-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_offpolicy_with_trained_encoder.py
282 lines (236 loc) · 11.8 KB
/
train_offpolicy_with_trained_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# train offpolicy rl with context-aggregator, after the pretraining of contrastive task encoder
import os
import sys
import time
import argparse
import torch
import torch.nn as nn
from torchkit.pytorch_utils import set_gpu_mode
import utils.config_utils as config_utl
from utils import helpers as utl, offline_utils as off_utl
from offline_rl_config import args_gridworld_block, args_cheetah_vel, args_ant_dir, \
args_point_robot_v1, args_hopper_param, args_walker_param
import numpy as np
import random
from models.encoder import RNNEncoder, MLPEncoder, SelfAttnEncoder
from algorithms.dqn import DQN
from algorithms.sac import SAC
from models.generative import CVAE
from environments.make_env import make_env
from torchkit import pytorch_utils as ptu
from torchkit.networks import FlattenMlp
from data_management.storage_policy import MultiTaskPolicyStorage
from utils import evaluation as utl_eval
from utils.tb_logger import TBLogger
from models.policy import TanhGaussianPolicy
from offline_learner import OfflineMetaLearner
import matplotlib.pyplot as plt
#import matplotlib.colors as mcolors
from sklearn import manifold
class OfflineContrastive(OfflineMetaLearner):
# algorithm class of offline meta-rl with relabelling
def __init__(self, args, train_dataset, train_goals, eval_dataset, eval_goals):
"""
Seeds everything.
Initialises: logger, environments, policy (+storage +optimiser).
"""
self.args = args
# make sure everything has the same seed
utl.seed(self.args.seed)
# initialize tensorboard logger
if self.args.log_tensorboard:
self.tb_logger = TBLogger(self.args)
self.args, _ = off_utl.expand_args(self.args, include_act_space=True)
if self.args.act_space.__class__.__name__ == "Discrete":
self.args.policy = 'dqn'
else:
self.args.policy = 'sac'
# load augmented buffer to self.storage
self.load_buffer(train_dataset, train_goals)
if self.args.pearl_deterministic_encoder:
self.args.augmented_obs_dim = self.args.obs_dim + self.args.task_embedding_size
else:
self.args.augmented_obs_dim = self.args.obs_dim + self.args.task_embedding_size * 2
self.goals = train_goals
self.eval_goals = eval_goals
# context set, to extract task encoding
self.context_dataset = train_dataset
self.eval_context_dataset = eval_dataset
# initialize policy
self.initialize_policy()
# initialize task encoder
self.encoder = MLPEncoder(
hidden_size=self.args.aggregator_hidden_size,
num_hidden_layers=2,
task_embedding_size=self.args.task_embedding_size,
action_size=self.args.act_space.n if self.args.act_space.__class__.__name__ == "Discrete" else self.args.action_dim,
state_size=self.args.obs_dim,
reward_size=1,
term_size=0, # encode (s,a,r,s') only
normalize=self.args.normalize_z
).to(ptu.device)
self.encoder.load_state_dict(torch.load(self.args.encoder_model_path, map_location=ptu.device))
# context encoder: convert (batch, N, dim) to (batch, dim)
self.context_encoder = SelfAttnEncoder(input_dim=self.args.task_embedding_size,
num_output_mlp=self.args.context_encoder_output_layers, task_gt_dim=self.goals[0].shape[0],
).to(ptu.device)
self.context_encoder_optimizer = torch.optim.Adam(self.context_encoder.parameters(), lr=self.args.encoder_lr)
# create environment for evaluation
self.env = make_env(args.env_name,
args.max_rollouts_per_task,
seed=args.seed,
n_tasks=self.args.num_eval_tasks)
# fix the possible eval goals to be the testing set's goals
self.env.set_all_goals(eval_goals)
# create env for eval on training tasks
self.env_train = make_env(args.env_name,
args.max_rollouts_per_task,
seed=args.seed,
n_tasks=self.args.num_train_tasks)
self.env_train.set_all_goals(train_goals)
#if self.args.env_name == 'GridNavi-v2' or self.args.env_name == 'GridBlock-v2':
# self.env.unwrapped.goals = [tuple(goal.astype(int)) for goal in self.goals]
'''
if self.args.relabel_type == 'gt':
# create an env for reward/transition relabelling
self.relabel_env = make_env(args.env_name,
args.max_rollouts_per_task,
seed=args.seed,
n_tasks=1)
elif self.args.relabel_type == 'generative':
self.generative_model = CVAE(
hidden_size=args.cvae_hidden_size,
num_hidden_layers=args.cvae_num_hidden_layers,
z_dim=self.args.task_embedding_size,
action_size=self.args.act_space.n if self.args.act_space.__class__.__name__ == "Discrete" else self.args.action_dim,
state_size=self.args.obs_dim,
reward_size=1).to(ptu.device)
self.generative_model.load_state_dict(torch.load(self.args.generative_model_path,
map_location=ptu.device))
self.generative_model.train(False)
print('generative model loaded from {}'.format(self.args.generative_model_path))
else:
raise NotImplementedError
'''
#self._preprocess_positive_samples()
#print(self.evaluate())
#self.vis_sample_embeddings('test.png')
#sys.exit(0)
def update(self, tasks):
