|
| 1 | +import numpy as np |
1 | 2 | import pytest |
| 3 | +import xarray as xr |
| 4 | +import xgcm |
2 | 5 | from hypothesis import example, given |
3 | 6 |
|
4 | 7 | from parcels._core import sgrid |
5 | 8 | from tests.strategies import sgrid as sgrid_strategies |
6 | 9 |
|
7 | 10 |
|
| 11 | +def get_unique_dim_names(grid: sgrid.Grid2DMetadata | sgrid.Grid3DMetadata) -> set[str]: |
| 12 | + dims = set() |
| 13 | + dims.update(set(grid.node_dimensions)) |
| 14 | + |
| 15 | + for value in [ |
| 16 | + grid.node_dimensions, |
| 17 | + grid.face_dimensions if isinstance(grid, sgrid.Grid2DMetadata) else grid.volume_dimensions, |
| 18 | + grid.vertical_dimensions if isinstance(grid, sgrid.Grid2DMetadata) else None, |
| 19 | + ]: |
| 20 | + if value is None: |
| 21 | + continue |
| 22 | + for item in value: |
| 23 | + if isinstance(item, sgrid.DimDimPadding): |
| 24 | + dims.add(item.dim1) |
| 25 | + dims.add(item.dim2) |
| 26 | + else: |
| 27 | + assert isinstance(item, str) |
| 28 | + dims.add(item) |
| 29 | + return dims |
| 30 | + |
| 31 | + |
| 32 | +def dummy_sgrid_ds(grid: sgrid.Grid2DMetadata | sgrid.Grid3DMetadata) -> xr.Dataset: |
| 33 | + if isinstance(grid, sgrid.Grid2DMetadata): |
| 34 | + return dummy_sgrid_2d_ds(grid) |
| 35 | + elif isinstance(grid, sgrid.Grid3DMetadata): |
| 36 | + return dummy_sgrid_3d_ds(grid) |
| 37 | + else: |
| 38 | + raise NotImplementedError(f"Cannot create dummy SGrid dataset for grid type {type(grid)}") |
| 39 | + |
| 40 | + |
| 41 | +def dummy_sgrid_2d_ds(grid: sgrid.Grid2DMetadata) -> xr.Dataset: |
| 42 | + ds = dummy_comodo_3d_ds() |
| 43 | + |
| 44 | + renamings = {} |
| 45 | + if grid.vertical_dimensions is None: |
| 46 | + ds = ds.isel(ZC=0, ZG=0) |
| 47 | + else: |
| 48 | + renamings.update({"ZC": grid.vertical_dimensions[0].dim2, "ZG": grid.vertical_dimensions[0].dim1}) |
| 49 | + |
| 50 | + for old, new in zip(["XG", "YG"], grid.node_dimensions, strict=True): |
| 51 | + renamings[old] = new |
| 52 | + |
| 53 | + for old, dim_dim_padding in zip(["XC", "YC"], grid.face_dimensions, strict=True): |
| 54 | + renamings[old] = dim_dim_padding.dim1 |
| 55 | + |
| 56 | + ds = ds.rename_dims(renamings) |
| 57 | + |
| 58 | + ds["grid"] = xr.DataArray(1, attrs=grid.to_attrs()) |
| 59 | + ds.attrs["convention"] = "SGRID" |
| 60 | + return ds |
| 61 | + |
| 62 | + |
| 63 | +def dummy_sgrid_3d_ds(grid: sgrid.Grid3DMetadata) -> xr.Dataset: |
| 64 | + ds = dummy_comodo_3d_ds() |
| 65 | + |
| 66 | + renamings = {} |
| 67 | + for old, new in zip(["XG", "YG", "ZG"], grid.node_dimensions, strict=True): |
| 68 | + renamings[old] = new |
| 69 | + |
| 70 | + for old, dim_dim_padding in zip(["XC", "YC", "ZC"], grid.volume_dimensions, strict=True): |
| 71 | + renamings[old] = dim_dim_padding.dim1 |
| 72 | + |
| 73 | + ds = ds.rename_dims(renamings) |
| 74 | + |
| 75 | + ds["grid"] = xr.DataArray(1, attrs=grid.to_attrs()) |
| 76 | + ds.attrs["convention"] = "SGRID" |
| 77 | + return ds |
| 78 | + |
| 79 | + |
| 80 | +def dummy_comodo_3d_ds() -> xr.Dataset: |
| 81 | + T, Z, Y, X = 7, 6, 5, 4 |
| 82 | + TIME = xr.date_range("2000", "2001", T) |
| 83 | + return xr.Dataset( |
| 84 | + { |
| 85 | + "data_g": (["time", "ZG", "YG", "XG"], np.random.rand(T, Z, Y, X)), |
| 86 | + "data_c": (["time", "ZC", "YC", "XC"], np.random.rand(T, Z, Y, X)), |
| 87 | + "U_A_grid": (["time", "ZG", "YG", "XG"], np.random.rand(T, Z, Y, X)), |
| 88 | + "V_A_grid": (["time", "ZG", "YG", "XG"], np.random.rand(T, Z, Y, X)), |
| 89 | + "U_C_grid": (["time", "ZG", "YC", "XG"], np.random.rand(T, Z, Y, X)), |
| 90 | + "V_C_grid": (["time", "ZG", "YG", "XC"], np.random.rand(T, Z, Y, X)), |
| 91 | + }, |
| 92 | + coords={ |
| 93 | + # "XG": ( |
| 94 | + # ["XG"], |
