@@ -157,49 +157,3 @@ def _lonlat_rad_to_xyz(
157157 z = np .sin (lat )
158158
159159 return x , y , z
160-
161-
162- # def _barycentric_coordinates_cartesian(nodes, point, min_area=1e-8):
163- # """
164- # Compute the barycentric coordinates of a point P inside a convex polygon using area-based weights.
165- # So that this method generalizes to n-sided polygons, we use the Waschpress points as the generalized
166- # barycentric coordinates, which is only valid for convex polygons.
167-
168- # Parameters
169- # ----------
170- # nodes : numpy.ndarray
171- # Cartesian coordinates (x,y,z) of each corner node of a face
172- # point : numpy.ndarray
173- # Cartesian coordinates (x,y,z) of the point
174-
175- # Returns
176- # -------
177- # numpy.ndarray
178- # Barycentric coordinates corresponding to each vertex.
179-
180- # """
181- # n = len(nodes)
182- # sum_wi = 0
183- # w = []
184-
185- # for i in range(0, n):
186- # vim1 = nodes[i - 1]
187- # vi = nodes[i]
188- # vi1 = nodes[(i + 1) % n]
189- # a0 = _triangle_area_cartesian(vim1, vi, vi1)
190- # a1 = max(_triangle_area_cartesian(point, vim1, vi), min_area)
191- # a2 = max(_triangle_area_cartesian(point, vi, vi1), min_area)
192- # sum_wi += a0 / (a1 * a2)
193- # w.append(a0 / (a1 * a2))
194-
195- # barycentric_coords = [w_i / sum_wi for w_i in w]
196-
197- # return barycentric_coords
198-
199-
200- # def _triangle_area_cartesian(A, B, C):
201- # """Compute the area of a triangle given by three points."""
202- # d1 = B - A
203- # d2 = C - A
204- # d3 = np.cross(d1, d2)
205- # return 0.5 * np.linalg.norm(d3)
0 commit comments