rl_losses_agg = {}
if self.args.log_train_time:
time_cost = {'data_sampling':0, 'negatives_sampling':0, 'update_encoder':0, 'update_rl':0}
for update in range(self.args.rl_updates_per_iter):
if self.args.log_train_time:
_t_cost = time.time()
# sample rl batch, context batch and update agent
# sample random RL batch
obs, actions, rewards, next_obs, terms = self.sample_rl_batch(tasks, self.args.rl_batch_size) # [task, batch, dim]
# sample corresponding context batch
obs_context, actions_context, rewards_context, next_obs_context, terms_context = self.sample_context_batch(tasks) # [ts'=ts*num_context_traj, task, dim]
n_timesteps, batch_size, _ = obs_context.shape
with torch.no_grad():
encodings = self.encoder(
obs=obs_context.reshape(n_timesteps*batch_size, -1),
action=actions_context.reshape(n_timesteps*batch_size, -1),
reward=rewards_context.reshape(n_timesteps*batch_size, -1),
next_obs=next_obs_context.reshape(n_timesteps*batch_size, -1),
).view(n_timesteps, batch_size, -1).transpose(0,1)
# additional task loss for debug
if self.args.use_additional_task_info:
encoding, task_pred = self.context_encoder.forward_full(encodings)
tasks_gt = self.goals[tasks]
tasks_gt = ptu.FloatTensor(tasks_gt)
task_pred_loss = nn.MSELoss()(task_pred, tasks_gt)
self.context_encoder_optimizer.zero_grad()
task_pred_loss.backward()
self.context_encoder_optimizer.step()
task_encoding = encoding.detach().unsqueeze(1)
else:
encoding = self.context_encoder(encodings)
task_encoding = encoding.unsqueeze(1)
self.context_encoder_optimizer.zero_grad()
t, _, d = task_encoding.size()
task_encoding = task_encoding.expand(t, self.args.rl_batch_size, d) # [task, batch(repeat), dim]
obs = torch.cat((obs, task_encoding), dim=-1)
next_obs = torch.cat((next_obs, task_encoding), dim=-1) # [task, batch, obs_dim+z_dim]
# flatten out task dimension
t, b, _ = obs.size()
obs = obs.view(t * b, -1)
actions = actions.view(t * b, -1)
rewards = rewards.view(t * b, -1)
next_obs = next_obs.view(t * b, -1)
terms = terms.view(t * b, -1)
#print('forward: q learning')
# RL update (Q learning)
#rl_losses = self.agent.update(obs, actions, rewards, next_obs, terms, action_space=self.env.action_space)
if self.args.policy == 'dqn':
rl_losses = self.agent.update(obs, actions, rewards, next_obs, terms)
if not self.args.use_additional_task_info:
self.context_encoder_optimizer.step()
elif self.args.policy == 'sac':
rl_losses = self.agent.update_critic(obs, actions, rewards, next_obs, terms, action_space=self.env.action_space)
if not self.args.use_additional_task_info:
self.context_encoder_optimizer.step()
obs = obs.detach()
next_obs = next_obs.detach()
actor_losses = self.agent.update_actor(obs, actions, rewards, next_obs, terms, action_space=self.env.action_space)
rl_losses.update(actor_losses)
else:
raise NotImplementedError
'''
if self.args.log_train_time:
_t_now = time.time()
time_cost['update_rl'] += (_t_now-_t_cost)
_t_cost = _t_now
'''
if self.args.use_additional_task_info:
rl_losses['task_pred_loss'] = task_pred_loss.item()
for k, v in rl_losses.items():
if update == 0: # first iterate - create list
rl_losses_agg[k] = [v]
else: # append values
rl_losses_agg[k].append(v)
# take mean
for k in rl_losses_agg:
rl_losses_agg[k] = np.mean(rl_losses_agg[k])
self._n_rl_update_steps_total += self.args.rl_updates_per_iter
if self.args.log_train_time:
print(time_cost)
return rl_losses_agg
def main():
parser = argparse.ArgumentParser()
# parser.add_argument('--env-type', default='gridworld')
# parser.add_argument('--env-type', default='point_robot_sparse')
# parser.add_argument('--env-type', default='cheetah_vel')
parser.add_argument('--env-type', default='gridworld_block')
args, rest_args = parser.parse_known_args()
env = args.env_type
# --- GridWorld ---
if env == 'gridworld_block':
args = args_gridworld_block.get_args(rest_args)
elif env == 'cheetah_vel':
args = args_cheetah_vel.get_args(rest_args)
elif env == 'point_robot':
args = args_point_robot.get_args(rest_args)
elif env == 'ant_dir':
args = args_ant_dir.get_args(rest_args)
elif env == 'point_robot_v1':
args = args_point_robot_v1.get_args(rest_args)
elif env == 'hopper_param':
args = args_hopper_param.get_args(rest_args)
elif env == 'walker_param':
args = args_walker_param.get_args(rest_args)
else:
raise NotImplementedError
set_gpu_mode(torch.cuda.is_available() and args.use_gpu)
args, _ = off_utl.expand_args(args) # add env information to args
#print(args)
dataset, goals = off_utl.load_dataset(data_dir=args.data_dir, args=args, arr_type='numpy')
assert args.num_train_tasks + args.num_eval_tasks == len(goals)
train_dataset, train_goals = dataset[0:args.num_train_tasks], goals[0:args.num_train_tasks]
eval_dataset, eval_goals = dataset[args.num_train_tasks:], goals[args.num_train_tasks:]
learner = OfflineContrastive(args, train_dataset, train_goals, eval_dataset, eval_goals)
learner.train()
if __name__ == '__main__':
main()