diff --git a/HoTT-Agda/core/lib/PathOver.agda b/HoTT-Agda/core/lib/PathOver.agda index 52ea716..cd8c74f 100644 --- a/HoTT-Agda/core/lib/PathOver.agda +++ b/HoTT-Agda/core/lib/PathOver.agda @@ -320,14 +320,12 @@ module _ {i j} {A : Type i} where -- apd-tr conversion - from-transp-g : (B : A → Type j) {a a' : A} (p : a == a') - {u : B a} {v : B a'} - → (transport B p u == v) - → (u == v [ B ↓ p ]) + from-transp-g : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} + → transport B p u == v → u == v [ B ↓ p ] from-transp-g B idp h = h - apd-to-tr : (B : A → Type j) (f : (a : A) → B a) {x y : A} (p : x == y) - (s : transport B p (f x) == f y) + apd-to-tr : (B : A → Type j) (f : (a : A) → B a) {x y : A} + (p : x == y) (s : transport B p (f x) == f y) → apd f p == from-transp-g B p s → apd-tr f p == s apd-to-tr B f idp s h = h @@ -341,8 +339,7 @@ module _ {i j} {A : Type i} {B : Type j} (f g : A → B) where module _ (K : (z : A) → f z == g z) where - apd-to-hnat : {x y : A} (p : x == y) - (m : ap f p == K x ∙ ap g p ∙' ! (K y)) + apd-to-hnat : {x y : A} (p : x == y) (m : ap f p == K x ∙ ap g p ∙' ! (K y)) → apd K p == from-hmpty-nat p m → hmpty-nat-∙'-r K p == m apd-to-hnat {x} idp m q = lemma (K x) m q where @@ -354,13 +351,14 @@ module _ {i j} {A : Type i} {B : Type j} (f g : A → B) where apd-to-hnat-∙ : {x y z : A} (p₁ : x == y) (p₂ : y == z) {m₁ : ap f p₁ == K x ∙ ap g p₁ ∙' ! (K y)} {m₂ : ap f p₂ == K y ∙ ap g p₂ ∙' ! (K z)} (τ₁ : hmpty-nat-∙'-r K p₁ == m₁) (τ₂ : hmpty-nat-∙'-r K p₂ == m₂) - → hmpty-nat-∙'-r K (p₁ ∙ p₂) + → + hmpty-nat-∙'-r K (p₁ ∙ p₂) == - ↯ (ap-∙ f p₁ p₂ ◃∙ - ap (λ p → p ∙ ap f p₂) m₁ ◃∙ - ap (λ p → (K x ∙ ap g p₁ ∙' ! (K y)) ∙ p) m₂ ◃∙ - assoc-tri-!-mid (K x) (ap g p₁) (K y) (ap g p₂) (! (K z)) ◃∙ - ap (λ p → K x ∙ p ∙' ! (K z)) (! (ap-∙ g p₁ p₂)) ◃∎) + ↯ (ap-∙ f p₁ p₂ ◃∙ + ap (λ p → p ∙ ap f p₂) m₁ ◃∙ + ap (λ p → (K x ∙ ap g p₁ ∙' ! (K y)) ∙ p) m₂ ◃∙ + assoc-tri-!-mid (K x) (ap g p₁) (K y) (ap g p₂) (! (K z)) ◃∙ + ap (λ p → K x ∙ p ∙' ! (K z)) (! (ap-∙ g p₁ p₂)) ◃∎) apd-to-hnat-∙ {x} idp idp idp idp = assoc-tri-!-coher (K x) apd-to-hnat-! : {x y : A} (p : x == y) @@ -370,7 +368,9 @@ module _ {i j} {A : Type i} {B : Type j} (f g : A → B) where apd-to-hnat-ap! : ∀ {l} {C : Type l} (h : B → C) {x y : A} (p : x == y) {m : ap f p == K x ∙ ap g p ∙' ! (K y)} (τ : hmpty-nat-∙'-r K p == m) - → hmpty-nat-∙'-r (λ z → ap h (! (K z))) p == + → + hmpty-nat-∙'-r (λ z → ap h (! (K z))) p + == ap-∘-long h g f K p ∙ ! (ap (λ q → ap h (! (K x)) ∙ ap h q ∙' ! (ap h (! (K y)))) m) ∙ ! (ap (λ q → ap h (! (K x)) ∙ q ∙' ! (ap h (! (K y)))) (ap-∘ h f p))