-
Notifications
You must be signed in to change notification settings - Fork 125
/
osi_featuredata.proto
1108 lines (959 loc) · 32.4 KB
/
osi_featuredata.proto
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
syntax = "proto2";
option optimize_for = SPEED;
import "osi_version.proto";
import "osi_common.proto";
package osi3;
//
// \brief Interface for sensor data containing information without a history
// in contrast to interpreted data after object hypothesis and tracking.
//
// All information regarding the environment is given with respect to the sensor
// coordinate system specified in \c SensorDetectionHeader::mounting_position.
// When simulating multiple sensors, each sensor has an individual copy of
// \c FeatureData in its own reference frame. This allows an independent
// treatment of the sensors.
//
message FeatureData
{
// The interface version used by the sender (i.e. the simulation
// environment).
//
optional InterfaceVersion version = 1;
// Radar detections for multiple radar sensors (sensor fusion).
//
repeated RadarDetectionData radar_sensor = 2;
// Lidar detections for multiple lidar sensors (sensor fusion).
//
repeated LidarDetectionData lidar_sensor = 3;
// Ultrasonic detections for multiple ultrasonic sensors (sensor fusion).
//
// \note Required for ultrasonic sensors: Detections will be send by the
// emitting ultrasonic sensor, including all indirect detections received
// by neighboring sensors.
//
repeated UltrasonicDetectionData ultrasonic_sensor = 4;
// Camera detections for multiple camera sensors (sensor fusion).
//
repeated CameraDetectionData camera_sensor = 5;
}
//
// \brief The header attributes of each sensor's detection list.
//
message SensorDetectionHeader
{
// Time stamp at which the measurement was taken (not the time at which it
// was processed or at which it is transmitted) in the global synchronized
// time.
//
// \note See \c SensorData::timestamp and
// \c SensorData::last_measurement_time for detailed discussions on the
// semantics of time-related fields.
//
optional Timestamp measurement_time = 1;
// Monotonous counter to identify the exact cycle.
// In general the detection function is called periodically and
// \c #cycle_counter corresponds to the number of periods.
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional uint64 cycle_counter = 2;
// The physical mounting position of the sensor (origin and orientation of
// the sensor frame). Both origin and orientation are given in and with
// respect to the host vehicle coordinate system [1].
//
// The sensor frame's x-axis is pointing in the central viewing direction of
// the sensor. It is the angle bisector of the sensor's horizontal and
// vertical field of view. The terms horizontal and vertical must be
// understood as names for the two principal planes of the sensor's field of
// view (relative to the sensor frame's orientation), which do not have to
// be horizontal or vertical in the strict sense of being parallel or
// perpendicular to the local gravitational vector. The horizontal field
// of view defines the sensor frame's xy-plane and the vertical field
// of view defines the xz-plane. The sensor frame is right-handed and the
// z-axis is pointing in an upward direction.
//
// The sensor frame uses cartesian coordinates. The sensor frame's origin is
// identical to sensor detection frame's origin. Detections are defined in
// the sensor detection frame which uses e.g. spherical coordinates.
//
// \par Reference:
// [1] DIN Deutsches Institut fuer Normung e. V. (2013). <em>DIN ISO 8855 Strassenfahrzeuge - Fahrzeugdynamik und Fahrverhalten - Begriffe</em>. (DIN ISO 8855:2013-11). Berlin, Germany.
//
// \rules
// is_set
// \endrules
//
optional MountingPosition mounting_position = 3;
// The origin/orientation of the sensor frame represents the current
// mounting pose to the best knowledge of the sensor. The estimation of the
// 6D pose given by the calibration. The uncertainty of this estimation is
// given with the corresponding 6D root mean squared error. The estimation
// of the current origin does not include effects due to short-time
// dynamics, such as pitch angles from braking, but includes long-time
// calibration values, such as pitch angles from luggage in the trunk.
//
optional MountingPosition mounting_position_rmse = 4;
// Data Qualifier expresses to what extent the content of this event can be
// relied on.
//
optional DataQualifier data_qualifier = 5;
// The current number of valid detections in the detections list.
//
// \note This value has to be set if the list contains invalid detections.
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional uint32 number_of_valid_detections = 6;
// The ID of the sensor at host vehicle's \c #mounting_position.
//
// This ID can equal \c SensorData::sensor_id, if \c SensorData holds only
// data from one sensor/sensor model.
//
// \rules
// is_set
// \endrules
//
optional Identifier sensor_id = 7;
// The extended qualifier describes the reason (not the effect) why the
// event data qualifier, \c #data_qualifier, is reduced or not available.
