forked from perlatex/R_for_Data_Science
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tidyverse_dplyr_apply.Rmd
716 lines (492 loc) · 10.8 KB
/
tidyverse_dplyr_apply.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
# dplyr进阶 {#tidyverse-dplyr-apply}
```{r, include=FALSE}
knitr::opts_chunk$set(
echo = TRUE,
warning = FALSE,
message = FALSE,
fig.showtext = TRUE
)
```
本章主要关注dplyr的一些应用。
## 导入数据
今天讲一个关于企鹅的数据故事。
```{r message = FALSE, warning = FALSE}
library(tidyverse)
library(palmerpenguins)
penguins <- penguins %>% drop_na()
```
## 变量含义
|variable |class |description |
|:-----------------|:---------|:-----------|
|species |character | 企鹅种类 (Adelie, Gentoo, Chinstrap) |
|island |character | 所在岛屿 (Biscoe, Dream, Torgersen) |
|bill_length_mm |double | 嘴峰长度 (单位毫米) |
|bill_depth_mm |double | 嘴峰深度 (单位毫米)|
|flipper_length_mm |integer | 鰭肢长度 (单位毫米) |
|body_mass_g |integer | 体重 (单位克) |
|sex |character | 性别 |
|year |integer | 记录年份 |
```{r out.width = '86%', echo = FALSE}
knitr::include_graphics("images/culmen_depth.png")
```
## 简单回顾
### 选择"bill_"开始的列
```{r, eval=FALSE}
penguins %>% select(bill_length_mm, bill_depth_mm)
```
```{r}
penguins %>% select(starts_with("bill_"))
```
### 选择"_mm"结尾的列
```{r, eval=FALSE}
penguins %>% select(bill_length_mm, bill_depth_mm, flipper_length_mm)
```
```{r}
penguins %>% select(ends_with("_mm"))
```
### 选择含有"length"的列
```{r, eval=FALSE}
penguins %>% select(bill_length_mm, flipper_length_mm)
```
```{r}
penguins %>% select(contains("length"))
```
### 选择数值型的列
```{r}
penguins %>% select(where(is.numeric))
```
### 选择字符串类型的列
```{r}
penguins %>% select(where(is.character))
```
### 选择字符串类型以外的列
```{r}
penguins %>% select(!where(is.character))
```
### 可以用多种组合来选择
```{r}
penguins %>% select(species, starts_with("bill_"))
```
### 返回向量还是数据框
对应数据框`my_tibble`, 注意返回向量还是数据框的区别
- 返回向量
```{r, eval = FALSE}
my_tibble[["x"]]
my_tibble$x
my_tibble %>%
pull(x)
```
- 返回数据框
```{r, eval = FALSE}
my_tibble["x"]
my_tibble %>%
select(x)
```
### 选择全部为0的列
```{r}
tb <- tibble(
x = c(1, 2, 3, 4, 5),
y = 0,
z = c(-1, -2, 0, 2, 1),
w = c(0, 1, 2, 3, 4)
)
tb
myfun <- function(x) all(x == 0)
tb %>%
select(where(myfun))
# or
tb %>%
select(where(~all(.x == 0))) # 找出选择全部为0的列
tb %>%
select(where(~sum(.x) == 0)) # 找出这一列元素之和为0的列
tb %>%
select(where(~any(.x == 0))) # 找出这一列元素含有0的列
```
**课堂练习**:剔除全部为NA的列或者全部为NA的行
```{r}
df <- tibble(
x = c(NA, NA, NA),
y = c(2, 3, NA),
z = c(NA, 5, NA)
)
# columns
df %>%
select(where(~ !all(is.na(.x))))
# rows
df %>%
filter(
if_any(everything(), ~ !is.na(.x))
)
```
### 寻找男企鹅
函数 `filter()` 中的逻辑运算符
Operator | Meaning
----------|--------
`==` | Equal to
`>` | Greater than
`<` | Less than
`>=` | Greater than or equal to
`<=` | Less than or equal to
`!=` | Not equal to
`%in%` | in
`is.na` | is a missing value (NA)
`!is.na` | is not a missing value
`&` | and
`|` | or
