-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
239 lines (197 loc) · 8.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_sched
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import numpy as np
import os
from torchvision import transforms
from models import TaG_Net as TaG_Net
from data import VesselLabel
import utils.pytorch_utils as pt_utils
import data.data_utils as d_utils
import graph_utils.utils as gutils
import argparse
import random
import yaml
import pptk
import warnings
warnings.filterwarnings('ignore')
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
seed = 123
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
import shutil
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
parser = argparse.ArgumentParser(description='TaG-Net for Centerline Labeling Training')
parser.add_argument('--config', default='cfgs/config_train.yaml', type=str)
def main():
args = parser.parse_args()
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print("\n**************************")
for k, v in config['common'].items():
setattr(args, k, v)
print('\n[%s]:' % (k), v)
print("\n**************************\n")
try:
os.makedirs(args.save_path)
except OSError:
pass
train_transforms = transforms.Compose([d_utils.PointcloudToTensor()])
test_transforms = transforms.Compose([d_utils.PointcloudToTensor()])
train_dataset = VesselLabel(root=args.data_root,
num_points=args.num_points,
split='train',
graph_dir = args.graph_dir,
normalize=True,
transforms=train_transforms)
train_dataloader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=int(args.workers),
pin_memory=True
)
global test_dataset
test_dataset = VesselLabel(root=args.data_root,
num_points=args.num_points,
split='val',
graph_dir = args.graph_dir,
normalize=True,
transforms=test_transforms)
test_dataloader = DataLoader(
test_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=int(args.workers),
pin_memory=True
)
### model
model = TaG_Net(num_classes=args.num_classes,
input_channels=args.input_channels,
relation_prior=args.relation_prior,
use_xyz=True)
model.cuda()
optimizer = optim.Adam(
model.parameters(), lr=args.base_lr, weight_decay=args.weight_decay)
lr_lbmd = lambda e: max(args.lr_decay ** (e // args.decay_step), args.lr_clip / args.base_lr)
bnm_lmbd = lambda e: max(args.bn_momentum * args.bn_decay ** (e // args.decay_step), args.bnm_clip)
lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lbmd)
bnm_scheduler = pt_utils.BNMomentumScheduler(model, bnm_lmbd)
if args.checkpoint is not '':
model.load_state_dict(torch.load(args.checkpoint))
print('Load model successfully: %s' % (args.checkpoint))
criterion = nn.CrossEntropyLoss()
num_batch = len(train_dataset) / args.batch_size
# train
train(train_dataloader, test_dataloader, model, criterion, optimizer, lr_scheduler, bnm_scheduler, args, num_batch)
def train(train_dataloader, test_dataloader, model, criterion, optimizer, lr_scheduler, bnm_scheduler, args, num_batch):
PointcloudScaleAndTranslate = d_utils.PointcloudScaleAndTranslate()
global Class_mIoU, Inst_mIoU
Class_mIoU, Inst_mIoU = 0, 0
batch_count = 0
model.train()
for epoch in range(args.epochs):
for i, data in enumerate(train_dataloader, 0):
if lr_scheduler is not None:
lr_scheduler.step(epoch)
if bnm_scheduler is not None:
bnm_scheduler.step(epoch - 1)
points, target, cls, edges, points_ori = data
print('train_true: Labels: {}'.format(np.unique(target)))
points, target = points.cuda(), target.cuda()
points, target = Variable(points), Variable(target)
points.data = PointcloudScaleAndTranslate(points.data)
optimizer.zero_grad()
batch_one_hot_cls = np.zeros((len(cls), 1))
for b in range(len(cls)):
batch_one_hot_cls[b, int(cls[b])] = 1
batch_one_hot_cls = torch.from_numpy(batch_one_hot_cls)
batch_one_hot_cls = Variable(batch_one_hot_cls.float().cuda())
pred = model(points, batch_one_hot_cls, edges)
_, pred_clss_tensor = torch.max(pred, -1)
print('train_pred: Labels: {}'.format(np.unique(pred_clss_tensor)))
pred = pred.view(-1, args.num_classes)
target = target.view(-1, 1)[:, 0]
loss = criterion(pred, target)
loss.backward()
optimizer.step()
print('[epoch %3d: %3d/%3d] \t train loss: %0.6f \t lr: %0.5f' % (
epoch + 1, i, num_batch, loss.data.clone(), lr_scheduler.get_lr()[0]))
batch_count += 1
if (epoch < 3 or epoch > 10) and args.evaluate and batch_count % int(args.val_freq_epoch * num_batch) == 0:
validate(test_dataloader, model, criterion, args, batch_count)
def validate(test_dataloader, model, criterion, args, iter):
global Class_mIoU, Inst_mIoU, test_dataset
model.eval()
seg_classes = test_dataset.seg_classes
shape_ious = {cat: [] for cat in seg_classes.keys()}
seg_label_to_cat = {}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
losses = []
for _, data in enumerate(test_dataloader, 0):
points, target, cls, edges, point_ori = data
print('val_true: Labels: {}'.format(np.unique(target)))
with torch.no_grad():
points, target = Variable(points), Variable(target)
points, target = points.cuda(), target.cuda()
batch_one_hot_cls = np.zeros((len(cls), 1))
for b in range(len(cls)):
batch_one_hot_cls[b, int(cls[b])] = 1
batch_one_hot_cls = torch.from_numpy(batch_one_hot_cls)
batch_one_hot_cls = Variable(batch_one_hot_cls.float().cuda())
pred = model(points, batch_one_hot_cls, edges)
_, pred_clss_tensor = torch.max(pred, -1)
print('val_pred: Labels: {}'.format(np.unique(pred_clss_tensor)))
loss = criterion(pred.view(-1, args.num_classes), target.view(-1, 1)[:, 0])
losses.append(loss.data.clone())
pred = pred.data.cpu()
target = target.data.cpu()
pred_val = torch.zeros(len(cls), args.num_points).type(torch.LongTensor)
for b in range(len(cls)):
cat = seg_label_to_cat[target[b, 0].item()]
logits = pred[b, :, :]
pred_val[b, :] = logits[:, seg_classes[cat]].max(1)[1] + seg_classes[cat][0]
for b in range(len(cls)):
segp = pred_val[b, :]
segl = target[b, :]
cat = seg_label_to_cat[segl[0].item()]
part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
for l in seg_classes[cat]:
if torch.sum((segl == l) | (segp == l)) == 0:
part_ious[l - seg_classes[cat][0]] = 1.0 #
else:
part_ious[l - seg_classes[cat][0]] = float(torch.sum((segl == l) & (segp == l))) / float(
torch.sum((segl == l) | (segp == l)))
shape_ious[cat].append(part_ious)
instance_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
instance_ious.append(np.mean(iou))
# each cls iou
cls_ious = {l: [] for l in seg_classes[cat]}
for cat in shape_ious.keys():
for ious in shape_ious[cat]:
for i in range(len(ious)):
cls_ious[i].append(ious[i])
for cls_l in sorted(cls_ious.keys()):
print('************ %s: %0.6f' % (cls_l, np.array(cls_ious[cls_l]).mean()))
print('************ Test Loss: %0.6f' % (np.array(losses).mean()))
print('************ Instance_mIoU: %0.6f' % (np.mean(instance_ious)))
if np.mean(instance_ious) > Inst_mIoU:
if np.mean(instance_ious) > Inst_mIoU:
Inst_mIoU = np.mean(instance_ious)
torch.save(model.state_dict(),
'%s/tag_net_iter_%d_ins_%0.6f_4r.pth' % (args.save_path, iter, np.mean(instance_ious)))
model.train()
if __name__ == "__main__":
main()