-
Notifications
You must be signed in to change notification settings - Fork 8.1k
/
Copy pathstructure_layout.cpp
153 lines (134 loc) · 5.76 KB
/
structure_layout.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/structure_layout.h>
namespace PaddleOCR {
void StructureLayoutRecognizer::Run(cv::Mat img,
std::vector<StructurePredictResult> &result,
std::vector<double> ×) {
std::chrono::duration<float> preprocess_diff =
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
std::chrono::duration<float> inference_diff =
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
std::chrono::duration<float> postprocess_diff =
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
// preprocess
auto preprocess_start = std::chrono::steady_clock::now();
cv::Mat srcimg;
img.copyTo(srcimg);
cv::Mat resize_img;
this->resize_op_.Run(srcimg, resize_img, 800, 608);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data());
auto preprocess_end = std::chrono::steady_clock::now();
preprocess_diff += preprocess_end - preprocess_start;
// inference.
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
// Get output tensor
std::vector<std::vector<float>> out_tensor_list;
std::vector<std::vector<int>> output_shape_list;
auto output_names = this->predictor_->GetOutputNames();
for (int j = 0; j < output_names.size(); j++) {
auto output_tensor = this->predictor_->GetOutputHandle(output_names[j]);
std::vector<int> output_shape = output_tensor->shape();
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
output_shape_list.push_back(output_shape);
std::vector<float> out_data;
out_data.resize(out_num);
output_tensor->CopyToCpu(out_data.data());
out_tensor_list.push_back(out_data);
}
auto inference_end = std::chrono::steady_clock::now();
inference_diff += inference_end - inference_start;
// postprocess
auto postprocess_start = std::chrono::steady_clock::now();
std::vector<int> bbox_num;
int reg_max = 0;
for (int i = 0; i < out_tensor_list.size(); i++) {
if (i == this->post_processor_.fpn_stride_.size()) {
reg_max = output_shape_list[i][2] / 4;
break;
}
}
std::vector<int> ori_shape = {srcimg.rows, srcimg.cols};
std::vector<int> resize_shape = {resize_img.rows, resize_img.cols};
this->post_processor_.Run(result, out_tensor_list, ori_shape, resize_shape,
reg_max);
bbox_num.push_back(result.size());
auto postprocess_end = std::chrono::steady_clock::now();
postprocess_diff += postprocess_end - postprocess_start;
times.push_back(double(preprocess_diff.count() * 1000));
times.push_back(double(inference_diff.count() * 1000));
times.push_back(double(postprocess_diff.count() * 1000));
}
void StructureLayoutRecognizer::LoadModel(const std::string &model_dir) {
paddle_infer::Config config;
if (Utility::PathExists(model_dir + "/inference.pdmodel") &&
Utility::PathExists(model_dir + "/inference.pdiparams")) {
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
} else if (Utility::PathExists(model_dir + "/model.pdmodel") &&
Utility::PathExists(model_dir + "/model.pdiparams")) {
config.SetModel(model_dir + "/model.pdmodel",
model_dir + "/model.pdiparams");
} else {
std::cerr << "[ERROR] not find model.pdiparams or inference.pdiparams in "
<< model_dir << std::endl;
exit(1);
}
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
if (!Utility::PathExists("./trt_layout_shape.txt")) {
config.CollectShapeRangeInfo("./trt_layout_shape.txt");
} else {
config.EnableTunedTensorRtDynamicShape("./trt_layout_shape.txt", true);
}
}
} else if (this->use_mlu_) {
config.EnableCustomDevice("mlu", this->gpu_id_);
} else {
config.DisableGpu();
if (this->use_mkldnn_) {
config.EnableMKLDNN();
} else {
config.DisableMKLDNN();
}
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
// false for zero copy tensor
config.SwitchUseFeedFetchOps(false);
// true for multiple input
config.SwitchSpecifyInputNames(true);
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
config.DisableGlogInfo();
this->predictor_ = paddle_infer::CreatePredictor(config);
}
} // namespace PaddleOCR