-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdgb_test_for_GLEN.py
260 lines (217 loc) · 13.1 KB
/
dgb_test_for_GLEN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""
load a trained model for link prediction and test its performance on a set of positive and negative edges
Binary Classification
Different sets of negative edges including historical or inductive negative edges
Date: Jan. 08, 2022
"""
import math
import logging
import time
import sys
import argparse
import random
import torch
import numpy as np
import pickle
from pathlib import Path
from datetime import datetime
from tqdm import tqdm
from evaluation.evaluation import eval_edge_prediction_modified
from model.GLEN import GLEN
from utils.utils import EarlyStopMonitor, RandEdgeSampler, get_neighbor_finder, RandEdgeSampler_adversarial
from utils.data_processing import get_data, compute_time_statistics
torch.manual_seed(3407)
np.random.seed(3407)
def args_parser():
parser = argparse.ArgumentParser('Self-Supervised Task - Test Phase Only.')
# GLEN model parameters
parser.add_argument('--use_memory', type=bool, default=True, help='Whether to augment the model with a node memory')
parser.add_argument('--gpu', type=int, default=0, help='Idx for the gpu to use')
parser.add_argument('--n_head', type=int, default=4, help='Number of heads used in attention layer')
parser.add_argument('--n_layer', type=int, default=1, help='Number of network layers')
parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate')
parser.add_argument('--n_runs', type=int, default=1, help='Number of runs')
parser.add_argument('--drop_out', type=float, default=0.1, help='Dropout probability')
parser.add_argument('--node_dim', type=int, default=100, help='Dimensions of the node embedding')
parser.add_argument('--time_dim', type=int, default=100, help='Dimensions of the time embedding')
parser.add_argument('--backprop_every', type=int, default=1, help='Every how many batches to backprop')
parser.add_argument('--embedding_module', type=str, default="graph_attention", choices=[
"graph_attention", "graph_sum", "identity", "time"], help='Type of embedding module')
parser.add_argument('--message_function', type=str, default="identity", choices=[
"mlp", "identity"], help='Type of message function')
parser.add_argument('--memory_updater', type=str, default="gru", choices=[
"gru", "rnn"], help='Type of memory updater')
parser.add_argument('--aggregator', type=str, default="last", help='Type of message aggregator')
parser.add_argument('--memory_update_at_end', action='store_true',
help='Whether to update memory at the end or at the start of the batch')
parser.add_argument('--message_dim', type=int, default=100, help='Dimensions of the messages')
parser.add_argument('--memory_dim', type=int, default=172, help='Dimensions of the memory for each user')
parser.add_argument('--use_destination_embedding_in_message', action='store_true',
help='Whether to use the embedding of the destination node as part of the message')
parser.add_argument('--n_degree', type=int, default=10, help='Number of neighbors to sample')
parser.add_argument('--use_source_embedding_in_message', action='store_true',
help='Whether to use the embedding of the source node as part of the message')
parser.add_argument('--window', type=int, default='1', help='The size of window for global embedding module.')
parser.add_argument('--tcn_kernel', type=int, default='2', help='The size of kernel in TCN.')
parser.add_argument('--tcn_layers', type=int, default='3', help='The number of layers in TCN.')
# Data related parameters
parser.add_argument('-d', '--data', type=str, help='Dataset name (eg. wikipedia or reddit)',
default='wikipedia')
parser.add_argument('--different_new_nodes', action='store_true',
help='Whether to use disjoint set of new nodes for train and val')
parser.add_argument('--randomize_features', action='store_true', help='Whether to randomize node features')
parser.add_argument('--uniform', action='store_true',
help='take uniform sampling from temporal neighbors')
parser.add_argument('--val_ratio', type=float, default=0.15, help='Ratio of validation set.')
parser.add_argument('--test_ratio', type=float, default=0.15, help='Ratio of test set.')
parser.add_argument('--neg_sample', type=str, default='rnd', help='Strategy for the edge negative sampling.')
# Parameters for loading the model
parser.add_argument('--model', type=str, default='glen', help='The name of the model to load.')
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
return args
def set_logger(log_filename):
### set up logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(log_filename)
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.WARN)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
return logger
def main():
"""
main procedure for loading and testing a saved model
"""
args = args_parser()
prefix = 'glen'
log_prefix = 'GLEN'
USE_MEMORY = args.use_memory
DATA = args.data
GPU = args.gpu
NUM_NEIGHBORS = args.n_degree
NUM_HEADS = args.n_head
DROP_OUT = args.drop_out
NUM_LAYER = args.n_layer
MESSAGE_DIM = args.message_dim
MEMORY_DIM = args.memory_dim
NEG_SAMPLE = args.neg_sample
N_RUNS = args.n_runs
# setup logger
LOG_FILENAME = './log/neg_sample/{}_{}_{}_self_sup.log'.format(log_prefix, NEG_SAMPLE, DATA)
logger = set_logger(LOG_FILENAME)
logger.info("*** Arguments ***")
logger.info(args)
### Extract data for training, validation and testing
node_features, edge_features, full_data, train_data, val_data, test_data, new_node_val_data, new_node_test_data = \
get_data(DATA, args.val_ratio, args.test_ratio,
different_new_nodes_between_val_and_test=args.different_new_nodes,
randomize_features=args.randomize_features)
# Initialize training neighbor finder to retrieve temporal graph
train_ngh_finder = get_neighbor_finder(train_data, args.uniform)
# Initialize validation and test neighbor finder to retrieve temporal graph
full_ngh_finder = get_neighbor_finder(full_data, args.uniform)
