -n12856287 spearmint, Mentha spicata -n12856479 apple mint, applemint, Mentha rotundifolia, Mentha suaveolens -n12856680 pennyroyal, Mentha pulegium -n12857204 yerba buena, Micromeria chamissonis, Micromeria douglasii, Satureja douglasii -n12857779 molucca balm, bells of Ireland, Molucella laevis -n12858150 monarda, wild bergamot -n12858397 bee balm, beebalm, bergamot mint, oswego tea, Monarda didyma -n12858618 horsemint, Monarda punctata -n12858871 bee balm, beebalm, Monarda fistulosa -n12858987 lemon mint, horsemint, Monarda citriodora -n12859153 plains lemon monarda, Monarda pectinata -n12859272 basil balm, Monarda clinopodia -n12859679 mustang mint, Monardella lanceolata -n12859986 catmint, catnip, Nepeta cataria -n12860365 basil -n12860978 beefsteak plant, Perilla frutescens crispa -n12861345 phlomis -n12861541 Jerusalem sage, Phlomis fruticosa -n12861892 physostegia -n12862512 plectranthus -n12862828 patchouli, patchouly, pachouli, Pogostemon cablin -n12863234 self-heal, heal all, Prunella vulgaris -n12863624 mountain mint -n12864160 rosemary, Rosmarinus officinalis -n12865037 clary sage, Salvia clarea -n12865562 purple sage, chaparral sage, Salvia leucophylla -n12865708 cancerweed, cancer weed, Salvia lyrata -n12865824 common sage, ramona, Salvia officinalis -n12866002 meadow clary, Salvia pratensis -n12866162 clary, Salvia sclarea -n12866333 pitcher sage, Salvia spathacea -n12866459 Mexican mint, Salvia divinorum -n12866635 wild sage, wild clary, vervain sage, Salvia verbenaca -n12866968 savory -n12867184 summer savory, Satureja hortensis, Satureia hortensis -n12867449 winter savory, Satureja montana, Satureia montana -n12867826 skullcap, helmetflower -n12868019 blue pimpernel, blue skullcap, mad-dog skullcap, mad-dog weed, Scutellaria lateriflora -n12868880 hedge nettle, dead nettle, Stachys sylvatica -n12869061 hedge nettle, Stachys palustris -n12869478 germander -n12869668 American germander, wood sage, Teucrium canadense -n12870048 cat thyme, marum, Teucrium marum -n12870225 wood sage, Teucrium scorodonia -n12870535 thyme -n12870682 common thyme, Thymus vulgaris -n12870891 wild thyme, creeping thyme, Thymus serpyllum -n12871272 blue curls -n12871696 turpentine camphor weed, camphorweed, vinegarweed, Trichostema lanceolatum -n12871859 bastard pennyroyal, Trichostema dichotomum -n12872458 bladderwort -n12872914 butterwort -n12873341 genlisea -n12873984 martynia, Martynia annua -n12875269 common unicorn plant, devil's claw, common devil's claw, elephant-tusk, proboscis flower, ram's horn, Proboscidea louisianica -n12875697 sand devil's claw, Proboscidea arenaria, Martynia arenaria -n12875861 sweet unicorn plant, Proboscidea fragrans, Martynia fragrans -n12876899 figwort -n12877244 snapdragon -n12877493 white snapdragon, Antirrhinum coulterianum -n12877637 yellow twining snapdragon, Antirrhinum filipes -n12877838 Mediterranean snapdragon, Antirrhinum majus -n12878169 kitten-tails -n12878325 Alpine besseya, Besseya alpina -n12878784 false foxglove, Aureolaria pedicularia, Gerardia pedicularia -n12879068 false foxglove, Aureolaria virginica, Gerardia virginica -n12879527 calceolaria, slipperwort -n12879963 Indian paintbrush, painted cup -n12880244 desert paintbrush, Castilleja chromosa -n12880462 giant red paintbrush, Castilleja miniata -n12880638 great plains paintbrush, Castilleja sessiliflora -n12880799 sulfur paintbrush, Castilleja sulphurea -n12881105 shellflower, shell-flower, turtlehead, snakehead, snake-head, Chelone glabra -n12881913 maiden blue-eyed Mary, Collinsia parviflora -n12882158 blue-eyed Mary, Collinsia verna -n12882779 foxglove, digitalis -n12882945 common foxglove, fairy bell, fingerflower, finger-flower, fingerroot, finger-root, Digitalis purpurea -n12883265 yellow foxglove, straw foxglove, Digitalis lutea -n12883628 gerardia -n12884100 blue toadflax, old-field toadflax, Linaria canadensis -n12884260 toadflax, butter-and-eggs, wild snapdragon, devil's flax, Linaria vulgaris -n12885045 golden-beard penstemon, Penstemon barbatus -n12885265 scarlet bugler, Penstemon centranthifolius -n12885510 red shrubby penstemon, redwood penstemon -n12885754 Platte River penstemon, Penstemon cyananthus -n12886185 hot-rock penstemon, Penstemon deustus -n12886402 Jones' penstemon, Penstemon dolius -n12886600 shrubby penstemon, lowbush penstemon, Penstemon fruticosus -n12886831 narrow-leaf penstemon, Penstemon linarioides -n12887293 balloon flower, scented penstemon, Penstemon palmeri -n12887532 Parry's penstemon, Penstemon parryi -n12887713 rock penstemon, cliff penstemon, Penstemon rupicola -n12888016 Rydberg's penstemon, Penstemon rydbergii -n12888234 cascade penstemon, Penstemon serrulatus -n12888457 Whipple's penstemon, Penstemon whippleanus -n12889219 moth mullein, Verbascum blattaria -n12889412 white mullein, Verbascum lychnitis -n12889579 purple mullein, Verbascum phoeniceum -n12889713 common mullein, great mullein, Aaron's rod, flannel mullein, woolly mullein, torch, Verbascum thapsus -n12890265 veronica, speedwell -n12890490 field speedwell, Veronica agrestis -n12890685 brooklime, American brooklime, Veronica americana -n12890928 corn speedwell, Veronica arvensis -n12891093 brooklime, European brooklime, Veronica beccabunga -n12891305 germander speedwell, bird's eye, Veronica chamaedrys -n12891469 water speedwell, Veronica michauxii, Veronica anagallis-aquatica -n12891643 common speedwell, gypsyweed, Veronica officinalis -n12891824 purslane speedwell, Veronica peregrina -n12892013 thyme-leaved speedwell, Veronica serpyllifolia -n12893463 nightshade -n12893993 horse nettle, ball nettle, bull nettle, ball nightshade, Solanum carolinense -n12895298 African holly, Solanum giganteum -n12895811 potato vine, Solanum jasmoides -n12896615 garden huckleberry, wonderberry, sunberry, Solanum nigrum guineese, Solanum melanocerasum, Solanum burbankii -n12897118 naranjilla, Solanum quitoense -n12897788 potato vine, giant potato creeper, Solanum wendlandii -n12897999 potato tree, Brazilian potato tree, Solanum wrightii, Solanum macranthum -n12898342 belladonna, belladonna plant, deadly nightshade, Atropa belladonna -n12898774 bush violet, browallia -n12899166 lady-of-the-night, Brunfelsia americana -n12899537 angel's trumpet, maikoa, Brugmansia arborea, Datura arborea -n12899752 angel's trumpet, Brugmansia suaveolens, Datura suaveolens -n12899971 red angel's trumpet, Brugmansia sanguinea, Datura sanguinea -n12900783 cone pepper, Capsicum annuum conoides -n12901724 bird pepper, Capsicum frutescens baccatum, Capsicum baccatum -n12902466 day jessamine, Cestrum diurnum -n12902662 night jasmine, night jessamine, Cestrum nocturnum -n12903014 tree tomato, tamarillo -n12903367 thorn apple -n12903503 jimsonweed, jimson weed, Jamestown weed, common thorn apple, apple of Peru, Datura stramonium -n12903964 pichi, Fabiana imbricata -n12904314 henbane, black henbane, stinking nightshade, Hyoscyamus niger -n12904562 Egyptian henbane, Hyoscyamus muticus -n12904938 matrimony vine, boxthorn -n12905135 common matrimony vine, Duke of Argyll's tea tree, Lycium barbarum, Lycium halimifolium -n12905412 Christmasberry, Christmas berry, Lycium carolinianum -n12906214 plum tomato -n12906498 mandrake, devil's apples, Mandragora officinarum -n12906771 mandrake root, mandrake -n12907057 apple of Peru, shoo fly, Nicandra physaloides -n12907671 flowering tobacco, Jasmine tobacco, Nicotiana alata -n12907857 common tobacco, Nicotiana tabacum -n12908093 wild tobacco, Indian tobacco, Nicotiana rustica -n12908645 cupflower, nierembergia -n12908854 whitecup, Nierembergia repens, Nierembergia rivularis -n12909421 petunia -n12909614 large white petunia, Petunia axillaris -n12909759 violet-flowered petunia, Petunia integrifolia -n12909917 hybrid petunia, Petunia hybrida -n12911079 cape gooseberry, purple ground cherry, Physalis peruviana -n12911264 strawberry tomato, dwarf cape gooseberry, Physalis pruinosa -n12911440 tomatillo, jamberry, Mexican husk tomato, Physalis ixocarpa -n12911673 tomatillo, miltomate, purple ground cherry, jamberry, Physalis philadelphica -n12911914 yellow henbane, Physalis viscosa -n12912274 cock's eggs, Salpichroa organifolia, Salpichroa rhomboidea -n12912670 salpiglossis -n12912801 painted tongue, Salpiglossis sinuata -n12913144 butterfly flower, poor man's orchid, schizanthus -n12913524 Scopolia carniolica -n12913791 chalice vine, trumpet flower, cupflower, Solandra guttata -n12914923 verbena, vervain -n12915140 lantana -n12915568 black mangrove, Avicennia marina -n12915811 white mangrove, Avicennia officinalis -n12916179 black mangrove, Aegiceras majus -n12916511 teak, Tectona grandis -n12917901 spurge -n12918609 sun spurge, wartweed, wartwort, devil's milk, Euphorbia helioscopia -n12918810 petty spurge, devil's milk, Euphorbia peplus -n12918991 medusa's head, Euphorbia medusae, Euphorbia caput-medusae -n12919195 wild spurge, flowering spurge, tramp's spurge, Euphorbia corollata -n12919403 snow-on-the-mountain, snow-in-summer, ghost weed, Euphorbia marginata -n12919646 cypress spurge, Euphorbia cyparissias -n12919847 leafy spurge, wolf's milk, Euphorbia esula -n12920043 hairy spurge, Euphorbia hirsuta -n12920204 poinsettia, Christmas star, Christmas flower, lobster plant, Mexican flameleaf, painted leaf, Euphorbia pulcherrima -n12920521 Japanese poinsettia, mole plant, paint leaf, Euphorbia heterophylla -n12920719 fire-on-the-mountain, painted leaf, Mexican fire plant, Euphorbia cyathophora -n12920955 wood spurge, Euphorbia amygdaloides -n12921315 dwarf spurge, Euphorbia exigua -n12921499 scarlet plume, Euphorbia fulgens -n12921660 naboom, cactus euphorbia, Euphorbia ingens -n12921868 crown of thorns, Christ thorn, Christ plant, Euphorbia milii -n12922119 toothed spurge, Euphorbia dentata -n12922458 three-seeded mercury, Acalypha virginica -n12922763 croton, Croton tiglium -n12923108 cascarilla, Croton eluteria -n12923257 cascarilla bark, eleuthera bark, sweetwood bark -n12924623 castor-oil plant, castor bean plant, palma christi, palma christ, Ricinus communis -n12925179 spurge nettle, tread-softly, devil nettle, pica-pica, Cnidoscolus urens, Jatropha urens, Jatropha stimulosus -n12925583 physic nut, Jatropha curcus -n12926039 Para rubber tree, caoutchouc tree, Hevea brasiliensis -n12926480 cassava, casava -n12926689 bitter cassava, manioc, mandioc, mandioca, tapioca plant, gari, Manihot esculenta, Manihot utilissima -n12927013 cassava, manioc -n12927194 sweet cassava, Manihot dulcis -n12927494 candlenut, varnish tree, Aleurites moluccana -n12927758 tung tree, tung, tung-oil tree, Aleurites fordii -n12928071 slipper spurge, slipper plant -n12928307 candelilla, Pedilanthus bracteatus, Pedilanthus pavonis -n12928491 Jewbush, Jew-bush, Jew bush, redbird cactus, redbird flower, Pedilanthus tithymaloides -n12928819 jumping bean, jumping seed, Mexican jumping bean -n12929403 camellia, camelia -n12929600 japonica, Camellia japonica -n12930778 umbellifer, umbelliferous plant -n12930951 wild parsley -n12931231 fool's parsley, lesser hemlock, Aethusa cynapium -n12931542 dill, Anethum graveolens -n12931906 angelica, angelique -n12932173 garden angelica, archangel, Angelica Archangelica -n12932365 wild angelica, Angelica sylvestris -n12932706 chervil, beaked parsley, Anthriscus cereifolium -n12932966 cow parsley, wild chervil, Anthriscus sylvestris -n12933274 wild celery, Apium graveolens -n12934036 astrantia, masterwort -n12934174 greater masterwort, Astrantia major -n12934479 caraway, Carum carvi -n12934685 whorled caraway -n12934985 water hemlock, Cicuta verosa -n12935166 spotted cowbane, spotted hemlock, spotted water hemlock -n12935609 hemlock, poison hemlock, poison parsley, California fern, Nebraska fern, winter fern, Conium maculatum -n12936155 earthnut, Conopodium denudatum -n12936826 cumin, Cuminum cyminum -n12937130 wild carrot, Queen Anne's lace, Daucus carota -n12938081 eryngo, eringo -n12938193 sea holly, sea holm, sea eryngium, Eryngium maritimum -n12938445 button snakeroot, Eryngium aquaticum -n12938667 rattlesnake master, rattlesnake's master, button snakeroot, Eryngium yuccifolium -n12939104 fennel -n12939282 common fennel, Foeniculum vulgare -n12939479 Florence fennel, Foeniculum dulce, Foeniculum vulgare dulce -n12939874 cow parsnip, hogweed, Heracleum sphondylium -n12940226 lovage, Levisticum officinale -n12940609 sweet cicely, Myrrhis odorata -n12941220 water fennel, Oenanthe aquatica -n12941536 parsnip, Pastinaca sativa -n12941717 cultivated parsnip -n12942025 wild parsnip, madnep -n12942395 parsley, Petroselinum crispum -n12942572 Italian parsley, flat-leaf parsley, Petroselinum crispum neapolitanum -n12942729 Hamburg parsley, turnip-rooted parsley, Petroselinum crispum tuberosum -n12943049 anise, anise plant, Pimpinella anisum -n12943443 sanicle, snakeroot -n12943912 purple sanicle, Sanicula bipinnatifida -n12944095 European sanicle, Sanicula Europaea -n12945177 water parsnip, Sium suave -n12945366 greater water parsnip, Sium latifolium -n12945549 skirret, Sium sisarum -n12946849 dogwood, dogwood tree, cornel -n12947313 common white dogwood, eastern flowering dogwood, Cornus florida -n12947544 red osier, red osier dogwood, red dogwood, American dogwood, redbrush, Cornus stolonifera -n12947756 silky dogwood, Cornus obliqua -n12947895 silky cornel, silky dogwood, Cornus amomum -n12948053 common European dogwood, red dogwood, blood-twig, pedwood, Cornus sanguinea -n12948251 bunchberry, dwarf cornel, crackerberry, pudding berry, Cornus canadensis -n12948495 cornelian cherry, Cornus mas -n12949160 puka, Griselinia lucida -n12949361 kapuka, Griselinia littoralis -n12950126 valerian -n12950314 common valerian, garden heliotrope, Valeriana officinalis -n12950796 common corn salad, lamb's lettuce, Valerianella olitoria, Valerianella locusta -n12951146 red valerian, French honeysuckle, Centranthus ruber -n12951835 filmy fern, film fern -n12952165 bristle fern, filmy fern -n12952469 hare's-foot bristle fern, Trichomanes boschianum -n12952590 Killarney fern, Trichomanes speciosum -n12952717 kidney fern, Trichomanes reniforme -n12953206 flowering fern, osmund -n12953484 royal fern, royal osmund, king fern, ditch fern, French bracken, Osmunda regalis -n12953712 interrupted fern, Osmunda clatonia -n12954353 crape fern, Prince-of-Wales fern, Prince-of-Wales feather, Prince-of-Wales plume, Leptopteris superba, Todea superba -n12954799 crepe fern, king fern, Todea barbara -n12955414 curly grass, curly grass fern, Schizaea pusilla -n12955840 pine fern, Anemia adiantifolia -n12956170 climbing fern -n12956367 creeping fern, Hartford fern, Lygodium palmatum -n12956588 climbing maidenhair, climbing maidenhair fern, snake fern, Lygodium microphyllum -n12956922 scented fern, Mohria caffrorum -n12957608 clover fern, pepperwort -n12957803 nardoo, nardo, common nardoo, Marsilea drummondii -n12957924 water clover, Marsilea quadrifolia -n12958261 pillwort, Pilularia globulifera -n12958615 regnellidium, Regnellidium diphyllum -n12959074 floating-moss, Salvinia rotundifolia, Salvinia auriculata -n12959538 mosquito fern, floating fern, Carolina pond fern, Azolla caroliniana -n12960378 adder's tongue, adder's tongue fern -n12960552 ribbon fern, Ophioglossum pendulum -n12960863 grape fern -n12961242 daisyleaf grape fern, daisy-leaved grape fern, Botrychium matricariifolium -n12961393 leathery grape fern, Botrychium multifidum -n12961536 rattlesnake fern, Botrychium virginianum -n12961879 flowering fern, Helminthostachys zeylanica -n12963628 powdery mildew -n12964920 Dutch elm fungus, Ceratostomella ulmi -n12965626 ergot, Claviceps purpurea -n12965951 rye ergot -n12966804 black root rot fungus, Xylaria mali -n12966945 dead-man's-fingers, dead-men's-fingers, Xylaria polymorpha -n12968136 sclerotinia -n12968309 brown cup -n12969131 earthball, false truffle, puffball, hard-skinned puffball -n12969425 Scleroderma citrinum, Scleroderma aurantium -n12969670 Scleroderma flavidium, star earthball -n12969927 Scleroderma bovista, smooth earthball -n12970193 Podaxaceae -n12970293 stalked puffball -n12970733 stalked puffball -n12971400 false truffle -n12971804 Rhizopogon idahoensis -n12972136 Truncocolumella citrina -n12973443 mucor -n12973791 rhizopus -n12973937 bread mold, Rhizopus nigricans -n12974987 slime mold, slime mould -n12975804 true slime mold, acellular slime mold, plasmodial slime mold, myxomycete -n12976198 cellular slime mold -n12976554 dictostylium -n12978076 pond-scum parasite -n12979316 potato wart fungus, Synchytrium endobioticum -n12979829 white fungus, Saprolegnia ferax -n12980080 water mold -n12980840 downy mildew, false mildew -n12981086 blue mold fungus, Peronospora tabacina -n12981301 onion mildew, Peronospora destructor -n12981443 tobacco mildew, Peronospora hyoscyami -n12981954 white rust -n12982468 pythium -n12982590 damping off fungus, Pythium debaryanum -n12982915 Phytophthora citrophthora -n12983048 Phytophthora infestans -n12983654 clubroot fungus, Plasmodiophora brassicae -n12983873 Geglossaceae -n12983961 Sarcosomataceae -n12984267 Rufous rubber cup -n12984489 devil's cigar -n12984595 devil's urn -n12985420 truffle, earthnut, earth-ball -n12985773 club fungus -n12985857 coral fungus -n12986227 tooth fungus -n12987056 lichen -n12987423 ascolichen -n12987535 basidiolichen -n12988158 lecanora -n12988341 manna lichen -n12988572 archil, orchil -n12989007 roccella, Roccella tinctoria -n12989938 beard lichen, beard moss, Usnea barbata -n12990597 horsehair lichen, horsetail lichen -n12991184 reindeer moss, reindeer lichen, arctic moss, Cladonia rangiferina -n12991837 crottle, crottal, crotal -n12992177 Iceland moss, Iceland lichen, Cetraria islandica -n12992868 fungus -n12994892 promycelium -n12995601 true fungus -n12997654 basidiomycete, basidiomycetous fungi -n12997919 mushroom -n12998815 agaric -n13000891 mushroom -n13001041 mushroom -n13001206 toadstool -n13001366 horse mushroom, Agaricus arvensis -n13001529 meadow mushroom, field mushroom, Agaricus campestris -n13001930 shiitake, shiitake mushroom, Chinese black mushroom, golden oak mushroom, Oriental black mushroom, Lentinus edodes -n13002209 scaly lentinus, Lentinus lepideus -n13002750 royal agaric, Caesar's agaric, Amanita caesarea -n13002925 false deathcap, Amanita mappa -n13003061 fly agaric, Amanita muscaria -n13003254 