-
Notifications
You must be signed in to change notification settings - Fork 8.1k
/
Copy pathocr_rec.cpp
185 lines (168 loc) · 7.05 KB
/
ocr_rec.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/ocr_rec.h>
namespace PaddleOCR {
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
std::vector<std::string> &rec_texts,
std::vector<float> &rec_text_scores,
std::vector<double> ×) {
std::chrono::duration<float> preprocess_diff =
std::chrono::duration<float>::zero();
std::chrono::duration<float> inference_diff =
std::chrono::duration<float>::zero();
std::chrono::duration<float> postprocess_diff =
std::chrono::duration<float>::zero();
int img_num = img_list.size();
std::vector<float> width_list;
for (int i = 0; i < img_num; i++) {
width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
}
std::vector<int> indices = Utility::argsort(width_list);
for (int beg_img_no = 0; beg_img_no < img_num;
beg_img_no += this->rec_batch_num_) {
auto preprocess_start = std::chrono::steady_clock::now();
int end_img_no = std::min(img_num, beg_img_no + this->rec_batch_num_);
int batch_num = end_img_no - beg_img_no;
int imgH = this->rec_image_shape_[1];
int imgW = this->rec_image_shape_[2];
float max_wh_ratio = imgW * 1.0 / imgH;
for (int ino = beg_img_no; ino < end_img_no; ino++) {
int h = img_list[indices[ino]].rows;
int w = img_list[indices[ino]].cols;
float wh_ratio = w * 1.0 / h;
max_wh_ratio = std::max(max_wh_ratio, wh_ratio);
}
int batch_width = imgW;
std::vector<cv::Mat> norm_img_batch;
for (int ino = beg_img_no; ino < end_img_no; ino++) {
cv::Mat srcimg;
img_list[indices[ino]].copyTo(srcimg);
cv::Mat resize_img;
this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
this->use_tensorrt_, this->rec_image_shape_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
norm_img_batch.push_back(resize_img);
batch_width = std::max(resize_img.cols, batch_width);
}
std::vector<float> input(batch_num * 3 * imgH * batch_width, 0.0f);
this->permute_op_.Run(norm_img_batch, input.data());
auto preprocess_end = std::chrono::steady_clock::now();
preprocess_diff += preprocess_end - preprocess_start;
// Inference.
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({batch_num, 3, imgH, batch_width});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> predict_batch;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
auto predict_shape = output_t->shape();
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
std::multiplies<int>());
predict_batch.resize(out_num);
// predict_batch is the result of Last FC with softmax
output_t->CopyToCpu(predict_batch.data());
auto inference_end = std::chrono::steady_clock::now();
inference_diff += inference_end - inference_start;
// ctc decode
auto postprocess_start = std::chrono::steady_clock::now();
for (int m = 0; m < predict_shape[0]; m++) {
std::string str_res;
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++) {
// get idx
argmax_idx = int(Utility::argmax(
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
// get score
max_value = float(*std::max_element(
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
str_res += label_list_[argmax_idx];
}
last_index = argmax_idx;
}
score /= count;
if (std::isnan(score)) {
continue;
}
rec_texts[indices[beg_img_no + m]] = str_res;
rec_text_scores[indices[beg_img_no + m]] = score;
}
auto postprocess_end = std::chrono::steady_clock::now();
postprocess_diff += postprocess_end - postprocess_start;
}
times.push_back(double(preprocess_diff.count() * 1000));
times.push_back(double(inference_diff.count() * 1000));
times.push_back(double(postprocess_diff.count() * 1000));
}
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
paddle_infer::Config config;
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
std::cout << "In PP-OCRv3, default rec_img_h is 48,"
<< "if you use other model, you should set the param rec_img_h=32"
<< std::endl;
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
if (!Utility::PathExists("./trt_rec_shape.txt")) {
config.CollectShapeRangeInfo("./trt_rec_shape.txt");
} else {
config.EnableTunedTensorRtDynamicShape("./trt_rec_shape.txt", true);
}
}
} else if (this->use_mlu_) {
config.EnableCustomDevice("mlu", this->gpu_id_);
} else {
config.DisableGpu();
if (this->use_mkldnn_) {
config.EnableMKLDNN();
// cache 10 different shapes for mkldnn to avoid memory leak
config.SetMkldnnCacheCapacity(10);
} else {
config.DisableMKLDNN();
}
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
// get pass_builder object
auto pass_builder = config.pass_builder();
// delete "matmul_transpose_reshape_fuse_pass"
pass_builder->DeletePass("matmul_transpose_reshape_fuse_pass");
config.SwitchUseFeedFetchOps(false);
// true for multiple input
config.SwitchSpecifyInputNames(true);
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
// config.DisableGlogInfo();
this->predictor_ = paddle_infer::CreatePredictor(config);
}
} // namespace PaddleOCR