-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclass_calls.py
76 lines (55 loc) · 2.6 KB
/
class_calls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import time
import math
import tensorflow as tf
import slice_classification_v1 as sc
import os
class LiverDetection:
def __init__(self, config):
self.config = config
## additional parameters
def logSummary(self, phase, time_list):
print("--- SUMMARY ({0}) ---".format(phase))
for step in time_list:
print("Step: ", step['name'])
step_time = step['time']
print("\nTime taken: {} seconds or {} minutes {}s to run\n".format(step_time, math.floor(step_time/60), step_time % 60))
total_time = sum(time_list.map(lambda x: x['time']))
print("\nTotal time taken: {} seconds or {} minutes {}s to run\n".format(total_time, math.floor(total_time/60), total_time % 60))
def with_time(self, step):
def wrapper(self, *args, **kwargs):
# run step
print('Running step: ' + step.__name__ + "\n")
start_time = time.time()
step_output = step(self, *args, **kwargs)
print('\nDone step: '+ step.__name__)
## run time
total_time = int(time.time() - start_time)
self.time_list.append({'name': step.__name__, 'time' :total_time})
floor_var = math.floor(total_time/60)
mod_var = total_time % 60
print("\nTime taken: {} seconds or {} minutes {}s to run\n".format(total_time, floor_var, mod_var))
# reset tf graph for memory purposes
tf.reset_default_graph()
return step_output
return wrapper
def test(self, config):
#classifier = tf.keras.models.load_model('classificationModel')
train_img_path = os.path.join(config.outpath, 'Train')
val_img_path = os.path.join(config.outpath, 'Validation')
test_img_path = os.path.join(config.outpath, 'Test')
saved_model_path = os.path.join(config.outpath, 'LD_Model')
path_list = [train_img_path,val_img_path,
test_img_path, saved_model_path]
sc.test(path_list)
pass
def train(self, config, outpath):
train_img_path = os.path.join(config.outpath, 'Train')
val_img_path = os.path.join(config.outpath, 'Validation')
test_img_path = os.path.join(config.outpath, 'Test')
saved_model_path = os.path.join(config.outpath, 'LD_Model')
path_list = [train_img_path, val_img_path, test_img_path, saved_model_path]
sc.train_model(path_list)
return
### call the model and any preprocess steps
def __repr__(self):
return