-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
51 lines (36 loc) · 1.8 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import sys
class Config:
'''
Config class that contains all pathing
'''
def __init__(self):
self.__database_root = 'LiTS_database'
self.train = True
#self.__database_root = 'predict_database'
self.root_folder = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.abspath(self.root_folder))
self.database_root = os.path.join(self.root_folder, self.__database_root)
## the news weights are saved
#"D:\L_pipe\liver_open\liverseg-2017-nipsws\train_files\seg_liver\networks\train"
self.images_volumes = 'images_volumes'
self.item_seg = 'item_seg'
self.liver_seg = 'liver_seg'
self.debug = 0 # 0 for false, 1 for true
self.phase = 'train' ## train or test
root_path = os.getcwd() #'D:\\L_pipe\\Liver_detection Model\\liver_detection_model\
self.outpath = root_path + "\data_output\liver_detection" ## output file
self.nifti_path = root_path + "\liver_detection_model\LiTS_dataset" ### relative to script
self.root_process_database = root_path + "liver_detection_model\data_output"
## images_volume liver_Seg
self.mat_file_path = root_path + "\data_output\images_volumes"
self.liver_seg_path = root_path + "\data_output\liver_seg"
self.output_model = root_path + "\data_output\model_output"
self.labels = True
self.fine_tune = 0
def get_result_root(self, result_name):
return os.path.join(self.root_folder, result_name)
def get_crops_list_path(self):
return os.path.join(self.root_folder, 'utils', 'crops_list', self.crops_list)
def get_log(self, task_name):
return os.path.join(self.root_folder, 'train_files', task_name, 'networks')