-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path03_gen_scores.py
121 lines (91 loc) · 3.32 KB
/
03_gen_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# for each completion from the previous step, uses m1 to generate a score
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
import pandas as pd
import re
import os
import sys
# python scripts/gen_scores.py M0/models/sft M0/generated/responses.jsonl M0/generated/scores.jsonl
if len(sys.argv) != 5:
print("Usage: python 03_gen_scores.py <base_model_name> <model_name> <responses_file> <scores_file>")
exit()
base_model_name = sys.argv[1]
model_name = sys.argv[2]
responses_file = sys.argv[3]
scores_file = sys.argv[4]
device = "cuda" # the device to load the model onto
def get_bnb_config():
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
return bnb_config
def load_fined_tuned():
bnb_config = get_bnb_config()
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
quantization_config=bnb_config,
)
tokenizer = AutoTokenizer.from_pretrained(
base_model_name,
device_map="auto",
)
return model, tokenizer
def do_sample(model, tokenizer, prompt):
with torch.no_grad():
prompt_sample = [
{"role": "user", "content": prompt},
# {"role": "assistant", "content": ""},
]
print("-----------------------------------------------------------------------")
prompt_for_model = tokenizer.apply_chat_template(prompt_sample, tokenize=False)
# print(f"Prompt for model: {prompt_for_model}")
model_inputs = tokenizer(prompt_for_model, return_tensors="pt").to("cuda")
streamer = TextStreamer(tokenizer)
generated_ids = model.generate(
**model_inputs,
do_sample=True,
streamer=streamer,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
max_new_tokens=100 # since the score is at the beginning
)
# print(f"Q: {prompt}:")
# print("-------------------------")
decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
answer = decoded[0]
# print(f"A: {answer}")
# print("\n\n")
return answer
model, tokenizer = load_fined_tuned()
model.eval()
df = pd.read_json(path_or_buf=responses_file, lines=True)
file = open('llm_as_a_judge_prompt.txt', 'r')
llm_as_a_judge_prompt_template = file.read()
file.close()
pattern = r"[Ss]core: ([0-5])"
results = []
for index, row in df.iterrows():
prompt_id = row['prompt_id']
prompt = row['prompt']
completion = row['completion']
print("-------------------------")
llm_as_a_judge_prompt = llm_as_a_judge_prompt_template.format(prompt=prompt,response=completion)
answer = do_sample(model, tokenizer, llm_as_a_judge_prompt)
matches = re.findall(pattern, answer)
generated_score = int(matches[0]) if matches else -1
# print(f"Answer {answer}")
print("Found Score: ", generated_score)
results.append({
"prompt_id": prompt_id,
"prompt": prompt,
"completion": completion,
"score": generated_score,
"reasoning": answer
})
# save every time
df_results = pd.DataFrame(results)
df_results.to_json(scores_file, orient='records', lines=True)
print("Done!")