-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt-model.py
261 lines (210 loc) · 8.52 KB
/
gpt-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import urllib.request
import torch
import torch.nn as nn
from torch.nn import functional as F
batch_size = 64 # number of parallel independent sequences to run
chunk_size = 256 # max size of the chunks to run algo on
max_iters = 5000 # max times to run algo
eval_interval = 500
learning_rate = 3e-4
# ability to run on gpu if the machine has it (much faster)
device ='cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embed = 384
n_head = 6
n_layer = 6
# dropout drops certain amounts of nodes during testing to provide more distinct sub NNs
dropout = 0.2
# get data from internet
url = 'INSERT URL HERE'
# set data as a input text file so we can call on it later
urllib.request.urlretrieve(url, filename="input.txt")
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
# sort all unique characters into a list
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create simple encryption from integer to character
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
# train and test splits
# 80% as training data
# 20% as testing data
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.8*len(data))
train_data = data[:n]
val_data = data[n:]
# load the data
# inputs are x, targets are y
def get_batch(split):
# designates which data to look at
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - chunk_size, (batch_size,))
# stack a bunch of torch rows on top to get a tensor matrix
x = torch.stack([data[i:i+chunk_size] for i in ix])
y = torch.stack([data[i+1:i+chunk_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
# used to perform validation and blocks leaks from test model
# disables gradients temporarily
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
x, y = get_batch(split)
logits, loss = model(x, y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
# Self-attention model
class Head(nn.Module):
# single head of self-attention
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embed, head_size, bias=False)
self.query = nn.Linear(n_embed, head_size, bias=False)
self.value = nn.Linear(n_embed, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(chunk_size, chunk_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, head size)
B,T,C = x.shape
# key represents what the node has
k = self.key(x)
# query represents what the node searches for / has an affinity for
q = self.query(x)
# this line will do the dot product between the key of one node and the query of another
# this dot product results in the affinity of the two nodes
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5
# removes the upper triangular values (to hide the answers)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
# softmax fixes the distribution to be sum up to 1 per row
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x)
out = wei @ v
return out
# implementing multi-head attention
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
# create x many heads
# run them in parallel
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
# proj transforms the layer to become linear
self.proj = nn.Linear(n_embed, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# concatenate the heads' outputs
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
# adding feed forward mechanism
class FeedForward(nn.Module):
# creating a linear layer followed by a non-linear one
# this allows for the model to account for non-linear results
def __init__(self, n_embed):
super().__init__()
self.net = nn.Sequential(
# edited the inner layer of feed forward to be multiplied by 4 in channel size
# this allows for better non-linear results to match the residual layer addition
nn.Linear(n_embed, 4 * n_embed),
# rectified linear activation unit
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
# adding a transformer block
class Block(nn.Module):
# allows for multiple multihead self-attentions to get called
def __init__(self, n_embed, n_head):
super().__init__()
head_size = n_embed // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.feedforward = FeedForward(n_embed)
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self, x):
# implementing residual layer
# residual layer allows for layers input to use the output from a previous layer
# implementing layer norm before each step (self-attention and feed forward)
x = x + self.sa(self.ln1(x))
x = x + self.feedforward(self.ln2(x))
return x
# simple bigram model
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
# keep track of position so that tokens can interact
self.position_embedding_table = nn.Embedding(chunk_size, n_embed)
# creating transformer block _ times with n_layer heads
self.blocks = nn.Sequential(*[Block(n_embed, n_head=n_head) for _ in range(n_layer)])
# final layer norm
self.ln_final = nn.LayerNorm(n_embed)
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# add token and positional embeds
# get logits based off of that
token_embed = self.token_embedding_table(idx)
positional_embed = self.position_embedding_table(torch.arange(T, device=device))
x = token_embed + positional_embed
# calling the transformer block
x = self.blocks(x)
logits = self.lm_head(x)
# converting B, T, C into B, C, T:
# loss is the penalty for making a bad guess
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
# crop idx to the last chunk size token of each row
# so that the chunk size doesn't overflow
idx_cond = idx[:, -chunk_size:]
# get predictions
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
# apply softmax to get probabilities - converts vector into vector of possibilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1)
return idx
# defining model to use
model = BigramLanguageModel()
m = model.to(device)
# using Adam python optimizer
optimizer = torch.optim.AdamW(m.parameters(), lr=learning_rate)
for iter in range(max_iters):
# evaluate the loss on train and val sets once in a while
if iter % eval_interval == 0:
losses = estimate_loss()
print(f"Step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
logits, loss = m(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))