//
optional ExtendedQualifier extended_qualifier = 8;
// Data qualifier communicates the overall availability of the
// interface.
//
enum DataQualifier
{
// Unknown (must not be used in ground truth).
//
DATA_QUALIFIER_UNKNOWN = 0;
// Other (unspecified but known).
//
DATA_QUALIFIER_OTHER = 1;
// Data is available.
//
DATA_QUALIFIER_AVAILABLE = 2;
// Reduced data is available.
//
DATA_QUALIFIER_AVAILABLE_REDUCED = 3;
// Data is not available.
//
DATA_QUALIFIER_NOT_AVAILABLE = 4;
// Sensor is blind.
//
DATA_QUALIFIER_BLINDNESS = 5;
// Sensor temporary available.
//
DATA_QUALIFIER_TEMPORARY_AVAILABLE = 6;
// Sensor invalid.
//
DATA_QUALIFIER_INVALID = 7;
}
// The extended qualifier describes the reason (not the effect) why the
// event data qualifier, \c #data_qualifier, is reduced or not available.
//
enum ExtendedQualifier
{
// Unknown (must not be used in ground truth).
//
EXTENDED_QUALIFIER_UNKNOWN = 0;
// Other (unspecified but known).
//
EXTENDED_QUALIFIER_OTHER = 1;
// Normal operation mode.
//
EXTENDED_QUALIFIER_NORMAL_OPERATION_MODE = 2;
// Power up or down.
//
EXTENDED_QUALIFIER_POWER_UP_OR_DOWN = 3;
// Sensor not calibrated.
//
EXTENDED_QUALIFIER_SENSOR_NOT_CALIBRATED = 4;
// Sensor blocked.
//
EXTENDED_QUALIFIER_SENSOR_BLOCKED = 5;
// Sensor misaligned.
//
EXTENDED_QUALIFIER_SENSOR_MISALIGNED = 6;
// Bad sensor environmental condition (e.g. Darkness for vision).
//
EXTENDED_QUALIFIER_BAD_SENSOR_ENVIRONMENTAL_CONDITION = 7;
// Reduced field of view.
//
EXTENDED_QUALIFIER_REDUCED_FIELD_OF_VIEW = 8;
// Input not available.
//
EXTENDED_QUALIFIER_INPUT_NOT_AVAILABLE = 9;
// Internal reason (e.g. an internal hardware or software error has occurred).
//
EXTENDED_QUALIFIER_INTERNAL_REASON = 10;
// External disturbance, sensor specific for front radar (e.g.
// Interference of different radar sensors).
//
EXTENDED_QUALIFIER_EXTERNAL_DISTURBANCE = 11;
// Beginning blockage, sensor specific for front radar.
//
EXTENDED_QUALIFIER_BEGINNING_BLOCKAGE = 12;
}
}
//
// \brief Data from one radar sensor including a list of detections.
//
message RadarDetectionData
{
// Header attributes of radar detection from one radar sensor.
//
optional SensorDetectionHeader header = 1;
// List of radar detections constituting the radar detection list.
//
repeated RadarDetection detection = 2;
}
//
// \brief A radar detection.
//
message RadarDetection
{
// Existence probability of the detection not based on history. Value does
// not depend on any past experience with similar detections.
//
// \note Use as confidence measure where a low value means less confidence
// and a high value indicates strong confidence.
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 1
// \endrules
//
optional double existence_probability = 1;
// ID of the detected object this detection is associated to.
//
// \note ID = MAX(uint64) indicates no reference to an object.
//
// \rules
// refers_to: DetectedObject
// \endrules
//
optional Identifier object_id = 2;
// Measured position of the detection given in spherical coordinates in the
// sensor coordinate system.
//
optional Spherical3d position = 3;
// Root mean squared error of the measured position of the detection.
//
optional Spherical3d position_rmse = 4;
// Radial velocity of the detection positive in direction to the sensor.
//
// Unit: m/s
//
optional double radial_velocity = 5;
// Root mean squared error of the object measured radial velocity.
//
// Unit: m/s
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional double radial_velocity_rmse = 6;
// The radar cross section (RCS) of the radar detection.
//
// Unit: dB m^2
//
optional double rcs = 7;
// The signal to noise ratio (SNR) of the radar detection.
//
// Unit: dB
//
optional double snr = 8;
// Describes the possibility whether more than one object may have led to
// this detection.