```{r}
penguins %>% filter(sex == "male")
```
```{r}
penguins %>% filter(species %in% c("Adelie", "Gentoo"))
```
```{r}
penguins %>%
filter(species == "Adelie" & bill_length_mm > 40)
penguins %>%
filter(species == "Adelie", bill_length_mm > 40)
```
**课堂练习**,说出以下代码的含义
```{r, eval=FALSE}
penguins %>%
filter(species == "Adelie", bill_length_mm == max(bill_length_mm) )
```
## 更多应用
希望介绍一个技术,对应一个应用场景
### 弱水三千,只取一瓢
```{r}
penguins %>%
head()
penguins %>%
tail()
```
```{r}
penguins %>%
slice(1)
```
```{r}
penguins %>%
group_by(species) %>%
slice(1)
```
### 嘴峰长度最大那一行
三种方法
```{r}
penguins %>%
filter(bill_length_mm == max(bill_length_mm) )
```
```{r}
penguins %>%
arrange(desc(bill_length_mm)) %>%
slice(1)
```
```{r}
penguins %>%
slice_max(bill_length_mm)
```
### separate
```{r}
tb <- tibble::tribble(
~day, ~price,
1, "30-45",
2, "40-95",
3, "89-65",
4, "45-63",
5, "52-42"
)
```
```{r}
tb1 <- tb %>%
separate(price, into = c("low", "high"), sep = "-")
tb1
```
### unite
```{r}
tb1 %>%
unite(col = "price", c(low, high), sep = ":", remove = FALSE)
```
### distinct
`distinct()`处理的对象是data.frame;功能是**筛选不重复的row**;返回data.frame
```{r}
df <- tibble::tribble(
~x, ~y, ~z,
1, 1, 1,
1, 1, 2,
1, 1, 1,
2, 1, 2,
2, 2, 3,
3, 3, 1
)
df
```
```{r}
df %>%
distinct()
```
```{r}
df %>%
distinct(x)
df %>%
distinct(x, y)
```
```{r}
df %>%
distinct(x, y, .keep_all = TRUE) # 只保留最先出现的row
```
```{r, eval=FALSE}
df %>%
distinct(
across(c(x, y)),
.keep_all = TRUE
)
```
```{r}
df %>%
group_by(x) %>%
distinct(y, .keep_all = TRUE)
```
`n_distinct()`处理的对象是vector;功能是**统计不同的元素有多少个**;返回一个数值
```{r}
c(1, 1, 1, 2, 2, 1, 3, 3) %>% n_distinct()
```
```{r}
df$z %>% n_distinct()
```
```{r}
df %>%
group_by(x) %>%
summarise(
n = n_distinct(z)
)
```
### 有关NA的计算
`NA`很讨厌,凡是它参与的四则运算,结果都是`NA`,
```{r}
sum(c(1, 2, NA, 4))
```
所以需要事先把它删除,增加参数说明 `na.rm = TRUE`
```{r}
sum(c(1, 2, NA, 4), na.rm = TRUE)
```
```{r}
mean(c(1, 2, NA, 4), na.rm = TRUE)
```
### 寻找企鹅中的胖子
```{r}
penguins %>%
mutate(
body = if_else(body_mass_g > 4200, "you are fat", "you are fine")
)
```
**随堂练习**:用考试成绩的均值代替缺失值
```{r}
df <- tibble::tribble(
~name, ~type, ~score,
"Alice", "english", 80,
"Alice", "math", NA,
"Bob", "english", 70,
"Bob", "math", 69,
"Carol", "english", NA,
"Carol", "math", 90
)
df
```
```{r}
df %>%
group_by(type) %>%
mutate(mean_score = mean(score, na.rm = TRUE)) %>%
mutate(newscore = if_else(is.na(score), mean_score, score))
```
### 给企鹅身材分类
```{r}
penguins %>%
mutate(
body = case_when(
body_mass_g < 3500 ~ "best",
body_mass_g >= 3500 & body_mass_g < 4500 ~ "good",
body_mass_g >= 4500 & body_mass_g < 5500 ~ "general",
TRUE ~ "other"
)
)
```
**随堂练习**:按嘴峰长度分成A, B, C, D 4个等级
```{r}
penguins %>%
mutate(
degree = case_when(
bill_length_mm < 35 ~ "A",
bill_length_mm >= 35 & bill_length_mm < 45 ~ "B",
bill_length_mm >= 45 & bill_length_mm < 55 ~ "C",
TRUE ~ "D"
)
)
