-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathopts.py
94 lines (88 loc) · 6.24 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import argparse
def get_opts():
parser = argparse.ArgumentParser(description='PyTorch implementation of the PSI2.0')
# about data
parser.add_argument('--dataset', type=str, default='PSI2.0',
help='task name: [PSI1.0 | PSI2.0]')
parser.add_argument('--task_name', type=str, default='ped_intent',
help='task name: [ped_intent | ped_traj | driving_decision]')
parser.add_argument('--video_splits', type=str, default='./*_split.json',
help='video splits, [PSI1.0_split | PSI2.0_split | PSI2.0_split_paper]')
parser.add_argument('--dataset_root_path', type=str, default='path to dataset rootpath',
help='Path of the dataset, e.g. frames/video_0001/000.jpg')
parser.add_argument('--database_path', type=str, default='./database',
help='Path of the database created based on the cv_annotations and nlp_annotations')
parser.add_argument('--database_file', type=str, default='intent_database_train.pkl',
help='Filename of the database created based on the cv_annotations and nlp_annotations')
parser.add_argument('--fps', type=int, default=30,
help=' fps of original video, PSI and PEI == 30.')
parser.add_argument('--seq_overlap_rate', type=float, default=0.9, # 1 means every stride is 1 frame
help='Train/Val rate of the overlap frames of slideing windown, (1-rate)*seq_length is the step size')
parser.add_argument('--test_seq_overlap_rate', type=float, default=1, # 1 means every stride is 1 frame
help='Test overlap rate of the overlap frames of slideing windown, (1-rate)*seq_length is the step size')
parser.add_argument('--intent_num', type=int, default=2,
help='Type of intention categories. [2: {cross/not-cross} | 3 {not-sure}]')
parser.add_argument('--intent_type', type=str, default='mean',
help='Type of intention labels, out of 24 annotators. [major | mean | separate | soft_vote];'
'only when separate, the nlp reasoning can help, otherwise may take weighted mean of the nlp embeddings')
parser.add_argument('--observe_length', type=float, default=15,
help='Sequence length of one observed clips')
parser.add_argument('--predict_length', type=float, default=45,
help='Sequence length of predicted trajectory/intention')
parser.add_argument('--max_track_size', type=float, default=60,
help='Sequence length of observed + predicted trajectory/intention')
parser.add_argument('--crop_mode', type=str, default='enlarge',
help='Cropping mode of cropping the pedestrian surrounding area')
parser.add_argument('--balance_data', type=bool, default=False,
help='Balance data sampler with randomly class-wise weighted')
parser.add_argument('--normalize_bbox', type=str, default=None,
help='If normalize bbox. [L2 | subtract_first_frame | divide_image_size]')
parser.add_argument('--image_shape', type=tuple, default=(1280, 720),
help='Image shape: PSI(1280, 720).')
parser.add_argument('--load_image', type=bool, default=False,
help='Do not load image to backbone if not necessary')
# about models
parser.add_argument('--backbone', type=str, default='',
help='Backbone type [resnet50 | vgg16 | faster_rcnn]')
parser.add_argument('--freeze_backbone', type=bool, default=False,
help='[True | False]')
parser.add_argument('--model_name', type=str, default='lstm',
help='model name, [lstm, lstmed]')
parser.add_argument('--intent_model', type=bool, default=True,
help='[True | False]')
parser.add_argument('--traj_model', type=bool, default=False,
help='[True | False]')
parser.add_argument('--model_configs', type=dict, default={},
help='framework information')
# about training
parser.add_argument('--checkpoint_path', type=str, default='./ckpts',
help='Path of the stored checkpoints')
parser.add_argument('--epochs', type=int, default=1000,
help='Total number of training epochs')
parser.add_argument('--batch_size', type=float, default=128,
help='Batch size of dataloader')
parser.add_argument('--lr', type=float, default=1e-3,
help='General learning rate, default as 1e-3')
parser.add_argument('--resume', type=str, default='',
help='ckpt path+filename to be resumed.')
parser.add_argument('--loss_weights', type=dict, default={},
help='weights of loss terms, {loss_intent, loss_traj}')
parser.add_argument('--intent_loss', type=list, default=['bce'],
help='loss for intent output. [bce | mse | cross_entropy]')
parser.add_argument('--intent_disagreement', type=float, default=-1.0,
help='weather use disagreement to reweight intent loss.threshold to filter training data.'
'consensus > 0.5 are selected and reweigh loss; -1.0 means not use; 0.0, means all are used.')
parser.add_argument('--ignore_uncertain', type=bool, default=False,
help='ignore uncertain training samples, based on intent_disagreement')
parser.add_argument('--intent_positive_weight', type=float, default=1.0,
help='weight for intent bce loss: e.g., 0.5 ~= n_neg_class_samples(5118)/n_pos_class_samples(11285)')
parser.add_argument('--traj_loss', type=list, default=['mse'],
help='loss for intent output. [bce | mse | cross_entropy]')
# other parameteres
parser.add_argument('--val_freq', type=int, default=10,
help='frequency of validate')
parser.add_argument('--test_freq', type=int, default=10,
help='frequency of test')
parser.add_argument('--print_freq', type=int, default=10,
help='frequency of print')
return parser.parse_args()