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 1
// \endrules
//
optional double point_target_probability = 9;
// Ambiguity Information:
// Each ambiguous measurement generates one Ambiguity ID. Ambiguity is
// indicated by an identical ambiguity ID.
//
// \note Unambiguous measurements have the ambiguity ID 0.
//
// \note Multiple separate detections, from e.g. a large object, do not
// necessarily on their own create any ambiguity. Therefore they do not
// usually share an ambiguity ID. They can however be ambiguous
// with other detections.
//
optional Identifier ambiguity_id = 10;
// Basic classification of the detection.
//
optional DetectionClassification classification = 11;
}
//
// \brief Data from one lidar sensor including a list of detections.
//
message LidarDetectionData
{
// Header attributes of lidar detection from one lidar sensor.
//
optional SensorDetectionHeader header = 1;
// List of lidar detections.
//
repeated LidarDetection detection = 2;
}
//
// \brief A point or vertical line in a lidar point cloud.
//
message LidarDetection
{
// Existence probability of the detection not based on history. Value does
// not depend on any past experience with similar detections.
//
// \note Used as confidence measure where a low value means less confidence
// and a high value indicates strong confidence.
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 1
// \endrules
//
optional double existence_probability = 1;
// ID of the detected object this detection is associated to.
//
// \note ID = MAX(uint64) indicates no reference to an object.
//
// \rules
// refers_to: DetectedObject
// \endrules
//
optional Identifier object_id = 2;
// Measured position of the detection given in spherical coordinates in the
// sensor coordinate system.
//
optional Spherical3d position = 3;
// Root mean squared error of the measured position of the detection.
//
optional Spherical3d position_rmse = 4;
// The height value which is required when multiple scan points are
// vertically clustered. Only vertical clustering is allowed (z-axis).
//
// Unit: m
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional double height = 5;
// Root mean squared error of the object height.
//
// Unit: m
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional double height_rmse = 6;
// Intensity or equivalent value of the detection's echo.
//
// Unit: %
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 100
// \endrules
//
optional double intensity = 7;
// The free space probability in the range [0.0, 1.0] from the origin of the
// sensor up to this detection, as given by the distance.
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 1
// \endrules
//
optional double free_space_probability = 8;
// Basic classification of the detection.
//
optional DetectionClassification classification = 9;
// Lambertian reflectivity.
//
optional double reflectivity = 10;
// Echo pulse width of the detection's echo.
// Several sensors output an echo pulse width instead of an intensity for each individual detection.
// The echo pulse is measured in m and measures the extent of the object parts or atmospheric particles that produce the echo.
// \note For more details see [1] Fig. 7 and 8.
// \note Fig. 7 shows an example where the two echos are reflected from the edges A-B and C-D.
// \note Fig. 8 shows how the echo pulse width is measured as the range between the rising edge and the falling edge that crosses the intensity threshold.
//
// Unit: m
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
// \par Reference:
// [1] Rosenberger, P., Holder, M.F., Cianciaruso, N. et al. (2020). <em>Sequential lidar sensor system simulation: a modular approach for simulation-based safety validation of automated driving</em> Automotive Engine Technology 5, Fig 7, Fig 8. Retrieved May 10, 2021, from https://doi.org/10.1007/s41104-020-00066-x
//
optional double echo_pulse_width = 11;
// Radial velocity of the detection positive in direction to the sensor.
//
// Unit: m/s
//
optional double radial_velocity = 12;
// ID of the corresponding lidar beam.
//
optional Identifier beam_id = 13;
}
//
// \brief Specific header extension for ultrasonic sensors.
//
message UltrasonicDetectionSpecificHeader
{
// Maximal range of the ultrasonic sensor.
//
// Unit: m
//
optional double max_range = 1;
// The current number of valid indirect detections in the detections list.
// The detections are measured by a virtual sensor (i.e. sender and
// receiver are different sensors).
//
// \note This value has to be set if the list contains invalid detections.
//
optional uint32 number_of_valid_indirect_detections = 2;
}
//
// \brief Data from one ultrasonic sensor including a list of detections.
// This list is generated by the sending ultrasonic sensor. Indirectly received
// signals from other ultrasonic sensors are included in this message.
//
// Direct detections:
//
// Sending: Ultrasonic Sensor ID 1
//
// Receiving:
// - Direct: Ultrasonic Sensor ID 1
// - Indirect: Ultrasonic Sensor ID 2 and 3
//
// \image html OSI_USSensor.svg
//
// \note Direct detections lie on circles with the sending sensor as center.