death cap, death cup, death angel, destroying angel, Amanita phalloides -n13003522 blushing mushroom, blusher, Amanita rubescens -n13003712 destroying angel, Amanita verna -n13004423 chanterelle, chantarelle, Cantharellus cibarius -n13004640 floccose chanterelle, Cantharellus floccosus -n13004826 pig's ears, Cantharellus clavatus -n13004992 cinnabar chanterelle, Cantharellus cinnabarinus -n13005329 jack-o-lantern fungus, jack-o-lantern, jack-a-lantern, Omphalotus illudens -n13005984 inky cap, inky-cap mushroom, Coprinus atramentarius -n13006171 shaggymane, shaggy cap, shaggymane mushroom, Coprinus comatus -n13006631 milkcap, Lactarius delicioso -n13006894 fairy-ring mushroom, Marasmius oreades -n13007034 fairy ring, fairy circle -n13007417 oyster mushroom, oyster fungus, oyster agaric, Pleurotus ostreatus -n13007629 olive-tree agaric, Pleurotus phosphoreus -n13008157 Pholiota astragalina -n13008315 Pholiota aurea, golden pholiota -n13008485 Pholiota destruens -n13008689 Pholiota flammans -n13008839 Pholiota flavida -n13009085 nameko, viscid mushroom, Pholiota nameko -n13009244 Pholiota squarrosa-adiposa -n13009429 Pholiota squarrosa, scaly pholiota -n13009656 Pholiota squarrosoides -n13010694 Stropharia ambigua -n13010951 Stropharia hornemannii -n13011221 Stropharia rugoso-annulata -n13011595 gill fungus -n13012253 Entoloma lividum, Entoloma sinuatum -n13012469 Entoloma aprile -n13012973 Chlorophyllum molybdites -n13013534 lepiota -n13013764 parasol mushroom, Lepiota procera -n13013965 poisonous parasol, Lepiota morgani -n13014097 Lepiota naucina -n13014265 Lepiota rhacodes -n13014409 American parasol, Lepiota americana -n13014581 Lepiota rubrotincta -n13014741 Lepiota clypeolaria -n13014879 onion stem, Lepiota cepaestipes -n13015509 pink disease fungus, Corticium salmonicolor -n13015688 bottom rot fungus, Corticium solani -n13016076 potato fungus, Pellicularia filamentosa, Rhizoctinia solani -n13016289 coffee fungus, Pellicularia koleroga -n13017102 blewits, Clitocybe nuda -n13017240 sandy mushroom, Tricholoma populinum -n13017439 Tricholoma pessundatum -n13017610 Tricholoma sejunctum -n13017789 man-on-a-horse, Tricholoma flavovirens -n13017979 Tricholoma venenata -n13018088 Tricholoma pardinum -n13018232 Tricholoma vaccinum -n13018407 Tricholoma aurantium -n13018906 Volvaria bombycina -n13019496 Pluteus aurantiorugosus -n13019643 Pluteus magnus, sawdust mushroom -n13019835 deer mushroom, Pluteus cervinus -n13020191 straw mushroom, Chinese mushroom, Volvariella volvacea -n13020481 Volvariella bombycina -n13020964 Clitocybe clavipes -n13021166 Clitocybe dealbata -n13021332 Clitocybe inornata -n13021543 Clitocybe robusta, Clytocybe alba -n13021689 Clitocybe irina, Tricholoma irinum, Lepista irina -n13021867 Clitocybe subconnexa -n13022210 winter mushroom, Flammulina velutipes -n13022709 mycelium -n13022903 sclerotium -n13023134 sac fungus -n13024012 ascomycete, ascomycetous fungus -n13024500 Clavicipitaceae, grainy club mushrooms -n13024653 grainy club -n13025647 yeast -n13025854 baker's yeast, brewer's yeast, Saccharomyces cerevisiae -n13026015 wine-maker's yeast, Saccharomyces ellipsoides -n13027557 Aspergillus fumigatus -n13027879 brown root rot fungus, Thielavia basicola -n13028611 discomycete, cup fungus -n13028937 Leotia lubrica -n13029122 Mitrula elegans -n13029326 Sarcoscypha coccinea, scarlet cup -n13029610 Caloscypha fulgens -n13029760 Aleuria aurantia, orange peel fungus -n13030337 elf cup -n13030616 Peziza domicilina -n13030852 blood cup, fairy cup, Peziza coccinea -n13031193 Urnula craterium, urn fungus -n13031323 Galiella rufa -n13031474 Jafnea semitosta -n13032115 morel -n13032381 common morel, Morchella esculenta, sponge mushroom, sponge morel -n13032618 Disciotis venosa, cup morel -n13032923 Verpa, bell morel -n13033134 Verpa bohemica, early morel -n13033396 Verpa conica, conic Verpa -n13033577 black morel, Morchella conica, conic morel, Morchella angusticeps, narrowhead morel -n13033879 Morchella crassipes, thick-footed morel -n13034062 Morchella semilibera, half-free morel, cow's head -n13034555 Wynnea americana -n13034788 Wynnea sparassoides -n13035241 false morel -n13035389 lorchel -n13035707 helvella -n13035925 Helvella crispa, miter mushroom -n13036116 Helvella acetabulum -n13036312 Helvella sulcata -n13036804 discina -n13037406 gyromitra -n13037585 Gyromitra californica, California false morel -n13037805 Gyromitra sphaerospora, round-spored gyromitra -n13038068 Gyromitra esculenta, brain mushroom, beefsteak morel -n13038376 Gyromitra infula, saddled-shaped false morel -n13038577 Gyromitra fastigiata, Gyromitra brunnea -n13038744 Gyromitra gigas -n13039349 gasteromycete, gastromycete -n13040303 stinkhorn, carrion fungus -n13040629 common stinkhorn, Phallus impudicus -n13040796 Phallus ravenelii -n13041312 dog stinkhorn, Mutinus caninus -n13041943 Calostoma lutescens -n13042134 Calostoma cinnabarina -n13042316 Calostoma ravenelii -n13042982 stinky squid, Pseudocolus fusiformis -n13043926 puffball, true puffball -n13044375 giant puffball, Calvatia gigantea -n13044778 earthstar -n13045210 Geastrum coronatum -n13045594 Radiigera fuscogleba -n13045975 Astreus pteridis -n13046130 Astreus hygrometricus -n13046669 bird's-nest fungus -n13047862 Gastrocybe lateritia -n13048447 Macowanites americanus -n13049953 polypore, pore fungus, pore mushroom -n13050397 bracket fungus, shelf fungus -n13050705 Albatrellus dispansus -n13050940 Albatrellus ovinus, sheep polypore -n13051346 Neolentinus ponderosus -n13052014 Oligoporus leucospongia -n13052248 Polyporus tenuiculus -n13052670 hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa -n13052931 Polyporus squamosus, scaly polypore -n13053608 beefsteak fungus, Fistulina hepatica -n13054073 agaric, Fomes igniarius -n13054560 bolete -n13055423 Boletus chrysenteron -n13055577 Boletus edulis -n13055792 Frost's bolete, Boletus frostii -n13055949 Boletus luridus -n13056135 Boletus mirabilis -n13056349 Boletus pallidus -n13056607 Boletus pulcherrimus -n13056799 Boletus pulverulentus -n13057054 Boletus roxanae -n13057242 Boletus subvelutipes -n13057422 Boletus variipes -n13057639 Boletus zelleri -n13058037 Fuscoboletinus paluster -n13058272 Fuscoboletinus serotinus -n13058608 Leccinum fibrillosum -n13059298 Suillus albivelatus -n13059657 old-man-of-the-woods, Strobilomyces floccopus -n13060017 Boletellus russellii -n13060190 jelly fungus -n13061172 snow mushroom, Tremella fuciformis -n13061348 witches' butter, Tremella lutescens -n13061471 Tremella foliacea -n13061704 Tremella reticulata -n13062421 Jew's-ear, Jew's-ears, ear fungus, Auricularia auricula -n13063269 rust, rust fungus -n13063514 aecium -n13064111 flax rust, flax rust fungus, Melampsora lini -n13064457 blister rust, Cronartium ribicola -n13065089 wheat rust, Puccinia graminis -n13065514 apple rust, cedar-apple rust, Gymnosporangium juniperi-virginianae -n13066129 smut, smut fungus -n13066448 covered smut -n13066979 loose smut -n13067191 cornsmut, corn smut -n13067330 boil smut, Ustilago maydis -n13067532 Sphacelotheca, genus Sphacelotheca -n13067672 head smut, Sphacelotheca reiliana -n13068255 bunt, Tilletia caries -n13068434 bunt, stinking smut, Tilletia foetida -n13068735 onion smut, Urocystis cepulae -n13068917 flag smut fungus -n13069224 wheat flag smut, Urocystis tritici -n13069773 felt fungus, Septobasidium pseudopedicellatum -n13070308 waxycap -n13070875 Hygrocybe acutoconica, conic waxycap -n13071371 Hygrophorus borealis -n13071553 Hygrophorus caeruleus -n13071815 Hygrophorus inocybiformis -n13072031 Hygrophorus kauffmanii -n13072209 Hygrophorus marzuolus -n13072350 Hygrophorus purpurascens -n13072528 Hygrophorus russula -n13072706 Hygrophorus sordidus -n13072863 Hygrophorus tennesseensis -n13073055 Hygrophorus turundus -n13073703 Neohygrophorus angelesianus -n13074619 Cortinarius armillatus -n13074814 Cortinarius atkinsonianus -n13075020 Cortinarius corrugatus -n13075272 Cortinarius gentilis -n13075441 Cortinarius mutabilis, purple-staining Cortinarius -n13075684 Cortinarius semisanguineus -n13075847 Cortinarius subfoetidus -n13076041 Cortinarius violaceus -n13076405 Gymnopilus spectabilis -n13076643 Gymnopilus validipes -n13076831 Gymnopilus ventricosus -n13077033 mold, mould -n13077295 mildew -n13078021 verticillium -n13079073 monilia -n13079419 candida -n13079567 Candida albicans, Monilia albicans -n13080306 blastomycete -n13080866 yellow spot fungus, Cercospora kopkei -n13081229 green smut fungus, Ustilaginoidea virens -n13081999 dry rot -n13082568 rhizoctinia -n13083023 houseplant -n13083461 bedder, bedding plant -n13084184 succulent -n13084834 cultivar -n13085113 weed -n13085747 wort -n13090018 brier -n13090871 aril -n13091620 sporophyll, sporophyl -n13091774 sporangium, spore case, spore sac -n13091982 sporangiophore -n13092078 ascus -n13092240 ascospore -n13092385 arthrospore -n13092987 eusporangium -n13093275 tetrasporangium -n13093629 gametangium -n13094145 sorus -n13094273 sorus -n13095013 partial veil -n13096779 lignum -n13098515 vascular ray, medullary ray -n13098962 phloem, bast -n13099833 evergreen, evergreen plant -n13099999 deciduous plant -n13100156 poisonous plant -n13100677 vine -n13102648 creeper -n13102775 tendril -n13103023 root climber -n13103660 lignosae -n13103750 arborescent plant -n13103877 snag -n13104059 tree -n13107694 timber tree -n13107807 treelet -n13107891 arbor -n13108131 bean tree -n13108323 pollard -n13108481 sapling -n13108545 shade tree -n13108662 gymnospermous tree -n13108841 conifer, coniferous tree -n13109733 angiospermous tree, flowering tree -n13110915 nut tree -n13111174 spice tree -n13111340 fever tree -n13111504 stump, tree stump -n13111881 bonsai -n13112035 ming tree -n13112201 ming tree -n13118330 undershrub -n13118707 subshrub, suffrutex -n13119870 bramble -n13120211 liana -n13120958 geophyte -n13121104 desert plant, xerophyte, xerophytic plant, xerophile, xerophilous plant -n13121349 mesophyte, mesophytic plant -n13122364 marsh plant, bog plant, swamp plant -n13123309 hemiepiphyte, semiepiphyte -n13123431 strangler, strangler tree -n13123841 lithophyte, lithophytic plant -n13124358 saprobe -n13124654 autophyte, autophytic plant, autotroph, autotrophic organism -n13125117 root -n13126050 taproot -n13126856 prop root -n13127001 prophyll -n13127303 rootstock -n13127666 quickset -n13127843 stolon, runner, offset -n13128278 tuberous plant -n13128582 rhizome, rootstock, rootstalk -n13128976 rachis -n13129078 caudex -n13130014 cladode, cladophyll, phylloclad, phylloclade -n13130161 receptacle -n13130726 scape, flower stalk -n13131028 umbel -n13131618 petiole, leafstalk -n13132034 peduncle -n13132156 pedicel, pedicle -n13132338 flower cluster -n13132486 raceme -n13132656 panicle -n13132756 thyrse, thyrsus -n13132940 cyme -n13133140 cymule -n13133233 glomerule -n13133316 scorpioid cyme -n13133613 ear, spike, capitulum -n13133932 spadix -n13134302 bulbous plant -n13134531 bulbil, bulblet -n13134844 cormous plant -n13134947 fruit -n13135692 fruitlet -n13135832 seed -n13136316 bean -n13136556 nut -n13136781 nutlet -n13137010 kernel, meat -n13137225 syconium -n13137409 berry -n13137672 aggregate fruit, multiple fruit, syncarp -n13137951 simple fruit, bacca -n13138155 acinus -n13138308 drupe, stone fruit -n13138658 drupelet -n13138842 pome, false fruit -n13139055 pod, seedpod -n13139321 loment -n13139482 pyxidium, pyxis -n13139647 husk -n13139837 cornhusk -n13140049 pod, cod, seedcase -n13140367 accessory fruit, pseudocarp -n13141141 buckthorn -n13141415 buckthorn berry, yellow berry -n13141564 cascara buckthorn, bearberry, bearwood, chittamwood, chittimwood, Rhamnus purshianus -n13141797 cascara, cascara sagrada, chittam bark, chittem bark -n13141972 Carolina buckthorn, indian cherry, Rhamnus carolinianus -n13142182 coffeeberry, California buckthorn, California coffee, Rhamnus californicus -n13142504 redberry, red-berry, Rhamnus croceus -n13142907 nakedwood -n13143285 jujube, jujube bush, Christ's-thorn, Jerusalem thorn, Ziziphus jujuba -n13143758 Christ's-thorn, Jerusalem thorn, Paliurus spina-christi -n13144084 hazel, hazel tree, Pomaderris apetala -n13145040 fox grape, Vitis labrusca -n13145250 muscadine, Vitis rotundifolia -n13145444 vinifera, vinifera grape, common grape vine, Vitis vinifera -n13146403 Pinot blanc -n13146583 Sauvignon grape -n13146928 Sauvignon blanc -n13147153 Muscadet -n13147270 Riesling -n13147386 Zinfandel -n13147532 Chenin blanc -n13147689 malvasia -n13147918 Verdicchio -n13148208 Boston ivy, Japanese ivy, Parthenocissus tricuspidata -n13148384 Virginia creeper, American ivy, woodbine, Parthenocissus quinquefolia -n13149296 true pepper, pepper vine -n13149970 betel, betel pepper, Piper betel -n13150378 cubeb -n13150592 schizocarp -n13150894 peperomia -n13151082 watermelon begonia, Peperomia argyreia, Peperomia sandersii -n13152339 yerba mansa, Anemopsis californica -n13154388 pinna, pinnule -n13154494 frond -n13154841 bract -n13155095 bracteole, bractlet -n13155305 involucre -n13155611 glume -n13156986 palmate leaf -n13157137 pinnate leaf -n13157346 bijugate leaf, bijugous leaf, twice-pinnate -n13157481 decompound leaf -n13157684 acuminate leaf -n13157971 deltoid leaf -n13158167 ensiform leaf -n13158512 linear leaf, elongate leaf -n13158605 lyrate leaf -n13158714 obtuse leaf -n13158815 oblanceolate leaf -n13159357 pandurate leaf, panduriform leaf -n13159691 reniform leaf -n13159890 spatulate leaf -n13160116 even-pinnate leaf, abruptly-pinnate leaf -n13160254 odd-pinnate leaf -n13160365 pedate leaf -n13160604 crenate leaf -n13160831 dentate leaf -n13160938 denticulate leaf -n13161151 erose leaf -n13161254 runcinate leaf -n13161904 prickly-edged leaf -n13163553 deadwood -n13163649 haulm, halm -n13163991 branchlet, twig, sprig -n13164501 osier -n13170840 giant scrambling fern, Diplopterygium longissimum -n13171210 umbrella fern, fan fern, Sticherus flabellatus, Gleichenia flabellata -n13171797 floating fern, water sprite, Ceratopteris pteridioides -n13172923 polypody -n13173132 licorice fern, Polypodium glycyrrhiza -n13173259 grey polypody, gray polypody, resurrection fern, Polypodium polypodioides -n13173488 leatherleaf, leathery polypody, coast polypody, Polypodium scouleri -n13173697 rock polypody, rock brake, American wall fern, Polypodium virgianum -n13173882 common polypody, adder's fern, wall fern, golden maidenhair, golden polypody, sweet fern, Polypodium vulgare -n13174354 bear's-paw fern, Aglaomorpha meyeniana -n13174670 strap fern -n13174823 Florida strap fern, cow-tongue fern, hart's-tongue fern -n13175682 basket fern, Drynaria rigidula -n13176363 snake polypody, Microgramma-piloselloides -n13176714 climbing bird's nest fern, Microsorium punctatum -n13177048 golden polypody, serpent fern, rabbit's-foot fern, Phlebodium aureum, Polypodium aureum -n13177529 staghorn fern -n13177768 South American staghorn, Platycerium andinum -n13177884 common staghorn fern, elkhorn fern, Platycerium bifurcatum, Platycerium alcicorne -n13178284 felt fern, tongue fern, Pyrrosia lingua, Cyclophorus lingua -n13178707 potato fern, Solanopteris bifrons -n13179056 myrmecophyte -n13179804 grass fern, ribbon fern, Vittaria lineata -n13180534 spleenwort -n13180875 black spleenwort, Asplenium adiantum-nigrum -n13181055 bird's nest fern, Asplenium nidus -n13181244 ebony spleenwort, Scott's Spleenwort, Asplenium platyneuron -n13181406 black-stem spleenwort, black-stemmed spleenwort, little ebony spleenwort -n13181811 walking fern, walking leaf, Asplenium rhizophyllum, Camptosorus rhizophyllus -n13182164 green spleenwort, Asplenium viride -n13182338 mountain spleenwort, Asplenium montanum -n13182799 lobed spleenwort, Asplenium pinnatifidum -n13182937 lanceolate spleenwort, Asplenium billotii -n13183056 hart's-tongue, hart's-tongue fern, Asplenium scolopendrium, Phyllitis scolopendrium -n13183489 scale fern, scaly fern, Asplenium ceterach, Ceterach officinarum -n13184394 scolopendrium -n13185269 deer fern, Blechnum spicant -n13185658 doodia, rasp fern -n13186388 chain fern -n13186546 Virginia chain fern, Woodwardia virginica -n13187367 silver tree fern, sago fern, black tree fern, Cyathea medullaris -n13188096 davallia -n13188268 hare's-foot fern -n13188462 Canary Island hare's foot fern, Davallia canariensis -n13188767 squirrel's-foot fern, ball fern, Davalia bullata, Davalia bullata mariesii, Davallia Mariesii -n13190060 bracken, Pteridium esculentum -n13190747 soft tree fern, Dicksonia antarctica -n13191148 Scythian lamb, Cibotium barometz -n13191620 false bracken, Culcita dubia -n13191884 thyrsopteris, Thyrsopteris elegans -n13192625 shield fern, buckler fern -n13193143 broad buckler-fern, Dryopteris dilatata -n13193269 fragrant cliff fern, fragrant shield fern, fragrant wood fern, Dryopteris fragrans -n13193466 Goldie's fern, Goldie's shield fern, goldie's wood fern, Dryopteris goldiana -n13193642 wood fern, wood-fern, woodfern -n13193856 male fern, Dryopteris filix-mas -n13194036 marginal wood fern, evergreen wood fern, leatherleaf wood fern, Dryopteris marginalis -n13194212 mountain male fern, Dryopteris oreades -n13194572 lady fern, Athyrium filix-femina -n13194758 Alpine lady fern, Athyrium distentifolium -n13194918 silvery spleenwort, glade fern, narrow-leaved spleenwort, Athyrium pycnocarpon, Diplazium pycnocarpon -n13195341 holly fern, Cyrtomium aculeatum, Polystichum aculeatum -n13195761 bladder fern -n13196003 brittle bladder fern, brittle fern, fragile fern, Cystopteris fragilis -n13196234 mountain bladder fern, Cystopteris montana -n13196369 bulblet fern, bulblet bladder fern, berry fern, Cystopteris bulbifera -n13196738 silvery spleenwort, Deparia acrostichoides, Athyrium thelypteroides -n13197274 oak fern, Gymnocarpium dryopteris, Thelypteris dryopteris -n13197507 limestone fern, northern oak fern, Gymnocarpium robertianum -n13198054 ostrich fern, shuttlecock fern, fiddlehead, Matteuccia struthiopteris, Pteretis struthiopteris, Onoclea struthiopteris -n13198482 hart's-tongue, hart's-tongue fern, Olfersia cervina, Polybotrya cervina, Polybotria cervina -n13198914 sensitive fern, bead fern, Onoclea sensibilis -n13199717 Christmas fern, canker brake, dagger fern, evergreen wood fern, Polystichum acrostichoides -n13199970 holly fern -n13200193 Braun's holly fern, prickly shield fern, Polystichum