-
Notifications
You must be signed in to change notification settings - Fork 169
/
single_image_infer.py
124 lines (107 loc) · 4.76 KB
/
single_image_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
from paddlemix.models.qwen2_vl import MIXQwen2Tokenizer
from paddlemix.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLForConditionalGeneration
from paddlemix.processors.qwen2_vl_processing import (
Qwen2VLImageProcessor,
Qwen2VLProcessor,
process_vision_info,
)
from paddlemix.utils.log import logger
def main(args):
paddle.seed(seed=0)
compute_dtype = "float16" if args.fp16 else "bfloat16"
if "npu" in paddle.get_device():
is_bfloat16_supported = True
else:
is_bfloat16_supported = paddle.amp.is_bfloat16_supported()
if compute_dtype == "bfloat16" and not is_bfloat16_supported:
logger.warning("bfloat16 is not supported on your device,change to float32")
compute_dtype = "float32"
model = Qwen2VLForConditionalGeneration.from_pretrained(args.model_path, dtype=compute_dtype)
image_processor = Qwen2VLImageProcessor()
tokenizer = MIXQwen2Tokenizer.from_pretrained(args.model_path)
processor = Qwen2VLProcessor(image_processor, tokenizer)
# min_pixels = 256*28*28 # 200704
# max_pixels = 1280*28*28 # 1003520
# processor = Qwen2VLProcessor(image_processor, tokenizer, min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": f"{args.image_file}",
},
{"type": "text", "text": f"{args.question}"},
],
}
]
# Preparation for inference
image_inputs, video_inputs = process_vision_info(messages)
question = messages[0]["content"][1]["text"]
image_pad_token = "<|vision_start|><|image_pad|><|vision_end|>"
text = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{image_pad_token}{question}<|im_end|>\n<|im_start|>assistant\n"
text = [text]
inputs = processor(
text=text,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pd",
)
if args.benchmark:
import time
start = 0.0
total = 0.0
for i in range(20):
if i > 10:
start = time.time()
with paddle.no_grad():
generated_ids = model.generate(
**inputs, max_new_tokens=args.max_new_tokens, temperature=args.temperature
) # already trimmed in paddle
output_text = processor.batch_decode(
generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False
)
if i > 10:
total += time.time() - start
print("s/it: ", total / 10)
print(f"GPU memory_allocated: {paddle.device.cuda.memory_allocated() / 1024 ** 3:.2f} GB")
print(f"GPU max_memory_allocated: {paddle.device.cuda.max_memory_allocated() / 1024 ** 3:.2f} GB")
print(f"GPU memory_reserved: {paddle.device.cuda.memory_reserved() / 1024 ** 3:.2f} GB")
print(f"GPU max_memory_reserved: {paddle.device.cuda.max_memory_reserved() / 1024 ** 3:.2f} GB")
print("output_text:\n", output_text)
else:
# Inference: Generation of the output
generated_ids = model.generate(
**inputs, max_new_tokens=args.max_new_tokens, temperature=args.temperature
) # already trimmed in paddle
output_text = processor.batch_decode(
generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("output_text:\n", output_text)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="Qwen/Qwen2-VL-2B-Instruct")
parser.add_argument("--question", type=str, default="Describe this image.")
parser.add_argument("--image_file", type=str, default="paddlemix/demo_images/examples_image1.jpg")
parser.add_argument("--temperature", type=float, default=0.01)
parser.add_argument("--max_new_tokens", type=int, default=128)
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--benchmark", action="store_true")
args = parser.parse_args()
main(args)