This repository has been archived by the owner on Mar 2, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 165
Consideration of Tensorflow layer replacement
PINTO edited this page Dec 16, 2018
·
8 revisions
Computes exponential of x element-wise.
y = e ^ x
e ≒ 2.7
tf.exp(
x,
name=None
)
Output tensor has shape [2, 3]
tf.fill([2, 3], 2.7) ==> [[2.7, 2.7, 2.7],
[2.7, 2.7, 2.7]]
import tensorflow as tf
x = tf.constant([[1,0],[0,1]])
with tf.Session() as sess:
print(x.eval())
[[1 0]
[0 1]]
y = tf.tile(x, [2,1])
with tf.Session() as sess:
print(y.eval())
[[1 0]
[0 1]
[1 0]
[0 1]]
y = tf.tile(x, [1,2])
with tf.Session() as sess:
print(y.eval())
[[1 0 1 0]
[0 1 0 1]]
y = tf.tile(x, [2,2])
with tf.Session() as sess:
print(y.eval())
[[1 0 1 0]
[0 1 0 1]
[1 0 1 0]
[0 1 0 1]]
# 't' is a tensor of [a b c d]
tf.tile(t, [2])
# [a b c d a b c d]
# 't2' is a tensor of shape [2, 3, 5]
tf.shape(tf.tile(t2, [3, 1, 1]))
# [6, 3, 5]
Computes the power of one value to another.
Given a tensor x and a tensor y, this operation computes x ^ y
for corresponding elements in x and y.
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y) # [[256, 65536], [9, 27]]
tf.reshape(
tensor: Tensor,
shape: Tensor[int32, int64]],
name: str=None
)
# tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
# tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
# tensor 't' is [[[1, 1], [2, 2]],
# [[3, 3], [4, 4]]]
# tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2],
[3, 3, 4, 4]]
# tensor 't' is [[[1, 1, 1],
# [2, 2, 2]],
# [[3, 3, 3],
# [4, 4, 4]],
# [[5, 5, 5],
# [6, 6, 6]]]
# tensor 't' has shape [3, 2, 3]
# pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]
# -1 can also be used to infer the shape
# -1 is inferred to be 9:
reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
[4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 2:
reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
[4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 3:
reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1],
[2, 2, 2],
[3, 3, 3]],
[[4, 4, 4],
[5, 5, 5],
[6, 6, 6]]]
# tensor 't' is [7]
# shape `[]` reshapes to a scalar
reshape(t, []) ==> 7
tf.concat(
values: Tensor,
axis: Tensor[int],
name='concat'
)
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 0) # [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 1) # [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
# tensor t3 with shape [2, 3]
# tensor t4 with shape [2, 3]
tf.shape(tf.concat([t3, t4], 0)) # [4, 3]
tf.shape(tf.concat([t3, t4], 1)) # [2, 6]
t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]]
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
tf.concat([t1, t2], -1)
[[[ 1, 2, 7, 4],
[ 2, 3, 8, 4]],
[[ 4, 4, 2, 10],
[ 5, 3, 15, 11]]]
tf.squeeze(
input: Tensor,
axis: Optional[List[int]]=None,
name=None,
squeeze_dims=None
)
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
tf.shape(tf.squeeze(t)) # [2, 3]
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
tf.shape(tf.squeeze(t, [2, 4])) # [1, 2, 3, 1]
tf.split(
value: Tensor,
num_or_size_splits: Union[Tensor[int], Tensor[List[int]]],
axis=0,
num=None,
name='split'
)
# 'value' is a tensor with shape [5, 30]
# Split 'value' into 3 tensors with sizes [4, 15, 11] along dimension 1
split0, split1, split2 = tf.split(value, [4, 15, 11], 1)
tf.shape(split0) # [5, 4]
tf.shape(split1) # [5, 15]
tf.shape(split2) # [5, 11]
# Split 'value' into 3 tensors along dimension 1
split0, split1, split2 = tf.split(value, num_or_size_splits=3, axis=1)
tf.shape(split0) # [5, 10]
# A is a tensor with shape [5, 2, 3]
shape_a = tf.shape(A) # [5, 2, 3]
dim1, dim2, dim3 = tf.unstack(shape_a)
# Tensor(5), Tensor(2), Tensor(3) respectively enter
# Since shape_a was a one-dimensional Tensor, it can be taken separately by unstacking
encoder_state = ... # [batch_size, max_length, hidden_unit_num]
new_state = ... # [1, hidden_unit_num]
new_state = tf.expand_dims(new_state, 0) # [1, 1, hidden_unit_num]
new_state = tf.tile(new_state, [encoder_state.shape[0], 1, 1]) # [batch_size, 1, hidden_unit_num]