braunii -n13200542 western holly fern, Polystichum scopulinum -n13200651 soft shield fern, Polystichum setiferum -n13200986 leather fern, leatherleaf fern, ten-day fern, Rumohra adiantiformis, Polystichum adiantiformis -n13201423 button fern, Tectaria cicutaria -n13201566 Indian button fern, Tectaria macrodonta -n13201969 woodsia -n13202125 rusty woodsia, fragrant woodsia, oblong woodsia, Woodsia ilvensis -n13202355 Alpine woodsia, northern woodsia, flower-cup fern, Woodsia alpina -n13202602 smooth woodsia, Woodsia glabella -n13205058 Boston fern, Nephrolepis exaltata, Nephrolepis exaltata bostoniensis -n13205249 basket fern, toothed sword fern, Nephrolepis pectinata -n13206178 golden fern, leather fern, Acrostichum aureum -n13206817 maidenhair, maidenhair fern -n13207094 common maidenhair, Venushair, Venus'-hair fern, southern maidenhair, Venus maidenhair, Adiantum capillus-veneris -n13207335 American maidenhair fern, five-fingered maidenhair fern, Adiantum pedatum -n13207572 Bermuda maidenhair, Bermuda maidenhair fern, Adiantum bellum -n13207736 brittle maidenhair, brittle maidenhair fern, Adiantum tenerum -n13207923 Farley maidenhair, Farley maidenhair fern, Barbados maidenhair, glory fern, Adiantum tenerum farleyense -n13208302 annual fern, Jersey fern, Anogramma leptophylla -n13208705 lip fern, lipfern -n13208965 smooth lip fern, Alabama lip fern, Cheilanthes alabamensis -n13209129 lace fern, Cheilanthes gracillima -n13209270 wooly lip fern, hairy lip fern, Cheilanthes lanosa -n13209460 southwestern lip fern, Cheilanthes eatonii -n13209808 bamboo fern, Coniogramme japonica -n13210350 American rock brake, American parsley fern, Cryptogramma acrostichoides -n13210597 European parsley fern, mountain parsley fern, Cryptogramma crispa -n13211020 hand fern, Doryopteris pedata -n13211790 cliff brake, cliff-brake, rock brake -n13212025 coffee fern, Pellaea andromedifolia -n13212175 purple rock brake, Pellaea atropurpurea -n13212379 bird's-foot fern, Pellaea mucronata, Pellaea ornithopus -n13212559 button fern, Pellaea rotundifolia -n13213066 silver fern, Pityrogramma argentea -n13213397 golden fern, Pityrogramma calomelanos aureoflava -n13213577 gold fern, Pityrogramma chrysophylla -n13214217 Pteris cretica -n13214340 spider brake, spider fern, Pteris multifida -n13214485 ribbon fern, spider fern, Pteris serrulata -n13215258 potato fern, Marattia salicina -n13215586 angiopteris, giant fern, Angiopteris evecta -n13217005 skeleton fork fern, Psilotum nudum -n13219422 horsetail -n13219833 common horsetail, field horsetail, Equisetum arvense -n13219976 swamp horsetail, water horsetail, Equisetum fluviatile -n13220122 scouring rush, rough horsetail, Equisetum hyemale, Equisetum hyemale robustum, Equisetum robustum -n13220355 marsh horsetail, Equisetum palustre -n13220525 wood horsetail, Equisetum Sylvaticum -n13220663 variegated horsetail, variegated scouring rush, Equisetum variegatum -n13221529 club moss, club-moss, lycopod -n13222877 shining clubmoss, Lycopodium lucidulum -n13222985 alpine clubmoss, Lycopodium alpinum -n13223090 fir clubmoss, mountain clubmoss, little clubmoss, Lycopodium selago -n13223588 ground cedar, staghorn moss, Lycopodium complanatum -n13223710 ground fir, princess pine, tree clubmoss, Lycopodium obscurum -n13223843 foxtail grass, Lycopodium alopecuroides -n13224673 spikemoss, spike moss, little club moss -n13224922 meadow spikemoss, basket spikemoss, Selaginella apoda -n13225244 desert selaginella, Selaginella eremophila -n13225365 resurrection plant, rose of Jericho, Selaginella lepidophylla -n13225617 florida selaginella, Selaginella eatonii -n13226320 quillwort -n13226871 earthtongue, earth-tongue -n13228017 snuffbox fern, meadow fern, Thelypteris palustris pubescens, Dryopteris thelypteris pubescens -n13228536 christella -n13229543 mountain fern, Oreopteris limbosperma, Dryopteris oreopteris -n13229951 New York fern, Parathelypteris novae-boracensis, Dryopteris noveboracensis -n13230190 Massachusetts fern, Parathelypteris simulata, Thelypteris simulata -n13230662 beech fern -n13230843 broad beech fern, southern beech fern, Phegopteris hexagonoptera, Dryopteris hexagonoptera, Thelypteris hexagonoptera -n13231078 long beech fern, narrow beech fern, northern beech fern, Phegopteris connectilis, Dryopteris phegopteris, Thelypteris phegopteris -n13231678 shoestring fungus -n13231919 Armillaria caligata, booted armillaria -n13232106 Armillaria ponderosa, white matsutake -n13232363 Armillaria zelleri -n13232779 honey mushroom, honey fungus, Armillariella mellea -n13233727 milkweed, silkweed -n13234114 white milkweed, Asclepias albicans -n13234519 poke milkweed, Asclepias exaltata -n13234678 swamp milkweed, Asclepias incarnata -n13234857 Mead's milkweed, Asclepias meadii, Asclepia meadii -n13235011 purple silkweed, Asclepias purpurascens -n13235159 showy milkweed, Asclepias speciosa -n13235319 poison milkweed, horsetail milkweed, Asclepias subverticillata -n13235503 butterfly weed, orange milkweed, chigger flower, chiggerflower, pleurisy root, tuber root, Indian paintbrush, Asclepias tuberosa -n13235766 whorled milkweed, Asclepias verticillata -n13236100 cruel plant, Araujia sericofera -n13237188 wax plant, Hoya carnosa -n13237508 silk vine, Periploca graeca -n13238375 stapelia, carrion flower, starfish flower -n13238654 Stapelias asterias -n13238988 stephanotis -n13239177 Madagascar jasmine, waxflower, Stephanotis floribunda -n13239736 negro vine, Vincetoxicum hirsutum, Vincetoxicum negrum -n13239921 zygospore -n13240362 tree of knowledge -n13252672 orangery -n13354021 pocketbook -n13555775 shit, dump -n13579829 cordage -n13650447 yard, pace -n13653902 extremum, peak -n13862407 leaf shape, leaf form -n13862552 equilateral -n13862780 figure -n13863020 pencil -n13863186 plane figure, two-dimensional figure -n13863473 solid figure, three-dimensional figure -n13863771 line -n13864035 bulb -n13864153 convex shape, convexity -n13864965 concave shape, concavity, incurvation, incurvature -n13865298 cylinder -n13865483 round shape -n13865904 heart -n13866144 polygon, polygonal shape -n13866626 convex polygon -n13866827 concave polygon -n13867005 reentrant polygon, reentering polygon -n13867492 amorphous shape -n13868248 closed curve -n13868371 simple closed curve, Jordan curve -n13868515 S-shape -n13868944 wave, undulation -n13869045 extrados -n13869547 hook, crotchet -n13869788 envelope -n13869896 bight -n13871717 diameter -n13872592 cone, conoid, cone shape -n13872822 funnel, funnel shape -n13873361 oblong -n13873502 circle -n13873917 circle -n13874073 equator -n13874558 scallop, crenation, crenature, crenel, crenelle -n13875392 ring, halo, annulus, doughnut, anchor ring -n13875571 loop -n13875884 bight -n13876561 helix, spiral -n13877547 element of a cone -n13877667 element of a cylinder -n13878306 ellipse, oval -n13879049 quadrate -n13879320 triangle, trigon, trilateral -n13879816 acute triangle, acute-angled triangle -n13880199 isosceles triangle -n13880415 obtuse triangle, obtuse-angled triangle -n13880551 right triangle, right-angled triangle -n13880704 scalene triangle -n13880994 parallel -n13881512 trapezoid -n13881644 star -n13882201 pentagon -n13882276 hexagon -n13882487 heptagon -n13882563 octagon -n13882639 nonagon -n13882713 decagon -n13882961 rhombus, rhomb, diamond -n13883603 spherical polygon -n13883763 spherical triangle -n13884261 convex polyhedron -n13884384 concave polyhedron -n13884930 cuboid -n13885011 quadrangular prism -n13886260 bell, bell shape, campana -n13888491 angular distance -n13889066 true anomaly -n13889331 spherical angle -n13891547 angle of refraction -n13891937 acute angle -n13893786 groove, channel -n13894154 rut -n13894434 bulge, bump, hump, swelling, gibbosity, gibbousness, jut, prominence, protuberance, protrusion, extrusion, excrescence -n13895262 belly -n13896100 bow, arc -n13896217 crescent -n13897198 ellipsoid -n13897528 hypotenuse -n13897996 balance, equilibrium, equipoise, counterbalance -n13898207 conformation -n13898315 symmetry, proportion -n13898645 spheroid, ellipsoid of revolution -n13899735 spherule -n13900287 toroid -n13900422 column, tower, pillar -n13901211 barrel, drum -n13901321 pipe, tube -n13901423 pellet -n13901490 bolus -n13901858 dewdrop -n13902048 ridge -n13902336 rim -n13902793 taper -n13903079 boundary, edge, bound -n13905121 incisure, incisura -n13905275 notch -n13905792 wrinkle, furrow, crease, crinkle, seam, line -n13906484 dermatoglyphic -n13906669 frown line -n13906767 line of life, life line, lifeline -n13906936 line of heart, heart line, love line, mensal line -n13907272 crevice, cranny, crack, fissure, chap -n13908201 cleft -n13908580 roulette, line roulette -n13911045 node -n13912260 tree, tree diagram -n13912540 stemma -n13914141 brachium -n13914265 fork, crotch -n13914608 block, cube -n13915023 ovoid -n13915113 tetrahedron -n13915209 pentahedron -n13915305 hexahedron -n13915999 regular polyhedron, regular convex solid, regular convex polyhedron, Platonic body, Platonic solid, ideal solid -n13916363 polyhedral angle -n13916721 cube, regular hexahedron -n13917690 truncated pyramid -n13917785 truncated cone -n13918274 tail, tail end -n13918387 tongue, knife -n13918717 trapezohedron -n13919547 wedge, wedge shape, cuneus -n13919919 keel -n13926786 place, shoes -n14131950 herpes -n14175579 chlamydia -n14564779 wall -n14582716 micronutrient -n14583400 chyme -n14585392 ragweed pollen -n14592309 pina cloth -n14603798 chlorobenzylidenemalononitrile, CS gas -n14633206 carbon, C, atomic number 6 -n14685296 charcoal, wood coal -n14696793 rock, stone -n14698884 gravel, crushed rock -n14714645 aflatoxin -n14720833 alpha-tocopheral -n14765422 leopard -n14785065 bricks and mortar -n14786943 lagging -n14804958 hydraulic cement, Portland cement -n14810561 choline -n14820180 concrete -n14821852 glass wool -n14844693 soil, dirt -n14853210 high explosive -n14858292 litter -n14867545 fish meal -n14891255 Greek fire -n14899328 culture medium, medium -n14900184 agar, nutrient agar -n14900342 blood agar -n14908027 hip tile, hipped tile -n14909584 hyacinth, jacinth -n14914945 hydroxide ion, hydroxyl ion -n14915184 ice, water ice -n14919819 inositol -n14938389 linoleum, lino -n14941787 lithia water -n14942411 lodestone, loadstone -n14973585 pantothenic acid, pantothen -n14974264 paper -n14975598 papyrus -n14976759 pantile -n14976871 blacktop, blacktopping -n14977188 tarmacadam, tarmac -n14977504 paving, pavement, paving material -n14992287 plaster -n14993378 poison gas -n15005577 ridge tile -n15006012 roughcast -n15019030 sand -n15048888 spackle, spackling compound -n15060326 render -n15060688 wattle and daub -n15062057 stucco -n15067877 tear gas, teargas, lacrimator, lachrymator -n15075141 toilet tissue, toilet paper, bathroom tissue -n15086247 linseed, flaxseed -n15089258 vitamin -n15089472 fat-soluble vitamin -n15089645 water-soluble vitamin -n15089803 vitamin A, antiophthalmic factor, axerophthol, A -n15090065 vitamin A1, retinol -n15090238 vitamin A2, dehydroretinol -n15090742 B-complex vitamin, B complex, vitamin B complex, vitamin B, B vitamin, B -n15091129 vitamin B1, thiamine, thiamin, aneurin, antiberiberi factor -n15091304 vitamin B12, cobalamin, cyanocobalamin, antipernicious anemia factor -n15091473 vitamin B2, vitamin G, riboflavin, lactoflavin, ovoflavin, hepatoflavin -n15091669 vitamin B6, pyridoxine, pyridoxal, pyridoxamine, adermin -n15091846 vitamin Bc, vitamin M, folate, folic acid, folacin, pteroylglutamic acid, pteroylmonoglutamic acid -n15092059 niacin, nicotinic acid -n15092227 vitamin D, calciferol, viosterol, ergocalciferol, cholecalciferol, D -n15092409 vitamin E, tocopherol, E -n15092650 biotin, vitamin H -n15092751 vitamin K, naphthoquinone, antihemorrhagic factor -n15092942 vitamin K1, phylloquinone, phytonadione -n15093049 vitamin K3, menadione -n15093137 vitamin P, bioflavinoid, citrin -n15093298 vitamin C, C, ascorbic acid -n15102359 planking -n15102455 chipboard, hardboard -n15102894 knothole diff --git a/Classification/cnns/tools/imagenet_ofrecord.py b/Classification/cnns/tools/imagenet_ofrecord.py deleted file mode 100644 index 232de66..0000000 --- a/Classification/cnns/tools/imagenet_ofrecord.py +++ /dev/null @@ -1,687 +0,0 @@ -# Copyright 2016 Google Inc. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Converts ImageNet data to OFRecords file format with Example protos. - -The raw ImageNet data set is expected to reside in JPEG files located in the -following directory structure. - - data_dir/n01440764/ILSVRC2012_val_00000293.JPEG - data_dir/n01440764/ILSVRC2012_val_00000543.JPEG - ... - -where 'n01440764' is the unique synset label associated with -these images. - -The training data set consists of 1000 sub-directories (i.e. labels) -each containing 1200 JPEG images for a total of 1.2M JPEG images. - -The evaluation data set consists of 1000 sub-directories (i.e. labels) -each containing 50 JPEG images for a total of 50K JPEG images. - - train_directory/part-00000 - train_directory/part-00001 - ... - train_directory/part-01023 - -and - - validation_directory/part-00000 - validation_directory/part-00001 - ... - validation_directory/part-01023 - -Each record within the OFRecord file is a -serialized Example proto. The Example proto contains the following fields: - - image/encoded: string containing JPEG encoded image in RGB colorspace - image/height: integer, image height in pixels - image/width: integer, image width in pixels - image/colorspace: string, specifying the colorspace, always 'RGB' - image/channels: integer, specifying the number of channels, always 3 - image/format: string, specifying the format, always 'JPEG' - - image/filename: string containing the basename of the image file - e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG' - image/class/label: integer specifying the index in a classification layer. - The label ranges from [1, 1000] where 0 is not used. - image/class/synset: string specifying the unique ID of the label, - e.g. 'n01440764' - image/class/text: string specifying the human-readable version of the label - e.g. 'red fox, Vulpes vulpes' - - image/object/bbox/xmin: list of integers specifying the 0+ human annotated - bounding boxes - image/object/bbox/xmax: list of integers specifying the 0+ human annotated - bounding boxes - image/object/bbox/ymin: list of integers specifying the 0+ human annotated - bounding boxes - image/object/bbox/ymax: list of integers specifying the 0+ human annotated - bounding boxes - image/object/bbox/label: integer specifying the index in a classification - layer. The label ranges from [1, 1000] where 0 is not used. Note this is - always identical to the image label. - -Note that the length of xmin is identical to the length of xmax, ymin and ymax -for each example. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from datetime import datetime -import os -import random -import sys -import threading -import re -import argparse -import glob - -import numpy as np -import six -import cv2 -import oneflow.core.record.record_pb2 as of_record -import struct - -""" -# train dataset to ofrecord -python3 imagenet_ofrecord.py \ ---train_directory data/imagenet/train \ ---output_directory data/imagenet/ofrecord/train \ ---label_file imagenet_lsvrc_2015_synsets.txt \ ---shards 1024 --num_threads 8 --name train \ ---bounding_box_file imagenet_2012_bounding_boxes.csv \ ---height 224 --width 224 - -# val dataset to ofrecord -python3 imagenet_ofrecord.py \ ---validation_directory data/imagenet/validation \ ---output_directory data/imagenet/ofrecord/validation \ ---label_file imagenet_lsvrc_2015_synsets.txt --name validation \ ---shards 32 --num_threads 4 --name validation \ ---bounding_box_file imagenet_2012_bounding_boxes.csv \ ---height 224 --width 224 -""" - - -arg_parser = argparse.ArgumentParser(description = - 'The python script to resize pics ') - -arg_parser.add_argument('--resize', dest = 'resize', default = False, help = 'resize image') - -arg_parser.add_argument('--name', dest='name', default='train', \ -help = 'data_file_type') - -arg_parser.add_argument('--width', dest='width', default=0, \ -type=int, help='fixed image width') -arg_parser.add_argument('--height', dest='height', default=0, \ -type=int, help='fixed image height') - -arg_parser.add_argument('--train_directory', dest = 'train_directory',\ -default='/tmp/', help='Training data directory') -arg_parser.add_argument('--validation_directory', dest = 'validation_directory', \ -default='/tmp/', help='Validation data directory') -arg_parser.add_argument('--output_directory', dest = 'output_directory', \ -default='/tmp/', help = 'Output data directory') - -arg_parser.add_argument('--shards', dest='shards',\ -default=1024, type=int, help='Number of shards in making OFRecord files.') - - -arg_parser.add_argument('--num_threads', dest='num_threads', default = 8, \ -type=int, help='Number of threads to preprocess the images.') - -# The labels file contains a list of valid labels are held in this file. -# Assumes that the file contains entries as such: -# n01440764 -# n01443537 -# n01484850 -# where each line corresponds to a label expressed as a synset. We map -# each synset contained in the file to an integer (based on the alphabetical -# ordering). See below for details. -arg_parser.add_argument('--label_file', dest = 'labels_file', \ -default = 'imagenet_lsvrc_2015_synsets.txt', help = 'Labels file') - -# This file containing mapping from synset to human-readable label. -# Assumes each line of the file looks like: -# -# n02119247 black fox -# n02119359 silver fox -# n02119477 red fox, Vulpes fulva -# -# where each line corresponds to a unique mapping. Note that each line is -# formatted as \t. -arg_parser.add_argument('--imagenet_metadata_file', dest = 'imagenet_metadata_file', \ -default = 'imagenet_metadata.txt', help = 'ImageNet metadata file') - -# This file is the output of process_bounding_box.py -# Assumes each line of the file looks like: -# -# n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 -# -# where each line corresponds to one bounding box annotation associated -# with an image. Each line can be parsed as: -# -# , , , , -# -# Note that there might exist mulitple bounding box annotations associated -# with an image