forked from caogang/wgan-gp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
gan_mnist.py
259 lines (214 loc) · 7.67 KB
/
gan_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os, sys
sys.path.append(os.getcwd())
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import sklearn.datasets
import tflib as lib
import tflib.save_images
import tflib.mnist
import tflib.plot
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
torch.manual_seed(1)
use_cuda = torch.cuda.is_available()
if use_cuda:
gpu = 0
DIM = 64 # Model dimensionality
BATCH_SIZE = 50 # Batch size
CRITIC_ITERS = 5 # For WGAN and WGAN-GP, number of critic iters per gen iter
LAMBDA = 10 # Gradient penalty lambda hyperparameter
ITERS = 200000 # How many generator iterations to train for
OUTPUT_DIM = 784 # Number of pixels in MNIST (28*28)
lib.print_model_settings(locals().copy())
# ==================Definition Start======================
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
preprocess = nn.Sequential(
nn.Linear(128, 4*4*4*DIM),
nn.ReLU(True),
)
block1 = nn.Sequential(
nn.ConvTranspose2d(4*DIM, 2*DIM, 5),
nn.ReLU(True),
)
block2 = nn.Sequential(
nn.ConvTranspose2d(2*DIM, DIM, 5),
nn.ReLU(True),
)
deconv_out = nn.ConvTranspose2d(DIM, 1, 8, stride=2)
self.block1 = block1
self.block2 = block2
self.deconv_out = deconv_out
self.preprocess = preprocess
self.sigmoid = nn.Sigmoid()
def forward(self, input):
output = self.preprocess(input)
output = output.view(-1, 4*DIM, 4, 4)
#print output.size()
output = self.block1(output)
#print output.size()
output = output[:, :, :7, :7]
#print output.size()
output = self.block2(output)
#print output.size()
output = self.deconv_out(output)
output = self.sigmoid(output)
#print output.size()
return output.view(-1, OUTPUT_DIM)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
main = nn.Sequential(
nn.Conv2d(1, DIM, 5, stride=2, padding=2),
# nn.Linear(OUTPUT_DIM, 4*4*4*DIM),
nn.LeakyReLU(True),
nn.Conv2d(DIM, 2*DIM, 5, stride=2, padding=2),
# nn.Linear(4*4*4*DIM, 4*4*4*DIM),
nn.LeakyReLU(True),
nn.Conv2d(2*DIM, 4*DIM, 5, stride=2, padding=2),
# nn.Linear(4*4*4*DIM, 4*4*4*DIM),
nn.LeakyReLU(True),
# nn.Linear(4*4*4*DIM, 4*4*4*DIM),
# nn.LeakyReLU(True),
# nn.Linear(4*4*4*DIM, 4*4*4*DIM),
# nn.LeakyReLU(True),
)
self.main = main
self.output = nn.Linear(4*4*4*DIM, 1)
def forward(self, input):
input = input.view(-1, 1, 28, 28)
out = self.main(input)
out = out.view(-1, 4*4*4*DIM)
out = self.output(out)
return out.view(-1)
def generate_image(frame, netG):
noise = torch.randn(BATCH_SIZE, 128)
if use_cuda:
noise = noise.cuda(gpu)
noisev = autograd.Variable(noise, volatile=True)
samples = netG(noisev)
samples = samples.view(BATCH_SIZE, 28, 28)
# print samples.size()
samples = samples.cpu().data.numpy()
lib.save_images.save_images(
samples,
'tmp/mnist/samples_{}.png'.format(frame)
)
# Dataset iterator
train_gen, dev_gen, test_gen = lib.mnist.load(BATCH_SIZE, BATCH_SIZE)
def inf_train_gen():
while True:
for images,targets in train_gen():
yield images
def calc_gradient_penalty(netD, real_data, fake_data):
#print real_data.size()
alpha = torch.rand(BATCH_SIZE, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.cuda(gpu) if use_cuda else alpha
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
if use_cuda:
interpolates = interpolates.cuda(gpu)
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates = netD(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda(gpu) if use_cuda else torch.ones(
disc_interpolates.size()),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gradient_penalty
# ==================Definition End======================
netG = Generator()
netD = Discriminator()
print netG
print netD
if use_cuda:
netD = netD.cuda(gpu)
netG = netG.cuda(gpu)
optimizerD = optim.Adam(netD.parameters(), lr=1e-4, betas=(0.5, 0.9))
optimizerG = optim.Adam(netG.parameters(), lr=1e-4, betas=(0.5, 0.9))
one = torch.FloatTensor([1])
mone = one * -1
if use_cuda:
one = one.cuda(gpu)
mone = mone.cuda(gpu)
data = inf_train_gen()
for iteration in xrange(ITERS):
start_time = time.time()
############################
# (1) Update D network
###########################
for p in netD.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
for iter_d in xrange(CRITIC_ITERS):
_data = data.next()
real_data = torch.Tensor(_data)
if use_cuda:
real_data = real_data.cuda(gpu)
real_data_v = autograd.Variable(real_data)
netD.zero_grad()
# train with real
D_real = netD(real_data_v)
D_real = D_real.mean()
# print D_real
D_real.backward(mone)
# train with fake
noise = torch.randn(BATCH_SIZE, 128)
if use_cuda:
noise = noise.cuda(gpu)
noisev = autograd.Variable(noise, volatile=True) # totally freeze netG
fake = autograd.Variable(netG(noisev).data)
inputv = fake
D_fake = netD(inputv)
D_fake = D_fake.mean()
D_fake.backward(one)
# train with gradient penalty
gradient_penalty = calc_gradient_penalty(netD, real_data_v.data, fake.data)
gradient_penalty.backward()
D_cost = D_fake - D_real + gradient_penalty
Wasserstein_D = D_real - D_fake
optimizerD.step()
############################
# (2) Update G network
###########################
for p in netD.parameters():
p.requires_grad = False # to avoid computation
netG.zero_grad()
noise = torch.randn(BATCH_SIZE, 128)
if use_cuda:
noise = noise.cuda(gpu)
noisev = autograd.Variable(noise)
fake = netG(noisev)
G = netD(fake)
G = G.mean()
G.backward(mone)
G_cost = -G
optimizerG.step()
# Write logs and save samples
lib.plot.plot('tmp/mnist/time', time.time() - start_time)
lib.plot.plot('tmp/mnist/train disc cost', D_cost.cpu().data.numpy())
lib.plot.plot('tmp/mnist/train gen cost', G_cost.cpu().data.numpy())
lib.plot.plot('tmp/mnist/wasserstein distance', Wasserstein_D.cpu().data.numpy())
# Calculate dev loss and generate samples every 100 iters
if iteration % 100 == 99:
dev_disc_costs = []
for images,_ in dev_gen():
imgs = torch.Tensor(images)
if use_cuda:
imgs = imgs.cuda(gpu)
imgs_v = autograd.Variable(imgs, volatile=True)
D = netD(imgs_v)
_dev_disc_cost = -D.mean().cpu().data.numpy()
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot('tmp/mnist/dev disc cost', np.mean(dev_disc_costs))
generate_image(iteration, netG)
# Write logs every 100 iters
if (iteration < 5) or (iteration % 100 == 99):
lib.plot.flush()
lib.plot.tick()