//
message UltrasonicDetectionData
{
// Header attributes of ultrasonic detection from one ultrasonic sensor.
//
optional SensorDetectionHeader header = 1;
// Additional header attributes of ultrasonic detection from one ultrasonic
// sensor.
//
optional UltrasonicDetectionSpecificHeader specific_header = 3;
// List of ultrasonic detections.
//
repeated UltrasonicDetection detection = 2;
// List of ultrasonic indirect detections (sender and receiver sensors are
// not the same).
//
repeated UltrasonicIndirectDetection indirect_detection = 4;
}
//
// \brief Ultrasonic detection from the sensor (same sensor as sender and
// receiver).
//
// Direct detections:
//
// Sending: Ultrasonic Sensor ID 1
//
// Receiving: Ultrasonic Sensor ID 1
//
// \image html OSI_USSensor_direct.svg
//
// \note Direct detections lie on circles with the sensor as center.
//
message UltrasonicDetection
{
// Existence probability of the detection not based on history. Value does
// not depend on any past experience with similar detections.
//
// \note Used as confidence measure where a low value means less confidence
// and a high value indicates strong confidence.
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 1
// \endrules
//
optional double existence_probability = 1;
// ID of the detected object this detection is associated to.
//
// \note ID = MAX(uint64) indicates no reference to an object.
//
// \rules
// refers_to: DetectedObject
// \endrules
//
optional Identifier object_id = 2;
// Measured distance (radius) of the detection.
//
// Unit: m
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional double distance = 3;
}
//
// \brief Ultrasonic detection received by another ultrasonic sensor (different
// sensors as sender and receiver).
//
// Indirect detections:
//
// Sending: Ultrasonic Sensor ID 1
//
// Receiving: Ultrasonic Sensor ID 2 and 3
//
// \image html OSI_USSensor_indirect.svg
//
// \note Indirect detections lie on ellipses with the sending resp. receiving
// sensor in the focal points.
//
message UltrasonicIndirectDetection
{
// Existence probability of the detection not based on history. Value does
// not depend on any past experience with similar detections.
//
// \note Used as confidence measure where a low value means less confidence
// and a high value indicates strong confidence.
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 1
// \endrules
//
optional double existence_probability = 1;
// ID of the detected object this detection is associated to.
//
// \note ID = MAX(uint64) indicates no reference to an object.
//
// \rules
// refers_to: DetectedObject
// \endrules
//
optional Identifier object_id = 2;
// First parameter b of an ellipsoid equation.
//
// Unit: m
//
optional double ellipsoid_radial = 3;
// Second parameter b of an ellipsoid equation.
//
// Unit: m
//
optional double ellipsoid_axial = 4;
// The ID of the sensor's receiver. Sender ID is stored in the header \c
// SensorDetectionHeader.
//
optional Identifier receiver_id = 5;
// The vector to the receiver's origin in sending ultrasonic sensor frame.
// The vector is also the direction of \c #ellipsoid_axial.
//
optional Vector3d receiver_origin = 6;
}
//
// \brief Specific header extension for camera sensors.
//
message CameraDetectionSpecificHeader
{
// The current number of points which all detections in the detections list
// refer.
//
// \note This value has to be set if the list contains invalid points.
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional uint32 number_of_valid_points = 1;
}
//
// \brief Data from one camera sensor including a list of detections.
//
message CameraDetectionData
{
// Header attributes of camera detection from one camera sensor.
//
optional SensorDetectionHeader header = 1;
// Additional header attributes of camera detection from one camera sensor.
//
optional CameraDetectionSpecificHeader specific_header = 3;
// List of camera detections.
//
repeated CameraDetection detection = 2;
// List of points which are used by detections.
//
repeated CameraPoint point = 4;
}
//
// \brief Camera detection from the sensor.
//
message CameraDetection
{
// Existence probability of the detection not based on history. Value does
// not depend on any past experience with similar detections.
//
// \note Used as confidence measure where a low value means less confidence
// and a high value indicates strong confidence.
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 1
// \endrules
//
optional double existence_probability = 1;
// ID of the detected object this detection is associated to.
//
// \note ID = MAX(uint64) indicates no reference to an object.
//
// \rules
// refers_to: DetectedObject
// \endrules
//
optional Identifier object_id = 2;
// Difference to the base timestamp \c
// SensorDetectionHeader::measurement_time.
//
// The timestamp of this detection :=
// \c SensorDetectionHeader::measurement_time + \c #time_difference.
//
optional Timestamp time_difference = 3;
// Definition of the image shape type of this detection.