file. -arg_parser.add_argument('--bounding_box_file', dest = 'bounding_box_file', \ -default = './imagenet_2012_bounding_boxes.csv', help = 'Bounding box file') - -ARGS = arg_parser.parse_args() - -def _int32_feature(value): - """Wrapper for inserting int32 features into Example proto.""" - if not isinstance(value, list): - value = [value] - return of_record.Feature(int32_list=of_record.Int32List(value=value)) - - -def _float_feature(value): - """Wrapper for inserting float features into Example proto.""" - if not isinstance(value, list): - value = [value] - return of_record.Feature(float_list=of_record.FloatList(value=value)) - -def _double_feature(value): - """Wrapper for inserting float features into Example proto.""" - if not isinstance(value, list): - value = [value] - return of_record.Feature(double_list=of_record.DoubleList(value=value)) - - -def _bytes_feature(value): - """Wrapper for inserting bytes features into Example proto.""" - # if isinstance(value, six.string_types): - # value = six.binary_type(value, encoding='utf-8') - return of_record.Feature(bytes_list=of_record.BytesList(value=[value])) - - -def _convert_to_example(filename, image_buffer, label, index, synset, human, bbox, - height, width): - """Build an Example proto for an example. - - Args: - filename: string, path to an image file, e.g., '/path/to/example.JPG' - image_buffer: string, JPEG encoding of RGB image - label: integer, identifier for the ground truth for the network - synset: string, unique WordNet ID specifying the label, e.g., 'n02323233' - human: string, human-readable label, e.g., 'red fox, Vulpes vulpes' - bbox: list of bounding boxes; each box is a list of integers - specifying [xmin, ymin, xmax, ymax]. All boxes are assumed to belong to - the same label as the image label. - height: integer, image height in pixels - width: integer, image width in pixels - Returns: - Example proto - """ - xmin = [] - ymin = [] - xmax = [] - ymax = [] - for b in bbox: - assert len(b) == 4 - # pylint: disable=expression-not-assigned - [l.append(point) for l, point in zip([xmin, ymin, xmax, ymax], b)] - # pylint: enable=expression-not-assigned - - colorspace = 'RGB' - channels = 3 - image_format = 'JPEG' - - example = of_record.OFRecord(feature={ - 'data_id': _bytes_feature(str(index).encode('utf-8')), - 'height': _int32_feature(height), - 'width': _int32_feature(width), - 'colorspace': _bytes_feature(colorspace.encode('utf-8')), - 'channels': _int32_feature(channels), - 'class/label': _int32_feature(label), - 'class/synset': _bytes_feature(synset.encode('utf-8')), - 'class/text': _bytes_feature(human.encode('utf-8')), - 'object/bbox/xmin': _float_feature(xmin), - 'object/bbox/xmax': _float_feature(xmax), - 'object/bbox/ymin': _float_feature(ymin), - 'object/bbox/ymax': _float_feature(ymax), - 'object/bbox/label': _int32_feature([label] * len(xmin)), - 'format': _bytes_feature(image_format.encode('utf-8')), - 'filename': _bytes_feature(os.path.basename(filename).encode('utf-8')), - 'encoded': _bytes_feature(image_buffer)}) - return example - - -class ImageCoder(object): - """Helper class that provides image coding utilities.""" - - def __init__(self,size = None): - self.size = size - - def _resize(self, image_data): - if self.size != None and image_data.shape[:2] != self.size: - return cv2.resize(image_data, self.size) - return image_data - - def image_to_jpeg(self, image_data, resize=ARGS.resize): - # image_data = cv2.imdecode(np.fromstring(image_data, np.uint8), 1) # deprecated, - image_data = cv2.imdecode(np.frombuffer(image_data, np.uint8), 1) - if resize: - image_data = self._resize(image_data) - return cv2.imencode(".jpg", image_data)[1].tobytes(), image_data.shape[0], image_data.shape[1] - -def _process_image(filename, coder): - """Process a single image file. - - Args: - filename: string, path to an image file e.g., '/path/to/example.JPG'. - coder: instance of ImageCoder to provide image coding utils. - Returns: - image_buffer: string, JPEG encoding of RGB image. - height: integer, image height in pixels. - width: integer, image width in pixels. - """ - # Read the image file. - with open(filename, 'rb') as f: - image_data = f.read() - image_data,height, width = coder.image_to_jpeg(image_data) - #print(height, width) - return image_data,height, width - # Decode the RGB JPEG. - # image_data = coder._resize(image_data) - - - -def _process_image_files_batch(coder, thread_index, ranges, name, filenames, - synsets, labels, indexs, humans, bboxes, num_shards): - """Processes and saves list of images as OFRecord in 1 thread. - - Args: - coder: instance of ImageCoder to provide image coding utils. - thread_index: integer, unique batch to run index is within [0, len(ranges)). - ranges: list of pairs of integers specifying ranges of each batches to - analyze in parallel. - name: string, unique identifier specifying the data set - filenames: list of strings; each string is a path to an image file - synsets: list of strings; each string is a unique WordNet ID - labels: list of integer; each integer identifies the ground truth - humans: list of strings; each string is a human-readable label - bboxes: list of bounding boxes for each image. Note that each entry in this - list might contain from 0+ entries corresponding to the number of bounding - box annotations for the image. - num_shards: integer number of shards for this data set. - """ - # Each thread produces N shards where N = int(num_shards / num_threads). - # For instance, if num_shards = 128, and the num_threads = 2, then the first - # thread would produce shards [0, 64). - num_threads = len(ranges) - assert not num_shards % num_threads - num_shards_per_batch = int(num_shards / num_threads) - - shard_ranges = np.linspace(ranges[thread_index][0], - ranges[thread_index][1], - num_shards_per_batch + 1).astype(int) - num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0] - - counter = 0 - - for s in range(num_shards_per_batch): - # Generate a sharded version of the file name, e.g. 'train-00002-of-00010' - shard = thread_index * num_shards_per_batch + s - # output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards) - output_filename = 'part-%.5d' % (shard) - output_file = os.path.join(ARGS.output_directory, output_filename) - - f = open(output_file, 'wb') - shard_counter = 0 - files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int) - for i in files_in_shard: - filename = filenames[i] - label = labels[i] - synset = synsets[i] - human = humans[i] - bbox = bboxes[i] - index = indexs[i] - try: - image_buffer, height, width = _process_image(filename, coder) - except: - print(filename) - continue - - # print('filename, label, index,synset, human, bbox,height, width >>>>>>>>>>>>>>>>>>>>>>>>>>>>\n', - # filename , label, index,synset, human, bbox,height, width) - example = _convert_to_example(filename, image_buffer, label, index, - synset, human, bbox, - height, width) - l = example.ByteSize() - f.write(struct.pack("q", l)) - f.write(example.SerializeToString()) - shard_counter += 1 - counter += 1 - - if not counter % 1000: - print('%s [thread %d]: Processed %d of %d images in thread batch.' % - (datetime.now(), thread_index, counter, num_files_in_thread)) - sys.stdout.flush() - - f.close() - print('%s [thread %d]: Wrote %d images to %s' % - (datetime.now(), thread_index, shard_counter, output_file)) - sys.stdout.flush() - shard_counter = 0 - print('%s [thread %d]: Wrote %d images to %d shards.' % - (datetime.now(), thread_index, counter, num_files_in_thread)) - sys.stdout.flush() - - - -def _process_image_files(name, filenames, synsets, labels, indexs, humans, - bboxes, num_shards): - """Process and save list of images as OFRecord of Example protos. - - Args: - name: string, unique identifier specifying the data set - filenames: list of strings; each string is a path to an image file - synsets: list of strings; each string is a unique WordNet ID - labels: list of integer; each integer identifies the ground truth - humans: list of strings; each string is a human-readable label - bboxes: list of bounding boxes for each image. Note that each entry in this - list might contain from 0+ entries corresponding to the number of bounding - box annotations for the image. - num_shards: integer number of shards for this data set. - """ - assert len(filenames) == len(synsets) - assert len(filenames) == len(labels) - assert len(filenames) == len(humans) - assert len(filenames) == len(bboxes) - - # Break all images into batches with a [ranges[i][0], ranges[i][1]]. - spacing = np.linspace(0, len(filenames), ARGS.num_threads + 1).astype(np.int) - ranges = [] - threads = [] - for i in range(len(spacing) - 1): - ranges.append([spacing[i], spacing[i + 1]]) - # Launch a thread for each batch. - print('Launching %d threads for spacings: %s' % (ARGS.num_threads, ranges)) - sys.stdout.flush() - - - # Create a generic utility for converting all image codings. - if ARGS.width <= 0 or ARGS.height <= 0: - coder = ImageCoder() - else: - coder = ImageCoder((ARGS.width, ARGS.height)) - - threads = [] - for thread_index in range(len(ranges)): - args = (coder, thread_index, ranges, name, filenames, - synsets, labels, indexs, humans, bboxes, num_shards) - t = threading.Thread(target=_process_image_files_batch, args=args) - t.start() - threads.append(t) - - # Wait for all the threads to terminate. - for t in threads: - t.join() - print('%s: Finished writing all %d images in data set.' % - (datetime.now(), len(filenames))) - sys.stdout.flush() - - -def _find_image_files(data_dir, labels_file): - """Build a list of all images files and labels in the data set. - - Args: - data_dir: string, path to the root directory of images. - - Assumes that the ImageNet data set resides in JPEG files located in - the following directory structure. - - data_dir/n01440764/ILSVRC2012_val_00000293.JPEG - data_dir/n01440764/ILSVRC2012_val_00000543.JPEG - - where 'n01440764' is the unique synset label associated with these images. - - labels_file: string, path to the labels file. - - The list of valid labels are held in this file. Assumes that the file - contains entries as such: - n01440764 - n01443537 - n01484850 - where each line corresponds to a label expressed as a synset. We map - each synset contained in the file to an integer (based on the alphabetical - ordering) starting with the integer 1 corresponding to the synset - contained in the first line. - - The reason we start the integer labels at 1 is to reserve label 0 as an - unused background class. - - Returns: - filenames: list of strings; each string is a path to an image file. - synsets: list of strings; each string is a unique WordNet ID. - labels: list of integer; each integer identifies the ground truth. - """ - print('Determining list of input files and labels from %s.' % data_dir) - challenge_synsets = [l.strip() for l in - open(labels_file, 'r').readlines()] - - labels = [] - filenames = [] - synsets = [] - - # Leave label index 0 empty as a background class. - label_index = 0# use to be 1 - - # Construct the list of JPEG files and labels. - for synset in challenge_synsets: - if not os.path.exists(os.path.join(data_dir, synset)): - continue - - jpeg_file_path = '%s/%s/*.JPEG' % (data_dir, synset) - matching_files = glob.glob(jpeg_file_path) - - labels.extend([label_index] * len(matching_files)) - synsets.extend([synset] * len(matching_files)) - filenames.extend(matching_files) - - if not label_index % 100: - print('Finished finding files in %d of %d classes.' % ( - label_index, len(challenge_synsets))) - label_index += 1 - # Shuffle the ordering of all image files in order to guarantee - # random ordering of the images with respect to label in the - # saved OFRecord files. Make the randomization repeatable. - shuffled_index = list(range(len(filenames))) - random.seed(12345) - random.shuffle(shuffled_index) - - filenames = [filenames[i] for i in shuffled_index] - synsets = [synsets[i] for i in shuffled_index] - labels = [labels[i] for i in shuffled_index] - - print('Found %d JPEG files across %d labels inside %s.' % - (len(filenames), len(challenge_synsets), data_dir)) - return filenames, synsets, labels, shuffled_index - - -def _find_human_readable_labels(synsets, synset_to_human): - """Build a list of human-readable labels. - - Args: - synsets: list of strings; each string is a unique WordNet ID. - synset_to_human: dict of synset to human labels, e.g., - 'n02119022' --> 'red fox, Vulpes vulpes' - - Returns: - List of human-readable strings corresponding to each synset. - """ - humans = [] - for s in synsets: - assert s in synset_to_human, ('Failed to find: %s' % s) - humans.append(synset_to_human[s]) - return humans - - -def _find_image_bounding_boxes(filenames, image_to_bboxes): - """Find the bounding boxes for a given image file. - - Args: - filenames: list of strings; each string is a path to an image file. - image_to_bboxes: dictionary mapping image file names to a list of - bounding boxes. This list contains 0+ bounding boxes. - Returns: - List of bounding boxes for each image. Note that each entry in this - list might contain from 0+ entries corresponding to the number of bounding - box annotations for the image. - """ - num_image_bbox = 0 - bboxes = [] - for f in filenames: - basename = os.path.basename(f) - if basename in image_to_bboxes: - bboxes.append(image_to_bboxes[basename]) - num_image_bbox += 1 - else: - bboxes.append([]) - print('Found %d images with bboxes out of %d images' % ( - num_image_bbox, len(filenames))) - return bboxes - - -def _process_dataset(name, directory, num_shards, synset_to_human, - image_to_bboxes): - """Process a complete data set and save it as a OFRecord. - - Args: - name: string, unique identifier specifying the data set. - directory: string, root path to the data set. - num_shards: integer number of shards for this data set. - synset_to_human: dict of synset to human labels, e.g., - 'n02119022' --> 'red fox, Vulpes vulpes' - image_to_bboxes: dictionary mapping image file names to a list of - bounding boxes. This list contains 0+ bounding boxes. - """ - filenames, synsets, labels, indexs = _find_image_files(directory, ARGS.labels_file) - # ./train/n03085013/n03085013_23287.JPEG n03085013 508 652481 - - humans = _find_human_readable_labels(synsets, synset_to_human) - bboxes = _find_image_bounding_boxes(filenames, image_to_bboxes) - - _process_image_files(name, filenames, synsets, labels, indexs, - humans, bboxes, num_shards) - - -def _build_synset_lookup(imagenet_metadata_file): - """Build lookup for synset to human-readable label. - - Args: - imagenet_metadata_file: string, path to file containing mapping from - synset to human-readable label. - - Assumes each line of the file looks like: - - n02119247 black fox - n02119359 silver fox - n02119477 red fox, Vulpes fulva - - where each line corresponds to a unique mapping. Note that each line is - formatted as \t. - - Returns: - Dictionary of synset to human labels, such as: - 'n02119022' --> 'red fox, Vulpes vulpes' - """ - lines = open(imagenet_metadata_file, 'r').readlines() - synset_to_human = {} - for l in lines: - if l: - parts = l.strip().split('\t') - assert len(parts) == 2 - synset = parts[0] - human = parts[1] - synset_to_human[synset] = human - return synset_to_human - - -def _build_bounding_box_lookup(bounding_box_file): - """Build a lookup from image file to bounding boxes. - - Args: - bounding_box_file: string, path to file with bounding boxes annotations. - - Assumes each line of the file looks like: - - n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 - - where each line corresponds to one bounding box annotation associated - with an image. Each line can be parsed as: - - , , , , - - Note that there might exist mulitple bounding box annotations associated - with an image file. This file is the output of process_bounding_boxes.py. - - Returns: - Dictionary mapping image file names to a list of bounding boxes. This list - contains 0+ bounding boxes. - """ - lines = open(bounding_box_file, 'r').readlines() - images_to_bboxes = {} - num_bbox = 0 - num_image = 0 - for l in lines: - if l: - parts = l.split(',') - assert len(parts) == 5, ('Failed to parse: %s' % l) - filename = parts[0] - xmin = float(parts[1]) - ymin = float(parts[2]) - xmax = float(parts[3]) - ymax = float(parts[4]) - box = [xmin, ymin, xmax, ymax] - - if filename not in images_to_bboxes: - images_to_bboxes[filename] = [] - num_image += 1 - images_to_bboxes[filename].append(box) - num_bbox += 1 - - print('Successfully read %d bounding boxes ' - 'across %d images.' % (num_bbox, num_image)) - return images_to_bboxes - - -def main(): - assert not ARGS.shards % ARGS.num_threads, ( - 'Please make the ARGS.num_threads commensurate with ARGS.shards') - - print('Saving results to %s' % ARGS.output_directory) - if not os.path.exists(ARGS.output_directory): - os.makedirs(ARGS.output_directory) - - # Build a map from synset to human-readable label. - synset_to_human = _build_synset_lookup(ARGS.imagenet_metadata_file) - image_to_bboxes = _build_bounding_box_lookup(ARGS.bounding_box_file) - - # Run it! - if ARGS.name == 'validation': - _process_dataset('validation', ARGS.validation_directory, - ARGS.shards, synset_to_human, image_to_bboxes) - else: - _process_dataset('train', ARGS.train_directory, ARGS.shards, - synset_to_human, image_to_bboxes) - - -if __name__ == '__main__': - main() \ No newline at end of file diff --git a/Classification/cnns/tools/preprocess_imagenet_validation_data.py b/Classification/cnns/tools/preprocess_imagenet_validation_data.py deleted file mode 100755 index edb3570..0000000 --- a/Classification/cnns/tools/preprocess_imagenet_validation_data.py +++ /dev/null @@ -1,86 +0,0 @@ -#!/usr/bin/python -# Copyright 2016 Google Inc. