|
10 | 10 |
|
11 | 11 | if TYPE_CHECKING: |
12 | 12 | from parcels.uxgrid import _UXGRID_AXES |
| 13 | + from parcels.xgrid import _XGRID_AXES |
13 | 14 |
|
14 | 15 | __all__ = [ |
15 | 16 | "UXPiecewiseConstantFace", |
16 | 17 | "UXPiecewiseLinearNode", |
17 | 18 | ] |
18 | 19 |
|
19 | 20 |
|
| 21 | +def XTriCurviLinear( |
| 22 | + field: Field, |
| 23 | + ti: int, |
| 24 | + position: dict[_XGRID_AXES, tuple[int, float | np.ndarray]], |
| 25 | + tau: np.float32 | np.float64, |
| 26 | + t: np.float32 | np.float64, |
| 27 | + z: np.float32 | np.float64, |
| 28 | + y: np.float32 | np.float64, |
| 29 | + x: np.float32 | np.float64, |
| 30 | +): |
| 31 | + """Trilinear interpolation on a curvilinear grid.""" |
| 32 | + xi, xsi = position["X"] |
| 33 | + yi, eta = position["Y"] |
| 34 | + zi, zeta = position["Z"] |
| 35 | + data = field.data |
| 36 | + |
| 37 | + return ( |
| 38 | + ( |
| 39 | + (1 - xsi) * (1 - eta) * data.isel(YG=yi, XG=xi) |
| 40 | + + xsi * (1 - eta) * data.isel(YG=yi, XG=xi + 1) |
| 41 | + + xsi * eta * data.isel(YG=yi + 1, XG=xi + 1) |
| 42 | + + (1 - xsi) * eta * data.isel(YG=yi + 1, XG=xi) |
| 43 | + ) |
| 44 | + .interp(time=t, ZG=zi + zeta) |
| 45 | + .values |
| 46 | + ) |
| 47 | + |
| 48 | + |
| 49 | +def XTriRectiLinear( |
| 50 | + field: Field, |
| 51 | + ti: int, |
| 52 | + position: dict[_XGRID_AXES, tuple[int, float | np.ndarray]], |
| 53 | + tau: np.float32 | np.float64, |
| 54 | + t: np.float32 | np.float64, |
| 55 | + z: np.float32 | np.float64, |
| 56 | + y: np.float32 | np.float64, |
| 57 | + x: np.float32 | np.float64, |
| 58 | +): |
| 59 | + """Trilinear interpolation on a rectilinear grid.""" |
| 60 | + xi, xsi = position["X"] |
| 61 | + yi, eta = position["Y"] |
| 62 | + zi, zeta = position["Z"] |
| 63 | + return field.data.interp(time=t, ZG=zi + zeta, YG=yi + eta, XG=xi + xsi).values |
| 64 | + |
| 65 | + |
20 | 66 | def UXPiecewiseConstantFace( |
21 | 67 | field: Field, |
22 | 68 | ti: int, |
|
0 commit comments