//
optional ImageShapeType image_shape_type = 4;
// The defined shape is background.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_background = 5;
// The defined shape is foreground.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_foreground = 6;
// The defined shape is flat.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_flat = 7;
// The defined shape is upright.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_upright = 8;
// The defined shape is ground.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_ground = 9;
// The defined shape is sky.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_sky = 10;
// The defined shape is vegetation.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_vegetation = 11;
// The defined shape is a road.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_road = 12;
// The defined shape is a non-driving lane (e.g. sidewalk).
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_non_driving_lane = 13;
// The defined shape is non-road (e.g. traffic island).
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_non_road = 14;
// The defined shape is a stationary object.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_stationary_object = 15;
// The defined shape is a possible moving object.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_moving_object = 16;
// The defined shape is a landmark.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_landmark = 17;
// The defined shape is a traffic sign.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_traffic_sign = 18;
// The defined shape is a traffic light.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_traffic_light = 19;
// The defined shape is a road marking sign.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_road_marking = 20;
// The defined shape is a vehicle.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_vehicle = 21;
// The defined shape is a pedestrian.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_pedestrian = 22;
// The defined shape is an animal.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_animal = 23;
// The defined shape is a pedestrian seen by the sensor from the front.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_pedestrian_front = 24;
// The defined shape is a pedestrian seen by the sensor from the side.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_pedestrian_side = 25;
// The defined shape is a pedestrian seen by the sensor from the rear.
// The probability for this classification is at least
// \c #shape_classification_probability.
//
optional bool shape_classification_pedestrian_rear = 26;
// This probability defines the minimum probability for each selected
// shape classification.
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 1
// \endrules
//
optional double shape_classification_probability = 27;
// The dominant color of the shape.
//
// \attention DEPRECATED: This color enum will be removed in version
// 4.0.0. Use the field \c #color_description (\c ColorDescription)
// instead.
//
optional Color color = 28;
// The probability of the shape's color.
//
// \rules
// is_greater_than_or_equal_to: 0
// is_less_than_or_equal_to: 1
// \endrules
//
optional double color_probability = 29;
// If one shape has different shape classifications and shape classification
// probability or color and color probability, all detections in this cycle
// have the same ambiguity ID.
//
// \note ID = MAX(uint64) indicates no reference to an object.
//
optional Identifier ambiguity_id = 30;
// Index of the first point in the camera detection.
//
optional uint32 first_point_index = 31;
// Number of points which defines the shape.
// \c #image_shape_type may restrict the number of possible values.
//
// \rules
// is_greater_than_or_equal_to: 0
// \endrules
//
optional uint32 number_of_points = 32;
//
// The dominant color of the shape.
//
optional ColorDescription color_description = 33;
// Definition of shape dominant color.
//
// \attention DEPRECATED: This color enum will be removed in version
// 4.0.0. Use \c ColorDescription instead.
//
enum Color
{
// Allow aliases in enum
//
option allow_alias = true;
// Color of the shape is unknown (must not be used in ground
// truth).
//
COLOR_UNKNOWN = 0;
// Shape with another (unspecified but known) color.
//
COLOR_OTHER = 1;
// Shape with black color.
//
COLOR_BLACK = 2;
// Shape with gray color.
//
COLOR_GRAY = 3;
// Shape with gray color.
//
// \note Deprecated variant spelling of COLOR_GRAY
//
COLOR_GREY = 3;
// Shape with white color.
//
COLOR_WHITE = 4;
// Shape with yellow color.
//
COLOR_YELLOW = 5;
// Shape with orange color.
//
COLOR_ORANGE = 6;
// Shape with red color.
//
COLOR_RED = 7;
// Shape with violet color.
//
COLOR_VIOLET = 8;
// Shape with blue color.
//
COLOR_BLUE = 9;
// Shape with green color.
//
COLOR_GREEN = 10;
// Shape with reflective color.
//
COLOR_REFLECTIVE = 11;
}
// Definition of different image shape types.
//
enum ImageShapeType
{
// Shape type is unknown (must not be used in ground truth).
//
IMAGE_SHAPE_TYPE_UNKNOWN = 0;
// Other (unspecified but known) shape type.
//
IMAGE_SHAPE_TYPE_OTHER = 1;
// Image shape is defined by a single point.
//
// Allowed number of referenced points: 1
//
IMAGE_SHAPE_TYPE_POINT = 2;
// Image shape is defined by a box.
//
// Allowed number of referenced points: 2 or 3
//