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Process the ImageNet Challenge bounding boxes for OneFlow model training. - -Associate the ImageNet 2012 Challenge validation data set with labels. - -The raw ImageNet validation data set is expected to reside in JPEG files -located in the following directory structure. - - data_dir/ILSVRC2012_val_00000001.JPEG - data_dir/ILSVRC2012_val_00000002.JPEG - ... - data_dir/ILSVRC2012_val_00050000.JPEG - -This script moves the files into a directory structure like such: - data_dir/n01440764/ILSVRC2012_val_00000293.JPEG - data_dir/n01440764/ILSVRC2012_val_00000543.JPEG - ... -where 'n01440764' is the unique synset label associated with -these images. - -Sample usage: - python3 preprocess_imagenet_validation_data.py ../data/imagenet/validation -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os.path -import sys - -from six.moves import xrange - - -if __name__ == '__main__': - if len(sys.argv) < 2: - print('Invalid usage\n' - 'usage: preprocess_imagenet_validation_data.py ' - '') - sys.exit(-1) - data_dir = sys.argv[1] - validation_labels_file = "imagenet_2012_validation_synset_labels.txt" - -# Read in the 50000 synsets associated with the validation data set. -labels = [l.strip() for l in open(validation_labels_file).readlines()] -unique_labels = set(labels) - -# Make all sub-directories in the validation data dir. -for label in unique_labels: - labeled_data_dir = os.path.join(data_dir, label) - if not os.path.exists(labeled_data_dir): - os.makedirs(labeled_data_dir) - -# Move all of the image to the appropriate sub-directory. -for i in xrange(len(labels)): - basename = 'ILSVRC2012_val_000%.5d.JPEG' % (i + 1) - original_filename = os.path.join(data_dir, basename) - if not os.path.exists(original_filename): - continue - print('Get image: ', original_filename) - new_filename = os.path.join(data_dir, labels[i], basename) - os.rename(original_filename, new_filename) - - -# Delete all empty dir -for label in unique_labels: - labeled_data_dir = os.path.join(data_dir, label) - if not os.path.exists(labeled_data_dir): - continue - if not os.listdir(labeled_data_dir): - os.rmdir(labeled_data_dir) - diff --git a/Classification/cnns/tools/process_bounding_boxes.py b/Classification/cnns/tools/process_bounding_boxes.py deleted file mode 100755 index 2d850b4..0000000 --- a/Classification/cnns/tools/process_bounding_boxes.py +++ /dev/null @@ -1,235 +0,0 @@ -#!/usr/bin/python -# Copyright 2016 Google Inc. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Process the ImageNet Challenge bounding boxes for TensorFlow model training. -This script is called as -process_bounding_boxes.py [synsets-file] -Where is a directory containing the downloaded and unpacked bounding box -data. If [synsets-file] is supplied, then only the bounding boxes whose -synstes are contained within this file are returned. Note that the -[synsets-file] file contains synset ids, one per line. -The script dumps out a CSV text file in which each line contains an entry. - n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 -The entry can be read as: - , , , , -The bounding box for contains two points (xmin, ymin) and -(xmax, ymax) specifying the lower-left corner and upper-right corner of a -bounding box in *relative* coordinates. -The user supplies a directory where the XML files reside. The directory -structure in the directory is assumed to look like this: -/nXXXXXXXX/nXXXXXXXX_YYYY.xml -Each XML file contains a bounding box annotation. The script: - (1) Parses the XML file and extracts the filename, label and bounding box info. - (2) The bounding box is specified in the XML files as integer (xmin, ymin) and - (xmax, ymax) *relative* to image size displayed to the human annotator. The - size of the image displayed to the human annotator is stored in the XML file - as integer (height, width). - Note that the displayed size will differ from the actual size of the image - downloaded from image-net.org. To make the bounding box annotation useable, - we convert bounding box to floating point numbers relative to displayed - height and width of the image. - Note that each XML file might contain N bounding box annotations. - Note that the points are all clamped at a range of [0.0, 1.0] because some - human annotations extend outside the range of the supplied image. - See details here: http://image-net.org/download-bboxes -(3) By default, the script outputs all valid bounding boxes. If a - [synsets-file] is supplied, only the subset of bounding boxes associated - with those synsets are outputted. Importantly, one can supply a list of - synsets in the ImageNet Challenge and output the list of bounding boxes - associated with the training images of the ILSVRC. - We use these bounding boxes to inform the random distortion of images - supplied to the network. -If you run this script successfully, you will see the following output -to stderr: -> Finished processing 544546 XML files. -> Skipped 0 XML files not in ImageNet Challenge. -> Skipped 0 bounding boxes not in ImageNet Challenge. -> Wrote 615299 bounding boxes from 544546 annotated images. -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import glob -import os.path -import sys -import xml.etree.ElementTree as ET -from six.moves import xrange # pylint: disable=redefined-builtin - - -class BoundingBox(object): - pass - - -def GetItem(name, root, index=0): - count = 0 - for item in root.iter(name): - if count == index: - return item.text - count += 1 - # Failed to find "index" occurrence of item. - return -1 - - -def GetInt(name, root, index=0): - return int(GetItem(name, root, index)) - - -def FindNumberBoundingBoxes(root): - index = 0 - while True: - if GetInt('xmin', root, index) == -1: - break - index += 1 - return index - - -def ProcessXMLAnnotation(xml_file): - """Process a single XML file containing a bounding box.""" - # pylint: disable=broad-except - try: - tree = ET.parse(xml_file) - except Exception: - print('Failed to parse: ' + xml_file, file=sys.stderr) - return None - # pylint: enable=broad-except - root = tree.getroot() - - num_boxes = FindNumberBoundingBoxes(root) - boxes = [] - - for index in xrange(num_boxes): - box = BoundingBox() - # Grab the 'index' annotation. - box.xmin = GetInt('xmin', root, index) - box.ymin = GetInt('ymin', root, index) - box.xmax = GetInt('xmax', root, index) - box.ymax = GetInt('ymax', root, index) - - box.width = GetInt('width', root) - box.height = GetInt('height', root) - box.filename = GetItem('filename', root) + '.JPEG' - box.label = GetItem('name', root) - - xmin = float(box.xmin) / float(box.width) - xmax = float(box.xmax) / float(box.width) - ymin = float(box.ymin) / float(box.height) - ymax = float(box.ymax) / float(box.height) - - # Some images contain bounding box annotations that - # extend outside of the supplied image. See, e.g. - # n03127925/n03127925_147.xml - # Additionally, for some bounding boxes, the min > max - # or the box is entirely outside of the image. - min_x = min(xmin, xmax) - max_x = max(xmin, xmax) - box.xmin_scaled = min(max(min_x, 0.0), 1.0) - box.xmax_scaled = min(max(max_x, 0.0), 1.0) - - min_y = min(ymin, ymax) - max_y = max(ymin, ymax) - box.ymin_scaled = min(max(min_y, 0.0), 1.0) - box.ymax_scaled = min(max(max_y, 0.0), 1.0) - - boxes.append(box) - - return boxes - -if __name__ == '__main__': - if len(sys.argv) < 2 or len(sys.argv) > 3: - print('Invalid usage\n' - 'usage: process_bounding_boxes.py [synsets-file]', - file=sys.stderr) - sys.exit(-1) - - xml_files = glob.glob(sys.argv[1] + '/*/*.xml') - print('Identified %d XML files in %s' % (len(xml_files), sys.argv[1]), - file=sys.stderr) - - if len(sys.argv) == 3: - labels = set([l.strip() for l in open(sys.argv[2]).readlines()]) - print('Identified %d synset IDs in %s' % (len(labels), sys.argv[2]), - file=sys.stderr) - else: - labels = None - - skipped_boxes = 0 - skipped_files = 0 - saved_boxes = 0 - saved_files = 0 - for file_index, one_file in enumerate(xml_files): - # Example: <...>/n06470073/n00141669_6790.xml - label = os.path.basename(os.path.dirname(one_file)) - - # Determine if the annotation is from an ImageNet Challenge label. - if labels is not None and label not in labels: - skipped_files += 1 - continue - - bboxes = ProcessXMLAnnotation(one_file) - assert bboxes is not None, 'No bounding boxes found in ' + one_file - - found_box = False - for bbox in bboxes: - if labels is not None: - if bbox.label != label: - # Note: There is a slight bug in the bounding box annotation data. - # Many of the dog labels have the human label 'Scottish_deerhound' - # instead of the synset ID 'n02092002' in the bbox.label field. As a - # simple hack to overcome this issue, we only exclude bbox labels - # *which are synset ID's* that do not match original synset label for - # the XML file. - if bbox.label in labels: - skipped_boxes += 1 - continue - - # Guard against improperly specified boxes. - if (bbox.xmin_scaled >= bbox.xmax_scaled or - bbox.ymin_scaled >= bbox.ymax_scaled): - skipped_boxes += 1 - continue - - # Note bbox.filename occasionally contains '%s' in the name. This is - # data set noise that is fixed by just using the basename of the XML file. - image_filename = os.path.splitext(os.path.basename(one_file))[0] - print('%s.JPEG,%.4f,%.4f,%.4f,%.4f' % - (image_filename, - bbox.xmin_scaled, bbox.ymin_scaled, - bbox.xmax_scaled, bbox.ymax_scaled)) - - saved_boxes += 1 - found_box = True - if found_box: - saved_files += 1 - else: - skipped_files += 1 - - if not file_index % 5000: - print('--> processed %d of %d XML files.' % - (file_index + 1, len(xml_files)), - file=sys.stderr) - print('--> skipped %d boxes and %d XML files.' % - (skipped_boxes, skipped_files), file=sys.stderr) - - print('Finished processing %d XML files.' % len(xml_files), file=sys.stderr) - print('Skipped %d XML files not in ImageNet Challenge.' % skipped_files, - file=sys.stderr) - print('Skipped %d bounding boxes not in ImageNet Challenge.' % skipped_boxes, - file=sys.stderr) - print('Wrote %d bounding boxes from %d annotated images.' % - (saved_boxes, saved_files), - file=sys.stderr) - print('Finished.', file=sys.stderr) \ No newline at end of file diff --git a/Classification/cnns/train.sh b/Classification/cnns/train.sh deleted file mode 100755 index 6751ab5..0000000 --- a/Classification/cnns/train.sh +++ /dev/null @@ -1,16 +0,0 @@ -rm -rf core.* -rm -rf ./output/snapshots/* - - -python3 of_cnn_train_val.py \ - --num_examples=50 \ - --num_val_examples=50 \ - --num_nodes=1 \ - --gpu_num_per_node=1 \ - --model_update="momentum" \ - --learning_rate=0.001 \ - --loss_print_every_n_iter=1 \ - --batch_size_per_device=16 \ - --val_batch_size_per_device=16 \ - --num_epoch=10 \ - --model="resnet50" \ No newline at end of file diff --git a/Classification/cnns/util.py b/Classification/cnns/util.py deleted file mode 100755 index 26cc356..0000000 --- a/Classification/cnns/util.py +++ /dev/null @@ -1,169 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import time -import numpy as np -import pandas as pd -from datetime import datetime -import oneflow as flow - - -def InitNodes(args): - if args.num_nodes > 1: - assert args.num_nodes <= len(args.node_ips) - flow.env.ctrl_port(12138) - nodes = [] - for ip in args.node_ips: - addr_dict = {} - addr_dict["addr"] = ip - nodes.append(addr_dict) - - flow.env.machine(nodes) - - -class Snapshot(object): - def __init__(self, model_save_dir, model_load_dir): - self._model_save_dir = model_save_dir - self._check_point = flow.train.CheckPoint() - if model_load_dir: - assert os.path.isdir(model_load_dir) - print("Restoring model from {}.".format(model_load_dir)) - self._check_point.load(model_load_dir) - else: - self._check_point.init() - self.save('initial_model') - print("Init model on demand.") - - def save(self, name): - snapshot_save_path = os.path.join(self._model_save_dir, "snapshot_{}".format(name)) - if not os.path.exists(snapshot_save_path): - os.makedirs(snapshot_save_path) - print("Saving model to {}.".format(snapshot_save_path)) - self._check_point.save(snapshot_save_path) - - -class Summary(object): - def __init__(self, log_dir, config, filename='summary.csv'): - self._filename = filename - self._log_dir = log_dir - if not os.path.exists(log_dir): os.makedirs(log_dir) - self._metrics = pd.DataFrame({"epoch":0, "iter": 0, "legend": "cfg", "note": str(config)}, index=[0]) - - def scalar(self, legend, value, epoch, step=-1): - # TODO: support rank(which device/gpu) - df = pd.DataFrame( - {"epoch": epoch, "iter": step, "legend": legend, "value": value, "rank": 0}, - index=[0]) - self._metrics = pd.concat([self._metrics, df], axis=0, sort=False) - - def save(self): - save_path = os.path.join(self._log_dir, self._filename) - self._metrics.to_csv(save_path, index=False) - - -class StopWatch(object): - def __init__(self): - pass - - def start(self): - self.start_time = time.time() - self.last_split = self.start_time - - def split(self): - now = time.time() - duration = now - self.last_split - self.last_split = now - return duration - - def stop(self): - self.stop_time = time.time() - - def duration(self): - return self.stop_time - self.start_time - - -def match_top_k(predictions, labels, top_k=1): - max_k_preds = np.argpartition(predictions.numpy(), -top_k)[:, -top_k:] - match_array = np.logical_or.reduce(max_k_preds == labels.reshape((-1, 1)), axis=1) - num_matched = match_array.sum() - return num_matched, match_array.shape[0] - - -class Metric(object): - def __init__(self, summary=None, save_summary_steps=-1, desc='train', calculate_batches=-1, - batch_size=256, top_k=5, prediction_key='predictions', label_key='labels', - loss_key=None): - self.summary = summary - self.save_summary = isinstance(self.summary, Summary) - self.save_summary_steps = save_summary_steps - self.desc = desc - self.calculate_batches = calculate_batches - self.top_k = top_k - self.prediction_key = prediction_key - self.label_key = label_key - self.loss_key = loss_key - if loss_key: - self.fmt = "{}: epoch {}, iter {}, loss: {:.6f}, top_1: {:.6f}, top_k: {:.6f}, samples/s: {:.3f}" - else: - self.fmt = "{}: epoch {}, iter {}, top_1: {:.6f}, top_k: {:.6f}, samples/s: {:.3f}" - - self.timer = StopWatch() - self.timer.start() - self._clear() - - def _clear(self): - self.top_1_num_matched = 0 - self.top_k_num_matched = 0 - self.num_samples = 0.0 - - def metric_cb(self, epoch, step): - def callback(outputs): - if step == 0: self._clear() - if self.prediction_key: - num_matched, num_samples = match_top_k(outputs[self.prediction_key], - outputs[self.label_key]) - self.top_1_num_matched += num_matched - num_matched, _ = match_top_k(outputs[self.prediction_key], - outputs[self.label_key], self.top_k) - self.top_k_num_matched += num_matched - else: - num_samples = outputs[self.label_key].shape[0] - - self.num_samples += num_samples - - if (step + 1) % self.calculate_batches == 0: - throughput = self.num_samples / self.timer.split() - if self.prediction_key: - top_1_accuracy = self.top_1_num_matched / self.num_samples - top_k_accuracy = self.top_k_num_matched / self.num_samples - else: - top_1_accuracy = 0.0 - top_k_accuracy = 0.0 - - if self.loss_key: - loss = outputs[self.loss_key].mean() - print(self.fmt.format(self.desc, epoch, step + 1, loss, top_1_accuracy, - top_k_accuracy, throughput)) - if self.save_summary: - self.summary.scalar(self.desc+"_" + self.loss_key, loss, epoch, step) - else: - print(self.fmt.format(self.desc, epoch, step + 1, top_1_accuracy, - top_k_accuracy, throughput)) - - self._clear() - if self.save_summary: - self.summary.scalar(self.desc + "_throughput", throughput, epoch, step) - if self.prediction_key: - self.summary.scalar(self.desc + "_top_1", top_1_accuracy, epoch, step) - self.summary.scalar(self.desc + "_top_{}".format(self.top_k), - top_k_accuracy, epoch, step) - - if self.save_summary: - if (step + 1) % self.save_summary_steps == 0: - self.summary.save() - - return callback - - diff --git a/Classification/cnns/vgg_model.py b/Classification/cnns/vgg_model.py deleted file mode 100644 index 8c47daf..0000000 --- a/Classification/cnns/vgg_model.py +++ /dev/null @@ -1,157 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import oneflow as flow -import oneflow.core.operator.op_conf_pb2 as op_conf_util - -def _batch_norm(inputs, name=None, trainable=True): - return flow.layers.batch_normalization( - inputs=inputs, - axis=1, - momentum=0.997, - epsilon=1.001e-5, - center=True, - scale=True, - trainable=trainable, - name=name, - ) - -def _get_regularizer(): - return flow.regularizers.l2(0.00005) - -def conv2d_layer( - name, - input, - filters, - kernel_size=3, - strides=1, - padding="SAME", - data_format="NCHW", - dilation_rate=1, - activation="Relu", - use_bias=True, - weight_initializer=flow.variance_scaling_initializer(2, 'fan_out', 'random_normal', data_format="NCHW"), - bias_initializer=flow.zeros_initializer(), - - weight_regularizer=_get_regularizer(), # weight_decay - bias_regularizer=_get_regularizer(), - - bn=True, -): - weight_shape = (filters, input.shape[1], kernel_size, kernel_size) - weight = flow.get_variable( - name + "_weight", - shape=weight_shape, - dtype=input.dtype, - initializer=weight_initializer, - ) - output = flow.nn.conv2d( - input, weight, strides, padding, data_format, dilation_rate, name=name - ) - if use_bias: - bias = flow.get_variable( - name + "_bias", - shape=(filters,), - dtype=input.dtype, - initializer=bias_initializer, - ) - output = flow.nn.bias_add(output, bias, data_format) - - if activation is not None: - if activation == "Relu": - if bn: - output = _batch_norm(output, name + "_bn") - output = flow.nn.relu(output) - else: - output = flow.nn.relu(output) - else: - raise NotImplementedError - - return output - - -def _conv_block(in_blob, index, filters, conv_times): - conv_block = [] - conv_block.insert(0, in_blob) - for i in range(conv_times): - conv_i = conv2d_layer( - name="conv{}".format(index), - input=conv_block[i], - filters=filters, - kernel_size=3, - strides=1, - bn=True, - ) - - conv_block.append(conv_i) - index += 1 - - return conv_block - -def vgg16bn(images, trainable=True, need_transpose=False, channel_last=False, training=True, wd=1.0/32768): - if need_transpose: - images = flow.transpose(images, name="transpose", perm=[0, 3, 1, 2]) - if channel_last: - # if channel_last=True, then change mode from 'nchw'to 'nhwc' - images = flow.transpose(images, name="transpose", perm=[0,2,3,1]) - conv1 = _conv_block(images, 0, 64, 2) - pool1 = flow.nn.max_pool2d(conv1[-1], 2, 2, "VALID", "NCHW", name="pool1") - - conv2 = _conv_block(pool1, 2, 128, 2) - pool2 = flow.nn.max_pool2d(conv2[-1], 2, 2, "VALID", "NCHW", name="pool2") - - conv3 = _conv_block(pool2, 4, 256, 3) - pool3 = flow.nn.max_pool2d(conv3[-1], 2, 2, "VALID", "NCHW", name="pool3") - - conv4 = _conv_block(pool3, 7, 512, 3) - pool4 = flow.nn.max_pool2d(conv4[-1], 2, 2, "VALID", "NCHW", name="pool4") - - conv5 = _conv_block(pool4, 10, 512, 3) - pool5 = flow.nn.max_pool2d(conv5[-1], 2, 2, "VALID", "NCHW", name="pool5") - - def _get_kernel_initializer(): - return flow.random_normal_initializer(stddev=0.01) - - def _get_bias_initializer(): - return flow.zeros_initializer() - - pool5 = flow.reshape(pool5, [pool5.shape[0], -1]) - fc6 = flow.layers.dense( - inputs=pool5, - units=4096, - activation=flow.nn.relu, - use_bias=True, - kernel_initializer=_get_kernel_initializer(), - bias_initializer=_get_bias_initializer(), - kernel_regularizer=_get_regularizer(), # weght_decay - bias_regularizer=_get_regularizer(), - trainable=trainable, - name="dense0", - ) - - fc6 = flow.nn.dropout(fc6, rate=0.5) - - fc7 = flow.layers.dense( - inputs=fc6, - units=4096, - activation=flow.nn.relu, - use_bias=True, - kernel_initializer=_get_kernel_initializer(), - bias_initializer=_get_bias_initializer(), - trainable=trainable, - name="dense1", - ) - fc7 = flow.nn.dropout(fc7, rate=0.5) - - fc8 = flow.layers.dense( - inputs=fc7, - units=1000, - use_bias=True, - kernel_initializer=_get_kernel_initializer(), - bias_initializer=_get_bias_initializer(), - trainable=trainable, - name="dense2", - ) - - return fc8 diff --git a/LanguageModeling/BERT/README.md b/LanguageModeling/BERT/README.md deleted file mode 100644 index f4ba1ba..0000000 --- a/LanguageModeling/BERT/README.md +++ /dev/null @@ -1,275 +0,0 @@ -BERT - Bidirectional Encoder Representations from Transformers - -OneFlow实现了BERT的预训练模型(Pre-training)和两个NLP下游任务(SQuAD,Classifier)。