-
Notifications
You must be signed in to change notification settings - Fork 169
/
run_predict.py
86 lines (74 loc) · 2.68 KB
/
run_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["FLAGS_use_cuda_managed_memory"] = "true"
import requests
from PIL import Image
from paddlemix import VisualGLMForConditionalGeneration, VisualGLMProcessor
from paddlemix.utils.downloader import is_url
def predict(args):
# load VisualGLM moel and processor
model = VisualGLMForConditionalGeneration.from_pretrained(args.pretrained_name_or_path, dtype="float16")
model.eval()
processor = VisualGLMProcessor.from_pretrained(args.pretrained_name_or_path)
print("load processor and model done!")
image_path = args.image_path
if is_url(image_path):
image = Image.open(requests.get(image_path, stream=True).raw)
else:
image = Image.open(image_path)
generate_kwargs = {
"max_length": 1024,
"min_length": 10,
"num_beams": 1,
"top_p": 1.0,
"top_k": 1,
"repetition_penalty": 1.2,
"temperature": 0.8,
"decode_strategy": "sampling",
"eos_token_id": processor.tokenizer.eos_token_id,
}
# Epoch 1
query = "写诗描述一下这个场景"
history = []
inputs = processor(image, query)
generate_ids, _ = model.generate(**inputs, **generate_kwargs)
responses = processor.get_responses(generate_ids)
history.append([query, responses[0]])
print(responses)
# Epoch 2
query = "这部电影的导演是谁?"
inputs = processor(image, query, history=history)
generate_ids, _ = model.generate(**inputs, **generate_kwargs)
responses = processor.get_responses(generate_ids)
history.append([query, responses[0]])
print(responses)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_name_or_path",
default="THUDM/visualglm-6b",
type=str,
help="The dir name of visualglm checkpoint.",
)
parser.add_argument(
"--image_path",
default="https://paddlenlp.bj.bcebos.com/data/images/mugs.png",
type=str,
help="",
)
args = parser.parse_args()
predict(args)