| 95 | + # 2 * np.pi / X * np.arange(0, X), |
| 96 | + # {"axis": "X", "c_grid_axis_shift": -0.5}, |
| 97 | + # ), |
| 98 | + # "XC": (["XC"], 2 * np.pi / X * (np.arange(0, X) + 0.5), {"axis": "X"}), |
| 99 | + # "YG": ( |
| 100 | + # ["YG"], |
| 101 | + # 2 * np.pi / (Y) * np.arange(0, Y), |
| 102 | + # {"axis": "Y", "c_grid_axis_shift": -0.5}, |
| 103 | + # ), |
| 104 | + # "YC": ( |
| 105 | + # ["YC"], |
| 106 | + # 2 * np.pi / (Y) * (np.arange(0, Y) + 0.5), |
| 107 | + # {"axis": "Y"}, |
| 108 | + # ), |
| 109 | + # "ZG": ( |
| 110 | + # ["ZG"], |
| 111 | + # np.arange(Z), |
| 112 | + # {"axis": "Z", "c_grid_axis_shift": -0.5}, |
| 113 | + # ), |
| 114 | + # "ZC": ( |
| 115 | + # ["ZC"], |
| 116 | + # np.arange(Z) + 0.5, |
| 117 | + # {"axis": "Z"}, |
| 118 | + # ), |
| 119 | + # "lon": (["XG"], 2 * np.pi / X * np.arange(0, X)), |
| 120 | + # "lat": (["YG"], 2 * np.pi / (Y) * np.arange(0, Y)), |
| 121 | + # "depth": (["ZG"], np.arange(Z)), |
| 122 | + "time": (["time"], TIME, {"axis": "T"}), |
| 123 | + }, |
| 124 | + ) |
| 125 | + |
| 126 | + |
8 | 127 | @example( |
9 | 128 | edge_node_padding=( |
10 | 129 | sgrid.DimDimPadding("edge1", "node1", sgrid.Padding.NONE), |
@@ -69,3 +188,49 @@ def test_Grid3DMetadata_roundtrip(grid: sgrid.Grid3DMetadata): |
69 | 188 | attrs = grid.to_attrs() |
70 | 189 | parsed = sgrid.Grid3DMetadata.from_attrs(attrs) |
71 | 190 | assert parsed == grid |
| 191 | + |
| 192 | + |
| 193 | +@given(sgrid_strategies.grid_metadata) |
| 194 | +def test_parse_grid_attrs(grid: sgrid.SGridMetadataProtocol): |
| 195 | + attrs = grid.to_attrs() |
| 196 | + parsed = sgrid.parse_grid_attrs(attrs) |
| 197 | + assert parsed == grid |
| 198 | + |
| 199 | + |
| 200 | +@given(sgrid_strategies.grid2Dmetadata()) |
| 201 | +def test_parse_sgrid_2d(grid_metadata: sgrid.Grid2DMetadata): |
| 202 | + """Test the ingestion of datasets in XGCM to ensure that it matches the SGRID metadata provided""" |
| 203 | + ds = dummy_sgrid_2d_ds(grid_metadata) |
| 204 | + |
| 205 | + ds, xgcm_kwargs = sgrid.parse_sgrid(ds) |
| 206 | + grid = xgcm.Grid(ds, autoparse_metadata=False, **xgcm_kwargs) |
| 207 | + |
| 208 | + for ddp, axis in zip(grid_metadata.face_dimensions, ["X", "Y"], strict=True): |
| 209 | + dim_node, dim_edge, padding = ddp.dim1, ddp.dim2, ddp.padding |
| 210 | + coords = grid.axes[axis].coords |
| 211 | + assert coords["center"] == dim_edge |
| 212 | + assert coords[sgrid.SGRID_PADDING_TO_XGCM_POSITION[padding]] == dim_node |
| 213 | + |
| 214 | + if grid_metadata.vertical_dimensions is None: |
| 215 | + assert "Z" not in grid.axes |
| 216 | + else: |
| 217 | + ddp = grid_metadata.vertical_dimensions[0] |
| 218 | + dim_node, dim_edge, padding = ddp.dim1, ddp.dim2, ddp.padding |
| 219 | + coords = grid.axes["Z"].coords |
| 220 | + assert coords["center"] == dim_edge |
| 221 | + assert coords[sgrid.SGRID_PADDING_TO_XGCM_POSITION[padding]] == dim_node |
| 222 | + |
| 223 | + |
| 224 | +@given(sgrid_strategies.grid3Dmetadata()) |
| 225 | +def test_parse_sgrid_3d(grid_metadata: sgrid.Grid3DMetadata): |
| 226 | + """Test the ingestion of datasets in XGCM to ensure that it matches the SGRID metadata provided""" |
| 227 | + ds = dummy_sgrid_3d_ds(grid_metadata) |
| 228 | + |
| 229 | + ds, xgcm_kwargs = sgrid.parse_sgrid(ds) |
| 230 | + grid = xgcm.Grid(ds, autoparse_metadata=False, **xgcm_kwargs) |
| 231 | + |
| 232 | + for ddp, axis in zip(grid_metadata.volume_dimensions, ["X", "Y", "Z"], strict=True): |
| 233 | + dim_node, dim_edge, padding = ddp.dim1, ddp.dim2, ddp.padding |
| 234 | + coords = grid.axes[axis].coords |
| 235 | + assert coords["center"] == dim_edge |
| 236 | + assert coords[sgrid.SGRID_PADDING_TO_XGCM_POSITION[padding]] == dim_node |
0 commit comments