# Initialize negative samplers.
# Set seeds for validation and testing so negatives are the same across different runs
# NB: in the inductive setting, negatives are sampled only amongst other new nodes
if NEG_SAMPLE != 'rnd': # adversarial_sampling
logger.info("Negative Edge Sampling: {}".format(NEG_SAMPLE))
# train_rand_sampler = RandEdgeSampler_NRE(train_data.sources, train_data.destinations, train_data.timestamps)
# val_rand_sampler = RandEdgeSampler_NRE(full_data.sources, full_data.destinations, full_data.timestamps, seed=0)
# nn_val_rand_sampler = RandEdgeSampler_NRE(new_node_val_data.sources, new_node_val_data.destinations,
# new_node_val_data.timestamps, seed=1)
test_rand_sampler = RandEdgeSampler_adversarial(full_data.sources, full_data.destinations, full_data.timestamps,
val_data.timestamps[-1], NEG_SAMPLE, seed=2)
nn_test_rand_sampler = RandEdgeSampler_adversarial(new_node_test_data.sources,
new_node_test_data.destinations,
new_node_test_data.timestamps, val_data.timestamps[-1],
NEG_SAMPLE, seed=3)
else:
# train_rand_sampler = RandEdgeSampler(train_data.sources, train_data.destinations)
# val_rand_sampler = RandEdgeSampler(full_data.sources, full_data.destinations, seed=0)
# nn_val_rand_sampler = RandEdgeSampler(new_node_val_data.sources, new_node_val_data.destinations,
# seed=1)
test_rand_sampler = RandEdgeSampler(full_data.sources, full_data.destinations, seed=2)
nn_test_rand_sampler = RandEdgeSampler(new_node_test_data.sources,
new_node_test_data.destinations,
seed=3)
# Set device
device_string = 'cuda:{}'.format(GPU) if torch.cuda.is_available() else 'cpu'
device = torch.device(device_string)
# Compute time statistics
mean_time_shift_src, std_time_shift_src, mean_time_shift_dst, std_time_shift_dst = \
compute_time_statistics(full_data.sources, full_data.destinations, full_data.timestamps)
logger.info("************************************")
logger.info("*********** Test starts *************")
start_test = time.time()
for i_run in range(N_RUNS):
start_run = time.time()
logger.info("************************************")
logger.info("*********** Run {} starts *************".format(i_run))
MODEL_SAVE_PATH = f'./saved_models/{prefix}-{args.data}-{i_run}.pth'
# Initialize Model
glen = GLEN(neighbor_finder=train_ngh_finder, node_features=node_features,
edge_features=edge_features, device=device,
n_layers=NUM_LAYER,
n_heads=NUM_HEADS, dropout=DROP_OUT, use_memory=USE_MEMORY,
message_dimension=MESSAGE_DIM, memory_dimension=MEMORY_DIM,
memory_update_at_start=not args.memory_update_at_end,
message_function=args.message_function,
aggregator_type=args.aggregator,
memory_updater_type=args.memory_updater,
n_neighbors=NUM_NEIGHBORS,
mean_time_shift_src=mean_time_shift_src, std_time_shift_src=std_time_shift_src,
mean_time_shift_dst=mean_time_shift_dst, std_time_shift_dst=std_time_shift_dst,
use_destination_embedding_in_message=args.use_destination_embedding_in_message,
use_source_embedding_in_message=args.use_source_embedding_in_message,
window=args.window,
tcn_kernel_size=args.tcn_kernel,
tcn_layers=args.tcn_layers)
# load saved parameters of the model
glen.load_state_dict(torch.load(MODEL_SAVE_PATH)) # , strict=False
glen = glen.to(device)
glen.eval()
# Training has finished, we have loaded the best model, and we want to backup its current
# memory (which has seen validation edges) so that it can also be used when testing on unseen
# nodes
if USE_MEMORY:
val_memory_backup = glen.memory.backup_memory()
glen.local_embedding_module.neighbor_finder = full_ngh_finder
# transductive task
test_ap, test_auc, test_measures_dict = eval_edge_prediction_modified(model=glen,
negative_edge_sampler=test_rand_sampler,
data=test_data,
n_neighbors=NUM_NEIGHBORS)
if USE_MEMORY:
glen.memory.restore_memory(val_memory_backup)
# Inductive task: Test on unseen nodes
nn_test_ap, nn_test_auc, nn_test_measures_dict = eval_edge_prediction_modified(model=glen,
negative_edge_sampler=nn_test_rand_sampler,
data=new_node_test_data,
n_neighbors=NUM_NEIGHBORS)
logger.info('Performance of the {} model for the test set.'.format(args.model))
logger.info('Network Name: {}, Model: {}'.format(DATA, args.model))
logger.info('Test statistics: *** Old Nodes (Transductive) ***')
logger.info('Test statistics: Old nodes -- auc_inherent: {}'.format(test_auc))
logger.info('Test statistics: Old nodes -- ap_inherent: {}'.format(test_ap))
logger.info('Test statistics: New nodes -- auc_inherent: {}'.format(nn_test_auc))
logger.info('Test statistics: New nodes -- ap_inherent: {}'.format(nn_test_ap))
# extra performance measures
# Note: just prints out for the Test set!
for measure_name, measure_value in test_measures_dict.items():
logger.info('Test statistics: Old nodes -- {}: {}'.format(measure_name, measure_value))
for measure_name, measure_value in nn_test_measures_dict.items():
logger.info('Test statistics: New nodes -- {}: {}'.format(measure_name, measure_value))
logger.info('Info: Run {} elapsed time: {} seconds.'.format(i_run, (time.time() - start_run)))
logger.info('Info: Total elapsed time: {} seconds.'.format(time.time() - start_test))
if __name__ == '__main__':
main()