-
Notifications
You must be signed in to change notification settings - Fork 169
/
multi_image_infer.py
64 lines (54 loc) · 2.44 KB
/
multi_image_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlemix.models.qwen2_vl import MIXQwen2Tokenizer
from paddlemix.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLForConditionalGeneration
from paddlemix.processors.qwen2_vl_processing import (
Qwen2VLImageProcessor,
Qwen2VLProcessor,
process_vision_info,
)
MODEL_NAME = "Qwen/Qwen2-VL-2B-Instruct"
model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_NAME, dtype="bfloat16")
image_processor = Qwen2VLImageProcessor()
tokenizer = MIXQwen2Tokenizer.from_pretrained(MODEL_NAME)
processor = Qwen2VLProcessor(image_processor, tokenizer)
# min_pixels = 256*28*28 # 200704
# max_pixels = 1280*28*28 # 1003520
# processor = Qwen2VLProcessor(image_processor, tokenizer, min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "paddlemix/demo_images/examples_image1.jpg"},
{"type": "image", "image": "paddlemix/demo_images/examples_image2.jpg"},
{"type": "text", "text": "Identify the similarities between these images."},
],
}
]
# Preparation for inference
image_inputs, video_inputs = process_vision_info(messages)
question = "Identify the similarities between these images."
image_pad_tokens = "<|vision_start|><|image_pad|><|vision_end|>" * len(image_inputs)
text = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{image_pad_tokens}{question}<|im_end|>\n<|im_start|>assistant\n"
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pd",
)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128) # already trimmed in paddle
output_text = processor.batch_decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print("output_text:\n", output_text[0])