-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
137 lines (114 loc) · 4.79 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_sched
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import numpy as np
import os
from torchvision import transforms
from models import TaG_Net as TaG_Net
from data import VesselLabelTest
import utils.pytorch_utils as pt_utils
import data.data_utils as d_utils
import argparse
import random
import yaml
import pptk
import warnings
warnings.filterwarnings('ignore')
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
seed = 123
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
parser = argparse.ArgumentParser(description='TaG-Net for Centerline Labeling Voting Evaluate')
parser.add_argument('--config', default='cfgs/config_test.yaml', type=str)
dir_output_test = './TaG-Net/TaG-Net-Test/results/centerline_label_graph/'
dir_output_test_gt = './TaG-Net/TaG-Net-Test/results/centerline_label_graph/gt/'
if not os.path.exists(dir_output_test_gt):
os.mkdir(os.path.join(dir_output_test))
os.mkdir(os.path.join(dir_output_test_gt))
NUM_REPEAT = 1
NUM_VOTE = 2
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def main():
args = parser.parse_args()
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
for k, v in config['common'].items():
setattr(args, k, v)
test_transforms = transforms.Compose([ d_utils.PointcloudToTensor()])
test_dataset = VesselLabelTest(root=args.data_root,
num_points=args.num_points,
split='test',
graph_dir = args.graph_dir,
normalize=True,
transforms=test_transforms)
test_dataloader = DataLoader(
test_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=int(args.workers),
pin_memory=True
)
model =TaG_Net(num_classes=args.num_classes,
input_channels=args.input_channels,
relation_prior=args.relation_prior,
use_xyz=True)
model.cuda()
if args.checkpoint is not '':
model.load_state_dict(torch.load(args.checkpoint))
print('Load model successfully: %s' % (args.checkpoint))
# evaluate
PointcloudScale = d_utils.PointcloudScale(scale_low=0.87, scale_high=1.15)
model.eval()
global_Class_mIoU, global_Inst_mIoU = 0, 0
seg_classes = test_dataset.seg_classes
seg_label_to_cat = {}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
for i in range(NUM_REPEAT):
num = 0
shape_ious = {cat: [] for cat in seg_classes.keys()}
for _, data in enumerate(test_dataloader, 0):
name_file_path = test_dataset.datapath[num][1][0].split('/')[6]
num += 1
print(num)
points, target, cls, edges, points_ori = data
with torch.no_grad():
points, target = Variable(points), Variable(target)
points, target = points.cuda(), target.cuda()
batch_one_hot_cls = np.zeros((len(cls), 1))
for b in range(len(cls)):
batch_one_hot_cls[b, int(cls[b])] = 1
batch_one_hot_cls = torch.from_numpy(batch_one_hot_cls)
batch_one_hot_cls = Variable(batch_one_hot_cls.float().cuda())
pred = 0
new_points = Variable(torch.zeros(points.size()[0], points.size()[1], points.size()[2]).cuda())
for v in range(NUM_VOTE):
if v > 0:
new_points.data = PointcloudScale(points.data)
pred = model(points, batch_one_hot_cls, edges)
pred /= NUM_VOTE
_, pred_clss_tensor = torch.max(pred, -1)
pred_clss = pred_clss_tensor.cpu().squeeze(0).numpy()
pred_clss = pred_clss.reshape(-1, 1)
pred_out = np.concatenate([points.cpu()[0], pred_clss], axis=1)
target_clss = target.cpu().squeeze(0).numpy()
target_clss = target_clss.reshape(-1, 1)
gt = np.concatenate([points.cpu()[0], target_clss], axis=1)
path_out = os.path.join(dir_output_test, name_file_path, 'point_clouds.txt')
path_out_gt = os.path.join(dir_output_test_gt, name_file_path, 'point_clouds.txt')
if not os.path.exists(path_out):
os.mkdir(os.path.join(dir_output_test, name_file_path))
os.mkdir(os.path.join(dir_output_test_gt, name_file_path))
np.savetxt(path_out, pred_out)
np.savetxt(path_out_gt, gt)
if __name__ == '__main__':
main()