```
### 每种类型企鹅有多少只?
知识点:`n()`函数,统计当前分组数据框的行数
```{r}
penguins %>%
summarise(
n = n()
)
```
```{r}
penguins %>%
group_by(species) %>%
summarise(
n = n()
)
```
统计某个变量中**各组**出现的次数,可以使用`count()`函数
```{r}
penguins %>% count(species)
```
不同性别的企鹅各有多少
```{r}
penguins %>% count(sex, sort = TRUE)
```
可以统计不同组合出现的次数
```{r}
penguins %>% count(island, species)
```
可以在`count()`里构建新变量,并利用这个新变量完成统计。
比如,统计嘴巴长度大于40的企鹅个数
- 常规做法
```{r}
penguins %>%
filter(bill_length_mm > 40) %>%
summarise(
n = n()
)
```
- `count()`做法
```{r}
penguins %>% count(longer_bill = bill_length_mm > 40)
```
解析思路:`bill_length_mm > 40` 比较算符 返回逻辑型向量,向量里面只有TRUR和FALSE两种值,因此上面的代码相当于统计TRUE有多少个,FALSE有多少个?
### 强制转换
矢量中的元素必须是相同的类型,但如果不一样呢,会发生什么?
这个时候R会**强制转换**成相同的类型。这就涉及数据类型的转换层级
- character > numeric > logical
- double > integer
比如这里会强制转换成字符串类型
```{r}
c("foo", 1, TRUE)
```
这里会强制转换成数值型
```{r}
c(1, TRUE, FALSE)
```
```{r}
c(TRUE, TRUE, FALSE) %>% sum()
```
**随堂练习**:补全下面代码,求嘴峰长度大于40mm的占比?
```{r}
penguins %>%
mutate(is_bigger40 = bill_length_mm > 40)
```
```{r, eval=FALSE, echo=FALSE}
penguins %>%
mutate(is_bigger40 = bill_length_mm > 40) %>%
summarise(
peop = sum(is_bigger40) / n()
)
```
## across()之美
我们想知道,嘴巴长度和厚度的均值
```{r}
penguins %>%
summarize(
length = mean(bill_length_mm)
)
```
接着添加下个变量
```{r}
penguins %>%
summarize(
length = mean(bill_length_mm),
depth = mean(bill_length_mm)
)
```
长度和厚度惊人的相等。我是不是发现新大陆了?
### across()函数
更安全、更简练的写法,王老师的最爱
```{r}
penguins %>%
summarize(
across(c(bill_depth_mm, bill_length_mm), mean)
)
```
翅膀的长度加进去看看
```{r}
penguins %>%
summarize(
across(c(bill_depth_mm, bill_length_mm, flipper_length_mm), mean)
)
```
还可以更简练喔
```{r}
penguins %>%
summarize(
across(ends_with("_mm"), mean)
)
```
::: {.rmdnote}
`across()`函数用法
```{r, eval = FALSE}
across(.cols = everything(), .fns = NULL, ..., .names = NULL)
```
- 用在 `mutate()` 和`summarise()` 函数里面
- `across()` 对**多列**执行**相同**的函数操作,返回**数据框**
:::
### 数据中心化
```{r}
penguins %>%
mutate(
bill_length_mm = bill_length_mm - mean(bill_length_mm),
bill_depth_mm = bill_depth_mm - mean(bill_depth_mm)
)
```
更清晰的办法
```{r}
centralized <- function(x) {
x - mean(x)
}
penguins %>%
mutate(
across(c(bill_length_mm, bill_depth_mm), centralized)
)
```
### 数据标准化
```{r}
std <- function(x) {
(x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}
penguins %>%
mutate(
across(c(bill_length_mm, bill_depth_mm), std)
)
```
或者使用更简洁的方法
```{r}
# using across() and purrr style
penguins %>%
summarise(
across(starts_with("bill_"), ~ (.x - mean(.x)) / sd(.x))
)
```
### 多列多个统计函数
```{r}
penguins %>%
group_by(species) %>%
summarise(
across(ends_with("_mm"), list(mean = mean, sd = sd), na.rm = TRUE)
)
```
**随堂练习**:以sex分组,对"bill_"开头的列,求出每列的最大值和最小值
```{r}
penguins %>%
group_by(sex) %>%
summarise(
across(starts_with("bill_"), list(max = max, min = min), na.rm = TRUE)
)
```
在第 \@ref(tidyverse-beauty-of-across1) 章到第 \@ref(tidyverse-beauty-of-across4) 章会继续讲王老师的最爱`across()`函数。