主要参考了[谷歌](https://github.com/google-research/bert)和[英伟达](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT)的实现。 - -本文的主要目的是介绍如何快速的使用OneFlow BERT相关脚本。 - -## 数据集下载 -在使用这些脚本进行训练、精调或预测之前,请参考下面链接下载相应的数据集,数据集的格式是OFRecord。 -- Pretrain数据集:完整的预训练数据集是由[Wikipedia](https://dumps.wikimedia.org/)和[BookCorpus](http://yknzhu.wixsite.com/mbweb)两部分数据制作而成,制作成OFRecord之后大概200G。我们提供了一个[样本数据集点击下载](https://oneflow-public.oss-cn-beijing.aliyuncs.com/datasets/wiki_ofrecord_seq_len_128_example.tgz),仅供测试使用; -- SQuAD数据集:包括完整数据集和相关工具,[下载地址](https://oneflow-public.oss-cn-beijing.aliyuncs.com/datasets/squad_dataset_tools.tgz),解压目录为`squad_dataset_tools`,包括如下文件: -``` -squad_dataset_tools -├── ofrecord -├── dev-v1.1.json -├── dev-v2.0.json -├── train-v1.1.json -├── train-v2.0.json -├── evaluate-v1.1.py -├── evaluate-v2.0.py -``` -- GLUE(CoLA, MRPC):完整数据集[下载地址](https://oneflow-public.oss-cn-beijing.aliyuncs.com/datasets/glue_ofrecord.tgz),解压目录为`glue_ofrecord`,包括如下文件: -```shell -glue_ofrecord -├── CoLA -│   ├── eval -│   │   └── eval.of_record-0 -│   ├── test -│   │   └── predict.of_record-0 -│   └── train -│   └── train.of_record-0 -└── MRPC - ├── eval - │   └── eval.of_record-0 - ├── test - │   └── predict.of_record-0 - └── train - └── train.of_record-0 -``` - -如果感兴趣,可以通过[google-research BERT](https://github.com/google-research/bert)提供的工具脚本,制作tfrecord格式的数据集。再根据[加载与准备OFRecord数据集](https://github.com/Oneflow-Inc/oneflow-documentation/blob/master/cn/docs/extended_topics/how_to_make_ofdataset.md)中的方法,将TFRecord数据转为OFRecord数据集使用。 - -## 用BERT进行预训练,Pre-training with BERT -用BERT进行预训练,除了预训练相关的python脚本之外,您只需要准备好数据集,并设置`data_dir`为该数据集的目录,下面就是预训练python脚本运行的示例脚本: -```bash -DATA_DIR=/path/to/wiki_ofrecord_seq_len_128_example -python3 run_pretraining.py \ - --gpu_num_per_node=1 \ - --learning_rate=1e-4 \ - --batch_size_per_device=64 \ - --iter_num=1000000 \ - --loss_print_every_n_iter=20 \ - --seq_length=128 \ - --max_predictions_per_seq=20 \ - --num_hidden_layers=12 \ - --num_attention_heads=12 \ - --max_position_embeddings=512 \ - --type_vocab_size=2 \ - --vocab_size=30522 \ - --attention_probs_dropout_prob=0.1 \ - --hidden_dropout_prob=0.1 \ - --hidden_size_per_head=64 \ - --data_part_num=1 \ - --data_dir=$DATA_DIR \ - --log_dir=./log \ - --model_save_every_n_iter=10000 \ - --save_last_snapshot=True \ - --model_save_dir=./snapshots -``` -修改上面脚本中的`DATA_DIR`后运行,屏幕上首先会打印出参数列表,接着如果能看到类似下面的输出,就说明BERT预训练任务已经成功的开始运行了。 -``` -step: 19, total_loss: 11.138, mlm_loss: 10.422, nsp_loss: 0.716, throughput: 81.638 -step: 39, total_loss: 10.903, mlm_loss: 10.216, nsp_loss: 0.687, throughput: 121.513 -step: 59, total_loss: 10.615, mlm_loss: 9.922, nsp_loss: 0.692, throughput: 104.633 -step: 79, total_loss: 10.347, mlm_loss: 9.655, nsp_loss: 0.692, throughput: 118.725 -``` -需要注意的是`model_save_dir`指明的是保存模型的目录,如果该目录存在,运行会报错,请先删除该目录,OneFlow在运行时会自动创建目录。 - -还需要注意的一个参数是:`data_part_num`。这个参数指明了数据集中数据文件(part)的个数。我们提供的示例数据集只有一个part,所以设置为1,如果您有多个part的数据,请根据实际的数量配置。 - -## Using BERT in SQuAD -### Step 0: 输入和模型准备 -如果需要完整的精调SQuAD网络,需要准备下面一些文件: -1. 数据集 -2. 预训练好的BERT模型 -3. 词表文件`vocab.txt` -4. SQuAD官方的评估工具,`evaluate-v1.1.py`或`evaluate-v2.0.py` -5. SQuAD原始评估数据集文件,`dev-v1.1.json`或`dev-v2.0.json` - -其中1、4、5我们提供了下载链接,4和5在SQuAD官网也能够下载。 -下面介绍如何准备OneFlow需要的预训练好的模型,词表文件也包含在其中的下载文件里。 -#### 将Tensorflow的BERT模型转为OneFlow模型格式 -如果想直接使用已经训练好的pretrained模型做fine-tune任务(如以下将展示的SQuAD),可以考虑直接从[google-research BERT](https://github.com/google-research/bert)页面下载已经训练好的BERT模型。 - -再利用我们提供的`convert_tf_ckpt_to_of.py`脚本,将其转为OneFlow模型格式。转换过程如下: - -首先,下载并解压某个版本的BERT模型,如`uncased_L-12_H-768_A-12`。 -```shell -wget https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip -unzip uncased_L-12_H-768_A-12.zip -d uncased_L-12_H-768_A-12 -``` - -然后,运行以下命令: -```shell -cd uncased_L-12_H-768_A-12/ -cat > checkpoint < max_query_length: - query_tokens = query_tokens[0:max_query_length] - - tok_to_orig_index = [] - orig_to_tok_index = [] - all_doc_tokens = [] - for (i, token) in enumerate(example.doc_tokens): - orig_to_tok_index.append(len(all_doc_tokens)) - sub_tokens = tokenizer.tokenize(token) - for sub_token in sub_tokens: - tok_to_orig_index.append(i) - all_doc_tokens.append(sub_token) - - tok_start_position = None - tok_end_position = None - if is_training and example.is_impossible: - tok_start_position = -1 - tok_end_position = -1 - if is_training and not example.is_impossible: - tok_start_position = orig_to_tok_index[example.start_position] - if example.end_position < len(example.doc_tokens) - 1: - tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 - else: - tok_end_position = len(all_doc_tokens) - 1 - (tok_start_position, tok_end_position) = _improve_answer_span( - all_doc_tokens, tok_start_position, tok_end_position, tokenizer, - example.orig_answer_text) - - # The -3 accounts for [CLS], [SEP] and [SEP] - max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 - - # We can have documents that are longer than the maximum sequence length. - # To deal with this we do a sliding window approach, where we take chunks - # of the up to our max length with a stride of `doc_stride`. - _DocSpan = collections.namedtuple( # pylint: disable=invalid-name - "DocSpan", ["start", "length"]) - doc_spans = [] - start_offset = 0 - while start_offset < len(all_doc_tokens): - length = len(all_doc_tokens) - start_offset - if length > max_tokens_for_doc: - length = max_tokens_for_doc - doc_spans.append(_DocSpan(start=start_offset, length=length)) - if start_offset + length == len(all_doc_tokens): - break - start_offset += min(length, doc_stride) - - for (doc_span_index, doc_span) in enumerate(doc_spans): - tokens = [] - token_to_orig_map = {} - token_is_max_context = {} - segment_ids = [] - tokens.append("[CLS]") - segment_ids.append(0) - for token in query_tokens: - tokens.append(token) - segment_ids.append(0) - tokens.append("[SEP]") - segment_ids.append(0) - - for i in range(doc_span.length): - split_token_index = doc_span.start + i - token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] - - is_max_context = _check_is_max_context(doc_spans, doc_span_index, - split_token_index) - token_is_max_context[len(tokens)] = is_max_context - tokens.append(all_doc_tokens[split_token_index]) - segment_ids.append(1) - tokens.append("[SEP]") - segment_ids.append(1) - - input_ids = tokenizer.convert_tokens_to_ids(tokens) - - # The mask has 1 for real tokens and 0 for padding tokens. Only real - # tokens are attended to. - input_mask = [1] * len(input_ids) - - # Zero-pad up to the sequence length. - while len(input_ids) < max_seq_length: - input_ids.append(0) - input_mask.append(0) - segment_ids.append(0) - - assert len(input_ids) == max_seq_length - assert len(input_mask) == max_seq_length - assert len(segment_ids) == max_seq_length - - start_position = None - end_position = None - if is_training and not example.is_impossible: - # For training, if our document chunk does not contain an annotation - # we throw it out, since there is nothing to predict. - doc_start = doc_span.start - doc_end = doc_span.start + doc_span.length - 1 - out_of_span = False - if not (tok_start_position >= doc_start and - tok_end_position <= doc_end): - out_of_span = True - if out_of_span: - start_position = 0 - end_position = 0 - else: - doc_offset = len(query_tokens) + 2 - start_position = tok_start_position - doc_start + doc_offset - end_position = tok_end_position - doc_start + doc_offset - - if is_training and example.is_impossible: - start_position = 0 - end_position = 0 - - if 0:#example_index < 20: - print("*** Example ***") - print("unique_id: %s" % (unique_id)) - print("example_index: %s" % (example_index)) - print("doc_span_index: %s" % (doc_span_index)) - print("tokens: %s" % " ".join( - [tokenization.printable_text(x) for x in tokens])) - print("token_to_orig_map: %s" % " ".join( - ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) - print("token_is_max_context: %s" % " ".join([ - "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) - ])) - print("input_ids: %s" % " ".join([str(x) for x in input_ids])) - print( - "input_mask: %s" % " ".join([str(x) for x in input_mask])) - print( - "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) - if is_training and example.is_impossible: - print("impossible example") - if is_training and not example.is_impossible: - answer_text = " ".join(tokens[start_position:(end_position + 1)]) - print("start_position: %d" % (start_position)) - print("end_position: %d" % (end_position)) - print( - "answer: %s" % (tokenization.printable_text(answer_text))) - - feature = InputFeatures( - unique_id=unique_id, - example_index=example_index, - doc_span_index=doc_span_index, - tokens=tokens, - token_to_orig_map=token_to_orig_map, - token_is_max_context=token_is_max_context, - input_ids=input_ids, - input_mask=input_mask, - segment_ids=segment_ids, - start_position=start_position, - end_position=end_position, - is_impossible=example.is_impossible) - - # Run callback - output_fn(feature) - - unique_id += 1 - - -def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, - orig_answer_text): - """Returns tokenized answer spans that better match the annotated answer.""" - - # The SQuAD annotations are character based. We first project them to - # whitespace-tokenized words. But then after WordPiece tokenization, we can - # often find a "better match". For example: - # - # Question: What year was John Smith born? - # Context: The leader was John Smith (1895-1943). - # Answer: 1895 - # - # The original whitespace-tokenized answer will be "(1895-1943).". However - # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match - # the exact answer, 1895. - # - # However, this is not always possible. Consider the following: - # - # Question: What country is the top exporter of electornics? - # Context: The Japanese electronics industry is the lagest in the world. - # Answer: Japan - # - # In this case, the annotator chose "Japan" as a character sub-span of - # the word "Japanese". Since our WordPiece tokenizer does not split - # "Japanese", we just use "Japanese" as the annotation. This is fairly rare - # in SQuAD, but does happen. - tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) - - for new_start in range(input_start, input_end + 1): - for new_end in range(input_end, new_start - 1, -1): - text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) - if text_span == tok_answer_text: - return (new_start, new_end) - - return (input_start, input_end) - - -def _check_is_max_context(doc_spans, cur_span_index, position): - """Check if this is the 'max context' doc span for the token.""" - - # Because of the sliding window approach taken to scoring documents, a single - # token can appear in multiple documents. E.g. - # Doc: the man went to the store and bought a gallon of milk - # Span A: the man went to the - # Span B: to the store and bought - # Span C: and bought a gallon of - # ... - # - # Now the word 'bought' will have two scores from spans B and C. We only - # want to consider the score with "maximum context", which we define as - # the *minimum* of its left and right context (the *sum* of left and - # right context will always be the same, of course). - # - # In the example the maximum context for 'bought' would be span C since - # it has 1 left context and 3 right context, while span B has 4 left context - # and 0 right context. - best_score = None - best_span_index = None - for (span_index, doc_span) in enumerate(doc_spans): - end = doc_span.start + doc_span.length - 1 - if position < doc_span.start: - continue - if position > end: - continue - num_left_context = position - doc_span.start - num_right_context = end - position - score = min(num_left_context, num_right_context) + 0.01 * doc_span.length - if best_score is None or score > best_score: - best_score = score - best_span_index = span_index - - return cur_span_index == best_span_index - - -RawResult = collections.namedtuple("RawResult", - ["unique_id", "start_logits", "end_logits"]) - - -def write_predictions(all_examples, all_features, all_results, n_best_size, - max_answer_length, do_lower_case, output_prediction_file, - output_nbest_file, output_null_log_odds_file, FLAGS): - """Write final predictions to the json file and log-odds of null if needed.""" - print("Writing predictions to: %s" % (output_prediction_file)) - print("Writing nbest to: %s" % (output_nbest_file)) - - example_index_to_features = collections.defaultdict(list) - for feature in all_features: - example_index_to_features[feature.example_index].append(feature) - - unique_id_to_result = {} - for result in all_results: - unique_id_to_result[result.unique_id] = result - - _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name - "PrelimPrediction", - ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) - - all_predictions = collections.OrderedDict() - all_nbest_json = collections.OrderedDict() - scores_diff_json = collections.OrderedDict() - - for (example_index, example) in enumerate(all_examples): - features = example_index_to_features[example_index] - - prelim_predictions = [] - # keep track of the minimum score of null start+end of position 0 - score_null = 1000000 # large and positive - min_null_feature_index = 0 # the paragraph slice with min mull score - null_start_logit = 0 # the start logit at the slice with min null score - null_end_logit = 0 # the end logit at the slice with min null score - for (feature_index, feature) in enumerate(features): - try: - result = unique_id_to_result[feature.unique_id] - except KeyError as error: - print(error) - continue - - start_indexes = _get_best_indexes(result.start_logits, n_best_size) - end_indexes = _get_best_indexes(result.end_logits, n_best_size) - # if we could have irrelevant answers, get the min score of irrelevant - if FLAGS.version_2_with_negative: - feature_null_score = result.start_logits[0] + result.end_logits[0] - if feature_null_score < score_null: - score_null = feature_null_score - min_null_feature_index = feature_index - null_start_logit = result.start_logits[0] - null_end_logit = result.end_logits[0] - for start_index in start_indexes: - for end_index in end_indexes: - # We could hypothetically create invalid predictions, e.g., predict - # that the start of the span is in the question. We throw out all - # invalid predictions. - if start_index >= len(feature.tokens): - continue - if end_index >= len(feature.tokens): - continue - if start_index not in feature.token_to_orig_map: - continue - if end_index not in feature.token_to_orig_map: - continue - if not feature.token_is_max_context.get(start_index, False): - continue - if end_index < start_index: - continue - length = end_index - start_index + 1 - if length > max_answer_length: - continue - prelim_predictions.append( - _PrelimPrediction( - feature_index=feature_index, - start_index=start_index, - end_index=end_index, - start_logit=result.start_logits[start_index], - end_logit=result.end_logits[end_index])) - - if FLAGS.version_2_with_negative: - prelim_predictions.append( - _PrelimPrediction( - feature_index=min_null_feature_index, - start_index=0, - end_index=0, - start_logit=null_start_logit, - end_logit=null_end_logit)) - prelim_predictions = sorted( - prelim_predictions, - key=lambda x: (x.start_logit + x.end_logit), - reverse=True) - - _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name - "NbestPrediction", ["text", "start_logit", "end_logit"]) - - seen_predictions = {} - nbest = [] - for pred in prelim_predictions: - if len(nbest) >= n_best_size: - break - feature = features[pred.feature_index] - if pred.start_index > 0: # this is a non-null prediction - tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] - orig_doc_start = feature.token_to_orig_map[pred.start_index] - orig_doc_end = feature.token_to_orig_map[pred.end_index] - orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] - tok_text = " ".join(tok_tokens) - - # De-tokenize WordPieces that have been split off. - tok_text = tok_text.replace(" ##", "") - tok_text = tok_text.replace("##", "") - - # Clean whitespace - tok_text = tok_text.strip() - tok_text = " ".join(tok_text.split()) - orig_text = " ".join(orig_tokens) - - final_text = get_final_text(tok_text, orig_text, do_lower_case, FLAGS) - if final_text in seen_predictions: - continue - - seen_predictions[final_text] = True - else: - final_text = "" - seen_predictions[final_text] = True - - nbest.append( - _NbestPrediction( - text=final_text, - start_logit=pred.start_logit, - end_logit=pred.end_logit)) - - # if we didn't inlude the empty option in the n-best, inlcude it - if FLAGS.version_2_with_negative: - if "" not in seen_predictions: - nbest.append( - _NbestPrediction( - text="", start_logit=null_start_logit, - end_logit=null_end_logit)) - # In very rare edge cases we could have no valid predictions. So we - # just create a nonce prediction in this case to avoid failure. - if not nbest: - nbest.append( - _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) - - assert len(nbest) >= 1 - - total_scores = [] - best_non_null_entry = None - for entry in nbest: - total_scores.append(entry.start_logit + entry.end_logit) - if not best_non_null_entry: - if entry.text: - best_non_null_entry = entry - - probs = _compute_softmax(total_scores) - - nbest_json = [] - for (i, entry) in enumerate(nbest): - output = collections.OrderedDict() - output["text"] = entry.text - output["probability"] = probs[i] - output["start_logit"] = entry.start_logit - output["end_logit"] = entry.end_logit - nbest_json.append(output) - - assert len(nbest_json) >= 1 - - if not FLAGS.version_2_with_negative: - all_predictions[example.qas_id] = nbest_json[0]["text"] - else: - # predict "" iff the null score - the score of best non-null > threshold - score_diff = score_null - best_non_null_entry.start_logit - ( - best_non_null_entry.end_logit) - scores_diff_json[example.qas_id] = score_diff - if score_diff > FLAGS.null_score_diff_threshold: - all_predictions[example.qas_id] = "" - else: - all_predictions[example.qas_id] = best_non_null_entry.text - - all_nbest_json[example.qas_id] = nbest_json - - #with tf.gfile.GFile(output_prediction_file, "w") as writer: - with open(output_prediction_file, "w") as writer: - writer.write(json.dumps(all_predictions, indent=4) + "\n") - - - -def get_final_text(pred_text, orig_text, do_lower_case, FLAGS): - """Project the tokenized prediction back to the original text.""" - - # When we created the data, we kept track of the alignment between original - # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So - # now `orig_text` contains the span of our original text corresponding to the - # span that we predicted. - # - # However, `orig_text` may contain extra characters that we don't want in - # our prediction. - # - # For example, let's say: - # pred_text = steve smith - # orig_text = Steve Smith's - # - # We don't want to return `orig_text` because it contains the extra "'s". - # - # We don't want to return `pred_text` because it's already been normalized - # (the SQuAD eval script also does punctuation stripping/lower casing but - # our tokenizer does additional normalization like stripping accent - # characters). - # - # What we really want to return is "Steve Smith". - # - # Therefore, we have to apply a semi-complicated alignment heruistic between - # `pred_text` and `orig_text` to get a character-to-charcter alignment. This - # can fail in certain cases in which case we just return `orig_text`. - - def _strip_spaces(text): - ns_chars = [] - ns_to_s_map = collections.OrderedDict() - for (i, c) in enumerate(text): - if c == " ": - continue - ns_to_s_map[len(ns_chars)] = i - ns_chars.append(c) - ns_text = "".join(ns_chars) - return (ns_text, ns_to_s_map) - - # We first tokenize `orig_text`, strip whitespace from the result - # and `pred_text`, and check if they are the same length. If they are - # NOT the same length, the heuristic has failed. If they are the same - # length, we assume the characters are one-to-one aligned. - tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) - - tok_text = " ".join(tokenizer.tokenize(orig_text)) - - start_position = tok_text.find(pred_text) - if start_position == -1: - if FLAGS.verbose_logging: - print( - "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) - return orig_text - end_position = start_position + len(pred_text) - 1 - - (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) - (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) - - if len(orig_ns_text) != len(tok_ns_text): - if FLAGS.verbose_logging: - print("Length not equal after stripping spaces: '%s' vs '%s'", - orig_ns_text, tok_ns_text) - return orig_text - - # We then project the characters in `pred_text` back to `orig_text` using - # the character-to-character alignment. - tok_s_to_ns_map = {} - for (i, tok_index) in six.iteritems(tok_ns_to_s_map): - tok_s_to_ns_map[tok_index] = i - - orig_start_position = None - if start_position in tok_s_to_ns_map: - ns_start_position = tok_s_to_ns_map[start_position] - if ns_start_position in orig_ns_to_s_map: - orig_start_position = orig_ns_to_s_map[ns_start_position] - - if orig_start_position is None: - if FLAGS.verbose_logging: - print("Couldn't map start position") - return orig_text - - orig_end_position = None - if end_position in tok_s_to_ns_map: - ns_end_position = tok_s_to_ns_map[end_position] - if ns_end_position in orig_ns_to_s_map: - orig_end_position = orig_ns_to_s_map[ns_end_position] - - if orig_end_position is None: - if FLAGS.verbose_logging: - print("Couldn't map end position") - return orig_text - - output_text = orig_text[orig_start_position:(orig_end_position + 1)] - return output_text - - -def _get_best_indexes(logits, n_best_size): - """Get the n-best logits from a list.""" - index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) - - best_indexes = [] - for i in range(len(index_and_score)): - if i >= n_best_size: - break - best_indexes.append(index_and_score[i][0]) - return best_indexes - - -def _compute_softmax(scores): - """Compute softmax probability over raw logits.""" - if not scores: - return [] - - max_score = None - for score in scores: - if max_score is None or score > max_score: - max_score = score - - exp_scores = [] - total_sum = 0.0 - for score in scores: - x = math.exp(score - max_score) - exp_scores.append(x) - total_sum += x - - probs = [] - for score in exp_scores: - probs.append(score / total_sum) - return probs - - -def gen_eval_predict_json(FLAGS, all_results): - os.makedirs(FLAGS.output_dir, exist_ok=True) - - tokenizer = tokenization.FullTokenizer( - vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) - - eval_examples = read_squad_examples( - input_file=FLAGS.predict_file, is_training=False) - - # eval_writer = FeatureWriter( - # filename=os.path.join(FLAGS.output_dir, "eval.tf_record"), - # is_training=False) - eval_features = [] - - def append_feature(feature): - eval_features.append(feature) - # eval_writer.process_feature(feature) - - convert_examples_to_features( - examples=eval_examples, - tokenizer=tokenizer, - max_seq_length=FLAGS.max_seq_length, - doc_stride=FLAGS.doc_stride, - max_query_length=FLAGS.max_query_length, - is_training=False, - output_fn=append_feature) - #eval_writer.close() - - print("***** Running predictions *****") - print(" Num orig examples = %d", len(eval_examples)) - print(" Num split examples = %d", len(eval_features)) - print(" Batch size = %d", FLAGS.predict_batch_size) - - output_prediction_file = os.path.join(FLAGS.output_dir, "predictions.json") - output_nbest_file = os.path.join(FLAGS.output_dir, "nbest_predictions.json") - output_null_log_odds_file = os.path.join(FLAGS.output_dir, "null_odds.json") - - write_predictions(eval_examples, eval_features, all_results, - FLAGS.n_best_size, FLAGS.max_answer_length, - FLAGS.do_lower_case, output_prediction_file, - output_nbest_file, output_null_log_odds_file, FLAGS) - diff --git a/LanguageModeling/BERT/tokenization.py b/LanguageModeling/BERT/tokenization.py deleted file mode 100644 index 58fcc3f..0000000 --- a/LanguageModeling/BERT/tokenization.py +++ /dev/null @@ -1,400 +0,0 @@ -# coding=utf-8 -# Copyright 2018 The Google AI Language Team Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Tokenization classes.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import collections -import re -import unicodedata -import six -#import tensorflow as tf - - -def validate_case_matches_checkpoint(do_lower_case, init_checkpoint): - """Checks whether the casing config is consistent with the checkpoint name.""" - - # The casing has to be passed in by the user and there is no explicit check - # as to whether it matches the checkpoint. The casing information probably - # should have been stored in the bert_config.json file, but it's not, so - # we have to heuristically detect it to validate. - - if not init_checkpoint: - return - - m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint) - if m is None: - return - - model_name = m.group(1) - - lower_models = [ - "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12", - "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12" - ] - - cased_models = [ - "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16", - "multi_cased_L-12_H-768_A-12" - ] - - is_bad_config = False - if model_name in lower_models and not do_lower_case: - is_bad_config = True - actual_flag = "False" - case_name = "lowercased" - opposite_flag = "True" - - if model_name in cased_models and do_lower_case: - is_bad_config = True - actual_flag = "True" - case_name = "cased" - opposite_flag = "False" - - if is_bad_config: - raise ValueError( - "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. " - "However, `%s` seems to be a %s model, so you " - "should pass in `--do_lower_case=%s` so that the fine-tuning matches " - "how the model was pre-training. If this error is wrong, please " - "just comment out this check." % (actual_flag, init_checkpoint, - model_name, case_name, opposite_flag)) - - -def convert_to_unicode(text): - """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" - if six.PY3: - if isinstance(text, str): - return text - elif isinstance(text, bytes): - return text.decode("utf-8", "ignore") - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - elif six.PY2: - if isinstance(text, str): - return text.decode("utf-8", "ignore") - elif isinstance(text, unicode): - return text - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - else: - raise ValueError("Not running on Python2 or Python 3?") - - -def printable_text(text): - """Returns text encoded in a way suitable for print or `tf.logging`.""" - - # These functions want `str` for both Python2 and Python3, but in one case - # it's a Unicode string and in the other it's a byte string. - if six.PY3: - if isinstance(text, str): - return text - elif isinstance(text, bytes): - return text.decode("utf-8", "ignore") - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - elif six.PY2: - if isinstance(text, str): - return text - elif isinstance(text, unicode): - return text.encode("utf-8") - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - else: - raise ValueError("Not running on Python2 or Python 3?") - - -def load_vocab(vocab_file): - """Loads a vocabulary file into a dictionary.""" - vocab = collections.OrderedDict() - index = 0 - #with tf.gfile.GFile(vocab_file, "r") as reader: - with open(vocab_file, "r") as reader: - while True: - token = convert_to_unicode(reader.readline()) - if not token: - break - token = token.strip() - vocab[token] = index - index += 1 - return vocab - - -def convert_by_vocab(vocab, items): - """Converts a sequence of [tokens|ids] using the vocab.""" - output = [] - for item in items: - output.append(vocab[item]) - return output - - -def convert_tokens_to_ids(vocab, tokens): - return convert_by_vocab(vocab, tokens) - - -def convert_ids_to_tokens(inv_vocab, ids): - return convert_by_vocab(inv_vocab, ids) - - -def whitespace_tokenize(text): - """Runs basic whitespace cleaning and splitting on a piece of text.""" - text = text.strip() - if not text: - return [] - tokens = text.split() - return tokens - - -class FullTokenizer(object): - """Runs end-to-end tokenziation.""" - - def __init__(self, vocab_file, do_lower_case=True): - self.vocab = load_vocab(vocab_file) - self.inv_vocab = {v: k for k, v in self.vocab.items()} - self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) - self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) - - def tokenize(self, text): - split_tokens = [] - for token in self.basic_tokenizer.tokenize(text): - for sub_token in self.wordpiece_tokenizer.tokenize(token): - split_tokens.append(sub_token) - - return split_tokens - - def convert_tokens_to_ids(self, tokens): - return convert_by_vocab(self.vocab, tokens) - - def convert_ids_to_tokens(self, ids): - return convert_by_vocab(self.inv_vocab, ids) - - -class BasicTokenizer(object): - """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" - - def __init__(self, do_lower_case=True): - """Constructs a BasicTokenizer. - - Args: - do_lower_case: Whether to lower case the input. - """ - self.do_lower_case = do_lower_case - - def tokenize(self, text): - """Tokenizes a piece of text.""" - text = convert_to_unicode(text) - text = self._clean_text(text) - - # This was added on November 1st, 2018 for the multilingual and Chinese - # models. This is also applied to the English models now, but it doesn't - # matter since the English models were not trained on any Chinese data - # and generally don't have any Chinese data in them (there are Chinese - # characters in the vocabulary because Wikipedia does have some Chinese - # words in the English Wikipedia.). - text = self._tokenize_chinese_chars(text) - - orig_tokens = whitespace_tokenize(text) - split_tokens = [] - for token in orig_tokens: - if self.do_lower_case: - token = token.lower() - token = self._run_strip_accents(token) - split_tokens.extend(self._run_split_on_punc(token)) - - output_tokens = whitespace_tokenize(" ".join(split_tokens)) - return output_tokens - - def _run_strip_accents(self, text): - """Strips accents from a piece of text.""" - text = unicodedata.normalize("NFD", text) - output = [] - for char in text: - cat = unicodedata.category(char) - if cat == "Mn": - continue - output.append(char) - return "".join(output) - - def _run_split_on_punc(self, text): - """Splits punctuation on a piece of text.""" - chars = list(text) - i = 0 - start_new_word = True - output = [] - while i < len(chars): - char = chars[i] - if _is_punctuation(char): - output.append([char]) - start_new_word = True - else: - if start_new_word: - output.append([]) - start_new_word = False - output[-1].append(char) - i += 1 - - return ["".join(x) for x in output] - - def _tokenize_chinese_chars(self, text): - """Adds whitespace around any CJK character.""" - output = [] - for char in text: - cp = ord(char) - if self._is_chinese_char(cp): - output.append(" ") - output.append(char) - output.append(" ") - else: - output.append(char) - return "".join(output) - - def _is_chinese_char(self, cp): - """Checks whether CP is the codepoint of a CJK character.""" - # This defines a "chinese character" as anything in the CJK Unicode block: - # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) - # - # Note that the CJK Unicode block is NOT all Japanese and Korean characters, - # despite its name. The modern Korean Hangul alphabet is a different block, - # as is Japanese Hiragana and Katakana. Those alphabets are used to write - # space-separated words, so they are not treated specially and handled - # like the all of the other languages. - if ((cp >= 0x4E00 and cp <= 0x9FFF) or # - (cp >= 0x3400 and cp <= 0x4DBF) or # - (cp >= 0x20000 and cp <= 0x2A6DF) or # - (cp >= 0x2A700 and cp <= 0x2B73F) or # - (cp >= 0x2B740 and cp <= 0x2B81F) or # - (cp >= 0x2B820 and cp <= 0x2CEAF) or - (cp >= 0xF900 and cp <= 0xFAFF) or # - (cp >= 0x2F800 and cp <= 0x2FA1F)): # - return True - - return False - - def _clean_text(self, text): - """Performs invalid character removal and whitespace cleanup on text.""" - output = [] - for char in text: - cp = ord(char) - if cp == 0 or cp == 0xfffd or _is_control(char): - continue - if _is_whitespace(char): - output.append(" ") - else: - output.append(char) - return "".join(output) - - -class WordpieceTokenizer(object): - """Runs WordPiece tokenziation.""" - - def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200): - self.vocab = vocab - self.unk_token = unk_token - self.max_input_chars_per_word = max_input_chars_per_word - - def tokenize(self, text): - """Tokenizes a piece of text into its word pieces. - - This uses a greedy longest-match-first algorithm to perform tokenization - using the given vocabulary. - - For example: - input = "unaffable" - output = ["un", "##aff", "##able"] - - Args: - text: A single token or whitespace separated tokens. This should have - already been passed through `BasicTokenizer. - - Returns: - A list of wordpiece tokens. - """ - - text = convert_to_unicode(text) - - output_tokens = [] - for token in whitespace_tokenize(text): - chars = list(token) - if len(chars) > self.max_input_chars_per_word: - output_tokens.append(self.unk_token) - continue - - is_bad = False - start = 0 - sub_tokens = [] - while start < len(chars): - end = len(chars) - cur_substr = None - while start < end: - substr = "".join(chars[start:end]) - if start > 0: - substr = "##" + substr - if substr in self.vocab: - cur_substr = substr - break - end -= 1 - if cur_substr is None: - is_bad = True - break - sub_tokens.append(cur_substr) - start = end - - if is_bad: - output_tokens.append(self.unk_token) - else: - output_tokens.extend(sub_tokens) - return output_tokens - - -def _is_whitespace(char): - """Checks whether `chars` is a whitespace character.""" - # \t, \n, and \r are technically contorl characters but we treat them - # as whitespace since they are generally considered as such. - if char == " " or char == "\t" or char == "\n" or char == "\r": - return True - cat = unicodedata.category(char) - if cat == "Zs": - return True - return False - - -def _is_control(char): - """Checks whether `chars` is a control character.""" - # These are technically control characters but we count them as whitespace - # characters. - if char == "\t" or char == "\n" or char == "\r": - return False - cat = unicodedata.category(char) - if cat.startswith("C"): - return True - return False - - -def _is_punctuation(char): - """Checks whether `chars` is a punctuation character.""" - cp = ord(char) - # We treat all non-letter/number ASCII as punctuation. - # Characters such as "^", "$", and "`" are not in the Unicode - # Punctuation class but we treat them as punctuation anyways, for - # consistency. - if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or - (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): - return True - cat = unicodedata.category(char) - if cat.startswith("P"): - return True - return False diff --git a/LanguageModeling/BERT/util.py b/LanguageModeling/BERT/util.py deleted file mode 100755 index 2a936b4..0000000 --- a/LanguageModeling/BERT/util.py +++ /dev/null @@ -1,159 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import time -import numpy as np -from collections import OrderedDict -import pandas as pd -from datetime import datetime -import oneflow as flow - - -def InitNodes(args): - if args.num_nodes > 1: - assert args.num_nodes <= len(args.node_ips) - #flow.env.ctrl_port(12138) - nodes = [] - for ip in args.node_ips: - addr_dict = {} - addr_dict["addr"] = ip - nodes.append(addr_dict) - - flow.env.machine(nodes) - - -class Snapshot(object): - def __init__(self, model_save_dir, model_load_dir): - self._model_save_dir = model_save_dir - self._check_point = flow.train.CheckPoint() - if model_load_dir: - assert os.path.isdir(model_load_dir) - print("Restoring model from {}.".format(model_load_dir)) - self._check_point.load(model_load_dir) - else: - self._check_point.init() - self.save('initial_model') - print("Init model on demand.") - - def save(self, name): - snapshot_save_path = os.path.join(self._model_save_dir, "snapshot_{}".format(name)) - if not os.path.exists(snapshot_save_path): - os.makedirs(snapshot_save_path) - print("Saving model to {}.".format(snapshot_save_path)) - self._check_point.save(snapshot_save_path) - - -class Summary(object): - def __init__(self, log_dir, config, filename='summary.csv'): - self._filename = filename - self._log_dir = log_dir - if not os.path.exists(log_dir): os.makedirs(log_dir) - self._metrics = pd.DataFrame({"legend": "cfg", "value": str(config)}, index=[0]) - - def scalar(self, legend, iter, value, **kwargs): - kwargs['legend'] = legend - kwargs['iter'] = int(iter) - kwargs['value'] = value - df = pd.DataFrame(kwargs, index=[0]) - self._metrics = pd.concat([self._metrics, df], axis=0, sort=False) - self.save() - - def save(self): - save_path = os.path.join(self._log_dir, self._filename) - self._metrics.to_csv(save_path, index=False) - - -class StopWatch(object): - def __init__(self): - pass - - def start(self): - self.start_time = time.time() - self.last_split = self.start_time - - def split(self): - now = time.time() - duration = now - self.last_split - self.last_split = now - return duration - - def stop(self): - self.stop_time = time.time() - - def duration(self): - return self.stop_time - self.start_time - - -class Metric(object): - def __init__(self, summary=None, desc='train', print_steps=-1, batch_size=256, keys=[]): - r"""accumulate and calculate metric - - Args: - summary: A `Summary` object to write in. - desc: `str` general description of the metric to show - print_steps: `Int` print metrics every nth steps - batch_size: `Int` batch size per step - keys: keys in callback outputs - Returns: - """ - self.summary = summary - self.save_summary = isinstance(self.summary, Summary) - self.desc = desc - self.print_steps = print_steps - assert batch_size > 0 - self.batch_size = batch_size - - assert isinstance(keys, (list, tuple)) - self.keys = keys - self.metric_dict = OrderedDict() - self.metric_dict['step'] = 0 - - self.timer = StopWatch() - self.timer.start() - self._clear() - - def _clear(self): - for key in self.keys: - self.metric_dict[key] = 0.0 - self.metric_dict['throughput'] = 0.0 - self.num_samples = 0.0 - - def update_and_save(self, key, value, step, **kwargs): - self.metric_dict[key] = value - if self.save_summary: - self.summary.scalar(self.desc + "_" + key, step, value, **kwargs) - - def metric_cb(self, step=0, **kwargs): - def callback(outputs): - if step == 0: self._clear() - - for key in self.keys: - self.metric_dict[key] += outputs[key].sum() - - self.num_samples += self.batch_size - - if (step + 1) % self.print_steps == 0: - self.metric_dict['step'] = step - for k, v in kwargs.items(): - self.metric_dict[k] = v - throughput = self.num_samples / self.timer.split() - self.update_and_save('throughput', throughput, step) - for key in self.keys: - value = self.metric_dict[key] / self.num_samples - self.update_and_save(key, value, step, **kwargs) - print(', '.join(('{}: {}' if type(v) is int else '{}: {:.3f}').format(k, v) \ - for k, v in self.metric_dict.items())) - self._clear() - - return callback - -def CreateOptimizer(args): - warmup_batches = int(args.iter_num * args.warmup_proportion) - lr_warmup = flow.optimizer.warmup.linear(warmup_batches, 0) - lr_scheduler = flow.optimizer.PolynomialSchduler(args.learning_rate, args.iter_num, 0.0, - warmup=lr_warmup) - return flow.optimizer.AdamW(lr_scheduler, epsilon=1e-6, weight_decay=args.weight_decay_rate, - weight_decay_excludes=["bias", "LayerNorm", "layer_norm"], - grad_clipping=flow.optimizer.grad_clipping.by_global_norm(1.0)) From c8958ddad8e00c466bdae791658054a1f347e407 Mon Sep 17 00:00:00 2001 From: Snow Date: Wed, 12 Aug 2020 19:00:40 +0800 Subject: [PATCH 03/20] Update README.md --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 5bd9524..d0bdc86 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,7 @@ # OneFlow Deep Learning Benchmarks +[![](https://img.shields.io/badge/Language-EN-CH-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md) + This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. It aims to demonstrate the best practices for modeling so that OneFLow users can take full advantage of OneFlow for their research and product development. From b3aa861ccb9b650f900d953cbf0febb9aff91954 Mon Sep 17 00:00:00 2001 From: Snow Date: Wed, 12 Aug 2020 19:02:55 +0800 Subject: [PATCH 04/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index d0bdc86..f743750 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/Language-EN-CH-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md) +[![](https://img.shields.io/badge/Language-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From 1840b6100c76679e3f91db74b1d37698c5f56698 Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:18:19 +0800 Subject: [PATCH 05/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index f743750..212c28e 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/Language-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md) +[![](https://img.shields.io/badge/Language-EN|CH-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md)(https://github.com/pytorch/benchmark) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From e18c032d7f1e9ddb51ec2a7f4892e6203f4ebafd Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:24:14 +0800 Subject: [PATCH 06/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 212c28e..f76b4c0 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/Language-EN|CH-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md)(https://github.com/pytorch/benchmark) +[![](https://img.shields.io/badge/CH-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md,https://github.com/pytorch/benchmark) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From bd1571bc4aff450355163cc5ed60a21564d21ead Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:26:29 +0800 Subject: [PATCH 07/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index f76b4c0..b75fdfa 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/CH-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md,https://github.com/pytorch/benchmark) +[![](https://img.shields.io/badge/CH-EN-blue.svg)]({https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md}{https://github.com/pytorch/benchmark}) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From 595d1cc3ce3596f27552c3f31558c16bba94a581 Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:26:40 +0800 Subject: [PATCH 08/20] Update README.md From ee676d3128c340cd227d1115fb4f638eaa8284f2 Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:27:48 +0800 Subject: [PATCH 09/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index b75fdfa..5be1625 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/CH-EN-blue.svg)]({https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md}{https://github.com/pytorch/benchmark}) +[![](https://img.shields.io/badge/CH-EN-blue.svg)]({https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md}) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From b5ddb117ff8cd6c1f867201b0f85dc5defa9eead Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:28:15 +0800 Subject: [PATCH 10/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 5be1625..a80784d 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/CH-EN-blue.svg)]({https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md}) +[![](https://img.shields.io/badge/CH-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From 3f0b9bd44bbf51260969071040af31cf1d486fa8 Mon Sep 17 00:00:00 2001 From: nlqq Date: Thu, 13 Aug 2020 01:33:14 +0800 Subject: [PATCH 11/20] add readme in chinese --- README_CH.md | 0 README.md => README_EN.md | 0 2 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 README_CH.md rename README.md => README_EN.md (100%) diff --git a/README_CH.md b/README_CH.md new file mode 100644 index 0000000..e69de29 diff --git a/README.md b/README_EN.md similarity index 100% rename from README.md rename to README_EN.md From 23a0cf35bf80ec910b70d59794d80ea4f81aad2d Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:37:47 +0800 Subject: [PATCH 12/20] Update and rename README_EN.md to README.md --- README_EN.md => README.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) rename README_EN.md => README.md (96%) diff --git a/README_EN.md b/README.md similarity index 96% rename from README_EN.md rename to README.md index a80784d..fd1d8f4 100644 --- a/README_EN.md +++ b/README.md @@ -1,6 +1,7 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/CH-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/edit/dev_sx_benchmark/README.md) +[![](https://img.shields.io/badge/Docs in-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_EN.md) +[![](https://img.shields.io/badge/Docs in-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From 3030d19b4b3f6125fb7a5d90508e8f85acc4a8da Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:38:09 +0800 Subject: [PATCH 13/20] Update README.md --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index fd1d8f4..48b1ca8 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,7 @@ # OneFlow Deep Learning Benchmarks [![](https://img.shields.io/badge/Docs in-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_EN.md) + [![](https://img.shields.io/badge/Docs in-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From c06b62540f8a13bc9b47118131cae9413f944b8d Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:40:22 +0800 Subject: [PATCH 14/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 48b1ca8..79084a1 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/Docs in-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_EN.md) +[![](https://img.shields.io/badge/Docs in-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README.md) [![](https://img.shields.io/badge/Docs in-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) From 9840d5f2f9f946bf1715c9785c8b556c84d6ca77 Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:40:49 +0800 Subject: [PATCH 15/20] Update README.md --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 79084a1..769e8b9 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,8 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/Docs in-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README.md) +[![](https://img.shields.io/badge/Docs_in-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README.md) -[![](https://img.shields.io/badge/Docs in-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) +[![](https://img.shields.io/badge/Docs_in-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From 10cb5dceb41eb8b92537830e37dccdc00c7db56c Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:41:48 +0800 Subject: [PATCH 16/20] Update README.md --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 769e8b9..43184e2 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,8 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/Docs_in-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README.md) +[![](https://img.shields.io/badge/Language-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README.md) -[![](https://img.shields.io/badge/Docs_in-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) +[![](https://img.shields.io/badge/Language-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From 78bcc01a44f7a178f37e728f6d2acff7f422397e Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:42:38 +0800 Subject: [PATCH 17/20] Update README.md --- README.md | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/README.md b/README.md index 43184e2..ee5c2b5 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,6 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/Language-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README.md) - -[![](https://img.shields.io/badge/Language-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) +[![](https://img.shields.io/badge/Language-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README.md) [![](https://img.shields.io/badge/Language-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From d4f7d7830cdf84b0ee91f6c9b2ad76dc948abf04 Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:43:11 +0800 Subject: [PATCH 18/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index ee5c2b5..dd66dea 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # OneFlow Deep Learning Benchmarks -[![](https://img.shields.io/badge/Language-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README.md) [![](https://img.shields.io/badge/Language-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) + [![](https://img.shields.io/badge/Language-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From 69ea2d3815c5fb064405abcf5c7a5d6fb983eaa2 Mon Sep 17 00:00:00 2001 From: Snow Date: Thu, 13 Aug 2020 01:43:59 +0800 Subject: [PATCH 19/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index dd66dea..3007f5b 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # OneFlow Deep Learning Benchmarks - [![](https://img.shields.io/badge/Language-CH-purple.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) + [![](https://img.shields.io/badge/Language-CH-red.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/dev_sx_benchmark/README_CH.md) This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. From e44bfc96164db443bb8090df61309480ebcd8cf1 Mon Sep 17 00:00:00 2001 From: nlqq Date: Thu, 13 Aug 2020 10:13:42 +0800 Subject: [PATCH 20/20] update readme --- README.md | 2 +- README_CH.md | 46 ++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 47 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 3007f5b..48826fb 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ This repository provides a collection of example implementations and modeling solutions using the latest OneFlow's high-level APIs, for CV, CTR and NLP models as a benchmark. -It aims to demonstrate the best practices for modeling so that OneFLow users can take full advantage of OneFlow for their research and product development. +It aims to demonstrate the best practices for modeling so that OneFlow users can take full advantage of OneFlow for their research and product development. More models are coming! diff --git a/README_CH.md b/README_CH.md index e69de29..11d0859 100644 --- a/README_CH.md +++ b/README_CH.md @@ -0,0 +1,46 @@ +# OneFlow 深度学习基准 + + [![](https://img.shields.io/badge/Language-EN-blue.svg)](https://github.com/Oneflow-Inc/OneFlow-Benchmark/tree/dev_sx_benchmark) + +本仓库将提供一系列由 OneFlow 最新的高级接口实现的模型及样例网络,模型基准涉及计算机视觉(Computer Vision,CV)、点击率推荐(Click-Through-Rate,CTR)、自然语言处理(Natural Language Processing, NLP)。 + +为了能让 OneFlow 用户实现自己拓展研究和产品迭代的需求,充分利用该框架,本仓库旨在提供各个模型基于 OneFlow 的最佳实现。 + +更多新模型正在路上! + +## 内容 + +### 模型及实现 + +- ### 计算机视觉(Computer Vision) + + - #### 图片识别(Image Classification) + +| 模型 | 参考来源(论文) | +| ------------------------------------------------------------ | ------------------------------------------------------------ | +| [ResNet-50](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/resnet_model.py) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) | +| [ResNeXt](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/resnext_model.py) | [Aggregated_Residual_Transformations_CVPR_2017](https://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf) | +| [VGG-16](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/vgg_model.py) | [VGG16 – Convolutional Network for Classification and Detection](https://neurohive.io/en/popular-networks/vgg16/) | +| [Inception-V3](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/inception_model.py) | [Inception V3 Deep Convolutional Architecture For Classifying Acute Myeloid/Lymphoblastic Leukemia](https://software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html) | +| [AlexNet](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/alexnet_model.py) | [ImageNet Classification with Deep Convolutional Neural Networks](http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf) | +| [MobileNet-V2](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/Classification/cnns/mobilenet_v2_model.py) | [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) | + +- ### 自然语言处理(Natural Language Processing) + +| 模型 | 参考来源(论文) | +| ------------------------------------------------------------ | ------------------------------------------------------------ | +| [BERT (Bidirectional Encoder Representations from Transformers)](https://github.com/OneFlow/models/blob/master/official/nlp/bert) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) | +| [SQuAD for Question Answering](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/LanguageModeling/BERT/run_squad.py) | [BERT-SQuAD](https://github.com/kamalkraj/BERT-SQuAD) | +| [CoLA and MRPC of GLUE](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/LanguageModeling/BERT/run_classifier.py) | [GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding](https://www.aclweb.org/anthology/W18-5446.pdf) | + +- ### 点击率推荐(Click-Through-Rate) + + | 模型 | 参考来源(论文) | + | ------------------------------------------------------------ | ------------------------------------------------------------ | + | [OneFlow-WDL](https://github.com/Oneflow-Inc/OneFlow-Benchmark/blob/master/ClickThroughRate/WideDeepLearning) | [**Wide & Deep Learning for Recommender Systems**](https://arxiv.org/pdf/1606.07792.pdf) | + + + +### 开始使用模型 + +...